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 The world of wireless communications is governed by a wide variety of the standards, 

each tailored to its specific applications and targets. The IEEE802.11 family is one of 

those standards which is specifically created and maintained by IEEE committee to im-

plement the Wireless Local Area Network (WLAN) communication. By notably rapid 

growth of devices which exploit the WLAN technology and increasing demand for rich 

multimedia functionalities and broad Internet access, the WLAN technology should be 

necessarily enhanced to support the required specifications. In this regard, 

IEEE802.11ac, the latest amendment of the WLAN technology, was released which is 

taking advantage of the previous draft versions while benefiting from certain changes 

especially to the PHY layer to satisfy the promised requirements.  

This thesis evaluates the feasibility of software-based implementation for the MIMO 

transmitter baseband processing conforming to the IEEE802.11ac standard on a DSP 

core with vector extensions. The transmitter is implemented in four different transmis-

sion scenarios which include 2x2 and  4x4  MIMO  configurations,  yielding beyond 

1Gbps transmit bit rate. The implementation is done for the frequency-domain  pro-

cessing  and  real-time  operation  has  been achieved  when  running  at  a  clock  fre-

quency  of  500MHz.   

The developed software solution is evaluated by profiling and analysing the imple-

mentation using the tools provided by the vendor. We have presented the results with 

regards to number of clock cycles, power and energy consumption, and memory usage. 

The performance analysis shows that the SDR based implementation provides improved 

flexibility and reduced design effort compared to conventional approaches while main-

taining power consumption close to fixed-function hardware solutions. 
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1. INTRODUCTION  

In this chapter, the history of the wireless communications and Wireless Local Area 

Networks will be reviewed. Furthermore, the motivation and scope of the thesis will be 

described. In the final part, the rest of thesis will be outlined. 

1.1. Background and Motivation 

Wireless communications has always been a part of people’s lives throughout the ages. 

Starting from simple speech to fire and smoke, humankind has been always trying to 

invent different ways to communicate over long distances. In the beginning of 19
th

 cen-

tury, with the help of science, more sophisticated communication methods were devel-

oped e.g. telegraph.  

In the end of 19
th
 century, the wired communications era was revolutionized by in-

venting telephone. Although, wired communications systems provide reliable, high in-

formation transmission rate over long distances, it always suffers from the limitation by 

wires. That limitation makes the idea of wireless communications more attractive. At 

first, because of the costs and complexity of electronics devices, the wireless/radio 

communication was mainly used in the military and broadcasting applications. Then, in 

the beginning of the 1990s, the first digital cellular networks working on Global System 

for Mobile Communications (GSM) were built. After that, the extremely increasing rate 

of mobile devices led to widespread use of mobile in the developed and developing 

countries.   

However, wireless communication is one of the most vibrant areas in the communi-

cations field. Since the 1960’s when the wireless communications became as an area of 

research interest and wired communications found limited, it has been exposed by a 

surge of improvements, research activities, and novelties. During the recent years, this 

field has been considerably developed due to several factors. First of all, explosive 

growth in the number of users whose demand for seamless service/connection has 

changed the wireless communication and even introduced new objectives. Besides, the 

intense progressive trend of the VLSI technology has allowed more complex systems to 

be integrated on a silicon chip. Meanwhile, the sophisticated signal processing methods 

have been supported by the fairly developed VLSI architectures to implement the novel 

algorithms in low power and low cost techniques [1, 2]. 

As the wireless communications systems have been increasingly involved into the 

many aspects of our daily lives, they have experienced much faster improvement rather 

than the rest of communications science. Furthermore, in the recent years, the word 

PORTABLE has introduced new features into the communication fields and devices. 
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Obviously, the conventional wired communication networks were not able to provide 

the connection along the mobility; therefore, the Wireless Local Area Network 

(WLAN)/Wi-Fi protocol was invented which was the sole practical solution to wireless 

connectivity in indoor environments. 

For the first time, in 1997, the Institute of Electrical and Electronics Engineering 

(IEEE) introduced a new family of the communication standards titled IEEE802.11 for 

the WLAN systems. Due to the rapid growth and popularity of the wireless handheld 

devices, the wireless communication standards have been extremely developed during 

the past decade. However, more reliable, low power, low cost connections are also seen 

as crucial aspects to be supported by the WLAN standards.  

Until now, the WLAN standard has substantially changed as new theory and imple-

mentation methods evolved; therefore several amendments have been released to correct 

or extend the previous versions such as IEEE802.11a and 802.11b. Essentially, the 

IEEE802.11 standards are described based on Physical (PHY) and Medium Access 

Control (MAC) layers. The MAC layer provides the functionalities to allow reliable 

data transmission, whereas the PHY features are used to govern the transmission and 

reception procedure [3]. 

Nowadays, a widespread application of the WLAN devices in the everyday life is 

witnessed; moreover, the increasing demand for higher speed connection and data 

throughput results in the new version of the IEEE802.11 called 802.11ac whose PHY 

and MAC features enhanced the throughput up to 6Gbps. It is worth mentioning that the 

most part of this improvement is made by the PHY features which are also the main 

focus of this study [4].  

The IEEE802.11ac amendment actually overcame the limitations in the previous 

standards. The employment of wider bandwidth, Multiple-Input Multiple-Output 

(MIMO) transmission, higher number of spatial streams, and greater modulation size all 

together delivered the next leap in the performance of the Wi-Fi technology.  

Another side of the wireless communications world is user equipment, such as mo-

bile devices and modems which are also evolving, in their turn, in different features and 

functionalities. A clear majority of the current wireless devices are based on the imple-

mentation of the baseband digital signal processing algorithms in the Application Spe-

cific Integrated Circuits (ASIC) [5]. Although ASIC circuits allow sufficiently fast pro-

cessing, they are fixed function which means they are not reconfigurable. On the other 

hand, as the number of communication standards and implementation algorithms con-

tinue to grow, the hardware implementations techniques moderately suffer from the lack 

of adaptability and compatibility to the new technologies. Particularly, the conventional 

modem designs are implemented in the silicon/semiconductor technology. With a new 

release, the previous designs are not mostly worth to be redesigned to accommodate the 

new specifications, as they would need expensive and time consuming procedures. 

Therefore a revolutionary method called Software Defined radio (SDR) technology in-

troduced whose components that have been typically implemented in hardware are in-

stead implemented using embedded devices or DSP cores. In fact, SDR aims to address 
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the fixed-function implementation difficulties by exchanging the fixed hardware im-

plementation with a fully programmable platform [6, 7]. This programma-

ble/configurable platform could be General Purpose Processor (GPP), Field Program-

mable Gate Array (FPGA), Digital Signal Processor (DSP), or any combination of 

them. 

Software Defined Radio PHY layer wireless modems can be considered as the new 

trend in the field of wireless communications. In contrast with the dedicated hardware, 

the software based implementation can be easily modified to implement a wide variety 

of standards on the same platform. The usage of the software based solution results in 

flexibility, ease of design, time-to-market, and cost savings due to use of a single plat-

form. However, the main concern is obtaining sufficient performance which can be 

achieved by having parallelism in the configurable platforms. The next issue is the en-

ergy efficiency in the fixed-function solutions which is not vincible by programmable 

SDR, thus the main aim is to improve the energy efficiency of the SDR solutions as 

close as the fixed-function methods. Although SDR solution would not reach the ideal 

case, if the gap is rational, then the cost savings in design will make the SDR solution 

desirable. Basically, making vector parallelism explicit in the programming is the key 

requirements of the SDR solution [8].  

1.2. Scope of the Thesis  

In this thesis, the feasibility of software based implementation using Very Long Instruc-

tion Word (VLIW) processor for the real-time operation of IEEE802.11ac transmitter 

full PHY layer baseband processing in four different transmission scenarios which in-

clude 2x2 and 4x4 MIMO configurations is addressed. As the processing platform, 

stemming from the requirements for very fast processing of huge amounts of data with 

transmission bit rates in the order of 1Gbps, the customized VLIW processor with vec-

tor processing capabilities is used. Such a software based implementation, if found fea-

sible, can offer highly improved flexibility, much faster time-to-market, and highly im-

proved possibilities to bringing in new transmission features and enhancements. In this 

project, the software development has been collaborative effort which leads to such an 

implementation capable of providing a huge part of the IEEE802.11ac requirements. 

In the existing literature, a clear majority of the WLAN device implementations are 

fixed-function hardware based solutions [9]. In recent reports,  some  contributions  

have  also  been  made  towards  the software  defined  radio  concept [11]. However, in 

some works [11]-[14], only selected parts of PHY or MAC layer are typically targeted 

while other processing still relies on dedicated hardware.   

1.3. Outline of the Thesis 

The rest of thesis is organized as follows:  
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Chapter 2 presents the basics of the IEEE802.11 standards including both PHY and 

MAC layers. In the proceeding chapter, the 802.11ac and 802.11n amendments are also 

described in details. 

Moreover, in Chapter 3, an overview of the vector processor in the various aspects 

such as architecture, pros and cons are given. In addition, the employed processor and 

some of its main features are also described.  

In Chapter 4, a detailed description of the selected transmission scenarios of 

IEEE802.11ac standard is given. Furthermore, the software development environment 

and some of the employed optimization approaches are introduced. 

The implementation results and analysis of the transmitter in the terms of power and 

energy consumption, clock cycle and memory usage are then provided in Chapter 5. 

Finally, Chapter 6 appends some concluding remarks to the thesis. In addition, the fu-

ture status of the project will be also stated.  
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2. IEEE802.11AC STANDARD 

In this chapter, all the Wireless Local Area Network (WLAN) standards belonging to 

the IEEE802.11 family will be reviewed. The general Physical (PHY) and Medium Ac-

cess Control (MAC) layers features of this family are also described. The main dis-

cussed standard is the latest released called IEEE802.11ac, which is also referred to as 

the Very High Throughput (VHT); all the features related to these standards are also 

presented.      

2.1. Overview of the IEEE802.11 Standards 

The history of the IEEE802.11 standard dates back to 1997, when IEEE released the 

first wireless networking standard, the IEEE802.11 WLAN standard [15]. As it can be 

realized from its name, it belongs to the popular group of the IEEE802.x standards, such 

as IEEE802.3 standard for Ethernet and IEEE802.15 for Wireless Personal Area net-

works (WPANs) [16]. In fact, it can be said that IEEE802.11 WLAN specification was 

written to extend the functionality provided by 802.3 Wired LAN standard [17]. The 

IEEE 802.11 standard determines a set of Physical layer and Medium Access Control 

specifications to implement the WLANs communication systems in different frequency 

bands [18, 19]. Basically, until 1997, the major constraint for spreading the WLAN 

technology was the low penetration of the devices working based on the wireless tech-

nology. Since the popularity of wireless devices such as laptops and cell phones has 

increasingly risen, the number of users who want to access the internet not only in their 

offices but also in the other locations like restaurants, airport and shopping centers has 

also risen up, significantly. As a result, the WLAN technology has to be updated to ful-

fill the increasing demand for WLAN connection. 

 The IEEE802.11 was the basic version of the WLANs communication systems; 

therefore different amendments were released to extend or correct the previous specifi-

cations. The first released version of the WLAN standard family was IEEE 802.11a, but 

the first broadly accepted version was IEEE 802.11b (July 1999) which used the 

2.4GHz frequency with 20MHz bandwidth and provided up to 11Mbps data rate. Until 

2003, the main wireless protocol was IEEE 802.11b, but in order to achieve higher data 

rate another version was presented and authorized named IEEE 802.11g. From the oper-

ation frequency, bandwidth and number of spatial streams point of views, the IEEE 

802.11b and 802.11g standards were similar, but IEEE 802.11g was using a new modu-

lation scheme, namely, Orthogonal Frequency Division Multiplexing (OFDM), which 

resulted in up to 54 Mbps data rate. It was also compatible to IEEE802.11b, which was 

a novel feature in that time. 
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Then in 2009, the IEEE committee introduced and rectified a new version of WLAN 

standard, called IEEE802.11n, which brought new concepts into the wireless communi-

cations world. For the first time, the MIMO concept was exploited, which provided up 

to 600Mbps. This standard supports the usage of up to four spatial streams or 4x4 

MIMO transmission system within two different channel bandwidths, 20 and 40MHz 

[20]. It is worth mentioning that IEEE802.11n is the version which has brought new 

format of the PHY layer, called High Throughput (HT), which will be discussed in sec-

tion 2.4. 

