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A POST-STYLE PROOF OF COMPLETENESS THEOREM

FOR SYMMETRIC RELATEDNESS LOGIC S∗

Abstract

One of the logic defined by Richard Epstein in a context of an analysis of subject

matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we

can find some open problems concerning relatedness logic, a Post-style complete-

ness theorem for logic S is one of them. Our paper introduces a solution of this

metalogical issue.
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logic, Relating logic

1. The Epstein’s logics

In the case of most of non-classical interpretations of conditionals two as-
pects are considered as substantial:

1. logical values of an antecedent and a consequent

2. a relationship between an antecedent and a consequent.

The analysis of conditionals introduced by Richard Epstein in [2] are based
on ways of understanding of relationships postulated by 2. Different con-
cepts allow for the presentation of different implications. In order to define
truth conditions for these logical connectives some binary relations based
on a set of formulas with some constraints are introduced. But Epstein
introduces also a different approach. He considers some functions which
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assigns to each formula some set (set-assignments). Such functions are in-
tended to enable a notion of a content (subject matter) on a formal ground
to be represented. In this case it is important to consider relations between
contents of propositions, for instance one might be contained in another.
These two approaches are proved to be equivalent in the case of some log-
ics introduced by Epstein. He considered two families of logics defined by
classes of models with only one relation. Namely relatedness logics and
dependence logics [2, pp. 61–84, 115–143].

Epstein defined two relatedness logic. Symmetric Relatedness Logic S
is one of them. Among problems analysed in [2] there is a question about
a Post-style proof of completeness theorem for logic S. In this paper a
solution of this metalogical issue will be presented.

The Epstein’s approach via set-assigments appeared to be quite fruitful
for expressing many intensional logics like modal logics, intuitionistic logic,
many-valued logics or paraconsistent logics [2, pp. 145–287]. That is why
Stanisław Krajewski proposed to treat the analysis of Epstein as a bigger
project concerning logics of two aspects of propositions: their logical value
and contents (see [4, pp. 17–18]). The general concepts and the most
important results of such approach has been presented in [1], [2], [4] and
also [5].

A much different line is examined in [3] by Jarmużek and Kaczkowski.
In this case authors consider a logic defined by models with one binary
relation without any extra constraints. However, in this approach only two
intensional connectives: implication and conjunction were examined.

Now, more extensive research on this kind of logic, but with the lan-
guage consists of all Boolean connectives and intensional counterpart of
binary Boolean connectives, is being done, since any binary connective
can be interpreted by logical valuation of components and binary rela-
tion. Presently, we can distinguish various relational conditions that may
determine subclasses of the class of all binary relations of formulas, and
consequently define numerous logics of the considered kind. Any of such
logic is called relating logic.1 In consequence, Epstein approach is a special
case of relating logics program, since Epstein’s logics are special cases of
relating logics. Note that the converse dependence does not hold. It is

1The ideas concerning relating logic were developed during a logic seminar held in
Toruń, led by Tomasz Jarmużek and they are in various forms being studied, examined
and developed by Torunian PhD students, participating in that seminar.
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also worth noticing that an analysis of relating logics seems to be promis-
ing for a philosophical interpretation of relating connectives like causal or
temporal ones. Such issue should be a subject of the further investigations
concerning applications of relating logics.

2. Language of relatedness logic

Formulas of relatedness logic are build by means of propositional letters
p1, p2, . . ., three logical connectives ¬,∧,→ and parentheses ), (. A set of
propositional letters is denoted by Pl. A set For of formulas is the smallest
set Σ ⊆ Pl such that: if A ∈ Σ, then ¬A ∈ Σ and if A,B ∈ Σ, then
(A ∧ B), (A → B) ∈ Σ. We will omit the outermost parentheses. In the
case of formulas build by an iteration of ∧ we shall agree to associate to the
left and write, for instance, A∧B∧C instead of (A∧B)∧C. In some cases
we use parentheses ], [ in order to make some formulas and metalogical
expressions more readable. Additionally to simplify some of formalism
we introduce the following abbreviations for every A,B,A1, . . . , An ∈ For

(n ≥ 2):

A ↔ B := (A → B) ∧ (B → A)

A1 ∨ . . . ∨An := ¬(¬A1 ∧ . . . ∧ ¬An)

A # B := A → (B → B)

A ⊃ B := ¬(A ∧ ¬B)

A ≡ B := ¬(A ∧ ¬B) ∧ ¬(B ∧ ¬A).

