
PETRI KANNISTO
SERVICE-ORIENTED BUSINESS PROCESS MODELING IN
OPERATIONS AND MAINTENANCE
Master of Science Thesis

Examiner: Professor Seppo Kuikka
Examiner and topic approved
in the Faculty of Automation,
Mechanical and Materials Engineering
Council meeting on 12th January 2011

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Automation Engineering
KANNISTO, PETRI: Service-Oriented Business Process Modeling in Operations and
Maintenance
Master of Science Thesis, 88 pages, 6 appendix pages
February 2011
Major: Automation Software Engineering
Examiner: Professor Seppo Kuikka
Supervisor: Research Scientist David Hästbacka
Keywords: industrial SOA, executable business process, life cycle simulation, XML,
BPMN, WS-BPEL, Web Services, HTTP, DPWS, real-time system

Service-Oriented Architecture (SOA) is a paradigm for modeling the interaction

of different parties in a distributed system. In SOA, a high abstraction level leads

to platform-independent interoperability. Moreover, different parties are only loosely

coupled to each other. As a result of these, SOA is a scalable and flexible architecture.

As industrial automation systems are typically inflexible and expensive to install

or to modify, it would be beneficial to have all devices interact in the SOA manner.

However, current technologies to implement a SOA are problematic from the devices

point of view. The technologies require a lot of computational resources, and they

also lack support for hard real-time functions. Work has been done to overcome

these challenges, but especially hard real-time capable SOA cannot currently be

implemented.

Despite their limitations, current SOA technologies can be used for several func-

tions of industrial plants. In this study, service-oriented solutions are created for

the estimation of environmental footprints and for condition monitoring. The solu-

tions are modeled as diagrams using a standard graphical notation after which the

diagrams are converted to an executable language.

Both implementations show the efficiency of the selected modeling method. The

principles of SOA enable the reuse of different resources flexibly in different applica-

tions which saves work. A standard structured data format was used in both solu-

tions, and it facilitates integration. As there is a built-in support for the format in

modern applications, a solution designer can concentrate on data contents on a high

level. Compatibility problems were also encountered, but they were overcome using

wrapper services. There were also other integration problems with the technologies

used. Despite the problems, graphical modeling saves time compared to textual met-

hods to model communication. It was also recognized that careful design is required

in distributed systems to avoid performance problems.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Automaatiotekniikan koulutusohjelma
KANNISTO, PETRI: Palvelukeskeiset liiketoimintaprosessit käynnissäpidon toiminto-
jen mallintamisessa
Diplomityö, 88 sivua, 6 liitesivua
Helmikuu 2011
Pääaine: Automaation ohjelmistotekniikka
Tarkastaja: professori Seppo Kuikka
Ohjaaja: tutkija David Hästbacka
Avainsanat: teollisuus-SOA, suoritettava liiketoimintaprosessi, elinkaarisimulaatio, XML,
BPMN, WS-BPEL, web-sovelluspalvelu, HTTP, DPWS, reaaliaikajärjestelmä

Tässä työssä tarkastellaan palvelukeskeisten liiketoimintaprosessien soveltamista teol-

lisuuden käytön ja kunnossapidon toiminnoissa. Aluksi käsitellään teknologiaperhet-

tä, jota käytetään tyypillisesti palvelukeskeisen arkkitehtuurin toteutuksessa. Sitten

tarkastellaan palvelukeskeisen arkkitehtuurin periaatteita sekä palvelukeskeisiä lii-

ketoimintaprosesseja. Sen jälkeen käydään läpi palvelukeskeisen ajattelun mahdolli-

suudet ja ongelmat teollisuusautomaatiossa. Työssä luodaan kaksi palvelukeskeistä

liiketoimintaprosessia teollisuuden toimintoihin. Ensimmäinen niistä arvioi laittei-

den aiheuttamaa ympäristökuormaa, kun taas toinen kerää kunnonvalvontatietoa

laitteista. Kummankin toteutuksen yhteydessä arvioidaan käytettyjen tekniikoiden

hyötyjä sekä kerrotaan, minkälaisia ongelmia työssä tuli vastaan.

Web-sovelluspalvelut (Web Services) ovat tekniikka verkon yli toimivan järjestel-

män eri osien integroimiseen. Kommunikoinnin osa-alueiden abstraktiotasoa noste-

taan eri teknologioiden avulla, jolloin saavutetaan yhteensopivuus palveluiden toteu-

tusalustoista riippumatta. Web-sovelluspalveluiden perustekniikat keskittyvät raja-

pintojen ja tiedon kuvaamiseen, palveluiden löydettävyyteen sekä tiedonvälitykseen.

Niiden ohella on joukko lisätekniikoita, joilla saadaan tuki esimerkiksi tietoturvalli-

seen tai tapahtumapohjaiseen viestintään.

Web-sovelluspalvelut ovat tavallinen, joskaan ei ainoa, tekniikka palvelukeskeisen

arkkitehtuurin (SOA eli Service-Oriented Architecture) toteuttamiseen. Siinä ha-

jautetun järjestelmän eri osien yhteistoiminta mallinnetaan palvelukutsuina. Pal-

velukeskeisen arkkitehtuurin tärkeimpiä periaatteita ovat esimerkiksi korkea ab-

straktiotaso, uusien palveluiden koostaminen olemassa olevia palveluita käyttämäl-

lä, löyhät kytkennät palveluiden välillä sekä palveluiden löydettävyys. Vaikka web-

sovelluspalvelut antavat edellytykset palvelukeskeisen arkkitehtuurin periaatteiden

noudattamiseen, huolellisella suunnittelulla on aina suuri merkitys.

Palveluita koostamalla voidaan luoda hierarkioita, joissa monimutkainen pää-

määrä saavutetaan suorittamalla joukko yksinkertaisia palveluita. Tällöin puhutaan

IV

palvelukeskeisistä liiketoimintaprosesseista. Nimestään huolimatta liiketoimintapro-

sessi ei välttämättä liity liike-elämän toimintoihin, vaan se voi tarkoittaa mitä ta-

hansa sovelluslogiikkaa. Liiketoimintaprosessien logiikan kuvaamiseen on kehitetty

kaaviokieliä, jotka ovat paitsi helposti ymmärrettäviä myös ilmaisuvoimaisia. Jotkin

mallinnusohjelmat osaavat luoda kaavioiden perusteella koneellisesti suoritettavia

liiketoimintaprosesseja.

Palvelukeskeinen arkkitehtuuri toisi joustavuutta ja skaalautuvuutta myös teolli-

suusjärjestelmiin. Perinteisen teollisuusautomaation ongelmana ovat laitteiden kon-

figuroinnin vaatima suuri työmäärä, järjestelmän eri tasoilla olevien laitteiden ja

tiedon heterogeenisuus sekä eri valmistajien tuotteiden yhteensopimattomuus. Ny-

kyiset palvelukeskeisen arkkitehtuurin toteutustekniikat ovat kuitenkin liian moni-

mutkaisia pienitehoisiin laitteisiin, ja toisaalta reaaliaikaisuutta ei ole tähän asti to-

teutettu palvelukeskeisesti. Tutkimusta on tehty sekä palvelukeskeisten tekniikoiden

resurssien kulutuksen vähentämiseksi että reaaliaikaisen palvelukeskeisen arkkiteh-

tuurin saavuttamiseksi. Kokonaista järjestelmää, joka täyttäisi nämä vaatimukset,

ei kuitenkaan ole tähän mennessä luotu.

Nykyisten palvelukeskeisten tekniikoiden rajoitteista huolimatta on monia teolli-

suuden toimintoja, joissa niitä voidaan hyödyntää. Esimerkkinä tässä työssä luodaan

kaksi palvelukeskeistä liiketoimintaprosessia käytön ja kunnossapidon toimintoihin.

Ensimmäinen niistä arvioi laitteiden tuottamaa ympäristökuormaa, kun taas toinen

kerää kunnonvalvontatietoa laitteista. Liiketoimintaprosessit mallinnetaan graafisel-

la tekniikalla, jolla luodut kaaviot muunnetaan koneellisesti suoritettavaan muotoon.

Laitteiden ympäristökuormaa arvioiva liiketoimintaprosessi käyttää julkista ym-

päristötietokantaa tarvittavan tiedon etsimiseen. Liiketoimintaprosessi mahdollistaa

erilaisten laitteiden elinkaaren aikana syntyvien päästöjen vertailun. Liiketoiminta-

prosessissa käytetään erilaisia web-sovelluspalveluihin sekä suoritettavien liiketoi-

mintaprosessien mallintamiseen liittyviä tekniikoita. Luotujen liiketoimintaproses-

sien ja ympäristötietokannan välisten yhteensopivuusongelmien vuoksi käytetään

niin kutsuttua wrapper-palvelua, jolla palvelupyynnöt muokataan yhteensopivaan

muotoon.

Kunnonvalvontaa suorittava liiketoimintaprosessi hyödyntää uutta web-sovellus-

palveluille tehtyä laiteprofiilia. DPWS (Devices Profile for Web Services) vähentää

laskentatehon tarvetta perinteisiin web-sovelluspalveluihin verrattuna. Laiteprofii-

lin avulla luodaan verkko, jonka rakenne voi muuttua dynaamisesti ilman erillistä

konfigurointia. Liiketoimintaprosessiin integroidaan myös tehdasmalli, jota käyte-

tään laitetietojen hallintaan. DPWS-palveluiden integroiminen liiketoimintaproses-

seihin ei onnistu yhtä suoraviivaisesti kuin perinteisten web-sovelluspalveluiden. Osa

yhteensopivuusongelmista ratkaistaan käyttämällä viestien käsittelyyn tavallisesta

V

poikkeavaa lähestymistapaa, kun taas osa ratkaistaan wrapper-palveluita käyttä-

mällä.

Luotujen liiketoimintaprosessien perusteella tehdään useita johtopäätöksiä. Pal-

veluiden integroiminen liiketoimintaprosesseihin ei ole ongelmatonta: standardeista

huolimatta asiakassovellusten ja palvelinten välillä voi olla yhteensopimattomuut-

ta. Tällöin on käytettävä wrapper-palveluita. Käytetty mallinnusmenetelmä ja sen

tekniikat säästävät kuitenkin aikaa verrattuna vastaavan sovelluksen kehittämiseen

perinteisillä ohjelmistotekniikan menetelmillä. Tiedon saatavuus rakenteisessa muo-

dossa helpottaa sen käyttämistä, ja palvelukeskeinen ajattelu vähentää integrointiin

tarvittavaa työtä. Työssä todetaan myös, että hajautetussa sovelluksessa on olen-

naista minimoida verkon yli tapahtuvien palvelukutsujen määrä, koska ne pidentävät

toimintojen suoritusaikaa.

VI

PREFACE

This Master of Science thesis was written in the Department of Automation and

Systems Engineering in Tampere University of Technology. It is a part of the CODES

project (Computational Models in Product Lifecycle) funded by Tekes (the Finnish

Funding Agency for Technology and Innovation). In CODES, the research focus was

utilizing the information produced during the phases of the lifecycle of a product.

Several persons contributed this thesis work. The inspector, Professor Seppo

Kuikka, provided valuable comments and points of view related to the contents of

the work. The supervisor, Research Scientist David Hästbacka helped me to get into

the practical part of the work and he also gave valuable feedback. I would also like

to thank all the other members of the Automation Software Engineering research

group as they have always been ready to help me. Finally, I would like to thank my

intimates for their support during the work.

Tampere, 13th January 2011

Petri Kannisto

email: petri.kannisto@tut.fi

VII

CONTENTS

1. Introduction . 1

2. Web Services and Service-Oriented Architecture 4

2.1 Introduction to Web Services . 4

2.2 Core Technologies of Web Services . 5

2.2.1 XML . 5

2.2.2 SOAP . 9

2.2.3 WSDL . 10

2.2.4 UDDI and WS-Discovery . 12

2.3 REST . 14

2.4 Basic Principles of SOA . 16

2.5 Evaluation of Web Services for SOA 18

2.6 Conclusions . 19

3. Business Processes . 21

3.1 Service Composition . 21

3.2 Service Layers and Models . 23

3.3 Implementing Business Processes . 26

3.4 BPMN . 27

3.5 WS-BPEL . 30

3.6 Support Software Overview . 32

3.7 Conclusions . 35

4. Towards Industrial Service-Oriented Architecture 36

4.1 Motivation . 36

4.2 Research and Implementations . 37

4.2.1 OPC UA . 37

4.2.2 DPWS . 39

4.2.3 RTSOA . 40

4.2.4 RT-Llama . 41

4.2.5 RI-MACS . 43

4.2.6 Middleware With Partial JMS API 43

4.3 Conclusions . 44

5. Service-Oriented Life Cycle Simulation . 46

5.1 Life Cycle Thinking . 46

5.2 ELCD and ILCD . 47

5.3 Conceptual Framework for Footprint Estimator 50

5.3.1 Requirements . 50

5.3.2 Footprint Calculation . 51

5.4 Footprint Estimator Architecture . 53

VIII

5.4.1 Architecture – the First Attempt 53

5.4.2 Optimized Architecture . 56

5.5 Footprint Estimator Implementation 59

5.5.1 Business Process Design . 59

5.5.2 Data Extraction from ELCD . 64

5.5.3 HTTP Request Challenge . 65

5.5.4 XSLT Usage . 67

5.5.5 Experiences of BPMN . 69

5.5.6 Using Intalio BPMS . 69

5.6 Client Development . 71

5.7 Conclusions . 74

6. Service-Oriented Condition Monitoring . 76

6.1 Architecture . 76

6.2 Implementation . 78

6.2.1 Business Process Design . 78

6.2.2 DPWS Network . 81

6.2.3 Integrating DPWS to Business Processes 82

6.3 Conclusions . 84

7. Summary . 86

7.1 Results . 86

7.2 Future Work . 87

References . 89

A.Appendix: XML Schemata of Footprint Estimator 100

B.Appendix: XML Schemata of Condition Monitoring 102

IX

ABBREVIATIONS, TERMS AND NOTATION

API Application Programming Interface; the interface of a soft-

ware entity through which it can be used by other software

entities.

BPMN Business Process Modeling Notation; a diagram technique

to describe the flow of business processes and to visualize

WS-BPEL.

Business Process A set of actions with a specific result as the target.

communication

protocol

The set of rules that guarantees the interoperation of ap-

plications.

DCS Distributed Control System; a control system in which con-

trolling is distributed to different devices.

DPWS Devices Profile for Web Services; a technology profile that

defines which features shall be used to make devices inter-

operable using Web Services.

ELCD European Reference Life Cycle Database; an XML-based

LCI database funded by the European Commission.

ERP Enterprise Resource Planning; an information system to

manage the resources of an enterprise.

exchange In ILCD, an input or an output of a production process.

flow data set In ILCD, an XML document that describes one material

or product flow.

flow property

data set

In ILCD, an XML document that describes one flow prop-

erty such as mass.

HTML Hypertext Markup Language; A language that is used to

present web pages.

HTTP Hypertext Transfer Protocol; a communication protocol

that transfer information textually.

Intalio BPMS A software product for business process modeling.

Intalio Designer A development environment in which the business pro-

cesses of Intalio BPMS are created.

Intalio Server A server software product in which Intalio BPMS business

processes are executed.

IP Internet Protocol; a communication protocol whose pur-

pose is to identify devices in a network.

X

ILCD International Reference Life Cycle System; A specification

that includes both an XML-based format to store LCI data

and a book series that provides a framework for Life Cycle

Assessment (LCA).

ISO 8859-1 A character encoding method.

Java A language for creating computer programs that can be

run on different platforms.

JAX-RS Java API for RESTful Web Services; a Java library for

creating Web Services which have a HTTP interface.

JAX-WS Java API for XML Web Services; a Java library for creating

Web Services and their clients using WSDL to describe

interfaces.

JMEDS Java Multi Edition DPWS Stack; a DPWS communica-

tions stack implementation made with Java.

LCA Life Cycle Assessment; A methodological framework with

which environmental impacts can be estimated.

LCI Life Cycle Inventory; the work to resolve and to store infor-

mation of the environmental impacts caused by products

and processes.

MES Manufacturing Execution System; an information system

that is used to manage manufacturing in an industrial

plant.

multicast In communications, sending the same data to several re-

cipients simultaneously.

OPC Open Connectivity via Open Standards; a technology fam-

ily that facilitates the integration of industrial devices to

information systems.

OPC UA OPC Unified Architecture; A specification whose purpose

is to replace all the earlier OPC specifications and to pro-

vide one technology to cover the integration of production

systems.

PLC Programmable Logic Controller; a device that controls

other devices by using logical sequences programmed into

it.

process data set In ILCD, an XML document that contains the LCI infor-

mation related to one production process.

protocol ana-

lyzer

An application or a device to observe network traffic.

real-time task A task that has a deadline for its completion.

XI

REST Representative State Transfer; an architectural style in

which distributed capabilities are modeled as resources.

QoS Quality of Service; in real-time systems, the amount of

downtime and the number of failures that are permitted

per time unit.

SCADA Supervisory Control and Data Acquisition; a system used

to monitor a production system.

SOA Service-oriented architecture; a paradigm in information

technology in which distributed resources or capabilities

are modeled as services.

SOAP A communication protocol on a high abstraction level that

may be used on protocols such as HTTP and UDP.

soapUI An application with which Web Services can be tested.

Tomcat An open source web server for hosting web applications

created with Java.

UBR UDDI Public Registry; a public broker of Web Services

that uses UDDI technology.

UDDI Universal Discovery, Description and Integration; a reg-

istry-based technology to publish and discover Web Ser-

vices.

UDP User Datagram Protocol; a connectionless communication

protocol.

UML Unified Modeling Language; a set of diagram techniques to

visualize the structure and the behavior of systems.

unicast In communications, sending data to one recipient.

unit group data

set

In ILCD, an XML document that contains the informa-

tion related to one group of units related to one physical

quantity.

URI Uniform Resource Identifier; a string that identifies a re-

source.

URL Uniform Resource Locator; a string that describes the lo-

cation of a resource.

UTF-8 8-bit Unicode Transformation Format; a character encod-

ing method.

Web Services A technology to implement platform-independent commu-

nication in which resources or capabilities are modeled as

services.

XII

WS-BPEL Web Services Business Process Execution Language; An

XML-based language to describe the execution of business

processes that interact with Web Services.

WS-Discovery Web Services Dynamic Discovery; a technology for dy-

namic Web Service discovery inside a local network.

WSDL Web Services Description Language; an XML-based lan-

guage to describe service interfaces.

XHTML Extensible Hypertext Markup Language; A version of

HTML that is compliant to XML.

XML Extensible Markup Language; a textual language that de-

scribes both the structure and the contents of data.

XML Schema An XML-based language to describe the valid structure of

XML documents. Alternatively, a document written in the

XML Schema language.

XPath XML Path Language; a language to address contents in

XML documents.

XQuery A language to query the data of XML documents.

XSLT Extensible Stylesheet Language Transformations; a lan-

guage to transform XML documents.

CR Reference consumption

E Emission

ER Reference emission

F Footprint

nC Number of consumption items

nE Number of emission items

L Life

Od Operating time per day

OT Total operating time

Oy Operating time per year

t Time

tL Time required for a local service call

tR Time required for a remote service call

tS Time required for a service call (generic)

1 Exactly one

0..1 Zero or one

0..* Zero or more

* Zero or more (same as above)

1

1. INTRODUCTION

The integration of industrial equipment to information systems is not always straight-

forward. During the past decades, the prices of computers have decreased and their

capabilities have risen, which has made them a good platform to gather information

from industrial systems. However, the structure of a production system is typically

hierarchical and heterogeneous as different communication technologies are used to

perform different tasks. Even though such a heterogeneous system meets its require-

ments from the production point of view, its integration to information systems is

not straightforward. In addition, its installation and modification requires a lot of

work. That is, it would be useful if there were a homogeneous technology that would

on one hand facilitate integration and on the other hand require little configuration.

A paradigm called SOA (Service-Oriented Architecture) could meet these needs.

In a distributed system, an important aspect is how different operations and

resources are implemented and located. SOA suggests a solution with several ad-

vantages. In SOA, the capabilities of different actors are modeled as services. As

SOA is an abstract concept rather than a technology, different authors describe its

principles differently. However, the core semantics behind the descriptions is the

same. From the point of view of this study, the most important principles are ab-

straction, loose coupling, discoverability and reusability. The abstraction level has

to be high so that the implementation details of services are hidden and services

running on different platforms can interoperate. Loose coupling means that the

dependencies between services are few, and discoverability is important so that a

service can be found when it is needed. If services are designed as generic as possible,

they can be potentially reused in several applications. All of these principles could

be an advantage also in industrial systems.

Two ways to create a SOA are used in this study. The most popular technology

is Web Services that consists of several technologies and communication protocols

used in the World Wide Web. The idea of Web Services is similar to the functions or

the procedures of a programming language. However, Web Services can be located

in a remote machine, and they also raise the abstraction level of communication to

reach platform-independence. An alternative approach to Web Services is REST

(Representative State Transfer) in which services are modeled as resources rather

than as operations. Compared to Web Services, REST is simpler, and the most

1. INTRODUCTION 2

typical way to implement a REST architecture is to use a subset of the technologies

used in Web Services.

In SOA, services can be orchestrated to form larger entities that perform more

complex tasks than the services they compose. If such an entity has a service inter-

face, it is called a service-oriented business process – again, such a business process

can be composed into other business processes that perform even more complex

tasks. Web Services and REST define the interaction between services, but they

cannot define a flow of such a business process. Thus, languages such as WS-BPEL

(Web Service Business Process Execution Language) have been created to describe

the flow of business processes so that they can be executed by a machine. There

is also a graphical notation called BPMN (Business Process Modeling Notation)

to create diagrams which describe the flow of business processes. Some software

products have even a function to create an executable business processes from such

diagrams.

Despite all their advantages, the SOA implementations made this far cannot be

used in all the functions of current industrial automation. The current technology

cannot provide a SOA that meets hard real-time requirements, which is a necessity

in several control systems. As there are functions such as condition monitoring

that do not necessarily have strict real-time requirements, it is possible to use SOA

for them and a different technology for time-critical functions. However, from the

integration point of view, the optimum would be to have a single homogeneous way

of communicating. Another problem is that the traditional industrial equipment

does not provide enough computational capacity required to run Web Services or a

similar technology. However, as SOA is expected to bring benefits, there have been

several studies to overcome the challenges of industrial SOA.

In this study, two applications are created to demonstrate the use of SOA in

the functions of operations and maintenance. First, a service-oriented footprint

estimator application is introduced. Its purpose is to resolve the environmental

footprint caused by a device during its life cycle using an environmental database

that is available in the World Wide Web. Such an application can be used to compare

the environmental footprints of different devices whenever there is a need for new

equipment in an industrial plant. Another application created in this study is a

service-oriented condition monitoring application. The application uses DPWS, a

technology profile to facilitate the use of Web Services in devices.

The structure of this document is as follows. The theoretical background of the

work is given by looking at Web Services related technologies and SOA (chapter

2), service-oriented business processes (chapter 3) and the work made this far for

industrial SOA (chapter 4). The software solutions that were implemented during

the work are presented in chapter 5 (footprint estimator) and chapter 6 (condition

1. INTRODUCTION 3

monitoring application). Finally, chapter 7 sums up the results and discusses future

work in the context of this study.

4

2. WEB SERVICES AND SERVICE-ORIENTED

ARCHITECTURE

A service-oriented architecture (SOA) could be implemented in several ways, and

the Web Services technology family is one of them. First, this chapter introduces

the technologies behind Web Services. Then, the principles of SOA are discussed

after which Web Services are evaluated for them.

2.1 Introduction to Web Services

Web Services is a technology that enables applications to interoperate over a net-

work, independent of the platform on which they are being run. A Web Service

is realized by a provider agent, and the service is then used by a requester agent.

Agents1 communicate with each other by sending messages. It has not been defined

how the functionality of an agent is implemented, and there is also no restriction

about how the services provided by agents can be combined. [15]

As the interoperation between parties is of high importance in Web Services, the

engagement of a requester to a provider is an essential process. As shown in figure

2.1, there are four basic steps. First, the parties (requester entity and provider entity)

need to get known to each other (arrow 1). After that, human actors agree on the

interface and the semantics of the service (arrow 2). However, it is also possible that

the provider defines the service, giving the requester only the possibility to accept or

to decline it. Then, both parties implement their agents to enable communication

(arrow 3). Finally, the agents created by the parties can interact (arrow 4). [15]

Web Services are not limited to one specification. Additional specifications are,

for example, related to reliable messaging over Web Services (WS-Reliability [50]),

security (WS-Security [57]) or event-based communication (WS-Eventing [16]). All

the additional specifications have their purpose, but they are outside of the scope of

this document. However, the specifications that have a centric role in Web Services

need to be known to understand the core functionality. According to Booth et al.,

the core technologies are WSDL, SOAP, UDDI, XML and HTTP (figure 2.2). WSDL

describes service interfaces and makes them processable by machines. SOAP is used

for communication between requester and provider agents, and it typically operates

1The agents of Web Services are not to be confused with the agents of artificial intelligence
context.