As mentioned earlier, the IEEE802.11 standard is a set of PHY and MAC specifica-

tions to support the wireless network. The PHY selects the appropriate modulation 

scheme with respect to the channel conditions given and provides the bandwidth; how-

ever the MAC layer governs how the available bandwidth shall be shared among all the 

wireless stations (STAs) [21]. Although several versions have been released to develop 

the protocol, the original MAC remained intact. It means that all the technology im-

provement evolved with the help of new PHY features such as the modulation and cod-

ing schemes, MIMO transmission concept, wider channel bandwidth and so on.  

2.2. IEEE802.11 Physical Layer Architecture 

The IEEE802.11 Physical layer is basically an interface between the medium access and 

the MAC layer, as depicted in Figure 1. It also defines the radio wave modulation and 

signalling characteristics for data transmission.  Fundamentally, the 802.11 PHY layer 

consists of two generic functions, Physical layer Convergence Protocol (PLCP) and 

Physical Medium Dependent (PMD). Both functions will be discussed in the following. 

In general, the physical layer can be divided into five categories, which define different 

transmission techniques [22, 23]: 

 Frequency Hopping Spread Spectrum (FHSS) 

 Direct Sequence Spread Spectrum (DSSS) 

 Infrared light (IR) 

 High Rate Direct Sequence (HR/DS) 

 Orthogonal Frequency Division Multiplexing (OFDM) 

Each PHY layer has specific PLCP and PMD to control the transmission and recep-

tion procedure [24]. 

2.2.1. Physical Layer Convergence Protocol  

Physical Layer Convergence Protocol (PLCP) determines a suitable mapping method 

for IEEE802.11 MAC Protocol Data Units (MPDUs) into a framing format appropriate 

for sending and receiving user data and information management among two or more 

STAs using the associate PMD system. [18] 
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Figure 1. PHY and MAC sub-layers structure 

 

Figure 1, illustrates how the data link and physical layers are connected to each oth-

er. According to Figure 1, the MAC sub-layer communicates with the PLCP through 

Physical Layer Service Access Point (PHY_SAP) by using a set of instructive com-

mands or fundamental instructions. Basically, when the MAC layer commands the 

PLCP to operate, it prepares the MPDUs for the transmission. It is worth observing that 

the PLCP minimizes the MAC layer dependency on the PMD sub-layer by mapping the 

MPDUs into a suitable format for transmission. It also delivers the incoming frames 

from the wireless medium to the MAC layer. 

The PLCP inserts preamble and header fields into each incoming MPDU from the 

MAC layer due to the following reasons: 

 Preamble field is used to synchronize the transmitter and receiver. It is com-

posed of two fields, synchronization and SFD (Start Frame Delimiter), de-

pending on the utilized modulation and data rate, it may have different 

length.  

 Header field, as shown in Figure 2, is placed after the preamble, which in-

cludes some transmission parameters.  This field also comprises of four dif-

ferent fields. The first field is signal which has the required information re-

garding the transmitter data rate, which followed by service field reserved 

for the future use (set to zero). The third one is called length, which carries 

the information regarding the frame duration, and the last one is Cyclic re-

dundancy Check (CRC) containing 16 bits which is used to detect bit error in 

the message with high reliability. Therefore, the receiver first verifies the 

CRC correction before any further processing. 

Sync SFD Signal Service Length CRC PPDU-MAC frame

PLCP Preamble PLCP Header

 

Figure 2. PLCP structure 

LLC Sublayer

MAC Sublayer

PMS Sublayer

PLCP Layer

Datalink Layer

Physical Layer

PHY_SAP
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In the end, the resulted frame (the MPDU and the additional preamble and header) is 

referred to as PLCP Protocol Data Unit (PPDU) [24]. 

2.2.2. Physical Medium Dependent  

With reference to the provided definition for the PLCP, the Physical medium Dependent 

defines the data transmission and reception techniques between STAs and PHY entities 

through the wireless medium, including modulation and demodulation and hiving inter-

ference with air medium [25]. As it can be observed in Figure 1, PLCP and PMD com-

municate through the PMD_SAP to control the transmission and reception functions 

[24]. 

2.3. IEEE802.11 Medium Access Control Specifications 

The Medium Access Control (MAC) layer is one of the sublayers of the data link layer 

in the Open Systems Interconnection (OSI) model. Principally, the MAC layer is a set 

of rules to determine how to access the medium and data link components, but the most 

important functionality of the MAC layer is addressing and channel access control that 

makes the communication of the multiple stations possible.  

The key point is that the IEEE802.11 MAC layer is compatible with the Ethernet 

standard (IEEE802.3) at the link layer, that compatibility is resulted from the fact that 

these two standards are similar in terms of addressing and channel access [26]. It shall 

be also added that the Carrier Sense Multiple Access technique (CSMA) is also sup-

ported by IEEE802.11 MAC layer which makes the access to the shared wireless medi-

um feasible [27]. According to CSMA technique, the STA is allowed to transmit when 

the channel is ‘idle’; otherwise it has to postpone its transmission [28]. 

The MAC layer architecture supports two different fundamental access methods, the 

Distributed Coordination Function (DCF) and the Point Coordination Function (PCF). 

Besides these two key functions, the Hybrid Coordination Function (HCF), the Mesh 

Coordination Function (MCF), and their coexistence are included in the IEEE802.11 

WLAN standard [29]. The simple distributed, contention based access protocol support-

ed by CSMA/CA technique is the basic MAC protocol for IEEE802.11 [28]. 

2.3.1. Carrier Sensing Mechanisms 

Except the time when the STA is transmitting and therefore knowing that the medium is 

busy, it requires an additional mechanism to check the state of channel. Carrier Sensing 

methods are used (by STAs) to determine whether the medium is busy or not. In the 

standard, two main carrier sensing mechanisms are defined, namely, Physical Carrier 

Sensing (PCS), which is supported by PHY layers, and Virtual Carrier Sensing (VCS) 

[30]. However, a third carrier sensing method is also used called Network Allocation 
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Vector (NAV) provided by MAC specifications. The state of medium will be deter-

mined by using either PCS or VCS [31]. 

The PCS technique must be provided by the PHY layers. In fact, the PCS is an ob-

ligatory carrier sensing method in any PHY layer to state the medium status; the respon-

sible function for this purpose is called Clear Channel Assessment (CCA). In this meth-

od, the channel state can be determined by using the PLCP layer, if it indicates that the 

channel is ‘Idle’, the transmission procedure can be initiated. The busy indication 

should be raised when another signal is detected in the medium; in this case, the station 

would enter a contention window and the transmission is delayed until the end of the 

impending transmission. 

The VCS technique ascertains the state of medium by spreading the reservation in-

formation announcing the usage of medium. For instance, the transmission and recep-

tion of the Request-To-Send (RTS) and Clear-To-Send (CTS) frames (which happens 

before the actual data transmission) is an example of distributing the reservation infor-

mation to the medium [32]. When a node has a packet to transmit, it first ensures that no 

other node is transmitting by sending the RTS frame. When the receiving station is 

ready to receive the data, it responds by sending a CTS frame. Once the RTS/CTS ex-

change is complete, the transmitter node can transmit its data frame without any concern 

regarding the interference or any other problem. The medium is definitely idle and re-

served during a certain period of time which is defined by RTS and CTS frames, in fact 

this period is enough to transmit the actual data frame and return the Acknowledgement 

frame (ACK). The medium reservation can be done by station which either receives the 

RTS or the CTS frames. [18] 

2.3.2. Distributed Coordination Function  

The DCF is the fundamental access method in the IEEE802.11 MAC layer which is 

used to support asynchronous data transfer on a best effort basis [33]. DCF provides 

distributed, but coordinated access in such a way that only one station can transmit [26]. 

In fact, in the case that the medium is not sensed to be busy, the transmission may pro-

ceed; otherwise it may be deferred. Therefore, the presence of the DCF is mandatory in 

all types of station [34]. It is also known a Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA). The Carrier Sense Multiple Access with Collision Detection 

(CSMA/CD) has not been used due to the fact that STA is not capable to listen to the 

channel while transmitting. 

2.3.3. Point Coordination Function  

The PCF access method is an optional technique which is only applicable in the infra-

structure network configurations. In this method, one Point Coordinator (PC) is required 

to determine which station will transmit. Basically, this operation is done based on the 

polling mechanism and the PC is playing the role of the polling master. It can be said 
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that the PCF is a contention free service provider, which has some special service points 

to assure the provided medium is without contention [18, 35]. 

2.4. An Overview of IEEE802.11a 

The latest two popular versions of the WLAN standards, including IEEE802.11n and 

IEEE802.11ac, entail the fundamental PHY and MAC specifications of the 

IEEE802.11a. Consequently, the key and common specifications of the 802.11a will be 

discussed. 

In 1999, the IEEE released the first established WLAN standard, IEEE802.11a 

which was designed to operate in the 5GHz frequency range within a 20MHz channel 

bandwidth divided into 64 subbands. The 802.11a is a packet based radio interface and 

uses an OFDM based encoding scheme rather than FHSS or DSSS to send the data. Ac-

cordingly, the assigned bandwidth is channelized in such a way that 48 subcarriers out 

of 64 are used for data transmission, 4 subcarriers are used as pilot, and the rest are null. 

The subcarriers design was based on FFT size of 64, as shown in Figure 3. Based on the 

allocated PHY specifications, the IEEE802.11a standard was expected to support up to 

54Mbps for business and office applications, but it was suffering from the limited cov-

erage range, delayed time-to-market and high cost.  

The 802.11a MAC unit works based on the Carrier Sense Multiple Access, Collision 

Avoidance (CSMA/CA) in which the transmitter listens to figure out the status of the 

medium either busy or idle. In the medium is idle, the transmitter sends a short Request-

To-Send (RTS) package containing the information regarding the package. Then, the 

transmitter waits for the response from the receiver before starting the transmission. 

Meanwhile, other transmitters within the reach area also receive the RTS package which 

helps them to estimate how long the transmission will take.   

2.5. High Throughput Specifications 

The IEEE802.11n standard is the High Throughput amendment to the 802.11 standard. 

The key features of the 802.11n are the application of MIMO and OFDM concepts 

which lead to significant increase in the data rate in 40MHz channel bandwidth. With 

the aid of these two techniques, the data rate of 600Mbps was obtained. [20] 

Regarding the High Throughput IEEE802.11 standard, two groups of specifications 

will be discussed. The first one is the PHY specifications, and the second is MAC. 

2.5.1. High Throughput Physical Layer 

The HT PHY is based on the Orthogonal Frequency Division Multiplexing (OFDM) 

which is well suited for the wideband systems in the frequency selective environment. 

In addition, OFDM is bandwidth efficient as multiple data symbols can be transmitted 

on different orthogonal frequencies or subcarriers, simultaneously. Therefore, the 

OFDM provides better spectral efficiency and immunity to multipath fading. [36] 
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In the HT PHY, in order to modulate the data subcarriers, Binary Phase Shift Key-

ing (BPSK), Quadrature Phase Shift Keying (QPSK), 16-Quadrature Amplitude Modu-

lation (16-QAM) and 64-Quadrature Amplitude Modulation (64-QAM) are used as the 

modulation scheme. The Forward Error Correction (FEC) or the convolutional coding 

technique is deployed with the coding rate of 1/2, 2/3, 3/4, or 5/6. As an optional fea-

ture, the Low-Density Parity-Check (LDPC) coding method can be also used. These 

features are known as Modulation and Coding Scheme (MCS) to define the modulation 

size and coding rate. The notable point regarding the MCS definition in the 802.11n is 

that it also determines the number of spatial streams. It means that MCS parameters 

include modulation, coding rate and spatial stream number which bring complexity in 

MCS set selection. [28] 

The available channel bandwidths in the IEEE802.11n standard are 20MHz and 

40MHz. The 20MHz channelization is based on the using the FFT size of 64 including 

64 subcarriers to send the data. Of these, 4 pilot subcarriers are inserted at the 

tions {           }, the 56 data subcarriers are located at {               }. 

The rests are null which are at positions {                 }. Figure 3 depicts the 

channelization in the case of 20MHz channel bandwidth. [28] 

The 40MHz subcarrier design is based on using FFT size of 128 so that 128 subcar-

riers are available to carry the data. There are totally 14 null subcarriers located 

at {                        }, and there are 114 populated subcarriers at the rest 

of positions. Of these, 6 subcarriers are pilot in the 

tions {                    }; the 108 remaining subcarriers are dedicated to the 

data placed at {               } except the pilot ones. Figure 4 shows the channel-

ization for 40MHz bandwidth. [28] 

 

 

 

 

 

Figure 3. 20MHz channelization 

 

Figure 4. 40MHz channelization 
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It is worth pointing out that there are some other optional features such as Space 

Time Block Coding (STBC) scheme, 400ns Guard interval (GI) and beam forming 

which are applicable at both transmission and reception sides. With the help of these 

PHY features, a maximum data rate of 600Mbps is available in the 802.11n standard. 