By the complexity of a given formula we understand an output of
function c : For −→ N defined in a standard way, wherein c(A) = 0, if
A ∈ Pl. A notion of subformula of a given formula is determined by
function sub : For −→ P(For) also defined in a standard way. In order
to refer to propositional letters of a given formula we use the following set
pl(A) = sub(A) ∩ Pl, for every A ∈ For.

3. Notion of relatedness

According to Epstein’s analysis of relatedness there are at least two good
candidates for formal attributes of a content relationship. The first one is
reflexivity, motivated by the obvious fact that any content is identical with
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itself. The second one is to be independent from logical connectives, which
is motivated by the fact that connectives are syncategorematic. Another
intuitive attribute might be symmetry. In this way, we come to the concept
of symmetric relatedness relation:

Definition 3.1. Relation R ⊆ For × For is symmetric relatedness relation
(for short: srr) iff R fulfils the following conditions for every A,B,C ∈
For:

R(A,A) (re)

R(A,¬B) iff R(A,B) (srr1)

R(A,B ∧ C) iff R(A,B → C) (srr2)

R(A,B ∧ C) iff [R(A,B) or R(A,C)] (srr3)

R(A,B) iff R(B,A). (sym)

In the monograph [2, pp. 65–68] it is presented how by means of srr
one can express contents relationships recognised as relationships between
propositions due to a common subject matter. For a simple illustration of
a such relationship let us consider the following propositions:

1. If John is interested in logic, then John knows Post’s proof of com-
pleteness for Classical Propositional Logic

2. John considers a notion of normal forms for formulas of Classical
Propositional Logic.

There are many subject matters which are shared by 1 and 2, one of
them might be expressed as metalogical properties of Classical Proposi-
tional Logic.

The next fact determines a way of extending reflexive and symmetric
relations defined on Pl to srr (see [2, pp. 67–68]).

Fact 3.2. Let Q ⊆ Pl × Pl be reflexive and symmetric relation. Let R ⊆
For × For be an extension of Q on For defined for every A,B ∈ For in the
following way:

R(A,B) iff ∃x∈pl(A)∃y∈pl(B)Q(x, y). (⋆)

Then R is srr.

Proof: Assume all hypothesis. Let A,B,C ∈ For.

• Ad. (re). Let a ∈ pl(A). By reflexivity of Q, Q(a, a). Therefore, by
(⋆), R(A,A).
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• Ad. (srr1). We have: R(A,¬B), by (⋆), iff ∃x∈pl(A)∃y∈pl(¬B)Q(x, y),
by equality pl(¬A) = pl(A) and classical logic, iff
∃x∈pl(A)∃y∈pl(B)Q(x, y), by (⋆), iff R(A,B).

• Ad. (srr2). We have: R(A,B ∧ C), by (⋆), iff ∃x∈pl(A)∃y∈pl(B ∧C)

Q(x, y), by equality pl(B ∧ C) = pl(B → C) and classical logic, iff
∃x∈pl(A)∃y∈pl(B→C)Q(x, y), by (⋆), iff R(A,B → C).

• Ad. (srr3). We have: R(A,B ∧ C), by (⋆), iff ∃x∈pl(A)∃y∈pl(B ∧C)

Q(x, y), by equality pl(B ∧ C) = pl(B) ∪ pl(C), iff
∃x∈pl(A)∃y∈pl(B)∪ pl(C)Q(x, y), by definition of union and classical lo-
gic, iff [∃x∈pl(A)∃y∈pl(B)Q(x, y) or ∃x∈ pl(A)∃y∈pl(C)Q(x, y)], by (⋆), iff
[R(A,B) or R(A,C)].

