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Global Navigation Satellite Systems (GNSS) offer precise position estimation and navi-

gation services outdoor but they are rarely accessible in strong multipath environments, 

such as indoor environments. Fortunately, several Signals of Opportunity (SoO), (such 

as RFID, Wi-Fi, Bluetooth, digital TV signals, etc.) are readily available in these envi-

ronments, creating an opportunity for seamless positioning. Performance evolution of 

positioning can be achieved through contextual exploitation of SoO. The detection and 

identification of available SoO signals or of the signals which are most relevant to local-

ization and the signal selection in an optimum way, according to designer defined opti-

mality criteria, are important stages to enter such contextual awareness domain. Man-

made modulated signals have certain properties which vary periodically in time and this 

time-varying periodical characteristics trigger what is known as cyclostationarity. Cyc-

lostationarity analysis can be used, among others, as a tool for signal detection. Detected 

signals through cyclostationary features can be exploited as SoO. The main purpose of 

this thesis is to study and analyze the cyclostationarity properties of various SoO. An 

additional goal is to investigate whether such cyclostationarity properties can be used to 

detect, identify and distinguish the signals which are present in a certain frequency 

band.  

The thesis is divided into two parts. In the literature review part, the physical layer 

study of several signals is given, by emphasizing the potential of SoO in positioning. In 

the implementation part, the possibility of signals detection through cyclostationary 

features is investigated through MATLAB simulations. Cyclostationary properties ob-

tained through FFT accumulation Method (FAM) and statistical performance of detec-

tion are studied in the presence of stationary additive white Gaussian noise (AWGN). 

Besides that, the performance in signal detection using cyclostationary-based detector is 

also compared to the performance with the energy-based detectors, used as benchmarks.  

The simulated result suggest that cyclostationary features can certainly detect the 

presence of signals in noise, but simple cases, such as one type of signal only and 

AWGN noise, are better addressed via traditional energy-based detection. However, 

cyclostationary features can exhibit advantages in other types of noises and in the pres-

ence of signal mixtures which in fact may fulfil one of the preliminary requirements of 

cognitive positioning. 
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1. INTRODUCTION 

1.1 Background and research motivation  

Finding positioning solutions embedded to the wireless mobile terminals is becoming a 

key factor in recent years to drive location-aware and location-based services. The ulti-

mate goal of such kind of localization solution is to provide position information any-

where anytime with sufficient accuracy. Global Satellite Navigation Systems (GNSS) 

such as the US Global positioning system (GPS) provide reliable, scalable and accurate 

position outdoors. The increasing demands for positioning solution worked as a driving 

force for the introduction of new satellite navigation systems such as the European Gali-

leo system, the Russian GLONASS, and the Chinese Compass-Beidou 2 systems [1]. 

GNSS can be a more generic term to be used in conjunction with all the above-

mentioned satellite systems. GNSS has become a popular choice due to its simplicity 

and low cost applications to the users. However, in specific environments, such as in-

doors and underground and sometimes even in dense urban scenarios, GNSS systems 

cannot provide good performance. Moreover, the accuracy of position estimation is de-

graded due to weak signals, multipath or non-line-of-sight signal propagation [2]. The 

indoor operational challenges of GNSS systems are the driving factors for finding com-

plementary solutions. In addition, continuously available positioning solution is also a 

reasonable demand. 

Signals of Opportunity (SoO) refer to any wireless signals initially not built for po-

sitioning. SoO are complementary solutions to GNSS, allowing continuous availability 

of localization solution regardless of the environment [3], [4]. To accomplish that, the 

mobile receiver needs first to identify all the available signals within its range of opera-

tion, then to select some of them for positioning purpose (according to certain optimali-

ty criteria defined by the designer), and then to combine them to form a hybrid position-

ing solution. The approach of receiving various signals for positioning leads to the con-

cept of cognitive positioning or positioning with signals of opportunity [5]. However 

this approach involves the challenges of signal recognition and selection. A receiver 

able to capture various SoO must be a multi-mode multi-frequency receiver [6]. In such 

receiver, multiple active signals are simultaneously received at the front end [7]. The 

signal detection or identification is the first step in a cognitive positioning engine [8]. 

Indeed, the technique of effective signal recognition for accurate positioning estimation 

by selecting suitable signal is yet an open topic for research. Researchers around the 

world have put significant effort on modulation classification and feature-based signal 

detection [9]-[13]. One of the answers of signal selection resides in the signal’s own 

features and the next step would be to sense such signal-related information by the re-

ceiver. The cognitive positioning aspects are inspired from the cognitive radio, where 

system is trying to find the absence of spectrum allocation so that secondary user can 
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use that unused band. However, in SoO-based positioning, the foremost need is to find 

out available signals which can be treated as candidates for positioning [14]. Looking 

back to 1960’s, a statistical signal processing tool named cyclostationary signal analysis 

has been proposed by Dr. Gardner and his colleagues [15]-[18]. Cyclostationary process 

is defined by the periodical behavior of some of the signals’ properties. Almost all types 

of modulated signals exhibit cyclostationarity as a result of periodicity associated with 

the modulation [19]. If the receiver measures cyclostationary attributes of received sig-

nals, then the signal recognition can be performed through its features. However, 

cyclostationary signal analysis has not been yet considered in navigation systems mod-

eling. Recently, people are putting significant concentration on cyclostationary proper-

ties in the context of wireless communications, due to its remarkable distinguishing 

ability among multiple signals [20]-[23]. Consequently, cyclostationary signal analysis 

has a huge potential in future cognitive positioning receiver modeling where receiver 

has to deal with multiple signals of different types [7]. Moreover, the cyclostationarity 

property of SoO has been not studied (or studied very little) in literature so far, to the 

best of the author’s knowledge. From this point of view, the research on 

cyclostationarity properties of various signals that are freely available within the mobile 

receiver range needs a crucial and timely contribution from the positioning context per-

spective. The author was motivated by these facts and the work presented in this thesis 

is related to studying cyclostationary-based signal detection for cognitive positioning 

systems.  

1.2 Thesis objectives and contributions 

The main objective of this research is to analyze the cyclostationary properties of vari-

ous signals of opportunity. Comparison of cyclostationary properties among various 

signals and various ways of detection for signals of opportunity through this 

cyclostationarity property will be also demonstrated. After proper detection, the proper-

ties can be used for further cognitive positioning receiver modeling.  

This work relates the signals of opportunity paradigm with the cyclostationary 

processes.  Since future cognitive positioning receiver will have to process multiple 

signals, the spectrum recognition in terms of contextual information is a fundamental 

requirement for awareness about the available signals. Indeed, in the framework of 

seamless positioning of tomorrow, the focus will be on using the signals inherent 

features, which will make the acquisition and tracking process faster. Cyclostationary 

analysis is used in this thesis as a research method for having such spectrum awareness 

to decide which signal to select. Moreover, hybridization of existing technologies will 

be the most likely scenario of future positioning system where relevant information is 

used from co-operation of multiple systems. However, this hybridization problem is not 

addressed in the simulation of this work; rather we focus on individual signal detection 

through its cyclostationary properties. The detection of a signal is the first and foremost 

aspect towards the recognition of which SoO are available for positioning at the receiver 
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end. For that end, cyclostationary signal processing is used to detect the received indi-

vidual signal. To accomplish the mentioned objective and motivation, the author points 

out main contribution as follows:    

 

 Overview of the main SoO and their usage in environments where GNSS is not 

available, such as indoors. 

 Seamless positioning framework formulation towards cognitive positioning. 

 Literature review of exiting research methods for spectrum sensing and signal 

classification which gives a baseline for signal selection stage of SoO based po-

sitioning.  

 General modeling of most common wireless signals namely CDMA and OFDM. 

 Review of cyclostationary signal theory and characterization of cyclostationarity 

properties.  

 Cyclic spectral analysis of individual signal at baseband and generation of 

cyclostationarity features-based detection statistics. 

 Statistical performance analysis of cyclostationarity-based signal detection, at 

several cyclic frequencies in terms of receiver operation characteristics.   

 Cyclostationary detection performance analysis for variation in test statistics 

formation.  

 Drawing a comparison between cyclic features based detection and energy-

based detection 

 Finally, an overall explanation on cyclostationary-based detection performance 

with a view of simulation boundary and statistical analysis of the generated data. 

 

The author submitted two publications at International Conference on Localization 

and GNSS 2014, one as the main author and one as co-author. The publication as the 

main author is related to the investigation on signal detection through its cyclic features 

in cognitive positioning framework for CDMA and OFDM signals. The author had a 

major contribution to the analytical derivation behind the explanation of results and per-

formed the simulations. 

1.3 Thesis organization 

The thesis is organized in eight chapters. The subsequent chapters are as follows: 

 

Chapter 2 familiarizes the reader with the concept of SoO. The process flow and chal-

lenges involved with SoO reception based future cognitive positioning receiver are also 

presented. The standard-related information of various SoO is overviewed which will 

lead the reader to the diverse use of signals’ relevant parameters to location. 

 

Chapter 3 discusses the typical modulations and multiple access techniques used in 

wireless signals nowadays. 
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Chapter 4 presents the spectrum sensing, signal detection and signal classification 

methods used in recent research on spectrum awareness of the navigation systems. This 

chapter also explains the necessity of selecting the signals which hold the best position-

ing capabilities.  

 

Chapter 5 describes the theoretical definitions of cyclostationary processes and charac-

terizes cyclostationarity properties. This chapter also focuses on the applications of the 

cyclostationary features in the context of signal-of-opportunity based positioning.  

 

Chapter 6 discusses the different methods of cyclic spectral analysis. This chapter espe-

cially points out the simulation model used in implementation phase and specific criteria 

used for simulation with CDMA, OFDM signals in MATLAB. 

 

Chapter 7 shows the main results that have been found from the simulations and also 

analyzes and compares the results. A brief overall discussion is also presented which is 

driven from the statistical analysis of generated data in simulation.  

 

Chapter 8 finally draws conclusions from this research and makes recommendations for 

future work. 
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2. SIGNALS OF OPPORTUNITY 

Signals of Opportunity (SoO) refer to all wireless signals that have not been originally 

intended for navigation systems but those are freely available to a navigation receiver 

within range. Signal-of-opportunity concept has opened a new paradigm for navigation 

solutions to find position through processing of SoO in cases where the GNSS has poor 

performance. SoO can be, for example, cellular telephone signals, digital TV signals, 

Radio Frequency Identification (RFID) signals, Wireless Local Area Network Signals 

(WLAN-Wi-Fi), Bluetooth signals or any other wireless signals which are accessible to 

the receiver to a certain time and location.  

Positioning accuracy and seamless location between indoor and outdoor environ-

ments can be theoretically achieved through proper exploitation of SoO [3]. Identifica-

tion or detection of available signals and selection in an optimum way for positioning 

solutions is playing key role on the activity of navigation system receiver. This thesis 

addresses the problem of signal identification and classification, by analysing and ex-

ploiting SoO cyclostationarity properties. 

2.1 Prospects of SoO in positioning  

Positioning is a key concern nowadays in the daily life easiness considering localization 

and location based service associated with it. GPS and other satellite positioning system 

can provide a precise localization and navigation service outdoors, where signals from 

the satellites are typically available at good Carrier to Noise Ratios (CNR). The main 

concern is in achieving also indoor positioning, where GNSS signals is scarcely present 

[24]. Moreover, indoor environment maps, topology and existing set-up can change 

frequently, which is a major obstacle in the path of obtaining accurate indoor position-

ing. Also, the presence of multipath effects, shadowing and fading is much more likely 

in indoor environments than in outdoor environments. 

Most people spent nearly 80% of their time in indoor and which leads to a necessity 

of accurate indoor positioning solution to user. Fortunately, several wireless signals, 

such as wireless mobile communication signals and Wi-Fi signals are readily available 

in indoor [25]. Such signals can be used for positioning and commercial solutions are 

already available. Apparently, cellular signal and Wi-Fi signal based positioning has 

started to be adopted in indoor with few shortcomings in performance in an optimized 

manner [26].  
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Several research organization and institutions are now investigating the prospect of 

using SoO for indoor positioning, for example in [27]-[41]. Moreover, some authors 

have shown the potential for SoO based positioning in collaboration with GNSS, for 

example in [42]-[44].The sub-sequent section of this chapter describes the system spe-

cific information of those signals which have the prospect to be used in positioning es-

timation.  A brief discussion on the deployment scenario of specific signal of opportuni-

ty in commercial and test set up will also be presented. 

A block diagram for a receiver working with  SoO is shown in Figure 2-1.The main 

structure and positioning computation concept are similar to the typical GNSS receiver, 

but the main difference stays in the way of processing the various SoO [7],[45]. After 

being received by the antenna, signals are processed in its baseband. In baseband pro-

cessing, the signal is first identified, for example through its cyclostationarity properties 

studied in this, and then it is further processed for positioning purpose (for example via 

acquisition and tracking, or via Bayesian combining, etc). Signal selection unit selects 

the signal which has the best accuracy capability in positioning estimation while signal 

classification unit supports the selection through performing modulation recognition [7]. 

Post processing block computes the pseudorange between receiver and transmitter to 

find co-ordinate estimation. The navigation unit or the localization server converts the 

estimated coordinates into map position through the navigation software. Moreover, 

there might be a user interface, such as the map display present with the receiver sys-

tem. Depending on the designer’s choice, the position computation may take place ei-

ther on the user receiver or at network side.  

 

Baseband Processing
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Receiver 
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& ADC
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Figure 2-1 Generic positioning receiver model for SoO reception [7] 

 

From a generic system point of view, according to the Figure 2-2, mobile user nodes 

communicate to the server through wireless switches or access points. These user nodes 

are capable to receive different SoO from several known transmitters and process that 
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signals for estimating position from the estimation of distance or pseudorange between 

receiver and transmitter.  The distance estimation can be done in several ways, such as, 

based on Received Signal Strength Indicator (RSSI) and path loss models, based on 

timing estimation (such as time of arrival /time difference of arrival), or based on angle 

of arrival (AOA) or other spatial information [6]. Trilateration principle or least square 

methods may be for example used to find the user location coordinates from the esti-

mated distance of receiver to the several transmitters.   

 

Localization

Server

User

             Fixed Access Switch

Server-Switch Connection

User access link to 

Service

S1

S2
S3

S4

User

User

 

Figure 2-2  Generic positioning system architecture based on SoO reception 

 The main localization principles are briefly described in what follows: 

 

 TOA/TDOA:  

The time of arrival (TOA) is defined by the simple formula of finding the travel time of 

signal as, 

  
                                        

                       
  

                       (2-1) 

Where,                is the signal reception time at the receiver,                is the 

signal transmit time from the transmitter, and wave speed is equal to the speed of light 

(about           ). 

When the distance is derived from the above eq. (2-1), errors may occur due to im-

perfect timing synchronization or due to clock error and multipath effect. Clock errors 

are common to all transmitters, while multipath errors are transmitter dependent. If the 

transmitters are not synchronized, it is more common to use time difference of arrival 

(TDOA) instead of TOA [6], [24]. TDOA measures the time difference of one signal 

arrival at the same receiver from several transmitters. From the TDOA value, the dis-

tance between known transmitter and receiver can be again calculated [24], [46], [47].  
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 RSSI:  

 

Received Signal strength Indicator (RSSI) provides the Received Signal Strength 

(RSS) averaged over a period of time at a certain location [6], [26].  This received pow-

er can be used to estimate the distance between receiver and transmitter with the help of 

propagation model [6]. After that, the estimated distances can be used to determine the 

receiver position by trilateration or multilateration principle. 

 

Estimated 

Position

A

B

C

Distance from 

Transmitter A to 

location

Distance from 

Transmitter B to 

location

Distance from 

Transmitter C to 

location

 

Figure 2-3 Trilateration principle [1], [6] 

 Trilateration principle:  

 

Trilateration principle can be used to determine the user position from the distance es-

timation made based on TDOA, TOA, RSS or AOA.  The main idea is to build a circle 

or radius equal to the computed distance around each transmitter. The user position can 

be found at the intersection point of the circles drawn. Trilateration refers to the use of 

three transmitters with known location for the position estimation [1], [6]. The drawn 

circles and estimated user position concept can be observed in Figure 2-3. The same 

concept can be extended to more than 3 transmitters, and in this case we would talk 

about multi-lateration. 

The signals of opportunity can be categorized in two types according to their deploy-

ment aspect. Some signals may use to make position estimation through its existing in-

frastructure, while some other SoO signals need to deploy new or partial infrastructure 

[24], [48]. According to this concept, SoO can be divided as below: 

 

 Requiring a (large) specific infrastructure, examples belonging to this category 

are Active Badge (infrared) [49], Bat System (ultrasound) [44], Smart Floor 

(pressure sensors) [50], RFID [34], cameras [51], and so on. 
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 Using the existing wireless telecommunication networks, such as Wi-Fi (802.11) 

[27], Bluetooth [29], [30], RADAR [52], DTV [40], [41], UWB [38], [39] com-

munications satellite signals, celestial and other signals from nature, and so on. 

 

There are several challenges related with positioning estimation through the available 

SoO signals. The main ones are summarized below: 

 Identification of SoO reaching the receiver (the topic of this thesis focuses in 

fact on challenges related to this identification of SoO) 

 Relevant signal selection from the received numerous signals for accurate 

positioning. This challenge is better addressed by relevant signal selection 

problem 

 Practical implementation of the hybridization algorithms for localization 

based on different types of signals 

 Parameter optimization at various stages involved in positioning (signal de-

tection, signal selection, hybridization, etc.) 

 The absence of  synchronization between the transmitters and the typical 

lack of reference points (unknown location of transmitters) 

 Limited infrastructure deployments for SoO  

 Achieving low implementation cost and user friendly interfaces 

 Initially, the SoO systems were not built and maintained for positioning so-

lution, which may lead sometimes to the need of having a complex remodel-

ing and modification of the system for using such signal for navigation pur-

poses. 

 

Evolutions in positioning systems are considering contextual information, such as 

signal identification, classification and selection. In theory, such system could be capa-

ble of adapting the signal acquisition and tracking accordingly [7], [8]. This adaptation 

can result in the hybridization of several technologies or selecting the most viable for 

that time and location [53]. According to the previous discussions, a simplified block 

diagram of the steps involved in SoO-based positioning is illustrated in Figure 2-4.   

Signal detection/

Identification
Signal Classification Joint or parallel 

navigation solution 

based in selected 

SoO

(Hybridization)

User Interface

Feedback Paramter Optimization

 

Figure 2-4 Illustration of the steps involved in a SoO-based positioning [7] 
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This thesis focuses on the first step involved in a SoO-based positioning mentioned 

in Figure 2-4 which is SoO detection. Intuitive study on the SoO provides us the fact 

that, they can be analyzed according to their modulation types being used and possibly 

according to the multiple access types as well. Cyclostationarity analysis is one of the 

existing tools which can be used to identify various signals according to their modula-

tion type. Apparently, by investigating the baseband cyclostationary properties of 

CDMA, OFDM signals, we can obtain a clear idea on detection and positioning pro-

spects of SoO. This is the goal of this thesis and this analysis will be explained in detail 

in chapters 5, 6, 7. 

Many wireless network technology including WLAN, WPAN, and WWAN operate 

in ISM bands (Industrial, scientific, medical). Figure2-5 shows ISM frequency bands 

which provide unlicensed shared access to wireless activity [54]. ISM bands are sepa-

rated in three different frequency bands, namely 900 MHz, 2.4 GHz, and 5.7 GHz. Sev-

eral common wireless technologies operate in ISM band, as described below.  

 WPAN, Wireless Personal Area Network 

 IEEE 802.15: Bluetooth [30], ZigBee [55], WiMedia/UWB [38] 

 Infrared Data Association (IrDA) [56], RFID [34] 

 WLAN, Wireless Local Area Network 

 IEEE 802.11: Wi-Fi  [24] 

 BWA, Broadband Wireless Access/WMAN, Wireless Metropolitan Area 

Network  

 IEEE 802.16: WiMAX (also WiBRO in South Korea) [57] 

 WWAN, Wireless Wide Area Network 

 IEEE 802.20: MBWA (Mobile Broadband Wireless Access) [58] 

5.85 GHz5.725 GHz2.4835 GHz2.4 GHz928 MHz902 MHz

125 MHz83 MHz26 MHz

 

Figure2-5 ISM frequency band [54] 

The next sections investigate the prospect of SoO as positioning signals. Positioning 

accuracy depends on the effective extraction of useful information from the signal 

which is available. In order to achieve that, individual study on the different signals is 

needed, in order to know which signal has a better performance in which aspect of posi-

tioning. As a matter of fact, this type of idea will lead us to the diverse use of signals’ 

relevant parameter for a better estimation of position. The estimation needs to be done 

in a seamless manner from indoor to outdoor [5], [42] and [43].   
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 The standard-related information of various SoO is overviewed in the next sections, 

focusing on physical layer. This means that, we will mainly describe the signals modu-

lation type, the frequency band of operation, and their basic operation procedure. This is 

done for the following signals, WLAN, WPAN (Bluetooth, RFID, UWB), and digital 

TV signals. 