The HT PHY includes two main functional entities, namely, the PLCP and PMD 

functions which are similar to the basic model for the 802.11 standard, explained in sec-

tion 2.2.  

2.5.2. High Throughput Medium Access Control      

Although, it was found that without any enhancement in the MAC layer, the end user 

would benefit from the PHY layer improvement. Therefore, the HT MAC layer is al-

most same as the original one, but still some enhancement has been made to improve 

the efficiency in the form of frame aggregation and block acknowledgement [31]. Since, 

the MAC mechanisms used in the 802.11n are similar to the 802.11ac; these changes 

will be discussed in the VHT part, comprehensively. 

2.6. Overview of IEEE802.11ac Standard 

As the IEEE802.11n amendment became popular and matured enough in the market, in 

May 2007 the IEEE committee organized a new study group to investigate the feasibil-

ity of Very High Throughput (VHT) technology. This group released the first draft ver-

sion in 2011 which was capable of providing data rate up to 6.93Gbps, under certain 

circumstances. This considerable high data rate is coming from standardized modifica-

tion to both PHY and MAC layers of the IEEE802.11n standard which will be described 

in the following sections.  

The key requirement of the IEEE802.11ac is the compatibility with the previous 

amendments, IEEE802.11a and IEEE802.11n in the frequency band of 5GHz. It must be 

noted that the IEEE802.11ac was restricted to the frequency band lower than 6GHz, as 

the higher frequency band was dedicated to the next generation of WLAN standard, 

called IEEE802.11ad. Although in the 802.11ac standards, both PHY and MAC layers 

specification have been changed, the major part of the data rate enhancement is stem-

ming from the new PHY features.  

The first generation of the IEEE802.11ac devices must provide at least the previous 

PHY requirements of the 802.11n such as up to three spatial streams; moreover they are 

also expected to include the 256-QAM modulation. The rest of PHY features like STBC 

and LDPC are expected to be employed in the next generations of the 802.11ac devices. 

However, the usage of the optional properties results in both throughput and robustness 

enhancement of the wireless systems. Figure 5 presents all the mandatory and optional 

PHY features for the IEEE802.11ac. The principal transmitter and receiver block dia-

gram in the IEEE802.11ac are also presented in Figure 6 and Figure 7, respectively. 

However, main focus of this thesis is on the transmitter chain.  
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Figure 5. PHY layer features for IEEE802.11ac 

2.7. Very High Throughput Physical Layer Specifications 

The main PHY features and enhancements for the IEEE802.11ac standards to increase 

the data rate include the wider channel bandwidth, efficient modulation and coding 

schemes, higher number of spatial streams and downlink multiuser MIMO (DL MU-

MIMO) transmission.  

In the previous amendments, the channel bandwidths of 20MHz and 40 MHz were 

used. However, the bandwidth in the 802.11ac was expanded to 80MHz and 160MHz 

which improve the data rate, significantly. The capability of using non-contiguous 

channels to make wider channel bandwidth and better fit into the available spectrum is 

one of the main remarkable features of IEEE802.11ac PHY layers. By this means, two 

non-contiguous 80MHz channels can define a 160MHz channel (80+80 MHz). The 

IEEE802.11ac standard also exploits the newly defined 256 Quadrature Amplitude 

Modulation (QAM) with the different coding rates which considerably increase the data 

rate. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Functional transmitter chain 
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Figure 7. Functional receiver chain 

 

In addition to the channel bandwidth and modulation and coding scheme improve-

ment, the DL MU-MIMO feature is defined in the 802.11ac that allows an Access Point 

(AP) to transmit data streams to the multiple users, simultaneously. This feature can be 

also discussed in both terms of MAC and PHY layers. 

2.7.1. Channelization 

The 20MHz and 40MHz channelization for the 802.11ac is similar to the 802.11n 

standard, therefore, we only define the design for 80MHz and 160MHz channels. The 

80MHz subcarrier design is based on the 256 FFT points meaning that 256 subcarriers 

are available to carry the data. The subcarriers indices start from -128 to 127, as depict-

ed in Figure 8.  There are 14 null subcarriers which are located at 
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data subcarriers placed at {               } except those 8 indices which are occu-

pied by the pilot subcarriers. [28] 

In the case of 160MHz channel, the FFT size is 512 including 28 null subcarriers, 16 
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two 80MHz portions, in such a way that the lower and upper 80MHz populated subcar-
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ed at {                                                  }, the 16 

pilots are at {                                    }. The remaining sub-

carriers are the data subcarriers. Figure 9 shows the 160MHz channelization [28]. The 

new channel bandwidth definition brings more flexibility in the term of channel assign-

ment to avoid any overlap to other channels or even radars. 
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Figure 8. 80MHz channelization 

 

 

 

Figure 9. 160MHz channelization 

2.7.2. Modulation and Coding Scheme 

In the IEEE802.11ac, the modulation schemes include Binary Phase Shift Keying 

(BPSK), Quadrature Phase Shift keying (QPSK), 16/64/256 Quadrature Amplitude 

Modulation (QAM) to modulate the OFDM subcarriers. In addition, Binary Convolu-

tional and Low Density Parity Check coding methods with the variety of coding rates of 

1/2, 2/3, 3/4 and 5/6 are applicable. These coding methods (with different coding rate) 

in combination with the available modulation schemes, referred as Modulation and Cod-

ing Scheme (MCS) in the 802.11ac, are the new PHY features to enhance the through-

put.  Compared to the IEEE802.11n, the MCS set selection in the 802.11ac is much 

simpler as it only offers 10 MCS sets, as shown in Table 1. [28] 

The usage of 256-QAM has the potential to improve the transmission rate because 

of the fact that 8 bits can be sent on each subcarrier, basically it bring 33% increase in 

the data rate. However, by using the 256-QAM modulation scheme, the system sensitiv-

ity to the noise and synchronization also increases which emphasis on the importance of 

using error correcting methods to robust the system [37]. For instance, IEEE802.11ac 

includes the LDPC coding to achieve better performance. Consequently, the modulation 

size increase would improve the data rate if the link quality permits which means the 

link quality shall be remain acceptable by increasing the modulation size [28].  

For instance, 600Mbps is the maximum achievable data rate in 802.11n using four 

spatial streams and 40MHz channel bandwidth. However, for the same configuration 

and using 256-QAM modulation, IEEE802.11ac obtains 800Mbps data rate. 
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Guard Interval (GI) is also used to combat the effect of frequency selectivity and 

multipath effect which is similar to the 802.11n standard. 

2.7.3. MIMO Operation 

In IEEE802.11ac, after increasing the channel bandwidth, one of the major techniques 

used by IEEE802.11ac to increase the throughput is the extension of the spatial streams 

from 4 to 8. Therefore, for the first time, an IEEE802.11ac AP shall be built in such a 

way to support 8 spatial streams which require an antenna array with 8 independent ra-

dio chains and antennas. The deployment of antenna array also brings the beam forming 

capability to steer the antenna beam toward a specific receiver. 

One of the IEEE802.11ac target design was the multiple transmission for the multi-

ple users (MU-MIMO). By this means, instead of having single transmitter and receiver 

in the same area, the MU-MIMO provides the concept of spatial sharing of channel 

where the same channel can be used in the different areas by the same access point. Fur-

thermore, the MU-MIMO is advantageous for the AP to have more antennas than total 

number of spatial streams to have diversity gain and cleaner beam. By this means, the 

network capacity is also increasing. [38] 

 

Table 1. MCS values for IEEE802.11ac 

MCS Index 

Value 
Modulation Code Rate 

0  BPSK ½ 

1 QPSK ½ 

2 QPSK ¾ 

3 16-QAM ½ 

4 16-QAM ¾ 

5 64-QAM 2/3 

6 64-QAM ¾ 

7 64-QAM 5/6 

8 256-QAM ¾ 

9 256-QAM 5/6 

2.8. Very High Throughput Medium Access Control Speci-
fications 

Although the major changes to increase the throughput are applied into the PHY layer, 

there are few MAC changes in different terms in the IEEE802.11ac to make the PHY 

faster. 

2.8.1. Frame Aggregation 

As mentioned previously, if the medium is sensed as busy the AP has to postpone its 

transmission, it results in contention and collision in the medium. For the first time, 
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IEEE802.11n introduced a frame aggregation mechanism to reduce the collision and 

contention, and also overcome the theoretical throughput limit to achieve VHT targets 

[33]. According to this method, a station with a number of frames to transmit can com-

bine/merge them into one aggregate MAC frame. By this combination, the fewer frames 

are sent so that the contention time is reduced [39]. 

2.8.2. Block Acknowledgement  

In the previous standards, the receivers were transmitting the ACK packet to the trans-

mitter to make it sure the data frame is received properly. But in the IEEE802.11ac, the 

new MAC feature allows the receiver to send a single ACK package to cover a range of 

received data frames.  

This method is applicable in the case of video transmission or the high data rate 

transmission. It should be noted that if one frame is lost or corrupted, a long delay will 

be needed to do the re-transmission. This delay is only problematic in the real-time 

transmission; otherwise it is not often a problem. [39] 

2.8.3. Power Saving Enhancement 

Due to the fact that most of the WLAN based devices are still battery-powered, and 

meanwhile there are several other units in those devices which use the battery power, 

the power saving methods are worth to study. In IEEE802.11ac several power saving 

techniques has been introduced and addressed which are described as follows. 

One of the power saving features in the 802.11ac is the presence of higher rate. In 

other words, the power consumption is dependent on the data rate. The higher the data 

rate, the shorter the transmission burst which means the reception burst is also shorter. 

By this means, the power consumption at the receiver side would also decrease, but it is 

not significant. [39] 

A new feature is also introduced in the IEEE802.11ac, which permits the client to 

switch off its radio circuits when the AP indicates that a transmission is impending for 

another client. Besides all these features, the capability of the beam forming to an arbi-

trary direction increases the signal-to-noise ratio (SNR), which results in longer battery 

life. [39] 
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3. PROGRAMMABLE SOFTWARE DEFINED RA-

DIO  

In this chapter, the history of vector processors will be reviewed; moreover, one of the 

most important requirements for the software or hardware systems called real-time op-

eration will be studied. Then, to achieve high performance and power efficiency, three 

different processor architectures will be studied. Furthermore, the programma-

ble/configurable SDR platform and their deployment in the baseband processing wire-

less modem will be discussed. In the end, one specific application processor called 

ConnX BBE32 [40], which is used in the project, will be deliberated.  

3.1. Introduction 

Today, majority of the Central Processing Units (CPU) implement the architectures in 

such a way to execute instructions in the vector processing manner on the multiple data 

sets, they usually referred as the Single Instruction, Multiple Data (SIMD). On the other 

hand, there are some processors which are executing multiple instructions on the multi-

ple data sets in a vector wise procedure, and so called Multiple Instruction, Multiple 

Data (MIMD). It is worth mentioning that the first category is more commonly used and 

designed for general computing purposes whereas the second one is usually dedicated to 

a particular application and designed for specific purposes. In the continuation, the his-

tory of the vector processors will be revealed. 

By starting the Solomon project in the early 1960s at Westinghouse, the development 

of the vector processors started. The main target was considerably increasing the arith-

metic performance by deploying several simple co-processors controlled by one main 

master CPU. In that architecture, applying one instruction to a long set of data (in the 

vector/array) was allowed [41]. This effort continued and finally the first commercial 

vector processor was delivered in 1972 which had only 64 Arithmetic Logical Units 

(ALUs). By the way, the first successful implementation of the vector processors be-

longs to the Control Data Corporation STAR-100 and the Texas instruments Advanced 

Scientific Computers (ASC) which had basically one ALU providing both scalar and 

vector computations. But in 1976, for the first time, the vector processor was successful-

ly exploited in the famous design known as Cray-1. This trend followed till now that we 

witness different kinds of the vector processors e.g. Cray-XMP, Cray-YMP [41]. 

The vector processor is a processor which is capable to execute the operation on mul-

tiple operands. The operands to the instructions are complete vectors instead of the one 

element and their processing is done in a vector fashion. Furthermore, the vector pro-
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cessors are addressed as special purpose computers to match a set of scientific arithme-

tic operations which take long time to be processed, and are accessed with low locality, 

yielding poor performance from the memory hierarchy [42]. The main feature of the 

vector processor is to pipeline both data sets and instructions to obtain lower decoding 

time; the Figure 10 depicts the mentioned concept simply. [43] 

Wireless communication is one of the most computationally based fields which is 

demanding for a huge amount of workloads, and also introduces numerous difficulties 

to the design and implementation process. In this field, all the requirements must be 

performed by a small mobile device and must be accomplished by a small battery which 

is responsible to power the system. The main aim of the wireless communication indus-

try is to provide a seamless end-user service along high data rates, meanwhile the power 

is limited. To achieve high performance and power efficient solutions, three categories 

of the processors can be chosen. The first one is the application specific processors 

which are very expensive and fixed-function. The second category is the usage of multi-

core processors which consist of several independent CPU lead to high power consump-

tion. The last but not least is the parallelism processors which exploiting the parallelism 

concept to gain higher performance while keeping the power consumption affordable.  