• Ad. (sym). We have: R(A,B), by (⋆), iff ∃x∈pl(A)∃y∈pl(B)Q(x, y), by
symmetry of Q and classical logic, iff ∃y∈pl(B)∃x∈pl(A)Q(y, x), by (⋆),
iff R(B,A).

It is easy to see that an extension received by condition (⋆) is unique.

4. Symmetric Relatedness Logic S

Definition 4.1. A model of relatedness logic based on srr (or simply a
model) is the following ordered pair 〈v,R〉 such that:

• v ∈ {1, 0}Pl is a valuation of propositional letters

• R ⊆ For × For is srr.

A class of models is denoted by M. Relation R (resp. valuation v) of model
M ∈ M is denoted by RM (resp. vM). Now we define a notion of a truth
in a model:

Definition 4.2. Let M ∈ M and A ∈ For. A is a truth in M (for short:
M |= A) iff for every B,C ∈ For:

vM(A) = 1, if A ∈ Pl

M 6|= B, if A := ¬B

M |= B & M |= C, if A := B ∧ C

[M 6|= B or M |= C] & RM(B,C), if A := B → C.

For every Σ ⊆ For and M ∈ M in the case ∀A∈ΣM |= A we will write
M |= Σ.
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It is easy to observe that by Definition 4.2 the following abbreviation
A ∨ B, A ⊃ B, A ≡ B denote respectively extensionally interpreted dis-
junction, conditional and biconditional.

Let us notice that formula A # B plays a special role in Epstein’s
investigations. It enables to express srr on the ground of the language of
relatedness logic (see [2, pp. 77–78]):

Fact 4.3. Let M ∈ M and A,B ∈ For. Then: M |= A # B iff RM(A,B).

Proof: Assume all hypothesis
„=⇒” Let M |= A # B, so M |= A → (B → B). Hence, RM(A,B →

B). Thus, by (srr2), (srr3) we get RM(A,B).
„⇐=” Let RM(A,B). Hence, by (srr2), (srr3), RM(A,B → B). By

(re) and because either M |= B or M 6|= B, we get M |= B → B. Hence,
either M 6|= A or M |= B → B. Therefore, M |= A → (B → B). Thus,
M |= A # B.

Definition 4.4. Let Σ ∪ {A} ⊆ For. Then:

• A is a semantic consequence of Σ in S (nota.: Σ |=S A) iff ∀M∈M(M
|= Σ =⇒ M |= A).

• A is a tautology in S (nota.: |=S A) iff ∅ |=M A.

In the next section we remind Hilbert-style formulation of S.

5. Axiomatization of logic S

Axiom schemata of logic S are the following formulas, for every A,B,C ∈
For (see [2, p. 80]):

A # A (ax1)

(B # A) → (A # B) (ax2)

(A # ¬B) ↔ (A # B) (ax3)

(A # (B → C)) ↔ ((A # B) ∨ (A # C)) (ax4)

(A # (B ∧ C)) ↔ (A # (B → C)) (ax5)

(A ∧B) → A (ax6)

A → (B → (A ∧B)) (ax7)

(A ∧B) → (B ∧A) (ax8)

A ↔ ¬¬A (ax9)

(A → B) ↔ (¬(A ∧ ¬B) ∧ (A # B)) (ax10)
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A → (¬(A ∧B) → ¬B) (ax11)

¬(A ∧B) → (¬(C ∧ ¬B) → ¬(A ∧ C)) (ax12)

¬((A → B) ∧ (A ∧ ¬B)). (ax13)

Schemata (ax1)–(ax5) are intended to give a syntactic characterization of
srr. The rest of schemata characterize logical connectives in logic S. The
only rule of inference is modus ponens:

A,A → B

B
. (MP)

We have the standard definition of the relation of syntactic consequence
for S:

Definition 5.1. Let Σ ∪ {A} ⊆ For. Then:

• A is a syntactic consequence of Σ in S (nota.: Σ |−S A) iff there is
a finite sequence of formulas B1, . . . , Bn such that Bn = A and for
every i ≤ n at least one of the following conditions holds: (1) Bi :=
(ax1), . . . , (ax13), (2) Bi ∈ Σ or (3) ∃j,k<iBk := Bj → Bi.

