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Concrete and Abstract Cost Semantics
for Spreadsheets

Alexander Asp Bock
Thomas Bøgholm

Peter Sestoft
Bent Thomsen

Lone Leth Thomsen

Abstract

We give a simple but precise operational semantics for the evaluation
of extended spreadsheet formulas, with array formulas, sheet-defined func-
tions and closures, as found in the Funcalc spreadsheet platform [1]. We
build on this to give a simple cost semantics, inspired by [2], for evalu-
ation of a spreadsheet formula and for full and minimal recalculation of
a spreadsheet. Following the ideas presented by Schmidt [3] we provide
a big-step trace-based abstract interpretation for the cost semantics. We
then present a set of functions which can be used to calculate the cost of
executing an evaluation of a spreadsheet expression following Gomez et
al. [4], inspired by Rosendahl [5]. These functions are related to the above
operational semantics, cost semantics and abstract interpretation.

The above semantic presentations all form the formal foundations for
various cost calculations implemented in the Funcalc spreadsheet plat-
form. These calculations are evaluated experimentally.

1 Introduction

Every day spreadsheets are used by millions of people, ranging from pupils doing
their school hand-ins to complex financial, medical or scientific computations.
In 2017 it was estimated that there were 13-25 million spreadsheet developers
worldwide [6], i.e. people developing complex computations using spreadsheets.
Yet, despite their widespread use the semantics of spreadsheet computations is
rather underdeveloped and it is almost impossible to analyze the computational
cost of spreadsheet computations. This paper takes its outset in the seman-
tics for simple spreadsheets sketched in section 1.8 of the book Spreadsheet
Implementation Technology [1].

In this paper, we give a simple but precise operational semantics for the eval-
uation of extended spreadsheet formulas, with array formulas, sheet-defined
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functions and closures, as found in the Funcalc spreadsheet platform [1].

We build on this semantic definition to give a simple cost semantics, inspired
by [2], for evaluation of a spreadsheet formula for full and minimal recalculation
of a spreadsheet.

We follow the ideas presented by Schmidt [3] and provide a big step trace-based
abstract interpretation for the cost semantics.

We then present a set of functions which can be used to calculate the cost of
executing an evaluation of a spreadsheet expression following Gomez et al. [4],
inspired by Rosendahl [5]. These functions are related to the above operational
semantics, cost semantics and abstract interpretation.

The above semantic presentations all form the formal foundations for various
cost calculations implemented in the Funcalc spreadsheet platform. These cal-
culations are evaluated experimentally.

The calculation of execution cost is paramount to investigations of various ap-
proaches to parallelizing the execution of spreadsheet programs pursued in the
Popular Parallel Programming (P3) project1, e.g. as used in [7].

The rest of this paper is organized as follows: The evaluation semantics for
simple Funcalc expressions is elaborated in Section 2 and semantics for ex-
tended spreadsheet expressions is developed in Section 3. In section crefsec-
cost-semantics a precise cost semantics is built on top of the extended semantics.
This semantics is presented in Section 5 and in Section 6. This cost semantics
serve as a foundation for implementations described in Section 7 and in Sec-
tion 10. The extended evaluation semantics for Funcalc is extended to compute
with unknown values in Section 8, which serves as a first step towards an ap-
proximate cost analysis described in Section 9. In Section 11, we present results
pertaining to the execution time and precision of the various cost analyses that
were implemented as described in Section 10. Finally, we present conclusions
and future work in Section 12.

2 Simple Spreadsheet Semantics

This section describes the evaluation of simple spreadsheets without array for-
mulas and sheet-defined functions, and hence without array values and closures.
It is reproduced from parts of [1, Section 1.8] and included here for background;
readers familiar with the subject may skip to Section 3.

The simplified formulas used in this section are described in Figure 1. One
simplification is to represent a constant cell n by a constant formula =n, although
most spreadsheet programs would distinguish them. Another simplification is
to leave out cell area expressions ca1 : ca2; these will be introduced in Section 3.

1https://www.itu.dk/~sestoft/p3/
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e ::= n number constant
| ca cell reference
| IF(e1,e2,e3) conditional expression
| RAND() volatile function
| F(e1, . . . ,en) built-in function call

Figure 1: Syntax of the simplified formula language.

To describe the evaluation of such formulas, we use the semantic sets and
functions defined in Figure 2. These are sometimes called semantic domains,
but here they are ordinary sets and partial functions. For instance, V alue =
Number+Error is the set of values, where a value v is either a proper number
such as 0.42 in set Number or an error such as #DIV/0! in set Error. The set
Addr contains cell addresses ca such as B2. For presentational simplicity, some
additional error values (such as #NAME!) and additional kinds of values (such as
strings), found in realistic spreadsheet programs, have been left out. They are
easily added to the semantics studied here.

To describe the formulas of a worksheet, we use a map � : Addr ! Expr
so that when ca 2 Addr is a cell address, �(ca) is the formula in cell ca.
If cell ca is blank, then �(ca) is undefined. The domain of � is dom(�) =
{ ca | �(ca) is defined }, the set of cell addresses that have a formula, that is,
the set of non-blank cells. The � function is not a↵ected by recalculation, only
by editing the sheet.

The result of a recalculation is modelled by function � : Addr ! V alue, where
�(ca) is the computed value in cell ca. The � function gets updated by each
recalculation (see Section 2.2).

n 2 Number = { proper numbers }
Error = { #DIV/0!, #CYCLE! }

ca 2 Addr = { cell addresses }
v 2 V alue = Number + Error
e 2 Expr = { formulas, see Figure 1 }
� 2 Addr ! Expr
� 2 Addr ! V alue

Figure 2: Sets and maps used in the spreadsheet semantics: Number is the
set of proper floating-point numbers, excluding NaNs and infinities; Error is
the set of error values; Addr the set of cell addresses; V alue the set of values
(either number or error); and Expr the set of formulas.
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2.1 Semantics of Formula Evaluation

The semantics for formulas is given as a natural semantics [8], a variant of
operational semantics [9], using inference rules that involve big-step evaluation
judgments. An evaluation judgment has the form � ` e + v, which says: When
� describes the calculated values of all cells, then formula e may evaluate to
value v. Note that v may be a number value or an error value.

To understand inference rules, consider this rule:

� ` ei + vi 2 Error
------------------------------------------------------------------------------------------ (e5e)
� ` F(e1, . . . ,en) + vi

This inference rule consists of a premise above the line and a conclusion be-
low the line. The conclusion concerns the value of a function call expression
F(e1, . . . ,en), and the premise concerns the value of one of the call’s argument
expressions ei. The rule can be read as follows: If there is some argument ex-
pression ei that may evaluate to an error value vi, then the function call may
evaluate to the error value vi also. That is, the rule describes the propagation
of errors from argument to result in a function call. If multiple arguments ei
and ej may evaluate to di↵erent error values vi and vj , then the rule does not
specify which error will be propagated to the call’s result.

For another example, consider this rule, also for a function call F(e1, . . . ,en)
with n arguments:

� ` e1 + v1 62 Error . . . � ` en + vn 62 Error
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e5v)

� ` F(e1, . . . ,en) + f(v1, . . . , vn)

This rule has n premises and can be read as follows: If all argument expressions
e1, . . . , en may evaluate to non-error values v1, . . . , vn, then the value of the
function call is obtained by applying the actual function f to these values, as
in f(v1, . . . , vn).

The “may” is important because, in general, an expression may evaluate to
multiple di↵erent values. For instance, RAND() may evaluate to any number
between 0.0 (included) and 1.0 (excluded). Hence, 7+1/RAND() may evaluate to
some number greater than 7+1 or to the error #DIV/0! in case RAND() produces
0.0.

The complete set of inference rules that describe when a formula evaluation
judgment � ` e + v holds is given in Figure 3. Note that there are five groups of
rules (e1), (e2x), (e3x), (4), (e5x), each corresponding to one of the five kinds of
formulas in Figure 1. Also, the formula fragments that appear in the premises
are always smaller than the formula that appears in the conclusion. Hence, one
can make a conclusion about a given formula through a finite number of rule
applications.
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---------------------------------------- (e1)
� ` n + n

ca /2 dom(�)
------------------------------------------------------ (e2b)
� ` ca + 0.0

ca 2 dom(�) �(ca) = v
------------------------------------------------------------------------------------------------------------------ (e2v)

� ` ca + v

� ` e1 + v1 2 Error
----------------------------------------------------------------------------------------- (e3e)
� ` IF(e1,e2,e3) + v1

� ` e1 + 0.0 � ` e3 + v
----------------------------------------------------------------------------------------------------------------- (e3f)

� ` IF(e1,e2,e3) + v

� ` e1 + v1 v1 6= 0.0 � ` e2 + v
------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e3t)

� ` IF(e1,e2,e3) + v

0.0  v < 1.0
--------------------------------------------------------------- (e4)
� ` RAND() + v

� ` ei + vi 2 Error
------------------------------------------------------------------------------------------ (e5e)
� ` F(e1, . . . ,en) + vi

� ` e1 + v1 62 Error . . . � ` en + vn 62 Error
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e5v)

� ` F(e1, . . . ,en) + f(v1, . . . , vn)

Figure 3: Evaluation rules for simplified spreadsheet formulas.

The formula evaluation rules in Figure 3 may be explained as follows:

• Rule (e1) says that a number constant n evaluates to that constant’s value.

• Rule (e2b) says that a reference ca to a blank cell, that is, one for which
�(ca) is not defined, gives value 0.0.

• Rule (e2v) says that a reference ca to a non-blank cell evaluates to the
value �(ca) calculated for that cell. This value may be a number or an
error.

• Rule (e3e) says that the expression IF(e1,e2,e3) may evaluate to error v1
if the condition e1 may evaluate to error v1.
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• Rule (e3f) says that IF(e1,e2,e3) may evaluate to value v provided the
condition e1 may evaluate to the non-error number zero and the “false
branch” e3 may evaluate to v.

• Rule (e3t) says that IF(e1,e2,e3) may evaluate to value v provided the
condition e1 may evaluate to some non-error non-zero number v1 and the
“true branch” e2 may evaluate to v.

• Rule (e4) says that function call RAND() may evaluate to any (non-error)
number v greater than or equal to zero and less than one. Hence, this rule
models nondeterministic choice. It permits a formula involving RAND() to
produce a di↵erent result on each evaluation. However, it does not re-

quire RAND() to produce a di↵erent number every time it is called. Such a
requirement would not make sense; by definition, a random number gener-
ator is permitted to return whatever result it wants. So according to this
operational semantics, RAND() might consistently return 0.42 whenever it
is called, although that would be rather disappointing and useless.

• Rule (e5e) says that a call F(e1, . . . ,en) to a built-in function F may evalu-
ate to error vi if one of its arguments ei may evaluate to error vi. Note that
if more than one argument may evaluate to an error, then the function
call may evaluate to any of these. Hence, the semantics does not prescribe
an evaluation order for arguments, such as a left to right or right to left.

• Rule (e5v) says that a call F(e1, . . . ,en) to a function F may evaluate
to value v if each argument ei may evaluate to non-error value vi, and
applying the actual function f to arguments (v1, . . . , vn) produces value
v. The final result v may be a number such as 5, for instance, if the call
is +(2, 3); or it may be an error such as #DIV/0!, for instance, if the call
is /(1.0, 0.0).

2.2 Semantics of Simple Recalculation

Now that we know how to evaluate a formula, given values of all cells in the
worksheet, we can describe the semantics of a recalculation. A recalculation
must find a value for every non-blank cell ca in the sheet, and that value �(ca)
must agree with the formula �(ca) held in that cell. These are the central
consistency requirements on a recalculation, formally described in Figure 4.
These requirements leave it completely unspecified how the recalculation works,
whether it recalculates all or only some cells, whether it does so sequentially or
in parallel, whether it guesses the values or computes them, and so on. This
underspecification is essential to permit a range of implementation strategies
and optimizations.

6
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(1) dom(�) = dom(�)
(2) 8ca 2 dom(�). � ` �(ca) + �(ca)

Figure 4: The consistency requirements on recalculation for simple formulas.
Requirement (1) says that a recalculation must find a value �(ca), possibly an
error, for every non-blank cell ca. Requirement (2) says that the computed
value �(ca) must agree with the cell’s formula �(ca).

3 Funcalc Semantics

In this section we extend the simple spreadsheet semantics from Section 2. We
first extend the expressions and semantic sets to account for array formulas
and to account for sheet-defined functions. We then discuss the modelling of
array formulas, which is slightly more general than strictly necessary. With
array formulas in the expression language, we need to extend the semantics for
ordinary sheets. This turns out to be a smooth extension where ”old” rules just
pass around the additional semantic environment for array expressions. We then
extend the semantics to account for function sheets and round of the section
with a discussion of the rules for calling sheet-defined

functions, as these rules are some of the more unusual aspects of this semantics.

3.1 Extended Expressions and Semantic Sets

The simple spreadsheet semantics from Section 2 must be expanded in two
orthogonal directions: to account for array formulas and to account for sheet-
defined functions. This requires extension to the formula expression language,
shown in Figure 5, and to the set of values and semantic maps, shown in Figure 6.

A cell area reference ca1 : ca2 refers to a block of cells spanned by the two
opposing “corner” cells ca1 and ca2. In Funcalc, a cell area reference can refer
to an ordinary sheet only, not to a function sheet.

An array formula is here modelled as an underlying formula ae which is itself just
an expression, expected to evaluate to an array value, that is, an array of values.
That array value’s components are distributed over a target cell area, with one
such component in each cell. This is explained in more detail in Section 3.2.

We model a closure as a partial application, that is, a named sheet-defined
function sdf with a prefix [u1, . . . , uk] of its argument values given, where 0 
k  arity(sdf); see Figure 6. A closure is created by CLOSURE from a sheet-
defined function sdf by giving it values for some or all of its arguments. A
partially applied closure e0 may be given further arguments, as in currying, also
using CLOSURE. An APPLY call of a closure e0 must provide all the remaining n
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e ::= n number constant
| ca cell reference
| IF(e1,e2,e3) conditional expression
| RAND() volatile function
| F(e1, . . . ,en) call to built-in function
| ca1 : ca2 cell area reference
| ae[i, j] array formula component
| sdf(e1, . . . ,en) call to sheet-defined function
| CLOSURE(sdf,e1, . . . ,ek) closure creation
| CLOSURE(e0,e1, . . . ,en) closure partial application
| APPLY(e0,e1, . . . ,en) closure full application

ae ::= e array expression

Figure 5: Syntax of the Funcalc extended formula language, with five addi-
tional syntactic constructs: a cell area reference, an access to component (i, j)
of an array formula ae, a call of a sheet-defined function, creation of a closure
from a sheet-defined function sdf , and call of a closure e0.

arguments, where k+n = arity(sdf), and will call the underlying sheet-defined
function.

In the simple semantics for formula evaluation on ordinary sheets, the recalcu-
lation consistency requirements could be stated in terms of the formula �(ca)
in a given cell and its post-recalculation value �(ca).

To account for array formulas, we need the post-recalculation value ↵(ae) of each
underlying (presumably array-valued) expression ae. This underlying value will
be shared by all the array formula’s components, see rule (e7) in Figure 10. In
Funcalc, array formulas are allowed on ordinary sheets only, not on function
sheets.

