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Abstract Spreadsheets are commonly declarative, first-order functional pro-
grams and are used as organizational tools, for end-user development, and for
educational purposes. Spreadsheet end-users are usually domain experts who
use spreadsheets as their main computational model, but are seldom trained
IT professionals who can leverage today’s abundant multicore processors for
spreadsheet computation. In this paper, we present an algorithm for auto-
matic, parallel evaluation of spreadsheets targeting shared-memory multicore
architectures, that lets end-users transparently make use of their multicore
processors. We evaluate our algorithm on a set of synthetic and real-world
spreadsheets, and obtain up to 16 times speedup on 48 cores.

Keywords Spreadsheets · Parallelism · Tasks · Speculative · Declarative
Programming · End-User Programming

1 Introduction

Spreadsheets are abundant in many application areas, such as science and
finance, where they are used as organizational tools [1], for end-user develop-
ment [7, 8], and for educational purposes [2, 13].

Spreadsheet end-users are usually domain experts and use spreadsheets
as their main computational model, but are seldom trained IT professionals.
They create and maintain large, complex spreadsheets over several years [15]
and their complexity often leads to errors [11] and poor performance. For
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instance, Swidan et al [24] report on a case study of refactoring a spreadsheet
that would originally take 10 hours to recompute.

In recent years, multicore processors have become ubiquitous in commodity
hardware. For end-users to leverage the performance of multicore systems, it
has until now been necessary to hire experts to re-engineer spreadsheets [24].

How can end-users hope to directly leverage the parallel programming
power at their disposal to accelerate the computation of slow spreadsheets
without requiring help from such expensive experts?

Spreadsheets are declarative, first-order purely functional programs [9].
Declarative languages enable end-users to focus on specifying what needs to be
computed without having to worry about how it gets computed. Being purely
functional, all values are immutable which guarantees data-race freedom and
allows for implicit parallelization of computations without putting the burden
of traditional, shared mutable multicore programming on the end-user. These
aspects make spreadsheets a prime candidate for automatic parallelization.

In this paper, we present an algorithm for automatic, parallel evaluation of
spreadsheets targeting shared-memory multicore architectures. We have im-
plemented our algorithm in the experimental spreadsheet engine Funcalc [23]
which introduces e�cient, sheet-defined, higher-order functions to the spread-
sheet paradigm. The combination of sheet-defined functions and our paral-
lel recalculation algorithm can contribute to change the general perception of
spreadsheets as not being “real” programming languages [9, 10, 22, 27] and en-
able end-user programmers to use spreadsheets for heavyweight computations
with a more reusable, modular, performant, safer and scalable programming
platform. Our key contributions are:

– A parallel, task-based, topology-agnostic algorithm for minimal recalcula-
tion of spreadsheets, implemented in Funcalc.

– An accompanying extension of the algorithm for dynamic parallel cycle
detection called speculative reevaluation.

– A thread-local evaluation optimization that exploits a specific spreadsheet
topology on the fly.

– Evaluation of a set of benchmarks for di↵erent types and sizes of spread-
sheets with di↵erent characteristics and topologies.

To our knowledge, no such algorithm for parallel evaluation of spreadsheets
with dynamic cycle detection has previously been proposed. Our benchmarks
show that we achieve between 1.4 and 6.5 times speedup on 16 cores and nearly
a 16-fold speedup on 48 cores.

2 Background: Spreadsheet Concepts

In the this section, we will introduce some of the basic concepts at the core of
the spreadsheet paradigm that are necessary for understanding our algorithm.
Readers already familiar with the subject can skip this section, while those
interested in learning more are encouraged to read [23, Chapter 1].
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Fig. 1: A spreadsheet containing formulas (left) and its corresponding support
graph (right). We label supporting edges with s. Editing A1 will recalculate
cells A1, B1, A3 and B3; changing B1 will recalculate B1 and B3; and editing
A3 will only recalculate A3.

2.1 Formulas and Cell References

A cell in a spreadsheet contains either a constant, such as a number, a string or
an error (e.g. #NA or #DIV/0!), or a formula expression, indicated by a leading
equals character, e.g. =1+2. Each cell is denoted by its column and row, where
columns start at A and rows at 1.

A formula can refer to other cells by naming their column and row address;
this establishes dependencies between cells. For example, B3 refers to the cell
in the second column and third row. The formula =A1+B1 refers to two cells,
and its value depends on the contents of those cells. Formulas may also refer to
a rectangular cell area using the : operator by referring to two of its opposing
corners, or call functions. For example, computing the sum of all values in the
first ten rows of column A may be expressed as =SUM(A1:A10).