• A is a thesis in S (nota.: |−S A) iff ∅ |−S A.

One of the metalogical problems of logic S raised by Epstein concerns
a proof of completeness by means of Post’s method [2, s. 81]. He no-
ticed, however, that a non-constructive proof of completeness might be re-
ceived by a simple modifcation of a proof presented for Dependence Logic D
[2, pp. 81, 126–129].

Let us notice that for every axiom schemata A, |=S A and for every
A,B ∈ For, A,A → B |=S B. Hence we have, the following fact:

Fact 5.2 (Theorem of weak soundenss for S). Let A ∈ For. Then: |−S

A =⇒ |=S A.

Let |−CPL be the relation of syntactic consequence for {¬,∧}-fragment
of Classical Propositional Logic. According to an observation of Epstein
(see [2, pp. 74–75]) we should be able to prove the following fact:

Fact 5.3. Let A ∈ For. Then: |−CPL A =⇒ |−S A.

Let us notice that the following formulas are these in logic S:

A ⊃ (A ∧A) (1)

(A ∧B) ⊃ A (2)

(A ⊃ B) ⊃ (¬(B ∧ C) ⊃ ¬(C ∧A)). (3)
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Moreover the following rule of modus ponens for ⊃ is derivable:

A,A ⊃ B

B
. (4)

Formulas (1)–(3) with rule (4) (for formulas A,B,C build only by means
of ¬,∧) enable to determine relation |−CPL (see [6, pp. 12–46, 54–76]).

6. Normal forms of formulas

The set of literals is defined in a standard way Li := Pl ∪ nPl, where
nPl := {¬A ∈ For | A ∈ Pl}. Additionally we define a set of related propo-
sitional letters rPl = {A # B ∈ For | A,B ∈ Pl} and a set of non-related
propositional letters nrPl = {¬(A # B) ∈ For | A,B ∈ Pl}.

Definition 6.1. A ∈ For is elementary disjunction (for short: ed) in the
following cases:

(1) A ∈ Li ∪ rPl ∪ nrPl

(2) A := B ∨ C, where B is ed, and C ∈ Li ∪ rPl ∪ nrPl.

Remark 6.2. Let us notice that by Definition 6.1 A is ed iff A := B1 ∨
. . .∨Bn (n ∈ N), where for any i ≤ n, Bi ∈ Li∪ rPl∪nrPl. The equivalence
might be also used in order to define ed.

A conjunctive normal form is defined in a standard way:
Definition 6.3. A ∈ For is in conjunctive normal form (for short: cnf) in
the following cases:

(1) A is ed

(2) A := B ∧ C, where B is in cnf and C is ed.

Remark 6.4. Similarly to Remark 6.2, let us notice that by Definition 6.3
A is in cnf iff A := B1 ∧ . . . ∧ Bn (n ∈ N), where for any i ≤ n, Bi is ed.
The equivalence might be also used in order to define cnf.

Let us define a function that enables to refer to an «opposite formula»
of any:
Definition 6.5. Let ′ : Li∪ rPl∪ nrPl −→ Li∪ rPl∪ nrPl be a function such
that, for every A ∈ Li ∪ rPl ∪ nrPl we put:

A′ =

{

¬A, if A ∈ Pl ∪ rPl

B, if A ∈ nPl ∪ nrPl & A := ¬B.

Let us notice that:
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• A′ is ed

• ⊢S ¬A ≡ A′

• ⊢S (¬A # C) ≡ (A′ # C), for every C ∈ For

• A′′ = A.