To further account for a call to a sheet-defined function, we need the value ⇢(ca)
of the function sheet cells ca used during the call of the function. Each call,
also each recursive call, has its own fresh ⇢ map, and the map is ephemeral:
there is no way to refer to a function sheet cell value after the function has
returned. Hence ⇢ is similar to a stack frame in ordinary programming language
implementation.

Note that ↵ is not needed when evaluating a sheet-defined function, because
function sheets cannot contain array formulas. Also, ⇢ is not needed when
evaluating cells on an ordinary sheet, because there is no way to refer to a
function sheet cell value after the function has returned. The revised post-
recalculation consistency requirements are shown in Figure 7.

8
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n 2 Number = { proper numbers }
av 2 ArrV al = { (w, h, [[vij | i  w, j  h]]) }
fv 2 FunV al = { (sdf, [u1, . . . , uk]) }

Error = { #DIV/0!, #CYCLE! }
ca 2 Addr = { cell addresses }
v, u 2 V alue = Number + Error +ArrV al + FunV al
e 2 Expr = { formulas, see Figure 5 }
� 2 Addr ! Expr
� 2 Addr ! V alue
↵ 2 Expr ! V alue
⇢ 2 Addr ! V alue

Figure 6: Sets and maps used in the Funcalc extended spreadsheet semantics.
There are the following di↵erences relative to Figure 2: av 2 ArrV al is a
one based array value with w ⇥ h component values vij and fv 2 FunV al
is a function value (closure) consisting of a function name sdf and 0  k 
arity(sdf) given argument values ui. In this extended semantics, v 2 V alue
is either a number or error or array value or function value. Array values are
needed because of cell area expressions ca1 : ca2, and function values because of
CLOSURE expressions. There are new semantic maps: ↵maps an array expression
ae to its value, and ⇢ maps a function sheet cell address to its value.

(1) dom(�) = dom(�)
(2) 8ca 2 dom(�). �,↵ ` �(ca) + �(ca)
(3) 8ae 2 dom(↵). �,↵ ` ae + ↵(ae)

Figure 7: The consistency requirements on recalculation with array formulas
and sheet-defined functions. The requirement (2) is extended with ↵ to account
for array formulas. The new requirement (3) says that a recalculation must find
a single value ↵(ae) for each array expression ae underlying an array formula;
this value will be used in all components of the array formula via applications
of (2).
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3.2 Modelling Array Formulas

An array formula is an expression, such as transpose(e2:g3), whose result is
an array value and where the components of this array value are spread over
a target cell area, such as B2:C4. This situation is shown in Figure 8 where
the target cell area has been marked and the formula has been written into
cell B2; the array formula is then created by an incantation such as pressing
Ctrl+Shift+Enter in Excel. The e↵ect of doing so is shown in Figure 9 where
the target cells B2:C4 contain the transpose of the values in E2:G3.

Figure 8: Entering an array formula with target cell area B2:C4.

Figure 9: The six cells in target cell area B2:C4 each contain one component
of the result of the underlying array expression transpose(e2:g3).

Editing any cell in the range E2:G3 would cause the array expression to be
recalculated and the values in B2:C4 to be updated. The underlying array
expression is evaluated at most once in each recalculation.

In Funcalc extended spreadsheet expressions, we model the individual cells be-
longing to an array formula by the syntax ae[i, j] that suggests indexing into
the value of the underlying array expression ae. In the index (i, j) the i and
j are constants, with i ranging over columns and j over rows, both one-based.
For instance, cell B2 in Figures 8 and 9 would contain the expression ae[1, 1]
where ae is the underlying array expression transpose(e2:g3), cell B3 would
contain ae[1, 2], cell C2 would contain ae[2, 1], and so on. Indexing into an error
value produces that error value itself, so we need no separate “error version” of
rule (e7) in Figure 10.

The syntax in Figure 5 allows an array formula component ae[i, j] to appear
anywhere an expression can, also nested inside another expression. This is
overly general, since ae[i, j] need appear only at top level in a cell formula,
not in nested expressions. We could enforce this restriction by introducing an
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additional syntactic category of cell which can be an expression e or an array
formula component ae[i, j], and remove the latter from the syntactic category
of expressions. This would also be in better agreement with the implementation
of Funcalc. However, since the excess generality is harmless, and getting rid
of it would lead to additional largely administrative rules without semantic
significance, we stick to the simple but slightly too permissive syntax in Figure 5.

3.3 Extended Semantics for Ordinary Sheets

An evaluation judgment in the extended semantics for ordinary formula evalu-
ation has the form �,↵ ` e + v. It says that when � describes the calculated
values of all cells and ↵ describes the values of all array expressions underly-
ing array formulas, then formula e may evaluate to value v, where v may be a
number value, an error value, an array value or a closure value.

The rules defining the judgment �,↵ ` e + v are shown in Figure 10. They are
a smooth extension of those in Figure 3. The “old” rules (e1) through (e5v)
have been extended to pass around also the ↵ array expression map. The six
new rules (e6), (e7), (e8), (e9), (e10), and (e11) account for cell area references,
array formulas, calls to sheet-defined functions, closure creation, and closure
calls. They correspond exactly to the six new syntactic constructs in Figure 5.

-------------------------------------------------- (e1)
�,↵ ` n + n

ca /2 dom(�)
--------------------------------------------------------------- (e2b)
�,↵ ` ca + 0.0

ca 2 dom(�) �(ca) = v
------------------------------------------------------------------------------------------------------------------ (e2v)

�,↵ ` ca + v

�,↵ ` e1 + v1 2 Error
---------------------------------------------------------------------------------------------------- (e3e)
�,↵ ` IF(e1,e2,e3) + v1

�,↵ ` e1 + 0.0 �,↵ ` e3 + v
-------------------------------------------------------------------------------------------------------------------------------------- (e3f)

�,↵ ` IF(e1,e2,e3) + v

�,↵ ` e1 + v1 v1 6= 0.0 �,↵ ` e2 + v
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e3t)

�,↵ ` IF(e1,e2,e3) + v

0.0  v < 1.0
------------------------------------------------------------------------- (e4)
�,↵ ` RAND() + v

11
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�,↵ ` ei + vi 2 Error
---------------------------------------------------------------------------------------------------- (e5e)
�,↵ ` F(e1, . . . ,en) + vi

�,↵ ` e1 + v1 62 Error . . . �,↵ ` en + vn 62 Error
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e5v)

�,↵ ` F(e1, . . . ,en) + f(v1, . . . , vn)

(c1, r1) = ca1 (c2, r2) = ca2 (cl, cr) = sort(c1, c2) (rt, rb) = sort(r1, r2)

w = cr � cl + 1 h = rb � rt + 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (e6)
�,↵ ` ca1 : ca2 + ArrV al(w, h, [[�[cl + i, rt + j] | i  w, j  h]])

-------------------------------------------------------------------------------------------------------------- (e7)
�,↵ ` ae[i, j] + ↵(ae)[i, j]

�,↵ ` e1 + v1 . . . �,↵ ` en + vn

def(sdf) = (out, [in1, . . . , inn], cells)

⇢0(in1) = v1 . . . ⇢0(inn) = vn

8ca 2 dom(⇢0) \ {in1, . . . , inn}. ⇢0,� ` �(ca) + ⇢0(ca)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e8)

�,↵ ` sdf(e1, . . . ,en) + ⇢0(out)

�,↵ ` e1 + u1 . . . �,↵ ` ek + uk
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e9)
�,↵ ` CLOSURE(sdf,e1, . . . ,ek) + FunV al(sdf, [u1, . . . , uk])

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk])

�,↵ ` e1 + v1 . . . �,↵ ` en + vn
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e10)
�,↵ ` CLOSURE(e0,e1, . . . ,en) + FunV al(sdf, [u1, . . . , uk, v1, . . . , vn])

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk])

�,↵ ` e1 + v1 . . . �,↵ ` en + vn

def(sdf) = (out, [in1, . . . , ink+n], cells)

⇢0(in1) = u1 . . . ⇢0(ink) = uk ⇢0(ink+1) = v1 . . . ⇢0(ink+n) = vn

8ca 2 dom(⇢0) \ {in1, . . . , ink+n}. ⇢0,� ` �(ca) + ⇢0(ca)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (e11)

�,↵ ` APPLY(e0,e1, . . . ,en) + ⇢0(out)

Figure 10: Evaluation rules for Funcalc extended spreadsheet formulas.

In Figure 10, the new rule (e6) says that a cell area reference ca1 : ca2 evaluates
to an array value ArrV al(w, h, [[vij ]]) with w columns, h rows, and w · h values
vij obtained from the cell value map �. The utility function sort(x, y) returns
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the pair of the least and greatest of x and y, so that cl and cr are the leftmost
and rightmost column indices, and rt and rb are the top and bottom row indices,
of the cell area ca1 : ca2. This is necessary because it is legal to enter a cell
area reference such as B1:A2, thereby giving the cell area’s upper right (B1) and
lower left (A2) corners, and that should be “normalized” to A1:B2 which gives
the cell area’s upper left and lower right corners instead, for proper calculation
of width and height. One cannot just forbid the B1:A2 notation because it
arises naturally by copying a mixed relative-absolute cell area reference such as
A1:$A$1.

Rule (e7) says that component (i, j) of an array formula is found by looking
up the value av = ↵(ae) of the underlying array expression and then indexing
into that value by av[i, j], where such indexing must produce an error value
if av is not an array value or does not have a component (i, j). Note that
in the judgment left-hand side, the indexing notation is syntactic, and in the
right-hand side it is semantic.

Rule (e8) describes how to call a sheet-defined function sdf that has output
cell address out, that has input cell addresses [in1, . . . , inn], and that is defined
using only cells at addresses cells (excluding the input cells but including the
output cell) on a separate function sheet. We assume that the cells defining
sdf are given by def(sdf) = (out, [in1, . . . , ink+n], cells), and that all these cells
are in dom(�) — that is, � describes also the formulas of the function sheet on
which sdf is defined.

The evaluation of a call to a sheet-defined function sdf proceeds as follows. First
evaluate the call’s argument expressions to values v1, . . . , vn, then postulate a
fresh environment ⇢0 in which the called function’s input cells [in1, . . . , inn]
have these values and all other cells used by the function have consistent values.
Then the function call’s value is the value ⇢0(out) of the function’s output cell.
Judgments of the form ⇢0,� ` e + v are defined in Figure 11 below. For a
discussion of the function call semantics, and an example, see Section 3.5.

It is natural to expect the new ⇢0 environment to be defined for all the sheet-
defined function’s cells, as in dom(⇢0) = {in1, . . . , inn} [ cells, but actually it
su�ces for dom(⇢0) to be the set of cells needed to compute the value of the
output cell out. See also the discussion in Section 5.1.

The expression language is call-by-value, and a call to a sheet-defined function is
strict in the sense that every argument is evaluated before the function is called,
regardless of whether the function’s body actually refers to the argument’s value.

A call to a sheet-defined function is not error-strict: the function is called even
though some argument ei evaluates to an error value. Hence the argument
evaluation premises are simpler than in rule (e5v) for calling built-in functions,
and there is no error-case rule (e8e) corresponding to rule (e5e). Naturally, the
same holds for constructing or calling a closure in rules (e9), (e10) and (e11).

Rule (e9) says that to evaluate a closure creation, evaluate the k given argu-
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ments and create a function value consisting of the function name sdf and the
k resulting values, whether errors or proper values.

Rule (e10) says that to further apply a partially applied closure, evaluate e0
to a closure containing k already given arguments, then evaluate the n further
arguments, and create a new closure containing the k+n  arity(sdf) argument
values given so far.

Rule (e11) says that to evaluate a call to closure FunV al(sdf, [u1, . . . , uk]),
evaluate the n given arguments, then proceed to call the sheet-defined function
sdf on its k + n arguments in the same manner as described in rule (e8).

3.4 Extended Semantics for Function Sheets

An evaluation judgment in the semantics for sheet-defined functions has the
form ⇢,� ` e + v. It says that when ⇢ describes the calculated values of all cells
on the function sheet defining the function and � describes the calculated values
of all cells on ordinary sheets, then formula e may evaluate to value v, where v
may be a number value, an error value, an array value or a closure value.

-------------------------------------------------- (f1)
⇢,� ` n + n

ca /2 dom(⇢) ca /2 dom(�)
------------------------------------------------------------------------------------------------------------------------------ (f2b)

⇢,� ` ca + 0.0

ca 2 dom(⇢) ⇢(ca) = v
----------------------------------------------------------------------------------------------------------------- (f2f)

⇢,� ` ca + v

ca 2 dom(�) �(ca) = v
------------------------------------------------------------------------------------------------------------------ (f2v)

⇢,� ` ca + v

⇢,� ` e1 + v1 2 Error
--------------------------------------------------------------------------------------------------- (f3e)
⇢,� ` IF(e1,e2,e3) + v1

⇢,� ` e1 + 0.0 ⇢,� ` e3 + v
------------------------------------------------------------------------------------------------------------------------------------ (f3f)

⇢,� ` IF(e1,e2,e3) + v

⇢,� ` e1 + v1 v1 6= 0.0 ⇢,� ` e2 + v
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f3t)

⇢,� ` IF(e1,e2,e3) + v

14
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0.0  v < 1.0
------------------------------------------------------------------------- (f4)
⇢,� ` RAND() + v

⇢,� ` ei + vi 2 Error
---------------------------------------------------------------------------------------------------- (f5e)
⇢,� ` F(e1, . . . ,en) + vi

⇢,� ` e1 + v1 62 Error . . . ⇢,� ` en + vn 62 Error
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f5v)

⇢,� ` F(e1, . . . ,en) + f(v1, . . . , vn)

ca1 2 dom(�) ca2 2 dom(�)

(c1, r1) = ca1 (c2, r2) = ca2 (cl, cr) = sort(c1, c2) (rt, rb) = sort(r1, r2)

w = cr � cl + 1 h = rb � rt + 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (f6)
⇢,� ` ca1 : ca2 + ArrV al(w, h, [[�[cl + i, rt + j] | i  w, j  h]])

⇢,� ` e1 + v1 . . . ⇢,� ` en + vn

def(sdf) = (out, [in1, . . . , inn], cells)

⇢0(in1) = v1 . . . ⇢0(inn) = vn

8ca 2 dom(⇢0) \ {in1, . . . , inn}. ⇢0,� ` �(ca) + ⇢0(ca)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f8)

⇢,� ` sdf(e1, . . . ,en) + ⇢0(out)

⇢,� ` e1 + u1 . . . ⇢,� ` ek + uk
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f9)
⇢,� ` CLOSURE(sdf,e1, . . . ,ek) + FunV al(sdf, [u1, . . . , uk])

⇢,� ` e0 + FunV al(sdf, [u1, . . . , uk])

⇢,� ` e1 + v1 . . . ⇢,� ` en + vn
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f10)
⇢,� ` CLOSURE(e0,e1, . . . ,en) + FunV al(sdf, [u1, . . . , uk, v1, . . . , vn])

⇢,� ` e0 + FunV al(sdf, [u1, . . . , uk])

⇢,� ` e1 + v1 . . . ⇢,� ` en + vn

def(sdf) = (out, [in1, . . . , ink+n], cells)

⇢0(in1) = u1 . . . ⇢0(ink) = uk ⇢0(ink+1) = v1 . . . ⇢0(ink+n) = vn

8ca 2 dom(⇢0) \ {in1, . . . , ink+n}. ⇢0,� ` �(ca) + ⇢0(ca)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (f11)

⇢,� ` APPLY(e0,e1, . . . ,en) + ⇢0(out)

Figure 11: Evaluation rules for Funcalc sheet-defined functions.