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 5

Provider entity

Provider

agent

Provider

human

3. Create

Requester entity

Requester

agent

Requester

human 2. Agree

1. Find

3. Create

4. Interact

Figure 2.1: The basic steps of a Web Service engagement. [15]

WS

WSDL

SOAP

XML HTTP

UDDI

Figure 2.2: The core technologies used in Web Services (WS). [15]

over HTTP. XML is used to represent messages. UDDI provides the means to use the

registry approach in service discovery. [15] The following section introduces these

technologies one by one. As the benefit brought by UDDI has been questioned,

another discovery technology, WS-Discovery, is also discussed.

2.2 Core Technologies of Web Services

2.2.1 XML

Extensible Markup Language (XML) is a language that describes classes of data ob-

jects. Such a description is called XML document, and it consists of entities (data

storage units). To understand the main purpose of XML on a high level, entities

called element and attribute have the highest importance. Each XML document

must have at least one element, root, which wraps all the other elements (if any).

Each element can have child elements, and each element except the root has one par-

ent element. The structure that results is a tree. Elements can also have attributes,

which are name-value pairs associated to an element. [19]

The syntax of XML can be demonstrated with a simple example. Let us imag-

ine that the following information has to be provided: ”A product called ’milk’ is

delivered by a vendor called ’Milk Ltd.’ The identification number of the vendor

is 680492. The price of one unit of milk is 0.80 euros.” Code 2.1 presents this in-

formation in XML format. The first row begins the root element of the document

(”product”). It has child elements ”name”, ”vendor” and ”price”. ”Vendor” has child

elements ”title” and ”id”. Element ”price” has an attribute called ”currency”. The

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 6

<product>

 <name>Milk</name>

 <vendor>

 <title>Milk Ltd.</title>

 <id>680492</id>

 </vendor>

 <price currency="Euro">0.80</price>

 <!-- This is a comment -->

</product>

Code 2.1: An example of XML document.

row after ”price” element is a comment that does not affect the way the document

is processed, but it can be used, for example, to make the document more under-

standable to human readers by providing additional information.

XML has 10 design goals, including easy processing by software and easy un-

derstanding by humans, whereas terseness is declared less important. [19] As the

example code shows, the syntax of XML is relatively easy to understand and its

regular structure also suggests easy processability by software. However, as the rel-

ative amount of the actual payload in the document is low, its processing consumes

apparently more computing power compared to a more compact data format.

Since the XML specification was released in 1998, no significant changes have been

made to it. There are currently two versions of XML, namely 1.0 and 1.1. Most

changes to version 1.1 are related to treating characters. For example, in XML 1.0,

any character that is not allowed in names is forbidden, whereas in XML, 1.1 any

character that is not forbidden is allowed. Almost all the changes make XML 1.1

less strict than 1.0, but some properties of XML 1.1 are stricter than those of XML

1.0. Thus, XML 1.1 is not completely backwards compatible. [18]

There are also additional XML related technologies that are defined separately

from the main specification. The following paragraphs discuss three of them, namely

XML namespaces, XML Schema and XSLT. Short overviews of XPath and XQuery

are also given.

The motivation of XML namespaces is to make XML reusable. One XML doc-

ument can be used by multiple applications, and, on the other hand, one application

can use multiple XML documents simultaneously. Different documents can contain

elements and attributes that have the same name but a different meaning. That is,

there is a risk of name collisions, but it can be avoided with XML namespaces. [17]

There are two ways to indicate which namespace is being used. First, a namespace

can be associated with a prefix which is then used as a part of any element names

belonging to that namespace. Second, the contents of one element can be declared

to use a default namespace, meaning that all the contents of that element with no

namespace prefix use that namespace. Code 2.2 demonstrates namespace declara-

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 7

<elm xmlns="http://web.net/" xmlns:nnn="http://milk.com/srv/">

 <nnn:pack>02</nnn:pack> <!-- NS: http://milk.com/srv/ -->

 <color>red</color> <!-- NS: http://web.net/ -->

</elm>

Code 2.2: The ways of XML to indicate namespace usage. Modified from [17].

tions. As defined in the specification, the code uses URIs as namespace identifiers.

[17] The namespace of element ”nnn:pack” is ”http://milk.com/srv/”, as prefix ”nnn”

has been bound to that namespace. Respectively, the namespace of element ”color”

is the default namespace ”http://web.net/”, as it has no namespace prefix.

XML Schema is an XML language that describes the structure and the con-

straints of an XML document. It defines, for example, what kinds of elements are

allowed or required in different parts of an XML document, what kinds of attributes

the elements have and what is the type of the contents of an element or an attribute.

[90] The need for a way to describe the legal structure of an XML document is ob-

vious, as XML itself does not offer means for it. With XML Schema, it is possible

to check the validity of a document.

The basic semantics of an XML schema is created with two kinds of declarations:

type declarations and element declarations. A type can be either simple or complex.

[90] A simple type is inherited from a base XML Schema type such as integer, string

or float, and it can define restrictions [11]. It can then be used to define the contents

of an element or an attribute. A complex type can contain elements (or a sequence of

them) or attributes. As simple type declarations concentrate on semantics, complex

type and element declarations are used to define structures. A schema can also define

references to other schemata which enables the reuse the contents of one schema in

others. [90]

Code 2.3 shows an XML schema document that defines some typical elements.

The schema has been simplified to draw attention on the semantics on a high level.

After declaring one simple and one complex data type, the schema defines the struc-

ture of the document using the ”element” tag. Even though only one element is used,

the structure of a document compliant with the schema is not necessarily simple.

The type of the element can be any simple type, but it can also be a complex type,

defining more complex structures. XML schema supports XML namespaces [90],

but they have not been used in the example for the sake of simplicity.

To address the contents of XML documents, a language called XPath has been

developed. Using XPath, an XML document can be processed as a tree whose

contents can be referred to unambiguously. The result of a reference can be an

element, an attribute, the text contained by a node or a group of nodes. In addition,

XPath defines a set of functions with which the data of XML documents (such as

integers, strings and booleans) can be manipulated. The current version of XPath is

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 8

<schema>

 <simpleType>

 <restriction></restriction>

 </simpleType>

 <complexType>

 <sequence>

 <element></element>

 </sequence>

 </complexType>

 <element></element>

</schema>

Code 2.3: A simplified XML schema that defines a simple type, a complex type and an
element. Modified from [90].

2.0 (released in 2007) and it extends the functionality of the original XPath 1.0. [10]

The importance of XPath is high because it is used by XML processing languages

XSLT and XQuery.

XSLT (Extensible Stylesheet Language Transformations) is a technology to trans-

form XML documents. XSLT documents are written in XML, and to make a dis-

tinction between the XML names of XSLT and other XML names, XSLT has its own

namespace. An XSLT document is called ”stylesheet” because one purpose of XSLT

is to describe the formatting used to show the contents of an XML file. However, the

use cases of XSLT are not limited to visual purposes. The possible output formats

of an XSL transformation are XML, HTML, XHTML and text. Two versions of

XSLT have been released: 1.0 in 1999 and 2.0 in 2007. [53]

An essential aspect of XSLT is the way the transformed document is written. The

elements and the attributes of the source document can be copied as they are, but

the resulting document can also be completely different from the source document.

New elements and attributes can be created, and as the output format is defined as

text, the resulting document may contain anything. [53]

XSLT defines several structures that have analogies with procedural programming

languages. Functions and templates are sections of code that may be used from

anywhere in the document. The entire stylesheet can have parameters whose values

are set externally when the stylesheet is executed. Variables can also be defined,

but they are not variables in the sense that once the value has been initialized, it

cannot be changed anymore. Conditional execution can be defined using constructs

if or choose, and if there is a sequence of similar elements in the source document,

they can be processed using the for-each construct. To have more control over the

output of for-each, such elements may be sorted according to a condition. As the

basic mathematical operators can be used in XSLT, it is also possible to perform

calculations. XSLT uses the functions and operators of XPath – that is, everything

that works in XPath works also in XSLT. [53]

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 9

<template name="SomeTemplate">

 <param name="SomeParam"></param>

 <element name="SomeElement">

 <value-of select="SomeParam"/>

 </element>

</template>

<call-template name="SomeTemplate">

 <with-param name="SomeParam">This is some text</with-param>

</call-template>

Code 2.4: An example of an XSLT template and its call. Namespace prefixes have been
left out. Modified from [53].

Code 2.4 shows an example of using a template in XSLT. First, the template is

defined: it will print an element with the name ”SomeElement” and the value of the

parameter ”SomeParam” inside it. After the definition of the template, it is called

using ”This is some text” as the value of the parameter. After the template has been

defined, it could be called from anywhere in the document.

To retrieve data from XML documents, there is also a query language called

XQuery. Unlike XSLT, which has a transformation point of view, XQuery processes

XML documents as if they were databases. However, XSLT and XQuery specifica-

tions have been developed in parallel, and XQuery has also several similarities with

XSLT. Like XSLT, XQuery can define structures such as conditional execution (if

expression), functions and variables. In addition, XQuery uses the complete set

of XPath functions and operators which makes the use of several low-level actions

such a string manipulation and calculations similar to XSLT. The current version of

XQuery is 1.0, and it was released in 2007. [13]

2.2.2 SOAP

SOAP is a lightweight communications protocol for a distributed environment that

does not make any assumptions about the communications protocol lying under it.

[43] However, the specification of SOAP defines a binding only for HTTP [44]; it

refers to that HTTP is most typically used. The current version of SOAP is 1.2.

Compared to its predecessor SOAP 1.1, the syntax of SOAP 1.2 has been changed,

and it also defines additional semantics. Moreover, unlike the acronym ”SOAP”

stood for Simple Object Access Protocol in version 1.1, it is not spelled out anymore

in version 1.2. [63]

The specification of SOAP has only a few requirements about the message struc-

ture. SOAP messages are represented in XML 1.0. All the contents of a message is

wrapped by Envelope element which contains one Body and at most one Header el-

ement. The purpose of Header is to contain any information that is context-specific

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 10

<Envelope>

 <Header></Header>

 <Body></Body>

</Envelope>

Code 2.5: The basic elements of a SOAP message. [43]

(for example, related to the path the message is routed along). The contents of

Header may be modified by any intermediary while the message is on its way from

the origin to the destination. Any data that is meant to be processed only by the fi-

nal recipient is included in Body element, which is obligatory. The contents of Body

must not be modified during message transportation. The specification of SOAP

does not define what kind of information is obligatory in Header and Body; that is,

the contents are subject to any technology that lies over SOAP. [43]

Code 2.5 shows the basic structure of a SOAP message. Despite its simplicity,

there are several additional mechanisms that are optional in a message. For example,

a header block (an element in Header) could contain the mustUnderstand attribute

to indicate that the header block must be processed by a node that receives the

message. Another example is the attribute role that indicates to which node a

particular header block is targeted. [43]

2.2.3 WSDL

WSDL (Web Services Description Language) is an XML-based language that de-

scribes Web Services. It has the means to describe both the abstract functionality

of a Web Service and its concrete details such as underlying technologies and service

endpoints. [22] The two main versions of WSDL are 1.1 and 2.0, released in 2001

[23] and in 2007 [22].

Code 2.6 shows the basic elements of a WSDL 1.1 document and a WSDL 2.0

document. The documents have been simplified to demonstrate only the basic struc-

ture, but they show significant differences between the specifications. The purpose

of the elements is described in table 2.1. The differences between versions 1.1 and

2.0 are mostly related to the way things are expressed. For instance, ”message”

elements have been replaced with type definitions, and former ”portTypes” are now

called ”interfaces” [27]. The way of defining operations has also been changed, as

operation types have been replaced with message exchange patterns. [67, p. 168].

Both WSDL 1.1 and WSDL 2.0 are flexible about schema languages and com-

munication protocols. Both define XML Schema as the primary content model def-

inition language, but the possibility to use another schema language is mentioned

in both specifications. Moreover, both versions define a binding to use SOAP and

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 11

<definitions> <description>

 <import/> <documentation></documentation>

 <documentation> <import></import>

 </documentation> <include></include>

 <types></types> <element></element>

 <message></message> <types></types>

 <portType></portType> <interface></interface>

 <binding></binding> <binding></binding>

 <service></service> <service></service>

 <!-- ext. elem. --> </description>

</definitions>

Code 2.6: The basic elements of a WSDL 1.1 document [23] (left) and WSDL 2.0 document
[22] (right).

Table 2.1: The basic elements of a WSDL 1.1 document [23] and a WSDL 2.0 document
[22]. Even though same explanations are used for some version 1.1 and 2.0 elements,
there may be differences on a detailed level. In WSDL 2.0, the concept component covers
elements ”interface”, ”binding”, ”service”, ”element”, ”types” and ”description”. [22].

Element
(occurrences)

Purpose

binding
(0..*)

1.1, 2.0: Describes the data format and the communications protocol required
to access a service.

documentation
(1.1: 0..1)
(2.0: 0..*)

1.1, 2.0: A human-readable documentation about the purpose of an element.
A documentation can be inside any WSDL element. In 2.0, the documentation
can also be machine-processable.

element
(0..*)

2.0: Declares the name and the content model of an element.

(ext. elem)
(0..*)

1.1: Extensibility elements are used to extend the language.

import
(0..*)

1.1: A mechanism to import elements that are defined in another document.
2.0: A mechanism to import components that are located in another file and
have a different namespace than the including document.

include
(0..*)

2.0: A mechanism to include components that are located in another file and
have the same namespace as the including document.

interface
(0..*)

2.0: Defines an interface for a service.

message
(0..*)

1.1: A format definition for data used in communication.

portType
(0..*)

1.1: A set of operations offered by endpoints.

service
(0..*)

1.1: Groups a set of related ports together.
2.0: Defines a service. The service is associated to an ”interface” and to a
”binding”, and its address can also be defined in this element.

types
(0..1)

1.1, 2.0: A collection of data type definitions.

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 12

HTTP as the communication protocols, but it is possible to define bindings for other

protocols as well. [22; 23]

As WSDL can describe all the information required to consume a Web Service,

the structure of a WSDL document can be complex. However, the complexity is

not necessarily a problem from the application developer point of view. There are

software products both for the automatic generation of WSDL documents and for

their automatic processing. Thus, when a service or a service consumer is being

developed, it is not necessarily required to know the details of WSDL.

2.2.4 UDDI and WS-Discovery

There are several technologies that could be used in Web Service discovery. This

subsection discusses UDDI and WS-Discovery.

Universal Discovery, Description and Integration (UDDI) is a technology to pub-

lish and discover Web Services. It provides information about service providers,

services and the interfaces of the services being offered. UDDI is based on HTTP,

XML, XML Schema, SOAP and WSDL. There are three versions of UDDI, namely

1.0 (released in 2000), 2.0 (2001) and 3.0 (2004). [49]

The features and functionality of UDDI have received critics. At the time UDDI

was being developed, there was a vision of UDDI Business Registry (UBR), a public

Web Services broker that would facilitate their discovery in Internet [49]. Several

major IT companies implemented a UBR, but as far as is known, all of them have

been abandoned. According to a website of Microsoft, the UBR project of IBM,

Microsoft and SAP proved the ”interoperability and robustness” of UDDI [92]. How-

ever, Stollberg & Fensel claim that public UDDI registries were abandoned as the

publishing and the searching functionality of UDDI was insufficient [89]. Another

author criticizing the search functionality is Mintchev. He claims that when using

UDDI as a private service registry, the insufficient features of the classification sys-

tem encourage the usage of proprietary extensions. [62] Finally, UDDI is said to be

too complex considering the functionality it offers [70].

It remains unclear how much value UDDI can bring to a Service-Oriented Archi-

tecture. Even though public UBR services do not currently exist as far as is known,

UDDI could still be used in a narrower context such as inside one organization.

However, another technology could bring similar functionality with less work and

less complexity.

Another discovery solution for Web Services is WS-Discovery (Web Services Dy-

namic Discovery). Its current version is 1.1, and it was released in 2009. [69]

To discover services in a simple way, WS-Discovery provides an ad hoc mode, in

which the services in a network can be located by two means: either by service type

or service name. When a consumer wants to discover a service of a specific type, it

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 13

Consumer

2

Proxy

Service 1

Service 2

Service 3

Consumer

1

Service 1

Service 2

Service 3

Consumer

1

Consumer

2

Figure 2.3: Discovery using the ad hoc mode (left) and the managed mode (right). Based
on [69].

sends a probe message to a multicast group in its network. The services that match

the requested type send a response to the consumer. When searching for a service

by name, the consumer sends a resolve message, and the functionality is similar.

To reduce the need to poll for services in the ad hoc mode, a service that joins the

network sends a multicast hello message so that any potential clients in the network

are aware of the new service. Moreover, when a service leaves the network, it sends

a multicast bye message to indicate it is leaving. [69]

To enhance scalability and to make services reachable outside an ad hoc network,

WS-Discovery provides a managed mode in which a discovery proxy is used. In

the managed mode, services and consumers do not send their messages directly to

each other but to a discovery proxy. If the discovery proxy detects any multicast

probe or resolve messages, it sends an announcement about itself which makes con-

sumers switch themselves to the managed mode. Moreover, if a discovery proxy

does not respond to the messages sent by a consumer, the consumer switches itself

automatically to the ad hoc mode. [69] The ability to change the discovery mode

automatically makes networks more flexible and robust, and they have no single

points of failure when discovery is concerned. Figure 2.3 illustrates the principles of

the two discovery modes.

It has not been specified which communication protocols shall lie under WS-

Discovery. However, the specification defines the usage of IP multicast and SOAP-

over-UDP for multicast messaging and SOAP-over-HTTP for unicast messaging.

[69]

WS-Discovery is oriented to local networks. Its intention is to require minimal

networking services, and its goal is not to be scalable over Internet. [69] However,

according to a study, it is possible to build additional layers on WS-Discovery by

configuring discovery proxies, which results in better extensibility [78].

The approaches of UDDI and WS-Discovery are different, and neither of the tech-

nologies brings a universal discovery solution. UDDI is registry-oriented and suits

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 14

better for manual use by humans as it provides a storage for service documentations;

WS-Discovery is peer-to-peer oriented, and its model is lighter, suggesting automatic

discovery of services whose type is known beforehand. During its existence, UDDI

has received a lot of criticism, and it is controversial how much advantage it can

bring. In contrast, WS-Discovery is currently a young technology, and it remains to

be seen whether it will be a success.

2.3 REST

The traditional Web Services technology family is complex: several specifications

such as WSDL and SOAP are required even when a simple service is created. How-

ever, an approach called REST (Representational State Transfer) suggests a simpler

alternative. According to Fielding, REST is ”an architectural style for distributed

hypermedia systems”. Its motivation is to capture the principles of the technologies

behind World Wide Web, as it has turned out to be successful and scalable. [37]

REST has six principles: client-server model, statelessness, cache, uniform in-

terface, layered system and code-on-demand. The key point of client-server model

from the REST point of view is the separation of user interface from data storage.

Statelessness means that any state information is always stored by clients, never by

servers. Caching means that any information that has been labeled cacheable can

be stored by clients to reduce network traffic. Uniform interface results in a simple

system architecture and it also makes interfaces less coupled to the service behind

them. Layered system makes it possible to hide system functionality, showing only

the utmost layer to the user. The last principle, code-on-demand, is optional, and it

allows a client to download code from a server and execute it on its own machine.

[37, pp. 78–85]

Even though REST has several principles, the attention is typically on interfaces

in the Web Services context. In fact, a service that is designed in the REST style

commonly refers to a service that has an HTTP interface even though REST is not

restricted to HTTP. According to Bean, HTTP supports several commands, but in

the scope of Web Services, the most important ones are the CRUD commands. The

CRUD of HTTP are POST (”create”), GET (”read”), PUT (”update”) and DELETE

(”delete”). These four commands provide all the functionality required to utilize a

resource. [9, p. 49] That is, as traditional Web Services define a custom interface

with WSDL, the interface of REST-style services is always the CRUD commands

set.

It is typical that SOAP and REST are considered opposite ways to implement a

Web Service. This is not necessarily the case as SOAP is a communications protocol

whereas REST is an architectural style. Moreover, the requests in SOAP version

1.2 can be sent as HTTP requests [44] which actually enables the use of SOAP in

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 15

the REST style. Thus, it would be more descriptive to use terms ”resource-oriented

design” for REST and ”operation-oriented design” for the traditional SOAP as used

in [64, pp. 24–26].

There has been a lot of debate whether REST has advantages over SOAP in Web

Services. Operation-oriented SOAP usage is said to result in needless complexity

and even reduce interoperability. It has also been stated that it is needless to raise

the abstraction level higher than HTTP. On the other hand, the simplicity of a

REST interface is said to be problematic in complex operations, resulting in a high

number of operation calls compared to a customized interface. [42]

Some authors find advantages in both technologies. According to Bean, several

successful REST-style service implementations prove the effect of REST. However,

a REST-style service can also be less flexible when it is about changing the ser-

vice, requiring either requesters change their applications or the service provider

to maintain several service versions. [9, p. 50] According to zur Muehlen et al.,

REST services cannot be debugged during development while SOAP services can.

In addition, the customizability of a SOAP-style interface makes it able to raise the

abstraction level, requiring fewer objects to be called by a service requester.

REST is also said to be looser coupled than SOAP-based design [65]. The claim

refers likely to service interfaces as REST does not require WSDL or similar to

declare an interface. As interfaces are always the same (”CRUD”), less configuration

is required to set up a service consumer. However, if REST refers to XML-over-

HTTP messaging as typical, the structure of XML messages has to be known by the

consumer anyway. There is also a language for this purpose. According to Hadley,

WADL (Web Application Description Language) is a language to ”provide a machine

processable description of HTTP-based Web applications”. WADL can describe the

parameters required to call a specific HTTP interface, and it also associates data

types (for example, defined in an XML schema) to requests and their return values.

[45] That is, WADL could be considered the WSDL of REST, but WADL is simpler

due to the simple nature of HTTP-based services. However, as of WSDL 2.0, even

WSDL can be used to describe a HTTP interface [21].

Neither operation-oriented nor resource-oriented (REST) design can be declared

the winner. There are valid arguments for and against both of them, and the im-

portance of an argument depends on the context. Thus, when a service is be-

ing designed, it is meaningful to select carefully between resource-orientation and

operation-orientation. Neither of the choices is likely to ruin an architecture, but

choosing the better alternative may result in less work in the design phase.

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 16

pu
bl

is
h

Service

Broker

Consumer

discover

bind

Figure 2.4: The roles in SOA. [24, p. 66]

2.4 Basic Principles of SOA

Web Services may bring several advantages to a design of a distributed system.

However, similar advantages could as well be reached with another technology if

it only follows the same principles. They are captured by an architectural model

called Service-Oriented Architecture (SOA). As SOA is an abstract term, there are

different definitions for it. MacKenzie et al. define SOA as follows:

Service Oriented Architecture (SOA) is a paradigm for organizing and

utilizing distributed capabilities that may be under the control of differ-

ent ownership domains. [60, p. 8]

It is unclear who first introduced the term ”service-oriented architecture” [9, p. 1].

However, it is said that service-oriented thinking has its roots in different distributed

component technologies (that do not include Web Services) [8; 81]. Despite that,

Web Services is the most typical technology to implement SOA.

On an abstract level, the basic model of SOA is simple. In SOA, actors have

capabilities that they offer to other actors by setting up services. The ones offering

the services are called service providers, and the users of the services are called

(service) consumers respectively. [60, p. 9] To use a service offered by a service

provider, a consumer has to discover it first. Thus, the SOA model receives its third

role: (service) broker serves as a registry for the services. [24, p. 66] In principle,

it is not necessary to have a broker, but discovering a service for a specific purpose

without a broker turns difficult if there is a high number of different services. [9,

p. 12] Figure 2.4 shows the roles and their actions in the model: after a service has

been published via a broker, consumers can first discover it using the broker and

then bind to it for usage.

Services are suggested to have three key characteristics: visibility, interaction and

(real world) effect (figure 2.5). Visibility means that the provider of a service and

the ones that are using it can find each other. One aspect of visibility is description,

meaning that the users of a service need to know which conditions shall be met so

that the service can be used. Interaction covers the actions that are involved in the

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 17

Service

Visibility

Real world effect Interaction

Figure 2.5: The key concepts of a service. [60, p. 13]

Table 2.2: The principles of service-oriented design as they are listed by Bean [9, p. 25]
and Erl [33].

Principle Bean Erl Meaning
Abstraction x The implementation details of a service are hidden as far as

possible.
Autonomy x Services need control over their execution environment to be

more reliable.
Composability x Services can be composed into larger and more complex enti-

ties to complete more complex tasks.
Discoverability x x Consumers can find enough information about services so that

they can understand their purpose and connect to them.
Governance x A framework is used to make sure that the other SOA prin-

ciples are met. According to Erl, governance is not a SOA
principle: it is a term that covers the management of different
services owned by an enterprise [34, p. 88].

