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ABSTRACT 
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This thesis presents two technologies with the potential to radically change the way we 

manufacture, design and recycle products in the future. The two technologies in 

question are additive manufacturing (also known as 3D printing, rapid prototyping, 

solid freeform manufacturing, and a variety of other names) and the microfactory 

concept. In this work, the technological basis for both these technologies and their status 

in industrial manufacturing is briefly examined. 

 

The aim of the microfactory concept can be described simply: to miniaturize production 

equipment to roughly the same size as the product. This reduces the energy 

consumption and factory floor space of the production process. The benefits of the 

concept also include faster setup times and improved usability. On the other hand, some 

barriers also exist, these being mainly the lack of examples and components. TUT’s 

Department of Production Engineering has been active in the field, demonstrating a 

modular microfactory concept suitable for a variety of cases. 

 

Additive manufacturing, or 3d printing as it is more commonly known, refers to a group 

of technologies which allow fabricating parts layer-by-layer, eliminating the need for 

subtractive shaping of the parts. A CAD model is “sliced” so that each cross-sectional 

slice equals one layer of the part built by the additive manufacturing machine. This 

allows producing parts with geometries impossible to manufacture using traditional 

methods, e.g. a sphere within a sphere. In practice, two types of additive manufacturing 

are happening currently: industrial production, characterized by expensive machines, 

materials and parts and low volumes, and peer production, in which consumers are 

purchasing or building their own low-cost machines and producing customized products 

at home. 

 

Some synergies and potential applications for combining the concepts have been found. 

Additionally, some technical concepts were developed and presented in the thesis. 

Finally, the validity of these ideas is briefly discussed in the conclusion of the thesis. 
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TAMPEREEN TEKNILLINEN YLIOPISTO  
Automaatiotekniikan koulutusohjelma 
TEELAHTI, TOIMI: Ainetta lisäävän valmistuksen toteuttaminen mikrotehtaassa 
Diplomityö, 64 sivua 
Toukokuu 2014 
Pääaine: Factory Automation 
Tarkastaja: professori Reijo Tuokko 
Avainsanat: Ainetta lisäävä valmistaminen, 3D-tulostus, Mikrotehtaat 
  
Tämän diplomityön tarkoituksena on selvittää, miten mikrotehtaisiin voitaisiin 

integroida ainetta lisäävä valmistus eli 3D-tulostaminen. Kyseessä on siis kaksi 

tuotantotekniikan tulevaisuuden konseptia, jotka saattavat muuttaa radikaalisti 

tuotteiden suunnittelua, valmistusta ja kierrättämistä. Diplomityössä esitellään 

kummankin konseptin teoreettinen tausta ja lähtökohdat. 

 

Mikrotehdas-konseptin johtoajatus on yksinkertainen: tuotantovälineitä pienennetään 

niin, että ne ovat samaa kokoluokkaa tuotteiden kanssa. Tämä vähentää tilantarvetta 

sekä energiankulutusta. Lisäksi asetusajat pienenevät ja käytettävyys helpottuu. 

Haasteita konseptin leviämiselle ovat muun muassa soveltuvien komponenttien 

vähäisyys sekä teollisten toteutusten puute. TTY:n Tuotantotekniikan laitoksella on 

tehty mikrotehdas-tutkimusta aktiivisesti ja useita käytännön demonstraatioita on saatu 

toteutettua.  

 

Ainetta lisäävä valmistus (tunnetaan myös nimillä pikavalmistus ja 3d-tulostaminen) 

käsittää joukon teknologioita jotka mahdollistavat tuotteen tai osan valmistamisen 

kerroksittain. Tällöin valmistuksessa ei useinkaan tarvita ainetta poistavia  menetelmiä. 

Käytännössä tuotteen CAD-malli ”viipaloidaan” siten että mallin viipaleet 

(poikkileikkaukset) ovat koneessa muodostuvia kerroksia. Tämä mahdollistaa mm. 

vaikeiden geometrioiden tulostamisen suoraan, esimerkiksi pallo pallon sisällä on 

mahdollinen. Tällä hetkellä on tapahtumassa kahdentyyppistä 3D-tulostusta, joita 

kumpaakin esitellään työssä. Perinteisessä teollisessa valmistuksessa käytetään kalliita 

koneita ja materiaaleja tuottamaan pieniä sarjoja lopputuotteita.  Uusi ilmiö on 

kotikäyttäjien harrastuspohjainen tulostustoiminta, jossa koneet ovat alle tuhannen 

euron hintaluokassa.  

 

Analyysin jälkeen mahdollisia sovelluksia kehitettiin osana diplomityöprosessia. 

Sovellukset on esitelty lyhyesti osana TTY:n mikrotehdaskonseptia. Tähän liittyen 

mahdollisia käyttökohteita on myös ajateltu. Työn lopussa käsitellään sovellusten 

toteuttamiskelpoisuutta ja alaa yleisesti. 
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TERMS AND DEFINITIONS 

 

3D printing See chapter 3. 

ABS Acrylonitrile Butadiene Styrene, a thermoplastic polymer. Suitable 

for extrusion. (Chapter 3.3.3) 

 

AM  Additive Manufacturing (Chapter 3) 

ASTM American Society for Testing and Materials 

CAD  Computer-Aided Design  

CAM Computer-Aided Manufacturing 

CNC Computer Numerical Control, i.e. machine tools controlled by 

computers 

 

DOF Degree of freedom, i.e. how many (physical) parameters define a 

system’s configuration.  

 

DLP Digital light processing. Uses micro-sized mirrors to create an 

image. 

 

FDM   Fused Deposition Modeling, a extrusion-based process 

commercialized by Stratasys Inc. (Chapter 3.3.3) 

 

FFF Fused Filament Fabrication. Synonymous with FDM. (Chapter 

3.3.3) 

 

G-Code A numerical control (NC) programming language  

LOM Laminated Object Manufacturing, a sheet lamination process. 

(Chapter 3.3.5) 

 

MCAD Mechanical Computer-Aided Design 

MEMS Microelectromechanical systems. Made up of components 

between 0.001 and 0.1 mm in size. Example product: an 

accelerometer.  

 

PCL Polycaprolactone, a biodegradable polyester suitable for extrusion. 

(Chapter 3.3.3) 
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PLA Polylactic acid, a thermoplastic polymer suitable for extrusion. 

(Chapter 3.3.3) 

 

PLGA Poly(lactic co-glycolic acid), a biodegradable and biocompatible 

copolymer suitable for medical applications (Chapter 3.4.2) 

 

PLLA Poly-l-lactide, a form of polylactic acid. (Chapter 3.4.2) 

 

ROI Return on investment. The net profit generated divided by the size 

of the invested capital.  

 

SL or SLA Stereolithography, a photopolymerization process commercialized 

by 3D Systems Inc. (Chapter 3.3.1) 

 

SLS Selective Laser Sintering, a powder bed fusion technology 

trademarked by 3D Systems Inc.  (Chapter 3.3.2) 

 

STL Stereolithography file format, used in additive manufacturing. 

 

Thingiverse Website which offers community-contributed CAD models for 3D 

printing 

 

TUT Tampere University of Technology 
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1 INTRODUCTION 

This thesis represents a confluence between two technologies which are rapidly 

becoming disruptive technologies, not only in the manufacturing industry, but also in 

everyday life. The two technologies in question are, of course, additive manufacturing 

(also known as 3D printing) and microfactories (also known as desktop manufacturing). 

Both concepts have been developed in academia and industry for more than two 

decades now and there have been some see exciting breakthroughs as well as a rise in 

viable commercial solutions.  

 

The aim of this thesis is to attempt to illustrate some current and future possibilities of 

new products, production systems and processes. These possibilities are realized by 

combining the microfactory and additive manufacturing concepts. There are some 

synergies between the concepts, most notably in the typical product and machine sizes. 

To leverage these synergies requires in-depth knowledge, comprehensive understanding 

of ongoing trends and additionally some insight into future opportunities and 

challenges. The structure of this thesis has been adopted from the practice of technology 

forecasting (based on Roper et al., 2011). In practice, this means that the thesis has been 

divided into three stages (also known as “cold, warm and hot”). This has been illustrated 

below in figure 1.1: 

 

 
Figure 1.1. Content of the thesis. 

 

Exploration 

• Introduction 

•Microfactories 

•Additive 
manufacturing 

•Related 
technologies 

Analysis 
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•Drivers 

•Challenges 

Focus 

•Proposals 

•Conclusions 
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The first stage is exploration (i.e. surveying the current applications, drivers and barriers 

of the technology). As astutely stated by Roper et al. (2011), “the broader the sweep, the 

shallower the depth”. This means that exploring widely in the context of a technology 

always leads to a less in-depth understanding of the issues involved. This is not always 

a negative issue, but one must keep in mind the risks of overly broad surveying. In this 

thesis, defining the width has been done in the “scope of the thesis” subchapter. 

 

The second phase, analysis, can be characterized as selecting the most promising 

development areas, based on the groundwork laid in the exploration phase. Selection is 

done based on a) qualitative data, such as expert opinions, and b) quantitative 

extrapolation methods, such as trend analysis. In practice, the analytical section (i.e. 

chapter 5) of this thesis consists of qualitative analysis of the various market areas. To 

maintain a wide viewpoint, several related technologies and projects are defined and 

analysed, the motivation being that breakthrough products (or technologies) are seldom 

one-dimensional. In essence, the analysis phase functions as a bridge between the 

exploration of the first phase and the concrete proposals of the third phase. 

 

The third phase is focusing, where in the forecast is narrowed to focus on the most 

promising areas as selected in the analysis phase.  In this thesis, the focusing phase has 

been realized as some microfactory module concepts. Due to time and budget 

constraints, there it was not possible to test or validate these proposals during the thesis 

process. Future developments will show the success of the predictions. 

1.1 Background  

In the modern production paradigm, manufacturers face a variety of challenges. The 

changing landscape of our society as we enter a digital age forces companies to adopt 

new methods and strategies in order to remain competitive. For example, lead times of 

new products must be shorter today than previously in order to challenge other products.  

 

Okazaki (2010) states: “manufacturing is one of the most creative of human activities, 

and a delightful and supportive side of life”. He goes on to say that previously, 

manufacturing has been more closely related to customers’ needs. While mass 

production is a cost-effective option for producing high-quality products, Okazaki states 

that products which are not compatible with mass production are neglected. Even 

though end-users are not involved with manufacturing, they still want product variation 

or customized products. 

 

Jovane et al. (2003) have listed the production paradigms of the industrial age (shown in 

Table 1). The production paradigm which answers the evident need for customization 

and variation in products is mass customisation. However, to reduce the environmental 
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impact of industrial production, Jovane et al. envision “sustainable production” to be a 

viable paradigm in the future. 

Table 1.1. Production paradigms (Jovane et al. 2003). 

Paradigm 
Craft 

production 

Mass 

production 

Flexible 

production 

Mass 

customisation 

Sustainable 

production 

Paradigm 

started 
~1850 1913 ~1980 2000 2020? 

Society needs Customised 

products 

Low cost 

products 

Variety of 

products 

Customised 

products 
Clean products 

Market 

Very small 

volume per 

product 

Demand > 

Supply 

Steady demand 

Supply > 

Demand 

Smaller 

volume per 

product 

Globalization 

Fluctuating 

demand 

Environment 

Business 

model 
Pull 

sell-design-

make-

assemble 

Push 

design-make-

assemble-sell 

Push-Pull 

design-make-

sell-assemble 

Pull 

design-sell-

make-assemble 

Pull 

design for 

environment-

sell-make-

assemble 

Technology 

enabler Electricity 
Interchangeable 

parts 
Computers 

Information 

Technology 

Nano/Bio/ 

Material 

Technology 

Process 

enabler Machine 

Tools 

Moving 

Assembly Line 

& Dedicated 

Machining line 

Flexible 

Manufacturing 

 System 

 Robots 

Re-

configurable 

Manufacturing 

system 

Increasing 

Manufacturing 

 

Jovane et al. (2003) also explain that although the Western world has entered the era of 

mass customisation, the internal Chinese market had only recently adopted mass 

production at the time of writing. This is an example of paradigms being able to coexist, 

which is also stated explicitly by the authors.  