The rules defining the judgment ⇢,� ` e + v are shown in Figure 11. They
are intentionally very similar to those for evaluation of ordinary (extended)
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spreadsheet formulas shown in Figure 10 — after all, the whole point of sheet-
defined functions is that they should be familiar to spreadsheet users.

However, there is an additional rule (f2f) for lookup of a cell address on a
function sheet; rule (f6) requires a cell area reference to refer to an ordinary
worksheet, not a function sheet; and there is no rule (f7) for array formulas,
which are not allowed in function sheets.

3.5 Discussion: Calling a Sheet-Defined Function

The rules (e8) and (f8) for calls to sheet-defined functions, and the correspond-
ing closure call rules (e11) and (f11), are some of the more unusual aspects
of this semantics. The core idea in these rules is that a fresh environment ⇢0

is postulated for evaluation of the called function sdf . Informally, this corre-
sponds to (A) the creation of a fresh copy of the function sheet on which sdf is
defined, and also to (B) the creation of a new stack frame to hold the function’s
arguments and local variables. Explanation (A) is what a Funcalc spreadsheet
user should have in mind, and (B) is what the Funcalc implementation actually
does. Without loss of generality we can assume that each sheet-defined function
is defined in its own sheet, and only the cells used in the definition of sdf need
be recalculated.

There is nothing mysterious or unusual about the “freshness” of ⇢0. Formally,
⇢0 is no di↵erent from v in rule (e4): it is just a variable representing some value
(here an environment) that must satisfy the premises.

In explanation (A), the fresh sheet copy ⇢0 is used as follows: fill the input cells
[in1, . . . , inn] with the values of the evaluated arguments; recalculate the sheet
as usual for spreadsheets; return the output cell’s value as the result of the call;
and discard the sheet copy. These steps are faithfully reflected in rules (e8) and
(f8), with the “recalculate as usual” step expressed by the last premise

8ca 2 dom(⇢0) \ {in1, . . . , inn}. ⇢0,� ` �(ca) + ⇢0(ca)

This premise is meant to reflect the standard spreadsheet consistency require-
ment (2) in Figures 4 and 7, but for the temporary function sheet’s cell values
⇢0 instead of an ordinary sheet’s cell values �.

Consider the simple sheet-defined function F in Figure 12, with input cells B2
and B3, intermediate cell B4 containing the formula =IF(RAND()<0.5, B2, B3)
and output cell B5 containing the formula =B4+B4.

The set cells of cells making up the function’s body is {B4,B5}. To evaluate
a call F(1,5) to this function, the semantics will create a fresh environment ⇢0

that must have ⇢0(B2) = 1 and ⇢0(B3) = 5. Now we can additionally have either
⇢0(B4) = 1 and so ⇢0(B5) = 2, or ⇢0(B4) = 5 and so ⇢0(B5) = 10; these are the
only two possibilities according to the semantics. Hence the call F(1,5) must
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Figure 12: Sheet-defined function F with input cells B2 and B3, output cell
B5, and an intermediate cell B4.

return 2 or 10. It cannot return 1 + 5 = 6 because both occurrences of B4 in
=B4+B4 must have the same value ⇢0(B4).

Note that the universal quantification 8ca 2 dom(⇢0) . . . in the last premise of
rules (e8), (f8), (e11) and (f11) ranges over a finite set: the cells used to define
function sdf . Hence in any concrete application of these rules, the quantifier
gives rise to only a finite number of proof subtrees.

A call from a sheet-defined function to another one, or indeed a recursive call
to the function itself, is handled naturally by rules (f8) and (f11) through pos-
tulating a new fresh environment ⇢0 for the called function, distinct from the
calling function’s ⇢. In terms of explanation (A) given above, a fresh copy of
the defining function sheet is created for each recursive call; and in terms of
(B), a fresh stack frame is allocated for each recursive call. Also, all these sheet
copies, or stack frames, coexist until the function calls return. (However, as
a semantics-preserving optimization, the actual Funcalc implementation may
deallocate the old stack frame early in case of a tail call).

Infinite recursion in a sheet-defined function is reflected in the operational se-
mantics by an attempt to build an infinitely deep derivation tree, through an
infinite number of applications of rules (f8) or (f11). Obviously this is not pos-
sible, so no value can be derived for an infinite recursive call, not even an error
value. Note that this is di↵erent from the meaning of a cyclic dependency in an
ordinary spreadsheet, for which an error value could be derived (by the seman-
tics and the implementation): just put �(ca) = #CYCLE! 2 Error for all the
cells ca cyclically dependent on each other.

4 Cost Semantics

In this section we extend the evaluation semantics to a cost semantics, which in
addition to a possible computed value of the expression describes the possible
cost of computing it. More precisely, the semantics describes the work, that is,
uni-processor cost [2], of the computation. In a parallel implementation, some
of that work may be performed in parallel.
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This section gives a cost semantics for simple spreadsheet expressions by build-
ing on the Section 2 evaluation semantics, then Section 5 gives a cost semantics
for Funcalc extended spreadsheet expressions by building on the Section 3 eval-
uation semantics.

In all cases the amount of work is described by a non-negative integer in Nat0
representing some notion of computation step, for instance the number of eval-
uation rule applications, plus some measure of the cost of calling a built-in
function (such as SUM over a range of cells). This notion of work can reasonably
be assumed to be within a constant factor of the actual number of nanoseconds
required to evaluate an expression.

4.1 Cost Semantics for Simple Formulas

For simplicity we start by giving a cost semantics for simple spreadsheet formu-
las as described in Section 2. The evaluation judgment � ` e + v gets extended
to � ` e + v, c where v is a computed value of the expression e and c is the cost
of computing that value. This judgment states that when � describes the calcu-
lated values of all cells, then formula e may evaluate to value v at computational
cost c. As in Section 2.1, the semantics is nondeterministic (“may”) in the sense
that the evaluation of an expression e could produce many di↵erent values v at
many di↵erent costs c. See also the discussion at the end of Section 4.2.

It is quite straightforward to extend the evaluation semantics rules in Figure 3
to the new cost semantics rules given in Figure 13.

-------------------------------------------------- (c1)
� ` n + n, 1

ca /2 dom(�)
-------------------------------------------------------------- (c2b)
� ` ca + 0.0, 1

ca 2 dom(�) �(ca) = v
------------------------------------------------------------------------------------------------------------------ (c2v)

� ` ca + v, 1

� ` e1 + v1, c1 v1 2 Error
-------------------------------------------------------------------------------------------------------------------------------- (c3e)
� ` IF(e1,e2,e3) + v1, 1 + c1

� ` e1 + 0.0, c1 � ` e3 + v, c3
------------------------------------------------------------------------------------------------------------------------------------------- (c3f)
� ` IF(e1,e2,e3) + v, 1 + c1 + c3

� ` e1 + v1, c1 v1 6= 0.0 � ` e2 + v, c2
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (c3t)

� ` IF(e1,e2,e3) + v, 1 + c1 + c2

18



Concrete and Abstract Cost Semantics for Spreadsheets 2019

0.0  v < 1.0
------------------------------------------------------------------------ (c4)
� ` RAND() + v, 1

J ✓ {1, . . . , n}
8j 2 J. � ` ej + vj , cj vi 2 Error for some i 2 J
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (c5e)

� ` F(e1, . . . ,en) + vi, 1 +
P

j2J cj

� ` e1 + v1, c1 . . . � ` en + vn, cn

8i. vi 62 Error
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (c5v)
� ` F(e1, . . . ,en) + f(v1, . . . , vn), 1 +

P
j=1,n cj + work(f, v1, . . . , vn)

Figure 13: Cost (or work) semantics rules for simplified spreadsheet formulas.

The formula evaluation rules in Figure 13 may be explained as follows:

• Rule (c1) says that evaluating a number constant n requires 1 computation
step, and similarly for cell references by rules (c2b) and (c2v).

• Rule (c3e) says that if e1 may evaluate to error v1 in c1 computation steps,
then IF(e1,e2,e3) may evaluate to error v1 in 1 + c1 computation steps.

• Rule (c3f) says that if e1 may evaluate to the non-error number 0.0 in
c1 computation steps and the “false branch” e3 may evaluate to v in c3
computation steps, then IF(e1,e2,e3) may evaluate to value v in 1+c1+c3
computation steps.

• Rule (c3t) is similar, for when e1 may evaluate to some non-error non-zero
number v1 in c1 computation steps.

• Rule (c4) says that function call RAND() may evaluate to any (non-error)
number v greater than or equal to zero and less than one, in one compu-
tation step.

• Rule (c5e) is quite di↵erent from the corresponding evaluation rule (e5e)
in Figure 3. It says that an implementation may choose to evaluate just a
subset {ej | j 2 J} of the arguments when some ei with i 2 J evaluates to
an error vi, and then let vi be the result of the function call. Also, it says
that the total cost of this is the cost

P
j2J cj of evaluating that subset of

arguments, plus one. The rationale for this is discussed in Section 4.2.

• Rule (c5v) says that if each argument ei may evaluate to a non-error value
vi in ci computation steps and applying the actual function f to argument
values (v1, . . . , vn) produces value v at a cost of work(f, v1, . . . , vn) com-
putation steps, then the call F(e1, . . . ,en) may evaluate to value v using a
total of 1 +

P
j=1,n cj + work(f, v1, . . . , vn) computation steps.

Here work(f, v1, . . . , vn) describes the cost of applying function f to argu-
ment values (v1, . . . , vn). For instance, one would expect work(+, v1, v2) =
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1 since the cost of addition is independent of the numbers added. By con-
trast, for functions on array values one would expect the cost to depend
on the argument array size; for instance, work(transpose, v1) = w ·h when
array value v1 has w columns and h rows.

Making each cost rule add 1 to the cost incurred by subexpression evaluations
may appear very simplistic. It means that the cost semantics essentially counts
the number of rule applications. A more realistic cost semantics might replace
each occurrence of “1” with a suitable constant indicating a number of nanosec-
onds for the operation, such as 1 for evaluating a constant, 8 for evaluating a
cell reference, 40 for a call to RAND, and similar. However, if we are interested
in cost up to a constant factor, counting the number of rule applications works
just as well, and avoids some notational clutter. Also, the real time cost of
something as simple as a cell reference may vary from 1 ns to 80 ns depending
on whether the relevant data is already in cache or not.

4.2 Rationale for Cost of an Error Argument

While most of the cost semantics rules in Figure 13 are obvious extensions of
the evaluation rules in Figure 3, this is not the case for rule (c5e) which is quite
di↵erent from rule (e5e). Here we explain why.

It is possible to imagine a cost rule (c5bad) similar to rule (e5e), like this:

� ` ei + vi, ci vi 2 Error
--------------------------------------------------------------------------------------------------------------------------- (c5bad)
� ` F(e1, . . . ,en) + vi, 1 + ci

This rule says that if one of the arguments ei may evaluate to an error vi using
ci computation steps, then the call F(e1, . . . ,en) to a function F may evaluate
to error vi in 1 + ci computation steps. However, this cost is unrealistically
low: a conforming implementation would have to correctly guess which (if any)
argument expression ei can evaluate to an error, and then evaluate only that
expression. Such an implementation would seem implausibly clever.

A more realistic rule might stipulate instead that the cost is the sum of the costs
of evaluating all argument expressions. This corresponds to implementations
that would evaluate all arguments before checking whether any of them evaluates
to an error. However, this is needlessly pessimistic since an implementation may
stop evaluating arguments once one of them evaluates to an error.

Another realistic cost rule might correspond to implementations that evaluate
argument expressions e1, e2, . . . from left to right until one of them (if any)
evaluates to an error. However, this restricts the possible implementations and
would preclude or complicate parallel evaluation of arguments.

Instead we propose rule (c5e) in Figure 13 which corresponds to implementations
that may evaluate the argument expressions in any order (or in parallel) but
may avoid evaluating all of them in case one evaluates to an error. As shown in
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the rule this corresponds to choosing a subset J ✓ {1, . . . , n} of the argument
indices and evaluating only the ej for which j 2 J , to values vj at costs cj ,
where one of the vj is an error, and then stating that the total cost of the call
is the sum

P
j2J cj of the costs of the arguments actually evaluated, plus one.

Since the set J may be chosen in many ways, this rule introduces nondeter-
minism in the evaluation cost, in addition to nondeterminism in the computed
value. Note also that rule (c5e) encompasses all three alternative rules discussed
above, by choosing J = {i} as the singleton set for which vi is an error (using
unrealistically perfect foresight), or J = {1, . . . , n} to evaluate all arguments,
or J = {1, . . . , i} as the least prefix of argument indices for which vi is an error.

4.3 Cost of Simple Recalculation

Sections 4.1 and 4.2 above gave evaluation-and-cost rules for evaluation of
spreadsheet formulas. How do we describe the cost of a full recalculation or
minimal recalculation in terms of these?

First, we introduce a cost environment � : Addr ! Nat0 such that �(ca) is the
cost of evaluating the formula at cell address ca. Then we slightly change the
recalculation consistency requirements to also record the cost of evaluation for
each cell, as shown on Figure 14.

(1) dom(�) = dom(�) = dom(�)
(2) 8ca 2 dom(�). � ` �(ca) + �(ca), �(ca)

Figure 14: Recalculation consistency requirements recording also evaluation
cost, for simple formulas. The judgment � ` e + v, c is defined in Figure 13.
Compared to the consistency requirements in Figure 4, requirement (2) has been
extended to record the evaluation cost of cell ca in �(ca).

Using the cost environment � we can now express the cost of a full recalculation
of a spreadsheet described by �. This is simply the cost of evaluating the formula
of every non-blank cell once:

fullcost =
P

ca2dom(�) �(ca)

Likewise we can express the cost of a minimal recalculation initiated by edit-
ing a single cell ca0 in a previously consistent spreadsheet. Let the consistent
spreadsheet be represented by � and �. Let dirty(ca0) be the transitive closure
under the “supports” relation (also called the “dependents” relation) of the set
containing cell ca0 and every cell whose formula is volatile. That is, dirty(ca0)
is the set of cells that need to be recalculated when ca0 has changed. Then
build new environments �0 and �0 such that
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(1) dom(�0) = dom(�0) = dom(�)
(2) 8ca 2 dom(�). �0 ` �(ca) + �0(ca), �0(ca)
(3) 8ca 62 dirty(ca0). �0(ca) = �(ca)

That is, �0 agrees with � on all cells that have not been recalculated, but may
have new values for those cells that have been recalculated. Now the total cost
of a minimal recalculation after a change to cell ca0 is the sum of the costs of
evaluating the cells in dirty(ca0):

minimalcost =
P

ca2dirty(ca0)
�0(ca)

Since dirty(ca0) is defined via the “supports” relation it may be an overap-
proximation of the set of cells that really need to be evaluated in a minimal
recalculation. How best to express the actual cost of a minimal recalculation
without prescribing an evaluation mechanism is not completely clear, but a non-
deterministic or underdetermined approach similar to that in Section 4.2 may
be feasible. Whether this is worth the e↵ort and complexity is not obvious.

