
MATTEO MAGGIONI
VIDEO FILTERING USING SEPARABLE FOUR-DIMENSIONAL
NONLOCAL SPATIOTEMPORAL TRANSFORMS
Master of Science Thesis

Examiners: Prof. Karen Egiazarian
Dr. Alessandro Foi

ii

iii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
MATTEO MAGGIONI : Video Filtering Using Separable Four-Dimensional
Nonlocal Spatiotemporal Transforms
Master of Science Thesis, 132 pages, 16 enclosure pages
October 2010
Major: Signal Processing
Examiners: Prof. Karen Egiazarian, Dr. Alessandro Foi
Keywords: Video filtering, nonlocal methods, adaptive transforms, motion estimation

The large number of practical application involving digital videos has motivated a
significant interest in restoration or enhancement solutions to improve the visual
quality under the presence of noise. We propose a powerful video denoising algo-
rithm that exploits temporal and spatial redundancy characterizing natural video
sequences to reduce the effects of noise. The algorithm implements the paradigm of
nonlocal grouping and collaborative filtering, where a four-dimensional transform-
domain representation is leveraged to enforce sparsity and thus regularize the data.
Moreover we present an extension of our algorithm that can be effectively used as
a deblocking and deringing filter to reduce the artifacts introduced by most of the
popular video compression techniques.
Our algorithm, termed V-BM4D, at first constructs three-dimensional volumes, by
tracking blocks along trajectories defined by the motion vectors, and then groups to-
gether mutually similar volumes by stacking them along an additional fourth dimen-
sion. Each group is transformed through a decorrelating four-dimensional separable
transform, and then it is collaboratively filtered by coefficients shrinkage. The effec-
tiveness of shrinkage is due to the sparse representation of the transformed group.
Sparsity is achieved because of different type of correlation among the groups: local
correlation along the two dimensions of the blocks, temporal correlation along the
motion trajectories, and nonlocal spatial correlation along the fourth dimension.
As a conclusive step, the different estimates of the filtered groups are adaptively
aggregated and subsequently returned to their original position, to produce a final
estimate of the original video.
The proposed filtering procedure leads to excellent results in both objective and
subjective visual quality, since in the restored video sequences the effect of the noise
or of the compression artifacts is noticeably reduced, while the significant features
are preserved. As demonstrated by experimental results, V-BM4D outperforms the
state of the art in video denoising.

iv

v

ACKNOWLEDGEMENTS

I would like to show my gratitude to my advisor and reviewer, Giacomo Boracchi,
for his support during the development of this Thesis from the earliest stages. He
helped me in the understanding of the subject, and in producing a more coherent
and readable text. A deep thank goes to Alessandro Foi, whose invaluable guidance
during my staying in Finland made possible the fulfillment of my work, and to Karen
Egiazarian for welcoming me in his group in the Department of Signal Processing
at Tampere University of Technology.

During the last months spent abroad, I have had the chance to learn a lot about
my field of study and about life in general. I am grateful to all the new friends I
made in Tampere, Finland gave us the opportunity to live unforgettable experiences,
as dipping in a frozen lake or having inhuman saunas in the middle of the woods. I
am also truly indebted to my friends and colleagues at Politecnico di Milano, who
had shared with me the joys and sorrows of being a computer science student during
the last crazy five years spent in campus together.

Finally, I want to thank my family and my closest and deepest friends in Milan.
I have always felt their love and support in both the good and the hard times of
my life. Beyond a shadow of a doubt, I would not be the person I am now without
them.

Tampere, August 2010

Matteo Maggioni

vi

vii

CONTENTS

Abstract . iii
Acknowledgements . v
1. Image Formation Models . 1
1.1 Preliminaries . 1
1.2 Gaussian Noise . 3
1.3 Poissonian Noise . 4
1.4 Noise in Camera Raw Data . 6
1.4.1 Clipping . 8

1.5 Qualitative Measures . 11
1.5.1 Mean Square Error . 12
1.5.2 Signal-to-Noise Ratio . 12
1.5.3 Peak-Signal-to-Noise Ratio . 13

2. Transform Based Image Representation . 15
2.1 Mathematical background . 15
2.1.1 Hilbert Spaces . 15
2.1.2 Linear Operators . 20
2.1.3 Bases . 21
2.1.4 Orthonormal Bases . 22
2.1.5 Non-Orthogonal Bases . 24
2.1.6 Frames . 25

2.2 Transform Operators . 28
2.2.1 Fourier Transform . 29
2.2.2 Discrete Cosine Transform . 34
2.2.3 Windowed Fourier Transform . 37
2.2.4 Wavelet Transform . 39

2.2.4.1 Multiresolution Approximations 42
3. Denoising Methods . 53
3.1 Homoskedastic Filtering . 54
3.1.1 Poissonian Noisy Signals . 55
3.1.2 Clipped Noisy Signals . 57

3.2 Nonlocal Filtering . 60
3.3 Parametric Filtering . 64
3.4 Multipoint Filtering . 70

4. Block-Matching and 3D Filtering for Images and Videos 77
4.1 BM3D . 77
4.1.1 Grouping . 78
4.1.2 Collaborative Filtering . 78
4.1.3 Aggregation . 79
4.1.4 Algorithm . 79

viii

4.1.5 Three-dimensional Transforms . 86
4.2 V-BM3D . 87
4.2.1 Predictive-Search by Block-Matching 88
4.2.2 Algorithm . 90

5. Block-Matching and 4D Filtering for Videos 93
5.1 Introduction . 93
5.2 V-BM4D . 94
5.2.1 Observation Model . 97
5.2.2 Spatiotemporal Volumes . 98
5.2.3 Grouping . 99
5.2.4 Collaborative Filtering . 101
5.2.5 Aggregation . 101

5.3 Implementation . 102
5.3.1 Motion Vector and Trajectory Estimation 102

5.3.1.1 Similarity Criterion . 103
5.3.1.2 Location Prediction . 105
5.3.1.3 Search Neighborhood 106

5.3.2 Sub-volumes Extraction . 108
5.3.3 Algorithm . 110

5.3.3.1 Hard-thresholding Stage 110
5.3.3.2 Wiener Filtering Stage 111

5.3.4 Settings . 112
5.4 Deblocking . 113
5.5 Experimental Results . 116
5.6 Complexity . 128
5.6.1 Motion Estimation . 128
5.6.2 Hard-thresholding Stage . 128
5.6.3 Wiener-filtering Stage . 130
5.6.4 Comparative Analysis . 130

5.7 Conclusions . 131
Bibliography . 133

ix

LIST OF FIGURES

1.1 Visual representation of a digital image. 2

1.2 Example of Gaussian noise on a one-dimensional and two-dimensional
signal. The Gaussian noise uniformly corrupts the original signal, as
it is independent from the underlying signal value. 3

1.3 Example of Poissonian noise on a one-dimensional and two-dimensional
signal. This type of noise is not independent from the original signal,
in fact, as shown in the left-most figures, its intensity increases as the
underlying signal gets higher, i.e. in correspondence with the high-
peaks of the sin function or with the face of Barbara. Thus, in case
of images, brighter areas suffer from heavier noise corruption, while
darker areas are less impaired. 5

1.4 Example of the signal-dependent standard deviation function σ(y) =√
ay + b. 8

1.5 Clipped signal corrupted by Poissonian noise. The part of the signal
above the red line is dropped, and the remaining blue part is the
clipped signal. 9

1.6 Correspondence between the standard deviation functions of the orig-
inal signal σ(y) and the standard deviation function of the clipped
signal σ̃(ỹ). 11

2.1 Fourier Transform for a linear combination of two sinusoids y(x) =

c0 cos(2πω0x) + c1 cos(2πω1x), where ω0,1 = {10Hz, 2Hz} and c0,1 =

{1, 4}. 30

2.2 Countinuos Fourier transform for the rectangular pulse signal y(x) =

rect(x). 31

2.3 Approximation of a square wave with period 2π using the first n
sinusoids of the expansion. The single sinusoid terms used in each
expansion are illustrated separately in dashed lines. 32

2.4 Examples of two-dimensional DFT and a high-pass filter application
on the image Barbara. The left image is the result of the inversion
of the Fourier transform applied on the filtered coefficients illustrated
in the right image. The high-pass filtering consists in the zeroing of
the coefficients lying inside the black circle, i.e. the ones carrying the
low-frequency information. 33

2.5 Illustration of the DCT transform basis functions. 35

x

2.6 Examples of two-dimensional DCT and a low-pass filter on the image
Barbara. The coefficients outside the black circle in the right image,
i.e. those carrying the high frequency information, are zeroed. The
result of the inverse transformation of the filtered coefficient is shown
in the right image. 36

2.7 Fourier transform of a stationary signal ys(x) and of a non stationary
signal yns(x). 38

2.8 Example of translation and dilation of the Mexican hat wavelet. The
mother wavelet is illustrated in thick blue line. Dilation parameters
s < 1 produce narrower and higher-pitched waves as the one illus-
trated in red line, while s > 1 produce wider and lower functions as
the one represented in green line. 40

2.9 Illustration of the Haar scaling and wavelet functions. 45

2.10 Illustration of the Haar decomposition of a sinusoidal function at
different level of resolution, that is the projection of the signal f(x)

onto two spaces Vj and Vk where j > k. Since Vk ⊂ Vj we can say
that Vj is a higher resolution than Vk, thus the projection onto Vj is
much more accurate. Observe that the projection of f onto Vk can
exist in Vj but the projection onto Vj does not exist in Vk. 46

2.11 Separable computation of a two-dimensional DWT. 51

2.12 Multistage computation of a two-dimensional DWT. 51

3.1 Comparative plots of the inverse Anscombe transformations IA (al-
gebraic), IB (asymptotically unbiased) and IC (exact unbiased). . . . 57

3.2 Gaussian smoothing of a synthetic image. 61

3.3 Similarity of neighborhoods in NL-means. The blue square is the
reference block and the red squares are some of the blocks similar to
the reference one. 63

3.4 Example of the application of the NL-means on an image corrupted
with Poissonian noise. 64

3.5 Thresholding operators. The input is represented in black dashed
line and the result of threshold is illustrated in thick black line. The
vertical dashed grey lines identify the threshold interval [−λ, λ]. . . . 67

3.6 Details of the Wavelet Shrinkage on a chirp signal corrupted by white
Gaussian noise having standard-deviation σ = 0.2. The signal is
decomposed using the first Daubechies wavelet basis. Each subfigure
represents a different decomposition level and it is composed, from top
to bottom, by the approximation coefficients, the detail coefficients
and the thresholded coefficients. 68

xi

3.7 Example of Wavelet Shrinkage on a chirp signal corrupted by white
Gaussian noise with standard deviation σ = 0.2 using the first Daubechies
wavelet basis. 69

3.8 Example of Wavelet Shrinkage on the image Barbara corrupted with
white Gaussian noise with standard deviation σ = 0.2. In the trans-
form the first Daubechies wavelet has been utilized for the 5 levels
decomposition of the image. 69

3.9 Example of pointwise and multipoint estimation. The solid blue pixel
xR is the reference point and the area denoted by diagonal blue lines
contains the set of the observation points {xs}ps=1 used by the denois-
ing algorithm. The solid red areas contains the pixel involved in the
estimation process. 71

3.10 Example of overlapping blocks in a digital image. Each block Zx is
a square window of size N ×N and is identified by the top-left pixel
x ∈ {xi, xj, xk}. 73

3.11 Denoising of the test image Barbara corrupted with additive white
Gaussian noise with σ = 0.1 using the Block DCT algorithm. 76

4.1 Flowchart of the BM3D denoising algorithm. 80

4.2 Example of Kaiser windows with increasing parameter β1 > β2 > β3. . 83

4.3 Results of the BM3D algorithm on the test image Barbara corrupted
by white Gaussian noise with σ = 20/255. 85

4.4 Sparsity in collaborative filtering using three-dimensional transforms.
The stacks represent a collection of transformed blocks, and within
each grouped block the solid circular dots illustrate the non-retained
transform coefficients. 87

4.5 Flowchart of the V-BM3D denoising algorithm. 88

4.6 Results of the V-BM3D algorithm on two frames of the test video
Tennis corrupted by white Gaussian noise with σ = 40/255. 91

5.1 Example of trajectory built concatenating motion vectors in the noisy
video z Tennis. The black line is a linear interpolation of the position
of the ball with respect to the camera, and the interpolated points
are the coordinates of the top-left corner of the blocks in the volume
composing the set Trajz(x0, t0) where (x0, t0) is the spatiotemporal
coordinate of the ball in the reference frame z(X, t0). 98

5.2 Illustration of similar spatiotemporal volumes belonging to the same
group, spanning the first five frames of the noisy video Tennis cor-
rupted with white Gaussian noise with σ = 20/255. Each volume is
identified by one of the trajectories drawn in solid black. 100

xii

5.3 Effect of different γd penalties during the computation of the trajec-
tory of a block extracted from the background texture of the sequence
Tennis corrupted by Gaussian noise with zero mean and σ = 20/255.
The scene remains fixed throughout all the experiments, thus the most
genuine result would be a linear trajectory, as the one illustrated on
the left. 104

5.4 Example of motion field and motion vector of the frame z(X, 14) of
the image sequence Tennis corrupted by Gaussian noise with zero
mean and standard deviation σ = 20/255. The red arrows are the
motion vectors of the corresponding blocks, with lengths proportional
to their magnitude. 105

5.5 Position prediction of (xj, ti + 1) given two point (xi−1, ti−1), (xi, ti)

and the relative motion vector v(xi, ti). As λp ∈ [0, 1], the locus of
points representing the predicted position varies is the red dashed
line. In figure are provided three examples corresponding to γp =

{0, 0.5, 1}, observe that when γp = 0, the predicted position x̂i(ti+1)

is equal to xi itslef. 106

5.6 Illustration of the size adaptivity and position prediction of the search
window in frame z(X, 6) and z(X, 14) of the image sequence Tennis
corrupted by Gaussian noise with σ = 20/255. The dashed blue
square represents the position of the non-adaptive search-window
while the solid red square represents the adaptive one. 107

5.7 Example of an application of the extraction operator E . Each line
represents a volume in the time dimension. The up-most segment
corresponds to the reference volume Vz(x0, t0) centered in t0 with
temporal extent (h−0 , h

+
0). 108

5.8 Parameters depending on σ in the hard-thresholding stage. The func-
tions showed in red are the least squares polynomial regression on the
optimum parameters obtained from the Nelder-Mead simplex direct
search algorithm applied on a set of test sequences corrupted by white
Gaussian noise having different values of σ. Each curve in the above
plots represents the optimum value of a specific variable for a given
test video as a function of σ. 112

5.9 V-BM4D two stage denoising of the sequence Coastguard. From left
to right: original video, noisy video (σ = 40), result after first stage
(frame PSNR 28.58) and final estimate (frame PSNR 29.38). 112

5.10 From left to right: optimum σ values for deblocking a test set of com-
pressed videos plotted against the bit-per-pixel rate and quantization
parameter q; adaptive value of σ as the function σ(bpp, q) given in
Equation (5.42). 114

xiii

5.11 PSNR output frame-by-frame of the sequences Tennis (left) and Bus
(right) denoised by V-BM4Dhq (�), V-BM4D (4), V-BM3Dhq (∗)
and V-BM3D (+). 122

5.12 Visual comparison of the sequences, from top to bottom, Bus and
Tennis corrupted by white Gaussian noise with standard deviation
σ = 40/255, denoised by the proposed V-BM4D and the V-BM3D
algorithm. 123

5.13 Visual comparison of the sequences, from top to bottom, Foreman,
Tennis and Coastguard compressed with the MPEG-4 encoder with
quantization parameter q = 25, deblocked by the proposed V-BM4D
algorithm. 127

xiv

xv

LIST OF TABLES

5.1 Parameter settings of V-BM4D under the standard and high-quality
profile for the first (hard-thresholding) and the second (Wiener-filtering)
stage. Where reported f(σ), the corresponding parameter varies ac-
cording to the noise. The apex S, T and G on the transforms T
stands for spatial, temporal and grouping dimension, respectively. . . 117

5.2 Comparison between the PSNR (dB) outputs obtained from the pro-
posed V-BM4D algorithm and the V-BM3D algorithm under both
the standard and the high quality (hq) profiles. The test sequences
are corrupted by i.i.d. Gaussian noise with zero mean and differ-
ent standard deviations σ. The table reports the experiments having
σ ≤ 20. 118

5.3 Comparison between the PSNR (dB) outputs obtained from the pro-
posed V-BM4D algorithm and the V-BM3D algorithm under both
the standard and the high quality (hq) profiles. The test sequences
are corrupted by i.i.d. Gaussian noise with zero mean and differ-
ent standard deviations σ. The table reports the experiments having
σ ≥ 25. 119

5.4 Denoising MOVIE [58] score (the lower the better). In order to en-
hance the readability of the results, every value has been multiplied
by 103. The table reports the experiments having σ ≤ 20. 120

5.5 Denoising MOVIE [58] score (the lower the better). In order to en-
hance the readability of the results, every value has been multiplied
by 103. The table reports the experiments having σ ≥ 25. 121

5.6 PSNR outputs of V-BM4D tuned with different space (M) and time
(h) parameters combinations. Recall that the dimension of the tem-
poral extent is defined as 2h+1. The test sequence Salesman and Ten-
nis have been corrupted by i.i.d. white Gaussian noise with σ = 20/255.124

5.7 Deblocking performance of V-BM4D in terms of PSNR: q is the scale
parameter of the quantization matrix of the MPEG-4 encoder and
bpp denotes the average bit-per-pixel rate of the compressed video.
As a reference, the PSNR of both the MPlayer accurate deblocking
filter and the unfiltered compressed (compr.) video are also provided
for each value q of the MPEG-4 quantizer. The table reports the
experiments having q ≤ 15. 125

xvi

5.8 Deblocking performance of V-BM4D in terms of PSNR: q is the scale
parameter of the quantization matrix of the MPEG-4 encoder and
bpp denotes the average bit-per-pixel rate of the compressed video.
As a reference, the PSNR of both the MPlayer accurate deblocking
filter and the unfiltered compressed (compr.) video are also provided
for each value q of the MPEG-4 quantizer. The table reports the
experiments having q ≥ 20. 126

5.9 Summary of the parameters involved in the complexity analysis. . . . 129

1

1. IMAGE FORMATION MODELS

1.1 Preliminaries

A digital image, for the purpose of this Thesis, is considered as a two-dimensional
discrete positive function y formally defined as:

y : X → R, where X ⊂ Z2. (1.1)

The elements belonging to the domain, that is every x ∈ X ⊂ Z2, are two-
dimensional spatial coordinates, the pixels, composing the image y, and y(x) repre-
sents the intensity value of y at the position indexed by x. In other words every pixel
value y(x) is the result of a light intensity measurement made by a CCD matrix.
Each captor of the CCD is roughly a square wherein the number of incoming pho-
tons is being counted for a fixed period of time, the so-called obturation time. This
count is not deterministic because, even in ideal condition, where the light source is
constant, the number of photons reaching the sensor fluctuates around its average
in accordance with the Central Limit Theorem, and, additionally, each captor, if
not adequately cooled, receives heat spurious photons.

As it can be seen in Equation (1.1), the codomain of y is R, thus we will con-
sider greyscale digital images only. Moreover the intensity value will be normalized,
without loss of generality, to the common range [0, 1]. Greyscale images measure
the light intensity, from the minimum brightness of the value 0 to the maximum
of 1. However in a digital, discrete, world not every light intensity can be fully
represented, thus pixel values need to be quantized to L levels, usually a power of 2.
Common greyscale images have L = 256 = 28 different grey levels, using 8 bits to
describe every pixel value. In Figure 1.1 is illustrated an example of a digital image
supported by a grid X with 15× 9 pixels, note that by convention the origin is on
the top-left corner of the chosen reference system (u, v).

Digital images, like any other signal acquired by real word sensors, typically
contain noise. Gaussian noise is part of almost any signal. For example, the familiar
white noise of a non-tuned television station is well modeled as Gaussian. Since
image sensors must count photons and the number of photons is a random quantity,
especially in low-light situation images often have photon counting noise. Thus noise
is caused by several faults in the image acquisition process, among which we can
cite the following:

2

v

u

pixel x =

»
i
j

–

1

Figure 1.1: Visual representation of a digital image.

• Photon counting errors;

• Electric and thermal noise;

• Quantization noise due to ADCs;

• Data transmission errors.

For these reasons pixel values in the sensed image could be different than the true
intensities taken by an ideal camera in ideal conditions. The most general model of
noisy image z can be expressed as an additive decomposition of two components,
the original uncorrupted signal and the noise:

z(x) = y(x) + η(x), x ∈ X, (1.2)

where y is the unknown true image and η is a random variable that describes the
noise corrupting the signal at every given pixel x ∈ X ⊂ Z2 of the image. Another
common model, called multiplicative for obvious reason, defines the noisy image z
as:

z(x) = y(x) · η(x), x ∈ X. (1.3)

Note that the former model can be transformed into the latter by using exponenti-
ations, the opposite direction can be taken as well using logarithms:

ez(x) = ey(x)+η(x) = ey(x)eη(x), x ∈ X
log z(x) = log(y(x) · η(x)) = log y(x) + log η(x), x ∈ X.

Here the focus is on the additive model of Equation (1.2). Noise is an unwanted

3

(a) Original signal. (b) Noisy signal. (c) Gaussian noise.

(d) Original image. (e) Noisy image. (f) Gaussian noise (absolute value).

Figure 1.2: Example of Gaussian noise on a one-dimensional and two-dimensional signal. The Gaussian noise
uniformly corrupts the original signal, as it is independent from the underlying signal value.

random component in an observed signal, thus its behavior is best described by
using random variables typically following a Gaussian or a Poisson distribution, or
a combination of both. In the remaining part of this chapter we will analyze every
alternative image formation model mentioned above.

1.2 Gaussian Noise

The Gaussian distribution is undoubtedly the most common probabilistic model used
to approximate noise in corrupted images. Referring to Equation (1.2), the noise
component η is now defined as an independent and identically distributed zero-mean
Gaussian random variable with variance σ2. This is the white noise model:

η(·) ∼ N (0, σ2). (1.4)

Thereby this simple, widely used, noise model is a realization of a zero-mean in-
dependent and identically distributed Gaussian random vector added to the original
signal y. In Figure 1.2 there are represented two examples of signals degraded by
white Gaussian noise with standard deviation σ = 0.1. The one-dimensional signal
is the function y(x) = sin(x) with x ∈ [0, 6π] while the two-dimensional signal is
a 512 × 512 greyscale image, the well known test image of Barbara. Note that the

4

average intensity value of the signal does not change after the application of the
Gaussian noise and, furthermore, the expected value of the noisy signal z is actually
the original signal y:

E [z(x)] = E [y(x) + η(x)]

= E [y(x)] + E [η(x)]

= y(x), x ∈ X,

where the last equality holds because y(x) is a deterministic value, that is E [y(x)] =

y(x) for all x ∈ X, and η is the random Gaussian variable with zero-mean defined
in Equation (1.4), thus E [η(x)] = 0 for all x ∈ X.

1.3 Poissonian Noise

Earlier works in image and signal processing is broadly dominated by the assump-
tion of dealing with white Gaussian noise, despite the fact that several important
physical events may be better described by non-Gaussian degradation. In fact, in a
significant number of applications such as medical or astronomical imaging, that is
where images are acquired by photon-counting devices, noise can be better modeled
by a Poisson distribution.

Formally each observation z(x) of the noisy signal z, with x ∈ X ⊂ Z2, can be
defines as an independent random variable drawn from a Poisson distribution of
parameter proportional to the original signal y(x) [45]:

z(x) ∼ P(λ · y(x)), x ∈ X, (1.5)

where λ is a positive real number.
From now on, to simplify the notation, without any advice stating the opposite,

we will not explicitly write the conditioning on y of the expectations, standard-
deviations and variances formulas, for example by E [·] we mean E [·|y].

The main issue with this model is that the noise can be no longer assumed inde-
pendent from the signal. Since the parameter of a Poisson distribution is both the
expected value and the variance of the random variable, the magnitude of Poissonian
noise is proportional to the underlying original signal intensity value. As a matter
of fact, both the expected value and the variance of z are the underlying intensity
value to be estimated.

E [z(x)] = Var [z(x)] = λ · y(x), x ∈ X. (1.6)

Therefore the noise η can be formally defined as:

η(x) = z(x)− E [z(x)] .

5

(a) Original signal. (b) Noisy signal. (c) Poissonian noise.

(d) Original image. (e) Noisy image. (f) Poissonian noise (absolute
value).

Figure 1.3: Example of Poissonian noise on a one-dimensional and two-dimensional signal. This type of noise
is not independent from the original signal, in fact, as shown in the left-most figures, its intensity
increases as the underlying signal gets higher, i.e. in correspondence with the high-peaks of the sin
function or with the face of Barbara. Thus, in case of images, brighter areas suffer from heavier noise
corruption, while darker areas are less impaired.

Moreover, remembering Equation (1.6) and recalling that y(x) is a deterministic
value for each x ∈ X, we can formally define the statistics of η as follows:

E [η(x)] = E [z(x)− E [z(x)]]

= E [z(x)− y(x)]

= 0

Var [η(x)] = Var [z(x)− E [z(x)]]

= Var [z(x)− y(x)]

= y(x).

This behavior is illustrated in Figure 1.3. Looking at Figures 1.3(c) and 1.3(f), it
is clearly shown that the noise level increases with the intensity of the original signal,
in strong contrast to the uniformly spread Gaussian noise depicted in Figure 1.2(c).
For example the legs of the table next to Barbara present an almost trifling noise
level, while other areas, such as the table napkin or the floor in the background, are
significantly more affected by noise inasmuch as the underlying signal is brighter in

6

the original image.
An interesting characteristic of the Poisson distribution is that for sufficiently

large1 values of the parameter λ, the distribution can be approximated with a Normal
distribution of both mean and variance equal to λ:

P(λ) ≈ N (λ, λ). (1.7)

The accuracy of the previous approximation increases with λ, thus a Poissonian
process can be approximated as a special signal-dependent Gaussian distribution
defined as [10]:

η(x) ∼ N (0, y(x)), x ∈ X.

1.4 Noise in Camera Raw Data

The last model of this brief review is perhaps the most general one, it can be
used to accurately describe the statistical behavior of noise corrupting raw data
generated by cameras. Raw data means a raw digital image file produced by a
digital camera’s sensor that has not yet been processed and, thus, that could have
a wider dynamic range than the eventual processed final image. A common raw
image processing pipeline comprehends for example denoising, pixel error recovering,
white balancing and compression. Intuitively it is composed by two terms: a signal-
dependent Poissonian part and a signal-independent Gaussian part respectively used
to model the photon counting process and the remaining stationary disturbances,
such as those described in Section 1.1.

First of all the noise model η of Equation (1.2) must be extended to define a
generic signal-dependent model[10, 25]:

z(x) = y(x) + σ(y(x))ξ(x), x ∈ X, (1.8)

where, as usual, z : X → R is the observed noisy signal, y : X → R is the original
signal and x is a two-dimensional spatial coordinate, i.e. a pixel position in the
image.

The innovative part is the definition of the noise composed by two components:
the term ξ(x) : X → R is zero-mean independent random noise with unitary variance
assumed for simplicity as ξ ∼ N (0, 1), and the function σ : R → R+ that gives the
standard deviation of the whole noise component. Since E [ξ(x)] = 0, then the
original signal y can be expressed as the expected value of the noisy observation
z: E [z(x)] = y(x). Furthermore the standard deviation of the noise is a function,
called σ, of the expected value of the noisy signal: std [z(x)] = σ(E [z(x)]).

The noise model in Equation (1.8) can be expressed with two mutually indepen-

1The actual value of λ depends on the type of application and on the desired accuracy. Empirical
observations prove that good results can be obtained with λ > 20.

7

dent component:
σ(y(x))ξ(x) = ηp(y(x)) + ηg(x), x ∈ X, (1.9)

where ηp is the signal-dependent Poissonian part and ηg is the signal-independent
Gaussian part, characterized as follows:

χ(y(x) + ηp(y(x))) ∼ P(χy(x)), χ > 0, x ∈ X,
ηg(x) ∼ N (0, b), b ≥ 0, x ∈ X.

From the definition of the Poisson distribution, the expected value and variance
of the random variable can be derived as follow:

E [χ(y(x) + ηp(y(x)))] = Var [χ(y(x) + ηp(y(x)))] = χy(x). (1.10)

Eventually, from Equation (1.10), it is possible to derive the statistics of the
Poissonian component ηp of the noise modeled in (1.9). The expected value is
defined as:

E [χ(y(x) + ηp(y(x)))] = E [χy(x)] + E [χηp(y(x))]

= χy(x) + χE [ηp(y(x))] = χy(x),

and, from the last equality, we can state that:

E [ηp(y(x))] = 0 (1.11)

while the variance is:

Var [χ(y(x) + ηp(y(x)))] = Var [χy(x) + χηp(y(x))]

= χ2Var [ηp(y(x))] = χy(x),

rewriting the last line we obtain:

Var [ηp(y(x))] =
y(x)

χ
= ay(x), (1.12)

where a is generated by the substitution a = χ−1.
As expected, the variance of ηp is proportional to the value of the signal y(x),

while the Gaussian component ηg has a constant variance equal to b. Thus, the
whole variance of the noisy signal z in Equation (1.8) can be defined as:

Var [z(x)] = σ2(y(x)) = ay(x) + b. (1.13)

8

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

y

σ

(a) Parameters: a = 0.022 (4), 0.062 (◦), 0.12 (�)
and b = 0.042.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

y

σ

(b) Parameters: a = 0.042 and b = 0.022 (4), 0.062

(◦), 0.12 (�).

Figure 1.4: Example of the signal-dependent standard deviation function σ(y) =
√
ay + b.

Consequently the standard deviation is:

std [z(x)] = σ(y(x)) =
√
ay(x) + b.

The parameters a and b depend on the hardware characteristic of sensors and
on the acquisition settings, such as quantum efficiency, pedestal parameter, analog
gain, ISO value2, temperature, etc [10]. As well as we did in Equation (1.7), it is
possible to approximate the Poisson distribution with a signal-dependent Normal
distribution as follows:

σ(y(x))ξ(x) =
√
ay(x) + bξ(x) ' ηh(y(x))

ηh(x) ∼ N (0, ay(x) + b).

1.4.1 Clipping

In real world the dynamic range of acquisition, transmission and storage system is
always limited. As said in Section 1.1, in this work the range is normalized to the
interval [0, 1], where the upper and lower-bound correspond to the darkest and the
brightest intensity value in the signal respectively. Given that the original, noise-
free, signal y is actually limited in that range, the same assumptions no longer holds
for z, because the noise η added to y can produce an under or over-exposure in the
original signal. For these reasons some values in the noisy signal z may exceed the
bounds, thus, to deal with this problem, we must define a new observation model,
called the clipped observation model [10, 25]:

z̃(x) = max(0,min(z(x), 1)), x ∈ X. (1.14)
2Large ISO numbers produce worse signal-to-noise ratio. On the other hand, small ISO values assure

better SNR but, as a drawback, yield to darker images if the exposure time is not long enough.

9

Figure 1.5: Clipped signal corrupted by Poissonian noise. The part of the signal above the red line is dropped,
and the remaining blue part is the clipped signal.

In Equation (1.14) the noisy signal z is clipped, or, in other words, every value
of z above or below the bounds shall be substituted with the value of the exceeded
bound and a new noisy signal is produced: the clipped noisy signal called z̃. For
an example refer to Figure 1.5, where it is represented a sine function corrupted
with Poissonian noise wherein the blue noisy wave is the clipped signal z̃ and the
red term, those above the value 1, is the part of the original noisy observation z

exceeding the upper-bound.
The noise model for the clipped observation model of Equation (1.14) is then:

z̃(x) = ỹ(x) + σ̃(ỹ(x))ξ̃(x), (1.15)

where ỹ(x) = E [z̃(x)] ∈ Ỹ ⊆ [0, 1] and E
[
ξ̃(x)

]
= 0, Var

[
ξ̃(x)

]
= 1. The function

σ̃ : Ỹ → R+ gives the standard deviation of the clipped observation: σ̃(ỹ(x)) =

std [z̃(x)]. In general the original signal y is different from the underlying signal ỹ of
the clipped observation, and consequently the statistics of the corresponding noisy
signals are different as well:

ỹ(x) = E [z̃(x)] 6= E [z(x)] = y(x)

σ̃(ỹ(x)) = std [z̃(x)] 6= std [z(x)] = σ(y(x)).

Note that it is possible to define a transformation from the functions y and σ given
ỹ and σ̃ and vice versa [25, 10, 24]. Assuming, for simplicity, the independence of
the two clippings, z̃ = 0 ∀z < 0 and z̃ = 1∀z > 1, which is actually false only
in cases of extremely powerful noise, let’s introduce a random variable ν ∼ µ,∞
and its corresponding clipped -from below- ν̃ = max ν, 0. The probability density

10

function fν̃ of ν̃ is defined as:

fν̃ =




φ(t− µ) + Φ(−µ)δ0(t) t ≥ 0

0 t < 0
,

where φ is the probability density function, Φ the cumulative density function of
the standard normal distribution N (0, 1) and δ0 is the Dirac delta impulse. Thus it
can be proved that the statistics of the clipped ν̃ are:

E [ν̃] = Em(µ) = Φ(µ) + φ(µ) (1.16)

Var [ν̃] = S2
m(µ) = Φ(µ) + Em(µ)µ− E2

m(µ) (1.17)

= Φ(µ) + φ(µ)µ− φ2(µ) + Φ(µ)µ(µ− Φ(µ)µ− 2φ(µ)).

Using these functions, recalling that y = E [z] and σ(y) = std [z], the correspond-
ing expectation ỹ = E [z̃] and σ(ỹ) = std [z̃] of the model (1.15) are obtained from
the direct transformations defined below:

ỹ = A(y, σ(y)) = σ(y)Em
(

y

σ(y)

)
− y + 1− σ(y)Em

(
1− y
σ(y)

)
(1.18)

σ̃(ỹ) = B(y, σ(y)) = σ(y)Sm
(

y

σ(y)

)
Sm
(

1− y
σ(y)

)
. (1.19)

On the other hand, the non-clipped signal y can be computed from ỹ and σ̃,
through the following indirect transformation:

y == C(ỹ, σ̃(ỹ)) = ỹEr
(

ỹ

σ̃(ỹ)

)
− ỹ + 1− (1− ỹ)Er

(
1− ỹ
σ̃(ỹ)

)
, (1.20)

where Er is defined as a function of ρ = Em(µ)
Sm(µ)

= E[ν̃]
std[ν̃]

as Er = µ
Em(µ)

. In Figure 1.6
it is shown the standard deviation function σ(y) having a = 0.01 and b = 0.04 in
solid line, and in dashed line the corresponding standard deviation function σ̃(ỹ).
The solid grey segments express the mapping between the points in σ(y) and their
counterparts in σ̃(ỹ), in other words the segments are the mapping σ(y) 7→ σ̃(ỹ).
Note that the small black triangles indicates the points (ỹ, σ̃(ỹ)) that corresponds
to the point in σ(y) where y = {0, 1}.

Note that the clipped signal z̃, with regard to the true signal y, is corrupted by
an error having a non-zero expected value. To clarify this statement, let’s rewrite
the model in Equation (1.15) by adding and subtracting y:

z̃(x) = y(x) +
[
ỹ(x)− y(x) + σ̃(ỹ(x))ξ̃(x)

]
, x ∈ X,

11

!"#$%& '()*+,-+%-.-&/"+*"0, 1$,2*"0, ! "!# !
!
3$3'! " 3$345 6708"- 8",&9

+,- *:& 20%%&7;0,-",# 7*+,-+%-.-&/"+*"0, 2$%/& #! " #!# 6-+7:&- 8",&9< =:& #%+>
7&#?&,*7 "88$7*%+*& *:& ?+;;",# ! "!# $%& #! " #!#< =:& 7?+88 @8+2A *%"+,#8&7 !
",-"2+*& ;0",*7 " #!% #! " #!## B:"2: 20%%&7;0,- *0 ! ! 3 +,- ! ! '<

"#$# %&'()*+*,-./ +.0 /*+.0+10 0(2,+*,-./ -3)4,''(0 2+1,+54(/
+.0 *6(,1 *1+./3-17+*,-./

C 2%$2"+8 ;0",* B:&, B0%A",# B"*: 28";;&- ,0"7> 7"#,+87 "7 *0
$,-&%7*+,- :0B *:& /+%"+@8&7 +,- 1$,2*"0,7 01 *:& 0@7&%/+*"0,
?0-&8 6'9 %&8+*& *0 *:07& 01 *:& 28";;&- 0@7&%/+*"0,7D ?0-&8
649< E, ;+%*"2$8+%F "* "7 "?;0%*+,* *0 20?;$*& *:& 1$,2*"0,7 #!
+,- #! #"/&, ! +,- !F +,- /"2& /&%7+< =:& ;%0@+@"8"*> -&,.
7"*> 1$,2*"0, 6;<-<1<9 01 *:& $,0@7&%/&- ,0,.28";;&- ,0"7> -+*+
8 ' !

"
!% ! 5"!#

#
"7 7"?;8> '

!"!#&
$
'%!
!"!#

%
F B:&%&+7 *:& 28";;&-

#8 ! ?+G (3%?", (8% ')) "7 -"7*%"@$*&- +220%-",# *0 + -0$@8>
2&,70%&- H+$77"+, -"7*%"@$*"0, :+/",# + #&,&%+8"I&- ;<-<1< (#8
01 *:& 10%?

(#8"' #!)
$
%!
!"!#

%
*3"' #"

'
!"!#&

$
'%!
!"!#

%
+J3%'K")

$
!%'
!"!#

%
*3"'% ' #%

6L9
B:&%& + J3%'K -&,0*&7 *:& 2:+%+2*&%"7*"2 1$,2*"0, 01 *:& ",*&%/+8
J3% 'K +,- *3 "7 *:& M"%+2 -&8*+ "?;$87& +* 3< N&%& & +,-)
+%& *:& ;<-<1< +,- 2$?$8+*"/& -"7*%"@$*"0, 1$,2*"0, 62<-<1<9 01
:& 7+,-+%- ,0%?+8 ! "3% '#F %&7;&2*"/&8>< =:& !%7* +,- 8+7*
+--&,-7 ", 6L9 20%%&7;0,- *0 *:& ;%0@+@"8"*"&7 01 28";;",# 1%0?
@&80B +,- 1%0? +@0/& 6$,-&%. 0% 0/&%.&G;07$%&9< O&%> *&-"0$7
2+82$8+*"0,7 ;%0/"-& *:& 10880B",# &G+2* &G;%&77"0,7 01 *:& &G.
;&2*+*"0, +,- /+%"+,2& 01 #8(

% (#8) ! #! !)
$

!
!"!#

%
! %)

$
!%'
!"!#

%
"! % '#"

" ! "!# &
$

!
!"!#

%
% ! "!# &

$
!%'
!"!#

%
% 6P9

/+%(#8) ! #! 5" #!# !)
$

!
!"!#

%$
!5 % 5 #!! " ! 5"!#

%
"

" #!5 %)
$
!%'
!"!#

%$
!5 % 5 #!! " 5 #! " ! 5"!#% '

%
"

"! "!# &
$
!%'
!"!#

%
"5 #! % ! % '#%! "!# &

$
!

