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ABSTRACT 

This dissertation presented a study on the future-proof IEC 61850 communication protocol and 

its implications for substation engineering. The advent of contemporary technologies has resulted 

in the decentralization of substation architecture. Over the last 15 years the IEC 61850 protocol 

has been contributing to the refurbishment and upgrade of conventional substations. As the aging 

infrastructure of these centres has been slowly replaced, the hybrid substation has begun to 

emerge. These substations have been known to contain tedious combinations of different 

proprietary protocols all attempting to operate within the same substation network. Therefore, the 

introduction of IEC 61850 to old substations can have an effect on automation, protection and 

communication within the substations local environment. In this dissertation a multi-protocol 

substation communication network and SCADA was established using DNP3, Modbus RTU and 

IEC 61850. A communication network was developed between a physical nexus of connected 

IEDs and end equipment. It was from this model that the operation of a typical substation 

automation system was analysed. This critical assessment focussed on the workings of the remote- 

control points as well as the response of end equipment under fault conditions such as breaker 

fail, overcurrent and earth fault. In addition to the operation of the multi-protocol model, 

individual inferences could be drawn from the implementation of the aforementioned protocols 

themselves. These deductions related to the significance of time stamped data, the reduction of 

cross-wired copper cables within substations, the obvious limitations of serial RS 485 Modbus 

RTU and the convenient benefits of ‘virtual’ networks. 

It was during the main research phase of this study that the principal benefits of the IEC 61850 

standard were readily enforced and interpreted. Furthermore, special consideration was given to 

the implications of the GOOSE message class on substation protection. It was here that GOOSE-

based breaker fail protection, arc-flash protection and blocking response were investigated. As a 

result of the implementation of these protection schemes it was determined that GOOSE 

messaging and by extension the IEC 61850 standard provides optimisation, economic benefits as 

well as revolutionary advancements in protection and automation to substations. The IEC 61850 

substation standard is current, universal, promotes the interoperability between devices and is a 

leading contributor in the development of smart grids. Therefore, IEC 61850 is a standard of the 

present and of the future. 
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 INTRODUCTION 

HE electrical engineering principles that govern the way modern substations are designed 

and define the way protection and automation equipment communicates have evolved 

substantially in the early 21st century. The term ‘protection’, within the context of this dissertation, 

refers to the ability of a device to detect a potentially dangerous electrical anomaly, such as fault 

current, and immediately or otherwise isolate the vulnerable constituents of a power system [1], 

[2]. The failure of a piece of protective equipment, such as a relay, to operate under fault 

conditions can cause instability, system outages, damage to expensive equipment as well as 

danger to human life [1], [2]. 

The design of protection for power systems and substations worldwide has continued to change, 

develop and evolve as technology has improved [2]–[4]. In times past, the numerous media, 

mechanisms and methods of communication between equipment within substations have 

presented an economic and technical obstacle to engineers, vendors and utilities on a global scale 

[3], [4]. Over time substation equipment like relays and Remote Terminal Units (RTUs) have 

become even more technically advanced, smart and complex with many different functions 

incorporated onto one physical device [5]. As a result of this innovation, countless communication 

protocols have been developed by vendors to help transfer pieces of information between their 

own devices and products [4], [6]. Therefore, it is common that a variety of different proprietary 

protocols exist on a particular substation network to serve many different functions [4], [6]. 

However, complex combinations of these protocols can make designing a substation automation 

system (SAS) and integrating devices from different manufacturers a tedious task [4], [6]–[7]. A 

new standard of communication from the International Electrotechnical Commission (IEC) was 

needed to make the design, protection, control and automation of a substation more efficient and 

generic within its local environment. It was in this dissertation that the relatively young IEC 61850 

substation communication protocol was practically and theoretically researched. Thus, in doing 

so it was used as a technical benchmark for both past and present standards in industry. 

Modern relays are typically intelligent microprocessor-based devices that are, in the most basic 

sense, used to control and trip electrical circuit breakers upon sensing, for example, a fault current 

at a particular point on a system [1]–[3]. In addition, these intelligent relays have different levels 

of time-response that enable them to clear abnormalities like under- and over- current, under- and 

over- voltage and fluctuations in the grid frequency before any damage is incurred on a system 

[2]. Hence, when a fault occurs and an abnormal electrical quantity is sensed, a trip logic is created 

by the relay and sent to a circuit breaker which interrupts the flow of power to the connected 

equipment preventing any damage and or other related consequences within the appropriate 

timeframe [2]. These newer, faster and more intelligent relays have now begun to use TCP/IP 

T 
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Ethernet-based protocols such as the IEC 61850 substation communication standard. This new 

protocol is henceforth replacing the older Ethernet and serial-based legacy protection schemes 

that use Modbus RTU and DNP3 to transfer data between devices and their peers [2], [5]. 

Today’s relays are often referred to as cyber-physical devices since their design is both digital 

and programmable in nature [2], [5]. They have been developed to perform many advanced 

peripheral functions that act to improve the coordination, security and reliability of a power 

system [1], [4]. These functions may include metering, automation, protection, fault finding and 

recording as well as control and monitoring [2], [4]–[6]. Hence, such relays are commonly 

referred to as Intelligent Electronic Devices (IEDs) [2]. It was before the advent of the IEC 61850 

standard that IEDs communicated using their very own proprietary TCP/IP, serial or hardwire-

based communication techniques [4], [6]–[7]. Substations became plagued with complicated 

combinations of both alike and dissimilar communication standards. This posed a technical 

barrier to both utilities and engineers alike. However, the IEC 61850 protocol allows existing 

relays to communicate with their neighbouring IED’s or to a master control unit within the 

substation regardless of the manufacturer or vendor [2], [4]. 

The IEC 61850 standard defines the layer, method and protocol for communication between 

relays and other IEDs [5]. This allows them to interoperate with other IEC 61850 compliant pieces 

of equipment, tools and systems. It also introduces new data objects and formats as well as a 

Substation Configuration Language, commonly referred to as SCL [2], [4]. This protocol has been 

instrumental in the development of ‘smarter grids’ which is resulting in the subsequent and swift 

death of legacy, serial and other less favourable TCP/IP protocol-based protection schemes [2], 

[5]. The IEC 61850 standard has allowed engineers to consider innovative designs for smarter 

substations and to repurpose old equipment within the confines of this new protocol [2], [3]. 

Furthermore, the manufacturers of IEC 61850-compliant IEDs now begun to offer gateways or 

communication shells that allow the modern IEDs of today to interface and connect to present 

and or older legacy-based systems [3]. This has resulted in the proliferation of ‘hybrid’ 

substations. 

Historically, each of the protection, control and monitoring devices within a substation have 

required different proprietary communication links in order to transfer important data and 

commands [4], [6]–[7]. This means that communication systems relied on networks of relays 

using links with EIA-232 point to point and EIA-485 multi-drop communication ports [4]. The 

speed of data transfer and information exchange over these links was around 38.4 kilobits per 

second [4]. Two of the legacy communication protocols that were used included DNP3 and 

Modbus RTU which over time also migrated to the TCP/IP ethernet-based communication 

medium [4], [6].  
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Alternatively, the new IEC 61850 standard defines several different interfaces that can be used 

to communicate between equipment within the substation using the shared physical connections, 

Ethernet links and the substation Local Area Network (LAN) [5], [6]. The Ethernet 

communication architectures on which the IEC 61850 protocol is based can be either 10 or 100 

Mbit/second for the low to high speed processing or transfer of information [3], [4]. This makes 

IEC 61850 much faster than EIA-232 or EIA-485 based serial protection schemes [3], [4]. 

Henceforth, the interconnection of IEDs is now standardized regardless of the manufacturer or 

vendor. This has had significant cost and maintenance advantages over older legacy protection 

systems that require mostly hardwire-based techniques to connect and interface between 

different relays based on a physical response from fuse elements and induction disks [2]. 

Therefore, the IEC 61850 communication standard defines the future of substation automation, 

monitoring, control and protection. 

1.1 Research proposal 

This study aimed to experimentally investigate the relatively new IEC 61850 substation protocol 

and conduct research into the implications of this protocol on substation engineering. The 

important aspects of this study included the effects of communication protocols like Modbus 

RTU, DNP3 and IEC 61850 on the design, protection, automation and interaction of devices 

within a typical substation. One of the most important benefits of the IEC 61850 standard lies in 

its ability to allow relays of different vendors to react in a collaborative fashion in response to an 

electrical anomaly like fault current [1]. This new protocol also allows the IED’s, that sense fault 

current and trip electrical circuit breakers, to inform their peers of the protective actions that were 

undertaken [1]. Hence, this refers to the publisher-subscriber concept of the IEC 61850 standard. 

An important consideration within the context of substation protection refers to how the IEC 

61850 standard can affect sympathetic trip protection and the blocking principle. This particular 

principle seeks to prevent the tripping of unfaulted feeders or incomers on the bus in question [2]. 

In a station bus-based architecture certain advantages can be exploited when making the transition 

from legacy to IEC 61850. A conventional or “old-fashioned” protection scheme requires a large 

number of cross-wired binary inputs between devices and equipment. In some substations, one 

may encounter a large number of feeders connected to the same medium voltage bus [2]. This 

means that the number of available relay inputs and outputs of the IEDs could present a limitation 

to the designer and to the protection scheme’s application [2]. An example of this limitation can 

be seen in an analysis of the overcurrent blocking principle.  

In a typical legacy-based substation, the relay that senses a fault current and issues a trip signal 

will need to apply a blocking signal on the inputs of the other relays on all the adjacent feeders 
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for a certain period of time to ensure that they do not needlessly trip [2]. This means that the 

number of connections between all the feeder relays and the number of relay inputs and outputs 

can be very large if there are, for example, 16 feeders connected to a particular medium voltage 

bus. The same blocking principle (also called sympathetic trip protection) is relatively straight 

forward to implement using the IEC 61850 protocol. In this case the relay that detects the feeder 

fault can send a GOOSE (Generic Object Orientated Substation Event) message (over the station 

bus) to all the other relays that are connected to the distribution bus [2]. This message would 

indicate that the relay had tripped and had cleared the fault i.e. the blocking signal has been sent 

to all the other affected relays [2]. This was only one of the many applications of the IEC 61850 

communication protocol and the powerful GOOSE message class.  The aforementioned concept 

as well as other additional aspects of GOOSE messaging and IEC 61850 were investigated in 

greater detail during the course of this study. 

1.1.1 Research questions 

The further progression of this dissertation as well as the evolution of the research model itself 

relied upon a number of vital study questions which defined the author’s overall approach to this 

investigation. In summary, these research questions were defined as, but not limited to, the 

following: 

What is the IEC 61850 protocol, what are its requirements and specifications, how is it 

implemented and what does it offer to aging, present-day and future substations? 

What are the advantages and or disadvantages of upgrading legacy-based protocols such as 

Modbus RTU and DNP3 to the IEC 61850 substation standard using smart protocol-compliant 

protection IEDs? 

What were the performance benefits, protection and automation implications as well as the design 

and communication considerations of the IEC 61850 protocol for both smart and hybrid 

substations? 

What is the GOOSE message class, what are its applications and implications, and how can it be 

used to improve the efficiency, effectiveness and economy of protection schemes within 

substations? 