5 Cost Semantics for Extended Formulas

In this section we extend the cost semantics to cover array formulas and sheet-
defined functions. The cost semantics for Funcalc extended spreadsheet formulas
is given by judgments of the form �,↵ ` e + v, c which say that when � describes
cell values and ↵ describes array expression values, expression e may evaluate
to value v at a cost of c computation steps. The rules defining these judgments
are given in Figure 15.

------------------------------------------------------------ (g1)
�,↵ ` n + n, 1

ca /2 dom(�)
------------------------------------------------------------------------ (g2b)
�,↵ ` ca + 0.0, 1

ca 2 dom(�) �(ca) = v
------------------------------------------------------------------------------------------------------------------ (g2v)

�,↵ ` ca + v, 1

� ` e1 + v1, c1 v1 2 Error
---------------------------------------------------------------------------------------------------------------------------------- (g3e)
�,↵ ` IF(e1,e2,e3) + v1, 1 + c1

�,↵ ` e1 + 0.0, c1 �,↵ ` e3 + v, c3
---------------------------------------------------------------------------------------------------------------------------------------------------------------- (g3f)
�,↵ ` IF(e1,e2,e3) + v, 1 + c1 + c3
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�,↵ ` e1 + v1, c1 v1 6= 0.0 �,↵ ` e2 + v, c2
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (g3t)

�,↵ ` IF(e1,e2,e3) + v, 1 + c1 + c2

0.0  v < 1.0
----------------------------------------------------------------------------------- (g4)
�,↵ ` RAND() + v, 1

J ✓ {1, . . . , n}
8j 2 J. �,↵ ` ej + vj , cj vi 2 Error for some i 2 J
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g5e)

�,↵ ` F(e1, . . . ,en) + vi, 1 +
P

j2J cj

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn

8i. vi 62 Error
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (g5v)
�,↵ ` F(e1, . . . ,en) + f(v1, . . . , vn), 1 +

P
j=1,n cj + work(f, v1, . . . , vn)

(c1, r1) = ca1 (c2, r2) = ca2 (cl, cr) = sort(c1, c2) (rt, rb) = sort(r1, r2)

w = cr � cl + 1 h = rb � rt + 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g6)
�,↵ ` ca1 : ca2 + ArrV al(w, h, [[�[cl + i, rt + j] | i  w, j  h]]), w · h

----------------------------------------------------------------------------------------------------------------------- (g7)
�,↵ ` ae[i, j] + ↵(ae)[i, j], 1

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn

def(sdf) = (out, [in1, . . . , inn], cells)

⇢0(in1) = v1 . . . ⇢0(inn) = vn

8ca 2 dom(⇢0) \ {in1, . . . , inn}. ⇢0,� ` �(ca) + ⇢0(ca), �0(ca)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (g8)
�,↵ ` sdf(e1, . . . ,en) + ⇢0(out), 1 +

P
j=1,n cj +

P
ca2dom(�0) �

0(ca)

�,↵ ` e1 + u1, c1 . . . �,↵ ` ek + uk, ck
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g9)
�,↵ ` CLOSURE(sdf,e1, . . . ,ek) + FunV al(sdf, [u1, . . . , uk]), 1 +

P
j=1,k cj

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk]), c0

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g10)
�,↵ ` CLOSURE(e0,e1, . . . ,en) + FunV al(sdf, [u1, . . . , uk, v1, . . . , vn]), 1 + c0 +

P
j=1,n cj
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�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk]), c0

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn

def(sdf) = (out, [in1, . . . , ink+n], cells)

⇢0(in1) = u1 . . . ⇢0(ink) = uk ⇢0(ink+1) = v1 . . . ⇢0(ink+n) = vn

8ca 2 dom(⇢0) \ {in1, . . . , ink+n}. ⇢0,� ` �(ca) + ⇢0(ca), �0(ca)
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g11)
�,↵ ` APPLY(e0,e1, . . . ,en) + ⇢0(out), 1 + c0 +

P
j=1,n cj +

P
ca2dom(�0) �

0(ca)

Figure 15: Cost (or work) semantics rules for Funcalc extended spreadsheet
formulas. The consistency requirements on recalculation are in Figure 19.

The extended cost semantics rules in Figure 15 draw on the extended evaluation
rules in Figure 10 as well as the simple cost semantics rules in Figure 13.

Rules (g1) through (g5v) are very similar to the simple cost semantics rules (c1)
through (c5v). This includes the somewhat complicated case (g5e) of a function
argument evaluating to an error, explained in Section 4.2.

Rule (g6) states that the cost of evaluating a cell area expression that produces
an array value of w columns and h rows is w · h, the number of components in
the resulting array value.

Rule (g7) states that the cost of evaluating a cell that is part of an array formula
is 1. This is because we require the array formula’s shared underlying array
expression to be evaluated at most once in a recalculation, so evaluating the cell
is just a matter of indexing into the resulting array.

Rule (g8) states that the cost of calling a sheet-defined function is the cost of
evaluating all arguments, plus the cost of evaluating the function body, plus one.
The cost of evaluating the function body is the sum of the costs of evaluating
the cells used to define the function, as described by the cost environment �0.
It is clear that dom(�0) must equal dom(⇢0) \ {in1, . . . , inn}, but there is some
flexibility in exactly which set of cells dom(⇢0) should be evaluated. See the
discussion in Section 5.1.

Rule (g9) states that the cost of creating a closure is the cost of evaluating the
k given arguments, plus one.

Rule (g11) states that the cost to call a closure is the cost of evaluating the
closure expression, plus the cost of evaluating the remaining arguments, plus
the cost of evaluating the called function’s body, plus one. Similar to rule (g8),
dom(�0) must equal dom(⇢0) \ {in1, . . . , ink+n}, and Section 5.1 discusses how
to choose dom(⇢0) and hence dom(�0).

5.1 The Cost of Calling a Sheet-Defined Function

The rules (g8) and (g11) for calling a sheet-defined function leave unspecified the
set dom(⇢0) of the function’s cells that should be evaluated, and hence the set
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dom(�0) = dom(⇢0) \ {in1, . . . , inn} whose evaluation costs should be included
in the call cost.

As in rule (e8) the set dom(⇢0) may contain all the function’s cells, but it su�ces
to include only those cells actually needed to compute the value of the output
cell out. For the ordinary semantics this distinction is less important, since it
does not a↵ect the result ⇢0(out) of the function call, assuming that evaluation
terminates. However, for the cost semantics the distinction is crucial. Obviously,
evaluating cells that are not needed, and hence including them in dom(⇢0) and
in dom(�0) a↵ects the cost

P
ca2dom(�0) �

0(ca) of the computation.

If the value of a cell ca is needed, directly or indirectly, to compute the value
of the output cell out, then ca must be in dom(⇢0). Conversely, a cell whose
value is not needed by the output cell should not be in dom(⇢0). However,
whether a cell ca is needed or not cannot be determined prior to evaluation.
It depends both on the input cell values (the function’s argument values) and
on the evaluation of volatile functions such as a RAND. Consider the example
sheet-defined function FCT in Figure 16.

Figure 16: A slightly contrived sheet-defined function FCT with input cells B2
and B3 and output cell B5. The formula in cell B4 needs to be evaluated only
if the condition in B5 is false.

If input B2 � 1, the condition in output cell B5 is always true and the function
evaluates to B3 without having to evaluate B4; and if B2  0, the condition in
B5 is always false, and cell B4 must be evaluated to produce the result of the
function.

When 0 < B2 < 1, the value of RAND() determines whether cell B4 really
needs to be evaluated. A reasonable cost semantics should allow for leaving
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out the cost of evaluating cell B4 when its value is not needed. On the other
hand, it should also allow for adding in that cost, so as to correctly describe an
implementation that speculatively evaluates B4 although its value may not be
needed. For instance, an implementation may evaluate B4 to exploit available
parallel computation resources, or simply because of the cost of unconditionally
evaluating B4 is smaller than the cost of determining whether its value is needed
(and then performing the relevant conditional jumps, synchronization, or the
like).

Thus in the semantics there should be some freedom in choosing dom(⇢0) and
hence dom(�0) and hence the total cost of the function call. The choice should
be subject to a consistency requirement: if cell ca 2 dom(⇢0) and the value of
ca depends on cell car, then car 2 dom(⇢0) too.

How can we describe more formally that the value of a cell car is needed to
compute the output cell and hence the function’s return value? In the Funcalc
implementation, so-called evaluation conditions [1, Chapter 9] are used to con-
trol which cells must be evaluated. However, that is a particular implementation

mechanism and should not be part of the cost semantics specification.

Hence we propose to specify the consistency requirement as follows. Consider an
application of rule (g8) and all the inference trees that prove the judgments in
the last row of premises. The domains dom(⇢0) and hence dom(�0) = dom(⇢0) \
{in1, . . . , inn} must satisfy the following. For each ca 2 dom(⇢0)\{in1, . . . , inn}
there is an inference tree that proves

⇢0,� ` �(ca) + ⇢0(ca), �0(ca)

Now the consistency requirement says that for each function-sheet cell reference
car 2 cells encountered while building that inference tree, it is the case that
car 2 dom(⇢0). In other words, any (non-input) cell car referred to during
the evaluation of the sheet-defined function must have a value, meaning car 2
dom(⇢0), so that lookup succeeds by the cost semantics rule (h2f) for sheet-
defined functions, shown in Figure 18. Also, the cost of that computation must
be accounted for, meaning car 2 dom(�0).

Note that this consistency requirements is loose enough to allow for speculative
computation of unneeded cells, so long as this does not lead to an attempt to
build an infinite inference tree, representing nonterminating recursion.

To illustrate the subtlety of the choice of whether to evaluate an unneeded cell,
consider function EX in Figure 17. This is a slight variant of FCT, where crucially
the trivial formula in B4 has been replaced with a recursive call =EX(B2, B3+1),
so that now it is essential both for termination and correct cost accounting that
B4 is evaluated only when needed.
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Figure 17: A sheet-defined function EX such that EX(p,1) returns a random
sample (1, 2, . . . ) from the geometric distribution with parameter p. The func-
tion definition is similar to FCT in Figure 16, but cell B4 contains a recursive
call to EX itself, so now it is essential that cell B4 does not get evaluated uncon-
ditionally. By eventually evaluating B4 only when it is needed, we can achieve
that a call EX(p,n) terminates if and only if p > 0.
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5.2 Cost Semantics for Function Sheets

A cost semantics for sheet-defined functions on function sheets can be given
by rules defining judgments of the form ⇢,� ` e + v, c. Such judgments are
referred to in rules (g8) and (g11). Because the rules are simple mixtures of
the evaluation rules for function sheets in Figure 11 and the cost semantics
in Figure 15, we give only one of these rules here, in Figure 18.

ca 2 dom(⇢) ⇢(ca) = v
----------------------------------------------------------------------------------------------------------------- (h2f)

⇢,� ` ca + v, 1

Figure 18: Example of cost (or work) semantics rule for Funcalc sheet-defined
functions, corresponding to evaluation rule (f2f) in Figure 11. The remaining
rules, which are left out here, would be similarly obvious cost versions of the
other rules from that figure, except for the cost version of (f5e) as discussed
in Section 4.2.

5.3 Cost of Extended Recalculation

The cost of recalculation for Funcalc extended formulas must account for array
formulas and for sheet-defined functions.

The cost of evaluating the array expression ae underlying an array formula is
defined as for any other expression. We use the � environment also to record
this cost as �(ae), so its type is now � : Addr+Expr ! Nat0. The consistency
requirements for a cost semantics accounting also for array formulas are shown
in Figure 19.

(1) dom(�) = dom(�)
(2) 8ca 2 dom(�). �,↵ ` �(ca) + �(ca), �(ca)
(3) 8ae 2 dom(↵). �,↵ ` ae + ↵(ae), �(ae)
(4) dom(�) = dom(�) [ dom(↵)

Figure 19: The consistency requirements on recalculation and cost with array
formulas and sheet-defined functions. The judgment �,↵ ` e + v, c is defined
in Figure 15. Compare Figures 7 and 14.

The total cost of a full recalculation therefore is the sum of computing the
formula in every cell, plus the cost of computing the array expression underlying
every array formula:

fullcost =
P

ca2dom(�) �(ca) +
P

ae2dom(↵) �(ae)

We extend the dirty(ca0) set to also include array expressions that need to be
recalculated (in addition to cells that need to), so now dirty(ca0) ✓ Addr+Expr.
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Hence the cost of a minimal recalculation can be expressed as before:

minimalcost =
P

ca2dirty(ca0)
�0(ca)

where �0 is a cost environment determined in a similar manner as in Section 4.3.

6 Rules for Intrinsic Functions

In this section, we extend the operational cost semantics from Section 5 by
expanding the function application rule (g5v) for a meaningful subset of intrinsic
functions in Funcalc. Rule (g5v) is given below for convenience.

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
8i.vi /2 Error

(g5v)
�,↵ ` F(e1, . . . , en) + f(v1, . . . , vn), 1 +

P
j=1,n cj + work(f, v1, . . . , vn)

By “meaningful subset” we mean that it is not sensible or interesting to give
rules for some of the intrinsic functions. For example, EXTERN returns the result
of a call to an external library. While the returned value can be (and is) given
by a plain C# object type, its cost is undefined. The call may perform any
operation from querying a database to initiating some long-running, unknown
computation that we have insu�cient knowledge to approximate. Alternatively,
we could give meaningful rules for some common uses for EXTERN such as the
methods in the .NET libraries, but we forgo this here. We focus only on ordinary,
interpreted sheets, as the rules for function sheets are mostly analogous.

As a starting point, consider the rule for the SIN function that computes the
sine of its input value.

�,↵ ` e + v, c v 2 Number
(sin)

�,↵ ` SIN(e) + sin(v), 1 + c

The rule states that if the expression e may evaluate to a number v at cost c
when � is an environment mapping cell addresses to values and ↵ is an environ-
ment mapping array expressions to array values, then the function application
expression SIN(e) may evaluate to the actual function application sin(v) at
total cost 1 + c: 1 for the function application and c for the evaluation of e.
Similar rules can be given for COS and TAN. We use unit costs to ensure that suc-
cessive application of rules to expressions are monotonically increasing. We may
instead choose to define a lookup structure for mapping each intrinsic function
to a cost obtained from more precise sources such as benchmarks.

We introduce a few conventions that must be borne in mind when reading the
semantic rules in the following sections. We introduce a more compact notation
for array values:
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Av(w, h, [[vij ]]) , ArrV al(w, h, [[vij | i  w, j  h]])

Array value indices are one-based and must be positive. When a conclusion
needs to refer to an array value in a premise, we use the notation arr = [[vij ]].
It should be clear from context what the assigned array value refers to. We
mostly omit the “error rules” dealing with cases where a function argument
evaluates to an error value, and ask the reader to imagine analogues of rule
(g5e) in Section 5. Finally, we have deliberately left out some intrinsic functions
because their expected semantics are still unclear. For full details of all functions
available in Funcalc, we refer the reader to [1].