2.1.1 WLAN (Wi-Fi) signal 

Wireless Local Area Network (WLAN) signals (also referred to as Wi-Fi signals) stand 

for IEEE 802.11x signals. IEEE 802.11 set of standard covers the 5 GHz and 2.4 GHz 

public spectrum bands, and more recently extensions to 60 GHz frequency bands. 

WLAN signals are used to provide high speed internet access to the indoor users. 

WLAN signals are easily available to the standard mobile devices or stations through 

the numerous access points in indoor environments [26]. Each access point has its 

unique identification MAC address which in fact refers to access ID. Access points con-

trols the traffic in the wireless medium. Figure 2-6 illustrates basic components required 

to set up WLAN network. Access points are connected to the internet through broad-

band connection with firewall and provide access to internet for the user station [48].  

Nowadays, wireless LAN cards are integrated with the end stations devices to get 

access to the WLAN signal. Transmission power level for the most common band of 

2400-2483.5 MHz is limited to maximum 1W in USA and to maximum 10 mW/MHz in 

Europe (although it may vary ). WLAN signal can be used to estimate the location of a 

mobile user within the network. WLAN can act as signal of opportunity as it is available 

indoors through the existing fixed access points for positioning [25]-[27]. The existing 

high density of access points is the key factor motivating the use of WLAN as a sup-

plementary of GNSS in indoor [48]. 

In general, the distance measurement take place in WLAN based positioning 

through RSSI extracted from network or through access points ID [6], [26]. Multipath 

environments in indoor and time-varying features of the received signal strength are the 

main bottleneck in WLAN-based indoor positioning [24]. The accuracy of typical 

WLAN positioning systems using RSS is approximately 3 to 30 m with the current 

state-of-art approaches [59], [60] and [61]. The main WLAN standard details about data 

rate, modulation, frequency band are shown in Table 2-1. 

InternetInternet

Broadband connection

Access Point

Mobile device

 

Figure 2-6  A typical WLAN network setup 
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Table 2-1  System parameters of WLAN-Wi-Fi standard 

Parame-

ter/system 

802.11 802.11a 802.11b 802.11g 802.11n 802.11ac 

[62] 

802.11af 

[63] 

802.11ad 

[64] 

Approved 

since 

July 

1997 

September  

1999 

September 

1999 

June 

2003 

September 

2009 

 

January 

2014 

 

February 

2014 

 

December 

2012 

Frequency 

bands cen-

tered around, 

(GHz) 

2.4 5 2.4 2.4 2.4,  5 

 

5 

 

TV  

white  

space 

 

 

60 

Maximum 

supported 

data rate 

2.1 
Mbps 

54 
Mbps 

11 
Mbps 

6-54 
Mbps 

108-600 
Mbps 

6.93 
Gbps 

600 
Mbps 

6.76 
Gbps 

Modulation 

types 

FHSS, 

DSSS 

OFDM FHSS, 

DSSS 

DSSS, 

OFDM 

OFDM 

BPSK, 

QPSK, 

16QAM, 

64QAM 

 

OFDM 

 

OFDM 

 

2.1.2 WPAN: Bluetooth, RFID, UWB 

Wireless Personal Area Network (WPAN) operates in a short range of radius of about 

few meters to tens of meter. WPAN signals have diversity in signal types and data rate 

and good prospect in indoor positioning. IEEE 802.15x standard covers Bluetooth, 

UWB, ZigBee signals whereas systems like RFID, IrDA, and home RF also belong to 

WPAN [54]. Bluetooth, RFID, UWB signals based positioning provides significant de-

velopment in recent days and in the next subsections a brief description on those signals 

is presented. 

2.1.2.1 Bluetooth signal 

Bluetooth aims for a personal local area network to connect small devices through ra-

dio-based wireless technology. Bluetooth operates in the 2.4 GHz ISM band. Bluetooth 

devices have a range of up to 10 m (or even up to 100 m with special transceivers) with 

transmitting power of up to 100 mW [24]. A frequency-hopping (FHSS)/time-division 

duplex (TDD) scheme is used for transmission with a fast hopping rate of 1,600 hops 

per second [29]. The time between two hops is called a slot, which has an interval of 

625μs. Each slot uses a different frequency. All devices using the same hopping se-

quence with the same phase form a Bluetooth piconet. One device within piconet act as 

a master and others act as slaves for the connection set up. Figure 2-7 points out differ-

ent kinds of Bluetooth piconet arrangement for connection set up. 
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Nowadays Bluetooth chips are embedded in most of the smart phones due to Blue-

tooth short range connectivity and ease of integration facility. Bluetooth has a short 

range with low power consumption and can act as a signal of opportunity [30], [65]. 

 

Master Device

Slave Device

a b c  

Figure 2-7  (a) Single-slave piconet, (b) multiple-slave piconet and (c) scatternet [65] 

Advantages of using Bluetooth technology in positioning [24], [48]: 

 Low-cost technology 

 Low transmitted power (lower interference) 

 Many smart phones already have a Bluetooth chip   

Disadvantages of using Bluetooth technology in positioning [24], [48]: 

 Very short range solutions (typically below 10m) 

 Accuracy limited by multipath and shadowing (same as in WLAN) 

 Typically, existing mobile transmitters lead to new stationary transmitter instal-

lation in case of RSS based positioning solution.  

2.1.2.2 RFID 

RFID system offers storing and retrieving data through electromagnetic (EM) transmis-

sion which can be use a means of identification and tracking purposes. RFID systems 

operate in frequency ranges from a few hundred kHz to several GHz. A typical RFID 

system is presented in Figure 2-8. It consists of several basic components, including 

RFID readers along with antennas, RFID tags and servers or data management systems 

[32]. A RFID tag attached to the tracked object holds a unique data or a serial number or 

other unique attribute of the item. RFID reader transmits and receives simultaneously at 

the same frequency and able to read the data emitted from RFID tags from a distance 

[33]. RFID system uses a defined radio frequency and protocol to transmit and receive 

data. RFID tags can be either passive or active. In passive system, the tag is powered by 

the high power electromagnetic field generated by the reader antennas. After the tag IC 

is activated, the tag antenna reflects back a weak modulated signal containing the data 

back to the reader. On the other hand, tags in the active system are powered by own 
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internal battery. A comparison of several parameters between active RFID and passive 

RFID system is presented in Table 2-2 for better understanding.  

 

Object

RFID Tag

Electromagnetic 

Field

Data Management 

station

RFID reader 

with antenna

 

Figure 2-8 Components of a RFID system [24], [34] 

Table 2-2 Comparison between active and passive RFID system 

Type/ Parameter Active RFID [24] Passive RFID [24] 

Tag power source Internal tag battery Eternal power from EM wave 

Tag battery Yes No 

Availability of power Continuous Once EM field apply 

Required signal strength to tag Very low Very high 

Communication range Up to 100m 10-30 m 

 

Table 2-3 RFID system based on different frequency range of operation [24] 

System/Parameter LF HF UHF 

Frequency 125-134 KHz 13.56 MHz 860-960 MHz 

Wavelength ~2400 m 22m ~0.33m 

Read range Up to 1m Up to 1m Up to 20 m 

Data range Up to 9.6 Kbps Up to 64 Kbps Up to 640 Kbps 

 

In an RFID system, the data reading range vary with the system that is being use 

based on frequency as shown in Table 2-3. RFID based positioning can be accom-

plished through TOA, TDOA, or RSS [31]-[36]. In indoor, RFID can give higher than 

1m accuracy for positioning [24]. However RFID-based TDOA estimation process 

needs additional infrastructures such as sensor nodes or a stationary reader to be de-

ployed in order to measure the reader tags inter distance for estimating the position.  In 

contrast, in RSSI-based system, the received signal strength indicators are commonly 

built into the transceiver chips used in commercial RFID readers. Thus this measure-

ment method does not require additional hardware [24], [36]. The reader diversity, data 
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storing capability of tag, tag types, reader range, whether reader is moving or tag is 

moving, all of these factors need to take in consideration while designing a state of art 

RFID-based localization scheme [24]. A performance comparison table on several pa-

rameters in RFID-based positioning is presented in Table 2-4 which basically refer to 

several companies owning RFID commercial set ups for positioning purpose. 

 

Table 2-4 Comparison among different RFID based positioning system [66] 

Systems/Parameters Axcess View 

[67] 

Honeywell 

Asset Locator 

[68] 

SpotON 

[36] 

WhereTag 

[66] 

Positioning method Proximity  

(node–ID) 

Proximity  

(node–ID) 

RSS TDOA 

Positioning accuracy Zone/room Zone/room 1-2 m 1-3 m 

Positioning range (m) 10 20 30 300 

2.1.2.3 UWB signal 

UWB system falls into the category of high data rate example of WPAN systems. UWB 

was introduced to download or exchange digital image or video [38]. UWB system is 

based on sending ultra-short pulses whose duration is typically below 1 ns [39]. As a 

result, in spectral domain, the UWB spectrum uses a very wide bandwidth (> 500 MHz) 

[24], [39], [69] and [70]. UWB system transmits a signal with low duty cycle over mul-

tiple bands of frequencies simultaneously, from 3.1 to 10.6 GHz [38]. UWB signal can 

easily pass through the wall, clothes, and equipments. Moreover, UWB short duration 

pulses are easy to filter in order to determine correct signal in a multipath environment 

[24]. In UWB communication system, a number of UWB pulses are transmitted per 

information symbol and information are being carried by the timing or polarities of the 

pulses [71]. A simple description on two main existing standards on UWB system is 

presented in Table 2-5. 

 

Table 2-5  Different parameters of UWB standard [24], [48] 

System/Parameter IEEE 802.15.4a IEEE 802.15.4f 

Description UWB with ranging capability UWB RF-ID tags 

Transmission range <100 m Few m 

Ranging accuracy ~ several cm ~ cm order 

 

The usefulness of UWB signals can be realized from the Shannon capacity formula. 

The maximum data rate   for signal transmission in a channel with bandwidth    and 

signal to noise ratio as     is given by,   

                                                   (2-2) 
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According to eq. (2-2), as the bandwidth is large in UWB system, more information 

can be sent from transmitter to the receiver compared to other narrowband transmission 

system [71]. 

 UWB system covers a wide spectrum range and coexists with other system without 

having significant interference. According to the Federal Communications Commission 

(FCC) regulations, UWB systems transmit below certain power levels in order not to 

cause significant interference to the existing systems in the same frequency spectrum 

[24], [71]. The average power spectral density (PSD) remains below            

    over the frequency band from 3.1 GHz to 10.6 GHz which can be seen from Fig-

ure 2-9 [71]. In Figure 2-9, a UWB signal is defined to have an absolute bandwidth, 

       , where     and    represents the upper and lower frequency of the        

emission points respectively. 
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Figure 2-9 UWB power spectral density [71] 

Research worlds is currently  putting significant interest on UWB based positioning 

capability due to its low power, large bandwidth, and high accuracy operation [24], [37] 

and [38]. UWB system transmits UWB signals to the network receivers and the receiver 

position can be estimated typically through TDOA or AOA. From the positioning pro-

spective, UWB based location estimation provides very high indoor location accuracy 

(20 cm) because of the short pulse -based precise estimation [24]. However to overcome 

interference, strategic placement of UWB readers require high implementation cost. On 

the other hand, as UWB signal can transmit without carrier modulation, baseband pro-

cessing of UWB received signal requires simple navigation receiver structure which 

reduces cost indeed [71]. From the positioning point of view, even though UWB system 

provides high accuracy, this system requires complete new set up which involves infra-

structure cost. 

2.1.3 Digital TV signal 

Digital TV (DTV) infrastructure are readily available at indoor to apply as a mean of 

positioning scheme [8]. The digital TV system uses OFDM techniques for transmission. 

Digital Video Broadcasting (DVB) is the digital TV standard [40]. There are four vari-

ants of DVB, 

- DVB-T (Digital Video Broadcasting – Terrestrial)   
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- DVB-T 2 (Digital Video Broadcasting – Terrestrial Enhanced)   

- DVB-S (Digital Video Broadcasting – Satellite)   

- DVB-H (Digital Video Broadcasting – Handheld)   

DVB-T is a digital broadcasting standard created by the European Telecommunica-

tions Standards Institute (ETSI). DVB-H (Handheld) is another available standard for 

mobile services which derived from DVB-T. The next generation DVB-T2 standard was 

published by ETSI in April 25, 2009 [72]. DVB-S is a standard for digital TV distribu-

tion via satellite. Evolution of DVB-S standard is considering a new standard named 

DVB-S2. An overview of several system related parameters of different digital TV sig-

nal standard is presented below in Table 2-6 and in Table 2-7.  

Table 2-6 System parameters of different DTV standard [72] 

System/Parameter DVB-T DVB-T2 DVB-H 

Modulation QPSK,16 

QAM, 

64 QAM 

QPSK,16QAM,64QAM, 

256QAM 

QPSK,16QAM,64QAM 

FFT size 2K, 8K 1K,2K,4K,8K,16K,32K 2K,4K,8K 

Bandwidth 8 MHz 8 MHz 8 MHz 

Service rate ~22.1 Mb/s ~32.4 Mb/s ~8.3 Mb/s 

 

Table 2-7 System parameters of DVB-S standard [73] 

System/Parameter DVB-S DVB-S2 

Bandwidth 2 MHz ~30 MHz 

Compression technique MPEG2 MPEG4 

Modulation QPSK,16QAM BPSK,QPSK,8PSK, 

16APSK, 

32APSK 

Pilots Not applicable Pilot symbols 

Bit rate 33.8 Mbps 46 Mbps 

 

Digital TV signals can be used to estimate the user position in indoors, where GNSS 

signal is rarely available. DTV signals have several advantages such as high transmis-

sion power, fixed known transmitter location, synchronized emitters, high SNR [40], 

[41]. However the initial position of user needs to be found out through the GPS signal 

in an aided manner [48]. The typical scenario where DTV position can be applied is the 

following: the user will move from outside to a GNSS blocked area and in indoor the 

DTV signals act as a signal of opportunity for positioning. The OFDM-modulated 

transmitted digital TV signal contains scattered pilot subcarrier from which time of arri-

val can be estimated and pseudo-range between receiver and transmitter calculated for 

position solution [41].  

 DVB-T signal has a non-negligible prospect for positioning solution which can be 

summarized below [48]:  
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 DVB-T signal has high transmission signal power: 10 KW- 15 KW  

 Frequency diversity, 6-8 MHz signal BW 

 Existing system provides fixed transmitter which reduce Doppler effects 

 Low frequency of operation: UHF (50-750 MHZ), VHF (1775–2265 MHz) 

 Horizontal signals provides  less attenuation from walls than roof 

 Existing infrastructure can serve the purpose which provides savings. 

Nevertheless, there is not much research nowadays focusing on DTV positioning 

solutions, and one of the pioneer companies who offered commercial DTV positioning 

solutions (Rossum) is currently bankrupt. 

2.2 Comparison among SoO 

In general, SoO has prospect of being used as an alternative to GNSS in indoor. Com-

bining various type of signals which contain relevant information towards a cooperative 

positioning where all the devices interact with each other can also increase the accuracy 

of the positioning estimation [24], [42]. Better positioning accuracy can be achieved 

with a tradeoff in the implementation cost through UWB and RFID-based solutions 

compared to WLAN and DTV solutions. WLAN-based positioning solution is already 

running with an accuracy of 3 to 30 m whereas demand of more accuracy can be miti-

gated by UWB and RFID-based solutions which give accuracy in cm scale. A compara-

tive summary of previous sections description on positioning based on several types of 

wireless signals with respect to range of accuracy and operating environment is present-

ed in Figure 2-10 [24]. Figure 2-10 points out the potentiality of UWB, RFID, Blue-

tooth and WLAN signals for accurate indoor positioning with their accuracy range 

while GPS, cellular based positioning and wireless signals assisted GPS can support 

outdoor and rural open areas.   
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Figure 2-10  Overview of positioning based on several wireless signals (reproduced 

from [24]) 
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3. MODULATIONS AND MULTIPLE ACCESS 

TECHNIQUES 

This chapter presents the theoretical description of most common multiple access meth-

ods namely Code Division Multiple Access (CDMA), Orthogonal Frequency Division 

Multiplexing (OFDM).This chapter will also give a view on several linear and non-

linear modulation methods adopted in positioning and communication systems. Moreo-

ver, recent wireless research steps consider Ultra Wideband (UWB) system for its low 

power, high bandwidth and this will be presented in a brief manner. 

3.1 Multiple access techniques 

Multiple access techniques enable multiple users to share the common medium. Multi-

ple access techniques typically refer to the sharing of a communication channel such as 

a satellite or radio channel by users in highly geographically isolated locations. Multiple 

access techniques allow efficient wireless transmission system through handling highly 

frequency selective channel. CDMA and OFDM are two most common access method 

used in recent wireless applications. The subsequent sections will describe their general 

modeling including signal structure and system block diagram. 

3.1.1 CDMA basic principles    

CDMA is a multiple access procedure implemented by spread spectrum techniques. 

Most of the 3G cellular communication, GPS, some WLAN standard use spread spec-

trum technology. In CDMA, all users share the same frequency band simultaneously 

with having a unique pseudorandom code sequence [74]. Figure 3-1 shows the concept 

of code division multiplexing used in CDMA. In Figure 3-1, users (1, 2… N) are sepa-

rated from each other through the unique codes. Users may transmit at the same time 

using the same frequency which in fact allows multiple users to use the same 

transmission bandwidth. Spread spectrum technique is used in many wireless systems 

such as, 

 

 CDMA2000( UMTS/WCDMA) cellular standard 

 CDMAone cellular standard 

 GPS, Galileo, Compass satellite navigation systems 

 Some of the WLAN standard 

 ZigBee 
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Figure 3-1 Code division multiplexing concept 

3.1.1.1 Spread spectrum techniques  

In spread spectrum techniques, the narrowband signal spectrum spreads to a wider 

bandwidth using a spreading code before transmission [75]. Spreading allows the signal 

not to be destroyed by the narrowband and broadband interference encountered in chan-

nel. The de-spreading operation at receiver recovers the desired signal followed by a 

bandpass filter. The transmission bandwidth is maintained larger than the information 

bandwidth to achieve spreading operation [54]. The processing gain achieved from 

spreading reduces the impact of narrowband interference. The spectrum spreading can 

be performed using three basic methods, such as, 

 

 Direct Sequence Spread Spectrum (DS-SS) 

 Frequency Hopping Spread Spectrum (FS-SS) 

 Time Hopping Spread Spectrum (TH-SS) 

 

Direct Sequence CDMA (DS-CDMA or DS-SS):  

 

DS-SS is the most used form of spread spectrum. The original data signal is multiplied 

directly with the spreading code at a chip rate higher than the symbol rate [76]. In DS-

SS, the user bits are mainly multiplied with binary Pesudonoise (PN) sequence as 

spreading code such as, Gold sequences, Kasami sequences [54]. However, DS-SS 

method is not limited to binary sequences; it can be also used with QPSK, QAM modu-

lated spreading codes. More details on the types of spreading codes used in different 

systems can be found in literature, for example, in [77], [78]. The bits of the spreading 

code are called chips. The chip rate is typically much higher than user bit rate [54]. At 

the receiver side, the received spread signal is again multiplied with the same spreading 

code to get the actual transmitted signal. Figure 3-2 illustrates the basic principles of 

direct sequence spread spectrum operation. In Figure 3-2, the certain user data is spread 

to a wider bandwidth by multiplication with a higher frequency code sequence. In bit 

domain, the spreading operation is following XOR operation between data sequence and 

chip sequence.   
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Figure 3-2 DS-SS basic principle [54] 

 

Frequency Hopping CDMA (FH-CDMA or FH-SS):  

 

In FH-SS, the carrier frequency at which the original data signal is transmitted is fre-

quently changed according to the spreading code or the PN sequence used in spreading. 

Eventually, the spreading code controls the sequence of carrier frequencies. As a result, 

the data signal will spread over a wide range of frequencies without changing the origi-

nal bandwidth of the data [54]. A frequency synthesizer generates hopping signal 

according to the PN sequence. The pre modulated data signal will multiply with hop-

ping signal to generate FH-SS signal. The main advantage of FS-SS includes the possi-

bility of having simpler implementation, frequency diversity and simple detection com-

pared with other two techniques [80]. However, this method is not that much robust as 

DS-SS. 

 

Time Hopping CDMA (TH-CDMA or TH-SS): Having discussed DS-SS and FH-SS, 

we would also like to briefly describe TH-SS. In TH-SS, the signal is transmitted in 

short bursts where the times of the transmitter to switch on and off are decided by the 

specific PN code sequence [80]. This technique can be implemented in visible light 

communication systems, as studied in [81]. However, TH-SS is not as popular as the 
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other two techniques. The main reasons are implementation difficulties and lack of ro-

bustness.  

 

In the case of CDMA implementation through spread spectrum, DS-SS is the most 

used and popular method due to the following advantages, 

 

 In DS-SS, the orthogonality condition for the spreading sequences can be re-

laxed [76]. This implies asynchronous users much simpler access to the me-

dium. 

 Frequency planning can be relaxed 

 Reduces the effects of frequency selective fading 

 In DS-SS implemented cellular network, soft or softer handover and fre-

quency reuse can be possible [83]. 