From the platform point of view, the parallel processors can be categorized into three 

classes to compromise on both targets, namely, Very Long Instruction Word (VLIW), 

vector processing and SIMD which will be discussed in the following. 

3.2. Real-Time Requirement 

In the recent years, the real-time processing/computing/operation has emerged as an 

important discipline in the computer science and engineering.  With the intensive 

growth of the computational power, more systems are being implemented in the soft-

ware based solution to exploit the flexibility and sophistication afforded by the software 

implementation. However, as the real-time implementations are getting more compli-

cated, the software design styles have been brought to a higher level. 

Broadly speaking, real-time processing subjects the system to a real-time constraint 

which means the system has to response to the input within a specific time period. The 

real-time constraint is often referred to as operational deadline for each machine instruc-

tion. Thus, the ‘time’ is a source of fundamental concern in the real-time systems, and 

all the instruction must be scheduled and executed to meet their timeliness require-

ments. The timeliness requirements can be classified into hard real-time where failure to 

meet a deadline is treated as fatal system failure; and the soft real-time where an occa-

sional missed deadline may be tolerated.  

In the field of the Digital Signal Processing (DSP), a real-time system should pro-

cess the input and output samples continuously in the time that it takes to input and out-

put the same set of samples independent of the processing delay. That means the mean 

of the processing time per sample is not greater than the sampling period which is also 

the reciprocal of the sampling rate. 
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In the real-time systems, there are several challenging and complex issues to deal. 

The first one is the fact that the real-time systems are components of a larger system 

which collaborates with the physical world. The physical world treats in a non-

deterministic manner, full of events occurring asynchronously, concurrently, and in an 

unpredictable order. In such a condition, the real-time systems must respond properly 

and in a timely manner. The second complexity is the concurrency of the physical world 

which subjects the real-time systems to synchronize a multiple concurrent instruction 

arising in the environment [49].  

The main characteristics of the real-time systems are the reliability and availability 

as any failure or error may cause considerably cost [49]. 

In the processors, we are able to assess the real-time performance of the utilized core 

with the aid of the number of clock cycles. In fact, each processor has a specific operat-

ing frequency whose inverse value is equal to the time given to processor to execute 

instructions. Furthermore, the number of required clock cycles, profiled with appropri-

ate tools, to execute a program shows the capability of the processor for real-time com-

puting. For instance, a DSP core has an operating frequency of 100MHz, and needs 100 

clock cycles to accomplish a program whose real-time constraint is 3µs. According to 

the processor frequency, the processing time of each clock cycle is equal to 10ns; there-

fore, the total time of program execution is 1µs which means the processor can fulfil the 

timeliness requirement. 

3.3. Very Long Instruction Word 

VLIW is a processing technique which dates back to 1980’s. The term VLIW refers to 

the size of each instruction accomplished by the processor, this instruction is very long 

compared to the instruction word size utilized in the common processors.  

VLIW can be outlined as a processor architecture which is taking advantage of the 

instruction parallel level. In other words, VLIW processor allows the program to specify 

multiple operations to be executed concurrently; such operations are actually packed 

into one large instruction. In this techniques, when one instruction has been fetched all 

the corresponding operations are issued in parallel. The VLIW lead to a very significant 
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improvement which is simple hardware in a way that number of functional units can be 

increased without need to any additional sophisticated hardware. 

3.4. Vector Processing 

Vector processing is a technique in which one instruction is executed on an entire vec-

tor. The operands to the instructions are complete vectors instead of one element. Fun-

damentally, in the vector processors, the basic idea is to read the sets of data elements 

into the vector registers, and then the operation is executed on those registers. At the 

end, the final results are dispersed back into the memory. In the vector processing tech-

nique, a deep level of pipelining is used to execute the element operations; meanwhile 

the clock frequency can be increased. Although, deep pipeline introduces complication 

from the control perspective, in the vector processing as the data elements are independ-

ent so that this problem is simply overcame.  

3.4.1. Vector Processing Units 

The following explained blocks are the most commonly used components in the vector 

processors.  

The first block is Vector Register whose length determines the maximum vector 

length. These registers usually have both read and write ports. These vectors are actual-

ly specialized registers to perform the vector calculations so that they are faster and 

have low startup costs. The vector register helps in significantly higher performance 

compared to earlier models of the vector processors. [44]    

The second one is vector functional units (FUs) which are completely pipelined and 

performing new instruction in every cycle. Arithmetic and logical operations are done 

within these units, moreover the load and store operation are also processed by the FUs. 

The vector Load-Store Units (LSUs) are the third important blocks in the vector pro-

cessors which are responsible to move the vectors between memory and registers. 

The last but not least is the Scalar registers that contain single elements or integers to 

make link between LSUs, FUs and registers. In addition, they carry out the logical oper-

ations on the scalars.  

It shall be noticed that one vector instruction indicates a huge amount of computa-

tion. This is as a matter of the fact that each instruction is done on the multiple data sets, 

at the same time. Figure 11 depicts the main blocks in a typical vector processor.   

3.4.2. Pros and Cons 

In order to answer the question,” Is the usage of vector processor beneficiary or not?”, 

the negative and positive aspects of them shall be reviewed. Then, regarding the appli-

cation, the significance of vector processor use will be clarified. 

In the following, we first address the pros. 

 The computation/execution of each operation in a single vector instruction has no 
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data dependency which gives the capability of a very deep pipeline execution with-

out any data missing. 

 Every single vector instruction implies lots of work which sounds like the operation 

of the whole loop and fewer instructions for execution. Consequently, the required 

instruction bandwidth is much smaller. 

 The access pattern for each vector instruction is known, which makes fetching vec-

tor (with appropriate adjacent elements) from a set of heavily interleaved memory 

banks very well organized. Using this method, one memory access has been initiated 

to the entire vector rather than to the single word of the vector so that the latency of 

initiating to the main memory is considered only once for the entire vector instead of 

each vector word. 

 As a matter of the fact that fewer instructions are needed, the smaller the size of 

program code. In addition, by execution one loop, many branches can be hidden in 

one instruction. 

 

Main memory

Vector
Load/Store

Scalar 
Register

Vector 
Register

Add/Substract

Logical

Integer

Divide

Multiply

 

 

 

 Due to the operation circumstance during the vector processing, only Functional 

Unit (FU) and the register buses feeding need to be powered. Therefore, the rest of 

units such as fetch unit, decode unit, ROB and etc. can be powered off so that the 

power consumption will reduce. 

Until here, the advantages of vector processor application became clear, now the 

disadvantages will be explained: 

 Although the vector processors can be used widely, they work very well with those 

data executed in high parallel level. 

 To work efficiently, it needs to be fed with large amount of data. 

Figure 11. Vector processor structure 
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 On the scalar data processing, there is a deep lack of good performance which 

makes the vector processors inefficient compared to the normal processors.  

 The cost of vector processors compared to the other processors is relatively high, 

which is resulting from the need of specific design for each application, high speed 

on-chip memories, difficulty in packaging and keeping the innovative architectural 

design to achieve lower cost. 

 Due to the vectorized execution, there is high level of complexity in the codes. It has 

been also found that sometimes the code alignment shall be done manually to 

achieve better performance.  

Besides all the aforementioned parameters, generally the performance of the vector 

processors is still dependent on the length of operand vector, data dependencies and 

structural hazards which will even introduce more difficulties. 

All these positive and negative aspects altogether contribute in specific features to 

the vector processors and indicate that vector processors need necessary modifications 

to become widely popular. [43]   

3.4.3. Main Operations 

Although the vector processors are operating similar to the normal processors, due to 

their specific features and architecture, the main operational mechanism is worth study-

ing.  

A typical vector processor is capable to add two vectors to produce a third vector. It 

can also subtract two vectors to generate a third one. Multiplication and division of two 

vectors to make a third vector is applicable in the vector processors. 

By having special Load and Store units, it is possible to read and write vectors from 

or to the memory similar to the normal processors, but in the vector processors these 

kinds of processes can be executed faster. 

Under the certain circumstances depending on the processor, the following instruc-

tions can be also done. Inner product (multiplication and accumulation) and outer prod-

uct of two vectors are feasible to be done, but the important point is that these opera-

tions produce an array from vectors whose elements can be used as primitive data, yet. 

Product between arrays can be done only for small arrays. 

3.4.4. Optimization Schemes 

From the optimization point of view, different techniques have been used and applied 

into the vector processors to achieve the most efficient performance in terms of power, 

code size and speed. 

First of all, the usage of banked-memory reduces the latency for load/store instruc-

tion. In fact, the continuous or regular memory access patterns are defined in the 

wide/banked-memory to accelerate the load and store instructions. 

As mentioned earlier, the length of vector processor is limited. In the practical im-

plementation, the data lengths are usually greater than the Maximum Vector Length 
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(MVL) so that strip mining solution is proposed. Assume that the data length is 

       , to process this data vector in a parallel manner, first a loop is made to han-

dle the MLV elements. Then, another loop is generated to process the          ele-

ments. 

Vectorized operation within the conditional statement (if) cannot be done; therefore 

Vector Mask Registers (VMRs) are used to store the test results for the next use. Gener-

ally, the Vector processors have multiple pipelines of different types. Sometimes, the 

output of one pipeline instruction can be directly released into another pipeline.  This 

technique is called chaining, to eliminate the intermediate storage between tow pipe-

lines. [45] For instance, in the following example, it can be seen that the output vector 

V1 is released to the next instruction:  

 

MULV.D V1, V2, V3 

ADDV.D V4, V1, V5 

In some of the vector processors, special scatter, gather and masking instructions are 

used to process the sparse matrices efficiently. All these optimization makes the vector 

processors extremely faster and more efficient. [46]  

3.4.5. Power Consumption 

In order to evaluate the power consumption of the vector processors, there are some 

parameters which effect the power consumption. The first point is that there is trade-off 

between parallelism and power, the more parallelization, the less power is consumed. 

The simpler instruction and logic for execution large number of operation leads to lower 

power usage. In this way, there should not be multiple issues or dynamic operation logic 

as the process would become complicated and the power consumption increases. It has 

also been found that conditional execution results in further power saving. 

By taking into account all the above mentioned methods, namely, optimization 

schemes and power consumption tips, we can optimize the vector processor perfor-

mance as much as possible, which leads to lower power consumption and much more 

efficient performance while fulfilling the requirements. 

3.5. Single Instruction Multiple Data 

SIMD is a parallelism architecture which exploits data parallelism as opposed to the 

VLIW where the parallelism is used in the instructions. This technique has been added 

to the general purpose DSP and multimedia processors to afford a power efficient meth-

od of parallel processing.  

The SIMD can be described as an architectural feature which includes a set of in-

structions that can speed up an application performance by allowing basic operation to 

be performed on multiple data elements in parallel with fewer instructions. By this 

means, the main difference between SIMD and vector processing is in the way that data 

elements are fed; in SIMD a stream of data elements are processed. However, it can be 
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said that vector processing machines apply the operation on the vector one element at a 

time through the pipeline processors, while the SIMD machines process all the element 

of the stream, simultaneously. In other words, the vector processors are SIMD opera-

tions. Figure 12 shows the capability of the SIMD processor that the execution units can 

be divided so that a single instruction is issued to be executed in on many ALU units, 

simultaneously.   

 

32-bit Register 32-bit Register

32-bit ALU

32-bit Register

16-bit     16-bit 16-bit     16-bit

16-bit ALU 16-bit ALU

16-bit     16-bit

 

Figure 12. Execution units split in SIMD 

 

The main limitation of the SIMD solution is that no mask register is available for the 

conditional statement. In the meantime, it suffers from the lack of sophisticated address-

ing mode, while in the vector processing scatter-gather and stride instructions are used. 

In the end, the number of operands is encoded into the operation code. 

