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Recent developments in 3D camera technologies, display technologies and other related 

fields have been aiming to provide 3D experience for home user and establish services 

such as Three-Dimensional Television (3DTV) and Free-Viewpoint Television (FTV). 

Emerging multiview autostereoscopic displays do not require any eyewear and can be 

watched by multiple users at the same time, thus are very attractive for home environ-

ment usage. To provide a natural 3D impression, autostereoscopic 3D displays have 

been design to synthesize multi-perspective virtual views of a scene using Depth-Image-

Based Rendering (DIBR) techniques. One key issue of DIBR is that scene depth infor-

mation in a form of a depth map is required in order to synthesize virtual views. Acquir-

ing this information is quite complex and challenging task and still an active research 

topic. 

In this thesis, the problem of dynamic 3D video content creation of real-world visual 

scenes is addressed. The work assumed data acquisition setting including Time-of-

Flight (ToF) depth sensor and a single conventional video camera. The main objective 

of the work is to develop efficient algorithms for the stages of synchronous data acquisi-

tion, color and ToF data fusion, and final view-plus-depth frame formatting and render-

ing.  

The outcome of this thesis is a prototype 3DTV system capable for rendering live 3D 

video on a 3D autostereoscopic display. The presented system makes extensive use of 

the processing capabilities of modern Graphics Processing Units (GPUs) in order to 

achieve real-time processing rates while providing an acceptable visual quality. Fur-

thermore, the issue of arbitrary view synthesis is investigated in the context of DIBR 

and a novel approach based on depth layering is proposed. The proposed approach is 

applicable for general virtual views synthesis, i.e. in terms of different camera parame-

ters such as position, orientation, focal length and varying sensors spatial resolutions. 

The experimental results demonstrate real-time capability of the proposed method even 

for CPU-based implementations. It compares favorably to other view synthesis methods 

in terms of visual quality, while being more computationally efficient.   
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1. INTRODUCTION 

3D video systems provide a viewer with 3D depth impression by displaying a scene 

from multiple perspectives, thus supporting stereoscopic views and some limited view 

parallax. 3D video technologies find place in wide variety of applications including en-

tertainment, visualization, medicine, education and communication.  In recent years, 

significant research interest has been shown in 3D video production for real-time appli-

cations such as Three-Dimensional Television (3DTV) and Free-Viewpoint Television 

(FTV). While 3D stereoscopic video is already well-established in cinemas, 3DTV 

would create a more natural and realistic viewing experience for home entertainment by 

providing the viewer with 3D feeling of visual content. FTV would allow for viewing 

3D video content with freely adjustable viewpoints. With the recent advances in devel-

opment of 3D camera technologies, display technologies and related data representation 

formats and standards, it became possible to attack the problem of dynamic 3D content 

creation of general, real-world scenes. Research in this area spans the whole media pro-

cessing chain from capture to display [1]. 

New multiview autostereoscopic displays are very attractive for home environment 

usage as they do not require any eyewear and can be watched by multiple users at the 

same time. In traditional stereoscopic technology, one view for each eye is produced. 

When stereo views are properly created, human brain uses disparity in these two views 

to extract depth information of a scene. However, specific glasses are required to ensure 

that each eye gets its corresponding view. In contrast, autostereoscopic multiview dis-

plays emit multiple views at the same time and the light from each view is emitted in 

different directions, while the necessary optical elements for correct view separation, 

e.g. parallax barrier or lenticular lenses, are built-in in the display itself. Each view is 

visible only from a particular viewing angle, thus no glasses are required. By showing 

multiple perspective views, the effect of motion parallax is also supported, i.e. user can 

see a scene from different perspectives when moving in front of the screen, as it would 

be expected for real 3D objects. The more views are emitted the more natural and 

smooth the effect of motion parallax is. To provide such a 3D experience, videos of the 

same scene captured from different perspectives are required.  

Since it is not practical to capture and transmit video of a scene from every view 

point, only a few views are provided, while the remaining views have to be reconstruct-

ed on the display side. Modern 3D displays are able to synthesize desired views using 

Depth-Image-Based Rendering (DIBR) techniques [2]. For DIBR algorithms, depth in-

formation of a rendered scene need to be provided in a form of a depth map associated 

with color, e.g. in a view-plus-depth format (Section 2.2.3). For each pixel in the color 
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image there is a corresponding depth value describing its depth in the scene. Such a 3D 

data representation allows rendering of virtual perspective views shifted with respect to 

the available color image. However, quality of virtual views decreases with the distance 

from the available view due to disocclusion artifacts.  

When a 3D video system includes depth based view synthesis technique to provide 

more natural 3D effect, accurate depth map estimation is the most important aspect af-

fecting the quality of the 3D output. Accurate depth sensing is a challenging task, espe-

cially when targeting real-time processing rates. Nowadays, depth sensing for 3DTV 

and FTV is made possible with new data acquisition devices, such as Time-of-Flight 

(ToF) sensors, which are designed to obtain scene range distances in real-time. Howev-

er, such sensors can provide only low-resolution data.  

In this thesis the problem of real-time 3D video content creation is addressed, focus-

ing on the data acquisition scenario utilizing ToF depth sensor. Throughout the thesis a 

prototype 3DTV system capable for rendering viewing live 3d video on a 3D autostere-

oscopic display is presented. The presented system makes use of processing capabilities 

of modern general-purpose Graphics Processing Units (GPUs) in order to achieve real-

time processing rates. Additionally, the matter of arbitrary view synthesis used to pro-

vide free-viewpoint functionality is investigated in the context of DIBR and a novel ap-

proach based on depth layering is proposed.  

1.1 Objectives and Scope 

This thesis work is focused on prototyping of a 3DTV system where 3D video of a sce-

ne can be captured in real time and viewed on a 3D autostereoscopic display. The work 

is motivated by the problem of real-time calculation of a dense depth map correspond-

ing to a high-resolution image, which results in a view-plus-depth data representation 

used for 3D video rendering. Therefore, a real-time 3D imaging scenario where scene is 

captured by a conventional color camera and a depth sensor based on the time-of-flight 

principle is employed. The main objective of the work is to develop efficient algorithms 

for the stages of synchronous data acquisition, color and ToF data fusion and final view-

plus-depth frame formatting and rendering on a 3D display. Since a real-time imple-

mentation of a full system from capture to display is targeted, the applied image pro-

cessing and rendering algorithms are designed to match the programming paradigms of 

fast parallel GPUs in order to achieve real-time processing rates while providing good 

visual quality. 

The following tasks fall within the scope of the project: study and utilization of  

camera calibration techniques in order to calibrate a multicamera system with respect to 

its intrinsic and extrinsic parameters; design and implementation of a 3D scene capture 

setting consisting of a color camera and a ToF depth sensor; efficient GPU based im-

plementation of a chain of image processing algorithms for data denoising, optical dis-

tortions correction, data fusion and forming a view-plus-depth frame; efficient imple-
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mentation of DIBR. GPU base synthesis of arbitrary virtual views based on view-plus-

depth input has also been considered.  

The outcome of this thesis is an efficient end-to-end system combining several meth-

ods to achieve real-time processing of the whole chain from 3D capture of a scene to its 

free-view display. The individual parts of the processing chain are implemented and 

integrated into a unified framework. Each component in the framework is presented in 

detail throughout the thesis. Necessary initialization setup and an efficient algorithmic 

approach for the creation of depth maps, depth and color data fusion and depth image-

based rendering related to this framework are presented. Additionally, the issue of arbi-

trary view synthesis in the context of DIBR is investigated and a novel approach based 

on depth layering is proposed. Also various well known denoising techniques currently 

presented for ToF data and inpainting techniques used to cope with the disocclusion 

problems of DIBR synthesis are outlined. However, in-depth discussions of these broad 

research topics are beyond the scope of the presented work. Terminology is given in 

DIBR context. As the approach heavily relies on GPU resources, strong emphasis is 

made upon principal steps of GPU implementation with focus on real-time performance. 

1.2 Related Work 

Virtual views synthesis is a common task in 3D video applications. When a 3D video 

system relies on DIBR algorithms, depth information of the rendered scene in a form of 

a depth map associated with color is required. Accurate depth sensing is a challenging 

task especially for real-time applications. Dedicated sensors, i.e. ToF cameras, allow 

real-time depth sensing [3]. Such depth sensor is a key element of 3D video system pre-

sented in this thesis and will be described in more detail in the following chapter. 

The major advantage ToF sensor compared to other depth estimation techniques is 

the ability to deliver depth map of the entire scene at a high frame rate and independent-

ly of textured surfaces and scene illumination. However, there are some drawbacks as-

sociated with the ToF working principle; namely, limited resolution and accuracy, as 

well as inability to capture color information. These limitations can be compensated by 

fusing ToF data with high-resolution video captured by one or more conventional video 

cameras. High-resolution texture data can provide important guidance for dense depth 

maps estimation from low-resolution ToF data. 

Different combinations of high-resolution video cameras and low-resolution ToF 

sensors have been studied. Setups described in [4]-[7] utilize configuration with a single 

color view and a single range device. Approaches described in [5] and [6] upsample 

low-resolution depth maps by means of adaptive multilateral upsampling filtering 

schemes (similarly to [15]) aimed at preserving sharp edges in geometry data while 

smoothing it over homogenous regions. A GPU based approach proposed in [5] has 

been demonstrated to be feasible for real-time applications. A scene reconstruction 

method that iteratively adds every unique scene portion of scene, data utilizing both ge-

ometric and color properties of the already acquired parts of the scene has been pro-
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posed in [6]. This technique enables capturing a scene with difficult geometry even with 

a small and low-cost depth sensor resulting in visually convincing 3D model of the sce-

ne. A rather straightforward data fusion scheme has been implemented in [4]. The data 

fusion stage is implemented by mapping the ToF data as 3D point clouds and projecting 

them onto the color camera sensor plane, resulting in pixel-to-pixel projection alignment 

of color and depth maps. Subsequently, the color image is back-projected as a texture 

onto the ToF sensor plane.  

When multiple color cameras are available in a capturing setup, ToF data can be 

combined with disparities obtained by stereo-matching algorithms resulting in high 

quality disparity maps. Depth from stereo is a well-studied field of research [16]. Depth 

estimation from stereo is done by finding corresponding pixels in left and right views. 

When the correspondence between two views is found, the depth is inferred via triangu-

lation. Properties of stereo matching estimations and ToF data are complementary in a 

way. Spatial resolution of depth map obtained from stereo matching can be very high. 

However, stereo matching algorithms often fail in textureless areas or areas with repeti-

tive patterns. In such areas, ToF depth sensing is advantageous. An interesting solution 

of combining stereo and ToF data is described in [8]. The algorithm utilizes more than 

two images for stereo matching and produces a dense depth map for one of the available 

color views by calculating per-pixel cost function. In [9], ToF range measurements con-

verted to stereo disparities are used to initialize a stereo matching algorithm. However, 

real-time implementation is not considered in these works. 

Works that are focused on real-time performance of data fusion and DIBR are de-

scribed in [10]-[13]. A rendering algorithm presented in [10] combines view blending 

with inpainting and achieves a real-time performance using GPU acceleration. A full 

real-time implementation of a multilateral filtering system for depth and color data fu-

sion is presented in [11] and [13]. An approach proposed in [12] focuses on real-time 

implementation for depth-from-stereo estimation by utilizing FPGA hardware. Most 

relevant to this thesis is the system presented in [14]. The system has been designed for 

real-time multiview rendering and is based on a depth camera and a color camera. The 

multi-view rendering is done by means of 3D surface mesh representation of a scene 

and projective texture mapping. However, such problems as erroneous color mapping in 

regions hidden from the color camera or areas disoccluded in generated virtual views 

have not been addressed. 

1.3 Thesis Structure 

The thesis is structured as follows. Necessary background and fundamentals for the ide-

as discussed throughout the thesis are presented in Chapter 2. First, the basic pinhole 

camera model is briefly described and general concepts and practices related with DIBR 

are introduced. Further, the ToF technology, its working principles and limitations are 

presented. Finally, a high level overview of 3D graphics pipeline is explained for the 

needs of the rendering process.  
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Chapter 3 presents a system-level overview of the proposed 3D video system. It de-

scribes aspects such as system architecture and key functionalities, design and calibra-

tion of the data capturing setup, organization of data streaming between the cameras and 

the application and interfacing of an autostereoscopic display.  

Chapter 4 provides step-by-step description of the processing chain for video-plus-

depth content creation and arbitrary view synthesis in the context of GPU graphics pipe-

line. It includes steps for ToF data denoising, data reprojection and fusion for dense 

depth map generation, optical distortions correction, view-plus-depth frame formatting 

and rendering, and arbitrary view rendering from view-plus-depth data. At the end of 

the chapter, the performance evaluation of the presented system is provided.  

In Chapter 5, a new approach for DIBR based on depth layering is proposed. It pre-

sents the depth layering procedure and the view synthesis algorithm along with obtained 

experimental results.  