 

Under the above circumstance, DS-SS method is selected in CDMA signal imple-

mentation for this thesis simulation purposes. Section 3.1.1.2 will present DS-CDMA 

signal model and section 3.1.1.4 will illustrate the DS-CDMA general block diagram 

which is used in chapter 7 for CDMA signal generation. However, section 3.1.1.3 will 

cover the signal models for remaining two types namely FH-SS and TH-SS.  

3.1.1.2 DS-CDMA signal model  

In order to characterize the DS-CDMA signal, the signal model is explained in this sec-

tion. If the user data sequence is denoted     ,    are data bits for n
th

 symbol,    is the 

symbol interval, and       is modulation pulse, then the data sequence can be written as, 

 
                

    

    

 
                                      ( 3-1 ) 

In DS-CDMA, if    is the chip rate of spreading code,     is the symbol rate of data 

sequence,    is the chip interval then the spreading factor    can be written as in eq. 

(3-2),  

 
   

  
  

 
  
  

 
                                      (3-2) 

The CDMA baseband signal with BPSK modulation, expressed as the spread 

nal     , at the output of the spreading operation can be modeled as, 

 

 

                             

   

   

    

    

 

                                     ( 3-3 ) 

Where,        is code value (+1 or -1) for k
th
 chip during the n

th
 symbol,    is bit 

energy. 
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3.1.1.3 Other spread spectrum signal model 

In FS-SS system, the initial M-FSK modulated data signal can be exressed as, 

                              

 

    

 

Where,     is the symbol duration,                       . The output of frequency 

synthesizer can be writen as, 

                

 

    

                  

Where,      is the hopping chip duration,                         , L is non-

overlapping frequency bins. The FH-SS signal is a high-pass filtered product of        

and      , giving, 

                                   

 On the other hand, TH-SS signal can be constructed by modulating the data signal 

by a pseudorandom pulse position modulated spreading signal [80]. The resulting TH-

SS signal can be given by, 

                                   

 

    

 

Where,    is the data sysmbols,      is the symbol duration,          is the chip time,    

is an integer specified by the pseudorandom code,   is the propagation delay. 

3.1.1.4 DS-CDMA system block diagram 

Figure 3-3 shows DS-CDMA system block diagram considering transmitter and 

receiver operations. According to the Figure 3-3, the channel-coded user data spread 

with the chip sequence and passed to the channel modulation as a spread spectrum 

signal. After that, DS-CDMA modulated signal passes though the wireless channel and  

it is converted back into digital form after being received in the receiver. At the receiver 

side, the signal received from several mutipaths and multipath estimator provides 

estimation on that receptions. Rake receiver deployment can be beneficial in case of 

wireless communication where energy gathered from all the paths will certainly 

influences the overall signal estimation [84]. On the contrary, in positioning, rake 

receiver is not beneficial, rather multipath mitiation techniques needs to incorporate 

with the system [85]. The received signal again multiplied with the same chip sequence 

in order to get the same transmitted signal as a output from receiver.  
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Figure 3-3 DS-CDMA system block diagram 

3.1.2 OFDM basic principles 

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation 

technique which has significant advantages for high data rate transmissions in multipath 

environments. OFDM has been chosen in many communication systems, such as Long-

Term Evolution (LTE) for 4G communications systems, WLAN, WiMAX, and DVB-T 

for its robustness in multipath channels. The main idea behind the multicarrier modula-

tion is to subdivide the available bandwidth into a number of sub-channels, such that 

each sub-channel is nearly ideal.  

 

3.1.2.1 Multicarrier techniques 

Multicarrier technique is a special form of Frequency Division Multiplexing (FDM). 

In OFDM system, high spectral efficiency is achieved by selecting a specific (orthogo-

nal) set of overlapping subcarrier frequencies [54]. OFDM permits overlapping between 

the subcarrier through the orthogonality without corrupting the user data, which is the 

main feature of OFDM. Orthogonality can be explained through the sub-channel re-

sponse as when the response of any one sub-channel is at its maximum, the collection of 

spurious responses from all the remaining sub-channels is zero [76]. The orthogonality 

between the subcarriers provides less interference of other carriers in the detection of 

the information in a particular carrier [67], [86]. As a result, inter carrier interference 

(ICI) free reception can be possible at the receiver. In addition, orthogonality between 

the subcarriers allows carriers to be closer to each other in the frequency domain and 

such arrangement reduces required bandwidth. Multicarrier or multichannel signal 
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transmission can be also efficient in case of dealing with fading channel effect on 

transmission [54].  

In multicarrier modulation scheme, the high bit rate serial data stream is divided into 

a number of parallel data streams at a much lower symbol rate, which are modulated on 

a set of subcarriers distributed within a specified frequency band [87]. The parallel sub-

carrier modulated data streams exhibits low rate transmission in multipath environment 

which generates less interference. As a result, this process will give higher bit rates with 

less interference at the receiver after the overall transmission.  

In OFDM, the multiplexing and de-multiplexing can be implemented by IDFT and 

DFT operations respectively. In practice, this is accomplished in the baseband prior to 

RF section through the effective use of digital signal processing techniques, such as 

Inverse FFT (IFFT) at the transmitter side and FFT at the receiver side [86].  

3.1.2.2 Guard interval (GI) and pilot subcarrier 

OFDM signal provide robustness against multipath by introducing the so-called guard 

intervals (GI) as part of its signal structure [54]. Peled and Ruiz proposed a method to 

cyclically extend the OFDM time signal by replicating the last part of the OFDM time 

signal at the front of the OFDM symbol during the transmission [54], [86]. Figure 3-4 

shows the replication procedure to extend the time domain signal by means of GI. 

Moreover, the orthogonality between subcarriers is maintained through inserting a 

guard interval lager than channel delay spread. This selection of GI will assure that the 

multipath components of the symbols will not interfere with the useful symbol and 

which in fact eliminate the inter symbol interference (ISI) [54], [76] and [87].  

Duration of useful part of symbol

Duration of 

guard interval

t

OFDM symbol duration

Extension of OFDM signal by 

replication of last part at front

 
Figure 3-4 Guard interval principle 

Another key element in the structure of OFDM signals is the existence of pilot sub-

carriers. Channel estimation can be possible from inserted pilot subcarriers through in-

terpolation [76]. Frequency estimation and in some cases data management can also be 
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possible by pilot in receiver as inserted pilot symbols are already known by the receiver 

[86]. Usually some of the subcarriers are chosen as pilots and are modulated by BPSK 

or QPSK modulation and placed every n
th

 subcarrier. As a result, the used total subcar-

riers consist of data subcarriers and pilot subcarriers. An example is shown in Figure 

3-5. Receiver can equalize the frequency response in a frequency selective channel 

through exploitation of pilot subcarrier. This is the reason why pilot subcarriers are used 

in OFDM. 

 

frequency

Channel bandwidth

Pilot subcarrier Subcarriers contain 

data

 
Figure 3-5 Pilot (dashed) and data (continuous lines) subcarriers [86] 

3.1.2.3 OFDM signal model 

If OFDM symbol duration is     , the number of subcarriers is  , subcarrier frequen-

cies is     , subcarrier frequency separation is        then the continuous time domain 

OFDM signal      is given by, 

 
        

 

 
  

 

   

                                        
                              ( 3-4 ) 

 

Here       is the complex data symbol at k
th

 subcarrier and    is the bit energy. The 

frequency domain symbols      are obtained from the data bits after being digitally 

modulated using one of the modulation schemes such as Binary Phase Shift Keying 

(BPSK), Quadrature Amplitude Modulation (QAM), etc.  

 

If         is the subcarrier center frequency, the subcarrier frequency is given by, 

                                                         ( 3-5 ) 

Orthogonality between subcarriers can be achieved by having subcarrier spacing 

      
 

    
  . If N-point parallel data streams are used in IDFT, the total bandwidth of 

the OFDM signal will be,               
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3.1.2.4 OFDM system block diagram 

Figure 3-6 indicates an OFDM transmission system as described in earlier sections. 

Channel coding and interleaving are performed initially to have less bit error in OFDM 

symbol [87]. After that, modulated subcarriers produce parallel low rate data streams 

through IFFT operation. OFDM symbol is then created along with GI from the summa-

tion of parallel data subcarriers. OFDM symbol shaping procedure applies time domain 

windowing function to reduce the out-of-band spectrum. OFDM symbol is converted to 

the analog domain and transmitted through the wireless channel after being processed at 

the RF front end. On the other hand, at the receiver side, OFDM symbol demodulation 

is performed through FFT operation. GI is removed at the receiver side before demodu-

lating the signal. Channel estimation can be performed before having symbol de-

mapping. Channel decoding and de-interleaving are performed at the very end to extract 

the user data bit from the received OFDM symbol at receiver. In a nutshell, in OFDM 

system, N data subcarriers carry N data symbols in parallel and these data transmitted 

simultaneously. Once the N data symbols are modulated to their respective subcarriers, 

the modulated subcarriers are summed and formed one OFDM symbol [86].  
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Figure 3-6 OFDM system block diagram [54], [76]  

 

The quality of the transmitter and receiver oscillators could influence in phase noise 

[87]. In addition, large Peak-to-Average Power Ratio (PAPR) of the OFDM signal re-

quires high quality power amplifiers with large linear ranges [76]. 
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3.2 Modulation techniques 

According to modulation concept, information is transmitted through the time varying 

fading channel as a form of data enveloped with certain continuous pulse to reduce the 

effect of noise, interference on data. The next sections will demonstrate different types 

of modulation schemes used in wireless communication and positioning systems.   

3.2.1 Linear modulations 

In linear modulation schemes, the amplitude of the modulated transmitted signal varies 

linearly with the modulating digital signal. The input-output relation of linear modulator 

satisfies principle of superposition. There are many linear digital modulation techniques 

possible to implement in signal transmission, such as, Binary Phase Shift keying 

(BPSK), Quadrature Amplitude Modulation (QAM), M-PSK, M-QAM etc. Linear 

modulations can be represented through constellations.  

3.2.1.1 BPSK 

BPSK is the simplest form of digital modulation [6].  If      represents the basic modu-

lation pulse is used to construct binary data stream,    is the bit interval,    is the n
th

 

data symbol, then the bipolar data stream can be expressed as, 

         
 

                                               ( 3-6 ) 

Where     
                         
                         

  

The binary symbol “1” is obtained by setting the carrier phase            , and the 

binary symbol “0” is obtained by setting the carrier phase           . 

Modulation pulse      used in BPSK modulation can be of different shapes such as, 

rectangular pulses, Nyquist pulses (e.g. root raised cosine pulse), depends on the appli-

cations [89]. For example, fundamental rectangular pulse can be shown below,   

 

       
              
                    

  
                                      ( 3-7 )           

The passband signal       can be written as, 

 

                                                                ( 3-8 ) 

Where,           is the carrier frequency,    is the amplitude of carrier frequency. Then, 

the BPSK modulated signal expressed in passband (at carrier frequency) becomes, 

  

                                                                      ( 3-9 ) 
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Or in more specific way,  

 

      
                                             

                                               
  

 

Figure 3-7 shows the constellation plot of BPSK modulated signal with zero phase off-

set.  

 

Figure 3-7 BPSK constellation diagram 

3.2.1.2 M-PSK 

The aim of M-PSK modulation is to increase the bandwidth efficiency of PSK modula-

tion scheme [90]. Bandwidth efficiency or spectral efficiency refers to the information 

transmission rate for a specific channel bandwidth. In that aspect, spectral efficiency is 

the characterization of utilization of channel bandwidth. If the alphabet size is M, then 

the maximum possible spectral efficiency for linear passband modulated signal is 

      bps/Hz. In BPSK, a data bit is represented by a symbol, whereas in M-PSK, 

        data bits are represented by a symbol. So, the bandwidth efficiency is in-

creased by B times through this multilevel modulation technique [90].  

 

 Quadrature Phase Shift keying (QPSK) is a type of M-PSK where alphabet size, 

M=4 (two bits per symbol). QPSK is the most used method among all other M-PSK (8-

PSK, 16-PSK and 32-PSK) methods. According to the explanation, it is a fact that, 

QPSK is two times more bandwidth efficient than BPSK [90]. In the case of M-PSK, 

the constellation points are uniformly distributed in a circle where M is the alphabet 

size. 

Figure 3-8 shows the constellation plot of QPSK signal with gray mapping and 

0.785 rad phase offset.  
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Figure 3-8 QPSK (M=4) constellation diagram 

Figure 3-9 presents the constellation plot of 16-PSK signal with gray mapping and 

0.1963 rad phase offset. Figure 3-9 indicates that, constellation points are uniformly 

distributed in a circle. 

 

 

Figure 3-9 16-PSK constellation diagram 

3.2.1.3 M-QAM 

Quadrature amplitude modulation (QAM) is a linear digital modulation scheme where 

two independent real baseband signals are transmitted by modulating them into sine and 

cosine waveforms (I/Q) of the carrier waveforms [91], [92]. Figure 3-10 shows a com-

plex Quadrature modulation model which can be used for M-QAM generation.  
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Figure 3-10 General QAM scheme block diagram 

M-QAM represents the M-ary modulation of QAM for better bandwidth efficiency. If 

the alphabet size is M and number of bits per symbol is B, then for M-QAM,  

 

 
                                     ( 3-10 ) 

In case of M-QAM, the constellation points are distributed in regular rectangular shape. 

Constellation plots for 4-QAM, 8-QAM, 16-QAM and 32-QAM are shown in Figure 

3-11. 

  

  

Figure 3-11 M-QAM constellation: 4-QAM (upper left plot), 8-QAM (upper right plot), 

16-QAM (lower right plot), and 32-QAM (lower left plot). 
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3.2.2 Non-linear modulations 

In non-linear modulation, the input-output relation does not follow the principle of su-

perposition. Non-linear modulation includes, for example, Frequency shift Keying 

(FSK), Minimum Shift Keying (MSK), Gaussian Minimum Shift Keying (GMSK) etc. 

Non-linear modulation methods can be modelled in polar form as [92], 

 

                                                                      ( 3-11 ) 

Where         
       

  is the time-varying amplitude,             
     

     
  is the 

time varying phase, and          is the un-modulated carrier frequency. 

3.2.2.1 FSK 

FSK is the most common non-linear digital modulation method.  The principle of creat-

ing FSK modulated signal is that, M different frequencies are used for presenting M 

different symbols. Provided that, M is the alphabet size, hence, there are       bits per 

symbols. Symbols are created from consecutive bits. The simple form is the binary 

FSK, where 0 and 1 values correspond to different frequencies as shown in Figure 3-12.  

 

 
Figure 3-12 FSK principle 

 

In some cases carrier synchronization is extremely hard to implement in receiver. 

Non-coherent detection does not require carrier synchronization [93]. Non-coherent 

detection is possible for FSK modulated signal [93]. In that context, FSK modulated 

signal opens the possibility of using non-coherent detection. However, coherent detec-

tion can also be possible for FSK modulated signal. 

FSK modulated signal is less sensitive to nonlinearities. Since FSK is a nonlinear 

modulation method, non-linear power amplifier with high efficiency can be used in 

wireless transceiver design. FSK transceiver consumes less power from hardware point 

of view. However, spectral efficiency is poor with FSK modulated signal compared to 

amplitude modulation. In addition, nonlinearities involved with FSK bring difficulty in 

channel equalization. This topic can be found in more details, for example in [94], [95].  

The phase of FSK may be continuous or discontinuous. Continuous phase is better 

in terms of bandwidth because discontinuities cause high frequency components to the 

spectrum. Continuous-phase is also better when the transmission link has nonlinearities, 

for example in the transmitter power amplifier.  
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FSK is used in caller ID applications of telecommunication systems and remote me-

tering purposes [96]. Moreover, research for using FSK modulation conducted for local-

ization where fluorescent light is modulated by FSK scheme. The demo of this work can 

be found, for example, in [82]. In that experimental setup, every fluorescent lamp of the 

building is equipped with FSK modulated ballast and location ID is assigned to it. Once 

the receiver will be at the area covered by the lamp, the receiver can extract location 

information. 

In FSK, if symbol interval is     , then the FSK frequencies    satisfy the below condi-

tion,  

                                               ( 3-12 ) 

Where    are integers, and          

It is sensible with this choice of the frequencies to minimize the frequency separa-

tion in order to obtain minimum bandwidth while maintaining continuous phase and 

orthogonality of pulses.   

 

The minimum shift keying (MSK) is a specific kind of continuous phase FSK where 

this minimum frequency separation is used and hence the bandwidth is narrower. The 

minimum frequency separation         is achieved when         . More general-

ly, to achieve orthogonality of pulses, the condition becomes, 

  

 
        

 

    
                     

                                    ( 3-13 ) 

MSK is used in maritime navigational security systems namely Differential GPS 

(DGPS) in many counties including Canada, Australia, and Singapore [97], [98]. The 

DGPS provides differential corrections to a GPS receiver to improve navigational accu-

racy by using MSK modulation for transmitting radio signals [97]. In addition, GSM 

system uses Gaussian MSK (GMSK) modulation scheme which is a special form of the 

MSK modulation. 

3.2.2.2 GMSK 

The GMSK is a special type of MSK modulation method. In order to reduce adjacent 

channel interference in MSK, a better pulse shaping is used instead of square pulse and 

the pulse shape is determined by Gaussian low pass filter (LPF) [99], [100]. Gaussian 

filter has a narrow bandwidth and sharp cut off properties which are required to reduce 

the high frequency components. The Gaussian LPF is used before modulation stage and 

this differentiates GMSK from MSK [101]. This pre-modulation filter makes the output 

power more compact [92]. The time domain impulse response of Gaussian filters to 

rectangular pulse of unit amplitude and duration of T can be expressed by eq.( 3-14 ).  
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                     ( 3-14 ) 

 

Where,     is the 3 dB baseband bandwidth of used Gaussian LPF,    is the time delay 

realization of filter.  

In GMSK, the Gaussian pulse shaping is used for getting smooth control signal. 

There are two methods to generate GMSK signal from that smooth control signal, 

namely FSK modulation based method and Quadrature modulation method [102], [103]. 

In FSK modulation based method, the obtained control signal from Gaussian LPF is fed 

into a voltage control oscillator (VCO) core to get GMSK signal as output. An example 

of the basic structure of GMSK signal generation with VCO and Gaussian LPF is 

shown by Figure 3-13 [101].  The structure of Figure 3-13 is simple but the component 

tolerance of VCO creates deviation from desired output. Moreover, modulation index of 

VCO needs to be exactly 0.5 and it is difficult to maintain during implementation [103].   
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GMSK output 
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Figure 3-13 GMSK signal generation 

The second method of GMSK signal generation based on Quadrature modulation meth-

od is shown in Figure 3-14, which is widely used for GMSK baseband signal creation. 

It is possible to maintain the modulation index of VCO core exactly at 0.5 by this struc-

ture. Moreover, this approach is much simpler compared to VCO implementation [103]. 

In this approach, the data bits converted to Gaussian pulses      by Gaussian LPF. The 

function      is then integrated with respect to time which produces the function      as 

shown in Figure 3-14. The function      is then further modulated in the Quadrature 

modulator blocks. Quadrature modulator consists of two major blocks, a Quadrature 

baseband processing followed by I/Q modulator. In the Quadrature baseband pro-

cessing, I and Q baseband signals are produced from Cosine and Sine functions of     . 
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The I and Q baseband signals are then passed through the I/Q modulator and the GMSK 

output signals      can be written as,  

 

                                                                 ( 3-15) 

 Where,            and        is the carrier frequency used in I/Q modulator.  
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Figure 3-14 GMSK signal generation with I/Q modulator concept [103] 

 

The multiplication between the bandwidth of the filter    and the bit duration T 

defines the bandwidth time parameter    of the system. The selection of the bandwidth 

time product parameter value plays an important role in reducing side-lobes and having 

compact spectrum. GMSK is the basic modulation method utilized in the GSM system, 

with the bandwidth time product parameter value,        (compromise tradeoff val-

ue between spectral compactness and receiver performance) [102]. Figure 3-15 shows 

the power spectral density of GMSK modulated signal.  

GMSK modulation can be used in navigation systems for its characteristics of 

minimum bandwidth to transmit signal at reduced power. For example, United states 

coast guard unit uses GMSK modulation for their maritime positioning solution named 

Automatic Identification System (AIS). AIS transponder transmits 9.6 Kb GMSK signal 

over the channel to identify the position and speed of vessels [104]. There is still further 

modifications need to be done to release international AIS standard using GMSK signal. 

More details on GMSK modulation based satellite communication receiver design can 

be found in [104], [105].  
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Figure 3-15 Power spectral density of GMSK signal 

3.3 UWB principles 

UWB technology is different from narrowband wireless transmission system. In UWB, 

signal spreads over a very wide range of frequencies instead of broadcasting on separate 

frequency band [69]. Several pulse generation techniques may be used to satisfy the 

UWB signal requirements. Time-based modulation method and shape-based modulation 

method are two basic modulation techniques used in UWB system [69]. Time-based 

UWB is based on emission of very short Gaussian pulse as illustrated in Figure 3-16. 

The first derivative of Gaussian pulse provides ideal monocycle pulse as shown in Fig-

ure 3-17 , which has single zero crossing.  