!"!#

%
"5 #! % !# $

6Q9

!0% + #"/&, 1$,2*"0, ! F *:&7& &G;%&77"0,7 &G;8"2"*8> -&!,& *B0
?+;;",#7 "! (9 & #9 +,- #! (!" & !" +7 10880B7(

"! (! $%& #! ! "! "!# % 6R9
#! (! "!# $%& #! " #!# ! #! "!# $ 6'39

!"#$%& 5(SG;&2*+*"0, % (#,) +,- 7*+,-+%- -&/"+*"0, 7*- (#,) 01 *:& 28";;&- #, !
?+G (3% ,) +7 1$,2*"0,7 !7 +,- "7 01 -F B:&%& - ! % (,) +,- , ' # "-% '#<

E, ;+%*"2$8+%F 6R9 +,- 6'39 >"&8- + *%+,710%?+*"0, *:+* @%",#7
:& 7+,-+%- -&/"+*"0, 2$%/& "!% ! "!## *0 "*7 28";;&- 20$,*&%.
;+%* " #!% #! " #!##<
=:& ",/&%7& ?+;;",# 01 "! B"88 @& -&,0*&- +7 $! (#9 & 9 F

$! (#! $%& ! ! $! " #!# $ 6''9

C8*:0$#: *:& &G;%&77"0,7 6P9 +,- 6Q9 2+, @& &/&,*$+88> $7&.
1$8 10% + ,$?&%"2+8 "?;8&?&,*+*"0,F *:&> +%& 2$?@&%70?& +,-
2+,,0* @& &+7"8> ?+,";$8+*&- 10% 1$%*:&% +,+8>7"7<

"#:# ;''1-&,7+*,-. 5! /,.<4!=)4,''(0 2+1,+54(/
C7 ", J'TKF B& 2+, 7"?;8"1> *:& +,+8>7"7 @> +77$?",# *:+* *:&

*B0 28";;",#7F *:& 0,& 1%0? @&80B 68 . 3F #8 ! 39 +,- *:& 0,&
1%0? +@0/& 68 / 'F #8 ! '9F +%& ,0* ?"G&- @> *:& %+,-0?,&77
01 *:& ,0"7&< E* ?&+,7 *:+*F 10% + !G&- !F +* ?07* 0,& 01 *:&
"?;$87&7 ", *:& ;<-<1< 6L9 :+7 ?+77 +;;%&2"+@8> 8+%#&% *:+, 3<
E, ;%+2*"2&F *:"7 +77$?;*"0, "7 +8B+>7 /&%"!&-F &G2&;* 10% *:07&
&G*%&?& 7"*$+*"0,7 B:&%& *:& ,0"7& "7 -%+?+*"2+88> 7*%0,# 10%
%&8+*"/&8> 7?+88 7"#,+8 /+8$&7 6&<#<F ! "!#* 3$5 10% ! + J3% 'K9<
U&* , ' ! "-% '# @& + ,0%?+88> -"7*%"@$*&- %+,-0? /+%".

+@8& B"*: ?&+, % (,) ! - +,- $,"*+%> /+%"+,2&F +,- 8&* #, !
?+G (3% ,)< E* 2+, @& &+7"8> 7:0B, 67&&F &<#<F J'4K V:+;*&% 53 0%
J'WK9 *:+* *:& &G;&2*+*"0, % (#,) +,- *:& /+%"+,2& /+% (#,) 01 *:&
28";;&- 61%0? @&80B9 #, +%&

% (#,) ! %7 "-# !)"-#-" & "-# % 6'59

/+%(#,) ! &57 "-# !)"-#" %7 "-#-% %
5
7 "-# ! 6'T9

!)"-#" &"-#-% &5"-#"

")"-#-"-%)"-#-% 5&"-## <

T

Figure 1.6: Correspondence between the standard deviation functions of the original signal σ(y) and the standard
deviation function of the clipped signal σ̃(ỹ).

where the noise has become the term inside the square brackets:

η̃(x) =
[
ỹ(x)− y(x) + σ̃(ỹ(x))ξ̃(x)

]
.

As a last comment, observe that, even if the variance of ξ is equal in the clipped
and non-clipped observation: Var [ξ(x)] = Var

[
ξ̃(x)

]
= 1, their distribution are

different. More specifically, assuming for simplicity ξ(x) ∼ N (0, 1), the random
variable ξ̃ follows a doubly censored (clipped) normal distribution supported on[
−ỹ
σ̃(ỹ)

, 1−ỹ
σ̃(ỹ)

]
.

1.5 Qualitative Measures

It is useful in this section to analyze qualitative measures of noise in degraded
signals. More specifically this measures used in this work will be the Mean Square
Error (MSE), Signal-to-Noise Ratio (SNR) and Peak-Signal-to-Noise Ratio (PSNR).

Generally speaking these measures are used to compare a non-processed signal
versus the corresponding processed one, i.e. an uncompressed versus a compressed
audio track or an original image versus the denoised one. Usually the results are
given in a logarithmic decibel (dB) scale, because signals may have a very wide
dynamic range. It is important to note that the great majority of signal processing
applications do not require an exact reconstruction of the original signal, which is
seldom possible, thus a reasonable amount of loss is allowed in the reconstructed
data.

Before moving on, it is useful to anticipate the concept of denoising which will
be extensively covered in Chapter 3. By denoising we mean reconstruct an estimate
ŷ of the original signal y from the noisy observation z using an algorithm generally
denoted with D:

ŷ = D(z). (1.21)

The goal is of course to remove the noise component η, while keeping the estimate

12

ŷ as close as possible to the original y.

1.5.1 Mean Square Error

The Mean Square Error, MSE, is the most common technique to measure the dif-
ference between two similar signals. It corresponds to the expected value of the
square error loss, where the error is the magnitude of the dissimilarity between the
original signal and the estimated one. For our purpose, when y is an image, a two-
dimensional discrete function defined for all x ∈ X ⊂ Z2 and ŷ is its estimate, then
the MSE becomes:

MSE =
1

|X|
∑

x∈X
(y(x)− ŷ(x))2 . (1.22)

Observe that, in general, we don’t have the original signal y, unless we are in test
environments where the noisy signal z is produced adding synthetic noise to a chosen
noise-free signal y.

1.5.2 Signal-to-Noise Ratio

The Signal-to-Noise Ratio, SNR, can be viewed as the ratio of a signal power to the
noise power corrupting the signal itself, higher outcomes express better quality of
the signal. In general this measure is defined as the power ratio between a signal y
and the background noise η:

SNR = 10 log10

Py
Pη

In case of images, the SNR measures the amount of noise with its standard
deviation std [η] and with the empirical standard deviation of the original signal
std [y]:

SNR = 10 log10

std [y]

std [η]
(1.23)

where std [y] is defined as:

std [η] =

(
1

X

∑

x∈X
(y(x)− ȳ)2

) 1
2

, (1.24)

and ȳ is the average grey level value:

ȳ =
1

X

∑

x∈X
y(x). (1.25)

On the other hand the standard deviation of the noise can be either computed as an
empirical measurement or formally obtained when the noise model and parameters
are known.

13

1.5.3 Peak-Signal-to-Noise Ratio

The Peak-Signal-to-Noise Ratio, PSNR, is the reference measure used in this Thesis.
It expresses the ratio between the maximum possible power of a signal versus the
power of the corrupting noise. As usual The PSNR can be easily defined from the
MSE, defined in Equation (1.22), as follows:

PSNR = 10 log10

M2

MSE
, (1.26)

where M is the maximum possible value of the signal, i.e. for normalized images
M = 1.

It is important to note that high SNR or PSNR do not always correspond to a
signal with perceptually high quality, the measures are thus somewhat subjective.

14

15

2. TRANSFORM BASED IMAGE REPRESENTATION

2.1 Mathematical background

This section introduces the necessary mathematical background to better compre-
hend the topics that will be discussed in the continuation of this Thesis. Sometimes
will be also provided basic examples using vectors belonging to R2 to support the
formal discussion of the concept hereby defined. A more detailed view of the argu-
ments can be found in [19, 46].

2.1.1 Hilbert Spaces

A vector space is, in general, a set whose elements, the vectors, can be combined
and manipulated in certain ways. Throughout the section we merge our definitions
for real and complex scalars using the unified notation α ∈ F to express a number
belonging to R or C.

Definition 2.1.1 (Vector space). A vector space V over the set F is a set of vectors
together with vector addition and scalar multiplication operations. These operations
must satisfy the usual following properties for any u, v, w ∈ V and α, β ∈ F:

i. Commutativity: u+ v = v + u;

ii. Associativity: (u+ v) + w = u+ (v + w) and (αβ)u = α(βu);

iii. Distributivity: α(u+ v) = αu+ αv and (α + β)u = αu+ βu.

Furthermore for every u ∈ V there exists:

iv. Additive identity: An element 0, such that u+ 0 = u ;

iiv. Additive inverse: A unique element −u ∈ V such that u+ (−u) = 0;

iiiv. Multiplicative identity: An element 1 such that 1 · u = u.

Note that 0 is the zero-vector, different in general from the zero scalar.

In finite Euclidean space, like Fk, the elements of V are k-tuples and the operations
of addition and multiplication are defined respectively as:

u+ v =



u1

...
uk


+



v1

...
vk


 =



u1 + v1

...
uk + vk


 ,

16

and:

αu = α



u1

...
uk


 =



αu1

...
αuk


 .

Definition 2.1.2 (Vector subspace). A subset W of a vector space V is a subspace
if:

i. For all u, v ∈ W, u+ v ∈ W;

ii. For all u ∈ W and α ∈ F, αu ∈ W.

To clarify the concept of subspace, we can think of a line r ⊂ R2 passing through
the origin of the cartesian plane. The line r can be completely described by one of
its non-zero point, thus it is one of the simplest case of subspace. If we apply an
orthogonal projection of a vector u onto some subspace, we get the closest vector
û to u in the subspace, moreover the vector (u − û) is orthogonal to every vector
v belonging to the subspace of û. When the norm ||v|| of the element v specifying
the subspace is unitary, the projection is defined as û = 〈u, v〉 v. For example the
projection of a vector u onto one of the standard axis e of the plane R2 gives the
corresponding component of u.

Definition 2.1.3 (Inner product). An inner product on a vector space V is a func-
tion 〈·, ·〉 : V × V → F with the following properties:

i. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉;

ii. 〈αu, v〉 = α 〈u, v〉;

iii. 〈u, v〉∗ = 〈v, u〉;

iv. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

Note that the second and the third condition imply 〈u, αv〉 = α∗ 〈u, v〉, where α∗
is the complex conjugate of α, thus the inner product is linear in the first argument
and conjugate-linear in the second argument. The inner product, also named scalar
or dot product, of two vectors u = [u1 u2]T and v = [v1 v2]T in the real plane
is defined as:

〈u, v〉 = u1v1 + u2v2 with u, v ∈ R2. (2.1)

The standard inner product for Fk as a generalization of the one provided in Equation
(2.1) is:

〈u, v〉 =
k∑

i=i

uiv
∗
i . (2.2)

Note that the inner product defined in Equation (2.2) is not the only valid inner
product for Fk. Another example, relating to the vector space of complex-valued

17

functions in F, could be:

〈u, v〉 =

∫ ∞

−∞
u(t)v∗(t)dt.

As an interesting note, in Rk, there is an equivalent expression of the standard inner
product defined in Equation (2.2):

〈u, v〉 = ||u||2 ||v||2 cos θ.

This formulation is also used to define the angle θ between two vectors u and v

in k dimensions. Thus the inner product can bu used as a measure of similarity
between a pair of vectors. Fixing the length of two vectors, the greater their inner
product, the closer the vectors are in orientation. For example when the distance
is minimized when the angle cos θ is equal to 0 or 1, conversely the vectors are the
farthest when they are antiparallel, that is when θ = π. The inner product can be
then seen as the measure of vector’s length along with relative orientation.

Definition 2.1.4 (Inner product space). A vector space equipped with the inner
product is called an inner product space.

Definition 2.1.5 (Norm). A norm defined on a vector space V in F is a real-valued
function ||·|| : V → R such that the following holds for any u, v ∈ V and α ∈ F:

i. ||u|| ≥ 0 and ||u|| = 0 if and only if u = 0;

ii. ||αu|| = |α| ||u||;

iii. ||u+ v|| ≤ ||u||+||v|| (triangular inequality) with equality if and only if v = αu.

Intuitively the norm is a function that assigns a real value to each vector u ∈ V
and such value is commonly referred to as length of u. Observe that an inner
product can be used to define a norm, and such norms are called the norms induced
by the inner product. For example, to clarify this concept, the norm induced by the
standard inner product of Equation (2.2) is called the Euclidean norm, yielding the
conventional notion of length for vectors in Fk:

||u||2 =
√
〈u, u〉 =

(
k∑

i=1

|ui|2
) 1

2

.

Theorem 2.1.1. In any inner product space the following inequality holds:

| 〈u, v〉 | ≤ ||u|| ||v|| , (2.3)

and this is called the Cauchy-Schwarz inequality.

Definition 2.1.6 (Normed vector space). A vector space on which a norm is defined
is called a normed vector space.

18

For Fk, any p ∈ [0,∞) has an associated p-norm defined as:

||u||p = p
√
〈u, u〉 =

(
k∑

i=1

|ui|p
) 1

p

. (2.4)

For p = 1, this norm is called the taxicab or Manhattan norm, and for p = 2, we get
our usual Euclidean square norm (induced by the standard inner product). Note
that when p =∞ the norm is defined as the maximum element of u:

||u||∞ = max{|u1|, . . . , |uk|}.

As we already mentioned in an inner product space V the function ||u|| = 〈u, u〉 12
can be used to define a norm for V . Intuitively the length of a vector given by
the norm function can be thought of as the vector’s distance from the origin, thus,
generalizing this concept, the norm ||·|| can be also used as a distance function, also
called metric, between elements in V .

Definition 2.1.7 (Vector distance). In a normed vector space, the distance between
vectors u and v is the norm of their difference:

d(u, v) = ||u− v|| . (2.5)

At this point could be useful to make some examples of the most common normed
vector spaces. The simplest we can think about is the finite dimensional spaces Fk.
As mentioned before, the elements of the space are k-tuples and the operations are
component wise. We recall that the standard inner product and the induced norm
are:

〈u, v〉 =
k∑

i=1

uiv
∗
i

||u|| =
√
〈u, u〉 =

(
k∑

i=1

|ui|2
) 1

2

.

Definition 2.1.8 (Sequence space). A sequence space is a vector space whose ele-
ments are infinite sequences of real or complex numbers.

Another interesting space are the sequence spaces `p(Z), i.e. the vector spaces of
all complex-valued sequences (ui)i∈Z having finite `p-norm, where the `p-norm for
p ∈ [1,∞) is defined as:

||u||p =

(∑

i∈Z

|ui|p
) 1

p

, (2.6)

19

and the `∞-norm is:
||u||∞ = sup

i∈Z
|ui|.

Moreover these spaces satisfy the following inclusion property:

p < q implies `p(Z) ⊂ `q(Z), (2.7)

thus the larger the value of p, the larger is the set of vectors with a given norm. In
other words if a sequence has a finite `1-norm then it also has a finite `2-norm, while
the opposite is not necessarily true. The space `2(Z) is often referred to as the space
of square-summable, or finite-energy, sequences. In that case the inner product and
the relative induced norm are:

〈u, v〉 =
∑

i∈Z

uiv
∗
i

||u|| =
√
〈u, u〉.

Definition 2.1.9 (Sequence convergence). Let {ui}∞i=1 be a sequence in a vector
space V, then {ui} it is said to converge to u ∈ V, and u is called the limit of the
sequence, if given any ε > 0 there exist N such that ||u− un|| < ε ∀n ≥ N , or
equivalently:

lim
i→∞
||ui − u|| = 0.

Definition 2.1.10 (Cauchy sequence). The sequence {ui}∞i=1 is a Cauchy sequence
if, for every ε > 0, there exist N ∈ N such that for all n,m ≥ N we have:

||un − um|| < ε.

From the previous definitions we can say that, in convergent sequences the ele-
ments eventually stay arbitrarily close to the limit of the sequence u and, in case
of Cauchy sequences the elements stay eventually close to each other. Even if it
can seem counter intuitive, not all Cauchy sequences must converge, this is always
true for real-valued sequences, but it is not for all vector spaces. Complete vector
spaces are those in which sequences that intuitively ought to converge (the Cauchy
sequences) have a limit in the space. We now define the relevant terms. Note that a
metric is always needed to define convergence. Furthermore we limit our attention
to metrics induced by norms.

Definition 2.1.11 (Completeness, Banach space). A normed space V is called com-
plete if every Cauchy sequence converges to an element u in V. A complete normed
space is also called a Banach space.

Definition 2.1.12 (Hilbert space). An inner product space, complete in the norm
arising from the inner product, i.e. a complete inner product space, is called a Hilbert

20

space.

2.1.2 Linear Operators

As a last concept of this Section, let us introduce the notion of linear operator. A
natural definition of linear operators could be the generalization of finite-dimensional
matrix multiplications.

Definition 2.1.13 (Linear operator). A function A : H1 → H2 is called a linear
operator if for all u, v ∈ H1 and α ∈ F:

i. A(u+ v) = Au+ Av;

ii. A(αu) = α(Au).

Conventionally we write Au instead of A(u), just as like as matrix multiplications.
In fact linear operators from FN to FM and matrices in FN+M are exactly the same
thing. Also many other concepts can be transposed from finite-dimensional linear
algebra:

i. Kernel: ker(A) = {u ∈ H1 : Au = 0};

ii. Range: range(A) = {Au ∈ H2 : u ∈ H1}.

A linear operator is called bounded when its norm is finite. The operator norm
is then defined as:

||A|| < sup
||u||=1

||Au|| .

A bounded linear operator A : H1 → H2 is called invertible if there exist a
bounded linear operator A−1 : H2 → H1, called the inverse of A, such that:

A−1Au = u for every u ∈ H1

AA−1v = v for every v ∈ H2.

The linear operator A∗ : H2 → H1 is called the adjoint of A : H1 → H2 when:

〈Au, v〉H2
= 〈u,A∗v〉H1

for every u ∈ H1, v ∈ H2.

If A = A∗, the operator A is called a self-adjoint or Hermitian operator. Note that
every bounded linear operator has a unique adjoint and the operators AA∗ and A∗A
are always self-adjoint, moreover ||A|| = ||A∗||. Finally a bounded linear operator
A : H → H is called unitary if it satisfies:

AA∗ = A∗A = I

21

An interesting property of the unitary operator is that it preserves the inner product
and, thus, the induced norm, for example the Euclidean norm:

〈Au,Av〉 = A 〈u,Av〉 = 〈u,A∗Av〉 = 〈u, v〉
||Au||2 = 〈Au,Au〉 = 〈u, u〉 = ||u||2 .

2.1.3 Bases

In any vector space V it is not unusual to combine certain elements belonging to V
to produce others elements.

Definition 2.1.14 (Linear combination). Let u1, . . . , uk be vectors in a given vector
space V and let α1, . . . , αk be scalars in F. A linear combination of the vectors is a
sum of the form:

u = α1u1 + · · ·+ αkuk.

Definition 2.1.15 (Linear independence). A set of vectors {ui}ki=1 in a vector space
V is called linearly independent if there exist scalars α1, α2, . . . , αk, which are not
all zero, such that

∑k
i=1 = αiui = 0. Otherwise the set {ui}ki=1 is called linearly

independent if it is not linearly dependent, in such case the scalars for which
∑k

i=1 =

αiui = 0 must be all zeros α1 = α2 = . . . = αk = 0.

A nonempty infinite set S of vectors in a vector space V is called linearly indepen-
dent if at least one of the vectors in the set S can be written as a linear combination
of the other vectors in the set. If this condition does not holds for the set S, then
S is said to be linearly independent. Note that if a set S has a linearly dependent
subset, then the set S itself is linearly dependent as well. Moreover if S is linearly
independent, then every subset of S is also linearly independent.

Definition 2.1.16 (Linear span). Let S be a subset of a vector space V. The linear
span of S ⊂ V is the set of all the finite linear combination of the elements in S:

span(S) =

{
k∑

i=1

αiui : αi ∈ F, ui ∈ S, k ∈ N

}
. (2.8)

The coefficients αi are called the expansion coefficients of u with regard to the basis
S. Note that a span is always a subspace and that the sum has a finite number of
terms even if the set S is infinite. Additionally we call spanning set for V a set S
whose linear span is V.

Observe that, given a spanning set S = {ui}ki=1 for a vector space V , the set
S ∪ {v} is linearly dependent for any vector v ∈ V , because from the definition of
linear span the vector v can be expressed as a linear combination of the elements of
the spanning set.

22

Definition 2.1.17 (Basis). A basis for a vector space V is a linearly independent
spanning set B ⊂ V for V. The number of elements in B is the dimension of V and
it may be infinite.

If B = {ui}ki=1 is a basis for V , then the coefficients α1, . . . , αk in the linear
expansion of any vector uinV must be unique, otherwise the condition of linear
independence of B would not hold anymore [19]. Observe that if S is a spanning set
for V , then there exists a set B ⊂ S such that B is a bases for the vector space V .
Theorem 2.1.2. Let V be a finite-dimensional vector space and suppose that V has
a basis containing k elements. Then the following holds:

i. Any other basis for V has also k elements;

ii. Any linearly independent set of k vectors is also a basis for V.
Consequentiality from the previous theorem, we can define the dimension of a

vector space V as the cardinality of a basis for V . For example, the so-called standard
basis for a vector space Fk is the set B = {e1, . . . , ek}, where:

e1 =




1

0

0
...
0



, e2 =




0

1

0
...
0



, . . . , ek =




0

0

0
...
1



.

Then we see that the dimension of Fk is k and |B| = k as well.

2.1.4 Orthonormal Bases

As we mentioned before, a basis allows to represent all the vectors as linear combi-
nations of basis elements. Note that there may exist several sets having the same
span, thus it is of fundamental interest to find the smallest set with a particular
span. The choice of a basis has dramatic consequences, since computational com-
plexity, stability, and approximation accuracy of signal expansions depend on the
properties of the bases that are employed. This leads to the concept of dimension of
a vector space, which depends on concepts of linear independence and bases defined
in the previous section.

Definition 2.1.18 (Orthogonality). Two vectors u and v are said to be orthogonal
when 〈u, v〉 = 0, written as x⊥v.

The concept of orthogonality between vectors can be used to define also the
following:

i. u⊥S: a vector u is said to be orthogonal to a set of vectors S, when x⊥s for
all s ∈ S;

23

ii. S1⊥S2: two sets of vectors S1 and S2 are orthogonal when s1⊥S2 for all s1 ∈ S1;

iii. A set of vectors S is orthogonal when s1⊥s2 for every s1, s2 ∈ S, such that
s1 6= s2;

iv. A set of vectors S is orthonormal when is orthogonal and 〈s, s〉 = 1 for every
s ∈ S;

v. Given a subspace W of a vector space V , the orthogonal complement of W is
the set {x ∈ V : x⊥W}.

Vectors in an orthonormal set {ui}i∈Z are linearly independent since 0 =
∑

i αiui

implies that 0 = 〈∑i αiui, uj〉 =
∑

i αi 〈ui, uj〉 = αj for any j.

Definition 2.1.19 (Orthonormal basis). An orthonormal basis for a Hilbert space
H is a basis B such that every pair of elements belonging to B are orthogonal unit
vectors.

Theorem 2.1.3. Let B = {e1, . . . , ek} be an orthonormal basis for a Hilbert space
H and let u any vector belonging to H. The unique coefficients for the expansion of
u in terms of B are given by the inner products 〈u, ei〉:

u =
∑

i

〈x, ei〉 ei, ∀u ∈ H. (2.9)

For example, the elements belonging to the real plane are vectors defined by
two coordinates, representing the left-right and bottom-top distances respectively.
Implicitly we use the standard basis e1 = [1 0]T and e2 = [0 1]T , which is a
particular orthonormal basis of R2. The vectors e1 and e2 are orthogonal and of
unit length, for these reason they are called orthonormal. The expansion of u with
respect to the basis S = {e1, e2} is defined as:

u =

[
u1

u2

]
= u1

[
1

0

]
+ u2

[
0

1

]
= u1e1 + u2e2. (2.10)

Obviously, for this basis, an expansion exists for any u since the coefficients of the
expansion u1 and u2 are simply the values defining the vector u itself. However in
general the existence of an expansion like (2.10) for any vector u depends on the
set of vectors S spanning the whole space and its uniqueness depends on the linear
independence of the elements of S. In finite dimensions, as Fk, a sufficient condition
to build an orthonormal basis is to have an orthonormal set of size k. This becomes
false in infinite dimensions, since having an infinite orthonormal set is not enough
to guarantee a proper orthonormal basis.

Theorem 2.1.4. Given an orthonormal set S = {ui}ki=1 in H, the following are
equivalent:

24

i. The set S is an orthonormal basis for H;

ii. There is no nonzero v ∈ H such that 〈u, v〉 for all u ∈ S;

iii. The spanning set span(S) is dense in H, that is, every vector v ∈ H is a limit
of a sequence of vectors in span(S);

iv. For every v ∈ H the Parseval’s equality holds:

||v||2 =
∑

i

|〈v, ui〉|2 . (2.11)

v. For every v1, v2 ∈ H the generalized Parseval equality holds:

〈v1, v2〉 =
∑

i

〈v1, ui〉 〈v2, ui〉∗ . (2.12)

2.1.5 Non-Orthogonal Bases

Although the advantages of using an orthonormal basis are clear, there are still cases
where the basis set of the problem we have to cope with could or should be not made
orthogonal. In such situations we can still use similar expansion formulas used in
the standard orthogonal case, by exploiting a dual basis set S̄, whose elements are
not orthogonal to each other, but to the corresponding element of the expansion set.

Definition 2.1.20 (Biorthogonal basis). A biorthogonal basis is a pair set of equal
length B = {ui}ki=1, B̄ = {ūi}ki=1, whose elements belong to an Hilbert space H, such
that:

〈uk, ūi〉 = δk−i =





1 if k = i

0 if k 6= i
, (2.13)

where uk ∈ B and ūi ∈ B̄. Moreover there exist strictly positive constants A and B
such that for all v ∈ H:

A ||v||2 ≤
∑

i

|〈v, ui〉|2 ≤ B ||v||2 (2.14)

1

B
||v||2 ≤

∑

i

|〈v, ūi〉|2 ≤
1

A
||v||2 . (2.15)

Bases satisfying the above constraints are called Riesz bases.

Clearly, designing a biorthogonal basis pair has more degrees of freedom than
designing an orthogonal basis. The disadvantage is that computations can become
numerically unstable as the elements of the expansion get closer to colinearity or,
in general, are strongly correlated [19]. The calculation of the expansion coefficients
using the inner product is called the analysis part of the overall process, while the

25

calculation of the original vector from those coefficients and the basis vectors is the
synthesis part. In finite dimensions, analysis and synthesis are simply matrix-vector
multiplications. If the expansion vectors are a basis then the synthesis matrix is
squared and non singular and its columns are the basis vectors themselves.

For example, if we want to represent a vector v ∈ R2 as an expansion α1u1 +α2u2

with respect to u1 = [1 0] and u2 = [1
2

1], we should use the non standard
element u2 to match the vertical component of v, that is α2 = u2, then we correct
the horizontal component as well as α1 = u1 − 1

2
v2. In other words: α1 = 〈v, ū1〉

and α2 = 〈v, ū2〉, where ū1 = [1 −1
2

]T and ū2 = [0 1]T . Thus the produced
expansion formula is:

v = 〈v, ū1〉u1 + 〈v, ū2〉u2.

In general for a k-dimensional problem the expansion of a general vector v ∈ Fk

becomes the following:

v =
∑

i

〈v, ūi〉ui =
∑

i

〈v, ui〉 ūi.

If the basis B is orthogonal then it is its own dual basis and the expansion formula
becomes the usual orthogonal expansion given in Equation (2.9). Additionally, there
exist similar equivalences to the ones listed in Theorem 2.1.4 that hold for the
biorthogonal case as well. The generalized Parseval’s relations then becomes:

||v||2 =
∑

i

〈v, ui〉 〈v, ūi〉∗ (2.16)

〈v1, v2〉 =
∑

i

〈v1, ui〉 〈v2ūi〉∗

=
∑
〈v1, ūi〉 〈v2, ui〉∗ . (2.17)

2.1.6 Frames

In the previous Sections the vectors forming the bases have always been considered
as being linearly independent. Obviously it is possible to add more vectors to such
bases, thus forming other sets in which the condition of linear dependence no longer
holds. Note that it is also possible to build completely new bases of linearly depen-
dent vectors which are still able to span the vector space. The motivations of having
more vectors than what we strictly need, are the prospect to relax the constraints
that their linearly independent counterparts and, on the other hand, the possibility
to provide better solutions. Moreover the condition of linear independence for a
basis of a given Hilbert space H may be sometimes too much restrictive, even if it
can be still possible to build a set that, although not satisfying the basis conditions,
are still able to span H. In this section we will introduce the basic concepts of a
more flexible type of spanning set called frames. Intuitively a frame for a Hilbert

26

space H is a set S that are able to span H, note that if both the dimension of H
and the cardinality of S are equal to k, the set S is simply a basis for H.

Theorem 2.1.5. Suppose that H is a finite-dimensional Hilbert space and {ui}ki=1

is a finite collection of vectors from H. The the following are equivalent:

i. {ui}ki=1 is a frame for H;

ii. span{ui}ki=1 = H.

Definition 2.1.21 (Frame). A collection of vectors S = {ui}ki=1 in an Hilbert space
H is called a frame if there exist two constants A > 0 and B <∞ such that, for all
v ∈ H:

A ||v||2 ≤
∑

i

|〈u, ui〉|2 ≤ B ||v||2 . (2.18)

The constants A and B are called frame bounds, and when they are equal the
frame S is called a tight frame. In a tight frame we have:

∑

i

|〈v, ui〉|2 = A ||v||2 , ∀v ∈ H, (2.19)

which can be rewritten, by putting 1√
A
into the summation, as:

∑

i

∣∣∣
〈
v,A−

1
2ui

〉∣∣∣
2

= ||v||2 . (2.20)

In other words, any tight frame can be rescaled to be a tight frame with frame bound
1, yielding a Parseval tight frame {ui}ki=1. In such frames a vector, or signal, v ∈ H
can be expanded as follows:

v =
∑

i

〈v, ui〉ui. (2.21)

Note how the expansion in (2.21) resembles the standard formula in the case of an
orthonormal basis. However a frame in general does not constitute an orthonormal
basis. If all the vectors in a tight frame have unit norm, then the constant A gives
the redundancy ratio (for example, A = 2 means there are twice as many vectors as
needed to cover the space). Note that if A = B = 1, and ||vi|| = 1 for all i, then the
frame is an orthonormal basis, conversely an orthonormal basis is always a Parseval
frame.

As a consequence of the linear dependence of the elements of a frame, the expan-
sion of a vector v is not unique. In particular there exist a set of coefficients βi, not
all equal to zero such that

∑
i βiui = 0. Thus, if can write v as:

v =
∑

i

αiui,

27

then we can add βi to each coefficient αi without changing the correctness of the
expansion.

Definition 2.1.22 (Frame redundancy). In a k-dimensional Hilbert space H, let
{ui}ni=1 be a frame for H having n elements. The redundancy of the frame is the
quantity n

k
> 1.

The redundancy of the frame gives a description of the size of the frame with re-
gard to the spanned vector space. In application where the representation of signals
is degraded by noise, such redundancy may help to distinguish the relevant part of
the observed phenomena reducing the effects of noise in the signals themselves. For
example if we code a signal with a series of coefficients, having a certain degree of
redundancy leads to a better chance of understanding the underlying signal even if
the observation presents some type of corruption due to noise. Furthermore, because
of this redundancy, recalling the expansion formula for Parseval frames of Equation
(2.21), note that there may exist other collections of vectors {wi}ki=1 ∈ H that are
equally capable to properly reconstruct the vector v:

v =
∑

i

〈u,wi〉ui ,∀v ∈ H.

Definition 2.1.23 (Dual frame). Let {ui}ki=1 be a frame for an Hilbert space H.
A sequence {wi}ki=1 ∈ H is called a dual frame for {ui}ki=1 if {wi}ki=1 satisfies the
expansion formula for all x ∈ H:

v =
∑

i

〈u,wi〉ui. (2.22)

If we define a linear operator A by the Parseval’s expansion formula as:

Av =
∑

i

〈v, ui〉ui. (2.23)

Since A is positive and invertible on H, we can replace v by A−1v, obtaining:

v = AA−1v =
∑

i

〈
A−1v, ui

〉
ui =

∑

i

〈
v, A−1ui

〉
ui.

Additionally if we apply A−1 to both members of Equation (2.23) we get:

v = A−1Av = A−1
∑

i

〈v, ui〉ui =
∑

i

〈v, ui〉A−1ui.

Combining the preceding equations we finally arrive to the expansion formulas:

v =
∑

i

〈
v,A−1ui

〉
ui =

∑

i

〈v, ui〉A−1ui, (2.24)

28

where the collection of vectors {wi}ki=1 = {S−1ui}ki=1 is called the canonical dual
frame of {ui}ki=1, that is wi = S−1ui for all i ∈ {1, . . . , k}. In fact, given the
invertibility of A, the collection {A−1ui}ki=1 is a frame and, thus, it spans all H.
Similarly {ui}ki=1 is the canonical dual frame of {S−1ui}ki=1. Conversely if the con-
dition wi = S−1ui for all i ∈ {1, . . . , k} does not hold the frame {wi}ki=1 is called the
alternate dual frame.

Theorem 2.1.6. If {ui}ki=1 is a basis for a Hilbert space H, then its dual frame is
unique.

Theorem 2.1.7. If {ui}ki=1 is a frame for a Hilbert space H, then {ui}ki=1 has a
unique dual frame if and only if {ui}ki=1 is a basis.

Theorem 2.1.8. Let {ui}ki=1 be a frame for a Hilbert space H and let {wi}ki=1 be a
dual frame for {ui}ki=1. Then {wi}ki=1 is the canonical dual frame if and only if:

k∑

i=1

| 〈v, wi〉 |2 ≤
k∑

i=1

| 〈v, w̄i〉 |2, ∀v ∈ H, (2.25)

for all frames {w̄i}ki=1 which are duals of {ui}ki=1.

2.2 Transform Operators

In this section there will be presented the main transform operators applicable to
continuos and digital signals, from the standard one-dimensional case to the more
interesting, in this Thesis, multi-dimensional case, i.e. the transformation of digital
images. A signal may exist in its original form as a continuous entity or it may be
also generated directly as a discrete sequence. Continuous signals may be converted
into a quantized form as a sequence of sampled values that describe the realization
of the signal at discrete points in time. Images are examples of signals that are
originated in a continuous form, even if they are generally processed as discrete
sequences.

The signal output in the transformed domain may be analyzed, interpreted, and
further processed for implementing diverse image processing tasks. These trans-
formations are widely used, since by using these transformations, it is possible to
express an image as a combination of a set of basic signals. In fact signal analysis
usually is focused on the decomposition of signals into a linear combination of basis
functions.

Such transformations are motivated by, essentially, the uncovering of several
meaningful information, which can be hardly seen in the original domain of the
signal. For example, these methods could be used in applications of signal compres-
sion and transmission where the original observation is transformed in a significantly
reduced representation. It is obvious, by means of the signal compression example,

29

that a reverse transformation is needed to reconstruct the original signal rapidly and
without loss of information.

In the following sections we will introduce the most common used transformations
with a particular focus on their application on discrete two-dimensional signals, i.e.
digital images, presenting the necessary formal notion supported by some visual
examples. However for an exhaustive investigation of the topics, it is useful to refer
to the dedicated literature [46].

2.2.1 Fourier Transform

Fourier’s theorem states that it is possible to construct any generic one-dimensional
continuous function f(x) as a summation of sine and cosine terms of increasing
frequency multiplied by specific coefficients. Thus, in this transform, the basis func-
tions are sinusoids with different periods which describe the spatial frequencies in
an image. Instead of representing the signal amplitude as a function of time, in
case of continuous one-dimensional f(x), or as a function of space, in case of two-
dimensional discrete images, the transform represents the signal by how much infor-
mation is contained at different frequencies. As a first introductory example, refer
to Figure 2.1 where a simple linear combination of sinusoids is shown, more specif-
ically the function y(x) = cos(2πω0x) + 4 cos(2πω1x). As expected the transform
produce two impulse in the frequency domain in correspondence with the character-
istic ω0,1 = {10Hz, 2Hz} of the single term that compose y(x), and the amplitude
values are represented as well: in fact the magnitude of the lower-frequency cosine
is four times bigger than the other, higher frequency, term.

Using Fourier transform, thus it is possible to analyze a signal as a set of sinusoids,
wherein each sinusoid has a precise frequency. However for a proper understanding
of what we are going to use, the two-dimensional discrete Fourier transform, it is
useful to recall the Fourier transform for a continuous one-dimensional function f(x).

Let f(x) denote a continuous-time signal. Moreover, assume that f(x) is a finite-
energy square-integrable function, that is f(x) ∈ L2(R). This means that the fol-
lowing relation holds:

f(x) =

∫ +∞

−∞
|f(x)|2dx <∞.

Observe that this condition is not very restrictive because it is satisfied by almost
every practically relevant function.

The Fourier transform, FT, is a function describing the amount of each frequency
term that must be added together to build back the original signal f(x) and it is
defined as follow:

F (ω) = 〈f, eω〉 =

∫ +∞

−∞
f(x)e−i2πωxdx, (2.26)

where ω is a real variable called the frequency, i =
√
−1 is the standard imaginary

30

x

y
(x

)

(a) Original function y(x).

2 10

0

0.5

2

Hz

m
ag

n
it

u
d
e

(b) Coefficients of the Fourier transform. As ex-
pected we obtain two coefficients located at
ω0,1 = {10Hz, 2Hz} with magnitude 4 and 1
respectively.

Figure 2.1: Fourier Transform for a linear combination of two sinusoids y(x) = c0 cos(2πω0x) + c1 cos(2πω1x),
where ω0,1 = {10Hz, 2Hz} and c0,1 = {1, 4}.

unit and the exponential term, denoted by eω, using the well-known Euler’s formula,
represents the building blocks of the transform:

e−i2πωx = cos(2πωxc)− i sin(2πωx).

The result F (ω) is a finite energy function on the frequency domain. The origi-
nal signal may be exactly reconstructed from its spectrum by the inverse Fourier
transform, IFT, defined as:

f(x) =

∫ +∞

−∞
F (ω)e+i2πωxdω. (2.27)

To denote such Fourier transform pair, we could write:

f(x)
FT←→
IFT

F (ω). (2.28)

Equations (2.26) and (2.27) establish a one-to-one correspondence between a sig-
nal and its Fourier transform. Note also that, in some sense, the function F (ω) is
the inner product between the original function f(x) and an element of a Fourier
basis yω = e−i2πωx and the inverse relation of Equation (2.27) is analogous to the
reconstruction formula based an orthogonal basis of Equation (2.9), of course re-
placing the summation

∑
with the integral

∫
. Equation (2.26) can be decomposed

into its real and imaginary term, and from that we can compute its magnitude, also

31

x

y
(x

)

Figure 2.2: Countinuos Fourier transform for the rectangular pulse signal y(x) = rect(x).

called the Fourier spectrum, and its phase as follows:

F (ω) = R(ω) + iI(ω)

|F (ω)| =
√
R2(ω) + I2(ω)

Φ(ω) = tan−1

(
I(ω)

R(ω)

)
.

In Figure 2.2 it is presented in dashed line the rectangular signal defined as
follows:

rect(x) =





0 if |x| > 0

1
2

if |x| = 1
2

1 if |x| < 0

,

and its Fourier transform drawn in solid black line, which is actually the sinc func-
tion, hereby defined:

sinc(x) =





1 if x = 0
sin(x)
x

otherwise
.

Another common example is depicted in Figure 2.3, where it is shown the expansion
of a square wave of length L = 2π using the first n = {2, 4, 6, 8} term of the Fourier
transform:

f(x) =
4

π

∞∑

n=1,3,5,...

1

n
sin
(nπx
L

.
)

(2.29)

The original and the synthesized wave are displayed with a thick blue and a thick
green line respectively, obviously the quality of the approximation increases with n.

Extending the concept of one-dimensional Fourier transform, the two-dimensional

32

(a) n = 2 (b) n = 4

(c) n = 6 (d) n = 8

Figure 2.3: Approximation of a square wave with period 2π using the first n sinusoids of the expansion. The single
sinusoid terms used in each expansion are illustrated separately in dashed lines.

Fourier transform of a continuous function f(x1, x2) is denoted by:

F (ω, ψ) =

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2)e−i2π(ωx1+ψx2)dx1dx2. (2.30)

The variable ω in Equation (2.30) indicates the frequency, i.e. the number of
waves per unit length in the horizontal direction, and ψ indicates the number of
waves along the vertical direction. For a given pair of values of these frequency
components the integral yields just the amplitude of the chosen component. The
corresponding inverse relation is:

f(x1, x2) =

∫ +∞

−∞

∫ +∞

−∞
F (ω, ψ)e+i2π(ωx1+ψx2)dωdψ. (2.31)

Finally, when the function or signal is represented in discrete domain using a
sequence of discrete samples, such as f(x) = {f(0), . . . , f(N−1)}, the corresponding
Fourier Transform of the discrete signal is the Discrete Fourier Transform, also called

33

(a) High-pass filter on the coefficients of the
image Barbara.

(b) Result of the inverse DFT of the filtered
coefficients.

Figure 2.4: Examples of two-dimensional DFT and a high-pass filter application on the image Barbara. The
left image is the result of the inversion of the Fourier transform applied on the filtered coefficients
illustrated in the right image. The high-pass filtering consists in the zeroing of the coefficients lying
inside the black circle, i.e. the ones carrying the low-frequency information.

simply DFT. Since the signal is discretized, integrations in the continuous case are
replaced by summations.

