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Use of metal objects such as dental implants, fillings, crowns, screws, nails, prosthesis 

and plates have increased in dentistry over the past 20 years, which raised a need for 

new methods for reducing the metal artifacts in medical images. Although there are 

several algorithms for metal artifact reduction, none of these algorithms are efficient 

enough to recover the original image free of all artifacts. 

 This thesis presents two approaches for reducing metal artifacts through accurate 

segmentation of metal objects on dental computed tomography images. First approach 

was based on construction and tilting of a 3D jaw phantom, aiming to obtain fewer 

metals on each slice. 3D jaw phantom included the main anatomical structures of a jaw, 

and multiple metal fillings inserted on the teeth. Each jaw slice on the 3D phantom was 

tilted in order to mimic the (1) nodding movement, and (2) mouth opening/closing. 

Second approach was to segment the metals on an experimental dataset, consisting of a 

Cone-Beam Computed Tomography image, by using different segmentation algorithms. 

K-means clustering, Otsu’s thresholding method and logarithmic enhancement were 

used for extracting the metals from a real dental CT slice. Once the metal fillings on the 

jaw phantom were segmented out from the image, they were compensated by gap filling 

methods; Discrete Cosine Domain Gap Filling and inpainting. 

 Qualitative and quantitative analyses were carried out for evaluating the 

performance of implemented segmentation methods. Efficiency of tilting alternatives on 

the segmentation of metal fillings was compared. In conclusion, jaw opening/closing 

movement between 24º-30º suggested a significant enhancement in segmentation, thus, 

metal artifact reduction on the jaw phantom. Inpainting method showed a better 

performance for both simulated and experimental dataset over the DCT domain gap 

filling method. Moreover, merging the logarithmic enhancement and inpainting showed 

superior results over other metal artifact reduction alternatives.  
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1. INTRODUCTION 
Metal implants inside the body cause artifacts in medical images, preventing the 

accurate observations on the subject. In this context, the term artifact describes a 

mismatch between the intensity values of the reconstructed image and the true 

attenuation coefficients of the object, which is especially large for high density objects 

such as metals [1]. Several algorithms and techniques have been developed to reduce 

metal artifacts, and they are collectively called as Metal Artifact Reduction (MAR) 

techniques. Unfortunately, these techniques are mostly target specific artifact sources 

arising from the existence of the metals, thus there is not a standard method in clinical 

use.   

 Within the United States alone, it is estimated that each year 300,000 metal implants 

are placed with the contribution of more than 50 companies involved in the 

manufacturing, marketing and distribution processes [2]. Large number of metal 

implants used in contemporary dentistry creates an important field for research, aiming 

to reduce the artifacts arising from these metals. Also estimated market value of implant 

dentistry for 2020 is around 4.8-6.5 billion euros with an approximate growth rate of 6-

10% since 2011 [3]. This growth can be explained by the expected increase in 

affordability, accessibility and acceptance of dental implants in the society.  

 All imaging modalities are affected from the existence of metals inside the body; 

including planar imaging, X-ray Computed Tomography (CT), Positron Emission 

Tomography (PET) and magnetic resonance imaging (MRI). Among these, X-ray CT is 

the most commonly used modality in dental imaging because of its superior image 

resolution for visualization of hard and soft tissues, low noise and relatively fast 

scanning time. Due to the common use of high density objects in dental CTs, MAR for 

dental images become a major research interest. This is the case especially for dental 

restorations and orthodontic applications, in which various kinds of metals are involved 

in the procedures, including stainless steel, gold alloys, silver amalgam, platinum, lead, 

tin and aluminum [4]. While the ideal approach for MAR would simply be physically 

removing all metal substances in oral cavity, in case of crowns, bridges and dental 

implants, it is not always possible [5]. Therefore, dental CT images have to be post-

processed by MAR techniques. MAR can be especially difficult in the case of dental 

images obtained by CBCT because (1) area surrounding the metal implants (crowns, 

fillings or braces) is small in dental cases, making it difficult to estimate the bin values 

and (2) CBCT uses less radiation dose than conventional X-ray CTs, causing the images 

to be more prone to artifacts caused by high density objects like metals.  

 This thesis aims at obtaining the best MAR by segmentation of metals and 

replacement of the segmented metallic regions by using gap filling algorithms. While 

segmentation methods try to extract the metallic regions from the image, gap filling 

methods are based on the principle of estimating the segmented regions as accurately as 

possible via interpolation of neighboring pixels. In order to obtain good results from the 

gap filling methods, accurate segmentation of metals is crucial. However, segmentation 

methods often result in inaccurate reconstruction if there are great amount of metals or 

amount of data around the metallic regions are too little. Therefore, this thesis evaluates 
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the performance of different segmentation algorithms and gap filling methods on a 

simulated 3D jaw phantom and an experimental dataset obtained from CBCT. In 

addition to the comparisons of segmentation and gap-filling methods, this thesis also 

investigates the effect of jaw tilting on reconstruction qualities of CBCT images as an 

attempt to improve image quality. The purpose of this tilting is to avoid the coplanarity 

of teeth and metals by having the metals and teeth on different planes, as well as 

avoiding the overlap of the metals in the projections [6]. 
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2. PRINCIPLES OF X-RAY COMPUTED 

TOMOGRAPHY  
X-ray Computed Tomography (X-ray CT) was the first imaging modality that was 

based on solely digital reconstruction; therefore, it has an historical importance in 

medical imaging. Since its first development, X-ray CT has been constantly improved 

with new additions and modifications, trying to achieve faster imaging time, lower 

radiation dose and better image quality. As it is also mentioned in [7], among all 

contemporary CTs, X-ray CT is the most common CT modality that provides images 

with excellent spatial resolution, along with an acquisition time close to real-time 

imaging. Increasing power of the computers and high technology detectors enables us to 

obtain low dose images in a short sequence from X-ray CTs; information needed for a 

full 3D volume can be gathered within 30 seconds to a few minutes acquisition [8].  

 One of the most frequent use of X-ray CTs are in orthodontic assessments because it 

can provide immediate and accurate two-dimensional (2D) and three dimensional (3D) 

radiographic structures, only limited with the selected field of view (FOV) [8]. Similar 

to other digital radiographic imaging modalities, CT electronically records X-rays that 

are not attenuated during the transmission through tissues of the patient. An example of 

a commercial CT and its schematic representation are depicted in Figure 2.1.  

 

Figure 2.1: (a) Schematic representation and (b) photograph of a CT scanner (Courtesy 

of GE Healthcare).  

 In CT measurements, CT intensity values are measured with Hounsfield Units (HU). 

HU represents the amount of X-ray attenuation of the beam caused by the scanned 

object, providing a basis for quantitative assessment of bone density. Depending on the 

HU values, tissue properties such as bone mineral density, lung nodule calcification and 

tissue blood flow can be quantified [9]. Calculation of HU is shown in (1), where µ is 

the linear attenuation coefficient and H is the corresponding HU. 

1000
μ

μμ
H

water

water 


  (1) 
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 Density of the material has a linear effect on µ, leading to higher attenuation for 

high density objects. Usual range of HU obtained from CT scanners is between -1000 

and 3000, where -1000 corresponds to the attenuation coefficient of air (µ=0) and 3000 

for dense bone. [10] 

2.1. Image Acquisition in Computed Tomography  

CT is based on the same physical principles as radiography. It uses an external thin X-

ray source, where a set of lines is scanned through the FOV. This process is repeated for 

various angles, gathering line attenuation values from all possible angles and all 

possible distances from the center. Similar to other 2D images, CT images are also 

composed of “pixels,” which are elements arranged in a 2D rectangular matrix [8]. Each 

pixel has an intensity value, denoting the amount of attenuation in the X-ray beam, as 

well as its location in the matrix. Based on these attenuation values, actual attenuation 

values at all points are reconstructed [11]. Non-linear attenuation of X-rays (Im) is 

calculated as follows: 

,eII μ

0m

x  (2) 

where I0 is the original photon count formed by the beam, µ is the linear attenuation 

coefficient  (m
-1

) and x is the thickness of the object [7]. Integral of attenuation for each 

ray position τ, defined as ray integral, is given as 

 
 

,
I

τI
logdrr)μ(τ,τA

0

m

r

0r

p




  (3) 

Where Im(τ)  represents the measured intensity by the detectors, whereas I0 is the initial 

ray intensity [7]. X-rays can be parallel or fan-shaped depending on the CT model, and 

the ray integral profile for the conventional parallel beam geometry is depicted in Figure 

2.2. 
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Figure 2.2: Scanning procedure and projection in CT for (a) parallel beam geometry 

and (b) fan beam geometry. Although the measured intensities are only shown for 

parallel beam geometry, they follow a similar pattern for fan beams in (b).  

 When these ray integrals A(τ) are computed over several angles, equation (3), which 

was one dimensional (1D), becomes a 2D case [7]. This 2D form represents the line 

attenuation integrals over all possible angles and distances from the center, also called 

Radon Transform (RT), whose properties is explained further in the following section.  

2.2.1. 2D Radon Transform  

Radon Transform (RT), also called forward projection, is one of the major concepts in 

image reconstruction, especially in medical imaging, where the RT is essential for 

images acquisition [12]. RT is based on interpreting an object by integration of 2D line 

integrals, which represents the integral of certain parameter along a line, at a specific 

angle of rotation. In the case of CT, these line integrals represent the attenuation of X-

rays travelling through the object as a line. An X-ray CT scanner system is depicted in 

Figure 2.3, where beams travelling from the source to the detector are drawn as arrows, 

which are later processed by computer and visualized as a slice view.  

 

 

(a) 

 

 

  

 

(b) 

 

Im(τ) 
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Figure 2.3: X-ray CT scanning system. Rays passing through the object from the source 

to detector are acquired and processed by the computer, translated into slice views 

[12]. 

 Each ray passing through the object from source to detector in Figure 2.3, creates 

1D line integrals at each angle of rotation as demonstrated in Figure 2.4. When these 

line integrals are stacked together, they form a projection vector pυ(s) at a specific 

angle.   

 

Figure 2.4: Generation of a projection vector. Line integrals through an object at a 

specific angle collectively form the projection vector, which is defined by the angle 

between the transaxial axis and the line, as well as the distance from the origin [13]. 

 Projection vector pυ(v) can be measured by moving an X-ray source and detector on 

opposite sides along parallel lines of an object and pυ(s) can be formulated as follows: 


lineυ)(s,

υ dly)f(x,(s)p , 
(4) 

where s is the distance between the line and the origin of the coordinate system , υ is the 

angle between the y-axis and f(x,y) is the scanned object in Cartesian coordinate system.    

 In the case of 2D reconstruction, the problem is to recover p(υ,s) from f(x,y). In 

order to do so, these projection vectors are stacked through a range of angles (limited by 

the maximum angle of the scanner), for all the radial samples. This transform is called 

Radon Transform and denoted by  
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  dxdyτ)ysinυδ(xcosυy)f(x,sυ,py))R(f(x,  








  (5) 

Where p(υ,s) is the RT of f(x,y). Three projection vectors at angles 0 (view 1), π/4 (view 

2) and π/2 (view 3) are depicted in Figure 2.5, where each view represents a single 

row/column in a sinogram. When these projection vectors are stacked together in the 

order of their acquisition angles, they create the sinogram slice for that object. 

 

Figure 2.5: CT views at 0 (view 1), π/4 (view 2) and π/2 (view 3) generated by the line 

integrals through an object [14]. 

2.2.2. Sinogram 

If we use s and υ as vertical and horizontal axes respectively, then when a Dirac 

impulse is displayed as projections Pφ(s), resulting image is a sinusoid corresponding to 

the function  

sinυycosυxs 00   (6) 

Each point (x,y) has the value of √     , s being the distance from the origin, and the 

phase of the sinusoid depending on υ. A sinogram consists of weighted average of these 

sinusoids by the value of f(x,y) [15].  The sinusoidal trajectory in the sinograms and line 

integrals taken from two angles (π/2, π/4) are shown in Figure 2.6.  
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Figure 2.6: Sinogram generation from (a) spatial domain to (b) projection domain. 

Example line integrals are shown for Φ=π/2 and Φ=π/4 in the figure [10]. 