Interoperability x The interaction between the parties of a service is possible
regardless of the technologies that lie under them.

Loose coupling x x Dependencies between services are as few as possible, still
making interoperability possible. There are no direct physi-
cal dependencies.

Reusability x x Services are designed generic enough so that their reuse po-
tential is as high as possible.

Standardized ser-
vice contracts

x Services describe their capabilities and requirements in a stan-
dardized way.

Statelessness x Statefulness is avoided so that services preserve their availabil-
ity and scalability.

usage of a service. It is typical that the interaction is a series of message submissions

which are followed by actions that the messages invoke. Effect is what happens as

the result of the interaction in ”the real world”. The effect may, for instance, be

a receipt of requested information or a change in the state of the parties that are

involved in the interaction. [60, pp. 13–18]

The key principles of service-oriented design are defined differently depending on

the author as shown in table 2.2. Even though there is no conflict between these two

definitions lists, their differences point out that the principles of SOA do not have

any generally accepted exact definition. Besides, the existence of such lists indicates

that creating a service-oriented design may not be straightforward or simple.

Another popular programming paradigm, Object-Oriented Programming (OOP),

has common characteristics with SOA. However, the differences between the par-

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 18

adigms are obvious. Both of them intend to represent the real world and both

of them also gather data and related operations to one place. However, the units

(objects) of OOP must be created at runtime whereas the units (services) of SOA

exist ”somewhere else”. Moreover, the operations in OOP are considered to be

a part of an object that is being called whereas services do not refer to a direct

connection with any object. [60, p. 10] It is obvious that the strength of OOP is the

suitability for tight coupling whereas SOA is more scalable and better suitable for

an environment where instances are more autonomous. It can be said that the two

paradigms are not in any case rivals to each other but they are rather complementary.

OOP suits for organizing the functionality of one application whereas SOA suits for

organizing the interoperation of applications.

A design based on SOA is suggested to have several benefits. In general, the dis-

tributed nature of SOA suits to communication between organizations. Moreover,

the integration of two different SOA systems is supposed to require less work than

the integration of two non-SOA systems. As a SOA system makes few assumptions

on the underlying network, it is scalable. [60, p. 11] According to Cohen, SOA

provides also easier retrieval of existing data and easier software maintenance com-

pared to traditional approaches. [24, pp. 10–11] To verify the benefits of a specific

SOA implementation, it would be useful if its return on investment (ROI) could be

calculated. Some methods have been developed to perform the calculation [59; 77].

However, it has been claimed that it is not even sensible to try to calculate a ROI

as SOA cannot be considered a separate element of a system [61]. That is, it is dif-

ficult to point out concretely how big the benefits of SOA are. However, the points

suggesting advantages are well argued.

2.5 Evaluation of Web Services for SOA

Web Services can be used as the platform of service-oriented design. They offer a rich

functionality, but some questions remain: what are the problems of Web Services

from the system point of view, and do they really meet the principles of SOA?

Performance and response times are a potential challenge in Web Service appli-

cations. The use of XML is an advantage from the extensibility point of view, but

according to Cohen, the processing of large XML documents is resource-consuming.

However, the final performance can be affected by design-time choices such as which

SOAP encoding style is selected. [24, pp. 76–80] Performance can also be improved

by message optimization [9, pp. 334–337]. It is obvious that the predictability

of Web Service response time is a challenge especially when multiple services are

composed in a multi-user network. It is a result of the loosely-coupled and the dis-

tributed nature of the technology. However, there are application areas in which

response times and their predictability are not of the highest interest.

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 19

Table 2.3: Discussion how Web Services meet the principles of service-oriented design.

SOA principle Response of Web Services
Abstraction WSDL and SOAP enable a high abstraction level.
Composability Web Services can be composed to form more complex entities that

solve more complex problems.
Discoverability UDDI or WS-Discovery could be used to achieve this.
Interoperability WSDL interfaces are used similarly whatever the application that

performs service functionality.
Loose Coupling From the connection point of view, both WSDL and HTTP provide

loose coupling.
Reusability Web Services can be reused if they are designed carefully enough

(also, the lower is the granularity of a service the higher is its reuse
potential).

Standardized service
contracts

WSDL provides an established way to describe the capabilities and
requirements of a service.

Statelessness HTTP and SOAP are stateless, but stateful properties can be de-
signed over them.

Table 2.3 discusses how the features of Web Services meet the design principles

of SOA that were introduced in table 2.2. The principles that are considered com-

pletely design-specific (abstraction, autonomy, and governance) are not included.

Even though HTTP could be, in principle, replaced by another communications

protocol, its usage is assumed. To conclude the table, Web Services offer the means

required for service-oriented design. However, as most of the principles discussed are

more or less dependent on design, using Web Services as the architecture basis does

not guarantee a ”well-designed” SOA. Moreover, it depends on the context whether

UDDI or WS-Discovery can offer a sufficient discovery functionality.

It can be said that the features of Web Services technology provide a platform for a

service-oriented design. However, it is typical in information technology that careful

design is required to avoid problems. It is also important to recognize the limitations

of the technology. There are some trade-offs such as the loss of predictable response

times due to loose coupling and high resources consumption due to high abstraction

level. Whether these trade-offs cause problems, depends on the context.

2.6 Conclusions

In this chapter, different technologies that belong to the Web Services technology

family were discussed. Then, the features of Web Services were evaluated for the

principles of SOA paradigm.

Web Services is a technology family to implement the communication between the

parts of a distributed system. The interaction of applications is modeled as service

calls, and the abstraction level is high so that platform-independence is reached. In

the world of Web Services, XML is one of the most important technologies. It is

2. WEB SERVICES AND SERVICE-ORIENTED ARCHITECTURE 20

intended to be both human-readable and machine-processable, and its simple basic

principles can be extended to create complex semantics. As a result, XML is used

as the basis for several other languages such as XSLT, SOAP and WSDL. XSLT is

used to transform XML documents. SOAP and WSDL belong to the most important

Web Service technologies: SOAP raises the abstraction level of communication, and

WSDL is a platform-independent language to define service interfaces.

Two different Web Service discovery technologies were discussed. UDDI is in-

tended to be used by humans in large networks. It has been questioned whether

UDDI brings enough value compared to its complexity. In contrast, WS-Discovery

brings a dynamic approach in which discovery is performed automatically by ma-

chines inside a local network.

An alternative architecture for service interaction is REST in which all the services

have a similar interface. In Web Services, it typically means the use of XML-over-

HTTP instead of SOAP-over-HTTP and WSDL for interface definitions. There has

been a lot of debate whether REST is a better approach, and no universal result

can be declared.

SOA is a paradigm in which the capabilities of the parts of a distributed system

are modeled as services. SOA has different principles including abstraction, inter-

operability, loose coupling, reusability and discoverability. SOA suggests several

benefits such as scalability, easy integration and easy maintenance. Web Services

is one alternative to implemented a SOA as it enables an architecture in which the

principles of SOA are followed.

21

3. BUSINESS PROCESSES

One of the key principles of SOA is that a service can be composed to be a part

of another service. This way, complex actions can be accomplished by executing

several simple services. If the result of such a composition has a certain business

result, it is called orchestration, and the resulting service is called a service-oriented

business process. Such a business process is also a service itself, which means that

it can be orchestrated to be a part of even more complex business logic. First,

this chapter describes the basic concepts related to service composition after which

business processes are introduced. Then, business process technologies are observed,

and finally, an overview of business process modeling software is given.

3.1 Service Composition

Composability is one of the key principles of SOA. Laskey et al. define service

composability as follows: A service can be either atomic or composite. An atomic

service is used via a single interface and its functionality is not dependent on other

services. A composite service is also used via a single interface, but as it interacts

with other services, its functionality depends on them. The services that a composite

service uses may also be composite, enabling multi-layered compositions. [56, p. 74]

According to Erl, the key idea behind composition is that it makes it possible to

use several small solutions of small problems to create a big solution to solve a big

problem [33].

Figure 3.1 shows an example of an atomic and a composite service. S1 is an

atomic service whereas S2 is a composite service as it uses services S3 and S4. S3 is

also a composite service as it uses S5.

S1
S2

S3 S4

S5

Figure 3.1: An atomic service (S1) and a composite service (S2).

3. BUSINESS PROCESSES 22

Table 3.1: A general comparison of fine-grained and coarse-grained services. [9, p. 284]

Aspect Fine-grained
services

Coarse-grained
services

Optimization Simpler More complex
Reuse potential Higher Lower
Expected amount of work on a change Lower Higher
Number of services to manage Higher Lower
Number of services to develop Higher Lower

The term granularity is important in composition. According to Erl, granularity

describes the complexity of an item which can be, for instance, a data item or a

service. If the granularity of a data item is low, it means that it contains only

a small number of atomic information units whereas coarse granularity refers to a

higher complexity. Correspondingly, service granularity refers to the complexity of

the actions that a service does. [32] As table 3.1 shows, service granularity has a

significant effect on service characteristics. In general, a fine-grained service is easy

to optimize, its reuse potential is high, and the required amount of work on system

changes is low. However, fine granularity requires typically more services to be

developed and managed. Thus, it is important to find a compromise that minimizes

any granularity disadvantages. [9, p. 282–284]

Services can be composed hierarchically to form service-oriented business pro-

cesses. A business process is a set of activities that gives a certain business result

when it is executed in a logical sequence. The composition of such a business process

is called orchestration. [56, pp. 75–76] Figure 3.2 shows an example of a service-

oriented business process. The business process itself is used via a service interface

(Service A), and during its execution, it calls another service (Service B) if the busi-

ness process logic considers it appropriate. According to Laskey et al., orchestration

is typically made using an orchestration scripting language which makes it possible

to run the business process in an orchestration engine. The orchestration engine

has the role of a conductor : it is a single agent that coordinates the entire business

process. [56, p. 76]

The interaction between business participants is referred to as business collabora-

tion. If a business collaboration is service-oriented, its composition is called chore-

ography. Figure 3.3 shows an example of a choreography where business processes of

two different organizations collaborate with each other. The main difference between

orchestration and choreography is that a choreography is not coordinated by a sin-

gle conductor. Instead, participants run their own business processes that interact

with each other. However, like orchestration, choreography is typically implemented

using a scripting language. [56, p. 77–78] A collaboration is not necessarily coop-

3. BUSINESS PROCESSES 23

Consumer

Service B

Receive

request

Send

response

Input data Output data

Call service

Service A

Call service if needed

Figure 3.2: An example of service-oriented business process. [56, p. 77]

erative: the participants can also compete with each other. For example, auction

scenarios have been discussed in [6; 26; 96].

Figure 3.4 summarizes the relationships between composition-related concepts.

A composite service contains other services and it is also a service itself. Creating

composite services is called composition. The creation of service-oriented business

processes is called orchestration, and a service-oriented business process is a compos-

ite service. The creation of service-oriented business collaborations is called choreog-

raphy, and service-oriented business collaborations contain service-oriented business

processes. A service-oriented business collaboration can be either cooperative or

competitive by nature.

On an abstract level, composability is a powerful feature of SOA. Services can

be created generic to be reused and composed to several service-oriented implemen-

tations. Together with loose coupling, composability enables an efficient way to

distribute functionality and to enable communication between different parties.

3.2 Service Layers and Models

As service compositions can lead to complex hierarchies, it may be necessary to

categorize services to have control over them. In this section, two different methods

of categorization are discussed: service layers and service models.

According to Erl, business process logic can be divided into business logic and

application logic. Business logic describes the logic of a business process whereas

application logic is an ”automated implementation” of it. Business logic is located in

a layer called business process layer which is the topmost layer of a business process.

Application logic is in application layer which is the downmost layer of a business

process respectively. Service-oriented design results in a third layer called service

3. BUSINESS PROCESSES 24

Consumer

Task 1 Task 3

Input data Output data

Task 2

Service-Oriented

Business Process

Task 1 Task 3Task 2

Internal Business Process

Organisation A

Organisation B

Figure 3.3: An example of service-oriented business collaboration. [56, p. 78]

OrchestrationChoreography

Service-oriented

business process
Composite service

Service

is

iscontains

creates

Service-oriented

business collaboration

creates

Composition

creates

is

contains

Cooperative Competitive

may be may be

Figure 3.4: The concepts related to choreography, orchestration and composition.

3. BUSINESS PROCESSES 25

Business

process layer

Application

layer

A
p

p
lic

a
ti
o

n

lo
g

ic

B
u

s
in

e
s
s

lo
g

ic

Service interface

layer

Business

process layer

Application

layer A
p

p
lic

a
ti
o

n

lo
g

ic
B

u
s
in

e
s
s

lo
g

ic

Figure 3.5: The service interface layer creates a new abstraction level between the
business process layer and the application layer. [31, pp. 281–282]

Service

interface layer

Business

process layer

Application

layer

Orchestration

service layer

Business

service layer

Application

service layer

Figure 3.6: Services can be categorized to abstraction layers on the basis of the degree of
abstraction. [31, p. 337]

interface layer which is located between the business process layer and the appli-

cation layer. A service can contain application logic, but it can also be composed

of other services, which means that it can contain business logic as well. That is,

service interface layer has a dual role as shown in figure 3.5. [31, pp. 280–282]

To follow the principle of loose coupling, it is necessary to divide the service

interface layer to three abstraction layers, namely application service layer, business

service layer and orchestration service layer (figure 3.6). Services are categorized

according to degree of abstraction: services representing application logic belong to

the application service layer and the ones representing business logic belong to the

business service layer respectively. The topmost service layer, orchestration service

layer, is for services that hold the logic required to describe an entire business process.

[31, pp. 334–336]

Services can not only be situated in different abstraction layers but they can

also be categorized to service models according to their purpose (table 3.2). It is

important to note that the categories do not exclude each other; a service can belong

3. BUSINESS PROCESSES 26

Table 3.2: The service models that are relevant to this study.

Service model Explanation
Utility service Generic and reusable by design. Typically situated in the application

service layer, but even the reusable services of higher layers can be
utility services. [31, p. 127, 341, 344]

Wrapper service Enables the integration of an incompatible component by ”wrapping”
its interface. Typically located in the application service layer. [31, p.
339]

Hybrid service A service with both application and business logic. If service abstraction
layers are used, hybrid services belong to the application service layer.
[31, p. 719]

Task-centric
business service

Contains the business logic of one task or business process. Reuse
potential is low. [31, p. 342]

Entity-centric
business service

Contains one business entity or a resource. Can be designed reusable.
[31, p. 342]

Process service Represents an entire business process. Located in the orchestration
service layer. [31, p. 719]

to more than one service model. There are even more service models, but only the

ones that are relevant in the scope of this study are explained. [31]

3.3 Implementing Business Processes

Service-oriented architecture and business processes are terms on a high abstraction

level. Implementing the layers of a service-oriented business process shown in figure

3.5 is a complex task, and there are several alternative technologies that could be

used for such an implementation. At the service level, this study concentrates on

Web Services and the technologies related to it. Web Services were chosen as they on

one hand have a high market acceptance and on the other hand take the abstraction

level high enough to provide interoperability. For the same reasons, WS-BPEL and

BPMN were chosen to be used at the highest abstraction levels. WS-BPEL is an

XML-based language that describes the execution of a business process whereas

BPMN is a graphical notation for the same purpose. Each member of the chosen

technology set has its position either in the business process layer or in the service

interface layer (figure 3.7). It is worth noting that, in the chosen technology set, there

is only one technology in the business process layer, namely BPMN, whereas service

interface layer contains five different technologies1. It suggests that the biggest

challenge is not to describe a business process but to make services interact.

BPMN is not the only notation to describe business processes. Several software

vendors provide business suites that use a proprietary notation to describe busi-

ness processes. For example, SAP NetWeaver BPM uses a notation that has some

1As WS-BPEL describes the execution of business processes, it has also some characteristics of
the business process layer.

3. BUSINESS PROCESSES 27

Business

process layer

Service

interface layer

BPMN

WS-BPEL

WSDL SOAP
XML

Web Services

Figure 3.7: Together with Web Services, BPMN and WS-BPEL are an alternative to
create service-oriented business processes.

common characteristics with BPMN [85]. Due to its several differences, NetWeaver

BPM cannot be called a pure BPMN modeler. IBM WebSphere has a notation that

is based on BPMN 1.1, but it uses proprietary graphical icons [95]. Microsoft has

its own BPM software, too. Business processes are modeled with Microsoft Visio

using a notation called ODBA (Business Process Orchestration Diagram) and then

exported to Microsoft BizTalk Server. [97]

The next subsections introduce BPMN and WS-BPEL. Then, an overview of

current business process software is given.

3.4 BPMN

Business Process Modeling Notation (BPMN) is a notation to visualize business

processes. It has two major design goals. First, BPMN shall be understood by

”all business users”, including business analysts, technical developers and business

managers, and second, it shall be capable of visualizing XML-based business process

execution languages. [98, p. 1] The current version of BPMN is 1.2, and also two

beta versions of 2.0 have been released. This document deals with version 1.2 as

version 2.0 is still informal.2 [20]

BPMN specifications provide a mapping for a business process execution lan-

guage. The specification of version 1.2 describes a mapping to BPEL4WS3, but it is

non-normative and insufficient [98, p. 1]. As the syntactical changes of WS-BPEL

are few compared to BPEL4WS [7], it is obvious that the mapping applies at least

partially also to WS-BPEL. The mapping has been developed further for BPMN ver-

sion 2.0 (now, it has been made for WS-BPEL instead of BPEL4WS), but it is still

stated that not all BPMN-to-WS-BPEL mapping can be defined straightforwardly

[2, p. 461]. That is, the specifications offer only a guideline for business process

software vendors, likely resulting in vendor-specific features in BPMN-to-WS-BPEL

software implementations.

2The changes made for version 2.0 this far include notational changes such as new diagram
elements and two new diagram types. Moreover, BPMN 2.0 introduces technical changes such as
exchange formats and BPMN Diagram Interchange (BPMN DI) to facilitate the exporting and
importing of data between applications. [2, p. 377, 491, 495]

3BPEL4WS and WS-BPEL are explained in the next section.

3. BUSINESS PROCESSES 28

As the design goals of BPMN to be both intuitive and powerful to accomplish

complex tasks are potentially conflicting, there are two groups of graphical elements

in BPMN. The extended element set provides the full functionality of BPMN whereas

its subset, core element set, visualizes simple processes. In addition, the functionality

is extended by non-graphical attributes that are attached to the graphical elements.

[98, p. 17] The core element set is shown in figure 3.8, and the meanings of the

elements are explained in the next paragraphs.

Flow objects describe the flow of a business process. An event is used when

something ”happens” in the business process. An event can have either a trigger

that defines what causes the event or a result that is thrown by the event when

the process flow reaches it. An activity describes something that is performed by

the organization in which the process is executed. An activity can be either atomic

or compound depending on whether it contains more detailed functionality in it.

Gateways are used to control a process flow by branching, forking, merging or joining

different execution paths. [98]

Connecting objects are used to connect objects to each other. A sequence flow

connects activities indicating the order of their execution. A message flow indicates

when process participants send messages to each other, and an association attaches

information to process elements. [98]

Swimlanes are used to divide elements to a group. A pool contains the activities

of one process participant, and a lane is a part of a pool that is used to categorize

activities. [98]

Artifacts provide process-related information that does not affect process flow

directly. Groups are used to categorize activities, and data objects describe how

data is used in the flow. Text annotation is used to give additional information, and

it can be connected to an element in a diagram. [98]

The specification of BPMN does not define the notation strictly as it allows, for

example, additional graphical elements, different colors and different line styles as

long as they do not conflict with any element in the specification. Moreover, some

features are declared optional regarding the way they are displayed or whether they

shall be supported. However, it is meaningful to preserve the BPMN look-and-feel

to maintain the understandability of the notation. [98]

The simple fictional business process in figure 3.9 demonstrates some of the el-

ements of BPMN. In the process, a person applies for study grants. The process

has two participants, ”Applicant” and ”Study Grants Board”. First, the applicant

fills in an application formula after which the formula is sent to the Study Grants

Board. After receiving the application, the Study Grants Board decides whether the

application shall be approved or not. If the application is approved, study grants

are granted for the applicant. Finally, the Study Grants Board sends its response to

3. BUSINESS PROCESSES 29

Name

Some text

Event

Activity

Group

Data object

Text annotation

Gateway

Flow objects

Artifacts

N
a

m
e N

a
m

e
N

a
m

e

N
a

m
e

Pool

Lane

Swimlanes

Connecting

objects

Sequence flow

Message flow

Association

Figure 3.8: The core element set as defined in BPMN 1.2. [98, pp. 17–20]

3. BUSINESS PROCESSES 30

Figure 3.9: A business process of applying for study grants modeled with BPMN.

the applicant. According to White et al., the features of BPMN are far beyond the

example: for instance, timed waiting, assignment of variables and looping execution

can be defined [98].

To conclude, BPMN is a notation whose purpose is to bring the design of business

processes and their implementation closer to each other. BPMN can be mapped to

business process execution languages, and it provides both an intuitive notation and

features to describe complex functionality.

3.5 WS-BPEL

WS-BPEL (Web Services Business Process Execution Language) is an XML lan-

guage that orchestrates service-oriented business processes. The initial version of

WS-BPEL was first called BPEL4WS (Business Process Execution Language for

Web Services). Its version 1.0 was released in 2002 and it was influenced by IBM’s

Web Service Flow Language (WSFL) and Microsoft’s XLANG. Version 1.1 was re-

leased in 2003, and the current version, WS-BPEL 2.0, was released in 2007. [7]

WS-BPEL uses several other XML specifications such as WSDL 1.1, XML Schema

1.0, XPath 1.0 and XSLT 1.0. WSDL is not only used to call the services being

orchestrated. WS-BPEL business processes themselves have a WSDL description

which makes it possible to use them like any Web Service and to compose them into

larger entities. [3]

WS-BPEL can describe both abstract and executable business processes. Abstract

processes are specified only partially and their purpose is not to be executed but

to describe a business process. [3] This document concentrates only on executable

processes. Code 3.1 shows a simplified WS-BPEL document to give an overview of

a typical document structure, and table 3.3 discusses the purposes of the elements

in the document.

3. BUSINESS PROCESSES 31

<process>

 <extensions></extensions>

 <import></import>

 <partnerLinks></partnerLinks>

 <messageExchanges></messageExchanges>

 <variables></variables>

 <correlationSets></correlationSets>

 <faultHandlers></faultHandlers>

 <eventHandlers></eventHandlers>

 <!-- Activities here -->

</process>

Code 3.1: The basic elements of a WS-BPEL document. [3]

Table 3.3: The possible child elements of the ”process” element in a WS-BPEL document.
Activities (the elements that define business process flow) are not included. [3]

Element (occurrences) Purpose
extensions (0..1) Contains extensions to WS-BPEL language.
import (0..*) Imports an external document, such as an XML Schema or a

WSDL document.
partnerLinks (0..1) Contains partner links that model the services that the business

process uses.
messageExchanges (0..1) Contains definitions that point out to which reply activity an in-

bound message activity (IMA) is bound if there are multiple IMA-
reply pairs.

variables (0..1) Contains variable definitions. A variable can be one of the follow-
ing types: a WSDL message type, an XML Schema type or an
element.

correlationSets (0..1) Contains declarations how to target a message to the right busi-
ness process instance.

faultHandlers (0..1) Contains fault handling mechanism definitions.
eventHandlers (0..1) Contains event handling mechanism definitions.

3. BUSINESS PROCESSES 32

The actual flow of a business process is described by activities. Activities are,

for example, control structures, variable handlers or message handlers. There is a

total of 21 activity elements: for instance, ”receive”, ”reply”, ”assign”, ”if”, ”while”

and ”scope”. The comment ”Activities here” in code 3.1 indicates where activities

are located in a WS-BPEL document. If there are any fault handlers defined, they

can also contain activities as they define what to do in case of a fault. ”Scope” is an

important activity: it defines a behavioral context, restricting the visibility of the

elements inside it. All of the elements in table 3.3 except ”extensions” and ”import”

can also situate in any ”scope” activity. [3]

The activities of WS-BPEL are divided into two groups: basic activities and

structural activities. Basic activities define the basic steps of a business process

whereas structural activities control the flow of a business process. Basic activities

are, for instance, ”wait”, ”throw”, ”assign”, ”receive” and ”reply”. ”Wait” activity pro-

vides a mechanism to wait for a specified time or until a deadline has been reached.