2.2 The Support and Dependency Graphs

While the dependency graph of a spreadsheet captures cell dependencies, its
inverse, the support graph, captures cell support. The support graph is analo-
gous to a dataflow graph [16], where nodes are cells and data flows along the
edges from precedent cells to dependent cells. In fig. 1, cell B3 contains the
formula =A1+B1, which means that B3 depends on A1 and B1, and A1 and B1
support B3.

The dependency and support graphs may be cyclic. In fig. 2, cells A1 and
B1 conditionally refer to one another; this is a static cycle. It may or may
not cause a dynamic cycle during recalculation (see sec. 2.3) depending on
whether RAND() evaluates to a value less than 0.5 or not. Cyclic references are
usually disallowed, because recalculation cannot proceed meaningfully. When
a cyclic reference is found, the user is commonly alerted through the GUI and
recalculation aborts.
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Fig. 2: A static cyclic reference in a spreadsheet (left) and its corresponding
cyclic dependency graph (right). We label dependency edges with d.

2.3 Recalculation

There are two types of recalculation. Full recalculation unconditionally reeval-
uates all formula cells. Minimal recalculation only reevaluates the transitive
closure of cells reachable, via the support graph, from cells modified by the
user. We call the cells that start a minimal recalculation the recalculation roots.
In fig. 1, whenever a user changes the formula in B1 from =A1*23 to =A1+A3,
then B1 is a recalculation root and both B1 and B3 must be updated to reflect
the change.

2.4 Consistency Requirements

The purpose of recalculation is to bring the spreadsheet to a consistent state [23,
sec. 1.8.3]. Let � be a mapping from cells to formula expressions and � a map-
ping from cells to their values. The former models the underlying computations
and dependencies between cells in a spreadsheet, whereas the latter models the
result of a specific recalculation. Non-formula cells (i.e. constants) are not in
the domain of �. An evaluation has the form � ` e + v and says that expression
e may evaluate to a value v, given the mapping �. We can define the following
consistency requirement:

dom(�) = dom(�) (1)

8c 2 dom(�) . � ` �(c) + �(c) (2)

Requirement (1) states that the domains of � and � must be the same. This
implies that a recalculation does not evaluate constants as they involve no
work. Requirement (2) states that for every cell c in the domain of �, and
thus also in the domain of � by way of (1), the evaluation of its formula �(c)
must agree with the value of �(c). The consistency requirements do not specify
how recalculation must otherwise proceed; sequentially, in parallel, or in which
order cells must be evaluated.

A cyclic dependency can be resolved by assigning the cell c that contains
the cyclic reference a #CYCLE! error which is then propagated across cells such
that the spreadsheet eventually assumes a consistent state.

3 Funcalc: Sequential Implementation

Funcalc is an experimental spreadsheet engine [23] implemented in C# that
adds sheet-defined, higher-order functions to the spreadsheet paradigm. In
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Fig. 3: The possible state transitions of a cell. The dashed connection denotes
marking cells dirty in the transitive closure of a recalculation root at the
beginning of a particluar recalculation.

Name Signature Description
Cache cell! value Get the most recent, cached value of a cell.
Cycle? ()! bool True if a cycle is present, false otherwise.
EvalExpr cell! value Evaluate the cell’s formula to a value.
NotifyCycle! ()! () After the call, calling Cycle? returns true.
State cell! state Get or set a cell’s state.
Supported cell! [cell] Get a list of the cell’s supported cells.

Table 1: Overview of the functions used in pseudo-code.

this section, we solely focus on Funcalc’s existing sequential implementation
of minimal recalculation.

In Funcalc, cells are assigned a state, which is either dirty , enqueued , com-
puting or uptodate. During a single recalculation, state changes only mono-
tonically – e.g. a cell cannot go back from uptodate to computing , according
to the state transitions in fig. 3. During recalculation, the cell state indicates
whether a cell should be evaluated anew or not. Moreover, cells cache their
values. A cell that is uptodate has cached its most recent value.

Minimal recalculation is a breadth-first traversal of the support graph.
Funcalc uses a global work queue to maintain all cells that have been encoun-
tered during traversal and that have not yet been computed. The minimal
recalculation algorithm MinimalRecalc (algorithm 1) (1) marks the transi-
tive closure of the recalculation roots dirty by calling MarkDirty; (2) adds
the recalculation roots to the global work queue; and (3) dequeues cells from
the head of the queue and evaluates them by calling Eval until the queue is
empty. Table 1 lists a subset of the functions used in pseudo-code.