2.2.3. Fourier-slice Theorem 

Fourier-slice theorem, also known as central slice theorem or projection-slice theorem, 

plays an important role in understanding the image reconstruction in CT, and it relates 

the 2D Fourier Transform (FT) of an image to the 1D FT of its projection. Let f(x,y) be a 

two-dimensional function, and Pφ(s) is the Radon Transform of f(x,y) that was 

previously defined in (5), and 1D FT of Pφ(s) is denoted with Pφ(v), then Pφ(v) can be 

formulated as 

.de)(p(v)p πv2i

υυ ss s





  (7) 

 Correlation between    ( ) and    ( ) expressed in (7) shows that 1D projection of 

an image at an angle υ corresponds to the profile through the 2D FT of the object at the 

same angle, Pφ(v). If F(u,v) is used to represent the 2D FT of f(x,y) with u = w cosυ and 

v=w sinφ, then F(u,v) can be written as follows: 

.dxdyey)f(x,v)F(u, vy)π(ux2i

 








  (8) 

(8) denotes the transformation of all projections into 2D Fourier plane. After obtaining 

the full FT of the object, recovery of the object can be accomplished by using the 

inverse FT.  By combining (7) and (8), now Fourier-slice theorem can be defined as 

Image in Spatial Domain  

(Image Domain) 

Φ = π/4 

Φ = π/2 

Φ = π/2 

Image in Projection Domain  
(Sinogram Domain) 

y
 

x 

R
ad

ia
l 

sa
m

p
le

s 
(s

) 

Angular views (υ) 

(a) (b) 

Φ = π/4 
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  R,υR,wυ),(w,Fwsinυ,wcosF(w)P 0υ    (9) 

Where F0(w,υ) stands for the polar form of F(u,v) [15]. From (9), it can be deduced that 

any object f(x,y) with an existent FT can be recovered by an inverse 2D FT because 

there is a one-to-one correspondence between the RT and 2D FT F(u,v) and any object 

f(x,y) can be described by its RT [16].  

2.2. CT Reconstruction from Sinograms 

Since Radon Transform does not have an exact inversion in practical applications, an 

approximate method has to be used for reconstruction of relative linear attenuation 

values in X-ray CT. Image reconstruction methods, used in MAR, are explained further 

in Chapter 7. 

 The simplest and the most commonly used analytical reconstruction method is 

referred as backprojection (BP), which tries to recover the object f(x,y) from Pφ(s) by 

smearing each sinogram back into spatial domain along a corresponding ray, i.e. 

acquiring CT images from its projections.  

 dυysinυxcosυpy)(x,f̂y)}}B{R{f(x,

π

0

   (10) 

where  ̂(   ) is the estimated values in spatial domain [17]. Depending on the number 

of projection vectors (angles), BP performance varies significantly. Effect of the 

number of angles used in BP is shown in Figure 2.7, where reconstruction quality of the 

Shepp-Logan phantom increases significantly as the number of projections increase. 



2. PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY 12 

 

Figure 2.7: (a) Original Shepp-Logan phantom, (b-c-d-e) unfiltered backprojected 

images with 4, 8, 64, and 128 projections, (f) reconstructed image with filtered 

backprojection with 128 projections. Blurred edges of unfiltered images in (e) seem 

much sharper after filtering in (f). 

 As it is explained in [17], BP results do not correspond to the exact attenuation 

values due to non-dimensionality of values in the projection domain. Although BP is an 

efficient and fast algorithm, it results in blurred images. Blurring effect in the image can 

be formulated as follows: 

)y(x

1
y)f(x,y)(x,f̂

22
  (11) 

where f(x,y) is function representing the real attenuation values and 
 

√(     )
  is the point 

spread function (PSF). These two functions are convolved with the convolution 

operation shown with “*” in (11) [18]. Effect of PSF on a simple Shepp-Logan image 

can be seen in Figure 2.7.e. In order to decrease the blurring effect, filtered back 

projection (FBP) is used, which is a modified BP algorithm followed by an additional 

filtering step, where projections are passed through a high-pass filter. Via filtering, the 

edges of the image become sharper, compensating the effect of blurring. Deblurring 

effect of filtering can be clearly seen in Figure 2.7.f, in which the filter provides sharper 

edges for the object than Figure 2.7.e. Different filters in a pre-determined window can 

be used depending on the purpose of reconstruction. It is shown in Figure 2.7 that sharp 

filters such as RamLak filter result in sharp edges by amplifying the high frequency 

components while suppressing the low frequencies. However, this high frequency 

amplification also causes the amplification of the noise. Filters such as Hamming filter 

have lower slopes than RamLak, which results in smoother images, with less noise 

(a) (b) (c) 

(d) (e) (f) 
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amplification, but at the cost of edge sharpness. One should note that filters used in FBP 

are applied inside a certain bandwidth in order to satisfy the Nyquist rate [7].  

 

Figure 2.8: Different filters used in FBP. RamLak filter has the highest slope, providing 

provides the sharpest filtering, but also with the highest amplification of high frequency 

noise. BlackMan filter has the lowest slope in the figure, therefore, it amplifies the noise 

the least, but it does not provide an effective filtering effect [19]. 

 In the context of this thesis, bicubic interpolation was utilized in FBP due to the use 

of large amount of neighbors (16 neighbors in the closest 4x4 neighborhood) in the 

calculation of a pixel value, which makes the interpolated images smoother, as well as 

decreasing the visible artifacts caused by BP.  

 In this thesis, Hann (Hanning) filter was selected as the window function for FBP. A 

Hann window is defined with the following formula 











otherwise0,

ff),0
f

πf
cos(0.50.5

H(f) m

m

.

 (12) 

Due to its smooth shape and fast convergence to zero, Hann filter is very useful to 

reduce noise and obtain a smooth image in backprojection, which is also the reason why 

it is used in the context of this thesis.  

2.3. Evolution of Computed Tomography  

First Generation: First modern CT was installed and used for clinical purposes by an 

engineer in British EMI Corp, called Godfrey Hounsfield in 1971 [20].  First CT, 

designed by Hounsfield, was able to measure 160 X-ray beams per each set of 

translation, and according to Goldman et al., this number has been increased to an 

average of 750 beams with the improvements in the CT technology over the years. After 

the completion of each translation set, the scanner rotated around the subject by 1° and 

Frequency (ω) 

Gain 
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the same translation process was repeated. Initial range of scanning was 180° for 

Hounsfield’s design, completed in 5 minutes. Nowadays scanners can obtain views over 

360° in less than 1 minute. [20]  

Second Generation: First generation CT results were promising, but the acquisition 

time had to be reduced. This reduction was achieved by adding more narrow beams and 

detectors, as well as increasing the scanning time by 1/N, N being the number of 

detectors. However, after 20 beams and detectors, the improvement was limited with the 

physical complexity and geometry [20]. 

Third Generation: In order to decrease the scanning time further, a broad fan beam 

was used instead of a narrow X-ray beam, which widened the range of the beam to 

cover the whole patient. Tube and an array of tightly packed detectors were attached 

together to rotate at the same speed (rotation-rotation motion). Number of detectors 

varied from 250 to 750 in order to allow enough measurements across the scan circle. 

An example of the fan beam geometry compared with conventional parallel beam 

geometry is previously shown in Figure 2.2. [21] 

 With the 3
rd

 generation, hundreds of image projections could be obtained during less 

than 10 seconds of scanning time [21]. However, this generation of scanners needed a 

high stability of detectors and matching of detector responses. Any detector error or 

drift in the calibration was also transferred to the image as “ring artifacts.” If one of the 

detectors is out of calibration Figure 2.9, detector will give erroneous values at each 

reading, leading to a circular shift [22]. 

 

Figure 2.9: Formation of ring artifacts due to the detectors. In the figure, the detectors 

that are out-of calibration create a circular shift at each reading [22]. 

 As a solution for the ring artifacts, xenon detector arrays were introduced, where a 

long chamber of xenon array was divided into smaller chambers by thin plates called 

septa, which provided an improved stability and well matching since whole array was 

affected in the same way by the external factors. However, the ring artifacts introduced 

by the 3
rd

 generation CTs were never completely eliminated, only diminished by high-

quality detector design and frequent calibration scans. [20] 

Fourth Generation: Fourth generation geometry was developed with the support of 

National Institutes of Health in 1976. Difference between 3
rd

 and 4
th

 generations is 
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shown in Figure 2.10. Unlike 3
rd

 generation CTs, where both detector and X-ray tube 

rotated separately, 4
th

 generation detectors were placed on a 360° stationary array in 

these CTs, enabling them to detect rays at any distance from the center of rotation.  

 

Figure 2.10: (a) 3
rd

 generation and (b) 4
th

 generation CTs.  In 3
rd

 generation CT, 

detector and X-ray tube rotate separately, which can cause calibration errors. In the 4
th

 

generation, this risk of calibration error is corrected by placing the detectors on a 360º 

stationary array [23]. 

 Also in the 4
th

 generation, ring artifacts generated by patient shadowing were 

compensated with dynamic calibration of the detectors. Some of the main disadvantages 

of this design were the large ring diameter (1.7-1.8 meters), which was necessary for 

acceptable tube-skin distances and compensation of increased scatter. Use of the scatter 

absorbing septa, which was used in 3
rd

 generation CTs, was not feasible for the design 

of this generation because septa would aim for the center (patients location), leading to 

transmission of primary X-rays. Both 3
rd

 and 4
th

 generation CTs were produced until the 

recent development of multislice CTs, which eventually replaced the 4
th

 generation 

models due to their lower cost than the expensive detector arrays used in the 4
th

 

generation technology. [20] 

2.4. Dental Computed Tomography  

Study of Gahleitner et al. provides a useful overview about the concept of dental CT 

and the history behind this technology. In their work, dental CT is referred to as a 

specific investigation protocol rather than a certain imaging modality, which includes 

extremely accurate acquisition of axial jaw scans. 

 Dental CT, also known as Dentascan, was introduced by Schwarz et al. in 1987, 

where they used the first curved multiplanar reconstructions of the jaw. This 

reconstruction has become a common method prior to metal implant surgeries and its 

clinical use has increased over the past 20 years. The primary motivation for dental CT 

was the increased number of metal implants in the jaw and the need for imaging the jaw 

anatomy despite these implants. Major disadvantage of X-ray CT was the metal artifacts 

caused by tooth fillings in the jaw region, and this problem was overcome in dental CTs 

by using axial plane instead of the coronal plane for scanning, leaving the artifacts on 

(a) (b) 
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occlusion plane and the jaw undistorted, thus enabling the dentists to accurately 

visualize the actual jaw size [2].  Dental CT is currently used in areas such as analysis of 

jaw pathology, assessment of impacted teeth, supernumerary teeth and their relation to 

vital structures, changes in cortical and the assessment of bone grafts, examination of 

paranasal sinuses, and obstructive sleep apnea [24]. 

Dental panoramic X-ray: Until 1987, radiographs were sufficient for dental imaging 

industry. However, after the introduction of dental CT, reformatting programs for dental 

imaging increased and spread around the world. The main reason for that were dental 

implants, which were metallic cylinders, surgically implanted into the jaw in order to 

provide support for a dental prosthesis. With the metal artifacts caused by these 

implants, it was difficult to determine if there was enough bone in the jaw to place the 

implants. Also dentists could not detect the exact location of the soft tissue and nerves. 

With the development of dental CT, new methods for evaluation of dental implants 

were developed, as well as improved assessment of the tumors, silicon implants, 

fractures and inflammatory diseases [25]. Nowadays dental panoramic X-rays are used 

in examination of radicular lesions, radicular granuloma, dental fillings extrusion, 

calcifications, demineralization, bone lesions, included tooth [26]. 
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3. CONE BEAM COMPUTED TOMOGRAPHY  
Starting from the early days of dental radiographs, concepts in imaging technology did 

not change significantly until 3D imaging. First CTs suitable for 3D imaging were 

available since 1980s, but they were expansive, the access to the technology was 

limited, radiation dose was high, and their utilization was limited to unique dental 

problems. Therefore 3D imaging was not commonly used until 1988, when the first 

spiral and helical scanning was introduced [27].   

 One of the last generations of 3D imaging modalities is Cone Beam Computed 

Tomography (CBCT), which provides a high quality and accurate 3D representation of 

a subject. It is preferred over other CT types due to its small field of view (FOV) and 

low dose radiation with sufficient image spatial resolution [28]. Examples of 

commercial CBCT units are presented in Figure 3.1. 

 

Figure 3.1: Examples of hybrid CBCT units. (a) KODAK Dental Imaging 9000 3D, (b) 

Veraviewepocs 3D, and (c) Picasso Trio [28]. 