 

Fox and Stucker (2009) present the idea of “digiproneurship”. The authors explain that 

they use the term to differentiate the distributed ideation, propagation and creation of 

physical products from digital entrepreneurship (which concerns digital content). In the 

digiproneurship concept, digital technology enables the product development and 

additive manufacturing (with other, suitable technologies) allows production. Products 

are distributed digitally and realized near the customer, either by the customer 

personally or by businesses.  The digiproneurship concept shows that the gap between 

personal production and industrial manufacturing is “scalable”: this means that future 

production will encompass all product design and manufacturing modalities. For 

example, an end-user can download product designs for free from the internet, modify 

them, upload them (for others to use), and produce them either at home, at the local 

hardware store, at the local machine shop, or in a factory on another continent. 
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1.2 Research objective  

The main objective of the thesis is, broadly speaking, to gain both personal and 

institutional knowledge of the various commercially available additive manufacturing 

processes for future implementation in microfactories. A key theme during the thesis 

process was finding suitable reasons to implement additive manufacturing in 

microfactories. In the author’s opinion, the fact that the implementation is possible from 

a technical standpoint is not enough motivation. The research questions are stated 

below: 

 

RQ1: What is the current state of both microfactory and additive manufacturing 

technology? 

 

RQ2: What are the motivations and benefits of integrating additive manufacturing into 

microfactories? 

 

RQ3: Which additive manufacturing technologies are suitable for implementation in a 

microfactory? 

 

In addition, some designs are presented for future implementations.  

1.3 Scope and structure of the thesis 

From the very beginning it was obvious that the collective academic and industrial 

knowledge concerning additive manufacturing and microfactories was so vast that even 

obtaining a basic understanding would take up the majority of the thesis; thus, no 

practical work was included in the scope of the thesis process. In addition, some micro-

scale and medical concepts are so theoretically complex (and far from industrial in 

nature) that they have also been excluded. The various exclusions have been noted in 

the text at the appropriate points. 

 

Another scope-related issue is the products and production systems being considered. 

Obviously, while there is pressure to manufacture customized products, some products 

will never be suitable for customization. In the thesis, the term “product” is mainly used 

to describe a small-sized, relatively low-volume, hopefully high value-adding product.  

 

The structure of the thesis is as follows: chapter 2 reviews the microfactory concept 

with special emphasis on the work done at TUT’s Department of Production 

Engineering. chapter 3 discusses additive manufacturing, at first in a general sense, but 

the latter sections concentrate on the individual technologies in detail. chapter 4 

enumerates the benefits and challenges for additive manufacturing and microfactories. 

Chapter 5 consists of technical analysis and some implementation examples. Some 

proposals for future research and commercialization are presented in chapter 6, with the 

conclusions forming chapter 7. 
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2 THE MICROFACTORY CONCEPT 

This chapter introduces the microfactory concept, the current state of microfactory 

research and commercialization and the commonly accepted drivers and challenges in 

the microfactory field. The first section introduces the various types of academic 

microfactory, using the four categories found in Nurmi (2011). An example is presented 

from each of these categories. In the following section, the TUT microfactory concept is 

presented in a more detailed manner to provide the reader with understanding of the 

research done at the Department of Production Engineering. Finally, the concept’s 

advantages and disadvantages are listed and some potential applications are presented. 

2.1 Background 

The basis for the microfactory concept is simple; production machines should be 

roughly the same size as the products they produce. Thus, for many products, e.g. 

mobile phones, the machinery size would be about the size of a microwave oven. The 

motivations for the concept in production are lower physical footprint for machines, 

reducing energy use and resource utilization. Challenges include the relative newness of 

the concept, which means that there is a distinct lack of suitable components and 

examples for industrial actors. 

 

Nurmi (2012) lists four distinct types of microfactories developed in academia: a) the 

“traditional microfactory” consisting of fixed small-size machines, b) miniaturized 

machining devices such as microlathes, c) modular microfactory concepts (such as the 

TUT microfactory) and finally d) miniaturized assembly cells (often incorporating 

robots). To illustrate the differences between these concepts, a typical example of each 

is presented.  

 

Tanaka (2001) presents a microfactory consisting of a microlathe, a milling machine, a 

press machine and assembly machines (a small manipulator and gripper). This device is 

shown in figure 2.1. The factory dimensions are only 625 x 490 x 380mm (LxWxH) and 

it weighs 34 kg. The factory fits in a suitcase. As can be seen in the figure below, the 

operator uses one device at a time using the two joysticks and one pushbutton. Device 

selection is done via the user interface by the operator. The case product was a 

miniature ball bearing assembly with a 900 μm diameter and 3mm shaft length.  
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Figure 2.1. The AIST MITI microfactory (Tanaka, 2001). 

 

An example of a miniaturized machining device (figure 2.2) is the Desk-Top Milling 

machine by Okazaki et al. (2001). Nicknamed “El Chuchito” because it looks like a 

Mexican church, the machine dimensions are 450 x 300 x 380 mm (W x L x H). The 

spindle is a high frequency AC motor with 60W rated power. The spindle’s maximum 

rotation speed is 200000 rpm. The machine was successfully tested on hard aluminium 

alloy and pre-hardened steel. 

 
Figure 2.2. “El Chuchito” Desk-Top NC Milling machine (Okazaki et al., 2001). 

 

An example of a modular microfactory concept is the Pocket-Factory (figure 2.3), 

developed by Verettas et al. (2006) at EPFL (Ecole Polytechnique Fédérale de 

Lausanne). The motivation was reducing the size of the cleanroom environment. The 

prototype system developed can use MEMS industry standard trays (50 x 50 mm). A 
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goal of the project was to have high modularity in the system, and therefore a modular 

structure was adopted. The production system consists of individual cells called 

“microboxes”. Verettas et al. (2006) state that the size of the microbox is adapted to the 

size of the product being assembled. The prototype system shown below has a usable 

volume of about 1 dm
3
 . 

 
Figure 2.3. A Pocket-Factory microbox (Verettas et al. 2006, annotations from source). 

Figure 2.4 shows an example of a miniaturized robotic system (used for assembly). The 

Delta Ibis robot was developed by Bouri & Clavel (2010), also from EPFL. The robot 

structure is parallel (i.e. the kinematic chain is closed). The robot has 2 trapezoidal 

screws acting as linear translations and one rotational joint. The robot payload is 250 g 

and the workspace is 120 x 60 x 50mm (XYZ). 

 
Figure 2.4. The Delta Ibis robot (Bouri & Clavel,2010). 
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Commercial use of microfactories has been limited to date.  Nurmi (2012) listed some 

European companies in the field, many of which are the result of commercialized 

academic research (Asyril in France, IEF Werner in Germany). In Finland, active 

companies in the field include MAG (Master Automation Group, which has merged 

with JOT Automation), Sartorius Biohit and Wegera. The MAG products targeted 

telecommunications applications while Sartorius Biohit is active in the laboratory liquid 

handling sector. Wegera are a subcontractor specializing in metal products with small 

lot sizes and physical dimensions. The company has developed the “Kolibri”, a small-

sized (roughly 50 x 50 x 100cm) 5-axis CNC machining unit. The machine is intended 

for subcontracting, prototyping and education. (Nurmi, 2012). 

2.2 The TUT Microfactory 

There have been eight microfactory-related projects at TUT from 2000 to 2014. The 

thrust of the research has been towards modular microfactories, resulting in the TUT 

microfactory (also known as the TUT µ-factory). The microfactory is shown in figure 

2.5: 

 

Figure 2.5. A microfactory consisting of two TUT microfactory modules. The tablet PC 

is used as a user interface (Heikkilä et al.2010). 

The TUT microfactory consists of individual base modules (also called production 

modules). The outer dimensions of a single base module are 200 x 300 x 230 mm (W x 

D x L). The work space available inside the module is 180 x 180 x 180 mm. There is a 

segregated space behind the work space for the control PC and electronics. Additional 

process modules are placed on top of the production module to implement the desired 

functionality. The process module is shown in figure 2.6. (Heikkilä et al., 2010). 
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Figure 2.6. A Pocket Delta robot process module and the base module 

(Heikkilä et al. 2007). 

The modularity of the system is realized by the interfaces in the bottom part of the base 

module. The interface between two neighboring modules consists of:  two electronics 

connectors, pneumatic connectors (for air and vacuum) and a physical interlock. The 

interfaces allow a line layout with branches (loops are possible under certain 

conditions). Additionally, interfaces are also provided in the Y-direction, allowing 

modules to be placed on top of each other. Products can be transported through the 

system in three different ways: on pallets, on conveyors or “on air”. The “on air” option 

means that there is a manipulator capable of handling the part in each module. The part 

is then passed from one module from another. (Siltala et al. 2010a). 

 

Heikkilä et al. (2010) state that there are several ways to feed parts. These include tray 

feeding, tape-and-reel feeding, bowl feeding and machine vision-based flexible feeding. 

The authors state that the most desirable methods for miniaturized products are tray 

feeding and flexible feeding. Tray feeding means that the parts are palletized on trays. 

Drawbacks of this approach include the space required by the trays (in storage and in 

production environments) and the fact that palletizing is a non-value adding activity. 

Flexible feeding allows feeding the parts directly into the assembly cells without 

palletizing. This is achieved by feeding the parts onto a well-lit conveyor and using a 

machine vision system to determine the parts’ location and orientation.  



 10 

 

 
Figure 2.7. The Wisematic minifeeder: A flexible part feeder (Heikkilä et al. 2010). 

 

An important research area at TUT has been miniaturized robotics for part handling. 

Developed robot concepts for the TUT microfactory include an H-belt robot (Vuola et 

al. 2010) and an H-SCARA robot (Siltala et al. 2010b). The robot is a 4-DOF (degrees 

of freedom) parallel kinematic manipulator. Two parallel kinematic structures are used, 

one vertically (the H-structure) and one horizontally (the parallel SCARA structure). 

The work envelope of the robot is roughly 400 x 160 x 130 mm (W x L x H). The width 

of the work envelope has been designed so that the robot can reach into adjacent 

microfactory cells, as shown in figure 2.8 below. 

 

 

Figure 2.8. Left: The H-Scara robot with a feeder and case product. 

Right: The robot work envelope (Siltala et al. 2010b) 

 

As part of the microfactory projects, several applications have been successfully 

demonstrated. These include an assembly cell for mobile phone loudspeakers ( Heikkilä 



 11 

 

et al., 2007), a laser marking microfactory (Heikkilä et al., 2010), a modular conveyor 

system for microfactories (Heikkilä et al., 2010), a microfactory system for personalized 

hearing aids (Heikkilä et al., 2008) and a microfactory system for inserting a spring in a 

component (Heikkilä et al., 2010).  

 
Figure 2.9. Microfactory system for personalized hearing aids.  (Heikkilä et al., 2008). 

 

There are several benefits of a modular microfactory structure (exemplified by the TUT 

microfactory) as opposed to a rigid structure with fixed tools and capabilities. Naskali et 

al. (2012) have developed a bi-level modular microfactory. Bi-level modularity means 

in this context that different process modules are used to form the production process 

and that these modules are formed by combining submodules, which can be changed as 

required. Figure 2.10 shows a robotic assembly module consisting of submodules. 

 

Figure 2.10. Bi-level modular microfactory concept:  

Robotic process module( Naskali et al. 2012). 

 

Naskali et al. (2012) state that modularity in microfactories is an important design 

criteria, which enhances the reconfigurability of the production system. Ease of 

reconfiguring is a major advantage that microfactories have over conventional systems, 

as the reconfiguring seldom requires heavy equipment. 
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2.3 Advantages and disadvantages of the microfactory 
concept 

As stated in section 2.1, there are several compelling reasons for utilizing microfactories 

in production. The key motivations include the space, energy and material savings 

inherent in small-sized production equipment. Human factors such as ergonomics and 

usability also play a role as does the overall safety of the production process. 