Finally, Chapter 6 concludes the presented work and discusses possible topics for fu-

ture research. 
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2. THEORETICAL BACKGROUND 

A common goal for 3DTV and FTV systems can be formulated as real-time rendering 

of realistic virtual views from available recorded information about real-world scenes. 

Provided that certain amount of 3D geometric information about the scene is available, 

the amount of recorded color information necessary to produce reliable images can be 

substantially reduced. Nowadays, real-time depth imaging of scenes can be facilitated 

by rapidly developing ToF depth sensing technologies, which become more and more 

popular within the DIBR context. From another side, increased computational power of 

modern GPUs allows for fast execution of computationally demanding image pro-

cessing methods of depth and color necessary for realistic 3D visualization. 

This chapter provides necessary background for the ideas presented throughout the 

thesis. The basic pinhole camera model is presented in Section 2.1. General concepts 

and practices related with DIBR are introduced in Section 2.2. Time-of-flight technolo-

gy, its working principles and limitations are described in Section 2.3. Finally, in Sec-

tion 2.4 a high level overview of 3D graphics pipeline is given.  

2.1 Pinhole Camera Model 

The pinhole camera is a simplified camera model where the camera aperture is assumed 

to be dimensionless, distortions caused by the actual lenses performing projections in 

real cameras are omitted, and projection plane is assumed to be parallel to the aperture 

plane [17]. The model parameters define the relation between 3D coordinates of the ob-

served scene and their 2D projections. The plane where the image is projected is called 

the image plane or focal plane. The distance between the optical center C  and the image 

plane is the focal length f and the line perpendicular to the image plane is the principal 

axis. The intersection of the principal axis with the image plane is called the principal 

point P and the plane containing optical center and parallel to the image plane is called 

principal plane. In practice, it is natural to place the image plane behind the optical cen-

ter of a real camera. However, in case of theoretical model image plane can be moved in 

front of the optical center in order to work with aligned images as shown in Figure 2.1.  

Assuming a pinhole camera model with the origin of the image plane coordinates at 

the principal point, the mapping between 3D world point (x,y,z)
T
 and the point on the 

image plane (u,v)
T 

can be calculated from similar triangles as follows: 

 
z

fx
u


 , 

z

fy
v


 . (2.1) 
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Using homogenous coordinates, (2.1) can be rewritten as: 
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 In matrix form, Eq. (2.2) can be written as: 

 Mzm P  (2.3) 

where M = (x,y,z,1)
T
 and m = (u,v,1)

T
 are homogenous coordinates, P[3×4] is a camera 

projection matrix of the central projection pinhole model. 

In the general case, a camera projection matrix P can be represented as: 

   t RKP   (2.4) 

where K contains intrinsic parameters and [R|t] contains extrinsic parameters of a cam-

era. Intrinsic camera parameters define the correspondence between image pixel coordi-

nates and camera coordinates. The matrix K[3×3] is called camera calibration matrix and 

is defined as: 
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where f is the focal distance; sx and sy are the numbers of pixels per unit distance; px and  

py are the principal point coordinates; and s is the skew parameter. 

The extrinsic parameters are a rotation matrix R[3×3] and a translation vector t[3×1], 

which describe the camera location and orientation regarding the world coordinate sys-

tem: 

  

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


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3
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t
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t R . (2.6) 

2.2 Depth-Image-Based Rendering 

In the case of 3D video applications for home environment, when moving in front of a 

display, a user expects to see a 3D scene from a different viewpoint. To create such a 

 
Figure 2.1 Pinhole camera model. 
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filling, in a multiview autostereoscopic display system, consecutive views of a scene are 

arranged properly in stereo pairs so that when the user moves around, a natural motion 

parallax can be observed. To provide smooth enough motion parallax, displays must be 

supplied with a fairly good number of views. The amount of required input data can be 

reduced by generating virtual views from a limited sub-set of inputs at the display side. 

Generating novel views from the available information is called view rendering or view 

synthesis. View rendering techniques are usually classified into three categories accord-

ing to the amount of geometric information being used: geometry-based rendering, im-

age-based rendering and depth-image-based rendering [18], [19]. 

Geometry-based rendering is a classical 3D computer graphics approach [22]. Usual-

ly, geometry-based rendering exploits 3D models of the objects. These are provided in a 

form of 3D surface meshes with an associated texture mapped onto them. A drawback 

of this approach is that human assistance is often required for content creation. Such 

models may contain millions of polygons. For realistic rendering, various visual effects 

such as highlights, reflections and transparency need to be imitated and realistic lighting 

models should be applied, which is often complex and time consuming, and even more 

complex for dynamic scenes.  

On the other hand, image-based rendering does not require any geometric infor-

mation at all [19]. In this case, instead of 3D geometric primitives, a collection of avail-

able real camera views are used to generate virtual intermediate views. Potentially high 

quality realistic virtual views can be synthesized by interpolation, avoiding any 3D re-

construction and complex visual effects calculations. However, the lack of geometric 

information has to be compensated by very dense sampling of the real world. If the 

number of used input views is not high enough, interpolation artifacts will appear affect-

ing the quality of the synthesized views.  Thus, data acquisition becomes highly compli-

cated as large numbers of cameras have to be used to capture a scene and huge amount 

of images have to be processed thereafter.  

Depth image-based rendering approaches rely on explicit geometry information for 

new view generation [20], [21]. The geometric constraints can be for example in a form 

of disparity or depth maps. Such maps assign a depth value for every pixel in the image. 

The depth map combined together with the original view provides a 3D-like representa-

tion (often called 2.5D). Virtual views can be synthesized from captured scene image 

and associated depth. Depth-image-based rendering techniques are described in more 

details in the following sections. 

2.2.1 3D Image Warping 

Depth-image-based rendering utilizes scene depth information provided in the form of 

depth maps to synthesize new virtual views. The basic idea of most DIBR rendering 

methods is to perform 3D warping [23]. 3D warping is a two-step process (Figure 2.2). 

First, given a reference color image and its associated depth map along with camera 

calibration information, pixels of the reference image are back projected to their original 

3D locations in space using their respective depth values (2D-to-3D). Second, the 3D 
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points are projected again onto a virtual camera image plane at the required viewing 

position (3D-to-2D). As a result, the pixels of the reference image are shifted to gener-

ate a new view as if they were captured from the virtual viewpoint. 

A 3D warping algorithm can be formalized as follows. Let M = (x,y,z,1)
T
 be a world 

point and m = (u,v,1)
T
 be its projection in a camera with projection matrix P in homoge-

neous coordinates. If a camera is modeled as a pinhole camera, the relationship between 

M and m is: 

 PMzm  (2.7) 

where z is depth and P[3×4] is the camera projection matrix. Using Eq. (2.7), the 3D point 

M can be reconstructed from the image point m using inverse projection matrix P
-1 

and 

its depth value z. Then, the reconstructed 3D point is projected to the virtual image 

plane with the projection matrix of the virtual camera P.  

Usually, the input pixel locations are not mapped to integer positions of the virtual 

view after 3D warping and the novel view must be accurately resampled. The main dif-

ference between various resampling approaches lies in the interpolation kernel used, e.g. 

nearest neighbor, linear, cubic spline, etc. Furthermore, disocclusions and other render-

ing artifacts may appear in the novel views. To avoid artifacts in the newly generated 

virtual views, DIBR requires efficient techniques to fill these disocclusions. This is dis-

cussed in the next section. 

2.2.2 Rendering Artifacts 

The quality of the virtual view strongly depends on the accuracy of the depth data. After 

3D warping, rendering artifacts may appear in virtual views mainly caused by depth 

discontinuities. The amount of artifacts increases with the distance of a virtual view 

from the original view. Rendering artifacts result in a reduced visual quality, thus some 

post-processing should be performed to cope with the artifacts. There are three major 

types of artifacts [24].  

The first type of artifacts is caused by the fact that the size of objects may change de-

pending on the viewpoint, so after warping an object from one viewpoint to another 

viewpoint, cracks on the object surface will appear (Figure 2.3 left). Cracks can be emp-

 
Figure 2.2 3D warping. 
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ty, i.e. containing pixels with no values, or can contain pixels from the background. In 

most cases, cracks can be filled by applying a median filter (if there are background 

pixels, they should be detected and ignored). 

Secondly, inaccuracy in depth maps, depth-texture misalignments or smooth texture 

edges causes pixels to be warped to wrong places in the virtual view. Foreground edge 

pixels, where the discontinuities in depth are high, are warped onto background creating 

contour artifacts (Figure 2.3 right). When the wrongly warped edge pixels are not re-

moved, the resulting rendered image will have unnatural ghost contours of the fore-

ground objects. 

The main drawback of DIBR techniques is that virtual view can contain holes also 

often referred as disocclusions (Figure 2.3 left). Disocclusions are previously invisible 

scene parts, which become visible in the virtual view. Disocclusions usually appear at 

the object boundaries, where the depth discontinuities are larger. Neither color nor depth 

information related to these regions is known. This is the most problematic type of arti-

facts to be handled and some advanced inpainting techniques are required to fill in the 

disoccluded areas.  

The disocclusion problem is often considered as missing texture information, which 

is filled by using inpainting techniques. A number of different inpainting methods can 

be found in the literature. When the holes are small enough, simple interpolation and 

extrapolation can offer acceptable results. These would create obvious artifacts for larg-

er holes [25]. In order to get better visual results for large holes, more sophisticated 

methods based on structural inpainting [26] or textural inpainting [27] are suggested. 

Another type of algorithms is based on exemplar-based inpainting technique first intro-

duced in [28], which combines both structure propagation and texture synthesis to effec-

tively fill in missing pixels. However, depending on the characteristics of the scene and 

the size of the holes, all the inpainting approaches produce more or less annoying visi-

ble artifacts in the synthesized views [29]. Overviews of inpainting techniques for DIBR 

can be found in [30] and [31]. 

 
Figure 2.3 Rendering artifacts. Left: disocclusions and cracks. Right: contour artifacts. 
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2.2.3 Depth-Based Data Formats 

The primary design choice of any 3DV system is a 3D scene representation format, as 

the scene representation consequently affects all other modules in the 3DV system pro-

cessing chain. On the sender side, it determines requirements for data acquisition, e.g. 

number and setting of cameras, data extraction algorithms, coding and transmission 

schemas. On the receiver side, it determines the rendering algorithm, and subsequently 

the output quality, navigation range, interactivity, etc. Depth-based data representations 

have a number of advantages over conventional stereoscopic video data formats: 

- Backward compatibility to existing 2D TV services. 

- Efficient compression capabilities: a depth map adds transmission overhead less 

than 20% of the original color video bitrate, whereas in case of stereoscopic format, 

transmitting two views would cause up to 100% overhead. 

- The final stereo images are generated during rendering at the receiver side, this al-

lows to adjust the parameters of the DIBR algorithm and to customize the 3D depth 

impression according to the viewer's personal preferences.  

2.2.3.1 Video-plus-Depth 

The simplest of the depth based formats is the video-plus-depth format (V+D or 2D+Z) 

[32], which augments a regular 2D video with its associated depth video. The 2D video 

provides the color intensity, while the depth video represents per-pixel distances be-

tween the camera and points in the scene. The depth map is a gray scale image usually 

represented with 8-bit unsigned integers, i.e. the value 255 represents the closest point 

and the value 0 represents the most distant point (see Figure 2.4). 

Acquisition and transmission of a high number of views is inefficient, V+D format 

supports rendering of virtual views by DIBR at the receiver side. However, V+D format 

can support view synthesis only in a very limited neighborhood of the available original 

view, as the amount of disocclusion artifacts significantly increases with distance of the 

virtual view from the available view. Information about the originally hidden scene 

parts can neither be inferred from the single color image nor from the corresponding 

depth image, and the missing image parts must be filled during the post-processing.  

 
Figure 2.4 Video-plus-depth format. 
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2.2.3.2 Multiview Video-plus-Depth 

The problem of a single video-plus-depth stream is a small navigation range due to the 

growth of rendering artifacts with the distance from the original view. The V+D format 

can be easily extended to multiview video-plus-depth (MVD) [33]. MVD consists of 

two or more V+D data streams. In this case, a scene has to be captured by multiple 

cameras and depth data has to be estimated for each of the original camera views 

(Figure 2.5). Such data representation supports generation of the high quality virtual 

views and extends the potential navigation range for 3DV applications.  

For transmission of multiple V+D streams an appropriate multiview coding (MVC) 

algorithm can be applied. It allows efficient data compression by exploiting the inter-

view dependencies [33]. After transmitting and decoding, the received V+D streams are 

converted to the display views by using DIBR techniques. However, because of the pos-

sible difference between capturing and display configurations, such conversions from N 

source views to M display views introduce additional practical challenges compared to 

the single V+D format. First, the number of camera views N usually is not equal to the 

number of display views M (for practical reasons, Nis usually significantly smaller than 

M). This means intermediate views have to be interpolated anyway. Second, the ar-

rangement of the cameras capturing the scene may be different from the view geometry 

of a 3D display. The virtual views of a 3D display are usually perpendicular to the dis-

play surface and evenly spaced, which is hard to achieve in practice for a real capturing 

rig, due to mechanical inaccuracies and different optical characteristics of the cameras. 