 Layman et al. describes CBCT as a more compact, faster and safer version of 

conventional X-ray CT [29]. CBCT was firstly used as a prototype in clinical practice as 

early as 1982 for angiographic applications [30]. However it was introduced in dento-

maxillofacial (DMF) imaging in 1997 and since then its clinical applications in dentistry 

has been numerous [27]. CBCT is becoming popular around the world especially for 

pre-operative assessment (before operation), intra-operative (during operation) and post-

operative (after operation) imaging in dental surgeries [28]. It has been also validated 

for biomechanical simulations, models of bone remodeling and simulations for 

orthodontic assessment, treatment, and follow-up [31]. Number of CBCT units used for 

maxillofacial imaging has been increasing [32], and the 19 different commercially 

available CBCTs around the world as of this writing, are listed in the Appendix 1 [28]. 

3.1. Limits of 2D Imaging 

2D imaging has been used in dentistry since the first intra-oral radiograph was taken in 

1896 [24]. Ii is known that in 2D imaging, the acquired image is a 2D representation of 

a 3D object. In case of any corruption or error in the imaging process most probably that 

lead exposure or geometric errors, and the result would be far from optimal. Moreover, 

complex dental anatomy and closeness of the surrounding structure can also “shadow” 

the accurate representation of the 3D image in 2D slices. None of the 2D imaging 
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techniques, i.e. intraoral, panoramic and cephalometric images, is able to demonstrate 

the 3D anatomic features in the same way as CBCT because CBCT reconstructs the 

projection data to provide interrelational images in axial, coronal and sagittal planes. 

Conventional CTs captured the axial plane slices as separate stacked slices or from a 

continuous spiral motion over the axial plane with several rotations. However, CBCT 

uses only one or two rotation sweeps and data acquisition can be obtained from a 

limited region or whole dental/maxillofacial volume [33].  Also data can be re-

organized in their true relationships via CBCT, which cannot be accomplished with 2D 

imaging. [28] 

3.2. Cone Beam Computed Tomography Principles 

 CBCT technology was essentially innovated as a cost efficient method for obtaining 

3D cross-sectional images for radiotherapy. CBCT is based on the principle of rotating a 

scanning unit (gantry), which is fixed to an X-ray source and detector (Image Intensifier 

or Flat Panel Detector) [34]. The X-ray beam is characterized with different parameters: 

(1) beam quality, defined by the X-ray spectrum, (2) shape of the beam, defined by the 

voltage peak (kVp) over the X-ray tube, the anode current and the filtration of the 

produced X-ray beam [34]. CBCT uses a pyramid or cone shaped ionizing radiation 

source, which is produced in the X-ray tube. This cone shaped source transmits the X-

rays through the middle of the region of interest (ROI) onto the detector on the opposite 

side of the patient. Whole field of view (FOV) is scanned by the detector and X-ray 

source, which rotate with a constant fulcrum, scanning a range from 180° to 360 ° [28]. 

The smallest 3D unit obtained from the FOV is called a voxel, which are stacked in 

rows and columns. Information such as dimension, 3D location and value for each voxel 

are stored in the computer [33]. 

 Operating range of CBCT can be as low as 1-15 mA at 90-120 kVp from the range 

of 120 – 150 mA at 220 kVp of CT. Radiation dose used in CBCT depends on the 

scanning time. So if the scanning time is considered to be typically between 5.7 to 40 

seconds, then the exposure is in the range of 40 to 135 microSievert (µSV), whereas this 

value is around 430 µSV for a multi-slice CT [31], [35]. The radiation dose of CBCT 

can be 3 to 7 times more than panaromic doses, whereas it is around 40 % less than 

conventional CTs [31]. However, the effective dose of CBCT can change depending on 

the size of FOV, mA setting, kVp, scan time, sensor sensitivity and number of image 

captures. [35]  

3.3. Limitations of CBCT   

Although new CBCT technologies enabled dental imaging with low radiation exposure, 

high resolution and decreased expenses, it has several important drawbacks such as 

susceptibility to movement artifacts, low contrast resolution and limited capability to 

visualize internal soft tissues [24]. Figure 3.2 indicates the lack of contrast in the soft 

tissues of maxilla region in CBCT compared with a Medical CT (MDCT).  
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Figure 3.2: (a) Medical CT (MDCT) axial image (b) CBCT axial image (upper jaw) 

showing hard (1) and soft (2) tissues of maxilla. The low contrast of high density objects 

in the CBCT image is clear when compared with the MDCT structures [Modified from 

[36]]. 

 Even though movement can be prevented, low contrast and limited capacity of 

visualization in CBCT are issues related to the Hounsfield Units (HU), which need to be 

solved. Unfortunately, as opposed to medical CTs, CBCT technology does not allow an 

accurate identification of HUs of the anatomical structures. This is mainly because of 

the fact that CBCT manufacturers have not agreed on a standard scaling system for gray 

levels representing the attenuation coefficients. The problem of non-standardized HU 

scale is explained in the study of Esmaili et al., where they compare two commercial 

CBCTs. In their study, it was observed that Planmeca Promax X-ray machine produced 

more severe artifacts due to the lower radiation dosage (84 kVp vs. 110 kVp) its limited 

tilting capacity (270° vs. 360°) and the type of the software used in the device, whereas 

NewTom VG resulted in less artifacts for the same configuration [37]. Different and 

inaccurate HU values in the study can also be explained by increased scatter and beam 

hardening affects. Nevertheless, these problems prevent the use of CBCT for bone 

density estimation applications [38]. Furthermore, lower energy (in kVp) of the X-ray 

beams in CBCT makes the reconstruction more prone to metal artifacts [30]. 

Additionally, due to the novelty of cone-beam technology, little research has been 

conducted on how to apply the artifact reduction techniques developed for CT to CBCT 

images.  
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4. ARTIFACTS CAUSED BY METALS IN X-RAY 

COMPUTED TOMOGRAPHY  
One of the major problems in X-ray CT technologies is the artifacts caused by metals. 

Since CT images are comprised of many independent detector measurements, the 

measurement system is highly sensitive to distortions, thus it is inherently more prone to 

artifacts from several sources, especially high density materials such as metals. Artifacts 

in X-ray CT, originating from metals, are discussed in this section.   

4.1. Metal Artifacts in X-ray CT 

When X-rays reach a metal in the body, they are attenuated significantly, causing fewer 

photons to reach detectors. The nonlinearity caused by low photon count produces 

corruptions, seriously deteriorating the image quality near the metal surfaces and 

causing the phenomena explained in this chapter [1]. Artifacts originating by metals 

include beam hardening, non-linear partial volume effect, exponential edge gradient 

effect (EEGE) and scatter; and they are likely to compound the problem with very dense 

objects [39].  For instance, beam hardening causes attenuation of the photon energies 

during the acquisition of the projection data and leads to artifacts around the metals. 

Using less attenuating materials such as titanium could decrease the X-ray attenuation, 

however dental materials are not mainly chosen based on the X-ray attenuation 

properties. Therefore material removal is not clinically practical in the case of dental CT 

imaging [5]. Another solution could be increasing X-ray energies to improve photon 

penetration because higher dosage of radioactivity would significantly increase the 

imaging quality. However, radiation dose for dental patients needs to be optimized in 

order to achieve the lowest practical level in clinical applications in accordance with the 

principal of “as-low-as-reasonably-achievable” (ALARA) [40].  

 In order to apply a successful metal artifact reduction (MAR), it is important to 

understand the physical phenomena caused by metals in dental X-ray CT images. In this 

section, some of the most common sources of artifacts caused by metals are 

investigated. It should be noted that, although there are other sources of artifacts 

including aliasing, motion, detector under-sampling and range exceeding, they have 

minor affect in the case of X-ray CT reconstruction [5]. Therefore, they are not 

considered in the scope of this thesis.  

4.1.1. Beam Hardening 

When a polychromatic X-ray (an X-ray beam consisting of photons within a wide 

energy range) passes through an object, the attenuation of the rays increases as the 

energy decreases. Linear attenuation coefficient (µ) is used as a measure of attenuation, 

and it is greatly dependent on the photon energy. The higher the photon energy, the 

lower is µ, which means that low energy components are attenuated more than the high 

energy photons. Attenuation of low energy rays increases the energy of the beam, 

making it “harder”. Ideally, image reconstruction techniques assume linearity between 

the thickness of the object and the measured photon count. However, due to this 

hardening affect, the attenuation (photon count) and absorber thickness (path length 
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traveled by the beam) cannot be considered as linear anymore. Rays that travel a shorter 

distance in the object are less attenuated, causing less errors in the measurements 

whereas the ones that travel a long distance are highly attenuated, leading to greater 

error values [11]. When CT image is reconstructed with these errors, it causes black and 

white streaks as demonstrated in Figure 4.1.  The dark streaks in Figure 4.1 indicate the 

direction of the highest attenuation. 

 

Figure 4.1: Phantom of a plexi plate with 3 amalgam fillings (left) without beam 

hardening (right) with beam hardening [11]. 

 It can be said that in Figure 4.1.b, amalgam fillings cause beam hardening because 

they behave like a filter for X-rays. Fillings highly absorb/filter the low-energy beams, 

and lead to larger intensity values in the place of the metal, shadowing the intensity 

values of the matter behind the metal in the beam path [41]. This absorption and 

shadowing generate the streak artifacts in Figure 4.1. 

4.1.2. Scatter 

Many photons diffract from their original direction when they penetrate through an 

object. Due to this deviation they cannot be used in the calculation of accurate 

directional information in reconstruction. Even though most of these deviated photons 

are eliminated by post-patient collimation and septa between two detectors, some of 

them still contaminate the measurement [11].  Similar to beam hardening, scatter also 

causes nonlinear behavior of the beams, resulting in projection errors, and causing 

similar artifacts in the images [11]. Figure 4.2 shows amalgam fillings causing dark 

streak effects in the direction of highest scatter. 
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Figure 4.2: Phantom of a plexi plate with 3 amalgam fillings (left) without scatter 

(right) with scatter [11]. 

 Scattered photons increase the intensity value of the primary intensity I0, causing 

overestimated intensities along the ray path, thus, leading to streak artifacts after 

reconstruction [41]. In order to decrease the effect of scatter, perfectly collimated 

detectors are needed. Also scatter correction can be used for reducing the artifacts, but a 

constant scatter over the entire projection is assumed for this correction [10]. 

Considering the fact that larger detectors in CBCT detect more scattered photons, it can 

be said that CBCT is more vulnerable to scatter than conventional CTs [41].  

4.1.3. Noise in Measurements 

There are two types of noise in CT. One of them is caused by the quantum nature of the 

X-ray photons, modeled by the Poisson distribution. Noise can be decreased by either 

increasing the X-ray exposure to the patient or by increasing the voxel size, at the 

expense of decreasing the spatial resolution. The deviations and fluctuations in the 

measurements cause dark and bright streak artifacts along the projection lines after 

reconstruction. As it is shown in Figure 4.3, streaks are more apparent in the direction of 

higher attenuation, because low intensity of the measured data leads to a lower signal-

to-noise (SNR) ratio, making the noise more dominant over the measured intensities. 

 

Figure 4.3: Phantom of a plexi plate with 3 amalgam fillings (left) without noise (right) 

with noise [11]. 
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 Other type of noise is the CT measurement system, which is a combination of 

different noise sources such as the exposure time, beam energy, tube current, phantom 

size, collimation/reconstructed slice thickness and helical pitch [42]. 

 Post processing of the images by averaging is the most efficient way to decrease the 

effect of noise in the images, since the consistent structures cumulatively dominate 

during the repetitive averaging, whereas the noise is either minimized or cancelled out. 

As a drawback, averaging operation causes blurring in the image by smoothening the 

edges of the objects. 

 In the case of CBCT, the average dose of radiation is much lower than in 

conventional X-ray CT. Therefore, noise alters the attenuation values of voxels more, 

where they need to be constant. These altered values change the computed attenuation 

values of tissues, leading to errors in the backprojection process and causing lower SNR 

(low signal, high noise) ratios in the measurements [41]. 

4.1.4. Exponential Edge-Gradient Effect  

Exponential edge gradient effect (EEGE) often occurs in case of high contrast 

differences between neighboring structures, where there is a sharp “edge” between the 

high and low density objects. In CT measurements, sharp intensity changes are 

considered as high frequency components. Although in theory these high frequency 

components (edges) are considered as lines, in practice these lines are averaged in a 

finite line width, leading to smoothening (blurring) of the edges up to a certain degree 

[43]. Especially in dental imaging, due to the high contrast difference between the 

metallic crown borders or the edges between bone and soft tissue, EEGE is a problem 

that has to be taken under consideration during image reconstruction [41]. In order to 

reduce the effect of EEGE, high pass algorithms are used to mathematically enhance the 

edges of structures and decrease the blurring effect [43]. 