 

 

Figure 3-16 Gaussian pulse function 
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UWB based radio concept is implemented in baseband approach. The most common 

data modulation method used in time based UWB system is Pulse Position Modulation 

(PPM) [106]. In PPM, each pulse is delayed or sent in advance of a regular time scale. 

TH-SS and DS-SS are the most popular multiple access method used in UWB systems. 

Information bit is spread over multiple monocycles in order to achieve processing gain 

in reception through this multiple access. 

 

 

Figure 3-17 UWB monocycle pulse (based on the derivative of a Gaussian function) 

A general UWB pulse train signal      can be modeled as a sum of pulses shifted in 

time by, 

 
                 

 

     

 
                                    ( 3-16 ) 

Where,      is the basic pulse shape,      and     are the amplitude and time offset for 

each individual pulse.  

Recent research methods for accurate positioning approach are considering this 

UWB system for its high bandwidth characteristics [107]. In time based positioning 

approach, such as, by TOA and TDOA, ranging and positioning accuracy depends upon 

signal bandwidth.  In fact, as the bandwidth of UWB system is order of 2-3 GHz, the 

ranging accuracy is of the order of 1cm. Therefore, the characteristics of UWB signals 

provide the potential of accurate positioning of user. This fact on ranging accuracy d 

can be observed by eq.( 3-8 ), 

 

 

 

 

  
 

  
                                    ( 3-17 ) 

Where,   is the speed of light (         ),    is the bandwidth of UWB signal.  
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A simple general block diagram of UWB system is presented in Figure 3-18 [108]. 

According to this block diagram, the generated Gaussian pulses are modulated and pass 

through the channel. In receiver, multiband low noise amplifier (LNA) and Automatic 

Gain Control unit (AGC) plays important role in signal processing [108]. A control unit 

derived from the cross-correlator generates pulse to decode the user data in receiver 

section.    
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Figure 3-18 UWB system block diagram [69], [108] 
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4. SIGNAL DETECTION AND SELECTION IN 

COMMUNICATION AND NAVIGATION 

APPLICATIONS 

Awareness of the radio environment is of great interest in cognitive wireless domain. 

Efficient and opportunistic usage of spectrum needs signal detection and then proper 

identification will lead accurate solution. Also, what is currently named as cognitive 

positioning in [8], [42], [43], [44], [109] and [110] may require a certain type of signal 

selection. In addition, recent advances in wireless communications use the so-called 

Non-Orthogonal Multiple Access (NOMA) concept, which is also relying on some form 

of signal separation from a signal mixture [111], [112]. This chapter will focus on this 

signal detection, signal classification and signal selection fundamentals. Our thesis fo-

cus is on the emerging positioning solution based on signals of opportunity, but most of 

the issues presented in this chapter apply as well to various challenges in wireless com-

munication domain. 

4.1   Spectrum sensing 

Spectrum sensing is an elementary requirement for wireless solutions which meet spec-

trum awareness feature. The detection of the presence of signals in noisy environment is 

called spectrum sensing [113]. In a broader view, spectrum sensing is used to detect and 

identify whether a certain frequency band contains a strong wireless signal (a signal is 

present or not in a certain spectral band over noise level) that can be further used for 

communication or positioning purposes. The signal identification from the available 

signals is the first concern for successful cognitive radio and cognitive positioning solu-

tions.  

Cognition refers to the awareness achieved by an adaptive feedback and statistical 

learning in a system and that system is called cognitive approach-based system. To 

achieve awareness in positioning, spectrum sensing process may comprises different 

spectrum awareness criteria, such as, signal recognition, classification and selection 

from a pool of available signals [44], [53]. The spectrum awareness features of the cog-

nitive approach-based hybridized positioning solution can be accomplished by contex-

tual information. The detection of signal from available ones in a certain time and loca-

tion provides a part of such contextual information. The aspect of contextual infor-

mation-based signal detection is taken into consideration in this thesis.   
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Spectrum sensing is one of the crucial functionalities of a cognitive radio in order to 

learn the radio environment. Wasteful static spectrum allocations and inefficient utiliza-

tion creates spectral congestion. Cognitive radio with respect to spectrum sensing can 

achieve efficient spectral usage through allocating free spectrum to the secondary users. 

A conceptual view on spectrum sensing for signal detection in cognitive radio can be 

presented by Figure 4-1. The plot of Figure 4-1 shows the allocation of a free band (in 

case of cognitive radio) to a secondary user, while the primary user was allocated cer-

tain bands previously with priority [114].  
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Figure 4-1 Spectrum sensing in cognitive radio [114] 

A high level view of cognitive radio system can be shown in Figure 4-2. The spec-

trum sensing engine receives signals and performs dynamic spectrum allocation to us-

ers.  The system can have a cognitive engine which defines the adaptability [115]. Ac-

cording to the Figure 4-2, a learning unit accumulate the information based on experi-

ence (past values) which helps in adaptive change of resource allocation and component 

configuration. Finally, a software defined radio completes the concept of cognitive radio 

by adaptively changing of parameter such as frequency, bandwidth, modulation order, 

etc based on each situation [116]. In cognitive radio approach, a dynamic spectrum allo-

cation procedure followed by free band detection offer the user an opportunistic usage 

of the band for radio applications [116]. Literature study of cognitive radio opens a wide 

research area and more information can be extracted from for example [115], [116] and 

[117].  
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Figure 4-2  Cognitive radio high level diagram (reproduced from [116]) 

 On the other hand, in a positioning system, the purpose of spectrum sensing is to 

detect or identify whether a signal is available or not in a certain frequency band. Cogni-

tive positioning needs to incorporate a spectrum sensing unit to create awareness about 

the surrounding radio spectrum. Further processing such as, signal classification, selec-

tion has to be taken into consideration to achieve required contextual awareness in posi-

tioning solution. A state of art model for cognitive approach based positioning system 

embedded with spectrum sensing techniques is proposed by the author in Figure 4-3. 

The idea of the proposed model is inspired from several published research articles on 

cognitive positioning, for example [7], [43], [118]. According to the Figure 4-3, since 

there are many signals available through simultaneous reception at the receiver front 

end, a first step is to identify the most relevant to location. Signal types also need to be 

distinguished from the combination of all localization sources. After relevant signal 

selection at the spectrum sensing unit, metric value is obtained from selected signal. 

After that, in post signal processing, pseudorange calculation is performed from ob-

tained metric value. Finally, position estimation of users can be obtained from 

pseudorange.  

Furthermore, scientific research in literature is going on to combine spectrum sens-

ing and location awareness positioning engine in a single compressed sensing based 

formalism in the cognitive radio context, for example in [119]. Several IEEE standards, 

for example IEEE 802.22 (WRAN) are also considering location aware spectrum effi-

cient cognitive radio system.  
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Figure 4-3 Spectrum sensing in positioning through software defined radio  

 Summing up, in cognitive positioning, the system tries to detect the presence of 

signals in order to select the relevant ones for positioning purposes, whereas in cogni-

tive radio, system tries to detect the free spectrum (not used by primary user) in order to 

establish transmission for secondary users in an opportunistic manner. 

4.2 Detection problem 

In general, the spectrum sensing is basically a statistical detection problem which boils 

down to a binary hypothesis testing problem. To detect the signal of interest, the detec-

tor must decide between two hypotheses. The hypotheses can be formulates as below by 

eq. ( 4-1), where hypothesis    (noise only) is tested against hypothesis    (signal plus 

noise present). 

 

 
 
                         
                       

  
                                     ( 4-1) 

 

If the signal of interest is        noise is     , the received signal can be modeled as in 

eq. ( 4-2 ) according to the hypotheses considered above in eq. ( 4-1),  

 

 
      

                                          

                                 

  
                                 ( 4-2 ) 

 

In the detection stage, a test statistic is computed based on the detector’s observation 

value for signal detection [1]. In general, a test statistic is a function of the received sig-

nal [120]. After that, this test statistic is compared to a pre-defined threshold   in order 

to decide whether the signal is present or not. Eq. ( 4-3 ) gives the decision structure for 
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the test statistic to be compared with a threshold.  The threshold   is typically computed 

adaptively according to a fixed false alarm value [121].   

 

 
             

  
 
 
  

   
                                    ( 4-3 ) 

The result of the comparison of test statistics with the threshold in eq. ( 4-3 ) is ob-

tained from the Probability Density Function (PDF) under   versus PDF under   . The 

PDF under each hypothesis can be obtained from a high enough number of random real-

izations of the simulated test statistics. Figure 4-4 shows a binary hypothesis decision 

example of CDMA signal, where both PDFs are used in detection stage with the thresh-

old placement. The probability of detection (  ) and the probability of false alarm (   ) 

are the parameters for the detection performance of spectrum sensing. In other words, 

for the signal detection, the main objective is to maximize the probability of detection 

with a lower probability of false alarm. The probability of detection and probability of 

false alarm can be computed according to the threshold as, 

 

                             
        

                                ( 4-4 ) 

                              
        

                                     ( 4-5 ) 

Where     
 and     

 are the cumulative distribution functions derived from the respec-

tive PDFs. 

 

 
Figure 4-4 Illustration of PDFs for binary decision (CDMA signal)  
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The choice of suitable threshold has an important contribution in the signal detection 

process [122]. It can be noticed from the Figure 4-4 that, if the threshold is set too low, 

the probability of detection increases. However, probability of false alarm also increases 

as well and vice versa [1]. There is a tradeoff between probability of detection and 

probability of false alarm value derived from the selected threshold [123].  

 

Figure 4-5 shows the cumulative distribution functions comparison with the threshold 

in order to detect the presence of signals. 

 

 

Figure 4-5 Illustrative example for the CDFs of test statistics (CDMA signal) 

 

The detection probability in this thesis is defined as the probability of signal being 

detected (i.e., the value of test statistics is higher than the threshold), given the event    

hypothesis is true. A false alarm situation occurs when the event    hypothesis is true 

and the test statistics is higher than the threshold. It may be also possible that signal is 

present but not detected (miss-detection). This may happen if the threshold is set too 

high or the environment noise is too high, that the signal is lost in noise. This phenome-

non is counted in the missed detection probability   . The usual way of illustrating the 

detector performance is the Receiver Operating Characteristics curve (ROC) which de-

scribes the relation between    and     for all possible values of threshold. Figure 4-6 

indicated the binary hypothesis conceptual steps flow diagram where all possible proba-

bilities are shown depends on the threshold comparison. 
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Figure 4-6 Binary hypothesis model for signal detection performance observation 

4.3 Signal classification and selection 

Typically, several signals of opportunity can be available over the wireless channel for 

positioning purposes in a cognitive positioning system. Signals of opportunity may cre-

ate an opportunity to do better positioning estimation in multipath environments (e.g. by 

optimal combining or hybridization of the available signals). Having different and high 

number of signals also raises the problem of selecting the most worthy one correspond-

ing to accurate positioning [7]. So, in a first step of a cognitive positioning engine, it is 

important for the system to be able to select the signal with the best positioning capa-

bilities among the available signals.  

In the context of cognitive wireless navigation, the relevant signal selection refers to 

the process of selecting potential signals from all the available signals [53]. Selection of 

relevant signals will reduce the receiver complexity [7]. The final goal is to be able to 

increase the location estimation accuracy. However, the hybridization part is not within 

the scope of this thesis. The concept address here in this section is the problem of rele-

vant signal selection, where the term ‘relevant’ signal can be defined in various ways, 

 

1) as the signal which has the highest positioning accuracy capability among the 

available in a pool of available signals 

2) as the signal having the highest signal to noise ratio among the received signals 

3) as the signal having the lower Cramer Rao Lower Bound (CRLB). 

 

It is not however within the scope of our thesis to investigate the different relevance 

criteria above, but rather to show that signal detection in noise is indeed possible based 

on the cyclostationary signal features. The future steps would be to investigate and op-
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timize the different ‘relevance’ criteria, but this is not addressed in here. An example 

based on the second criterion above-mentioned (signal-to-noise power ratio relevance 

criteria) can be found for example in our submitted work [124].  

Several parameters may influence the accurate positioning estimation capability of 

signal, such as, transmit power, Signal to Noise Ratio (SNR) or Carrier-to-Noise Ratio 

(CNR), modulation order, channel co-efficient parameter, channel bandwidth, multipath 

effects and so on.  One statement could be that, a stronger signal with higher modulation 

order has a higher positioning capability among available signals. This is an intuitive 

statement and its validation is again outside the scope of this thesis.  

In order to find out the positioning capabilities of signals, it is necessary to know 

some of its features such as carrier frequency, symbol rate, cyclic frequency, phase in-

formation of the signal prior to selection for using in position estimation [42]. However, 

the navigation part, such as the pseudorange calculation procedure may also influence in 

the accurate estimation.    

Cognitive positioning research challenges can be divided into three areas namely: 

 

1) Channel modeling,  

2) Location engine design,  

3) Positioning algorithm development.  

 

Channel modeling deals with the required bandwidth design in order to achieve tar-

get location accuracy [44]. As a consequence, the channel modeling influences the sig-

nal selection. The required bandwidth is formulated in an adaptive way, using as a cost 

criterion based on the accuracy-related decision handshaking between transmitter and 

receiver of cognitive system [44], [125]. A cognitive positioning system can select the 

signal based on its accuracy capabilities. The system can agree on a desire accuracy 

level prior to selection of signal [125]. Afterwards, it will select the signal which will 

meet the desired accuracy level for positioning solution. The adaption of accuracy and 

bandwidth requirements take place automatically depending on the channel situation 

and environment. Location core design is another important challenge to achieve loca-

tion and environment awareness of cognitive positioning system. Location aware core 

engine needs to be able to track the users by maintaining the history profile of previous 

locations from statistical learning and by sensing the location whether urban, indoor or 

outdoor [44]. The purpose of this learning and sensing about user locations is to achieve 

location awareness. Location aware core also influences the decision about the signal 

selection in adaptive way derived from the achieved location awareness to achieve the 

desire accuracy level for positioning solution [44]. Finally, an adaptive positioning algo-

rithm needs to develop for processing various kinds of signals and estimate location 

from obtained metric value [125]. Since there will be different signals, metric value 

formation and pseudorange calculation will be conducted adaptively according to the 

selected signal to meet certain accuracy.  
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The situation addressed above about cognitive positioning can be better visualized 

by Figure 4-7. Figure 4-7 shows the signal selection stage which is basically depends 

on the signal classification stage. Cognitive positioning system will classify signals and 

give identification for the best possible signal out of available signals. The identified 

signal which has highest positioning capability (high accuracy) will be selected as a 

next level candidate for position estimation [7]. 

A better suited equation to this signal selection problem and its bandwidth estima-

tion can be written as in eq. ( 4-6) derived from the Cramer Rao Lower Bound (CRLB) 

method [125], [126].  

 

   
      

      
 

                                       ( 4-6) 

Where,   is the required bandwidth,      is the certain accuracy with adaptive param-

eter  ,   is the estimated distance between transmitter and receiver,   is the channel 

co-efficient, SNR is signal to noise ratio,   is the speed of light taken as          . 

It seems that, to achieve certain level of accuracy from a selected signal with high 

positioning capability will require   bandwidth and overall system has to provide this 

bandwidth allocation [126]. 
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Figure 4-7 Signal selection in a cognitive positioning system 
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4.4 State-of-art detectors 

Spectrum sensing can be implemented by several detection methods, such as, energy 

detector, matched filer, cyclostationary properties, higher order moment detector etc. 

Different techniques serve different purposes based on their principles. Various methods 

for signal detection are presented in this section. However, cyclostationary detector will 

be described in chapter 5.  

4.4.1 Energy detector 

The energy-based spectrum sensing and detection is the simplest method to detect sig-

nals in the environment. The underlying idea is to detect the energy of signal at the re-

ceiver side; if the energy is higher than a threshold, then the signal is detected; other-

wise only noise is present in that band [76]. In general, the time domain implementation 

of energy detector consists of averaging the square of the signal to get the test statistics.  

In the continuous-time domain implementation of energy detectors, if the observa-

tion time is  , the energy metric of the received signal      modeled in eq. ( 4-2 ) can be 

used as a test statistics for signal detection. Test statistics for the energy detector is giv-

en by, 

 
            

    

  

   
                                      ( 4-7 ) 

Where,    is random starting time for observation,      is the complex conjugate of 

received signal. 

In discrete time domain, if the observation is performed over total    complex sam-

ples, at a sampling period of     , then for the discrete signal             , the energy-

based test statistic is given by, 

 

 
               

   

   

           
   

   

 
                                      ( 4-8 ) 

 

The detection criteria based on the energy-based test statistic is then given by, 

 
 

   
            
            

  
                                      ( 4-9) 

Figure 4-8 shows a digital implementation of the energy based detection. Eq. ( 4-10 ) 

and eq. (4-11 ) indicate the probability of detection and probability of false alarm, re-

spectively. 

BPF A/D (.)
2

Average 

over N 

samples

Comparison 

with 

threshold

Decision 

Observed 

signal

Test 

statisitcs output

 

Figure 4-8 Energy detector  
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The detection and false alarm probabilities depend on the threshold  , and hence it is 

necessary to choose an appropriate value. One approach of selection of threshold is to 

select   to meet a predefined desire false alarm probability. There are many evolutions 

over the basic idea of energy detector that mainly focuses on the adaptive threshold cal-

culation [87]. More details on appropriate threshold selection based on noise power es-

timate value can be found [127]. Moreover, the energy detector performance varies 

when the received signal undergoes different types of fading channels with AWGN, 

such as, Rayleigh, Rice, and Nakagami. More details can be found in [127]. 

 

                                                     ( 4-10 ) 

                                                      (4-11 ) 

 

The detection performance of energy detector affects in a negative way when the 

noise variance is unknown to the receiver. The prior knowledge of the noise power can 

be used to improve the detection performance in a low SNR situation. However, in real 

systems prior perfect knowledge of the noise power level may not possible, causing 

degradation in energy detection performance [127]. Another disadvantage of energy 

detector is that, it does not recognize the difference between signal of interest, noise and 

interference [9]. A strong noise or interference can be easily mistaken as a signal pres-

ence. Moreover, making a separation among different kind of noise present in environ-

ment is not possible with this detector.  

4.4.2 Matched filter detector 

The matched filter based signal detection requires prior knowledge of the signal, for 

example, information of modulation, data rate, carrier frequency, and even the presence 

of some training or pilot sequences [114], [127]. Matched filter detector is widely used 

in GNSS as an optimal choice for signal acquisition. This approach involves demodula-

tion of the observed signal in order to get the prior knowledge of signal [87]. The idea is 

to maximize the SNR at the output of the filter corresponding received signal      over 

observation period  . The output of the filter is given by, 

 

       
                  
                           

                                      ( 4-12 ) 

 

Here,      is the signal of interest.  

 

In order to present a fundamental view of matched filter based spectrum sensing, a 

block diagram is shown in Figure 4-9. 
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Figure 4-9 Matched filter based spectrum sensing [76][127] 

 

The matched filter-based detector gives better detection probability compared to the 

previously discussed energy detector. However as mentioned, it requires the complete 

signal information and needs to perform the complete receiver operations in order to 

detect the signal.  

4.4.3 Higher-order moment detector 

Higher-order moment (HOM) of a signal is a statistical tool which describes the shape 

of the probability distribution obtained from the signal samples [128]. The higher-order 

moment detector uses the higher-order autocorrelation value obtained from signal as a 

test statistic and compares it to a predetermined threshold. Decision is made as to 

whether the test statistic contains a signal in noise or only noise based on that compari-

son. A    -order moment detector can be modeled as in eq. (4-13),  

 
             

   

   

 
                                      (4-13) 

Where, P is the order of the moment [P=1, 2, 3, 4……e.g. first order moment (P=1; 

mean), second order moment (P=2, variance)],    is the sampling period, N is the size of 

the population. 

In the same way, fourth order moment detector (P=4) can be derived from eq. 

(4-13) as, 

  

 
             

   

   

 
                                      (4-14) 

The performance of detection for HOM detection can be obtained from the previously 

explained binary hypothesis model in section 4.2.   
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4.4.4 Other signal detection methods 

Covariance based, eigenvalue based, waveform based, wavelet transform, filter bank 

method, radio identification based, random Hough transform based detection are some 

of the other different approaches found in the literature that are applied for spectrum 

sensing as well. In here, we are giving very brief introduction per each method enumer-

ated. More details about these methods with a comparison among them can be found in 

[114], [121] and [127].  

Covariance of signal of interest and the AWGN is different and this statistical dif-

ference is used to detect the presence of signal. In the covariance detector, the test statis-

tics are derived from the covariance matrix of the received signal. Eigenvalue based 

signal detection uses the eigenvalue of the covariance matrix of the received signal as a 

test statistics for signal detection. In waveform based detection, patterns corresponding 

to the signal, such as, pilot pattern, spreading code sequence, etc are utilized to detect 

the presence of signal. Wavelet transform based spectrum sensing is used to detect the 

edges on the power spectral density of a wideband spectrum. Detection of edges will 

determine the presence of signals. In the filter bank method, a set of bandpass filters 

with low side-lobes are used to detect the signal spectra. Radio identification based 

method uses several features extracted from the received signal, such as transmission 

frequency, transmission range, and modulation techniques for spectrum sensing. Ran-

dom Hough transform is a well-known image processing techniques and can be used as 

a signal detection method. In this method, random Hough transform of the received sig-

nal is used to identify the signal. 