3.6. Vector Processors Deployment in Baseband Pro-
cessing Wireless Modems 

Due to the fact that almost all of the conventional modems functionalities are imple-

mented in semiconductor, they are not configurable. On the other hand, these modems 

have not been designed to be configurable as they have been designed as application-

specific systems, without general programmability, i.e., they contain a lot of fixed-

function systems. Due to these reasons, those types of modem are called “fixed-function 

modem”. The challenges are increasingly coming into design, fabrication, planning and 

testing when the complexity and number of air interfaces rise. [47] 

The wireless protocols and bands require significant resources to design and verify 

modern modems; therefore, more carrier specific modes and regions need to be accom-

modated. As a result, the conventional hardware modem designs are assumed expen-

sive, large and complex. 

On the other hand, due to the rapid growth and popularity of handheld devices 

working based on Wi-Fi/WLANs, the wireless standards are evolving at a rapid pace. 

By releasing new wireless interface standards, the traditional modems need costly and 

time consuming silicon redesign and spin to accommodate the new specifications in 

spite of the fact that they are limited in the terms of flexibility and adaptability.  

In addition, the old fashion modem design implement discrete fixed function blocks 

for each supported connectivity protocol can result in a larger die sizes and higher pow-
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er consumption. Consequently, the conventional fixed function modems, with their 

lengthy design cycles, requirement for discrete fixed function hardware and lack of 

adaptability requires the chips that are larger, inefficient, expensive and complex.  

The limited compatibility of the fixed function modems leads to less competitive 

products. The users experience less optimal performance, expensive devices and fewer 

choices. Meanwhile, the network providers have to yield lower device performance and 

increased network capital expenditure costs. 

The new wireless communication standards include new specifications, which result 

in more complexity in System-on-Chip (SoC) implementation. Therefore, relying on the 

sequential processors is not practical anymore. One technique to improve the flexibility, 

compatibility and adaptability of the baseband modems is the usage of processors with a 

specific application to replace the fixed function units. For example, utilizing the vector 

processors or SIMD processors is beneficial in term of cost. The applicability of the 

SIMD processors is feasible due to the fact that in the baseband processing modem, 

some of the data processing can be done in parallel. In fact, the baseband signal pro-

cessing in the wireless modem contains such data parallelism, in principle. [48] 

3.7. ConnX BBE32 DSP Core 

As mentioned earlier, the incompatibility features of the ASIC baseband processing 

platforms with the evolving standards, fast time-to-market and long platform lives has 

brought the significance of the configurable DSP core to a higher level.  

One particular VLIW machine is ConnX BBE32 which is a specific application pro-

cessor for the next generation of baseband processors like LTE advanced, 4G cellular 

networks and multi-standards broadcast transceivers will be studied. Primarily, for such 

applications, high efficient computational cores are required to have high degree of par-

allelism in architecture. The ConnX BBE32 is built around the baseline Xtensa RISC 

architecture which implements a rich set of generic instructions optimized for efficient 

embedded processing. The power of the  ConnX  BBE32  comes  from  a  comprehen-

sive  set  of  over  350  DSP  and  baseband optimized  instructions  excluding  the  

baseline  Xtensa  RISC  instructions. Hence, it can be summarized that he ConnX 

BBE32 is built on Tensilica’s proven Xtensa LX customizable processor architecture, 

and is specifically designed to support the needs of software-based baseband processing.  

The BBE32 DSP is 4-way VLIW processor, which contains vector processing and 

SIMD-extensions.  This DSP engine fulfills the mentioned requirements by combining a 

16-way Single Instruction Multiple Data (SIMD), 32 Multiplier-ACcumulators (MAC), 

4-slot VLIW processing pipeline with a rich and extensible interfaces. It constitutes two 

groups of memories, Instruction (I-RAM) and Data (D-RAM0, D-RAM1) memories, 

for higher efficiency. [50] 

BBE32 contains a comprehensive toolset of softwares such as high performance 

C/C++ compiler with automatic vectorization to support the VLIW pipeline. This pro-

cessor is capable to execute four operations in parallel in every cycle; such massive op-



 27 

erations require high memory bandwidth which is provided through inserting two Load 

Store Units (LSUs). From power consumption point of view, this processor goes well 

beyond the conventional DSP cores.  

Figure 13 demonstrates the ConnX BBE32 architecture in details. As it can be seen, 

the ConnX BBE32 utilizes variable length instructions of 96-bits for four operations in 

VLIW that may be executed in parallel. Moreover, the memory port is 96-bits and such 

units are fetched from the instruction memory in a memory cycle.  

Fundamentally, BBE32 comprises of a set of pipelined execution units that provide 

flexible real and complex multiply-add, bitwise manipulation, data shift and normaliza-

tion, data select, shuffle and interleave which make it very useful and attractive for the 

baseband processing modem applications. In order to obtain higher efficiency, it is fea-

sible to fetch the instructions from the local instruction memory (IRAM). It is also ca-

pable to read from and write to the system memory and devices attached through the 

standard systems buses. 

The ConnX BBE32 provides 4 VLIW instruction slots which are available for dif-

ferent operations. For instance, the instruction slot-0 is mainly used for load and store 

operation, the slot-1 only provides load operations via LSUs. The slot-2 mostly allows 

the ALU with multiply operations whereas slot-3 is solely available for the ALU opera-

tions present in the ConnX BBE32 instruction set. One of the interesting properties in 

the BBE32 is that by using the provided optional vector instruction extension and accel-

eration units such as division and FFT can be added into the basic BBE32 configura-

tions. It is worth mentioning that these optional instruction exertions are design time 

parameters so that they cannot be changed once the processor is implemented in the 

chip. Thus, this core finds more adaptability and flexibility into the new WLANs stand-

ards and cellular networks. [50] 

The compatibility of the ConnX BBE32 to the baseband signal processing modems 

becomes crystal clear by the fact that supported multi operations are applicable on the 

real and complex numbers, both. However, multiply-add, multiply-round, conjugate 

arithmetic and magnitude computations, full precision arithmetic are also provided. [48] 

 

 

 Figure 13. ConnX BBE32 architecture 
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Due to the specific applications that the processor is designed for, ten optional pack-

ages are considered to be supported which lead to the processing acceleration, as fol-

lowing: 

 Aligning Load and Store package, 

 8-way integer and fractional vector divide package 

 16-way vector reciprocal square root package 

 Bit-multiplication support for LFSR application and convolutional encoding 

 3-GPP soft-bit demapping package 

 FIR package 

 Symmetric FIR package 

 Pairwise real multiply package 

 FFT package 

 Linear block decoder package 

By the provided packages, especially FFT and FIR ones, the baseband signal pro-

cessing would be easier.  

It is worth mentioning that Tensilica has provided two different processor configura-

tions, namely Low-Power (LP) and Performance-Maximized (PM) which are used in 

this research. Basically, the LP version of the ConnX BBE32 has only the base ConnX 

BBE32 instruction sets. The PM configuration includes all ten optional packag-

es/accelerators instructions which are available in Xtensa Xplorer for ConnX BBE32 

[50]. 

In addition to the optional packages, the ConnX BBE32 has a categorized set of the 

register files to deliver larger bandwidth and lower memory traffic. The first one com-

prises of sixteen 256-bit general purpose narrow vector registers (vec) capable of keep-

ing operands and SIMD operations results. The second set consists of four 640-bit wide 

vector registers (wvec). Principally, the interface between the data memories the wide 

vector registers takes place through the narrow registers. In addition to the mentioned 

vector registers, other kind of optional registers are provided in the BBE32, which are 

helpful in flexibility and VLIW application, namely, Boolean vectors, Alignment regis-

ters and variable Shift/Select registers. [50, 51] 
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4. IEEE802.11AC TRANSMITTER IMPLEMENTA-

TION 

Through this chapter, the detailed data structure defined by the IEEE standard will be 

reviewed. In addition, the desired transmission scenario’s requirements including the 

antenna configuration, modulation scheme, coding rate and bandwidth will be defined. 

Moreover, the implementation procedure for each transmission mode will be described, 

as well. It shall be mentioned that in the following chapter, the draft version of 

IEEE802.11ac standard has been followed in this research [52]. 

4.1. Data Structure 

In this project, the transmitter is designed in such a way to support the desired operating 

points. As mentioned earlier, our main focus is on the PHY layer implementation of the 

IEEE802.11ac standard rather than the MAC specifications.  

According to the standard definition, the VHT packet structure is composed of three 

parts. The first part is the legacy preamble, the second one is the VHT preamble, and the 

last one is the data part. Figure 14 illustrates the VHT packet structure. The legacy por-

tion consists of the several fields, namely, L-STF, L-LTF and L-SIG, which are de-

scribed in the following. The VHT part also includes the VHT-SIG-A, VHT-SIG-B, 

VHT-STF and VHT-LTF fields. Table 2 defines each field. [52] 

As the frequency domain processing of the VHT-SIG-B field of the preamble part 

and the data field is performed on the DSP, the study is mainly carried out for these two 

fields.  

 

 

Figure 14. VHT packet structure 
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Table 2. VHT packet fields 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1. Legacy Preamble 

The first part of the VHT packet structure consists of legacy (non-VHT) training fields. 

Furthermore, each field is described in details, as follows. 

The Legacy Short Training Field (L-STF) is used for the start of the packet detection 

and Automatic Gain Control (AGC) setting. It is also utilized for the initial frequency 

offset estimation and initial time synchronization.  

As shown in Figure 11, the L-STF length is 8µs, which actually includes ten repeti-

tions of a 0.8µs symbol, in the time domain. In the standard, the L-STF is defined based 

on the frequency domain sequences which are different for each transmission band-

width. 

The Legacy Long Training Field (L-LTF) is also an 8µs length training field, which 

is used for channel estimation, more accurate frequency offset estimation, and time syn-

chronization. 

L-LTF is composed of two 3.2µs long training symbols with a 1.6µs cyclic prefix. 

Similar to the L-STF, depending on the used transmission bandwidth, the L-LTF se-

quences are defined in a different manner.  

L-SIG is signal field consisting of 24 information bits about the transmission rate 

and information length.   

As L-SIG elements are bits, the L-SIG itself is transmitted using BPSK modulation 

scheme and coding rate of     binary convolutional code. The significance of the L-

SIG is not only because the desired receivers decode the L-SIG properly, but also be-

cause the nearby STAs accurately defer the channel access. 

It is composed of a 4µs symbol and depending on the channel bandwidth the num-

ber of subcarriers and the length would be different.  

Field Description 

L-STF Non-HT Short Training field 

L-LTF Non-HT Long Training field 

L-SIG Non-HT SIGNAL field 

VHT-SIG-A VHT Signal A field 

VHT-STF VHT Short Training field 

VHT-LTF VHT Long Training field 

VHT-SIG-B VHT Signal B field 

Data 
The Data field carries the 

PSDU(s) 
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4.1.2. Very High Throughput Preamble 

VHT preamble of the VHT packet structure begins with VHT-SIG-A and continues 

with VHT-STF, VHT-LTF and VHT-SIG-B. 

VHT-SIG-A field carries the required information to interpret VHT PPDUs. VHT-

SIG-A field consists of two parts, namely VHT-SIG-A1 and VHT-SIG-A2; each of 

which consists of 24 bits. VHT-SIG-A1 is transmitted before VHT-SIG-A2. 

VHT-SIG-A totally contains 48 bits carrying the information related to the band-

width, number of space time streams, transmit beam forming, modulation and coding 

scheme, and the guard interval type (short/long).  

The signaling part of VHT waveform will be started by the VHT Short Training 

Field (VHT-STF). By receiving this field, we switch onto the cyclic shift diversity table 

which is specifically defined for VHT preamble fields.  

The main purpose of the VHT-STF field is to improve the automatic gain control es-

timation in a MIMO transmission. The duration of the VHT-STF field is 4μs. The fre-

quency domain sequence is used to construct the VHT-STF field in a 20 MHz transmis-

sion which is identical to the L-STF field. In a 40 MHz and an 80 MHz transmission, 

the VHT-STF field is constructed from the 20 MHz version by frequency shifting a du-

plicate of it to each 20 MHz subchannel and applying appropriate phase rotations per 20 

MHz subchannel. 

VHT Long Training Field (VHT-LTF) is conceptually similar to the HT-LTF with 

some new sequences for wider channel bandwidths 80MHz and 160MHz. By this 

means, the construction procedure has these two main differences: the first one is the 

presence of up to 8 spatial streams, and the second is allowance for phase tracking dur-

ing VHT-LTF.  It is a 4µs frame per VHT-LF symbol. 

The VHT-LTF provides a means for the receiver to estimate the MIMO channel be-

tween the set of constellation mapper outputs (or, if STBC is applied, the STBC encoder 

outputs) and the receive chains. It should be noted that the channel estimation is done by 

using the pilot subcarriers inserted into the VHT-LTF symbols. 