How are the blocking principle, arc-flash protection and breaker fail protection implemented 

using an IEC 61850-based protection scheme and what are the associated benefits of these 

implementations in relation to how these protections were typically achieved in legacy-based 

substations? 
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1.2 Motivation 

The means by which data, information, commands and signals have been transported throughout 

electrical substations has for years been regarded as a subject of contention between engineers, 

utilities and vendors alike. Over time, a wide variety of substation protocols, standards, 

proprietary systems and physical communication methods have emerged for the consideration of 

engineers when developing and designing electrical networks. It is because of this that complex 

combinations of different transport mechanisms may exist within a single substation. It was within 

the last 15 years that a universal substation communication standard had presented itself in the 

form of the IEC 61850 protocol. In a by-gone era signals and information were transmitted 

physically via traditional copper hardwire links between relays and their associated legacy 

equipment. As technology has developed a moved to an Ethernet-based architecture was proposed 

and now data and information can be transmitted virtually over a substation LAN. Thus, the ease, 

efficiency and reliability with which this communication can be achieved has become a critical 

consideration in substation engineering. 

In general, under graduate studies at university don’t specifically cover the basics of 

communication within substations, therefore, real world problems, considerations and limitations 

such as this can only be faced within an industry environment – in the real world. Hence, it was 

within the author’s interest to further his knowledge in the field of substation communication and 

gain practical and theoretical experience on this topic. This was the field in which the author 

wished to specialize and work within industry. Thus, this vital opportunity to learn through design, 

implementation, research and simulation could not be missed. This topic is current, it is 

developing and it represents a shift of the communication mechanisms within substations for the 

future. Thus, it was found to be an exceptional real-world topic for a young engineer moving into 

industry where these concepts will be faced in the coming years. 

1.3 Background 

The IEC 61850 communication protocol allows IEDs that have been manufactured by different 

vendors to communicate with each other as well as with related devices within the automated 

substation architecture. It achieves this by using a generic, beneficial and commonly understood 

method of communication. This protocol was developed in part by the IECs Technical Committee 

57 (TC57) which exists to address the reference architecture for power systems [4], [6]–[7]. The 

current and developing communication media on which this protocol is grounded include web 

and internet-based services as well as data, information and signal communication over an 

Ethernet or optical fiber-based substation local area network [6], [7]. The message classes that 

this protocol continues to offer include databases like: client-server messaging, Manufacturing 
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Message Specification (MMS), Generic Object Oriented Substation Event messaging (GOOSE) 

and Sampled Measured Values (SMV or SV) [2]–[4], [7]. Therefore, the IEC 61850 standard and 

its associated communication networks can run over TCP/IP Ethernet-based networks using high 

speed ethernet communication links which deliver acceptable response times of less than 4 ms 

[2], [4]. This makes the IEC 61850 protocol ideally suited for the fast form of communication and 

data transport that is required during protective relaying [2], [4]. 

1.3.1 A brief history 

The very first microprocessor-based distance relays, with fault location detection, appeared in the 

early 1980s [4], [7]. Over the years many different protocols, like Modbus RTU and DNP3, have 

been developed for substation control, protection and automation; some of which have their very 

own unique communication links and proprietary systems [4], [6]. The IEC 61850 standard offers 

benefits which include the interoperation and intercommunication of information between IEDs 

from different manufacturers. This is of significant advantage to engineers that specialise in 

substation automation, protection and design [2]. An IEC task team of around 60 group members 

from various nations around the world developed three IEC working committees in the year 1995 

[6], [7]. These working groups responded to and identified all the concerns of power utilities, 

engineers and vendors alike and created the IEC 61850 protocol which made its first formal 

appearance in early 2003 [6], [7]. Today, the standard is still enjoying rapid development, growth 

and implementation worldwide. The aims and objectives that were set by the commission were 

to [4], [6]–[7]: 

• Develop a single universal protocol for transporting information, data, commands and 

signals. 

• Define the services required to transfer data, signals and information between different 

and similar devices. 

• Promote the interoperability between IEDs of different manufacturers within an electrical 

utility. 

• Develop a common format for storing information. 

• Define and specify the types and methods of protection, control and automation testing 

for the new IEC 61850 protocol. 

1.3.2 Applications and benefits 

A conventional substation is a hardwire-based environment which uses mostly copper based 

media to connect tools, hardware and equipment [8]. Therefore, converting this type of 

infrastructure into an IEC 61850-based TCP/IP architecture can be considered tedious. If 
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protection equipment and or other devices were to be installed in a conventional substation it then 

becomes very difficult and costly to move them [8]. So, functions that are practically impossible 

for legacy-based substations become far easier and more achievable in an IEC 61850 Ethernet-

based environment where the operation and maintenance of IEDs is more ‘virtual’ [2], [4], [8]. 

One of the major advantages of this protocol includes the use of functions. All of the functions in 

a substation are modelled using constructs called logical nodes (LN) [3], [7]–[8]. Therefore, the 

functions specific to an IED are communicated using LNs which ensures that the communication 

and exchange of data, signals and information happens in a format that other IEDs can understand 

[3], [7]–[8]. Since the IEC 61850 standard is so convenient, effective and efficient in its approach 

to substation automation, protection and control the advantages of this protocol are boundless. A 

few of the benefits of the IEC 61850 standard are listed as follows but not limited to [7], [9]: 

• Reduced hardwire connection within substations. 

• Installation of IEDs is not as labour intensive. 

• Lower maintenance and cheaper commissioning costs. 

• Facilitates the optimisation of substation architecture. 

• Functions and capabilities that help to eliminate current transformer saturation and open 

circuit. 

• Intercommunication between devices from different vendors. 

• The inception of a single unified substation protocol. 

The IEC 61850 standard is a relatively new protocol that is already enjoying widespread 

popularity within substations for protection and automation due to its advances in communication, 

configuration, interoperability and topology [2], [3]. However, one of the major disadvantages of 

this protocol is that its infrastructure is vulnerable to cyber-attacks simply because it is an 

Ethernet-based architecture [2]. IEC 61850-based substation IEDs are programmable, 

computerized and connected to a substation local area network and even to the internet. This 

means that IEDs rely on these virtual systems for the transfer of cyber information. Therefore, 

IEC 61850 systems are susceptible to cyber-attacks since they are defined as a “hackable” 

TCP/IP-based infrastructure [2]. Since this protocol is reasonably young, the applications and 

potential of the standard are still developing at the hands of the IEC, engineers and utilities alike. 

The present focus of this protocol is to effectively communicate items such as [2], [6]–[7]: 

• SVs for current and voltage transformers (CT and VT). 

• Input/output information and data for control, monitoring and protection. 

• Trip signals and GOOSE messages. 

• Configuration information and setup files. 
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• Transfer data to control hubs. 

• As well as system metering. 

1.4 Feasibility 

This brief section aimed to discussed the feasibility of the proposed undertaking by defining the 

scope of the research, requirements, approach to the study as well as an analysis of the merits of 

the research that was to be investigated during the course of this dissertation. 

1.4.1 Scope 

The scope of this dissertation seeks to cover the exploration and assessment of a new substation 

communication protocol that has been put forward by the IEC. The IEC 61850 substation standard 

affects and influences substations in various ways. This influence may extend to equipment, 

design, protection, automation as well as the different media and methods of communication. The 

definition of the research statement is thus to: compile a scientific, engineering research analysis, 

comparison and implementation of this standard in order to shed light on the outlined influences. 

1.4.2 Current analysis 

The present understanding of the IEC 61850 protocol is that it is current, developing, smart and 

considered a convenient, effective and universal way to establish communication between 

substation devices of different vendors. It is because of this that it is becoming more popular and 

widespread as substations are upgraded and as technology improves. However, the extent to 

which this protocol is implemented varies from substation to substation based on the views, 

expertise and budget of the utilities that implement it. Being a relatively new standard, it has 

received both praise and resistance from engineers and utilities alike. Therefore, by the end of this 

study the merits of the IEC 61850 protocol should hopefully be established giving credit to either 

those who praise it or to those who shun it. 

1.4.3 Requirements 

The requirements for the progression of this research included the acquisition of IEC 61850 and 

legacy compliant hardware such as relays, remote terminal units, Ethernet switches, input/output 

units as well as SCADA host software. Furthermore, this research topic would make use of the 

RSCAD software package and a Real Time Digital Simulator (RTDS), both of which are available 

at the university, for the simulation of experimental tasks. The author may also use some of the 

protection relays and other hardware which is already available at the school of engineering at the 

University of KwaZulu Natal as well as those kindly provided by Actom. In addition, research 
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into the IEC 61850 standard itself was conducted using IEEE journal papers, Science Direct and 

industry documents that can be accessed within the UKZN libraries or on the internet. 

1.4.4 Approach 

In order to assess the effectiveness of substation protocols like Modbus RTU, DNP3 and the IEC 

61850 standard it was important to establish a typical multi-protocol substation network with all 

the associated automation systems. This involved designing an interactive SCADA model of the 

substation architecture as well as implementing a network of compliant modern and legacy IEDs 

along with the associated switchgear. Once a fully-fledged substation communication network 

had been established with a variety of alike and dissimilar industry protocols a comparison, 

analysis and conclusion about the communication methods could be obtained along with the 

electrical operation, automation and protection results of the substation itself. 

1.4.5 Evaluation 

Since the IEC 61850 standard will be implemented in conjunction with present and aging legacy 

standards like Modbus RTU and DNP3 it became possible to critically compare it to the legacy 

protocols and obtain a benchmark from which to draw certain conclusions, inferences and 

technical deductions. 

The cost of this multi-protocol implementation as well as of the equipment to be used was to be 

borne by the university and by donations from industry partners alike. The infrastructure that was 

needed to conduct this study was already in place, thus experimentation and implementation could 

proceed. 

1.4.6 Review 

The thoroughness and accuracy of the approach that was required to proceed with this research 

has been deemed satisfactory in this brief assessment of the topics feasibility. The IEC 61850 

protocol is a current standard, it is of interest, it is developing and it is a partner to the 

technological advancement of substation design, communication, protection and automation 

worldwide. Thus, based on these criteria this topic was adjudged to be appropriate, the study 

relevant and therefore the undertaking could proceed. 

1.5 Aims and objectives 

This research aimed to investigate the IEC 61850 substation protocol for the intercommunication 

of substation IEDs and associated devices. In addition, this study also strives to determine the 

extent of the influence of alike and dissimilar communication protocols on the design, protection 
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and automation of a substation. Hence, this research involved an analysis of the benefits, pitfalls 

and associated implications of upgrading legacy protection schemes as well as the impact of IEC 

61850-based protection on substation architecture. The advent of modern cyber-physical IEDs 

has resulted in broadening the applications of 21st century protection systems. These systems have 

become more intelligent, interconnected, interoperable and generic using the new IEC 61850 

substation protocol. Therefore, this research aimed to: 

• Consider the implications of the IEC 61850 standard on substation protection, design, 

automation and communication using the following means: 

- Design a multi-protocol communication network using standards like Modbus RTU, 

DNP3 and the IEC 61850 protocol. 