First-order intrinsic functions are given in Section 6.1, higher-order functions
are given in Section 6.2.

6.1 Rules for First-Order Intrinsic Functions

The NA() function returns the special #NA error used to indicate that a value
is not available or to indicate an unbound parameter in a partially evaluated
closure. Therefore, we extend the set of errors defined in Section 2 to Error =
{#DIV/0!, #CYCLE!, #NA}.

v 2 Number
(now)

�,↵ ` NOW() + v, 1

(pi)
�,↵ ` PI() + ⇡, 1

(na)
�,↵ ` NA() + #NA, 1

�,↵ ` e + v, c v 2 Number
(abs)

�,↵ ` ABS(e) + |v|, 1 + c

�,↵ ` e + v, c v 2 Number
(asin)

�,↵ ` ASIN(e) + asin(v), 1 + c

�,↵ ` e + v, c v = 0
(not-1)

�,↵ ` NOT(e) + 1, 1 + c
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�,↵ ` e + v, c v 6= 0
(not-2)

�,↵ ` NOT(e) + 0, 1 + c

�,↵ ` e1 + v1, c1
v1 2 Number

�,↵ ` e2 + v2, c2
v2 2 Number

(ceiling)
�,↵ ` CEILING(e1, e2) + ceiling(v1, v2), 1 + c1 + c2

�,↵ ` e1 + v1, c1 �,↵ ` e2 + v2, c2
(equal)

�,↵ ` e1 = e2 + v1 = v2, 1 + c1 + c2

8j 2 J. vj 2 Number
J ✓ {1, . . . , n}

8j 2 J.�,↵ ` ej + vj , cj 9j 2 J. vj = 0
(and-false)

�,↵ ` AND(e1, . . . , en) + 0, 1 +
P

j2J cj

J = {1, . . . , n}
8j 2 J. vj 2 Number ^ vj 6= 0 8j 2 J.�,↵ ` ej + vj , cj

(and-true)
�,↵ ` AND(e1, . . . , en) + 1, 1 +

P
j2J cj

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
(sum)

�,↵ ` SUM(e1, . . . , en) +
Pn

i=1
vi, 1 +

Pn
i=1

ci

�,↵ ` e1 + v1, c1

�,↵ ` e2 + v2, c2
v2 2 Number ^ v2 � 0

�,↵ ` e3 + v3, c3
v3 2 Number ^ v3 � 0

(const-array)
�,↵ ` CONSTARRAY(e1, e2, e3) + Av(bv3c, bv2c, [[v1 | i  v2, j  v3]]), 1 + c1 + c2 + c3 + v3 · v2

�,↵ ` e0 + s, c0 s 2 Number ^ 1  s < n+ 1 �,↵ ` ebsc + vs, cs
(choose)

�,↵ ` CHOOSE(e0, e1, . . . , en) + vs, 1 + c0 + cs

�,↵ ` e + Av(w, h, [[vij ]]), c
(columns)

�,↵ ` COLUMNS(e) + w, 1 + c

�,↵ ` e1 + Av(w, h, [[vij ]]), c1

�,↵ ` e2 + v2, c2
v2 2 Number ^ 1  v2 < w + 1

�,↵ ` e3 + v3, c3
v3 2 Number ^ 1  v3 < h+ 1

(index)
�,↵ ` INDEX(e1, e2, e3) + vbv3cbv2c, 1 + c1 + c2 + c3
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�,↵ ` e1 + Av(w, h, [[vij ]]), c1
arr = [[vij ]]

�,↵ ` e2 + v2, c2
v2 2 Number
1  v2 < h+ 1

�,↵ ` e4 + v4, c4
v4 2 Number
1  v4 < h+ 1

h0 = bv4c � bv2c+ 1

�,↵ ` e3 + v3, c3
v3 2 Number
1  v3 < w + 1

�,↵ ` e5 + v5, c5
v5 2 Number
1  v5 < w + 1

w0 = bv5c � bv3c+ 1

r = Av(w0, h0, [[arr[i, j] | v3  i  v5, v2  j  v4]]) c6 = w0 · h0
(slice)

�,↵ ` SLICE(e1, e2, e3, e4, e5) + r, 1 + c1 + c2 + c3 + c4 + c5 + c6

�,↵ ` e + v, c v 2 Error
(iserror-true)

�,↵ ` ISERROR(e) + 1, 1 + c

�,↵ ` e + v, c v /2 Error
(iserror-false)

�,↵ ` ISERROR(e) + 0, 1 + c

�,↵ ` e + v, c v 2 ArrV al
(isarray-true)

�,↵ ` ISARRAY(e) + 1, 1 + c

�,↵ ` e + v, c v /2 ArrV al
(isarray-false)

�,↵ ` ISARRAY(e) + 0, 1 + c

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
(max)

�,↵ ` MAX(e1, . . . , en) + max(v1, . . . , vn), 1 +
Pn

j=1
cj

�,↵ ` e + Av(w, h, [[vij ]]), c arr = [[vij ]]
(transpose)

�,↵ ` TRANSPOSE(e) + Av(h,w, [[arr[j, i] | i  h, j  w]]), 1 + c+ w · h

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
(average)

�,↵ ` AVERAGE(e1, . . . , en) + 1

n

Pn
i=1

vi, 1 +
Pn

i=1
ci

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
(harray)

�,↵ ` HARRAY(e1, . . . , en) + Av(n, 1, [[v1, . . . , vn]]), 1 +
Pn

i=1
ci + n

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn w =
Pn

i=1
width(vi) 8i, j. height(vi) = height(vj)

(hcat)
�,↵ ` HCAT(e1, . . . , en) + Av(w, height(v1), [[v1 : v2 : . . . : vn]]), 1 +

Pn
i=1

ci + n
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Figure 20: Operational and cost semantics for a subset of Funcalc’s built-in,
first-order functions. For rules that are trivially similar such as those for ASIN,
ACOS and ATAN, we omit repetitions and give just a single rule to represent them
all.

Rule (now) has one premise stating that if the result may evaluate to a number,
the call may evaluate to value v at cost 1 where v is the number of fractional
days since the 30th of December, 1899.

Rule (pi) states that it may evaluate to a value v at cost 1, given that v is a
number and is equal to ⇡.

Rule (na) states that the function application of NA may evaluate to the error
#NA at cost 1.

Rule (abs) states that if e may evaluate to the number v at cost c then the call
may evaluate to the absolute value of v.

Rule (asin) is similar to rule (abs) but may instead evaluate to the result of a
call to the actual inverse trigonometric function asin.

Rules (not-1) and (not-2) handle the two di↵erent outcomes of the NOT func-
tion (barring error values in the arguments). Rule (not-1) states that if e may
evaluate to zero at some cost then the call may evaluate to one. Rule (not-2)
handles the case where the value is di↵erent from zero in which case the result
may evaluate to zero.

Rule (ceiling) states that if its two argument expressions may evaluate to num-
bers then the conclusion may evaluate to a call to ceiling with the two numbers
as arguments.

Rule (equal) is akin to rule (ceiling) except that it may evaluate to the equality
comparison between the two numbers. The actual implementation of equal-
ity is slightly more involved also taking null values and object equality into
consideration. We leave out the rules for other comparisons here.

Rules (and-false) and (and-true) borrow notation from Section 4.1. One may
pick some subset of indices J where all the corresponding expressions may eval-
uate to numbers. If there exists an index for which the expression may evaluate
to zero, the result of calling AND is zero. Rule (and-true) handles the case where
all the evaluated expressions may evaluate to a non-zero number value. The rule
for OR is analogous but swaps true (non-zero) and false (zero) everywhere. These
rules admit both sequential strict evaluation, sequential non-strict evaluation,
and parallel evaluation of the subexpressions. The total work is proportional to
the subset of expressions evaluated plus one.

Rule (sum) says that if all its argument expressions evaluate to number values
then the function call may evaluate to the sum of those values. In Funcalc,
functions like SUM and AVERAGE can accept a combination of numbers and array
values. The result of the calls to SUM are all 21 in the following examples. We
choose not to complicate the rules further but one could imagine some sort
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of flattening function flatten applied to each value in the summation in the
conclusion of rule (sum) to account for array values.

=SUM(1, 2, 3, 4, 5, 6)

=SUM(HCAT(1, 2, 3, 4, 5, 6))

=SUM(VCAT(1, 2, 3, 4, 5, 6))

=SUM(HCAT(1, 2), 3, VCAT(4, 5, 6))

Rule (const-array) says that if expression e1 may evaluate to a value at some
cost c1 and expressions e2 and e3 may evaluate to non-negative numbers, then
the call may evaluate to an array value of size v3 · v2 with v1 as the values of
each element. The cost reflects that it is only necessary to evaluate e1 once.

Rule (choose) states that if e0 may evaluate to a positive number s 2 [1, n+ 1[
and the ith expression, where i = bsc, may evaluate to a value vi at cost ci, then
the call may evaluate to vi at cost 1 + c0 + ci. Note that s may lie in a wider
interval than required since the current implementation truncates floating-point
numbers to integers, hence the floor notation on the subscript ebsc etc. Since
CHOOSE is non-strict, we require only that evaluation of ei takes place. A more
general rule would adopt the same approach we used for the rules for AND and
have J = {0, i} as a special case.

Rule (columns) states that if e may evaluate to an array value then a call to
COLUMNS may evaluate to the width of that array value. Notice that the work
is overly pessimistic. Any sensible implementation would strive to perform a
single lookup operation on the array without having to evaluate the entire array
first.

Rule (index) states that if e1 may evaluate to an array value and e2 and e3 may
evaluate to numbers within the bounds of the array value, then the conclusion
may evaluate to the value at index (bv3c, bv2c). Like rule (columns), the work is
overly pessimistic and like rule (choose) the indices are truncated towards zero.

In rule (slice), the premises state that e1 may evaluate to an array value, expres-
sions e2 and e4 may evaluate to a start- and end column index and expressions
e3 and e5 may evaluate to a start- and end row index, where the indices delimit
a sub-array within the input array. The conclusion may then evaluate to a new
array value that is a slice of the original array. The sub-array’s size is computed
from the row and column indices. The work is one plus evaluating the four
indices plus the work of evaluating the input array value plus the size of the
new array.

Rule (iserror-true) states that if e may evaluate to a value v 2 Error then the
call may evaluate to 1. Rule (iserror-false) is complementary and handles the
case where v /2 Error.
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Rule (isarray-true) and (isarray-false) are analogous to rules (iserror-true) and
(iserror-false) but check whether the argument is an array value.

Rule (max) states that if all the argument expressions may evaluate to numbers
at some corresponding costs, then the call may evaluate to the maximal value
of those values. The rule for MIN is analogous.

Rule (transpose) states that if the argument expression may evaluate to an array
value of size w · h with cost c, then the call may evaluate to a transposed array
value of size h · w. Notice that element access has been swapped to vji. The
work is one plus the cost c and the size of the resultant array.

Rule (average) is similar to rule (sum) but the conclusion may instead evaluate
to the average of the input values or an error if there are no input values.

Rule (harray) states that if the arguments may evaluate to a set of values and
associated costs, then the call may evaluate to a single-row array of those values.
This is consistent with the behaviour of HARRAY which puts the values of the
evaluated expressions inside an array. The expression =HARRAY(1, HARRAY(2,
3)) will yield an array value of width 2 and height 1 where the first element is
the value 1 and the second element is an array of the same size with values 2
and 3. The rule for VARRAY is similar and has been omitted. The n in the cost
of the conclusion denotes the cost of allocating the new array.

Rule (hcat) is closely related to the rule for HARRAY but concatenates its argu-
ments, which is why there are additional premises to ensure correct dimensions
of the argument expressions to HCAT. Its premises state that the expressions may
evaluate to values at some associated costs as in rule (harray). The width of
the new array value is the sum of the widths of all its arguments. The function
width is defined as follows.

width(v) =

(
w if v = Av(w, h, [[vij ]])

1 otherwise

We also require that any pair of evaluated expressions must have the same
height, otherwise we would not be able to properly concatenate them. The
definition of height is analogous to that of width. Given these premises, the
conclusion may evaluate to an array value of width w and the height of the
arguments. The elements of the array value are the concatenation of the eval-
uated expressions. The n in the cost of the conclusion denotes the cost of
concatenation and assumes an e�cient implementation of array concatenation.
To understand the di↵erence between HCAT and HARRAY, calling the same expres-
sion as before with HCAT, i.e. =HCAT(1, HARRAY(2, 3)), yields an array value
of width 3 and height 1. This would also be the case if we replaced the inner
call to HARRAY with a call to HCAT. The rule for VCAT is similar and has been
omitted for brevity.
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6.2 Rules for Higher-Order Intrinsic Functions

The notation for higher-order functions builds on rule (g5v) from Section 5. One
significant di↵erence is that since most higher-order functions call the supplied
function multiple times, we introduce quantification over the environment ⇢0.
For example, the function TABULATE calls a function for each position in the
result array where we quantify over the fresh environment with the current
position (i, j) as ⇢0ij . Recall that ⇢0 can be thought of as a stack frame for a
function application. Similarly, we also quantify over the cost environment �0

as �0
ij . We start by introducing the rule for TABULATE in full detail, then define

appropriate auxiliary functions so that we do not need to repeat ourselves in
the remaining rules.

�,↵ ` e1 + FunV al(sdf, [u1, . . . , uk]), c1

def(sdf) = (out, [in1, . . . , ink+2] , cells)

�,↵ ` e2 + v2, c2 v2 2 Number ^ h = bv2c � 0

�,↵ ` e3 + v3, c3 v3 2 Number ^ w = bv3c � 0

8i, j. ⇢0ij(in1) = u1 . . . ⇢0ij(ink) = uk ⇢0ij(ink+1) = i ⇢0ij(ink+2) = j

8i, j. 8ca 2 dom(⇢0ij) \ {in1, . . . , ink+2}.�,↵ ` �(ca) + ⇢0ij(ca), �
0
ij(ca)

8i, j. vij = ⇢0ij(out) c4 =
P
i,j

dom(�0
ij)P

ca
�0
ij(ca)

(tabulate)
�,↵ ` TABULATE(e1, e2, e3) + Av(v3, v2, [[vij ]]), 1 + c1 + c2 + c3 + c4

Considering the premises from top to bottom, they state that e1 may evaluate
to a function value (at cost c1) that expects two more arguments, and that e2
and e3 may evaluate to non-negative numbers h of rows and w of columns, after
truncation towards zero. We then postulate w ·h environments ⇢0ij where i  w
and j  h, one for each application of the function value. The first quantified
premise states that the input cells should contain the bound values [u1, . . . , uk]
except that the last two arguments must be the indices i and j of the function
application. The second quantified premise states that for all cell addresses ca
in the domain of ⇢0ij , excluding the set of input cells, the expression of that cell
address may evaluate to the value given by environment ⇢0ij at some cost. The
final premise states that each function application evaluates to the value vij of
the function call’s output cell. It is intuitive to think of each ⇢0ij as a stack
frame for a function application at a position (i, j). The call to TABULATE then
evaluates to an array value of size w · h whose elements are vij . The work is 1
plus the work for evaluating the function value, the dimension expressions, and
the sum of the costs of applying the sdf for every index combination (i, j).