The one-dimensional discrete Fourier transform of a function f(x) of size N with
the independent variable x, i.e. the index, goes from 0 to N − 1, and the corre-
sponding inverse are defined as:

F (u) =
1

N

N−1∑

x=0

f(x)e−i
2πux
N (2.32)

f(x) =
N−1∑

u=0

F (u)e−i
2πux
N . (2.33)

The two-dimensional discrete Fourier transform of a two-dimensional signal f(x1, x2)

of dimension M ×N with integer indices x1 and x2 running from 0 to M − 1 and 0

to N − 1, and its inverse are represented by:

F (u, v) =
1

MN

M−1∑

x1=0

N−1∑

x2=0

f(x1, x2)e−i2π(
ux1
N

+
vx2
M) (2.34)

f(x1, x2) =
M−1∑

u=0

N−1∑

v=0

F (u, v)e−i2π(
ux1
N

+
vx2
M). (2.35)

Observe that each term F (u, v) contains all values of f(x1, x2), modulated by
the exponential term, thus the value at (u, v) = (0, 0), placed at the center of the
transform, corresponds to the zero frequency sinusoid in the spatial domain, that is
the average gray level or the DC component of the image. As we move away from

34

the origin the DFT shows the magnitude of the sinusoids of increasing frequency.
Low frequencies in the transform domain correspond to slowly varying areas in the
spatial image and, conversely, the higher frequencies represent fast changes in the
original textures, as edges or even noise. In other words the low-frequency terms
represent the overall shape of the signal, while the high-frequency terms are used to
sharpen edges and define every fine detail.

Figure 2.4 shows an examples of application of the DFT on images. Each pair
of points in the frequency domain corresponds to a sinusoid in the spatial domain.
The right-most figure shows the result of the application of an high-pass filter. The
original DFT and the filtered one is presented in Figure 2.4(a). The filter drops all
coefficients within a specified distance from the origin, illustrated as a black circle,
hence some of the low frequencies component of the image are zeroed. For a better
recognition of the enhanced details, the filtered image produced by the inverse DFT
is presented in a logarithmic scale. As expected, after the application of the inverse
DFT, the produced image shows only the highly varying areas of the original image,
such as the stripes on Barbara’s trousers or the edges of the printed square on the
table napkin.

2.2.2 Discrete Cosine Transform

The Discrete Cosine Transform, DCT, is the basis for many image and video com-
pression algorithms, specifically it is behind the JPEG and MPEG standards for
compression of still and video images respectively. The intuitive idea behind the
DCT is that every finite sequence of digital samples can be expressed as a sum of
cosine functions, or, equivalently, the DCT function bases are cosines having differ-
ent frequencies.

The one-dimensional forward discrete cosine transform ofN samples is formulated
as:

F (u) = 〈f, eu〉 =

√
2

N
C(u)

N−1∑

x=0

f(x) cos

(
π(2x+ 1)u

2N

)
, (2.36)

for u = {0, 1, . . . , N − 1}, where the function C(u) is defined as follows:

C(u) =





1√
2

for u = 0

1 otherwise
(2.37)

The function f(x) represents the value of the xth sample of the input signal while
F (u) represents a DCT coefficient for u = {0, 1, . . . , N − 1}. The inverse relation is
formulated in a similar way as:

f(x) =

√
2

N

N−1∑

u=0

C(u)F (u) cos

(
π(2x+ 1)u

2N

)
. (2.38)

35

(a) Basis of a one-dimensional DCT with N = 8.
Frequencies increase left-right and top-bottom.

(b) Basis of a two-dimensional DCT with N = 8.
Frequencies increase from top-left to bottom-
right.

Figure 2.5: Illustration of the DCT transform basis functions.

for x = {0, 1, . . . , N − 1}.
The two-dimensional DCT can be computed using the one-dimensional DCT hor-

izontally and then vertically across the signal because DCT is a separable function.
The two-dimensional forward discrete Cosine transform applied to a block ofM×N
samples of a two-dimensional signal f(x1, x2) is then defined as:

F (u, v) =
2√
MN

C(u)C(v)
N−1∑

x1=0

M−1∑

x2=0

f(x1, x2) cos

(
π(2x1 + 1)u

2N

)
cos

(
π(2x2 + 1)u

2M

)
,

(2.39)
for u = {0, 1, . . . , N − 1} and v = {0, 1, . . . ,M − 1}, where the function C are equal
to the one defined in Equation (2.37).

The function f(x1, x2) represents the value of the xth1 sample in the xth2 row of
a two-dimensional signal, while F (u, v) is a two-dimensional transformed coefficient
for u = {0, 1, . . . , N − 1} and v = {0, 1, . . . ,M − 1}. To prove that the DCT
transform is a separable function, let’s rewrite Equation (2.39) as:

F (u, v) =
2√
M
C(v)

M−1∑

x2=0

{
2√
N
C(u)

N−1∑

x1=0

f(x1, x2) cos

(
π(2x1 + 1)u

2N

)}
cos

(
π(2x2 + 1)u

2M

)
.

Thus it is clear that we can accomplish the two-dimensional DCT of a signal
f(x1, x2) by a cascade of two one-dimensional DCT (in two distinct steps). At first
a one-dimensional DCT is applied row-wise in all the rows independently to obtain

36

(a) Low-pass filter of the DCT coefficients of
the image Barbara.

(b) Inverse DCT applied to the filtered coef-
ficients.

Figure 2.6: Examples of two-dimensional DCT and a low-pass filter on the image Barbara. The coefficients outside
the black circle in the right image, i.e. those carrying the high frequency information, are zeroed. The
result of the inverse transformation of the filtered coefficient is shown in the right image.

an hybrid transform F (u, y):

F (u, y) =
2√
N
C(u)

N−1∑

x1=0

f(x1, x2) cos

(
π(2x1 + 1)u

2N

)
,

for u = {0, 1, . . . , N − 1}. Then, in the second step, another one-dimensional DCT
is applied column-wise in all the columns of the hybrid transform F (u, y) to obtain
the desired result F (u, v):

F (u, v) =
2√
M
C(v)

M−1∑

x2=0

F (u, y) cos

(
π(2x2 + 1)u

2M

)

for v = {0, 1, . . . ,M − 1}. The inverse relation, the two-dimensional inverse DCT,
is defined similarly as follows:

f(x1, x2) =
2√
MN

N−1∑

u=0

M−1∑

v=0

C(u)C(v)F (u, v) cos

(
π(2x1 + 1)u

2N

)
cos

(
π(2x2 + 1)u

2M

)
,

(2.40)
for x1 = {0, 1, . . . , N −1} and x2 = {0, 1, . . . ,M −1}. The above function is again a
separable function similar to what we have shown for the two-dimensional DCT. As
a result, the two-dimensional inverse DCT can be computed in exactly the opposite
way, first applying a one-dimensional inverse DCT row-wise and then applying a
second one-dimensional inverse column-wise. The steps have not to be explicitly
reported since they are dual of the ones presented in the forward case.

In Figure 2.6 it is represented an example of application of the DCT to the

37

image Barbara, specifically in Figure 2.6(a) there are presented the coefficients of
the standard DCT transform, note that the component of higher frequency are
displayed in the top-left corner, in the same figure it is shown the application of
a low-pass filter, illustrated as a black circle, and, finally, the inverse DCT of the
coefficients in Figure 2.6(a) is displayed in the last image wherein only the highly
varying component of the original image has been smoothed out as a consequence
of the low-pass filtering.

2.2.3 Windowed Fourier Transform

The Fourier transform is an analysis of global frequency content in the signal. The
common Fourier representation of signals works well only if the spectral properties
of signals are stationary, that is when the frequency components do not change
throughout the realization of the signals over time. The stationarity of a signal is a
consequence of the statistical invariance of the signal over time. If the probability
of the signal f having a certain value at a certain time is constant, then the signal
is said stationary, otherwise if transient events occur during the realization of f
the signal becomes non stationary because of the unpredictability of those events.
Observe for example that in the analysis of the Fourier spectrum of a signal f every
frequency component exists throughout the entire duration of the signal, because,
referring for example to Equation (2.26), every transform coefficient is affected by
all values of the original signal f . Thus transient and non stationary signals require
a basis that is more localized in both time and frequency.

For example in Figure 2.7 it is represented a stationary sinusoids ys and a non-
stationary one yns defined respectively as:

ys(x) = cos(2πω0x) + cos(2πω1x)

yns(x) =





cos(2πω0x) if x < T

cos(2πω1x) if x ≥ T
,

where T is a constant and the cosines’ frequencies are ω0,1 = {2Hz, 4Hz}. In both
transform domains it can be seen as expected two impulse in correspondence with
the original frequencies, however it is equally clear that the locality information is
lost since the two spectrums are almost identical, even if the corresponding time-
domain signals are quite different. Both of the signals involves the same frequency
components, but in the first they occur at different time intervals while in the second
one they occur at all times.

The first idea to cope with the non-stationarity problem is to window the signal
in time and perform a Fourier transform on the windowed signal and let the window
slide along the time axis until the end of the original signal. This is called the

38

x

y
s
(x

)

(a) Stationary signal ys(x)

2 4

0

0.5

Hz

m
ag

n
it

u
d
e

(b) Fourier coefficients of ys(x)

x

y
n

s(
x
)

(c) Non stationary signal yns(x)

2 4

0

0.25

Hz

m
ag

n
it

u
d
e

(d) Fourier coefficients of yns(x)

Figure 2.7: Fourier transform of a stationary signal ys(x) and of a non stationary signal yns(x).

Windowed Fourier Transform, WFT, and it is formally defined as:

F (ω, τ) =

∫ ∞

−∞
f(x)g(x− τ)e−iωxdx, (2.41)

where ω represents the frequency, τ the position of the window and g(·) is the window
function. Intuitively the transform F (ω, τ) represents the content of the original
signal f around time τ and frequency ω. The main limitation of the WFT is that the
dimension of the window is fixed and, for this reason it can not reach simultaneously
both good time and good frequency resolution, states the Heisenberg Uncertainty
Principle. A signal defined over time has a perfect time but zero frequency resolution,
while in the opposite side, using the Fourier transform, a perfect frequency resolution
is achieved, that is we know exactly what frequencies occur in the signal, but all
time information is lost, because we can not place those frequencies in the original
time domain.

In WFT a windowing function is used to analyze single portions of the signal,
thus lowering the frequency resolution and increasing the time resolution, because

39

the transform no longer knows the exact frequencies of the whole signal but only
those occurring in that specific time interval. Observe that the Fourier transform
acts as a WFT with infinite window length. The problem, of course, is the choice
of the window function that will be applied, once and for all, during the analysis of
the entire signal.

2.2.4 Wavelet Transform

In this section will be introduced the basic concept of the Wavelet transform, WT, a
mathematical tool that solves the difficult choice that has to be made between time
and frequency resolution in case of non stationary signals.

The wavelet basis is a family of functions based on a well-localized oscillating
function ψ(x) of the real variable x ∈ R. Wavelets are functions generated from
one, so-called, mother function by dilation (scaling) and translation (shift) in time
(frequency) domain. Let the mother wavelet be ψ(x), then the generated wavelet
are defined as:

ψs,τ (x) =
1√
|s|
ψ

(
x− τ
s

)
, (2.42)

where s, τ ∈ R are two real number representing, respectively, the parameters for
dilation and translation in time domain. With this notation the mother wavelet is
simply ψ(x) = ψ1,0(x), that is the function with zero translation and a unitary dila-
tion. For example, consider the definition of wavelet called Mexican hat, illustrated
in Figure 2.8:

ψ(x) = (1− x2)e
1
2
x2

. (2.43)

A restriction on ψ(x) is that it has to have a zero integral and additionally a high
number M of vanishing moments:

0 =

∫ +∞

−∞
ψ(x)dx = · · · =

∫ +∞

−∞
tmψ(x)dx, (2.44)

for all m < M . With a mother wavelet ψ(x) satisfying the restriction in Equation
(2.44), we can build a set of functions {ψs,τ (x)} in the form of Equation (2.42), such
that any function f(x) in L2(R) can be reconstructed from the coefficients of the
wavelet transform defined by the inner product of f(x) and ψs,τ (x). Thus the inner
product can be used to define the coefficients of the continuous wavelet transform,
CWT, of a signal f(x), formally represented as:

W (s, τ) = 〈f(x), ψs,τ (x)〉 =

∫ +∞

−∞
ψs,τ (x)f(x)dx, (2.45)

for f(x), ψs,τ (x) ∈ L2(R). The CWT is a linear transformation and it is covariant
under translation and under dilation, which makes the transform very suitable for
analyzing hierarchical structures, like a magnification lens with properties indepen-

40

Figure 2.8: Example of translation and dilation of the Mexican hat wavelet. The mother wavelet is illustrated
in thick blue line. Dilation parameters s < 1 produce narrower and higher-pitched waves as the one
illustrated in red line, while s > 1 produce wider and lower functions as the one represented in green
line.

dent from the chosen scaling parameter.
The transformation defined in Equation (2.45) is called the analysis of the function

(or signal) f(x). The synthesis of f(x) fromW (s, τ) is made by a linear combination
of the original wavelet using the coefficients of the transform W (s, τ). Thus the
inverse relation, used to reconstruct f(x) from W (s, τ) is defined as:

f(x) =
1

C

∫ +∞

s=−∞

∫ +∞

τ=−∞

1

|s|2W (s, τ)ψs,τ (x)dsdτ, (2.46)

where

C =

∫ +∞

−∞

|Ψ(ω)|2
|ω| dω,

and Ψ(ω) is the Fourier transform of the mother wavelet ψ(t). This is also called the
admissibility condition, in fact if C <∞ the wavelet ψ(x) can be used to analyze and
reconstruct the signal without loss of information. Note that this condition implies
that the Fourier transform Ψ(ω) vanishes at the zero frequency, or equivalently that
the average value of ψ(x) in the time domain must be zero, which is equivalent to the
condition of Equation (2.44). Therefore ψ(x) must be a wave. Another important
condition for the mother wavelet is the regularity condition, briefly it states that
ψ(x) should have some smoothness and concentration in both time and frequency
domain.

Hence the continuos wavelet transform maps a one-dimensional function f(x) to
a two-dimensional function W (s, τ) of two continuos real variables s (scaling) and
τ (dilation or translation). High scales correspond to a non-detailed global view of
the signal and low scales correspond to a detailed view. It is obvious the relation

41

between high and low scales to low and high frequencies respectively. In Figure 2.8
it is illustrated a few examples of dilation end translation of the mother wavelet ψ
informally called Mexican hat.

The CWT, defined in Equation (2.45), is usually impractical. It has one main
issue that make it difficult to use and that brings us to the definition of the discrete
wavelet transform, DWT, This issue is its redundancy. The CWT is computed
continuously shifting a continuously scalable function over a signal f(x). Obviously
these scaled function will not form an orthogonal basis and therefore the produced
coefficients will be highly redundant while applications almost always seek a sparse
signal description with as few components as possible. Thus we will consider a
discretization of the continuous wavelet transform in the (s, τ) plane, which allow
for numerical solution based on summations instead of continuous integral.

Before introducing the DWT, it is essential to give a formal representation in
terms of discrete values of parameters s and τ to define accordingly the discrete
wavelets. Many possible discretization of (s, τ) exist, and they typically have a
logarithmic nature, however not every such discretization leads to the desired basis
functions {ψs,τ (x)}. Among the admissible discretization the most popular approach
is the following:

ψj,k(x) =
1√
sj0

ψ

(
x− kτ0s

j
0

sj0

)
(2.47)

where the indexes j, k ∈ Z control the wavelet dilation and translation respectively.
A common choice for s0 and τ0 is respectively 2 and 1, hence s = 2j and τ =

k2j. This type of sampling is known as dyadic sampling and the corresponding
decomposition of the signal is called the dyadic decomposition, which is perhaps the
simplest and most efficient discretization approach. Using these values the discrete
wavelet functions become:

ψj,k(x) = s
− j

2
0 ψ(s−j0 x− kτ0)

= 2
−j
2 ψ(2−jx− k). (2.48)

Discrete dyadic wavelet are commonly chosen to be orthonormal, thus these
wavelets are both orthogonal and normalized to have unit energy. In these cases the
set of wavelet is an orthonormal basis, therefore the information stored in a wavelet
coefficient cj,k is not repeated elsewhere and allows for the complete reconstruction
of the original signal without redundancy. In general for dyadic decomposition, the
wavelet coefficients (also called detail coefficients) for a continuous function f(x)

can be derived by the discrete time wavelet transform:

dj,k = 〈f, ψj,k〉 =

∫ +∞

−∞
f(x)ψj,k(x)dx (2.49)

42

This allows us to reconstruct the original signal f from the discrete wavelet coeffi-
cients as:

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
dj,kψj,k(x), (2.50)

where the set of expansion coefficients cj,k are called the discrete wavelet transform,
DWT, of f(x). Equivalently, recalling Equation (2.49), we can rewrite Equation
(2.50) in terms of the inner product as:

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
〈f, ψj,k〉ψj,k(x). (2.51)

How close an approximation to the original signal is achieved depends mainly on
the resolution of the discretization. In the following section we will see how, given a
discrete signal in input, we can compute the forward and inverse wavelet transform
discretely, quickly and without loss of signal information using the fast wavelet
transform. It can be proven that the necessary and sufficient condition for stable
reconstruction of the original signal is that the energy of the wavelet coefficients
must satisfy the following:

A ||f ||2 ≤
+∞∑

j=−∞

+∞∑

k=−∞
|〈f, ψj,k〉|2 ≤ B ||f ||2 , (2.52)

where ||f(x)||2 is the energy of the signal f(x) and the constants A > 0 and B <∞
are independent from f(x). When Equation (2.52) is satisfied the family of basis
functions ψj,k(x) is a frame. Remember that when A = B the frame is tight and
the discrete wavelets form an orthonormal basis, otherwise when A 6= B an exact
reconstruction can still be made with the use of a dual frame.

2.2.4.1 Multiresolution Approximations

Several orthogonal wavelet basis of the form ψj,k(x) defined in Equation (2.48),
have been already discovered, also by using the theory of multiresolution analysis
(MRA). The key idea is to approximate a signal f(x) at different levels of resolution.
In multiresolution analysis we consider two functions: a scaling function φ(x) an the
well-known wavelet function ψ(x). Moreover the construction of the Fast Wavelet
Transform (FWT) is based on the MRA theory [46].

In order to use the idea of multiresolution, we should first define the scaling
function and then define the wavelet in terms of it. The scaled and translated
version of the scaling function is unsurprisingly defined as:

φj,k(x) = 2−
j
2φ(2−jx− k). (2.53)

43

Observe that the scaling function is orthogonal to translation of itself, but not to
dilations. The scaling function can be convolved to the original signal to produce
the so-called approximation coefficients:

aj,k =

∫ +∞

−∞
f(x)φj,k(x)dx. (2.54)

From the previous equations, we can see that the approximation coefficients are sim-
ply weighted averages of the continuous signal factored by 2

j
2 . The set of coefficients

at a specific scale j are referred to as the discrete approximation at that scale of the
given signal f(x), the approximation of the f(x) can be then generated as:

fj(x) =
+∞∑

k=−∞
dj,kφj,k(x), (2.55)

where fj(x) is the scaled version of the original function f(x) at scale index j.
We call Vj the span of the set {φj,k(x)}, for j > 0 the span can be larger since the

basis φj,k(x) are narrower and translated in smaller steps, conversely for j < 0 the
span is wider and translated in larger steps, that is the wider scaling functions can
represent only coarse information. In multiresolution analysis L2(R) is split into a
sequence (Vj)j∈N of closed subspaces, each of which is spanned by an orthonormal
basis of translates of φj,k(x).

. . .V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2(R). (2.56)

Thus the space that contains high resolution signals will contain those of lower
resolution also. Moreover the spaces have to satisfy the following condition, which
states that the elements in a space are simply scaled version of the ones in the next
space:

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.

Given the previous properties for the basis of Vj, we can define an approximation of
a function f ∈ L2(R) at the resolution 2j as the orthogonal projection of f(x) into
Vj. In fact each basis functions involved in the approximation of f is orthogonal to
every other. A wavelet basis related to φ(x) represents the additional information
of an approximation at a resolution 2j+1 compared with the resolution 2j, which is
the projection of the orthogonal component of Vj in Vj+1. Formally this is defined
by:

Vj+1 = Vj ⊕Wj, (2.57)

where Wj is the space defined by the projection of the orthogonal component of
Vj in Vj+1. In other words Wj will be spanned by the wavelet orthonormal basis
defined in Equation (2.48). We can combine the definition in Equation (2.57) with

44

the sequence of closed subspaces Vj in Equation (2.56) as:

Vj+1 = Vj ⊕Wj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj. (2.58)

The function generated by (2.66) gives the mother wavelet introduced in Equation
(2.48). Since we have a set of scaling functions and a set of wavelet functions
spanning L2, then we can express any signal f(x) as a linear combination of φ(x) and
ψ(x). Under certain properties these expansion functions form an orthonormal basis,
biorthonormal basis or a frame, which allows the coefficients to be calculated by
inner products between the properly related basis functions and the original signal.
Orthonormal or biorthonormal bases assure a non-redundant transform, but, on the
other hand, they are much harder to find than frames. Thus we can decompose any
signal in L2(R) into a sum of functions starting with lower-resolution approximation
followed by a sequence of functions generated by dilations of the wavelet. The
two parts represent respectively the coarse approximation of the signal in the lower
resolution and the detail information that was lost because of the approximation.
We can represent a signal f(x) using a combination of the series expansion using
both the approximation and the detail coefficients as follows:

f(x) =
+∞∑

k=−∞
aj0,kφj0,k(x) +

j0∑

j=−∞

+∞∑

k=−∞
dj,kψj,k(t). (2.59)

Thus the original signal is expressed as a combination of approximation of itself,
at arbitrary scale index j0, added to a succession of signal details from scales j0 to
negative infinity. If we define the signal detail at scale j as:

Dj(x) =
+∞∑

n=−∞
dj,kψj,k(x), (2.60)

we can rewrite Equation (2.59) as:

f(x) = fj0(x) +

j0∑

j=−∞
Dj(x), (2.61)

from which follows that if we add the signal details at an arbitrary scale index
j to the approximation at the same scale, we get the signal approximation at an
increased resolution (i.e. at the smaller scale j−1), this is called the multiresolution
approximation:

fj−1(x) = fj(x) +Dj(x). (2.62)

To better understand those concepts we can consider the simple Haar basis defined

45

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Haar basis scaling function φ.

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) Haar basis wavelet function ψ.

Figure 2.9: Illustration of the Haar scaling and wavelet functions.

by:

φHaar(x) =





1 if 0 ≤ x ≤ 1

0 otherwise
, (2.63)

whose illustration is provided in Figure 2.9(a). Is is easy to see that the convolution
of φ(x) with a signal results in a local weighted averaging of the signal over the
non zero portion of the scaling function. Observe that φ(x) is a solution to the
dilation equation, that is can be expressed in terms of weighted sums of shifted
scaling functions at the next smaller scales shifted along the time axis by an integer
step n, carrying more detailed information:

φ(x) =
+∞∑

n=−∞
hnφ(2x− n), (2.64)

where, in case of wavelet with compact support, the coefficients hn are a finite
sequence of real or complex numbers called the scaling coefficients satisfying the
condition

∑
n hn = 2. In addition, in order to create an orthogonal system we

require that:
+∞∑

n=−∞
hnhn+m =





2 if m = 0

0 otherwise
. (2.65)

Equation (2.64) basically means that a scaling function at a given scale can be
constructed using a number of scaling functions at the previous scale. For the Haar
basis, we have h0 = h1 = 1.

A signal can be better described, not by φj,k(x) directly, but by the set of scaling

46

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Signal and Approximation(s)

(a) Original function.

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Coarse decomposition in the space Vk.
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Fine decomposition in the space Vj .

Figure 2.10: Illustration of the Haar decomposition of a sinusoidal function at different level of resolution, that is
the projection of the signal f(x) onto two spaces Vj and Vk where j > k. Since Vk ⊂ Vj we can say
that Vj is a higher resolution than Vk, thus the projection onto Vj is much more accurate. Observe
that the projection of f onto Vk can exist in Vj but the projection onto Vj does not exist in Vk.

functions φj,k(x). Since the wavelet functions resides between the spacesWj ⊂ Vj−1

spanned by the various scaling functions φ(x), they can be represented as a weighted
sum of a set of properly shifted φ(x):

ψ(x) =
√

2
+∞∑

n=−∞
g1−nφ(2x− n), (2.66)

where gn = (−1)nh1−n. To make ψ(x) orthogonal to φ(x) we require the set of
coefficients {gn} to be orthogonal to the set {hn}. For example, the Haar wavelet
corresponding to the scaling function defined in Equation (2.63), illustrated in Figure
2.9(b), is ψ(x) = φ(2x)− φ(2x− 1), which results explicitly in:

ψHaar(x) =





1 if 0 ≤ x ≤ 1
2

−1 if 1
2
≤ x ≤ 1,

0 otherwise

. (2.67)

47

However most of the wavelet functions can not be described explicitly, but they
can only be defined recursively. It can be derived two conditions on the sets of
coefficients {hn} and {gn}, the first comes from the normalization of φ(x):

∫ +∞

−∞
φ(x)dx = 1⇒

+∞∑

n=−∞
hn =

√
2, (2.68)

and the second condition is a consequence of zero moment condition expressed in
Equation (2.44): ∫ +∞

−∞
ψ(x)dx = 0⇒

+∞∑

n=−∞
gn = 0. (2.69)

From Equation (2.53) and (2.64), we can see that for arbitrary integer values of
j the following holds:

φj+1,k(x) = 2−
j+1
2 φ

(
x

2j+1 − n

)

= 2−
j
2 2−

1
2

+∞∑

n=−∞
hnφ

(
2x

2× 2j
− 2k − n

)

=
1√
2

+∞∑

n=−∞
hnφj,2k+n(x). (2.70)

Which means that the scaling function at an arbitrary scale is composed by a se-
quence of shifted scaling functions at the next smaller scale weighted by their re-
spective scaling coefficients. A similar formulation can be derived for the wavelet
function:

ψj+1,k(x) =
1√
2

+∞∑

n=−∞
gnφj,2k+n(x). (2.71)

Recall from Equation (2.54), that the approximation coefficients at scale index
j + 1 are computed as follows:

aj+1,k =

∫ +∞

−∞
f(x)φj+1,k(x)dx,

and by using Equation (2.70), we can rewrite the previous equation as:

aj+1,k =

∫ +∞

−∞
f(x)

(
1√
2

+∞∑

n=−∞
hnφj,2k+n(x)

)
dx

=
1√
2

+∞∑

n=−∞
hn

(∫ +∞

−∞
f(x)φj,2k+n(x)dx

)

︸ ︷︷ ︸
aj,2k+n∀n

, (2.72)

48

where the integral within brackets gives the approximation coefficients aj,2k+n for
each n, thus:

aj+1,k =
1√
2

+∞∑

n=−∞
hnaj,2k+n =

1√
2

+∞∑

n=−∞
hn−2kaj,n. (2.73)

Hence, using this equation, we can generate the approximation coefficients at scale
index j + 1 using the scaling coefficients at the previous scale. Similarly we can
obtain the wavelet (detail) coefficients from the approximation coefficients at the
previous scale as follows:

dj+1,k =
1√
2

+∞∑

n=−∞
gnaj,2k+n =

1√
2

+∞∑

n=−∞
gn−2kaj,n. (2.74)

Therefore, if we know the approximation coefficients aj0,k at a specific scale j0 then,
through the repetition of Equation (2.73) and (2.74), we can generate the approxi-
mation and detail coefficients at every scale larger than j0, without even having to
know how the specific signal f(x) is made, but only the aj0,k. Equations (2.73) and
(2.74) represent the multiresolution decomposition algorithm, which is the first half
of the fast wavelet transform. Thus, instead of using the cost-intensive convolution
of Equation (2.49), the fast wavelet transform exploit the multiresolution decompo-
sition to compute the wavelet coefficients. If we iterate Equation (2.73) and (2.74),
we perform respectively a highpass and lowpass filtering of the input (i.e. the co-
efficients aj,2k+n) to obtain the outputs aj+1,k and dj+1,k. The vector 1√

2
hn is the

lowpass filter which produces a smoothed version of the signal, and 1√
2
gn represent

the highpass filter which lets through the high frequencies of the signal (i.e. the
details).

To reconstruct aj,k from aj+1,k and dj+1,k, recalling Equation (2.60), we can ex-
pand Equation (2.62) as:

fj−1(x) = fj(x) +Dj(x) =
+∞∑

k=−∞
aj,kφj,k(x) +

+∞∑

k=−∞
dj,kψj,k(x), (2.75)

which can be further rewritten, with respect to Equation (2.70) and (2.71) in terms
of the scaling function at the previous scales as follows:

fj−1(x) =
+∞∑

k=−∞
aj,k

1√
2

+∞∑

n=−∞
hnφj−1,2k+n(x)

+
+∞∑

k=−∞
dj,k

1√
2

+∞∑

n=−∞
gnφj−1,2k+n(x), (2.76)

49

finally, rearranging the summation indexes, we get:

fj−1(x) =
+∞∑

k=−∞
aj,k

1√
2

+∞∑

n=−∞
hn−2kφj−1,k(x)

+
+∞∑

k=−∞
dj,k

1√
2

+∞∑

n=−∞
gn−2kφj−1,k(x). (2.77)

Moreover we can expand fj−1(x) in terms of the approximation coefficients at scale
j − 1:

fj−1(x) =
+∞∑

k=−∞
aj−1,kφj−1,k(x). (2.78)

If we equate the coefficients of Equation (2.77) with Equation (2.78) we note that
the index n at scale index j relates to the location index k at scale index j − 1.
Additionally location index k in Equation (2.77) is not equivalent to the location
index k in Equation (2.78), because the former corresponds to scale index j with
a discretization step of 2j, and the latter to scale index j − 1 with a discretization
step of 2j−1. Thus the k indexes are twice as dense in Equation (2.78). After
swapping the indexes k and n in (2.78), by equating the two equations, we obtain
the reconstruction algorithm:

aj−1,k =
1√
2

+∞∑

n=−∞
hk−2naj,n +

1√
2

+∞∑

n=−∞
gk−2ndj,n, (2.79)

where we have reused n as the location index of the transform coefficients at scale
index j to differentiate it from k, the location index at scale j − 1. Thus Equation
(2.79) states that, at smaller scale j−1, the approximation coefficients can be found
in terms of a combination of approximation and detail coefficients at the next scale
j. The reconstruction algorithm combined with Equation (2.73) and (2.74) provides
the fast wavelet transform (FWT) algorithm.

In many application the data set is structured in the form of a two-dimensional
array, and this is the case of image processing, because images are made of a two-
dimensional array of sizeM×N , that is havingM rows andN columns, wherein each
element carries the intensity value of the image at its position. To perform a discrete
wavelet decomposition of two-dimensional data sets, either to compress or to obtain
a wavelet-based parametric description of such sets, we must use a two-dimensional
discrete wavelet transform. We can simply generate those transforms by means of
tensor product of their one-dimensional orthonormal counterpart. If we use the same
scaling in the horizontal and vertical directions, we will obtain square transforms.
At a given scale, a one-dimensional signal requires two basis functions, but in case

50

of two-dimensional signals there are four basis functions defined as follows:

φ(x1, x2) = φ(x1)φ(x2)

ψh(x1, x2) = φ(x1)ψ(x2)

ψv(x1, x2) = ψ(x1)φ(x2)

ψd(x1, x2) = ψ(x1)ψ(x2), (2.80)

where φ(x1, x2) is the two-dimensional scaling function and ψh,v,d(x1, x2) are the
three wavelet functions. For an two-dimensional signal f(x1, x2), the transform
coefficients are obtained by projecting the input onto the four basis function given
in Equation (2.80), which result in four types of transform coefficients located at
four different subbands in the decomposition:

aj+1,(k1,k2) =
1

2

∑

n1

∑

n2

hn1hn2aj,(2k1+n1,2k2+n2) (2.81)

d
(h)
j+1,(k1,k2) =

1

2

∑

n1

∑

n2

gn1hn2aj,(2k1+n1,2k2+n2) (2.82)

d
(v)
j+1,(k1,k2) =

1

2

∑

n1

∑

n2

hn1gn2aj,(2k1+n1,2k2+n2) (2.83)

d
(d)
j+1,(k1,k2) =

1

2

∑

n1

∑

n2

gn1gn2aj,(2k1+n1,2k2+n2), (2.84)

where n1, n2 are the scale coefficient indices and k1, k2 are the location indices at
scale j + 1 (compare with the one-dimensional case of Equation (2.73) and (2.74)).
The aj+1,(k1,k2) is the coarse approximation of the two-dimensional signal f(x, y)

and corresponds to the LL band, the d(h,v,d)
j+1,(k1,k2) coefficients represent the vertical,

horizontal and diagonal details respectively and they correspond to the LH, HL
and HH subbands.

The simplest approach for two-dimensional implementation of the DWT, as we
demonstrated in Section 2.2.2, is to separate the computation by applying one-
dimensional DWT row-wise and then perform the same one-dimensional DWT
column-wise on the intermediate result. The process is shown in Figure 2.11. Af-
ter the application of the one-dimensional DWT row wise, each row produce the
subbands containing the low (L) frequencies and the high (H) frequencies of the
original input signal. Then it is applied another DWT column-wise on these sub-
bands, producing the four subbands defined above. The process can be repeated to
achieve higher decorrelation by iteratively decompose the subband LL as shown in
Figure 2.12. This results in a pyramid structure for the subbands with the coarsest
subband at the top and the finest subband at the bottom. The multiresolution na-
ture of the wavelet decomposition compacts the signal energy into small number of
wavelet coefficients and, in case of natural images, the greater part of this energy is

51

row-wise
DWT

L H

column-wise
DWT

LL

HL

LH

HH

1

Figure 2.11: Separable computation of a two-dimensional DWT.

LL2 LH2

HL2 HH2

HL1

LH1

HH1

1

Figure 2.12: Multistage computation of a two-dimensional DWT.

concentrated in the LL band, that is in the coarsest scale.
Note that the LL subband from the first stage has been transformed into four

subbands while the three other subbands didn’t change. The LL piece comes from
low pass filtering in both direction and it is a subsampled approximation of the orig-
inal image. The remaining three pieces, as said above, are called detail components.
The upper-right piece, labeled HL, comes from high pass filtering in the horizontal
direction and low pass filtering in the vertical direction. The visible details, such as
edges, have an overall vertical orientation, that is perpendicular to the orientation
of the high pass filter, consequently they are called the vertical details.

52

53

3. DENOISING METHODS

Digital images play a continuously increasing role both in daily life applications,
such as photography or satellite television, and in research and technology areas,
such as medical or astronomical imaging. The production of digital images, as well
as videos, often taken in unfavorable conditions, has massively grown in conjunction
with the need of always improved restoration methods, because the data collected
by image sensors are generally contaminated by noise.

In this chapter we discuss some of the approaches that can be used to improve
the quality of images. Note that even if the focus is mainly on images, similar
techniques can be applied to n-dimensional signal as well. These approaches are
motivated by the need to improve the quality of the observed signal z to reconstruct
a reliable estimate ŷ of the original y, which has been corrupted with a random noise
component η as described in Chapter 1, by exploiting a priori knowledge about the
distribution of the random variable that describes the degradation phenomenon.
In fact the model used to describe the noise significantly affects the design of the
denoising algorithms.

Even when the digital devices used to acquire the observed signals are capable
to produce good results, an image improvement is always a desirable goal. Hence
it is necessary to apply an efficient denoising technique to counteract the noise.
The main challenge is to remove the noise component without introducing artifacts
and/or causing blurring effects in the processed image, however most of the simplest
denoising methods, such as those relying on some type of spatial smoothing, degrade
or remove the fine details, edges and textures of the original signal.

The following sections presents the specific group of denoising techniques, mean-
ingful to the topics described later in this Thesis. Specifically we start by introducing
the basic concept of denoising in case of signal-independent noise and the transform
operations to convert a signal-dependent noise into a signal-independent one, then,
in the successive sections, we describe the denoising approaches that are going to be
the building blocks of the work here presented. These are the parametric, nonlocal
and multipoint filtering. Each of those approaches are supported by examples of
their applications.

54

3.1 Homoskedastic Filtering

Recall from Section 1.1 the additive noise model of Equation (1.2):

z(x) = y(x) + η(x), x ∈ X,

where X ⊂ Z2, y is the original signal and η is the noise term. The goal is to
reconstruct the original signal y(x) from the observed noisy signal z(x) for all x ∈ X.
We can treat the function y as a regression of z on x:

y(x) = E [z(x)] , x ∈ X.

Formally we can define an operator D : R|X| → R|X| to express a generic, ideal,
denoising operator that produces an estimate of the expectation of the noisy input
as:

D(z(x)) = E [z(x)] = y(x), x ∈ X. (3.1)

As said before, the most common assumption that we can make on the noise is
that η(·) is an independent and identically distributed normal random variable with
zero-mean and constant variance σ2, i.e. η(·) ∼ N (0, σ2). This assumption leads to
a noise which model has been broadly used in the field of signal processing mainly
due to its simplicity and to its convenient mathematical properties. As a matter
of fact, besides some specific algorithms designed to cope with peculiar situation,
most of the denoising methods in the literature are built upon the assumption of
additive white Gaussian noise. However, as presented in Section 1.3 and Section 1.4,
different assumptions are required to better explain the behavior of noise in digital
images. In order to handle signal-dependent noise, we have two possibilities when
designing a denoising operator D:

• Use an operator Dhe specifically designed to handle and work with heteroskedas-
tic noise [9];

• Exploit a variance stabilizing homomorphic transformation to make the noise
in z signal-independent, and then apply any Dho for common homoskedastic
noise on the transformed noisy signal.

In this section will be mainly discussed the latter approach, in particular present-
ing the Anscombe transform [12] along with it unbiased inverse [45], and finally the
homomorphic transformations for clipped signals [25, 10, 24]. The goal is the same
for all the above mentioned transformations, that is transform the heteroskedas-
tic signal-dependent noise to apply state-of-the-art denoising algorithms meant for
homoskedastic Gaussian noise. In the following sections will be presented the trans-
formations used to stabilize the variance in case of signals corrupted by Poissonian
noise and in case of clipped noisy signals, whose models have been presented in

55

Section 1.3 and 1.4 respectively.

3.1.1 Poissonian Noisy Signals

Even if several algorithms have been designed to deal directly with Poissonian noise,
as PH-HMT [57] or MS-VST [14], it is not unusual to apply denoising algorithm
not originally meant for this kind of noise to data previously processed with the
transformation originally proposed by F.J. Anscombe and thus called the Anscombe
transformation. The procedure of denoising a signal corrupted by Poissonian noise
is composed by the following three steps:

i. Stabilize the noise variance applying a function f called the Anscombe trans-
formation [12] to the observed noisy signal z:

f(z(x)) = 2

√
z(x) +

3

8
, x ∈ X (3.2)

In the resulting signal f(z), the signal-dependence of the noise variance is
removed, in a way that the variance itself becomes constant at any x ∈ X

of the signal. In particular, the noise corrupting f(z) can be asymptotically
approximated as additive Gaussian with unitary variance;

ii. The noise left by the transformation f is removed using any conventional ho-
moskedastic denoising algorithm Dho designed for additive white Gaussian noise
to produce the denoised signal:

Dho(f(z)) = E [f(z)] (3.3)

iii. Eventually an inverse transformation I = f−1 is applied to the denoised signal
of Equation (3.3) inherited from the previous step, obtaining the final estimate
of the original signal y:

ŷ = I (Dho(f(z))) (3.4)

The above procedure suffers from an imperfection that has restricted its use
in practical application because it is not as performing as the ones provided by
algorithms specifically designed for Poissonian noise. The criticality can be identified
not in the forward (stabilization) transform, but in the inverse transformation of
step iii. Since the forward transformation is a non-linear function a bias error is
introduced after the application of f , for this reason we have to properly choose an
adequate inverse transformation in order to minimize that error.

As a first, intuitive attempt, we could define the inverse transformation I as the
direct algebraic inverse of Equation (3.2):

IA (Dho(f(z))) = f−1 (Dho(f(z))) =

(
Dho(f(z))

2

)2

− 3

8
, (3.5)

56

but the resulting estimate of the original signal y is biased. In fact, because the
non-linearity of the forward transformation f , we can not state that the estimate of
the transformed signal is equal to the transform of the estimated signal. Formally:

E [f(z)] 6= f (E [z]) , (3.6)

and therefore:
f−1 (E [f(z)]) 6= E [z] . (3.7)

Note that we avoid to explicitly write the conditioning on y of the various statistics
E [·|y], Var [·|y] and std [·|y] to lighten the notation. Anscombe in [12] proposed to
adjust the direct algebraic inverse defined in Equation (3.5) using an asymptotical
unbiased inverse for large photon counts, i.e. when Dho(f(z))� 0:

IB (Dho(f(z))) =

(
Dho(f(z))

2

)2

− 1

8
, (3.8)

However, even if the unbiased inverse of Equation (3.8) provides good results
for high-count data, it does not cope well with low-count data wherein this inverse
transformation produces again a biased estimate. Conversely the algebraic inverse
is affected by a dual behavior, because the effects of the bias become significant in
large-count data while it guarantee good performance in low-count data.