”Throw” is used to indicate that a fault has occurred. ”Assign” is used, for example,

to assign data from an existing variable to another or to a new variable. ”Receive”

and ”reply” activities are used to define interaction with services. Structural activ-

ities can do three patterns: sequential control, concurrency and synchronization or

deferred choice. Sequential control defines that activities are performed one after

another. The activities that implement it are ”sequence”, ”if”, ”while”, ”repeatUntil”

and the serial variant of ”foreach”. Concurrency and synchronization are defined

with ”flow” or the parallel variant of ”foreach”. Deferred choice is made with ”pick”

activity. It means that a group of events with associated activities is specified, and

whichever of the events comes first will have its activity is launched. [3]

Code 3.2 demonstrates ”if” activity. Its logic is the same as the if-elseif-else struc-

tures of programming languages like C++ or Java. The conditions are evaluated

one after another, and the first one that matches will be executed. If no condition

matches, ”else” branch will be executed.

In conclusion, WS-BPEL is a relatively complex XML language whose purpose

is to describe the execution of service-oriented business processes. It provides a rich

functionality, such as concurrent execution, event handling and nested scopes.

3.6 Support Software Overview

There are different business process modeling software products available such as

ActiveVOS [1], Fujitsu Interstage [38] and BizAgi [12]. Some software products

provide both BPMN modeling and business process execution while others have

only the capability to represent BPMN. Here, Intalio BPMS is used to demonstrate

an executable business process. Another modeling application called SOA Tools

BPMN Modeler for Eclipse is also discussed.

3. BUSINESS PROCESSES 33

<if>

 <condition>$temperature > 10</condition>

 <!-- Do activities 1 -->

 <elseif>

 <condition>$temperature > 5</condition>

 <!-- Do activities 2 -->

 </elseif>

 <else>

 <!-- Do activities 3 -->

 </else>

</if>

Code 3.2: The basic structure of an ”if” activity. [3]

Intalio Designer

Eclipse

Intalio Server

Apache Tomcat

Apache ODE

Creates business

processes with BPMN

Executes business

processes as WS-BPEL

Figure 3.10: The two Intalio applications required to create and execute business processes.
[48]

Intalio BPMS is a business process management suite that consists of two parts:

Intalio Designer and Intalio Server (figure 3.10). Intalio Designer is based on Eclipse

integrated development environment. It provides the tools to model business pro-

cesses with BPMN and to convert them into BPEL. Processes are executed on Intalio

Server which uses Apache ODE as the BPEL engine. The BPEL version used by

Intalio BPMS is WS-BPEL 2.0. [48]

Intalio BPMS is available as two different editions: community edition and en-

terprise edition. The download and use of the community edition are completely

free-of-charge, but the only technical support offered is the community forum on In-

talio website. In contrast, the enterprise edition has to be paid for, but its customers

receive technical support on the basis of a service level. [48]

Figure 3.11 demonstrates a simple fictional service-oriented business process cre-

ated with Intalio BPMS. In the process, an employee requests a holiday, and a

manager either accepts or declines the request. If the request is accepted, the holi-

day period is saved into the holiday database of the company. Finally, the employee

receives a message that shows whether the holiday was accepted or not.

To understand the interaction between the parties of the holiday request business

process in figure 3.11, it is essential to understand the meaning of its four pools.

Both human roles, employee and manager, have a pool. ”Process” pool describes the

flow of the process, and the downmost pool represents the holiday database. The

3. BUSINESS PROCESSES 34

Figure 3.11: A fictional holiday request business process created with Intalio BPMS.

boxes in ”Employee” and ”Manager” pools represent forms that are used in a WWW

browser. They are requested from the server where the business process is being

run. The forms have been created with Intalio Designer. The holiday database has

a WSDL-defined interface, and the box in ”Database” pool represents one operation

call to the interface.

Creating a business process in Intalio Designer is relatively intuitive and straight-

forward though some business process functionality requires more expertise. The

activities to be used are dragged and dropped into the business process, and a se-

quence of activities is created by simply connecting them using a mouse. To define

which Web Services are called in a business process, any WSDL files and XML

schemata are imported. Then, the service operations being used are dragged and

dropped into the lane on which they are called. Variables-related tasks, such as

assignments and variables-based conditions, are defined in the graphical ”Mapper”

view. However, not all business process functionality can be defined graphically.

That is why Intalio Designer also allows WS-BPEL input in some activities.

Like Intalio BPMS, SOA Tools BPMN Modeler4 is run on Eclipse, but it is

downloaded as an Eclipse plugin, not as a distribution. It does not support the

export of business processes to WS-BPEL, to BPEL4WS or to any other business

process execution language. It is possible to install an Eclipse plugin to perform the

export [86], but as far as is known, such a plugin is not available. STBM has been

developed by Intalio [86]. Thus, it is not a surprise that the graphics of STBM and

Intalio Designer have similarities. As STBM has only the functionality to create

BPMN diagrams, it has fewer features. However, for creating a BPMN diagram

with no need to create an executable process, STBM in even better than Intalio

4To reduce repetition, SOA Tools BPMN Modeler is referred to as ”STBM”.

3. BUSINESS PROCESSES 35

BPMS. As it does not try to convert diagrams to another language, STBM allows a

more flexible BPMN usage.

In summary, several vendors provide their own BPM software. Intalio BPMS can

be downloaded free of charge, and it has the functionality to describe and execute

relatively complex business processes. SOA Tools BPMN Modeler for Eclipse offers

a lighter alternative if the main interest is only to draw diagrams in BPMN.

3.7 Conclusions

Composition is an important aspect of SOA: by composing services so that they

become a part of another service, more complex tasks can be accomplished. Differ-

ent services with a different degree of composition can be categorized to different

service layers according to their complexity. This way, composition makes SOA a

layered architecture. If a composed service has a certain business result, it is called

a service-oriented business process; then, the composition process is called orches-

tration. There can also be interaction between two or more business processes of

different organizations; in that case, the result is a service-oriented business collab-

oration and the creation of such a collaboration is called choreography.

Technologies have been developed to facilitate orchestration. BPMN is a graphical

notation with which the flow of a business process can be described so that both

business and software professionals understand it. BPMN can visualize WS-BPEL

which is an executable XML-based language to describe business processes. WS-

BPEL enables the use of several Web Services and XML related technologies such

as WSDL, XML Schema, XPath and XSLT.

Several software products are available for business process modeling. Some of

them use BPMN or another graphical notation. Some products can even convert

diagrams to an executable format which can be WS-BPEL or some proprietary

implementation. Intalio BPMS is an open source business process modeling suite

which uses both BPMN and WS-BPEL.

36

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED

ARCHITECTURE

SOA is said to have several benefits in distributed systems. Industrial automation

systems are also typically distributed which suggests that SOA would be a good

choice for them as well. However, the requirements of automation systems are

partially different to the requirements of typical business systems, and the current

service-oriented technologies cannot meet all of them. This chapter discusses the

work made this far to overcome these challenges.

4.1 Motivation

The traditional industrial automation technology suffers from inflexibility. Accord-

ing to Bangemann et al., industrial automation systems have traditionally been

hierarchical, and several different technologies have been used at different levels (fig-

ure 4.1). The diversity leads to different data formats and incompatibility between

the levels, making their integration problematic. [5, p. 2] Moreover, current sys-

tems are expensive to install and to change or to expand. Component vendors favor

their proprietary technologies. As a result, when a new component is installed or

an obsolete one is replaced, high costs result especially if the new component has

another vendor than the existing ones. However, flexibility is of high importance as

the market situation keeps changing rapidly and new technologies are developed all

the time. [51, p. 62]

The adoption of SOA in industrial automation suggests several benefits. It would

break the strict system hierarchy and facilitate the communication even between the

systems performing strategic control (such as ERP) and field devices [36, p. 5]. In

addition, as the implementation and the interface of a service are separated from

each other, the interoperation of components manufactured by different vendors

would not be a problem anymore [55]. Besides, replacing a component with another

component with the same interface would require minimal configuration. Systems

would be more flexible and more adaptable, and there would be more potential for

component reuse. As new hardware and communication techniques are developed,

it is possible to make components more intelligent, enabling the distribution of

decision-making into field devices. This decentralization would make systems more

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 37

ERP, MES

Network such as Ethernet

SCADA, DCS

Network such as Ethernet;

middleware such as OPC

PLC

Fieldbus such as Profibus,

Modbus or Hart

Field devices

Technology

Objects such

as XML

Fieldbus specific

data format

Middleware

data format

Data format

Figure 4.1: The typical hierarchy of a traditional industrial automation system. Different
communication technologies are used on different levels. Combined from [5, p. 2] and [40].

robust as there would no longer be a single point of failure. Intelligent devices could

also communicate directly in peer-to-peer manner. [51]

4.2 Research and Implementations

Although SOA has some apparent benefits in industrial systems, its implementa-

tion is currently problematic. According to Komoda, the highest level of industrial

automation systems (”factory management system”) is not a problem: it is com-

parable to any typical business information system, and suitable service-oriented

technologies exist already. However, the industrial devices in the productive level

are challenging from the SOA point of view as their operation may have real-time

requirements. [54, pp. 2–3] Moreover, their computational resources are low [36, p.

1]. Thus, the most important question is how to make devices with different capa-

bilities and different requirements capable of service-oriented communication with

each other.

The next subsections sum up the most recent research work that has brought

SOA and industrial systems closer. First, OPC UA and DPWS are introduced.

Then, some real-time SOA frameworks that are relevant for this domain are looked

at. They are RTSOA, RT-Llama, RI-MACS and a middleware that uses JMS API.

4.2.1 OPC UA

OPC UA is a specification to facilitate the integration of industrial software products

made by different vendors. For that, OPC UA provides an information model, a

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 38

message model, a communication model and a conformance model. OPC UA is

intended to be platform-independent so that it can operate on different devices with

different capabilities. Thus, different application areas such as field devices, MES

and ERP are possible. Before OPC UA, several OPC specifications were released for

different purposes: to retrieve current data, to retrieve historical data and to receive

notifications about events. OPC UA provides the functionality of all of them in one

technology. [72]

The OPC UA specification consists of 13 parts. They have been released sepa-

rately, some in 2009 and some in 2010. The current version is 1.01 for some parts

and 1.00 for the others whereas parts 12 and 13 have not been released yet. [71]

All the parts of the OPC UA specification except part 6 (Mappings) are written on

a high abstraction level. As the mappings to concrete communication technologies

are defined in one part, it is the only one to modify if new technologies are adopted

in the future. [73, p. 5]

To perform communication, there are two data encoding methods and two trans-

port protocols. The data encoding methods are called OPC UA Binary and OPC

UA XML. The purpose of the binary encoding is to enable fast encoding and decod-

ing as well as to have only a small overhead. It does not provide a way to include

field or type names inside data as any utilizer of those messages is supposed to know

their structure beforehand. In contrast, as the name of OPC UA XML suggests, it

uses XML to represent data. One of the transport protocols uses SOAP-over-HTTP,

and the other has been built on TCP. The SOAP-over-HTTP protocol uses WSDL

to describe services, and XML Schema is used to define the structure of XML docu-

ments. [73] The designer of an OPC UA application can provide a support for both

the encoding methods and both the transport protocols. This way, the end user

decides which is more important: to have an easy integration with XML and Web

Services or to get a better performance with other alternatives. [72, p. 9]

The performance of the OPC UA binary encoding and the TCP transport protocol

has been experimented by Salmenperä & Salonen. In their study, an OPC UA

communication stack implemented in Java was tested with different data packet sizes

and different levels of security. In the experiment, if no security features were used

and the packet size was 1024 bytes, the response time never exceeded 2 milliseconds.

With encryption, the response times with the same packet size were typically under

3 milliseconds, exceeding it sometimes. When the packet size was 10240 bytes, the

response time with no encryption remained under 10 ms whereas the delivery of

encrypted messages took between 8 and 60 milliseconds. [82]

The question is whether OPC UA is suitable for real-time functions. 10240 bytes

is enough to carry complex data, and 1024 bytes or even less is enough for simple

messages. A typical response time under 10 milliseconds with these packet sizes is

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 39

Table 4.1: The areas on which DPWS concentrates and the specifications that are used.
[68]

Area Technologies
Messaging SOAP, HTTP, UDP, WS-Addressing, RFC 4122, MTOM
Discovery WS-Discovery
Description XML Schema, WSDL, WS-MetadataExchange, WS-Policy,

WS-PolicyAttachment, WS-Transfer
Eventing WS-Eventing
Security AES/TLS, HTTP Authentication, SHA, TLS, RFC 4122, X.509.v3,

WS-Security

promising for soft real-time functions. However, the study does not address how

loaded the network was during the experiment. If there had been more traffic in the

network, the response times could have been longer and more indeterministic. Still,

it can be said that at least the stack used in the experiment is an alternative for

soft real-time systems if the OPC UA binary encoding is used over TCP. For hard

deadlines, the results suggest too much unpredictability.

4.2.2 DPWS

DPWS is concerned with bringing Web Services support to devices. Devices with

a Web Service interface can be resource-constrained whereas Web Service clients

can offer a higher flexibility. To enable communication between different parties,

DPWS gathers a set of existing technologies and specifies a way to use them. [68]

That is, rather than creating a new technology, DPWS concentrates on specifying

common usage rules. The current version of DPWS concentrates on five different

areas: messaging, discovery, description, eventing and security [68]. Table 4.1 shows

a list of the specifications that are used in these areas. Several specifications on the

list are outside the scope of this document, but they are listed to indicate the high

number of the technologies lying under DPWS.

The initial step in the adoption of DPWS was the SIRENA project (Service

Infrastructure for Real-Time Embedded Networked Devices). The goal of SIRENA

was to integrate embedded devices in industry, telecommunications, automotive and

home automation by creating a service-oriented framework. DPWS was not the only

technology whose usage was considered, but it was chosen due to the limitations of

other alternatives. SIRENA was begun in 2003 and finished in 2005. [14]

Another project, SODA (Service Oriented Device & Delivery Architecture), fol-

lowed from the results of SIRENA [88]. The goal of SODA was to develop a ”device-

level service-oriented ecosystem”. Subgoals were, for instance, creating a complete

tool set for service-oriented architectures of devices, integrating services provided

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 40

by devices with business processes and improving both the performance and the

security of SOA on devices. [83] SODA was begun in 2006 and finished in 2008 [88].

From the industrial automation point of view, the SOCRADES project (Service-

Oriented Cross-layer infRAstructure for Distributed smart Embedded Systems) was

a fundamental step. SOCRADES is a sequel of SIRENA and SODA [88]. Its goal

was to enable a Web Service based service-oriented architecture in both wired and

wireless automation devices with requirements such as robustness, autonomy, intel-

ligence and reusability. DPWS was used in the project. [5, p. 3] SOCRADES was

begun in 2006 and finished in 2009 [87].

Despite the results of SIRENA, SODA and SOCRADES, DPWS is not an ”all-

round” solution for industrial automation. Both the resource consumption of DPWS

and its lack of real-time support are problematic in some systems. According to

Kannisto, several studies have been made to overcome these problems. DPWS

gateway devices may be used to wrap devices that are not DPWS capable. Gateways

may be implemented for each device alone, but they can also wrap a group of devices

or an entire network. It is also possible to provide aggregated data from the wrapped

devices. There have also been studies to create a real-time capable DPWS system.

One possibility is to make the communication protocols under DPWS real-time

capable. Another solution is to have two network connections in a device: one for a

real-time capable protocol and another for DPWS. Finally, the lack of deterministic

communication may not be the only problem. It has been stated that response times

may be long if devices cannot provide powerful computation. [52]

4.2.3 RTSOA

RTSOA is a study to create a real-time SOA framework. This far, no complete

framework has been implemented. The requirements of such a framework have been

considered on a theoretical level, and different service composition algorithms have

been simulated. [91]

In RTSOA, real-time requirements are considered during the phases of the entire

life cycle of an application. In the modeling phase of an application, the real-time

constraints of individual services and the workflow of the application are considered.

In the assembly phase, the functionality of the application is analyzed and evaluated,

and even the phase itself has a response time constraint. After assembly comes the

deployment phase in which the application is deployed so that it can be run. Any

resources required by the nodes in the network are reserved. The final phase is

called management phase in which the application is executed and managed. If the

real-time functions of the application do not meet their deadlines, the management

phase is followed by another modeling phase for which it provides feedback. That

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 41

Modeling Assembling Deployment Management

Figure 4.2: The life cycle of an SOA. [46, pp. 20–23]

is, the life cycle can be modeled as a loop of repeating phases as illustrated in figure

4.2. [91, pp. 1–2]

Several real-time factors must be considered in RTSOA. When a service is being

modeled, the following things must be addressed: minimal and maximal response

times, service invocations capacity, the maximum number of consumers and the

required resources. As a service can be composed dynamically at runtime, available

services need to be known by the system beforehand. Moreover, service information

has to be accessible in real time. As service deployment is performed in real-time,

it needs network bandwidth reserved for it. When an application is being run,

it is analyzed in real-time to observe whether it meets its real-time requirements.

The execution environment of RTSOA has to provide real-time support, enabling

different levels of quality of service (QoS). [91, pp. 2–5]

In the study, simulations were performed for dynamic service composition algo-

rithms. Such an algorithm needs to optimize two targets: the end-to-end execution

time of the application being composed and the total resources consumption caused

by the algorithm itself. Two different algorithms were analyzed: an exhaustive algo-

rithm and a heuristic algorithm. The exhaustive algorithm finds always the optimal

solution, but its resources consumption grows rapidly as the function of the number

of the services being composed. In contrast, the heuristic algorithm can only find

a suboptimal solution but it consumes less computational capacity. It was stated

that, on the basis of resources consumption, the heuristic algorithm is more suitable

for an RTSOA implementation. [91, p. 6–8]

4.2.4 RT-Llama

Panahi et al. introduced another real-time SOA framework, namely RT-Llama. In

RT-Llama, the resources required for business processes are reserved in advance,

and the CPU bandwidth of hosts is controlled. As a result, it is possible to schedule

all the parts of a business process. As service availability may vary, a new business

process is generated for each run even if a user wants to run a business process with

the same requirements. The resource reservations themselves do not have real-time

support. [74, pp. 460–461]

The environment required by a real-time SOA has several requirements. Both

the operating system and the communications infrastructure lying under the mid-

dleware must be real-time capable, and the communications must also have QoS

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 42

dTBTree
GRM

LRM

LRM

LRM

Figure 4.3: The resources management of RT-Llama is partially centralized and partially
distributed. [75]

functionality. Moreover, the business process composition infrastructure must take

user’s scheduling requirements into account, and the distribution middleware must

support the reservation of resources in advance. In addition, any unpredictability

caused by client infrastructure must be known. However, the current work con-

centrates only on two of them: business process composition infrastructure and

distribution middleware. Real-time scheduling is provided by real-time Java and

Solaris 10 operating system. [74, p. 461]

Even though RT-Llama is real-time oriented, not all the services are required to

be real-time capable. A service can be deployed to be either reserved or unreserved

depending on if it can only be requested after a reservation or not. [74, p. 462]

To reserve resources required by a business process, two different strategies can

be used: concurrent or sequential. In the concurrent strategy, the resources are

reserved before the business process begins, and the start time and the end time

of each service call are selected in advance. In contrast, the sequential strategy

reserves each service one after another. It is greedy, attempting to maximize the

remaining time to execute a business process. Both the strategies have advantages.

The concurrent strategy is typically faster. However, sequential strategy has a higher

success rate as indicated by simulations made in the study. [74, p. 464–466]

Panahi et al. have also released another paper related to the RT-Llama frame-

work. It concentrates on the management of resource reservations that have been

implemented using a binary tree data structure (”dTBTree”). dTBTree is located

in a node called Global Resource Manager (GRM) and its information is updated

periodically by Local Resource Managers (LRM) that each host maintains (figure

4.3). Another advance compared to the previous RT-Llama is the implementation

of a ”pre-screening” mechanism. Its purpose is to avoid choosing services whose

utilization rate is high as it would raise the probability to miss deadlines. [75]

The study also presents simulation results that demonstrate how the success ratio,

the efficiency and the effectiveness of the reservation system changes when different

parameters are varied. The parameters include the utilization threshold used in pre-

screening, system workload, dTBTree size and the update frequency of dTBTree. A

high pre-screening threshold value results in a higher success ratio, but it also lowers

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 43

reservation efficiency. Moreover, a higher workload causes more failures. The results

also indicate that there is no significant difference in success rate or efficiency when

the dTBTree is updated less frequently. Finally, it is shown that when pre-screening

threshold is high and dTBTree size is small, the effectiveness of the system is low.

[75]

4.2.5 RI-MACS

Cucinotta et al. have released a study that concentrates on a real-time SOA targeted

especially for industrial automation. Their point of view is technical, suggesting not

only common real-time system requirements but also evaluating real-life technolo-

gies. According to the paper, there are two key concerns in a distributed real-time

system: communications based on QoS agreements and ”temporal isolation” of tasks

on processors (that is, real-time aware scheduling).

The study represents an architecture called RI-MACS. It has two application

programming interfaces (API): a common API and a custom API. The common

API uses DPWS based communication, and as DPWS has no real-time support,

there is a separate real-time communication channel on the lower protocol levels.

The custom API is used to integrate any legacy devices, and it can meet hard real-

time requirements. RI-MACS uses WS-Agreement [4] to negotiate QoS levels. When

a client wants to use a service, it makes a QoS offer that is submitted to the provider

of the service. Then, the offer is either accepted or rejected. [25]

To enable CPU reservations, RI-MACS uses a real-time capable Linux operating

system which runs a web server with a real-time module. Experiments of DPWS

calls were made on the server both with and without the real-time module in use.

”Heavy” load was generated on the server after which two different image processing

services with maximal response times of 300 milliseconds and nine seconds were

called. The results indicate that when the real-time module was in use, deadlines

were not missed in either of the experiment. In contrast, deadlines were missed

frequently when the real-time module was not in use. [25]

4.2.6 Middleware With Partial JMS API

Garces-Erice has suggested a middleware that implements the JMS (Java Messaging

Service) API partially. JMS was chosen as its API is ”mature” and ”well known to

programmers in the enterprise environment”. The middleware is intended to enable

SOA, and there are three main requirements: the middleware shall be real-time

capable, it shall be lightweight to save resources and it shall be compatible with

legacy infrastructures. [41]

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 44

API

Scheduler

Network

Message

queues

Figure 4.4: The high-level structure of the real-time capable SOA suggested by Garces-
Erice. [46, p. 81]

Figure 4.4 shows the architecture of the system. The downmost layer is network

which implements communications. It is not specified which communication protocol

shall be used; thus, any legacy protocol can be preserved. The layer above the

network layer is scheduler which implements the actual real-time functionality. It

puts events into different queues according to their type. An individual queue is

treated using the FIFO (first in first out) principle. The architecture does not

require any specific scheduling algorithm to choose from which queue the next task

is taken in a specific situation. The topmost layer is the API that is implemented

using JMS. [41, pp. 80–82]

The features of JMS are rich, and not all of them are used in the architecture.

JMS provides both synchronous and asynchronous messaging modes of which asyn-

chronous is favored in the study as it enables event-based communication. JMS

communication is reliable, and three different modes can be used to send message

acknowledgements. Not all the features are suitable for a real-time environment,

and that is why some of its functionality is not implemented in the study. [41, pp.

80–82]

To experiment the performance of the architecture, simulations were made. They

showed that both latency and latency variation were low which suggests suitability

for a real-time environment. [41, pp. 83–84]

4.3 Conclusions

If all the devices of an industrial automation system used a service-oriented way to

communicate, it would facilitate integration and reduce the need for configuration

while installing or modifying a system. However, there are two obstacles: on one

hand, the computational resources of devices are restricted, and on the other hand,

there is no real-time capable SOA technology. This chapter discusses the efforts

made this far to overcome these problems, putting more weight on real-time issues.

Despite all the work made for a real-time SOA, no solution exists this far. The

binary encoding of OPC UA is an alternative for soft real-time functions, but its

4. TOWARDS INDUSTRIAL SERVICE-ORIENTED ARCHITECTURE 45

indeterministic nature prevents its use in hard real-time systems. DPWS made it

easier to use Web Services in devices by lowering the required amount of computa-

tional resources, but the specification does not consider real-time requirements at

all. Even though there have been successful attempts to shorten the response times

of DPWS, as long as the current specification is used, the only possibility to reach

deterministism is to build a real-time support separately. Cucinotta et al. used a

separate real-time module in a server application. Even though the results of the

study are promising, the real-time module is not a complete solution for an industrial

SOA. It guarantees only the behavior of the server in which it is run – the behavior

of the communications channel is not controlled by it. Some promising simulations

have been made with the architecture of Garces-Erice, but the technology is depen-

dent on Java, and it is not ready to be taken into use currently. The study on Tsai

et al. concentrate on dynamic service composition whereas Panahi et al. have made

research on resources reservation and the scheduling of an entire business process.

Again, these aspects are essential in a real-time SOA, but a complete architecture

cannot be implemented with them alone.

Service-oriented architecture is still making its way to industrial automation.

There has been a lot of development work on different service-oriented frameworks,

and currently, there are obstacles that make it impossible to implement an industrial

SOA that covers all the communications of an industrial plant. However, as devel-

opment work goes further, there seems to be nothing to prevent service-orientation

from being the future architectural style of industrial automation. Still, it is going to

take several years before SOA is a real candidate for a complete production system.