- Compare the IEC 61850 standard to present and past protocols such as Modbus RTU 

and DNP3 commenting on their technical effectiveness. 

- Development of smart substation SCADA for remote control, monitoring and data 

capture in multi-protocol and IEC 61850-based environments. 

- Design, simulate and implement fast substation protection in IEC 61850-based 

environments. 

- Implement and analyse the GOOSE message class studying its technical applications, 

perceived advantages and possible short-comings. 

- Assess the benefits of using the IEC 61850 standard for items like blocking response 

(sympathetic trip protection), breaker fail, disturbance recording and arc protection. 

- Determine the impact of modern IEC 61850 compliant IEDs on the old and aging 

infrastructure of the legacy era. 

• Analyse the electrical operation of a typical multi-protocol and IEC 61850 compliant 

substation automation system with different protection functions. 

Here follows the list of project objectives that were followed when proceeding with this research 

in order to compile a comprehensive investigation into the basics of protocol-based substation 

communication: 

• Background research and pilot study on the chosen topic. 

• Literature survey to be conducted on any relevant issues and topics using standard 

references, texts, IEEE journal papers, scientific literatures, industry documentation and 

alike. 

• Formulation of research goals, specifications and methodology.  

• Development of a preliminary system model based on the literature survey and 

background research. 
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• Development of the main research model for an industry application of the IEC 61850 

standard with basic protection functions in a substation. 

• Simulation of the developed models.  

• Hardware testing and capture of results.  

• Performance evaluation of the simulation and hardware solutions. 

• A critical analysis of the results that were obtained and the research conducted along with 

relevant critical comparisons, provisions for future works and conclusions.  

1.6 Dissertation structure 

The succeeding chapters of this thesis aimed to explore the basic design, protection, automation 

and communication aspects of the IEC 61850 and alike substation protocols. In chapter 2 the 

author offered a critical literature study of the IEC 61850 standard which reviewed published 

works, scientific text and technical documentation from the champions of industry. This survey 

sought to investigate the inception of the IEC 61850 protocol, discover the objectives for which 

it was developed, determine how it functions as well as its implications for both modern and aging 

substations. The authors discussed a few acute details of the standard such as message classes, 

communication functions, SCL, the impact of this protocol on protection and substation design, 

substation automation, cyber vulnerability, backup protection as well as testing. Additionally, 

once a better technical understanding of the research topic was achieved, the methodology of the 

proposed experimental study could be outlined as was demonstrated in chapter 3. This section 

presented the procedures, materials and methods for the investigative works that were conducted 

in the subsequent chapters. 

The principal body of research for this dissertation occurred within the stage 1 and stage 2, 

preliminary and main studies which were concluded in the chapters 4 and 5 respectively. Chapter 

4 sought to deliver a basic induction into the preliminary undertaking by including the results and 

analyses which were determined from the early stage of experimentation by using both practical 

and simulation studies. It was in this chapter that a multiprotocol substation communication 

network was established using Modbus RTU, DNP3 and the IEC 61850 standard. Finally, the 

foremost focus of the research for this dissertation was firmly established during the course of 

chapter 5. It was here that the primary and basic functionalities of the IEC 61850 protocol were 

investigated, with special consideration given to the applications and implications of the GOOSE 

message class. Items such as sympathetic trip protection (blocking response), breaker fail, 

disturbance recording and arc protection were explored in greater detail. Furthermore, chapter 6 

offered a comparative study of the IEC 61850 protocol in relation to legacy standards like Modbus 

RTU and DNP3. This analysis used the results and conclusions drawn from the experimental 
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study conducted in this thesis as well as the researched literature on all three standards to discuss 

the associated, perceived and technical benefits and short-comings of the aforementioned 

protocols. Lastly, chapter 7 offered a definitive conclusion of the topics researched and 

experimented upon during the course of this dissertation. Therefore, it was as a result of this study 

that certain inferences, deductions and interpretations of the communication protocols could be 

drawn.
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 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a detailed review of the IEC 61850 substation protocol and its implications 

for both modern and legacy-based protection schemes, inter-IED communication and substation 

design. The intelligent electronic devices of today have the ability to communicate, interface and 

interoperate using Ethernet-based protocols like the IEC 61850 standard. This has promoted an 

industry shift from the outdated serial and legacy protection schemes to a universal Ethernet-

based architecture. These aging infrastructures use communication protocols like Modbus RTU 

and DNP which may rely on serial RS 232 and RS 485 binary hardwire connections between 

devices in order to transport data, commands and vital control signals. Therefore, the new IEC 

61850 protocol affects the way present-day substations are designed, how IEDs are interfaced, 

the manner in which devices communicate and the overall effectiveness and efficiency of a 

substation. However, this contemporary standard also presents a fresh set of problems to engineers 

and utilities alike such as cyber vulnerability, a new set of standards in protection testing, smart 

IED back-up prior to failure, IED file configuration as well as the communication of information 

between IEDs using a new peer to peer message system. Thus, the continued collaboration of the 

International Electrotechnical Commission (IEC) has resulted in the development of a 

communication standard that allows IEDs of different manufacturers to interact within the local 

substation environment and transfer data and signals quickly over a ‘virtual’ Ethernet-based local 

area network (LAN). 

2.2 Communication classes 

The IEC 61850 protocol provides a standardized means of communication for IEDs within a 

substation. Not only does this standard specify the medium of communication, whether optical 

fibre or Ethernet, but it delivers a set of functions, formats and layers that define how information 

or signals are transferred between devices [2]–[4]. In addition to Client-server messages, there 

are two common classes of communication for protection, control and automation, namely: the 

GOOSE and SV message classes respectively [2]–[4]. Firstly, Client-server integration deals with 

the services that are needed or used by the Client in order to receive and store information from 

devices as well as send control signals to the IED servers [2]–[4]. Therefore, a typical Client-

server system may refer to the Supervisory Control and Data Acquisition (SCADA) or Human 

Machine Interface (HMI) of the broader substation. Importantly, Client-server messages are sent 

through the TCP/IP stack where no specific time constraints are implied [4]. On the other hand, 

the GOOSE and SV message classes are exclusively used as packets for sending signals and data 

between IEDs. These are both real time messages that bypass the TCP/IP stack and interface onto 
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the Ethernet link layer [4]. The GOOSE and SV message classes are both vital aspects of the IEC 

61850 protocol and were discussed further, as follows, in this section of the paper [4], [10]–[16].  

The diagrammatic illustration in Figure 2-1 provides a framework that shows how these message 

classes map directly onto the Ethernet link layer [12]. 

 

Figure 2-1.  IEC 61850 message class data mapping [12] 

2.2.1 Generic substation events 

The two most commonly used horizontal message classes in IEC 61850-based substations are the 

GSSE and GOOSE message classes respectively [2]–[4]. The major difference between them is 

that GOOSE can transfer data formats like analog, binary and integer information whereas GSSE 

is constrained mainly to binary event status data [11]–[14]. These classes are both referred to as 

peer to peer communication mechanisms that transfer information in a 2-layer message between 

the bay and process levels [11]–[14]. GOOSE messages allow for the transfer of a vast range of 

common data that is organized by a DATA-SET [13]. Hence, this message system is favoured, 

widely understood and enjoys greater popularity within IEC 61850-based environments due to its 

greater flexibility. GOOSE messages are typically used by IEDs to report status events to other 

IEDs within and between feeders. It was developed to operate on TCP/IP Ethernet or optical fibre 

networks to replace the old hardwire or serial communication links between IEDs and legacy 

relays on the station bus [2]–[4]. To setup an IEC 61850 communication network is a fairly simple 

procedure.  Each IED within a network will have an IP address which will specify which GOOSE 

messages the device has access to [16]–[18]. This makes the GOOSE message system and by 

extension IEC 61850 more efficient than legacy-based architectures. 

In addition to its flexible transfer of data, the GOOSE message class is also configurable and can 

send information like circuit breaker status and analogue measurements. This means that a 

particular IED could issue a GOOSE message to its peer devices notifying them if it had issued a 
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trip signal [4]. The applications of this allow the IED closest to the fault (the downstream IED) to 

issue a trip and at the same time ensure that the other upstream IEDs do not trip needlessly, thus 

reducing the size of the outage [4], [11]. This is called a blocking response or sympathetic trip 

protection [4]. Therefore, IEDs connected to the substation LAN are aware of the currents and 

voltages at the points that they measure directly as well as from the GOOSE messages that are 

received from the other IEDs [2], [4], [11]. 

Table 2-1. Time performance and message types [4] 

Type Application Performance Class Transmission Time 

1A Fast Messages (Trip) 
P1 10 ms 

P2/P3 3 ms 

1B Fast Messages (Other) 
P1 100 ms 

P2/P3 20 ms 

2 Medium Speed  100 ms 

3 Low Speed  500 ms 

4 Raw Data 
P1 10 ms 

P2/P3 3 ms 

5 File Transfer  ≥1000 ms 

6 Time Sync.  (Accuracy) 

Typically, a number of relays may be used to take readings on a particular line or bus section with 

GOOSE messages being exchanged between those devices who have subscribed to the 

information stream [4]. Importantly, GOOSE messages include items like trip, interlocking and 

inter-trip messages [2], [4], [13]. These messages are time critical and must be transmitted at 

speeds of between 10 and 3 ms as illustrated in Table 2-1 [15], [16]. This means that GOOSE is 

referred to as a ‘fast’ messages system and is used to decrease the clearing time of faults. Usually, 

no more than 4 ms is allowed to elapse from the time a particular event in the system is detected 

until the point at which the message is transmitted [4], [15]. 

As previously mentioned, GOOSE messages are multi-cast to the substation LAN and are only 

accepted by those IEDs that have been configured to subscribe to that particular data stream [4]. 

Importantly, these messages are broadcast multiple times using a 3 ms back-to-back 

retransmission mechanism that transmits regardless of whether a change has occurred [4]. This 

improves the reliability of the system and ensures that the event has been received by the 

appropriate IED [2]–[4], [14]. Therefore, GOOSE messages are an example of 

multicast/broadcast messages i.e. a single device will send out a message to several devices in the 

multicast case and all the devices on the network in the broadcast case [4]. This has huge benefits 

over the point-to-point message systems of old. When the Ethernet switch receives a particular 

message, it forwards it to all other ports on the network apart from the port where the message 

was received [2]–[4]. The IED must then analyse this message and decide whether or not it has 
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been configured to receive it. This constricts the bandwidth of the network and can increase 

network traffic affecting the speed of the messages that are transmitted. Two methods exist to 

alleviate this problem. One is to develop a system of several virtual LANs that divide the traffic 

between them [3], [4], [11], [14]. The other solution is to use the fact that GOOSE messages may 

be assigned a priority so that the switch knows which messages to send first. The time duration 

and speed of transfer of messages in the IEC 61850 standard are shown in Table 2-1 [4]. The table 

specifies that GOOSE messages are a 1 or 1A fast message system [4]. 

2.2.2 Sampled values 

The GOOSE and SV message classes are both referred to as priority real-time messaging that can 

interface directly over the substation LAN. The SV message class is used to send digitized voltage 

and current measurements to the IEDs within the substation on the process bus [2]–[4], [13]–[16]. 