Assuming that Dho performs an ideal, perfect, denoising process, that is when
the produced denoised signal Dho(f(z)) is treated as E [f(z)], the focus must be set
on the research of an exact unbiased inverse of the Anscombe transformation f .
In other words we should find an inverse transformation IC that maps the values
E [f(z)] to the desired values E [z] [45], formally:

IC : E [f(z)] 7→ E [z] . (3.9)

Recall that for any given y, we have that E [z] = y, thus if we compute the values
of E [f(z)] we will find the exact unbiased inverse IC . From the definition of the
expectation operator E [·] we obtain:

E [f(z)] =

∫ +∞

−∞
f(z)p(z|y)dz, (3.10)

where p(z|y) is the generalized probability density function of z conditioned on
y. Specifically we are considering a Poisson distribution, so we can replace the
generalized p.d.f. and the integral of Equation (3.10) with the discrete Poisson
probabilities P (z|y) and a summation:

E [f(z)] =
+∞∑

z=0

f(z)P (z|y). (3.11)

57

!"# $%&'("&$ &)$ '#&$#%'&* +",-$% !" .'&) " !/#+$#&'/#", 0$1
#/'%'#2 ($&)/0 0$%'2#$0 3/4 "00'&'+$.)'&$ 5"-%%'"# #/'%$6
7$'&)$4 $8"!& %&"9',':"&'/# #/4 $8"!& #/4(",':"&'/# "4$;/%1
%'9,$ <=>?@ =A?B@ &)$4$3/4$@ '# ;4"!&'!$@ ";;4/8'("&$ %/,-&'/#%
"4$ $(;,/*$06

C#$ /3 &)$ (/%& ;/;-,"4 +"4'"#!$1%&"9',':'#2 &4"#%3/4("1
&'/#% '% &)$ D#%!/(9$ &4"#%3/4("&'/# =E?

!$"! F
!
$" G

H
<GB

D;;,*'#2 <GB &/ I/'%%/# 0'%&4'9-&$0 0"&" 2'+$% " %'2#", .)/%$
#/'%$ '% "%*(;&/&'!",,* "00'&'+$ %&"#0"40 #/4(",6

J)$ 0$#/'%'#2 /3 # !$" ;4/0-!$% " %'2#", % &)"& !"# 9$
!/#%'0$4$0 "% "# $%&'("&$ /3 &# # !$" $!%6 K$ #$$0 &/ ";;,*
"# '#+$4%$ &4"#%3/4("&'/# &/ % '# /40$4 &/ /9&"'# &)$."#&$0
$%&'("&$ /3 !6 J)$ 0'4$!& ",2$94"'! '#+$4%$ /3 <GB '%

!'!%"! # &E!%"!
"
%
F

#F
& G

H
$ <>B

9-& &)$ 4$%-,&'#2 $%&'("&$ /3 ! '% 9'"%$0@ 9$!"-%$ &)$ #/#,'#1
$"4'&* /3 &)$ &4"#%3/4("&'/# # ($"#% .$ 2$#$4",,*)"+$

&# # !$" $!% '! # !&#$ $!%"$ <AB
"#0@ &)-%@

&E!&# # !$" $!%" '! &#$ $!%# <LB

D#/&)$4 ;/%%'9','&* '% &/ -%$ &)$ "0M-%&$0 '#+$4%$ =E?

!(!%"!
"
%
F

#F
& E

H
$ <NB

.)'!) ;4/+'0$% "%*(;&/&'!", -#9'"%$0#$%% 3/4 ,"42$!/-#&%6
J)'% '% &)$ '#+$4%$ &*;'!",,* -%$0 '# ";;,'!"&'/#%6

!"# $%&'()*+,&-./ ,*0.1-.

K)',$ &)$ "%*(;&/&'!",,* -#9'"%$0 '#+$4%$ <NB ;4/+'0$% 2//0
4$%-,&% 3/4)'2)1!/-#& 0"&"@ ";;,*'#2 '& &/ ,/.1!/-#& 0"&"
,$"0% &/ " 9'"%$0 $%&'("&$@ "% !"# 9$ %$$# $626 '# =H?6 I4/+'0$0
" %-!!$%%3-, 0$#/'%'#2 <'6$6 % '% &4$"&$0 "% &# # !$" $!%B@ &)$
O$* &/ %/,+'#2 &)'% ;4/9,$('% &/ P#0 &)$ $8"!& -#9'"%$0 '#1
+$4%$ /3 &)$ D#%!/(9$ &4"#%3/4("&'/# # @ '6$6 &/ P#0 "# '#1
+$4%$ &4"#%3/4("&'/# !) &)"& (";% &)$ +",-$% &# # !$" $!% &/
&)$ 0$%'4$0 +",-$% &#$ $!%Q

!) Q &# # !$" $!% (&) &#$ $!%# <HB
R'#!$@ 3/4 "#* 2'+$# !@ &#$ $!% ! !@ &)$;4/9,$(/3 P#0'#2
&)$ '#+$4%$!) 4$0-!$% &/ !/(;-&'#2 &)$ +",-$% &# # !$" $!%@
.)'!) '% 0/#$ 9* #-($4'!", $+",-"&'/# /3 &)$ '#&$24", !/44$1
%;/#0'#2 &/ &)$ $8;$!&"&'/# /;$4"&/4 & Q

&# # !$" $!% !
$ "*

&*
!$"*!$ $!"+$$ <SB

.)4 *!$ $!" '% &)$ 2$#$4",':$0 ;4/9"9','&* 0$#%'&* 3-#!&'/#
/3 $!/#0'&'/#$0 /# !6 T# /-4 !"%$.$)"+$ 0'%!4$&$ I/'%1
%/# ;4/9"9','&'$% ,!$ $!"@ %/ .$!"# 4$;,"!$ &)$ '#&$24", 9*
%-(("&'/#Q

&# # !$" $!% !
"*%

$!U
!$",!$ $!"# <EUB

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E{f (z) | y }

V'2-4$ EQ T#+$4%$ &4"#%3/4("&'/#% !' <",2$94"'!B@ !(<"%*(;1
&/&'!",,* -#9'"%$0B "#0 !) <$8"!& -#9'"%$0B6

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

E{z | y } = y

b
ia

s

V'2-4$ FQ D9%/,-&$ +",-$ /3 &)$ 9'"% /3 &)$ '#+$4%$ &4"#%3/41
("&'/#% !'@ !("#0 !) 6

V-4&)$4@ %'#!$)4 # !$" '% &)$ 3/4."40 D#%!/(9$ &4"#%3/41
("&'/# <GB@ .$!"# .4'&$ WX6 <EUB "%

&# # !$" $!% ! F
"*%

$!U

&!
$" G

H
+ !
$-&!

$Y

'

<EEB

T# ;4"!&'!$@ '& '% %-3P!'$#& &/ !/(;-&$ <EEB 3/4 " ,'('&$0 %$& /3
+",-$% !Q 3/4 "49'&4"4* +",-$% /3 ! .$ -%$,'#$"4 '#&$4;/,"&'/#
9"%$0 /# &)$%$!/(;-&$0 +",-$% /3 <EEB@ "#0 3/4 ,"42$ +",-$%
/3 ! .$ ";;4/8'("&$!) 9* !(6

D Z"&,"9 3-#!&'/# '(;,$($#&'#2 &)$ $8"!& -#9'1
"%$0 '#+$4%$ &4"#%3/4("&'/# !) '% "+"',"9,$ /#,'#$ "&
)&&;Q[[...6!%6&-&6P[\3/'['#+"#%!6

V'2-4$ E %)/.% &)$;,/&% /3 &)$ '#+$4%$ &4"#%3/4("&'/#%
!'@ !("#0 !) 6 K$ %$$ &)"& "& ,/. !/-#&% &)$ "%*(;&/&'!",,*
-#9'"%$0 '#+$4%$ "!&-",,* ,$"0% &/ " ,"42$4 9'"% &)"# &)$ ",2$1
94"'! '#+$4%$] &)'% '% ",%/ $8;,'!'&,* ',,-%&4"&$0 '# V'2-4$ F6

27

(a) Inverse transformation.

!"# $%&'("&$ &)$ '#&$#%'&* +",-$% !" .'&) " !/#+$#&'/#", 0$1
#/'%'#2 ($&)/0 0$%'2#$0 3/4 "00'&'+$.)'&$ 5"-%%'"# #/'%$6
7$'&)$4 $8"!& %&"9',':"&'/# #/4 $8"!& #/4(",':"&'/# "4$;/%1
%'9,$ <=>?@ =A?B@ &)$4$3/4$@ '# ;4"!&'!$@ ";;4/8'("&$ %/,-&'/#%
"4$ $(;,/*$06

C#$ /3 &)$ (/%& ;/;-,"4 +"4'"#!$1%&"9',':'#2 &4"#%3/4("1
&'/#% '% &)$ D#%!/(9$ &4"#%3/4("&'/# =E?

!$"! F
!
$" G

H
<GB

D;;,*'#2 <GB &/ I/'%%/# 0'%&4'9-&$0 0"&" 2'+$% " %'2#", .)/%$
#/'%$ '% "%*(;&/&'!",,* "00'&'+$ %&"#0"40 #/4(",6

J)$ 0$#/'%'#2 /3 # !$" ;4/0-!$% " %'2#", % &)"& !"# 9$
!/#%'0$4$0 "% "# $%&'("&$ /3 &# # !$" $!%6 K$ #$$0 &/ ";;,*
"# '#+$4%$ &4"#%3/4("&'/# &/ % '# /40$4 &/ /9&"'# &)$."#&$0
$%&'("&$ /3 !6 J)$ 0'4$!& ",2$94"'! '#+$4%$ /3 <GB '%

!'!%"! # &E!%"!
"
%
F

#F
& G

H
$ <>B

9-& &)$ 4$%-,&'#2 $%&'("&$ /3 ! '% 9'"%$0@ 9$!"-%$ &)$ #/#,'#1
$"4'&* /3 &)$ &4"#%3/4("&'/# # ($"#% .$ 2$#$4",,*)"+$

&# # !$" $!% '! # !&#$ $!%"$ <AB
"#0@ &)-%@

&E!&# # !$" $!%" '! &#$ $!%# <LB

D#/&)$4 ;/%%'9','&* '% &/ -%$ &)$ "0M-%&$0 '#+$4%$ =E?

!(!%"!
"
%
F

#F
& E

H
$ <NB

.)'!) ;4/+'0$% "%*(;&/&'!", -#9'"%$0#$%% 3/4 ,"42$!/-#&%6
J)'% '% &)$ '#+$4%$ &*;'!",,* -%$0 '# ";;,'!"&'/#%6

!"# $%&'()*+,&-./ ,*0.1-.

K)',$ &)$ "%*(;&/&'!",,* -#9'"%$0 '#+$4%$ <NB ;4/+'0$% 2//0
4$%-,&% 3/4)'2)1!/-#& 0"&"@ ";;,*'#2 '& &/ ,/.1!/-#& 0"&"
,$"0% &/ " 9'"%$0 $%&'("&$@ "% !"# 9$ %$$# $626 '# =H?6 I4/+'0$0
" %-!!$%%3-, 0$#/'%'#2 <'6$6 % '% &4$"&$0 "% &# # !$" $!%B@ &)$
O$* &/ %/,+'#2 &)'% ;4/9,$('% &/ P#0 &)$ $8"!& -#9'"%$0 '#1
+$4%$ /3 &)$ D#%!/(9$ &4"#%3/4("&'/# # @ '6$6 &/ P#0 "# '#1
+$4%$ &4"#%3/4("&'/# !) &)"& (";% &)$ +",-$% &# # !$" $!% &/
&)$ 0$%'4$0 +",-$% &#$ $!%Q

!) Q &# # !$" $!% (&) &#$ $!%# <HB
R'#!$@ 3/4 "#* 2'+$# !@ &#$ $!% ! !@ &)$;4/9,$(/3 P#0'#2
&)$ '#+$4%$!) 4$0-!$% &/ !/(;-&'#2 &)$ +",-$% &# # !$" $!%@
.)'!) '% 0/#$ 9* #-($4'!", $+",-"&'/# /3 &)$ '#&$24", !/44$1
%;/#0'#2 &/ &)$ $8;$!&"&'/# /;$4"&/4 & Q

&# # !$" $!% !
$ "*

&*
!$"*!$ $!"+$$ <SB

.)4 *!$ $!" '% &)$ 2$#$4",':$0 ;4/9"9','&* 0$#%'&* 3-#!&'/#
/3 $!/#0'&'/#$0 /# !6 T# /-4 !"%$.$)"+$ 0'%!4$&$ I/'%1
%/# ;4/9"9','&'$% ,!$ $!"@ %/ .$!"# 4$;,"!$ &)$ '#&$24", 9*
%-(("&'/#Q

&# # !$" $!% !
"*%

$!U
!$",!$ $!"# <EUB

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E{f (z) | y }

V'2-4$ EQ T#+$4%$ &4"#%3/4("&'/#% !' <",2$94"'!B@ !(<"%*(;1
&/&'!",,* -#9'"%$0B "#0 !) <$8"!& -#9'"%$0B6

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

E{z | y } = y

b
ia

s

V'2-4$ FQ D9%/,-&$ +",-$ /3 &)$ 9'"% /3 &)$ '#+$4%$ &4"#%3/41
("&'/#% !'@ !("#0 !) 6

V-4&)$4@ %'#!$)4 # !$" '% &)$ 3/4."40 D#%!/(9$ &4"#%3/41
("&'/# <GB@ .$!"# .4'&$ WX6 <EUB "%

&# # !$" $!% ! F
"*%

$!U

&!
$" G

H
+ !
$-&!

$Y

'

<EEB

T# ;4"!&'!$@ '& '% %-3P!'$#& &/ !/(;-&$ <EEB 3/4 " ,'('&$0 %$& /3
+",-$% !Q 3/4 "49'&4"4* +",-$% /3 ! .$ -%$,'#$"4 '#&$4;/,"&'/#
9"%$0 /# &)$%$!/(;-&$0 +",-$% /3 <EEB@ "#0 3/4 ,"42$ +",-$%
/3 ! .$ ";;4/8'("&$!) 9* !(6

D Z"&,"9 3-#!&'/# '(;,$($#&'#2 &)$ $8"!& -#9'1
"%$0 '#+$4%$ &4"#%3/4("&'/# !) '% "+"',"9,$ /#,'#$ "&
)&&;Q[[...6!%6&-&6P[\3/'['#+"#%!6

V'2-4$ E %)/.% &)$;,/&% /3 &)$ '#+$4%$ &4"#%3/4("&'/#%
!'@ !("#0 !) 6 K$ %$$ &)"& "& ,/. !/-#&% &)$ "%*(;&/&'!",,*
-#9'"%$0 '#+$4%$ "!&-",,* ,$"0% &/ " ,"42$4 9'"% &)"# &)$ ",2$1
94"'! '#+$4%$] &)'% '% ",%/ $8;,'!'&,* ',,-%&4"&$0 '# V'2-4$ F6

27

(b) Ansolute value of the bias.

Figure 3.1: Comparative plots of the inverse Anscombe transformations IA (algebraic), IB (asymptotically unbi-
ased) and IC (exact unbiased).

From the definition of the Poisson distribution, the probability of observing z given
y is formally defined as:

P (z|y) =
yze−y

z!
. (3.12)

Substituting the Anscombe transform of Equation (3.2) in Equation (3.10), we can
rewrite Equation (3.11) as:

E [f(z)] = 2
+∞∑

z=0

(√
z +

3

8
· y

ze−y

z!

)
. (3.13)

In practice, it is not necessary to evaluate Equation (3.13) for every possible y, if
we compute E [f(z)] for a limited set of values we can derive the result of Equation
(3.13) for any arbitrary y by linearly interpolating the computed already known
values. Moreover, for large values of y we can approximate IC by IB.

In Figure 3.1(a), it is illustrated the plot of the three inverse Anscombe trans-
formation IA, IB and IC described in this section. Note how at low counts the
asymptotically unbiased inverse generates to a bigger bias error than the algebraic
inverse, while at high counts the bigger bias is produced by IA and IB has a better
behavior. The plot of the bias error is also explicitly illustrated in Figure 3.1(b).

3.1.2 Clipped Noisy Signals

When we apply the generic denoising operator D : R|X| → R|X| of Equation (3.1) to
a clipped signal z̃ we obtain:

D(z̃) = Ê [z̃] ≈ E [z̃] = ỹ, (3.14)

58

where, in general, ỹ 6= y. In other words a denoising algorithm applied to a clipped
signal z̃ results in an estimate of ỹ instead of an estimate of the original signal y.
Thus the operator D(z̃) is a biased estimator of y, with a bias error ỹ − y:

E [D(z̃)] ≈ ỹ 6= y.

For simplicity, as we did in the previous section, we can assume that D is an ideal
denoising operator capable to perfectly recover the expectation of a non-clipped
signal z corrupted by i.i.d. Gaussian noise, i.e. D(z) = y.

The procedure is the same of the previous section, we first build a variance-
stabilizing homomorphic transformation f , then we apply an homoskedastic denois-
ing algorithms Dho designed for additive white Gaussian noise to the transformed
clipped noisy images f(z̃), whose model is defined in Section 1.4, and finally we
perform an inverse transformation to the denoised transformed signal to obtain the
desired result. Examples of such procedure are shown in [24, 25]. Thus, to accom-
plish this goal, we can delineate a precise procedure that begins with a preprocessing
step. In fact it is needed an estimate the parameters of clipped signal-dependent
noise models to identify the functions σ̃ and σ. As showed in [10] this can be done
automatically using a single noisy image.

At this point formally we need to devise the homomorphic transformation f :

[0, 1] → R in order to stabilize the variance in the clipped signal z̃ to a desired
constant c ∈ R+. Let ν be a random variable with known mean and variance:

E [ν] = µ

Var [ν] = E
[
(ν − µ)2

]
= σ2,

and consider a transformation f which admits first and second derivatives applied
to ν: f(ν). If the exact calculations of E [f(ν)] and Var [f(ν)] are difficult, we can
expand f(ν) in a Taylor series about the mean µ and use this series representation
to approximate E [f(ν)] and Var [f(ν)] [21, 51]. The first three terms of the Taylor
expansion are:

f(ν) ≈ f(µ) + f ′(µ)(ν − µ) +
1

2
f ′′(µ)(ν − µ)2.

The approximation for the expected value of f(ν) is:

E [f(ν)] ≈ E
[
f(µ) + f ′(µ)(ν − µ) +

1

2
f ′′(µ)(ν − µ)2

]

= f(µ) +
1

2
f ′′(µ)Var [ν] , (3.15)

which becomes, neglecting the second-order term, E [f(ν)] ≈ f(µ). Similarly, the

59

approximation of the variance is:

Var [f(ν)] = E
[
(f(ν)− E [f(ν)])2

]

≈ E
[
(f(µ) + f ′(µ)(ν − µ)− f(µ))2

]

= E
[
(f ′(µ)(ν − µ))2

]

= (f ′(µ))2E
[
(ν − µ)2

]

= (f ′(µ))2Var [ν] . (3.16)

Therefore the standard-deviation is:

std [f(ν)] =
√

Var [f(ν)]

= f ′(µ)
√

Var [ν]

= f ′(µ)std [ν] . (3.17)

We obtain an approximated formulation of the standard deviation of z̃ by sub-
stituting the generic random variable ν of Equation (3.17) with the transformed
clipped signal z̃ and the mean µ with the expected value E [z̃], as follows:

std [f(z̃)] ≈ f ′(E [z̃])std [z̃] = f ′(ỹ)σ̃(ỹ). (3.18)

Hence the final formulation of the transform f can be derived by imposing that the
standard-deviation of the transformed signal is always equal to an arbitrary constant
c, formally:

std [f(z̃)] ≡ c,

or, explicitly, since std [f(z̃)] = f ′(ỹ)σ̃(ỹ):

f(t) =

∫ t

t0

c

σ̃(s)
ds (3.19)

where t, t0 ∈ [0, 1]. It can be proved that the indefinite integral in Equation (3.19)
is convergent when the following condition is satisfied [24, 25]:

σ̃(ỹ)→ 0 as ỹ → 0+ or ỹ → 1−, (3.20)

which implies that f is a bounded function, and, additionally, we assume that it is
also strictly increasing, hence invertible. Observe that the conditions of Equation
(3.20) are often satisfied in practice.

After the transformation f has been applied to the clipped data, the signal f(z̃)

can be treated as a clipped normal random variable with variance equal to c2. Thus
we can safely utilize an (ideal) homoskedastic denoising algorithm Dho to the trans-

60

formed data as follows:
Dho(f(z̃)) ≈ E [f(z̃)]

However, since f is not a linear function, we have that E [f(z̃)] 6= f(E [z̃]), which is
not acceptable because an error in the expectation generates a systematic estimation
bias. This problem must be compensated before applying the inverse transformation
of f by an additional invertible operator h [24, 25] such that h(f(E [(] z̃))) = E [f(z̃)].
The final form of the approximation for homoskedastic filtering then becomes:

f−1(h−1(Dho(f(z̃)))) ≈ E [z̃] = ỹ. (3.21)

The final step is to recover the original signal y from the estimate of the clipped
noisy observation E [z̃] = ỹ, and this can be done by exploiting the inverse transfor-
mation C defined in Equation (1.20):

ŷ = C(Dho(z̃), σ̃Dho(z̃)). (3.22)

3.2 Nonlocal Filtering

A denoising algorithm D is called local if an estimate of the noise-free signal in a
reference pixel xR is obtained by a set of weights that depend on some distance metric
d(xR, xs) between the estimation point xR and the observation points xs. Typically
the weights become smaller as the distance of (xR, xs) increases, regardless of the
actual signal content. In other words distant points have smaller weights and thus,
they give a small contribute to the final estimate of xR. In practice the support of
local filtering is restricted to an area where the metric d is significative.

In Figure 3.2 it is illustrated an example of application of a local Gaussian smooth-
ing, using two kernels of different size, over a synthetic digital image corrupted with
white Gaussian noise with σ = 0.1. Note that the filter correctly reduces the noise in
homogeneous areas, while, at the same time, it blurs areas where the image content
is rapidly changing, like the sharp edges of the white squares. The trade-off between
the blurring in edges and smoothing in constant areas is ruled by the dimension of
the filter. The output of the convolution between the noisy image z presented in
Figure 3.2(d) and the discrete Gaussian filters G illustrated in Figure 3.2(b) and
3.2(e) is shown in Figure 3.2(c) and 3.2(f), and it is formally defined as follows:

ŷ(x) = G(x)~ z(x), x ∈ X, (3.23)

which means that each pixel x in the smoothed image ŷ is the results of a Gaussian
weighted average of a neighborhood of the noisy image z having the same size of the
Gaussian kernel G.

On the other hand, an algorithm is said to be nonlocal if the set of weights used
in the estimation of the target depend on the similarity of the signal values at the

61

(a) Original image.

1
3

5
7

1

3

5

7

0.01

0.02

0.03

0.04

0.05

(b) Gaussian filter of size 7× 7. (c) Denoised image by local smooth-
ing with a Gaussian filter G of
size 7× 7.

(d) Corrupted image.

1 3 5 7 9 11 13 15 17 19

1
3

5
7

9
11

13
15

17
19

1

2

3

4

5

6

7

x 10−3

(e) Gaussian filter of size 19× 19. (f) Denoised image by local smooth-
ing with a Gaussian filter G of
size 19× 19.

Figure 3.2: Gaussian smoothing of a synthetic image.

reference point z(xR) and at the observation points z(xs). For this reason, even
distant points from the target can have a large contribution to the final estimate,
when they exhibit a significant similarity with the target. Note that the similarity
of the intensity values is typically computed through the `2-norm:

||z(xR)− z(xs)||2 .

In this section, to clarify the concept of nonlocal denoising, we present the well-
known Non Local Means algorithm [3], from now on simply referred to as NL-means.

The NL-means algorithm is a nonlocal filter that aims at removing the noise,
without deteriorating the meaningful information of the original image, by exploiting
the redundancy and self-similarity present in any natural image. In fact this method
evaluates the similarity between two pixels not only through the intensity value of
every pixel encompassed in a predefined neighborhood centered around the processed
pixel. More specifically the NL-means algorithm replaces the values in a noisy
observation z at a given position xR by a weighted average of all the pixels of

62

the image. These weights are function of the similarity between the window of a
reference pixel xR and the window associated to every other pixel xs in the image.

NL(xR) =
∑

xs∈X
w(xR, xs)z(xs), xR ∈ X, (3.24)

where the set of weights {w(xR, xs)}xs depend on the similarity between the pixels
xR and xs. Moreover the weights are normalized as follows:

0 ≤ w(xR, xs) ≤ 1 (3.25)
∑

xs∈X
w(xR, xs) = 1. (3.26)

In order to define the concept of similarity between any pair of pixels (xR, xs) of a
noisy image z defined over a grid X ⊂ Z2, we have to build a neighborhood system
on X.

Definition 3.2.1. A neighborhood system on X is a family N = {Nx}x∈X of subsets
of X such that for all x ∈ X the following conditions hold:

i. x ∈ Nx;

ii. x0 ∈ Nx1 ⇒ x1 ∈ Nx0.

The set Nx ⊂ X is called the neighborhood, or the similarity window, of x. Addi-
tionally we call Ñx = N \ x

For simplicity we consider only square neighborhoods Nx of fixed size. The re-
striction of z to a neighborhood Nx, denoted by z (Nx), is:

z (Nx) =
{
z(x), x ∈ Nx

}
. (3.27)

The similarity of two pixels (xR, xs) is a function of the similarity of the intensity
grey-level vectors identified by their neighborhoods z (NxR) and z (Nxs). The larger
similarity of the neighborhoods, the higher the weight assigned at the involved pixels.

Thus, the problem of computing the similarity of two pixels is equivalent to
the problem of computing the similarity between two intensity grey-level vectors.
One possible solution is the Gaussian weighted Euclidean distance, that consists in
taking the sum of squares differences between the two neighborhoods weighted with
a Gaussian kernel Gα having a predefined standard deviation α:

d(xR, xs) = ||z (NxR)− z (Nxs)||22,Gα , (3.28)

which is a reliable estimate of the (unknown) distance that the same neighborhoods
y (NxR) and y (Nxs) would have in the original signal y, because this measure is

63

Figure 3.3: Similarity of neighborhoods in NL-means. The blue square is the reference block and the red squares
are some of the blocks similar to the reference one.

altered uniformly by the (white Gaussian) noise in z [3, 4]:

E
[
||z (NxR)− z (Nxs)||22,Gα

]
= ||y (NxR)− y (Nxs)||22,Gα + 2σ2, (3.29)

where σ2 is the variance of the noise η corrupting the original signal y.
Thus the Euclidean distance preserves, in expectation, the order of similarity

between pixels. In other words similar pixels in z are expected to be similar also in
y. At this point we can formally define the function w(·, ·):

w(xR, xs) =
1

Z(xR)
e−
||z(NxR)−z(Nxs)||2

2,Gα
h2 , (3.30)

where the parameter h controls the decay1 of the weights, and the term Z(xR) is
the normalizing factor, introduced to guarantee that the weights w will satisfy the
conditions expressed in Equation (3.25) and (3.26):

Z(xR) =
∑

xs∈X
e−
||z(NxR)−z(Nxs)||2

2,Gα
h2 . (3.31)

In Figure 3.3 there are illustrated some of the most similar neighborhoods to
the reference neighborhood colored in red. As expected they are spread potentially
everywhere in the image and in Figure 3.4 it is shown the result of the NL-means
applied to the test image Barbara corrupted with Poissonian noise. Observe that
the image has been transformed with the Anscombe transform described in Section
3.1.1, since NL-means deals naturally with data corrupted by white Gaussian noise.

1Usually h is set between 10σ and 15σ, where σ is the standard deviation of the noise in the image.
When h is too small, noise removal may not be effective, conversely if h is too large the image will become
oversmoothed.

64

(a) Noisy image. (b) Denoised image.

(c) Noisy image (detail). (d) Denoised image (detail).

Figure 3.4: Example of the application of the NL-means on an image corrupted with Poissonian noise.

Proceeding top-bottom and left-to-right in Figure 3.4, there are represented the
noisy image z, the Poissonian noise η, the denoised image ŷ and finally an outlook
of the noise removed by NL-means simply computed as the difference between the
denoised and the noisy image |ŷ − z|.

3.3 Parametric Filtering

The algorithms introduced previously in this chapter, the Gaussian local smoothing
and NL-means, are both elements of a more general family of denoising methods that
encompasses the so-called nonparametric approaches. In general a nonparametric
filtering performs a nonparametric regression of the noisy signal z to recover the
best possible estimate of the underlying original signal y exploiting the information
of one or several predictors {xi}:

ŷ(x) = E [z|x] = f({xi}). (3.32)

65

Nonparametric methods rely on the data itself to determine the structure of the
implicit model, often referred to as a regression function. In nonparametric regres-
sion, the aim is to estimate the regression function directly that best fits the data
without significant a priori knowledge about the form of the true function which
is being estimated. Common examples of the regression function f are kernel or
nearest-neighbors estimation, local-polynomial regression and local smoothing.

Conversely, parametric denoising methods, which are the main subject of this
section, rely on a specific model of the signal, and try to compute the parameters
of this model in the presence of noise. Transform domain filtering is an example of
parametric approach, refer to Chapter 2 for a brief overview of some of the most used
transform operators. The foundational assumption of such methods states that the
underlying original signal y admits a sparse representation in a suitable transformed
domain. A generative model based upon the estimated parameters is then produced
as the best estimate of the underlying signal. Specifically signal models can be used
to design a dictionary, i.e. a basis or a frame, that exploits the known features of
the signal to build a sparse representation.

Signals that admit a sparse representation can be entirely described and identified
using a small set of coefficients, in a way where the signal is disassembled with respect
to elementary basis function chosen within a specific family, called dictionary. The
Fourier and Wavelet transform decompose a signal y over oscillatory waveforms that
can uncover some interesting features of y, which eventually are capable to provide
a sparse and more compact representation of y. For example Fourier basis can
approximate effectively a uniformly regular signal y with a small number of low-
frequency components, while Wavelet basis are a powerful tool to sparsely represent
localized and/or transient phenomena of y.

The sparsity can be exploited by thresholding the coefficients of the suitably
transformed signal. In fact a method that performs coefficients shrinkage is actually
an efficient nonlinear estimator for y. Generally, when the transform is performed
with an orthonormal basis, these estimators selects the coefficients having the largest
amplitude, because of the assumption that the significant information of signals is
localized in such components of the transform. In the remaining part of this section,
will be presented a method based upon this concept, the Wavelet Shrinkage denoising
algorithm [18, 46, 17]. Wavelet denoising attempts to remove the noise present in the
signal while preserving the signal characteristics, regardless of its frequency content,
in opposition to smoothing whose effect is to remove high frequency terms only.

Recall from Chapter 1 the standard noise model for digital images:

z(x) = y(x) + η(x), x ∈ X ⊂ Z2, (3.33)

where the component η ∼ N (0, σ2). Equation (3.33) is the starting point of the
following dissertation: note that in case of signal-dependent noise, the observations

66

are still valid by doing transformations, like those described in Section 3.1.
The Wavelet Shrinkage method recovers y from the noisy observation z, by thresh-

olding suitable coefficients in the wavelet domain. The algorithm is composed of
threes steps:

i. A forward wavelet transform that decompose the signal up to a chosen level
N ;

ii. A nonlinear thresholding of the detail coefficients from level 1 to N ;

iii. A inverse wavelet transform using the altered coefficients.

Observe that the nonlinearity of the thresholding operators implies the nonlinearity
of the Wavelet Shrinkage algorithm itself. It has been shown that the tree-steps pro-
cedure outlined above is a powerful tool that can provide a near-optimal separation
between the meaningful information and the noise in Gaussian corrupted signals
[42]. Formally the Wavelet Shrinkage algorithm can be expressed by the following
formula:

ŷ =W−1 (Υλ (W (z))) , (3.34)

where the operatorsW andW−1 are the forward and inverse discrete wavelet trans-
form respectively, and Υλ stands for wavelet-domain pointwise thresholding operator
having λ as threshold value.

This method is motivated by the idea that the discrete wavelet transform, DWT,
produces a representation of a noisy signal z wherein the meaningful information (the
original signal y) are noticeably separated from the noise η. Moreover the orthogonal
property of the transform assures that the noise in the transform domain is also
additive and of Gaussian nature. The DWT compacts the energy of the signal in a
small number of coefficients having large magnitude, while it spreads the energy of
the noise over a large number of small valued DWT coefficients. Hence a threshold
that removes only coefficients below the threshold, and that does not change the
large ones, seems to be an effective method to attenuate the effects of the noise η
on y.

The most utilized thresholding rules use the so-called hard and soft-thresholding
operator. Given a function f : X → R with X ⊂ Rn the hard thresholding operator
is defined as:

Υht
λ (f(x)) =




f(x) if |f(x)| > λ

0 otherwise
, (3.35)

while the soft threshold one is:

Υst
λ (f(x)) =





f(x)− λ if f(x) > λ

f(x) + λ if f(x) < −λ
0 otherwise

, ∀x ∈ X. (3.36)

67

0

−λ λ

(a) Hard threshold operator Υht
λ .

0

−λ λ

(b) Soft threshold operator Υst
λ .

Figure 3.5: Thresholding operators. The input is represented in black dashed line and the result of threshold is
illustrated in thick black line. The vertical dashed grey lines identify the threshold interval [−λ, λ].

In Equation (3.35) and (3.36) λ ∈ R is the thresholding parameter2. In Figure 3.5 it
is illustrated an example of application of both thresholding operators. Beside these
two possibilities there are many others (semi-soft shrinkage, firm shrinkage, . . .) and,
as long as the thresholding rule preserves the sign and shrinks the amplitude of each
coefficients, we can expect a denoising effect. Formally these conditions are defined
as:

sign(Υλ(f(x))) = sign(f(x))

|Υλ(f(x))| ≤ |f(x)|

Generally, an hard thresholding may create abrupt artifacts because of its discon-
tinuous nature: thus using a soft thresholding is alter preferable. Moreover the soft
thresholding yields visually more pleasing images and has been shown to achieve
better error rates [22].

Several approaches have been proposed to select a proper value for λ, i.e. Vi-
suShrink and SureShrink [18], mainly based on the minimization of the averaged
squared error. The choice of the threshold value has a significant impact in the
efficacy on the denoising procedure, and when the exact form of either the under-
lying signal y or the statistics of the noise η are unknown, it becomes a non-trivial
task. We can select either a level-dependent threshold or a global constant threshold
value, fixed for all levels of the wavelet decomposition. On of the most popular, and
the simplest threshold, is the so-called universal threshold, utilized for example by

2When the parameter λ is too large, the thresholding operator removes a significant amount of infor-
mation, i.e. it causes oversmoothing. Conversely when λ is too small, not enough noise energy will be
suppressed in the noisy signal z.

68

(a) Level 1. (b) Level 2.

(c) Level 3. (d) Level 4.

(e) Level 5.

Figure 3.6: Details of the Wavelet Shrinkage on a chirp signal corrupted by white Gaussian noise having standard-
deviation σ = 0.2. The signal is decomposed using the first Daubechies wavelet basis. Each subfigure
represents a different decomposition level and it is composed, from top to bottom, by the approximation
coefficients, the detail coefficients and the thresholded coefficients.

69

(a) Original signal. (b) Noisy signal. (c) Denoised signal.

Figure 3.7: Example of Wavelet Shrinkage on a chirp signal corrupted by white Gaussian noise with standard
deviation σ = 0.2 using the first Daubechies wavelet basis.

(a) Noisy image. (b) Denoised image.

(c) Noisy image (detail). (d) Denoised image (detail).

Figure 3.8: Example of Wavelet Shrinkage on the image Barbara corrupted with white Gaussian noise with stan-
dard deviation σ = 0.2. In the transform the first Daubechies wavelet has been utilized for the 5 levels
decomposition of the image.

70

VisuShrink, and defined as follows [18, 49]:

λU = σ
√

2 ln(L), (3.37)

where σ is the standard deviation of the Gaussian noise η, L is the number of samples
(pixels in case of digital images) of the observation z and the term

√
2 ln(L) is the

expected maximum value of a white noise sequence of length L with unitary variance.
For large samples λU will remove, with high probability, all the noise in the estimate
ŷ. In other words, with high probability, a pure noise signal is estimated as being
identically zero. However part of the underlying signal will might be lost because
in practice λU tends to oversmooth the signal as it is derived under the assumption
that the estimate ŷ is at least as smooth as the signal y. Generally, the standard
deviation of the noise σ is not known, thus a robust estimator of σ is needed [20].
As another example, SureShrink uses a local threshold λi estimated adaptively for
each level i of the wavelet decomposition.

In Figure 3.7 it is shown an example of application of the Wavelet Shrinkage,
we use a soft thresholding, on a non stationary signal, in particular a chirp signal,
corrupted by white Gaussian noise with standard-deviation σ = 0.2. The signal has
been decomposed in 5 levels using the first Daubechies wavelet basis. In Figure 3.6
it is reported the result of the decomposition at every given level l ∈ {1, . . . , 5} with
the corresponding shrinkage. In each subfigure it is shown from top to bottom the
approximation coefficients, the details coefficients and the soft-thresholded details
coefficients. We select the value of the threshold as in Equation (3.37). Observe
that the threshold drops all the coefficients in the first levels of the decomposition,
i.e. where the transform reveals the fine details of the signal. Conversely, in the last
levels, i.e. where the scale gets coarser, a bigger number of coefficients are preserved
from the shrinkage. In Figure 3.7(c) it it presented the result of the algorithm.

Figure 3.8 shows an example of Wavelet Shrinkage applied to two-dimensional
signals. The algorithm is tuned with basically the same parameters and characteris-
tics used in the denoising of the chirp signal. The signal (image) has been corrupted
by white Gaussian noise haviwithng σ = 0.2 and the transform consists in 5 levels
of decomposition using the first Daubechies wavelet basis. The only difference is
on the choice of the λ, in fact, since the universal threshold value λU produced an
oversmooth estimate, we have manually tuned the threshold bound to improve the
result.

3.4 Multipoint Filtering

The last distinguishing feature of a denoising approach, somehow relevant for the
purpose of this Thesis, regards the pointwise and multipoint estimation. Observe
that every dyadic taxonomy reviewed in this chapter, that is local/nonlocal, para-
metric/nonparametric and now pointwise/multipoint, turn attention only to the

71

xR

{xs}p
s=1

1

(a) Initial condition of a generic lo-
cal denoising algorithm.

xR

1

(b) The pointwise approach uses the
estimate for the reference point
xR only.

xR

{xs}p
s=1

1

(c) The multipoint approach esti-
mates all the points of the image
involved in the denoising process.

Figure 3.9: Example of pointwise and multipoint estimation. The solid blue pixel xR is the reference point and
the area denoted by diagonal blue lines contains the set of the observation points {xs}ps=1 used by the
denoising algorithm. The solid red areas contains the pixel involved in the estimation process.

fundamental ideas and basic principles of the algorithms. As a matter of fact, most
of the implementations of the algorithms presented in the literature, combine de-
noising techniques that belong to different approaches.

Let D a denoising algorithm and let xR be a reference pixel for which we want
to obtain an estimate. Assuming that D uses a set of p observation points {xs}ps=1,
than D is called a pointwise estimator if D returns an estimate for the pixel xR only.
Conversely, a multipoint estimator returns an estimate for all the pixels involved in
the denoising process, i.e. {xs}ps=1. In other words a multipoint methods returns a
set of estimate, one for each pixel involved in the filtering, while a pointwise approach
returns only the estimate of the reference point xR [64].

As a reference, we can refer to Figure 3.9. In the Figure 3.9(a) it is shown a
general situation wherein a local denoising algorithm processes a reference pixel
xR, illustrated in solid blue, using a neighborhood of p pixels {xs}ps=1, denoted by
diagonal blue lines. Figure 3.9(b) and Figure 3.9(c) display the pointwise approach
and the multipoint approaches, respectively. The solid red areas show the pixel for
which the denoising algorithm returns an estimate. As we discussed before, the
pointwise method returns an estimate of xR and the multipoint gives an estimate
for all pixels in the neighborhood.