During its evaluation, a cell’s state is computing . After evaluation, the al-
gorithm enqueues all the cell’s directly supported cells, updates the cell’s cache
and sets its state to uptodate. It enqueues supported cells via EnqueueSup-

ported if their state is dirty and changes their state to enqueued .

If a cell is being evaluated and one of its dependencies d is not yet uptodate,
EvalExpr will recursively evaluate the dependency by calling Eval(d). If the
dependency’s state is computing , recalculation has detected a cyclic reference
(line 9 in algorithm 1, function Eval).
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Algorithm 1 Funcalc’s algorithm for sequential minimal recalculation.
1: function MarkDirty(cell)
2: if State(cell) 6= dirty then
3: State(cell)  dirty
4: for all u in Supported(cell) do
5: MarkDirty(u)

6: function Eval(cell)
7: switch State(cell)
8: case computing :
9: NotifyCycle!()

10: case enqueued or dirty :
11: State(cell)  computing
12: Cache(cell)  EvalExpr(cell)
13: State(cell)  uptodate
14: EnqueueSupported(cell)

15: return Cache(cell)

16: function EnqueueSupported(cell)
17: for all u in Supported(cell) do
18: if State(u) = dirty then
19: State(u)  enqueued
20: Enqueue(Q, u)

21: function MinimalRecalc(roots)
22: for all r in roots do
23: MarkDirty(r)
24: Enqueue(Q, r)
25: State(r)  enqueued

26: while ¬(Empty?(Q) _ Cycle?) do
27: cell  Dequeue(Q)
28: Eval(cell)

4 Puncalc: Parallel Implementation

Puncalc, short for parallel Funcalc, is a parallel variant of Funcalc based on
the .NET Task Parallel Library (TPL) [17]. We use TPL tasks and its work-
stealing queue implementation which we do not describe in further detail. In
the following sections, we introduce thread-safety requirements on cell state;
our approach to parallel, minimal recalculation and cycle detection; and how
it complies with the consistency requirement from sec. 2.4. We then extend the
algorithm with a thread-local optimization technique that exploits a specific
spreadsheet topology on the fly.

4.1 Thread Safety

Funcalc is conceptually a strict, purely functional language. However, the im-
plementation uses mutable state to make the language e�cient, which we
must make thread safe: the global recalculation queue must be thread safe;
cells cache the result of their evaluation, and all threads should agree on the
cached result due to the consistency requirement from sec. 2.4; cells also have
a state that should be consistent among all threads; and each cell should only
be evaluated once. We relax the latter requirement in sec. 4.3 in order to detect
cycles in parallel.

We handle the cells’ underlying mutable state using the following scheme.
If multiple threads try to evaluate the same cell, one thread takes ownership
of the cell and sets the cell’s state to computing . We call this thread the cell’s
owner. The thread will then evaluate the cell’s formula, write the result to the
cell’s value cache and finally set the cell’s state to uptodate. The remaining
threads block until the cell’s state is set to uptodate and then read the value
from the cell’s value cache.
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We can use intrinsic locks on cells to implement this scheme but as it turns
out, locking on cells comes at the cost of performance and correctness. Threads
that wait for locks are de-scheduled, but often times, the cell’s value will be
available soon, since the average computation time per cell is usually rather
low (see sec. 5). This makes de- and re-scheduling a waste of time. In terms of
correctness, it is legal to create cyclic references in spreadsheets (see sec. 2.2),
but such cyclic references can lead to deadlocks. Suppose thread t1 locks on
cell c. When another thread t2 examines c, it sees that c is locked by thread
t1 and blocks. If threads t1 and t2 both evaluate cells that are part of a cycle,
they will deadlock as no thread is able to make progress.

Instead of using locking, we implement our scheme using compare and swap
(Cas) [14, sec. 5.8] on a cell’s state and value cache. This allows us, among
other things, to detect cyclic dependencies dynamically as described in sec. 4.3.
We write Fts to denote that function F is now thread-safe. Furthermore, we
switch to a thread-safe, scalable and concurrent queue CQ (we use .NET’s
thread-safe, concurrent queue). Note that all reads from and writes to Statets

are lock-free; reads from Cachets are lock-free if the cell is uptodate.

The overall idea is to let threads compete for setting a cell’s state to com-
puting using Cas, as detailed in algorithm 2. The thread that wins the race
proceeds as described above, while the other threads enter a busy-wait loop.
Table 2 shows definitions for functions that we use in addition to those pre-
sented earlier in table 1.