Although the primary purpose of using VHT-SIG-B is for signaling user specific in-

formation in a MU packet, it is still used in all packets to maintain an unified preamble 

format for VHT packets. However, in SU scenario, the receiver does not need to process 

VHT-SIG-B. Since VHT-SIG-B is coming after VHT-STF and VHT-LTF, it is formed 

differently than VHT-SIG-A in such a way that in our system the bits are repeated in-

cluding the tail bits. By this means, the processing gain at the receiver is obtained by 

averaging repeated soft values at the decoder input.  

As shown in Figure 14, VHT-SIG-B is a 4µsec OFDM symbol with single stream, 

BPSK, BCC rate 1/2 modulation. In our systems, the channel bandwidth is 80MHz 

which means there are 29 bits available in VHT-SIG-B consisting of 23 information bits 

and 6 tail bits, each repeated four times, with a single pad bit appended at the end. 
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Figure 15. Principal processing block diagram for VHT data field 

4.1.3. VHT Data Field 

The construction of the data field, in a VHT SU PPDU with LDPC encoder, proceeds as 

shown in Figure 15. The operational mechanism of each block is explained in the fol-

lowing. 

 

4.1.3.1. Stream Parser 

After coding and puncturing, the data bit streams at the output of the FEC encoders are 

processed in groups of NCBPS bits. Each of these groups is re-arranged into NSS blocks of 

NCBPSS bits. In the case of MU transmissions, the rearrangements are carried out in the 

same way per user. [37] 

The number of bits assigned to a single axis (real or imaginary) in a constellation 

point in a spatial stream is denoted by the equations (4.1), (4.2), and (4.3): 

 

s = max {   
      

 
}     (4.1) 

       ⌊
     

     
⌋     (4.2) 

  
                  

     
     (4.3) 

 

where NCBPS,       , NES, NBlock are the Number of Coded Bits per Symbol, Number of 

Coded Bits per Subcarrier per Spatial stream, Number of BCC encoder, and the Number 

of Blocks, respectively.  

Consecutive blocks of   bits are assigned to different spatial streams in a round Rob-

in fashion. Therefore,   bits from the output of the FEC encoder would be divided 

among the spatial streams so that each stream would have   bits. Then the next   bits 
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from the output of the encoder are used, at some point if the number of the       is 

greater than             , then the last                    bits of each OFDM 

symbol are provided by taking     bits from the output of the first encoder. By this 

means, each stream (streams 1 to M) would take s bits, in continuation     bits from 

the output of the next encoder are used to feed the spatial stream    . 

4.1.3.2. Constellation Mapper 

The OFDM subcarriers shall be modulated by using BPSK, QPSK, 16-QAM, 64-QAM, 

or 256-QAM, depending on the data rate requested. The encoded and interleaved binary 

serial input data shall be divided into groups of NBPSC (1, 2, 4, 6, or 8) bits and converted 

into complex numbers representing BPSK, QPSK, 16-QAM, 64-QAM, or 256QAM 

constellation points, respectively. The conversion shall be performed according to Gray-

coded constellation mappings with the input bit b0 being the earliest in the stream. The 

output values d are formed by multiplying the resulting (    ) value by a normaliza-

tion factor KMOD (which depends on the base modulation mode), defined as follows: 

 

    (      )            (4.4) 

 

It should be noted that modulation type can differ from the start to the end of the 

transmission, as the signal changes from SIGNAL to DATA. However, in case of using 

256-QAM modulation, a normalization/scaling factor should be used which is 
 

√   
. 

4.1.3.3. Low-Density Parity Check Tone Mapper 

The LDPC tone mapping shall be performed on all LDPC encoded streams as described 

in the chapter 2 by using an LDPC tone-mapping distance parameter DTM. DTM is con-

stant for each bandwidth and its values for different bandwidths are shown in Table 3. 

LDPC tone mapping shall not be performed on streams that are encoded using BCC. 

 

Table 3. LDPC tone mapping distance for different bandwidth 

Parameter 20MHz 40MHz 80MHz 
160 MHz, 

80+80 MHz 

    4 6 9 9 

 

The objective of the LDPC tone mapper is to map consecutive OFDM symbols to 

non-consecutive subcarriers. It is worth noticing that LDPC tone mapping is done per 

OFDM symbol.  

LDPC tone mapping is done by altering the incoming streams of complex numbers 

from the constellation mapper; meaning, it shuffles the data subcarriers in each OFDM 

symbol in each stream of complex numbers. The equation (4.5) presents how LDPC 

tone mapper works: 
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   ( )                        (4.5) 

 

where   is zero for 80MHz transmission,   is the user number,   is the index of spatial 

streams,   is the number of complex data numbers per frequency segment which is 234, 

and   is the number of symbols. According to the parameters values,  ( ) can be calcu-

lated by using equation (4.6): 

 

 ( )     (      
   

   
)  ⌊

     

   
⌋    (4.6) 

 

By doing the above operation, each two consecutively generated complex constella-

tion numbers would be mapped into two data tones which are at least       far from 

other data tones. 

4.1.3.4. Space Time Block Coding  

This subsection defines a set of optional robust transmission techniques that are appli-

cable only when using STBC coding for VHT SU PPDUs.  In  this  case,  NSS,0  spatial  

streams  are  mapped  to NSTS,0  space-time streams. These techniques are based on 

STBC. When the VHT-SIG-A STBC field is 1, a symbol operation shall occur between 

the constellation mapper and the spatial mapper. In other words, when the number of the 

spatial streams is lower than the number of space time streams, the STBC technique is 

used. 

It can be said that Space Time Block Coding is performing similarly to diversity 

methods and it is capable of providing same diversity gain as maximal combining ratio. 

Depending on the number of the spatial streams (NSS) and the number of the space time 

streams (NSTS), the output of the constellation mapper would be coded as the following 

table: 

Table 4. STBC input and output symbols 

               ̃             ̃              

2 1 
1                       

2             
           

  

4 2 

1                       

2             
           

  

3                       

4             
           

  

 

It is worth noticing that when STBC is applied, an odd number of space time 

streams is not allowed, and the following relation (4.7) shall be established: 

               .    (4.7) 
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4.1.3.5. Pilot Insertion 

According to the channelization presented in the chapter 2, for a 20 MHz transmis-

sion, four pilot tones shall be inserted in subcarriers     {           }  For a 40 MHz 

transmission, six pilot tones shall be inserted in subcarriers –53, –25, –11, 11, 25, and 

53.  

For an 80 MHz transmission mode, eight pilot tones shall be inserted in subcarriers 

{–     –    –    –                }. The pilot mapping   
  of subcarrier   of sym-

bol   shall be specified based on the following equations: 

 

  
{                             }  {          (   )           (   )      } (4.8) 

  
    {                             }      (4.9) 

 

where   is defined according to table 5: 

 

Table 5. Pilot values for 80MHz transmission bandwidth 

 

                        

1 1 1 -1 -1 1 1 1 

 

In addition to these pilot subcarriers, 14 null subcarriers shall be inserted into the da-

ta streams resulting in data streams containing 256 subcarriers. 

4.1.3.6. Cyclic Shift Diversity  

Cyclic shift diversity is applied to each OFDM symbol separately in order to decorrelate 

the transmitted signals from different antennas and prevent from bad beam forming ef-

fects. Based on the number of the space time streams,     would be applied to the 

OFDM symbols according to the equation (4.10): 

 

   ( )   ( ) 
        .    (4.10) 

 

Table 6. Cyclic shift values for data field packets 

Spatial stream 1 2 3 4 

1 0 ns ----- ----- ----- 

2 0 ns -400 ns ----- ----- 

3 0 ns -400 ns -200 ns ----- 

4 0 ns -400 ns -200 ns -600 ns 

 



 36 

The time shift is equivalent to a phase rotation in the frequency domain, as it has 

been shown in the previous formula; cyclic shift diversity can be done by multiplication 

of an exponential function. 

4.1.3.7. Spatial Mapping 

Depending on the number of space time streams and the transmit chains, transmitter 

may rotate/scale the constellation mapper/STBC output. The scaling factor is the square 

root of the number of space time streams, and the rotation is done with the help of Space 

Time Block Coding (STBC).  

4.1.3.8. Phase Rotation 

According to the standard, for each transmission bandwidth there is a gamma function 

which makes a rotation in tones. In 80MHz transmission, function       is as the equa-

tion (4.11): 

 

       {
                    

                         
    (4.11) 

 

As it can be realized from the equation, phase rotation is only multiplication by 

      depending on the subcarrier indices. 

4.2. Transmission Scenarios 

In the following sections, the desired transmission points to be covered are described. 

With reference to Figure 12, the operational blocks from the stream parser to IFFT are 

implemented in this project for all the following transmission modes. 

4.2.1. Case a: 2x2 SU-MIMO Transmission 

In the first transmission mode, a contiguous 80MHz bandwidth is used to communicate 

through the wireless channel. The usage of two spatial streams in a 2x2 antenna config-

uration means that the Space Time Block Coding (STBC) block does not need to be 

employed. Figure 16 shows the implementation of the first case block diagram. In this 

scenario, the target data rate is 780Mbps by having a 2x2 MIMO antenna, 256QAM 

modulation scheme with coding rate of 3/4.  

As mentioned earlier, in 80MHz channel bandwidth, the FFT size is 256 so that each 

OFDM symbol includes 256 subcarriers to carry the data. In the implementation proce-

dure, it has been found that the transmission can be done in a different order as it is eas-

ier to deal with bits rather than the complex number. For instance, although the STBC 

coder and LDPC tone mapper are defined to be executed after the constellation mapper, 

they can be also implemented for the bits. Therefore, the implementation procedure is 

different than the shown block diagram. 
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Figure 16. Principal block diagram of Case a 

 

At the beginning, an additional block called preparation block is used to rearrange 

the incoming bit streams to become ready for LDPC tone mapping and modulation. As 

for the processor is 16-bits, the preparation block rearranges the data in the frames of 

16-bits. The incoming bit stream has           , and has the following format. From 

left to right, the first and second 4 bits actually present the real part of the first and sec-

ond streams (first subcarrier), respectively. In the meantime, the third and fourth 4 bits 

show the first and second streams imaginary parts (first subcarrier), correspondingly. 

Therefore, the preparation block combines the real and imaginary parts of each subcar-

rier in such a way that the first outcoming 16-bits frame has the real parts of two 

streams, and the second 16-bits frame has the imaginary parts (8 bits in both frames are 

zero). Then, two streams of complex numbers are ready to be fed into the LDPC tone 

mapper.  

In the LDPC tone mapper, the data subcarriers of both streams are shuffled at the 

same time. According to the provided information in section 4.1.3.3., LDPC tone map-

per alters the subcarriers’ location of each OFDM symbol in each stream. It is worth of 

noticing that the incoming data streams are aligned to 32 bytes which means streams of 

complex numbers with       bits are processed, although the original number of data 

subcarriers is 234. 

It has been found that if the stream parser and constellation mapper are combined, 

the performance would be most optimized. Therefore in the third phase, the LDPC tone 

mapped streams of complex numbers are parsed and mapped into the constellation 

mapper, simultaneously. As explained earlier, streams parser parses         coded 

bits per symbol (NCBPS) between two streams that means each stream would have 

      coded bits per symbol, meaning, each stream has 8 bits including 4 bits for real 

part and 4 bits for the imaginary part. By using 256-QAM modulation, every 8 bits are 

simultaneously mapped into one 256-QAM constellation point. 

According to the specifications given in section 4.1.3, all the functions after the 

LDPC tone mapper including pilot insertion, Cyclic Shift Diversity (CSD), spatial map-
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ping and phase rotation are originally based on multiplication between the data subcar-

riers and coefficients. Due to this reason, they can be merged into one block and execut-

ed in one operation. Consequently, the outcoming streams from the stream parser and 

constellation mapper block will be processed in one block to be ready for the IFFT op-

eration. For this purpose, we created a look up table including all those numerical values 

resulted from the mentioned operations to be multiplied by the data subcarriers. There 

are several remarkable points, the first one is that due to the existence of two space time 

streams, the spatial mapping is only a scaling operation with the scaling factor of 
 

√ 
 . 

The second one is originated from the repetitive nature of the cyclic shift diversity val-

ues for the data subcarriers meaning the CSD table is duplicated for every eight subcar-

riers. The last point but not the least is that the first stream remained unchanged while 

the second one is shifted by 400ns in the time domain under the CSD operation.  

4.2.2. Case b: 4x4 SU-MIMO Transmission 

Similar to the previous case, the usage of 80MHz bandwidth provides 256 subcarriers to 

send the data. In addition, transmission of four spatial streams through a 4x4 antenna 

configuration results in the data rate of 1560Mbps by having modulation scheme 

256QAM with coding rate of 3/4. It is worth mentioning that the equal number of spa-

tial streams and the space time streams, STBC is not employed. The transmission block 

diagram for this case is shown in Figure 17. 