4.2. Metal Artifacts in Dental Applications 

In order to understand the effects of metals in dental CT, it is important to explore the 

anatomy of jaw in dental images. Figure 4.4 demonstrates the structure of an upper jaw 

(maxilla) without metals on a sample dental CT. Regions indicated with numbers 1, 2 

and 3 in Figure 4.4 commonly correspond to HU values of ~2000, ~200, ~1200-1800 

respectively [44].  
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Figure 4.4: (a) CT of axial slice of maxilla, (b) 3D anatomical view of dental CT 

(CBCT) reconstructed from (a) with sections of 1 (tooth), 2 (soft tissue), 3 (jaw bone). 

All structures are clearly visible with no metals. [Modified from [45]]. 

 Metals that are present in dental CT images introduce strong artifacts where two 

metals meet or overpass in scan rotation [1]. These metal artifacts in CT images have 

relatively high intensity values (amalgam and gold have attenuation values greater than 

30,700 HU), and they prevent precise 2D visualization, hinder structures and distort the 

3D reconstruction [44]. Figure 4.5 demonstrates metal artifacts caused by beam 

hardening, scatter and EEGE, which hinder the structure of nearby teeth as well as the 

soft tissue. It is also worth noting that black and white streaks in Figure 4.5 are 

amplified as the metals get closer to each other. Also filtering operation during FBP 

causes additional streak artifacts on the image, especially when the FOV is small and 

includes multiple metals. 

 

Figure 4.5: Metal artifacts in dental CT of maxilla after FBP (axial view). Anatomical 

structures are shadowed and distorted by the metal artifacts [46]. 

 In dentistry applications, accurate information about the 3D structures of teeth and 

maxilla for diagnosis and planning of dental surgery is needed. It is worth noting that 

importance of the metal object extraction is not limited to MAR in CT images. 

Detecting metal objects in dental CTs is also useful for sparse projection data. It can be 
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used in practical applications such as dose reconstruction in brachy-therapy and seed 

implantation [47].  

 Aforementioned artifacts are identified and compansated with MAR, which includes 

mainly categorized 4 parts: (1) Construction of sinograms (RT), (2) segmentation of the 

metals in the sinograms, (3) compensation of the sinograms for metal artifacts (MAR), 

(4) post-processing (FBP) of sinogram data. These steps are shown in Figure 4.6. 

 

Figure 4.6: Block diagram comprising the steps of a MAR method 

 This thesis primarily compares two MAR algorithms on simulated and experimental 

datasets, aiming to achieve the best reconstruction with minimum error at the sites 

around the metallic parts. Both MAR methods are applied to the sinogram domain 

images, where all high density structures have a continuous imprint. Experimental 

dataset, obtained from Cone-beam Computed Tomography (CBCT), was only used for 

evaluating the performance of the developed MAR algorithms, whereas an additional 

jaw tilting in spatial domain was applied on the simulated 3D jaw phantom. The aim for 

jaw tilting was to decrease the coplanarity of metals in the source-detector plane, thus 

reducing the metal artifacts on each slice. Datasets and the jaw tilting operations are 

further explained in Chapter 5.  
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5. DATASETS AND EVALUATION METHODS 

5.1. Simulated Dataset and Evaluation Methods 

Phantoms are widely used for testing algorithms in medical imaging because real-life 

images include large amount of data, and phantoms decrease the processing time of the 

algorithm. Also it is highly probable for real images to include multiple sources of 

errors, which prevents accurate evaluation of the algorithm performance. Therefore, 

tilting of the jaw was implemented on a 3D jaw phantom in MATLAB (Windows 

version R2012b 64 bit), aiming to avoid the additional artifacts caused by X-ray CT 

systems.   

5.1.1. Modeling of 3D Jaw Phantom 

First step in modeling the jaw slices was to characterize the most significant parts in the 

jaw, based on their attenuation coefficients (intensity values). The most significant 

intensity characteristics were observed from oral cavity, bone, soft tissue, teeth and 

metallic regions, which led to the representation of these regions in the phantom. It 

should be noted that the structure of this phantom was modified from the 2D jaw 

phantom developed by Oliver Watzke [48].  

 Secondly, intensity values were assigned in such a way that gray level values of the 

anatomical structures would be proportional to their corresponding HUs in real CT 

images. Table 5.1 shows the selected intensity values for the anatomical compartments.  

Table 5.1: Intensity values of modeled jaw regions 

Modeled Region Assigned Intensity 

Value 

Soft tissue 0.5 

Jaw bone 0.75 

Teeth 1 

Oral cavity 0 

Metallic regions 10 

 In the construction of the phantom, the soft tissue surrounding the jaw was 

considered as the base. Two jaw bones were added on top of this base and then 32 teeth 

were placed (16 on maxilla and 16 on mandible).  

 Due to the structural similarity between upper (maxilla) and lower jaws (mandible), 

maxilla and mandible were constructed symmetrically. Once the 2D phantom was 

ready, it was modified so that maxilla and mandible would consist of 10 symmetrical 

slices. While modeling the maxilla and mandible, diameter of the crown was assumed to 

be constant, and teeth diameter was decreased towards the roots. Metallic regions were 

modeled with the same perimeter for each tooth, getting smaller in diameter towards the 

roots. The oral cavity was considered to be non-attenuating, thus it was modeled with 5 

empty slices. The final 3D phantom had an axial size of 128x128 with 25 slices in total. 
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Figure 5.1 shows the 2D view of the jaw phantom for a single slice and its 

corresponding sinogram. 

 

Figure 5.1: (a) 2D view from 3D jaw slice with all of the metals (b) corresponding 

sinogram of (a). Metal traces on the sinogram can easily be distinguished from the rest 

of the anatomical structures due to its high intensity levels [Modified from [48]]. 

 During the course of this thesis, Figure 5.1.a will be referred as the “ground truth”, 

since its intensity values are known to be true, thus it can be used as reference in the 

evaluation of reconstructed images. Metals in Figure 5.1.b have significantly higher 

intensity values with respect to the surrounding area due to high intensity value 

accumulation from projection vectors of RT. This intensity difference, together with the 

continuous structure of the sinogram, makes it easier to segment these regions in 

sinogram domain compared to the spatial domain. 

Jaw Tilting  

In order to determine the tilting angles of the jaw phantom, the maximum angle was 

assumed to be 30° [49]. According to this maximum value, tilting was carried out in the 

range of [0, 30°], with an increment of 6°. For the computation of sinograms of tilted 

datasets, 288 projections were used in the range of [0,180°].  

 Since the tilting operation introduces new pixel values to be calculated, an 

interpolation technique is needed to estimate these values. In this thesis, nearest 

neighborhood method was selected for interpolation of the pixels. Nearest neighborhood 

method uses a linear approach for calculating the repositioned pixel values, which is 

represented with the formula of  
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in the range of (x0,x1), where coordinates of two known pixel values are denoted by 

(x0,y0) and (x1,y1) , and y is the unknown value at location x [50]. This linear approach 

ensures that the interpolated values are as close as possible to the original values outside 

the metallic regions. 

 In order to investigate the effect of tilting in the source-detector plane on MAR, two 

tilting operations were carried out on the simulated dataset: (1) Tilting the jaw by angle 

α, corresponding to jaw opening/closing movement, (2) tilting the jaw by angle β, 

(a) (b) 

Metals 



 

5. DATASETS AND EVALUATION METHODS           28 

representing the nodding movement. Figure 5.2 demonstrates the tilting with both α and 

β.  

 

Figure 5.2: Coronal view of jaw with (a) no tilting, (b) tilting with α, (c) tilting with β.  

The dashed line in (a) indicates the original positioning of jaw, whereas dashed lines in 

(b) and (c) represent the amount of jaw tilt from (a) [Modified from [51]]. 

 In the case of tilting with α, mandible and maxilla were tilted by α/2 degrees around 

the jaw joint, but in opposite directions. As degree of tilt was increased, metal amount 

per slice was lessened. Decrease of metals can also be seen from the comparison of 

Figure 5.3.a and Figure 5.3.d, where one of the three metals in Figure 5.3.a is almost 

invisible in Figure 5.3.d. Since the interpolation operation changes the size of the 

images, total slice number for α tilting was set to 110 from 25 by padding around the 

mandible and maxilla regions. Coronal views of the tilted jaw phantom are also 

provided in Figure 5.3.b and Figure 5.3.e in order to visualize the increase in the tilting 

angle. 
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β 



 

5. DATASETS AND EVALUATION METHODS           29 

 

 

Figure 5.3: (a) Transaxial, (b) coronal, (c) sinogram views from 18° tilted jaw, (d) 

transaxial, (e) coronal, (f) sinogram views from α=24°. Transaxial views are used for 

demonstrating the decrease in metal numbers on the jaw slice, which can also be seen 

from the respective sinograms. Coronal view is used for visualization of the jaw 

movement. 

 In order to model the tilting by β, mandible and maxilla slices were tilted as a whole 

and in the same direction. An example tilt with β can be seen in Figure 5.4. When 

transaxial views in Figure 5.4.a and Figure 5.4.d are compared, it can be seen that as the 

tilting angle increases from 18° to 24°, visible area of the jaw on each slice decreases, 

simultaneously diminishing the metal traces to be replaced/ corrected in the respective 

sinograms from Figure 5.4.c to Figure 5.4.f. 

 

(a) (c)  (b) 

(d) (e) (f) 
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Figure 5.4: (a) Transaxial, (b) coronal, (c) sinogram slice views from β=18°, (d) 

transaxial, (e) coronal, (f) sinogram slice views from β=24°. Transaxial views and their 

respective sinograms are used for demonstrating the decrease in metal numbers on the 

jaw slice, whereas coronal view is used for visualization of the employed nodding 

movement. 

 In the case of β tilt, total slice number was set to 66. It should be noted that although 

the total slice number changed for different tilting techniques, axial image size for each 

slice remained the same (128x128) for both tilting alternatives. 

5.1.2. Evaluation Methods 

In order to evaluate the performance of the reconstruction for different tilting angles, 3D 

reconstructed images were tilted back to their original axes in spatial domain.  

Otherwise, same slice for differently tilted angles would have different amount of 

information, thus comparison between them would be impossible. 

Line Profile Analysis 

After all the 3D datasets were tilted back to their original axes, reconstruction quality 

between different tilting angles was compared with line profile analysis, which 

represents intensity (gray level) values along an arbitrary path on an image. 

 In this thesis, line profile analysis was used as a tool to compare the effect of tilting 

in reconstruction with respect to the ground truth image. A line, drawn on the image, 

was extracted from the rest of the values (Figure 5.5.b). Figure 5.5.a shows the 

polynomial line drawn on jaw phantom slice, which passes through the teeth and the 

background around the metal regions. Recalculated values of the metals are excluded 

from the line profile analysis since the most important part of MAR was the reduction 

of artifacts occurring around the metal regions rather than estimating the metal values 

accurately.  

(a) (c)  (b) 

(d) (f)  (e) 
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Figure 5.5: (a) Ground truth image with the polynomial line and (b) line extracted from 

(a) for line profile analysis. Line is drawn on the ground truth so that it surpasses the 

jaw structures and the background, but excludes the metallic regions for obtaining a 

more reliable comparison between the reconstructed regions.  

 Once the line was drawn, intensity levels were determined at 170 sample locations 

on the line for 6 different tilting angles (0, 6°, 12°, 18º, 24°, 30°). Reconstructed images 

with different tilting angles were compared according to the intensity values on the line 

profiles. 

Other image quality measurements  

Normalized mean squared error (NMSE), peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) index were utilized for further quantitative analysis of the 

simulated dataset. These quality measures were only used for the simulated dataset 

since they all require a ground truth reference for comparison. All of these techniques 

assess the similarity between two images, one of them being the ground truth image. For 

image quality assessment, NMSE and PSNR were calculated separately for 

reconstructed teeth, background and jaw regions, aiming to achieve a more accurate 

comparison in homogenous regions, decreasing the deviation in calculations. Selected 

regions quality measurements are shown in Figure 5.6. 

 

Figure 5.6: (a) Segmented teeth, (b) segmented background, (c) segmented jaw regions 

used for image quality assessment. Note that the regions used in evaluation have the 

value of 1 whereas dark regions are 0. 