Microfactories can also help reduce safety costs, for example it is much less expensive 

to implement a microfactory-sized cleanroom than an entire room.  Table 2.1. lists some 

potential advantages of microfactories. 

 

Table 2.1. Expected advantages from microfactory use. Compiled from Okazaki et al. 

(2004). 

Environmental Economic Technical Human-related 

 Saving energy, 

material  

 Reduced 

vibration and 

noise 

 Reduced need 

for capital 

investment 

 Reduced running 

costs 

 Efficient 

utilization of 

space 

 Improved 

portability 

 Agile 

reconfigurability 

 Ubiquitous 

manufacturing 

 Higher speed 

(because of 

reduced inertia) 

 Improved 

precision 

 Increased 

productivity 

 Piece-by-piece 

process (WIP 

reduced) 

 Shortened  

ramp-up 

 User-oriented 

machine design 

 Machines are 

physically and 

mentally less 

stressful to 

operate 

 Machines can 

be used in 

educational and 

hobby fields 

 

Some often-overlooked advantages envisioned by Okazaki et al. (2004) include (in the 

author’s opinion) ubiquitous manufacturing, the educational and hobby use of 

microfactories and the fact that it is less stressful for a human to operate small-sized 

machinery. It must be noted that these are clearly secondary to the important economic 

and technical considerations. The possibility of end-user microfactories is a recurring 

theme in the thesis and will be returned to throughout the text, whereas ubiquitous 

manufacturing (which is very similar to “Digiproneurship” introduced by Fox & 

Stucker(2009).  

 

Nurmi (2012) identified some challenges for microfactories based on research and 

interviews from both industry and academic practitioners. These include the lack of 

examples, lack of suitable components, the attitude of production engineers and that 

cleanroom standards do not yet support local cleanrooms. Codourey et al. (2006) 
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elaborate on the reasons behind the lack of suitable components, stating (in the case of 

motors) that small motors often have high rotational speed and small torque, when the 

opposite is required for microfactory applications. Also, because the motors are quite 

large physically compared to the rest of the factory, parallel structures must be adopted 

for robots (i.e. the motor is stationary).  
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3 ADDITIVE MANUFACTURING 

The aim of this chapter is to concisely explain the concept, execution and current 

possibilities of additive manufacturing. A generalized overview of the AM process is 

outlined and some critical phases of this process are elaborated upon. Next the main 

commercial technologies are explained and their various advantages, disadvantages etc. 

are illustrated. After this, an overview of suitable current applications for AM is 

presented.  Finally the chapter concludes with analysis of the advantages and 

disadvantages inherent in additive manufacturing.   

3.1 Introduction 

The term “additive manufacturing” by itself is fairly new. Previously the term “Rapid 

Prototyping” was widely used to describe the various technologies, however, some of 

these have graduated from mere prototyping to several different industrial uses. Usually, 

professionals use the name of the technology (such as FDM, fused deposition 

modelling) while end-users might even use the name of the machine. This confusion of 

terms is why the American Society for Testing and Materials (ASTM) technical 

committee has recommended using the term “additive manufacturing”. Synonyms 

include “additive fabrication”, “additive processes”, “additive layer manufacturing” and 

“solid freeform fabrication”, among others. Wohlers (2012) states that, due to 

widespread usage by three influential groups (i.e. the mainstream press, the computer-

aided design (CAD) industry and the investment community) the term “3D Printing” 

has become the standard term. Figure 3.1. shows how a part is obtained from the CAD 

file: 

 
Figure 3.1. From the CAD file to the actual part. 
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The core concept of additive manufacturing is the following: products are made by 

adding layer upon layer of material. The layers are the cross-section of the product at 

given heights (obtained from the CAD model). So, in essence, the model is “sliced” into 

layers of a certain thickness which the additive manufacturing machine, using any of 

several technologies, then produces. After this the finished part is removed from the 

machine, post-processed (depending on the manufacturing process and intended 

application), and is finally ready for use. This generalized process is presented in Figure 

3.2: 

 

 

Figure 3.2. Generalized AM process chain (Gibson et al. 2010) 

 

Of these eight distinct steps in this sequence, we see that the first three (the top row in 

the figure above) mainly concern the CAD and STL model and are thus independent of 

the AM technology being used (with some exceptions).  These steps will be explained 

in further detail in the next subchapter along with post-processing. The “build” step (i.e. 

the actual production of the part) is so technology-dependent that it will be covered in 

subchapter 3.3 “Additive manufacturing technologies”. 

3.2 Front- and back-end processes 

This subchapter presents the non-building steps required in AM in two parts; 

preproduction and postproduction. Any manufacturing process begins with 

conceptualization. This means visualizing the intended final outcome of the production 

process. When using additive manufacturing, this intention is ultimately formalized as a 

computer-aided design (CAD) file which represents the product in a digital sense. As 

stated by Gibson et al. (2010), there are several ways that this CAD file might be 
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generated: by a product designer using CAD software, by a simplified user interface, or 

by using reverse-engineering technology. 

  

The operating principles and science surrounding CAD modelling are very much 

outside the scope of the thesis; however, a brief overview can be presented. The basic 

concept is representing 3D objects in a digital file format, which can be then modified, 

transmitted, or transferred into various production systems accordingly. Three-

dimensional models are commonly created by first specifying a cross-section (in 2D), 

which is then extended (extruded) into 3D using user-specified parameters. Additional 

operations can be done afterwards, e.g. rounding the corners of the part or drilling holes 

in it. Currently, when using parametric CAD software, the designer can easily change 

the size and quantity of features in the product without having to radically change the 

model. The most popular mechanical CAD (MCAD) software products in use are, in 

order of popularity: Autodesk Inventor (Autodesk), Solidworks and CATIA (both by 

Dassault Systèmes) and ProEngineer (currently called Creo) from PTC.  (Gibson et al., 

2010, Wohlers, 2012). 

 

The 3D data required in AM can also be generated using alternative means. The most 

common is called 3D scanning and it involves using a depth camera to obtain a point 

cloud from the scanned part. This data is then interpolated into surface data allowing 

use in AM processes. Tong et al. (2012) state that two main technologies exist for depth 

cameras currently: a) using the time-of-flight principle, in which the time delay of 

transmissions of a light pulse are measured, or b) light coding, wherein a specific, 

known pattern is projected onto the scene and the pattern deformation is analyzed to 

obtain the depth data. For example, the Microsoft Kinect uses a grid infrared pattern.  

 

To be able to print a CAD model, the model must be converted to the STL file format. 

The conversion process approximates curved surfaces using tessellation, i.e. using 

triangular planar faces to generate an approximation of the model. An approximation of 

tessellation is shown in figure 3.3. The STL file is merely a representation of these 

planar surfaces, to actually build the part the STL file must be sliced into layers for the 

additive manufacturing process and appropriate CAM paths must be generated (e.g. g-

code or similar).  (Jamieson & Hacker, 1995). 
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Figure 3.3. Tessellating a spherical surface (Jamieson & Hacker, 1995). 

 

Post-processing is very dependent on the material and additive manufacturing process 

being used. Some processes require very little post-processing, while others require 

cleaning, post-curing and/or finishing the part along with the removal of extraneous 

material and supports. Obviously the degree of post-processing done to any given part is 

heavily dependent on the application. (Chua et al. 2010, Gibson et al. 2010) 

3.3 Additive manufacturing technologies 

Gibson et al. (2010) state the variety of ways additive manufacturing technologies may 

be classified: by baseline technology (i.e. what technology is used in the process, such 

as printing, lasers, etc.), by the type of raw material input, and by using various 

classification methods proposed by academia.  Pham & Gault (1998) categorize 

technologies based on the form of the material the part is manufactured from. There are 

three categories: liquid material, sheet material and discrete particles. An example of 

liquid material is vat photopolymerization , an example of sheet material is sheet 

lamination and an example of discrete particles is powder bed fusion. This classification 

was originally proposed by Kruth (1991) and it is used in the Gibson et al. book (2010).  

 

The literature in the additive manufacturing field uses a variety of more practical 

classifications. For example, Gibson et al. use the following: photopolymerization 

processes, powder bed fusion processes, extrusion-based systems, printing processes, 

sheet lamination processes, beam deposition systems and direct write technologies. 

Conversely, the ASTM standard F2792-12a uses a different system. The differences 

between the two are illustrated in table 3.1. 
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Table 3.1. Additive manufacturing technology names. 

Gibson et.al (2010). ASTM standard F2792-12a Commercial names  

(most common) 

Powder bed fusion Powder bed fusion Selective laser sintering 

Direct metal laser sintering 

Photopolymer processes Vat photopolymerization Stereolithography 

Beam deposition Directed energy deposition  

Sheet lamination Sheet lamination  

Extrusion-based systems Material extrusion Fused deposition modeling 

Printing Binder jetting 

Material jetting 

 

  

 

Gibson (2010) also refers to “Direct write” technologies. The supplied definition for this 

category is “technologies which are designed to build freeform structures in dimensions 

of 5 mm or less, with feature resolution in one or more dimensions below 50 µm.” 

(Gibson et al. 2010). There are a variety of approaches available: ink-based approaches, 

thermal-spray approaches, beam deposition approaches, beam tracing approaches etc. 

However, as these technologies are currently aimed at microfabrication, we will 

consider them outside the scope of the thesis. 

 

Companies generally have their own, trademarked name for their process: an example is 

Fused Deposition Modeling (FDM) trademarked by Stratasys Inc. The term “Fused 

Filament Fabrication” (FFF) was coined by the RepRap project team for use as a 

synonymous term. (Jones et al., 2011). In this thesis, the use of company-specific terms 

is avoided when possible. In the following subsections, each of the six major 

technologies are presented in more detail. This includes the operating principle, usable 

materials, pricing of the machines etc. Afterwards, an overview table and some statistics 

are presented to aid the reader’s comprehension and to illustrate the actual use of the 

technologies outlined.  

3.3.1 Photopolymerization 

Additive manufacturing processes based on photopolymerization rely on the material 

properties of liquids, photopolymers or resins. To be more specific, most photopolymers 

react when irradiated with ultraviolet radiation to become solid. This is utilized in the 

various photopolymerization technologies to form parts. An overview of the process is 

shown in figure 3.5: 
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Figure 3.5. The stereolithography process (i.e. the vector scan approach). 

Based on Gibson et al. (2010). 

 

The basic idea of photopolymerization is that a laser is used to cure the top surface of a 

vat of liquid photopolymer. Optics are used to direct the laser spot to the desired point 

in the XY-plane. Various principles of operation are possible, including vector scan (a 

single point is cured at a time), mask projection (an entire layer is cured at a time) and 

two-photon configuration (high resolution point-by-point). Stereolithography (SLA), 

which was the first commercialized additive manufacturingprocess, works on the 

principle of vector scan. Vector scan is commonly used with UV lasers. Mask 

projection technologies often utilize DLP micromirror arrays. Two-photon 

configurations are still in the research stage. (Wohlers 2012, Gibson et al. 2010) 

 

Because the photopolymerization process is based on the fact that the material solidifies 

locally when irradiated, it is evident that the range of usable materials will be limited. 

Historically, in the early stages of development, both acrylate-based and epoxide-based 

materials were used. Acrylate-based resins provide high reactivity (e.g. fast 

solidification) but have problems with shrinkage and curling. Conversely, epoxide-

based resins are slow to solidify and the resulting parts are brittle. However, they shrink 

and curl much less than acrylate-based materials. Today, most commercial SL resins are 

epoxides mixed with acrylate. These are called hybrid resins. (Gibson et al. 2010). 

 

The advantages of photopolymerization include the part accuracy and surface finish. 

(Gibson et al. 2010,). Disadvantages include the limited number of resins available. 
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Also the restriction that only one resin can be used in a part is a limiting factor. In 

addition, productivity would be increased if an automated system could be developed to 

remove uncured resin and to replace resin reservoirs. (Melchels et al., 2010). An 

example of the print quality can be seen below in figure 3.6. 