 
Figure 2.5 Multiview video-plus-depth.  
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2.2.3.3 Layered Depth Video 

Although MVD is a powerful representation format for 3DV, it requires transmission of 

a vast amount of redundant data even if compression is applied. An alternative data rep-

resentation is layered depth video (LDV) [34]. LDV representation allows further reduc-

tion of the overhead associated with transmission of multiple V+D streams. To do so, 

the available views are projected onto each other in order to detect and eliminate dupli-

cated information. The reduced information is then stored in different layers: the main 

layer is one full (usually central) video-plus-depth view, and a number of additional oc-

clusion layers consisting of residual texture and associated depth data of side views 

(Figure 2.6). Afterwards, the non-transmitted side views are generated by view synthe-

sis, i.e. the main view is projected onto side views by DIBR.  This way, LDV represen-

tation can achieve a more compact representation of the data compared to MVD.  

However, LDV representation also has a number of drawbacks. First of all, the layer 

extraction for LDV strongly depends on depth quality as it is based on view warping, 

and is prone to errors in case of inaccurate depth estimation. Furthermore, lighting ef-

fects that are different in different views, e.g. shadows, reflections, etc., are ignored in 

the LDV representation, while preserved in the MVD representation. Finally, when the 

main view is projected, the generated side view may still suffer from cracks occurrence, 

as not every pixel necessarily exists in the main view. 

2.3 Time-of-Flight Technology 

Depth sensing of real world scenes is used in many computer graphics and computer 

vision applications, such as virtual reality, object reconstruction, intermediate view syn-

thesis, human machine interaction, robotic navigation, etc. At present, there is no off-

the-shelf system that can provide real-time high resolution high quality range infor-

mation. Depth sensing can be carried out using laser scanners or stereo vision systems. 

While those techniques are able to provide high-resolution, accurate estimates of depth 

information, they still possess several drawbacks. Systems involving laser scanners, for 

example, produce high quality measurements by scanning the environment with a laser 

beam row by row, consequently, because of this processing scheme, laser scanning is 

rather time-consuming and thus not suitable for dynamic scenes. Stereo vision systems, 

on the other hand, analyze the scene as viewed in different images to obtain depth 

measurements, a process, which is strongly depending on the scene's texturing and, 

 
Figure 2.6 Layered depth video with a main and an occlusion layer. 
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therefore, tending to fail in image regions with homogeneous or repetitive textures, re-

sulting in gaps in the depth measurements. 

An alternative, suitable for real-time applications is depth sensing based on the time-

of-flight (ToF) principle [3]. ToF cameras work by measuring the phase-delay of re-

flected infrared light and provide range estimates at each pixel in parallel. These devices 

are relatively compact and inexpensive, capable to provide depth images at a rate equal 

to or higher than real-time speed. In contrast to stereo systems, depth accuracy provided 

by ToF sensors is independent of the scene texturing. Nevertheless, new challenges in-

troduced by the nature of time-of-flight mechanism itself are still to be solved, such as: 

low sensor resolution (e.g. 200×200 pixels) compared to Full High-Definition (HD) 

pixel standard (1920×1080), inability to capture color information along with depth and 

inaccuracies in depth measurements containing systematic and other errors. In practice, 

before using the range data from a ToF sensor, some pre-processing of the input data is 

usually required, e.g. denoising and upscaling. Further details on the working principles 

and error sources in time-of-flight depth measurements are presented in the next two 

sections. 

2.3.1 Operation Principle of ToF Depth Sensors 

A typical ToF device consists of an illumination source, an electronic light modulator 

and a sensor array. The whole scene is illuminated by the illumination source with 

modulated infrared light. The light reflected from objects in the scene is sensed back by 

sensing elements of the sensor array. Every pixel in the sensor array independently cal-

culates depth, amplitude and intensity information, by measuring the phase difference 

between the emitted sinusoidal light wave and incoming signal (Figure 2.7 and [35]). 

Assuming ideal sinusoidal modulation of the infrared light source, emitted and in-

coming signals, denoted as g(t) and s(t) respectively, can be represented as:  

 )cos()( ttg  ; (2.8) 

 )cos()(   tahts  (2.9) 

where ω represents the modulation frequency, phase offset Δφ depends on the duration 

of light travel to the object and back, additional constant component h is used to model 

background illumination and an amplitude component a is used to model power loss 

due to light absorption. 

Cross-correlation function between emitted and incoming signals is defined by: 

 )cos(
2

))(()c(  
a

gs . (2.10) 

By sampling the correlation function (2.10) four times at phases with 2  shift from 

each other, phase offset between emitted and incoming signals can be calculated as: 
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The depth value d can be derived from the obtained phase information φ as: 

 



4

Lc
d  (2.12) 

where Lc ≈ 3∙10
8 

m/s is the speed of light.  

The amplitude of the received signal a and the background intensity I are calculated 

by: 
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2.3.2 Error Sources in Depth Measurements 

Depth images produced by a ToF sensor contain both systematic and non-systematic 

errors [3]. Measurement accuracy of a ToF sensor is limited by the power of the emitted 

signal and depends on many factors, such as light intensity, different reflectivity of sur-

faces, distances to objects in a scene, etc.  

Systematic errors are directly related to the time-of-flight working principle intro-

duced in the previous section. Since calculation of the distance assumes a perfectly si-

nusoidal light source, which in practice is not possible, the measured depth contains an 

error component, referred to as “wiggling”. Possible methods to correct systematic 

depth errors are discussed in [3], e.g. technique based on look-up-tables [36] or B-

splines approximation for the error [37]. 

Non-systematic errors are related to the scene-content. So called “flying pixels” can 

be observed in regions with inhomogeneous depth, e.g. at object boundaries. Because of 

low sensor resolution and systematic noise, pixels that observe object boundaries get 

mixed signals leading to wrong distance values falling in between foreground and back-

ground. Motion artifacts are caused by either camera or object motion. Cross-correlation 

for phase estimation requires sampling of the incoming signal at least four times, thus 

depth values at object boundaries become erroneous for a dynamic scene. Other errors 

are intensity related distance errors, as the amplitude of the reflected signal can also var-

ies depending on the material and color of the object surface. Object areas with very low 

 
Figure 2.7 Time-of-flight measurement principle.  
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reflectivity or objects far from the sensor generate a low signal, while areas with high 

reflectivity may cause over-saturation. 

The problem of denoising of ToF data has been addressed in a number of works [38], 

[39], [44]. Modern denoising approaches, such as edge-preserving bilateral filtering [40] 

and non-local (patch based) filtering [41], have been modified to deal with ToF data 

[38], [44]. It has been proved that the error in distance measurements is proportional to 

the square inverse of the amplitude and measured amplitude can serve as an estimate of 

the reliability of depth measurements [42], [43]. The technique proposed in [44] utilizes 

a non-local means filtering [41], modified to work in a complex-variable domain. Phase 

delay and amplitude of the sensed signal are regarded as components of a complex-

valued variable and processed together in a single step. This imposes better filter adap-

tivity and weighting with reduced computational complexity, and additionally improves 

the noise confidence parameter given by amplitude. 

A specific case of interest is the so-called low-sensing mode, in which the sensor is 

more restricted, e.g. by size restrictions leading to limited beamer size and decreased 

number of light-emitting elements, requirements for low power consumption, etc. For 

such mode the noise presence becomes a dominant problem, which should be addressed 

by dedicated denoising methods [45], [46]. 

2.4 3D Computer Graphics Basics 

In computer graphics, rendering is the process of producing a digital image based on 

three-dimensional scene description. A 3D rendering algorithm takes as input a stream 

of primitives (triangles, lines, points, etc.) that define the geometry of a scene. The 

primitives are processed in a series of steps, where each step forwards the results to the 

next one. The sequence of steps required to implement the rendering algorithm is called 

rendering pipeline or graphics pipeline [47]. Some components in the modern rendering 

pipeline are fixed and implemented using dedicated logic, while others are programma-

ble and can be provided to a graphical processor in a form of special shader programs. 

Fixed parts of the pipeline are controlled through graphics APIs, such as OpenGL and 

Direct3D, which modify the rendering state and supply input to the pipeline. In the the-

sis project, OpenGL library is used. Using shaders, it is possible to customize the func-

tionalities of the graphics pipeline. Programming shaders is possible with high level 

shading languages; e.g. OpenGL Shading Language (GLSL) [48], which is based on the 

syntax of the C programming language. 

2.4.1 Programmable GPU Rendering Pipeline with OpenGL 

A simplified representation of the modern 3D pipeline is shown in Figure 2.8. The dark 

boxes stand for programmable parts, while the others provide fixed functionality.  
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The input of the rendering pipeline is a set of geometric primitives. In most cases tri-

angles are used but also rectangles or other polygons are possible. A primitive is defined 

by its vertices. Each vertex contain information about vertex properties, this may in-

clude: location of the vertex in space, surface normal vectors, texturing and coloring 

information, and material properties.  

A vertex shader program can perform arbitrary operations on individual vertices, i.e. 

it runs once for each vertex given to the graphics processor. A vertex shader can manip-

ulate properties such as position, color and texture coordinates (vertex coordinate trans-

formations are typically performed at this stage). All the computations for one vertex 

have to be independent from all other vertices. The vertex shader cannot create new ver-

tices: for each input vertex, the shader has to output exactly one output vertex. 

The primitive assembly stage is not programmable and it is responsible for assem-

bling the transformed vertices into proper primitives. The output of assembly process is 

an ordered sequence of simple primitives (lines, points, or triangles). The type of the 

output primitives depends on the type of the primitives provided by a user in the render-

ing procedure call. 

A geometry shader is an optional stage of the pipeline. If presented, it takes as input 

a whole primitive and has access to all the vertices that make up the primitive. Vertex 

information can be provided also for adjacent vertices. The output of a geometry shader 

can be zero or more primitives: some primitives can be filtered out or new primitives 

can be generated, e.g. to optimize speed or to increase rendering quality. 

The clipping stage divides partially visible primitives into their visible and invisible 

parts. Here “invisible” means those parts of primitives that lie outside the area that is 

visible in the final frame. This process reduces the workload for the following stages. 

Rasterisation and interpolation are fixed stages of the pipeline. Rasterisation maps 

portions of primitives to pixels on the screen, i.e. defines a set of pixel-size fragments 

that are part of a primitive. Fragments are used to compute the final data for a pixel in 

the output framebuffer. Every fragment includes its position in screen-space and a list of 

vertex attributes (position, color, etc.) that were output from the previous stage: for each 

fragment in a primitive, values of these attributes are interpolated between the data val-

ues of the vertices composing the primitive. Commonly, the value of the attribute is cal-

culated as a weighted average between the attribute values of the primitive vertices.  

 

Figure 2.8 Simplified rendering pipeline. 
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Fragment shader (or pixel shader) computes the final color value of each fragment. It 

can access the fragment position, and all the interpolated data computed in the rasterisa-

tion process (only current fragment and its associated data). It can change the depth of a 

fragment and use textures to produce special effects such as fog, lighting, etc. Moreo-

ver, fragment shader can act as a postprocessor or filter for the output data after it has 

been rasterized. Although fragment shader can only operate on a single fragment, the 

screen coordinate being drawn is known. So if the content of the entire screen is passed 

as a texture to the shader the values of the nearby pixels can be accessed. This allows a 

wide variety of post-processing effects, such as blur, enhancement, etc.  

Raster operations are a sequence of stages, which determine the final color of pixels 

based on the fragments produced by the fragment shader. First various culling tests are 

performed to determine if the fragment is visible and needs to be added to the frame-

buffer. Then blending is performed to blend the color of the fragment with the color of 

the already rendered pixel. 

2.4.2 OpenGL Coordinate System Transformations 

Just like the rendering pipeline, transforming vertex coordinates from the original 3D 

coordinates to 2D screen coordinates is done step-by-step. Each transformation maps 

vertex coordinates onto a new coordinate system, moving to the next step (Figure 2.9). 

There are multiple coordinate systems involved in 3D graphics: 

- Object space; 

- World space (Model space); 

- Camera space (Eye space/ View space); 

- Screen space (Clip space). 

Object space is the local coordinate system of a geometrical object. The model ma-

trix transforms a position in the object coordinates to the desired position in world coor-

dinate system. Usually it is used to move the object somewhere in the world: every ver-

tex of the object is multiplied by the model matrix, which transforms the vertex to its 

new position and orientation. 

The view matrix transforms world coordinates into eye coordinates, i.e. it corre-

sponds to placing and orienting the observed scene relative to the camera position (or 

the eye of an observer). The camera is an abstract thing, which is placed at the origin of 

the camera coordinate system, looks down the negative direction of the Z-axis and its 

up-direction is given by the positive Y-axis. 