Algorithm 2 Thread-safe evaluation function.

1: function EvalPar(cell)
2: s Statets(cell)
3: switch s
4: case computing :
5: while Statets(cell) 6= uptodate do nothing

6: case dirty or enqueued :
7: if Cas(statets(cell), s, computing) then
8: Cachets(cell)  EvalExpr(cell)
9: Statets(cell)  uptodate
10: EnqueueSupportedts(cell)

11: return Cachets(cell)

Only the thread whose Cas succeeded is allowed to enqueue (line 10, algo-
rithm 2). The cells in the support set may however also be part of some
other cell’s support set, so there still is a possibility for races. Note that
EnqueueSupportedts makes sure that each cell gets enqueued at most once
(see algorithm 1).
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Name Signature Description
Cas r ⇥ c⇥ v ! bool Atomically set r to v if its value is c.
Dec counter ! () Atomically decrease the counter by one.
EncodeOwner id⇥ state ! int Encode an identifier into a cell state’s upper bits.
Get counter ! int Atomically get the counter’s current value.
Id thread! id Get the identifier for a thread.
Inc counter ! () Atomically increase the counter by one.
OwnerBits int! id Read only ownership bits from encoded state.
Spawn fun ! () Spawn a task to execute a function in parallel.
StateBits int! state Read only state bits from encoded state.

Table 2: Overview of the functions particular to parallel recalculation.

4.2 Parallel Minimal Recalculation

We must address two main problems when implementing a parallel recalcula-
tion algorithm: first, choosing adequate termination criteria for recalculation;
and second, detecting cycles correctly, which we discuss in sec. 4.3.

Algorithm 3 shows the main loop of parallel recalculation that handles
termination. The emptiness of the global work queue alone is no longer a
su�cient termination criterion. The queue may be empty while there are still
cells being evaluated by other threads, which may in turn enqueue more cells.
Therefore, we use a concurrent and scalable atomic counter class, inspired by
the Java 8 LongAdder implementation [21] to keep track of the number of cells
currently being evaluated.

Algorithm 3 Main algorithm for parallel minimal recalculation.

1: function MinimalRecalcPar(roots)
2: counter  AtomicCounter(0)
3: for all r in roots do
4: MarkDirtyts(r)
5: Enqueuets(CQ, r)
6: Statets(r)  enqueued

7: while (Get(counter) > 0 _ ¬Empty?(CQ)) ^ ¬Cycle?() do
8: cell Dequeuets(CQ)
9: if cell 6= null then
10: Inc(counter)
11: Spawn(fun() ) {
12: EvalPar(cell)
13: Dec(counter)
14: })

Parallel minimal recalculation begins similarly to its sequential counterpart
by marking all cells in the transitive closure of the recalculation roots dirty ,
enqueuing the roots and changing their state to enqueued .

If the main thread successfully dequeues a cell from the queue, it increments
counter (line 10, algorithm 3) and spawns a new task to compute it. The task
is sent to a thread pool where it evaluates the cell and subsequently decrements
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CQ is empty

Enqueue
supported cells
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Fig. 4: A timeline (from left to right), showing the interleaving of actions
that could cause premature termination of the algorithm if the termination
condition were to be reversed. Thread tmain is the main thread and thread t1
is a worker thread.

counter. In sec. 4.1, we made sure that only one task gets to set the computed
value of the cell.

The termination condition of the while loop in line 7, algorithm 3 states
that it should keep running as long as (1) there is at least one cell being
evaluated or (2) the queue is not empty; and (3) no cycles have been detected.

It is crucial that the checks for termination (1) and (2) are ordered as
they are. Imagine we were to swap (1) and (2) as in the timeline in fig. 4 and
initially, the queue were empty and Get(counter) = 1. The main thread tmain

would evaluate the while loop condition and see that CQ would be empty.
Before tmain would continue, t1 would finish evaluating a cell and enqueue a
non-empty set of supported cells such that CQ would be non-empty. Thread
t1 would then decrement the counter so that Get(counter) = 0. Now tmain

would incorrectly believe that there were no cells currently being evaluated
and would exit the loop prematurely. This subtle race does not occur when we
order the checks as in algorithm 3.

4.3 Cyclic Dependency Detection

To detect a cyclic dependency during sequential recalculation, it is su�cient
to inspect a cell’s state before evaluating it and to check whether its state is
computing . Detecting cycles in parallel is less straightforward. If any thread
sees a cell that is computing , it has not necessarily found a cyclic dependency
as another thread may currently be computing the cell. In this section, we
discuss the challenges of parallel cycle detection and then discuss our solution.