46

5. SERVICE-ORIENTED LIFE CYCLE

SIMULATION

In industrial plants, there are several functions for which SOA can be applied. The

estimation of environmental impacts is one example. When the equipment of an

industrial plant is being chosen, an important aspect is whether some devices load

the environment less than the others. This chapter introduces a group of service-

oriented business processes that estimate the environmental footprint of industrial

devices. The environmental data used by the business processes is retrieved from a

public environmental database.

5.1 Life Cycle Thinking

As the population of the world keeps growing, environmental issues are getting more

and more serious. The volume of industrial products is rising, and it results in higher

pollution rates. On the other hand, there is more and more competition for natural

resources. As a consequence, industries are working to resolve the real environmental

effects caused by their production to enable sustainable development.

Life Cycle Assessment (LCA) is a methodological framework used to estimate

how a product affects the environment during its entire life cycle. That is, the cu-

mulative emissions and the resources depletion caused by energy usage, materials

usage, assembly, recycling, disposal and so on are included. LCA has a subphase

called Life Cycle Inventory (LCI) which means the process of collecting and storing

environmental data. Another subphase of LCA is called Life Cycle Impact Assess-

ment (LCIA) which covers the estimation of how emissions and resources depletion

affect the environment. [79]

When LCA is performed for manufacturing equipment, it is not enough to look at

the emissions caused by manufacturing the devices. During the years or decades of

operation, the industrial process performed by the equipment will both require in-

puts and produce outputs. Different devices have different environmental footprints:

one device may consume less of one resource but more of another resource than other

devices. There may also be different emission outputs. Environmental thinking is

not only relevant at design time. When obsolete components are replaced, different

choices will again have different environmental impacts.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 47

Table 5.1: Some sources of life cycle inventory data.

Source Origin Information
EAA [28]
(European Aluminium Asso-
ciation)

Europe Provides a document with aluminum life cycle in-
formation.

EcoInvent [29]
(Swiss Centre for Life Cycle
Inventories)

Switzerland Generic LCI database. Access has to be paid for.

ELCD II [30]
(European Reference Life
Cycle Database)

Europe Generic life cycle database in XML. Developed and
maintained by the European Commission [99].

FEFCO [35]
(European Federation of
Corrugated Board Manufac-
turers)

Europe Life cycle reports of corrugated board production.

GaBi [39]
(Ganzheitliche Bilanzierung)

Germany Life cycle simulation software. A free demo version
available for everyone; data sets may not be repub-
lished. Uses data taken from BUWAL, EcoInvent
and PlasticsEurope databases.

PlasticsEurope [76]
(Association of Plastics
Manufacturers in Europe)

Europe Documents that contain information about the
amount of energy required for producing plastics
and their raw materials.

VTT Lipasto [93] Finland Information of emissions caused by traffic.
WorldSteel [100] International No data publicly available, but LCI documents are

sent by request at no cost.

Several organizations provide LCI databases, and some of them offer their data

at no cost while the others need to be paid for (table 5.1). EAA, FEFCO, Plastic-

sEurope, VTT Lipasto and WorldSteel concentrate on only one industry. EcoInvent

is generic, but its data is not available for free. GaBi is an application that utilizes

LCI data gathered by some LCI database providers, but it is not possible to utilize

its data in another application. Only one of the LCI databases under investigation,

ELCD, is offered free of charge in XML format. These factors together with the fact

that ELCD does not concentrate on only one industry make it a good alternative

for building applications on it.

5.2 ELCD and ILCD

The format of ELCD II is called ILCD (the International Reference Life Cycle Data

System). [30] ILCD format was developed as there was no format providing appro-

priate LCA documentation, enabling the export and the import of data and being

transferable to LCA tools. ILCD is based on ISO/TS 14048 standard as well as

several LCA data formats that have existed before it. [99]

Several contributions have been made to facilitate the use of ILCD and ELCD.

The entire ELCD can be downloaded, and data sets can be added to or removed

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 48

from the downloaded database with an application called ILCD Editor. Moreover,

all the XML schemata and the XSLT documents of ILCD are also downloadable.

[58]

ILCD is not only a data format, but there is also a five-book publication set called

ILCD Handbook. It is a ”series of technical documents that provide detailed guidance

on – – Life Cycle Assessment (LCA)”. Even though a general framework of LCA

is already given in standards ISO 14040 and ISO 14044, some of their definitions

are not exact. As a consequence, the results given by LCA may vary depending on

the chosen practices. The avoidance of this problem is one of the goals of ILCD

Handbook. Moreover, ILCD Handbook aims to improve the acceptance of LCA

among stakeholders and to be suitable for ”everyday decision-making” among them.

[47]

ILCD contains several types of XML data sets, but only four of them are relevant

in this study: process data sets, flow data sets, flow property data sets and unit group

data sets. Figure 5.1 shows the most relevant parts of them, using the production of

electricity in Finland and some of its outputs as an example. In this study, the most

relevant parts of all are the exchanges defined in process data sets : they represent

the inputs and the outputs of a process, including emissions. An important note

is that the physical quantity of exchanges is not limited to mass; for example, the

radiation caused by a radioactive emission is also given. As no physical unit is

directly associated to an exchange, there is no way to resolve or to assume the unit

using the information provided by a process data set. By retrieving the related flow

data set and its flow property data set, the path finally leads to a unit group data set

in which the reference unit is defined. [30] This way of associating units indirectly

makes it more complex to utilize the database as a total of three documents has to

be retrieved when a unit is resolved.

Code 5.1 shows how an exchange definition extracted from ELCD. The relevant

parts in this study are the description of the exchange, its direction, its mean amount

and the reference to the related flow data set.

A process data set may contain hundreds of exchanges, but the contents are not

limited to them. There are references to the sources of the data, information related

to the geographical location to which the data set applies, process classification,

descriptions in different languages, information on set data reviewers and so on.

The information of some process data sets is aggregated from global data while the

others concentrate on a specific area. The number of exchanges varies, and different

process data sets also have different reference years. To give an overview, table 5.2

compares the properties of some process data sets. [30]

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 49

Electricity mix, AC, 1-60 kV, Finland

Exchanges

Cesium-137

flow

Chloride

flow

Carbon dioxide

flow

Methane

flow

Radioactivity

flow property

Mass

flow property

Radioactivity unit group Mass unit group

Process

data set

Flow data

sets

Flow property

data sets

Unit group

data sets

Cesium-137 Chloride Carbon dioxide Methane ...

Units

...
Reference

unit
kBq

Units

t g ...
Reference

unit kg

Figure 5.1: Examples of the ELCD data sets that are relevant in this study and their most
relevant parts. The example process is the production of electricity in Finland in which
all the production types (nuclear power, water power, wind power and so on) are mixed.
Based on [30].

<exchange dataSetInternalID="152">

 <referenceToFlowDataSet

 refObjectId="fe0acd60-3ddc-11dd-af54-0050c2490048"

 version="02.01.000" type="flow data set"

 uri="../flows/fe0acd60-3ddc-11dd-af54-0050c2490048_

 02.01.000.xml">

 <common:shortDescription xml:lang="en">

 carbon dioxide (Emissions to air)

 </common:shortDescription>

 </referenceToFlowDataSet>

 <exchangeDirection>Output</exchangeDirection>

 <meanAmount>0.473253874538804</meanAmount>

 <resultingAmount>0.473253874538804</resultingAmount>

 <dataSourceType>Mixed primary / secondary</dataSourceType>

 <dataDerivationTypeStatus>

 Unknown derivation

 </dataDerivationTypeStatus>

</exchange>

Code 5.1: An example of an exchange element in a process data set document. [30]

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 50

Table 5.2: Properties of some process data sets provided by ELCD. [30]

Process description Location Year File size Exchanges
Electricity Mix; AC; consumption mix, at
consumer; 1kV-60kV

Finland 2002 302 kB 402

Lorry transport; Euro 0, 1, 2, 3, 4 mix; 22
t total weight, 17.3 t max payload

Europe 2007 117 kB 15

Pre-cast concrete; minimum reinforce-
ment; production mix, at plant; concrete
type C20/25, without consideration of cas-
ings

Europe 2006 299 kB 407

Steel hot rolled section; blast furnace and
electric arc furnace route; production mix,
at plant

Global 2000 48 kB 38

Figure 5.2: The life cycle simulation business process described on a high level.

5.3 Conceptual Framework for Footprint Estimator

5.3.1 Requirements

The data provided by ELCD makes it possible to build a service-oriented business

process that calculates footprints caused by devices. Figure 5.2 shows the idea of

the life cycle simulation business process on a high level. First, the user launches

the business process by giving the information that is required to calculate the

footprint. Then, the business process retrieves production process information from

ELCD after which the footprints are calculated. Finally, the results are shown to

the user.

To calculate a footprint, the first thing to do is to retrieve the related process data

set. There may be different process data sets for different countries or continents,

and there may also be several almost similar processes with some detailed differences.

Moreover, process data sets are named according to their ID number that has nothing

to do with the description of the process. Thus, there is no way to conclude the

URL from the description of a production process; a search function is necessary to

retrieve a process data set from ELCD. A search function is provided by the ELCD

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 51

website, but there is no way to embed it directly into a business process. All the

data sets can be downloaded from the ELCD website. So, it might be possible to

write a program that would first read the descriptions of all the production processes

and then build a search index for them. However, it would require a lot of such work

that is out of the scope of this study. To limit the scope, it is assumed that the user

already knows the URL of the relevant process data set. To resolve the URL, the

user may use the search function on the ELCD website.

To perform calculation, the life cycle simulation business process takes the fol-

lowing input:

� the name of the process data set file related to the material that is consumed

� the time the consumption will take (for example, the hours a device operates

during its life)

� the interesting amounts of consumption per time unit (for example, per hour

when comparing different devices with different consumptions)

� the emissions of interest

The following output will be given:

� the emitted amount of each substance for each consumption given in the input

It was chosen to use Intalio BPMS to implement the business process. There were

several reasons for it: there was previous experience on creating service-oriented

business processes and processing complex XML documents with it. Moreover,

Intalio BPMS can be downloaded and used free of charge, and it is also being

continuously developed.

5.3.2 Footprint Calculation

Several different methods could be used to calculate the environmental footprint of a

device. For example, points of view could be how high the toxicity of a substance is

or how much the substance accelerates the greenhouse effect. However, the purpose

of this study is to only demonstrate the integration of a database to service-oriented

business processes. Thus, only the output amounts of emissions are calculated.

To keep footprint calculation simple, several assumptions are made. Let us assume

that the resources consumption of the production of the device itself is minimal

compared to the emissions caused by the material it consumes during its life1. For

example, if a valve consumes electricity, its life is so long that the footprint of the

production of the valve itself is very low compared to the amount of electricity it

1It is not necessarily so: for example, manufacturing a car or a mining truck requires a lot of
resources.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 52

will use2. Furthermore, it is assumed that none of the emissions can be collected

in production processes. A thing to note is that a substance may be both an input

and an output: for example, some reaction could both consume carbon dioxide from

air and emit it to air which would reduce the net emitted amount. However, such

consumptions are assumed so small that they do not have to be considered.

To calculate the footprint of one emission caused by the consumption of one

material, the total operating time of the device during its life has to be known. It is

given by equation 5.1 which is the product of device operation per day in hours (Od),

device operation per year in days (Oy) and the total life of the device in years(L).

The unit of the result will be one hour.

OT = OdOyL (5.1)

When multiplying several numbers, it is important to consider the risk of an overflow.

As the total operating time of a device can be decades and it is given in hours, the

resulting number can be big. For example, if a device operates 24 hours every

day and its life is 40 years, the resulting number of hours is 24 × 365.25 × 40 =

350640. However, it is not a big multiplier when floating point numbers are used in

calculation. Thus, the risk of overflows is considered minimal.

Now that the total operating time of the device is known, the next thing to

calculate is the emission that the device causes per hour (equation 5.2). C is the

amount of the material consumed per hour and ER is the emitted amount when the

reference amount CR of the material is consumed.

E =
CER

CR

(5.2)

The total footprint of the device is calculated as the product of OT and E as shown

in equation 5.3.

F = OTE = OdOyL
CER

CR

(5.3)

For example, with the following values, the footprint will be calculated as in equation

5.4.

� The device operates 24 hours per day.

� The device is used every day (365.25 days per year, leap years considered).

� The life of the device is 15 years.

� The device consumes 6.5 megajoules (MJ) of electricity per hour.

� The reference amount of electricity production is 3.6 MJ.

2The consumption of electricity or other resources can typically be found in the device specifi-
cations given by the manufacturer.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 53

� The emitted amount of the substance of interest is 0.0057 kilograms (kg) per

reference amount (3.6 MJ) in electricity production.

F = 24 h/d × 365.25 d/a × 15 a × 6.5 MJ/h × 0.0057 kg

3.6 MJ
= 1353.25 kg (5.4)

Equation 5.3 calculates the footprint of only one device, one material and one emis-

sion. To calculate the footprint for several substances or for several different re-

sources consumed, the equation is simply used once for each value to be calculated.

5.4 Footprint Estimator Architecture

5.4.1 Architecture – the First Attempt

When software research is made with a little experience in the related domain, it is

typical that the first solution that comes into mind may not be the best one. A solu-

tion that seems straightforward and easy to implement in the beginning may prove

to be a bad choice for one reason or another. The solution is typically supposed to

meet several requirements that may be simplicity, maintainability, performance and

so on. There is a danger that a simple design results in high resources consumption

and a low performance. That is what happened with the first architecture of the

footprint estimator business process.

Figure 5.3 describes the first architecture of the solution. It is a tree that consists

of two types of nodes: the squares represent data sets provided by ELCD whereas

the circles represent business processes that process the information of the data sets.

The purposes of the business processes and the resources in the figure are explained

in the following paragraphs. As the design method used was bottom-up, the business

processes will be explained beginning from the lowest level of the hierarchy.

GetSubstanceExchanges extracts the substance exchanges of a production

process that are relevant according to given parameters. As the parameters, it

takes the name of the relevant process data set file, the exchange direction and the

substance of interest. As an example, let us look at retrieving the emitted amount

of chloride when the reference amount of electricity is produced in Finland. The

parameters shall be the name of the process data set file of electricity production in

Finland, ”chloride” as the substance parameter and ”output” as the exchange direc-

tion. Then, the business process extracts all the chloride outputs, calculates their

sum and returns them.

As process data sets do not contain any information on the physical units of

exchanges, they have to be resolved separately. To keep GetSubstanceExchanges

simple, a separate business process, GetFlowProperties, is implemented. As the

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 54

GetTotalEmission

ConvertUnit

GetFootprint

GetSubstanceExhanges GetFlowProperties

Process data sets Flow data sets
Flow property data

sets

Unit group data

sets

CompareFootprints

Figure 5.3: The architecture of the first version of the life cycle simulation business process.

input, GetFlowProperties takes the name of the related flow data set file. Then, it

finds out the reference unit of the related substance flow by retrieving the related

flow data set, flow properties data set and unit group data set. In addition to the

unit of the flow, the name of the unit group data set file is also returned as it may

be required later for unit conversions.

The task of GetTotalEmission is to compose GetSubstanceExchanges and Get-

FlowProperties. It retrieves the exchanges of the emissions that are relevant to its

parameters and combines that information with the corresponding physical unit.

No individual exchanges are returned; instead, only the total sum of all the outputs

is returned. As it is required on the higher levels of the hierarchy, the reference

unit defined in the process data set file is also returned. Like GetFlowProperties,

GetTotalEmission also returns the name of the relevant unit group data set.

ConvertUnit calculates a conversion from one physical unit to another. The

parameters it takes are the name of the relevant unit group data set file, the original

unit, the target unit and the amount to be converted. ConvertUnit can be used

if the reference unit used in a process data set does not correspond to the amount

of consumption that has been given when calculating a footprint. For example, if

electricity consumption is given in kWh (kilowatt hours), ConvertUnit can convert

it into MJ (megajoule).

GetFootprint uses GetTotalEmission and ConvertUnit business processes. Its

purpose is to calculate the footprint of one emission when one material is consumed.

It takes the name of the related process data set file, the emission of interest and the

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 55

nC nE tL

nC nE tR

nC nE tL

nC nE tL

nC nE tL

2 nC nE tL

2 nC nE tR
2 nC nE tR

2 nC nE tR

nC nE tR

Figure 5.4: The total time spent on requesting each service in the hierarchy.

information related to consumption duration as the parameters. The business pro-

cess calls GetTotalEmission to resolve the amount of emission and its physical unit

when the reference amount of the related material is consumed. Then, it converts

the given consumption unit to the reference unit of the production process. Finally,

the footprint is calculated.

CompareFootprints takes several emissions of interest, several consumptions

and the name of the related process data set file as its parameters. Then, it forms

all the possible pairs of given consumptions and emissions and calls GetFootprint

for each of them. Despite its name, the business process does not perform any

comparison on emission amounts, but such a comparison is easy to perform using

the return value.

The business processes in the resulting hierarchy are simple and easy to under-

stand, but there is one trade-off, namely performance. CompareFootprints forms all

the possible pairs of given emissions of interest and given consumptions. Thus, the

resulting amount of requests to GetFootprint is the product of the numbers of the

emissions of interest and the consumptions. The business processes below it in the

hierarchy execute each service call once or twice depending on the service. If all the

business processes are run on the same machine, their interaction will be local. Five

of the services are such. Five more connections remain, and all of them are between

the business processes and the ELCD server which means they are remote. Let nC

be the number of consumptions, nE be the number of the emissions of interest, tL

be the time required for a local service call and tR be the time required for a remote

service call. When CompareFootprints is called, the time spent calling each resource

will be as shown in figure 5.4. If the time required to run a business process is

considered small compared to the time required for resource calls, the resulting total

response time can be calculated as shown in equation 5.5.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 56

t = nCnE(6tL + 8tR) (5.5)

There is probably a significant difference between the request times to a local re-

source and to a remote resource. Despite that, to simplify calculation, both the

request times are marked with tS. Equation 5.6 results.

t = nCnE(6tS + 8tS) = 14nCnEtS (5.6)

Let us examine a request that contains four consumptions (nC) and four emis-

sions of interest (nE), which is not a high number. The resulting multiplier of

tS is 14 × 4 × 4 = 224, which is a big number of service requests considering that

only four consumptions and four emissions are requested. It is clear that such an

architecture cannot be efficient. However, these calculations were made only after

implementing the architecture. In experiments, CompareFootprints was called with

two consumptions and four emissions of interest (that is, CompareFootprints calls

the hierarchy below it eight times). The response time of the business process was

dozens of seconds but it succeeded. When the number of consumptions was raised to

three (resulting in 12 calls to the hierarchy), the client application (soapUI) gave a

request timeout after 50 seconds. The experiments showed what was noticed earlier

theoretically: the architecture had to be redesigned.

There were several reasons for the architectural failure. The main reason was

that it was not expected that service interactions would take such a long time. In

addition, a principle that is good for a non-distributed object-oriented application

may not be good in service-oriented design. In object-oriented programming, a

class definition is often good if it is simple because it makes the design of the class

easy and straightforward. In this service-oriented application, the low-level business

processes in the hierarchy were designed simple, but it degraded the performance

because it requires more service calls. Performance is always present in a distributed

application. Thus, a sensible approach would be to minimize the number of service

calls and to try to design each service so that it repeats tasks instead of forcing

a service consumer repeat requests. Making a service able to accomplish a higher

number of similar tasks at a time does not make it any worse from the consumer

point of view: it can still perform the task only once when such a request comes.

However, it makes the design more difficult as the granularity of business processes

has to be raised.

5.4.2 Optimized Architecture

After one architecture with a poor performance had been implemented, the goal

of the new architecture was to minimize the number of service requests. In the

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 57

GetSubstanceExchangesWithUnits

ConvertUnit

GetFootprints

GetSubstanceExchanges GetFlowProperties

Process data sets Flow data sets
Flow property data

sets

Unit group data

sets

tL

tL

tR

(nE + 1)tL

nC tL

nC tR(nE + 1)tR (nE + 1)tR (nE + 1)tR

Figure 5.5: The total time spent on requesting each service in the optimized architecture.
A dotted circle indicates that a service is new whereas the others were reused from the
first version.

first inefficient version, the philosophy was to keep the granularity of the low-level

business processes low and make the business process at the top of the hierarchy

the only complex one. To improve the performance, it is necessary to distribute the

complexity to lower levels.

An important point is that as all the calculation is related to one process data

set, it is enough to retrieve the reference values of the emissions defined in it only

once. Then, the reference values can be multiplied according to each amount of

consumption given by the user. As the entire business process tree from the top

of the hierarchy to a process data set was called nC × nE times (once for each

consumption–emission pair) in the first architecture, the new architecture would call

the tree only once. As process data sets are typically large, the change is assumed

to improve performance significantly. Moreover, the change does not only affect the

time spent on processing process data sets but it also reduces the number of service

calls in the entire hierarchy.

Figure 5.5 shows the optimized architecture and time spent requesting each ser-

vice in one hierarchy call. GetSubstanceExchanges was redesigned to extract the

relevant exchanges of several substances in one request and it is now called only once

per each call to the hierarchy. Similarly, the new GetSubstanceExchangesWith-

Units that replaced GetTotalEmission now processes several emissions in one re-

quest. Furthermore, the changes in GetSubstanceExchanges and GetSubstanceEx-

changesWithUnits make it possible to process several emissions simultaneously on

the level above them. As a result, the new GetFootprints can replace both Com-

pareFootprints and GetFootprint.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 58

Not all the business processes were rebuilt as GetFlowProperties and ConvertUnit

were reused from the first architecture. As GetFlowProperties can only retrieve the

unit of one exchange, it has to be called once for each emission anyway (it will

be called nE + 1 times as it also retrieves the reference unit of the product that

results from the process). Similarly, ConvertUnit is called once for each consumption

amount. The calls to ConvertUnit could be further optimized so that if there are

several consumption values with the same unit, it would be called only once for all

of them. However, it would raise the complexity of GetFootprints.

The three new business processes that replace four previous ones affect the num-

ber of requests in the hierarchy significantly. If the time used for business process

execution is again assumed small compared to the time of communications, the total

time required to execute GetFootprints is given by equation 5.7.

t = (nC + nE + 3)tL + (nC + 3nE + 4)tR (5.7)

If the equation is simplified by using the same variable for the times required by

local requests and remote requests (tS), equation 5.8 results.

t = (nC + nE + 3)tS + (nC + 3nE + 4)tS = (2nC + 4nE + 7)tS (5.8)

Table 5.3 compares the response times of the requests made to the original archi-

tecture and to the optimized architecture when the response times are calculated

using equations 5.6 and 5.8. It can be stated that the more consumptions and emis-

sions are given, the better the optimized architecture is compared to the original

one. However, the equations do not consider that the response times of different

resources may be different. Especially a request of a process data set takes probably

longer than a request to other resources because process data sets are the biggest of

all the documents requested remotely. It is remarkable because the original architec-

ture calls a process data set nC × nE times whereas the optimized architecture calls

it only once. Thus, it is expected that the ratio between the real response times of

the original and the optimized architecture is even higher. No detailed experiments

were made to compare the two architectures, but it was seen that an example input

that would result in a timeout in the original architecture was completed in less than

20 seconds in the optimized one.

The architecture could be optimized even more. In practice, all the emissions

processed during the work had either kilogram (for mass) or kilobecquerel (for ra-

diation) as the unit. As all the radioactive emissions had an isotope number at the

end of their names (for example, ”cesium-137”), it could be assumed that all of them

have kilobecquerel as the unit. The rest would then be assumed to have kilogram

as the unit. This way, it would be needless to retrieve flow data sets, flow property

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 59

Table 5.3: A comparison of the theoretical factors of tC in the original and in the optimized
hierarchy.

nC nE 14nCnE 2nC + 4nE + 7 Ratio
1 1 14 13 1.08
2 2 56 19 2.95
4 4 224 31 7.23
8 8 896 55 16.3
8 16 1792 87 20.6

16 16 3584 103 34.8

data sets or unit group data sets – actually, the only dataset required to resolve the

reference emissions would be one process data set. Unit group data sets are used for

unit conversions as well – however, they could be saved to a local cache to avoid the

need to retrieve them for each conversion. Assumptions like this raise the risk of

errors while running the business processes. In the optimal situation, the structure

of ELCD was such that the units were given in process data sets. It would both

make it easier to create applications with a good performance and eliminate the

need for speculations whether assumptions can be made or not.

As the entire ELCD is available for download as one package, it could also be

stored and used in a local machine, which would eliminate the need for remote

resource calls. The disadvantage of this solution is that whenever data sets are

updated, the most recent data would not be available. However, the data sets on

the local machine could be updated regularly (for example, once a week).

5.5 Footprint Estimator Implementation

5.5.1 Business Process Design

In this subsection, the implementation details of the GetFootprints business process

hierarchy are presented. Then, a brief comparison is made on the complexity of the

original architecture and the optimized architecture.