 

Figure 3.6. Dental working model (3D Systems 2012b).  

The system costs of photopolymerization machines range from 6000€ (Asiga’s 

Freeform Pico) to over 600 000€ for 3D Systems’ large SLA machines. (Asiga, 2012. 

Wohlers, 2012.) A new development has been the advent of low-cost consumer 

machines utilizing photopolymerization such as the Formlabs Form1(further discusses 

in chapter 5.1.2.). The Form1 is pre-selling at ca. 2200€. (Formlabs, 2012) 

3.3.2 Powder bed fusion 

The powder bed fusion additive manufacturing process is basically similar to vat 

photopolymerization. The vat of resin is replaced by a powder bed and the light source 

is replaced by a beam power source (laser, electron beam) which has more power. The 

process functions as follows: a quantity of powder is deposited onto the build platform.  

The powder levelling roller smooths the powder into a layer of even thickness. After 

this, the laser melts the particles corresponding with the product cross-section. The build 

platform is lowered and the process is repeated until the part is complete. The thickness 

of one layer varies by machine and manufacturer. At least one manufacturer provides 

layer thicknesses of 20 to 50 microns. (Wohlers, 2012). The process can be seen in 

figure 3.7: 
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Figure 3.7. The powder bed fusion process. Based on Gibson et al. (2010). 

Materials suitable for the powder bed process include both metals and polymers. Metal 

parts require supports (also called anchors) for reducing warping, part fixturing and to 

support down-facing surfaces. The loose powder bed provides a sufficient support in the 

case of polymers. (Wohlers 2012. Gibson et al. 2010) 

 

Kruth et al. (2005) state that powder bed fusion processes can be classified into four 

distinct binding mechanism categories: solid state sintering, chemically induced 

binding, liquid phase sintering – partial melting and full melting. “Sintering” is simply a 

process where packed powder bonds together when heated to more than about half of 

the absolute melting temperature. (German, 1985). Solid state sintering means that the 

powder particles form “necks” between each other at a temperature between one half of 

the melting temperature and the melting temperature. This means, in effect, that any 

produced parts will be porous (i.e. there will be gaps between the particles) as the 

particles are only connected by the necks. Solid  state sintering takes longer to achieve 

than melting, so not many additive manufacturing processes use solid state sintering as 

the primary build mechanism. It does, however, affect powder bed fusion processes in a 

variety of ways, some which are detrimental (unintentional powder sintering in the bed, 

unintentional part growth due to the sintering of extra powder) and some advantageous 

(porosity is decreased by post-build sintering). The sintering process is shown in figure 

3.8. The figure demonstrates that with increased sintering time, the porosity is 

decreased.  (Kruth et al. 2005. ,Gibson et al. 2010)  
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Figure 3.8. The sintering process (Gibson et al. 2010). 

Chemically-induced sintering (or binding) is based on thermally-activated chemical 

reactions between the build materials and/or gases to form a by-product which acts as a 

binding agent. It is primarily used for ceramics. The resulting parts are porous, requiring 

post-processing. This is why chemically-induced sintering has not been widely adopted 

in commercial AM machines. (Kruth et al. 2005., Gibson et al. 2010) 

 

Liquid phase sintering (partial melting) is a wide description including many 

technologies. Some utilize a structural material and a binding material (the structural 

material remains solid while the binding material is melted), while in others, the same 

material is in both phases (solid and liquid). When using two distinct materials, the 

process can be categorized in the following ways: 1) Separate particles, 2) Coated 

particles and 3) Composite particles. When using a single material, liquid phase 

sintering can occur when sintering particles of different sizes (common in polymers) or 

when a single particle type is partially melted (common in metals) or when alloys are 

sintered (the constituent with a lower melting temperature is melted). (Gibson et al. 

2010, Kruth et al. 2005, German 1985) 

 

Finally, the fourth binding mechanism is full melting: the particles are completely 

melted (at the melting temperature of the material). When the adjacent (above or next 

to) particles are melted, the previously melted particle is partially re-melted and thus the 

resulting structure is high in density.  

 

As previously stated, powder bed fusion can be used for both metals and polymers. 

Resin-coated foundry sand solutions are also available commercially. Suitable 

applications for polymer PBF include investment patterns for metal casting (using a 

polystyrene-based material), flexible parts such as gaskets (using a elastomeric 

thermoplastic polymer) and medical applications (using biocompatible materials). An 

example of a medical product is shown in figure 3.9. Available metals include, for 

example, aluminium alloys, titanium alloys, nickel alloys, cobalt alloys and stainless 

steel. (Wohlers, 2012). 
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Figure 3.9. Knee implant manufactured from cobalt-chrome alloy (EOS, 2012).  

 

The advantages of powder bed fusion processes are mainly the wide availability of 

metals suitable for processing. Also, the fact that polymer parts do not require additional 

supports is a positive factor (metal parts require supports to eliminate warping). 

Disadvantages include the cost of the machines and the relatively high operating costs. 

Wohlers (2012) states that the cheapest machines cost about 150 000 € and the most 

expensive is priced around 1 million euros. On the process side, the possibility of 

warping, stresses and heat-induced distortion along with shrinkage are inherent to the 

process. The accuracy and surface finish cannot match the output of liquid-based 

processes, and the total part construction time is impacted by the necessary pre-heat and 

cool-down cycles. 

3.3.3 Extrusion-based systems 

Simply put, material extrusion consists of forcing semi-solid material through a nozzle 

using pressure. The material then solidifies after extrusion. Two approaches can be used 

to control the material state in extrusion: temperature control (as in polymer extrusion) 

or using chemical change (e.g. a reaction with air, etc.) to cause solidification. 

Temperature control is the more common approach. Below, a diagram illustrating the 

process is presented. The filament is transferred into the extruder using a feed system 

(various implementations exist). The extrusion head (also called nozzle, tip or die) is 

heated to a temperature above the melting point of the material. The end of the filament 

is melted when it comes in contact with the nozzle, liquefying the material. The feed 

system uses the unmelted filament as a piston to push the liquid material through the 

nozzle. The feed system usually operates with a constant speed (in additive 

manufacturing, the feed system can be stopped at times to facilitate the movement of the 

extrusion head). (Ramanath et al. 2008). The process is visualized in figure 3.10: 
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Figure 3.10. Extrusion build process. Based on Gibson et al. (2010). 

 

The part is constructed on a level plate called the build platform. The build platform is 

moved in the Z-direction, while the extrusion head moves in the XY-directions. As 

shown in the figure above, the cross-section (layer) of the part is formed on the build 

plate by the extrusion head, after which the build plate is lowered by the layer thickness 

and a new layer is begun. Thus, the part is built out of layers. It is important to note that, 

unlike traditional extrusion production, the part layer does not correspond to the nozzle 

shape. The nozzle is a generic round or square shape which is used to “draw” the part 

outline and fill in the walls. The nozzle diameter is typically around 10-20% of the 

filament diameter. The nozzle diameter is constant during a single build. Some 
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machines allow changing the nozzles between builds, thus allowing the user to decide 

between processing speed or accuracy. An additional support material can be used to 

facilitate building more complex parts. 

 

The most common industrial additive manufacturing technology is fused deposition 

modelling (FDM). Wohlers (2012) states that this technology has the largest installed 

base, with around 18 000 units sold from 1991 to 2011 (not taking low-cost machines 

into account). The price of FDM systems ranges from around $9500 to $15 000.  

 

The majority of the consumer additive manufacturing machines, mentioned repeatedly 

in the thesis, use extrusion technology to build parts. Traditional additive manufacturing 

companies are increasingly moving into this business area (e.g. the 3D Systems Cube, 

chapter 6.1.1). However, Wohlers (2012) states that the largest growth has been of do-

it-yourself 3D printers, embodied by the RepRap (elaborated on in chapter 4.1.4). 

Around 23 000 machines and kits of this type were sold in 2011, estimated by Wohlers 

Associates. A notable fact is that some of these machines are designed to reproduce 

their own parts, which means that a customer buying one machine and some spare parts 

(the motors, extruder, controller, etc.) could produce additional machines at a very low 

cost. The price of these low-cost systems is from around 300 $ for basic kits to 2000$ 

for more complete systems like the Cube. (Wohlers, 2012). 

  

Available materials for extrusion include various polymers (ABS, PCL, PLA, ULTEM 

9085 and PPSF). Additionally, there has been academic interest in extruding metals and 

ceramics. Hobbyists have even used the RepRap to print chocolate and other foodstuffs. 

Advantages of using extrusion for additive manufacturing include the material 

properties and low cost of the machines. Disadvantages include the build speed, 

accuracy and material density. Because of the thermal nature of the process, there is a 

risk of warpage. Also, the circular nozzle makes producing corners somewhat 

inaccurate; corners and edges will be rounded to the diameter of the nozzle. (Gibson et 

al. 2010).  

 

The applications of additive manufacturing using extrusion can be directly derived from 

the advantages and disadvantages listed above. Because the material properties of 

polymers such as PLA are quite good (i.e. relatively good tensile strength, durability 

etc.) the technology is suitable for a variety of primarily low-cost applications, including 

jigs, templates, fixtures and other tools used in manufacturing. An example of a fixture 

is presented in figure 3.11. 
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Figure 3.11. A fixture (the white part) made with FDM technology (Hiemenz, 2012).  

 

Other applications of extrusion-based technology in the additive manufacturing field 

include bioextrusion and contour crafting, to name but a few examples. Bioextrusion, as 

stated by Gibson et al. (2010, p. 162) is “the process of creating biocompatible and/or 

biodegradable components...”. These components are in turn used to create frameworks 

(called scaffolds) which, after being implanted in a body, host the body’s own cells 

while gradually being absorbed. Osteopore is using FDM to build bioresorbable 

scaffolds from polycaprolactone (PCL) and composites of PCL and various ceramics 

(Teoh et al., 2011). Medical applications of additive manufacturing are discussed also in 

chapter 3.4.2. 

 

Contour crafting is a technology developed by professor B. Khoshnevis of the 

University of Southern California. It involves extruding ceramic paste or concrete and 

then smoothing the surface using two trowels, which function as planar surfaces. Some 

examples of the results can be seen in figure 3.12:  

 

Figure 3.12. Contour Crafting using ceramic paste (Khoshnevis, 2004). 
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In contour crafting, one trowel is used to control the top surface and one trowel controls 

the side surface. The side trowel can be angled, which allows the possibility of non-

orthogonal surfaces. Only the outer walls are extruded, so for thicker walls, concrete or 

other filler material is later used to fill the gap between the walls. Potential applications 

include houses, extraterrestrial habitats and emergency shelter construction. 

(Khoshnevis 2004).  

3.3.4 Printing processes 

As previously stated, in this thesis the term “printing” is used to mean the various 

jetting technologies (as in Gibson et al., 2010). The main division is between material 

jetting (depositing the actual build material using print heads) and binder jetting 

(depositing binder material onto a powder bed etc.). In both technologies, inkjet-printing 

heads (or similarly structured heads) are used to deposit small droplets of material. 

(Wohlers 2012, Gibson et al. 2010). Figure 3.13 shows the printing process: 

 
Figure 3.13. 3D inkjet printing process (binder jetting). From Gibson et al. (2010). 

Singh et al. (2010) state that the inkjet process consists of the ejection of a known 

quantity of ink through a nozzle onto the substrate (i.e. build platform or part). Once on 

the surface, the ink dries because of solvent evaporation. In material jetting, the print 

head (containing the nozzle, ejection mechanism, etc.) prints the cross-section of the 

part in a similar fashion to extrusion processes. Binder jetting utilizes a powder bed 

similar to powder bed fusion processes, the difference being that a liquid bonding agent 

is used to bind the particles instead of thermal energy.  

 

Commercial material jetting machines use either waxes or photopolymers as build 

materials. When using photopolymers, the layer is cured by UV light after deposition. 