SV messages are also multicast which means that the data obtained from a measurement taken at 

one location may be sent to any number of devices connected to the Ethernet network. This 

measured information is typically obtained from the secondary analog outputs of the instrument 

CTs and VTs respectively [4]. Furthermore, the analog data from the instrument transformers 

must be sent to a device called a merging unit (MUs) whose function is to digitize the sensed 

information and finally deliver it to the IEDs using logical interfaces ‘4’ and ‘5’ [8]. Modern IEDs 

can input different data from multiple MUs on the network. 

The MU can take 80 samples per cycle with an SV message rate of 4.8 kHz for basic protection 

and 256 samples per cycle for high frequency applications; other SV message rates may also 

include 1.5 kHz, 4 kHz and 12 kHz respectively [2]–[4]. Therefore, a merging unit is a device 

that provides the interface between the CTs/VTs and the IEDs within a substation and they can 

receive multiple binary and analog inputs [2], [4], [14]. Figure 2-2 shows a basic implementation 

of this concept [11]. 

 

Figure 2-2. IEC 61850 SV messaging and MU interfaces [11] 
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Additionally, the IEC 61850 protocol also allows relays to send messages via the MU to other 

devices on the station bus. Hence, the MU may arbitrate the interaction between a certain number 

of IEDs and communicate with other MU’s connected to the substation LAN [2], [4]. An IED 

must however, be configured to subscribe to the SV stream from its associated MU and can then 

also receive GOOSE messages and phasor information from its surrounding IED’s provided it is 

configured to do so. It is common that several merging units interface with one another over the 

substation LAN which can transfer information at speeds of up to 100 Mb/s [3], [4]. Numerous 

devices can be interconnected using this system as well as a central supervisory computer which 

may receive current and voltage samples in the form of SV messages from the MU [3]. This 

means that substation protection, control and monitoring can be implemented in a very coherent 

fashion. Hence, the IEC 61850-based communication architecture may have an impact on the 

design of substations and on the layout of switchgear as compared to legacy-based protection 

schemes [2], [4].  In summary, MU’s carry the following functionalities as described [2]: 

• Signal processing of sensors and transducers; 

• Synchronisation of three-phase voltage and current measurements; 

• Analog interfacing; 

• Reduction in CT saturation; 

• Digital interfacing (IEC 61850-9-2). 

2.2.3 Logical interfaces 

One of the most important benefits of the IEC 61850 protocol lies in the ability of relays or IEDs 

to react in a collaborative fashion when dealing with an electrical anomaly like fault current [6], 

[7]. The IEC 61850 standard allows the IEDs, that sense items like fault current and trip electrical 

circuit breakers, to inform their peer relays of the protective actions that were undertaken or 

needed using the shared physical communication links between physical devices [6]. Thus, a 

function used by a particular IED may be specific to that device such as an IED on a particular 

feeder or distributed to two or more IED’s over the Ethernet communication network if they 

subscribe to that particular information stream [7]. Thus, the allocation of functions between IEDs 

in a substation defines the requirements of the aforementioned physical interfaces. 

All known functions within a substation may be modelled using Logical Nodes (LNs) [6]. There 

are logical nodes for automatic control whose names begin with ‘A’ as well as logical nodes for 

protection (P) and monitoring (M) as well as nodes for all other necessary function within the 

substation. Each node has an Instance-ID as a suffix to delineate between nodes as they are 

transferred thus ensuring that LNs are not received by the incorrect IED [8]. These nodes 

communicate with each other and transfer information using logical interfaces. 
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The logical interfaces within a substation distribute functions (logical nodes) between IEDs on 

different levels of the substation hierarchy (station, bay and process buses) from IF1 to IF10 as 

shown in Figure 2-3 [6]–[8]. Therefore, IF 1-10 are referred to as logical function interfaces and 

represent the different hierarchies over which specific information like trips, inter-trip and 

interlocks can be transferred between various IEDs in a substation.  The authors of paper [8] 

define the IF4 and IF5 functional levels, shown in Figure 2-3, as interfaces for the transfer of data 

from the CTs and VTs between the process level and the bay level respectively [8]. Alternatively, 

the IF8 functional level refers to the direct transfer of data between bays for fast information 

processes like interlocking [8]. IF 4 and 5 are typically used for process bus applications whereas 

IF 8 has applications for station bus communications. The supplementary logical function 

interfaces that link devices and IEDs within a substation, from IF1 to IF10, were illustrated in 

Figure 2-3 [8]. 

 

Figure 2-3. IEC 61850 logical interfaces [8] 

2.3 Substation configuration language 

The IEC 61850 protocol specifies that engineers and vendors use a Substation Configuration 

Language (SCL) which was developed to configure the settings and format the functions within 

a particular IED [2], [3]. Manufacturer specific IED configuration tools are used to convert the 

functionality, communication mechanisms and the parameters of an entire IED into a hierarchy 

of SCL system files [3], [4]. This is one of the major differences between IEC 61850-based IEDs 

and other protocol-based substation automation systems. SCL is a description configuration 

vernacular that is based on eXtensible Markup Language (XML) [4]. 

The authors of papers [3], [4] and [5] describe in detail the various aspects of SCL engineering 

and the associated file transfer and configuration techniques of IEDs. SCL specifies a file format 
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that describes IED communication, switch yard structure and any relations that take place between 

them. It ensures that the IED capability descriptions (ICDs) and the substation descriptions are 

transferred between the IED engineering tools and the system engineering tools of different 

vendors or manufacturers [4]. Upon setup, the IED configurator tool converts functionality, data 

communication, events and alarms into SCL [3], [5]. This simplifies substation configuration and 

communication between IEDs. Therefore, the generation of data, reading of data and data 

structure is less ambivalent [3], [5]. 

In addition, SCL specifies file formats that describe the configuration, parameters and the 

relationship between IEDs. Furthermore, SCL engineering results in the creation of a substation 

configuration description file (SCD) which contains all the necessary information about a 

substation [3], [5].  As previously mentioned, SCL allows the easy and simple exchange of 

information between IEDs of different manufacturers. Hence, when a new IED is installed within 

a substation the configuration of the previous IED is available in SCL format and can simply be 

imported onto the new device. This concept is similar to changing a SIM card in a new phone [5]. 

So, the functionality and communication of the existing protection, automation and control 

schemes can be effectively maintained. Therefore, SCL engineering has major advantages over 

older legacy-based systems which are not programmable and must be replaced rather than 

reconfigured [5]. 

In protection systems, the time-current response of a particular IED can be configured using SCL. 

The response logic within a particular IED may call for an instantaneous trip when the current 

exceeds a particular value or a delayed trip where the IED integrates the value of the fault current 

over time and waits for it to exceed a second threshold value [3]. Hence, over current protection 

may be implemented, using SCL, in stages. 

2.3.1 SCL-based protection 

The initialisation and setup of an SCL-based protection IED involves the use of three files, 

namely: the ‘startup.cfg’, ‘datamap.cfg’ and CID files. The function of the first file, called the 

‘startup.cfg’ file, is simply to store logical device data [5]. In addition, mapping information is 

stored in the ‘datamap.cfg’ file and lastly, the CID file stores the function and role of the IED [3], 

[5]. Furthermore, the protection IED parses a CID file that stores the data which defines the roles 

that are specific to a particular IED [5]. The IED not only parses these three files but is also 

initialized via data object generation, information mapping, network setting, logical node setting 

and the subscription that allows it to broadcast and receive SV data from the instrument 

transformers and MUs [3], [5]. Thus, this means that the protection type, function and 

configuration of the IED is determined by parsing the CID file [5]. 
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In order to configure an IEC 61850 relay certain SCL-based communication files are required [5]. 

In summary, these files may include but are not limited to the [3], [5]: 

• System Specification Description file (SSD): which stores information like, logical nodes, 

physical connections and single-line diagrams of the substation. 

• System Exchange Description file (SED): stores the information specific to 

communicating with other configurators.  

• IED Capability Description file (ICD): which identifies the logical nodes that are available 

to the IED 

• Substation Configuration and Description file (SCD): which describes data exchange and 

transfer structures and hence, the interaction between IEDs in the system or project 

• Configured IED Description file (CID): which enables and configures the IED according 

to its functions. 

2.3.2 IED setup using SCL 

The first and most fundamental aspect of setting up an IED using SCL is to select a suitable IED 

for the intended function and or role within the substation and configure it using the IEDs 

configuration tool [4]. An IED Capability Description (ICD) is produced for each relay based on 

the IED specific description file. This file describes the logical devices and nodes, GOOSE and 

SV information, communication services and addresses for data [3], [5]. In the second step, all 

the ICD files are transferred to the IED configuration tool.  This configures the system functions 

and allocates functions to the IEDs within the substation [3], [5].  The system configurator then 

creates a Substation Configuration and Description file (SCD) after it has received the ICDs, SSD 

and SED files [4]. The SCD file defines the interaction between different IEDs and holds all the 

information that describes the substation. Finally, based on this SCD file an IED engineering tool 

is used to build the CID file for each device [5]. The system configurator then sends the IEDs 

their specific CID files. The IEDs parse these files during the initial start-up and the configuration 

is complete [3]–[5]. The file transfer and configuration system that was described above was 

shown in Figure 2-4. 

2.3.3 Benefits of SCL 

SCL engineering is used by engineers and utilities to best suit the user’s requirements and by 

extension the requirements of the substation [3]–[5], [7]. SCL allows offline configurator tools to 

produce the necessary files needed for the configuration of IEDs automatically, purely based on 

the specifications of the designed power system [5], [7]. This means that there need not be a 

connection to the IED network for IED client configuration. This has significant cost advantages 
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and eliminates the manual labour required for manual IED configuration tasks. In addition to 

setup, SCL also allows the distribution of IED configurations among vendors which makes this 

language somewhat generic [3]–[5], [7]. 

 

Figure 2-4. SCL file configuration [5] 

2.4 The impact of IEC 61850 on protection and substation design 

In this section of the review paper the authors divide substations into three categories, namely: 

conventional, station bus as well as station and process bus-based architectures. The literature 

reviewed in papers [2] and [8] discussed the design and simulation of fast substation protection 

in IEC 61850 environments as well as the architectures on which this protection is based. The 

IEC 61850 standard affects not only the design of a substation but almost every component and 

system in it [8]. Hence, this standard has been implemented slowly by adding IEC 61850 station 

bus and process bus-based communication solutions gradually over time. 

2.4.1 Conventional substation design 

The conventional legacy-based approach for designing substations involves the inefficient, costly 

and labour-intensive use of copper as a medium for serial communication between primary and 

secondary equipment [2], [8]. The substation networks that rely on this copper hardwire 

interconnection of equipment include analog communication links between relays and instrument 

transformers, binary inputs and outputs (which denote protection and control signals) as well as 

power supply circuits for both AC and DC components [2], [8].  

In the 1960s Data Acquisition Systems (DAS) were installed as digital communication 

architectures began to develop [7].  This type of communication was bandwidth limited and was 

designed to operate on low-bandwidth communication paths to minimize the amount of data that 
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was transferred whilst still providing the necessary functions to the substation automation system 

[7]. In summary, legacy-based protection and control systems within a substation have mostly 

determined how bytes of information and data can be transmitted on a copper wire [2], [7]–[8]. 