36



Concrete and Abstract Cost Semantics for Spreadsheets 2019

The function application notation in the right-hand side column can be ab-
stracted away since this is how all higher-order functions apply function values,
so in an e↵ort to reduce repetition, we define a function apply to be definitionally
equal to the following definition.

apply�,↵(sdf, [u1, . . . , uk] , a0, . . . , an, r, c) ,

8
>>>>><

>>>>>:

⇢0(in1) = u1 . . . ⇢0(ink) = uk ⇢0(ink+1) = a0 . . . ⇢0(ink+n) = an
8ca 2 dom(⇢0) \ {in1, . . . , ink+n}. ⇢0,� ` �(ca) + ⇢0(ca), �0(ca)

r = ⇢0(out)

c =
dom(�0

)P
ca

�0(ca)

Note that the resulting value r and cost c are passed back out of the apply func-
tion definition. This definition makes sense for functions like TABULATE where
we can refer to specific function applications using apply�,↵ in terms of its posi-
tion in the resultant array by using rij and cij . However, for recursive functions
like REDUCE, we introduce a new judgement form �,↵ `v s + v, c that operates
on values instead of expressions in order to handle the intermediate computa-
tions of REDUCE that operate on values. The judgement states that given the
usual environments � and ↵, some intermediate value-based computation state
s may evaluate to a value v at cost c. This allows us to evaluate the argument
expressions e1, e2 and e3 at the top-level call once and then use their values in
subsequent recursive calls.

�,↵ ` e1 + v1, c1 v1 = FunV al(sdf, [u1, . . . , uk])

k = arity(sdf)� 2

�,↵ ` e2 + v2, c2

�,↵ ` e3 + v3, c3
v3 2 ArrV al

�,↵ `v REDUCE(v1, v2, v3) + r, cr
(reduce)

�,↵ ` REDUCE(e1, e2, e3) + r, 1 + c1 + c2 + c3 + cr

We start with the expression-based rule (reduce) for the REDUCE function. Ex-
pressions e1 and e2 may evaluate to a function value and an initial value for
the reduction, respectively. Expression e3 may evaluate to an array v3 which is
passed as an argument to the value-based reduction rule. The conclusion may
then evaluate to the result r of the value-based reduction. Next, we define the
inductive and base rules for the value-based reduction.
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�,↵ `v v3 = vl : vr, cd
v1 2 FunV al

v2 2 Number

vl 2 ArrV al ^ vr 2 ArrV al

�,↵ `v REDUCE(v1, v2, vl) + rl, cl

�,↵ `v REDUCE(v1, rl, vr) + r, cr
(reduce-inductive)

�,↵ `v REDUCE(v1, v2, v3) + r, 1 + c3 + cl + cr + cd

The recursive, value-based reduction rule (reduce-inductive) first decomposes
v3 into two arrays vl and vr at some cost cd. This can be an arbitrary decom-
position as chosen by an implementation since, given an identity element and
an associative, binary function, a reduction may e.g. proceed from left to right
using a decomposition similar to functional lists; or by decomposing the opera-
tions as a tree by recursively splitting the input array in halves, we can perform
the reduction in parallel. Notice that we pass the result of the reduction of the
left decomposed array vl to the reduction of the right decomposed array vr. The
reason is purely semantic and will become apparent shortly.

We need two additional base case rules to account for a reduction of an odd
number of values and for the empty list. These are given as rules (reduce-base-
odd) and (reduce-base-empty).

v1 2 FunV al v3 = Av(1, 1, [[v11]])

apply�,↵(sdf, [u1, . . . , uk] , v2, v11, r, c)
(reduce-base-odd)

�,↵ `v REDUCE(v1, v2, v3) + r, 1 + c

v1 2 FunV al v2 2 Number v3 = Av(0, 0, [[]])
(reduce-base-empty)

�,↵ `v REDUCE(v1, v2, v3) + v2, 1

Rule (reduce-base-odd) handles the case where a single-element array is given by
v3 where we apply the sheet-defined function sdf from the function value v1 to
the starting value v2 and the single element v11 of v3. In rule (reduce-inductive),
if we did not thread the result through the left and right decomposition of the
array argument as mentioned earlier, rule (reduce-base-odd) might be applied
more than once which in turn would cause the starting value v2 to also be
used more than once, resulting in an incorrect result. Rule (reduce-base-empty)
returns the starting value v2 of the reduction if passed the empty array.

To illustrate these rules, we expand the derivation tree for the following expres-
sion in Figure 21 and show the corresponding tree decomposition in Figure 22.
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In the example, cd denotes the cost of array decomposition, ca the cost of ap-
plying the addition operator, and ch denotes the cost of concatenating elements
with HCAT. Additionally, we have omitted some of the set membership tests to
keep the derivation tree succinct.

=REDUCE(CLOSURE("+"), 8, HCAT(1, 2, 3, 4))

The result of the expression is 8 + 1 + 2 + 3 + 4 = 18. For brevity, we denote
lists in square braces [1, 2, 3, 4].
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We are now ready to list the rules for the remaining higher-order functions in
Funcalc which are shown in Figure 23.

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk]), c0
k = arity(sdf)� n

�,↵ ` e1 + Av(w1, h1,
⇥⇥
v1ij

⇤⇤
), c1 . . . �,↵ ` en + Av(wn, hn,

⇥⇥
vnij

⇤⇤
), cn

8k,m.wk = wm ^ hk = hm

8i, j. apply�,↵(sdf, [u1, . . . , uk] , v1ij , . . . , v
n
ij , rij , tij)

(map)
�,↵ ` MAP(e0, e1, . . . , en) + Av(w1, h1, [[rij ]]), 1 + c0 +

Pn
k=1

ck +
P

ij tij

�,↵ ` e1 + FunV al(sdf, [u1, . . . , uk]), c1

k = arity(sdf)� h

�,↵ ` e2 + Av(w, h, [[vij ]]), c2

8i. apply�,↵(sdf, [u1, . . . , uk] , [[vi⇤]] , ri1, ci)
(colmap)

�,↵ ` COLMAP(e1, e2) + Av(w, 1, [[ri1]]), 1 + c1 + c2 +
P

i ci

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk]), c0

k = arity(sdf)� 1

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
8i. apply�,↵(sdf, [u1, . . . , uk] , vi, ri, ti)

(countif)
�,↵ ` COUNTIF(e0, e1, . . . , en) +

P
{1 | ri = 1 ^ i = {1, . . . , n}}, 1 + c0 +

Pn
j=1

cj +
Pn

i=1
ti

�,↵ ` e0 + FunV al(sdf, [u1, . . . , uk]), c0

k = arity(sdf)� 1

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn
8i. apply�,↵(sdf, [u1, . . . , uk] , vi, ri, ti)

(sumif)
�,↵ ` SUMIF(e0, e1, . . . , en) +

P
{vi | ri = 1 ^ i = {1, . . . , n}}, 1 + c0 +

Pn
j=1

cj +
Pn

i=1
ti

�,↵ ` e1 + FunV al(sdf, [u1, . . . , uk]), c1

k = arity(sdf)� 1

�,↵ ` e2 + Av(1, h, [[vih]]), c2

r0 = [[v0⇤]]

�,↵ ` e3 + v3, c3
v3 2 Number

w0 = bv3c+ 1

8i = 1, . . . , w0. apply�,↵(sdf, [u1, . . . , uk] , ri�1, ri, ti)

�,↵ `v Av(w0, h, [[r0 : . . . : rn]]) + arr, c4
(hscan)

�,↵ ` HSCAN(e1, e2, e3) + arr, 1 + c1 + c2 + c3 + c4 +
Pn

i=1
ti

Figure 23: Operational and cost semantics for a subset of Funcalc’s higher-
order, built-in functions. For rules that are trivially similar such as those for
HCAT, and VCAT, we omit repetitions and give just a single rule to represent them
all.

Rule (map) shows the rule for the intrinsic MAP function which is in fact a
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generalised n-ary zip function. Given one argument, MAP behaves as a regular
mapping function. The rule states that e0 may evaluate to a function value
with k bound arguments. Each of the other arguments e1, . . . , en may evaluate
to array values of equal size. The function is applied to each element in all the
array value arguments at a given position (i, j) and the result rij at cost tij is
the value of the resulting array value in the conclusion of the rule at the same
position. The total cost is one plus the cost of evaluating the function value, the
cost of evaluating all the array value arguments and the cost of all i · j function
applications.

Rule (colmap) states that if the first argument may evaluate to a function value
with an arity equal to the height of the array value of e2 and that the second
may evaluate to an array value, then the call may evaluate to a new single-row,
array value where each element is the function application of sdf to each column
in the input array.

Rule (countif) states that if the first argument e0 may evaluate to an unary
function value and the remaining expressions to some values, then a call to
COUNTIF may evaluate to a sum of ones for which ri = 1 (true).

Rule (sumif) closely resembles rule (countif), but the resulting value in the
conclusion may instead evaluate to a summation of the values vi where ri = 1
(true).

Finally, we have the rule for HSCAN. The function performs a column-wise scan
operation as opposed to an element-wise scan as per Blelloch [2]. The rule
is rather complicated, so an example is in order. Given a function f(a) =
map(fun x ) x+ 1, a) and calling the function as

HSCAN(CLOSURE("f"), A1:A2, 2)

in Figure 24, produces the values in cell area A4:C5. The row values in each
column are one greater than the row values of the preceding column. The
premises in rule (hscan) say that e1 may evaluate to a function value accepting
one argument, e2 may evaluate to a column array value, e3 may evaluate to
a number. We introduce special syntax for array values so we can refer to
entire rows or columns. Thus, [[v1⇤]] refers to the first column of an array value
whereas [[v⇤3]] refers to the third row. The result array arr may then evaluate
to an array value where each column is the function applied 0 to n times to the
input column and then concatenated using the colon operator. Since a function
applied zero times is the identity function, the first column is just the original
input column which is why the number of columns in arr is v3 + 1.

In any sensible implementation of HSCAN, we would avoid the quadratic work
of multiple redundant function applications and use the results of previous
columns. For example, applying the function once at column i to the result
of the previous column i� 1 corresponds to having applied the function i times
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to the original input column. This is reflected in the quantified premise in the
rule.

A B C
1 1
2 2
3
4 1 2 3
5 2 3 4

Figure 24: Column-wise scan using HSCAN. Each value from the preceding
column is incremented by one.

7 Concrete cost calculation functions

In this section we follow Gomez et al. [4], inspired by Rosendahl [5], and present
a set of functions which can be used to calculate the actual cost of executing an
evaluation of a spreadsheet expression, including higher order functions defin-
able in Funcalc. The idea in the first set of functions is that each function will
both evaluate the expression and simultaneously record the computation costs.

Tv[n] = n

Tv[ca] = ca

Tv[IF (e1, e2, e3)) = IF (Tv[e1], Tv[e2], Tv[e3])

Tv[RAND()] = RAND()

Tv[F (e1, . . . , en)] = F (Tv[e1], . . . , Tv[en])

Tv[ca1 : ca2] = ca1 : ca2

Tv[e[i, j]] = Tv[e][i, j]

Tv[sdf(e1, . . . , en)] = sdf(Tv[e1], . . . , Tv[en])

Tv[CLOSURE(sdf, e1, . . . , en)] = pair(CLOSURE(sdf, Tv[e1], . . . , Tv[en]),

CLOSURE(sdft(Tv[e1], . . . , Tv[en])))

Tv[APPLY(e0, e1, . . . , en)] = fst(Tv[e0])(Tv[e1], . . . , Tv[en])

Tv[def(sdf) = (out, [in1, . . . , inn], cells)] = def(sdf) = (Tv[out], [in1, . . . , inn], Tv[cells])
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Tt[n] = 1

Tt[ca] = 1

Tt[IF (e1, e2, e3)) = IF (e1, 1 + Tt[e1] + Tt[e2], 1 + Tt[e1] + Tt[e3])

Tt[RAND()] = 1

Tt[F (e1, . . . , en)] = Ft(Tv[e1], . . . , Tv[en]) + 1 +
X

i=1,n

Tt[ei]

Tt[ca1 : ca2] = 1

Tt[e[i, j]] = 1

Tt[sdf(e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei] + sdft(Tv[e1], . . . , Tv[en])

Tt[CLOSURE(sdf, e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei]

Tt[APPLY(e0, e1, . . . , en)] = 1 + Tt[e0] +
X

i=1,n

Tt[ei] + APPLY(snd(Tv[e0]), Tv[e1], . . . , Tv[en])

Tt[def(sdf) = (out, [in1, ..., inn], cells)] = def(sdft) = (Tt[out], [in1, ..., inn], Tt[cells])

Note that the above definition introduces a pair data structure. This data
structure could be encoded via cell arrays with two elements. pair, fst, snd
are handled by the semantic rules for built-in functions and they will thus have
pairt, fstt and sndt functions returning their cost during evaluation.

Conjecture:

�,↵ ` e +t v, t iff �,↵ ` Tv[e] +s v ^ �,↵ ` Tt[e] +s t

Proof:

Straightforward exercise based on structural induction.

This shows that the cost semantics, as defined in Section 4 and denoted here
by (+t), is preserved by the translation and yields the same values, when the
standard semantics, as defined in Section 3.1 and denoted here by (+s), is used
on the translated terms (i.e. we have used spreadsheet computations to calculate
the cost of spreadsheet computations).

It is possible to avoid introducing pair, fst, snd and thereby simplifying the cost
evaluation function compared to the one above which is inspired by [4]. Since
Funcalc does not have anonymous functions (i.e. lambdas), but only has named
functions, we know which function we need to invoke when we apply a CLOSURE
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since the name of the function (sdf) is recorded in the CLOSURE: CLOSURE(sdf,
e1, . . . , en).

Since sheet-defined functions are defined as def(sdf) = (out, [in1, . . . , inn], cells),
their cost functions can easily be found via a simple naming scheme and trans-
lation of the body of the sheet-defined function defined as: Tt[def(sdf) =
(out, [in1, . . . , inn], cells)] = def(sdft) = (out, [in1, . . . , inn], Tt[cells]). All we
need to do in the cost translation is to replace sdf with sdft in the CLOSURE in
e0 in the rule for Tt[APPLY(e0, e1, . . . , en)].