This produces fully cured models. An example is the PolyJet technology developed by 
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Objet Geometries. Binder jetting machines can use a variety of materials, including 

plaster-based powders, polymers, metals, sand and ceramics. Some of the ZPrinter 

machines from 3D Systems (formerly ZCorp, which was acquired in 2012), have color 

printing capability as shown in figure 3.14. (Fathi et al. 2012, Wohlers, 2012, Gibson et 

al. 2010).  

 

 

Figure 3.14. Multimeter prototype (left) and figurine (right) created using ZPrinters 

from 3D Systems, Inc. (3D Systems, 2012c). 

 Advantages of both types printing include the relatively low cost and high speed of the 

process. In addition, the inkjet process is highly scalable, i.e. one can speed up build 

times by increasing the number of print heads. Parts can also be built using multiple 

materials and in color. Another factor is the maturity of the inkjet technology; Fathi et 

al. (2012) state that a wide range of materials can be deposited on almost any substrate 

in a precise manner. Also, fault recognition and quality monitoring are not difficult for 

inkjet technology.  

 

Some disadvantages of printing are the limited material selection and the part accuracy. 

Binder printing can be faster than direct printing, as only a small part of the part volume 

must be dispensed. This advantage is offset by the need to recoat the powder bed. The 

combination of a base material and binding agent facilitates having material 

compositions  which may not be achievable using other technologies. The build 

accuracy and surface finish tends to be worse than when using direct printing. 

Postprocessing (specifically infiltration) is required to make durable parts. (Gibson et al. 

2012). 

 

Additive manufacturing machines using print processes are inexpensive, pricing starts at 

about $20 000 for Objet’s cheapest single material machine and extend to about 

$250 000 for the most expensive machines. For binder printing, the cheapest ZPrinter 

starts at about $15 000 and the most expensive system, ExOne’s foundry sand machine, 

costs around $1 750 000. Common applications of printing process machines are 

prototyping, patterns and direct part production, as demonstrated in Figure 3.14. 
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3.3.5 Sheet lamination processes 

Sheet lamination (in the additive manufacturing context) means that sheets of a paper-

like material are cut corresponding to the cross-sections of the product. In most 

commercial technologies, only the outline (i.e. the edges) of the cross-section are cut, 

leaving the inside as-is. These cross-sections are then laminated or glued together 

(stacked) to form the finished product. Some processes do the stacking first and then cut 

(“bond-then-form”) and some cut the correct cross-sections first and then stack (“form-

then-bond”).  (Gibson et al. 2010). The sheet lamination process is visualized in figure 

3.15. 

 
Figure 3.15. Sheet lamination process. From Gibson et al. (2010). 

 

Advantages of the sheet lamination process include the processing speed; since cutting a 

thin layer of material can be done quickly (and only the outline of the cross-section 

needs to be cut) the process can be quite fast. Also, there are no difficulties with 

shrinkage or residual stresses and the parts can be easily finished. Finally, the operating 

costs and system prices are relatively low compared to other technologies. On the other 

hand, there are some disadvantages to using the sheet lamination process. These include 

the durability of the finished parts and that the usage of glue makes the properties of the 

finished parts inhomogenous. Materials which can be used for sheet lamination include 

plain paper (and variants), polymer sheets and metal or ceramic tapes. (Gibson et al., 

2010). 

 

The commercial technology most associated with paper sheet lamination is Laminated 

Object Manufacturing (LOM), commercialized by Helisys Inc. in 1991. Currently, Mcor 

technologies from Ireland is offering machines which use plain paper as the build 

material. The machine is available for lease at 11,500£ per annum (all materials and 

maintenance included). Also, Fabrisonic from the U.S. is offering ultrasonic additive 
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manufacturing (UAM) machines, which use a sheet lamination process with ultrasonic 

binding in conjunction with conventional machining to build parts. (Gibson et al. 2010, 

Wohlers 2012). 

3.3.6 Beam deposition systems 

In beam deposition (also referred to as directed energy deposition), energy is focused 

into a beam which is used to melt a material while the material is being deposited. 

Usually a laser is the energy source while metal in powder or wire form is the deposited 

material. A robotic arm or 4/5-axis motion system (similar to a CNC machine) can be 

used for positioning the deposition head. During the process, the actual metal addition is 

done by creating a very small (0.25-1mm in diameter and less than 0.5mm in depth) 

molten pool on the surface. When the feedstock enters the pool it melts and when the 

energy source is moved it solidifies, thus creating the new layer. (Gibson et al. 2010). 

The beam deposition process is shown in figure 3.16: 

 

 

 
Figure 3.16. Beam deposition process. From Gibson et al. (2010). 
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Typically, in a beam deposition process, the material is deposited at a high speed, 

making the effect of gravity on the material minimal. This means that nonvertical 

deposition is possible. Also, the surface being printed on (commonly referred to as the 

substrate) can be an existing metal part, which allows adding new geometry to existing 

parts. Obviously the option to fabricate completely new parts using beam deposition is 

also viable, although the positioning system might be different in the two cases. (Gibson 

et al. 2010., Wohlers 2012). 

 

Beam deposition is a very similar process to laser cladding. At TUT, some research has 

been done using a coaxial direct diode laser. The laser diodes are arranged in sectors 

around the optical axis leaving a tool opening of 20mm diameter throughout the laser. 

This allows coaxial wire or powder feeding, monitoring, heating etc. The laser head is 

very compact and weighs approximately 2 kg. (Vihinen et al. 2009).  

 

 

Figure 3.17. The CAVIPRO direct diode coaxial laser mounted on a FANUC robot. 

(Vihinen et al. 2009). 

 

3.3.7 Summary 

This subsection summarizes the previously presented information about the various 

technologies. Data about unit sales and system costs is also presented. 
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Table 3.2. An overview of additive manufacturing technologies (Compiled by the author 

based on Wohlers, 2012., Gibson et al. 2010). 

AM technology  Operating principle  Price 

range 

(k€)  

Materials  

Material jetting  Similar to inkjet printing  16-200  Polymers, 

Ceramics, 

Metals 

Wax 

Extrusion  Semi-solid material is 

forced through a nozzle and 

solidifies after extrusion  

7-400  ABS, PLA, 

ABSplus etc.  

Photopolymerization  Photopolymers solidify 

when irradiated  

6-650  Resins  

Powder bed fusion  Powder on a bed is fused 

using a point energy source  

150-950  Metals, 

polymers  

Binder jetting  Powder bed fusion using 

“glue”  

12-556  Ceramics, 

metals, starch 

etc.  

Beam deposition A laser is focused on a 

surface so that it melts a 

small puddle, into which 

material is injected  

280-810 Metals, 

ceramics  

Sheet lamination  Sheets of paper-like material 

are cut & glued 

corresponding to the cross-

sections of the product  

n/a  Laminate, 

paper, PVC, 

metals 

 

To briefly summarize, the above table shows that the additive manufacturing processes 

suitable for metal fabrication are material and binder jetting, beam deposition, powder 

bed fusion and sheet lamination. Processes suitable for polymer fabrication are 

extrusion, photopolymerization, powder bed fusion and sheet lamination. 
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Data and observations from the Wohlers State of the additive manufacturing industry 

progress report give us a rough indication of the “popularity” of the various 

technologies in industry (i.e. the amount of sold machines = the installed base).  

 
Figure 3.18. Market share by technology, units sold from 1988 to 2011. Only 

companies active in 2011 included (Compiled from Wohlers, 2012).  

 

Figure 3.18 shows the market share of the various additive manufacturing technologies 

when the low-cost consumer machines are included in the data. The 41% market share 

is even more impressive when one considers that this type of machine has only been on 

the market for four years. Additionally, the first chart shows that extrusion is by far the 

dominant technology in additive manufacturing; the industrial and consumer categories 

combined have a market share of 66 %, which means two out of three units sold are 

using extrusion technology. If consumer machines were to be excluded, industrial 

extrusion (mainly FDM, chapter 3.3.3) is still in the lead but printing (material and 

binder jetting combined) has a 30 % market share and photopolymerization 20%. 
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Figure 3.19. Price range of commercial additive manufacturing machines, by 

technology (Wohlers, 2012). 

 

The above figure illustrates the typical pricing of the machines. We see that binder 

jetting is by far the most flexible technology in terms of pricing, while other 

technologies have less variation in the system prices.   

3.4 Applications of additive manufacturing processes 

This subchapter presents an overview of current additive manufacturing applications, 

divided into industrial, consumer and medical applications. Obviously the plethora of 

current applications make it impossible to compile a definitive list, but this subchapter 

should provide a reasonable illustration of what additive manufacturing is used for in 

today’s production environment.  

 

Commercial applications for additive manufacturing include direct part production, 

modelling and prototyping, pattern production, production for tooling, jigs and fixtures 

and medical and architectural applications. Wohlers (2012) includes the results of a 

survey done in 2011 with 102 companies providing data. The survey asked the 

companies what the end-user (i.e. customer) use of their additive manufacturing 

products is. Originally, the survey included 10 answer options, ranging from direct part 

production to patterns for metal castings to research and education. Of these categories, 

the most common uses were direct part production and functional modelling. To 

examine the data, the data is simplified slightly by unifying categories, resulting in four 
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categories: prototyping, direct (part) production, pattern making (i.e. molds or castings 

for production or prototyping purposes) and research and education. (Wohlers 2012). 

 

 
Figure 3.20. Applications additive manufacturing-produced parts are used for. 

(Compiled from Wohlers, 2012). 

 

We see that roughly half of all additive manufacturing part usage is for prototyping of 

some form or another (this category includes presentation models, for 

example).(Wohlers 2012) 

3.4.1 Industrial applications 

Industrially, additive manufacturing can be used to fabricate parts or products (i.e. direct 

part production), as part of the design process (i.e. prototyping) or to make molds or 

patterns for other manufacturing processes (patterns or tooling).  

 

Direct part production using additive manufacturing has increased in recent years due to 

developments in technology. Several business areas are using additive manufacturing, 

including aerospace, automotive and industrial machinery, according to Wohlers (2012). 

For parts with a low volume and for parts which are wasteful to manufacture using 

conventional machining, additive manufacturing can be a cost-effective option. Also, 

custom parts for e.g. racing cars have been produced.  

 

Wohlers (2012) states that tooling produced by additive manufacturing can be divided 

into two categories: the indirect approach and the direct approach. The indirect 

approach means that patterns for a mold or die are manufactured by additive 

manufacturing and some other technology like metal casting is used to fabricate the 

Direct 
Production 

22% 

Prototyping 
48% 

Patterns 
21% 

Education 
and 

research 
7% 

Other 
2% 
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mold. In the direct approach, the actual mold is produced using additive manufacturing 

technology. Several technologies exist for indirect mold production, including: silicon 

rubber tooling, epoxy-based composite tooling, rubber plaster mold, spray metal 

tooling, Ford Sprayform, et cetera. For direct tooling production, many additive 

manufacturing technologies can be used, for example extrusion (fused deposition 

modelling), powder bed fusion and sheet lamination (Fabrisonic ultrasonic additive 

manufacturing). Benefits of producing molds with additive manufacturing include the 

possibility of implementing features which are impossible when using conventional 

machining, however, there can be a significantly higher cost as shown in Boivie (2011).  

 

Figure 3.21. Injection mold with conformal cooling channel, produced with Concept 

Laser powder bed fusion technology and finished with conventional machining (Boivie 

et al. (2011). 

Prototyping (in the physical sense) is used during product development processes to 

validate the function, fit and form of the product. It is one of the earliest uses of additive 

manufacturing and is still the most common use today, as shown by figure 3.20.  

3.4.2 Medical applications 

Wohlers (2012) states that medical applications (and  research) in the additive 

manufacturing field are driven by the need for custom-made products, stemming from 

patients’ unique shape, functionality and cost requirements.  