The BPMN diagrams of the business processes are presented among the text, but

the input and the output XML schemata of each business process are presented in

appendix A. In each of the BPMN diagrams, an additional tree diagram is presented

to indicate in which part of the business process hierarchy the related business

process is located. All the XML schemata are presented as UML class diagrams.

By default, each class box in a diagram represents a complex type. However, if the

class box contains text ”from xsd”, it shall be interpreted as an XML base type.

Furthermore, all the ”member variables” in the class boxes shall be interpreted as

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 60

Figure 5.6: The BPMN diagram of GetSubstanceExchanges business process.

base type elements. No XML attributes have been used in the XML schemata

defined for this study.

In each business process, it is assumed that the path of each data set type remains

the same. That is, instead of taking the entire URL of each data set file as the

parameter when retrieving information, only the name of the file is taken. There is

a risk that the business processes get broken if the absolute location of ELCD or

the data sets is changed. However, if it happens, it does not require a lot of work

to change the paths defined for the data sets and to redeploy the business processes

to an Intalio server.

The XML schema of GetSubstanceExchanges is in figure A.1. As the input,

the business process takes the name of the related process data set file and the

name of the emissions whose information will be extracted. The output contains the

following information: the geographical location of the process, the name of the unit

group data set file related to the reference product flow of the process. Furthermore,

the emitted mean amount and the name of the related flow data set file are presented

for each emission. As the units of substance exchanges cannot be directly seen in a

process data set, the unit field of the output has to be left empty. However, the field

is included in the output as it enables the reuse of the entire XML schema when the

units are retrieved later.

The flow of GetSubstanceExchanges is presented in figure 5.6. After the business

process has begun in the ”GetExchanges” task, the relevant process data set is re-

trieved. Then, the relevant information is extracted from the process data set by

executing ”Extract relevant information” task for each emission name that has been

given in the input. The extraction requires a total of three XSL transformations.

The first one calculates the total output of the emission, the second one extracts file

name of the related flow data set and the third one assigns the extracted informa-

tion into the output. After the emissions information has been assigned, the relevant

process information is extracted in the task ”Get reference flow info”– again, an XSL

transformation is used. Finally, the business process ends in the ”Return” task.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 61

Figure 5.7: The BPMN diagram of GetFlowProperties business process.

GetFlowProperties has the XML schema shown in figure A.2. The only input

is the file name of the related flow data set. The output contains the name of the

related material, the name of the unit in which the material is measured, the physical

quantity related to the unit and finally the file name of the related unit group data

set.

Figure 5.7 illustrates the flow of GetFlowProperties. As the primary goal of the

business process is to retrieve the unit of a flow, the required data sets are retrieved

one by one. In the last task, the unit information is extracted after which the

business process returns its output.

GetSubstanceExchangesWithUnits does not have an XML schema of it own

as it reuses the schema of GetSubstanceExchanges (figure A.1). The output differs

in that GetSubstanceExchangesWithUnits adds the units of the emissions to the

output.

The flow of GetSubstanceExchangesWithUnits is presented in figure 5.8. First,

the relevant emissions are retrieved by calling GetSubstanceExchanges business pro-

cess in the ”Get exchanges” task. Then, they are assigned to the return value. The

reference information of the production process is retrieved in ”Get reference flow

properties”task by calling GetFlowProperties business process after which the values

are assigned. Then, the units of the emissions are retrieved by calling GetFlowProp-

erties for all of them after which each unit can be assigned – in the assignment, an

XSL transformation is used. Finally, the output of the business process is returned.

ConvertUnit has the input and the output presented in figure A.3. In the

input, the original amount, its unit and the target unit to which the amount shall

be converted are given. The business process has no means to find the right data

set file according to given units. Thus, it requires also the name of the related unit

group data set file. As the output, the business process simply returns the given

amount converted to the new unit.

ConvertUnit has a simple flow as described in figure 5.9. First, ”Get unit group”

task retrieves the related unit group data set. Then, using the contents of the data

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 62

Figure 5.8: The BPMN diagram of GetSubstanceExchangesWithUnits business process.

Figure 5.9: The BPMN diagram of ConvertUnit business process.

set, the unit conversion is performed using an XSL transformation after which the

converted value is returned.

The XML schema of GetFootprints in shown in figure A.4. The input contains

the file name of the related process data set, the total operating time to be used when

calculating total emissions, the emissions of interest and the consumption amounts

and their units to be compared. In the output, the name of the process and the loca-

tion of it are provided. After them, there is an entry for each consumption amount

to be compared that contains the information how much of the emissions of interest

will be produced with that consumption. StringList and substanceExchangesInfos

types are reused from the XML schema of GetSubstanceExchanges business process.

The flow of GetFootprints is presented in figure 5.10. First, the relevant emission

outputs are retrieved using GetExchangesWithUnits business process. Then, ”Create

consumption entries” task executes an XSL transformation to create an entry into

the output for each consumption amount given. Once the consumption entries have

been created, entries for the emission amounts will be created into them using XSLT.

Then, ”Calculate conversions” task converts each of the given consumptions into the

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 63

Figure 5.10: The BPMN diagram of GetFootprints business process.

Table 5.4: Comparison of some properties of the business processes in the original and in
the optimized architecture.

Property Original arch. Optimized arch.
Business processes 6 5
XSLT documents 4 9
Total loops in business processes 3 5

reference unit of the process. Finally, the resulting emission amounts are calculated

for each consumption and assigned using XSLT. Then, the output is ready to be

returned.

As shown in the XML schema of GetFootprints (figure A.4), the output is sup-

posed to include the name of the related flow data set file for each emission. How-

ever, the information of each emission is assigned using XSLT, and Intalio BPMS

only allows the use of three external parameters in an XSL transformation. Thus,

the name of the flow data set file cannot be passed because entries ”substance”,

”meanAmount” and ”unit” already take the places. There is no need for flow data

set files information on this level of the business process hierarchy anyway. However,

as substanceExchangeInfo type is originally defined in the schema of GetSubstance-

Exchanges, it cannot be removed.

Table 5.4 compares some properties of the original architecture and the optimized

architecture. The number of business processes is even lower in the optimized ar-

chitecture. However, as the number of XSLT documents and the number of loops

indicate, the optimized architecture is more complex than the original one. The

higher granularity in the low-level business processes results in a better performance.

Another consequence is that more data has to be passed in one service call to the

low-level business processes. It results in more complex data processing.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 64

5.5.2 Data Extraction from ELCD

As ILCD format uses XML, it is supposed to be easy to process the contents ELCD.

Despite that, the complexity of ILCD is a challenge. Considering all the limitations

and the possibilities related to the structure of the XML documents would result in

a lot of work. The purpose of this study is to demonstrate one possible way of using

ELCD. Thus, the details of the document structures defined in the XML schemata

are not considered. Instead, the structures of a few data sets are used as reference

structures to be used in data extraction.

There are several details about the ILCD XML schemata that permit a document

with insufficient contents. For example, in a process data set, the exchangeDirection

element in an exchange definition is optional. A missing exchange direction would

make it impossible to identify whether an exchange is an emission or not. So, it

has to be assumed that the exchange direction is always given. Another issue are

the references to flow data set files. As far as is known, all the exchanges have a

reference to a flow data set that provides additional information about the substance

flow. Such references are given using the complex type GlobalReferenceType that

may contain an element called shortDescription. The role of shortDescription is

essential in exchange definitions as it provides the name of the related substance.

However, according to the XML schemata, it is not obligatory. A reason to not

require it in the complex type definition could be reusability: if the requirements of

GlobalReferenceType are less strict, its reuse potential is higher among different XML

document types. However, the consequence of this loose complex type definition is

that a process data set would be valid even if its exchanges had no substance defined

at all. Thus, it may be questioned whether it is a good design choice.

The assumptions are not limited to XML structures but their contents are also

involved. It is assumed that the descriptions of exchanges in process data sets are

given as below. For example, a description could be ”chloride (Emissions to air)”.

substanceName + " (" + emissionType + ")"

The pattern for the assumption was chosen after a few randomly chosen process data

sets had been investigated. As ELCD uses such a pattern in exchange descriptions,

an attempt to find a description that matches exactly a substance name would never

find anything (for example, a search for ”chloride”). Moreover, an exact match

can neither be used in a substring search because one substance name can be a

substring of another (for example, ”hydrogen” is a substring of ”hydrogen arsenide”

and ”hydrogen fluoride”). As emission types are not considered in this context –

that is, emissions to air, water and soil are equally calculated – they can be dropped

away from the search pattern. Thus, it is assumed that a search for descriptions

that begin with the pattern below returns all the relevant exchanges.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 65

substanceName + " ("

Having to use such a pattern to find substrings raises a question about the practices

of good database design. As there is a general principle that all the data items

should be atomic, there should be no need to divide data units in parts like here.

Even though it would make the structure of XML documents more complex, it would

also make them easier to process.

To further simplify the data extraction, it is assumed that the exchanges of one

substance name are given using the same physical unit. There are at least two

physical quantities that are used: mass and radioactivity. A substance has always a

mass, but it may also contain isotopes that are radioactive (for example, ”cobalt”and

its radioactive isotope ”cobalt-58”). It is assumed that an emission of radioactivity is

always given with the isotope number after the substance name. Thus, if ”cobalt” is

requested instead of ”cobalt-58” or another isotope, exchanges with radioactivity as

the quantity are never received. Another assumption related to physical units is that

the same unit is always used for the same quantity (for example, the only unit used

for mass is ”kg”). This assumption is not considered a potential problem as each unit

group has exactly one reference unit. The result of this assumption is that when

there are several exchanges of the same substance in a process, they can be summed

directly without any unit conversions. It not only makes the implementation of

business processes easier but it also causes less network load as fewer data sets are

retrieved.

To conclude, several assumptions were made to extract data from ILCD. Some

of them are not likely to cause problems. However, the assumptions related to ex-

change description strings could be problematic. If there are any exchanges whose

description patterns are different to the assumed pattern, the result could be either

that not all relevant exchanges are recognized or that irrelevant exchanges are re-

turned. If any physical units related assumptions failed, it would result in incorrect

calculations. However, even though they raise the risk of failures, current assump-

tions are acceptable for this study as the purpose is only to demonstrate the use of

the ELCD.

5.5.3 HTTP Request Challenge

The data sets of ELCD are retrieved as XML-over-HTTP, which is supposed to be a

trivial task in Intalio BPMS. There is no difficulty creating a REST service binding

in Intalio Designer, but the attempt to use such a binding to the ELCD database

did not succeed. As the corresponding request did not cause problems when it

was executed by soapUI, a protocol analyzer was taken to use to investigate the

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 66

differences of the requests made by Intalio server and soapUI. The protocol analyzer

captured the following HTTP request submitted by Intalio server:

GET http://lca.jrc.ec.europa.eu/lcainfohub/datasets/elcd/

processes/6dd69400-9e1d-4376-a6f3-260877acd194_02.01.000.xml

HTTP/1.1

Accept-Encoding: gzip,deflate

User-Agent: Jakarta Commons-HttpClient/3.1

Host: lca.jrc.ec.europa.eu

The following request was submitted by soapUI:

GET /lcainfohub/datasets/elcd/processes/6dd69400-9e1d-4376-

a6f3-260877acd194_02.01.000.xml HTTP/1.1

Accept-Encoding: gzip,deflate

User-Agent: Jakarta Commons-HttpClient/3.1

Host: lca.jrc.ec.europa.eu

The only difference between the requests is that Intalio uses an absolute URI as the

request URI (the URI after ”GET”) whereas soapUI uses an absolute path. To make

sure that the failures were really caused by this detail, a simple software was written

in Java to try HTTP requests with different headers. The results were as expected.

Using an absolute path in a request returned the requested file. In contrast, an

absolute URI returned a HTML page that would redirect the client to another page

which indicates that the server did not understand the request.

As HTTP is a widely used standard, there should be no compatibility problems in

such a trivial thing as the request URI. An interesting question is which one acts the

wrong way, Intalio server as the client or the ELCD server. In HTTP 1.1 standard,

the request URI is defined as follows [80]:

Request-URI = "*" | absoluteURI | abs_path | authority

The standard gives following request line examples when using (1) an absoluteURI

or (2) an abs path [80]:

(1) GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

(2) GET /pub/WWW/TheProject.html HTTP/1.1

As said in the standard, both representations must be accepted by all HTTP 1.1

servers. However, it is also said that a client ”will” only use an absoluteURI when it

calls a proxy server. [80] On the one hand, the server used by ELCD (Microsoft IIS

6.0 according to HTTP response headers) does not accept an absoluteURI in the

request even though it should. On the other hand, Intalio server uses absoluteURI

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 67

HTTP wrapper
HTTP

client

HTTP

server

Request

Response

Figure 5.11: The idea of a HTTP wrapper.

in the request even though it is not expected according to the standard. That is,

neither the ELCD server nor the Intalio server as the HTTP client complies to

HTTP 1.1 standard. In this case, compatibility would be reached if even either of

them were compliant to the standard.

Even though Intalio has a feature to create business process specific custom head-

ers to HTTP requests, there is no way to configure the format of the request URI.

Thus, Intalio and Microsoft IIS are simply incompatible.

However, there is a straightforward solution of submitting HTTP requests indi-

rectly by using a wrapper. The basic idea of a wrapper is simple: it operates between

the actual client and the actual server and rebuilds the requests submitted by the

client (figure 5.11). The wrapper used in this particular solution has been imple-

mented in Java, which means that it can be run in any Java capable web server. As

Intalio server has such a capability, no separate web server is required. Thus, to use

the resources of ELCD, the wrapper is first deployed to the Intalio server being used

to run the business processes. Then, when creating any business process that uses

ELCD, all the requests are routed through the wrapper instead of directly calling

the ELCD server.

5.5.4 XSLT Usage

XSLT is an essential technology in the implementation of GetFootprints business

process as almost all relevant data is extracted with it from the XML documents of

ELCD. XSLT offers means to process large XML documents and it has a built-in

support in Intalio BPMS. Another technology that could be used is XQuery which

is also supported by Intalio BPMS. However, as neither an example nor a tutorial

of XQuery usage in Intalio BPMS was found, it was decided to use XSLT instead.

Despite the XSLT support of Intalio BPMS, it is not a good environment for

XSLT development. Testing any change made to an XSLT document requires the

entire business process to be redeployed to an Intalio server which slows down work-

ing. There are different XSLT processors available: for example, several WWW

browsers such as Opera have a built-in XSLT support. There is also an open-source

alternative Saxon which is also used by Intalio BPMS during business process ex-

ecution. The standalone version of Saxon is used from the command line whereas

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 68

XSLT

processor

Source XML

document

XSLT

document
Resulting

document

Parameters

Figure 5.12: The way of executing XSL transformations in the business processes of this
study.

Opera has a graphical user interface. Opera is more intuitive: it has the means to

show the result of the transformation and highlight different parts of the resulting

XML document. However, Opera does not support all the functions used in the

most recent version of XSLT. In addition, as Saxon is used by Intalio BPMS as well,

any XSLT document developed with it are supposed to work in a business process

as well. As the command line usage of Saxon is not difficult, it was decided to use

it instead of trying different WWW browsers or other XSLT processors.

Figure 5.12 illustrates the way of using XSLT in an Intalio BPMS business pro-

cess. A transformation has two obligatory inputs: the source XML document to be

transformed and the XSLT document that defines the transformation. Optionally,

the transformation can also take external parameters. All the inputs are given to

the XSLT processor that executes the transformation and returns a document as

the output. Depending on the XSLT document, the output is not necessarily XML.

In some cases of this study, the resulting document is a single numeric value or a

string that has been extracted from the source XML document according to given

parameters.

XSLT may not always be an optimal way to extract data from XML documents.

When calculating the total emission of a substance in the GetSubstanceExchanges

business process, it was assumed that all the emission flows of the same substance

have the same quantity and the same physical unit. It simplifies the business process

as the unit is only retrieved for one emission; only one flow data set file name needs

to be returned. However, with XSLT, it is impossible to retrieve only one matching

item from an XML document if several matches are found. A solution for this

problem is to return a string that contains all the returned file names. Then, as the

expected length of a flow data set file name is known beforehand, a substring with

that length is taken from the beginning of the string. It works, but it is anything

but robust.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 69

5.5.5 Experiences of BPMN

Looking at figures 5.8 and 5.10, it can be questioned whether a good understandabil-

ity can always be reached when defining an executable business process in BPMN.

When a BPMN diagram is drawn purely from the design point of view and the

execution details of the related business process are not considered, the power of

expression of the diagram is the only goal. Only the tasks that are important to

make the flow understandable are required to be drawn. However, it is different

with executable processes.

When an executable business process is created, more tasks are required. The

process has to be described on such a level of detail that a respective executable

can be created. Even if it were be possible to convert an intuitive diagram to

an executable format, it may require some of the tasks to contain very complex

actions. In Intalio BPMS for instance, complex assignments are performed with

XSL transformations. If there are several XSL transformations in one task, it may

be difficult to process. An approach that is both easier to implement and that lowers

the danger of errors is to split the task. However, the result may be that there are

several tasks whose only intention is to describe assignments and other actions that

actually belong to the WS-BPEL level. So, the actual flow of the diagram may be

difficult to understand in the way it is meant by the developers of BPMN. Thus, to

reach both a good understandability and an easy implementation, it may be useful

to create two diagrams. The goal of one is to be understandable to anyone, and the

other that is created from the execution point of view.

5.5.6 Using Intalio BPMS

In principle, composing a business process with Intalio Designer is straightforward

and easy. For example, to call a Web Service in a business process, the related WSDL

description and the XML schemata are imported. Then, any operation of the Web

Service can be dragged and dropped into the BPMN diagram of the business process.

The graphical and intuitive Mapper view is used to assign variables and XML fields

to each other; it is also used to assign the output and the input values of Web Service

calls. However, especially when complex XML documents are processed, problems

may occur. There are also certain actions that will cause problems while creating

or running a business process that may not be obvious to a user. As Intalio BPMS

consists of several parts made by different organizations, it is sometimes difficult

to know whether an error has been occurred in Intalio Designer, Intalio server or

another component such as Apache ODE.

The most significant problem about Intalio BPMS is that whenever a business

process is modified, there is a risk that it gets broken. After renaming files or

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 70

diagram elements or after modifying the XML schemata used by a business process,

Intalio Designer fails often to update the references. An experienced user may be

able to fix the process manually – however, it is typical that the entire business

process has to be rebuilt. To minimize the problems caused by this, it is meaningful

to try to split business processes to small entities. Then, if a business process gets

broken, only a restricted functionality has to be rebuilt.

If problems occur requesting a service, Intalio server does not provide many means

to resolve what has caused the error. There is no way to investigate the response

returned by a service if it is other than what was expected. By investigating the

information provided by Intalio server, it may be possible to see the HTTP status

code returned by the service, but the information provided by it is limited. Neither

can the request that caused the failure be investigated. It would be useful especially

when the request has not been defined using a WSDL file but manually by the user.

Due to the insufficient error information, a protocol analyzer has to be used often

to find the cause of errors.

A problem was also encountered assigning values to XML sequences. WS-BPEL

provides the ”[]” modifier to choose exactly one element from a sequence. For some

reason, an integer variable used for such indexing when assigning to a sequence

results in a warning message of multiple selected nodes. When a business process

containing such an assignment is run in an Intalio server, the execution ends to

an error message. For some reason, the same expression works with no problems

when a value is being copied from a sequence. Later, a solution was discovered:

even though using an integer variable, a type conversion has to be made for it using

number() function. However, this kind of requirement may not be expected by a

user. As there was no working solution during the development of the footprint

estimator, such assignments were performed with XSL transformations, which is a

complex way to do it.

XSLT is a powerful way to modify XML documents, but there is a limitation in

Intalio BPMS that no more than three external parameters can be used in an XSL

transformation. To assign contents using an XSL transformation, the most straight-

forward way is to pass it as external parameters. However, due to the limitation,

only three variables can be assigned at a time. If the document being processed

is complex, it is a serious limitation. Naturally, it can be overcome by performing

several or more complex XSL transformations, but its efficiency is questionable.

An issue that may surprise a new user is that Intalio server will confuse business

processes if their namespaces are the same and if their pools have the same names.

One could expect that it is enough to give a different name to different business

processes. If several business processes with conflicting namespaces and conflicting

pool names are deployed, only the one deployed last will work. The problem can be

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 71

overcome by either using individual pool names or an individual namespace in each

business process. Even though it can be considered a good design principle to use

individual namespaces, Intalio Designer does not encourage to it; neither a warning

is given when such namespace conflict occurs during deployment. Moreover, the

examples and the tutorials provided by Intalio Community website typically use the

default namespace suggested by Intalio Designer (”http://www.example.com/”).

There is also another reason why the names of diagram elements should be con-

sidered carefully. When a business process is built, the name of the WSDL generated

for the business process is formed using the name of the diagram and its executable

pool. For example, if a diagram is called ”Diagram” and its executable pool is called

”Process”, the name of the WSDL file will be ”Diagram-Process.wsdl”. It may not be

the most descriptive one. Moreover, the operation that will be created in the service

interface will receive the name of the first task in the business process. ”Read input”

may be a descriptive name for a task, but it is a bad name for an operation. It may

be difficult to find a name that is descriptive for both a task and an operation.

To improve the usability of Intalio BPMS and to reduce the time required to

create business processes, there should be more feedback given at the design time

(that is, by Intalio Designer). Currently, several problems only occur while trying to

deploy a business process to an Intalio server or while running it. If Intalio Designer

recognized the errors made by a user as soon as they have been done, time would be

saved. There would be less need to test business processes under development after

each new task added.

Despite all the problems, it can be said that using Intalio BPMS to model exe-

cutable business processes saves time compared to programming languages (such as

C++ or Java). Defining conditional execution or loops with BPMN may be slower

than with a textual language. However, the possibility to define service interaction

with drag and drop is quick compared to defining everything textually. An advan-

tage is also that the BPMN diagram does not only define the flow but it can also

be used for documentation as it is.

5.6 Client Development

Different client solutions are possible for the footprint estimator business process.

The only requirement is that the client can call the Web Service interface of GetFoot-

prints business process. The most probable use would be to integrate the business

process to a larger solution. The client could be, for instance, an enterprise infor-

mation system or a business process created with Intalio BPMS. However, in this

study, a simple standalone client is created. The programming language to be used

is Java, and the necessary functionality to call the Web Service is created with JAX-

WS (Java API for XML Web Services) library. With JAX-WS, exchanging XML

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 72

messages with Web Services is easy. It offers the means to convert Java objects into

XML contents and vice versa.

At first, it was attempted to create the client with NetBeans IDE. There were

no problems using JAX-WS to generate the classes performing the Web Service

interaction. However, when it was tried to compile the client, an error message

about the version of JAX-WS occurred: a newer version of JAX-WS was required.

JAX-WS was updated successfully, but trying to compile the client, another error

message occurred. At this point, it was decided to try if another development

environment, Eclipse, could offer a JAX-WS usage with fewer problems.

Client generation with Eclipse proved simpler than with NetBeans IDE. Even

though JAX-WS was still used, less code was generated by Eclipse for the Web

Service interaction. What is advantageous is that Eclipse does not require a web

server software installed to create a Web Service client. In NetBeans IDE, Web

Service clients are created inside web projects which require always a web server.

The original objective of creating a Java applet to be run in a web browser

proved problematic. After the Web Service interaction code had been generated

with JAX-WS, there were no difficulties developing the graphical user interface. The

functionality of the applet was also correct when it was tried in Eclipse. However,

problems arose while attempting to run the applet in an HTML page in a web

browser. The client applet was exported as a JAR package from Eclipse, and an

HTML page containing the applet was created. The applet appeared in the web

browser as expected, but it received no response from the Web Service. After a few

attempts, the logs of Intalio server were investigated. They indicated that there

had been no request to the service at all, which referred to that the applet could

not submit requests for some reason. Both Opera and Mozilla Firefox were tried as

the browsers with the same result. As there were no problems running the applet

in Eclipse, it was expected that the security features of the web browsers blocked

the functionality of the applet. Creating a security signature for the JAR file did

not help even though it resulted in a security warning in the browser every time the

applet was started. Investigations to the source code indicated that the execution

halted when an object of a class generated by JAX-WS was instantiated. However,

as there was no solution at this point, it was decided to create a different client

application.

A normal Java application was created instead of an applet. The source code

of the applet was almost completely reused in the application. As a result, only

minimal work was required. The application was exported as an executable JAR

file, and it worked since the first attempt. The JAR file was not signed, but it did

not cause any problems.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 73

Figure 5.13: The start view of the client.

The initial view of the client application is showed in figure 5.13. It is used to give

the input information required for footprint estimation: the name of the relevant

process data set file, operating duration information, the amounts of consumption

to be compared and the emissions whose footprints shall be calculated. After the

information has been given, the user submits the dialog.

When the footprints have been calculated, the results view (figure 5.14) is shown.