4.5 Signal classification methods 

Eventually, automatic recognition of the modulation used by a signal is an important 

aspect of signal processing in spectrum-aware systems. The purpose of signal classifica-

tion in a receiver is to determine the modulation type being employed in the spectrum. 

A large number of modulation classification methods have been developed in recent 

years, namely spectrogram analysis, cumulant feature based classification, Kolmogo-

rov-Smirnov test, wavelet analysis, cyclostationary classification etc. In general, classi-

fication methods are grouped into two broad categories, likelihood-based and feature-

based methods. This section focuses on those classification methods in brief manner. 

However, cyclostationary classification method will be described in chapter 5. 

4.5.1 Spectrogram analysis 

Signal modulation can be recognized by spectrogram analysis. Spectrogram is defined 

as the graph of the energy content of a signal expressed as function of frequency and 

time [129]. In more specific way, spectrogram represents how the frequency content of 

a signal changes with time. The classification method based on spectrogram image 

analysis can discriminate between various digital signal modulations such as, FSK, 
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BPSK, MSK, QPSK, and 16-QAM. Signals spectrogram analysis can be divided into 

module spectrogram analysis and phase spectrogram analysis. In module spectrogram, 

the modulated signal gives a unique spectrogram graph as a form of maxima peak at 

distinct frequency. FSK and MSK modulated signal can be differentiate by using this 

module spectrogram analysis.  

On the other hand, in phase spectrogram, the observation of phase state and occur-

rence count of phase difference is used for signal classification. For example, BPSK 

signal has two phase states and two differences of phase while QPSK signal has four 

phase sate and four changeovers.  

The test statistics for detection performance calculation can be obtained from histo-

grams of spectrograms. It is necessary to estimate symbol length of received signals to 

obtain required spectrogram through which the classification of modulation will be per-

formed. In fact, classification performance is strongly depends on the segment size used 

for spectrogram calculation. The segment size used in spectrogram formation is taken 

equal to the symbol length of the received signals [129]. This method cannot provide 

reliable classification performance in the presence of frequency and phase offset, timing 

error and unknown symbol arriving sequence. Moreover, due to the resolution limitation 

of spectrogram, this method is not beneficial to classify modulation patterns of signals 

with high bit rate [129]. However, spectrogram analysis can be used as an initial stage 

modulation classifier with cooperation of other features based classifier scheme for ex-

ample wavelet based classification. The scope of spectrogram analysis can be extended 

by this type of joint classifier arrangement. Detail description of this spectrogram analy-

sis can be found in several research articles, for example, in [130].      

4.5.2 Kolmogorov-Smirnov tests 

Cumulants feature based classification method can be used to distinguish modulation 

formats. The     order cumulants    of a random variable   can be defined via so-

called cumulant generating function      as, 

 
                  

  

  

 

   

 
                                    ( 4-15 ) 

Where,        is the moment generating function, for integer             and      . 

 

Higher-order cumulants (e.g.    ; fourth order cumulants) can discriminate PSK 

and QAM modulations [131]. PSK and QAM modulated signals have identical theoreti-

cal cumulant values. The cumulant based classification method compares the received 

signal’s cumulant value with the corresponding theoretical cumulant value and find the 

modulation format. However, cumulants feature based method does not give precise 

discrimination of modulation patterns in presence of noise. Moreover, classification 

between different series of QAM (16-QAM, 64-QAM) and PSK (8-PSK, 16-PSK) is 

also difficult through this cumulants based method.  
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Kolmogorov-Smirnov (K-S) is a statistical test which can be used in effective clas-

sification between several series of QAM and PSK [132]. In fact, both cumulant based 

method and K-S test can be used in a hybrid manner to achieve effective modulation 

classification. In that hybrid implementation, the cumulant test will decide the modula-

tion pattern whether PSK or QAM and the K-S test will classify between different series 

of PSK or QAM. This type of hybrid modulation classification scheme can be found in 

[133]. 

In K-S test, it is assumed that, the empirical cumulative distribution function of the 

received signal and cumulative distribution function of the theoretical reference signal is 

same. In other words, for ideal classification scheme, it is more likely that, received 

signal distribution is identical to reference signal distribution. However, due to noise 

injected from wireless channel makes an alternation from this equal distribution as-

sumption between received and reference signals. The assumption can be formulated as 

in eq. ( 4-16 ),  

 

                                                ( 4-16 ) 

 

Where,      is empirical cumulative distribution function of received signal, m is the 

modulation format of reference signal and       is the cumulative distribution function 

of the reference signals.  

The K-S test statistics is the maximum absolute different between      and       and 

written as, 

                                                   ( 4-17) 

 

The decision of the classification can be characterized based on the K-S test statis-

tics. More details on the implementation of K-S test based signal classification can be 

found for example in [133].   

4.5.3 Wavelet analysis 

Digital modulation classification can be also performed through discrete wavelet trans-

form (DWT) [134], [135]. Digital wavelet techniques can be applied to the signal for 

feature extraction. Wavelet transform of a signal      can be written as, 

 

 
         

 

  
       

    
 

 
    

                                    ( 4-18 ) 

 

Where,          is the wavelet transform co-efficient,         is a scale parameter, 

  is a translation variable,* denotes complex conjugate,        is a baby wavelet func-

tion which is derived from mother wavelet,      [136]. Baby wavelet is a translated and 

scaled version of mother wavelet as follows, 
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                                      (4-19) 

 

There are different kinds of mother wavelets available is literature, such as, Morlet, 

Haar, Daubechies, Shannon etc [137]. For example, if Haar wavelet is chosen as the 

mother wavelet,   is the symbol duration, mother wavelet      can be written as, 

 

     

 
 
 

 
           

 

 

      
 

 
     

              

  

                                        ( 4-20 )                  

DWT method can recognize the transients of several signals which created due to the 

change in symbols of different signals. DWT can characterize the transient value to 

classify signal effectively based on modulation used. DWT decompose signal into a set 

of detail component of various sizes as signal contains information of different scales. 

Decomposition set of signal helps in modulation recognition. DWT process employ two 

set of co-efficient derived from signals components [138]. This wavelet co-efficient can 

be act as feature to classify signals. The formulated features basically indicate time and 

frequency information of signals under consideration.  Performance of modulation clas-

sification based on DWT process can be observed by Monte Carlo simulation with set-

ting up a threshold value according to the SNR [137], [138]. Otherwise, extracted fea-

tures can be fed into the so called pattern recognition subsystem for making better deci-

sion on modulation classification [138]. Basically, classification of modulation falls into 

a pattern recognition problem. Pattern recognition use received signals feature which are 

obtained in advance for example from wavelet transform method [138].  

Many researchers have proposed pattern recognition using artificial neural network 

(ANN) [9], [138], [139]. Using of ANN in the pattern recognition problem is a recent 

phenomenon. It is worth to mention that, ANN learns the modulation pattern and other 

signal parameter specific to the requirements by a training phase with standard learning 

algorithm. ANN makes decision on classification performance based on matching the 

received signals wavelet co-efficient with training phase co-efficient. More details on 

the implementation of wavelet based signal classification with ANN can be found for 

example in [138]. 
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5. CYCLOSTATIONARY PROCESSES 

Cyclostationarity can be a perfect probabilistic approach to model wireless man-made 

signals where certain periodicity comes from coding, modulation, multiplexing, 

sampling etc. Cyclostationarity can also be observed in nature-originated signals, such 

as in climatology, atmospheric, or biomedicine signals, due to their rhythmic or 

seasonal behavior. Stationary processes exhibit a time-invariant mean and auto-

correlation function, whereas a cyclostationary process has a time periodical probability 

distribution function. In addition, a cyclostationary process exhibits the so-called 

spectral correlation property. Spectral correlation means that the signal and its 

frequency shifted version are correlated.   

A random process is cyclostationary if its mean and autocorrelation vary 

periodically in time. In the context of stationary signals, wide-sense stationary refers to 

time-invariant moments (such as mean, variance and higher order moments), whereas 

strict-sense stationary refers to time-invariant probability distribution function. A 

stationary random process is cyclostationary in strict sense if its probability distribution 

function is periodic in time. Wide-sense cyclostationarity means that the mean and the 

autocorrelation function of the signal is periodic [140], [141]. This chapter presents the 

theoretical definitions of cyclostationarity and the properties of cyclostationary signals 

from mathematical point of view. Cyclostationary detector and cyclostationary 

classification method are also described in details. Finally, the later part of this chapter 

will focus on the applications of the cyclic spectral analysis in the context of signal-of-

opportunity selection.  

5.1 Definition of cyclostationary signal  

From mathematical point of view, if any higher order nonlinear transformation of a 

random signal generates a spectral line at cyclic frequencies other than zero, the signal 

is called cyclostationary [16], [17].The cycle frequencies are the integer multiples of the 

reciprocal of the period of the cyclostationarity. A cyclostationary signal exhibits 

spectral correlation between the spectral components of that signal at the position of 

non-zero cyclic frequency. In contrast, for a stationary signal, only one spectral line can 

be generated at zero cyclic frequency [18]. 

A signal      is said to be cyclostationary with a cycle frequency   , delay   and 

period    if and only if its delay conjugate product                    produces a 

spectral line at frequency  . 
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If the signal exhibits cyclostationarity with cyclic frequency   in time domain, then 

it also exhibits a spectral correlation at shift equal to  , in frequency domain. There is a 

fundamental link between the creation of a spectral line at a cyclic frequency and the 

spectral correlation of two frequency components of the cyclostationary signal. A 

spectral line is generated at the cyclic frequency through nonlinear transformation of the 

main modulated signal. The value of the cyclic frequency at which a spectral line is 

created is exactly the same as the frequency difference of the two frequency 

components which are correlated [15].  

Man-made signals are periodically correlated signals. This is because their mean 

and autocorrelation function are periodic and this periodicity is born from processes 

such as coding, multiplexing, or modulation. Such inherent property of the man-made 

signals can be used in signal detection, recognition, or classification. However, the noise 

is random in nature and a stationary random noise does not exhibit a peak at non-zero 

cyclic frequencies [18]. As a result, man-made signals can be separated from the 

background additive noise at non-zero cyclic frequencies.  

Fourier analysis is a strong tool for extraction of some features of periodic 

deterministic signal (such as their period). On the other hand, a random signal which 

exhibits cyclostationarity properties can be detected through the extraction of its cyclic 

features [9]. The spectral correlation of a cyclostationary signal cannot be visible 

through conventional Power Spectral Density (PSD) function [18]. Cyclic spectral 

analysis or cyclostationary processing are the tools for investigating and extracting of 

such cyclic features.    

Cyclic peaks of non-linear quadratic (squared) transformed modulated signals form 

together the spectral density. The spectral density is explained and compared with 

Fourier analysis for a periodic signal in the next part of this section. The motivation of 

such kind of explanation is to mention the necessity of higher-order statistical analysis 

of a signal in order to get the inherent periodicity created by modulation, coding or 

training sequences of the signal.  

A simple periodic signal with period    and fundamental frequency,    
  

  
               

can be expressed as eq. ( 5-1 ), 

                                                    ( 5-1 ) 

The Fourier series expansion of      is, 

 
        

 

    
       

                                     ( 5-2) 

Where,    is the Fourier coefficient.  

The Fourier series expansion extracts certain features, in this case the period of the 

periodic signal. This is illustrated in Figure 5-1, with a sine wave as the signal     . In 

frequency domain, the spectral lines of Figure 5-1 are related with the Fourier 

coefficient
 
    

 

  
              . 
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Figure 5-1 Fourier expansion of periodic signal for feature extraction 

If we apply a quadratic transformation to our signal, we can extract its hidden 

periodicity due to the presence of modulation.   

The simple quadratic transformation of an amplitude-modulated (AM) signal,                                              

                     with      being a zero mean stationary random process and   

    being the carrier frequency creates the signal       as in eq. ( 5-3 ), 

 
           

 

 
                         

                              ( 5-3 ) 

Where,                             

 

The power spectral density function,       of      given in eq. ( 5-4 ) will exhibit 

spectral lines at cyclic frequencies 0, ±2  .   This is shown in Figure 5-2. 
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SB(f)

Sy(f)

2f0-2f0

f

f

 

Figure 5-2 Spectral line creation through non-linear transformation of signal       into 

      (reprodued from [15], [54]) 

The spectral lines at the cyclic frequencies 0, ±2   represent the cyclostationary 

characteristics of the modulated signal. The inherent (hidden) periodicity of the AM 

signal can be extracted through the quadric transformation and hence spectral lines are 

visible at cyclic frequencies.  
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5.2 Characterization of cyclostationary signals 

General properties of cyclostationary processes are derived starting from the Fourier 

series expansion of the autocorrelation function, which is periodical. The Fourier 

coefficient of the Fourier expansion of the periodic autocorrelation function of a 

cyclostationary signal is called the Cyclic Autocorrelation Function (CAF).  The Fourier 

transform of CAF is called the Spectral Correlation Density Function (SCF).  

5.2.1 Cyclic Autocorrelation Function (CAF) 

 The CAF is a measure of the spectral correlation between time shifted versions of a 

cyclostationary process. The periodic autocorrelation function for a cyclostationary 

signal can be written as, 

                                                                ( 5-5 ) 

Here in eq. ( 5-5 ), E    stands for the statistical expectation operator and   is a time 

delay. 

If the autocorrelation function         is periodic, then the Fourier series 

decomposition can be performed and it yields: 

            
 

 

                                          ( 5-6 ) 

Where   is the cyclic frequency and it ranges over all integer multiples of the 

fundamental frequency 
 

  
 . The Fourier coefficient    

     is called CAF and it can be 

defined according to eq. ( 5-7 ), 

 

 

   
        

   

 

 
   

 
 

 
 
 

               

                           ( 5-7 ) 

Where ,   is an observation interval.  

 

Autocorrelation function         of eq. ( 5-7 ) can be replaced by symmetric delay 

conjugate product and expressed as in eq. ( 5-8 ), 

 

   
        

   

 

 
     

 

 
     

 

 
  

 
 

 
 
 

          

                   ( 5-8 ) 

CAF may be viewed as the correlation in time domain between two frequency-shifted 

values of      separated in frequency by   as below in eq. ( 5-9 ). 
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                            ( 5-9 ) 

Where                  and                are two shifted version of     . 

5.2.2 Spectral Correlation Density Function (SCF) 

The Spectral Correlation Density Function (SCF) is defined as the Fourier transform of 

cyclic autocorrelation function of     . The SCF of a signal      is given by, 

 
  
         

 
 

  

              
                                      (5-10) 

SCF with the spectral components of      at frequencies    
 

 
  and    

 

 
  over an 

observation interval of   given below in eq. (5-11), 

 

  
        

    
   
   

 

  

 

 
        

 

 

  
  

  
  

   
      

 

 
    

                (5-11) 

Above, the spectral component of        at frequency   with period   is:  

 
                    

  
 
 

   
 
 

   
                                     (5-12) 

The cyclic spectrum at a given cycle frequency represents the density of correlation 

between two spectral components of the process which are separated by an amount 

equal to the cycle frequency. The SCF is typically plotted on a bi-frequency plane as a 

function of spectral frequency   and cyclic frequency  . The range of values of   

(normally,  
  

 
 to  

  

 
, where    is the sampling frequency) and   (normally,     to    ) 

for which   
      exists is referred to as the region of support on bi-frequency plane 

[21]. Figure 5-3 indicates a typical bi-frequency plane for the range of   and α. 
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-fs
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Figure 5-3  Bi-frequency plane [21] 
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For a purely stationary random process, CAF reduces to autocorrelation function       

and SCF reduces to the PSD function       [120].This corresponds to    . Starting 

from eq. (5-10) and choosing    , we get, 

 

  
      

 

  
        

      

  
  

   
  

 

  

            
        

 

  

       

                                           

 SCF of different modulated signals creates unique patterns which are modulation 

dependent. Thus, SCF can be used as a signal classifier based on signals’ modulation 

scheme [139]. More details on applications of cyclostationary processing including 

signal detection and signal classification will be discussed in next sections of this 

chapter. 

Time-smoothing and frequency-smoothing methods are mainly two basic 

approaches to determine the cyclic spectral estimate [139]. FFT Accumulation method 

(FAM) is a particular implementation of SCF. FAM is based on time smoothing in order 

to obtain the spectral correlation function more efficiently. In FAM, the frequency 

components of a cyclostationary signal are evaluated over a time window for a specific 

observation time, through short time Fourier transform procedures. Then, in each 

window, two frequency components are multiplied to get the autocorrelation product of 

sequences. The sequences are then further passed through a Fast Fourier Transform 

(FFT) operation to evaluate the SCF [139]. In a nutshell, the idea of FAM is to divide 

the bi-frequency plane into several parts, in order to get a discrete-channel-pair area.  

The generated areas are passed through an FFT operation to estimate cyclic spectral 

function. More details on FAM and different other methods of cyclic spectral estimation 

and implementation set for SCF based signal detection will be discussed in chapter 6. 

5.3 Cyclostationary detector 

As explained earlier in section 5.1, statistical characteristics of the manufactured wire-

less signals encountered in signal processors vary periodically with time and this time-

varying characteristic is known as cyclostationarity. If the wireless signal which has 

periodicity property is modeled as a cyclostationary signal, then extraction of the cyclic 

feature is the key to enhance the functionalities of that signal processor through feature-

based signal detection.   

The cyclostationary feature analysis is a well-developed topic in the literature of 

signal processing, but it has been traditionally used in the context of wireless communi-

cations only (and not of wireless navigation). The cyclostationary theory was first intro-

duced by Gardner in his paper series about the exploitation of the cyclostationary fea-

tures in random processes [15], [16]. So, the exploration of signal detection through 

cyclostationary features in the context of wireless navigation opens a wide research 

scope. In this section, the main ideas behind the cyclostationary feature analysis are 
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presented and it is shown how the cyclic properties of a signal can be used as a spec-

trum sensing technique. To implement the cyclostationary detector, the main idea is to 

use the cyclostationarity features of the signals [19].  When the signal is present, this 

method gives the peak in cyclic spectral correlation value. If there is no such peak, the 

method implies that the given spectrum band is idle or there is no signal at given time 

and location.  

Test statistics can be formed from the spectral correlation values. It is important to 

have a sufficient number of samples in order to get better estimation of spectral correla-

tion value, which will lead better signal detection. The probability of detection and the 

probability of false alarm can be obtained by comparing the test statistics with a defined 

threshold similarly with the model described earlier in section 4.2. Cyclostationary de-

tector can be implemented via FFT operations. An example of a digital implementation 

of cyclostationary detector is depicted in Figure 5-4.  
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Figure 5-4 Cyclostationary detector  

 

Cyclostationary processing is beneficial because of its insensitivity (or low sensitivi-

ty) to SNR and detection capability without demodulation of the received signal [127]. 

From the implementation point of view, cyclostationary detector is based on FFT and 

effect of SNR issues can be avoidable as the noise variance is not needed in cyclic spec-

tral analysis. This confers a benefit over the energy-based detection. The tradeoff be-

tween performance and efficiency always arises for this kind of implementation of de-

tection system. It has been suggested in the literature to have a longer length of observa-

tion in order to have better estimation for signal detection [127]. However, the perfor-

mance of the detector degrades in the presence of timing and frequency jitters and RF 

nonlinearities [127]. 
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5.4 Cyclostationary feature based signal classification 

Recognition of the modulation format of a sensed signal in a spectrum aware re-

ceiver can be performed using cyclostationary features. This technique falls under the 

category of feature-based methods. Cyclic feature based approach for classification con-

tains many advantages, including reduced sensitivity to noise and the ability to differen-

tiate overlapping signals [115]. The key advantages of using cyclostationary feature is 

to having non zero correlation value between certain frequency components. Moreover, 

such cyclic feature gives specific information about modulation. As a result, 

cyclostationarity properties can be applied to design signal selective algorithms where 

detector can distinguish signals based on features observed. In turns, cyclic features can 

act as discriminator in the classification process [139]. In general, this classification 

process uses lager set of cyclostationary features of signal.   

Cyclostationary feature detection on the receiver side is able to classify among 

BPSK, QPSK, FSK, and MSK modulation schemes [9], [10], [11] and [127].  The per-

formance of signal classification mainly depends on the feature extraction stage which 

collects distinctive features from the incoming signal. The receiver extracts the detected 

received signals cyclostationary features and performs classification of the modulation 

schemes, for example through a pattern recognition method. In general, modulation 

recognition is a pattern recognition problem [9], [139]. Research was conducted for 

modulation recognition by using different pattern matching techniques, such as support-

ed vector machine, hidden Markov models, neural network, for example, in [9], [10] 

and [139]. An example implementation set up for modulation classification by 

cyclostationary feature and neural network will be presented in this section. 