 

Melchels et al. (2010) divide the potential medical applications of stereolithography into 

the following groups: patient-specific models and functional parts, implantable devices, 

tissue engineering and cell-containing hydrogels. Patient-specific models are parts 

which physically represent a part of the patient’s body. These can then be used in 

diagnosis, pre-operative planning, guides for e.g. drilling and implant molds. Functional 

parts are parts which can be used in the patient’s body, for example a customized heart 

valve or hearing aid. Implantable devices are implants customized to the patients’ body. 

Tissue engineering refers to the practice of using bioresorbable scaffolds and 

biologically active compounds to induce tissue generation. This can happen in vitro (i.e. 
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in a laboratory environment) or in vivo (i.e. inside the patient). Cell-containing 

hydrogels are an attempt to achieve higher cell densities by encapsulating cells in 

fabricated structures (as opposed to building scaffolds and seeding them with cells).  

Table 3.3. Medical applications of additive manufacturing. Compiled by the author 

from (Wohlers, 2012., Melchels et al. 2010., Gibson et al. 2010). 

 

The table above illustrates some medical applications of additive manufacturing from 

various sources. It demonstrates how varied the potential applications of additive 

manufacturing for medical purposes are. For example, visual models are primarily 

representations of medical data while, on the other hand, tissue engineering facilitates 

the printing of functional biotissues. Obviously the materials, processing speed, 

processing methods, cost and other parameters will also vary widely within the field.  

The materials used for medical additive manufacturing applications are of course 

determined by the purpose of the part being printed. 

 

An example of small-sized medical additive manufacturing equipment is the 3D-

Bioplotter from Envisiontec GmbH, shown in figure 3.22. The Bioplotter is designed to 

fabricate scaffolds for tissue engineering from a wide variety of materials, including 

(but not limited to) titanium, PCL, PLGA, PLLA, chitosan, polyurethane and silicon. 

The machine has a resolution of 0.001mm and a build volume of 150 x 150 x 140mm. 

The overall size of the machine is 976 x 623 x 773 mm and it weighs 80 kg. 

(Envisiontec, 2011). 
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Figure 3.22. The Envisiontec bioplotter. From (Envisiontec, 2011). 

 

Gibson et al. (2010) report some current limitations of additive manufacturing use in 

medical applications. These include the process speed, overall cost, part accuracy, the 

limited range of materials and the usability of the machines. It is stated that medical 

professionals often lack an engineering background and thus the manipulation of e.g 

CAD data is not as straightforward as in the traditional production process. (Gibson et 

al. 2010)  

3.4.3 Consumer applications 

This section lists some commercial products marketed at consumers, as well as some 

applications developed by hobbyists. The examples here can be categorized as direct 

part production, often for consumers by consumers. 

 

Wohlers (2012) lists some examples of additive manufacturing-produced consumer 

products. These include figurines, musical instruments, art, jewelry, gifts, trophies, 

memorials, three-dimensional maps, props, museum displays, clothing and so forth. 

Obviously, the possibilities are near endless. An example of a musical instrument is the 

guitar shown below, printed using Selective Laser Sintering (SLS) (a form of powder 

bed fusion). The guitar is made out of Duraform PA, a polyamide (nylon) material. The 

guitar is being sold worldwide with a price of roughly $3300.  

http://www.envisiontec.com/admin/machine_image_large/image1_machine41.jpg
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Figure 3.23. The “Spider LP” 3D-printed guitar. Note the spiders inside the body.  

ODD Guitars (2012). 

 

The possibilities of what consumers will produce using a 3D printer are virtually 

limitless. An application which has garnered considerable interest at the time of writing 

has been three-dimensionally printing a record based on a sound file. This record can 

then be used to reproduce the sound using a conventional record player (not very well). 

The printer used in the project was the Objet Connex 500 (a UV-curing 

photopolymerization printer) with a resolution of 600 dpi (X and Y axis) and 16 

microns for the Z axis. Regrettably, this is not enough to accurately reproduce a vinyl 

record. This partially successful attempt demonstrates a) the ingenuity of the hobbyist 

3D printer operator and b) the relatively low accuracy of the technology compared to 

1950’s manufacturing. (Ghassaei, 2012). 

3.5 Advantages and disadvantages of using additive 
manufacturing 

Chua et al. (2010) categorize the benefits of using additive manufacturing into direct 

and indirect categories. The direct benefits include cost savings in production, the 

ability to increase the complexity of the part without increased cost or lead time, 

reduction of part count and fewer constraints in part design, to name but a few. Stated 

benefits from multiple sources have been combined in table 3.4: 
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Table 3.4. Benefits of additive manufacturing. Compiled from (Chua et al. 2010, Fox & 

Stucker, 2009 and Wohlers, 2012). 

Business area Cost Saving Increase in functionality 

Design  Machining costs eliminated as a 

design consideration 

 Fewer constraints in part design 

Wider variety of possible 

product shapes  

Prototyping  Reduces the likelihood of 

flawed products  

 

Manufacturing  Reduction in: 

 material waste 

 set-up time 

 machines needed 

 Work-in-progress  

Possibility of on-the-spot 

manufacturing  

Marketing  Rapid change in production 

capacity  

Reduction in time-to-market 

Diversity of product offerings 

increased  

Consumer   Lower prices  More customized products to 

suit individual needs  

Logistics   Simplified supply chain   

 

Additive manufacturing is a relatively new technology and there are some drawbacks to 

using it in some situations. A main concern is the build speed which is not comparable 

with traditional machining. Also the build quality may not be suitable for certain 

applications and often parts require postprocessing. Another factor is that the 

technology is relatively new and there is a distinct lack of practical knowledge 

(compared to traditional methods) on the “factory floor”. 

 

Some areas have been highlighted for future research (and thus improvement) by 

academia and industry practitioners. These can be seen in table 3.5. 
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Table 3.5. Additive manufacturing research recommendations.  

From Fox & Stucker (2009), Bourell et al. (2009) and Gibson et al. (2010) 

Design Process 

control 

Materials and 

Machines 

Education and 

community 

  Conceptual 

design methods 

(e.g. Design for 

AM) 

  Easy-to-use CAD 

for non-

professionals 

  CAD systems 

which can handle: 

- multiple 

materials 

- variability 

- - complex 

geometries 

 Predictive 

modelling methods 

 Closed-loop, 

adaptive control 

systems 

 New sensors 

 Better 

understanding of 

underlying 

physics 

 Open-architecture 

controllers, 

machine 

modules 

 Fast line or area 

processing 

methods to 

increase 

throughput 

 Sustainable 

materials: 

- Recyclable 

- Reusable 

- Biodegradable 

 University 

courses, education 

materials, 

curricula for all 

education levels 

 Training programs 

for industry 

practitioners 

 International 

standards 

 

The above table demonstrates the need for improvements throughout the additive 

manufacturing process, from education to materials to process control to better 

hardware. A key part will be improved software to control the production process and 

maintain the product data.  
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4 MOTIVATIONS 

In this chapter, the motivations to implement additive manufacturing technologies in the 

microfactory scale are further explored and justified. An important topic of the thesis 

was finding real justification for combining additive manufacturing with microfactories. 

This chapter can be characterized as the “why” of the thesis, with chapters 5 and 6 

forming the “how” and the “what” respectively. Furthermore, section 4.1 examines the 

production paradigms of the future, section 4.2 deals with the industrial context of 

AM/MF integration based on industry needs, and section 4.3 discusses the role of the 

customer in future manufacturing. 

4.1 Production paradigms 

Returning to the production paradigms introduced in subsection 1.1.(Jovane et al., 

2003), we can see that after the advent of mass production, the emphasis of the 

consumer in product design has been emphasised. Mass production,  famously, 

eliminated the individual customer’s wishes. This is illustrated by Henry Ford’s famous 

remark, “"Any customer can have a car painted any colour that he wants so long as it is 

black." (Ford & Crowther, 1922). This product standardization, in which complexities 

and custom work were avoided and eliminated, resulted in lower costs. However, with 

every successive paradigm, the customer has more and more impact on the product and 

thus the production process itself. 

 

Table 4.1. Production paradigms (Jovane et al., 2003). 

Production paradigm Started 

Craft production  ~1850 

Mass production 1913 

Flexible production ~1980 

Mass customization 2000 

Sustainable production 2020? 
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Table 4.1 presents the production paradigms as listed by Jovane et al. (2003). A case 

can be made for adding the digiproneurship paradigm (also presented in chapter 1) to 

the list. To summarize, digiproneurship uses digital technology to enable 

(geographically distributed) product development. Product information is then 

distributed in a digital form and production happens close to the customer. (Fox and 

Stucker 2009).  

 

An important thing to consider while discussing production paradigms is that they are 

not mutually exclusive, but tightly integrated with specific products, industries, 

geographic regions, etc. This means that future manufacturing will not consist of one 

overarching holistic paradigm, but many different ones coexisting and overlapping. I 

propose three main paradigms of future manufacturing: mass customization, sustainable 

production and digiproneurship. The mass customization paradigm represents the needs 

of consumers to have individually tailored products, while sustainable production is a 

necessity driven by ecological, economic, societal and political factors. Finally, 

digiproneurship (or ubiquitous production) takes into account the increasing digitization 

of manufacturing data and the tendency of modern consumers to be active remixers and 

curators of content.  

 

After briefly analyzing each future paradigm, some essential requirements have been 

found. These requirements have been collected in the table below, along with some 

implementations which respond to the requirements. 

Table 4.2. How paradigm requirements can be answered. 

Production paradigm Requires Implemented by 

Mass customization Flexibility Modular production systems 

Rapid reconfigurability 

Customer intentions  

Sustainable 

production 

Energy saving Miniaturization 

Recycling Traceability 

Digiproneurship Distributed production systems  Small-scale production  

equipment 

Distributed product development  Product development 

software 

 

Collectively, the manufacturing requirements are solved by modularity, 

reconfigurability and miniaturized production equipment. It is evident that 

microfactories possess these characteristics and thus are eminently suitable for future 
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production paradigms. Customer requirements are solved by software development, 

which allows the customer to communicate, refine and monitor their product wants and 

needs. 

 

This chapter has attempted to identify the future paradigms and to determine how they 

can be implemented successfully. The implementation requirements are twofold: 

miniaturized production systems and increased reconfigurability (i.e. flexibility). An 

important caveat is the parallelism of paradigms presented in chapter 1, which means 

that paradigms can and will coexist: in practice, this means that the future production 

paradigms are not applicable to the low-cost, low value added, mass produced products 

of today. 

4.2 Industrial context 

What drives the evolution of a new technology in a production process? Certainly, new 

technologies often have significant benefits (cost saving, increasing functionality) but 

also overcoming the inherent drawbacks is an important driver for research and 

development. Thus it is wise to analyse both the benefits and shortcomings of a 

particular technology to find potential research areas. 

 

Nurmi (2012) states that there are three potential business areas for miniaturization of 

production equipment (i.e. microfactories): the traditional supply chain, relocating 

production further downstream and on-the-spot manufacturing. The traditional supply 

chain is further subdivided into five distinct categories in the product lifecycle, from 

raw material production to finishing and inspection. Production relocation is comprised 

of on-the-fly (on-the-way) manufacturing, storage and wholesale, and retailing. Finally, 

on-the-spot manufacturing consists of production at the point of ordering and entirely 

new applications (in this thesis, on-the-spot manufacturing is included in the consumer 

context). 

 

Nurmi also illustrates some motivations for adopting microfactory technology in these 

business areas. For the traditional supply chain, the main drivers are reducing costs (by 

lowering energy consumption, facility costs, etc.) and enabling new product 

characteristics. Cost reduction is also a driver in the production relocation business area, 

along with add-on sales (enabled by customization and fast delivery) and enabling new 

product characteristics (for fragile or perishable products). For on-the-spot 

manufacturing, microfactory technology might be critical in enabling the entire 

business. 

 

Additive manufacturing benefits by various authors were listed in table 3.4. To reiterate, 

benefits were envisioned throughout the production process from design to logistics. 
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These benefits were further categorized into cost saving and increasing functionality  by 

the author. Below, in table 4.3, these benefits are combined and sorted by business area. 