This method of sending data was hence referred to as a serial link technology [7], [8]. Thus, the 

cost to optimize, install and maintain these primitive substation models was and is great. The 

diagram illustrated in Figure 2-5 denotes the conventional layout for a typical legacy-based 

substation architecture. 

 

Figure 2-5. Conventional substation architecture [8] 

In the design of a conventional substation, such as that shown in Figure 2-5, there is a large 

number of copper cables of various diameters and spans, regardless of the size of the substation 

[8]. This means that the maintenance, installation and testing of these cables is considered a 

nightmare. A conventional substation may have a considerable number of measurement 

transformers and breakers which are paired with other control, protection and monitoring devices 

housed in the switchgear panels in the control room [8]. Therefore, the copper cables and other 

hardwire connections must run from the equipment in the outdoor yard through cable trenches to 

the control room. These cables are usually bundled together according to their function and 

sectioned to the required length [8]. Hence, this procedure is considered to be very labour 

intensive and is especially tedious when there is a fault and a particular cable needs to be replaced 

or maintained [8]. Hence, there are certain risks and concerns that arise from copper hardwire 

connections between primary and secondary equipment within a conventional substation, these 

concerns include but are not limited to [8]: 

• The impact of electromagnetic transients that occur as a result of the distance the copper 

cables cover. 

• The damage of cables due to equipment failure. 
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• The damage of cables or insulation due to construction and or other related works. 

• Copper cable theft. 

• Lastly, the resistance of the chosen copper cables must also be taken into consideration 

when selecting the appropriate instrument transformers and the relevant protection 

equipment. 

2.4.2 Station bus-based architecture 

 

Figure 2-6. Station bus-based architecture [8] 

The station bus-based architecture demonstrated in Figure 2-6 only represents a partial 

implementation of the IEC 61850 protocol. In this case the PCMR (protection, control, monitoring 

and recording), that occurs at the bottom of the substation functional hierarchy, is conventionally 

hardwired using copper cables [8]. However, the system in Figure 2-6 still offers certain 

advantages over conventional substations in making a partial transition to IEC 61850. 

A conventional substation requires a large number of cross-wired binary inputs. In some 

substations, one may encounter a large number of feeders connected to the same medium voltage 

bus [8]. This means that the number of available relay inputs and outputs of the IEDs could present 

a limitation to the designer and to the flexibility of the protection scheme. An example of this can 

be explained when one considers the overcurrent blocking principle [4], [8]. This principle seeks 

to prevent the needless, callus and problematic tripping of unfaulted feeders [4], [8], [10], [19]. 

In typical legacy-based substations the overcurrent relays are configured in such a manner that 

the circuit breaker closest to the fault trips first which minimizes the extent of the affected area 

i.e. a smaller portion of the circuit experiences an outage [8], [4], [10]. This is achieved by 

correctly setting the time response logic of the relays/IEDs. In a conventional substation that uses 

hardwire interfaces the relay or IED that senses the fault current and issues the trip signal will 

have to apply a signal on the inputs of the relays on all the other adjacent feeders for a certain 
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period of time to ensure that they do not needlessly trip [8]. This means that the number of 

interconnections between all the feeder relays as well as the number of relay inputs and outputs 

can be very large. This is especially true if there are for example 16 feeders connected to a 

particular bus [4], [10], [19]. 

The same blocking principle, also referred to as sympathetic trip protection, is relatively straight 

forward to implement using the IEC 61850 protocol [3], [4], [10]. In this case the IED that detects 

the feeder fault can send a Generic Substation Event (GSE) message over the substation local area 

network to all the other IEDs that are connected to the distribution bus, provided that these relays 

subscribe to the message stream and can then receive the appropriate information [4], 19]. This 

GSE message would indicate that a particular IED had tripped, cleared the fault and would act as 

a blocking response to all the other affected relays [4], [10]. The GSE message is sent 

continuously using a repetition mechanism until a new change of state occurs requiring a different 

message [4]. The transmission time of data between two functions in an IEC 61850 Ethernet-

based architecture is also much faster than in a conventional substation taking only 0.25 cycles as 

opposed to 0.75 cycles for legacy-based systems [4]. Thus, equipment can be protected faster and 

more efficiently. 

The major advantage of the IEC 61850 standard lies in the user’s ability to make easy changes 

whether this means changing the IEDs themselves or downloading software updates [2], [3]–[6]. 

In legacy protection systems replacing and maintaining cables can be very time consuming and 

costly, whereas in an IEC 61850 Ethernet-based environment the IEDs can be reconfigured very 

easily using SCL-based engineering tools for the configuration of settings and peer to peer 

communication between devices on the virtual substation LAN [2], [3]–[6]. 

2.4.3 Station and process bus architecture 

 

Figure 2-7. Station and process bus architecture [8] 
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The full advantage of the IEC 61850-based communication mechanism may be realized, in a 

station and process bus-based architecture as was shown in Figure 2-7. This involves several 

different smart devices, IEDs and pieces of equipment that are connected to the substations local 

area network [8]. In the figure illustrated on the previous page the MU processes the inputs from 

the instrument transformers and produces sampled values of the incoming three-phase currents 

and voltages [2], [4]–[8]. In addition, the MU formats and digitizes this sampled information and 

sends it to the other electronic devices that are connected to the substations LAN [8]. Another 

device called the input/output unit (IOU) processes the status inputs, generates status data, formats 

communication messages and forwards this information onto the substation LAN [3], [4]–[8]. 

The IEDs and related smart devices then receive the multicast information on the network in the 

form of sampled value messages or status messages. Importantly, only the IEDs that have been 

configured to accept and receive this data can then decide upon the appropriate and necessary 

actions that are required [8]. In the case of a fault, an IED will issue a trip signal by sending a 

GSE message to the relevant IOU which may then trip the appropriate circuit breaker [2], [3]–

[8]. Hence, relays and IEDs within the substation must subscribe to receive certain messages and 

information from the network. The system demonstrated in Figure 2-8 shows a simple example 

of an IEC 61850-based architecture as was described above. 

 

Figure 2-8. Complete Implementation of IEC 61850 [8] 

The benefit of the implementation of the IEC 61850 protocol ensures that all the copper cables 

that are used to connect devices like instrument transformers and IEDs are replaced by fibre optics 

or Ethernet, merging units and the process bus [4]. It is also possible to optimize and reduce the 

number of voltage transformers needed within the substation using this system since voltage 
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information can be broadcast as SV messages on the substation LAN to all the electronic devices 

that need it [4], [8]. This means that it is not necessary to have a voltage transformer on each 

outgoing feeder, but perhaps just on the busbar from where the information can be distributed to 

the other IEDs that need it over the local area network [8]. This optimisation applies to the voltage 

measurements that are needed by distance protections [8]. 

2.5 Substation automation 

Substation Automation (SA) allows a utility to remotely control, switch, monitor and coordinate 

certain elements of a substation. These elements include: IEDs, Remote Terminal Units (RTUs), 

human machine interfaces and related devices or systems which protect equipment as well as 

monitor and control the flow of power within a substation [6]–[7], [9]. The authors of papers [6], 

[7] and [9], discussed the implications of the IEC 61850 standard on substation automation. The 

reviewed literature studied the architectures that defined how IEDs and other devices were 

arranged in a substation for the collection of data and the automatic protection of substation 

equipment. 

In a substation automation system, the communication of data and the exchange of information is 

considered very important in order to realize certain automation functions. This communication 

refers to that between different IEDs as well as to and from a control centre and the remote 

substation. The current and aging protocols for this data communication include Modbus, Modbus 

Plus, DNP 3.0 and IEC 60870 as well as Utility Communication Architecture 2.0 (UCA) [6], [7]. 

These communication standards have their own technical short falls; the biggest of which that 

none of them fully deliver interoperability between IEDs of different manufacturers. For example, 

Modbus and Modbus Plus were originally developed for serial RS485 and RS232 and were never 

fully optimized for TCP/IP Ethernet communication [4], [6], [7]. Thus, the internationally 

accepted IEC 61850 communication standard was developed by the IEC based on the inputs, 

objectives and goals of utilities, engineers and manufacturers alike. 

Substation automation exists to achieve switch control, data monitoring and protection [6]. The 

IEC 61850 standard segments these areas into sub-functions which are performed by an IED from 

within the substation. This set of sub-functions conglomerate to form the overall substation 

automation function where communication exists over the substation LAN and by extension, over 

the internet [7], [9]. 

2.5.1 Automation architecture 

As was discussed in section III, the sub-functions that reside within an IED are referred to as 

logical nodes. IEDs or logical devices can typically hold multiple logical nodes, each of which 
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has an object class which is commonly referred to as the logical node class [6]–[8]. A typical 

example of this is the “XCBR” logical node class which is for monitoring and controlling the 

operation of a circuit breaker [6]–[8], [17], [18]. In addition, these logical node classes each 

contain supplementary data classes that have their very own attributes. Therefore, these data class 

attributes can be used to determine, monitor and control the position of a particular breaker within 

the substation [17], [18]. Importantly, the functions or logical nodes like “XCBR” are assigned 

and exist at three different levels in a substation, namely: process level, bay level and station level 

which are graphically represented in Figure 2-9 [6]. 

 

Figure 2-9. IEC 61850 substation levels [6] 

The following bullet points refer to the three formal definitions of the process, bay and station 

level functions that were graphically described in Figure 2-9 [6]-[8], [17], [18]: 

• Process Level Functions: take data from sensors or transducers within the substation and 

send them to bay level devices. They may also receive control commands from bay level 

devices and carry out the appropriate actions. Devices that occur on the process level may 

include instrument transformers, circuit breakers and merging units. 

• Bay Level Functions: take data from and to the bay level and act on the equipment within 

the bay itself. The concept of bay levels is shown in Figure 2-10. Here each grouping of 

related equipment between two voltage levels or between different substation functions is 

called a bay. Control, monitoring and protection IEDs are devices that occur on the bay 

level. 

• Station Level functions: these can be broken down into two types, namely: process 

functions and interface functions. Process related functions use data from many bays or 

databases. They submit control commands and collect the sensed data, such as analog or 
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digital voltage and current values from bay level devices (IEDs). Interface related functions 

include human machine interfaces via remote monitoring and control centres for 

monitoring and maintenance. Therefore, interface related functions refer to the relationship 

between the substation and the user. 

 

Figure 2-10. Conventional substation bays [6] 

In the IEC 61850 standard and across the three aforementioned functional levels there exists over 

90 logical nodes or sub-functions [7]–[9]. The communication between these 90 logical nodes 

takes place using the shared physical connection that is provided by the ‘virtual’ Ethernet or 

optical fibre-based substation LAN. In a substation, each network switch on the LAN forms part 

of a network node [7]–[9]. 