We also define a function that enables to refer to an «antecedent» or
«consequent» of the given formula:

Definition 6.6. Let a : Li∪rPl∪nrPl −→ Li∪rPl∪nrPl, c : Li∪rPl∪nrPl −→
Li ∪ rPl ∪ nrPl be functions such that, for every A ∈ Li ∪ rPl ∪ nrPl we put:

Aa =











A, if A ∈ Pl

A′, if A ∈ nPl

B, if A ∈ rPl ∪ nrPl & [A := B # C or A := ¬(B # C)].

Ac =











A, if A ∈ Pl

A′, if A ∈ nPl

B, if A ∈ rPl ∪ nrPl & [A := C # B or A := ¬(C # B)].

Let us notice that:

• Aa, Ac are ed

• ⊢S (A # C) ≡ ((Aa # C) ∨ (Ab # C)), for every C ∈ For.

Fact 6.7. Let A ∈ For. Then, there is B ∈ For in cnf such that: |−S A ≡ B

and for every C ∈ For, |−S (A # C) ≡ (B # C).

Proof: We use induction on complexity of formulas.
Basis. Let A ∈ For and c(A) = 0. Then by Definition 6.1 A is ed,

hence by Definition 6.3 is in cnf. By Fact 5.3, for every C ∈ For we have,
|−S C ≡ C.

Inductive hypothesis. Let n∈N. Suppose for every C∈For, if c(C)≤n,
then the fact holds for C.

Inductive step. Let A ∈ For and c(A) = n+ 1. Then:

• Let A := ¬D. By the inductive hypothesis for some B ∈ For which is
in cnf we have that: |−S D ≡ B (1) and for every C ∈ For, |−S (D #

C) ≡ (B # C) (2).
B is in cnf. Hence, by Remark 6.2 and 6.4: B := (B11 ∨ . . . ∨
Bn1

) ∧ . . . ∧ (B1m ∨ . . . ∨ Bnm
), where for every i ≤ n and j ≤ m,

Bij ∈ Li∪ rPl∪ nrPl. Let B := (B′
11 ∨B′

12 ∨ . . .∨B′
1m)∧ (B′

21 ∨B′
22 ∨

. . . ∨B′
2m) ∧ . . . ∧ (B′

n1
∨B′

n2
∨ . . . ∨B′

nm
). Hence, B is in cnf.
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Let us notice that, by Fact 5.3: |−S ¬B ≡ [(B′
11 ∧ . . . ∧ B′

n1
) ∨ . . . ∨

(B′
1m ∧ . . .∧B′

nm
)] (3) and |−S [(B′

11 ∧ . . .∧B′
n1
)∨ . . .∨ (B′

1m ∧ . . .∧

B′
nm

)] ≡ B (4). Hence, by Fact 5.3 (transitivity of ≡), (1), (3), (4)

and (MP) we get: |−S ¬D ≡ B.
Let us notice that, for every C ∈ For: |−S [(D # C) ≡ (B # C)] ⊃
[(¬D # C) ≡ (¬B # C)] (5) and |−S (¬B # C) ≡ (B # C) (6).
Hence, by Fact 5.3 (transitivity of ≡), (2), (5), (6) and (MP) we get:
|−S (¬D # C) ≡ (B # C).

• Let A := D ∧ E. By the inductive hypothesis for some B0, B1 ∈ For

which are in cnf we have that: |−S D ≡ B0 (1), for every C ∈ For,
|−S (D # C) ≡ (B0 # C) (2), |−S E ≡ B1 (3) and for every C ∈ For,
|−S (E # C) ≡ (B1 # C) (4).
B0, B1 are in cnf. Hence, by Remark 6.2 and 6.4: B0 := (C11 ∨ . . . ∨
Cn1

) ∧ . . . ∧ (C1m ∨ . . . ∨ Cnm
), where for every i ≤ n and j ≤ m,

Cij ∈ Li ∪ rPl ∪nrPl and B1 := (D11∨. . .∨Dk1
)∧. . .∧(D1l∨. . .∨Dkl

),
where for every i ≤ k and j ≤ l, Dij ∈ Li ∪ rPl ∪ nrPl. Let B2 :=
(C11 ∨ . . .∨Cn1