Due to the fact that the processor is 16-bits, the incoming bits streams shall be rear-

ranged. But in this case, as 4 spatial streams are used, the first incoming 16 bits already 

feature the real part of the first subcarrier of each stream, and the second 16 bits are the 

imaginary parts. By this means, the desired 16-bits packets are ready so that no prepara-

tion is needed and the bit streams can be directly fed into the LDPC tone mapper. 

According to the standard, the LDPC tone mapper maps the OFDM symbols into the 

other indices by a sufficient distance to avoid any distortion. 

After shuffling the data bits in the LDPC tone mapping block, the stream parser al-

locates 8 bits to each stream and maps them into one constellation point, at the same 

time. Therefore, stream parser parses         coded bits per symbol (NCBPS) among 

four streams that results in each stream having       coded bits per symbol, mean-

ing, each stream has 8 bits including 4 bits for real part and 4 bits for the imaginary part. 

By using 256-QAM modulation, every 8 bits are simultaneously mapped into one 256-

QAM constellation point. 

The rest of operation, namely pilot insertion, cyclic shift diversity, spatial mapping 

and phase rotation, similar to the previous case, are done by multiplication between the 

look up table numerical values and data subcarriers. The scaling factor for the spatial 

mapping operation would be 
 

√ 
, and the cyclic shift diversity in this scenario would 

make change in all the spatial streams except the first one. As a result, the first stream 

would be remained unchanged, but the second, third and fourth streams are shifted in  
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Figure 17. Principal block diagram of Case b 

the time domain by 400ns, 200ns and 600ns respectively. The phase rotation is also a 

multiplication with      depending on the subcarrier index. 

 

4.2.3. Case c: 2x2 Antenna Configuration with 1x1 SU-SISO Transmission 

In this case, the application of 80MHz bandwidth, 256-QAM modulation scheme and 

2x2 antenna configuration leads to 390Mbps data rate. The additional antenna is as-

sumed to be used at both sides to achieve diversity gain. Here, the number of spatial 

streams is lower than the space time streams number which brings up the idea of em-

ploying STBC encoder. Figure 18 shows the transmission structure for the third trans-

mission scenario. 

Due to the unequal number of the spatial streams and space time streams, the STBC 

encoding method must be employed. We apply STBC in this step as it is easier to pro-

cess the bits rather than the complex numbers. According to the STBC description (giv-

en in Table 22-20 in the standard specification), some symbols need to be conjugated 

i.e. the imaginary part should be negated and in bit level this only means inverting the 

sign bit for the imaginary part. For that reason, it is possible to do the STBC coding in 

the preparation block, as well. Consequently, in this block, the incoming stream of size 

      bits is duplicated and for some of them (depending on the index) the sign bit is 

changed. At the end, two streams of the size of       bits come out to be fed into the 

LDPC tone mapper. 

After applying the STBC coding into the streams, LDPC tone mapper is applied in 

which the bit streams are interleaved or replaced into new data tones. By this means, the 

output is LDPC tone mapped STBC coded bit streams. 
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Figure 18. Principal block diagram of Case c 

 

In the third phase, stream parser divided the bit streams into two space time streams 

at which each stream would have       bits. Meanwhile, every 8 bits are mapped 

into one 256-QAM constellation point. 

In the last block, pilot insertion, cyclic shift diversity, antenna mapping (scaling) 

and phase rotation are done. In the cyclic shift diversity part, the second stream is only 

shifted by 400ns, and in the spatial mapping both streams are scaled by 
 

√ 
 and multi-

plied by      in the phase rotation step. 

 

4.2.4. Case d: 4x4 Antenna Configuration with 2x2 SU-SISO Transmis-

sion 

In this transmission mode, as depicted in Figure 19, the unequal number of spatial 

streams and space time streams means STBC coding must be employed. Under the 

specified circumstances, a data rate of 780Mbps is desired to be obtained while only 

two spatial streams are used to generate 4 space time streams to be mapped into a 4x4 

antenna configuration. Similar to the previous case, the modulation scheme 256QAM 

with coding rate of 3/4 is utilized with the presence of short GI. 

To get the optimized performance in the processor, it is better to merge the STBC 

coding into the first block to be done along the preparation operation, at the same time. 

According to the specification, only the sign bit of the bit streams shall be changed and 

the rest of bits are just duplicated. Therefore, at the output of the STBC and preparation 

block, four space time streams of the size of       bits are ready to be LDPC tone 

mapped. Afterwards, the bit streams will be LDPC tone mapped, which means the sub-

carriers indices will be changed.  

Then the stream parser allocates 8 bits to each stream and constellation mapper 

maps them into one 256-QAM constellation point, simultaneously.  

The rest of blocks are also done based on the multiplication between the subcarriers 

and look up table which includes all the numerical values of the mentioned operations. 
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In this case, the scaling factor is 
 

√ 
 in the spatial mapping stage. For the cyclic shift di-

versity, the first stream remained unchanged and the second, third and fourth streams 

are shifted by 400ns, 200ns and 600ns, respectively. 

4.3. Time and Frequency Parameters 

In order to design the OFDM symbols in well accordance to the IEEE802.11ac stand-

ard, specific parameters must be selected. 

In this project, we have utilized a short guard interval of 0.4µs to be appended to the 

VHT data part whose duration is, as mentioned earlier, 3.6µs in case of using short 

guard interval (GI). The symbol interval (TSYM) duration is dependent on the length of 

the guard interval, which is 3.6µs due to the usage of short GI in our design. According-

ly, the symbol rate (1/ TSYM) can be calculated by taking the inverse value of the symbol 

interval, which is almost 277ksps, in this case. The rest of the timing constant such as 

the duration of the legacy preamble and VHT preamble have already been described in 

the previous sections. 

The channel bandwidth in all of the transmission scenarios is 80MHz. Independent 

of the channel bandwidth; the subcarrier frequency spacing is equal to 312.5 KHz. The 

total number of subcarriers carrying data, as the FFT size is 256, is 234 subcarriers, and 

the channelization details have been termed in the chapter 2. The rest of the subcarriers 

are null and pilot for channel estimation and equalization purposes. 

 

 

 

Figure 19. Principal block diagram of Case d 
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5. RESULTS AND ANALYSIS 

This chapter includes the implementation results which are profiled in the terms of 

clock cycles, power and energy consumption and memory usage. In addition, the ob-

tained results will be discussed and compared with some references. 

5.1. Software Implementation 

In order to program and evaluate the performance of the ConnX BBE32 DSP core, the 

Xtensa Xplorer (XX) integrated Development Environment (IDE) is used which is ca-

pable of providing a C/C++ software development workspace. It also offers a compre-

hensive collection of code generation and analysis tools. [51] 

However, the utilized processor inherently provides a wide variety of the optimiza-

tion approaches to make the software implementation efficient. As mentioned in the 

previous section, appropriate configuration and programming style play an important 

role in the efficiency of the implementation, thus some optimization techniques have 

been applied in this project to speed up the processing. In principle, everything has been 

optimized almost in machine level as the C-code is full of macros, which actually means 

that the code is not portable anymore. Another effective optimization approach was 

merging and combing the functions as much as possible. Specifically those functions 

whose functionality involves multiplication with a constant value, such as phase rota-

tion, spatial mapping, pilot insertion and cyclic shift diversity.  Moreover, since it is 

easier to deal with bits rather than complex numbers, we have implemented as many 

operations as possible before the constellation mapping. For instance, although in the 

standard and, as shown in Figure 15, the STBC and LDPC tone mapper blocks are de-

fined to be employed after the 256-QAM modulation; it has been found that such opera-

tions can be efficiently implemented when the input data is still in bits and not yet mod-

ulated to symbols. 

 

5.2. Clock Cycles 

To evaluate the processor performance in the term of clock cycle, the instruction set 

simulator (iss) is used which determines the needed clock cycles for processing one 

OFDM symbol.  

The FFT operation needs 311 and 250 clock cycles per OFDM symbol to be done in 

LP and PM models, respectively. Table 7 and Table 8 show the previous tables in the 

form of bar chart as it is easier to figure out the difference and making comparison. 
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The first transmission has the lowest number of clock cycles, since it has only two 

spatial streams without having STBC so that it is the simplest transmission scenario. In 

the second transmission scenario, as it was mentioned that the preparation block is not 

required be employed so that in Table 7 and Table 8, the preparation clock cycle is 

equal to zero. For the third case, as the number of spatial streams was lower than the 

number of space time streams the STBC encoder was used. Therefore, in the first block, 

in addition to the preparation, the STBC encoding results are reported, That is why the 

preparation bar is larger than the other cases. 

Similar to the previous transmission mode, in the fourth transmission case, the une-

qual number of spatial streams and space time streams brought up the idea of using 

STBC. Consequently, the preparation bar shows both preparation and STBC operations 

result. However, due to the similar reason as the second mode, the preparation is not 

needed. That is why the number of clock cycles is lower than in the third operation 

mode, although the number of spatial streams is higher. The numerical values for all the 

transmission scenarios can be found in the Appendix 1. 

It is worth noticing that exploiting the PM configuration leads to the lower number 

of clock cycles required to execute each transmission mode. As a matter of fact, the 

existence of the optional packages accelerates the processing procedure. However, the 

speedup is almost negligible, as the additional packages will add some hardware to the 

processor and speedup is one few percentages. 

  

 

 

 

 

Table 7. Clock cycle results in LP model 
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5.3. Power Consumption 

One of the most useful performance analysis factors is the power consumption which is, 

in this case, dependent on the memory configuration/capacity. As the Energy Xplorer 

tool is only able to analyze the energy for each function, first the energy is estimated 

and then the power consumption is calculated by dividing the energy values by time. 

The time for each block is different and calculated from the multiplication between the 

clock cycles and 2ns (the period of each clock cycle or the inverse of frequency). Alt-

hough, the tool provides the total power consumption for each transmission scenario, it 

includes all the required power for initialization within the whole run-time.  

As mentioned earlier, the memory configuration affects on the power consumption, 

so we have considered two common cases which are the maximum (128k) and half 

(64k) of the memory capacity. In order to analyze the energy consumption, the 40nm 

Low-Power IC technology provided by the vendor is used, and the operation frequency 

is assumed to be 500MHz. The monitoring time for the energy analysis is 3.6µs, and the 

estimated energy includes both leakage and dynamic parts. In the following, the related 

results to the power consumption for each function are reported for PM model, in case 

of full and half memory usage. The power consumption results for the PM model are 

not presented as they do not differ from the LP model results. 

 

 

Table 8. Clock cycle results in PM model 
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It can be concluded from the Table 9 and Table 10 that the second and fourth trans-

mission scenarios have the highest rate of power consumption among the transmission 

cases which is due to the existence of four spatial streams for processing. 

Table 11 presents the total power consumption for all the transmission scenarios 

profiled in the PM configurations and memory capacity of 128K. The same information 

is also introduced in Table 12 when the memory capacity is 64K. 

 

Table 9. Power consumption for each function of the transmission scenarios in 

mW, 128K 

Table 10. Power consumption for each function of the transmission scenarios in 

mW, 64K 
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Table 13 and Table 14 show the total power consumption for all the transmission 

scenarios profiled in LP configurations for maximum and half capacity of memory, re-

spectively. As it can be observed, the processor has the highest share in the total power 

consumption due to the fact that huge amount of data is processed. 

 

 

 

 

Table 11. Total Power consumption [mW] for PM model in case of full 

memory 

Table 12. Total Power consumption [mW] for PM model in case of half 

memory 
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By making comparison between the previous tables, it can be realized that the solu-

tion consumes more power in the case of full memory usage rather than the half 

memory. This conclusion clarifies the significance of the memory configuration on the 

power consumption. 

Table 13. Total Power consumption [mW] for LP model in case of full 

memory 

Table 14. Total Power consumption [mW] for LP model in case of half 

memory 
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5.4. Energy per Bit 

Although in the beginning it was mentioned that the power consumption is better to be 

used for analysis, since the Tensilica itself claims that the power conversions are not 

very reliable, in the following the energy analysis results are also revealed. 

The energy analysis is made for one 3.6µs time frame; the results include both leak-

age and dynamic portions of the energy. As the memory configuration does not have 

effect on the results, the memory capacity of 64K is assumed. Table 15 and Table 16 

reveal the energy consumption for all the transmission scenarios blocks which are pro-

filed in LP and PM configurations, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. Energy consumption [pJ] for each block in all transmission scenarios, LP, 

64K 

Table 16. Energy consumption [pJ] for each block in all transmission scenarios, PM, 

64K 
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One of the useful assessment criteria to evaluate the solution is to find out the re-

quired energy for transferring one bit through the channel which is referred as energy 

per bit. It can be defined by dividing the total energy consumption by the total number 

of bits processed in the transmitter. The total number of bits for each transmission sce-

nario is different and will be defined in the following. It shall be noticed that the evalua-

tion is made for two processor configurations in the case of memory capacity of 64K. 