2.5.2 Automation equipment and automation systems 

There are two main categories of equipment within a substation, namely primary equipment 

which includes transformers and switchgear as well as secondary equipment like protection, 

control and communication devices [8]. In the IEC 61850 protocol, secondary equipment is 

broken down into equipment for the station, bay and process levels respectively. Human Machine 

Interfaces (HMI) and Communication Units (ComU) which link to the Master Control Centre 

(MCC) occur at the station level and are connected to bay level devices via the station bus [6]. A 
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few examples of station level equipment may include the station computer and database, the 

operator workspace and remote communication interfaces. Bay Level equipment, on the other 

hand, consists of control, monitoring and protection equipment whereas process level equipment 

includes sensors, actuators and remote inputs and outputs [6]. Naturally, bay level devices 

communicate with process level equipment via the process bus and station level devices 

communicate with bay level devices using the station bus [6]. This communication via station and 

process buses is realized via Ethernet or optical fibre communication links which eliminate 

traditional hardwire connections between equipment [6]. In addition, the process bus ensures that 

there is an expedient exchange of tripping commands between IEDs and switchgear as well as the 

swift transmission of SVs via the MU that occurs over the LAN [6]. 

The station bus is created using a mutli-port Ethernet switch which prioritizes and forwards 

packets of information between nodes [6], [8], [17]. Typically, the HMI and the substation router, 

which enables remote communication with the MCC, are connected to the switch at station level 

[6]. If a station level device needs to send a message to a bay level device it will send a message 

through the Ethernet switch [6], [8], [17]. The bay level device then completes its function based 

on the received message and forwards the necessary information to the process level via an MU 

[6]. Hence, the final action is performed by the process level device. 

2.5.3 Communication architecture 

Communication services within and between station, process and bay levels may be referred to 

as horizontal or vertical communication mechanisms [6], [9], [17]. This type of communication 

seeks to decentralize the substation communication system and reduce the tedious copper wire 

communication links that plague legacy systems. These concepts are shown graphically in Figure 

2-11 and 2-12 respectively. Vertical communication typically takes place between station level 

and bay level devices where information is directed vertically [6]. In addition, Vertical 

communication is related to the human interaction and operation of the substation and is hence a 

Client-server based system [9], [17]. This type of communication includes any instructions from 

the operator (human interface) as well as measurements from CTs and VTs and isolator or breaker 

positions. It therefore involves [6], [9]: 

• Establishing dialogue with the substation SCADA 

• Reporting of information between bay level and station level elements 

• Sending of commands, control and signals 

• File transfer and data acquisition 

• Dealing with events and alarms 

• Operation of the substation switchgear and high voltage equipment 
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Figure 2-11. Vertical communication architecture [6], [9] 

 

Figure 2-12. Horizontal communication architecture [6], [9] 

Horizontal communication may be achieved using copper hardwiring or serial communication 

between devices based on the requirements or preferences of the designer [6], [9], [17], [18]. 

However, today an Ethernet-based interface is used in IEC 61850 and other TCP/IP protocol-

based substations. The horizontal architecture shown in Figure 2-12 deals with the transfer of 

information and data between bays and with the exchange of information or data between certain 

elements or functions at the bay level [9], [17]. The horizontal communication architecture used 

within a substation, as described in Figure 2-12, is used for but not limited to [6], [9], [17]: 

• Interlocking 

• Data/information exchange between the line protection and the recloser 

In addition to IEC 61850 compliance on the station and bay levels, process level devices, such as 

switch gear and instrument transformers, may also satisfy the requirements of an IEC 61850 

architecture. A design of this nature seeks to replace the analog hardwire connections between 
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the IEDs on the bay level and the CTs, VTs and circuit breakers on the process level respectively. 

The hardwire method for connecting process and bay level devices was shown in Figure 2-11 and 

in Figure 2-12.  In this model, the conventional process level CTs and VTs communicate via serial 

point to point communication links to the IEDs as well as with the bay controller on the bay level 

[17], [18]. Figure 2-13 shows how modern switchgear can be installed in the place of legacy 

equipment, allowing process level devices to communicate with the bay and station level devices 

over IEC 61850 communication links further reducing the analog hardwire connections within 

the substation [6], [9]. Therefore Figure 2-13 shows an example of how a substation can use the 

full functionality of the IEC 61850 protocol. However, typically utilities will pick and choose the 

stages of the protocol that they wish to implement within a hybrid substation. A similar network 

to that shown by figure 2-11 and 2-12 was developed during the course of this study in chapters 

4 and 5. IEC 61850 communication was achieved both horizontally and vertically between IEDs. 

 

Figure 2-13. IEC 61850 Communication Network [17], [18] 

2.6 The impact of the IEC 61850 protocol on protection systems 

The following chapter describes fast bus tripping, reclosing and breaker fail protection and how 

these concepts relate to control, protection, monitoring and automation within a substation. 

Hence, this section of the paper seeks to describe how the IEC 61850 protocol uses an Ethernet-

based communication system to accomplish and improve traditional protection schemes. In the 

following sub-sections, the authors discover how the GOOSE message class is typically used over 

the substation LAN and between the station and process buses to replace the copper hardwire 

connections between IEDs within a substation. Therefore, the authors present a short discussion 

on what the IEC 61850 protocol can and cannot offer to traditional protection schemes. 

Furthermore, the aforementioned schemes can be grouped into two main categories, namely: 

protection and automation that requires inter-IED message exchange within the internal 

environment of a particular substation and protection schemes that require inter-substation 
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(external) communication. The authors discussed the first concept in more detail in the following 

subsections. 

2.6.1 Fast bus tripping 

A fast bus tripping scheme is also typically referred to as reverse interlocking [4]. The purpose of 

this scheme is to decrease the clearing time of different bus faults on radial distribution systems 

[4]. Hence, a fault on a particular bus must be cleared within a certain critical amount of time 

before the system goes unstable or equipment is badly damaged by a sharp current or voltage 

disturbance. An example of a fast bus tripping scheme by GOOSE was demonstrated below in 

Figure 2-14. 

In Figure 2-14. the bus IED that is at the top of the substation hierarchy communicates with each 

of the IEDs connected on the three feeders below [4]. This means that if a fault or disturbance 

occurs on a particular feeder then the IED on that feeder will issue a GOOSE blocking response 

to ensure that the bus IED does not needlessly trip [4]. This GOOSE message can be retransmitted 

to ensure that the relevant IEDs have received the required information. Additionally, only those 

IEDs that have subscribed to the message stream may interpret the relevant data. Alternatively, if 

a fault occurs on a bus section then the feeder IEDs are not aware of it and therefore, do not 

prevent the bus IED from tripping [4]. Hence, the bus IED may trip as and when is required using 

its fast trip protection elements and the GOOSE message class to clear the fault within the 

appropriate time frame [4]. Thus, a typical fast bus trip protection scheme was shown in Figure 

2-14. This diagram represents an example of an inter-IED communication system by utilizing the 

IEDs physical inputs and outputs or the process and station buses to transfer fault information 

within the substation. 

During the course of the study conducted in Chapter 4 and 5 of this study fast bus tripping was 

implemented during GOOSE for blocking-based protection as well as for traditional protections 

under fault conditions. The subscribing devices could communicate and administer protection 

effectively by accessing the control functional blocks of the required IEDs in the protection zone. 

 

Figure 2-14. Radial feeder and fast bus tripping scheme [4] 
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2.6.2 Reclosing 

Newly developed IEC 61850-based IEDs have become commercially available from companies 

like ABB, Schneider and SEL. These manufacturers will commonly include many protection, 

monitoring, automation and control functions such as reclosing and breaker fail protection within 

their IEDs [4], [20]. Typically, these IEDs possess sophisticated control structures for up to two 

circuit breakers. Hence, the aforementioned structures can be utilized to control and monitor 

equipment in breaker-and-a-half and ring bus protection schemes respectively [4], [20]. However, 

in most cases a power utility or design engineer will choose to use a single exclusive IED to 

perform the reclosing function or for breaker fail protection within a substation [4], [20]. This 

means that a particular IED is assigned only one job. An example of line reclosing is shown in 

Figure 2-15.  

 

Figure 2-15. Line Reclosing [20] 

Challenges on transmission systems and within substations are not only limited to clearing faults, 

but include the restoration of services after the circuit breakers have opened [4], [20]. How a 

particular circuit breaker is restored can have a significant impact on the circuit breaker itself as 

well as the on the associated power system to which it is connected. The process of restoring a 

circuit breaker to its close position is referred to as reclosing [4], [20].  Current differential relays 

are equipped with autoreclosers for each circuit breaker and binary information can be 

communicated between the relays [4], [20]. An example of line reclosing is shown in Figure 2-

15. Here the relays communicate between remote ends which allows each breaker to reclose 

safely.  If breaker 1 closes first a signal is send to the west remote end specifying a successful 

reclose [4]. Breaker 2 and 3 can then close one at a time, after a certain time delay, provided a 

successful reclose occurs in each instance [4], [20]. This method of reclosing reduces the stresses 

on the breakers if the fault resurfaces. 

Reclosing takes place when a signal from a traditional protection IED activates an exclusive 

reclosing IED via a hardwire link or physical inputs and outputs in a conventional substation [4], 

[20]. However, the communication for reclosing within modern substations takes place over the 

LAN using IEC 61850 GOOSE messaging or other related protocols. Apart from simply replacing 
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the hardwire communication links between devices, the IEC 61850 GOOSE message system also 

monitors the health of the ‘virtual’ wiring [4]. This helps to avoid a situation where a failed device 

is not noticed until it is called upon to protect a particular piece of equipment [4], [20]. 

2.6.3 Breaker fail protection 

Breaker fail protection is commonly required in combination with reclosing and most IEDs will 

typically have an inbuilt breaker fail protection function. This protection works using a timer that 

activates once an IED has issued a trip signal. In addition, as the timer ticks the IED monitors the 

current through the circuit breaker [4], [19]. This means that if the breaker current is not 

completely interrupted the relay will issue a second trip signal or alternatively trip the 

neighbouring breakers to isolate the faulted circuit [4], [19]. Alternatively, a separate dedicated 

IED may be used for breaker fail protection of a particular bay. This enables the system to 

incorporate monitoring and control functions like gas pressure and ambient temperature 

supervision when using a dedicated breaker fail protection IED [4], [19]. The control and trip 

signals may be exchanged using the IEDs physical inputs/outputs and traditional hardwire 

interconnections. However, once again, the IEC 61850 protocol allows for the fast, reliable and 

secure exchange of GOOSE messages over the substation LAN. This allows breaker fail 

protection to be carried out ‘virtually’ over an Ethernet or optical fibre local area network and for 

trip signals to be retransmitted as and when is needed by the IEDs. Breaker fail protection was 

effectively implemented in this study in the network shown in Chapter 5. 

2.6.4 Protection schemes requiring inter-substation communication 

The present scope of the IEC 61850 protocol is limited to the protection, control and monitoring 

of equipment that takes place exclusively within a substation [4]. However, the IEC is currently 

working on developing their protocol further such that inter-substation IEC 61850 communication 

can be realized. There are a number of protection schemes that require information from 

surrounding substations and could benefit from an IEC 61850 architecture in the future [4]. These 

protection schemes include but are not limited to: directional comparison schemes and line current 

differential schemes [4]. 