In general, a multipoint approach produces several different estimates in pixel of
the image as the same pixel may appear in more than one observation set {xs}ps=1, or,
equivalently, it belongs to many overlapping neighborhoods (generally referred to as
blocks). As a favorable consequence of this redundancy, the multipoint approaches

72

typically yield final estimates that have a better accuracy than the ones produced by
pointwise methods. However, in multipoint approaches there is the need to aggregate
the results of such overcomplete set of estimates, and give a single final estimate for
each pixel of the image. The overall estimation process can be informally split up
in the three following steps:

i. Data windowing (blocking);

ii. Multipoint estimation for each block;

iii. Calculation of the final estimates by aggregating the overcomplete transform
set provided by the multipoint algorithm.

As an example of application of the multipoint approach we describe a denoising
algorithm, based on the discrete cosine transform, DCT, introduced in Section 2.2.2.
The algorithm is commonly referred to as Block DCT [56, 50, 54, 28], wherein the
Block term will be clear later in this section.

Signal processing in transform domain rather than in spatial domain has a series
of advantages such as the possibility to exploit a-priori knowledge on signals into
the design of the algorithms. The effectiveness of filtering can be improved if the
transform operator, the DCT in this case, is applied locally rather than globally.
Specifically the algorithm at first applies a local orthogonal transform to a sliding
window that covers a block of data., and then it performs a nonlinear threshold the
transform coefficients to obtain an estimate of the original signal. The main differ-
ence with the Wavelet Shrinkage is the locality feature of the DCT. An orthogonal
transform like the DCT, as well as the wavelet transform, is an excellent candidate
for denoising algorithm in transform domain because of its decorrelating properties.

As always, our aim is to recover an unknown signal y from a noisy observation z
corrupted with additive white Gaussian noise:

z(x) = y(x) + η(x), x ∈ X ⊂ Z2.

If the noise is signal-dependent we can exploit the homomorphic transformation de-
scribed in Section 3.1. A straightforward implementation of a Block DCT denoising
algorithm for a noisy signal z is exemplified by the general multipoint procedure
outlined in the previous paragraphs. Firstly the noisy image is split in a series of
blocks having size equal to N ×N pixels, then each block is transformed using the
DCT and the resulting coefficients are thresholded using a proper threshold value
λ. Finally an inverse DCT is applied to the thresholded coefficients obtaining the
final estimate ŷ of the original signal y.

A more powerful approach consists in finding an estimate of a local neighbor-
hood for each pixel belonging to the noisy image, and subsequently producing a
final estimate of the every pixel by aggregating the overlapping estimates of the

73

N

N

xi

Zxi

xj

Zxj

xk

Zxk

1

Figure 3.10: Example of overlapping blocks in a digital image. Each block Zx is a square window of size N ×N
and is identified by the top-left pixel x ∈ {xi, xj , xk}.

neighborhoods wherein the pixel is present. The critical point of this algorithm is
the choice of the aggregation function, several approaches use uniform averaging,
however weighted averaging is proven to yield better-quality results [28, 59] in the
final estimates.

Suppose to slide a squared window (block) of fixed size N × N over the noisy
signal z, then a set of M overlapping blocks Z = {Zxi}Mi=1 is produced, where each
block Zx is a subset of size N ×N of the noisy signal z identified by the coordinate
of the top-left corner of the block. In Figure 3.10 it is illustrated an example of three
overlapping squared blocks with fixed size N ×N over a generalized grid. After the
windowing of the noisy image z, we apply the following denoising procedure:

i. Perform a separate two-dimensional DCT transform for each block Zx in the
set Z;

ii. Apply a thresholding rule with threshold value λ to the transformed coefficients
of the blocks;

iii. Invert the two-dimensional DCT to the thresholded coefficients to obtain a
local estimate Ŷx of the block.

Formally the procedure above can be defined as:

Ŷx = T −1
2D (Υλ (T2D (Zx))) , Zx ∈ Z, (3.38)

where T2D and T −1
2D denote the forward and inverse two-dimensional DCT transform

respectively, and Υλ is one of the threshold operator defined in Equation (3.35) or
(3.36), having threshold value equal to λ.

At this point we may have multiple estimate on several pixels of z. For example, in
Figure 3.10, the pixel xj belongs to every element in the overcomplete set {Zxj , Zxi},

74

thus, after the execution of the algorithm defined in Equation (3.38) we obtain two
different estimates Ŷxj(xj) and Ŷxi(xj) that must be somehow aggregated to yield a
final result ŷ(xj).

The simplest aggregation function for the final estimate of a given pixel xR is the
uniform average-based combination of the single denoised estimates Ŷx(xR), and it
is formally defined as:

ŷ(xR) =
1

|SxR |
∑

x∈SxR

Ŷx(xR), xR ∈ X, (3.39)

where SxR is the set of all the coordinates of the blocks containing the pixel xR and
|SxR | is its cardinality:

SxR = {x ∈ X : xR ∈ Zx}. (3.40)

From Equation (3.39) it is clear that each estimate Ŷx(xR) is given an equal weight
which only depends on the cardinality of the set SxR . A much more general version
of Equation (3.39) gives the following weights:

ŷ(xR) =
∑

x∈SxR

wxŶx(xR), xR ∈ X, (3.41)

where wx is the weight associated to the estimate of xR produced by the block
Ŷx. Obviously in Equation (3.39) the weights wx associated to the estimates of a
reference pixel xR are all equal to the following:

w̄ =
1

|SxR |
, ∀x ∈ SxR .

Intuitively larger weights should be given to blocks that correspond to smoother
parts of the image. In fact when the transformed signal does not include singular-
ities, or equivalently when it is regular enough, the DCT yield a sparse transform
coefficients. In such cases the denoising process is simpler because the meaningful
information of the transformed signal is concentrated in a small number of well-
localized coefficients and thus a more accurate estimate of the signal can be pro-
vided. For this reason, when a given pixel xR belongs to two blocks, covering an
uniform area and an edge respectively, it is reasonable to weight more the first one
when aggregating the two estimates. Moreover, even if all the blocks involved in the
aggregation comprise of a regular area in the image, the preferable weight set is still
not the uniform average combination of Equation (3.39). Hereby we review some
of the possibilities that have been proposed to define adaptive weights wx to every
given block Ŷx for all x ∈ SxR , such that a more reliable estimate for xR is produced
by Block DCT [59, 39, 28].

Once we obtain a local estimate Ŷx of every block in a given set SxR , we should
give the weights wx a value that reflects the significance of the block Ŷx evaluated

75

from the local DCT spectrum properties. For example, we can assign to wx a
value inversely proportional to the number of remaining non-zero coefficients of the
transformed block after the application of the threshold operator Υλ. Formally, we
can define the significant-only weight set for the final estimate of a given pixel xR
as:

wx =
cx

N (Υλ (T2D (Zx)))
, ∀x ∈ SxR , (3.42)

where N : Z2 → N, returns the number of remaining non-zero coefficients of the
transformed block Zx after the thresholding Υλ, and cx is a constant used by the
algorithm to normalize the weights:

∑

x∈SxR

wx = 1, ∀xR ∈ X.

As a last comment we remark that the Block DCT algorithm defined in this
section still has three degrees of freedom. The first regards the choice of the thresh-
old operator Υλ, and whether the threshold value λ should be constant or defined
adaptively over the transformed blocks.

The second degree of freedom is concerned to the windowing of the signal z
through the blocks Zx. Several approaches can be used to define the behavior of the
windowing, one can simply skim the window Zx across z sliding it with constant
horizontal and vertical translation ∆H and ∆W , until all the image has been covered.
For example if the image z has a size ofH×W pixels and the window size isNH×NW ,
then z would be split in the following number of blocks:

⌈
H −NH

∆H

+ 1

⌉
·
⌈
W −NW

∆W

+ 1

⌉
. (3.43)

Others, more sophisticated approaches, are oriented to the construction of overcom-
plete sets SxR [39] for every given block ZxR identified by the reference pixel xR.
These sets contain a series of blocks somewhat similar to the reference block ZxR ,
such that a denoising procedures, being advantaged by the high correlation among
the blocks, produces better estimates because of the sparsity of the transform. A
more extensive description of this approach used by the BM3D algorithm [39] will
be delineated in Chapter 4.

Finally, the third degree of freedom considers the size and the shape of the block
ZxR . Commonly the blocks are square-shaped window of dimension 8× 8, however
some more advanced algorithms, such as the SA-DCT [8], build a shape adaptive
neighborhood for each reference pixel xR to produce the pointwise estimate of xR.

In Figure 3.11 is shown an example of application of the Block DCT to denoise the
test image Barbara corrupted with additive white Gaussian noise having a standard-
deviation σ = 0.1. In the implementation of the Block DCT a window of size 8× 8

76

(a) Noisy image. (b) Denoised image.

(c) Noisy image (detail). (d) Denoised image (detail).

Figure 3.11: Denoising of the test image Barbara corrupted with additive white Gaussian noise with σ = 0.1 using
the Block DCT algorithm.

has been slid over the image with constant ∆H = ∆W = 1, and the aggregation
has been made using the weighted average described in Equation (3.41) using the
weights defined in Equation (3.42).

77

4. BLOCK-MATCHING AND 3D FILTERING FOR
IMAGES AND VIDEOS

This chapter provides an in-depth discussion of a denoising algorithm for digital
images, called BM3D [37, 39, 64] and its extension to video denoising V-BM3D [36].
because these are the inspirational algorithms of the work proposed in this Thesis.
The main idea behind both these algorithms is to group similar two-dimensional frag-
ments extracted from an image (or frame in case of videos) into three-dimensional
arrays and then transform these arrays using a separable linear three-dimensional
transform. Since the noise-free signals are assumed sparse in transform domain, the
algorithms can perform an effective shrinkage of the transformed spectrum and, con-
sequently a reliable estimates of the unknown original signal. Such strategy has been
experimentally proven to achieve state-of-the-art performance in terms of PSNR and
subjective visual quality [39, 36] for images and videos corrupted by white Gaussian
noise.

4.1 BM3D

In the previous chapter we reviewed some transform-domain denoising methods,
which rely on the assumption that the original signal admits a sparse representation
in a proper domain. Multiresolution methods, i.e. the Wavelet shrinkage described
in Section 3.3, are particularly suited for spatially localized details, such as edges and
singularities, but their performances are not as good in case of smooth transitions.
Conversely, other more common orthogonal transform methods, such as the two-
dimensional DCT described in Section 3.4, are not able to sparsely represent sharp
transitions. Even if most of the meaningful information in natural images is mainly
brought by fine details and singularities, it is still not possible to assume that a
particular transform performs always better with respect to another one. In other
words every two-dimensional transform can not achieve a good sparsity for all types
of input signal.

The BM3D algorithm [37, 39] is based on an enhanced sparse representation
in transform domain. The key ideas behind BM3D are grouping, collaborative
filtering and aggregation. We assume that the noisy observation is corrupted by
white Gaussian noise, thus the observation model is the same described in Section
1.2:

z(x) = y(x) + η(x), x ∈ X ⊂ Z2,

78

where x is a two-dimensional spatial coordinate, y is the true, unknown, image and
η is i.i.d. white Gaussian noise with variance σ2.

4.1.1 Grouping

By grouping we mean building (d + 1)-dimensional data structures (groups) that
contains similar d-dimensional fragments (blocks) of the image. When these frag-
ments have the same shape, the formed group is called a generalized cylinder. In
natural images the grouped fragments are characterized by the following types of
correlations:

• intra-fragment correlations between the pixel of each fragments, which is a
peculiar characteristic of natural images;

• inter-fragments correlations between the corresponding pixels of different frag-
ments belonging to the same group, which is a consequence of the similarity
between fragments.

These groups can be realized by using several approaches. Partitioning-oriented
methods, such as K-means, are not adequate because of their high computational
complexity, they always form disjoint clusters (groups), and the elements distant
from the centroid are not well-represented by the cluster they belong to. A more
effective grouping can be achieved by matching, wherein the formed groups are not
necessarily disjoint. With a nonlocal approach, see Section 3.2 for details, matching
finds fragments similar to a given reference one pairwise testing the similarity be-
tween the reference block and any other block located anywhere in the image. Any
signal fragments is considered as a reference block, and the similarity between two
blocks is computed using some distance measure, i.e. based on the `2-norm of the
fragments difference.

4.1.2 Collaborative Filtering

The main motivation behind grouping is the possibility to exploit the sparsity of the
group in transform domain which is due to the high similarity among the grouped
fragments and, thus, a more effective coefficients shrinkage to removes the noise. In
other words the denoising reveals fine details shared by the grouped fragments while
preserving their individual features. This approach is referred to as collaborative
filtering.

Given a group of fragments, each fragment collaborates for the filtering for all
others, therefore the estimates of the single fragments can be different. The first
and simplest collaborative filtering is the element-wise averaging, that is averaging
between pixels at the same (relative) position with respect to the grouped fragments.
This filtering is a satisfactory estimator only in case of perfectly identical grouped
blocks: it does not matter how complex the patterns are or how strong the variance

79

of the noise is, whenever a sufficient number of grouped fragments is available, we
can still obtain reasonably good estimates because the residual error is only due to
the noise variance in the output which is inversely proportional to the number of
averaged blocks.

Unfortunately, since natural images seldom contain perfectly identical fragments,
this simple collaborative filtering based on element-wise average would be a biased
estimator for grouped fragments. It is needed then an estimator that is able to pro-
duce individual estimates of similar, but not identical, grouped fragments exploiting
the correlation between them. This can be done by performing a coefficients shrink-
age in transform domain. In analogy to what we have seen in Section 3.3 and Section
3.4, collaborative filtering is performed with a transform domain shrinkage on each
(d+ 1)-dimensional group, and thus:

i. Perform a linear (d+ 1)-dimensional transform of the group;

ii. Shrink the transformed coefficients, for example by thresholding or Wiener
filtering;

iii. Invert the linear transform to obtain an estimate of all the grouped fragments.

In case of image denoising, this procedure takes advantage of both the inter- and
intra-fragments correlation of the groups yielding a sparse representation, a better
shrinkage, and eventually a more accurate denoising.

4.1.3 Aggregation

Each collection of d-dimensional estimates is an overcomplete representation of the
original signal because, in general the estimates can overlap. Additionally we can
have multiple estimates located at exactly the same coordinate, but obtained from
the collaborative filtering of different (d + 1)-dimensional group. Eventually we
can expect to have overcomplete representation of the signal where a d-dimensional
fragments is similar to many others. For this reason the redundancy depends both
on grouping and on the particular processed signal.

To compute a final estimate of the original signal, we have to aggregate the
possibly overlapping different estimates provided by every (d+1)-dimensional group.
This aggregation is performed by a weighted averaging with adaptive weights.

4.1.4 Algorithm

As we already did in Section 3.4 let Zx denote a square block of fixed size N × N
extracted from the noisy observation z, where x is the coordinate of the top-left
corner of the block. A group of blocks, that is a three-dimensional array, is denoted
by ZS, where S ⊆ X is the set of the coordinates identifying the blocks Zx grouped
in ZS:

ZS = {Zx : x ∈ S ⊆ X} . (4.1)

80
!""#$%#&' %(!$$#!) *+ *### %)!+,!"%*(+, (+ *-!.# $)("#,,*+./ 0(1' 23/ +(' 4/ !5.5,% 6778' 9

:;<' =' :>?@ABCDE ?F EBG HD?H?IGJ ;KC<G JGL?;I;L< C><?D;EBK' %BG ?HGDCE;?LI IMDD?MLJGJ NO JCIBGJ >;LGI CDG DGHGCEGJ F?D GCAB HD?AGIIGJ N>?AP QKCDPGJ
@;EB R)ST'

U;EB !! @G JGL?EG C N>?AP ?F VWGJ I;XG "! ! "! GWEDCAEGJ
FD?K #/ @BGDG $;I EBG A??DJ;LCEG ?F EBG E?HY>GFE A?DLGD ?F
EBG N>?AP' !>EGDLCE;ZG>O/ @G ICO EBCE !! ;I >?ACEGJ CE $;L
#' ! <D?MH ?F A?>>GAEGJ 6& N>?API ;I JGL?EGJ NO C N?>JYFCAG
ACH;EC> >GEEGD @;EB C IMNIAD;HE EBCE ;I EBG IGE ?F ;EI <D?MHGJ
N>?API[A??DJ;LCEGI/ G'<'/ !" ;I C =& CDDCO A?KH?IGJ ?F
N>?API !! >?ACEGJ CE $ " % # & ' *L ?DJGD E? J;IE;L<M;IB
NGE@GGL HCDCKGEGDI MIGJ ;L EBG VDIE CLJ ;L EBG IGA?LJ IEGH/
@G DGIHGAE;ZG>O MIG EBG IMHGDIAD;HEI RBES QBCDJYEBDGIB?>J;L<T
CLJ R@;GS QU;GLGD V>EGD;L<T' :?D GWCKH>G/ " BE

! ;I EBG N>?AP
I;XG MIGJ ;L ,EGH 2 CLJ "@;G

! ;I EBG N>?AP I;XG MIGJ ;L ,EGH 6'
!LC>?<?MI>O/ @G JGL?EG EBG NCI;A GIE;KCEG @;EB !'NCI;A CLJ EBG
VLC> GIE;KCEG @;EB !'VLC>'
%BG F?>>?@;L< IMNIGAE;?LI HDGIGLE ;L JGEC;> EBG IEGHI ?F EBG

HD?H?IGJ JGL?;I;L< KGEB?J'

!" #$%&' ())*+ ,)- ./012345'% %'$56)$%'
*L EB;I IEGH/ @G HD?AGII DGFGDGLAG ;KC<G N>?API ;L C I>;J;L<Y

@;LJ?@ KCLLGD' \GDG/ RHD?AGIIS IECLJI F?D HGDF?DK;L< <D?MHY
;L< CLJ GIE;KCE;L< EBG EDMG I;<LC> ?F C>> <D?MHGJ N>?API NO]
! A?>>CN?DCE;ZG BCDJYEBDGIB?>J;L< ;L ,EGH 2QCT;;/
! A?>>CN?DCE;ZG U;GLGD V>EGD;L< ;L ,EGH 6QCT;;'

%BG DGIM>ECLE GIE;KCEGI CDG JGL?K;LCEGJ RN>?APY@;IG GIE;Y
KCEGI'S
^GACMIG ,EGHI 2C CLJ 6C NGCD EBG ICKG IEDMAEMDG/ @G DGY

IHGAE;ZG>O HDGIGLE EBGK ;L EBG F?>>?@;L< E@? IMNYIMNIGAE;?LI'
%BGDG;L/ @G VW EBG AMDDGLE>O HD?AGIIGJ ;KC<G N>?AP CI !!!
Q>?ACEGJ CE EBG AMDDGLE A??DJ;LCEG $# " &T CLJ JGL?K;LCEG ;E
RDGFGDGLAG N>?AP'S
(7 #$%&' (8)75)*+ (8)755- 9:0;&5*<)*+ 10//)=0:)$5>% ?):+3

$?:%'?0/+5*<- UG DGC>;XG <D?MH;L< NO N>?APYKCEAB;L< @;EB;L
EBG L?;IO ;KC<G #/ CI J;IAMIIGJ ;L ,GAE;?L **Y^' %BCE ;I/
?L>O N>?API @B?IG J;IECLAG QJ;II;K;>CD;EOT @;EB DGIHGAE E? EBG
DGFGDGLAG ?LG ;I IKC>>GD EBCL C VWGJ EBDGIB?>J CDG A?LI;JGDGJ
I;K;>CD CLJ <D?MHGJ' *L HCDE;AM>CD/ @G MIG EBG ("YJ;IECLAG CI
C KGCIMDG ?F J;II;K;>CD;EO'
*JGC>>O/ ;F EBG EDMGY;KC<G ' @?M>J NG CZC;>CN>G/ EBG N>?APY

J;IECLAG A?M>J NG AC>AM>CEGJ CI

);JGC> !!!! * !!" #
$+!! % +!$

"
""

" BE
!

#" / Q2T

@BGDG $&$" JGL?EGI EBG (
"YL?DK CLJ EBG N>?API +!! CLJ +!

CDG DGIHGAE;ZG>O >?ACEGJ CE $# CLJ $ " & ;L '' \?@GZGD/ ?L>O

EBG L?;IO ;KC<G # ;I CZC;>CN>G CLJ EBG J;IECLAG ACL ?L>O NG
AC>AM>CEGJ FD?K EBG L?;IO N>?API !!! CLJ !! CI

)L?;IO !!!! * !!" #
$!!! % !!$

"
""

" BE
!

#" , Q6T

*F EBG N>?API !!! CLJ !! J? L?E ?ZGD>CH/ EB;I J;IECLAG ;I C
L?LYAGLEDC> AB;YI_MCDGJ DCLJ?K ZCD;CN>G @;EB KGCL

-
$
)L?;IO !!!! * !!"

%
);JGC> !!!! * !!" $ %.

"

CLJ ZCD;CLAG

/01
$
)L?;IO !!!! * !!"

%
#

&.#
"
" BE
!

#" $
&.");JGC> !!!! * !!""

" BE
!

#" , Q=T

%BG ZCD;CLAG <D?@I CIOKHE?E;AC>>O @;EB '
"
.#
#
' %BMI/ F?D

DG>CE;ZG>O >CD<G . ?D IKC>> " BE
! / EBG HD?NCN;>;EO JGLI;E;GI ?F EBG

J;FFGDGLE)L?;IO !!!! * !!" CDG >;PG>O E? ?ZGD>CH BGCZ;>O CLJ EB;I
DGIM>EI ;L GDD?LG?MI <D?MH;L<6' %BCE ;I/ N>?API @;EB <DGCEGD
;JGC> J;IECLAGI EBCL EBG EBDGIB?>J CDG KCEABGJ CI I;K;>CD/
@BGDGCI N>?API @;EB IKC>>GD IMAB J;IECLAGI CDG >GFE ?ME'
%? CZ?;J EBG CN?ZG HD?N>GK/ @G HD?H?IG E? KGCIMDG EBG

N>?APYJ;IECLAG MI;L< C A?CDIG HDGV>EGD;L<' %B;I HDGV>EGD;L< ;I
DGC>;XGJ NO CHH>O;L< C L?DKC>;XGJ 6& >;LGCD EDCLIF?DK ?L N?EB
N>?API CLJ EBGL BCDJYEBDGIB?>J;L< EBG ?NEC;LGJ A?GFVA;GLEI/
@B;AB DGIM>EI ;L

) !!!! * !!" #

&&'"
"
(BE6& !!!!"

#
%'"

"
(BE6& !!!"

#&&"
""

" BE
!

#" / Q`T

@BGDG '" ;I EBG BCDJYEBDGIB?>J;L< ?HGDCE?D @;EB EBDGIB?>J
26&. CLJ (BE6& JGL?EGI EBG L?DKC>;XGJ 6& >;LGCD EDCLIF?DK='
5I;L< EBG)YJ;IECLAG Q`T/ EBG DGIM>E ?F ^- ;I C IGE EBCE

A?LEC;LI EBG A??DJ;LCEGI ?F EBG N>?API EBCE CDG I;K;>CD E? !!! /

%BE!! #
$
$ " & () !!!! * !!") 3

BE
KCEAB

%
/ Q9T

@BGDG EBG VWGJ 3 BEKCEAB ;I EBG KCW;KMK)YJ;IECLAG F?D @B;AB
E@? N>?API CDG A?LI;JGDGJ I;K;>CD' %BG HCDCKGEGD 3 BEKCEAB ;I
IG>GAEGJ FD?K JGEGDK;L;IE;A IHGAM>CE;?LI CN?ME EBG CAAGHECN>G
ZC>MG ?F EBG ;JGC> J;FFGDGLAG/ KC;L>O ;<L?D;L< EBG L?;IO A?KY
H?LGLEI ?F EBG I;<LC>' (NZ;?MI>O) !!!! * !!!" #)/ @B;AB

6%BG GFFGAE ?F EB;I ;I EBG IBCDH JD?H ?F EBG ?MEHMEY$,+) ?NIGDZGJ F?D E@?
?F EBG <DCHBI ;L :;<MDG a CE CN?ME ! ! "#'
=:?D I;KH>;A;EO/ @G J? L?E ;LZGDE EBG EDCLIF?DK ! !"!# CLJ A?KHMEG EBG

J;IECLAG J;DGAE>O FD?K EBG IHGAEDC> A?GFVA;GLEI' UBGL ! !"!# ;I ?DEB?L?DKC>/
EBG J;IECLAG A?;LA;JGI @;EB EBG "!YJ;IECLAG AC>AM>CEGJ NGE@GGL EBG JGL?;IGJ
N>?APYGIE;KCEGI ;L IHCAG J?KC;L'

Figure 4.1: Flowchart of the BM3D denoising algorithm.

The most general description of the BM3D procedure is:

i. For each given reference block ZxR , find the blocks similar to ZxR an stack
them in a three-dimensional array ZSxR

, that is the group;

ii. Perform collaborative filtering on the transformed group and return the two-
dimensional estimates of al the grouped blocks to their original position;

iii. If for any given pixel x, there exists multiple estimates originating from over-
lapping blocks, then these estimates are aggregated to produce a final result
ŷ(x).

Actually BM3D repeats the above procedure in two different steps, that differs on
the implementation of the collaborative filtering. The first step uses a collaborative
hard-thresholding and produces a basic estimate of the original signal y denoted
ŷbasic. The second step uses ŷbasic to perform a more reliable block matching and a
better collaborative filtering by means of the Wiener filter1. In Figure 4.1 it is shown
the global flowchart [39] of the two steps composing the BM3D denoising algorithm.

The first (basic) step begins with grouping by block-matching within the noisy
image z. The image is processed in a sliding-window fashion, we denote the current
processed block as ZxR where xR ∈ X and we call it as reference block. As we
already said, blocks are grouped when their distance (dissimilarity) with respect to
the reference block ZxR is smaller than a fixed threshold value. Distance is calculated
as the `2-norm of the difference of the block. Note that ideally if we knew the original
image y, the distance between the reference block ZxR and any other one Zx would
be calculated as:

dideal (ZxR , Zx) =
||YxR − Yx||22

(Nht)2 , (4.2)

where ||·||2 is the `2-norm, YxR and Yx are the blocks within the image y located at xR
and x ∈ X respectively, and the constant Nht is the size of the blocks Z(·). Observe
that the superscripts “ht” stands for hard-thresholding and it is used to denote the
constants employed in the first step of the algorithm. However the original image y

1The basic estimate ŷbasic is used in the Wiener filter as the true (pilot) energy spectrum.

81

is not known, thus the distance can only be calculated from the noisy blocks as:

dnoisy (ZxR , Zx) =
||ZxR − Zx||22

(Nht)2 . (4.3)

Note this metric depends only on the intensity similarity of the blocks, while their
relative position is not considered at all, which is a fundamental aspect of nonlocal
search. The counter-indication of this approach is that, being those blocks ran-
dom quantities, the distance dnoisy(ZxR , Zx) is also a random variable following a
non-central chi-squared distribution [39], and it is proved that the variance of that
distance grows asymptotically with O(σ4). Therefore, when the noise is particularly
heavy or the size of the blocks is relatively small, it is very likely to obtain an er-
roneous grouping, dissimilar blocks might be matched as similar and similar blocks
might not be grouped together.

Reliability in block matching can be improved by performing a coarse prefiltering
of the blocks by applying a normalized two-dimensional linear transform followed
by hard-thresholding of the resulting coefficients, formally:

dht (ZxR , Zx) =

∣∣∣∣Υ′
(
T ht

2D (ZxR)
)
−Υ′

(
T ht

2D (Zx)
)∣∣∣∣2

2

(Nht)2 , (4.4)

where Υ′ is a hard-threshold operator with threshold value λ2D, refer to Section 3.3
for more details, and T ht

2D denotes the two-dimensional linear transform employed
in the basic step. Observe that if the transform T ht

2D is orthogonal, the distance
coincides with the `2-distance of the denoised block-estimates in space domain, thus
there is no need to apply an inverse transformation after the threshold and the
similarity can be computed directly from the spectral coefficients.

Using the metric of Equation (4.4), the result of block-matching is a set Sht
xR

containing the coordinates of the blocks having a satisfying similarity to the reference
block ZxR :

Sht
xR

=
{
x ∈ X : dht (ZxR , Zx) ≤ τhtmatch

}
, (4.5)

where the constant τhtmatch expresses the maximum distance accepted between two
blocks. To reduce the complexity of block-matching the search for candidate match-
ing is performed in a local neighborhood NNS

xR
of restricted size NS × NS centered

about the currently processed coordinate xR ∈ X instead of the whole domain X:

Sht
xR

=
{
x ∈ NNS

xR
: d(ZxR , Zx) < τhtmatch

}
(4.6)

To further speed up the block-matching process, it can be used the predictive search,
i.e. search windows are non-rectangular and are adaptively shaped depending on the
previously matched blocks. Such windows are the union ofNPR×NPR neighborhoods
(NPR � NS) centered at the previously matched coordinates shifted by Nstep in

82

the direction of processing the image. Exhaustive search in the larger NS × NS

window is nevertheless performed every NFS blocks, and if NFS = 1 implies that
only exhaustive search is used.

The set Sht
xR

is used to build the group of the (potentially overlapping) blocks
similar to ZxR as:

ZSht
xR

=
{
Zx : x ∈ Sht

xR

}
, (4.7)

having size Nht ×Nht ×
∣∣Sht

xR

∣∣, where
∣∣Sht

xR

∣∣ is the cardinality of Sht
xR
. Grouping can

be accelerated if its maximum cardinality
∣∣Sht

xR

∣∣ is restricted to an upper bound NB.
At this point we need to perform the collaborative filtering of ZSht

xR
. In step one it

is realized by hard-thresholding in three-dimensional transform domain, followed by
an inverse transformation that produces a three-dimensional structure of block-wise
estimates:

ŶSht
xR

= T ht−1

3D

(
Υ
(
T ht

3D

(
ZSht

xR

)))
, (4.8)

where Υ is a hard-threshold operator with threshold value σλ3D and T ht
3D is the

adopted normalized three-dimensional linear transform. The underlying assumption
is that we can obtain a reliable estimate of ŶSht

xR
by hard-thresholding because the

transformation T ht
3D yields a sparse representation of the true signal group YSht

xR
,

and thus only a few elements in the transform domain carry most of the meaningful
information of the original signal. Two-dimensional transformations can not achieve
the same degree of sparsity reached by T ht

3D, for this reason the hard-thresholding
(shrinkage) of the three dimensional spectrum is much more effective. Of course
ŶSht

xR
is composed by

∣∣Sht
xR

∣∣ block-wise estimates of the blocks contained in ZSht
xR

with regard to the reference block of coordinate xR ∈ X:

ŶSht
xR

=
{
Ŷ ht,xR
x : x ∈ Sht

xR

}
. (4.9)

Recall that each filtered group ŶSht
xR

for xR ∈ X in general may contain over-
lapping block-wise estimates, and additionally several sets can contain an estimate
of the same block. Thus, the collection of the groups ŶSht

xR
for all xR ∈ X is an

overcomplete representation of the true image, and we need a method to aggregate
the individual results to obtain a single final estimate of y. This aggregation is
performed by weighted average, where the aggregation weights wht

xR
are chosen to be

inversely proportional to the total sample variance of the corresponding block-wise
estimate. In such a way the noisier the estimate, the smaller the relative weight in
the aggregation process. Assuming for simplicity the independence of the noise2 in
the groups ZSht

xR
, the total sample variance is equal to σ2NxR

har, where N
xR
har is the num-

ber of non-zero coefficients after hard-thresholding. Therefore, the weights relative

2The independence is satisfied only in groups that do not contain overlapping blocks. When there are
overlapping blocks in the same group, the weights defined in Equation (4.10) are only loosely proportional
to the corresponding total sample variance.

83

(a) One-dimensional Kaiser windows. (b) Two-dimensional Kaiser windows.

Figure 4.2: Example of Kaiser windows with increasing parameter β1 > β2 > β3.

to the group of estimates ŶSht
xR

are defined as:

wht
xR

= W2D ·





1
σ2N

xR
har

if NxR
har ≥ 1

1 otherwise
, ∀xR ∈ X, (4.10)

where W2D is a two-dimensional Kaiser window of size Nht × Nht used to reduce
border effects that can appear when certain 2D transforms, i.e. DCT, DFT or
periodized wavelet, are used.

Formally the family of one-dimensional Kaiser window is defined as:

W1D(n) =





I0

„
β
q

1−(2n
M
−1)

2
«

I0(β)
, −M−1

2
≤ n ≤ M−1

2

0 otherwise
, (4.11)

where I0 is the 0th order modified Bessel function. In Figure 4.2 there are illus-
trated three Kaiser windows characterized by different parameters β, the smaller
the parameter, the narrower is the resulting “bell”. The β parameter of the Kaiser
window allows to control the trade-off between side-lobe level and main-lobe width,
or, equivalently how quickly the window approaches zero at the edges. Thus sparser
decompositions of ZSht

xR
result in less noisy estimates and for this reason have higher

weights by Equation (4.10).
The actual aggregation is computed averaging the block-wise estimates contained

84

in ŶSht
xR
, using the weights defined in Equation (4.10):

ŷbasic =

∑

xR∈X

∑

xm∈Sht
xR

wht
xR
Ŷ ht,xR
xm (x)

∑

xR∈X

∑

xm∈Sht
xR

wht
xR
χxm(x)

, ∀x ∈ X, (4.12)

where χxm : X → [0, 1] is the characteristic function of the square support of a
block located at xm ∈ X, that is returns 1 if the current position x lies within the
block Ŷ ht,xR

xm with respect to the whole image, and the estimates Ŷ ht,xR
xm are zero-

padded outside of their support to simplify the formulation. Step one ends with the
computation of the basic estimate ŷbasic.

Step two performs an improved grouping and collaborative filtering using the ba-
sic estimate ŷbasic obtained from step one, which allows also to improve the accuracy
of the block-matching. Assuming that the noise in ŷbasic is relatively small, we can
replace the d-distance of Equation (4.4), with a normalized `2-distance based on
blocks extracted from ŷbasic:

dwie (ZxR , Zx) =

∣∣∣
∣∣∣Ŷ basic
xR

− Ŷ basic
x

∣∣∣
∣∣∣
2

2

(Nwie)2 , (4.13)

where the superscript “wie” stands for “Wiener” and it is used to distinguish the
constants used in step two. Again, a blocks similar to a given reference block located
at xR are determined as:

Swie
xR

=
{
x ∈ X : dwie(ZxR , Zx) < τwiematch

}
. (4.14)

The set Swie
xR

is used to form a group from the basic estimate and another one from
the noisy observation, defined respectively as:

Ŷbasic
Swie
xR

=
{
Ŷ basic
x : x ∈ Swie

xR

}
, (4.15)

ZSwie
xR

=
{
Zx : x ∈ Swie

xR

}
. (4.16)

Collaborative filtering is performed using an empirical Wiener filter, whose shrinkage
coefficients are computed from the energy of the three-dimensional spectrum of the
basic estimate group:

WSwie
xR

=

∣∣∣T wie
3D

(
Ŷbasic
Swie
xR

)∣∣∣
2

∣∣∣T wie
3D

(
Ŷbasic
Swie
xR

)∣∣∣
2

+ σ2

. (4.17)

The Wiener shrinkage coefficients obtained from Equation (4.17) are multiplied
element-wisely by the three-dimensional transformed coefficients. Subsequently a

85

(a) Noisy image. (b) Denoised image.

(c) Noisy image (detail). (d) Denoised image (detail).

Figure 4.3: Results of the BM3D algorithm on the test image Barbara corrupted by white Gaussian noise with
σ = 20/255.

three-dimensional inverse transform is applied to the shrunk coefficients:

ŶSwie
xR

= T wie−1

3D

(
WSwie

xR
· T wie

3D

(
ZSwie

xR

))
, (4.18)

and the filtered group is:

ŶSwie
xR

=
{
Ŷ wie,xR
x : x ∈ Swie

xR

}
. (4.19)

Using the basic estimate ŷbasic in the empirical Wiener filtering is much more effective
and accurate than the simple hard-thresholding of the three-dimensional spectrum
of the noisy data performed in Equation (4.8) during step one.

Overlapping block-wise estimates of a given group ŶSwie
xR

are aggregated using a

86

set of weight defined as follows:

wwie
xR

= σ−2
∣∣∣∣WSxR

∣∣∣∣−2

2
W2D, ∀xR ∈ X, (4.20)

where W2D is a two-dimensional Kaiser window of size Nwie × Nwie, WSxR
are the

Wiener coefficients of Equation (4.17). The final estimate ŷfinal is obtained replacing
in Equation (4.12) the weights wht

xR
, the blocks Ŷ ht,xR

xm , and the set Sht
xR

with wwie
xR

,
Ŷ wie,xR
xm , and Swie

xR
respectively:

ŷfinal =

∑

xR∈X

∑

xm∈Swie
xR

wwie
xR
Ŷ wie,xR
xm (x)

∑

xR∈X

∑

xm∈Swie
xR

wwie
xR
χxm(x)

, ∀x ∈ X. (4.21)

Figure 4.3 shows an example of final estimate produced by BM3D from the noisy
image Barbara corrupted by white Gaussian noise having σ = 0.1.

4.1.5 Three-dimensional Transforms

The three-dimensional linear transforms employed by the collaborative filtering
in Equation (4.8) and (4.18) are formed by a separable decomposition of a two-
dimensional linear transform T2D with a mono-dimensional transform T1D, that is:

T3D = T2D ◦ T1D. (4.22)

Note that the transforms T2D are composed by two mono-dimensional linear trans-
forms as well and that the composition holds also for the inverse transformations:

T −1
3D = T −1

2D ◦ T −1
1D . (4.23)

In [39] it is reported the denoising performances obtained using various combi-
nation of transforms, such as DCT, DWT or biorthogonal DWT, along with the
specification of the parameters λ2D and N . The significant result is that the per-
formance is mainly influenced by the choice of the T1D, that is the transform that
operates in the third dimension of the grouped blocks (exploiting the inter-fragments
correlation), as long as T1D includes a constant basis function, i.e. the so-called DC-
term.

In Figure 4.4 it is shown an illustrative example of the collaborative filtering
[64] performed in both steps of the BM3D algorithm, formally defined in Equation
(4.8) and (4.18). Every stack in the figure represents the non-zero elements of the
corresponding spectrum of the transformed group. The top-left group is the result
of the three-dimensional transformation applied to the groups ZSxR

.
After shrinking the coefficients, either by hard-thresholding or by Wiener filtering,

87

T3D

(
ZSxR

)
T1D-spectra

T2D-spectra

T3D-spectrum

ŶSxR

Υλ3D

WSxR

T −1
1D

T −1
2D

T −1
1D

T −1
2D

T −1
3D

1

Figure 4.4: Sparsity in collaborative filtering using three-dimensional transforms. The stacks represent a collection
of transformed blocks, and within each grouped block the solid circular dots illustrate the non-retained
transform coefficients.

there remain only a small number of coefficients in the filtered T3D-spectrum, most
of which are concentrated around the DC-term, that is at the upper-left corner of
the spectrum in Figure 4.4. We can obtain the estimates in spatial domain either by
inverting T2D and then applying the T −1

1D on the intermediate block estimates or vice
versa. Each block in ŶSxR

is the result of a linear combination of the transformed
blocks in the T1D-spectra, while each block in the T1D-spectra is T2D-sparse because
it is obtained from the few coefficients of the T3D-spectrum. The coefficients of
such combination are the T1D basis elements. Observe that the T1D-spectra are
seldom identically zero, that is only when the corresponding layer in the shrunk
T3D-spectrum has no non-zero coefficients.

4.2 V-BM3D

In this section is presented the extension to video denoising of BM3D. The algorithm,
called V-BM3D [36], shares most of the fundamental ideas of BM3D. It is also
based on the assumption of highly sparse signal representation in a suitable three-
dimensional transform domain. The main difference lies in the groping strategy, in
fact V-BM3D employs a spatio-temporal predictive-search block-matching, similar
to the techniques employed in motion estimation, in order to reduce significantly

88

!"#$%& '(!)*+,-.%/ *0 /-& 1%*1*2&3 4567 8"3&* 3&9*"2"9# :&/-*3; <-& *1&%./"*9 &9,)*2&3 => 3.2-&3)"9&2 .%& %&1&./&3
0*% &.,- %&0&%&9,& =)*,?; @%*$1"9# "2 "))$2/%./&3 => 2-*+"9# . %&0&%&9,& =)*,? :.%?&3 +"/- ABC .93 /-& :./,-&3 *9&2 "9 .
/&:1*%.) +"93*+ *0 D 0%.:&2 E!!" ! "F;

+-&%& 2":").% =)*,?2 .%&)"?&)> /* =& 1%&2&9/ "9 /-& ,$%G
%&9/ 0%.:& E";&; 0%.:& "! # #F .93 /-$2 *9& ,.9 .H*%3 /*
-.8& !#" $!$; <-& %&2$)/ 0*% /-& ,$%%&9/ 0%.:& .%& /-&
!%)*,./"*92 *0 /-& =)*,?2 /-./ &I-"="/ -"#-&2/ 2":").%"/>
/* /-& %&0&%&9,& *9&J /-&> .%& ,*))&,/&3 "9 /-& 2&/ %&!"';

K0/&% 1&%0*%:"9# /-& 1%&3",/"8&G2&.%,- =)*,?G:./,-"9#
0*% .)) *0 /-& 0%.:&2 "! # # 0*% # ! !!!"& ' ' ' & !!"L +&
0*%: . 2"9#)& 2&/ %(" !# /-./ ,*9/."92 ./ :*2/ !$ *0 .))
(! #

!)!"
'%")!"