 

Table 4.3.  Drivers of both microfactory and additive manufacturing technologies 

(Nurmi, 2012, with additions by the author). 

 

Looking at table 4.3, the main interest in microfactories is threefold: energy saving (and 

sustainability in general), cost reduction (which overlaps with sustainability) and 

enabling additional production opportunities or business models.   

Table 4.4. Challenges of both microfactory and additive manufacturing technologies 

(Nurmi, 2012, with additions by the author). 

Business area  MF challenges  Additive manufacturing 

challenges  

Traditional 

supply chain  

Size only a secondary sales 

argument for most industrial 

customers 

Lack of commercial components 

Lack of examples 

Attitude of production engineers 

Cleanroom standards do not support 

local cleanrooms  

Material properties 

Finishing  

Sustainability  

Processing speed 

On-the-way 

 production  

Small systems are more sensitive to 

external issues, thus practical issues 

decrease accuracy  

Unknown 

On-the-spot  

production  

1) Difficulty of use  

2) Business case 

1) Difficulty of use 

2) Process parameters 

3) Speed 

4) Cost 

Business area  Microfactory benefits Additive manufacturing benefits 

Traditional 

supply chain  

Cost reduction 

Enabling additional product 

characteristics  

Production enhancement 

Decreased time-to-market 

Enabling additional product 

characteristics 

Cost reduction: 

- Material savings 

- Simplified supply chain  

On-the-way 

production  

Cost reduction 

Enabling additional product 

characteristics  

Unknown 

On-the-spot 

production  

Enabling business opportunities  Enabling production 
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Table 4.4 shows that one of the main challenges for microfactories is the lack of 

examples of industrial systems. In effect, this means the low market penetration of 

microfactories is a direct barrier for further adoption. This is a vicious cycle: the lack of 

adoption in industry leads to a lack of suitable components which leads to a lack of 

systems. An important question thus arises: how can the adoption rate be increased? 

One solution is to increase the capabilities of microfactories by implementing new 

functionality in microfactory-sized modules. Another is to raise awareness among 

production engineers, students and the general populace.  However, in the end, the most 

effective strategy is that of the bottom line: maximizing ROI and productivity in 

industrial settings.  

4.3 Consumer context 

Consumers can function in two different ways in today’s economy: a) as “traditional” 

end-users of products and b) as producers, remixers and curators of content. While not 

novel (end-users of the 1800’s were surely also equipped to make personalized 

products), the internet has amplified this effect. This has been evident in various 

business areas, most importantly software. One could argue that the rise of the “app 

store” model is a business strategy designed to harness the creative power of modern 

consumers. In addition, the rise of crowdfunding (e.g. Kickstarter and similar services), 

peer production and digital model sharing services (e.g. Thingiverse) demonstrate how 

modern consumers are acting in a more interactive manner. 

 

Fox and Stucker (2009) state that developments in advanced manufacturing and 

materials (additive manufacturing is listed as a “great aid” to aMM) make it possible to 

radically reduce the consumption of non-value adding resources when creating 

products. Also an important factor is the radical reduction in the size of production 

facilities, which enables on-the-spot production (detailed in chapter 4).  The authors 

present three categories of business opportunities (individual person, business-to-

business and business-to-consumer) with corresponding future opportunities in Design, 

Production of physical products and production of integrated physical components. For 

example, the business-to-consumer physical product opportunity is a customized 

toothbrush printed at the dentist’s while the customer’s teeth are being cleaned (Fox & 

Stucker, 2009). 
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5 TECHNICAL ANALYSIS 

This chapter outlines some possible technical solutions to give a general idea of how 

these ideas might be realized in the future. If there are existing solutions available, these 

are presented to provide context and validation.  This chapter is divided into four 

subchapters, each dealing with a different technology. Some of the themes of this 

chapter are also further elaborated on in Chapter 6. 

 

To be able to accurate judge the feasibility of implementing various technologies and 

functionalities in the microfactory concept, some definitions of that concept are 

required. Since the literature on the subject differs widely, I have used my own 

definitions of a modular microfactory (based on the TUT microfactory concept). These 

restrictions are presented in table 5.1 below. 

 

Table 5.1. Microfactory attributes. 

Attribute Requirement 

 Module weight Less than 25kg 

Module dimensions Smaller than 

500x500x500mm 

Accuracy 

(manipulation) 

Better than 1mm 

Feature size Better than 1mm 

Power consumption Less than 1 kW 

Product size  Smaller  than 

250x250x250mm 

 

Obviously these values are closer to guidelines than firm restrictions. Even if only the 

actual production cell is microfactory sized and the additional equipment such as control 

cabinets. occupies 4-5 times the volume elsewhere (under the table), many of the 

benefits of a microfactory can be realized. For example, the physical layout of the 

system can often be changed without moving the additional equipment. However, it is 

best to primarily design systems with as small a physical footprint as possible. 

Many advantages of miniaturizing production equipment were listed in chapter 2.3. 

However, when processes are miniaturized there are also some challenges to overcome. 

The author has listed some of these in table 5.2. 
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Table 5.2 Challenges of miniaturization 

Domain Challenges 

Spatial   Difficult to fit cabling, pneumatic systems in small space 

 Accessory equipment (compressor, chiller) is often not 

miniature or miniature equipment has reduced performance 

Process   Difficult to disperse heat 

 Material handling with small equipment can be problematic 

 Implementation and automation of post-processing may be 

challenging 

Construction   Difficulty of finding suitable parts (e.g. motors with high 

torque and low revolutions, as in chapter 2.3) 

 Cost of miniature parts may be prohibitive 

 Balancing between lightweight frame and heavy frame: light 

frame benefits transportation, reconfiguration and 

construction costs while heavy frame benefits process 

control (lessens vibration) 

 Small process area size reduces the size of the part 

Human factors  Parts may be difficult to manipulate manually 

 Process monitoring may strain eyesight 

Economic  Less ROI from smaller machines than larger ones  

 Benefits of miniaturization might not outweigh the costs in 

all cases 

 

In the additive microfactory case, the most critical of these from a business standpoint is 

the small process area, which reduces the size of the parts which the machine can 

produce. If the same process equipment (laser / Cartesian axis system) is used in a larger 

and a smaller machine, it is possible that the smaller machine will be more expensive 

and produce smaller parts with no benefit to accuracy or finish. This means that the 

benefit must be in the small form factor, which increases portability and makes securing 

the process area easier.   

5.1 Extrusion 

Implementing extrusion-based additive manufacturing in almost any microfactory 

concept should not be very challenging, as there are several consumer- and industrial 

machines which are already microfactory-sized. Thus, the main challenge from a 

development standpoint would be integrating the additive manufacturing process (i.e the 

additive manufacturing cell) with the various other cells in the microfactory (if we are 

considering a modular microfactory). Another worthwhile area of research would be 
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process monitoring, i.e. how control systems can monitor and automatically correct the 

build quality without human intervention. 

 

 

Figure 5.1. The 3D Systems CUBE personal printer. (3D Systems Inc., 2012a). 

 

An example (along with the already presented RepRap and  Ultimaker) of a 

microfactory-sized extrusion machine is the Cube, made by industry leader 3D Systems 

Inc. The Cube has a maximum build area of 140 x 140 x 140 mm and it weighs only 4.3 

kg. The printing material is supplied in cartridges sold by 3D Systems. The cost of the 

device is around 1300 USD. An important part of the offering is the Cubify web store, 

detailed in subsection 5.4. (3D Systems Inc., 2012a).  

 

A practical implementation of extrusion-based additive manufacturing in a microfactory 

would almost certainly use a XY Cartesian structure to move the extruder and a 

leadscrew to move the build platform in the Z-direction. Part handling could be 

implemented by using the TUT H-SCARA robot (section 2.2) in an adjacent cell. The 

robot has a large work area in the Y-dimension allowing it to handle parts in other cells. 

A concept based on this is modelled in chapter 6. 

5.2 Photopolymerization 

Implementing photopolymerization in the microfactory-scale is an attractive proposition 

due to the high resolution and relatively low cost of the technology. The author has 

observed that in effect, most of the research and development “cost” have been in 

developing a suitable material for photopolymerization, while the machine is relatively 

simple (1 moving axis, a laser source and a laser scanner). Validating the sensibility of 

the implementation concept, at least two microfactory-size photopolymerization devices 

have been introduced within the last two years (one of them commercial).  
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In 2009, researcher Klaus Stadlmann of TU Wien decided to implement the “world’s 

smallest 3D printer”, shown in figure 5.2. The build volume of the printer is 20 x 30 x 

50 mm and it weighs 1.2 kilograms. The researchers have suggested a price of around 

1200 euros for the device. Currently, no models are for sale. (TU Wien 2011, Stadlmann 

2011.)  

 
Figure 5.2. The “World’s smallest 3D printer” developed at TU Wien. (TU Wien, 

2011). 

On a more commercial note, the American company Formlabs Inc. have announced 

their first product, the Form1 in September 2012 (shown in figure 5.3). The Form1 is a 

“prosumer” printer with a build volume of 125 x 125 x 165 mm using 

photopolymerization. The Form1 uses a proprietary gray-colored resin and the company 

intends to develop and sell more materials in a variety of colors and flexibility. The 

company is pre-selling the device at c.a. 1800€ via Kickstarter. Both Formlabs and 

Kickstarter have subsequently been sued by 3D Systems in November 2012 for alleged 

patent violations related to the simultaneous curing of multiple layers (BBC News, 

2012). 
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Figure 5.3. The Formlabs Form1. (Formlabs, 2012). 

 

Considering the examples above, it seems that photopolymerization is suitable for 

microfactory-sized applications.  Integration into an (automated) microfactory, 

however, would require research and development, as none of the presented machines 

provide means for automated control or material flow. The author concludes that 

profitable commercialization opportunities as well as viable research avenues exist, 

although these may be limited by patents. 

5.3 Beam deposition 

Beam deposition offers many interesting applications for microfactory-sized products. 

The main drawbacks of slow processing speeds mitigated by the small part size. Also, in 

a modular microfactory, the possibility of postprocessing the parts within the 

microfactory is not unrealistic. This could even be done with some degree of 

automation.  

 

A distinct possibility would be to use a coaxial laser (e.g. the CAVIPRO laser presented 

in section 3.3.6.) in conjuction with the TUT microfactory module. The weight of the 

laser is only 2 kg, which is not too heavy for microfactory applications. However, as 

microfactories such as the TUT microfactory concept rarely have that degree of 

manipulation capability, the laser would have to be fixed and the workpiece 

consequently mobile. A conceptual model of this idea is presented in chapter 6. 
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5.4 Powder bed fusion 

Implementing a full-featured PBF process within the constraints of a microfactory cell 

seems to be problematic. The nature of the process, with its roller and vertically moving 

bed, makes it difficult to fit into the small size of a microfactory. However, ReaLizer 

GmbH from Germany is selling the SLM 50, which is a tabletop-sized powder bed 

fusion machine. The machine weighs 80 kg and has outer dimensions of 800 x 600 x 

500 mm. The build volume is 70mm in diameter with a maximum height of 40mm. The 

machine is aimed at dental and jewelry applications and is priced at 120000€. (Realizer, 

2012, Wohlers, 2012). 

 

An idea which arose out of discussions with researchers at TUT is a movable powder 

bed concept. Here the powder bed (including roller, reservoir and control systems) is a 

distinct component and can be paired with any laser to obtain the necessary process 

parameters. The powder bed could control the process (including the laser) via any of 

several communication options. The ideal size for the movable device would be in the 

range of 500 x 300 x 300 mm (L x W x H). 

 
Figure 5.4. Standalone powder bed concept illustration. 