(a) (b) 

(a) (b) (c) 
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Normalized MSE (NMSE): Mean squared error (MSE) describes the difference 

between intensity values of two images at coordinates of (x,y). MSE between ground 

truth image g (x,y) and restored image ĝ (x,y) is defined as  

  100y)g(x,y)(x,ĝ
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where the image size is NxM and image values are normalized in the range of [0,1] 

[52]. NMSE is a scaled version of MSE, normalized in the range of [min( g (x,y)), max(

ĝ (x,y))]. Minimum value of NMSE is zero, which occurs if g (x,y) and ĝ (x,y) are 

equal, and it indicates that there is no difference between the two images.  

PSNR: Peak signal-to-noise ratio (PSNR) is defined as the ratio between the maximum 

power of the signal and the power of the corrupting noise. In this case, PSNR between 

ground truth image g (x,y) and restored image ĝ (x,y) is formulated as 
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where the numerator define the dynamic range of pixel intensities in an image of size 

NxM [52]. Maximum value of PSNR is infinity because of the division by MSE in (15), 

which has a minimum of 0. 

SSIM index: Structural Similarity (SSIM) index measures the similarity between two 

images, where one of the images is assumed to be the ground truth, and the other image 

is considered to be the distorted image. SSIM index was developed by Wang et al., and 

it has been a well-known image quality measurement method because it correlates with 

the quality perception of human visual system (HVS). Instead of adding up the errors in 

individual pixels like PSNR and MSE, SSIM index considers any image distortion as a 

combination of loss of correlation, luminance distortion and contrast distortion. In other 

words, error sensitivity approaches use perceived errors for image quality assessment, 

whereas SSIM considers image distortions as changes in structural information. SSIM 

index of 1 indicates a one-to-one match between two images. [53]   

 In the context of this thesis, SSIM index is only used as an additional measure along 

with PSNR and NMSE because of the small amount of structural change after MAR. 

The algorithm developed for MATLAB in [54] was utilized in the calculation of SSIM 

index. 
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5.2. Experimental Dataset and Evaluation Methods 

In order to test the MAR algorithms on the experimental dataset, a sample sinogram 

slice was constructed from the provided 3D CBCT image, on which metal traces were 

mostly continuous. Different from the simulated dataset, additional segmentation 

methods were utilized in the experimental dataset in order to obtain a more accurate 

extraction of metals from the sinogram. 

5.2.1. Reconstruction of Sinogram Data 

For the construction of the sinogram data, a 16-bit full angle CBCT image, acquired 

from Planmeca Promax 3D Max CBCT (Planmeca OY, Helsinki, Finland) was used. 

The CBCT image had the axial size of 1472 x 1856, with 750 slices over 360 angles in 

total. For the images used in this thesis, scans were carried out with 60 kVp, with an 

exposure time of approximately 23 seconds, with 29 mA. Initial acquisition of the 

image was carried out by Romexis 2.3.1. Software (Planmeca OY, Helsinki, Finland) 

and saved in “.raw” format. Spatial image, provided by Planmeca, was constructed from 

projections by using Feldkamp-David-Kress (FDK) algorithm, which is a modified FBP 

used for reconstruction of images from cone beams. All parameters that were necessary 

for FDK algorithm was not provided for the experimental dataset, therefore a parallel 

beam approach was used in the construction of sinograms. Also later modifications on 

the sinogram were carried out in MATLAB environment since Romexis software was 

not available. In order to process the large amount of data, the axial size of the acquired 

image was downsampled to 736x368. Since pixel number and size were not as 

important as the intensity changes in the image, downsampling did not impair the MAR 

calculations. After the image was downsampled, each sinogram was constructed into the 

750x368 matrix, where all axial slices taken from a certain angle were stacked together. 

The sinogram, which was used in this thesis, and its construction are demonstrated in 

Figure 5.7. Initially constructed sinogram had intensity values varying in the range of 

[424, 8941], 424 being the darkest and 8941 being the brightest regions. This sinogram 

was modified with some pre-processing steps, which are explained in Chapter 7.4, in 

order to make it suitable for the application of MAR algorithms. 
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 Figure 5.7: Sinogram construction from axial samples of the CBCT image. Marked 

regions from each axial slice of the CBCT data, consisting of all vertical values for a 

pixel, are stacked together. Resulting sinogram has the size of 368x750. 

 Final images after MAR were evaluated with respect to the jaw image depicted in 

Figure 5.8 (I0). I0 represents the spatial domain image with an axial size of 368x368, 

which was obtained after the application of FBP on the sinogram in Figure 5.7.  

 

Figure 5.8: Jaw image in spatial domain, obtained after FBP on the original sinogram 

(I0). It should be noted that pieces of the metallic braces have considerably higher 

intensity values compared to the other anatomical structures, thus, seem brighter in the 

image.  
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5.2.2. Evaluation Methods 

Evaluation of segmentation and gap filling methods were initially assessed qualitatively. 

Since quality measures such as NMSE, PSNR and SSIM index could not be used due to 

the lack of ground truth information, mean values and standard deviations were 

calculated for sample ROIs. Chosen ROIs for evaluation are depicted on the uncorrected 

image in Figure 5.9. 

 

Figure 5.9: Selected ROIs on the uncorrected image. Marked regions are chosen as 

homogenous as possible within themselves, and are used for evaluating the 

reconstruction qualities of the MAR algorithms.  

 ROIs were selected so that each ROI would encircle a homogenous region or 

structure on the image. Standard deviation and mean values that were calculated in each 

region for the uncorrected image are presented in Table 8.3. 
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6. SEGMENTATION OF METALS IN DENTAL X-

RAY COMPUTED TOMOGRAPHY  
Most of the segmentation processes are based on the assumption that different kinds of 

materials have different CT value; and they can be detected by thresholding, above 

which a specific material/object can be separated from the rest of the image. 

Segmentation task would be trivial without the problems such as limited number of 

projection images, noise and artifacts in the projection data, and interpolation methods 

used in reconstruction algorithms [55]. In order to overcome these problems, there are 

different approaches to segmentation of high density objects such as (1) histogram 

based methods (i.e. Otsu’s segmentation method [56] based on choosing a threshold 

according to the image histogram, or global thresholding), (2) region-growing 

approaches [57] and (3) watershed segmentation [58]. 

 In the context of this thesis, finding the exact shape and location of the metals were 

the initial objectives in segmentation. It was important to detect the metallic regions as 

accurately as possible [59]. Any residual metals after segmentation would damage the 

reconstructed images, leading to streak artifacts, whereas over-segmentation of the 

metallic areas would distort the reconstruction quality of the non-metallic regions. 

Determination of the rest of the intensity distribution was not considered as a part of 

segmentation process, since they comprise completely different mathematical properties 

[47]. For segmentation, metal regions are considered as white (one) and non-metallic 

regions as black (zero).  

6.1. Otsu’s Thresholding Method  

Otsu’s Thresholding method was developed by Nobuyuki Otsu in 1979. It is commonly 

used in segmentation on sinogram data analysis. The method is based on the idea of 

choosing a threshold value from the histogram of the image, in which all the gray levels 

are grouped according to their occurrence frequency [56]. Once all the values are placed 

on the histogram, the gap between the peak values (representing objects) indicates the 

threshold to be selected. It is often difficult to choose this gap accurately due to several 

reasons such as noise and multiple peaks in the histogram. There are some sharpening 

techniques that can be applied on the histogram before selecting the threshold, but they 

mostly assume a priori information such as constant noise level and distribution. 

However, since a priori knowledge is often unavailable for medical images, these 

sharpening techniques are rarely applied.  

 Aim of Otsu’s method is to provide a nonparametric and unsupervised method for 

histogram thresholding that would extract the objects of interest from the background. 

In this method, gray level that minimizes the weighted in-class variance is selected as 

the threshold value. The probability of two classes separated by a threshold t are 

represented with weights ωi,, and it is calculated as 
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Together with (16) and (17), if the variances of these classes are represented with σi
2
(t) 

and the in-class variance with σb
2
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Otsu’s work shows that the threshold that minimizes in-class variance maximizes the 

between-class variance at the same time. The intra-class variances in (18) is defined as 
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Minimizing the in-class variance means making each cluster (object category) as tight 

as possible so that their overlapping is minimized. Tight clusters are achieved by simply 

calculating the mean value of each cluster and minimizing their variance. This 

algorithm provides a simple alternative to thresholding due to its computational 

simplicity. Since it is based on integration (global properties of the image) rather than 

differentiation (local properties in the image), it offers an automatic and stable solution 

to the selection of optimal threshold. [56] 

6.2. K-means Clustering  

In the clustering algorithms, objects with similar properties are grouped together in the 

same region (cluster). In image segmentation, it is assumed that objects with similar 

structures are in the same cluster, thus by minimizing the overlap between these 

clusters, a threshold can be selected. Clustering also uses aforementioned histogram 

approach similar to Otsu’s thresholding. In order to find the appropriate threshold, 

following conditions needs to be satisfied: 

|(T)μg||(T)μg:|Tg 0B   (20) 

and 

|,(T)μg||(T)μg:|Tg 0B   (21) 

Where µB(T) is the average of four corner pixels that are assumed to be the background, 

whereas µ0(T)  is the average of all other pixels. Based on equations (20) and (21), 

threshold is placed in the middle of µB(T) and µ0(T). Then these average values are 

updated by calculating the means of the pixels in each side of the selected threshold. 

Eventually, the algorithm converges to a final threshold, given that distributions have 

non-differing variances [60]. 
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6.3. Segmentation of Metals in Simulated Dataset 

Segmentation of metals in the simulated dataset was accomplished by Otsu’s 

thresholding method. Steps of segmentation process are shown in Figure 6.1. It should 

be noted that some of the operations explained here are not shown among the 

segmentation steps in Figure 6.1 for the simplification of the diagram. 

 

 

Figure 6.1: Segmentation steps for simulated dataset for β=18°.  

 In order to apply Otsu’s method, simulated dataset was normalized between [0, 1] 

and transformed into sinogram domain (RT1 in Figure 6.1). Afterwards, edges in the 

sinogram were enhanced with logarithmic enhancement method. Mask obtained from 

Otsu’s method was backprojected into spatial domain with FBP (FBP1 in Figure 6.1).  

 Later, metals were segmented by applying global thresholding on the backprojected 

image; resulting image was later transformed back to sinogram domain (RT2 in Figure 

6.1). Finally, in order to obtain a better sinogram mask for MAR, sinogram of 

segmented metals was dilated for filling the discontinuities caused by thresholding 

operation. In order to improve the computational efficiency of the MAR algorithms, 

slices with metals were detected among the 3D stack and MAR algorithms were only 

carried out on those slices. Other slices with no metals were simply backprojected to 

spatial domain by using FBP. 

6.4. Segmentation of Metals in Experimental Dataset 

Segmentation of metals on the experimental dataset was accomplished by using three 

methods: (1) Otsu’s thresholding, (2) logarithmic enhancement and (3) k-means 

clustering algorithms. The construction of the sinogram, on which segmentation was 
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applied, is further explained in section 5.2.1. In order to have a better visualization of 

the metals in the sinogram, intensity values on the original sinogram were reversed, 

making the metals brighter than the rest of the jaw. Then, gray level range was 

normalized in the range [0,1], where 1 (white) represented the brightest segments 

(metals) in the image, whereas 0 was used for the darkest regions. Resulting sinogram 

(S1) is considered as the initial image for following segmentations steps. The sinogram 

masks, which were obtained after these segmentation methods, were later used to mask 

out the metallic regions on the original sinogram prior to the application of gap filling 

methods. Detailed segmentation steps are included in Appendix2. 

6.4.1. Segmentation with Otsu’s Thresholding Method 

This method uses the intensity based segmentation of metals by using Otsu’s 

thresholding algorithm. S1 was used as the initial image for the algorithm, which is 

depicted in Figure 6.2. 

 

Figure 6.2: Block diagram for segmentation with Otsu's thresholding 

 Firstly, S1 was thresholded by using Otsu’s thresholding method. The obtained black 

and white sinogram was segmented again with different thresholds, which were selected 

around the Otsu’s threshold. Resulting sinograms were averaged with different weights, 

aiming to make the metals more dominant in the sinogram compared to the rest of the 

information. Averaged sinogram (S2) was backprojected to the spatial domain; resulting 

image was segmented by using simple global thresholding (I1), which is depicted in 

Figure 6.3.a. After the last forward projection (RT), final sinogram mask shown in 

Figure 6.3.b was obtained (Smask).  