)∧ . . .∧ (C1m ∨ . . .∨Cnm
)∧ (D11 ∨ . . .∨Dk1

)∧ . . .∧
(D1l ∨ . . . ∨Dkl

). Hence, B2 is in cnf.
Let us notice that, by Fact 5.3: |−S (D ≡ B0) ⊃ [(E ≡ B1) ⊃
((D ∧ E) ≡ (B0 ∧ B1))] (5) and |−S (B0 ∧ B1) ≡ B2 (6). Hence,
by Fact 5.3 (transitivity of ≡), (1), (3), (5), (6) and (MP) we get:
|−S (D ∧ E) ≡ B2.
Let us notice that, for every C ∈ For: |−S [(D # C) ≡ (B0 # C)] ⊃
[((E # C) ≡ (B1 # C)) ⊃ (((D ∧E) # C) ≡ ((B0 ∧B1) # C))] (7)
and |−S ((B0 ∧ B1) # C) ≡ (B2 # C) (8). Therefore, by Fact 5.3
(transitivity of ≡), (2), (4), (7), (8) and (MP) we get: |−S ((D∧E) #
C) ≡ (B2 # C).

• Let A := D → E. By the inductive hypothesis for some B0, B1 ∈ For

which are in cnf we have that: |−S D ≡ B0 (1), for every C ∈ For,
|−S (D # C) ≡ (B0 # C) (2), |−S E ≡ B1 (3) and for every C ∈ For,
|−S (E # C) ≡ (B1 # C) (4).
B0, B1 are in cnf. Hence, by Remark 6.2 and 6.4: B0 := (C11 ∨
. . . ∨ Cn1

) ∧ . . . ∧ (C1m ∨ . . . ∨ Cnm
), where for every i ≤ n and

j ≤ m, Cij ∈ Li ∪ rPl ∪ nrPl. Also by Remark 6.2 and 6.4: B1 :=
(D11∨. . .∨Dk1

)∧. . .∧(D1l∨. . .∨Dkl
), where for every i ≤ k and j ≤ l,

Dij ∈ Li∪rPl∪nrPl. Let B0 := (C ′
11∨. . .∨C

′
1m)∧. . .∧(C ′

n1
∨. . .∨C ′

nm
).

Hence, B0 is in cnf. Let B2 := (C ′
11 ∨ . . . ∨ C ′

1m ∨D11 ∨ . . . ∨Dk1
) ∧
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(C ′
11∨. . .∨C

′
1m∨D12∨. . .∨Dk2

)∧. . .∧(C ′
n1
∨. . .∨C ′

nm
∨D1l∨. . .∨Dkl

).
Formula B2 is also in cnf.
Let us notice that, by the Fact 5.3: |−S (¬B0 ∨ B1) ≡ (B0 ∨ B1) (5)
and |−S (B0 ∨ B1) ≡ B2 (6). Hence, by Fact 5.3 (transitivity of ≡),
(5), (6) and (MP) we get: |−S (¬B0 ∨B1) ≡ B2 (7).
For every i ≤ n and j ≤ m, Cij ∈ Li ∪ rPl ∪ nrPl and for every i ≤ k

and j ≤ l, Bij ∈ Li ∪ rPl ∪ nrPl. Let B3 = (Ca
11 # Da

11) ∨ (Ca
11 #

Dc
11) ∨ (Cc

11 # Da
11) ∨ (Cc

11 # Dc
11) ∨ . . . ∨ (Ca

nm
# Da

kl
) ∨ (Ca

nm
#

Dc
kl
) ∨ (Cc

nm
# Da

kl
) ∨ (Cc

nm
# Dc

kl
). Hence, B3 is ed.