We could circumvent the problem by sequentially checking for cycles before
initiating a parallel recalculation, but this would defeat the purpose of recal-
culating in parallel in the first place. A sequential static cycle check would be
too conservative and lead to false positives (see fig. 2).

As mentioned in sec. 4.1, simply locking on a cell, either while evaluating it
or while waiting for another thread to evaluate it, is not a feasible solution ei-
ther. Alternatively, a thread that discovers a computing cell could immediately
report a cyclic dependency, but that would be overly pessimistic.
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What we need is a tie-breaker that allows at least one thread to proceed
so that it can discover the cycle. During parallel recalculation, a cyclic depen-
dency occurs only if a thread ti encounters a cell that is computing and whose
owner is ti itself. If a cell is computing but owned by another thread, ti waits
until the cell becomes uptodate and then reads the cell’s cached value.

How do we decide which thread is allowed to proceed? We use thread IDs,
that impose an arbitrary, numerical order on threads, to determine thread
precedence. A thread ti has precedence over tj if Id(ti) < Id(tj). If ti and tj
wait for a cell that the respective other thread owns due to a cyclic reference,
then, at some point, ti may proceed and discover the cycle.

4.4 Encoding Ownership in Cell State

We want to manipulate state and ownership of a cell using a single atomic
operation to avoid adding logic for handling partial states. Internally, cell
state is represented by some bits of an integer. There are four cell states, so it
su�ces to use two bits to encode these.

We can encode the ID of the current thread in the remaining, unused bits
along with the computing cell state to claim ownership of the cell, allowing
us to manipulate both using a single Cas operation. Function OwnerBits(s)
only returns the ownership bits of s, StateBits(s) returns the state bits. For
all other cell states, the ownership bits are all zero.

4.5 Parallel Recalculation with Speculative Reevaluation

This section details the implementation of a dynamic resolution of cyclic de-
pendencies that we call speculative reevaluation. We only want to report cycles
that actually exist and occur dynamically during recalculation.

Algorithm 4 shows the pseudo-code for the EvalParSpec function, that
we now invoke instead of EvalPar in line 12, algorithm 3. Functions Eval-
ParSpec and TryEvalExpr directly encode the scheme described in sec. 4.3.
If the cell’s state is computing , we check whether the current thread tcur is the
owner of the cell. If yes, tcur has detected a cyclic dependency and we must
abort recalculation. To allow any waiting threads to finish up, tcur sets the
cell’s state to uptodate, and notifies the main thread to stop spawning new
tasks via NotifyCycle!ts which then exits the main loop. Other threads will
simply terminate when they are done evaluating their current cell.

If tcur is not the owner, it checks whether it has precedence over the current
owner and, if so, attempts to evaluate the cell by calling TryEvalExpr. If
tcur is neither the owner of the cell nor has precedence over the current owner,
it spins until it can retrieve the cell’s cached value. If the cell is either dirty
or enqueued , the thread attempts to evaluate it directly, also using TryE-

valExpr. If the cell is uptodate, the function just returns the cell’s cached
result.
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Algorithm 4 Parallel speculative recalculation with dynamic cycle detection.

1: function TryEvalExpr(cell, vold, s)
2: s0  EncodeOwner(Id(tcur), computing)
3: if Cas(Statets(cell), s, s0) then
4: v  EvalExpr(cell)
5: if Cas(Cache(cell), vold, v) then
6: Statets(cell)  uptodate
7: EnqueueSupportedts(cell)

8: function EvalParSpec(cell)
9: s Statets(cell)
10: vold  Cachets(cell)
11: switch s
12: case computing :
13: if Id(tcur) = OwnerBits(s) then
14: Statets(cell)  uptodate
15: NotifyCycle!ts()

16: else if Id(tcur) < OwnerBits(s) then
17: while Id(tcur) < OwnerBits(s) ^ StateBits(s) = computing do
18: TryEvalExpr(cell, vold, s)
19: s Statets(cell)

20: else
21: while Statets(cell) 6= uptodate do nothing

22: case dirty or enqueued :
23: TryEvalExpr(cell, vold, s)

24: return Cachets(cell)

Whenever a thread attempts speculative reevaluation, it claims ownership
of the cell. This reduces the number of redundant speculative evaluations and
is important for cycle detection. If a thread ti has precedence over thread tj
and claims ownership of cell c, and another thread tk has precedence over tj
but not ti, such that Id(ti) < Id(tk) < Id(tj), tk is not allowed to speculatively
evaluate c. If tk happens to claim ownership of c before ti, then ti has to try
and reclaim ownership from tk again to detect cycles correctly.