The concept is aimed at reducing the setup times of laser processes while 

simultaneously offering a mobile setup to ensure optimal laser parameters can be 

obtained while producing parts. For example, with an easily movable setup, several 

lasers in geographically diverse locations can be tested.  
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6 PROPOSALS 

To respond to the needs of future production and reap the benefits of AM/MF 

technology, some steps must be taken. This section lists some promising ideas which 

occurred to the author during the thesis process. Some concepts have been modelled and 

are shown in their respective sections. The models are provided for demonstration 

purposes only and have not been realized, validated or verified in any way. Commercial 

solutions provided some insights for the concepting process. Some issues which 

couldn’t be modelled or demonstrated within the scope of the thesis include the control 

software, usability aspects and internal (within the microfactory) or external (to other 

devices) integration. These are interesting topics and well worthy of research and 

development in the future.  

6.1 Production equipment 

As exemplified by many cases in literature, additive manufacturing can be a valuable 

tool to enhance the product development process. However, to reiterate, the speed and 

accuracy of processes can prove problematic. Thus, a system combining both traditional 

machining and additive capabilities is desirable, such as the Mebotics Microfactory. 

 

Figure 6.1. Mebotics Microfactory (Mebotics, 2013). 

 

The Mebotics microfactory, shown above in figure 6.1, consists of a enclosure 

containing the build platform, print heads, milling tool and control computer. The print 

heads and milling tool have a Cartesian work envelope. The milling tool can be used for 
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both milling and etching and the standard spindle has 300 W of power. The machine can 

print in two materials or four colors at the same time (Mebotics, 2013). 

 

While it is surely more than adequate for consumer (i.e. hobbyist) use, the Mebotics 

microfactory could be improved for industrial purposes. Revisiting the microfactory 

concepts introduced in chapter 2, we see that assembly capabilities and modularity have 

been heavily researched and demonstrated. In the author’s opinion, these two attributes 

are critical for any industrial microfactory concept incorporating additive 

manufacturing. In this context, assembly capabilities mean that the system can 

manipulate individual parts in an automated manner and perform the desired joining 

operations, among other automated tasks. This has been successfully demonstrated by a 

variety of modular microfactories, as can be seen in Chapter 2. 

 

 

Figure 6.2. Modular microfactory concept consisting of a laser scanner module, H-

SCARA robot module and AM extrusion module. Some parts are not shown. 

 

To illustrate some of the potential benefits, a theoretical concept has been modelled 

above in figure 6.2. This system incorporates three TUT microfactory modules: a laser 

scanner module for marking parts, an H-SCARA robot module (presented in subsection 

2.2) to manipulate parts and finally an additive manufacturing extrusion module for 

printing plastic parts. The robot could transfer completed parts from the extrusion 

module to the laser scanner module for marking. For example, a barcode or a QR-code 

could be inscribed on the part directly after manufacturing for a variety of purposes. 

 

While lasers have been used often in the context of industrial additive manufacturing 

machines, they are still rare in consumer devices (and hence in microfactory-sized 
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modules). Some exceptions were introduced in the previous chapter. This subsection 

introduces some concepts for future laser additive manufacturing in microfactories. 

 

There are many benefits for implementing laser AM in a modular microfactory. A key 

factor is safety considerations: the area which needs to be secured using laser-resistant 

materials is very small. This also lessens the expenditure of any gas used in the 

manufacturing process. If the process requires a cleanroom the small volume also 

reduces costs. Obviously the other benefits of modularity and small-sized production 

equipment (listed in chapter 2) are also fully applicable in this context.  

 

Some drawbacks are the small build volume which of course means that part sizes will 

be quite small. Another is managing the excess heat from the process which could have 

an adverse effect on the part and the production system in such a small area. 

Additionally the laser chiller and power source can be quite large depending on the laser 

used in the process. While these can be situated nearby, e.g. underneath work surfaces, 

they might still hinder the portability and reconfigurability of the system. 

   
Figure 6.3. Some conceptual models for TUT microfactory modules.  

Left: Coaxial laser module for beam deposition. 

 Center: Laser scanner module for photopolymerization. 

Right: Powder bed fusion module. Some parts omitted for clarity. 

 

Figure 6.3 above shows three conceptual models of potential applications  for the TUT 

microfactory: a coaxial laser module for beam deposition, a laser scanner module for 

photopolymerization, and a powder bed fusion module (shown here without a laser 

source). The modules are presented without material feeding or chilling equipment.  

 

The coaxial laser module could be used to fabricate new parts but also coat or repair 

existing parts. Here the laser device itself is fixed which limits the part size (as the build 

plate would have to move in the X,Y and Z directions within the confines of the 

module). Moving the laser in the X and Y dimensions would make the build volume 
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much larger but would then necessitate the need for a system to move the laser, which 

would be challenging to implement in the small size of a microfactory (due to the mass 

of the laser and the precision required). The coaxial laser uses powder or wire feeding. 

 

The photopolymerization module shown in the center of figure 6.3 uses a laser scanner 

to harden the top layer of the liquid resin in the vat. Since the scanner can project a laser 

beam to any XY coordinates in its work envelope, the laser apparatus is stationary. Only 

the build plate moves in the Z-direction. This module is similar to many commercial 

products on the market today and could be used for prototyping and lightweight part 

construction. 

 

The powder bed fusion module (figure 6.3, right) could be used to fabricate small-scale 

metal parts. No laser source has been shown as the required laser power is highly 

dependent on the material used. In some eventualities the module could even be used in 

a similar manner to the powder bed fusion concept illustrated in figure 5.4, i.e. it would 

be physically moved next to a laser device with the required power. If developed 

further, this module could be used in conjunction with other microfactory modules to 

produce jewelry or similar products even in the store. 

6.2 Production concepts 

Different production paradigms were presented and analyzed in chapters 1 and 4. 

However, new production equipment and workflows often result in new paradigms and 

products. Possible concepts and products relating to the AM/MF technical convergence 

are presented in this chapter and the next chapter. 

 

A recent trend in production has been the significant growth of DIY or hobbyist 

production, as illustrated in chapter 3.4.3. A strong continuation of this trend may well 

lead to an increase in materials, machinery and product data suitable for home 

production. The additive microfactory is an ideal concept for this paradigm as it allows 

easy automation of production processes and allows for scaling the production quickly. 

In addition, all forms of metal manufacturing are presently underrepresented.  

 

Moving from the domicile-level to the municipal level, AM microfactories might 

provide a boost to all forms of bespoke manufacturing. For example, when a customer 

purchases a car, some of the customization might be done in the dealership based on the 

customer’s measurements. This is an easy way to add value: customer engagement is 

increased and the customer gets a better product. This can be applied to any reasonably 

modular product, such as golf clubs, mobile phones, televisions, etc. As the knowhow 

required to manipulate product data and production equipment decreases, the barriers to 

this type of business will become significantly lower. 
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The next few decades will also mean changes in all types of production systems. An 

exciting concept is an automatically reconfigurable production system, which can 

generate fixtures and tooling automatically based on the desired product. On a whole 

different level, automatically generated process plans and physical configurations can 

be envisioned. An ideal automatic reconfigurable production system will probably be 

modular, with module size and interconnectivity being critical issues. Also, additive 

manufacturing is one of the easiest ways to construct custom fixtures, grippers and parts 

even today, so it is very likely that it will play a critical role in these types of systems. 

6.3 Products 

In the future, the way we view products will change. Mass production will have to adapt 

to the demands of customers who are used to an entirely different level of 

personalization in their purchases. Customization and personalization are trends which 

will become dominant in consumer goods over time and this means modularity and 

flexibility in production processes, workflows, product data and product architecture.  

 

The rise of the “Internet of things” also leads one to imagine a future of smart products, 

which can access the internet autonomously in order to perform tasks for the end-user 

and the producer. Something similar to this already exists in jet engines and certain cars, 

and the paradigm will probably extend further in the years to come. This might lead to 

more refurbishing and local production of products.  

 

When production methods and systems become automated enough, designing new 

products becomes more a matter of aesthetics than of engineering. Obviously people 

will design (and manufacture) their own, unique products in the future, but there is also 

a possibility to have procedurally generated products. This means that the product 

specifications and data are generated automatically and the actual product is 

manufactured by request. We are already seeing hints of this in online clothes retailing 

today. 

 

In conclusion, production systems as we know them are facing massive changes as we 

head towards 2020 and beyond. Only time can tell which paradigms and concepts will 

emerge as dominant ideas on the world manufacturing stage, but it seems certain that 

additive manufacturing and microfactory-sized production will play a large if not 

critical part in future production on a local, national and international level. This is an 

area of research with many possibilities especially concerning the process, automation 

and production data areas of the technologies involved and hopefully in the future we 

will see some progress made in these areas. 
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7 CONCLUSIONS 

In the introductory chapter, three research questions were defined that this thesis 

attempted to answer. This final chapter summarizes the answers to the questions one-

by-one and ends on some general remarks by the author. 

RQ1: What is the current state of both microfactory and additive manufacturing 

technology? 

 

This question was answered in chapters 2 and 3. It is evident that both technologies are 

maturing rapidly and have potential for future success. While additive manufacturing is 

the more known of the two, it is merely a production process while microfactories are 

essentially a radical disruption of the traditional mass production concept.  

 

RQ2: What are the motivations and benefits of integrating additive manufacturing into 

microfactories? 

 

To justify the direction and motivations for the research, existing and future 

manufacturing paradigms were analyzed in Chapter 4. Mass customization and 

sustainable production were proposed by Jovane et al. (2003) and to account for the 

emergent trend of peer production, the new digiproneurship paradigm proposed by Fox 

& Stucker (2009) was included in the analysis. The principles of the paradigms were 

examined to obtain the requirements, resulting in the table below. 

Table 7.1. How paradigm requirements can be answered (Chapter 4.) 

Production 

paradigm 
Requires Implemented by 

Mass 

customization 

Flexibility 
Modular production systems 

Rapid reconfigurability 

Customer intentions  

Sustainable 

production 

Energy saving Miniaturization 

Recycling Traceability 

Digiproneurship 
Distributed production systems 

 Small-scale production  

equipment 

Distributed product development  Product development software 
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To respond to the requirements, some technical solutions are required. Based on the 

above table, we see that microfactories are a valid solution for these challenges. 

However, as chapter 4 clearly stated, there are some barriers(technological and 

business) to microfactory adoption for large-scale production operations. Incorporating 

additive manufacturing could prove valuable in increasing the attractiveness of the 

technology to potential investors. 

 

RQ3: Which additive manufacturing technologies are suitable for implementation in a 

microfactory? 

 

Based on the technology analysis done in chapters 2 and 3, four additive manufacturing 

processes were selected as promising candidates for implementation in microfactories. 

They were: extrusion, vat photopolymerization, beam deposition, and powder bed 

fusion. The excluded technologies (printing, sheet lamination) are, in the author’s 

opinion, not sufficiently developed for integration at the present. All of the selected 

technologies had already been implemented at near microfactory-size in some form or 

another. However, powder bed fusion was considered to be challenging to implement in 

microfactory-size, as demonstrated by the high cost of the ReaLizer SL50 (chapter 5.4).  

 

Chapter 6 illustrated the four selected additive manufacturing processes as TUT 

microfactory modules. While the module implementation was not verified, the 

commercial applications in the same size (as seen in chapter 5) are a good indicator of 

the technical viability of the modules. The modules could be connected to a wider 

production system also consisting of modules, however a degree of work would be 

required to examine the hardware and software needs of any sort of automation. Once 

these requirements are solved, the system would be quite flexible and have a wide 

variety of capabilities, from traditional machining to assembly operations to additive 

manufacturing and beyond. 

 

During the thesis process, the idea of implementing additive manufacturing in 

microfactories was validated by both the author’s own research and a commercial 

implementation (see chapter 6.1). However, a true industrial and/or modular concept (as 

demonstrated in chapter 6.1 by the author) has yet to be realized. While the idea remains 

attractive, significant research and development is required before a real-life prototype 

could be realized. Production and research trends are driven by megatrends more than 

most research and development and it remains to be seen if the drive for sustainability, 

customization and distributed production will lead to a widespread adoption of 

microfactories capable of additive manufacturing. 
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