Until such a time that the IEC 61850 standard has developed to allow for the transmission of 

GOOSE messages over a public wireless area network (WAN), the aforementioned protection 

schemes will remain relatively unchanged [4]. Currently, one of the known methods for 

establishing a secure channel through WAN is to use Ethernet tunnelling using a virtual private 

network (VPN) [4]. However, even with Ethernet tunnelling the existing GOOSE message system 

is still not good enough for current differential protection which relies on a constant stream of 
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current values [4].  Therefore, the future development of inter-substation communication using 

the SV message class would be required to expedite this type of protection using the IEC 61850 

protocol [4]. 

2.7 Cyber vulnerability 

Cyber-physical devices are Ethernet or optical fibre-based IEDs that communicate over the 

substation local area network as well as using cloud computing on the internet. This makes 

protection IEDs, and by extension substations themselves, susceptible to cyber-attacks by both 

criminals and terrorists alike. The authors of paper [2], which discussed the design and 

implementation of fast substation protection in IEC 61850 environments, proposed an innovative 

solution that sought to protect different IEDs within a substation against cyber criminals. An 

attack on an IEC 61850-based substation and its associated systems occurs when the hacker 

injects false, but syntactically accurate measurements in the GOOSE or SV message streams 

which tricks the network into accepting them as friendly code [2]. Thus, a cunning defence is 

needed to ensure that the expensive, vital and vulnerable equipment within a substation is not 

corrupted. 

2.7.1 Cyber attacks  

Cyber-attacks may be carried out using different mechanisms and or catalysts to ultimately 

damage or impede a protection system. The different cyber-attacks that are of concern to IEC 

61850-based networks include, but are not limited to, the following items [2]: 

 

• A deliberately malfunctioning MU can be forced to deliver a false SV message that tells 

an IED that a fault current is present when in fact none exists. This means that the relay 

could needlessly issue a trip signal if it has subscribed to that particular SV message 

stream. 

• Additionally, a deliberately malfunctioning MU can deliver a SV message that hides the 

presence of fault current when it is in fact present. This means that the power 

system/substation could operate in a potentially dangerous state causing damage to 

equipment, outages or danger to human life. The time-current logic of an upstream relay 

would eventually trip and clear the fault. However, the damage to the system would be 

minimized if the primary protection had operated within the necessary time frame. 

The faults that occur within a substation may arise as a result of hackers tampering with 

sensitively calibrated equipment, messages and code, or intentionally introduced by mechanical 

and or other related means [2]. Hence, a system fault and the damage caused to equipment within 

a substation may be opportunistic if the cyber-digital attack is the primary mechanism [2]. 
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Alternatively, the hacker may intentionally introduce a fault by mechanical or physical means and 

then finally he/she may deliberately impede an IEDs ability to clear the induced fault [2]. 

2.7.2 Preventing attacks 

In order to protect IEC 61850 Ethernet-based devices from cyber-attacks the IEDs must be 

configured to collaborate with one another so that they are all able to agree on the presence of a 

fault condition and whether or what the appropriate corrective actions (breaker trip) should be 

[2]. An ideal cyber defence would be for the protection to identify a certain number of incorrect 

or tampered measurements within a particular GOOSE or SV message stream [2]. Hence, the 

conglomerate of interconnected IEDs would be required to receive and analyse the SV 

measurements from their peer relays and MUs, compare these to their own measurements and 

then lastly apply Kirchhoff’s Voltage and Current Laws (KVL and KCL) to determine whether 

or not this information is valid and accurate [2]. Upon the detection of an invalid or false 

measurement is it imperative to identify the malfunctioning IED so that it can be replaced or 

reprogrammed [2]. This method of cyber defence was based on a ring bus or loop circuit as was 

shown in Figure 2-16. 

 

Figure 2-16. 4-generator, 4-bus loop [2] 

In Figure 2-16 the current and voltage at and between each of the buses, as well as the complex 

impedance between the busses, was denoted according to the bus number as was shown. 

Therefore, the above system could be solved mathematically by an IED using the KCL and KVL 

rules in order to check that the sensed and received SV or GOOSE information is indeed correct 

[2]. As a result of the technological advancements of Ethernet-based cyber-physical IEDs as well 

as the implementation of the IEC 61850 protocol the threat of a serious and damaging cyber-

attack on substations is ever growing [2]. 
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2.8 Backup IEDs for IEC 61850-based protection 

IEDs fulfil an integral, vital and fundamental aspect of IEC 61850-based communication, 

monitoring, control and protection within a substation. In conventional legacy-based protection 

schemes the consideration and implementation of backup devices for IEDs has been infrequent 

[5], [19]. However, the authors of paper [5], which investigated the design of backup IEDs for 

IEC 61850-based environments, realized that —in modern substations— the need for backup 

IEDs has grown exponentially and become a prerequisite for many utilities. Backup protection 

for older legacy-based IEDs was not widely considered due to the fact that these devices only 

used data local to the relay itself [5], [19]. Additionally, there were certain limiting factors within 

conventional substations that emerged as a result of their hardwired point to point communication 

links between legacy-based relays. Hence, and furthermore, because of the IEC 61850 protocol 

the removal of copper hardwire connections within substations has become a reality. This is 

providing a better medium for backup IED protection simply because of the introduction of virtual 

Ethernet or optical fibre-based communication channels like the substation LAN. 

2.8.1 Methods of backup protection 

The current and preferred method for backing up IEDs that operate within IEC 61850-based 

environments uses a technique that activates an identical backup IED in the case of a malfunction 

or misoperation [5], [19]. This method of backup protection requires a very large number of IEDs 

(essentially double) because each and every IED within a substation needs to have an identical 

backup device [5], [19].  A disadvantage of this strategy arises when both the backup IED and the 

protection IED fail at the same time [5]. This means that there is no protection until both or either 

of the IEDs is restored [5]. 

Primary protection equipment and backup IEDs also require a rebooted if any of the IEDs 

configuration settings or protection parameters have been changed [5]. Hence, the system is 

without backup or primary protection for this initial start-up period [5]. The reboot time of a 

typical IEC 61850 IED is roughly 12 s, this period increases to 45 s if a file replacement or file 

update is required [5]. Hence, if an engineer or a substation technician makes a change to a 

particular IED the equipment may remain unprotected for up to 45 s [5]. 

The authors of paper [5] propose a method of protection that uses a single or fewer number of 

backup IEDs which contain every protection element within a substation. This means that a large 

number of IEDs can be covered or backed up by a single unit which waits for a particular IED to 

fail [5]. This reduces the number of backup IEDs that are required within a substation which 

naturally has various economic and technical advantages. In addition, the backup protection for 
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one IED can be activated by the operator and can even be used as a second redundancy safeguard 

for another backup IED [5]. 

The IED that was proposed by paper [5] can be deployed to provide backup protection for any 

primary IED but not necessarily every single IED within a substation. Therefore, this method 

optimises the use of IEDs in a substation to a certain point. An additional benefit of this 

recommended method is that the suggested backup IED shortens the unprotected time of the 

system since it does not require any reboot or file update [5]. Hence, backup protection is virtually 

instantaneous. This means that the operation, reliability, security and efficiency of a substations 

protection can be improved and maintained [5]. 

The design specifications for the backup IED that was conceptualized in paper [5] consist of the 

following items: 

• SCL-based activation using an SCD file. 

• Continuous operation without reboot. 

• Storage of all information, functions and logical nodes of every IED within a substation. 

However, in contrast to the proposed backup IED in paper [5], the IEC 61850 protocol prescribes 

that a protection IED use a CID file for backup protection. Therefore, the protection IED in 

question should receive the CID file from the IED configurator and parse this file to obtain the 

information about the particular IED that it backs up.  The reason the recommended IED in paper 

[5] uses an SCD file is because here the authors are attempting to back up more than one IED 

using a single device. This means that an SCD file is required because the backup IED needs 

access to all the information describing every device that it covers within a substation [5], [19]. 

The backup IED can therefore change its protection settings as well as its configuration 

characteristics without a reboot [5]. 

2.8.2 Applications of backup IEDs 

The first method of backup protection, as was previously mentioned, ensures that any IED in an 

IEC 61850-based environment uses an identical backup IED as a potential safeguard. This can be 

described as having one primary and one backup device [5]. The, aforementioned, IEDs would 

then operate according to the same protection target and thus have the same protection settings. 

However, in the second proposed method for backup protection, one or more IEDs can be used 

to back up a much larger number of devices [5]. Hence, the backup device is loaded with all the 

protection elements of every device that it seeks to cover. Naturally, a particular backup IED is 

applied until the malfunctioning IED has been restored or replaced. The recommended method in 

paper [5] states that a conventional system of fourteen IEDs can be optimized to use only seven 
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primary IEDs with as few as two devices required for backup (instead of the same number of 

primary IEDs) [3], [5].  Hence, this system has a significant economic advantage over other more 

traditional IED backup protection methods due to its efficient redundancy measures.  

2.9 Implications of modern relays on protection design 

Modern microprocessor-based relays have changed the way substations are designed and the 

manner in which IEDs communicate with their peers in order to operate, monitor and control 

circuit breakers, reclosers and related equipment. The need for high speed communication links 

between these new intelligent devices has given birth to Ethernet-based protocols like the IEC 

61850 standard.  Naturally, protocols such as this have different implications, benefits and 

advantages for the way in which protection schemes can be devised and implemented. 

A number of the following modern protection mechanisms use the new IEC 61850-based 

communication standard as is shown in the included diagrams, Figs. 2-17 to 2-23. The subsequent 

sections of research were based on paper [20] which discussed certain perspectives of substation 

design whilst at the same time considering the impact of modern relays. The authors explored 

various power systems, protection structures and the associated communication links that are used 

to connect the IEDs that control circuit breakers, reclosers and other electrical equipment [20]. 

These design systems include line protection, impedance protection, bus protection and protection 

on transformers as well as feeder design — to name but a few. 

2.9.1 Line protection 

In electrical transmission systems, the section of infrastructure on which most faults occur is on 

a powerline [20]. Traditionally, powerlines span great distances which makes them susceptible to 

many physical dangers and vulnerabilities, like falling trees or lightning. Therefore, these dangers 

can cause or induce different fault conditions which may extensively damage equipment on a 

power system. The lengthy spans that electrical powerlines traverse also makes it difficult to 

detect faults along a long transmission line and open the relevant circuit breakers [20]. 

Conventional distance protections seek to provide instantaneous protection to a portion of a 

transmission line without relying too much on direct communication links along the length of the 

line itself [4], [20]. Alternatively, distance protection along the whole length of the line may rely 

on the singular exchange of digital information between IEDs so that they can clear or isolate any 

prolonged faults by activating the appropriate breakers [1], [20]. On the other hand, differential 

protection relies on the transmission of an analog signal from one end of a transmission line to 

the other [1], [20]. Essentially it uses Kirchhoff’s Laws, to analyse current and voltage 

information at the sending and receiving ends, and decides whether or not a particular fault is 
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present [20]. In general, the IEC 61850 protocol seeks to replace this transmission of analog data 

with digital SV messages over Ethernet communication links. Modern IEDs can issue trip signals 

and blocking responses using the GOOSE message class over these virtual communication 

channels [4], [20]. 