%&!"' /-./ -.8& /-& 2:.))&2/ ,*%%&21*93G
"9# =)*,?G3"2/.9,&2 /* /-& %&0&%&9,& =)*,?L +-",- 3"2/.9,&2
2-*$)3 .)2* =& 2:.))&% /-.9 . 1%&3&M9&3 /-%&2-*)3L)*+&,-;
K #%*$1 "2)./&% 0*%:&3 => 2/.,?"9# /*#&/-&% =)*,?2)*,./&3
./ (! # %(; <-& &I.,/ *%3&%"9# *0 /-& =)*,?2 +"/-"9 /-& 67
#%*$12 "2 9*/ ":1*%/.9/L .2 2-*+9 "9 NOP; Q9 /-& +*%2/ ,.2&L
9* :./,-"9# =)*,?2 .%& 0*$93 .93 /-&9 /-& #%*$1 +")) ,*9G
/."9 *9)> *9& =)*,? R /-& %&0&%&9,& *9& R 2"9,& "/2 3"2/.9,&
/* "/2&)0 "2 S&%* .93 /-&%&0*%& (+")) .)+.>2 =& "9,)$3&3 "9 %(;

TI,&1/ 0*% /-& 0%.:& "! "9 /-& 1%*,&3$%& 1%&2&9/&3 .=*8&L
/-& 21./".) 2&.%,- 9&"#-=*%-**32 .%& 3./.G.3.1/"8& .2 /-&>
3&1&93 *9 1%&8"*$2)> :./,-&3)*,./"*92; <-"2 .3.1/"8"/>
,.9 =& "9/&%1%&/&3 .2 0*))*+"9# /-& :*/"*9 *0 *=U&,/2 .,%*22
0%.:&2; Q/ "2 +*%/- 9*/"9# /-./ 2":").% .11%*.,- -.2 .)%&.3>
=&&9 $2&3 0*% :*/"*9 &2/":./"*9 N'VP .93 .)2* 0*% 0%.,/.)
=.2&3 ":.#& ,*3"9# N''P;

!" #$%&'(%

W& 1%&2&9/ &I1&%":&9/.) %&2$)/2 *=/."9&3 +"/- /-& 1%*1*2&3
XG4567 .)#*%"/-:; K 5./).= ":1)&:&9/./"*9 *0 /-& XG
4567 /-./ ,.9 %&1%*3$,& /-&2& %&2$)/2 "2 1$=)",)> .8.").=)&
./ !""#$%%&&&'()'"*"'+,%-+.,%/0123456; <-&%&L *9& ,.9
M93 *%"#"9.) .93 1%*,&22&3 /&2/ 2&Y$&9,&2L 3&/.")2 *0 +-",-
,.9 =& 2&&9 "9 <.=)& ';

<-& 2.:& .)#*%"/-: 1.%.:&/&%2 +&%& $2&3 "9 .)) &I1&%G
":&9/2; Z&%& +& #"8& /-& :*2/ &22&9/".) *9&2L .2 /-& %&2/
,.9 =& 2&&9 "9 /-& 1%*8"3&3 5./).= 2,%"1/; <-& /&:1*%.)
+"93*+ $2&3 $ 0%.:&2L ";&; !!" ! %; <-& 1%&3",/"8&G2&.%,-
=)*,?G:./,-"9# $2&3 !$! &L !#" ! 'L .93 !% ! "J /-&
:.I":$: 9$:=&% *0 :./,-&3 =)*,?2 +.2 !$! (L .93 /-&
/-%&2-*)3 *#. ! "'&; [*:& *0 /-& 1.%.:&/&%2 3"H&%&3 0*%
/-& /+* 2/&12J ";&;L 0*% [/&1 'L !& ! (L !/&01 !)L .93 0*%
[/&1 \L !& ! &L !/&01 ! %; <-& /%.920*%:2 +&%& /-& 2.:&
.2 "9 NOP(0*% [/&1 'L +#. "2 . 2&1.%.=)& ,*:1*2"/"*9 *0 .
'7 ="*%/-*#*9.) +.8&)&/ 0$))G3>.3", 3&,*:1*2"/"*9 "9 =*/-
21./".) 3":&92"*92 .93 . '7 Z..% +.8&)&/ 0$))G3>.3", 3&G
,*:1*2"/"*9 "9 /-& /-"%3 E/&:1*%.)F 3":&92"*9J 0*% [/&1 \L
+#. $2&2 /-& \7 7]< "9 21./".) 3*:."9 .93 /-& 2.:& Z..%
3&,*:1*2"/"*9 "9 /-& /&:1*%.) *9&; <* "9,%&.2& /-& 9$:G
=&% *0 9*9G*8&%).11"9# =)*,?2 "9 /-& #%*$12 .93 -&9,& -.8&
:*%& $9,*%%&)./&3 9*"2& "9 /-&:L +& 2)"#-/)> :*3"M&3 /-&

$2&3 3"2/.9,& :&.2$%&; <-& :*3"M,./"*9 +.2 . 2$=/%.,/"*9
*0 . 2:.)) 8.)$& ,/ E,/ ! * 0*% [/&1 ' .93 ,/ ! & 0*% [/&1 \F
0%*: /-& 3"2/.9,& ,*:1$/&3 0*% =)*,?2 /-./ .%& ./ /-& 21./".)
,**%3"9./& *0 /-& %&0&%&9,& *9& =$/ "9 3"H&%&9/ 0%.:&2;

Q9 <.=)& ' +& 1%&2&9/ /-& ^[_B E34F %&2$)/2 *0 /-&
1%*1*2&3 .)#*%"/-: 0*% . 0&+ 2&Y$&9,&2J /-&%&L /-& ^[_B
+.2 :&.2$%&3 #)*=.))> *9 &.,- +-*)& 2&Y$&9,&; Q9 !"#G
$%& \L +& ,*:1.%& *$% :&/-*3 +"/- /-& 67W<! NDP .93
/-& WB[<! N6PL +-",- .%& .:*9# /-& 2/./&G*0G/-&G.%/ "9
8"3&* 3&9*"2"9#; !*% /-"2 ,*:1.%"2*9L +& .11)"&3 *$%
:&/-*3 *9 9*"2> 2&Y$&9,&2 .93 ,*:1.%&3 +"/- /-& *9&2
3&9*"2&3 => /-& */-&% /+* :&/-*32; <-&2& 2&Y$&9,&2
-.3 =&&9 :.3& 1$=)",)> .8.").=)& => 7%; X; `)*?*)",. ./
!""#$%%"78,9'*:79"';7%-<=8.>.8,%?@6L 0*% +-",- +& .%&
/-.9?0$); W& 9*/& /-./ /-& 1"I&) "9/&92"/"&2 *0 /-& "91$/
9*"2> 8"3&*2 .%& Y$.9/"S&3 /* "9/&#&%2 "9 /-& %.9#& +,& "''-L
$9)"?& "9 /-& ,.2& *0 /-& %&2$)/2 "9 <.=)& '; Q9 !"#$%& \
*9& ,.9 *=2&%8& /-./ /-& 1%*1*2&3 XG4567 1%*3$,&2 2"#9"0G
",.9/)> -"#-&% ^[_B /-.9 /-& */-&% /+* :&/-*32 0*% &.,-
0%.:& *0 /-& /-%&& ,*92"3&%&3 2&Y$&9,&2L +"/- . 3"H&%&9,&
+&)) -"#-&% /-.9 ' 34 0*% :*2/ *0 /-& 0%.:&2; 5*%&*8&%L /-"2
+.2 .,-"&8&3 ./ 2":").% &I&,$/"*9 /":&2 .2 ,*:1.%&3 +"/-
/-& WB[<!J ";&;L /-& 1%*1*2&3 XG4567 E":1)&:&9/&3 .2
. 5./).= 5TaG0$9,/"*9F M)/&%2 .]Q! E\OO$6D\F 0%.:& 0*%
V;b 2&,*932 *9 . ';O @ZS Q9/&)]*%& [*)* :.,-"9& .93 /-&
WB[<! +.2 %&1*%/&3 N6P /* 3* /-& 2.:& 0*% V;Oc 2&,*932
*9 .9 K/-)*9cd EdVVVeF \;d @ZS :.,-"9&; !"#$%& 6 #"8&2 .
8"2$.) ,*:1.%"2*9 0*% . 0%.#:&9/ *0 /-& bb/- 0%.:& *0 !"#$
#%& 3&9*"2&3 +"/- &.,- *0 /-& ,*92"3&%&3 /&,-9"Y$&2; <-&
1%*1*2&3 :&/-*3 2-*+2 2$1&%"*% 1%&2&%8./"*9 *0 M9& ":.#&
3&/.")2 .93 ./ /-& 2.:& /":& "/ "9/%*3$,&2 2"#9"M,.9/)>)&22
.%/"0.,/2;

)" *+%,&%%+-.

f&/ $2 ,*:1.%& /-& 1%*1*2&3 1%&3",/"8&G2&.%,- =)*,?G
:./,-"9# +"/- /-& :*/"*9 &2/":./"*9 :&/-*32 =.2&3
9 =),?G:./,-"9#; Q93&&3L /-& 1%&3",/"8&G2&.%,- =)*,?G
:./,-"9# 1%*1*2&3 "9 /-"2 +*%? ,.9 =& 8"&+&3 .2 . 2*1-"2/"G
,./&3 :*/"*9 &2/":./"*9 +-",- "2 9*/ %&2/%",/&3 /* *9)> *9&
:./,-&3 =)*,? 1&% 0%.:&; <-./ "2L !% =)*,?2 1&% 0%.:& ,.9
=& $2&3 "9 /-& 1%*1*2&3 #%*$1"9# 2,-&:&; <-"2 ,.9 =& =&9G
&M,".) "9 2"/$./"*92 +-&9 /-&%& .%& *9)> 8&%> 0&+ E*% 9*9&F
2":").% =)*,?2 .)*9# /-& /&:1*%.) 3":&92"*9L &;#; "9 /-& ,.2&
0 0%.:& ,-.9#&; Q9 /-./ ,.2&L :$/$.))> 2":").% =),?2 ./ 3"0G
0&%&9/ 21./".))*,./"*92 +"/-"9 /-& 2.:& 0%.:& .%& &I1)*"/&3
+-&9 0*%:"9# #%*$12 .93 -&9,& =&//&% 21.%2"/> "2 .,-"&8&3
=> .11)>"9# . 67 /%.920*%:; <-"2 ,.9 =& 1.%/",$).%)> &0G
0&,/"8& +-&9 #%*$1"9# =)*,?2 /-./ .%& 1.%/2 *0L &;#;L &3#&2L
/&I/$%&2L .93 $9"0*%: %&#"*92;

<-& 2&,*93 2/&1 *0 /-& 1%*1*2&3 :&/-*3 "2 8&%> ":1*%G

Figure 4.5: Flowchart of the V-BM3D denoising algorithm.

the complexity of the search for similar blocks.
In analogy with BM3D, once the groups of similar blocks are collected, the algo-

rithm performs a collaborative filtering using a three-dimensional transform-domain
shrinkage to obtain an estimate of the grouped blocks. If such blocks overlap each
others, i.e. there is an overcomplete representation of the signal, V-BM3D ap-
ply a weighted average of the individual estimates to obtain a final estimate of
the original video. The complete algorithm is composed by two steps wherein the
grouping through predictive-search block-matching is followed by collaborative hard-
thresholding and empirical Wiener filtering respectively.

Formally a noisy video can be defined as:

z(x) = y(x) + η(x), x ∈ X ⊂ Z3, (4.24)

where y is the true video signal, η(·) ∼ N (0, σ2) is the i.i.d. Gaussian noise cor-
rupting the signal, as already defined in Section 1.2, and the independent variable
x belongs to the three-dimensional spatio-temporal domain X ⊂ Z3, and it is com-
posed by the following three coordinates:

x =



x1

x2

t


 . (4.25)

The coordinates occupying the first and second position, that is x1 and x2, are the
usual two-dimensional spatial coordinates while the third component, t ∈ Z, is the
time index. In other words the index t of the coordinate x identifies which frame of
the video the corresponding spatial coordinates (x1, x2) of x belongs to.

4.2.1 Predictive-Search by Block-Matching

Since V-BM3D is heavily inspired by BM3D, the analysis carried out in Section
4.1 is still well-founded, and hereafter we focus only on the peculiar concept of the
video denoising algorithm. By looking at the flowchart of V-BM3D illustrated in
Figure 4.5, one can note that the algorithm still consists of two steps. Analogously

89

to BM3D, grouping is realized by a block-matching procedure that relies on some
distance measure, in particular similarity is computed using the `2-norm of the
difference between two blocks, and then collaborative filtering and averaging are
performed on the grouped blocks. The innovative part of V-BM3D is the localization
of similar blocks, in fact given the three-dimensional nature of videos the searching
for blocks to be grouped can not be restricted to the frame containing the reference
block only, but it should also encompass the time dimension, to exploit inter-frames
redundancy. This technique, called predictive-search block-matching [36], adopts
a data-adaptive spatio-temporal three-dimensional search neighborhoods, because
exhaustive search would be computationally not feasible.

The goal of predictive-search block-matching is to efficiently find similar blocks
to a reference block ZxR within a spatio-temporal subdomain of the video sequence
which is adaptively defined depending on the data, and limited by a temporal win-
dow of 2NFR+1 frames. Note that the adaptivity of the search subdomain dimension
is necessary because of the trade-off between the computational cost and the quality
of grouping, which eventually affects the quality of denoising. In fact that both the
cost and the quality increase with the dimension of the search subdomain.

Given a reference block ZxR , where xR = [x1 x2 t0]T , the adaptive predictive-
search by block-matching [36] at first performs a non-adaptive search in frame t0 in
a square neighborhood N t0,NS

xR
of size NS×NS centered about the spatial coordinate

[x1 x2]T of xR. The coordinates of the blocks within this square neighborhood
exhibiting a satisfying similarity, or equivalently having a distance from ZxR smaller
than τmatch are collected in a set St0xR ⊂ Z3 bounded in cardinality as

∣∣St0xR
∣∣ < NB:

St0xR =
{
x ∈ N t0,NS

xR
: d(ZxR , Zx) < τmatch

}
. (4.26)

Then in each frame t0+k, where 0 < |k| ≤ NFR, it is performed a predictive search
procedure, which is inductively defined from the matching results of the previously
processed frame t0 + k − sign(k), that is the preceding frame when k > 0 or the
subsequent frame when k < 0. For every matched block Zxm found in the previous
frame t0 + k − sign(k) located at xm, the search window in the current frame is a
neighborhood N t0+k,NPR

xm of size NPR×NPR centered at the spatial coordinates of xm.
Eventually for each processed frame t0 + k the coordinates of the matched blocks
are collected in a set St0+k

xR
defined as:

St0+k
xR

=
{
x ∈ N t0+k,NPR

xm : d(ZxR , Zx) < τmatch
}

(4.27)

xm ∈ St0+k−sign(k)
xR

. (4.28)

Once all frames t0 + k with k = −NFR, . . . , NFR have been processed, we form a

90

single set SxR ⊂ Z3 as:

SxR =

NFR⋃

k=−NFR

St0+k
xR

, (4.29)

that contains a bounded number, N2, of blocks having the highest similarity with
respect to the reference block ZxR . The actual order of such blocks in SxR is not
relevant for the collaborative filtering [39].

Observe that the predictive-search in any frame t0 + k is performed only where
it is more likely to find similar blocks, because the adaptive window predicts the
position of the matched blocks in the current frame t0 + k given the positions of
the same blocks in the previous frame t0 + k − sign(k). This adaptivity can be
interpreted as motion estimation of objects moving across frames. Therefore we can
regulate the dimension of the predictive window such that NPR < NS.

4.2.2 Algorithm

In the first step, for each reference block ZxR with xR ∈ X of size Nht × Nht, V-
BM3D builds the set of its similar blocks as defined in Equation (4.29) by using the
predictive-search block-matching (PS-BM) procedure:

Sht
xR

= PS-BM
(
ZxR

)
, (4.30)

and such set is subsequently used to form the three-dimensional group as:

ZSht
xR

=
{
Zx : x ∈ Sht

xR

}
, (4.31)

then it produces the estimates of the blocks grouped in ZSxR
by collaborative hard-

thresholding with threshold value σλ3D:

ŶSht
xR

= T −1
3D

(
Υλ3D

(
T3D

(
ZSht

xR

)))
, (4.32)

where the obtained group ŶSht
xR

contains the block-wise estimates:

ŶSht
xR

=
{
Ŷ xR
x : x ∈ Sht

xR

}
(4.33)

Therefore the basic estimate ŷbasic is obtained by the aggregation formula of
Equation (4.12), using the block-wise estimates in ŶSht

xR
for all xR ∈ X weighted by:

wxR =
1

σ2NxR
har
W2D, (4.34)

where W2D is a two-dimensional Kaiser window having the same size Nht × Nht

of the blocks and it is used to reduce border effects that certain two-dimensional
transforms, as DCT or DFT, may produce, and NxR

har denotes the number of retained

91

(a
)
O
ri
gi
na

l
fr
am

e.
(b

)
N
oi
sy

fr
am

e.
(c

)
D
en
oi
se
d
fr
am

e.

(d
)
O
ri
gi
na

l
fr
am

e.
(e

)
N
oi
sy

fr
am

e.
(f

)
D
en
oi
se
d
fr
am

e.

F
ig

u
re

4.
6:

R
es
ul
ts

of
th
e
V
-B

M
3D

al
go
ri
th
m

on
tw

o
fr
am

es
of

th
e
te
st

vi
de
o

T
en

ni
s
co
rr
up

te
d
by

w
hi
te

G
au

ss
ia
n
no

is
e
w
it
h
σ

=
4
0
/
2
5
5
.

92

coefficients after hard-thresholding T3D

(
ZSht

xR

)
.

The second step compute the final estimate by grouping within the basic estimate
ŷbasic obtained from step one as follows:

Swie
xR

= PS-BM
(
Ŷ basic
xR

)
, xR ∈ X, (4.35)

where Ŷ basic
xR

denotes the block of size Nwie × Nwie extracted from ŷbasic. From the
set of coordinates Swie

xR
V-BVM3D builds the following two three-dimensional arrays:

Ŷbasic
Swie
xR

=
{
Ŷ basic
x : x ∈ Swie

xR

}
, (4.36)

ZSwie
xR

=
{
Zx : x ∈ Swie

xR

}
. (4.37)

The collaborative filtering is performed with an empirical Wiener filter with
shrinkage coefficients defined as in Equation (4.17):

WSwie
xR

=

∣∣∣T wie
3D

(
Ŷbasic
Swie
xR

)∣∣∣
2

∣∣∣T wie
3D

(
Ŷbasic
Swie
xR

)∣∣∣
2

+ σ2

. (4.38)

Thus the estimate of a noisy group ZSxR
is:

ŶSwie
xR

= T −1
3D

(
WSwie

xR
T3D

(
ZSwie

xR

))
. (4.39)

The final estimation ŷfinal is produced by aggregation of the overlapping estimates
within every group ŶSxR

for each xR ∈ X, using Equation (4.21) with the following
weights:

wxR = σ−2
∣∣∣
∣∣∣WSwie

xR

∣∣∣
∣∣∣
−2

2
W2D, ∀xR ∈ X, (4.40)

W2D is a two-dimensional Kaiser window of size Nwie ×Nwie.

93

5. BLOCK-MATCHING AND 4D FILTERING FOR
VIDEOS

This chapter provides a formal description and an in-depth discussion of the pro-
posed video denoising algorithm, named V-BM4D, which is constructed upon the
fundamental principles of the BM3D [37, 39, 64] algorithm, described in Section 4.1.

The chapter is structured as follows. Section 5.1 gives a brief introduction on
video denoising, then, in Section 5.2, we present the key ideas behind V-BM4D, the
main differences from V-BM3D and a formal definition of the algorithm. Subse-
quently, Sections 5.3 reviews the implementation aspects of V-BM4D, with a par-
ticular emphasis to the motion estimation algorithm. Finally, supported by the
experimental results reported in Section 5.5, Sections 5.7 presents the concluding
remarks and discusses the future research directions.

5.1 Introduction

Digital video sequences even with the advancing of the underlying sensors technol-
ogy, may suffer from grave degradations due, for instance, to noise, blur, blocking,
ringing, and other acquisition or compression artifacts. Even if this mixture of dis-
turbances is usually nonlinear, we model the aggregated effect of the noise as a i.i.d.
Gaussian random variable with zero mean independent from the original underlying
signal.

Video enhancement and restoration has a critical impact in applications where
it is important to improve the perceived quality of images in order to facilitate the
subsequent processing tasks such as video coding, analysis or interpretation. In med-
ical imaging, for instance, image sequence restoration is needed for vascular imaging
and quantification of heart dynamics [31]. The goal of a restoration algorithm is to
reconstruct the original spatial and temporal correlation structure of digital image
sequences by removing every irrelevant information, such as noise, while preserving
the significant structural elements of the sequence.

Over the last several decades an enormous amount of research has focused on the
problem of enhancing and restoring noisy images, some of which has been reviewed
in Chapter 3 and Chapter 4. Clearly, these spatial methods can be seamlessly reap-
plied to image sequences, with the simplistic assumption that the individual frames
composing the sequence are temporally independent. However without leveraging
the temporal correlation between frames, we can only obtain suboptimal results,

94

and moreover, spatial intra-frame filters tend to introduce temporal artifacts in the
restored image sequence [34]. These artifacts generally appear as oversmoothing or
abrupt changes in the intensity values, as a result of different estimates of the same
feature in different frames.

Thus denoising algorithm applied to image sequences should exploit both spatial
and temporal (inter-frame) correlation. These filters, commonly referred to as spa-
tiotemporal or three dimensional filters, tend to be less sensitive to non-stationarities
in both spatial and temporal direction by using data-adaptive models and motion
compensation. Temporal filters avoid the spatial artifacts by modeling the image
sequence as a series of one-dimensional pixel trajectories that traverse the tem-
poral axis, consequently temporal variations in the same pixel are avoided. The
literature contains a plethora of video restoration or enhancement algorithms, some
examples are linear temporal filters, order-statistic filters and multiresolution filters
[34, 13, 17, 50, 44].

Due to the scene dynamics, a temporal signal is generally non-stationary and a
filter that do not address this problem may cause oversmoothing in the produced
estimate. To overcome this problem motion compensation techniques can be used,
however the estimation of motion is not an easy problem and the presence of noise
makes it even harder. In fact, while noise in the video disturbs motion estimators,
at the same time a correct motion estimation is often used as a preprocessing step
in many denoising algorithms. The ideal filter should estimate both motion and
intensity values at the same time, but normally motion estimation is done before
filtering. In Section 5.3.1 it is described the approach used in V-BM4D to estimate
motion through concatenation of motion vectors. Motion is important in video
processing because it can be used, for example, to track and identify single features
moving in the scene [33, 17].

The main drawback of simple temporal filters, beside the complexity cost required
by the motion estimation, is that they do not use any spatial correlation of the
signal. If compared to a single image, a video is a considerably richer source of
visual information, primarily due to spatiotemporal relationships between frames,
that can be exploited in the interest of an effective denoising algorithm. While an
image provides a single picture of a given scene, a sequence of images represents the
dynamics of objects in the scene moving along time.

5.2 V-BM4D

At the moment, the most effective approach in restoring images or video sequences
exploits the redundancy given by the nonlocal similarity between patches at differ-
ent locations within the data [64]. Algorithms based on this approach have been
proposed for various signal processing problems, and mainly for image denoising
[44, 64, 4, 5, 43, 39, 36, 16, 40, 6, 7]. Specifically, in [4] was introduced an adaptive

95

pointwise image filtering strategy, called non-local means, where the estimate of each
pixel xi is obtained as a weighted average of, in principle, all the pixels xj of the
noisy image, using a family of weights proportional to the similarity between the
regions centered at xi and xj. So far, the most effective image denoising algorithm
is BM3D [39, 64], which relies on the so-called grouping and collaborative filter-
ing paradigm: the observation is processed in a blockwise manner and mutually
similar two-dimensional image blocks are stacked into a three-dimensional group
(grouping), which is then filtered through a transform-domain shrinkage (collabora-
tive filtering), simultaneously providing different estimates for each grouped block.
These estimates are then returned to their respective locations and eventually ag-
gregated into the estimate of the image. In doing so, BM3D leverages the spatial
correlation of natural images both at the nonlocal and local level, due to the abun-
dance of mutually similar patches and to the high correlation of image data within
each patch, respectively. The BM3D filtering scheme has been applied successfully
to video denoising in our previous work, V-BM3D [36], as well as to several other
applications including image and video super-resolution [6, 7], image sharpening
[40], and image deblurring [41].

The proposed video denoising algorithm V-BM4D aims to exploit both spatial
and temporal correlation in the video sequence, by grouping properly shaped nonlo-
cal structures from the video, then performing a two-steps collaborative filtering in
transform domain and finally aggregating the obtained estimates. The fundamental
principle of BM3D that originally inspired V-BM4D, exploits the d-dimensionality
of the original signal to form (d + 1)-dimensional groups of similar d-dimensional
elements. Thus in case of two-dimensional signals (d = 2), i.e. images, the algo-
rithm groups similar two-dimensional fragments (blocks) of the image to forge three-
dimensional arrays that will be consequently collaboratively filtered. The algorithm
relies both on local and nonlocal characteristic in natural images, as the presence of
similar patches and the high local correlation of data within the patches themselves,
to forge groups that benefit from the correlation in the (d+ 1)-dimension to obtain
a sparse representation of the group. The sparsity of the representation implies a
more effective coefficients shrinkage and, consequently, a better final estimate. Re-
capitulating, given a d-dimensional noisy signal, in principle BM3D performs the
following processing chain:

i. Group similar d-dimensional elements into (d+ 1)-dimensional groups;

ii. Perform a linear separable (d+ 1)-dimensional transform to each group;

iii. Shrink the transformed coefficients;

iv. Invert the linear transform to obtain an estimate of the each grouped elements;

v. Adaptively aggregate the possibly overlapping estimate of the grouped elements
to their original position in the signal.

96

In case of videos, the principle of BM3D has not been completely fulfilled by
its video extension V-BM3D, because even if the processed signal has gained a
dimension, the time (d = 3), the algorithm is still based on two-dimensional blocks
and three-dimensional groups. The temporal dimension is only exploited to extend
the search window wherein block-matching is performed in the time domain, but the
groups are still three-dimensional array of mutually similar blocks. Therefore, since
the grouping strategy is still block-based, V-BM3D is not capable to distinguish
temporal to spatial correlation within the data.

In V-BM3D, groups are three-dimensional arrays of mutually similar blocks ex-
tracted from a set of consecutive frames of the video sequence. A group may include
multiple blocks from the same frame, naturally exploiting in this way the nonlocal
similarity. However, it is typically along the temporal dimension that most mutually
similar blocks can be found. It is well known that motion-compensated videos [30]
are extremely smooth along the temporal axis and this fact is exploited by nearly
all modern video-coding techniques. As shown by the experimental analysis in [16],
even when motion is present, the similarity along the motion trajectories is much
stronger than the nonlocal similarity existing within an individual frame. In spite
of this, in V-BM3D the blocks are grouped regardless of whether their similarity is
due to the tracking of motion along time or to the nonlocal spatial self-similarity
within each frame. In other words, the filtering in V-BM3D is not able to distinguish
between temporal versus spatial nonlocal similarity. We recognize it as a conceptual
as well as practical weakness of the algorithm: as simple experiments reported in
Section 5.5 demonstrate, increasing the number of spatially self-similar blocks in a
group does not lead to an improvement in the final result of V-BM3D and instead
it most often leads to a systematic degradation.

The core elements of V-BM4D are three-dimensional structures, called spatiotem-
poral volumes [2, 66, 47], formed by a sequence of blocks extracted from the noisy
video following a specific trajectory, given for example by a concatenation of mo-
tion vectors along time. Once, these procedure is performed for each trajectory in
the video, V-BM4D groups mutually similar volumes in four-dimensional stacks and
applies a separable linear four-dimensional spatiotemporal transform. The decorel-
lating transformation takes advantage of the intra-frame nonlocal spatial redundancy
of groups and the inter-frame temporal redundancy of volumes, to produce a sparse
representation of the groups in transform domain and, consequently, a more effective
coefficient shrinkage leveraged by:

• local spatial correlations between the pixel of each patch (block) in the volume,
which is a characteristic of almost every natural image;

• temporal correlations between (the corresponding pixels of) blocks in the vol-
ume, because of the Lambertian assumption stating that a pixel belonging to
a certain object conserves the same intensity value along its trajectory [5];

97

• nonlocal spatial correlation between corresponding blocks of grouped volumes,
because of the abundance of similar volumes in videos.

Note that, since we are dealing with a three-dimensional signal (d = 3), we actually
construct and then collaboratively filter four-dimensional (d+ 1) groups. The four-
dimensional group spectrum is thus highly sparse, which makes the shrinkage more
effective than in V-BM3D and results in the superior performance of V-BM4D in
terms of noise reduction.

We introduce V-BM4D in its basic implementation as a denoising filter. Addi-
tionally, we discuss and analyze its applications to the deblocking and deringing of
compressed video.

Given the high degree of redundancy, there might exists multiple estimates for
each pixel of the video, that has to be aggregated in order to produce a final estimate.
In general these contributions are not equal because they are derived by a different
set of data (group), thus, as well as BM3D and V-BM3D, the filtering step is always
followed by an adaptive aggregation function.

5.2.1 Observation Model

An image sequence (video) can be defined as a function z : X × T → R:

z(x, t) = y(x, t) + η(x, t), (5.1)

where z is the noisy signal given by the addition of the original signal y with i.i.d. ad-
ditive white Gaussian noise η(·, ·) ∼ N (0, σ2). In case of signal-dependent noise, we
can still use the transformation described in Section 3.1. The independent variable
is a voxel (x, t) whose first component x ∈ X ⊂ Z2 is the two element vector:

x =

[
x1

x2

]
, (5.2)

where the integers (x1, x2) identify the spatial location of the corresponding voxel.
The second independent variable, t ∈ T ⊂ Z, indicates the time index t of the frame
where the spatial coordinate x lies on. Supported by Equation (5.1), we denote a
frame, or a picture in the image sequence z, located at a given time index t ∈ T as:

z(X, t) = z(x, t), ∀x ∈ X. (5.3)

The aim of the proposed algorithm is to provide an estimate ŷ of the original video
y from the observed data z. The V-BM4D algorithm comprises three fundamental
steps inherited from the BM3D paradigm, specifically grouping, collaborative filter-
ing and aggregation. These steps are performed for every spatiotemporal volume of
the video.

98

Figure 5.1: Example of trajectory built concatenating motion vectors in the noisy video z Tennis. The black line is
a linear interpolation of the position of the ball with respect to the camera, and the interpolated points
are the coordinates of the top-left corner of the blocks in the volume composing the set Trajz(x0, t0)
where (x0, t0) is the spatiotemporal coordinate of the ball in the reference frame z(X, t0).

5.2.2 Spatiotemporal Volumes

Similarly to what we have done in Chapter 4, let Bz(x0, t0) denote a square block of
fixed size N ×N extracted, as shown by the subscript, from the noisy video z, and
(x0, t0) is the spatiotemporal coordinate of a voxel identifying the top-left corner
of the block within the frame z(X, t0). A three-dimensional spatiotemporal volume
Vz(x0, t0) is the sequence of blocks built following a specific trajectory along time,
which is supposed to adhere to the motion of Bz(x0, t0) in the scene. We denote
these trajectories, independently from the technique used to calculate them, as a set
of time-consecutive indices:

Trajz(x0, t0) =
{

(xj, t0 + j)
}h+

j=−h−
, (5.4)

where the elements (xj, t0 +j) are time-consecutive coordinates defining the position
of the reference block Bz(x0, t0) within the neighboring frames z(X, t0+j) as j varies
in j = −h−, . . . , h+. For the sake of notation simplicity, in this section the extents
h− and h+ are assumed constant and equal to each other as h− = h+ = h, while the
consideration on the general case are postponed to Section 5.3. In Section 5.3.1 we
present an adaptive motion-vector search that can be used to retrieve the trajectories
of Equation (5.4) from a noisy video z.

A volume Vz(x0, t0) is the stack of blocks belonging to the relative trajectory
Trajz(x0, t0) of the reference block Bz(x0, t0). The trajectories can be either com-

99

puted from the noisy video (as reported in Section 5.3.1), or, when given a coded
video, they can be obtained by concatenating motion vectors. In what follows we
assume that, for each (x0, t0) ∈ X × T , a trajectory Traj(x0, t0) is always given and
thus the three-dimensional spatiotemporal volume in (x0, t0) can be determined as:

Vz(x0, t0) =
{
Bz(xi, ti) : (xi, ti) ∈ Trajz(x0, t0)

}
, (5.5)

where the subscript z specifies that the volumes are extracted from the noisy video.
Observe that the volumes Vz(x0, t0) contain exactly one block for each frame z(X, t)

having time index t in:

t ∈ {t0 − h−, . . . , t0 − 1, t0, t0 + 1, . . . , t0 + h+},

and for this reason we can state that the length (cardinality) L0 of the volume is:

L0 = h+ + h− + 1 = 2h+ 1, (5.6)

where the second equality holds when h+ = h− = h.

5.2.3 Grouping

From Equation (5.5) the four-dimensional group can be defined as a stack Gz(x0, t0)

of mutually similar volumes and constitute the nonlocal element of V-BM4D. Sim-
ilarity between three-dimensional volumes is measured using a generic distance op-
erator δv:

δv : Z3 × Z3 → R+. (5.7)

Mutually similar volumes are determined with a nonlocal search procedure as in [39].
Specifically, let Ind(x0, t0) be the set of indexes identifying volumes that, according
to the distance operator δv, are similar to the reference volume Vz(x0, t0):

Indz(x, t) =
{

(xi, ti) : δv (Vz(x, t), Vz(xi, ti)) < τmatch
}
, (5.8)

where the predefined parameter τmatch > 0 controls the minimum degree of similarity
among volumes with the distance δv typically being the `2-norm of the difference
between two volumes.

The group associated to the reference volume Vz(x0, t0) is consequently defined
as the set of volumes having coordinate in the set Indz(x0, t0) as:

Gz(x0, t0) =
{
Vz(xi, ti) : (xi, ti) ∈ Indz(x0, t0)

}
. (5.9)

In other words Gz(x0, t0) is the group containing the volumes having distance to
the reference volume Vz(x0, t0) smaller than τmatch. In Equation (5.9) we implicitly
assume that the three-dimensional volumes are stacked along a fourth dimension,

100

Figure 5.2: Illustration of similar spatiotemporal volumes belonging to the same group, spanning the first five
frames of the noisy video Tennis corrupted with white Gaussian noise with σ = 20/255. Each volume
is identified by one of the trajectories drawn in solid black.

hence the groups are four-dimensional data structures. Recalling Equation (5.6),
the size of a group is the following:

|Gz(x0, t0)| = N ×N × L0 × |Indz(x0, t0)| , (5.10)

where N is the size of the blocks, L0 is the length of the volumes, and |Indz(x0, t0)|
is the cardinality of the set Indz(x0, t0), that is the number of grouped volumes. In
Figure 5.2 it is illustrated an example of mutually similar spatiotemporal volumes
forming a typical four-dimensional group. Observe that if the distance operator δv

satisfies the following condition:

δv(Vz(x0, t0), Vz(x0, t0)) = 0, ∀(x0, t0)) ∈ X × T,

it is implied that:
|Indz(x0, t0)| ≥ 1. (5.11)

In fact, in such a way, every group Gz(x0, t0) contains at least one element, which
is the reference volume Vz(x0, t0), because:

δv(Vz(x0, t0), Vz(x0, t0)) = 0 < τmatch. (5.12)

101

5.2.4 Collaborative Filtering

Collaborative filtering is realized as a shrinkage in transform domain. In the general
formulation of the grouping and collaborative-filtering approach for a d-dimensional
signal [39], groups are (d + 1)-dimensional structures of similar d-dimensional ele-
ments, which are then jointly filtered. In particular, each of the grouped elements
influences the filtered output of all the other elements of the group: this is the basic
idea of collaborative filtering. It is typically realized with the following steps:

• Apply a (d+ 1)-dimensional separable linear transform to the group;

• Shrink the transformed coefficients in transform domain, for example by hard-
thresholding or by Wiener filtering;

• Invert the (d+1)-dimensional transform to obtain an estimate for each grouped
element.

As we said before, this mechanism can be highly effective because it exploits both
the spatial and temporal correlation naturally present in image sequences. The
core elements of V-BM4D are the spatiotemporal volumes (d = 3), and thus the
collaborative filtering performs a four-dimensional separable linear transform T4D on
each four-dimensional group Gz(x0, t0), and provides an estimate for each grouped
volume Vz as:

Ĝy(x0, t0) = T −1
4D

(
Υ (T4D (Gz(x0, t0)))

)
, (5.13)

where Υ denotes a generic shrinkage operator. The filtered four-dimensional group
Ĝy(x0, t0) is composed of volumes V̂y(x, t) as:

Ĝy(x0, t0) =
{
V̂y(xi, ti) : (xi, ti) ∈ Indz(x0, t0)

}
, (5.14)

with each V̂y being an estimate of the corresponding volume Vy extracted from the
original -unknown- video y.

5.2.5 Aggregation

The groups Ĝy constitute a very redundant representation of the video, because in
general the volumes V̂y overlap and, within the overlapping parts, the collaborative
filtering provides multiple estimates at the same coordinates (x, t). For this reason,
the estimates are aggregated through a convex combination with adaptive weights.

102

In particular, the estimate ŷ of the original video is computed as follows:

ŷ =

∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indz(x0,t0)

w(x0,t0)V̂y(xi, ti)




∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indz(x0,t0)

w(x0,t0)χ(xi,ti)




, (5.15)

where we assume V̂y(xi, ti) to be zero-padded outside its domain, the function
χ(xi,ti) : X × T → {0, 1} is the characteristic function (indicator) of the support
of the volume V̂y(xi, ti), and the aggregation weights w(x0,t0) are different for differ-
ent groups.

The particular choice of the aggregation weights depends on the result of shrinkage
in the collaborative filtering: typically the weights are defined so that the sparser
is the shrunk four-dimensional spectrum Ĝy(x0, t0), the larger is the weight w(x0,t0)

associated to it. In any case the specific weight of a group is inherited by every
grouped volume in Equation (5.15).

5.3 Implementation

5.3.1 Motion Vector and Trajectory Estimation

The fundamental assumption of almost every tracking mechanism states that the
properties of single features, such as intensity value or position in the scene, do not
significantly change between consecutive frames, or, equivalently, that such proper-
ties have an high degree of correlation in the direction of motion. For example if we
track an hand located at some position (xi, ti) in the frame z(X, ti), we expect to
find a similar feature in frames z(X, tj) with tj = ti + 1 at roughly the same spatial
location xi, unless a scene change occurs. This fact is largely exploited in video
compression, but it can be also used for temporal video filtering, as it is actually
one of the building blocks of V-BM4D. Even if we may assume to have the motion
vectors beforehand, because for instance they are already coded in the video, as
happens with the MPEG codec [30], in this section we present the motion estima-
tion algorithm employed by V-BM4D to explicitly calculate the trajectories in case
motion vectors are not given.

In our implementation, we construct trajectories by concatenation of motion vec-
tors. The aim of the predictive spatiotemporal motion vector search performed by
V-BM4D in the preprocessing step of the algorithm is to build the trajectory set
Trajz(x, t) for each voxel (x, t) of the noisy video z. Observe that the computation
is repeated independently for voxel (x, t) of the video z, which allows for an easy
parallelization of the motion estimation algorithm.