The projection matrix transforms eye coordinates into clip coordinates. It determines 

how a 3D vertex coordinate is projected on a 2D screen coordinate and the viewing vol-

ume of the scene (frustum). The resulting coordinates are called clip coordinates be-

cause all parts of primitives that are outside the frustum are clipped away. It should be 

the last transformation that is applied to a vertex in a vertex shader.  
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The modeling, viewing and projection transformation are applied in the vertex 

shader. For a vertex represented by homogenous coordinates v = (x, y, z, w), w=1, the 

final vertex transformation is the product of these three matrices: 

 vv modelviewprojclip  MMM . (2.15) 

Next, each clip coordinate is transformed into a normalized device coordinate (NDC) 

by perspective division, which is dividing the clip coordinate by wclip. Perspective divi-

sion is automatically applied in the fixed-function stage after the vertex shader. The re-

sulting range of values is from -1 to 1 in all three axes. 
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NDC coordinates are then mapped to screen coordinates (or window coordinates) by 

the viewport transformation. The viewport transformation is also applied automatically 

in the fixed-function stage. Finally, the window coordinates are passed to the rasterisa-

tion process to become a fragment.  

2.4.3 Calibrated Cameras in OpenGL 

When working with data originated from real calibrated cameras, it is often useful to be 

able to display things on screen from the point of view of a virtual camera that resem-

bles properties of a real camera providing the data. To simulate a calibrated camera in 

OpenGL original camera's parameters (focal length, principal point coordinates, etc.) 

should be incorporated into OpenGL projection matrix, which defines how 2D projec-

tion of a 3D scene is formed [49].  

 
Figure 2.10 Projective transformation: Frustum→Cube→NDC. 

 

 

Figure 2.9 OpenGL transformations. 
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Given that the calibration matrix K is known, OpenGL projection matrix can be cal-

culated by multiplying two matrices: 

 perspNDCproj MMM  . (2.17) 

The Mpersp matrix converts a frustum-shaped space into a cubic shape, and MNDC con-

verts the cubic space to normalized device coordinates (Figure 2.10). The intrinsic cam-

era matrix K specifies the camera perspective projection transformation and can be in-

corporated into Mpersp as follows:  
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where fx, fy are focal length in pixels, px, py are principal point coordinates, near and far 

correspond to back and front clipping planes of the viewing frustum. While MNDC 

should be of a form: 
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The choice of top, bottom, left, and right clipping planes correspond to the dimen-

sions of the calibrated camera sensor and the coordinate conventions used during cali-

bration.  

2.5 Summary 

Basic principles and concepts related with the research objectives of this thesis were 

presented in this chapter. The main accent in the thesis is made on real-time realization 

of DIBR techniques and practices utilizing fast ToF depth sensors and the computation-

al power of modern GPUs. ToF sensors are able of delivering depth images in real-time, 

however, numerous errors of various kind as well as other issues associated with the 

ToF sensing principle need to be taken into account and handled. One major drawback 

besides noise presence in depth measurements is the missing color information from the 

sensor: it does not allow capturing color and light from the scene as a conventional vid-

eo camera does. In order to deal with the limitations of the ToF sensor, various combi-

nations of high resolution video cameras with ToF sensors are possible. The following 

chapter presents such a system. The quality of the recorded depth information is en-

hanced by applying a dedicated denoising procedure and by further fusing depth data 

with the high-resolution color modality. 
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3. SYSTEM OVERVIEW 

This chapter presents a system-level overview of the proposed 3D video system capable 

of live 3D video rendering on a multiview autostereoscopic display and arbitrary view 

synthesis. The entire processing chain, including data capture, image processing algo-

rithms and rendering, is composed into a unified end-to-end framework and runs in real 

time. The input data is received from a multisensor setup combining a ToF depth sensor 

and a high-resolution color camera. The ToF depth sensor can provide depth infor-

mation in real-time, while the color camera is added in order to capture the color infor-

mation. The input data from the camera setup is being processed in a series of steps in 

order to produce a view-plus-depth frame for an autostereoscopic 3D display or to gen-

erate a novel view of the captured scene from an arbitrary viewpoint. Processing power 

of modern GPUs and their programming tools enable for efficient high speed realization 

of data processing and rendering algorithms. 

The chapter is organized as follows. The overview of the system architecture and key 

functionality is given in Section 3.1. Section 3.2 describes the design and calibration of 

data capturing setup that enables simultaneous recording of dynamic scene. Details on 

data streaming between the cameras and the application are provided in Section 3.3. 

Finally, technical details and the interface specification of the autostereoscopic display 

are given in Section 3.4. 

3.1 System Design and Functionality 

The full 3D video processing chain from data capture to visualization on the 3D display 

is composed into an end-to-end system. Figure 3.1 shows the principal block diagram of 

the implemented 3D video system. The system software implementation is done in C++ 

using cross platform libraries, namely OpenCV and OpenGL. The hardware specifica-

tion of the system includes Intel Core i7-3770 CPU and graphics card equipped with 

NVIDIA GeForce GT640 GPU, 64-bit Windows 7 operating system. Technically, the 

system implementation can be divided into two functional modules CPU-based data 

acquisition and GPU-based data processing and rendering. Each functional unit in the 

framework is presented in detail within the current and the next chapters. 
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The acquisition module provides a software-synchronized data acquisition from the 

camera setup and uploads the data to the GPU for further processing as explained in 

Section 3.3.The code responsible for camera interfacing and data capturing is imple-

mented in a dedicated class and is executed in a separate process using a simple inter-

face for the data transfer and synchronization with the main program. The main program 

is responsible for creation of OpenGL context and for uploading the data to the GPU 

memory, as well as for managing the rendering loop and processing user input. A sim-

ple user interface is implemented to provide the ability to interactively switch between 

rendering modes and adjust various system and rendering parameters, such as camera 

capture settings, display 3D depth impression, calibration parameters of the camera set-

up, OpenGL virtual camera position, parameters of image processing algorithms, etc. 

Available system controls are summarized in Table 3.1. 

The data processing and rendering modules are implemented solely on GPU. The 

stages of the data processing chain are implemented as shaders using OpenGL Shader 

Language (GLSL). Being uploaded to GPU, a series of processing steps including de-

noising, undistortion, and data fusion is performed in order to generate a dense depth 

map for the input color image. Finally, the color and corresponding depth map are com-

bined in a video-plus-depth frame to be displayed on the 3D display. As an alternative, 

fused data can be rendered as 3D textured surface mesh for viewing from an arbitrary 

viewpoint. In this case, after the dense depth map has been obtained, an additional post-

processing step has to be performed to fill in disocclusions inevitable during the view 

synthesis. Rendered output can be downloaded from the GPU back to system memory 

and saved on the disk. 

 

 

 
Figure 3.1 3D video system design. 
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Table 3.1 User interface controls 

Control key Description 

Camera capture settings 

i/I 

e/E 

Increase/Decrease ToF sensor integration time 

Increase/Decrease 2D camera exposure time 
Camera calibration parameters tuning 

x/X, y/Y, z/Z 

p/P, w/W, r/R 

Adjust translation vector between cameras in the setup 

Adjust rotation parameters of color camera relative to ToF sensor 

Virtual camera position manipulation 

Mouse left button 

Mouse right button 

Mouse wheel 

Rotate virtual camera 

Translate virtual camera by X or Y  

Translate virtual camera by Z 

Processing chain controls  

b 

d 

h 

Space 

On/Off joint bilateral filter for depth map 

On/Off disocclusion filling 

On/Off Dimenco header (switch between 2D and 3D mode) 

Switch between textured surface and view-plus-depth representation 

Algorithms parameters 

t/T 

j/J, k/K, l/L 
Increase/Decrease threshold parameter τ for disocclusion detection 

Increase/Decrease parameters of JBF: radius, range σr, spatial σs. 

Other 

Arrows ←,→, ↑,↓ 

f 

v 

? 

q 

Control display offset and depth impression 

On/Off  full screen mode 

Video recording 

Print interface and current system parameters 

Exit program 

3.2 Camera Setup and Calibration 

The multisensor system used in this work for the experiments consists of a 

PMD[vision]® CamCube 2.0 sensor for depth measurements and an Allied Vision 

Technologies Prosilica GE 1900C camera, which is used to obtain color image (Figure 

3.2 left and middle). Binocular camera setup is used: color camera is mounted on top of 

the PMD sensor as presented in Figure 3.2 right (although there are three color cameras 

in the picture, only the center camera is used in this work). The PMD camera has two 

light sources symmetrically placed on both sides of the sensor array to illuminate the 

scene.  It can operate in a range up to seven meters. The camera sensor array has resolu-

tion of 204×204 pixels: for each pixel the camera delivers distance, amplitude and in-

tensity information simultaneously with a frame-rate up to 28 fps. Technical characteris-

tics of the cameras used are summarized in Table 3.2.  

 

Figure 3.2 Left: Prosilica GE 1900C. Middle: CamCube 2.0. Right: camera setup. 
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Table 3.2 Camera technical specifications 

Model PMD CamCube 2.0 Prosilica GE 1900C 

Type 

Resolution [pixels] 

Measurement range [m] 

Frame rate [fps] 

Field-of-View [°] 

Data Interface 

time-of-flight 

204×204 

0.3-7.0 

28 

~39 

USB 2.0 

Color 

1920×1080 

- 

30 

~55 

Gigabit Ethernet 

 

The cameras come with their own C++ software development kits [50][51]. The 

SDK allows capture triggering and controlling variety of camera capture properties such 

as exposure time, white balance, frame rate, resolution, and more. Due to the different 

fields of view (see Table 3.2), the two sensors observe slightly different regions of the 

scene. Thus, the capturing settings of the color camera had to be justified with respect to 

the PMD camera field of view. In order to acquire an appropriate overlapping area of 

color and depth data of the captured scene, the color camera was set to capture 800×800 

central part of the available full resolution. 

Data fusion process of distance information and high-resolution color information 

requires reliable estimation of the relative positions of the cameras and their internal 

parameters. Moreover, most of the algorithms involved in depth estimation assume data 

with no optical distortions. Thus, a camera calibration procedure has to be performed in 

order to estimate all necessary camera parameters so that misalignments, optical distor-

tions and so on can be corrected in software. 

Once cameras are set up they need to be calibrated intrinsically for focal length, prin-

cipal point and distortion coefficients and extrinsically for relative orientation between 

the cameras. Camera parameters can be estimated by taking a set of images: when cer-

tain image coordinates from the set of images are known exactly, some pixels among 

images can be matched, which allows to estimate projection matrix and then find intrin-

sic and extrinsic parameters. Deduction of camera parameters from image sets is re-

ferred to as calibration problem. Point correspondences can be obtained by imaging a 

simple pattern with certain easy-to-extract features, e.g. a checkerboard. 

ToF sensors use standard optics to focus the reflected light onto the sensor array, 

thus, effects like lens distortions and shifted optical center need to be compensated, i.e. 

intrinsic calibration is required. Time-of-flight sensors provide low-resolution intensity 

images, which makes calibration possible. Camera Calibration Toolbox for Matlab [52] 

was used to calibrate the cameras. The calibration is performed by using the calibration 

technique presented in [53] and lens distortion coefficients are calculated by the method 

presented in [54]. First intrinsic and extrinsic parameters of each camera are calculated 

independently, an after that, the extrinsic parameters of the stereo system characterizing 

the relative location and orientation between the two cameras are estimated.  
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The calibration technique requires a camera to observe a checkered pattern shown at 

different orientations. A set of 30 images was taken simultaneously from the ToF sensor 

and the color camera (nine of them are shown in Figure 3.3). For the ToF sensor, inten-

sity images taken with an appropriate integration time were used. The calibration pat-

tern should be placed such that it can be fully and clearly observed by both cameras. 

The more pictures are taken, the higher the accuracy of the result is. The pattern consists 

of black and white 30×30 mm squares. Point correspondence calculation requires man-

ual click on pattern’s corners, after that internal and external parameters of a camera can 

be estimated. Several iterations can be taken: the pattern’s corners coordinates can be 

recomputed using estimated parameters, and parameters can be estimated again. Table 

3.3 includes obtained intrinsic calibration results for ToF sensor and color camera and 

the relative orientation for the color camera with respect to the ToF sensor. Due to the 

fixed setup, these parameters have to be determined only once during an initialization 

stage. 

Table 3.3 Calibration results. 

Model PMD CamCube 2.0 Prosilica GE 1900C 

Focal Length [mm] 

Principal point [pixel] 

Distortion coefficients 

Rotation vector[°] 

Translation vector [mm] 

(284.76, 287.45) 

(101.86, 100.75) 

-0.43, 0.33, 0.006, -0.008 

 

(1116.48, 1116.1) 

(403.94,  406.97) 

-0.13,  -0.03, -0.002, 0.009 

-0.001, -0.046, 0.004 

9.47, 63.786, -4.234 

 

 

 

Figure 3.3 Captured calibration pattern with different orientations. 
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After the calibration, the intrinsic and extrinsic parameters of the system are as fol-

lows: 
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3.3 Data Capture and Streaming 

A two-sensor setup is used for scene capture. It is important that the two captured data 

streams from the color camera and ToF sensor are synchronized in time. Without time 

synchronization, as the observed scene is dynamic, even a slight difference in the cap-

ture time may introduce visual artifacts to the 3D output due to temporal data incon-

sistency. To ensure synchronized data acquisition, software triggering mode is used for 

both cameras. When this mode is enabled, a software command triggers the capture of 

an image, which is then transferred to the PC. To minimize the time-lag between the 

two capture triggering events, a separate thread is created to trigger each camera when-

ever the system is ready to update. Triggering is performed as an atomic operation, i.e. 

no interruption is allowed in between, so both cameras receive the signal to start captur-

ing effectively at the same time and no delay is observed between the input two images. 