To see the need for this, imagine cell c had a cyclic dependency on cell x
owned by ti, but tk successfully took ownership of c, while ti failed to take
ownership and would spin. As soon as tk arrived at cell x, it would detect that
it does not have precedence over ti and recalculation would become stuck. If
thread t with Id(t) = n does not return from evaluating a cell due to a cyclic
reference, then at worst only n � 1 threads with lower IDs can evaluate the
same cell speculatively before one of them detects the cycle, so every cycle will
eventually be discovered.

4.5.1 Ensuring Consistency

It is possible that two or more threads attempt to evaluate the same cell, as
illustrated in fig. 5. In sec. 4.1, we discussed that all threads should agree on
the cached value of each cell, so we must ensure that only one of the evaluating
threads gets to set the cached value; the other threads must discard the result
of their own evaluation and continue using the now updated cached value.
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Fig. 5: Two cells depend on the same cell containing call to NOW(). If both cell
A1 and A2 are evaluated in parallel and both recursively attempt to evaluate
B1, their respective threads must agree upon which value B1 has evaluated to.

Function TryEvalExpr ensures that only one thread gets to update the
cell’s cache by using Cas.

Our algorithm for parallel minimal recalculation retains the consistency
requirement stated in sec. 2.4 up to cyclic dependencies, similar to sequential
Funcalc. Using Cas in line 5 in algorithm 4 makes sure that all threads will
agree on the value of each cell in � (see sec. 2.4). If the spreadsheet contains
a cyclic dependency, we cannot guarantee consistency. In this case, we let all
threads continue using possibly stale values and notify the main thread that a
cyclic reference has been found. While this approach may seem simplistic, it
elegantly terminates the recalculation process.

4.5.2 Delayed Speculative Evaluation

In practice, we do not want to allow a thread with precedence to immediately
speculatively evaluate a cell as in line 18, algorithm 4. Instead, the thread
first spins for a short amount of time while continuously checking the cell
state. If the cell becomes uptodate during spinning, the spinning thread does
not attempt to evaluate the cell speculatively; otherwise it proceeds with the
evaluation of the cell. This heuristic makes sure that we do not needlessly start
evaluating when the result will be available early.

4.6 Thread-Local Evaluation

If a cell only has a single outgoing support edge, i.e. only a single cell in
the spreadsheet refers to it, algorithm 3 will still spawn a new task for the
single supported cell, even though there is no parallelism that we can exploit.
Instead the current thread could evaluate the cell locally, circumventing the
global queue and avoid spawning a new task.

We can implement an optimization for such sequential chains by detecting
when a cell supports only a single cell. If so, evaluate the supported cell locally
on the current thread which continues to evaluate cells locally, until it reaches
a cell that supports either zero or more than one cell, or is already uptodate.

We must use TryEvalExpr for thread-local evaluation as well, since the
cells in the sequential chain may still have multiple dependencies, and another
thread may still attempt to evaluate the same cell simultaneously.
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5 Results and Validation

5.1 Benchmark Spreadsheets

We use the following spreadsheet suites to benchmark Puncalc:

Real-World Spreadsheets LibreO�ce Calc [12] provides a set of large bench-
mark spreadsheets1. Benchmarking on large supposedly “real-world” spread-
sheets is meant to give us insight into how well Puncalc copes with realistically
structured spreadsheets. To be able to run the spreadsheets in Puncalc, we
have removed all convenience macros and implemented unsupported functions
as sheet-defined functions. Furthermore, we detect all formula cells that have
no formula dependencies and use them as recalculation roots (the “Roots”
column in table 3) to simulate minimal recalculation. As a result, they are
initially enqueued in the global work queue, and the main thread can then
dequeue cells from the queue with little interference from enqueueing threads.
However, this may have a positive e↵ect on performance and is unrealistic
since users usually only edit one cell at a time.

Artificial Spreadsheets To explore Puncalc’s behavior in a controlled and sys-
tematic fashion, we use six programmatically generated spreadsheet topologies,
as shown in fig. 6. Each cell calls a recursive SDF implementation of the Fi-
bonacci function FIB without tail-call optimization which allows us to control
the amount of work per cell. We pass a parameter to FIB that corresponds
to roughly 0.7ms evaluation time per call, which is the maximum, average
work-per-cell from all LibreO�ce spreadsheets.