It shows the description of the process as given in the process data set file and the

location of the process. These fields together make it possible to check whether the

information has been retrieved from the right process data set file. Under them, there

is a table that contains the requested emissions as rows and the given consumptions

as columns. Each cell shows the footprint of one emission when a specific amount

of the resource is consumed.

Finally, the client worked as wanted, but there were two major challenges that

were not overcome. First, it was decided to give up using NetBeans IDE and to use

Eclipse instead. Then, running the client as an applet inside a web page did not

succeed after which a normal application was implemented. These challenges show

that it is anything but trivial to implement a JAX-WS client that operates inside

a web page. However, there were no problems creating a normal Java application

with Eclipse.

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 74

Figure 5.14: The results view of the client.

5.7 Conclusions

In this chapter, a business process that estimates environmental footprints of devices

was introduced. An environmental database is used to retrieve the emission data

of production processes after which the reference amounts of different emissions is

multiplied with the lifetime usage of a device. Several organizations have collected

information about the inputs and the outputs of different production processes.

ELCD, an environmental database that provides its data free of charge in XML

format, was used in this study. All the business processes have been created with

Intalio BPMS.

The architecture of the footprint estimator is a hierarchy of business processes.

The environmental data being used is located on the downmost level of the hierarchy.

In the first version of the architecture, most complexity was located on the top

level. As the business processes on the bottom levels were simple, they had to be

called repeatedly, which deteriorated overall performance. Then, the hierarchy was

optimized by placing more complexity to the bottom levels, and a better performance

was reached. Further optimizations are possible: for example, a data cache could

be used.

Five business processes were created on different levels of the hierarchy. A lower

number of business processes could have been possible if the structure of ELCD

was simpler; the structure of ELCD requires three XML data sets to be retrieved

5. SERVICE-ORIENTED LIFE CYCLE SIMULATION 75

to resolve the reference unit of an emission. Four of the business processes retrieve

or process the reference data of ELCD. The topmost business process performs the

multiplication of reference amounts with the lifetime consumption of the devices

being observed.

Even though XML-over-HTTP data utilization is supposed to be easy, problems

were encountered integrating ELCD to business processes. It was discovered that

the ELCD XML data sets contain non-atomic fields, and some necessary fields have

been declared optional. Moreover, ELCD server cannot be integrated to Intalio

BPMS directly due to HTTP incompatibility issues. An HTTP wrapper service was

used to overcome the problem.

XSLT and BPMN are essential technologies in the business processes. Despite

XSLT can process complex XML data, it was noticed that it may not be an optimal

technology for XML database processing. BPMN is both intuitive and expressive.

However, modeling executable processes may require modeling of low-level actions

which may decrease understandability.

Several problems were encountered creating business processes with Intalio BPMS.

Business processes do not tolerate modifications well, and namespace collisions oc-

cur easily. Moreover, it is often difficult to find the cause of an error: several errors

cannot be found at design time, and there are few possibilities to investigate service

return values. However, it can be said that business process modeling with Intalio

BPMS saves time compared to traditional textual programming.

Creating an example client for the business process in Java was problematic.

After encountering errors with one development environment, another was chosen

after which the client was compiled successfully. However, the client was never used

as a Java applet inside a web page as planned because it was unable to connect the

service while running in a web browser. Finally, the client was changed to a Java

application after which it worked with no problems.

The business processes created in this chapter enable the comparison of the en-

vironmental footprints of different devices. Although the client developed in this

study is a simple Java application, more complex applications could be developed.

As the entire business process hierarchy has a single Web Service interface, integra-

tion is straightforward to any application. In the examples, only one resource (such

as electricity) is observed. However, a client application could execute the business

process several times for different resources consumed. Now that it has been indi-

cated that it is possible to integrate ELCD to an executable business process, new

business processes with new features could also be created.

76

6. SERVICE-ORIENTED CONDITION

MONITORING

Another industrial SOA application created in this study is the condition monitoring

business process. Condition monitoring is an essential function in modern industrial

plants: the availability of up-to-date condition information reduces the probability

of unexpected failures. It does not only reduce the number of unwanted stoppages

but it may also improve the safety of employees and reduce the danger of polluting

the environment. The service-oriented business process introduced in this chapter

retrieves condition information from devices using service-oriented business processes

and DPWS. A plant information model is also used. All the business processes are

created using the same technologies as in the previous chapter.

6.1 Architecture

The idea of the condition monitoring business process is simple as shown in figure

6.1. First, the user of the business process starts the process. Then, the process

queries for device condition information and finally shows it to the user. Figure

6.2 shows the architecture of the condition monitoring application. It consists of

business processes (represented by circles), devices with DPWS support (represented

by squares) and the plant model (represented by a rectangle). The roles of different

services in the hierarchy are explained in the following paragraphs.

Figure 6.1: The condition monitoring business process on a high level.

6. SERVICE-ORIENTED CONDITION MONITORING 77

GetConditionInfoBySerialNr

GetConditionServiceEndpoints

GetEndpoints (DPWS) GetConditionInfo (DPWS)

GetConditionInfo

Plant information model

ConditionInfoOfManufacturersDevices

GetSerialNrsOfManufacturer

Figure 6.2: The architecture of the condition monitoring business process.

The purpose of a plant model is to manage the data related to a factory plant.

During a plant lifecycle, several parties produce or use plant information that can be

in different human languages and different data formats. Two problems arise. On

one hand, data conversions to different formats are required – sometimes they have

to be performed even manually. On the other hand, it is typical that the plant data

is obsolete as it has not been maintained to correspond the system reconfigurations

made during the lifecycle of the plant. [66, pp. 1–2] Plant models intend to overcome

this problem. Several standards have been developed in the area, and they deal with

different aspects of plant models. The reason for having more than one standard is

that different industry domains have different needs. In addition, there have also

been different opinions about which is essential in a plant model specification. [84,

p. 1] In this scenario, only a simple functionality is required from the plant model:

it shall provide the required information to resolve the serial numbers of the devices

of a given manufacturer. The plant model being used has an XML-over-HTTP

interface, which makes its integration straightforward.

Two types of DPWS services are required for the architecture. The actual con-

dition information is provided by GetConditionInfo DPWS services that are pro-

vided by devices. The endpoints of GetConditionInfo services are provided by Ge-

tEndpoints DPWS service. There are several reasons for using a separate service

to provide service endpoints. As new devices may come and old devices may be

replaced, it is expected that device endpoints are not known during the design of

the condition monitoring business process. On the other hand, less manual work

is required as there is no need to configure the GetConditionInfo service endpoints

manually (there may be countless devices in the network).The only static endpoint

in the network will be that of GetEndpoints. The disadvantage of this solution is

that there is a single point of failure in the network: if GetEndpoints is offline, the

6. SERVICE-ORIENTED CONDITION MONITORING 78

condition information cannot be retrieved. However, to avoid such situations, there

could be more devices providing the GetEndpoints service, bringing redundancy.

There are five business processes in the architecture. On the top of the hierar-

chy, ConditionInfoOfManufacturersDevices uses two other business processes.

First, it retrieves the serial numbers of the devices delivered by a manufacturer after

which the condition information of devices is retrieved using these serial numbers.

The serial numbers are provided by GetSerialNrsOfManufacturer business pro-

cess which calls the plant information model to gather the information. The actual

condition information is provided by GetConditionInfoBySerialNr which uses

two other business processes. GetConditionServiceEndpoints uses the GetEnd-

points DPWS service to retrieve the endpoints of the services. After the endpoints

are known, GetConditionInfo business process is called to retrieve the condition

information from devices.

6.2 Implementation

6.2.1 Business Process Design

This subsection presents the design of the business processes in the condition moni-

toring business process hierarchy. The flows of the business processes are illustrated

using BPMN diagrams: Their input and output XML schemata are presented as

UML class diagrams in appendix B. In each BPMN diagram, an additional tree fig-

ure indicates the place of the related business process in the hierarchy. No attributes

are used in the XML schemata; that is, all the ”classes” and their members shall

be interpreted as XML elements. However, if annotation ”from xsd” is presented, it

means that the related node is a text node whose type is an XML base type.

GetSerialNrsOfManufacturer business process retrieves the serial numbers of

the devices of one manufacturer. Its XML schema for input and output data is

shown in figure B.1. The flow of the business process is shown in figure 6.3. First,

an XSL transformation is executed to assign the manufacturer name to a device

search request after which the search is performed. For each matching device, the

search function returns the related identifier used in the plant information model.

Then, the identifiers are used in a loop construct that retrieves the information of

each device. For each device data set, two XSL transformations are required: one

to extract the serial number of a device and another to assign it to the return value

of the business process.

The functionality of GetConditionServiceEndpoints business process is noth-

ing more than that of GetEndpoints DPWS service; however, an easier integration

with other business processes is provided. As the input, GetConditionServiceEnd-

points takes a list of serial numbers of the devices whose condition service endpoints

6. SERVICE-ORIENTED CONDITION MONITORING 79

Figure 6.3: The BPMN diagram of the GetSerialNrsOfManufacturer business process.

Figure 6.4: The BPMN diagram of the GetConditionServiceEndpoints business process.

shall be retrieved (figure B.2). As the output, it returns the endpoints of the con-

dition services provided by those devices. If any device is unreachable, its serial

number will be given in the list of unreachable devices. The flow of the business

process is shown in figure 6.4. First, GetConditionServiceEndpoints assigns the se-

rial numbers from its request to the request to be submitted to GetEndpoints DPWS

service. Then, GetEndpoints is called after which the returned service endpoints are

assigned to the return value of the business process using XSLT.

GetConditionInfo business process retrieves the condition information from

given condition service endpoints. It reuses some parts of the XML schema of

GetConditionServiceEndpoints as shown in figure B.3: in its input, it takes the

similar endpoint list of DPWS condition services. In the input, it is also chosen

whether only the condition information of those devices that have problems shall

be returned1. In the output, it returns the condition information retrieved from

given endpoints. The flow of the business process is shown in figure 6.5. For each

1Integer is used as the type of this element as problems were encountered using boolean values
in Intalio BPMS.

6. SERVICE-ORIENTED CONDITION MONITORING 80

Figure 6.5: The BPMN diagram of the GetConditionInfo business process.

Figure 6.6: The BPMN diagram of the GetConditionInfoBySerialNr business process.

endpoint given, it retrieves the condition information. Device condition information

is extracted from the device return value using XSLT. Depending on the request,

either the condition information of all the devices or only those with problems are

assigned to the return value. Before assigning device information to the return value,

XSLT has to be used to add a new entry for it.

GetConditionInfoBySerialNr business process uses GetConditionServiceEnd-

points and GetConditionInfo business processes to retrieve condition information

according to given serial numbers. The XML schema of the business process is pre-

sented in figure B.4. All the elements inside the input and the output have been

reused from the XML schemata of GetConditionServiceEndpoints and GetCondi-

tionInfo. The input contains a list of device serial numbers, and the output contains

the condition information of devices as well as unreachable devices. Figure 6.6 shows

the flow of the business process. First, GetConditionServiceEndpoints business pro-

cess is called to retrieve condition service endpoints using device serial numbers.

Then, the endpoints returned by it are used to retrieve device condition information

by calling GetConditionInfo business process.

6. SERVICE-ORIENTED CONDITION MONITORING 81

Figure 6.7: The BPMN diagram of the ConditionInfoOfManufacturersDevices business
process.

Located on the top of the hierarchy, ConditionInfoOfManufacturersDevices

business process uses GetSerialNrsOfManufacturer and GetConditionInfoBySeri-

alNr business processes. The XML schema of ConditionInfoOfManufacturersDe-

vices is shown in figure B.5. As the input, it takes a manufacturer name and the

flag whether only devices with problems are returned; both of them are passed to

the business processes it uses. The output is the return value of GetConditionIn-

foBySerialNr as it is. The flow of ConditionInfoOfManufacturersDevices is simple,

as shown in figure 6.7: it contains only two business process calls. However, even

this business process requires an XSL transformation: it is used to convert the serial

numbers list of GetSerialNrsOfManufacturer so that it can be passed to GetCondi-

tionInfoBySerialNr. This is due to the design of the XML schemata. Even though

the contents of these two serial number lists are identical (a list of strings), their

XML schema types have been defined separately. As the result, a direct assignment

is not possible. From this point of view, a better choice would have been to use the

same type for both.

6.2.2 DPWS Network

The DPWS communications stack used to create the DPWS services in this study

is JMEDS (Java Multi Edition DPWS Stack) provided by WS4D (Web Service for

Devices) [94]. It was chosen after its evaluation in [52] showed its suitability for

creating DPWS applications.

Figure 6.8 shows the structure of the DPWS device network. The master device

shall always be online and it shall preserve its host name and port. It searches for

DPWS devices with the GetConditionInfo service periodically. When such devices

are found, their endpoint information is saved and a subscription is made to receive

information about device state changes. If a device leaves the network, the master

device receives a notification of it and removes the endpoint information of the

6. SERVICE-ORIENTED CONDITION MONITORING 82

Master

device

GetEndpoints Device

Device
GetConditionInfo

GetConditionInfo

Device

GetConditionInfo

Device

GetConditionInfo

Figure 6.8: The structure of the DPWS device network.

device. The endpoint information of a device can be retrieved from the master

device by the serial number of the device2.

6.2.3 Integrating DPWS to Business Processes

Even though JMEDS generates a WSDL document for its services automatically,

their integration to business processes is not straightforward. No endpoint definitions

are provided in the WSDL documents. As there is no way to configure endpoints

outside a WSDL document in Intalio BPMS, they should be added manually to

WSDL files. Another limitation is that the endpoints defined in WSDL files are

static. If there are several DPWS devices offering the same service, each of them

requires its own WSDL definition as endpoints are defined static in WSDL. Due

to these limitations, another way than WSDL import has to be used to integrate

DPWS devices to Intalio BPMS business processes.

DPWS uses SOAP-over-HTTP as the communication method, and SOAP en-

velopes are XML documents. Thus, an alternative way to communicate with a

DPWS service is to treat it as an XML-over-HTTP service. Such a binding can be

defined in Intalio BPMS by creating a REST connector. Then, the type of the XML

content to be submitted and received is set as the SOAP envelope. As the XML

schema of SOAP envelope does not define what it shall contain, no data assign-

ments can be performed directly in Intalio BPMS. However, the default contents of

the envelope to be submitted can be edited manually. Then, the return value can

be processed using an XSL transformation.

The solution looks simple, but challenges were encountered implementing it. Ex-

periments showed that the HTTP requests generated by Intalio server are not com-

patible with JMEDS. Thus, it was decided to use the same HTTP wrapper that was

used as in the life cycle simulator business process. Using the wrapper, HTTP GET

2Serial numbers are assumed unique regardless of the manufacturer of the device even though
this may not be the case with real devices. However, the master device could be developed further
to additionally use manufacturer names in identification.

6. SERVICE-ORIENTED CONDITION MONITORING 83

POST /ConditionService HTTP/1.1

User-Agent: AOT Http Wrapper

Host: 130.230.xxx.xxx:50012

Content-Length: 475

Content-Type: application/xml; charset=ISO-8859-1

POST /ConditionService/ HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: application/soap+xml;charset=UTF-8

User-Agent: Jakarta Commons-HttpClient/3.1

Host: 130.230.xxx.xxx:50012

Content-Length: 475

Code 6.1: The HTTP POST request headers sent by the HTTP wrapper (first) and soapUI
(second).

requests to a DPWS device worked as expected3. However, when trying to invoke a

DPWS service with a SOAP message using HTTP POST method, problems arose

even though the same request worked with no problems when executed by soapUI.

A protocol analyzer was taken into use to compare the request headers sent by the

HTTP wrapper and soapUI (code 6.1).

There were a few differences between the HTTP requests of HTTP wrapper and

soapUI, and content type definition seemed the most probable cause of the problem.

The existing functionality of the wrapper could not be modified because it would

have broken the functionality offered to current consumers; thus, a new resource

was added to the wrapper. Both the content types to be consumed and produced

by the wrapper resource and the content type the wrapper would use requesting

the ”wrapped” resource were set to ”application/soap+xml”. Moreover, character

encoding was set to UTF-8 instead of ISO 8859-1. After the new wrapper resource

had been implemented, the wrapper was deployed to Apache Tomcat web server.

Experiments made on the new wrapper resource did not have the desired result.

Tomcat refused from executing the request: it complained that the input format

was not appropriate. It referred to that even though the HTTP wrapper was set to

consume SOAP messages, the Java library (JAX-RS4) used to create the wrapper

does not allow it. It is a reasonable restriction in the sense that a service with a

SOAP-over-HTTP interface is actually an operation-oriented Web Service. Such

services are not supposed to be created with JAX-RS but with JAX-WS or another

SOAP Web Service library.

However, the problem was overcome easily. The content type consumed and

produced by the resource was set to ”application/xml”, and the content type it

3GET method is used, for instance, to retrieve the WSDL document of a service provided by a
device.

4Java API for RESTful Web Services

6. SERVICE-ORIENTED CONDITION MONITORING 84

Intalio

BPMS

DPWS

Server

Treated as

XML-over-HTTP HTTP

Wrapper

HTTP

SOAP+XML

Treated as

SOAP-over-HTTP

HTTP

SOAP+XML

HTTP client HTTP clientHTTP server Web Service

Figure 6.9: Requests are treated as any XML content between Intalio BPMS and the
HTTP wrapper even though the messages contain actually SOAP.

would use in requests was kept as ”application/soap+xml”. It had the desired effect:

requests to DPWS services through the wrapper succeeded. At this point, it was

unclear whether character encoding affected the result. It was set back to ISO 8859-

1, and there was no effect on the result of the request. However, it was decided

to use UTF-8 as it provides a wider support for different characters. Figure 6.9

illustrates the content types used in the scenario: HTTP wrapper consumes and

produces ”application/xml”, but in requests, it uses ”application/soap+xml”.

6.3 Conclusions

This chapter introduced a service-oriented business process that retrieves condition

information from devices. DPWS was used to make devices capable of Web Service

communication, and a plant information model provided additional device informa-

tion. The DPWS network was implemented so that there is one device that observes

other devices and provides information about their endpoints. This way, the network

can be changed dynamically with no need for manual configuration.

Five business processes were created to collect and process device information.

They form a hierarchy so that those on the top accomplish complex tasks by using

the simple ones on the bottom levels. The downmost level of the hierarchy is formed

by the information used by the business processes – that is, the DPWS devices and

the plant information model.

The integration of DPWS services to business processes was problematic. The

WSDL files generated by the DPWS communications stack do not contain any ser-

vice endpoints. That is, manual endpoint configuration is required, but Intalio

BPMS does not support it. The solution was to treat DPWS services as XML-

over-HTTP services that have SOAP envelope as the XML schema type used in

communication. The information returned by DPWS was extracted from envelopes

using XSLT. Another problem was that the HTTP requests sent by Intalio BPMS

6. SERVICE-ORIENTED CONDITION MONITORING 85

were not compatible with the DPWS stack. The problem was solved by using a

HTTP wrapper.

Despite the problems encountered integrating DPWS, it can be said that the

use of Web Services and XML facilitates integration. To make integration even

easier, Intalio BPMS could have better possibilities to configure service endpoints

and HTTP requests manually. The DPWS stack could also accept a wider range of

different HTTP requests.

86

7. SUMMARY

This chapter has two sections. First, the results of the work are summarized. Then,

future work is discussed.

7.1 Results

Several advantages could be reached if all industrial automation devices were ca-

pable of communicating in a service-oriented way. It would make system assembly

and configuration more flexible, which would save time and money. However, no

generic solution is currently available for two reasons. First, current service-oriented

technologies require too much computational resources to be run in current devices.

Second, no technology can provide both service-orientation and hard real-time sup-

port. Research has been made to overcome these problems, but especially a strict

real-time capable service-oriented architecture cannot yet be implemented with cur-

rent technologies.

However, several functions of operations and maintenance can be implemented

using the current service-oriented technologies. As a demonstration, two service-

oriented business processes were created in this study. The first business process

estimates the environmental footprints of devices whereas the second one retrieves

condition monitoring information from devices. The technologies used in communi-

cations are Web Services and HTTP. All the data is represented as XML. To model

business processes, a standard graphical notation called BPMN is used. The mod-

eling environment used in the study converts BPMN diagrams to WS-BPEL which

is an executable business process description language.

The environmental footprint estimator business process demonstrates the inte-

gration of a public environmental database to service-oriented business processes.

The database provides its data in XML format which is a standardized way to

present structured data. Despite the complexity of the database, data processing is

straightforward as XML is easy to integrate to business processes. The business pro-

cess modeling environment that was used has the means to process complex XML

documents. HTTP incompatibility problems were encountered between the busi-

ness process execution environment and the database servers. However, they were

solved by using a HTTP wrapper to manipulate requests. The business process

modeling tool suffers also from technical problems. Despite them, it was ascertained

7. SUMMARY 87

that business process modeling with the chosen method saves time. Using BPMN

to model the interaction between business process participants graphically is both

intuitive and quick. Using a textual programming language for the same purpose

would require more work. It was also noticed that it is essential to minimize the

number of any service requests in architectural design. As a result of the optimiza-

tions that reduced the number of service calls, the performance of the footprint

estimator improved significantly.

The condition monitoring business process uses similar technologies as the foot-

print estimator, but the data is retrieved from industrial devices. To enable integra-

tion using Web Services, the devices use a technology profile called DPWS. DPWS

lowers the resources consumption of Web Services, improving their suitability for de-

vices. Despite DPWS, integration to business processes cannot be performed directly

due to HTTP incompatibility problems. However, the problems can be overcome by

using a HTTP wrapper. Another issue was that the interface definitions provided

by the DPWS framework used in the study do not define service endpoints. It hin-

dered the use of the interface definitions in business processes. The integration was

performed by defining endpoints manually. In addition, more work was required

on message processing as the automatic functions of the business process modeling

environment could not be used.

7.2 Future Work

More research could be performed related to the environmental footprint estimator.

The retrieval of data from the environmental database is slow as it has to be per-

formed over WWW. Time would be saved if the business processes were optimized

even more to minimize the number of redundant documents retrieved. There could

also be a local cache of documents. The cache could be such that all the contents

of the database would be downloaded into it regularly. Another option would be

an ”on-request” type cache. Whenever a new document was requested, it would be

stored in the cache. If the document being requested existed in the cache already, it

could be returned from there. To keep the cache up-to-date, the documents could

have a maximal age after which they would be refreshed.

The condition monitoring business process could also be developed further. This

far, only small networks have been tested. It would be important to receive infor-

mation about network behavior when there are hundreds or thousands of devices.

It would also be interesting to investigate the performance of DPWS on different

devices.

Moreover, both business processes could be integrated to enterprise information

systems. The environmental footprint estimator would suit well to decision support

systems. The condition monitoring business process would be useful as a part of

7. SUMMARY 88

supervisory systems. Furthermore, the business processes could be used together as

a part of an OEE (Overall Equipment Effectiveness) system. Whenever there is a

need for device replacement, the condition monitoring business process indicates it.

Then, while choosing a new device to replace the old one, the footprint estimator

business process provides data for device comparison.

The business processes could also be integrated to a business collaboration system.

Whenever the condition monitoring business process indicates a technical problem,

the collaboration system is used to submit a work request to the maintenance service

provider. Similarly, work requests are sent when a new device has been chosen using

the results given by the footprint estimator. At least a device supplier and a device

installer are needed to perform the installation. Such a collaboration system would

facilitate the communication between organizations, reducing the need for manual

work.

89

REFERENCES

[1] ActiveVOS [WWW]. [Referenced 14.5.2010]. Available: http://activevos.com/

[2] Aggarwal, A., Amend, M., Astier, S., Barros, A., Bartel, R., Benitez, M.,

Bock, C., Brown, G., Brunt, J., Bulles, J., Chapman, M., Cummins, F.,

Day, R., Elaasar, M., Frankel, D., Gagné, D., Hall, J., Hille-Doering, R.,

Ings, D., Irassar, P., Kieselbach, O., Kloppmann, M., Koehler, J., Kraft,

F.M., van Lessen, T., Leymann, F., Lonjon, A., Malhotra, S., Menge, F.,

Mischkinsky, J., Moberg, D., Moffat, A., Mueller, R., Nijssen, S., Ploesser,

K., Rivett, P., Rowley, M., Ruecker, B., Rutt, T., Samoojh, S., Shapiro,

R., Saxena, V., Schanel, S., Scheithauer, A., Silver, B., Srinivasan, M.,

Toulme, A., Trickovic, I., Voelzer, H., Weber, F., Westerinen, A. & White,

S.A. Business Process Model and Notation (BPMN) Version 2.0 Beta 2

[WWW]. Object Management Group. 5.6.2010 [Referenced 31.8.2010]. Avail-

able: http://www.omg.org/spec/BPMN/2.0/Beta2/PDF/

[3] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F.,

Ford, M., Goland, Y., Guizar, A., Kartha, N., Liu, C.K., Khalaf, R.,

König, D., Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yend-

luri, P. & Yiu, A. Web Services Business Process Execution Language

Version 2.0 [WWW]. OASIS. 11.4.2007 [Referenced 12.5.2010]. Available:

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[4] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano J., Tuecke S. & Xu, M. Web Services Agreement Speci-

fication (WS-Agreement) [WWW]. Open Grid Forum. 14.3.2007 [Referenced

18.9.2010]. Available: http://www.ogf.org/documents/GFD.107.pdf

[5] Bangemann, T., Diedrich, C., Colombo, A.W. & Karnouskos, S. SOCRADES

– Service Oriented Architecture in der Automatisierungstechnik [WWW].