The following definitions capture this. First we define a function Td going
structurally through a Funcalc expression, replacing all sdf names with their
time counterpart sdft:

Td[n] = n

Td[ca] = ca

Td[IF (e1, e2, e3)) = IF (Td[e1], Td[e2], Td[e3])

Td[RAND()] = RAND()

Td[F (e1, . . . , en)] = F (Td[e1], . . . , Td[en])

Td[ca1 : ca2] = ca1 : ca2

Td[e[i, j]] = Td[e][i, j]

Td[sdf(e1, . . . , en)] = sdft(Td[e1], . . . , Td[en])

Td[CLOSURE(sdf, e1, . . . , en)] = CLOSURE(sdft, Td[e1], . . . , Td[en])

Td[APPLY(e0, e1, . . . , en)] = APPLY(Td[e0], Td[e1], . . . , Td[en])

This function is then used in the APPLY clause of the modified version of Tt:
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Tt[n] = 1

Tt[ca] = 1

Tt[IF (e1, e2, e3)) = IF (e1, 1 + Tt[e1] + Tt[e2], 1 + Tt[e1] + Tt[e3])

Tt[RAND()] = 1

Tt[F (e1, . . . , en)] = Ft(Tv[e1], . . . , Tv[en]) + 1 +
X

i=1,n

Tt[ei]

Tt[ca1 : ca2] = 1

Tt[e[i, j]] = 1

Tt[sdf(e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei] + sdft(Tv[e1], . . . , Tv[en])

Tt[CLOSURE(sdf, e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei]

Tt[APPLY(e0, e1, . . . , en)] = 1 + Tt[e0] +
X

i=1,n

Tt[ei]+

APPLY(Td((Tv[e0])), Tv[e1], . . . , Tv[en])

Tt[def(sdf) = (out, [in1, . . . , inn], cells)] = def(sdft) = (Tt[out], [in1, . . . , inn], Tt[cells])

Tv in the above definition turns out to be the identity function, thus the defini-
tion of Tt can be further simplified:

Tt[n] = 1

Tt[ca] = 1

Tt[IF (e1, e2, e3)) = IF (e1, 1 + Tt[e1] + Tt[e2], 1 + Tt[e1] + Tt[e3])

Tt[RAND()] = 1

Tt[F (e1, . . . , en)] = Ft(e1, . . . , en) + 1 +
X

i=1,n

Tt[ei]

Tt[ca1 : ca2] = 1

Tt[e[i, j]] = 1

Tt[sdf(e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei] + sdft(e1, . . . , en)

Tt[CLOSURE(sdf, e1, . . . , en)] = 1 +
X

i=1,n

Tt[ei]

Tt[APPLY(e0, e1, . . . , en)] = 1 + Tt[e0] +
X

i=1,n

Tt[ei] + Td[e0](e1, . . . , en)
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Tt[def(sdf) = (out, [in1, . . . , inn], cells)] = def(sdft) = (out, [in1, . . . , inn], Tt[cells])

This implies that it is possible to implement the cost calculation function in
Funcalc without changing the implementation of the evaluation method already
implemented, as Tv and Tt are no longer mutually recursive and only Tt depends
on Tv.

8 Abstract Cost Semantics

Gomez et al. and Rosendahl worked on cost translations for higher-order func-
tional languages [4, 5] which cater for computing with unknown data values.
Adding such unknown values allows for a rudimentary abstract interpretation
of programs which in many cases can provide a rather precise approximation of
the actual cost of the computation.

Note that is there is no way to insert an unknown value in a sheet. If a cell is left
empty, the set {0.0} is returned. This is consistent with the standard semantics.
However, it may be interesting to abstractly evaluate sheets where some cells
have unknown values. This can be handled by a built-in function Unknown
taking no arguments and always returning the unknown value, denoted >.

To allow computations with unknown values, we need an abstract representation
of values that models the concrete values used in concrete interpretation [3].
Figure 25 gives a suggested lattice of abstract values for Funcalc.

>

Number+Error Closure(sdfa(av1, . . . , avm) Array(>, >)

Array(w, h)

?

Figure 25: A lattice of abstract values that can be used in abstract interpre-
tation of Funcalc. The symbol > denotes that a value can be represented by
multiple values in the lattice, e.g. something is both an atomic value and an
array of known size. In type systems, this constitutes a type unification error.
The symbol ? denotes that we know nothing about a value. The values are ei-
ther the semantic map of numbers and errors, abstract closures, or array values.
For arrays, we need both an abstraction for an array of unknown size Array(>,
>) and an array of known size Array(w, h).
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The lattice depicted in Figure 25 can now be used in the definition of abstract
values computed by the abstract semantics for Funcalc. These are depicted
in Figure 26.

n 2 Number = { proper numbers }
absav 2 AbsArrV al = { (w, h, [[absvij | i  w, j  h]]) }+ {(>,>)}
absfv 2 AbsFunV al = { (sdf, [absu1, . . . , absuk]) }

Error = { #DIV/0!, #CYCLE! }
ca 2 Addr = { cell addresses }
absv, absu 2 AbsV alue = Number + Error +AbsArrV al +AbsFunV al + {>}
e 2 Expr = { formulas, see Figure 5 }
�a 2 Addr ! Expr
�a 2 Addr ! AbsV alue
↵a 2 Expr ! AbsV alue
⇢a 2 Addr ! AbsV alue

Figure 26: Sets and maps used in the Abstract Funcalc semantics. The tuple
{(>,>)} component of AbsArrV al represents an array of unknown size

The ordering on AbsV alue is such that absv v > for all absv 2 AbsV alue.
Furthermore, absav v Array(>,>) for all absav 2 AbsArrV al.

We can now follow the ideas presented by Schmidt [3] and provide a trace-based
abstract interpretation for Funcalc, based on the ideas for big step semantics
presented in section 5 of [3].

The cost semantics for Funcalc presented in Section 5 is extended with the
following rules:

�,↵ ` e1 + >, c1 �,↵ ` e2 + v2, c2 �,↵ ` e3 + v3, c3
(g3a)

�,↵ ` IF(e1, e2, e3) + v2 t v3, 1 + c1 + max(c2, c3)

J ✓ {1, . . . , n}
8j 2 J. �,↵ ` ej + vj , cj vi = > for some i 2 J

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (g5a)
�,↵ ` F(e1, . . . ,en) + >, 1 +

P
j2J cj + work(f, v1, . . . , vn)

ca /2 dom(�)
------------------------------------------------------------------- (g2a)
�,↵ ` ca + >, 1

�,↵ ` e0 + >, c0

�,↵ ` e1 + v1, c1 . . . �,↵ ` en + vn, cn

8ca 2 dom(⇢0) \ {in1, . . . , ink+n}. ⇢0,� ` �(ca) + ⇢0(ca), �0(ca)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (g10a)

�,↵ ` APPLY(e0,e1, . . . ,en) + >,1
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With these rules, it is possible to follow [3] and establish a safety property for
finite derivations. First we define a safety property for values and costs:

v, c safevalav, ac iff v v av and c v ac

Here we use the ordering on values defined above and the normal order on costs
augmented with c  1 for all c.

The safety property on values is then extended to environments:

↵, ⇢ safeenv↵a, ⇢a iff dom(↵) = dom(↵a)

and dom(⇢) = dom(⇢a)

and 8ca.↵(ca) safeval↵a(ca)

and 8ca.⇢(ca) safeval⇢a(ca)

Finally the safety property can be extended to sequents.

�,↵ ` e +t v, c safeseq�a,↵a ` e +at av, ac iff ↵, ⇢ safeenv↵a, ⇢a and v, c safevalav, ac

With the safety property on sequents we can extend the definition to trees
safetree. TC safetreeTA holds if root(TC) safeseqroot(TA) and for every child
subtree ti of TC there exists a subtree tj of TA such that ti safetreetj holds.

The desired safety property can now be established. For every expression e and
concrete environments, respectively abstract environments such that ↵, ⇢ safeenv↵a, ⇢a,
we can establish that for every proof tree tC in the concrete semantics with
tC 2 wftreeC and root(tC) = �,↵ ` e +t v, c and for every proof tree tA in the
abstract semantics with tA 2 wftreeA and root(tA) = �a,↵a ` e +at av, ac, it is
the case that tC safetreetA. The proof of this follows by induction on the height
of the derivation tree.

The above only establishes a safety property for finite derivations, i.e. for ter-
minating programs. Not all programs terminate and we therefore need to look
into handling infinite derivations as well.

9 Abstract Cost Calculation Functions

First we need a transformation on expressions capable of calculations with un-
known (>):
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Tvb[n] = n

Tvb[ca] = ca

Tvb[IF (e1, e2, e3)) = IFvb(Tvb[e1], Tvb[e2], Tvb[e3])

Tvb[RAND()] = RAND()

Tvb[F (e1, . . . , en)] = Fvb(Tvb[e1], . . . , Tvb[en])

Tvb[ca1 : ca2] = ca1 : ca2

Tvb[e[i, j]] = Tvb[e][i, j]

Tvb[sdf(e1, . . . , en)] = sdft(Tvb[e1], . . . , Tvb[en])

Tvb[CLOSURE(sdf, e1, . . . , en)] = CLOSURE(sdfvb, Tvb[e1], . . . , Tvb[en])

Tvb[APPLY(e0, e1, . . . , en)] = APPLYvb(Tvb[e0], Tvb[e1], . . . , Tvb[en])

where

IFvb(e1, e2, e3) = IF (e1 = >, e2 t e3, IF (e1, e2, e3))

APPLYvb(e0, e1, . . . , en) = IF (e0 = >,>, (e0)(e1, . . . , en))

and

Tvb[def(sdf) = (out, [in1, . . . , inn], cells)] = def(sdfvb) = (out, [in1, . . . , inn], Tvb[cells])

Using this we can define an abstract time function Tat:
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Tat[n] = 1

Tat[ca] = 1

Tat[IF (e1, e2, e3)) = IF (Tvb(e1) = >,max(1 + Tat[e1] + Tt[e2], 1 + Tat[e1] + Tt[e3]),

IF (Tvb(e1), 1 + Tat[e1] + Tt[e2], 1 + Tat[e1] + Tt[e3]))

Tat[RAND()] = 1

Tat[F (e1, . . . , en)] = Fat(e1, . . . , en) + 1 +
X

i=1,n

Tat[ei]

Tat[ca1 : ca2] = 1

Tat[e[i, j]] = 1

Tat[sdf(e1, . . . , en)] = 1 +
X

i=1,n

Tat[ei] + sdfat(e1, . . . , en)

Tat[CLOSURE(sdf, e1, . . . , en)] = 1 +
X

i=1,n

Tat[ei]

Tat[APPLY(e0, e1, . . . , en)] = IF (Tvb(e0) = >,1, 1 + Tat[e0] +
X

i=1,n

Tat[ei]+

APPLY(Tvb[e0], e1, . . . , en]))

Tat[def(sdf) = (out, [in1, . . . , inn], cells)] = def(sdft) = (Tat[out], [in1, . . . , inn], Tat[cells])

We may relate the safety of the abstract semantics described in Section 8 to the
abstraction functions defined above:

Conjecture:

�a,↵a ` e +at av, at iff �a,↵a ` Tvb[e] +s av ^ �a,↵a ` Tat[e] +s at

Proof:

Straightforward exercise based on structural induction.

The evaluation of Tvb[e] and Tat[e] may loop whenever the evaluation of e loops.
This may be acceptable as long as the abstract cost is evaluated simultaneously
with the (abstract) value of an expression e. However, it may be more desirable
to further abstract the abstract evaluation to ensure that the abstract cost
evaluation always terminates.
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1 public interface ICellEvaluator <T>
2 {
3 T Eval(ArrayFormula cell , Sheet sheet , int col , int row);
4 T Eval(BlankCell cell , Sheet sheet , int col , int row);
5 T Eval(Formula cell , Sheet sheet , int col , int row);
6 T Eval(NumberCell cell , Sheet sheet , int col , int row);
7 T Eval(TextCell cell , Sheet sheet , int col , int row);
8 }

Listing 1: The interface for evaluating cells in Funcalc.

10 Implementation of Cost Semantics

Before we discuss the full implementation details of the various sections pre-
sented thus far, we give a brief introduction to some of the inner workings of
the research spreadsheet application Funcalc deemed necessary for following the
implementation. Readers interested in learning more are encouraged to read [1].

10.1 Funcalc

Besides sheet defined functions (SDFs) that are compiled to Common Intermedi-
ate Language (CIL) bytecode, ordinary cells are interpreted to values. Figure 27
shows the complete hierarchy of cells, expressions and values in Funcalc, and
their relations. For example NumberCell and TextCell contain number and
text constants respectively while Formula holds a formula expression such as
=1+2.

Funcal’s interpreter implements two interfaces for evaluating cells (ICellEvaluator)
and expressions (IExpressionEvaluator), the former interface is given in List-
ing 1 with some details omitted. Each evaluation of a cell type happens in the
context of some column and row in some sheet in the spreadsheet. These inter-
faces can be implemented by any class that needs to operate on cells, expressions
or both, and we use them to implement our cost semantic rules.

The interpreter returns a subclass of the Value class used to represent all values
as shown in Figure 27. For example, the ArrayValue holds a first-class array
value. In the case of a cost interpreter, we instead want to return both a value
and an associated cost so we define a cost result CostResult tuple which con-
tains both elements and is the return value of our implementations. We define
auxiliary some functions like MakeCostResult which constructs a CostResult
tuple from a pre-existing CostResult or from a value and a cost.

We have implemented two variants of the cost semantics in Funcalc: a concrete
cost evaluator (Section 10.2) and an abstract cost interpreter (Section 10.5). The
former uses unit costs and is not guaranteed to terminate. We also discuss a few
important details regarding proper handling of early- and late-bound arguments
as well as cost evaluation of SDFs. The latter is inspired by [3, 10, 11].
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ArrayFormula

Value

Cell

Const

Formula

ObjectValue FunctionValue

CellArea

TextCell

*

NumberValue ErrorValue

CellRef

   *

TextConst RARef

   *

NumberConst

CachedArrayFormula

ArrayExplicit

Error Function

ArrayView

ArrayValue

*

Workbook

FunCall

BlankCell

Sheet

   2

TextValue

ConstCell

  1

NumberCell

Expr

Figure 27: Funcalc’s class hierarchy from [1]. A triangular arrow denotes
inheritance with the arrow pointing at the base class; an arrow originating in an
open rhombus denotes aggregation; and an arrow originating in a solid rhombus
denotes composition. A number or a star at an arrowhead denotes many-to-one
relations. For example, a single-cell reference CellRef contains a single relative
or absolute cell reference RARef.
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1 private CostResult EvalIf(FunCall expr , Sheet sheet , int col , int row)
2 {
3 if (expr.expressions.Length != 3) {
4 return MakeUnitCost(ErrorValue.argCountError);
5 }
6

7 CostResult condition = expr.es[0]. Eval(this , sheet , col , row);
8

9 if (condition.Value is ErrorValue ev) {
10 return MakeCostResult(condition);
11 } else {
12 NumberValue n0 = condition.Value as NumberValue;
13

14 if (n0 != null) {
15 int index = n0.value != 0.0 ? 1 : 2;
16 CostResult result = expr.expressions[index].Eval(this , sheet ,

col , row);
17

18 return MakeCostResult(result.Value , condition.Cost +
result.Cost);

19 } else {
20 return MakeCostResult(ErrorValue.argTypeError , condition.Cost);
21 }
22 }
23 }

Listing 2: Simplified C# code for the cost evaluation of IF

10.2 Cost Evaluator Implementation

The implementation of the cost evaluator follows the semantic cost rules closely
as shown in Listing 2 for the simplified implementation of the cost evaluation
of IF (see rules (c3e), (c3f) and (c3t) in Section 4.1). The evaluation function
EvalIf takes the function call expression FunCall representing the IF expression
and the column, row and sheet of the cell. First, we check if the function call
consists of three sub-expressions (a condition and two branches). If not, we
return an error indicating an incorrect number of arguments. Otherwise, we
evaluate the conditional expression using the cost evaluator. If the result is
an error value, we short-circuit as per rule (c3e) and return the result of the
condition (the error) and the cost obtained so far. Otherwise, we cast the result
of the condition to a number. If the cast fails, we return an error indicating an
argument type error and the cost obtained thus far. If the condition is indeed
a number, we pick the appropriate branch and evaluate the expression as per
rules (c3f) or (c3t), then return its value along with the cost of evaluating
the condition and the given branch expression. As an example, EvalIf would
return a cost result consisting of the value SIN(1+2)u 0.14112 at cost 6 for the
following expression.