  
(a) (b) 

Figure 6.3: Resulting image of segmented metals (a) in spatial domain (I1), (b) in 

projection domain (Smask) after Otsu’s thresholding. Spatial domain mask in (a) is only 

used for visualization of segmented parts, whereas the respective binary sinogram in (b) 

is used for masking out the metals in MAR. 
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6.4.2. Segmentation with Logarithmic Enhancement 

For the segmentation with logarithmic enhancement, logarithmic transform was carried 

out in addition to the pre-processing steps applied on the original sinogram. Block 

diagram provided in Figure 6.4 shows the segmentation steps used in this algorithm. 

 

Figure 6.4: Block diagram for segmentation with logarithmic enhancement 

 Logarithmic transform was used to enhance the edges in the sinogram by mapping 

the darker (lower) gray level values into a wider range, whereas brighter (higher) gray 

level values are mapped into a smaller range. By using this edge-preserving 

transformation, difference between the metals and the jaw became more apparent on the 

sinogram (S2), enabling a more accurate easier segmentation of higher intensity values. 

Afterwards, FBP and global thresholding were utilized for metal segmentation in spatial 

domain (I1), providing a binary mask for metal values in spatial domain (Figure 6.5.a). 

In order to obtain the mask in sinogram domain, I1 was transformed back into projection 

domain via RT. There were gaps on the sinogram, which were caused by the 

misclassification of some metal values after the thresholding operation. Final sinogram 

mask (Smask) in Figure 6.5.b was achieved by filling these gaps in the metal regions. 

  
(a) (b) 

Figure 6.5: Resulting image of segmented metals (a) in spatial domain (I1), (b) in 

projection domain (Smask) after segmentation with logarithmic enhancement. Spatial 

domain image in (a) only used for showing the positions of the segmented metals in the 

spatial domain image, whereas the sinogram mask in (b) is used in MAR. 

6.4.3. Segmentation with K-means Clustering 

Segmentation with k-means clustering can be considered as a combination of Otsu’s 

thresholding and logarithmic enhancement methods, because it applies the Otsu’s 

threshold on the edge preserved sinogram. K-means clustering algorithm later carried 

out with the thresholded sinogram in order to obtain a more accurate segmentation than 
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global thresholding. Steps of the developed k-means clustering algorithm are presented 

in Figure 6.6. 

 

Figure 6.6: Block diagram for segmentation with k-means clustering 

 The averaged sinogram (S2), which was obtained after log transform and averaging 

operations, was segmented into three clusters (metals, jaw and background), from which 

metal and jaw clusters were used to get an initial estimate for the FBP. This 

backprojected image was thresholded by 50% of its maximum intensity value (I2), 

which segmented out the elements other than the metals. I2 was transferred into 

projection domain with RT, and final sinogram mask (Smask) was obtained after dilation 

operation. Spatial domain metal mask and finalized sinogram mask for this method are 

depicted in Figure 6.7. 

  
(a) (b) 

Figure 6.7: Resulting image of segmented metals (a) in spatial domain (I2), (b) in 

projection domain (Smask) after segmentation with k-means clustering. Positions of the 

segmented metal objects are seen in (a), and sinogram mask in (b) is used in MAR.  
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7. METAL ARTIFACT REDUCTION 

TECHNIQUES 
There are several MAR techniques, most of which consider the metal objects are 

considered as missing data [5]. These missing data parts are (1) recovered from the 

corrupted original data (Iterative reconstruction methods), (2) completely replaced 

by synthetic data on the sinograms (Projection completion/correction methods) or 

(3) corrected on projection data (Reconstruction correction methods) [61].  

Projection completion/correction methods: Missing data are replaced by 

synthetic data, which can be obtained by polynomial or linear interpolation, pattern 

recognition or linear prediction method. Accuracy of these MAR methods mainly 

depends on tha accuracy of the metal segmentation. Considering the fact that metal 

artifacts consist of mixture of several artifacts, it can be difficult to detect the exact 

metal-related corruption [5]. That is why most of these methods include pre-

processing algorithms for correction of beam-hardening and other possible artifact 

sources [61]. 

Iterative reconstruction methods: These methods are mostly used to reconstruct 

missing parts from incomplete projections. Missing data are obtained by iterative 

algorithms such as Maximum Likelihood Estimation Maximization (MLEM) or 

Algebraic Reconstruction Technique (ART). These methods are useful in flexible 

modeling of the sinogram and decreasing the projection uncertainty, but they are 

computationally heavier than FBP [61]. Therefore, they are not preferred for 

commercial X-ray CT scanners in clinical use.  

Reconstruction correction methods: Reconstruction correction methods are based 

on correction the metal artifacts on the corrupted projection data, which increases 

the efficiency of the method since they are carried out on reconstructed images 

without the need for FP and BP. Unfortunately they are only useful for correcting 

mild artifacts [61].   

 There are several issues about MAR methods that need to be considered. 

Firstly, MAR algorithms mostly assume the existence of a few sources of artifacts, 

which might not be enough to correct the image as a whole, and it might even cause 

additional errors on the image by altering the correct values. Furthermore, every 

MAR method cannot be applied for all imaging modalities because each modality 

has different combinations and dominance of artifacts.  

 In the context of this thesis, a projection completion method, inpainting, was 

selected for MAR due to its wide use in clinical practice. Also an iterative 

reconstruction method, DCT domain gap-filling method, was utilized in CT images 

in order to compare the performances of two different MAR techniques.  

7.1. Sinogram Inpainting 

As explained by Bertalmio et al., the term “Inpainting” was initially used in 

modifying pieces of art, which was later adapted into image processing as an 

algorithm to change the image in an undetectable way [62]. Inpainting is based on 
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detecting the regions that needs to be restored and then filling these regions by 

using the surrounding information. It is especially useful in removing elements 

from an image, which in this case, high density materials such as metal fillings, 

crowns or braces. It is one of the most commonly used projection completion 

method due to its high computational efficiency.  Computational flow of the 

inpainting algorithm in sinogram domain is demonstrated in Figure 7.1.  

 

Figure 7.1: Computational flow of the MAR based on Sinogram Inpainting 

 Similar to most of the gap filling methods, inpainting includes three main steps: 

(1) generation of the sinogram mask for metal-only regions (Steps 2 in Figure 7.1), 

(2) masking the original sinogram with the metal-only mask (Step 3 in Figure 7.1), 

(3) filling the metal only parts by using the information of neighboring pixels in the 

original sinogram (Step 4 in Figure 7.1) [63]. 

7.2. Discrete Cosine Transform Domain Gap-filling Method 

DCT domain gap-filling method was initially developed by Tuna et al. in order to 

compensate for the missing data parts, caused by high density objects.  Idea behind 

this algorithm is to filter the corrupted data, which consists of high intensity values, 

by using a filter in DCT domain and iteratively estimating the values of the gaps. 

Detailed diagram of this method is presented in Figure 7.2. 
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Figure 7.2: Block Diagram for DCT domain gap-filling method [Modified from 

[64]]. 

 As it can be seen from Figure 7.2, the first step is to obtain the sinogram with 

metal artifacts, which is considered as the initial sinogram (Si).  Si is transferred 

into DCT domain, where the image pixels are mapped onto DCT domain according 

to their frequencies. Low frequency values indicate a low rate of change between 

neighboring pixels, whereas high frequencies indicate sharp edges between adjacent 

pixels. Since metals cause instant changes in the intensity values, a DCT filter is 

constructed so that coefficients in this filter provide only the non-metallic 

intensities.  The DCT mask (Fmask) is constructed by using these coefficients, which 

is explained in Tuna’s work in details [65]. Fmask is later multiplied with the current 

sinogram (Si) in DCT domain. This multiplication results in si, which is the image 

containing the non-metallic regions in DCT domain. si is transferred back to 

sinogram domain by 2D inverse DCT (IDCT), after which the estimated sinogram 

(Si’) is achieved. When Si’ is multiplied with the sinogram mask (Smask), which was 

obtained from segmentation, the data lying inside the gap region is extracted. Then, 

these values in the gap region are added to the current sinogram, which is used as 

the estimation for the next iteration (Si+1). Masked intensities are updated with the 

new values obtained from the gap data until the mean squared error (MSE) 

becomes smaller than a pre-determined error value. [64] 

7.3. Metal Artifact Reduction on Simulated Dataset 

Once the metals are segmented correctly, next step is to apply the gap filling 

algorithms on the sinograms. However, the slices, which do not have metal inside, 

should be excluded from the MAR algorithm. In order to test the existence of 

metals in each axial slice, a global thresholding in spatial domain was utilized. The 

pre-defined threshold was selected as 1.8, which was chosen to be larger than the 

maximum density of the anatomical structures and smaller than the previously 

identified metal value (Table 5.1). The slices, which contained higher values than 

the threshold, were subjected to MAR, otherwise they were directly reconstructed 

with FBP.  

 In order to carry out the gap filling algorithm, segmented metals sinogram 

depicted in Figure 6.1 was inverted and used as a mask to replace the erroneous 

values of metals in the original sinogram. Figure 7.3 shows the masked sinogram as 
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well as the resulting sinograms after two gap filling methods (DCT domain gap-

filling method and Inpainting). 

 

Figure 7.3: Block diagram for MAR with DCT domain gap-filling method and 

inpainting for β=18°. The sinogram with segmented metals is multiplied with the 

original sinogram in order to mask out the metal object traces. Afterwards, the 

masked sinogram is used as a basis for the gap filling methods. 

 Corrected sinograms in Figure 7.3 were later reconstructed with FBP, in which 

Hann window was chosen for filtering and bicubic interpolation was used for 

calculation of new pixel values.  

7.4. Metal Artifact Reduction on Experimental Dataset 

In order to apply the MAR methods on the experimental dataset, segmented 

sinograms in Chapter 6.4 were used to mask out the metals in S1. Then, these 

masked values were reconstructed with (1) Inpainting and (2) DCT domain gap-

filling methods. Three different sinogram masks, previously defined in Chapter 6, 

were used to mask out the metal values on the original sinogram, and both MAR 

methods were applied on each masked sinogram. Resulting sinograms of after 

MAR methods are demonstrated in Figure 7.4.  
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Figure 7.4: Resulting sinograms for MAR methods after different segmentation 

methods (Otsu’s thresholding, Logarithmic enhancement, K-means clustering). 

Correctly segmented metal values are replaced with more realistic values, closer to 

the surrounding structures. 

 Once the sinograms were obtained after MAR, they were backprojected to 

spatial domain, where the performances of the segmentation and MAR algorithms 

were evaluated. Performances of the gap filling algorithms are compared in Chapter 

9. 
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8. RESULTS 

8.1. Results for Simulated Dataset 

On the simulated dataset, both qualitative and quantitative analyses were carried out in 

order to assess the effect of jaw tilting, as well as the performance of MAR methods. 

Sample axial views of reconstructed images, which were obtained after MAR and back-

tilt operations, are shown in Figure 8.1.  

 

Figure 8.1: Reconstructed images for after DCT domain gap-filling for tilting with (a) α 

and (c) β, after inpainting for tilting with (b) α and (d) β. Areas marked with green 

demonstrate successful recovery of intensities for tooth as well as compensation of 

metal values. Areas marked with red indicate lower degree of recovery and 

compensation.   

Slice comparison 

Recovery of the intensity values around metals is considered as an important parameter 

for performances of MAR methods. Therefore, mean intensity values of teeth regions in 

certain ROIs were calculated and compared with the ground truth values in the 

corresponding regions. These ROIs are marked with green and red rectangles on the 

reconstructed images in Figure 8.1. 

(a) (b) 

 

   

 

  

(c) 

  

  

(d) 
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 For jaw tilting at α=12°, mean values in green encircled regions were calculated as 

0.699 and 0.724 for DCT domain gap-filling and inpainting methods respectively. 

Compared to the mean ground truth values calculated in the encircled regions (0.845), 

intensity of teeth region was slightly decreased, whereas the intensity of the metallic 

region was significantly lowered. Mean intensity values in the red encircled region were 

calculated as 0.176 and 0.420 for DCT domain gap-filling and inpainting methods 

respectively, which demonstrated a considerable decrease in the reconstructed values of 

teeth in this region. 

 For tilting at β=12°, mean values in the green encircled areas were calculated as 

0.694 after DCT domain gap-filling and 0.721 after inpainting. These mean values 

indicate a significant decrease in average intensity of the metallic region and a slight 

decrease in the teeth region, leading to similar results with α=12°. However, in the red 

encircled areas mean values for DCT domain gap-filling and inpainting methods were 

calculated as 0.457 and 0.595, which were higher than the results obtained with  α=12°, 

especially for DCT domain gap-filling. 