103

5.3.1.1 Similarity Criterion

Motion of a block is generally tracked by identifying the most similar block in the
subsequent (and precedent) frame, and a motion vector can be defined as the dis-
placement of a given block between two consecutive frames. Let z(X, ti) be the frame
of the image sequence at time ti, for each pixel xi ∈ z(X, ti) V-BM4D extracts the
corresponding square block Bz(xi, ti) of size N × N . The motion estimation then
it searches for the block Bz(xj, tj) in the subsequent frame z(X, tj = ti + 1) that
minimizes a given δb-distance from Bz(xi, ti). Similarity between Bz(xi, ti) and
Bz(xj, tj) is measured using the normalized `2-norm of the difference between the
intensity values of the two blocks:

δb
(
Bz(xi, ti), Bz(xj, tj)

)
=
||Bz(xi, ti)−Bz(xj, tj)||22

N2
. (5.16)

However, since we deal with noisy signals, prior information about motion smooth-
ness can be exploited to improve the tracking. Since we suppose that motion between
consecutive frames is smooth and consistent, we modify the δb-distance, to make it
biased toward blocks having similar spatial coordinates. This is easily accomplished
by adding to Equation (5.16) the `2-norm of the difference of the spatial coordinates
of the input blocks. In particular, provided that a rough guess x̂i(tj) of the future
(or past) location of the block Bz(xi, ti) at the time tj = ti + 1 (tj = ti− 1) is avail-
able, we define the similarity between Bz(xi, ti) and Bz(xj, tj), through a penalized
quadratic difference defined as follows:

δb
(
Bz(xi, ti), Bz(xj, tj)

)
=
||Bz(xi, ti)−Bz(xj, tj)||22

N2
+ γd ||x̂i(tj)− xj||2 , (5.17)

where x̂i(tj) is the predicted position of Bz(xi, ti) in the frame z (X, tj), and γd ∈ R+

is the penalization parameter. Whenever a rough guess x̂i(tj) is not available, we
consider lack of motion as the most likely condition and take x̂i(tj) = xi.

This spatially awareness is particularly useful in the calculation of motion for
blocks lying in noisy areas having uniform intensities or repeated textures. In such
cases, if we did not have any restriction on the coordinates, the similarity criteria
would focus only on the intensity value, and therefore the resulting trajectory would
more likely follow the random patterns of the noise instead of the true transition
of the tracked feature. This is clearly illustrated in Figure 5.3, where it is shown
two different volumes, whose extents are the first ten frames of the image sequence
Tennis. Note that the scene is almost static during this time period and the initial
blocks, extracted from the background wall, are the same in both experiments. In the
right-most figure, we set γd = 0 to inhibit the coordinate norm of Equation (5.17),
thus the resulting trajectory flips unpredictably within a vast portion of image.
Conversely, by setting a proper γd, as shown in the left-most figure, the trajectory is

104

(a) Trajectory with γd = 0.025. (b) Trajectory with γd = 0.

Figure 5.3: Effect of different γd penalties during the computation of the trajectory of a block extracted from
the background texture of the sequence Tennis corrupted by Gaussian noise with zero mean and
σ = 20/255. The scene remains fixed throughout all the experiments, thus the most genuine result
would be a linear trajectory, as the one illustrated on the left.

forced to have smoother transitions between consecutive frames. However, when γd
is too high the real motion of blocks might not be captured, because the δb-distance
would prefer blocks having similar coordinates ignoring their intensity similarity.

The motion vector of Bz(xi, ti) from time ti to tj = ti + 1 is determined by the
pair (xi,xj), where xj is the spatial coordinate of the block at time tj that minimizes
Equation (5.17) as:

xj = arg min
xk∈z|N (x̂i(tj),NS)

{
δb
(
Bz(xi, ti), Bz(xk, tj)

)}
, (5.18)

where z|N (x̂i(tj),NS) is the restriction of z to a spatial search windowN of size NS×NS

centered at x̂i(tj):

z|N (x̂i(tj),NS) =
{
xk ∈ z(X, tj) : xk ∈ N

}
. (5.19)

In doing so, we expect that the block Bz(xj, tj) represents the same feature contained
in Bz(xi, ti) at the time tj = ti + 1. V-BM4D repeatedly applies Equation (5.18) in
a chosen temporal interval [t0− h−, t0 + h+] to construct the trajectory of Equation
(5.4).

The restriction applied by the search window N is motivated mainly by two
facts, the former regards the complexity cost which would explode if we did not
limit the search space and the latter regards the assumptions of smooth transition
between frames. In fact, since the block Bz(xj, tj) that minimize (5.17) is likely to
have similar coordinate to Bz(xi, ti), using a large search window to find Bz(xj, tj)

would be pointless. Because of the penalty term γd ||x̂i(tj)− xj||2, the minimizer of
Equation (5.17) cannot be far from x̂i(tj). We therefore restrict the minimization

105

(a) Motion field. (b) Motion vector.

Figure 5.4: Example of motion field and motion vector of the frame z(X, 14) of the image sequence Tennis cor-
rupted by Gaussian noise with zero mean and standard deviation σ = 20/255. The red arrows are the
motion vectors of the corresponding blocks, with lengths proportional to their magnitude.

of Equation (5.17) to a spatial search neighborhood N centered at x̂i(tj). However
is not unusual to have features, such as the ball in the test video Tennis, whose
positions change fast and unpredictably within the scene, that would require a bigger
search window. Nevertheless, we usually set the dimension NS of the search window
N to a relatively small value, and in case N is not wide enough to capture the
motion of a block the trajectory is stopped. In fact, even though a minimizer for
(5.18) can always be found, we interrupt the trajectory whenever the corresponding
minimum distance δb exceeds the fixed parameter τtraj ∈ R+, which determines the
minimum accepted similarity along spatiotemporal volumes. In doing so, V-BM4D
does not build trajectories made of blocks that would potentially correlate in an
unsatisfactory way.

5.3.1.2 Location Prediction

The motion vector (velocity) of a block Bz(x0, t0) in a discrete image sequence can
be described by a vector v defined as:

v(x0, t0) =

[
v1

v2

]
, (5.20)

where the two elements v1, v2 ∈ Z are the horizontal and vertical spatial displace-
ments of the tracked block between two consecutive frames. If we do not specify the
spatial coordinate, we refer as v(X, t0) to the motion field (or velocity filed), that
is the set of all motion vectors associated to every pixel x0 in the frame Z(X, t0).
There is an easy way to compute such motion vectors v, if the positions of the
block representing the same feature in at least two consecutive frames are known.
In such cases, we can compute the motion vector by differentiating the spatial coor-
dinate xi of the block in the current frame z(X, ti) and the spatial coordinate xi−1

106

xi−1

v(xi, ti)
xi

γp = 0 x̂i

γp = 1

x̂i

γp = 0.5

1

Figure 5.5: Position prediction of (xj , ti + 1) given two point (xi−1, ti− 1), (xi, ti) and the relative motion vector
v(xi, ti). As λp ∈ [0, 1], the locus of points representing the predicted position varies is the red dashed
line. In figure are provided three examples corresponding to γp = {0, 0.5, 1}, observe that when γp = 0,
the predicted position x̂i(ti + 1) is equal to xi itslef.

in the previously processed frame z(X, ti− 1). Thus, as the trajectory is repeatedly
constructed and the motion of the block has already been tracked at consecutive
spatiotemporal locations (xi−1, ti−1) and (xi, ti), we can formally define the motion
vector as follows:

v(xi, ti) = xi − xi−1. (5.21)

Under the assumption of smooth motion between frames, we can suppose that the
motion vector v(xi, ti) at any time ti does not significantly change at the subsequent
time ti + 1, thus we can use Equation 5.21 to predict the position of the tracked
feature in frame z(X, ti + 1). Formally, we define the guess x̂i(ti + 1) as:

x̂i(ti + 1) = xi + γp · v(xi, ti), (5.22)

where γp ∈ [0, 1] is the weighting factor of the prediction and it is usually a constant.
Analogous prediction can be made for x̂i−1(ti − 1), when we go backwards in time.
Of course if γp = 0, we would have no position prediction derived from the velocity
vector because the position of the tracked block at time ti + 1 would be considered
equal to the last known position xi, conversely if γp = 1, the position at time ti + 1

would be the same as considering constant speed motion for the tracked block.
Figure 5.22 provides an illustration of both such cases.

5.3.1.3 Search Neighborhood

The motion vector allows not only to predict the position of the block in the sub-
sequent frame, but also to adapt the size of the search window N used in Equation
(5.18). Because of the penalty term γd ||x̂i(tj)− xj||2, the minimizer is likely close
to x̂i(tj). We therefore restrict the minimization of (5.18) to a spatial search neigh-
borhood N centered at x̂i(tj). The size NPR × NPR of this neighborhood can be

107

(a) Size adaptivity. Since the velocity vector of the
tracked block has magnitude close to zero, the
search window shrinks to the minimum allowed
value and it is centered around the last tracked
position.

(b) Position prediction. Since the motion vector has
a relevant magnitude, the search window is trans-
lated accordingly to the direction of the motion
vector and its size is close to the maximum value.

Figure 5.6: Illustration of the size adaptivity and position prediction of the search window in frame z(X, 6) and
z(X, 14) of the image sequence Tennis corrupted by Gaussian noise with σ = 20/255. The dashed blue
square represents the position of the non-adaptive search-window while the solid red square represents
the adaptive one.

adapted based on the velocity (magnitude of motion vector) of the tracked block by
setting:

NPR = NS ·
(

1− γw · e−
||v(xi,ti)||22

2·σ2
w

)
, (5.23)

where NS is the maximum size of N , γw ∈ [0, 1] is the maximum scaling factor of
the window size and σw > 0 is a tuning parameter.

The exponential term is a Gaussian function with variance σ2
w, therefore as the

magnitude of the motion vector v(xi, ti) gets higher, its norm ||v(xi, ti)||22 increases
and the exponential term approaches zero accordingly to the standard deviation σw,
and the window size converges to the maximum allowed value NS. Conversely when
the velocity is to zero, that is when the feature represented by a given block is not
moving, the weight is unitary and the window size shrinks to the minimum available
value NS(1− γw).

By setting a proper value of σw we can control how fast the Gaussian term
approaches zero, or, in other words, how permissive is the window shrinkage with
respect of the velocity of the tracked block. For instance, considering the same
velocity v for a given spatiotemporal position (x, t) and using two different standard
deviations σw1 and σw2 in Equation (5.23), if σw1 is greater than σw2 in the former
case we would obtain a smaller window than the latter, because the decay of the
Gaussian function is slower.

As a final comment on the predictive spatiotemporal motion vector search, ob-
serve that we can perform the motion vector search at a given frame z(X, ti) either
by matching the reference block Bz(x0, t0) or by matching the block Bz(xi−1, ti− 1)

108

h−0 t0 h+
0

Vz(x0, t0)

h−i ti h+
i

Vz(xi, ti)

h−0 tj h+
0 Eh+

0

h−0

(
Vz(xi, ti), tj

)

1

(a) General case. From top to bottom: the first segment represents the reference volume, the second
is a volume Vz(xi, ti) centered around ti with temporal extent (h−i , h

+
i) and the third is the sub-

volume of Vz(xi, ti) having the same temporal extent (h−0 , h
+
0) of the reference block centered

around tj .

h−0 t0 h+
0

Vz(x0, t0)

h−i t0 h+
i

Vz(xi, t0)

h−0 t0 h+
0 Eh+

0

h−0

(
Vz(xi, t0), t0

)

1

(b) Synchronized case. From top to bottom: the first segment represents the reference volume, the
second is a volume Vz(xi, t0) centered around t0 with temporal extent (h−i , h

+
i) and the third is

the sub-volume of Vz(xi, t0) synchronous in time and temporal extent to the reference volume.

Figure 5.7: Example of an application of the extraction operator E. Each line represents a volume in the time
dimension. The up-most segment corresponds to the reference volume Vz(x0, t0) centered in t0 with
temporal extent (h−0 , h

+
0).

found in the previously processed frame at the time ti − 1. The latter approach,
referred to as telescopic, is adopted by default in V-BM4D.

5.3.2 Sub-volumes Extraction

The temporal extent (h−, h+) of the trajectories were assumed to be fixed and equal
to each other for every (x, t) ∈ X×T . However because of noise, occlusions or scene
changes any trajectory Trajz(xi, ti) can be interrupted at any time, as determined
by the parameter τtraj. Thus, if

[
ti − h−i , ti + h+

i

]
is the specific temporal extent of

the trajectory Trajz(xi, ti), we can have:

0 ≤ h−i ≤ h, 0 ≤ h+
i ≤ h, (5.24)

where h denotes the maximum forward and backward extent of trajectories and
volumes allowed in the algorithm. Note that when h−i + h+

i = 0 the resulting
volume has unitary length because it only contains the reference block.

In the course of grouping V-BM4D faces the contemporary presence of volumes
having different lengths. However, due to the separability of the transform T4D,
every group Gz(xi, ti) has to be composed of volumes having equal lengths. Thus in
our current implementation, every group Gz(x0, t0) is composed of volumes having

109

length equal to the length L0 of the reference volume Vz(x0, t0). When a processed
volume Vz(xi, ti) satisfies the following condition:

ti = t0, (5.25)

h−i ≥ h−0 , (5.26)

h+
i ≥ h+

0 , (5.27)

V-BM4D extracts from Vz(xi, ti) the sub-volume having temporal extent [t0−h−0 , t0+

h+
0] denoted as:

Eh
+
0

h−0

(
Vz(xi, ti), t0

)
, (5.28)

where E is the extraction operator, h−0 and h+
0 are the dimension of the reference

volume and t0 is the central time index of the extracted sub-volume.
By means of the operator E we can extract Li − L0 + 1 different sub-volumes

of Vz(xi, ti) having length L0 but with time indices differing at most by Li − L0.
Thus there are obviously many other, less restrictive, possibilities for extracting sub-
volumes of length L0 from longer volumes, however, by the above restriction we aim
at limiting the complexity while maintaining a high correlation within the grouped
volumes.

The synchronization constraint frees V-BM4D from the burden of which sub-
volumes of Vz(xi, ti) among the Li − L0 + 1 possible ones should be grouped in
Gz(x0, t0). In fact, observe that this choice at least would have required the maxi-
mization of some objective function (i.e. the similarity) with a cost of O(Li−L0 +1)

for each volume Vz(xi, ti) having Li > L0.
Figure 5.7(a) illustrates an example of application of the extraction operator in a

general case where the reference volume, the volume from which we want to extract
a sub-volume, and the extracted sub-volume itself have different central time indices.
The synchronized case is illustrated in Figure 5.7(b).

Generally, in the grouping, volume-matching is performed through the `2-norm of
the difference between time-synchronous volumes normalized with respect to their
lengths:

δv
(
Vz(x0, t0), Vz(xi, ti)

)
=

∣∣∣
∣∣∣Vz(x0, t0)− Eh

+
0

h−0

(
Vz(xi, ti), t0

)∣∣∣
∣∣∣
2

2

L0

, (5.29)

where (h−0 , h
+
0) is the temporal extent of the reference volume Vz(x0, t0) and L0 is

the length of both the reference volume and the sub-volume extracted from Vz(xi, ti)

using E . Observe that, as shown in Equation 5.25, in practice ti is always equal to
t0, because volume matching is performed only among volumes having the same
central time index t0, that is the situation illustrated by Figure 5.7(b).

110

5.3.3 Algorithm

The general procedure described in the previous section is implemented in two cas-
cading stages, each composed of the grouping, collaborative filtering (coefficients
shrinkage in transform domain) and aggregation steps.

5.3.3.1 Hard-thresholding Stage

In the first (hard-thresholding) stage, volumes are extracted from the noisy video z
following the trajectories Trajz, then groups are formed using the similarity measure
δv-operator of Equation (5.29), and the predefined threshold τhtmatch. At first, the
coordinates of the spatiotemporal volumes similar to V ht

z (x0, t0) are collected in:

Indhtz (x0, t0) =
{

(xi, ti) : δv (Vz(x0, t0), Vz(xi, ti)) < τhtmatch

}
, (5.30)

where δv is the distance operator defined in Equation (5.29), and τhtmatch is the pre-
defined threshold that controls the maximum distance among grouped volumes.

Then, after stacking the mutually similar volumes in Indhtz (x0, t0) as shown in
Equation (5.9) into a four-dimensional group Ght

z (x0, t0), collaborative filtering is
realized by hard-thresholding each group Ght

z (x, t) in four-dimensional transform
domain:

Ĝht
y (x0, t0) = T ht−1

4D

(
Υht (T ht

4D

(
Ght
z (x0, t0)

)))
, (5.31)

where T ht
4D is the four-dimensional transform and Υht is the hard-threshold operator

with threshold σλ4D.
The outcome of hard-thresholding stage, the basic estimate ŷht of the original

video y, is obtained by aggregation of all the estimated groups Ĝht
y . The weights

wht
(x0,t0) used in the convex combination (5.15) are inversely proportional to the num-

ber Nht
(x0,t0) of non-zero coefficients in the corresponding hard-thresholded group

Ĝht
y (x0, t0):

wht
(x0,t0) =





1
σ2Nht

(x0,t0)

, if Nht
(x0,t0) ≥ 1,

1
σ2 , otherwise

, (5.32)

where σ > 0 is the standard deviation of the noise.
Consequently, from the general aggregation formula of Equation (5.15), the basic

estimate is calculated as follows:

ŷht =

∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indht
z (x0,t0)

wht
(x0,t0)V̂

ht
y (xi, ti)




∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indht
z (x0,t0)

wht
(x0,t0)χ(xi,ti)




. (5.33)

111

5.3.3.2 Wiener Filtering Stage

In the second (Wiener filtering) stage, new trajectories Trajŷht are extracted from
the basic estimate ŷht, and the grouping is performed among the volumes Vŷht de-
rived from the new trajectories. Volume-matching is still performed through the
δv-distance, but using a different threshold parameter τwiematch as:

Indwieŷht (x0, t0) =
{

(xi, ti) : δv
(
Vŷht(x0, t0), Vŷht(xi, ti)

)
< τwiematch

}
, (5.34)

where τwiematch is the maximum accepted distance value of the Wiener step. Then
the same volume indices Indwieŷht is used to construct two groups Gwie

z and Gwie
ŷht com-

posed by volumes extracted from the noisy video z and from the basic estimate yht,
respectively.

Collaborative filtering is hence performed using an empirical Wiener filter in T wie
4D

transform domain, whose shrinkage coefficients are computed from the energy of the
four-dimensional spectrum of the basic estimate group Gwie

ŷht as follows:

W(x0, t0) =

∣∣T wie
4D

(
Gwie
ŷ (x0, t0)

)∣∣2
∣∣T wie

4D

(
Gwie
ŷ (x0, t0)

)∣∣2 + σ2
, (5.35)

Shrinkage is realized as element-by-element multiplication between the four-dimensional
transform coefficients of the group Gwie

z (x0, t0) extracted from the noisy video z and
the Wiener coefficients W(x0, t0). Overall, we obtain the group of volumes estimates
by inverting the four-dimensional transform as:

Ĝwie
y (x0, t0) = T wie−1

4D

(
W(x0, t0) · T wie

4D

(
Gwie
z (x0, t0)

))
. (5.36)

The global final estimate ŷwie is computed using the following weights:

wwie
(x0,t0) =

1

||W(x0, t0)||22 σ2
. (5.37)

in the aggregation Equation (5.15) as:

ŷwie =

∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indwie
z (x0,t0)

wwie
(x0,t0)V̂

wie
y (xi, ti)




∑

(x0,t0)∈X×T


 ∑

(xi,ti)∈Indwie
z (x0,t0)

wwie
(x0,t0)χ(xi,ti)




. (5.38)

112

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

σ

γ
d

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

σ

τ
tr

aj

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

σ

τ
m

at
ch

Figure 5.8: Parameters depending on σ in the hard-thresholding stage. The functions showed in red are the least
squares polynomial regression on the optimum parameters obtained from the Nelder-Mead simplex
direct search algorithm applied on a set of test sequences corrupted by white Gaussian noise having
different values of σ. Each curve in the above plots represents the optimum value of a specific variable
for a given test video as a function of σ.

Figure 5.9: V-BM4D two stage denoising of the sequence Coastguard. From left to right: original video, noisy
video (σ = 40), result after first stage (frame PSNR 28.58) and final estimate (frame PSNR 29.38).

5.3.4 Settings

The parameters involved in the motion estimation and in the grouping, that is γd,
τtraj and τmatch, vary with σ. Intuitively, the larger is σ, the bigger the thresholds
controlling blocks and volumes matching become, in order to compensate the ef-
fects of the noise. Thus, in order to approximate the behavior of such non-constant
parameters with respect to σ, we used the Nelder-Mead simplex direct search algo-
rithm [48, 35] on V-BM4D in a multivariate space to find the optimum value of the
triplet (γd, τtraj, τmatch) for eight test video corrupted by i.i.d. white Gaussian noise
having eight different value of σ, ranging from 5 to 70. Subsequently, we approxi-
mate the behavior of the three parameters as a function of σ using a least-squares
quadratic polynomial regression. After the terms having negligible coefficients have
been dropped, the resulting fit is

γd(σ) = 0.0013 · σ2, (5.39)

τtraj(σ) = 0.0043 · σ2 + 0.91, (5.40)

τmatch(σ) = 0.017 · σ2 + 0.12 · σ + 46.39. (5.41)

The above functions, as well as the points used in the regression, are shown

113

in Figure 5.8: experimentally they were found to be a good approximation of the
optimum (γd, τtraj, τmatch). Note that during the second stage such parameters can
be considered constants independent to σ, because in the processed sequence ŷht the
noise is considerably lower than in the observation z; this is evident looking at the
second and third image of Figure 5.9.

5.4 Deblocking

The ever increasing demand for the storage and transmission of digital videos mo-
tivated the research towards compression techniques in order to reduce the amount
of information required to represent the video content by removing its spatial, tem-
poral and visual redundancies. Transform-based data compression is undoubtedly
the most used technique in both image and video coding application: specifically,
popular video compression techniques, such as MPEG-4 [1] or H.264 [63] make use of
the block-based discrete cosine transform, because of its near-optimal energy com-
paction property. The typical DCT compression scheme consists in the division of
the input image into small block of size N ×N (typically N = 8), then each block
is transformed in DCT domain to apply a scalar quantization on the DCT coeffi-
cients. Usually, because of the local correlation, the energy of the original signal is
concentrated in few coefficients, thus the DCT block tend to be quite sparse after
quantization.

Even though transform-based methods can in general compress data almost with-
out introducing any significant artifacts, at low bitrates they may suffer from severe
compression artifacts such as blocking, ringing, mosquito and flickering. Blocking
artifacts are mainly introduced by the coarse quantization of the block-based DCT
error coding and by the motion compensation prediction, and they manifest them-
selves as staircase noise along oblique or curved edges, grid noise in monotone regions
(which mainly attracts human attention [69]) checkerboard effect in textures, and
mosquito temporal noise across different frames of the video. The primary source of
blocking artifacts is the fact that each block is coded independently by its neighbors,
thus discontinuities can occur in the decoded video because the correlation between
pixels at the border of neighboring blocks is lost during the compression, as can be
seen in the blocky frames in Figure 5.13.

A deblocking filter can be used either as post filter or as a loop filter: the former
operates on the display buffer outside the coding loop, and thus would force the
decoder to perform identical filtering in order to stay in synchronization with the
encoder, making extremely hard its integration with the existing standards. On the
other hand, post filters aim to reduce blocking artifacts at the decoder side: they
only require the decoded image/video, hence they are independent from the used
coding standard.

A large number of deblocking filter have been recently proposed. Global low-pass

114

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35

bpp

σ

5 10 15 20 25 30
0

5

10

15

20

25

30

35

q

σ

5
10

15
20

25
30

0.2
0.4

0.6

5

10

15

20

25

30

q

bpp

σ

Figure 5.10: From left to right: optimum σ values for deblocking a test set of compressed videos plotted against
the bit-per-pixel rate and quantization parameter q; adaptive value of σ as the function σ(bpp, q)
given in Equation (5.42).

filtering is the most intuitive and simple approach, but it has the obvious short-
coming of blurring textures and fine details. To reduce blocking artifacts without
significantly degrading valid high-frequency information, several space-variant adap-
tive filtering algorithms have been proposed. For example techniques based on the
reapplication of JPEG [55], which however tend to excessively blur small edges and
textured regions. A similar approach uses an adaptive weighted averaging, taking
into account the masking effect of the human visual system (HVS) [62], but, even
if detailed and edge regions are well restored, it does not filter effectively flat re-
gions. Fuzzy filter based deblocking methods [67] classify local image regions into
four classes based on activity (strong edge, weak edge, texture and smooth), then
apply an adaptive linear filter with variable support to the image locally: only flat
regions, but not the detailed ones, are satisfyingly restored. Projection onto convex
sets (POCS) methods [29, 15] assume that the original image is highly correlated,
that is the local correlation among neighboring blocks are similar to the local char-
acteristics of the single blocks: thus deblocking is performed dropping the global
high-frequency components of the decoded image, significantly different from the lo-
cal ones. One of the best-performing method, the shape-adaptive DCT (SA-DCT)
[8] filters the image using patches of arbitrary shape extracted through the Local
Polynomial Approximation - Intersection of Confidence Intervals (LPA-ICI) in a
pointwise adaptive manner. Other methods are spatial block boundary filter [32],
statistical modeling methods [61] or adaptive shifted thresholding [65, 26].

Our approach treats the blocking artifacts as additive Gaussian noise [8], therefore
we model the deblocking problem similarly as in (5.1), where y is the original video,
z the compressed video and η represents the compression artifacts. In what follows,
we focus our attention on MPEG-4 compressed videos.

In order to use V-BM4D as a deblocking filter, we need to provide an appro-
priate value for σ given any compressed video. To accomplish this, we have first
identified the optimum value of σ for each video sequence from a standard test-
set at various compression rates. Figure 5.10 shows these optimum values plotted

115

against the average bit-per-pixel (bpp) rate of the compressed video (Figure 5.10
left) and the parameter q that controls the quantization of the block-transform co-
efficients [1] (Figure 5.10 center). These plots suggest that a power law can explain
the dependency of the optimum value of σ on both the bpp rate and quantization
parameter. Hence, we fit such bivariate function to the optimum values via least-
squares regression, obtaining the adaptive value of σ for the V-BM4D deblocking
filter as

σ(bpp, q) = 0.02 · q1.25 · bpp−0.79 + 4.29. (5.42)

The function σ(bpp, q) is shown in Figure 5.10 (right). The constant term 4.29
has been set to be different than zero because, in this way, the resulting equation
fits the data with a lower average error. Let us observe that both the bpp and
q parameters are easily accessible from an MPEG-4 encoded video. Note that in
MPEG-4 the parameter q ranges from 2 to 31, where higher values correspond to
a coarser quantization and consequently lower bitrates. As a matter of fact, when
q increases and/or bpp decreases, both the optimum and the adaptive σ increase,
in order to effectively cope with stronger blocking artifacts. Clearly, a much larger
σ could result in oversmoothing, while much smaller values may not suffice for
effectively reducing the compression artifacts. While in this paper we mostly deal
with short test sequences and thus compute the bpp as the average rate over the
whole sequence, we argue that in practice this rate should be computed as the
average over a limited set of frames, namely the so-called group of pictures (GOP)
built around each intra-coded frame.

Figure 5.10 illustrates the final form of (5.42), as well as the two sets of points
used in the approximation, separately represented each in its own domain. As
can be seen, q is loosely linear and it has a quite large variability at the highest
compression level, while bpp is inversely proportional to σ and exhibits a consistent
behavior among the whole set of test videos. As a matter of fact, when q increases
and/or bpp decreases, the estimated σ enlarges in order to effectively cope with
stronger blocking artifacts. Intuitively, larger σ would result in an oversmoothing
filter, while lower values would not significantly reduce the compression artifacts.
We chose to estimate σ using both parameters because, depending on the content,
different videos can results in different bpp for any fixed q failing to effectively
capturing the actual impact of the artifacts on the decoded video.

Observe, the V-BM4D filter can be applied to video compressed by encoder other
than MPEG-4, because the q parameter can be also provided either as a subjec-
tive quality metric on the input video or as an objective measurement [70] on the
impairing artifacts to be filtered out.

116

5.5 Experimental Results

In this section we present the experimental results obtained with a C/MATLAB
implementation of the V-BM4D algorithm, and we compare it against V-BM3D, as
it represents the state of the art in video denoising. Observations z are obtained
by synthetically adding Gaussian noise to greyscale image sequences, according to
(5.1). The denoising performance is measured using the PSNR as a global measure
for the whole processed video:

PSNR(ŷ) = 10 log10

(
2552

|X|−1|T |−1
∑

(x,t)∈X×T
(
y((x, t))− ŷ(x, t)

)2

)
, (5.43)

where |X| and |T | stand for the cardinality of X and T , respectively. Additionally,
in order to provide a better experimental validation, we compare the performance
of V-BM4D and V-BM3D also by means of the MOVIE[58] index. Briefly, MOVIE
is a recently introduced video quality assessment (VQA) metric which is found to
be more reliable than PSNR because it evaluates space, time and jointly space-time
video quality, closely mimicking the human visual perception judgement.

The transforms employed in the collaborative filtering are similar to those in
[39, 36]: in the hard-thresholding stage T ht

4D is a four-dimensional separable com-
position of one-dimensional biorthogonal wavelet in both spatial dimensions, one-
dimensional DCT in the temporal dimension, and one-dimensional Haar wavelet in
the fourth (grouping) dimension while, in the Wiener filtering stage, T wie

4D uses a
two-dimensional DCT for the spatial dimension. Note that, because of the Haar
transform, the cardinality M of each group must be a power of 2, thus we restrict
M to be the largest power of 2 smaller than or equal to the minimum value between
the original cardinality of the groups andM itself. In order to reduce the complexity
of the grouping phase, we restrict the search of similar volumes within a NG × NG

neighborhood centered around the coordinates of the reference volume, moreover, to
lighten the computational complexity of the grouping, a step of Nstep ∈ N pixels in
both horizontal and vertical directions separates each processed volume. Notwith-
standing the use of a Nstep > 1, the trajectory of every possible volume in the video
must be computed beforehand, because any volume is a potential candidate element
of every group. Additionally, similarly to what described in Chapter 4, a Kaiser
window of parameter β is used in the aggregation step in order to alleviate the
boundary effect of the weighted block-wise estimates.

Table 5.1 provides a complete overview of the parameters setting in V-BM4D; the
table is organized in two sets, corresponding to the standard and the high-quality
profile. The high-quality profile is mainly characterized by the increase of h and M ,
which control the temporal extent and the groups cardinality, respectively, and by
the reduction of the processing step Nstep.

117

Table 5.1: Parameter settings of V-BM4D under the standard and high-quality profile for the first (hard-
thresholding) and the second (Wiener-filtering) stage. Where reported f(σ), the corresponding pa-
rameter varies according to the noise. The apex S, T and G on the transforms T stands for spatial,
temporal and grouping dimension, respectively.

Parameter
Standard Profile High-quality Profile

Hard thr. Wiener filt. Hard thr. Wiener filt.

N 8 7 8
NS 11 17
NG 19 27 34
h 4 7
M 32 8 32
β 2 1.3 2 1.3
λ4D 2.7
γp 0.3
γw 0.5 0.45
σw 1
Nstep 6 4 3
γg f(σ) 0.005 f(σ) 0.005
τtraj f(σ) 1 f(σ) 1
τmatch f(σ) 13.5 f(σ) 13.5
T S

2D 2-D Bior1.5 2-D DCT
T T

1D 1-D DCT
T G

1D 1-D Haar

The comparison against V-BM3D1 is carried out using the two different set of
parameters reported in Table 5.1. First, in the standard profile we compare against
the implementation with default parameters as described in [36]. Second, in the
high-quality profile, we modify V-BM3D by reducing its Nstep to 3 and by increasing
its temporal extent NFR from 9 to 15 frames and its group dimension N2 to 16.
Further details on the mentioned parameters NB, NFR and N2 can be found in [36].
We decorate the names of the V-BM4D and V-BM3D algorithm by postponing
the subscript hq to distinguish the high quality profile. Table 5.2, 5.3 and Table
5.4, 5.5 compare the denoising performance of V-BM3D and V-BM4D under the
standard and high quality profile in terms of PSNR and MOVIE, respectively. In our
experiments V-BM4D and V-BM3D are applied to a set of standard video sequences
corrupted by white Gaussian noise with increasing standard deviation σ, which is
assumed known. Further details concerning the original sequences, such as the
resolution and number of frames, are shown in the header of the table.

As one can see, V-BM4D outperforms V-BM3D in nearly all the experiments, with
PSNR improvement of almost 1 dB, under both the standard and high quality profile.
However, it is more interesting to observe that the spatio-temporal correlation in

1MATLAB code at http://www.cs.tut.fi/∼foi/GCF-BM3D/.

118

T
ab

le
5.2:

C
om

parison
betw

een
the

P
SN

R
(dB

)
outputs

obtained
from

the
proposed

V
-B

M
4D

algorithm
and

the
V
-B

M
3D

algorithm
under

both
the

standard
and

the
high

quality
(hq)

profiles.
T
he

test
sequences

are
corrupted

by
i.i.d.

G
aussian

noise
w
ith

zero
m
ean

and
different

standard
deviations

σ
.
T
he

table
reports

the
experim

ents
having

σ
≤

2
0.

σ
V
ideo:

Salesm
.

T
ennis

F
l.

G
ard.

M
iss

A
m

.
C
oastg.

Forem
an

B
us

B
icycle

R
es.:

288×
352

240×
352

240×
352

288×
360

144×
176

288×
352

288×
352

576×
720

Fram
es:

50
150

150
150

300
300

150
30

5

V
-B

M
4D

41.03
38.87

37.13
42.11

39.12
40.24

38.27
40.97

V
-B

M
3D

40.44
38.47

36.46
41.58

38.25
39.77

37.55
40.89

V
-B

M
4D

h
q

41.43
38.93

37.18
42.18

39.23
40.22

38.48
40.88

V
-B

M
3D

h
q

41.09
38.63

36.43
41.80

38.44
40.09

37.68
40.94

10

V
-B

M
4D

37.49
35.00

32.64
40.18

35.18
36.71

34.01
37.54

V
-B

M
3D

37.21
34.68

32.11
39.61

34.78
36.46

33.32
37.62

V
-B

M
4D

h
q

37.99
35.14

32.71
40.42

35.34
36.71

34.24
37.48

V
-B

M
3D

h
q

37.78
34.90

32.07
39.83

34.93
36.88

33.47
37.76

15

V
-B

M
4D

35.46
32.92

30.11
38.92

33.06
34.78

31.62
35.44

V
-B

M
3D

35.44
32.63

29.81
38.64

33.00
34.64

31.05
35.67

V
-B

M
4D

h
q

35.99
33.08

30.19
39.25

33.24
34.82

31.82
35.42

V
-B

M
3D

h
q

36.06
32.84

29.86
38.93

33.14
35.13

31.19
35.93

20

V
-B

M
4D

34.04
31.52

28.30
38.01

31.63
33.43

30.00
33.82

V
-B

M
3D

34.04
31.20

28.24
37.85

31.71
33.30

29.57
34.18

V
-B

M
4D

h
q

34.58
31.69

28.39
38.35

31.82
33.50

30.21
33.86

V
-B

M
3D

h
q

34.78
31.42

28.39
38.28

31.93
33.84

29.71
34.54

119

T
ab

le
5.

3:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
P
SN

R
(d
B
)
ou

tp
ut
s
ob

ta
in
ed

fr
om

th
e
pr
op

os
ed

V
-B

M
4D

al
go
ri
th
m

an
d
th
e
V
-B

M
3D

al
go

ri
th
m

un
de
r
bo

th
th
e
st
an

da
rd

an
d
th
e
hi
gh

qu
al
it
y

(h
q)

pr
ofi

le
s.

T
he

te
st

se
qu

en
ce
s
ar
e
co
rr
up

te
d
by

i.i
.d
.
G
au

ss
ia
n
no

is
e
w
it
h
ze
ro

m
ea
n
an

d
di
ffe

re
nt

st
an

da
rd

de
vi
at
io
ns

σ
.
T
he

ta
bl
e
re
po

rt
s
th
e
ex
pe

ri
m
en
ts

ha
vi
ng

σ
≥

2
5
.

σ
V
id
eo
:

Sa
le

sm
.

T
en

ni
s

F
l.

G
ar

d.
M

is
s

A
m

.
C
oa

st
g.

Fo
re

m
an

B
us

B
ic

yc
le

R
es
.:

28
8×

35
2

24
0×

35
2

24
0×

35
2

28
8×

36
0

14
4×

17
6

28
8×

35
2

28
8×

35
2

57
6×

72
0

Fr
am

es
:

50
15

0
15

0
15

0
30

0
30

0
15

0
30

25

V
-B

M
4D

32
.9
6

30
.5
1

26
.8
3

37
.2
6

30
.5
7

32
.4
5

28
.8
8

32
.4
9

V
-B

M
3D

32
.7
9

30
.1
1

27
.0
0

37
.1
0

30
.6
2

32
.1
9

28
.4
8

32
.9
0

V
-B

M
4D

h
q

33
.5
1

30
.7

2
26

.9
4

37
.6

7
30

.7
5

32
.5
3

29
.0

7
32

.5
8

V
-B

M
3D

h
q

33
.6

2
30

.3
6

27
.2

5
37

.6
5

30
.9

3
32

.7
8

28
.6
3

33
.3

4

30

V
-B

M
4D

32
.0
7

29
.6
8

25
.6
2

36
.6
1

29
.7
4

31
.7
0

27
.9
9

31
.4
1

V
-B

M
3D

31
.6
8

29
.2
2

25
.8
9

36
.4
1

29
.6
8

31
.2
7

27
.5
9

31
.7
7

V
-B

M
4D

h
q

32
.6

4
29

.9
1

25
.7
3

37
.0

8
29

.9
1

31
.8
0

28
.1

8
31

.5
3

V
-B

M
3D

h
q

32
.6
1

29
.5
1

26
.2

6
37

.0
7

30
.0

6
31

.8
7

27
.7
8

32
.2

8

35

V
-B

M
4D

31
.3
2

28
.9
9

24
.6
4

36
.0
4

29
.0
7

31
.0
7

27
.2
6

30
.5
2

V
-B

M
3D

30
.7
2

28
.5
6

25
.1
6

35
.8
7

28
.9
2

30
.5
6

26
.9
1

30
.8
5

V
-B

M
4D

h
q

31
.9

1
29

.2
4

24
.7
4

36
.5

7
29

.2
3

31
.1

9
27

.4
5

30
.6
5

V
-B

M
3D

h
q

31
.5
3

28
.7
6

25
.3

0
36

.4
6

29
.2

3
31

.0
5

26
.9
6

31
.1

7

40

V
-B

M
4D

30
.6
8

28
.4
3

23
.7
8

35
.5
4

28
.5
0

30
.5
2

26
.6
5

29
.7
4

V
-B

M
3D

29
.9
3

27
.9
9

24
.3
3

35
.4
5

28
.2
7

29
.9
7

26
.2
8

30
.0
2

V
-B

M
4D

h
q

31
.2

8
28

.6
8

23
.8
6

36
.1

2
28

.6
6

30
.6

6
26

.8
3

29
.8
8

V
-B

M
3D

h
q

30
.7
1

28
.2
0

24
.4

8
35

.9
4

28
.5
6

30
.4
1

26
.3
4

30
.3

3

120

T
ab

le
5.4:

D
enoising

M
O
V
IE

[58]
score

(the
low

er
the

better).
In

order
to

enhance
the

readability
of

the
results,

every
value

has
been

m
ultiplied

by
1
0
3.

T
he

table
reports

the
experim

ents
having

σ
≤

2
0.

σ
V
ideo:

Salesm
.

T
ennis

F
l.

G
ard.

M
iss

A
m

.
C
oastg.