5.2 Experimental Setup

Our test machine is an Intel Xeon E5-2680 v3 with 48 logical 2.5 GHz cores
and 32GB of memory, running 64 bit Windows 10, Version 1607, and .NET
4.7.1. We initially performed three warm-up runs and ran each benchmark
for five iterations2. For each iteration, we ran the benchmark ten times and
computed the average execution time. We report the average of those five
averages and their standard deviation in table 3. Sequential (1-core) running
times are measured without volatile reads and writes, or any other thread-safe
primitives or data structures to ensure a fair comparison.

We limit the number of TPL threads to match the number of available,
logical cores for each run. Additionally, we disable TPL’s heuristics for thread
creation and destruction so that all threads are created at start-up. We have
chosen a spin time of 1ms as this reflects the maximum, average evaluation
time for formulas in the LibreO�ce benchmark suite.

1 Available at https://gerrit.libreoffice.org/gitweb?p=benchmark.git.
2 Raw data available at

https://github.com/popular-parallel-programming/puncalc-benchmarks/tree/xeon.
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(a) Binary fork (b) Binary join (c) Fork

(d) Fork-join (e) Map (f) Prefix

Fig. 6: Illustrations of the underlying support graph structures of synthetic
spreadsheets for benchmarking. Black nodes mark recalculation roots. We only
use one recalculation root per sheet to simulate editing a single cell.

5.3 Validation

We have validated that our algorithm for parallel minimal recalculation in
Puncalc produces the same result as sequential minimal recalculation in Fun-
calc for all sheets from the real-world benchmark suite. Hence, we believe that
parallel recalculation respects the consistency requirements (sec. 2.4).

5.4 Performance Evaluation

There are three main observations to be made from the performance bench-
marks:

Observation 1 Fig. 7 shows that our approach scales for the majority of
tested spreadsheets up to 16 cores, where we gain most speedup on average.

The relative speedup decreases for all spreadsheets for more than 16 cores,
except for building-design, ground-water and stock-history from the LibreO�ce
benchmarks. It is unclear what causes these three spreadsheets to continue to
improve, but there are likely multiple factors in play.

The performance decline after 16 cores may simply be caused by increased
contention and more speculative evaluations. Another explanation relates to
our Intel Xeon, which consists of two chips with twelve cores each. Up to 16
“logical” cores (i.e. including hyper-threading), communication does not hap-
pen across chips. Therefore, we do not have to pay an excessive synchronization
cost when threads wait for computing cells whose owners are scheduled o↵-
chip. The structure of the three aforementioned sheets might correct for such
expensive communication.
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Sheet Cells Roots Support Span Seq. (s) ⇥16 ⇥16* ⇥48 ⇥48*
building-design 108,332 18,378 488,351,887 3 32.12 5.57 5.61 12.90 12.64
energy-markets 534,507 35,198 287,818,610 3 168.16 2.17 2.17 1.53 1.54
grossprofit 135,073 15,301 112,612,549 3 102.19 4.41 4.40 2.54 2.55
ground-water 126,404 31,601 1,099,366,302 1 81.26 5.47 5.56 15.59 15.94
stock-history 226,503 23,402 317,049 3 64.90 6.51 6.48 12.53 12.22
stocks-price 812,693 10,876 233,376,389 3 102.74 2.57 2.58 0.84 0.62
binary-join 262,146 1 393,215 18 138.63 4.12 2.75 2.34 1.19
binary-tree 266,145 1 262,143 17 141.14 4.20 4.30 2.31 2.32
fork 300,001 1 300,301 1001 160.14 4.45 4.04 2.42 2.34
fork-join 300,002 1 300,600 1001 158.92 4.28 3.34 2.39 1.95
map 300,001 1 300,001 1 160.82 3.77 3.74 2.24 2.24
prefix 300,000 1 745,009 1100 161.32 1.37 1.02 0.56 0.35

Table 3: Spreadsheet statistics and benchmark results. Columns labeled ⇥n
show relative speedup for n cores. Columns labeled ⇥n* show speedup for n
cores with thread-local evaluation enabled, as described in sec. 4.6.

Observation 2 Thread-local evaluation does not improve performance com-
pared to eagerly spawning a task for each cell as shown in fig. 8, and often
leads to worse performance than eagerly spawning tasks.