Let us notice that: |−S (B0 # B1) ≡ B3 (8). Hence, by Fact 5.3, (7),
(8) and (MP) we get: |−S [(¬B0 ∨B1)∧ (B0 # B1)] ≡ (B2 ∧B3) (9).
Let B4 := (C ′

11 ∨ . . . ∨ C ′
1m ∨ D11 ∨ . . . ∨ Dk1

) ∧ (C ′
11 ∨ . . . ∨ C ′

1m ∨
D12 ∨ . . .∨Dk2

)∧ . . .∧ (C ′
n1

∨ . . .∨C ′
nm

∨D1l ∨ . . .∨Dkl
)∧ [(Ca

11 #

Da
11) ∨ (Ca

11 # Dc
11) ∨ (Cc

11 # Da
11) ∨ (Cc

11 # Dc
11) ∨ . . . ∨ (Ca

nm
#

Da
kl
) ∨ (Ca

nm
# Dc

kl
) ∨ (Cc

nm
# Da

kl
) ∨ (Cc

nm
# Dc

kl
)]. Therefore, B4

is in cnf.
Let us notice that, by Fact 5.3: |−S (B2 ∧ B3) ≡ B4 (10). Hence, by
Fact 5.3 (transitivity of ≡), (9), (10) and (MP) we get: |−S [(¬B0 ∨
B1) ∧ (B0 # B1)] ≡ B4 (11). We also have that, for every C ∈ For,
|−S ((B0 ∧B1) # C) ≡ (B4 # C) (12).
Let us notice that: |−S [(E # B0) ≡ (B1 # B0)] ⊃ [(B0 # E) ≡
(B0 # B1)] (13). Hence, by Fact 5.3 (transitivity of ≡), (2), (4),
(13), and (MP) we get: |−S (D # E) ≡ (B0 # B1) (14).
Let us notice that: |−S [(D # E) ≡ (B0 # B1)] ⊃ [(D ≡ B0) ⊃
((E ≡ B1) ⊃ ((D → E) ≡ ((¬B0 ∨B1) ∧ (B0 # B1))))] (15). Hence,
by (1), (3), (14), (15) and (MP): |−S (D → E) ≡ ((¬B0∨B1)∧(B0 #

B1)) (16). Hence, by Fact 5.3 (transitivity of ≡), (11), (16) and (MP)
we get: |−S (D → E) ≡ B4.
Let us notice that, by Fact 5.3: |−S [(D # C) ≡ (B0 # C)] ⊃ [((E #

C) ≡ (B1 # C)) ⊃ ((D # C) ∨ (E # C)) ≡ ((B0 # C) ∨ (B1 #

C)))] (16). For every C ∈ For we have: |−S ((D → E) # C) ≡ ((D #

C)∨ (E # C)) (17) and |−S ((B0 # C)∨ (B1 # C)) ≡ ((B0∧B1) #
C) (18). Hence, by Fact 5.3 (transitivity of ≡), (2), (4), (16), (17),
(18) and (MP) we get: |−S ((D → E) # C) ≡ ((B0 ∧B1) # C) (19).
Hence, by Fact 5.3 (transitivity of ≡), (12), (19) and (MP) we get:
|−S ((D → E) # C) ≡ (B4 # C).

Lemma 6.8. Let A := B1∨ . . .∨Bn be ed (n ∈ N). Then: |=S A iff at least
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one of the following conditions hold:

(1) Bk := pi and Bl := ¬pi, for some k, l ≤ n and i ∈ N

(2) Bk := pi # pi, for some k ≤ n and i ∈ N

(3) Bk := pi # pj and Bl := ¬(pi # pj), for some k, l ≤ n and i, j ∈ N.

Proof: Assume all hypothesis.
„=⇒” Suppose that non of the conditions (1)–(3) holds (⋆). We define

a model M = 〈v,R〉 in the following way:

1. Let i ∈ N we put:

v(pi) =

{

1, if ¬pi ∈ sub(A),

0, if pi ∈ sub(A).

2. Let i, j ∈ N and i 6= j. Let Q ⊆ Pl×Pl be the smallest relation which
fulfils the following conditions:

• pi # pj ∈ sub(A) =⇒∼Q(pi, pj)

• ¬(pi # pj) ∈ sub(A) =⇒ Q(pi, pj)
• Q(pi, pi)
• Q(pi, pj) iff Q(pj , pi).