Figure 5-5 depicts modulation recognition through signal’s cyclostationary features 

with artificial neural network. In this neural network-based pattern recognition, the neu-

ral network is trained on a pre-defined theoretical cyclostationary feature profile of sig-

nal of interest. Training sequences are used initially to get the networks familiarized 

with the patterns associated with different modulation schemes. Such trained network is 

used to classify the received signal based on the cyclostationary feature. In more details, 

the classifier system processes the received signal by using features extracted from the 

cyclic spectral analysis of the signal and uses them in a neural network to perform pat-

tern matching. In turns, the classifier system can be divided into several parts, namely 

feature extraction, classifier design, classification decision, as shown in Figure 5-5.  

More details on the spectral correlation pattern of different modulation schemes and 

cyclostationary classification can be found in [9], [11], [12] and [86]. 
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Figure 5-5 Cyclostationary feature based modulation recognition [9] 

5.5 Application of cyclostationarity in SoO selection 

As described earlier in section 5.1, cyclic spectral analysis can be performed to find 

different cyclostationary features, such as the location of the cyclic frequencies and the 

spectral correlation amplitude of the signals present in a mixture of signals plus noise.  

The peaks at cyclic frequencies help in determining whether the signal is present or not. 

This is due to the fact that the noise, being random in nature, does not exhibit peaks at 

non-zero cyclic frequencies. As a result, the signals of interest which are present in the 

considered frequency band can be separated from the noise. Spectral correlation means 

spectral redundancy and the exploitation of such signal redundancy will enhance the 

detection accuracy and reliability of information [15].  

The spectral correlation characteristic of cyclostationary signals is a rich signal 

detection method.  The detection process is done by searching the cyclic frequencies of 

different kinds of modulated signals.  In  addition, some  parameter  such  as  carrier  

frequency or  chip  rate  can be also calculated  according  to  the cyclic  frequencies 

[54]. Moreover, different signals produce unique SCF patterns and these patterns can be 

used as a tool for signal classifier [10]. From the positioning point of view, the signal 

detection could be employed in a cognitive framework, in order to identify the available 

signals for positioning. Selection of signal with the best positioning accuracy can be 

also performed based on classification information obtained from cyclostationary 

features [7].   

Let’s illustrate the benefit of SCF analysis in the context of SoO detection. For this 

purpose, we start from eq. ( 5-13 ), which shows a signal present in additive noise, 
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                                                    ( 5-13 ) 

Where      and      represents the signal of interest or signal of opportunity and the 

additive noise, respectively. Cyclostationary processing is a linear operation, thus we 

can compute the SCF of       as, 

 

                                                       ( 5-14 ) 

From the above eq. ( 5-14 ), if we focus at non-zero cyclic frequency (   ), then the 

noise SCF will be zero:         for    . Therefore, at non-zero cyclic frequency 

(   ), the SCF of the observed signal becomes equal with the SCF of the transmitted 

signal without noise. 

 

 
 

                                                 ( 5-15) 

Thus, in theory, the SCF at non-zero cyclic frequencies may provide an excellent 

detection tool [120]. In consequence, cyclostationary processing may be beneficial 

because of its insensitivity to low signal to noise ratios (SNRs) and to its detection 

capability without requiring the demodulation of the received signal. 

 

In summary, the inherent spectral redundancy (the cyclostationary processing) can be 

useful for various signal processing tasks such as:  

 

 Detection of signal in the presence of noise and other modulated signal 

based on modulation used [19].  

 Estimation of the TDOA, carrier phase, direction of arrival, cyclic frequen-

cy, classification of multiple received signals in noise according the modula-

tion type [142]. 

 Selection of best signal for positioning estimation among the detected avail-

able signals [53].  

 Reduction of co-channel interference and channel fading affects for single 

receiver system (channel impairment) [15]. 

 Prediction of random signal (future value of signal) [15]. 
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6. SIMULATION MODEL 

The cyclic spectral analysis refers to the process of detecting the presence of signal via 

the cyclic features. In this thesis, we work with the spectral correlation density function. 

The deterministic approach of SCF algorithm was implemented in MATLAB language. 

This chapter will discuss several methodologies for the implementation of SCF, with a 

particular attention to the implementation selected in this thesis, namely FFT Accumula-

tion Method (FAM).Then, the implemented set-up is described, together with the mean-

ing of the parameters used for simulation. Furthermore, the implementation of the cyclic 

spectral analysis test bench and simulation criteria will be presented in a detailed man-

ner. 

6.1 Methodology of cyclic spectral analysis  

The theoretical methods behind cyclic spectral analysis can be basically divided into 

two types as time smoothing and frequency smoothing method [139].  

In time smoothing method, the procedure to estimate the cyclic spectral density of 

the signal is simply by passing overlapping pieces of the signal through several FFT 

transforms [139]. A general process flow with the signal processing block diagram of 

time smoothing method is shown in Figure 6-1. According to the process flow, spectral 

components of signal are firstly extracted through a BPF which are then down-

converted through multiplication of exponential components [13]. One down-converted 

spectral component is multiplied with the conjugate of another down-converted spectral 

component and the multiplication product is averaged over time to get the time 

smoothed SCF estimation [20].   

One algorithm based on this time smoothed method is called time soothed FFT 

method, and it will be described in section 6.1.1 [143]. Further developments based on 

time smoothed FFT method are FFT Accumulation Method (FAM) and Strip Spectral 

Correlation Algorithm (SSCA) method and they will be described in Sections 6.1.2, 

6.1.3 respectively.  



 66 

BPF

BPF conjugate

LPF

Extraction of Spectral 
components through 

windowing (BPF 
implementation)

Down-conversation of 
spectral components 

to produce two 
frequency shifted 

versions

Multiplication of spectral components
(one down-converted spectral 
component multiplied with the 

conjugate of another down-converted 
spectral component)

Average over time 
for time-smoothed 

SCF estimation
SCF 

Input 
signal

Process flow of Time smoothing method :

Block diagram of Time smoothing method :
Exponential 
component

Exponential 
component

Down-
conversion

Down-
conversion

SCF 
estimation

Incoming 
signal

Spectral 
componet

Spectral 
componet

 

Figure 6-1 Time smoothing method for cyclic spectral analysis [13], [143] 

On the other hand, frequency smoothing method is based on the frequency 

smoothed process. A block diagram of frequency smoothing method is shown in Figure 

6-2. In frequency smoothed process, the bandpass filtered signal samples are first Fouri-

er transformed and down-converted to baseband and averaging of frequency shifted 

components in done over frequency [139], [144]. The frequency smoothed estimation of 

SCF can be carried out by multiplication of down-converted spectral components with 

averaging over frequency [144]. However, this approach is not that much effective from 

computational point of view to use in general cyclic spectral analysis, as mentioned in 

several research articles, mainly in [139], [143] and [144]. 
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Figure 6-2 Frequency smoothing method for cyclic spectral analysis 
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This thesis focuses on the time smoothing method based implementation for a com-

putationally efficient SCF estimation from the received signal. Time smoothing method 

is considered to be more computationally efficient for general cyclic spectral analysis as 

described in [139], [143] and [144]. The next sections describe briefly the existing time 

smoothed approach algorithms for SCF implementation.  

6.1.1 Time smoothed FFT method  

In time smoothing FFT method, spectral components of signal       are determined 

over a data tapering window of length   with overlapping ( ) sliding (short time) Fast 

Fourier Transform (FFT) over the entire observation time window    of received signal. 

The practical approach for sliding the time window for determining frequency compo-

nents of      is shown in Figure 6-3. 

 

Sliding window for N’ short FFT

overlapping

 
Figure 6-3 Practical implementation of time smoothed FFT method 

 

The data tapering window is used to reduce the cyclic leakage [13]. The data taper-

ing window is typically a rectangle function,       According to the theory in [13], 

there is a number of different windows that can be used instead of the rectangle function 

including, the Bartlett window (a triangle), the Hanning and the Hamming windows 

[145]. A data tapering window      with an observation length,  , slides over the data 

for    time span with a size of   sliding point FFT and it produce two spectral compo-

nents in each FFT window. It is known that the frequency separation of certain spectral 

components which are correlated is called cyclic frequency. The cyclic frequency    

expressed as        , where    and    are the spectral frequencies of spectral com-

ponents of     . The spectral components are then down-converted to frequency shifted 

versions (one shifted with  
 

 
 and the other one with  

 

 
).  
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The time smoothed FFT method implementation is illustrated in the block diagram 

of Figure 6-4. According to the Figure 6-4, once two frequency shifted (down-

converted) versions are determined, the conjugate of one frequency shifted version is 

multiplied with another frequency shifted version over the observation time   . After 

that, the multiplication product is passed through an LPF (average over time: time 

smoothing) to form SCF,   
    , as shown in Figure 6-4.  

Windowing

Windowing

LPF

(average over time)

FFT

FFT
Conjugate

operation

SCF

 

Figure 6-4 Time smoothed FFT method [143], [7] 

If    is the frequency resolution of SCF, then it relates with observation time as, 

   
 

 
 

 

  
 . The cyclic frequency resolution is    and this related with temporal reso-

lution or observation time    by    
 

  
 . Substantial amount of smoothing is needed to 

be carried out in order to get a reliable SCF estimate [146]. If    is the length of short 

time FFT,   is the length of the sequence or size of the data vector processed by FAM, 

    is the sampling frequency, then   >   and    
  

  
 . For a reliable SCF estimate,  

 
      

 

  
   

                                      ( 6-1 ) 

The above eq. ( 6-1 ) criteria can achieved by     . In summary, for a reliable better 

smoothed SCF estimate the below expressed criteria need to be fulfilled. 
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The obtained spectral component,         of signals      and estimated SCF,    
     

can be written as in eq. ( 6-2 ) and eq. ( 6-3 ) respectively,  

 

 

                                

  

  

   
  

 

          

                                       ( 6-2 ) 

 
  
     

 

 
         

 

 
   

       
 

 
   

                                        ( 6-3 ) 

Where,     is the sample duration,     is the sampling frequency,   is the spectral fre-

quency,   is the cyclic frequency,   
  is the complex conjugate of     . 

 

6.1.2 FFT Accumulation Method (FAM) 

FAM is a particular algorithm based on time smoothing function in order to obtain spec-

tral correlation function more efficiently through reducing the number of computation 

with a modification from time smoothed FFT method [13], [139] and [143]. The idea is 

to divide the bi-frequency plane into smaller areas and compute the cyclic estimate a 

block at a time using the efficient FFT [139]. The main signals sequence goes through 

short-time FFT and the spectral components are then evaluated.  After that, frequency 

components are down-converted to baseband through multiplication with complex ex-

ponential [13]. One down-converted spectral component is multiplied with the conju-

gate of another down-converted spectral component. Finally, a second FFT is performed 

on the multiplication product sequence of down-converted spectral components to get 

SCF estimate [87], [143]. This second FFT is a unique feature of FAM in comparison 

with previously explained time smoothed FFT method.  

The conceptual implementation block diagram considering above discussion on 

FAM is presented by Figure 6-5. Figure 6-5 describes the processes involved in FAM 

with two step of FFT operation. The description of FAM in this section was intended to 

provide a brief overview of how the SCF estimate is generated through signal pro-

cessing steps involved with FAM. 

In FAM, smoothing is carried out to reduce the variance of the resulted estimate. 

Decimation and data tapering windowing are also taken into consideration for higher 

computational efficiency (reduced processing time) and they reduce cyclic and spectral 

leakage respectively. Decimation performs short time FFT on every    sample of signals 

instead of every sample, where    is an overlap parameter. If    is the length of short 

time FFT, we can choose    
  

 
 for better performance [143].  

As a summary of Figure 6-5 for FAM method, the frequency transform versions of 

signal are estimated by sliding    point FFT. Decimation (overlapping) took place by 

hopping over the data in block of   samples while doing short FFT. The product se-

quences of frequency shifted or down-converted versions are time smoothed by another 
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  point FFT to get the final version of SCF estimate,   
     [6]. A better estimation of 

   and   can be expressed below by eq. ( 6-4 ) and eq. ( 6-5 ) [86]. 

 
    

      
  
  

  
 

                                      ( 6-4 ) 

 
         

  
   

   
                                      ( 6-5 ) 
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Figure 6-5 FAM procedure [143] 

Finally, the design parameters for the cyclic spectral estimation are presented in a col-

lective manner in Table 6-1 from time smoothing method point of view, which is used 

in this thesis for simulation modeling. The specific value of these parameters used in the 

simulation will be presented in chapter 7. 

 

Table 6-1 Time smoothed method design parameters 

Name Notation Important criteria: at a glance 

Time span or observation time             

   
 

  
 

   
     

 
  

        

   
 

 
 

 

     
 

 

  
 

      
 

  
   

 

  
      

 

  
 

  
  

 
 

     

Tapering window      length    

Size of the sliding point FFT    

Sample duration    

Sampling frequency        

Spectral frequency   

Cyclic frequency   

Frequency resolution of SCF    

Cyclic frequency resolution    

Length of the sequence or size 

of the data vector 

  

Decimation overlap parameter    

Size of second FFT point   
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In this thesis, FAM is adopted for implementation to get results on cyclostationary 

properties of OFDM and CDMA signal. FAM is much faster process than other meth-

ods as explained in [139], [143]. However, other methods should give similar kind of 

result and the reader can find further information in [120], [124]. A detailed implemen-

tation model of MATLAB based simulation test bench of the FAM algorithm will be 

presented in section 6.2.  

6.1.3 Strip Spectral Correlation Algorithm (SSCA) 

In SSCA method, the spectral component of signal          is described by eq. ( 6-2 ). 

        is directly multiplied with the conjugate of signal itself       and after that N-

point FFT performed to explore the SCF,   
     [21]. The SSCA method block diagram 

can be presented by Figure 6-6.   

 

N point FFT

 

Figure 6-6 SSCA block diagram [21], [120] 

  

6.2 Implementation model 

CDMA or OFDM modulated test signals were passed through an AWGN channel and 

then time smoothing is performed based on FAM simulation model for the estimation of 

SCF. Test statistics of generated SCF are taken according to the SNR at specific cyclic 

frequency position of interest and then we apply binary hypothesis testing. The details 

of implemented model along with some of the selected parameters for the system signal 

generation is discussed in next section.  

6.2.1 Simulation test bench chain 

A block diagram of implemented MATLAB model through FAM based simulation is 

presented with process flow in Figure 6-7.  

Firstly, BPSK modulated CDMA baseband signal or 16-QAM modulated OFDM 

baseband signal passed through AWGN channel. Then, FAM is used to evaluate sig-

nal’s cyclostationary components, namely SCF test statistics under    hypothesis. On 

the other hand, AWGN noise separately passed through FAM to produce SCF test sta-

  
     

     * 
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tistics under    hypothesis. In turn, this two SCF test statistics used in the binary hy-

pothesis detection model described in section 4.2 to determine whether signal is present 

or absent in noise (decision). The decision  is obtained from PDF under    versus PDF 

under   . In our simulations, the PDF curves were obtained based on simulated data 

with high number of random realizations. 

CDMA

OFDM

AWGN FAM

Binary hypothesis 

detection  

FAM

SCF test 

statistics

SCF test 

statistics
AWGN

Decision

H1

H0

Front 

end filter

Front 

end filter

 

 

Figure 6-7 Simulation test bench 

6.2.2 Simulation criteria and strategy  

The simulation steps are described below: 

 SCF test statistics are created for a predefined set of SNR values.  For each SNR 

value, the simulations are repeated for 1000 random realizations, in order to get 

the test statistics. 

 The test statistics of SCF are created at zero cyclic frequency position, single cy-

clic frequency position and multiple cyclic frequencies position while iterating 

for each SNR. As a result, the performance comparison of cyclic detector based 

on single (one) and multiple cyclic frequencies can be possible. 

 In general, the maximum value of SCF over multiple number of cyclic frequen-

cies position of interest are taken as test statistics. 

 The obtained SCF statistics (for signal+noise and noise) act as input for binary 

hypothesis performance detector model described in section 4.2. The test statis-

tics are compared with the threshold generated from a fixed probability of false 

alarm rate, and then the probability of detection is computed.  

 The receiver front end filter designed and use to observe the effect on perform-

ance of detection. 

 CDMA and OFDM modulated joint signal cyclic spectral analysis case is also 

observed, however this case will not be analysed in detail.  

Results on performance detection obtained from the implemented set up will be pre-

sented in chapter 7.  
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7. SIMULATION RESULTS  

This chapter presents the simulation results obtained from the simulation model de-

scribed in chapter 6. This chapter focuses on the performance analysis of cyclostationar-

ity-based detection for CDMA and OFDM signals, respectively. It also discusses the 

effect of parameter variation on the performance.  

7.1 Simulation parameters 

The simulated results are presented in such a way to highlight the cyclostationary 

properties of the modulated signal. We include the representation of different kind of 

statistical information, such as the Probability Distribution Function (PDF), the Cumu-

lative Distribution Function (CDF), the cyclic spectral estimate figure from FAM simu-

lation and the binary hypothesis detection performance curve of cyclostationary detec-

tion with a view of Receiver Operating Characteristics (ROC). MATLAB simulations 

were carried out to achieve the following results for each of signals cyclic analysis: 

 

 Probability of detection (  ) versus probability of false alarm (   ) at different 

Signal to Noise Ratio (SNR) for one specific cyclic frequency detection. 

 Probability of detection (  ) versus probability of false alarm (   ) at different 

cyclic frequencies for one fixed SNR. 

 Probability of detection (  ) versus SNR at fixed false alarm probability (   ) 

for different cyclic frequencies used in detection. 

 Probability of detection (  ) versus SNR at fixed false alarm probability (   ) 

for different SCF test statistics at one specific cyclic frequency. 

 Receiver front-end filter effect on the detection performance is compared with 

unfiltered detection for both of the CDMA and OFDM signal in terms of ROC 

curve. 

The SCF energy value based test statistics created for zero (        cyclic fre-

quency, single (        cyclic frequency, non-cyclic frequency (     and multiple 

cyclic frequencies (      ) of detection. In case of multiple cyclic frequencies detection 

(      ), we generally took the maximum value of SCF among the first    numbers of 

cyclic frequencies, unless otherwise specified. For CDMA,    is taken as    

        and for OFDM,            .The variation on the energy data from SCF 

through taking mean, median and minimum among the SCF values of corresponding 

first    cyclic frequencies was considered for comparison purpose. The cyclostationary 

detection performance is also compared with the performance of the energy detector and 



 74 

of the Higher Order Moment (HOM) detector in this binary hypothesis detection from 

AWGN noise. As the cyclic frequencies are affected by the simulation parameters, a list 

of important parameters with value for simulation system model is shown in Table 7-1. 

 

Table 7-1  List of simulation system parameters 

Simulation system parameter value 

Number of random realizations  1000 

SNR set -20 dB to 5 db 

Total processing time 1 ms 

Window type Hamming 

Generated noise type AWGN 

Sampling frequency,    9.6 MHz 

Frequency resolution,    0.1 *   = 960 KHz 

Cyclic frequency resolution,    0.00005 *  =480 Hz 

Size of the sliding point FFT,    16 

Decimation overlap parameter,   4 

Size of second FFT point,    8192 

Size of the data vector,   32768 

Bandwidth (BW) 4 MHz 

7.2 Simulation results based on CDMA signals   

This section presents the simulation results of CDMA signals with brief description on 

the obtained figures. In order to generate CDMA signal in MATLAB, some important 

simulation-specific parameters are shown in Table 7-2.  

 

Table 7-2  CDMA signal specific parameters selection 

CDMA parameters value 

Modulation type BPSK 

Spreading factor,    101 

Number of code epochs generated 41 

Samples per code 948 

Chip rate,    1.023 MHz  

Chip interval,                 

Sampling frequency,    9.6 MHz 

Sampling interval,                  

Doppler frequency shift 0 Hz 

Bit energy 1 

Oversampling factor 9.4 
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We have chosen BPSK modulation for CDMA signal generation, as BPSK is the widely 

used modulation techniques in most of the navigation applications for signal generation. 

Chip rate for CDMA signal is selected according to GPS signal and that is 1.023 MHz.  

Moreover, 1.023 MHz chip rate is chosen in GPS at the recommendation of J. Spilker in 

[147], [148] in order to avoid correlation problem associated with Doppler shifts. It is 

assumed that, the spreading factor long code is repeated from one code epoch to anoth-

er, meaning that we use short codes in the simulations.   

The simulation results described in next sections are divided into three categories, 

namely: CDMA test statistics, SCF figures and cyclostationary detection performance. 

7.2.1 Statistical presentation of CDMA test statistics  

Statistical presentation section includes the figures of the binary test statistics, and the 

PDF and CDF obtained from hypothesis detection model.  

7.2.1.1 Test statistics 

Figure 7-1 and Figure 7-2 depict some examples of the CDMA test statistics for binary 

hypothesis detector model at              for zero cyclic frequency (  ) and for 2 

cyclic frequencies (      respectively. For 2 cyclic frequencies (           , the 

maximum SCF value over first 2 non-zero cyclic frequencies     and    (     is con-

sidered. Test statistics are used to obtain PDF under each hypothesis. From these two 

figures, it is noticed that, the separation between    hypothesis and    hypothesis test 

statistics is reduced in        when compared to   . 