Line Profile Analysis 

In order to analyze the reconstruction accuracy of the values around the metallic 

regions, line profile analysis was carried out. Profile analysis for α variation after DCT 

domain gap-filling and inpainting methods are depicted in Figure 8.2 and Figure 8.3. 

Taking the green line, drawn on Figure 8.2 and Figure 8.3, under consideration, it can 

be said that intensity values of the reconstructed images became closer to the line profile 

of the ground truth image as α increased from 0° to 30°. Although both MAR methods 

clearly demonstrated an increase in reconstructed values with increased angle, further 

qualitative and quantitative analysis is required in order to make a more accurate 

observation. 

Figure 8.4 and Figure 8.5 show the profile analysis for DCT domain gap-filling and 

inpainting methods for different β. Similar to the case of tilting with α, intensity values 

of the reconstructed images became closer to the ground truth profile as β was increased 

from 0° to 30°. Although both MAR methods provided a slight increase in reconstructed 

intensity values with increased β, no significant change was observed in contrast to the 

tilt by α. 



 
 8
. R

E
S

U
L

T
S

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

4
9
 

 

Figure 8.2: Intensity profile analysis for analysis for different α values, (blue) for reconstructed datasets and (red) ground truth image after DCT 

domain gap filling method.  



 
 8

. R
E

S
U

L
T

S
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
5
0
 

 

Figure 8.3: Intensity profile analysis for different α values, (blue) for reconstructed datasets and (red) ground truth image after inpainting.
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Figure 8.4: Intensity profile analysis for different β values, (blue) for reconstructed datasets and (red) ground truth image after DCT domain gap 

filling.  
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Figure 8.5: Intensity profile analysis for different β values, (blue) for reconstructed datasets and (red) ground truth image after inpainting. 
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Other image quality measurements 

In addition to line profile analysis, other image quality measurement parameters such as 

PSNR, NMSE and SSIM index were calculated in order to make more accurate 

deductions from the quantitative analyses. Aforementioned quality measures were 

calculated for calculated for both α tilt (jaw opening/closing) and β (nodding) and they 

are presented in Table 8.1 and Table 8.2. 

Tilting with α 

Table 8.1 provides the values of NMSE, PSNR and SSIM index that were calculated for 

background, jaw and teeth regions, for 6 different values of α. 

Table 8.1: Image quality assessment measures for different α values for reconstructed 

images, with respect to the ground truth image. The best values for each image quality 

measure for each region are written in bold in the table. 

α 
Jaw 

Regions 

Inpainting DCT domain gap-filling 

PSNR 

(dB) 
NMSE 

SSIM 

index 

PSNR 

(dB) 
NMSE 

SSIM 

index 

0° 

Background 16.419 0.0228 0.9968 10.406 0.0911 0.9871 

Jaw 28.608 0.0014 0.9999 25.574 0.0028 0.9997 

Teeth 19.933 0.0102 0.9989 18.372 0.0145 0.9984 

6° 

Background 16.405 0.0229 0.9968 12.328 0.0585 0.9916 

Jaw 29.361 0.0012 0.9999 25.983 0.0025 0.9997 

Teeth 19.981 0.0100 0.9989 18.298 0.0148 0.9984 

12° 

Background 16.550 0.0221 0.9969 15.332 0.0293 0.9958 

Jaw 29.996 0.0010 0.9999 27.175 0.0019 0.9998 

Teeth 20.795 0.0083 0.9991 18.986 0.0126 0.9987 

18° 

Background 17.310 0.0186 0.9974 18.224 0.0151 0.9979 

Jaw 25.834 0.0026 0.9997 25.951 0.0025 0.9997 

Teeth 21.935 0.0064 0.9993 20.214 0.0095 0.9990 

24° 

Background 18.457 0.0143 0.9981 19.645 0.0109 0.9986 

Jaw 24.069 0.0039 0.9996 23.834 0.0041 0.9996 

Teeth 20.518 0.0089 0.9991 20.120 0.0097 0.9990 

30° 

Background 18.363 0.0146 0.9981 19.719 0.0107 0.9986 

Jaw 24.281 0.0037 0.9996 24.557 0.0035 0.9996 

Teeth 22.866 0.0052 0.9995 21.261 0.0075 0.9993 

 When recovery levels of background intensities were evaluated for increasing angles 

of α, increased PSNR values were computed for both inpainting and DCT domain gap-

filling methods. Also NMSE was decreased significantly, which indicates an overall 

improvement in noise reduction along with the increased SSIM indices for both MAR 

methods. 

 PSNR values of the jaw region initially showed a slight increase until 18°, but later 

it decreased to a value lower than its initial value for both inpainting and DCT domain 

gap-filling methods. NMSE values also showed a similar pattern by indicating a 

decrease in the error followed by a significant increase for both MAR methods. No 

significant change was observed in SSIM index for both MAR methods. This increase 

in error was caused by the back-tilting operation and it is discussed further in Chapter 9. 
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 Finally, an overall increase from 0 º to 30º was observed for the PSNR values of the 

teeth region, with the exceptional decrease at 24º tilting in contrast with the overall 

pattern. 

Tilting with β 

Table 8.2 provides the values of NMSE, PSNR and SSIM index that were calculated for 

background, jaw and teeth regions, for 6 different angles of β. 

Table 8.2: Image quality assessment measures for different β values for reconstructed 

images, with respect to the ground truth image. The best values for each image quality 

measure for each region are written in bold in the table.  

β 
Jaw 

Regions 

Inpainting DCT domain gap-filling 

PSNR 

(dB) 
NMSE 

SSIM 

index 

PSNR 

(dB) 
NMSE 

SSIM 

index 

0° 

Background 16.419 0.0228 0.9968 10.406 0.0911 0.9871 

Jaw 28.608 0.0014 0.9999 25.573 0.0028 0.9997 

Teeth 19.933 0.0102 0.9989 18.372 0.0145 0.9984 

6° 

Background 16.659 0.0216 0.9970 13.092 0.0491 0.9927 

Jaw 27.146 0.0019 0.9998 26.477 0.0023 0.9998 

Teeth 20.696 0.0085 0.9991 18.724 0.0134 0.9986 

12° 

Background 16.872 0.0205 0.9972 16.962 0.0201 0.9972 

Jaw 25.441 0.0029 0.9997 25.853 0.0026 0.9997 

Teeth 22.863 0.0052 0.9995 20.797 0.0083 0.9991 

18° 

Background 17.406 0.0182 0.9976 17.922 0.0161 0.9979 

Jaw 27.054 0.0020 0.9998 26.393 0.0023 0.9998 

Teeth 23.634 0.0043 0.9996 21.996 0.0063 0.9994 

24° 

Background 17.748 0.0168 0.9978 18.268 0.0149 0.9980 

Jaw 27.823 0.0017 0.9999 25.811 0.0026 0.9998 

Teeth 22.701 0.0054 0.9995 21.878 0.0065 0.9994 

30° 

Background 18.317 0.0147 0.9981 19.103 0.0123 0.9984 

Jaw 24.981 0.0032 0.9997 24.283 0.0037 0.9996 

Teeth 22.376 0.0058 0.9995 21.728 0.0067 0.9994 

 Based on the increasing PSNR values of the background given in Table 8.2, it can 

be said that a slight reduction in noise was achieved by inpainting. Although both MAR 

methods showed an increase in PSNR, change in PSNR values obtained from the DCT 

domain gap-filling was more significant compared to the inpainting. NMSE values were 

lowered considerably as β increased for both MAR methods. SSIM indices also 

supported the enhanced correlation between the ground truth and reconstructed images 

after both DCT domain gap-filling and inpainting methods. 

 When the image quality measures were calculated for the jaw region, reconstruction 

quality decreased with increased β. Decreased PSNR and increased NMSE values were 

observed for both MAR methods. Change in SSIM index was relatively small and did 

not follow a certain pattern; therefore SSIM index results were inconclusive for this 

region. 

 PSNR values increased in the teeth region as β increased, indicating a better 

reconstruction together with the decreased NMSE values for both MAR methods. 

Improvement in reconstruction was supported by the increased SSIM indices.  
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 Figure 8.6 shows the reconstructed images after MAR for tilted slices. In order to 

visualize the performances of DCT domain gap-filling and inpainting methods, slices 

depicted in the figure were taken before the back-tilt. 

 

Figure 8.6: Backprojected images after DCT domain gap-filling for jaw tilting with (a) 

α and (c) β, after Inpainting for jaw tilting with (b) α and (d) β (α=β=18°). In the red 

encircled areas, DCT domain gap-filling induce new artifacts for both α and β, whereas 

none of those artifacts were observed after inpainting. 

 After DCT domain gap-filling method, metal values were closer to the intensity of 

teeth compared to the reconstructed values from inpainting for jaw tilting with both α 

and β (Figure 8.6). However, additional artifacts were observed in the encircled areas in 

for DCT domain gap-filling method (Figure 8.6.a and Figure 8.6.c), which was non-

existent after inpainting (Figure 8.6.b and Figure 8.6.d).  

 When reconstruction of 3D slices is considered, it is important to remember that 

only the slices that contained metal fillings were subjected to MAR, whereas slices with 

no metal were directly backprojected into spatial domain, which was mentioned in 

Chapter 6.3. This separation  naturally caused a difference between reconstructed slices 

with and without MAR, and this difference is demonstrated in Figure 8.7. 

 Values of reconstructed teeth and jaw regions varied slightly between Figure 8.7.a 

and Figure 8.7.b, but a significant change was observed for the background intensities. 

Although this phenomenon was observed in both tilting cases, only reconstructed slices 

from tilting with α is presented in Figure 8.7 as an example of change in the background 

intensities.  

(a) (b) 

   

(c) (d) 
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Figure 8.7: Examples of (a) reconstructed and back-tilted slice with metals (DCT 

domain gap-filling) and (b) reconstructed slice with no metals. Contrast difference 

between the backgrounds of two images can be clearly seen.  

 Back-tilting operation, which was applied on the reconstructed 3D phantom after 

MAR, created some dark horizontal lines, which are shown in Figure 8.8.  

 

Figure 8.8: Back-tilted images for (a, b) α=18°, (c, d) α=24° after (a, c) inpainting and 

(b, d) DCT domain gap-filling methods 

These lines become prominent at tilts greater than 18°, and possible reasons for these 

dark lines are discussed further in Chapter 9. 

8.2. Results for Experimental Dataset 

In this section, results obtained from different segmentation and MAR methods are 

presented. Firstly, segmentation methods are compared qualitatively based on the 

resulting segmented sinograms. Afterwards, quantitative evaluation of overall MAR 

algorithms was carried out based on the means and standard deviations of different 

ROIs. 

(a) (b) 

(a) (b) 

(c) (d) 
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 According to the segmented sinograms and their respective backprojected images, 

which were obtained in Chapter 6.4, it was observed that Otsu’s thresholding method 

was successful in segmenting the metallic parts, but parts of jaw bones were falsely 

detected along with the metals after the thresholding in the spatial domain. Also 

segmented metallic regions on the sinogram were observed to be slightly larger than the 

actual metal traces. With logarithmic enhancement, all metals except one were detected. 

Moreover, there were no falsely detected structures. The areas of segmented regions 

were also closer to the real imprints of metals on the original sinogram than other 

segmentation methods. For k-means clustering, all the metals were segmented without 

any additional structures. However, due to the dilation, which was used to correct the 

missing points on the segmented sinogram, thickness of the metallic traces increased.   

MAR methods 

Table 8.3, presents the mean values and standard deviations after inpainting and DCT 

domain gap-filling methods, that were applied posterior to the segmentation methods.  

 Table 8.3: Mean and standard deviation values of the uncorrected image 

 Regions Mean Standard Deviation 

Uncorrected image 

1 62.488 11.761 

2 64.124 36.219 

3 43.786 22.796 

4 5.776 2.842 

5 14.15 3.202 

 Values shown in this table do not correspond directly to HU values since they were 

calculated on the backprojected spatial image. However, they provide valid information 

for the comparison of several techniques that were utilized in this thesis.  It should be 

noted that, in the calculation of the values given in Table 8.3, negative values caused by 

the FBP were not included. Region numbers, which are referred in this table, were 

defined earlier in Figure 5.9. Mean and standard deviation values for different regions 

are provided in Table 8.4, which are later compared with the values obtained from the 

reconstructed images.  
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Table 8.4: Mean and standard deviation values for segmentation and MAR methods. 

The best mean and standard deviation results for each region are written in bold.  