Q is obviously reflexive and symmetric. We extend Q on For in the
following way for every A,B ∈ For:

R(A,B) iff ∃x∈pl(A)∃y∈pl(B)Q(x, y).

By Fact 3.2 R is srr. Let i, j ∈ N and i 6= j. Let us consider the following
cases:

• Suppose Bk := pi, for some k ≤ n. By the definition of vM we get
M 6|=S pn.

• Suppose Bk := ¬pn, for some k ≤ n. By the definition of vM we get
M 6|=S ¬pn.

• By (⋆) it is excluded that: Bk = pi and Bl := ¬pi, for some k, l ≤ n.

• Suppose Bk := pi # pj , for some k ≤ n. By the definition of RM we
get M 6|=S pi # pj .

• Suppose Bk := ¬(pi # pj), for some k ≤ n. By the definition of RM

we get M 6|=S ¬(pi # pj).

• By (⋆) it is excluded that: Bk := pi # pj , for some k ≤ n and it
is excluded that: Bk := pi # pj and Bl := ¬(pi # pj), for some
k, l ≤ n.

Therefore, M 6|=S A, so by Definition 4.4 6|=S A.
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„⇐=” Suppose that at least one of the conditions (1)–(3) holds. Let
M ∈ M. If condition (1) or (3) holds then, by Definition 4.2, M |= A. If
condition (2) holds and Bk := pi # pi, for some k ≤ n and i ∈ N. By (re)
RM(pi, pi). Therefore, by Fact 4.3, M |= pi # pi. Hence, by Definition
4.2, M |= A. Therefore, M |=S A. Thus, by Definition 4.4, |=S A.

Lemma 6.9. Let A := B1∧ . . .∧Bn be in cnf (n ∈ N). Then: |=S A iff |=S

Bk, for every k ≤ n.

Proof: Assume all hypothesis. By Definition 4.2: |=S B1∧. . .∧Bn iff |=S

Bk, for every k ≤ n.

7. Completeness theorem for logic S

Theorem 7.1 (Completeness theorem for logic S). Let A ∈ For. Then:
|=S A =⇒ |−S A.

Proof: Let A ∈ For. Suppose |=S A (1). By Fact 6.7 for some B ∈ For in
cnf we have |−S A ≡ B (2). By Fact 5.2 we get |=S A ≡ B (3). Hence, by
(1) and (3), |=S B. Moreover, B is in cnf. Let n ∈ N and B := B1∧. . .∧Bn,
where for every i ≤ n, Bi is ed. Let i ≤ n, by Lemma 6.9, |=S Bi. We also
have that Bi := C1i ∨ . . . ∨ Cmi

, for some m ∈ N, and for every k ≤ m,
Cki

∈ Li∪ rPl∪nrPl. By Lemma 6.8 at least one of the following conditions
holds:

(a) Cki
:= pj and Cli := ¬pj , for some k, l ≤ m and j ∈ N

(b) Cki
:= pj # pj , for some k ≤ m and j ∈ N

(c) Cki
:= pj # ph and Cli := ¬(pj # ph), for some k, l ≤ m and

i, h ∈ N.

Suppose condition (a) holds and Bi := pj ∨ ¬pj ∨ C, where C is not
important part of Bi. Let us notice that |−S pj ∨ ¬pj (4). Moreover, for
every D,E ∈ For we have that |−S D → (D ∨ E) (5). Hence, by (4) and
(5), |−S Bi.

Suppose condition (b) holds and Bi := pj # pj ∨ C, where C is not
important part of Bi. Let us notice that |−S pj # pj . We reason as in the
case of condition (a).

Suppose condition (c) holds and Bi := (pj # ph) ∨ ¬(pj # ph) ∨ C,
where C is not important part of Bi. Let us notice that |−S (pj # ph) ∨
¬(pj # ph). We reason as in the case of condition (a).
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Hence, |−S Bi, for every i ≤ n (6). Let us also note that |−S D → (E →
(D ∧E)) (7). By (6) and (7) we get |−S B1 ∧ . . .∧Bn. Hence, |−S B. And
therefore, by (2), |−S A.
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