In order to decouple the acquisition and processing parts, data transfer between the 

cameras and application is organized in producer-consumer model using queue buffers 

and fixed amount of reusable frames (Figure 3.4). Both producer and consumer run on 

CPU. Whenever an unused frame is available, the producer thread fills the frame with 

new input data and pushes the updated frame into the ready-to-use queue. The frames 

are popped off the ready-to-use queue by the consumer thread, which task is to upload 

the frame data to the GPU memory where the data is being processed and rendered. Mu-

tual exclusion of producer and consumer treads accessing the buffers is maintained us-

ing a mutex. After the data uploading, the frame is pushed into the queue of available 

frames and can be refilled again by producer thread. This allows data transfers between 

the cameras and CPU to occur concurrently with data transfers between the CPU and 

GPU.  
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3.4 Autostereoscopic Display 

In this work, an autostereoscopic multiview Dimenco display is used for 3D video ren-

dering and display [55]. This section provides technical details about the display, its 

input data format and multiview rendering process. Technical characteristics of the dis-

play are summarized in the Table 3.4. 

Table 3.4 Technical characteristics of Dimenco display 

Model Dimenco 42 Inch 

Type 

Diagonal screen size 

Panel resolution 

Aspect ratio 

Input Format 

Image type 

Depth quantization 

Number of views 

Data Interface 

Multiview lenticular 

42 inch 

1920×1080 pixels 

16:9 

2D-plus-Depth 

true color (24 bit) 

0-255(8 bit) 

28 

DVI 

 

The input data format of the Dimenco display is video-plus-depth format, which is 

referred to as ‘2D-plus-depth’ in Dimenco’s technical documentation. The display also 

supports layered depth video format with a single occlusion layer, which is referred as 

‘Declipse’ format and is realized as an extension of the 2D-plus-Depth format. A dis-

play frame has to contain the following data: 

- Header; 

- 2D sub-image of resolution 960×540;  

- Depth sub-image of resolution 960×540;  

- Background 2D sub-image of resolution 960×540; 

- Background Depth sub-image of resolution 960×540.  

In case of the Declipse format, the latter two sub-images contain information about 

background areas occluded by the foreground object, enabling the rendering algorithm 

to fill in the occluded areas. The 2D and Depth sub-images of the foreground and back-

 
Figure 3.4 Capturing and streaming. 



 28 

ground data are line interleaved, i.e. every second line is filled with the corresponding 

data from the background. For the 2D-plus-Depth format the background lines are not 

used for rendering. In any case a line should be inserted below each line of the 2D and 

Depth, but it can contain any information or just be left blank. This way vertical resolu-

tion doubles from 540 to 1080. Frame layout is depicted in Figure 3.5. 

As the depth map is a grayscale image, the display uses only red sub-pixels of the 

Depth sub-image and green and blue sub-pixels are discarded. The depth sub-image 

contains disparity values with a range of 0 to 255, where a value of 0 corresponds to 

objects at the furthest distance and 255 corresponds to objects located closest to the 

viewer. Here disparity refers to the differences between the images perceived by the left 

and the right eye, which human’s brain uses as a binocular cue to determine depth of an 

object. According to Dimenco interface specification [55], the disparity values should 

be calculated from depth values as follows:  

 C
VZZD

VZ
1M 












z
d  (3.1) 

where d is disparity; z is normalized depth [0, 1]; ZD is the depth of display plane; VZ 

is view distance in coordinate units; M and C are constants. For a 42 inch Dimenco dis-

play the optimal values for the disparity calculation are: ZD = 0.467, VZ = 7.655, M = -

1960.37, C = 127.5 [55]. 

The header is located in the upper left corner of a frame, i.e. beginning of the 2D 

sub-image first line. The header indicates the type of content being displayed and con-

tains settings for rendering processing to customize the 3D depth impression. The dis-

play has two operation modes: 2D mode and 3D mode. When the display detects the 

header it switches to 3D mode. When no header is detected, the display switches back to 

2D mode. The display interprets the header of each frame, so changes in header values 

directly change the displaying mode.  

 
Figure 3.5 Dimenco's 3D frame layout. 
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When the Dimenco display receives a 3D frame, the demultiplexing block decom-

poses it into the header and the 2D and Depth sub-images. The rendering block gener-

ates multiple views, corresponding to slightly different camera positions. The amount of 

perceived depth and other depth related parameters are controlled by the values in the 

header. Generated views are interweaved by the interweaving block, which ensures that 

each sub-pixel is located under the right lens for the best 3D experience. Finally, inter-

weaved images are sent to the auto-stereoscopic multiview display. Flowchart of a 2D-

plus-depth frame processing within the display can be seen in Figure 3.6. 

3.5 Summary 

The overview of the system design and functionality, the main components compos-

ing the system and the necessary camera setup calibration procedure have been present-

ed in this chapter. For the system calibration, a software package widely adopted for 

calibration of conventional cameras and stereo systems was used [52]. While it provides 

sufficiently accurate results for the standard camera, the accurate intrinsic calibration of 

the ToF sensor is more complicated, mostly because of its low resolution, relatively 

high noise level and systematic errors in measurements, which lead to not very accurate 

intrinsic calibration results and consequently to roughly calibrated extrinsic systems 

parameters. Thus, as a part of future work ToF-specific calibration techniques, e.g. [56], 

[57], should be considered in order to obtain more accurate calibration parameters. For 

now, functional buttons were added to the user interface in order to be able to manually 

tune the extrinsic system parameters.  

Further, as a part of future work, the two side-cameras presented in the camera setup 

can be included in the scene-capture scenario. The additional scene information cap-

tured from the different viewpoints can be used to enhance the low-resolution ToF 

depth with the high-resolution depth-from-stereo estimations, as well as for the faster 

and more realistic disocclusions filling in case of the virtual view generation. However, 

the increased number of the sensors will cause additional calibration and capture syn-

chronization challenges. Furthermore, the current state-of-the-art algorithms for depth-

from-stereo estimation [58] are of high computational complexity and hard to imple-

ment within the real-time framework. Thus, an optimal trade-off between quality and 

computational complexity has to be found. 

 
Figure 3.6 Dimenco's 2D-plus-depth to multiple views rendering flowchart. 
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4. DATA PROCESSING 

This chapter describes all steps of the processing chain for video-plus-depth content 

creation. The video-plus-depth data is obtained by fusing high-resolution color image 

with low-resolution ToF distance data, acquired using a binocular camera setup. Video-

plus-depth format requires color and depth data corresponding to the same viewpoint 

and of the same spatial resolution and. Therefore, the main goal of the data fusion pro-

cess is the calculation of a dense depth map for the high-resolution color image. The 

color and corresponding depth data accurately align in a common video-plus-depth 

frame is further processed within the 3D display using DIBR techniques in order to ren-

der multiple virtual views of the observed scene. The quality of the virtual views gener-

ated by DIBR algorithms depends on the accuracy of the depth data. Using a computer 

graphics based approach, the system takes advantage of a 3D mesh representation of the 

scene, which can be obtained from the ToF depth to generate the depth map correspond-

ing to the viewpoint of the color camera. 

Furthermore, to provide free-viewpoint functionality, a 3D scene is generated using 

mesh triangulation with depth information obtained after data fusion process. Color im-

age is then used to texture the 3D surface. High rendering speed of such mesh-based 

representation allows reconstructing 3D dynamic scenes in real time. Virtual views can 

be synthesized by rendering the 3D scene geometry from the requested viewpoint. 

However, the mesh-based representation causes rubber-sheet artifacts at the virtual 

viewpoint covering disoccluded areas. Thus, disocclusion areas still need to be detected 

and filled in a proper fashion.  

The data processing is implemented inside the graphics pipeline on GPU. By using 

the shaders, the full processing chain is incorporated in a several rendering passes, 

which are summarized in Table 4.1. Both inputs from color and depth sensors are stored 

on the GPU memory in 2D texture format [59]. The output of each intermediate render-

ing pass is also saved as a texture, so that it can be accessed later inside the following 

rendering pass. At each processing step, different algorithms/techniques are applied. 

The algorithms used for data processing are well suited for a parallel implementation as 

all the computations are performed for each pixel or vertex without data dependencies. 

Section 4.1 describes the method used to denoise the initial ToF depth data. Section 

4.2 explains the steps aimed at generating dense depth map corresponding to the view-

point of the color camera. The problem of optical distortions presented in the input data 

is covered in the Section 4.3.  The Section 4.4 provides details on how the final view-

plus-depth frame is rendered in the format recognized by the 3D display. An arbitrary 

view rendering from view-plus-depth data is also described in Section 4.4. Section 4.5 
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addresses the problem of disocclusions appearing in the rendered virtual view, while 

Section 4.6 presents an evaluation of the system’s performance. 

Table 4.1 Multipass data processing. 

 Task Input Output 

I pass Vertex Shader: 

- Denoising; 

- Data reprojection 

(alignment with color 

camera) 

- ToF depth image; 

- ToF amplitude image; 

- ToF intensity image; 

- Bilateral filter parameters; 

- Calibration parameters 

Low-resolution 

depth map cor-

responding to 

the color cam-

era viewpoint 

II pass Fragment shader: 

- Upsampling; 

- Joint bilateral filtering 

- Low-resolution depth map 

corresponding to the color 

camera viewpoint; 

- Bilateral filter parameters 

High-resolution 

depth map cor-

responding to 

the color cam-

era viewpoint 

III pass (for 

view-plus-depth 

mode) 

Fragment shader: 

- Header encoding; 

- Depth map to disparity 

map conversion 

- Color image; 

- Corresponding depth map 

 

View-plus-

depth frame 

III pass (for 3D 

surface mode) 

Vertex shader: 

- Data reprojection; 

- Texture mapping; 

Geometry shader: 

- Disocclusion detection 

- Color image; 

- Corresponding depth map; 

- Position and orientation of 

the virtual camera; 

Arbitrary view 

of 3D scene 

model 

IV pass (for 3D 

surface mode) 

Fragment shader: 

- Disocclusion filling 

Arbitrary view of 3D scene 

model with disocclusions 

Arbitrary view 

of 3D scene 

model without 

disocclusions 

4.1 Depth Denoising 

Due to the principles of operation of the ToF range sensor, a significant amount of noise 

is present in the captured range data (see Section 2.3.2). Prior to the actual steps of fu-

sion, denoising of depth data is performed in order to reduce the noise and remove out-

liers. A popular denoising method commonly used for ToF data is the bilateral filter 

[60], [61]. The key idea of bilateral filter is that for a pixel to influence another pixel it 

should not only occupy a nearby location (as it is in standard Gaussian filter) but also it 

should have a similar value. The advantage of this technique is that it preserves depth 

discontinuities while smoothing continuous regions. The bilateral filter is a combination 

of spatial and range weightings: the intensity weighting for similar pixels preserves the 

edges whereas the distance dependent weighting preserves the spatial dependence of the 

neighbor pixels. It is defined as follows: 
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where Ip is the intensity of pixel p in input image I, Ω is a spatial neighborhood around 

p, BF[Ip] is the filtered value of pixel p, and Wp is a normalization factor ensuring pixel 

weights sum to 1.0, Gs(||p−q||) is a spatial Gaussian weighting with standard deviation 

σs that decreases the influence of distant pixels, Gr(Ip-Iq) is a range Gaussian with stand-

ard deviation σr that decreases the influence of pixels q when their intensity values dif-

fer from Ip. In other words, Eq. (4.1) is a normalized bilateral weighted average over the 

filter support Ω. In case of ToF data, the depth information of the pixel is taken into 

account instead of gray level intensities. The filtering procedure remains the same as 

that for intensity images. 

There are still ways to apply a bilateral filter by incorporating other information pro-

vided by ToF sensor, such as intensity or amplitude data. So called joint- or cross-

bilateral filters [60] do not use the primary data to determine the range term weight but 

calculate it from an additional image. So, instead of evaluating both weighting compo-

nents of the filter on ToF depth image, intensity or amplitude image is used in the range 

term. Another alternative, which is applied here, is to use the amplitude image in order 

to introduce adaptivity in the range term of bilateral filter [62]. Regarding ToF depth 

data, the noise level varies strongly over the image, depending on the amplitude of the 

recorded signal [42], [43]. Following the noise model presented in [42], the error vari-

ance in distance measurements 2

D  is proportional to the square inverse of the amplitude 

of the recorded IR signal – A: 
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The amplitude term can be included in weight calculation as follows [63]: 
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 (4.3) 

Here, either depth or intensity data can be used to calculate the range term. The de-

scribed denoising approach can be efficiently implemented on a GPU. Depth denoising 

 
Figure 4.1 Denoising of ToF data. Left: noisy image. Right: denoised. 
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is combined in a single rendering pass with depth reprojection discussed in the next sec-

tion. Before any manipulation with vertices in a vertex shader takes place, the denoised 

depth value is calculated using Eq. (4.3). All data required for this operation, i.e. depth, 

intensity and amplitude, is provided to the vertex shader in a form of 2D textures. The 

texture data in vertex shader can be accessed just as in fragment shader using vertex 

texture fetch [64]. Denoising results are shown in Figure 4.1.  