Forem
an

B
us

B
icycle

R
es.:

288×
352

240×
352

240×
352

288×
360

144×
176

288×
352

288×
352

576×
720

Fram
es:

50
150

150
150

300
300

150
30

5

V
-B

M
4D

0.0216
0.0260

0.0192
0.0267

0.0260
0.0318

0.0374
0.0245

V
-B

M
3D

0.0226
0.0300

0.0249
0.0323

0.0335
0.0367

0.0465
0.0241

V
-B

M
4D

h
q

0.0227
0.0261

0.0189
0.0267

0.0247
0.0315

0.0349
0.0263

V
-B

M
3D

h
q

0.0199
0.0295

0.0260
0.0312

0.0314
0.0375

0.0442
0.6737

10

V
-B

M
4D

0.0817
0.1207

0.0736
0.0872

0.1034
0.1175

0.1558
0.0939

V
-B

M
3D

0.0907
0.1473

0.0914
0.1072

0.1296
0.1303

0.2047
0.0878

V
-B

M
4D

h
q

0.0880
0.1144

0.0720
0.0890

0.0975
0.1193

0.1447
0.0985

V
-B

M
3D

h
q

0.0822
0.1430

0.0952
0.1058

0.1333
0.1446

0.2019
0.0879

15

V
-B

M
4D

0.1855
0.2913

0.1565
0.1717

0.2133
0.2294

0.3338
0.1933

V
-B

M
3D

0.2135
0.3684

0.1769
0.2001

0.2491
0.2440

0.4461
0.1711

V
-B

M
4D

h
q

0.1915
0.2683

0.1526
0.1750

0.2001
0.2356

0.3163
0.2032

V
-B

M
3D

h
q

0.1851
0.3532

0.1787
0.1961

0.2702
0.2696

0.4514
0.1710

20

V
-B

M
4D

0.3382
0.5107

0.2680
0.2671

0.3454
0.3534

0.5372
0.3253

V
-B

M
3D

0.4636
0.7267

0.2763
0.3096

0.4142
0.3792

0.7175
0.2689

V
-B

M
4D

h
q

0.3337
0.4797

0.2612
0.2743

0.3273
0.3649

0.5199
0.3451

V
-B

M
3D

h
q

0.3679
0.6874

0.2691
0.2936

0.4283
0.4014

0.7303
0.2666

121

T
ab

le
5.

5:
D
en
oi
si
ng

M
O
V
IE

[5
8]

sc
or
e
(t
he

lo
w
er

th
e
be

tt
er
).

In
or
de
r
to

en
ha

nc
e
th
e
re
ad

ab
ili
ty

of
th
e
re
su
lt
s,

ev
er
y
va
lu
e
ha

s
be

en
m
ul
ti
pl
ie
d
by

1
0
3
.
T
he

ta
bl
e
re
po

rt
s
th
e

ex
pe

ri
m
en
ts

ha
vi
ng

σ
≥

2
5
.

σ
V
id
eo
:

Sa
le

sm
.

T
en

ni
s

F
l.

G
ar

d.
M

is
s

A
m

.
C
oa

st
g.

Fo
re

m
an

B
us

B
ic

yc
le

R
es
.:

28
8×

35
2

24
0×

35
2

24
0×

35
2

28
8×

36
0

14
4×

17
6

28
8×

35
2

28
8×

35
2

57
6×

72
0

Fr
am

es
:

50
15

0
15

0
15

0
30

0
30

0
15

0
30

25

V
-B

M
4D

0.
54

05
0.
74

29
0.
40

79
0.

36
87

0.
49

58
0.

48
46

0.
74

67
0.
47

95
V
-B

M
3D

0.
92

70
1.
10

16
0.
39

47
0.
43

92
0.
64

55
0.
54

79
0.
99

99
0.
39

07
V
-B

M
4D

h
q

0.
51

51
0.

71
97

0.
39

96
0.
38

02
0.

47
81

0.
50

23
0.

72
94

0.
50

94
V
-B

M
3D

h
q

0.
70

06
1.
06

62
0.

37
07

0.
40

71
0.
63

03
0.
56

44
1.
02

61
0.

38
23

30

V
-B

M
4D

0.
78

39
0.
97

38
0.
57

88
0.

47
24

0.
66

67
0.

61
95

0.
95

82
0.
64

28
V
-B

M
3D

1.
56

36
1.
46

09
0.
55

00
0.
57

82
0.
96

46
0.
74

76
1.
30

28
0.
53

72
V
-B

M
4D

h
q

0.
73

47
0.

96
78

0.
57

01
0.
48

98
0.

65
62

0.
64

42
0.

94
05

0.
68

48
V
-B

M
3D

h
q

1.
16

24
1.
41

48
0.

49
88

0.
53

43
0.
88

63
0.
75

34
1.
33

42
0.

52
24

35

V
-B

M
4D

1.
06

08
1.

19
85

0.
76

99
0.

57
47

0.
85

90
0.

75
42

1.
17

20
0.
81

00
V
-B

M
3D

2.
36

36
1.
85

39
0.
70

26
0.
74

18
1.
36

40
0.
97

92
1.
61

10
0.
73

20
V
-B

M
4D

h
q

0.
98

36
1.
21

08
0.
76

28
0.
60

04
0.
86

07
0.
78

79
1.

15
20

0.
86

84
V
-B

M
3D

h
q

1.
81

20
1.
80

50
0.

66
26

0.
68

99
1.
23

53
0.
97

19
1.
65

85
0.

72
56

40

V
-B

M
4D

1.
36

67
1.

41
02

0.
97

34
0.

67
59

1.
06

60
0.

88
85

1.
38

31
0.
97

21
V
-B

M
3D

3.
09

05
2.
17

00
0.
92

07
0.
89

21
1.
86

48
1.
21

47
1.
92

79
0.
94

03
V
-B

M
4D

h
q

1.
26

03
1.
44

55
0.
97

63
0.
71

09
1.
09

15
0.
93

15
1.

36
53

1.
05

81
V
-B

M
3D

h
q

2.
46

69
2.
11

65
0.

86
37

0.
83

53
1.
67

45
1.
19

10
1.
99

37
0.

92
25

122

20 30 40 50 60 70 80 90 100
23

24

25

26

27

28

29

30

31

Frame

P
S
N

R

80 85 90 95 100 105 110 115 120
23.5

24

24.5

25

25.5

26

26.5

27

27.5

Frame

P
S
N

R

Figure 5.11: PSNR output frame-by-frame of the sequences Tennis (left) and Bus (right) denoised by V-BM4Dhq
(�), V-BM4D (4), V-BM3Dhq (∗) and V-BM3D (+).

V-BM4D handles effectively the sequences characterized by high dynamics, frequent
scene changes and heavy noise, as Tennis, Coastguard and Bus. In particular, Figure
5.11 shows that as soon as the sequence presents a significant change in the scene,
the denoising performance decreases significantly for the three algorithms, but, in
these situations, V-BM4D requires much less frames to recover high PSNR values, as
shown by the lower peaks at frame 90 of Tennis. Furthermore, V-BM4D significantly
outperforms V-BM3D in scene characterized by high dynamism, as shown in the plot
of Bus, where even the standard profile of V-BM4D constantly overcomes the high
quality profile of V-BM3D. Nonetheless, in the sequence Bicycle, V-BM4D exhibits
a systematic loss of performance if compared to V-BM3D. In fact, since Bicycle
represents a fixed scene with a large rotating wheel with a few objects fastened over
it, the large uniform background and the frequent object occlusions, can challenge
the motion estimation favoring a self-similar block-based grouping strategy. In fact,
observe that only in the experiments of Bycicle with σ ≤ 15 V-BM4Dhq performs
worse than V-BM4D.

As anticipated in the introduction, the main issue about V-BM3D lies in the
grouping step, which indiscriminately stacks together spatial and temporal similar
blocks in the final three-dimensional group through an adaptive three-dimensional
spatio-temporal window. However, as a matter of fact, Table 5.6 shows that a
grouping based on motion always guarantees better performances than what can
be achieved by grouping even a larger number of blocks in the spatial domain. In
particular, every pair (M ,h) forces the algorithm to build volumes of temporal extent
2h+ 1 and to stack M of such volumes in the grouping step. Thus, the two extreme
pairs (1,7) and (16,0) means groups of single volumes of extent 15, and groups of
16 volumes of extent 1, respectively. In other words, we are comparing a fully
temporal-oriented grouping strategy against a fully spatial-oriented one. The PSNR
outputs of V-BM4D applied in the two above mentioned cases are a perfect example
of the importance of accounting motion in the grouping and collaborative filtering

123

O
ri
gi
na

lf
ra
m
e

N
oi
sy

fr
am

e
V
-B

M
3D

V
-B

M
4D

F
ig

u
re

5.
12

:
V
is
ua

l
co
m
pa

ri
so
n
of

th
e
se
qu

en
ce
s,

fr
om

to
p
to

bo
tt
om

,
B
us

an
d

T
en

ni
s
co
rr
up

te
d
by

w
hi
te

G
au

ss
ia
n
no

is
e
w
it
h
st
an

da
rd

de
vi
at
io
n
σ

=
4
0
/
2
5
5
,
de
no

is
ed

by
th
e

pr
op

os
ed

V
-B

M
4D

an
d
th
e
V
-B

M
3D

al
go
ri
th
m
.

124

Table 5.6: PSNR outputs of V-BM4D tuned with different space (M) and time (h) parameters combinations.
Recall that the dimension of the temporal extent is defined as 2h+ 1. The test sequence Salesman and
Tennis have been corrupted by i.i.d. white Gaussian noise with σ = 20/255.

M Video
h

0 1 2 3 4 5 6 7

1 Salesm. 29.26 32.19 33.07 33.51 33.76 33.92 34.02 34.10
Tennis 27.99 30.12 30.74 31.04 31.20 31.29 31.34 31.37

2 Salesm. 29.70 32.28 33.08 33.46 33.69 33.83 33.92 33.99
Tennis 28.37 30.36 30.98 31.27 31.42 31.50 31.55 31.57

4 Salesm. 30.07 32.37 33.08 33.43 33.63 33.76 33.84 33.89
Tennis 28.58 30.47 31.05 31.32 31.46 31.53 31.57 31.59

8 Salesm. 30.34 32.53 33.23 33.57 33.77 33.89 33.98 34.03
Tennis 28.70 30.52 31.09 31.35 31.48 31.55 31.58 31.60

16 Salesm. 30.48 32.69 33.41 33.77 33.98 34.12 34.21 34.27
Tennis 28.75 30.55 31.11 31.36 31.49 31.56 31.60 31.61

paradigm. Even if the temporal-oriented groups have a slightly smaller size than the
spatial ones, in the former case V-BM4D obtains an increase in performance of about
16% in Salesman and 12% in Tennis with respect to the basic configuration (1,0),
while in the latter case the PSNR augments about the 4% and 3% only. Moreover,
it is not unusual to observe a drop of performances in the spatial direction, as shown
in particular by the sequence Salesman for every h ≥ 3.

Finally, Figure 5.12 offers a visual comparison of the performance of the two algo-
rithms. As a subjective quality assessment, V-BM4D better preserves the textures,
without introducing significant artifacts in the restored video: this is clearly visible
in the tree leaves of the Bus sequence or in the background texture of Tennis.

Table 5.7 and 5.8 compare the performance of V-BM4D deblocking filter with
the MPlayer deblocking filter2, in terms of PSNR. Eight sequences compressed by
an MPEG-4 encoder with different values of q and bit-per-pixel rates have been
considered: additional details concerning these sequences are reported in the ta-
ble header. Numerical results show that the V-BM4D filter outperforms MPlayer,
providing restored videos having PSNR about 1 dB higher. Figure 5.13 shows the
results of V-BM4D deblocking on the Foreman, Tennis and Coastguard sequences,
encoded at high compression level (q = 25). The visual quality of the filtered videos
has been significantly improved, since the compression artifacts, such as blocking
or ghosting, have been successfully filtered without losing fine image details. In
particular, we can note how the face of Foreman, the player and the white poster of
Tennis and the horizontal stone-wall of Coastguard quite sharply emerge from their
blocky counterparts, while almost-uniform areas, such as the white striped building

2Source code and documentation can be found at http://sourceforge.net/projects/ffdshow-tryout/
and http://www.mplayerhq.hu/

125

T
ab

le
5.

7:
D
eb
lo
ck
in
g
pe

rf
or
m
an

ce
of

V
-B

M
4D

in
te
rm

s
of

P
SN

R
:q

is
th
e
sc
al
e
pa

ra
m
et
er

of
th
e
qu

an
ti
za
ti
on

m
at
ri
x
of

th
e
M
P
E
G
-4

en
co
de
r
an

d
bp

p
de
no

te
s
th
e
av
er
ag
e
bi
t-
pe

r-
pi
xe
l

ra
te

of
th
e
co
m
pr
es
se
d
vi
de
o.

A
s
a
re
fe
re
nc
e,

th
e
P
SN

R
of

bo
th

th
e
M
P
la
ye
r
ac
cu
ra
te

de
bl
oc
ki
ng

fil
te
r
an

d
th
e
un

fil
te
re
d
co
m
pr
es
se
d
(c
om

pr
.)

vi
de
o
ar
e
al
so

pr
ov

id
ed

fo
r

ea
ch

va
lu
e
q
of

th
e
M
P
E
G
-4

qu
an

ti
ze
r.

T
he

ta
bl
e
re
po

rt
s
th
e
ex
pe

ri
m
en
ts

ha
vi
ng

q
≤

1
5
.

q
V
id
eo
:

Sa
le

sm
.

T
en

ni
s

F
l.

G
ar

d.
M

is
s

A
m

.
C
oa

st
g.

Fo
re

m
an

B
us

B
ic

yc
le

R
es
.:

28
8×

35
2

24
0×

35
2

24
0×

35
2

28
8×

36
0

14
4×

17
6

28
8×

35
2

28
8×

35
2

57
6×

72
0

Fr
am

es
:

50
15

0
15

0
15

0
30

0
30

0
15

0
30

5

bp
p

0.
32
32

0.
53
23

1.
48
24

0.
08
84

0.
46
09

0.
30
05

0.
70
89

0.
43
15

V
-B

M
4D

35
.9

6
34

.3
5

33
.5

5
39

.5
3

34
.7

1
36

.4
2

34
.9

8
38

.0
4

M
P
la
ye
r

35
.1
4

33
.7
9

32
.7
3

38
.5
8

34
.0
0

35
.6
0

34
.3
6

36
.5
3

C
om

pr
.

35
.2
8

33
.8
7

32
.8
1

39
.0
3

34
.1
2

35
.7
0

34
.4
5

36
.7
1

10

bp
p

0.
13
19

0.
22
49

0.
72
88

0.
03
99

0.
19
26

0.
12
76

0.
32
85

0.
20
76

V
-B

M
4D

32
.1

1
30

.3
7

27
.9

4
37

.3
1

30
.7

2
32

.9
0

30
.6

8
33

.4
7

M
P
la
ye
r

31
.6
6

29
.8
7

27
.4
0

36
.6
1

30
.2
3

32
.1
6

30
.1
1

32
.4
5

C
om

pr
.

31
.5
4

29
.8
4

27
.4
1

36
.6
6

30
.1
9

32
.0
9

30
.0
7

32
.3
7

15

bp
p

0.
08
65

0.
13
26

0.
44
70

0.
03
18

0.
11
84

0.
08
12

0.
20
39

0.
13
33

V
-B

M
4D

30
.0

3
28

.4
6

25
.1

1
36

.1
4

28
.7

0
31

.0
8

28
.4

5
31

.0
3

M
P
la
ye
r

29
.6
5

28
.0
3

24
.6
8

35
.5
9

28
.3
0

30
.3
6

27
.8
9

30
.1
2

C
om

pr
.

29
.4
8

27
.9
7

24
.6
7

35
.4
1

28
.1
8

30
.2
7

27
.8
3

30
.0
0

126

T
ab

le
5.8:

D
eblocking

perform
ance

ofV
-B

M
4D

in
term

s
ofP

SN
R
:
q
is
the

scale
param

eter
ofthe

quantization
m
atrix

ofthe
M
P
E
G
-4

encoder
and

bpp
denotes

the
average

bit-per-pixel
rate

of
the

com
pressed

video.
A
s
a
reference,

the
P
SN

R
of

both
the

M
P
layer

accurate
deblocking

filter
and

the
unfiltered

com
pressed

(com
pr.)

video
are

also
provided

for
each

value
q
of

the
M
P
E
G
-4

quantizer.
T
he

table
reports

the
experim

ents
having

q
≥

2
0.

q
V
ideo:

Salesm
.

T
ennis

F
l.

G
ard.

M
iss

A
m

.
C
oastg.

Forem
an

B
us

B
icycle

R
es.:

288×
352

240×
352

240×
352

288×
360

144×
176

288×
352

288×
352

576×
720

Fram
es:

50
150

150
150

300
300

150
30

20

bpp
0.0661

0.0943
0.3058

0.0280
0.0852

0.0625
0.1453

0.0985

V
-B

M
4D

28.64
27.23

23.27
35.03

27.39
29.85

26.92
29.42

M
P
layer

28.31
26.82

22.90
32.93

27.04
29.12

26.42
28.60

C
om

pr.
28.11

26.76
22.88

34.21
26.90

29.03
26.35

28.43

25

bpp
0.0546

0.0710
0.2225

0.0257
0.0679

0.0523
0.1121

0.0846

V
-B

M
4D

27.63
26.34

22.00
34.34

26.46
29.02

25.89
28.23

M
P
layer

27.30
25.96

21.63
33.66

26.11
28.25

25.38
27.35

C
om

pr.
27.07

25.85
21.62

33.45
25.98

28.10
25.27

27.22

30

bpp
0.0477

0.0604
0.1697

0.0244
0.0584

0.0480
0.0921

0.0676

V
-B

M
4D

26.85
25.59

21.01
33.29

25.71
28.33

25.03
27.36

M
P
layer

26.51
25.26

20.65
32.80

25.38
27.57

24.55
26.54

C
om

pr.
26.28

25.11
20.64

32.39
25.25

27.37
24.41

26.35

127

O
ri
gi
na

lf
ra
m
e

B
lo
ck
y
fr
am

e
V
-B

M
4D

F
ig

u
re

5.
13

:
V
is
ua

l
co
m
pa

ri
so
n
of

th
e
se
qu

en
ce
s,

fr
om

to
p
to

bo
tt
om

,
Fo

re
m

an
,
T
en

ni
s
an

d
C

oa
st

gu
ar

d
co
m
pr
es
se
d
w
it
h
th
e
M
P
E
G
-4

en
co
de
r
w
it
h
qu

an
ti
za
ti
on

pa
ra
m
et
er
q

=
2
5
,

de
bl
oc
ke
d
by

th
e
pr
op

os
ed

V
-B

M
4D

al
go
ri
th
m
.

128

behind Foreman or the table and background texture in Tennis have been pleasingly
smoothed.

5.6 Complexity

One run of V-BM4D requires the execution of the hard-thresholding stage (whose
complexity is ChtV-BM4D), of the Wiener filtering stage (whose complexity is CwieV-BM4D),
and two runs of the motion estimation algorithm (whose complexity is CCT). Hence,
the V-BM4D overall complexity is

CV-BM4D = 2CME + ChtV-BM4D + CwieV-BM4D, (5.44)

where the superscripts ht and wie denote hard-thresholding and Wiener filtering,
respectively. Differently, V-BM3D does not require motion estimation, thus its
complexity is simply given by the sum of the cost of its hard-thresholding ChtV-BM3D

and Wiener-filtering stage CwieV-BM3D as follows

CV-BM3D = ChtV-BM3D + CwieV-BM3D. (5.45)

In this analysis we compute the complexity as the number of arithmetic opera-
tions required, without considering any other external factor, such as the memory
requirements or I/O access. Table 5.9 provides a comprehensive summary of the
parameters involved in this analysis, as well as a brief comment about the role they
play in the algorithm. To provide an easy comparison among V-BM3D and V-
BM4D, we assume that the number of blocks in a spatiotemporal volume is h̄, and
that this corresponds to the size of temporal window in V-BM3D; similarly, we as-
sume that the number of grouped volumes in V-BM4D (referred as M) corresponds
to the number of grouped blocks in V-BM3D.

5.6.1 Motion Estimation

The computation of the trajectory requires searching for a most similar block within
an adaptive search window of size NS × NS once for each of the preceding and
following frames, i.e. h̄ − 1 times. The computation of the `2 distance between
a pair of blocks requires 3N2 operations, because requires two additions and one
multiplication for each corresponding pixel. Since a trajectory is constructed for
each pixel in every frame of the video, the total cost is

CME = nT (h̄− 1)N2
S

(
3N2

)
(5.46)

5.6.2 Hard-thresholding Stage

In the hard-thresholding stage, for each processed block according to Nstep, at most
M similar volume extracted from a search window of size NG ×NG are stacked to-

129

Table 5.9: Summary of the parameters involved in the complexity analysis.

Parameter Notes
T Total number of frames in the video.
n Number of pixel per frame.
N Dimension of the two-dimensional square blocks.
h̄ Temporal extent of the volumes in V-BM4D, size of the

temporal window in V-BM3D, referred to as NFR in [36].
NS Size of the motion estimation window.
M Size of the groups, that is the number of grouped volumes

in V-BM4D or the number of grouped blocks in V-BM3D.
NG Size of the window used in the grouping.
Nstep Processing step (refer to Section 5.5 for further details).
C(m,p,n) Numeric operations required by a multiplication between

matrices of size m× p and p×n. Although more efficient
algorithms exist, we assume this complexity to be mpn.

gether. Once the group is formed, a separable four-dimensional transform is applied,
and the hard-thresholding is then performed via element-wise multiplication. Even-
tually, the basic estimate is obtained by aggregating the inverse four-dimensional
transform of the filtered groups:

ChtV-BM4D =
n

N2
step

T
(
CGV-BM4D + 2CTV-BM4D + CFV-BM4D

)
+ CAV-BM4D, (5.47)

where G, T, F and A stands for Grouping, Transformation, Filtering and Aggrega-
tion. More specifically their costs are:

CGV-BM4D = N2
G3h̄N2, (5.48)

CTV-BM4D = 2Mh̄C(N,N,N) +MC(h̄,h̄,N2) + C(M,M,h̄N2), (5.49)

CFV-BM4D = Mh̄N2, (5.50)

CAV-BM4D = Tn(h̄+ 1), (5.51)

where the symbol C(·,·,·) stands for matrix multiplication cost as explained in Table
5.9, and the factor 3 in the grouping complexity is due to the `2 distance computed
between two three-dimensional volumes of size N × N × h̄. Note that, since the
four-dimensional transform is separable, its cost is the sum of four different matrix
multiplications, one for each dimension of the group.

In V-BM3D, the fourth dimension is missing, hence the algorithm only transforms
the M grouped blocks and the group itself:

ChtV-BM3D =
n

N2
step

T
(
CGV-BM3D + 2CTV-BM3D + CFV-BM3D

)
+ CAV-BM3D, (5.52)

130

where, as before:

CGV-BM3D =
(
N2
G +NBh̄N

2
PR

)
3N2, (5.53)

CTV-BM3D = 2MC(N,N,N) + C(M,M,N2), (5.54)

CFV-BM3D = MN2, (5.55)

CAV-BM3D = Tn(h̄+ 1). (5.56)

Observe in Equation (5.53) that the grouping is accomplished through a technique
called predictive-search block-matching [36] described in Section 4.2.1: briefly it
performs a full-search inside a NG×NG window in the first frame to extract the NB

best-matching blocks, then, in the following h̄ frames it inductively searches the NB

best-matching blocks inside windows of size NPR×NPR, with NPR � NG, centered
at the position of the previous NB blocks.

5.6.3 Wiener-filtering Stage

The complexity of the Wiener-filtering stage can be expressed as that of hard-
thresholding stage in (5.47), with the exception that transforms have to be applied
to two groups having equal size, and that the filtering, which is still performed via
element-wise multiplication, requires also the pre-computation of a family of weights,
which takes 6 arithmetic operations per pixel:

CwieV-BM4D =
n

N2
step

T
(
CGV-BM4D + 4CTV-BM4D + CFV-BM4D

)
+ 6CAV-BM4D, (5.57)

Analogously to (5.52), in V-BM3D the complexity is

CwieV-BM3D =
n

N2
step

T
(
CGV-BM3D + 4CTV-BM3D + CFV-BM3D

)
+ 6CAV-BM3D, (5.58)

5.6.4 Comparative Analysis

Provided that every other parameters remain unchanged, the complexity of the
proposed V-BM4D algorithm, as well as the one of V-BM3D, scales linearly O(n)

with the number of processed pixels. However it is worth carrying out a deeper
analysis, since the different multiplying constants factors have a remarkable impact
on the final cost of the two algorithms.

Analyzing separately the single components of the cost expansion equations (5.47)
and (5.52), observe that we can neglect both the cost of the grouping and the
aggregation since they are similar, or even equal, in both algorithms. The filtering
in V-BM4D requires exactly h̄ times more operations than in V-BM3D, as well as the
transformation applied to the blocks and to the groups. Thus the overall cost due
to the transformation step in V-BM4D is h̄ times the cost of V-BM3D in addition

131

to the operations due to to transform the M grouped volumes:

CGV-BM4D ≈ CGV-BM3D, (5.59)

CTV-BM4D = h̄CTV-BM3D +MC(h̄,h̄,N2), (5.60)

CFV-BM4D = h̄CFV-BM3D, (5.61)

CAV-BM4D = CAV-BM3D. (5.62)

An analogous inference can be made also for the Wiener filtering stage given in
(5.57) and (5.58).

In conclusion, we can state that V-BM4D is at least h̄ times computationally more
demanding than V-BM3D in both the hard-thresholding and the Wiener-filtering
stage, but the former is also burdened with the cost CME required by the motion
estimation step. However, observe that CME can be entirely eliminated if the input
video is encoded with a motion-compensated algorithm, such as MPEG-4 or H.264,
because the motion vectors required to build the spatio-temporal volumes can be
extracted directly from the video byte stream.

5.7 Conclusions

In this Thesis, we have presented a novel methodology for filtering noisy video in
four-dimensional transform domain, called V-BM4D. The proposed algorithm ex-
ploits both the nonlocal and spatiotemporal correlation within the data to obtain
a sparse representation of the noisy signal and achieve an effective denoising by co-
efficients shrinkage in transform domain. Video denoising constitute an important
research field because digital videos are widely used in a large number of appli-
cations. Possible employments of V-BM4D, encompass medical and astronomical
imaging, multimedia services, teleconferencing, surveillance, object tracking or video
compression.

Experiments show that V-BM4D outperforms V-BM3D in terms of measured
performance (PSNR, MOVIE), and of visual appearance (Figure 5.12), thus achiev-
ing state-of-the-art results in video denoising. In particular, V-BM4D can restore
much better than V-BM3D fine image details, even in sequences corrupted by heavy
noise (σ = 40): this difference is clearly visible in the processed frames shown in
Figure 5.12. Moreover, the comparison between V-BM3D and V-BM4D highlights
that the temporal correlation is a key element in video denoising, and that it has to
be adequately handled when designing nonlocal video restoration algorithms.

We wish to remark that V-BM4D has obviously a higher computational complex-
ity when compared to V-BM3D, mainly due to the processing of higher-dimensional
arrays and to the calculation of the trajectories by concatenation of motion vec-
tors. Ongoing work addresses the parallelization of V-BM4D, inasmuch as most of
its computing task are well-localized in terms of space-time complexity and, more

132

importantly, they are independent from each other. Specifically, each trajectory
can be calculated separately in the preprocessing stage, and, additionally, both the
grouping and the collaborative filtering step can be performed independently with
ease. For these reasons, we aim to implement V-BM4D on GPUs, leveraging the
inherent parallel architecture of such devices.

133

BIBLIOGRAPHY

[1] The MPEG-4 video standard verification model. pages 142–154, 2001.

[2] Y. Zhai A. Basharat and M. Shah. Content based video matching using spa-
tiotemporal volumes. Computer Vision and Image Understanding, 110(3):360–
377, 2008.

[3] B. Coll A. Buades and J-M. Morel. A non-local algorithm for image denoising.
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2:60–65, June 2005.

[4] B. Coll A. Buades and J-M. Morel. A review of image denoising algorithms,
with a new one. Multiscale Modeling Simulation, 4(2):490–530, 2005.

[5] B. Coll A. Buades and J-M. Morel. Nonlocal image and movie denoising. In-
ternational Journal of Computer Vision, 76(2):123–139, 2008.

[6] V. Katkovnik A. Danielyan, A. Foi and K. Egiazarian. Image and video super-
resolution via spatially adaptive block-matching filtering. August 2008.

[7] V. Katkovnik A. Danielyan, A. Foi and K. Egiazarian. Image upsampling via
spatially adaptive block-matching filtering. August 2008.

[8] V. Katkovnik A. Foi and K. Egiazarian. Pointwise shape-adaptive DCT for
high-quality denoising and deblocking of grayscale and color images. IEEE
Transactions on Image Processing, 16(5):1395–1411, May 2007.

[9] V. Katkovnik A. Foi and K. Egiazarian. Signal-dependent noise removal in
pointwise shape-adaptive DCT domain with locally adaptive variance. European
Signal Processing Conference (EUSIPCO), Poznan, Poland, September 2007.

[10] V. Katkovnik K.Egiazarian A. Foi, M. Trimeche. Practical poissonian-gaussian
noise modeling and fitting for single-image raw-data. IEEE Transactions on
Image Processing, 17(10):1737–1754, October 2008.

[11] V. Zlokolica A. Pizurica, R. Pizurica and W. Philips. Combined wavelet domain
and temporal video denoising. IEEE Conference on Advanced Video and Signal
Based Surveillance, pages 334–341, 2003.

[12] F.J. Anscombe. The transformation of poisson, binomial and negative binomial
data. Biometrika, 35(3/4):246–254, December 1948.

[13] G.C. Arce. Multistage order statistic filters for image sequence processing.
IEEE Transaction of Signal Processing, 39:1147–1163, 1991.

134

[14] J.M. Fadili B. Zhang and J.L. Starck. Wavelets, ridgelets, and curvelets for
poisson noise removal. IEEE Transactions on Image Processing, 17(7):1093–
1108, July 2008.

[15] Y. Altunbasak B.K. Gunturk and R.M. Mersereau. Multiframe blocking-artifact
reduction for transform-coded video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 12(4):276–282, April 2002.

[16] G. Boracchi and A. Foi. Multiframe raw-data denoising based on block-
matching and 3-D filtering for low-light imaging and stabilization. August
2008.

[17] A. Bovik. Handbook of Image and Video Processing. Academic Press, 2000.

[18] I. Johnstone D. Donoho and I.M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81:425–455, 1993.

[19] D. Larson D. Han, K. Kornerlson and E. Weber. Frames for Undergraduates,
volume 40. American Mathematical Society, Providence, Rhode Island, 2007.

[20] A. Danielyan and A. Foi. Noise variance estimation in nonlocal transform
domain. pages 41–45, August 2009.

[21] C.S. Davis. Statistical Methods for the Analysis of Repeated Measurements.
Springer, 2003.

[22] D. Donoho. De-noising by soft thresholding. IEEE Transactions on Information
Theory, 41(3):613–627, May 1995.

[23] S. Carrato F. Cocchia and G. Ramponi. Design and real-time implementation
of a 3-D rational filter for edge preserving smoothing. IEEE Transactions on
Consumer Electronics, 43:1291–1300, 1997.

[24] A. Foi. Practical denoising of clipped or overexposed noisy images. Proceedings
of the European Signal Processing Conference (EUSIPCO), Lausanne, Switzer-
land, August 2008.

[25] A. Foi. Clipped noisy images: Heteroskedastic modeling and practical denoising.
Signal Processing, 89(12):2609–2629, 2009.

[26] X. Yang W. Lin G. Zhai, W. Zhang and Y. Xu. Efficient deblocking with
coefficient regularization, shape-adaptive filtering, and quantization constraint.
IEEE Transactions on Multimedia, 10(5):735–745, August 2008.

[27] O.G. Guleryuz. Weighted overcomplete denoising, 2003.

135

[28] O.G. Guleryuz. Weighted averaging for denoising with overcomplete dictio-
naries. IEEE Transactions on Image Processing, 16(12):3020–3034, December
2007.

[29] R.C. Kim H. Paek and S.U. Lee. On the pocs-based postprocessing technique
to reduce the blocking artifacts in transform coded images. IEEE Transactions
on Circuits and Systems for Video Technology, 8(3):358–367, June 1998.

[30] H. Hang, Y. Chou, and S. Cheng. Motion estimation for video coding standards.
Journal of VLSI Signal Processing Systems, 17(2/3):113–136, 1997.

[31] K.H. Höhne and M. Böhm. Processing and analysis of radiographic image
sequences. Image Sequence Processing and Dynumic Scene Analysis, 1983.

[32] M. Crouse J. Chou and K. Ramchandran. A simple algorithm for removing
blocking artifacts in block-transform coded images. Signal Processing Letters,
IEEE, 5(2):33–35, February 1998.

[33] B. Jähne. Spatio-Temporal Image Processing: Theory and Scientific Applica-
tions. Springer, 1 edition, 1993.

[34] S. Efstratiadis K. Katsaggelos J.C. Brailean, R.P. Kleihorst and R.L. Lagendijk.
Noise reduction filters for dynamic image sequences: A review. Proceedings of
the IEEE, 83(9):1272–1292, 1995.

[35] M.H. Wright J.C. Lagarias, J.A. Reeds and P.E. Wright. Convergence proper-
ties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of
Optimization, 9:112–147, 1998.

[36] A. Foi K. Dabov and K. Egiazarian. Video denoising by sparse 3D transform-
domain collaborative filtering. European Signal Processing Conference (EU-
SIPCO), Poznan, Poland, September 2007.

[37] V. Katkovnik K. Dabov, A. Foi and K. Egiazarian. Image denoising with block-
matching and 3D filtering. Proceedings of the International Society for Optical
Engineering (SPIE), 6064(30), 2006.

[38] V. Katkovnik K. Dabov, A. Foi and K. Egiazarian. Image denoising with block-
matching and 3D filtering. Proceedings in Electronic Imaging, San Jose, CA,
USA, 6064:606414.1–606414.12, January 2006.

[39] V. Katkovnik K. Dabov, A. Foi and K. Egiazarian. Image denoising by sparse
3D transform-domain collaborative filtering. IEEE Transactions on Image Pro-
cessing, 16(8):2080–2095, 2007.

[40] V. Katkovnik K. Dabov, A. Foi and K. Egiazarian. Joint image sharpening and
denoising by 3D transform-domain collaborative filtering. September 2007.

136

[41] V. Katkovnik K. Dabov, A. Foi and K. Egiazarian. Image restoration by sparse
3D transform-domain collaborative filtering. 6812(1D), January 2008.

[42] A. Leon-Garcia. Probability and Random Processes for Electrical Engineering.
Addison-Wesley, 2 edition, 1993.

[43] X. Li and Y. Zheng. Patch-based video processing: a variational bayesian
approach. IEEE Transactions on Circuits and Systems for Video Technology,
29:27–40, January 2009.

[44] Y. Chahir M. Ghoniem and A. Elmoataz. Nonlocal video denoising, simplifica-
tion and inpainting using discrete regularization on graphs. Signal Processing,
90(8):2445–2455, 2010.

[45] M. Mäkitalo and A. Foi. On the inversion of the anscombe transformation in
low-count poisson image denoising. Proceedings of the International Workshop
on Local and Non-Local Approximation in Image Processing (LNLA), pages
26–32, August 2009.

[46] S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic
Press, 3 edition, December 2008.

[47] R. Megret and D. DeMenthon. A survey of spatio-temporal grouping techniques.
Technical report, Institut National Des Sciences Appliquèes de Lyon, University
of Maryland, August 2002.

[48] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

[49] T. Nguyen and G. Strang. Wavelets and Filter Banks. Wellesley College, 2
edition, 1996.

[50] M. Protter and M. Elad. Image sequence denoising via sparse and redundant
representations. IEEE Transactions on Image Processing, 18(1):27–35, January
2009.

[51] P.R. Prucnal and B.E.A. Saleh. Transformation of image-signal-dependent noise
into image-signal-independent noise. Optics Letters, 6:316–318, July 1981.

[52] K. Egiazarian R. Öktem, L. Yaroslavsky and J. Astola. Transform based de-
noising algorithms: Comparative study, 1999.

[53] L. Yaroslavsky R. Öktem and K. Egiazarian. Signal and image denoising in
transform domain and wavelet shrinkage: a comparative study. European Signal
Processing Conference (EUSIPCO), Island of Rhodes, Greece, pages 2269–2272,
September 1998.

137

[54] V.V. Lukin N.N. Ponomarenko R. Öktem, K. Egiazarian and O.V. Tsymbal.
Locally adaptive DCT filtering for signal-dependent noise removal. EURASIP
Journal on Advances in Signal Processing, 2007:1–10, 2007.

[55] A. Sundararajan R. Samadani and A. Said. Deringing and deblocking DCT
compression artifacts with efficient shifted transforms. International Conference
on Image Processing. (ICIP)., 3:1799–1802, October 2004.

[56] D. Rusanovskyy and K. Egiazarian. Video denoising algorithm in sliding 3D
DCT domain. Proceedings of the International Conference on Advanced Con-
cepts for Intelligent Vision Systems (ACIVS), pages 618–625, 2005.

[57] P. Maragos S. Lefkimmiatis and G. Papandreou. Bayesian inference on multi-
scale models for poisson intensity estimation: Applications to photon-limited
image denoising. IEEE Transactions on Image Processing, 18(8):1724–1741,
August 2009.

[58] K. Seshadrinathan and A.C. Bovik. Motion tuned spatio-temporal quality as-
sessment of natural videos. IEEE Transactions on Image Processing, 19(2):335–
350, 2010.

[59] O.G. Sezer and Y. Altunbasak. Weighted average denoising with sparse or-
thonormal transforms. proceedings of the IEEE International Conference on
Image Processing (ICIP), Cairo, Egypt, 2009.

[60] S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Pub., 1997.

[61] Y.H. Chan S.W. Hong and W.C. Siu. Subband adaptive regularization method
for removing blocking effect. 2:2523, October 1995.

[62] H.R. Wu T. Chen and B. Qiu. Adaptive postfiltering of transform coefficients
for the reduction of blocking artifacts. IEEE Transactions on Circuits and
Systems for Video Technology, 11(5):594–602, May 2001.

[63] G. Bjontegaard T. Wiegand, G.J. Sullivan and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576, July 2003.

[64] K. Egiazarian V. Katkovnik, A. Foi and J. Astola. From local kernel to nonlocal
multiple-model image denoising. International Journal of Computer Vision,
July 2009.

[65] A. Wong and W. Bishop. Deblocking of block-transform compressed images
using phase-adaptive shifted thresholding. IEEE International Symposium on
Multimedia (ISM), pages 97–103, December 2008.

138

[66] R. Sukthankar Y. Ke and M. Hebert. Spatio-temporal shape and flow correla-
tion for action recognition. pages 1–8, 2007.

[67] A. Vetro H. Sun Y. Nie, H.S. Kong and K.E. Barner. Fast adaptive fuzzy post-
filtering for coding artifacts removal in interlaced video. IEEE International
Conference on Acoustics, Speech, and Signal Processing. (ICASSP), 2:993–996,
March 2005.

[68] Y. Zhang Y. Wang and J. Ostermann. Video Processing and Communications.
Prentice Hall, Upper Saddle River, NJ, USA, 1 edition, 2001.

[69] M. Yuen. Coding artifacts and visual distortions. Digital Video Image Quality
and Perceptual Coding, pages 87–112, 2006.

[70] A.C. Bovik Z. Wang and B.L. Evan. Blind measurement of blocking artifacts
in images. Proceedings of the International Conference on Image Processing
(ICIP), 3:981–984, 2000.

[71] D. Zhong and S. Chang. Spatio-temporal video search using the object based
video representation. 3:21, 1997.

	Abstract
	Acknowledgements
	Image Formation Models
	Preliminaries
	Gaussian Noise
	Poissonian Noise
	Noise in Camera Raw Data
	Clipping

	Qualitative Measures
	Mean Square Error
	Signal-to-Noise Ratio
	Peak-Signal-to-Noise Ratio

	Transform Based Image Representation
	Mathematical background
	Hilbert Spaces
	Linear Operators
	Bases
	Orthonormal Bases
	Non-Orthogonal Bases
	Frames

	Transform Operators
	Fourier Transform
	Discrete Cosine Transform
	Windowed Fourier Transform
	Wavelet Transform
	Multiresolution Approximations

	Denoising Methods
	Homoskedastic Filtering
	Poissonian Noisy Signals
	Clipped Noisy Signals

	Nonlocal Filtering
	Parametric Filtering
	Multipoint Filtering

	Block-Matching and 3D Filtering for Images and Videos
	BM3D
	Grouping
	Collaborative Filtering
	Aggregation
	Algorithm
	Three-dimensional Transforms

	V-BM3D
	Predictive-Search by Block-Matching
	Algorithm

	Block-Matching and 4D Filtering for Videos
	Introduction
	V-BM4D
	Observation Model
	Spatiotemporal Volumes
	Grouping
	Collaborative Filtering
	Aggregation

	Implementation
	Motion Vector and Trajectory Estimation
	Similarity Criterion
	Location Prediction
	Search Neighborhood

	Sub-volumes Extraction
	Algorithm
	Hard-thresholding Stage
	Wiener Filtering Stage

	Settings

	Deblocking
	Experimental Results
	Complexity
	Motion Estimation
	Hard-thresholding Stage
	Wiener-filtering Stage
	Comparative Analysis

	Conclusions

	Bibliography