In the first case, two spatial streams are processed which consist of       bits 

which mean         bits are totally sort out. In this regard, the total energy con-

sumption in case of LP and PM are divided by 4096 bits. In the second scenario, four 

spatial streams are processed so that 8192 bits are analyzed. In the third case, one spatial 

stream comes to the transmitter which means only 2048 bits should be taken into ac-

count. In the last case, two spatial streams are processed which is similar to the second 

case, and in total 4096 bits are handled. Table 17 shows the total energy consumption 

for all the transmission scenarios profiled in LP and PM configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17. Total energy [µJ] consumption for all the cases 

Table 18. Energy per bit [pJ] for all the cases 
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Table 18 shows the required energy for transmission of one bit for all the transmis-

sion scenarios. As it can be realized, the third case consumes more energy compared to 

the rest which is due to the fact that two spatial streams are processed to generate four 

space time streams by using STBC. Therefore, after STBC operations, four streams are 

analyzed. However, the second case requires lower energy as it is the simplest case in 

the implementation procedure due to the fact that it even does not need the preparation 

block in contrast with other scenarios. It is worth noticing that LP and PM configura-

tions results do not considerably differ from each other in this term. 

5.5. Memory Usage  

One more evaluation parameter is the code size or memory usage. In this project as two 

memory categories are used including instruction and data, the evaluation is made for 

both of them. 

 It is worth noticing that among all the listed functions, only LDPC tone mapper and 

the last block including pilot insertion, spatial mapping, cyclic shift diversity and phase 

rotation are completely loop unrolled. As the loop unrolling increases the code size, the 

instruction memory usage for each transmission mode per each operation is presented in 

the following tables. Since there is no difference between PM and LP model from the 

memory usage point of view, only the results using the PM model are presented.  

It should be noted that we have assumed that all incoming bits from the LDPC en-

coder are already stored in the local data memory. The data memory usage for each 

transmission mode is also reported at the same tables under ‘input buffer usage’ title, 

and it only depends on the transmission scenario. 

Table 19 introduces the data and instruction memories usage for the all transmission 

mode. It should be noted that the first and second transmission cases does not have 

STBC process so that the reported values show only the instruction and data memories 

usage for preparation block. 

As mentioned earlier, in order to speed up the processing, the numerical values of 

the last block including pilot insertion, cyclic shift diversity, spatial mapping and phase 

rotation were calculated and stored in a look-up table. This table occupies 128 and 800 

bytes from the local data RAM#0 and RAM#1, respectively. 

With reference to Table 19, it has been observed that LDPC tone takes more capaci-

ty among the functions. In addition, the amount of used data memory does not depend 

on the transmission scenario except for the input buffer usage. 

As aforementioned, the utilized processor is an extended version of the Tensilica’s 

baseline DSP core and by exploiting additional extension instruction BBE32 will be 

configured. Thus, by profiling the total number of instructions (those which are started 

by BBE32 prefix) and their code size, useful information will be found out. 
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Table 19. Memory usage in bytes 

Instruction Memory 

Block Case a Case b Case c Case d 

Preparation + STBC 184 --- 376 240 

LDPC Tone Mapper 1808 1808 1808 1808 

Stream Parser + Constellation 

Mapper 
432 200 428 528 

Pilot Insertion + CSD + Spatial 

Mapping + Phase Rotation 
720 720 720 720 

Total 3612 3664 3800 4232 

Data memory 

Local Data RAM #0 4.8K 

Local Data RAM #1 5.128K 

Input Buffer 468 936 468 936 

Total 10.396K 10.846K 10.396K 10.846K 

 

Table 20 presents the total number of instructions and their size in the instruction 

memory for all the transmission scenarios.  

 

Table 20. Instruction and code size 

Parameter Case a Case b Case c Case d 

Total number of Instructions 965 1102 1036 1255 

Total size in data memory [bytes] 6977 7033 6980 7057 

 

5.6. Analysis  

As mentioned earlier, the developed software based implementation was profiled and 

analysed with the aid of the tools provided by the vendor. The analysis will be made on 

the results relating to number of clock cycles, power, energy, and memory usage. 

The most important aspect linked to the clock cycle numbers is the real-time opera-

tion criteria. As previously mentioned, the duration of an OFDM symbol is 4µs  for  the  

header  part  and  3.6µs  for  the  data  part  when  short  Guard Interval (GI) is used. 

Thus to achieve real-time operation in the  transmitter,  all  the  processing  needed  to  

create  one  OFDM symbol  should  not  take  more  than  3.6µs.  Assuming  a  500  

MHz operating  frequency,  3.6µs  can  accommodate  1800  clock  cycles. Looking at 

the total number of clock cycles for each transmission scenario  from  Table  7  to Table  

10,  it  can  be  concluded  that  the system  operations  can  be  computed  in  real-time  

in  this implementation.  

In term of power and energy consumption, according to the revealed results in pow-

er consumption and energy analysis sections, the total power consumption estimates are 

found adequately feasible to mobile terminal scale devices. By this means, the devel-

oped software solution is sufficiently applicable in the small size devices. The required 
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energy for one bit transmission was also revealed which showed the third case con-

sumes more energy to transmit one bit.  

From the code size and memory usage points of views, the solution is well orga-

nized and programmed as the memory usage tables show the results relating to different 

transmission scenarios. 

5.7. Related Works 

So far, a vast majority of the local area connectivity device implementations, in par-

ticular IEEE802.11ac related, are fixed-function solutions. As of today, some imple-

mentations have been done based on SDR, but most of the SDR platforms utilize a mix 

of software and hardware [53]. In the following, some of the recent and relevant works 

are reviewed. 

In the work by Yoshizawa and Miyanaga [9], a VLSI implementation of a 4x4 

MIMO Orthogonal Frequency Division Multiplexing (OFDM) transceiver with 80MHz 

transmission bandwidth is described, and tailored to a single transmission scenario of 

this thesis. According to the authors, they have only implemented one of the possible 

transmission scenarios, and the reported power consumption estimates are not feasible. 

Although, some contributions have been also made towards the software defined ra-

dio concept, they are mainly focused on the MAC layer processing. In [10], Samadi et 

al. have addressed the design and implementation of the IEEE802.11 MAC layer pro-

cessing using general-purpose DSP and additional accelerator systems. 

In [54], IEEE802.11p transceiver architecture with SDR technology is proposed for 

the PHY layer processing in the Intelligent Transportation Systems (ITS). The power 

estimations are shown that the proposed architecture is not power efficient compared to 

this thesis. Similar work has been done in [55] by Knopp et al. which shows a better 

performance in term of time consumption and promises a real-time processing for spe-

cific operation schemes. 

In [56], Eberli et al. have applied an Application Specific Instruction-Set Processor 

(ASIP) solution in the IEEE802.11a baseband receiver implementation. With the dedi-

cated solution, they have been successful to achieve a real-time operation for data rate 

up to 54Mpbs at the frequency clock of 160MHz which is surprisingly efficient in terms 

of time, cost and size. 

Ramdurai et al. have described a software implementation of the IEEE802.11a re-

ceiver’s challenging blocks like demapper, deinterleaver and depuncture [57]. They 

have also used a table lookup based method to merge these three functions for optimiza-

tion purposes. 

In [58], Agullo et al. have proposed and evaluated a software defined radio imple-

mentation of IEEE802.11 MAC with emphasis on cross-layer communications and net-

working. However, as it can be seen also in [11]-[14], only selected parts of PHY or 

MAC layer are typically targeted while other processing still relies on dedicated hard-

ware.  
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In [59], Iacono et al. have implemented the IEEE802.11a/p receiver based on the 

SDR technology. Their main focus is also on the PHY specifications, but the data rate 

they have targeted is much lower than our case. Furthermore, the used modulation and 

coding schemes also differ which lead to different results. However, the comparison 

between the results shows that this project is dominant in terms of clock cycles and 

power consumption. 
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6. CONCLUSION 

In this thesis, the feasibility of the software implementation of the IEEE802.11ac trans-

mitter frequency domain baseband processing is studied. Our main focus was on the 

PHY layer implementation in four different multiantenna operation points which in-

clude 2x2 and 4x4 MIMO antenna configurations to achieve a data rate beyond 1Gbps. 

The employment of the higher number of spatial streams up to 4 streams, higher modu-

lation order like 256-QAM scheme and wider bandwidth of 80MHz resulted in massive 

amount of data processing which can be carried out by the utilized DSP, ConnX 

BEE332.  

The analysis of the performance numbers clearly shows that the developed software 

based implementation on a DSP core can achieve real-time operation for the transmitter 

baseband processing assuming 500 MHz clock frequency. Furthermore the implementa-

tion resulted in realistic power consumption and memory usage, despite of massive 

amount of data processing yielding beyond 1Gbps transmission bit rate in the most am-

bitious transmission scenario. In terms of power, as the power consumption estimates, 

in Chapter 5, showed the maximum value of 40mW; therefore, the proposed software 

implementation is found feasible to the mobile terminal scale devices. 

Regarding the programmable SDR application in the baseband processing, it can be 

stated that the vector processors are well promising cores for scalable, flexible and 

adaptable parallel processing a huge amount of data. Consequently, in order to deal with 

newer wireless standards and multi operational standards devices, exploiting the vector 

processor is probably an appropriate choice to achieve low power consumption and cost 

to compete with other venders. However, flexibility, compatibility, and adaptability can 

be solved with programmability, performance calls for certain processors. The perfor-

mance can be increased by customizing the processor according to the needs of the ap-

plication. If the application has inherent data parallelism, then vector processing or 

SIMD extensions can be used which are capable to provide energy-efficiency compared 

to general-purpose processor without customizations.  

It is worth noticing that the software based implementation for the transmitter only 

includes the frequency domain PHY functions, in other words it does not provide the 

MAC layer functions and non-frequency domain functions such as IFFT. However, in 

order to provide a competitive implementation in the terms of power and area, both 

hardware and software designs need to be defined and assessed. In addition, the accura-

cy of the power and energy measurements is not certain and determined which lead to 

error in the results and evaluation. In order to measure the power, the platform must be 

implemented on the chip which is not done in this research. In the real-time evaluation, 
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we have not taken into account the time needed to receive all the data in the local mem-

ories. In fact, it has actually been assumed that all the data are already stored in the local 

data memories; hence the required time for data transfer to the local memory has not 

been considered. 

In this thesis, we have also found that the customized VLIW processors with the 

vector processing capabilities provide highly improved flexibility, much faster time-to-

market and more possibilities to bringing in new transmission features and enhance-

ment. Meanwhile, the compatibility and adaptability problems in the conventional 

fixed-function modems can be conquered. As a result, by the rapid pace of wireless 

communications systems growth, we can be hopeful that the software based implemen-

tation can be upgraded. Thus, the entire system does not need to be replaced. 

The future work will focus on implementing the corresponding receiver chain PHY 

processing which includes computationally more intensive processing such as channel 

state estimation and detection. 
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APPENDIX 1: CLOCK CYCLE RESULTS 

Clock cycle results for case a 

Block Name LP PM 

Preparation block 53 53 

LDPC Tone Mapper 165 159 

Stream parser + Constellation Mapper 150 153 

Pilot Insertion + CSD + Phase Rotation 

+ Spatial Mapping 
130 130 

Total number of clock cycles 507 495 

 

Clock cycle results for case b 

Block Name LP PM 

Preparation 0 0 

LDPC tone Mapper 165 159 

Stream Parser + Constellation Mapper 197 197 

Pilot Insertion + CSD + Spatial Mapping 

+ Phase Rotation 
260 210 

Total number of Clock Cycles 622 616 

 

Clock cycle results for case c 

Block Name LP  PM  

Preparation + STBC 111 111 

Stream Parser + Constellation Mapper 153 153 

LDPC Tone Mapper 165 159 

Pilot Insertion + CSD + Spatial Mapping 

+ Phase Rotation 
134 136 

Total number of Clock Cycles 563 559 

 

Clock cycle results for case d 

Block Name LP  PM  

Preparation + STBC 68 68 

Stream Parser + Constellation Mapper 300 300 

LDPC Tone Mapper 165 159 

Pilot Insertion + CSD + Spatial Mapping 

+ Phase Rotation 

268 
256 

Total number of Clock Cycles 
801 

783 

 