4.2 Depth and Color Fusion 

The two cameras in the setup cannot be located at the same position, so their viewpoints 

and viewing directions are slightly different. Combining directly the depth information 

with the color image will result in mismatch between the depth perception and the dis-

played image. Therefore, a transformation is required to align the depth information 

with the color image. Further, in order to obtain view-plus-depth frame the depth data 

should be upscaled using high-resolution color information to compensate for inaccura-

cies in mapping process and the low resolution of the depth data. This process is re-

ferred to as data fusion. 

Projective alignment 

Within the GPU rendering framework, the depth map projective alignment to the 

viewpoint of the color camera can be obtained by creating a 3D mesh from the data cap-

tured by the ToF sensor and observing the result from the viewpoint of the color cam-

era. To put into practice this idea, the following steps should be taken. First of all, trian-

gles are formed in-between the neighboring pixels of the depth image grid as shown in 

Figure 4.2. Next, each pixel of the depth image is converted into a corresponding 3D 

coordinate. It should be noted, that ToF delivers radial depth, which cannot be used di-

rectly as a vertex depth and also has to be converted into z-depth. So, given the focal 

length fTOF, principal point coordinates px, py (i.e. in (0, 0)) and radial depth d(u, v), the 

3D vertex coordinates (x, y, z) can be computed as:  
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This set of 3D points is defined in a coordinate system where the origin is the depth 

sensor’s position. The extrinsic parameters [R|t]TOF→2D of the camera setup, obtained 

during the calibration stage (see Section 3.2), are used to set up the view matrix Mview so 

 
Figure 4.2 Triangulation of the image grid. 
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that the rendering viewpoint matches the color camera viewpoint. While the intrinsic 

parameters of the ToF sensor are used to calculate a proper projection matrix for the 

OpenGL virtual camera, Mproj as explained in Section 2.4.3. The mesh is finally ren-

dered using this configuration (Figure 4.3). As all points are connected by triangles into 

a single surface mesh, the generated depth map contains no gaps: the disoccluded re-

gions seen from the new viewpoint are replaced by an automatic bilinear interpolation 

across the triangle face connecting two different depths. However, depth data can be 

missing on the border of the mesh. 

Rendering can be done as an off-screen rendering pass by means of Frame Buffer 

Object (FBO) [65]. Using FBO, a scene can be rendered directly onto a texture, so that 

the additional copy of intermediate results from frame buffer to texture memory can be 

avoided. The aim is to get the depth buffer of the rendered scene, so only the depth 

component of the scene needs to be rendered, i.e. rendering of the color component of 

the scene can be omitted, which also reduces the processing time. During the rendering 

process depth testing is performed automatically and only minimal per-pixel z-distance 

is stored in the depth buffer. However, the depth buffer does not store the actual z-value 

of every rendered pixel. The values stored in the depth buffer are in the range [0, 1] and 

are not linear due to a non-linear transformation [66]. Real depth values, i.e. the distance 

from the point to the camera plane, can be recovered from the depth buffer value as fol-

lows: 
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where bufz  is the value stored in the depth buffer, near and far are parameters used to 

calculate the first camera’s projection matrix Mproj (these parameters were set to be con-

sistent with the measurement range of the PMD sensor, e.g. near=0.3, far=7.0). 

Depth map refinement 

After a depth map corresponding to the viewpoint of the color camera is obtained it 

should be upscaled to match the resolution of the color image. Modern GPUs provide 

 

Figure 4.3 Projective alignment. Left: initial view. Right: view from the color camera position. 
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hardware support for bilinear interpolation: during rasterisation of a triangle (see Sec-

tion 2.4.1), all attributes of the triangle’s vertices, such as position, normal, texture co-

ordinates and so on, are interpolated for each fragment across the triangle face using fast 

hardwired bilinear interpolation. However, special attention has to be paid to the differ-

ent nature of the input data and large difference in resolution. Because of the low resolu-

tion of initial ToF data, simple linear interpolation of depth values blurs the sharp depth 

transitions at object borders, in addition small or thin objects might not be observed by 

the ToF camera. All this leads to misalignments at the objects boundaries when combin-

ing with high-resolution color and causes disturbing DIBR artifacts. Thus, the depth 

map obtained with bilinear interpolation needs to be further refined. 

Accuracy on object borders can be increased using color controlled bilateral filter 

(joint- or cross bilateral filter) [60], so that color edges and depth discontinuities become 

aligned. The assumption is made that when neighboring pixels in the reference color 

image have similar color, they also have a similar depth. Joint bilateral filter is a version 

of the bilateral filter (see Section 4.1). Given an image I, the joint bilateral filter smooth 

I while aligning it to the edges of a second image E (in our case, the depth map I needs 

to be refined based on the color information E). In practice, the range weight is comput-

ed using E instead of I: 
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where Wp is a normalization factor. 

 
Figure 4.4 Left: Bilinear interpolation. Right: With JBF (parameters are: window size = 11; σs = 3; 

 σr = 0.075). Bottom: zoomed parts.  
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Image filtering on GPU is usually done in the fragment shader, as the fragment 

shader is responsible for the per fragment processing. A simple way to perform upscal-

ing and filtering of the depth data is to render a quadrant spanning the full viewport, 

which size is equal to the desired output resolution. In this way, there is a one-to-one 

correspondence between fragments of the rendered quadrant and pixels of the output 

buffer. Similarly to the case of depth map rendering, the output can be rendered off-

screen directly to a texture using FBO (Figure 4.4).  

The color image and low-resolution depth map are provided to the fragment shader 

as textures. OpenGL uses normalized texture coordinates; this means that the size of a 

texture maps to the coordinates on the range [0, 1] in each dimension. The value for any 

texture coordinate within the range can be sampled automatically using bilinear interpo-

lation. Thus, Eq. (4.6) is used to calculate output color for every fragment. Samples 

from the low-resolution depth texture that falls in between the texels are bilinearly in-

terpolated, and as the output resolution matches the color image size, the samples from 

the color texture correspond to actual pixels of the color image.  

4.3 Lens Distortion Correction 

In practice, lenses used in the real cameras do not act exactly like the pinhole model 

(Section 2.1), and create geometrical distortions not accounted by the model. The result 

of geometrical distortions is that straight lines in the real world appear curved in the 

image. This effect increases with the distance from the distortion center.  

ToF sensors, like regular cameras, are modeled by the pinhole camera model. There-

fore, their images are corrupted by lens distortion effects. This distortion leads to shape 

mismatches between the color image and the corresponding depth image. Thus, in order 

to achieve more precise data fusion results, both color and depth images should be un-

distorted before the fusion procedure.  

In the light of the real-time constraint, undistortion of the high-resolution color image 

is an undesirable time-consuming operation as it leads to remapping and interpolating of 

each pixel in the image grid. However, optical distortions of the input data can be han-

dled by processing only the values of the depth image in two steps (see Figure 4.5), so 

that undistortion procedure of the color image can be omitted completely. 

First, to cope with distortions of the depth image, instead of initial grid coordinates 

 
Figure 4.5 Optical distortion correction scheme. 
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(u, v) the undistorted coordinates of the depth image grid (uu,vu) should be used in Eq. 

(4.4) to calculate 3D point coordinates of each pixel, so that after reprojection to the 

new view point depth image containing no distortions is obtained. The distortion pa-

rameters are constant parameters of the sensor, so the undistorted image grid of the 

depth image can be calculated only once during the initialization stage before the 

streaming is started or even pre-calculated and stored along with calibration parameters.  

Second, when joint bilateral filter is applied, to take into account distortions caused 

by the color camera optics, the sampling coordinates of the depth texture should be ad-

justed (distorted) using distortion coefficients of the color camera, so that the corre-

spondence with the distorted color image is maintained.  

Optical distortions of the cameras are modeled as radial and tangential effects [17]: 

   dxprdrdrdp d

6

5

4

2

2

1u  1   (4.7) 

where r
2
=px

2
+py

2 
is the distance to the distortion center; dx define the tangential distor-

tion, which can be omitted in our case; d1, d2, d3 are distortion coefficients; pd is the dis-

torted point, pu is the corresponding undistorted coordinate. This function is used for 

remapping process. The coordinates of distortion centers and the distortion coefficients 

for both cameras are estimated during the calibration procedure (Section 3.2). 

4.4 Rendering 

As stated before, the application supports two rendering modes: view-plus-depth frame 

for the autostereoscopic display and 3D model of the scene enabling the free-viewpoint 

functionality. Rendering is done in a separate rendering pass after the dense depth map 

corresponding to the color image has been calculated and saved to a texture.  

Having two corresponding color and depth textures, the final view-plus-depth frame 

can be rendered as two side-by-side textured quadrants (Figure 4.6) spanning the whole 

viewport: the color texture is applied to the left quadrant, and depth texture to the right 

quadrant. As stated in Section 3.4, depth sub-image of the Dimenco display frame 

 
Figure 4.6 View-plus-Depth frame.  
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should contain disparity values with a range of 0 to 255, so depth values should be nor-

malized to [0..1] and converted into disparities using Eq. (3.1). However, as mentioned 

in Section 4.2, depth texture contains depth-buffer specific values, which are not actual 

depth. Before calculating disparities, the actual depth values should be recovered using 

Eq. (4.5). Depth texture values can be converted to disparities in the fragment shader.  

The frame header includes user provided parameters to adjust depth impression. It is 

calculated on CPU side and passed as a uniform variable to the fragment shader, where 

it is copied to the upper left of the output buffer. In order for the display to identify the 

header, the header should be located at the beginning of the first pixel row of the dis-

play. To locate the header properly, a frame is rendered in a full screen borderless 

OpenGL window with its upper left corner coincide with the upper left pixel of the Di-

menco display. The initial size of the textures is 800×800, when resizing the window to 

full screen mode (i.e. to full display resolution 1920×1080) automatic bilinear interpola-

tion is applied.  

In case of arbitrary view rendering, during the third rendering pass instead of a view-

plus-depth frame a textured surface mesh representing the scene is rendered. The calcu-

lated dense depth map is turned into a triangulated surface in the same manner as it was 

done before for the ToF depth image but using the color camera intrinsic parameters. As 

there is a pixel-to-pixel correspondence between depth and color textures, every 3D ver-

tex can be assign a proper texture coordinate simply based on its position in the image 

grid. The texture is then cast onto every triangle in the mesh using the camera position 

as the center of projection. This is called projective texture mapping. Projective texture 

mapping was first introduced in [67] and now it is part of the OpenGL standard. 

Whenever a new view of the scene has to be rendered, the coordinate system trans-

formation of the new view is used as a view-matrix transformation (see Section 2.4.2) to 

place the scene surface where needed in the world coordinate system. The camera view 

point can be modified by changing the view matrix, so that it is possible to rotate or 

translate the virtual camera in any direction, to go into the 3D scene and looking around 

(Figure 4.7). 

 
Figure 4.7 Textured surface mesh views from a virtual camera. 
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4.5 Disocclusion Detection 

One of the most important issues of DIBR is dealing with disoccluded areas in newly 

generated views. In case of mesh-based view synthesis, the disocclusion areas are filled 

automatically by linear surface interpolation. However, this method causes geometric 

distortions. The triangulation technique explained above treats the entire depth map as a 

continuous surface that contains stretched triangles connecting data on background with 

boundaries of front situated objects (Figure 4.7). The artificially-elongated triangles at 

object boundaries (also called rubber-sheet triangles) appear large and visually unrealis-

tic, hiding objects and background behind them. Thus, it is important to determine 

whether triangles represent actual object surfaces or not.  

To detect artificial triangles of the mesh, the orthogonality test proposed in [68] is 

employed. This test is based on the observation that the artificial triangles, introduced 

during the triangulation, have the following property: a triangle normal is almost per-

pendicular to the vector from the initial viewpoint to the center of the triangle, i.e. dot 

product of the vectors is close to zero (Figure 4.8 bottom-left). Problematic triangles can 

be discarded from the mesh during the surface rendering pass inside a geometry shader 

with the following inequality using a threshold to control the amount of discarded trian-

gles:  

 τpnt   (4.8) 

where t is a triangle index, nt is the normal of t, p is the direction from camera position 

to the center of the triangle, symbol 
● 

denotes vector dot product operation, and τ is a 

tunable threshold parameter, the bigger the threshold τ the more triangles are discarded. 