  Inpainting DCT domain gap-filling 

 Regions Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Otsu’s 

thresholding 

1 54.389 10.751 69.354 12.321 

2 36.756 9.556 40.208 18.929 

3 45.134 11.246 47.841 13.573 

4 5.652 2.837 4.896 2.948 

5 14.192 3.479 13.118 3.755 

Logarithmic 

Enhancement 

1 62.759 11.512 68.592 11.074 

2 45.752 12.154 44.029 19.885 

3 45.797 13.764 51.019 16.133 

4 5.535 2.770 5.154 2.744 

5 13.423 3.488 12.745 3.831 

K-means 

clustering 

1 50.921 11.056 69.662 15.060 

2 29.395 10.866 36.019 18.245 

3 43.346 9.297 42.523 15.245 

4 5.549 2.875 4.746 2.872 

5 14.640 3.611 13.769 3.707 

 Region 1 was used to investigate the effect of MAR methods on the teeth region. 

According to Table 8.4, the closest mean and standard deviation values to the 

uncorrected image for region 1 were calculated with the combination of logarithmic 

enhancement and inpainting methods. 

 Region 2 consisted of 3 metals, which were the largest pieces of the braces on the 

image; therefore high mean and standard deviation were observed in this region. Since 

all the metals in this region were segmented successfully by all three segmentation 

methods, resulting mean and standard deviation values were rather close to each other. 

However, it was observed that inpainting provided a lower standard deviation compared 

to DCT domain gap-filling. The expected mean value for region 2 after reconstruction 

would be close to the mean value of region 1 after MAR, since they both essentially 

include the teeth region, but with low standard deviation. The most accurate 

reconstruction with considerably low standard deviation was observed after logarithmic 

enhancement and inpainting, where the mean value was the highest and the standard 

deviation was almost one third of the uncorrected image. 

 Region 3 was affected by metal artifacts from several metals on the uncorrected 

image, which caused a high standard deviation in the region. After MAR, mean values 

remained unchanged, which was expected since the region did not include any metals in 

it. However, the standard deviation after MAR was decreased by almost %50, indicating 

a considerable decrease in the streaking affects. The combination of Otsu’s thresholding 

and DCT domain gap-filling provided the highest mean, but not the lowest standard 

deviation.  On the other hand, Otsu’s thresholding with inpainting resulted in the lowest 

standard deviation with relatively high mean. 

 Region 4 was chosen near two metal pieces, and was assumed to be subjected to 

streak artifacts. However, since the metals were small, together with the low dosage of 

CBCT exposure, they did not cause major artifacts. Due to the insignificance of the 
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artifacts, none of the segmentation and MAR methods significantly lowered the 

standard deviation. 

 Region 5 was used to investigate the effect of MAR methods on the reconstruction 

of the inner jaw. As it can be observed from stable constant mean and standard 

deviation values, no additional artifacts were introduced by either MAR methods. 
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9. DISCUSSION AND CONCLUSION 

9.1. Simulated Dataset 

Jaw Tilting 

The aim of tilting the jaw in the source-detector place was to prevent coplanarity by 

reducing the overlap of metals on each slice. Although both tilting methods enhanced 

the MAR, line profile analysis among the two proposed tilting methods showed that 

tilting by α was more effective in the reconstruction compared to tilting by β. This 

conclusion was also supported by the study of Lucklow et al., which found the tilting by 

α more beneficial for decreasing metal artifacts in CBCT images [6].  

 Improved performance of MAR with the jaw tilt can be explained with the decrease 

of surface areas of metals in each tilted slice. As it can be seen in Figure 9.1, all 16 

metals are visible on the non-tilted image in Figure 9.1.a, whereas 6° tilted image in 

Figure 9.1.b shows only 8 metals instead of 16.  

  

Figure 9.1: (a) Non-tilted, (b) tilted with α= 6° axial views of the jaw phantom. From 

the comparison of (a) and (b), it can be seen that projection vectors p(υ,s) pass through 

fewer metal fillings on the tilted image.   

 As the number of metals in each slice decreases, amount of metals in each 

projection vector p(υ,s) decreases, leading to fewer metal imprints on the sinogram 

domain. Thus, gap-filling methods result in a more accurate correction of metallic 

regions by using more information from the surrounding anatomical structures in the 

image. 

 Based on the line profile analysis and other quality measurements, it was concluded 

that reconstruction of teeth regions was enhanced by increased α. Moreover, with a 

higher α, a better fit to the ground truth line, was observed in the jaw regions compared 

to β tilt. 

 In order to understand the superiority of α tilt over β tilt, it is important to consider 

the mandible and maxilla from a coronal view rather than axial view. As it can be seen 

in Figure 9.2.a, center of rotation (COR) shifts when the jaw is tilted with β (COR1). 

However, in the case of α tilt, center of rotation (COR2) remains the same for all tilting 

angles. This shift in COR is different for every β value, which changes the number and 

position of the slices in each tilted 3D phantom. Therefore, line profile analysis, which 

(a) (b) 

p φ, s  p φ, s  
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is carried out on the same slice for each reconstructed phantom, does not only represent 

the angle of tilt, but it also includes the effect of shift in COR.   As a result, values that 

are obtained from this analysis for β cannot be used as a direct measure of enhancement 

in MAR via tilting. If the COR can be fixed for different β, then the line profile analysis 

from the slices would provide a more accurate comparison. It should be noted that this 

shift in COR only occurred because of the rotation function used in this thesis, which 

can be corrected with further work on the rotation algorithm. For the real life images, 

COR would remain the same for all tilts. 

 

Figure 9.2: Sample COR lines for the jaw tilted with (a) β and (b) α on the coronal view 

of jaw phantom. In (a), the original COR is shown with dashed line, whereas COR1 

represents the COR after β tilt. COR remains the same after α tilt. 

 According to the results of quantitative assessment on the simulated dataset, an α 

between 24° and 30° is recommended. Between 24° and 30°, the error values for the 

reconstructed teeth and background regions were calculated to be the smallest. This 

tilting range was also supported by the findings of Lucklow et al., who determined the 

ideal tilting angle for the mandible as 14°, corresponding to an  α of 28°. Lucklow et al. 

also mention that rearrangement of the teeth with an angle of 14º can reduce the 

exposure time and related dose to one forth. Although a decrease was observed in the 

reconstruction quality of the jaw region, utilization of a different interpolation technique 

in tilting can increase the quality of the reconstruction in this region as well.  

MAR methods 

When slices were tilted back after MAR, slices with different backgrounds were 

interpolated together, which caused relatively dark and bright lines on the back-tilted 

image, demonstrated in Figure 8.8. Although tilting improved the MAR results, these 

dark horizontal lines observed after back-tilting for high degree tilts (α > 18º) decrease 

the overall image quality. Most of these dark lines are caused by different offsets of 

background intensities on different slices. Although a small deviation from the average 

reconstructed values was expected between slices depending on whether MAR was 

applied or not, darkest lines observed in Figure 8.8.b and Figure 8.8.d are more likely to 

be caused by segmentation errors on a few slices. In order to decrease the effect of these 

lines, use of another interpolation method (bicubic or bilinear) can be beneficial. Since 

these methods calculate the interpolation over a larger neighborhood, sharp contrast 

changes would decrease with averaging. 

 When reconstructed values for the regions given in Figure 8.1 are compared, it can 

be said that DCT domain gap-filling method had slightly higher mean values. This can 

be explained by the iterative nature of DCT domain gap-filling method, which helps the 

(a) (b) 

COR1 

COR2 
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more accurate estimation of reconstructed values. However DCT domain gap-filling 

method is computationally heavy and the difference between intensity values of two 

MAR methods is not large enough to choose DCT domain gap-filling method over 

inpainting. In addition to the computational burden, mean values obtained from Figure 

8.1 indicate a greater deviation within the same structures for DCT domain gap-filling 

method, whereas this deviation is smaller for inpainting. This high rate of change is also 

supported by the NMSE and PSNR values of DCT domain gap-filling, meaning that 

tilting has more effect on the DCT domain gap-filling algorithm. This conclusion can be 

explained by the fact that fewer metals in each slice lead to fewer high frequency values 

to be eliminated by the DCT filter, resulting in improved reconstruction of anatomical 

structures. However, when there are many metals, efficiency of the algorithm decreases 

significantly. On the other hand, inpainting algorithm always uses the same 

neighborhood around the metal, which is less prone to the number of metals. As a result 

of these comparisons, it was concluded that inpainting was preferred over DCT gap-

filling method due to its more stable and faster algorithm.   

 Based on the results obtained on the simulated dataset, it can be said that tilting 

offers a significant chance for enhancing the quality of MAR algorithms. In order to 

achieve better results, back tilting operation needs to be developed further with different 

interpolation techniques. 

9.2. Experimental Dataset 

The purpose of using an experimental dataset was to test different segmentation 

methods and MAR algorithms on a dental CT image (CBCT) and compare their 

performances. 

 Based on the qualitative comparison between simulated and experimental dataset, it 

was observed that performance of the MAR algorithms were not as effective as the 

simulated dataset when they were applied on experimental dataset, due to the properties 

of the provided CBCT dataset.  

 First of all, it is important to note that a simulated dataset includes certain, pre-

determined intensity values, which makes the segmentation methods much more 

efficient. However, uncertain and non-standardized HU values in the experimental 

dataset introduce a challenge for the segmentation of different regions and structures in 

the image.  

 One of the problems encountered in the experimental dataset was the relatively low 

dosage of radiation (~60kV) from Promax CBCT device. Although low dosage 

prevented the severe artifacts, it also decreased the intensity difference between metal 

and bone. As it can be seen from Figure 9.3, gray level values of the metal in the 

encircled region are almost impossible to differentiate from bone. Therefore, it was 

concluded that slight increase in the radiation dosage would significantly increase the 

efficiency of segmentation and MAR methods on CBCT images by providing a larger 

intensity difference between bone and metal.  
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Figure 9.3: A slice from CBCT projection data of jaw. Bone and metal intensities are 

particularly close to each other in the marked region above.  

 Lack of some parameters and tools for the cone beam image reconstruction also 

caused additional difficulties for MAR. For instance, in clinical applications, 

reconstruction and artifact removal is generally conducted with the software developed 

specifically for the imaging product, considering all the parameters and variables of that 

specific device. Unfortunately in our experimental dataset, MATLAB was used for all 

image processing methods, which excluded some of the geometric considerations such 

as beam geometry, contrast enhancements and artifact reduction methods applied on the 

image at the time of acquisition, which were applied on the dataset beforehand.  

 Utilization of some simplifications in the developed image processing algorithm 

might have introduced additional artifacts in the image reconstruction. For instance, in a 

CBCT, imaging is based on cone beam technology; therefore cone beam reconstruction 

algorithms such as FDK are used for image reconstruction.  However, in this thesis 

MAR methods were carried out by using FBP algorithm, which is a simplified version 

of FDK, and it is based on parallel beam geometry instead of cone beam. Although FBP 

was commonly used for CT image reconstruction because of fast image reconstruction 

and ease of implementation, new technology CTs, i.e. CBCT, with finer resolution, 

greater volume coverage, faster scan times and lower radiation doses push the FBP 

method to its limits [66]. Therefore use of FBP in this thesis gradually introduced 

additional artifacts in the reconstructed images.  

 Despite of the aforementioned issues with the dataset and the algorithm, the 

segmentation methods were successfully compared based on their reconstruction 

qualities. It was concluded that logarithmic enhancement was preferred over k-means 

clustering and Otsu’s thresholding algorithms due to its simplicity, high mean and low 

standard deviation values in most of the regions. Although one of the metals could not 

be detected with logarithmic enhancement method, the reason for that can be explained 

by the discontinuity of that metal throughout the sinogram, which decreased the 

intensity of the region when the image was smeared back with FBP. Also, based on the 

mean and standard deviation values of two MAR methods, although DCT domain gap-

filling resulted in slightly higher mean values, inpainting was preferred due to its lower 

standard deviation in almost all regions, similar to the conclusion obtained from the 

simulated dataset results. 
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 In conclusion, all thresholding methods applied on the experimental dataset 

successfully segmented out the metals with continuous metal imprint on the sinogram. 

Otsu’s thresholding algorithm, developed and implemented in this thesis for the 

experimental dataset, was employed on the constructed 3D jaw phantom for metal 

segmentation, and this work has been submitted to 2013 IEEE Nuclear Science 

Symposium and Medical Imaging Conference [67].  
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 Current commercially available CBCT equipment [28] 
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Segmentation steps for Otsu’s Thresholding  
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Segmentation steps for Logarithmic Enhancement 
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 Segmentation steps for K-means Clustering 
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