 
Figure 7-1 CDMA statistics at zero cyclic 

frequency,    

 
Figure 7-2 CDMA statistics for maximum 

SCF over 2 non- zero cyclic frequencies,      

7.2.1.2 Probability Distribution Function 

Figure 7-3 and Figure 7-4 present some examples of the PDF distributions under    

and    hypotheses, at fixed             , for zero cyclic frequency (  ) and for 2 
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cyclic frequencies (    ) respectively. In case of     , the maximum SCF value over 

first 2 non-zero cyclic frequencies (     ) is considered. PDF distributions under    

and     hypotheses at      exhibit more overlapping phenomenon than PDF distribu-

tions at   , as shown in Figure 7-3 and Figure 7-4. 

 
Figure 7-3 CDMA test statistics PDF at  

zero cyclic frequency,    , SNR=-20 dB 

 
Figure 7-4  CDMA test statistics PDF of 

maximum SCF over 2 non-zero cyclic 

frequencies,      , SNR=-20 dB 

7.2.1.3 Cumulative Distribution Function 

Figure 7-5 and Figure 7-6 show an example CDF of CDMA detection at zero cyclic 

frequency (  )  and at 2 cyclic frequencies (    ), respectively at             .  For 

2 cyclic frequencies (           , the maximum SCF value over first 2 non-zero 

cyclic frequencies (  ,   ) is considered. According to these two figures,    hypothesis 

CDF curve is following    hypothesis CDF and this will give    as,      

        and     as,              . As a result,     can be higher than    .  

 

 
Figure 7-5 CDMA CDF at zero cyclic 

frequency,   , SNR=-20 dB  

 
Figure 7-6  CDMA CDF of maximum 

SCF over 2 non-zero cyclic frequencies, 

    , SNR=-20 dB 
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7.2.2 Spectral correlation density function plot   

Figure 7-7  provides an example of a SCF plot obtained from the cyclic spectral analy-

sis of CDMA signal. The magnitude of the SCF is normalized for plotting purpose by 

the maximum value of the SCF and thus it ranges from 0 to 1. A SCF peak can be ob-

served at several simulated CDMA cyclic frequencies. In addition, Figure 7-7 also pro-

vides a comparison on simulated and theoretical SCF formation at cyclic frequencies. 

Simulated cyclic frequency positions gives more SCF peaks than theoretical cyclic fre-

quency positions. However, theoretical CDMA cyclic frequencies can be used as a ref-

erence for better understanding of the simulated SCF pattern. 

Theoretical CDMA cyclic frequencies set can be expressed as [124], 

                       

Where, each cyclic frequency    is dependent on both the chip rate    and the spread-

ing factor   , given by, 

         
  
  

                

 

 

Figure 7-7 Comparison of simulated and theoretical SCF of CDMA signal 

7.2.3  Cyclostationarity detection performance for CDMA signals  

7.2.3.1     versus     plots  

Figure 7-8 illustrates the probability of detection (  ) versus the probability of false 

alarm (   ) at different SNR values and at two cyclic frequencies (    ). The maximum 

SCF value over first 2 non-zero cyclic frequencies (  ,   ) is considered for test statis-

tics creation. The probability of detection increases as the probability of false alarm in-

creases as expected. 
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Figure 7-8     versus     at different SNRs for CDMA signal 

 

Figure 7-9 shows the    versus     at different cyclic frequencies of detection, such as 

zero      cyclic frequency, single (    cyclic frequency, 2 cyclic frequencies (    ), 4 

cyclic frequencies (      and 6 cyclic frequencies (      at             . In turns, 

multiple cyclic frequency detectors are compared with zero and single cyclic frequency 

detector. The SCF values at     and     are taken for    and     detection. On the 

other hand, as described earlier,     is taken as            for CDMA multiple cy-

clic frequencies detection. In this Figure 7-9, the maximum SCF values are computed 

over the 2, 4, 6 CDMA cyclic frequencies. In turns, we combine multiple cyclic fre-

quencies by taking the maximum over first 2, 4, 6 cyclic frequencies.  

For instance, when using 2 cyclic frequencies, the maximum value of SCF is taken 

between the first 2 SCFs at the first 2 cyclic frequency positions (        . For 

example, in the CDMA signal used in here, the first 2 cyclic frequencies appear at 1.023 

MHz and 2.05 MHz respectively. When 2 cyclic frequencies are combined for the test 

statistic, we formed the test statistic as max (SCF_1_CDMA, SCF_2_CDMA), where 

SCF_1_CDMA and SCF_2_CDMA are the SCF values at the cyclic frequencies 1.023 

MHz and 2.05 MHz. 

From the results in Figure 7-9, it can be seen that the detection performance vary 

with the selection of the cyclic frequencies in which the cyclostationary detection is 

carried out.  

The zero cyclic frequency position holds the highest-valued SCF amplitude among 

the other higher cyclic frequencies. Thus, a better performance is observed at zero cy-

clic frequency. It is common that the modulation scheme used in the signal generation 
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plays an important role in creation of the SCF at specific cyclic frequencies. It usually 

happens that, SCF has a higher energy at initial cyclic frequency positions than at a 

higher order cyclic frequency positions. In fact, this situation does not happen always, 

stronger SCF values can be observed at higher OFDM cyclic frequencies too, as shown 

for OFDM case in section 7.3.3.1.  

 

Figure 7-9     versus      at different cyclic frequencies of CDMA signal 

7.2.3.2     versus SNR plots 

Figure 7-10 compares the cyclostationary detection performance with the performance 

of the energy detector and of the HOM detector. Cyclostationary detection conducted at 

zero cyclic frequency (  ), two cyclic frequencies      , non-cyclic frequency (     

and single cyclic frequency (    are compared with the above-mentioned (in chapter 4) 

classical detectors (energy and higher order moment).  

For instance, non-cyclic frequency     was derived as the mean of    and   , 

which is expressed as below, 

    
     

 
 

 

Regarding the non-cyclic frequency considered, this is taken from the middle point, 

between the first 2 consecutive cyclic frequencies,    and   , after   . For CDMA its 

value is 511.5 KHz. 
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   versus SNR is plotted in Figure 7-10 at mentioned different cyclic frequencies of 

CDMA signal and at a fixed false alarm value of 0.01. Single cyclic frequency detection 

outperforms the 2 cyclic frequencies detection as the first cyclic frequency position SCF 

holds much higher amplitude than the second cyclic frequency SCF. The SCF values are 

basically determined by the signal parameter such as the chip rate, modulation order, 

symbol rate etc. The detection performance at zero cyclic frequency is showing better 

result than the detection at other multiple cyclic frequencies. The detection performance 

at non-cyclic frequency is showing the worst result among all detection which is obvi-

ous, but it is nevertheless surprising that even at a non-cyclic frequency there is some 

information pertaining to the signal presence. This points out towards the fact that there 

is indeed a certain spectral leakage, no doubt due to a finite block length processing and 

noise presence. A more thorough explanation of  the fact with the energy detector and 

zero-order cyclic frequency detectors outperform the other cyclostationarity detectors is 

given in section 7.5, by introducing the notions of  the deflection coefficient and its rela-

tionship with the noise variance and the  noise creation for binary hypothesis detection. 

 

 

Figure 7-10     versus SNR at different cyclic frequencies of CDMA signal 

Figure 7-11 shows a comparative performance among several multiple cyclic frequen-

cies detection for CDMA signals. In addition, multiple cyclic frequency (       detec-

tors are compared with single cyclic frequency (    detector. The test statistics when 

more than one cyclic frequency was used were taken as the maximum values of SCF 

over the first 2, 4, or 6 CDMA cyclic frequencies, respectively. The first single cyclic 
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frequency detection again provides better performance than the multiple cyclic fre-

quency detection due to the fact that the SCF at first cyclic frequency has the highest 

amplitude than the other SCF values at non-zero cyclic frequencies.  

 

Figure 7-11     versus SNR at different cyclic frequencies of CDMA signal: compari-

son of signal cyclic frequency detection with multiple cyclic frequency detection 

Table 7-3 illustrates obtained SCF values corresponding to the used CDMA cyclic fre-

quencies. As the order of cyclic frequency increases, the value of cyclic frequency in-

creases. However, the SCF values are decreasing as the order of cyclic frequency in-

creases, which also clarified the presented result on higher order multiple cyclic fre-

quency detection. 

 

Table 7-3 SCF values corrosponding to the cyclic frequency for CDMA cyclic analysis 

Cyclic frequency, 

         

 

Cyclic frequency 

value[MHz] 

SCF value 

1 1.023 1.9918e+04 

2 2.05 7.2160e+03 

3 2.4 8.5891e+03 

4 2.4 8.5891e+03 

5 2.4 8.5891e+03 

6 2.4 8.5891e+03 

 

In Figure 7-11, detection performance at four cyclic frequencies (      is overlapping 

with detection performance at six cyclic frequencies (     . Figure 7-12 shows the same 

plot in details for this overlapping performance between      and     . The reason be-

-20 -15 -10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal to Noise Ratio(dB)

P
ro

b
ab

il
it

y
 o

f 
D

et
ec

ti
o

n

 Cyclostationary detection performance of CDMA  signal 

 

 


1:6


1:4


1:2


1



 82 

hind this overlapping in this plot is having the same value of SCF test statistics for both 

of this multiple cyclic frequencies, which can also be observed from Table 7-3. 

 

 

Figure 7-12     versus SNR plot with overlapping performance of       and      of 

CDMA signal 

7.2.3.3 The choice of the SCF test statistics 

The test statistics formation procedure from the SCF energy is also an important factor 

in order to have better cyclostationary detection. In general, for the non-zero cyclic fre-

quency detection, we used the maximum value of SCF, obtained from the multiple cy-

clic frequencies of interest. It is observed that, in cyclostationary detection at a specific 

non-zero cyclic frequency for a long observation time, the maximum value of SCF will 

give the best test statistics. For example, Figure 7-15 and Figure 7-16 are showing test 

statistics comparison between maximum and mean SCF value over 6 CDMA cyclic 

frequencies. Maximum SCF value based test statistics is giving best statistics in term of 

SCF energy value and gap between two hypotheses, as shown in Figure 7-15 and Fig-

ure 7-16. Whereas for a limited observation window or in the case where all SCF values 

are almost equal for specific multiple cyclic frequencies, this may be different and this 

raises the necessity of investigating the detection performance by varying the formula-

tion of SCF test statistics. The test statistics can be taken, for example from the maxi-

mum, mean, median, or minimum value of SCF over the multiple cyclic frequencies of 

interest.  
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Figure 7-13 CDMA statistics of  

maximum SCF over 6 cyclic frequencies 

(     , SNR= -10 dB 

 
Figure 7-14 CDMA test statistics of mean 

SCF over 6 cyclic frequencies       , 
SNR=-10 dB 

Figure 7-15 shows the detection performance at 2 CDMA cyclic frequencies (      with 

variation on SCF test statistics formulation. This particular result indicates an overlap-

ping performance of median SCF detection with mean SCF detection. The mean based 

detection is giving better result than maximum SCF based detection performance. This 

type of performance can be explained by the fact that, the mean value of two SCF over 

first 2 cyclic frequencies is more stable than the maximum value of SCF over the same. 

 

 

Figure 7-15 Detection performance at 2 CDMA cyclic frequencies (      with variation 

on SCF test statistics formulation 

Figure 7-16 provides the detection performance at 4 CDMA cyclic frequencies (      

with the variation on SCF test statistics formulation. The result indicates that for this 

detection, maximum SCF give the best performance while mean, median and min statis-
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tics, respectively, follow the maximum statistics. The minimum SCF based detection is 

placed here for a comparison purpose and it certainly shows degraded performance 

compared to the other statistics formulations, as expected. 

 

 

Figure 7-16 Detection performance at 4 CDMA cyclic frequencies (      with variation 

on SCF test statistics formulation 

Figure 7-17 shows performance detection at six CDMA cyclic frequencies (      with a 

variation of SCF test statistics creation. The figure provides a similar pattern character-

istic as in Figure 7-16, where the maximum SCF provides best result and the other 

choices have smaller detection probabilities. However, median SCF gives exceptionally 

poor performance, which is even smaller than minimum SCF based detection perform-

ance. 

In summary, the detection performance actually depends on which cyclic frequency 

the detection is carried out and what is the combining rule when several cyclic frequen-

cies are used. Choosing the maximum SCF values among a set of considered cyclic fre-

quencies proved to be the best option.  
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Figure 7-17 Detection performance at 6 CDMA cyclic frequencies (      with variation 

on SCF test statistics formulation 

7.2.3.4 Receiver front-end filter effect on performance 

A FIR filter was included in the simulations to model the receiver front-end filter. The 

filter parameters are given below in Table 7-4.  

 

Table 7-4 List of receiver front end filter design parameters 

Receiver Filter Parameter Name Value 

Filter Type FIR 

Loss in passband 0.1dB 

Attenuation in stopband 40 dB 

Transition bandwidth, TBW BW/8,BW/4,BW/2 

 

Figure 7-18 shows the effect of filtering with three types of transition bandwidth 

(TBW)   in the cyclostationarity-based detection. The result shows better performance 

in the case of using a filter in the initial low false alarm region than in the case with no 

filtering. Detection at      with          is showing best result than filtering with 

             and          . This is a MATLAB simulation result which has 

several design-related influencing factors and may affect the desire outcome. In a real 

navigation receiver implementation filter is used as an integrated part of receiver front 

end. 
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Figure 7-18 Effect of receiver front end filter on cyclostationarity-based detection per-

formance for CDMA signal 

7.3 Simulation results based on OFDM signals 

This section presents the simulation results for OFDM signals. The important parame-

ters are presented in Table 7-5 for the generation of this OFDM signal in MATLAB. 

                          

Table 7-5 OFDM signal specific parameters selection 

OFDM signal parameter Value 

Bandwidth  4 MHz 

Sampling Frequency 9.6 MHz 

OFDM symbol duration               

Number of FFT carrier 1024 

Guard interval               

Number of subcarrier in guard in-

terval 

256 

Pilot subcarrier Every 8
th

 data 

subcarrier 

Subcarrier modulation 16-QAM 

Generated OFDM symbols  30 
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The simulation results described in next sections are divided into three categories, 

namely: OFDM test statistics, SCF figures and cyclostationary detection performance. 

 

7.3.1 Statistical presentation of OFDM test statistics  

Statistical presentation section includes the figures of binary test statistics, PDF and 

CDF obtained from hypothesis detection model.  

7.3.1.1 Test statistics 

Figure 7-19 and Figure 7-20 depict examples of OFDM test statistics for binary hy-

pothesis detector model at              for zero cyclic frequency (         and 

10 cyclic frequencies              , respectively. For       , the maximum SCF 

value over first 10 non-zero cyclic frequencies is considered. Test statistics presented in 

here are used to obtain PDF under each hypothesis. From these two figures, it is noticed 

that, the separation between    hypothesis and    hypothesis test statistics is reduced in 

        when compared to    , which is similar to CDMA cases presented earlier. 

 

 
Figure 7-19 OFDM statistics at zero 

cyclic frequency (   ,SNR= -12 dB 

 
Figure 7-20 OFDM test statistics of 

maximum SCF over 10  non-zero cyclic 

frequencies        , SNR=-12 dB 

7.3.1.2 Probability Distribution Function 

Figure 7-21 and Figure 7-22 present examples of PDF curves for OFDM binary hy-

pothesis test statistics at fixed              for zero cyclic frequency (     and 10 

cyclic frequencies (      . In case of      , the maximum SCF value over first 10 non-

zero cyclic frequencies is considered. According to these figures, PDF distributions un-

der    and     hypotheses at       exhibit more overlapping phenomenon than PDF 

distributions at    , as shown in Figure 7-21 and Figure 7-22.  
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Figure 7-21 OFDM test statistics PDF at  

zero cyclic frequency (    , SNR= -20 dB 

 
Figure 7-22 OFDM Test statistics PDF 

of maximum SCF over 10 non-zero 

cyclic frequencies (      , SNR= -20 dB 

7.3.1.3 Cumulative Distribution Function 

Figure 7-23 and Figure 7-24 shows examples of  CDF of OFDM test statistics at zero 

cyclic frequency      and 10 cyclic frequencies (       respectively at      

         According to these two figures,    hypothesis CDF curve is following    

hypothesis CDF curve and this will give    as,              and     as,     

         . As a result,     can be higher than     . However, in comparison to 

CDMA, the gap between two hypotheses CDF curve decreases in each of this OFDM 

cases. 

 

 
Figure 7-23OFDM CDF at zero cyclic 

frequency (    , SNR=-20 dB 

 
Figure 7-24  OFDM CDF at 10 cyclic 

frequencies, maximum SCF over         is 

taken, SNR= -20 dB 

7.3.2 Spectral correlation density function plot   

Figure 7-25 shows the SCF plot obtained from the cyclic spectral analysis of OFDM 

signal. The magnitude of the SCF is normalized for plotting purpose by the maximum 

value of the SCF and thus ranges from 0 to 1. SCF peaks can be observed at several 
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cyclic frequencies. According to theory, the OFDM cyclic frequencies are at integer 

multiples of sampling frequency [124]. The set of theoretical OFDM cyclic frequencies 

can be expressed as, 

                       

Where, each cyclic frequency    location is related to OFDM symbol period,     , 

given by, 

    
 

    
                

 

Figure 7-25 also provides a comparison between simulated SCF and theoretical SCF 

corresponding to pilots at cyclic frequencies. According to this figure, Simulated 

OFDM cyclic frequencies are more frequently appearing and closer to each other than 

theoretical OFDM cyclic frequencies. More spectral peaks in simulation are related to 

the spectral correlation between OFDM spectral components with certain frequency 

shifts. However, theoretical OFDM cyclic frequencies can be used as a reference for 

better understanding of the simulated SCF pattern.   

 

Figure 7-25 Comparison of simulated and theoretical SCF of OFDM signal 

7.3.3 Cyclostationary detection performance for OFDM signals 

7.3.3.1    versus     plots 

Figure 7-26 illustrates the    versus     at different SNR and at maximum SCF over 

first 10 cyclic frequencies detection (      . The    increases as the     increases as 

expected. Figure 7-26 shows similar kind of performance in comparison to CDMA sig-

nal, as shown in Figure 7-8. 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic Frequency,  (MHz)

S
p
e
c
tr

a
l 

co
rr

e
la

ti
o
n
 d

e
n
si

ty
 f

u
n
c
ti

o
n
, 
S

C
F

 Cyclic Spectral Analysis of OFDM Signal , SCF(0,)

 

 

SCF(0,)at simulated OFDM cyclic frequencies

SCF(0,)at theoretical OFDM cyclic frequencies



 90 

 

Figure 7-26    versus     at different SNR of OFDM signal 

Figure 7-27 shows the    versus     at different cyclic frequencies of detection, such as 

zero cyclic frequency (  ), single cyclic frequency (  ), 3 cyclic frequencies (    ), 5 

cyclic frequencies (     , 10 cyclic frequencies (       at             . In turns, 

multiple cyclic frequency detectors are compared with zero and single cyclic frequency 

detector. The SCF values at     and     are taken for    and    detection. On the 

other hand, as described earlier,     is taken as             for OFDM multiple 

cyclic detection and in this Figure 7-27 the maximum SCF values are computed over 

the 3, 5, 10 OFDM cyclic frequencies.   

For instance, when using 3 cyclic frequencies, the maximum value of SCF is taken over 

the first 3 SCFs at the first 3 cyclic frequency positions (            . For ex-

ample, in the OFDM signal used in here, the first 3 cyclic frequencies appear at 

0.0076172 MHz, 0.014941 MHz, and 0.022559 MHz respectively. When 3 cyclic fre-

quencies are combined for the test statistic, we formed the test statistic as max 

(SCF_1_OFDM, SCF_2_OFDM, SCF_3_OFDM), where SCF_1_OFDM, 

SCF_2_OFDM and SCF_3_OFDM are the SCF values at the cyclic frequencies 

0.0076172 MHz, 0.014941 MHz, 0.022559 MHz respectively. 

 

In OFDM cyclic spectral analysis case, the simulated cyclic frequencies are found clos-

er to each other. To obtain an optimum detection and extraction of higher order 

cyclostationary features of OFDM signal, we made a choice of using up to 10 OFDM 

cyclic frequencies. However, learning of much higher order cyclic frequency (e.g. 

                     may lead to better detection.  On the other hand, in CDMA 

cyclic spectral analysis, we made an optimum choice of using up to 6 CDMA cyclic 
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frequencies. In the simulation context, the selection of the elements of     set (multiple 

cyclic frequencies) can be taken in more constructive way by having a prior knowledge 

of SCF values obtained from cyclic spectral analysis.    

 

Figure 7-27    versus     at different cyclic frequencies of OFDM signal 

From the result, it can be seen that, detection performance is increasing as the number 

of multiple cyclic frequencies increases. However, in CDMA case, first single cyclic 

frequency detection provides better performance than the multiple cyclic frequency de-

tection due to the fact that the CDMA SCF at first cyclic frequency has the highest am-

plitude than  the other SCF values at non-zero cyclic frequencies. 