However, discarding triangles by the above criterion introduce new edges in the ren-

dered view, which may look unacceptably jagged due to complete discarding of trian-

gles at the boundaries of disocclusion areas and may negatively affect the disocclusion 

filling results (Figure 4.8 bottom-right). This problem will be further addressed in Chap-

ter 5. 

After artificial triangles are removed, a virtual view containing holes is obtained 

(Figure 4.8 top-right). The image is rendered directly to a texture and further processed 

during the next rendering pass where the disocclusions should be filled. The pixels be-

longing to disoccluded areas can be easily detected by masking them in alpha channel of 

the RGBA texture. At the beginning of the rendering process the frame buffer is initial-

ized with the color (0, 0, 0, 0), so that all unpainted pixels have alpha value equals to 0. 

When a fragment is assigned a color value, the alpha value is set to 1, and for pixels 

belonging to holes alpha value will remain 0.  
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During the disocclusion filling step appropriate color for the missing pixels in the fi-

nal picture should be determined by analyzing their surrounding areas. Although a 

number of inpainting techniques have been proposed in the literature (see Section 

2.2.2), there are not many algorithms, which are designed to run on GPU. Usually itera-

tive algorithms based on sequential prioritized filling are used for inpainting. Namely, 

there is an increasing interest in exemplar-based methods due to their ability to provide 

high-accuracy results. 

The basic idea of exemplar-based methods is to assign a priority to each patch on the 

border of unfilled region and to search in the prioritized order for the best patch in 

source region of the image that can be used to effectively fill the missing pixels. Further 

depth information can be used in order to reduce search range to only background pixels 

of the synthesized image. Such methods produce good visual results for the price of 

high computational complexity and can hardly be parallelized for GPU-based imple-

mentation. Several papers address the efficiency issues of exemplar-based inpainting 

[69], [70], and propose partially parallel implementations to accelerate the sequential 

inpainting process while maintaining its high accuracy. Although a noticeable speedup 

can be achieved, still the methods are not really suitable for real-time applications. 

When real-time performance of a system is a definite requirement and GPU-based 

implementation is desired, intensity interpolation or intensity spreading techniques more 

suitable for parallelization can be applied. In [71], intensity spreading algorithm is pro-

posed: the set of border pixels of all holes is determined and for each border pixel, its 

intensity is propagated into the hole in a fixed set of directions (typically 16, equally 

 

Figure 4.8 Omitting artificial triangles in 3D scene surface. Bottom-Left: principle. Top-Left: no triangles 

are discarded. Top-Right: artificial triangles are removed. Bottom-Right: jugged edges marked green. 
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distributed over the 360 degree range). Such approach yields some blurring in the filled 

region as both foreground and background pixel intensities are accounted. In our case, 

disocclusions regions are not foreground objects, but newly discovered background are-

as. Following this assumption, depth information at the holes edges can be used for fill-

ing with more accurate pixel values. As suggested in [72], for every pixel in a 

disoccluded region the nearest edge pixels are searched in eight directions and only the 

edge pixels with the furthest depth value, i.e. corresponding to the background, are tak-

en into account when a weighted average is calculated to obtain pixel’s value. 

Although disocclusion filling is considered to be out of scope of the current work, for 

the sake of processing chain completeness, a simple background color interpolation 

method was implemented to fill in disocclusions. For every unfilled pixel of a newly 

synthesized view, two nearest filled pixels in horizontal direction are searched, and the 

unfilled pixel gets a color value of the pixel with the furthest depth value, i.e. the one on 

background. The result can be seen in Figure 4.9.  

4.6 Performance Evaluation 

The proposed processing chain is tested with a color and a ToF cameras and a real-time 

application is developed. This section describes the experimental evaluation carried out 

to validate the algorithmic solutions presented throughout this chapter. The codes are 

written based on C++ and GLSL using cross platform libraries, namely OpenCV and 

OpenGL. The experiments are carried out on NVIDIA GeForce GT640 GPU and 3.4 

GHz Intel Core i7-3770 hosted by64-bit Windows7. 

Considering the execution speed of the system, for both view-plus-depth frame ren-

dering and arbitrary view rendering scenarios the rendering time is only limited by the 

frame-rate of the cameras. To estimate actual frame rates, the measurements were done 

 

Figure 4.9 Result of disocclusion filling by background propagation.  
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using off-line data recorded from the camera setup. In Table 4.2 the average execution 

time and frame rate over 100 frames is presented. The view-plus-depth performance for 

1080×1920 video is well above 50 fps. For arbitrary view output, performance of 36 fps 

frame rate is achieved.  

Table 4.2 Average execution timing and frame rate 

 View-plus-Depth 

1080×1920 pixels 

Arbitrary View 

800×800 pixels 

Denoising 1.3 ms 1.3 ms 

Projection alignment 4.4 ms 4.4 ms 

Depth/color fusion (JBF) 5.7 ms 5.7 ms 

Disocclusion detection - 0.4 ms 

Disocclusion filling - 6.6 ms 

Rendering 5.5 ms 7.5 ms 

Total  16.9 ms 25.9 ms 

Overhead 0.96 ms 1.9 ms 

FPS 56 36 

In addition, the approximate estimation of computation time of each individual pro-

cessing step on average is calculated (Table 4.2). Although the processing chain is im-

plemented as a sequence of several rendering passes, it is not straightforward to measure 

precisely what is going on within the OpenGL rendering pipeline. For example, when 

an OpenGL call is returned, it does not mean that rendering is finished: typically data 

sent to graphics card is placed into the first-in-first-out (FIFO) queue at the front end of 

the graphics card and is processed and rendered sometime later, while the call is re-

turned to the application right away. Thus, simply starting the clock before and stopping 

them after an OpenGL call can tell very little about performance. As described in [73], a 

solution is this case is to use 'glFinish' command before the clock is started as well as 

just before the clock is stopped. First, it forces to finish all the tasks waiting in the 

FIFO, so that the graphics card is not busy with something else when the clock is start-

ed. Second, it forces the rendering to be completed before it returns. This can give an 

accurate idea of how long each rendering pass takes. In case when there are multiple 

tasks are performed in a single rendering pass, e.g. denoising and projection alignment, 

two timings can be measured: with denoising part and without (also there is no need to 

transfer intensity and amplitude data when denoising is switched off). Then, denoising 

time can be calculated as difference between these two timings. Finally, the overhead in 

this case is calculated as difference between the execution time of the full processing 

chain and the sum of measured timings of each processing step. 
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Figure 4.10 shows the workload distribution of all processing steps in percentage. It 

can be observed from the figure that, apart from the rendering stage itself, joint bilateral 

filtering (JBF) and disocclusion filling process are the most computationally expensive 

modules in the system chain. For the rendering part, the timings are mostly depending 

on the resolution of the output data. For the high resolution 1080×1920 view-plus-depth 

frame, the rendering is done in the simplest possible way and very little can be done to 

improve the performance. In case of arbitrary view rendering, to reduce the number of 

triangles a more sophisticated approach for triangulation of the depth map can be con-

sidered, which however would increase the algorithmic complexity, but nevertheless 

can improve processing time. 

Time consumption of a JBF straightforward implementation depends on the filter 

window size as O(n
2
), where n is the window size. Dependency of the overall view-

plus-depth rendering frame rate on the window size of JBF is depicted in Figure 4.11. 

However, bigger size of the filter window does not give better quality results in general. 

For the bigger window size, influence of the color term of the filter becomes more pro-

nounced and some texture artifacts appear in the homogenous regions of the depth im-

age, while for a very small window size, the color term does not give enough visible 

improvement of the depth map, and the filtering result looks like simple smoothing ef-

fect. Results presented in Table 4.2 have been obtained with the JBF window size set to 

11, which was chosen as an optimal window size providing visible improvement of the 

depth map at the depth discontinuities, yet keeping the homogenous depth regions 

smooth. 

Disocclusion filling process can create a substantial performance bottleneck: even 

using a very simple background propagation algorithm it takes up more than a quarter of 

the total computation time. This is due to the step-by-step neighborhood search, which 

is difficult to parallelize and computationally depends on the width of the hole to be 

 
Figure 4.10 Workload distribution. 
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filled. However, as was pointed out before, this simple approach for disocclusion filling 

would not yield acceptable visual results for big disocclusion holes and, thus, have to be 

substituted with more complex algorithms to achieve better visual quality, which will 

increase processing time. One possible approach to address this problem is to utilize the 

information from the two conventional side-cameras presented in the camera setup: cur-

rently the system uses the color information only from the central camera in the setup. 

The two side views of the scene can provide true texture information for the disoccluded 

regions; while the still-left smaller holes in turn can be filled by simpler algorithms, 

such as background propagation, without much degrading the visual quality of the ren-

dered virtual view. However, this additional information does not come for free: first of 

all, the data traffic between GPU and system memory will increase almost three times 

and, further, additional computational efforts will be associated with the fusion and pro-

cessing the data from multiple texture sources.  

4.7 Summary 

In this chapter, a GPU-based implementation of the processing chain of algorithms nec-

essary for noisy low-resolution ToF depth images fusion with the high-resolution color 

data was demonstrated. The resulting system can render a view-plus-depth frame or an 

arbitrary view of a scene in real-time. This shows that real-time free-viewpoint DIBR is 

feasible; the demonstrated system can be used as a base for a future 3DTV system. As 

an alternative approach, it would be interesting to investigate the possible use of addi-

tional color views, which can be provided by the side-cameras in the setup, for more 

reliable depth estimation and disocclusions handling. Finding the best balance between 

performance and visual quality for such setup is an important part of the future work.  

 
Figure 4.11 View-plus-depth rendering frame rate depending on JBF window size. 
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5. ARBITRARY VIEW SYNTHESIS BASED ON 

DEPTH LAYERING 

In DIBR context, a 3D warping technique (Section 2.2.1) is used for rendering virtual 

views from view-plus-depth representation. The 3D warping projections result in data 

points containing known values from the original view scattered on the virtual camera 

image plane. This means that the unknown values at the regular pixel positions of the 

virtual view need to be estimated from irregular data, imposing a non-uniform to uni-

form resampling. Performing an accurate non-uniform to uniform resampling in real 

time is a challenging task and still an open-research problem [74].  

On the other hand, in GPU-based rendering context arbitrary view synthesis can be 

implemented in real time, as was demonstrated throughout this work. When a mesh-

based representation is used, a textured surface of a scene can be rendered form an arbi-

trary point of view. However, virtual views generated with this approach contain rubber 

sheet artefacts (artificial surfaces that were not presented in the original 3D scene, but 

were introduced during the triangulation process). Artificial surfaces look unrealistic 

and degrade the quality of generated virtual views, therefore they should be detected 

and removed. As proposed in Section 4.5, problematic surfaces can be detected and dis-

carded by employing orthogonality test. Nevertheless, the problem of jugged edges still 

exists. 

In this chapter, a new approach for DIBR based on depth layering is proposed. The 

propose method is a computationally efficient workaround of the “3D warp → non-

uniform resampling” scheme, which is usually employed by traditional DIBR approach-

es for virtual view synthesis from view-plus-depth data. The proposed method avoids 

the non-uniform resampling stage by employing depth layering, which facilitates a 

resampling at the uniform grid of the given reference camera. Another limitation of the 

classical approach is that non-uniform data cannot provide accurate estimation and 

masking of disoccluded and hidden data, i.e. disocclusions detection and z-ordering, 

while the depth layering approach naturally embeds z-ordering and disocclusion detec-

tion within the view-generation process.  

The experimental results demonstrate its real-time capability even for CPU-based 

implementations, while the quality is comparable with other view synthesis approaches 

but for lower computational cost. It is also suitable for general free-viewpoint rendering 

scenario in terms of position, orientation, focal length, and varying sensor spatial resolu-

tions of reference and virtual cameras. The main benefits of the proposed method can be 

summarized as follows: a high-quality texture resampling, avoiding non-uniform to uni-

form resampling, on-the-fly disocclusion detection and z-ordering. 
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The chapter is organized as follows. The depth layering procedure is described in 

Section 5.1 and the view synthesis algorithm is in Section 5.2. Some optimization con-

siderations are presented in Section 5.3. Finally, Section 5.4 provides some experi-

mental results.  

5.1 Layering in Disparity Domain 

The input is formed by the aligned color and range images (Figure 5.1 a and b), where 

the range image represents the depth map z(x,y). For the layer based rendering the given 

depth map is first transformed into a disparity map, which is subsequently divided into 

layers. Here disparity means the amount of displacement between projections of a point 

in two images from different viewpoints. The disparity map is calculated with respect to 

the targeted virtual view, which is determined by the new camera position and the cor-

responding baseline b between the reference and the new camera positions. The dispari-

ty displacement is calculated in pixels as follows: 
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   (5.1) 

where f is the focal length of the reference camera. The required number of layers de-

pends on the minimum and maximum disparity displacements Dmin and Dmax. A layered 

map with L layers, l=1…L, is constructed by assigning pixels with disparity displace-

ments within the interval [Dmin, Dmin+1) to the first layer, within the interval [Dmin+1, 

Dmin+2) to the second layer, and so on until Dmin+L ≥ Dmax and the interval [Dmin+L-1, 

Dmax) corresponds to the last layer. Figure 5.1c illustrates a layered disparity map.  