=IF(1, SIN(1+2), COS(3))

Evaluation of the IF function call and its condition costs 2. The inner function
call to SIN costs four: one for the SIN function application, one for the + operator
application and one for each of the arguments of the addition.
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1 void MergeArgs(Value [] early , Expr[] late , Expr[] merged)
2 {
3 int j = 0;
4

5 for (int i = 0; i < early.Length; i++) {
6 if (early[i] != ErrorValue.naError) {
7 // Wrap the value as a constant expression
8 merged[i] = Const.Make(early[i]);
9 } else {

10 merged[i] = late[j++];
11 }
12 }
13 }

Listing 3: Merging early- and late-bound arguments in the cost evaluator.

10.3 Early and Late Argument Binding

Our cost evaluator, and the abstract interpreter we discuss later, both operate
primarily on expressions which warrants some extra considerations e.g. when
we implement partial evaluation and early- and late-bound arguments. Funcalc
supports partial evaluation of functions via the CLOSURE intrinsic function. For
example, the following expression creates a closure that takes a single argument
and adds one to it. Funcalc uses the NA function, that returns the “not available”
error #N/A!, to denote late-bound arguments.

=CLOSURE("+", 1, NA())

In Standard ML, the equivalent expression would be fn arg => 1 + arg. Upon
applying the closure with its remaining arguments, both the early-bound argu-
ment (1) and the late-bound argument (2) are passed together to the function
call, in this case the addition operator.

=APPLY(CLOSURE("+", 1, NA()), 2)

As the cost evaluator operates primarily on expressions, we need to handle a mix
of early- and late-bound values and expressions and ensure that all arguments
get passed along to the final function call. Consider the more complex case of
evaluating the cost of the following higher-order function call which applies a
function with two early-bound arguments to each cell in the cell area A1:A50.

=MAP(CLOSURE("SUM", 1, 2, NA()), A1:A50)

Upon each application of the closure, we must merge the early-bound argument
values 1 and 2 with the late-bound expression of the placeholder argument
denoted by NA() and pass them to the SUM function call as expressions. The
process is shown in Listing 3 where all arguments are merged in a single array of
expressions (denoted by the Funcalc Expr class). Early arguments are wrapped
as constant expressions using a call to Const.Make.
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A B
1 =DEFINE("factorial", B3, B2)

2 'n= 0

3 'out= =IF(B2<=0, 1, B2*FACTORIAL(B2-1))

Figure 28: A recursive factorial SDF function.

10.4 Evaluation of Sheet-Defined Functions

In the original implementation of Funcalc sheet-defined functions are not inter-
preted but automatically compiled to CIL bytecode [1]. Therefore, we cannot
use the existing interpreter framework directly to interpret the bytecode to find
the execution cost. We could generate additional code to compute costs but
this seems like an excessive and complicated approach. Instead, we directly
interpret the cells of an SDF using the cost evaluator by evaluating the output
cell of an SDF and follow dependencies back to its input cells. This requires
proper abstraction of ⇢ : Addr ! V alue, the local cell environment or stack
frame of an SDF as described in Section 3.4, in order to handle both recursive
SDFs and normal function calls. Consider the definition of the factorial function
in Figure 28.

To implement ⇢, we could directly modify the input cells of the SDF on each
call but this would temporarily modify cells in the spreadsheet which could
easily lead to inconsistencies if we are not careful. We have chosen instead
to keep track of an internal, local environment lenv : Addr ! V alue that
mimics ⇢. When an SDF is called, we create and push a new local environment
onto an internal stack and store the SDF’s parameters in it by mapping the
addresses of the input cells to their respective parameter values. This mimics
the semantic rule for application (see (g8)) where the input parameters for the
current function call are stored in ⇢0 i.e. ⇢0(in1) = v1 . . . ⇢0(inn) = vn. Upon
invoking a recursive function call, we create and push a new local environment
with the new parameters. When the recursive call returns, we pop the top-most
local environment from the stack. Therefore, lenv behaves exactly like a stack
frame following the intuition in Section 3.5. We still need one last detail for the
local environment to work. Cost evaluation of a cell reference is modified to
first look in the top-most local environment, if any, before examining the cells
of the actual sheets. Thus when we do computation in some recursive SDF and
need to evaluate an input parameter, we first look in the local environment and
not the actual spreadsheet.

Interestingly, if we were to strip away any notion of cost from the evaluation
of SDFs, we have in fact implemented a full-fledged SDF interpreter which is
likely what Funcalc would have used if there was no SDF compiler. Note that
one problem with the above described approach is that it might be the case that
the cost of interpretation and the cost of bytecode execution may not correlate.
This is not a problem as long as cost is only used as a measure of computational

56



Concrete and Abstract Cost Semantics for Spreadsheets 2019

steps. However, if we were interested in worst case execution times the tighter
correspondence with the CIL bytecode becomes paramount.

10.5 Abstract Cost Evaluator Implementation

This section presents examples from the abstract cost-semantics implementa-
tion. The abstract-cost implementation introduces a new type of value, Top,
which represents unknown values, such as input values for the spreadsheet, and
values that through computation depend on a Top value. Essentially, this is
just a subclass Top of Value; a function Top is introduced to produce a top
value. In the abstract cost-evaluator implementation we consider Array(>,>) a
Top-value.

The abstract-cost implementation is an implementation of the evaluator inter-
faces, and is essentially a modified version of the CostEvaluator. Specifically,
the di↵erence is special handling of some expressions.

Such expressions are:

• branching expressions, such as if IF, explained in Listing 4. The imple-
mentation of other branching expressions, such as And, Or, CountIf etc.
are modified as expected.

• Closure and Apply, where the result is Top if the first argument is Top, and
evaluated as the CostEvaluator otherwise.

• The Map-family of functions, HScan and VScan, and Tabulate, all result in
the value Top with cost 1, in case any arguments are Top.

• Function calls, where the result is top with the cost of evaluating the
arguments plus the cost of evaluating the function, in case any of the
arguments are top. The result is always top, as a top argument may be
error.

To handle top values, the else-branch in line 11 of Listing 2 is modified as shown
in Listing 4.

In this modification, if the condition is Top, the result is also Top, with cost of
the expensive branch with an added cost of the condition-evaluation cost plus
the unitcost of the if-expression. Otherwise, the result is the result of evaluation
by the CostEvaluator-implementation.

Taking the previous example from Section 10.2 with a top value instead of a
numeric value as condition:

=IF(Unknown(), SIN(1+2), COS(3))
=IF(Unknown(), SIN(3), COS(1+2))

the result of both the above expressions is Top with the cost of 6.
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1 public Value EvalIf(FunCall expr , Sheet sheet , int col , int row)
2 {
3 CostResult condition = expr.es[0]. Eval(this , sheet , col , row);
4

5 // ...
6

7 if (condition.Value is NumberValue n0) {
8 int index = n0.value != 0.0 ? 1 : 2;
9 CostResult result = expr.expressions[index].Eval(this , sheet , col ,

row);
10 return MakeCostResult(result.Value , condition.Cost + result.Cost);
11 } else if (condition.Value is Top) {
12 CostResult tt = expr.es[1]. Eval(this , sheet , col , row);
13 CostResult ff = expr.es[2]. Eval(this , sheet , col , row);
14 var cost = (tt.Cost > ff.Cost ? tt.Cost : ff.Cost) + condition.Cost;
15 return MakeCostResult(new Top(), cost);
16 } else {
17 return MakeCostResult(ErrorValue.argTypeError , condition.Cost);
18 }
19 }

Listing 4: Simplified C# code for abstract cost-evaluation of IF

11 Results

In this section, we present our results for the concrete and abstract cost evalu-
ators.

11.1 Concrete Cost Evaluator Results

Since the concrete cost evaluator costs are proportional to the number of op-
erations of an expression or alternatively the number of rule applications, we
are not particularly interested in the precision of the costs. Instead, we are
interested in how long it takes to evaluate the cost of each cell in a spreadsheet.

Table 1 contains the concrete and abstract costs, number of formula cells and
time taken to evaluate the cost of all cells in six spreadsheets from LibreO�ce
Calc [12] and a subset of the EUSES corpus [13]. The costs correspond to
applying the � function to each cell address ca in the spreadsheet as presented
in Section 5.3. Similarly, the running time is the time taken to evaluate the
cost of each cell in the spreadsheet. Note that running times for the LibreO�ce
Calc spreadsheets are given in seconds while the running times for the EUSES
spreadsheets are given in milliseconds. The third and fourth columns relate to
abstract costs and are discussed in the next section.

11.2 Abstract Cost Evaluator Results

The abstract cost evaluator would in a standard spreadsheet compute the same
values as the Concrete Cost Evaluator, and the same costs, since there are no
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Spreadsheet Total Concrete Cost Abstract Cost Inc. Formulas Runtime
LibreO�ce Calc (runtime in seconds)

building-design 978 520 000 978 520 000 100% 108 332 33.64

energy-markets 2 175 001 469 2 175 001 469 100% 534 507 3011.96

grossprofit 4 423 203 701 4 423 203 701 100% 135 073 2324.62

ground-water 1 099 998 389 1 099 998 389 100% 126 404 79.39

stock-history 1 230 276 358 1 230 276 358 100% 226 503 85.30

stocks-price 1 165 235 199 1 165 235 199 100% 812 693 1344.60

EUSES (runtime in milliseconds)
2004 PUBLIC BUGS INVENTORY 140 925 140925 100% 4495 28.83

Aggregate20Governanc#A8A51 723 436 1 NA 3546 154.93

high 2003 belg 11 616 516 1 NA 12 861 58.56

DNA 127 029 127029 100% 4715 15.76

EUSE 3463 3463 100% 413 1.27

PLANCK 25 200 25200 100% 806 13.33

02rise 91 581 91581 100% 10 316 26.64

financial-model-spreadsheet 20 128 1 NA 3115 10.99

Financial-Projections 31 400 31994 101.9% 3649 11.04

2000 places School 9286 9286 100% 1375 2.39

2002Qvols 10 222 10222 100% 2184 2.35

EducAge25 34 058 34058 100% 1470 6.19

notes5CMISB200SP04H2KEY 156 093 1 NA 1557 103.60

Test20Station20Powe#A90F3 15 720 15720 100% 2164 5.59

v1tmp 6157 6257 101.62% 1129 2.06

MRP Excel 415 529 1 NA 4809 92.16

ny emit99 76 010 76010 100% 4352 24.28

Time 33 832 33832 100% 4198 6.65

WasteCalendarCalculat#A843B 10 309 11901 115.44% 843 1.81

funding 280 702 1 NA 1636 215.05

iste-cs-2003-modeling-sim 14 919 14919 100% 1991 6.71

modeling-3 1292 1292 100% 213 0.54

Table 1: The total concrete cost, the abstract cost, overapproximation in the
abstract cost evaluation, number of formula cells and the time taken to evaluate
the cost of all cells in the LibreO�ce Calc and EUSES spreadsheets. The cost
evaluation was run twenty times and the averages of those runs are shown in
the fourth column.

values resulting in an abstact calculation, i.e. a Top value. In our evaluation
of the abstract cost, we replace all constants in the spreadsheet by Top values,
before the abstract cost evaluator is run. The results are found in table 1.
Because some top values are used in conditions in recursive calls, some cost-
results are 1, caused by infinite recursion. The largest overapproximation is
found in WasteCalendarCalculat#A843B. This is caused by a large number of
IFs, of the form: IF(T11>-1, 0, IF(T11<1, (S11-F11)/F11, 0)) where T11 is a
top value in the abstract version. Other spreadsheets have either cost-balanced
branchings or the most expensive branch is also taken in concrete evaluation.

11.3 Discussion

At a glance, we notice that there seems to be no correlation between the num-
ber of formula cells and the time taken to evaluate the cost of each cell in the
spreadsheet. This is to be expected as the formula count does not tell us any-
thing about the complexity about each individual formula. For example, the
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ny emit99 and Time spreadsheets have almost the same number of formula cells
but vastly di↵erent concrete and abstract costs and runtime.

12 Conclusion and Future Work

The evaluation semantics for simple Funcalc expressions was elaborated in Sec-
tion 2 and semantics for extended spreadsheet expressions was developed in Sec-
tion 3. In section crefsec-cost-semantics a precise cost semantics built on top of
the extended semantics was presented in Section 5 and in Section 6. This cost
semantics serves as a foundation for the concrete and abstract cost calculation
functions described in Section 7. The extended evaluation semantics for Fun-
calc was extended to compute with unknown values in Section 8, which serves
as a first step towards an approximate cost analysis described in Section 9.
Implementations for the concrete and abstract cost semantics were presented
in Section 10. Finally in Section 11,we presented results pertaining to the ex-
ecution time and precision of the various cost analyses that were implemented
as described in Section 10.

The purpose of the cost semantics and calculations is to serve as a guide for
load-balancing parallel computations in spreadsheets, e.g. via task partitioning
for execution on multi-core CPUs [7] or o↵-loading work to GPGPUs [14]. More-
over, the evaluation and cost semantics may serve to improve the understanding
of spreadsheet computations in general and the safety of and reliance on a given
implementation. Also, they may be used to prove that optimizations preserve
the meaning of spreadsheet computation and that these optimizations reduce
the amount of work needed to perform a computation.

The approximate cost analysis is a first step towards a more general framework
of abstract interpretation of spreadsheet expressions, based on ideas presented
in [3]. Due to the higher-order nature of Funcalc, another future development
would be a closure analysis to improve cost estimates of function application.

One future development may be to give a precise semantics for depth (also called
span or critical path length), the length of the longest sequential dependence, in
the sense of Blelloch [2], for parallel evaluation. This could be used as basis for
an abstract interpretation to estimate depth in addition to the work defined in
this paper.

Finally, one could also imagine various tools, based in the formal semantics, for
analyzing or verifying various aspects of spreadsheets. One such tool could be
a tool to formally verify the correctness of the spreadsheet program. Another
tool could guide users through performance bottlenecks in a spreadsheet and
even suggest possible improvements.
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A Table of Transformation Functions

Transformation Description Category
Tv Transforms expressions to their corre-

sponding values, constructing time-value
pairs for closure expressions.

Concrete

Tt Transforms expressions to their corre-
sponding costs.

Concrete

Td Transforms sdf to their corresponding time
functions sdft, obviating the need for a
time-value pair for closure expressions.

Concrete

Tvb Transforms expressions to their corre-
sponding abstract values accounting for
unknown values.

Abstract

Tat Abstract time function that transforms ex-
pressions to their corresponding abstract
costs.

Abstract
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