7.3.3.2    versus SNR plots 

Figure 7-28 compares OFDM cyclostationarity-based detection performance with the 

performance of energy detection and of HOM detection. We show the cyclostationarity-

based detector at zero cyclic frequency (   , at ten cyclic frequencies (      , at a non-

cyclic frequency (   ) and at single cyclic frequency (  ). The    versus SNR is plot-

ted in Figure 7-28 at different cyclic frequencies of OFDM signal at a fixed false alarm 

value of 0.01. The energy detector and the HOM detector outperform the other cyclic 

detectors as those energy based detectors provide better result in an AWGN environ-

ment with a comparison of cyclic detectors (this will be further explained in Section 

7.5). The detection performance at zero cyclic frequency is showing better result than 

the detection at 10 cyclic frequencies. On the other hand, multiple cyclic frequencies 

(       detection provides better result than detection at single first cyclic frequency. 

However, in CDMA, first single cyclic frequency detection provides better performance 

than the multiple cyclic frequency detection. 
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Figure 7-28     verses SNR at different cyclic frequencies of OFDM signal 

 

It is interesting to observe that, non-cyclic frequency provides even better result than 

detection at single cyclic frequency. This result indicates that, there is certainly spectral 

leakage exists while doing cyclic spectral analysis of OFDM signal. On the other hand, 

in case of CDMA, non-cyclic frequency detection provides the worst result. It seems 

that, according to our cyclostationary simulation settings, OFDM signal is more sensi-

tive to spectral leakage than CDMA signal. So, proper spectral leakage prevention steps 

need to take in consideration according to the received signals type while doing cyclic 

spectral analysis. In turns, prevention of spectral leakage will lead to better detection. 

Figure 7-29 shows a comparative performance among several multiple cyclic fre-

quencies (       detection for OFDM signals. In addition, multiple cyclic frequency 

detectors are compared with single cyclic frequency (    detector. The test statistics 

when more than one cyclic frequency was used were taken as the maximum values of 

SCF over the first 3, 5, or 10 OFDM cyclic frequencies, respectively. It follows that, for 

OFDM, the probability of detection increases as the cyclic frequencies further from zero 

cyclic frequency (     are considered. We recall that the SCF values are related to 

the pilot pattern, guard interval and sampling frequency. 
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Figure 7-29    versus SNR at different cyclic frequencies of OFDM signal: comparison 

of signal cyclic frequency detection with multiple cyclic frequencies detection 

Table 7-6 points out obtained SCF values corresponding to the used OFDM cyclic fre-

quencies for one random iteration. As the order of OFDM cyclic frequency increases, 

the value of cyclic frequency showing a increasing trend. The SCF values of corre-

sponding cyclic frequencies is also showing increasing trend as the order of cyclic fre-

quency increases.  

 

Table 7-6  SCF values corrosponding to the cyclic frequency for OFDM cyclic analysis 

Cyclic fre-

quency, 

          

  

Cyclic frequency 

value[MHz] 

SCF value 

1 0.0076172 2.5873e+03 

2 0.014941 1.9653e+03 

3 0.022559 6.1831e+03 

4 0.029883 3.9441e+03 

5 0.0375 2.2014e+03 

6 0.045117 5.6034e+03 

7 0.052441 9.6567e+03 

8 0.060059 1.8771e+04 

9 0.067383 1.0031e+04 

10 0.075 7.0397e+03 
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7.3.3.3 The choice of the SCF test statistics 

Figure 7-30 provides the detection performance at 10 OFDM cyclic frequencies (       

with variation on the choice of the SCF test statistics, namely by using mean, minimum, 

median or maximum among the SCF values at the first 10 cyclic frequencies. The result 

indicates that the mean test statistic gives the best performance while the maximum, 

median and minimum statistics follow the mean statistics in decreasing order. The 

minimum SCF based detection placed here for the comparison purpose shows, as ex-

pected, much lower performance than the other test statistics. It is clear that, the fluctua-

tions of the maximum value of SCF over several cyclic frequencies are significant if 

they are   observed for a high enough number of random realizations (in this thesis, 

1000 random iterations were used for test statistics generation). The mean-based SCF 

test statistics provides better result than the maximum SCF test statistics; because the 

mean fluctuations are smaller (the mean test statistic is more stable than the maximum 

test statistic). Figure 7-31 and Figure 7-32 also clearly show better result with mean 

based test statistics than maximum test statistics for OFDM cyclostationary detection at 

5 (      and 3 cyclic frequencies (      respectively. The median based detection re-

mains around the range of maximum SCF value based detection. The minimum SCF 

value based detection provides always a worse performance than the other choices, 

which is obvious.  It is interesting to note that, the gap between worst and best perform-

ance is closing when the number of considered multiple cyclic frequencies is getting 

smaller. 

 
Figure 7-30 Detection performance at 10 OFDM cyclic frequencies with variation on 

SCF test statistics formulation 
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Figure 7-31 Detection performance at 5 OFDM cyclic frequencies with variation on 

SCF test statistics formulation 

 

 

Figure 7-32 Detection performance at 3 OFDM cyclic frequencies with variation on 

SCF test statistics formulation 
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7.3.3.4 Receiver front-end filter effect on performance  

Figure 7-33 illustrates a comparative view of using filter for cyclostationary detection 

of OFDM signal.  In this simulation, the FIR filter parameter presented in Table 7-4 is 

used to observe filtering effect on cyclostationary detection for OFDM signal. The re-

sult shows a similar performance with and without filtering. However, in the case of 

CDMA, filtering with higher TBW shows better result than without filtering detection 

performance. In a real navigation receiver, RF front end filter is used as an integrated 

part for suppressing unwanted signal.  

 

 
Figure 7-33 Effect of the receiver front-end filter on cyclostationarity-based detection 

performance for OFDM signal 

7.4 Cyclic spectral analysis of mixture of signals 

Figure 7-34 shows the Spectral Correlation Density Function (SCF) of when an OFDM 

signal is superposed with a CDMA signal, forming a signal mixture. This type of joint 

analysis has the purpose of the signal identification based on SCF pattern and modula-

tion scheme used. Figure 7-34 also provides a comparison of simulated SCF at joint 

cyclic frequencies with the individual theoretical SCF at individual theoretical cyclic 

frequencies as a reference. From this figure it can be seen that, OFDM signal exhibits 

more theoretical cyclic frequencies than CDMA, if we consider a specific window (e.g. 

from 0 MHz to 2 MHz in x axis of Figure 7-34). 
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Figure 7-34 SCF of joint (OFDM+CDMA) signal 

 

Table 7-7 summarizes the important parameters which are used in this particular joint 

cyclic spectral analysis. 

Table 7-7  Summary of CDMA and OFDM signal parameters used in forming mixture 

Parameters CDMA specific 

value 

Parameters OFDM specific 

value 

Modulation BPSK Modulation 16-QAM 

Chip rate 1.023 MHz Symbol period 133  s 

Spreading 

factor 

101 Pilot position Every 8
th

 sub-

carrier 

Sampling 

frequency 

9.6 MHz Sampling frequency 9.6 MHz 

 

We assume that, spectral peaks will appear at the cyclic frequencies those are inte-

ger multiple of sampling frequency. In case of the signal mixture, some SCF of CDMA 

signal overlap with OFDM signal in some common cyclic frequency positions. For ex-

ample, 1.02 MHz is the first common cyclic frequency for both. For CDMA, 1.02 MHz 

corresponds to   , whereas for OFDM 1.02 MHz corresponds to     . The SCF values 

for CDMA and OFDM at the common cyclic frequency are different. On the other hand, 

the source of remaining (non-overlapping) SCF on the cyclic frequency axes whether 

generated from OFDM or CDMA can be determined by classification information. This 

type of joint detection based on classification of signal from the mixture of signal will 

open a new research area for future work. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cyclic Frequency,  (MHz)

S
p
e
c
tr

a
l 

c
o

rr
e
la

ti
o

n
 d

e
n
s
it

y
 f

u
n
c
ti

o
n

, 
S

C
F

 

Cyclic Spectral Analysis of Joint Signal , SCF(0,)

 

 

SCF(0,)at simulated joint cyclic frequencies

SCF(0,)at theoretical CDMA cyclic frequencies

SCF(0,)at theoretical OFDM cyclic frequencies



 98 

7.5  Discussion on the spectral analysis of CDMA and OFDM 

signals 

In general, cyclostationary detectors are designed to achieve the signal detection in var-

ying noise power situations, including the low SNR cases. The comparison performance 

presented in earlier sections for CDMA and OFDM signal raise the question about the 

effectiveness of cyclostationary detection. A brief overall discussion on the comparison 

of simulated cyclostationary higher multiple cyclic frequency detection performance of 

OFDM and CDMA, respectively, signal with zero cyclic frequency and other classical 

detectors is presented below and the performance is argued from four points of view, 

namely the deflection coefficient, the non-stationary noise, the noise mean and variance 

and the simulation parameters.   

7.5.1 Deflection issues  

The deflection coefficient    can be defined as below:  

    
             

 

       
 

Where      stand for the expected value operator and in this case used to calculate 

the mean value of the binary test statistics at, and        for the signal variance under 

   hypothesis.  Here   and    represents the alternative and null hypothesis test statis-

tics, respectively. The deflection is a measure of the signal detection performance in low 

SNR with Gaussian distribution cases [120], [149]. According to the theory presented in 

[120] and [149] if the value of deflection coefficient    increases, then the probability 

of detection increases as well. In this thesis, as per the MATLAB generated Gaussian 

statistics in AWGN noise scenario with      and      detection, the value of     is de-

creasing from zero cyclic frequency      to single cyclic frequency      at a specific 

initial low SNR. The deflection coefficient is decreasing as the noise variance is increas-

ing from      to       at a specific initial low SNR. This is why, according to the de-

flection theory, the signal detection performance at zero cyclic frequency is higher than 

the detection at single cyclic frequency. As the SNR increases, the deflection value at 

single cyclic frequency is getting higher than that of zero cyclic frequency. This fact 

clearly justified the earlier presented performance for detection at single cyclic frequen-

cy, when compared with zero cyclic frequency detection.  

Table 7-8 and Table 7-9 provide the numerical observation of deflection value relat-

ed with cyclic analysis for both of the CDMA and OFDM signal. As seen in these ta-

bles, zero cyclic frequency has much higher deflection coefficient than single cyclic 

frequencies at initial low SNR (e.g. -20 dB, -10 dB).  For example, in CDMA case, at 

          , the deflection value at    is 23.8178, while at    the deflection value 

is 0.1327. As a result, CDMA cyclostationary detection performance at    is higher 

than detection at   . Similarly, for example, in case of OFDM detection at     

      , the deflection value at    is 1.5571 while at   , the deflection is 7.00093e-3. 
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As a result, signal detection performance at    is slightly better than detection at   . As 

the SNR increases, deflection value at single cyclic frequency is getting higher than at 

   for both of the CDMA and OFDM. 

Table 7-8 CDMA deflection transition 

SNR/Deflection 

value 

Zero cyclic fre-

quency,      

Single cyclic frequen-

cy,     

SNR=-20dB 23.8178 0.1327 

SNR=-10dB 2.2071e3 94.99 

SNR= 0 dB 2.3781e5 12.97e3 

 

Table 7-9 OFDM deflection transition 

SNR/Deflection 

value 

Zero cyclic fre-

quency,      

Single cyclic frequen-

cy,      

SNR=-20dB 1.5571 7.00093e-3 

SNR=-10dB 141.8350 0.64074 

SNR= 0 dB 1.5323e4 87.6601 

7.5.2 Non-stationary noise issues  

In this thesis, the MATLAB based simulations were conducted with additive white ran-

dom stationary noise, for which the variance was assumed known. This was because we 

wanted to test the cyclostationarity properties under more controlled conditions and in 

‘best cases scenarios’ and because the thesis timeframe was too short to include the non-

stationary modeling. In a real scenario, the communication signals may get involved 

with non-stationary noise and this noise will introduce uncertainty with the noise power 

[150]. The primary concern of the cyclostationary detectors is to detect a signal under 

such uncertainty produced by the non-stationary noise. In such a case, the 

cyclostationary detector is expected to perform better than the energy detector [150]. 

We expect that, in the presence of non-stationary noise, the performance of the 

cyclostationary detector will be better than the one of the energy detector or with the 

zero-cyclic frequency detector. If we apply binary testing at zero cyclic frequency de-

tection with non-stationary noise, as the noise power is varying, the SCF energy-based 

detection is expected to fail compared to higher multiple cyclic frequencies detection. 

Guoqing JI and Hongbo Zhu have made a study about this in [151] and they analyzed 

the negative effect on energy detector performance due to the noise uncertainty. In a 

varying noise power situation, it is impossible to have an exact knowledge of noise 

power in order to detect the signal. Moreover, higher multiple cyclic frequencies detec-

tion with varying noise power will create zero-valued SCF for non-stationary noise at 

higher cyclic frequencies, while the signal of interest will create non-zero SCF estimate 

at those cyclic frequencies.  As a result, higher order cyclostationary detection reduces 

the detection problem of signal in case signal with non-stationary noise, as compared 

with energy detection.  
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7.5.3 Mean and noise variance issues 

In the analysis of the cyclostationary signals in this thesis, the test statistics were 

generally taken from the amplitude of SCF values at several cyclic frequencies and this 

SCF values are still indicating signals energy on that particular cyclic frequency posi-

tions. We noticed, based on our simulations, the noise mean was decreasing and the 

noise variance was increasing from zero cyclic frequency towards non-zero higher order 

cyclic frequency detection. We know that, if the noise variance is increasing, then the 

energy based detector will have a decreasing performance [150]. Under these circum-

stances, the performance of the cyclostationary detection at higher multiple cyclic fre-

quencies indicated worse result than the energy detector or with the zero-cyclic frequen-

cy detector. Table 7-10 and Table 7-11 provide the noise mean and variance values on 

the generated stationary noise for both CDMA and OFDM signals respectively. The 

statistical information presented in the two tables is obtained from    hypothesis histo-

grams presented in Figure 7-35 to Figure 7-38. The noise mean is decreasing by the 

amount of    and noise variance is increasing by the amount of    from zero cyclic 

frequency towards non-zero higher order cyclic frequency detection for both of the sig-

nals. 

Table 7-10 Noise mean and variance analysis for CDMA signal 

SNR  

(dB) 

Noise mean 

at zero 

cyclic fre-

quency 

(dB) 

Noise vari-

ance at zero 

cyclic fre-

quency  

(dB) 

Noise mean 

at 2 cyclic 

frequencies 

(dB) 

Noise vari-

ance at 2 

cyclic fre-

quencies 

(dB) 

 M 

(dB) 

 V 

 (dB) 

-20 6.4563 6.5569e-05 4.8397 0.0143 1.6166 1.42e-2 

-10 5.4564 7.1217e-05 3.8242 0.0153 1.6322 1.52e-2 

0 4.4563 6.6105e-05 2.8296 0.0150 1.6267 1.49e-2 

10 3.4568 6.8857e-05 1.8344 0.0142 1.6224 1.41e-2 

Table 7-11  Noise mean and variance analysis for OFDM signal 

SNR  

(dB) 

Noise mean 

at zero 

cyclic fre-

quency 

(dB) 

Noise vari-

ance at zero 

cyclic fre-

quency  

(dB) 

Noise mean 

at 10 cyclic 

frequencies 

(dB) 

Noise vari-

ance at 10 

cyclic fre-

quencies 

(dB) 

 M 

(dB) 

 V 

 (dB) 

-20 6.4563 6.5569e-05 4.9718 0.0089 1.4845 8.83e-3 

-10 5.4564 7.1217e-05 3.9658 0.0084 1.4906 8.33e-3 

0 4.4563 6.6105e-05 2.9632 0.0083 1.4931 8.23e-3 

10 3.4568 6.8857e-05 1.9670 0.0078 1.4898 7.73e-3 
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Figure 7-35    statisitcs based noise histogram used in noise mean and variacne 

calculation for CDMA cyclostatioanry detection at zero cyclic frequency (    , top 

left : SNR=-20 dB, top right: SNR=-10 dB, bottom right: 0 dB, bottom left: SNR=10 dB 

  

 
 

Figure 7-36    statisitcs based noise histogram used in noise mean and variacne 

calculation for CDMA cyclostatioanry detection at 2 cyclic frequencies (     , top left : 

SNR=-20 dB, top right: SNR=-10 dB, bottom right: 0 dB, bottom left: SNR=10 dB 
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Figure 7-37    statisitcs based noise histogram used in noise mean and variacne 

calculation for OFDM cyclostatioanry detection at zero cyclic frequency (    , top 

left : SNR=-20 dB, top right: SNR=-10 dB, bottom right: 0 dB, bottom left: SNR=10 dB 

  

  
Figure 7-38    statisitcs based noise histogram used in noise mean and variacne 

calculation for OFDM  cyclostatioanry detection at 10 cyclic frequencies (      , top 

left : SNR=-20 dB, top right: SNR=-10 dB, bottom right: 0 dB, bottom left: SNR=10 dB 
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7.5.4 Simulation parameters issues 

The following simulation parameters are expected to influence the results: 

 

 The threshold selection: the threshold is used according to the fixed false alarm 

value of 0.01 to obtain binary detection performance. More adaptive selection of 

threshold according to SNR and test statistics will lead a better result. 

 The number of random realizations: currently we used 1000 random iterations 

for test statistics generation from SCF value. More number of random realiza-

tions (e.g. 2000, 30000) would influence the detection performance. 

 FAM Window: we used Hamming window for all types of cyclic spectral analy-

sis performed in this thesis. However, using of other kinds of windows (e.g. 

Hanning, Kaiser etc) will influence the detection performance. 

 The SCF test statistics choice (discussed in section 7.2.3.3 and section 7.3.3.3) 

and selection of cyclic frequency are also important influencing factors for get-

ting better detection  

 In this thesis, cyclic resolution is selected as          sampling frequency and 

spectral resolution is selected as      sampling frequency. Selection of these 

particular values are also playing key role in SCF estimation. 

. 
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8. CONCLUSIONS AND FUTURE WORKS  

8.1 Conclusions 

 

This thesis gave an overview of the signals of opportunity concepts and briefly illustrat-

ed the potential of signals of opportunity for positioning. The author presented a generic 

model for the signals of opportunity-based positioning system in chapter 2. This thesis 

reviewed the system specific models of the majority of the wireless signals who are 

available indoors, in order to evaluate their potential in positioning. Furthermore, in 

order to fully realize the spectrum awareness criteria of future cognitive positioning, 

several methods for spectrum sensing and signal classification were presented. While 

presenting the spectrum sensing methods in chapter 4, significant emphasis was given to 

cyclostationary detection and classification. The thesis addressed the importance of se-

lecting the suitable signal from a pool of signals and mentioned possible solutions to 

that. The main contribution of this thesis is two-folds: providing a review of 

cyclostationary signal theory in the context of SoO and the application of 

cyclostationarity properties to signal detection in noise (for the purpose of identifying 

the signals available for positioning). Additionally, in chapter 6, this thesis discussed 

about all kinds of existing spectral correlation methods which can be used for cyclic 

spectral analysis. In the simulation section of chapter 6, the most effective method, 

namely FAM, was selected for spectral analysis of CDMA and OFDM signals. Chapter 

7 showed the detection results and the last sections of chapter 7 discussed about the re-

sults obtained on individual cyclostationary detection of CDMA and OFDM. The re-

sults indicated how to do the selection of a cyclic frequency from a set of cyclic fre-

quencies at which the cyclostationary detection can be performed in order to achieve 

desirable detection performance. Moreover, effects of various data reduction techniques 

for spectral correlation on cyclostationary detection were examined. Summing up, the 

thesis explained the usage of cyclostationary analysis for signal detection and compared 

it with other spectrum sensing techniques including energy detection. The conclusion 

was that cyclostationarity features can be indeed used to select the available SoO in 

noise and they have potential into detecting the SoO into a mixture of signals as well (a 

work that has been further developed in [124].   

However, several areas can still be explored further, since the testing set of multiple 

cyclic frequencies was selected on a random manner so far. Moreover, the lengths of the 

observation interval, the length of the FAM window and the threshold choice also have 
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an impact in the results. A better understanding of the cyclic frequencies and spectral 

correlation pattern can lead to a better reliability in cyclostationary-based detection. 

8.2  Future works 

Further investigation on cyclostationary detection performance can be done by taking 

into account variations in the simulation parameter (e.g. bandwidth, pilot power, pro-

cessing time, modulation order). Moreover, in the simulation of cyclostationary signal 

detection, the presence of multipath and fading channel, the cyclic frequency offset due 

to Doppler shift, the interference associated with the channel and noise power uncertain-

ty involvements are yet to discover. It will be very interesting to observe the 

cyclostationary detection performance with the presence of non-stationary noise as well. 

As future work, signal detection from combination of signals should be analyzed. The 

pattern of signals cyclostationary features statistical distribution can be checked with 

chi-square distribution and this verification can provide a result whether simulation 

based generated  spectral correlation follow chi-square distribution or not. A completely 

new dimension can be given to this research by starting the analysis on signal classifica-

tion through this cyclostationary signal analysis. As a continuation of this work, 

cyclostationary properties of ultra wideband signals will also be investigated in the con-

text of cognitive positioning.  Finally, a development of a MATLAB Simulink based 

simulator model with process blocks for cyclostationary analysis can be taken into con-

sideration for future work purposes which will be generic in terms of multiple signal 

processing and proving output on signal detection and classification performance.  
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