Such layering of the depth map of a scene allows to approximate depth volume of the 

scene by a set of planes, with each layer corresponds to a plane in space parallel to the 

reference camera image and located at depth zl (world coordinate system origin is con-

sidered placed at the reference camera position), i.e. the plane equation is Z=zl, for 

l=1..L. The depth value zl can be chosen as the average depth value between minimum 

and maximum depth values of the pixels belonging to the layer. This idea is illustrated 

in Figure 5.2. 

 

Figure 5.1 Test scene: a) color, b) depth map, c) layered map. 
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Such flat layered representation of the scene geometry allows approximating the 3D 

transformations as a series of 2D planar perspective projections. This feature is used to 

render an arbitrary view as described in the next section. 

5.2 View Synthesis 

Having the scene depth volume approximated by a set of planes, a projective transfor-

mation, i.e. a homography, exists for each plane, which can be used to map a projection 

of a point, which lies on the plane from the reference camera image plane to the virtual 

camera image plane (Figure 5.4). Thus, the 3D warping procedure can be approximated 

as a series of 2D perspective projections performed in a reversed way.  

Consider the pinhole model camera model (Section 2.1). The projection matrices for 

the reference and the virtual cameras are defined as P[3×4]=K∙[I|0] (world origin is at the 

camera) and P’[3×4]=K’∙[R|t] correspondingly. Here I[3×3] is an identity matrix, K[3×3]  

and K’[3×3]  are the reference and the virtual cameras’ calibration matrices of the form:  
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where fx, fy are the focal length components measured in pixels, px, py are the principal 

point coordinates; and [R|t] is the combined rotation matrix R[3×3] and the translation 

column vector t[3×1] of the virtual camera with respect to the reference camera. Then a 

3×3 homography transformation Hl which maps points of the plane Z=zl from reference 

image plane to the virtual image plane, is:  

   1
KRK'H

  z t ll ]10 [0 . (5.3) 

 
Figure 5.2 Representation of a scene by a set of parallel planes. 



 48 

To render a view from the virtual camera position, for every plane in the set approx-

imating the scene projections of the virtual camera image grid onto the reference camera 

grid are calculated, so that the values of the projected points can be interpolated within 

the regular grid of the reference image. To calculate the projections, for each depth zl, 

points of the virtual view image grid are back-projected onto the reference image plane 

using the inverse homography Hl
-1

. In this way, projections of the virtual image grid 

points are obtained as if they all were located on the plane Z=zl in space, or, according to 

our layering, if they all belong to the layer l of the reference image. In order to decide 

which of the projected points do actually belong to the layer l and how their values can 

be interpolated, the neighborhood of the projected points is analyzed (Figure 5.3). First, 

the four-point neighborhood of the projected point is considered, which is referred to as 

layer support. If the layer support of the projected point (u,v) contains pixels from cur-

rent, next or previous layers and there is at least one pixel from the current layer, the 

value P of the projected point (u,v) can be interpolated. Second, the n×n-point neigh-

borhood is checked where n is determined by the chosen interpolation support. If P(u,v) 

can be interpolated within the current layer, use for the interpolation only those pixels 

from the n×n resampling support which belong to the layers l-n/2..l+n/2 qualified as 

valid for interpolation. If all pixels within the resampling support are valid, the desired 

interpolator is directly used. If there are some invalid pixels, an interpolator with a 

smaller support is applied.  

 

Figure 5.3 Layered rendering. 

 

Figure 5.4 Homography induced by a plane. 
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The obtained interpolated values are used to fill in the corresponding values on the 

virtual view image grid. In this way, by processing all layers, a novel view can be ren-

dered as illustrated in Figure 5.5a. By processing layers from back to front z-ordering is 

maintained. Disoccluded regions are determined by pixels where no value was assigned, 

see Figure 5.5b. Edge pixels of disoccluded regions can also be detected as pixels with-

out values that were projected in such a way, that they have pixels from current layer in 

their layer support, but some of the pixels in the layer support do not belong to the cur-

rent, next or previous layers (Figure 5.5c). The projection incorporates all parameters of 

a two-camera system; therefore the rendering script can be configured for different 

camera arrangements, asymmetric camera parameters in terms of f, R, t, and varying 

sensor spatial resolutions, which works also as rescaling or zooming of the rendered 

view. 

The described method can be regarded as plane sweeping [75], [76] but implemented 

in a reverse manner. The plane sweeping approach uses layers to estimate depth, while 

the proposed method uses depth to find optimal depth layering. Furthermore, by the in-

verse projection from the virtual to the reference view, pixels being synthesized within 

the reference camera grid, thus avoiding non-uniform resampling. 

5.3 Back Projection Optimization 

The virtual image grid is back-projected for each value of zl. Instead of applying the 

homography Hl
-1

 every time, it is more efficient to compute the projection of the virtual 

image grid on some initial plane, e.g. Z=1, and then modify this projection to calculate 

the projection of the virtual image grid on any other plane Z=zi [76]. Consider two pro-

jections H1 and Hi that map points from the planes Z=1 and Z=zi correspondingly to the 

virtual image grid:  
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The homography Hi1 = Hi
-1

∙H1 maps points between planes Z=1 and Z=zi directly, by 

first applying forward projection form Z=1 to the virtual image grid, and then back-

projecting them onto the Z=zi. Hi1 has a rather simple structure: if (u1, v1, w1) is a point 

projected onto the plane Z=1, the corresponding point on the plane Z=zi is: 

 

Figure 5.5 Layered rendering: a) result for translation vector (0.1, 0.1, 0.1) in meters, b) disoccluded re-

gions, c) edge detection. 
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Here δ=1/z and (c1, c2, c3) = (r1t, r2t, r3t), where t is the translation column vector, and ri 

is a row vector of transposed rotation matrix R
T
. This way all projections can be calcu-

lated as linear combination of some pre-calculated projection of the virtual image grid. 

5.4 Experimental Results 

The proposed resampling technique is demonstrated by an experiment performed on a 

photorealistic scene synthetically rendered by the Blender software [77]. A rendering 

script has been configured for different camera arrangements, asymmetric camera pa-

rameters in terms of f, R, t, and varying sensor spatial resolutions. The designed scene is 

of high depth contrast varying within the range of 0.5-7 m, which resembles a typical 

range of the available ToF depth sensing devices [3]. The scene contains objects of dif-

ferent reflection surfaces, materials and facing directions, and illumination noise. The 

scene is given in Figure 2a and 2b.  

Using the script, a rather extreme case has been simulated. A horizontally aligned 

camera setup has been misaligned in forward/backward direction within the range 0- 

0.25m for an arbitrary chosen relative pose in terms of R and t, and for different resolu-

tion downscaling of the reference view, both for width and height from two to ten times 

in order to evaluate upsampling capabilities of the method.  

We compared the rendered results of the proposed approach against previous ap-

proaches by measuring the difference to ground-truth data in terms of peak signal-to-

noise ratio (PSNR) for the rendered color view. The comparative tests included a direct 

bilinear plane-fit resampling (bilinear triangulation) as used in a graphic accelerator 

hardware supported by OpenGL, and a method proposed in [46], where an intermediate 

resampling step by bilinear triangulation is used to place the virtual camera to the de-

sired camera position, and a 2D image back-projective up-sampling to the desired cam-

era grid is followed (denoted as VC method).  

Ground truth data (GT) was rendered in Blender with the same tested baseline, rela-

tive pose and misalignment, and with disoccluded pixels being masked. All re-sampling 

approaches were programmed in Matlab. For the 2D interpolation (VC) and the pro-

posed method (Proposed), bi-cubic interpolation was implemented [78]. The results 

plotted in Figure 5.6, show that for each tested case, our approach achieves comparable 

or better quality. Visual results for some scene details are given in Figure 5.7. From the 

experimental results it can be concluded, that the method is limited to relatively small 

free-view shifts (e.g. <0.25m). For larger shifts, the number of layers increases and 

more pixels are treated as boundary conditions, which degrades the performance. 

To measure the performance of the proposed method, it was implemented in C++ 

and tested on a computer with Intel Core i7-3770 CPU. The performance results are 
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measured for the 480×640 resolution of reference and virtual image grids and can be 

seen in Figure 5.8. The results demonstrate that pure CPU-based C++ implementation 

of the proposed approach without any processor-specific optimization gives a fair real-

time performance (~20 fps), the approach has superior quality and in contrast to the oth-

er approach it also inherits disocclusion detection.  

 

 

 

 
Figure 5.6 Performance comparison for asymmetric camera setup between proposed (Ours), general re-

sampling approach (Bilinear) and virtual camera inter-view rendering approach (VC). 
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5.5 Summary 

In this chapter, a layered resampling approach for free-viewpoint rendering from view-

plus-depth data is proposed. While achieving high quality texture resampling results, 

avoiding non-uniform to uniform resampling and providing on-the-fly disocclusion de-

tection and z-ordering, the speed of the proposed method has similar processing time 

compared to some other 2D image resampling methods, and is attractive for CPU-based 

applications. However, the method is limited to relatively small free-view shifts (e.g. 

<0.25m). In case for larger shifts, more pixels are treated as boundary conditions as the 

number of layers increases degrading the performance. Future work will focus upon 

investigating the possibilities of an optimal depth layering and a speed optimized im-

plementation utilizing general-purpose computing means of modern GPUs. 

 
Figure 5.7 Visual results on scene details for 4x asymmetric downscale and 0.25m setup misalignment of 

methods (by columns): a) Bilinear, b) VC, c) proposed, d) GT 

 
Figure 5.8 Performance results of the method for bilinear and bicubic interpolation kernel. 
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6. CONCLUSION 

In this work, a prototype 3DTV system capable for rendering live video on a 3D au-

tostereoscopic display has been presented. The entire processing chain from a scene 

capture to its rendering on a 3D display has been implemented and composed into a uni-

fied end-to-end framework. Each component in the framework has been presented in 

details throughout the thesis. The depth acquisition employs a ToF sensor, which can 

provide depth information in real-time. Since the depth camera is not able to provide 

color information, a conventional color camera is added in order to capture a scene tex-

tures. The input data from the camera setup is being processed in a series of steps in 

order to produce a view-plus-depth frame for an autostereoscopic 3D display or to gen-

erate a novel view of the captured scene from an arbitrary viewpoint.  

The presented system makes extensive use of processing capabilities of modern 

Graphics Processing Units (GPUs) in order to achieve real-time processing rates while 

providing an acceptable quality of rendering results. Using a computer graphics based 

approach, the system takes advantage of a 3D mesh representation of the scene, which 

can be reconstructed from the ToF depth to generate the depth map corresponding to the 

viewpoint of the color camera. By fusing it with high-resolution color, a dense depth 

map is obtained resulting in a video-plus-depth data representation used for DIBR ren-

dering on the display side.  

To provide free-viewpoint functionality, a 3D scene is generated using mesh triangu-

lation with depth information obtained after data fusion process. Color image is then 

used to texture the 3D surface. High rendering speed of such mesh-based representation 

allows reconstructing 3D dynamic scenes in real time. Virtual views can be synthesized 

by rendering the 3D scene geometry from the requested viewpoint. However, such 

mesh-based representation has a major drawback causing rubber-sheet artifacts at the 

virtual viewpoint. Thus, disocclusion areas still need to be detected and filled in a prop-

er fashion.  

This problem is addressed further and a layered resampling approach for free-

viewpoint rendering from view-plus-depth data is proposed. The proposed method is 

suitable for general rendering scenario in terms of position, orientation, focal length and 

varying sensors spatial resolutions. The main benefits of the method can be summarized 

as follows: a high-quality texture resampling, avoiding non-uniform to uniform 

resampling, on-the-fly disocclusion detection and z-ordering. The experimental results 

demonstrate real-time capability of the proposed method even for CPU-based imple-

mentations, while the quality is comparable with other view synthesis approaches but 

for lower computational cost.  
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Future work will focus upon further optimizations of the proposed method. An opti-

mal depth layering, which can be obtained by more careful analysis of the depth data of 

a scene, resulting in a less number of necessary layers would boost speed and quality 

performance of the resampling approach, as well as can provide a valuable information 

for the post-processing procedures, such as disocclusions filling. The future work also 

involves the speed optimized implementation of the proposed method utilizing general-

purpose computing means of modern GPUs.  

The current system operates only with one color view. As part of future work, it 

would be interesting to investigate the possible use of additional color views, which can 

be provided by the two side-cameras presented in the setup. Additional scene infor-

mation captured from the different viewpoints can be used for more reliable depth esti-

mation and for faster and more realistic disocclusions filling results in case of the virtual 

view generation. However, the increased number of active sensors in the setup would 

need more precise approaches for calibration and synchronization, e.g. hardware syn-

chronization; additional two views of the scene would increase almost three times the 

data traffic between GPU and system memory; further, increasing computational com-

plexity associated with the fusion and processing the data from multiple sources. Thus, 

an optimal trade-off between performance and visual quality of such system has to be 

found. 
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