This may be due to two factors. First, thread-local evaluation is a depth-first
traversal, while eagerly spawning tasks is akin to breadth-first traversal. There-
fore, thread-local evaluation makes recursive evaluation of dependencies more
likely, which is slower than using the global work queue. For heavily sequential
spreadsheets such as prefix (fig. 6f), thread-local evaluation can alleviate the
overhead of parallelization, which may be favorable for a robust implementa-
tion. However, recursive evaluation can lead to stack overflow errors. Second,
the TPL [17] uses work-stealing: idle threads steal work in the form of tasks
from other threads. If we spawn less tasks and hence have more idle threads,
they will attempt to steal work more often. Frequent work-stealing is more
costly if it happens across chips.

Observation 3 Neither the number of cells, roots, support edges or span
(i.e. the longest sequential path) of a spreadsheet are good indicators for
parallel performance.

There is no apparent correlation between these statistics and the performance
results in table 3. This is much to our surprise and a deeper structural analysis
may be required in order to discover the causes behind the observed results.

6 Related Work

Little research deals with parallel recalculation of spreadsheets. The general
focus has instead been on detection and handling of errors [6].

There exist multiple distributed systems for spreadsheet computations,
such as ActiveSheets [4], Nimrod [3] and HPC Services for Excel [20]. All three
systems require reengineering of the spreadsheet, which may take a substantial
amount of time and require expert engineers [24]. In contrast, Puncalc runs
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Fig. 7: Average benchmark results over 50 runs per spreadsheet from the
LibreO�ce Calc spreadsheet suite with thread-local evaluation enabled. Values
are speedup factors over sequential performance on the same machine; higher
is better. The gray dashed line indicates 1-core performance. The standard
deviation is  0.21 for all benchmarks.
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Fig. 8: Average benchmark results over 50 runs per spreadsheet from the
synthetic spreadsheet suite. Top: without thread-local evaluation. Bottom:
with thread-local evaluation. Values are speedup factors over sequential per-
formance on the same machine; higher is better. The gray dashed line indicates
1-core performance. The standard deviation is  0.1 for all benchmarks.

on a shared-memory multiprocessor and automatically exploits the machine’s
available processors without needing to change the spreadsheet itself.

Wack [26] bridges the gap between distributed systems and automatic par-
allelization. His dissertation describes an improved spreadsheet model that
statically partitions and schedules a set of predefined patterns and parallelizes
them via message-passing in a network of work stations. Apart from using a
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di↵erent machine model, his work simply disallows cyclic dependencies [26,
sec. 2.8.3], which corresponds to static cycle detection.

Biermann et al [5] parallelize spreadsheets by statically rewriting so-called
cell arrays to calls to higher-order functions on arrays, exploiting their inherent
parallelism. Their approach does not parallelize the evaluation of disjoint cell
arrays and requires certain predefined structures to be present.

Both works require static analysis of the spreadsheet prior to recalculation,
whereas Puncalc detects both parallelism and cyclic dependencies dynamically.

6.1 Commercial and Open Source Applications

Excel is probably the most well-known commercial spreadsheet application.
Being closed-source, little information is available about its recalculation en-
gine although it has an option that allows users to enable multi-threaded recal-
culation. Sestoft [23] gives some additional information based on speculation
and experimentation.

SpreadsheetGear [18] is a collection of commercial plugins for Excel, one
of which is a calculation engine that allows for multi-threaded recalculation
through .NET’s TPL. Further details are not available.

In collaboration with the LibreO�ce open source project, AMD has im-
plemented GPU parallelization for LibreO�ce Calc by automatically com-
piling formulas involving cell ranges, such as =SUM(A1:A100), into OpenCL
kernels [25]. They report between 30-500 times speedups [19], but do not take
additional improvements to their internal data representation into account.

None of the applications above report results for systematic performance
benchmarks or give a detailed description of the underlying algorithms.

7 Conclusion

In this paper, we have presented Puncalc, a spreadsheet engine that tar-
gets shared-memory multiprocessors, and automatically extracts parallelism
from spreadsheet computations, obtaining overall satisfactory speedups with-
out adding any engineering overhead. To our knowledge, this is the first algo-
rithm for parallel spreadsheet recalculation with dynamic cycle detection that
has been described in literature.

We have given a number of possible explanations for the performance re-
sults in sec. 5, but further investigation is needed. Furthermore, we are lacking
a direct comparison of the performance of Puncalc to that of other frameworks
for spreadsheet parallelization, such as those mentioned in sec. 6.

We believe that our work, combined with the work on sheet-defined func-
tions [22, 23], is a first step towards a powerful framework for end-user devel-
opment and hope to pave the way for a paradigm shift where spreadsheets are
viewed as a serious computational tool for a broad range of problems by both,
researchers and IT professionals.
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