3.6.2008 [Referenced 20.5.2010]. Available:

http://www.socrades.eu/Documents/objects/file1259600136.4

[6] Barker, A., Walton, C.D. & Robertson, D. Choreographing Web Services.

IEEE Transactions on Service Computing [electronic journal]. 2(2009)2, pp.

152–166. 17.7.2009 [Referenced 30.8.2010]. Available:

http://ieeexplore.ieee.org/

[7] Barreto, C., Bullard, V., Erl, T., Evdemon, J., Jordan, D., Kand, K., König,

D., Moser, S., Stout, R., Ten-Hove, R., Trickovic, I., van der Rijn, D. & Yiu,

A. Web Services Business Process Execution Language Version 2.0 Primer

REFERENCES 90

[WWW]. OASIS. 9.5.2007 [Referenced 14.5.2010]. Available:

http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-

primer.htm

[8] Barry, D.K. Web Services and Service-Oriented Architectures. San Francisco,

California, USA 2003, Morgan Kaufmann. 245 p.

[9] Bean, J. SOA and Web Services Interface Design Principles, Techniques and

Standards. Burlington, Massachusetts, USA 2009, Morgan Kaufmann. 384 p.

[10] Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M.,

Robie, J. & Siméon, J. XML Path Language (XPath) 2.0 [WWW].

World Wide Web Consortium. 23.1.2007 [Referenced 11.11.2010]. Available:

http://www.w3.org/TR/2007/REC-xpath20-20070123/

[11] Biron, P.V. & Malhotra, A. XML Schema Part 2: Datatypes Second Edi-

tion [WWW]. World Wide Web Consortium. 2.5.2001, 28.10.2004 [Refer-

enced 7.5.2010]. Available: http://www.w3.org/TR/2004/REC-xmlschema-2-

20041028/

[12] BizAgi BPMS [WWW]. [Referenced 31.8.2010]. Available:

http://www.bizagi.com/

[13] Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J. & Siméon,

J. XQuery 1.0: An XML Query Language [WWW]. World Wide Web Consor-

tium. 23.1.2007 [Referenced 8.11.2010]. Available:

http://www.w3.org/TR/2007/REC-xquery-20070123/

[14] Bohn, H., Bobek, A. & Golatowski, F. SIRENA – Service Infrastructure for

Real-time Embedded Networked Devices: A service oriented framework for

different domains. International Conference on Networking, International Con-

ference on Systems and International Conference on Mobile Communications

and Learning Technologies (ICN/ICONS/MCL 2006), Morne, Mauritius 23.–

29.4.2006. 2006, IEEE. P. 43.

[15] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Fer-

ris, C. & Orchard, D. Web Services Architecture [WWW]. World

Wide Web Consortium. 11.2.2004 [Referenced 7.5.2010]. Available:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[16] Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Graham,

S., Hull, D., Kakivaya, G., Lewis, A., Lovering, B., Niblett, P., Orchard,

D., Samdarshi, S., Schlimmer, J., Sedukhin, I., Shewchuk, J., Weerawarana,

REFERENCES 91

S. & Wortendyke, D. Web Services Eventing (WS-Eventing) [WWW].

World Wide Web Consortium. 15.3.2006 [Referenced: 10.5.2010]. Available:

http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/

[17] Bray, T., Hollander, D., Layman, A., Tobin, R. & Thompson, H.S. 2009.

Namespaces in XML 1.0 (Third Edition) [WWW]. World Wide Web Consor-

tium. 14.1.1999, 8.12.2009 [Referenced 5.5.2010]. Available:

http://www.w3.org/TR/2009/REC-xml-names-20091208/

[18] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. & Cowan,

J. Extensible Markup Language (XML) 1.1 (Second Edition) [WWW]. World

Wide Web Consortium. 16.8.2006, 29.9.2006 [Referenced 4.5.2010]. Available:

http://www.w3.org/TR/2006/REC-xml11-20060816/

[19] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., & Yergeau, F.

Extensible Markup Language (XML) 1.0 (Fifth Edition) [WWW]. World

Wide Web Consortium. 10.2.1998, 26.11.2008 [Referenced 4.5.2010]. Available:

http://www.w3.org/TR/2008/REC-xml-20081126/

[20] Business Process Model and Notation (BPMN) [WWW]. Object Management

Group. [Referenced 17.5.2010]. Available: http://www.omg.org/spec/BPMN/

[21] Chinnici, R., Haas, H., Lewis, A.A., Moreau, J.J., Orchard, D. & Weer-

awarana, S. Web Services Description Language (WSDL) Version 2.0 Part

2: Adjuncts [WWW]. World Wide Web Consortium. 26.6.2007 [Referenced

5.5.2010]. Available: http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-

20070626/

[22] Chinnici, R., Moreau, J.J., Ryman, A. & Weerawarana, S. Web Services De-

scription Language (WSDL) Version 2.0 Part 1: Core Language [WWW].

World Wide Web Consortium. 26.6.2007 [Referenced 5.5.2010]. Available:

http://www.w3.org/TR/2007/REC-wsdl20-20070626/

[23] Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. Web Services

Description Language (WSDL) 1.1 [WWW]. World Wide Web Consortium.

15.3.2001 [Referenced 15.5.2010]. Available:

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[24] Cohen, F. FastSOA. San Francisco, California, USA 2006, Morgan Kaufmann.

296 p.

[25] Cucinotta, T., Mancina, A., Anastasi, G.F., Lipari, G., Mangeruca, L., Chec-

cozzo, R. & Rusinà, F. A Real-Time Service-Oriented Architecture for In-

dustrial Automation. IEEE Transactions on Industrial Informatics [electronic

REFERENCES 92

journal]. 5(2009)3, pp. 267–277. 7.8.2009 [Referenced 20.5.2010]. Available:

http://ieeexplore.ieee.org/

[26] Decker, G. & Barros, A. Interaction Modeling Using BPMN [WWW]. Cite-

SeerX. [Referenced 9.11.2010]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8751&rep=

rep1&type=pdf

[27] Dhesiaseelan, A. What’s new in WSDL 2.0 [WWW]. O’Reilly. 20.5.2004 [Ref-

erenced 15.5.2010]. Available:

http://www.xml.com/pub/a/ws/2004/05/19/wsdl2.html

[28] EAA: European Aluminium Association. [Referenced 20.9.2010]. Available:

http://www.eaa.net/

[29] EcoInvent: Swiss Centre for Life Cycle Inventories. [Referenced 20.9.2010].

Available: http://www.ecoinvent.org/

[30] ELCD core database version II. [Referenced 18.10.2010]. Available:

http://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm

[31] Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design. Up-

per Saddle River, New Jersey, USA 2005, Prentice Hall. 760 p.

[32] Erl, T. SOA Glossary [WWW]. SOA Systems Inc. [Referenced 24.4.2010].

Available: http://www.soaglossary.com/

[33] Erl, T. SOA Principles [WWW]. SOA Systems Inc. [Referenced 24.4.2010].

Available: http://www.soaprinciples.com/

[34] Erl, T. SOA: Principles of Service Design. Upper Saddle River, New Jersey,

USA 2008, Prentice Hall. 573 p.

[35] FEFCO: European Federation of Corrugated Board Manufacturers. [Refer-

enced 20.9.2010]. Available: http://www.fefco.org/

[36] Feldhorst, S., Libert, S., ten Hompel, M. & Krumm, H. Integration of a Legacy

Automation System into a SOA for Devices. IEEE Conference on Emerging

Technologies & Factory Automation (ETFA 2009), Palma de Mallorca, Spain,

22.–25.7.2009. 2009, IEEE. Pp. 1–8.

[37] Fielding, R.T. Architectural Styles and the Design of Network-based Software

Architectures. Dissertation. Irvine, California, USA 2000. University of Cali-

fornia, Information and Computer Science. 162 p. Available:

http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.

REFERENCES 93

[38] Fujitsu Interstage [WWW]. [Referenced: 18.5.2010]. Available:

http://www.fujitsu.com/global/services/software/interstage/

[39] GaBi Software. [Referenced 20.9.2010]. Available:

http://www.gabi-software.com/

[40] Gang, C., Ye, D. & Che, R. Developing Trend of Industrial Fieldbus Control

System. 8th International Conference on Electronic Measurement and Instru-

ments 2007 (ICEMI ’07), Xi’an, China 16.-18.8.2007. 2007, IEEE. Pp. 1765–

1768.

[41] Garcés-Erice, L. Building an Enterprise Service Bus for Real-Time SOA: A

Messaging Middleware Stack. 33rd Annual IEEE International Computer Soft-

ware and Applications Conference (COMPSAC 2009), Seattle, Washington,

USA 20–24.7.2009. 2009, IEEE. Pp. 79–84.

[42] Goth, G. Critics Say Web Services Need a REST. IEEE Distributed Systems

Online [elecronic journal]. 5(2004)12, pp. 1–7. 17.1.2005 [Referenced 3.5.2010].

Available: http://ieeexplore.ieee.org/

[43] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Kar-

markar, A. & Lafon, Y. SOAP Version 1.2 Part 1: Messaging Framework

(Second Edition) [WWW]. World Wide Web Consortium. 24.6.2003, 27.4.2007

[Referenced 3.5.2010]. Available: http://www.w3.org/TR/2007/REC-soap12-

part1-20070427/

[44] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Kar-

markar, A. & Lafon, Y. SOAP Version 1.2 Part 2: Adjuncts (Second Edi-

tion) [WWW]. World Wide Web Consortium. 24.6.2003, 27.4.2007 [Refer-

enced 3.5.2010]. Available: http://www.w3.org/TR/2007/REC-soap12-part2-

20070427/

[45] Hadley, M. Web Application Description Language. World Wide Web Consor-

tium. 31.8.2009 [Referenced 1.9.2010]. Available:

http://www.w3.org/Submission/2009/SUBM-wadl-20090831/

[46] High, R., Kinder, S. & Graham, S. IBM’s SOA Foundation: An Architectural

Introduction and Overview [WWW]. IBM. 15.12.2005 [Referenced 18.9.2010].

Available:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-

soa-whitepaper.pdf

REFERENCES 94

[47] ILCD Handbook flyer [WWW]. European Commission Joint Research Cen-

ter (JRC). [Referenced 18.10.2010]. Available: http://lct.jrc.ec.europa.eu/pdf-

directory/ILCDHandbook.pdf

[48] Intalio BPMS [WWW]. [Referenced 16.8.2010]. Available:

http://www.intalio.com/bpms

[49] Introduction to UDDI: Important Features and Functional Concepts [WWW].

OASIS. 2004 [Referenced 6.5.2010]. Available: http://uddi.xml.org/files/uddi-

tech-wp.pdf

[50] Iwasa, K., Durand, J., Rutt, T., Peel, M., Kunisetty, S. & Bunting, D.

Web Services Reliable Messaging TC WS-Reliability 1.1 [WWW]. OASIS.

15.11.2004 [Referenced 8.5.2010]. Available:

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws reliability-

1.1-spec-os.pdf

[51] Jammes, F. & Smit, H. Service-Oriented Paradigms in Industrial Automation.

IEEE Transactions on Industrial Informatics [electronic journal]. 1(2005)1, pp.

62–70. 4.4.2005 [Referenced 19.5.2010]. Available: http://ieeexplore.ieee.org/

[52] Kannisto, P. DPWS in Industrial Automation: Applications and Evaluation.

Tampere, Finland 9.12.2010. Project work for a university course. 28 p.

[53] Kay, M. XSL Transformations (XSLT) Version 2.0 [WWW]. World Wide Web

Consortium. 23.1.2007 [Referenced 28.10.2010]. Available:

http://www.w3.org/TR/2007/REC-xslt20-20070123/

[54] Komoda, N. Service Oriented Architecture (SOA) in Industrial Systems. IEEE

International Conference on Industrial Informatics (INDIN 2006), Singapore

16.–18.8.2006. 2006, IEEE. Pp. 1–5.

[55] Kuikka, S. ACI-32040 Automaation ohjelmistokomponentit ja sovelluspalve-

lut: opetusmoniste kevät 2010. 15.2.2010, Tampere University of Technology.

Handout for a university course. 206 p.

[56] Laskey, K., Estefan, J.A., McCabe, F.G. & Thornton, D. Reference Archi-

tecture Foundation for Service Oriented Architecture Version 1.0 [WWW].

OASIS. 14.10.2009 [Referenced 24.4.2010]. Available:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

[57] Lawrence, K., Kaler, C., Nadalin, A., Monzillo, R. & Hallam-Baker, P. Web

Services Security: SOAP Message Security 1.1 (WS-Security 2004) [WWW].

OASIS. 1.2.2006 [Referenced 8.5.2010]. Available:

REFERENCES 95

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-

os-SOAPMessageSecurity.pdf

[58] Life Cycle Thinking: Tools for the Assessment [WWW]. European Commis-

sion, Joint Research Centre. [Referenced 26.10.2010]. Available:

http://lct.jrc.ec.europa.eu/assessment/tools

[59] Linthicum, D.S. The ROI of Your SOA [WWW]. ebizQ. 10.7.2005 [Referenced

1.5.2010]. Available: http://www.ebizq.net/topics/soa/features/6092.html

[60] MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F. & Metz, R. Refer-

ence Model for Service Oriented Architecture 1.0 [WWW]. OASIS. 12.10.2006

[Referenced 24.4.2010]. Available: http://docs.oasis-open.org/soa-rm/v1.0

[61] Maguire, J. Does SOA Have an ROI? [WWW]. Datamation. 14.3.2007 [Refer-

enced 1.5.2010]. Available:

http://itmanagement.earthweb.com/erp/article.php/3665266/Does-SOA-

Have-an-ROI.htm

[62] Mintchev, A. Interoperability among Service Registry Implementations: Is

UDDI Standard Enough? IEEE International Conference on Web Services

(ICWS 2008), Beijing, China 23.–26.7.2008. 2008, IEEE. Pp. 724–731.

[63] Mitra, N. & Lafon, Y. SOAP Version 1.2 Part 0: Primer (Second Edi-

tion) [WWW]. World Wide Web Consortium. 27.4.2007 [Referenced 3.5.2010].

Available: http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

[64] zur Muehlen, M. BPM, Web Services, and Standardization [WWW]. Work-

flow Research. 2004 [Referenced 30.8.2010]. Available: http://www.workflow-

research.de/Tutorials/AMCIS2004/MIZU-BPM-AMCIS2004-Section4.pdf

[65] zur Muehlen, M., Nickerson, J.V. & Swenson, K.D. Developing web services

choreography standards – the case of REST vs. SOAP. Decision Support Sys-

tems [electronic journal]. 40(2005)1, pp. 9–29. [Referenced: 11.5.2010]. Avail-

able: http://www.sciencedirect.com/

[66] Mun, D., Lee, S., Kim, B. & Han, S. ISO 15926-based data repository and

its web services for sharing lifecycle data of process plants. 2009 International

Conference on Product Lifecycle Management (PLM09), Bath, United King-

dom, 6.–8.7. 2009. iCAD laboratory.

[67] Nitzsche, J., van Lessen, T. & Leymann, F. WSDL 2.0 Message Exchange

Patterns: Limitations and Opportunities. Third International Conference on

REFERENCES 96

Internet and Web Applications and Services (ICIW 2008), Athens, Greece

8.–13.6.2008. 2008, IEEE. Pp. 168–173.

[68] Nixon, T., Regnier, A., Driscoll, D. & Mensch, A. Devices Profile for Web Ser-

vices Version 1.1 [WWW]. OASIS. 1.7.2009 [Referenced 10.6.2010]. Available:

http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html

[69] Nixon, T., Regnier, A., Modi, V. & Kemp, D. Web Services Dynamic Discovery

(WS-Discovery) Version 1.1 [WWW]. OASIS. 1.7.2009 [Referenced 8.5.2010].

Available:

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-

spec-os.html

[70] Ogbuji, U. UDDI 3.0? Who really cares? [WWW]. O’Reilly. 3.2.2005 [Refer-

enced 6.5.2010]. Available:

http://www.oreillynet.com/onlamp/blog/2005/02/uddi 30 who really

cares.html

[71] OPC Foundation [WWW]. [Referenced 18.11.2010]. Available:

http://www.opcfoundation.org/

[72] OPC Unified Architecture Specification: Part 1: Overview and Concepts re-

lease 1.01 [WWW]. OPC Foundation. 5.2.2009 [Referenced 18.11.2010]. Avail-

able: http://www.opcfoundation.org/

[73] OPC Unified Architecture Specification: Part 6: Mappings release 1.00

[WWW]. OPC Foundation. 6.2.2009 [Referenced 18.11.2010]. Available:

http://www.opcfoundation.org/

[74] Panahi, M., Nie, W. & Lin, K.J. A Framework for Real-Time Service-

Oriented Architecture. IEEE Conference on Commerce and Enterprise Com-

puting (CEC 2009), Vienna, Austria 20–23.7.2009. 2009, IEEE. Pp. 460–467.

[75] Panahi, M., Nie, W. & Lin, K.J. The Design and Implementation of Service

Reservations in Real-Time SOA. IEEE International Conference on e-Business

Engineering (ICEBE 2009), Macau 21–23.10.2009. 2009, IEEE. Pp. 129–136.

[76] PlasticsEurope: The portal of EU’s plastics industry. [Referenced 20.9.2010].

Available: http://www.plasticseurope.org/

[77] Poulin, J. & Himler, A. The ROI of SOA Based on Traditional Compo-

nent Reuse [WWW]. LogicLibrary. 2006 [Referenced 1.5.2010]. Available:

http://www.logiclibrary.com/pdf/wp/ROI of SOA.pdf

REFERENCES 97

[78] Pöhlsen, S. & Werner, C. Robust Web Service Discovery in Large Networks.

IEEE International Conference on Services Computing (SCC 2008), Honolulu,

Hawaii, USA 7.–11.7.2008. 2008, IEEE. Pp. 521–524.

[79] Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg,

T., Schmidt, W.-P., Suh, S., Weidema, B.P. & Pennington, D.W. Life cycle

assessment. Part 1: Framework, goal and scope definition, inventory analysis,

and applications. Environment International [WWW]. 30(2004)5, pp. 701–720.

[Referenced 27.8.2010]. Available: http://www.sciencedirect.com/

[80] RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. 1999, The Internet So-

ciety. 176 p.

[81] Sadtler, C., Cotignola, D., Crabtree, B. & Michel, P. Patterns: Broker Inter-

actions for Intra- and Inter-enterprise. 2004, IBM Redbooks. 292 p.

[82] Salmenperä, M. & Salonen, M. Architecture and initial performance indicators

of new OPCUA automation protocol stack Java implementation. International

Joint Conferences on Computer, Information, and Systems Sciences, and En-

gineering (CISSE 09), 4.–12.12.2009. 2010. Paper 21 in IETA subconference.

[83] Service-Oriented Device and Delivery [WWW]. 2006 [Referenced 10.6.2010].

Available: http://www.itea2.org/public/project leaflets/SODA profile oct-

06.pdf

[84] Siltanen, P. & Pärnänen, A. Information modeling for process industry: Com-

parison of integration standards [WWW]. Version 1.0. VTT. 29.11.2005 [Ref-

erenced 24.11.2010]. Available: http://pim.vtt.fi/semill/docs/2.pdf

[85] Silver, B. SAP NetWeaver BPM White Paper. SAP. 2009 [Referenced

1.9.2010]. Available:

http://download.sap.com/download.epd?context=DB579E1ADF205511BE1

A8E056E065794EBCFE135F6FBC70B0970594C94F47D21790A654360685C0

F532F71DF142B3EE9C5CD293A82450BF7

[86] SOA Tools BPMN Modeler [WWW]. [Referenced 20.8.2010]. Available:

http://www.eclipse.org/bpmn/

[87] SOCRADES [WWW]. [Referenced 11.6.2010]. Available:

http://www.socrades.eu/

[88] SODA [WWW]. 2008 [Referenced 10.6.2010]. Available:

http://www.soda-itea.org/

REFERENCES 98

[89] Stollberg, M. & Fensel, D. Semantics for Service-Oriented Architectures. In:

Griffiths, N. & Chao, K.M. Agent-Based Service-Oriented Computing. Lon-

don, Great Britain 2010, Springer. Pp. 113–139.

[90] Thompson, S., Beech, D., Maloney, M. & Mendelsohn, N. XML Schema Part 1:

Structures Second Edition [WWW]. World Wide Web Consortium. 2.5.2001,

28.10.2004 [Referenced 5.5.2010]. Available:

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[91] Tsai, W.T., Lee, Y.H., Cao, Z., Chen, Y. & Xiao, B. RTSOA: Real-Time

Service-Oriented Architecture. Second IEEE International Symposium on

Service-Oriented System Engineering (SOSE 2006), Shanghai, China 25.–

26.10.2006. 2006, IEEE. Pp. 49–56.

[92] UBR Shutdown FAQ [WWW]. Microsoft. [Referenced 6.5.2010]. Available:

http://uddi.microsoft.com/about/FAQshutdown.htm

[93] VTT Lipasto. [Referenced 20.9.2010]. Available: http://lipasto.vtt.fi/

[94] Web Services for Devices [WWW]. [Referenced 16.6.2010]. Available:

http://www.ws4d.org/

[95] WebSphere Business Modeler V6.2 – Modeling elements and flows. IBM.

23.4.2009 [Referenced 1.9.2010]. Available:

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?

topic=/com.ibm.iea.wpi v6/wbmodeler/6.2/Modeler-PubServer/WBPMv62

Modeler ModelingElements/player.html

[96] Weske, M. Business Process Management: Concepts, Languages, Architec-

tures. 2007, Springer. 368 p.

[97] What Is a Business Process Orchestration Diagram? Microsoft. [Referenced

1.9.2010]. Available:

http://msdn.microsoft.com/en-us/library/aa560068(BTS.20).aspx

[98] White, S.A., Anthony, M., Arkin, A., Astier, S., Bartel, R., Barkmeyer,

E., Bock, C., Burbank, D., Carlsen, S., Chobantonov, P., Corda, U., Cum-

mins, F., Daniel, B., Fletcher, T., Forgey, S., Frank, K., Giraud, J.L.,

James, B., Keeling, G., Klink, M., Lonjon, A., Martin, M., Mason, L.,

McCabe, F., Moberg, D., Owen, M., Rivett, P., Samoojh, S., Sanchez, J.,

Shapiro, R., Smith, B., Sturm, M., Suryanarayanan, B., Vanchu-Orozco,

M., Williams, D. & Wuethrich, P. Business Process Model and Notation

(BPMN) version 1.2 [WWW]. 4.1.2009 [Referenced 12.5.2010]. Available:

http://www.omg.org/spec/BPMN/1.2/PDF

REFERENCES 99

[99] Wolf, M.A., Pennington, D., Chomkhamsri, K., Pant, R., Pretato, U. &

Bersani, R. ILCD Format: Scope, Development, Compatibility [WWW]. Eu-

ropean Commission Joint Research Center (JRC). 17.11.2008 [Referenced

18.10.2010]. Available:

http://lca.jrc.ec.europa.eu/eplca/Deliverables/news files/ILCD Format

JRC ILCDWorkshops17-18 and 19Nov2008.pdf

[100] WorldSteel Association. [Referenced 20.9.2010]. Available:

http://www.worldsteel.org/

100

A. APPENDIX: XML SCHEMATA OF

FOOTPRINT ESTIMATOR

Figure A.1: The XML schema of GetSubstancesExchanges business process.

Figure A.2: The XML schema of GetFlowProperties business process.

A. APPENDIX: XML SCHEMATA OF FOOTPRINT ESTIMATOR 101

Figure A.3: The XML schema of ConvertUnit business process.

Figure A.4: The XML schema of GetFootprints business process.

102

B. APPENDIX: XML SCHEMATA OF

CONDITION MONITORING

Figure B.1: The XML schema of GetSerialNrsOfManufacturer business process.

Figure B.2: The XML schema of GetConditionServiceEndpoints business process.

B. APPENDIX: XML SCHEMATA OF CONDITION MONITORING 103

Figure B.3: The XML schema of GetConditionInfo business process.

B. APPENDIX: XML SCHEMATA OF CONDITION MONITORING 104

Figure B.4: The XML schema of GetConditionInfoBySerialNr business process.

B. APPENDIX: XML SCHEMATA OF CONDITION MONITORING 105

Figure B.5: The XML schema of ConditionInfoOfManufacturersDevices business process.