 

Figure 2-17. Two terminal line differential protection [20] 

Figure 2-17 shows a typical line differential protection scheme with communication links for a 

two-terminal system. The IEC 61850 protocol could theoretically be used to implement the 

necessary communication links and facilitate the exchange of data between functions linking the 

line protection and the auto reclosers from two substations [4], [20]. Hence, the future 

development of the IEC 61850-based communication of data between IEDs, circuit breakers, 

reclosers and between substations at each end of the line can help to provide distance protection 

to powerlines. In a conventional system shown in Figure 2-17 pilot wire is used to transmit analog 

current information between either ends of the powerline [1], [20]. Line protection is not only 

limited to systems of two terminals but systems of, for example, five terminals may also exist as 

shown in Figure 2-18.  

 

Figure 2-18. Five terminal line with differential protection [20] 

In the theoretical system depicted in Figure 2-18, it is possible to trip all the breakers selectively 

for a fault that is internal to the system. There is a communication link between each of the 

terminals or buses from A to E [20]. This represents an intercommunication between substations 

where the IEC 61850-based architectures have been implemented. Here the IEDs local to the 

substations themselves received SV messages from instrument transformers and MUs and decide 

whether or not to trip certain circuit breakers and protect or isolate the transmission line [1], [20]. 

Inter-substation IEC 61850 communication is still being researched and developed by the IEC. 
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Digital communication over long distances is costly so analog to digital conversion may be 

employed at either ends of long lines giving way to optical fibre/Ethernet IEC 61850-based 

communication links within a substation itself. 

2.9.2 Bus protection and current transformers 

High impedance protection is commonly considered a very simple protection scheme since the 

feeder’s CTs are wired in parallel and then connected directly to the relays in the control room 

[1], [20]. The first image, Figure 2-19, in the diagram below shows a high voltage substation bus 

that is protected using a form of high impedance protection. In this design, each of the feeders 

CTs has an identical CT ratio as well as a very low magnetizing current [1], [20].  

 

Figure 2-19.  High impedance bus protection [20] 

 

Figure 2-20.  Low impedance bus protection [20] 

In more advanced substations, which use intelligent electronic relays, it is common to use low 

impedance protection as is shown in Figure 2-20. This type of protection is more expensive, but 

can read the individual circuit current from each bay and implement the desired action [4], [20]. 

The benefits of this system may include fault recording, the generation of current waveforms, 

event sequencing as well as the different communication capabilities [4], [20]. One of the 

disadvantages of low impedance protection is that both the CTs and the CT arrangement of this 

type of protection is considered to be costly and presents more of an economic barrier to clients 

and engineers [1], [20]. In an IEC 61850 architecture the analog signals from the CTs are 

delivered to MUs which digitize the sensed information and forward it to the IEDs in the control 

room using SV messaging [4]. 
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2.9.3 Transformer protection 

A breaker-and -a-half scheme, also referred to as a ring bus system, requires that the CT ratio be 

decided by the measured value of the breaker’s load current as opposed to the load current drawn 

by the transformer [1], [20]. This is an important consideration when protecting transformers. In 

Figure 2-21 the breaker CTs are 3000/5A as opposed to a load current of 500 A through the 

transformer [20]. The CT currents from the secondary winding act as inputs to the differential 

relays or merging units and the associated IEDs in an IEC 61850 environment. The relays then 

decide whether or not to issue trip signals to either or all of the circuit breakers connected to the 

protection zone [20]. 

 

Figure 2-21. Dual breaker transformer protection [20] 

2.9.4 Transformer feeder design 

Modern IEDs and the new IEC 61850-based architectures have modified the way in which 

transformer feeders are designed and implemented. The diagrams in Figures 2-22 and 2-23 

illustrate this concept visually.  

 

Figure 2-22. Conventional transformers feeder protection [20] 

 

Figure 2-23. Modern transformers feeder protection [20] 
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The first diagram, Figure 2-22, shows a long feeder and transformer protection scheme. In this 

diagram, the buses 1 and 2 represent the source and load respectively. In addition, a CT is usually 

connected on the HV side of the transformer as is shown to avoid allowing the transformer and 

line to be protected by a single IED [1], [20]. This CT is then connected to line protection on one 

end of the line and the transformer protection at the other end [1], [20]. The line protection is 

typically either distance or differential protection with certain legacy-based communication links. 

In modern networks as shown in the second image, Figure 2-23, the intelligent relays or IEDs can 

send instantaneous information and SV messages across terminals using fast instantaneous digital 

communication links [4], [20]. This means that information is available in a transparent way and 

decision making for the IEDs is easy and simple. Additionally, in this system transformers need 

not be included in the zone of protection [1], [20]. Medium length lines can now be terminated 

on transformers with LV side breakers which saves cost and makes the design and implementation 

of such systems economically appealing [20]. 

2.9.5 Breaker-and-a-half schemes 

In a breaker-and-a-half or ring bus scheme the CT currents are summed together by numerical 

means before the information is given to the distance or differential line protection element within 

a substation. 

 

Figure 2-24. Conventional line protection [20] 

 

Figure 2-25. Modern line protection [20] 

In line distance protection schemes the CTs are sized not to saturate. However, CTs may saturate 

due to a through fault across two breakers in a breaker-and-a-half scheme [1], [20]. Thus, as a 
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result of this CT saturation, the summation of currents from the two CTs which is delivered to the 

protection is no longer accurate [1], [20].  Hence, an error in the operation of the system may 

occur. One solution to this was shown in Figure 2-24. Here an additional CT was included in the 

protected line [1], [20]. However, the latest IEC 61850-based numerical protection systems negate 

the inclusion of this CT and prefer to make use of saturation detectors in the case of differential 

protection. Alternatively, directional detection is used in each of the breakers for distance 

protection schemes [1], [20]. These concepts are captured in the Figures 2-24 and 2-25. 

2.9.6 Transformer tap-off 

Primary line protection is often compromised as a result of the presence of tap-off transformers 

along the transmission line [20]. This compromise is caused by the sensitivity issues and 

protection speed constraints that such devices pose. Most transformers are designed with a delta 

HV winding which provides zero sequence isolation for earth faults [1], [20]. This ensures good 

sensitivity and fast earth fault currents. The more modern Ethernet-based protection systems 

allow for multiple tap-offs along the power-line since they measure the current on the LV side of 

the transformer in a substation using the SV message class and can then communicate this 

information with both ends of the line [4], [20]. The concepts of conventional and modern 

transformer tap-off and line protections are captured graphically in Figures 2-26 and 2-27 

respectively. 

 

Figure 2-26. Tap-off transformer conventional protection [20] 

 

Figure 2-27. Tap-off transformer modern protection [20] 
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The communication links for the conventional tap-off protection schemes only occur between 

either ends of the powerline, however, in modern protection systems the IEDs communicate with 

either end of the line as well as with the instrument transformers connected at the tapping point 

[20]. This makes protection more reliable, secure and efficient. 

2.10 Testing of protection schemes in IEC 61850-based substations 

Protection engineers are required to check, test and commission IEDs, equipment and other 

related devices within a substation. This forms part of the installation and maintenance of 

instruments in order to ensure that they are functional and adequate. The unfamiliar and 

unaccustomed task of testing IEC 61850-based IEDs and their associated automation systems can 

be considered quite a new and abstract duty for engineers. Test equipment, in conventional 

legacy-based protection schemes, uses the analog, serial and binary inputs/outputs of IEDs to test 

associated protection functions. However, more advanced tools and test apparatus is needed for 

the technologically advanced virtual environments of today [11]. In the IEEE paper compiled by 

Omicron, the authors discuss the testing of protection systems in IEC 61850-based substations 

and highlighted a few of the specialized Ethernet-based testing techniques using Omicron test 

equipment [11]. 

A number of the substations that exist today are referred to as hybrids and have a mixture of 

modern and conventional protection equipment. In a hybrid substation IEC 61850-based IEDs 

can connect to and communicate with legacy-based devices through a communication gateway. 

The use of the IEC 61850 protocol and the extent to which this protocol is implemented within a 

substation depends on the particular municipality that has requested and implemented it [2], [7], 

[11]. Some utilities only use Client-server communication for SCADA systems and tend to ignore 

the GOOSE and SV message benefits of the protocol. Others utilities prefer GOOSE messaging 

and use it for items like breaker tripping and status information since the use of copper hardwire 

connections is minimized by introducing Ethernet-based communication links [2], [7], [11]. 

Therefore, protection engineers must often deal with substations that have a complex variety of 

different protocols and IEDs operating on the same network [11]. Hence, these hybrid substations 

combine both conventional protection architecture with virtual networks and digitized 

communication systems. 

A few examples of the tests that engineers and manufacturers must carry out on different 

equipment within a particular substation may include but are not limited to: the type test of an 

IED, factory acceptance testing as well as commissioning and or maintenance. One of the methods 

for testing IEC 61850-based IEDs uses specialized test equipment to mimic either GOOSE, GSSE 
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and SV messages [10]. An example of this technique was shown in Figure 2-28 which was 

illustrated below. 

 

Figure 2-28. IEC 61850 GOOSE and GSSE message testing [10] 

2.10.1 Testing wiring, continuity and connections 

In a conventional substation —as part of the substations acceptance test— it is important for 

engineers to check that the cables that exchange information or signals between different IEDs 

are correctly wired [11]. This verification can be achieved using a simple multi-meter to check 

the continuity of the connected cables [11].  These checks ensure that the binary inputs of one 

relay are correctly wired to the binary outputs of another relay [11]. However, in an IEC 61850-

based substation, where information is transferred through GOOSE and SV messages, a software 

approach must be taken to check that the “virtual” wiring between IEDs is adequate. Here the 

software monitors and may even broadcast GOOSE messages over the substation LAN and 

ensures that they have been received by the IED which has correctly subscribed to that particular 

message stream [11]. The tested IED should then react accordingly by enacting the appropriate 

function based on the received information. 

2.10.2 Testing substation protection 

IEDs, both old and new, are allowed a certain critical amount of time before an existing fault 

becomes detrimental to a power system and must be cleared. Therefore, this fundamental aspect 

of protection must be considered by engineers to ensure that the protection is operating as it should 

and within a certain amount of time [11]. In a conventional legacy-based substation analog 

currents and voltages may be generated by a test set in a primary or secondary injection test [11]. 

Engineers or technicians can then analyse if, when and how long a relay takes to issue a trip 



2-47 
 

response. The concept of secondary injection protection testing was graphically illustrated in 

Figure 2-29. 

 

Figure 2-29. Conventional substation protection test [11] 

Additionally, in an IEC 61850-based substation, where GOOSE and SV messages are used for 

the communication of data and information, the same test procedure can be utilised [11]. In this 

case, the only difference is that the communication between the IED and the test set takes place 

over the substation LAN [11]. The test set shown in Figure 2-30 will produce SV messages that 

quantify the current and voltage that was sampled by the instrument transformers. This simulated 

data is delivered to the protection IED. The IED must then react accordingly and send the 

appropriate GOOSE messages back to the test set i.e. breaker trip, reclosing or status information 

[11]. On the other hand, the test set may also simulate GOOSE messages such as breaker status 

and reclosing and then send this information back to the IED and analyse whether or not the 

appropriate response/data has been captured [11]. An example of this test procedure was shown 

in Figure 2-30. This represents a secondary injection protection test in an IEC 61850-based 

substation network.  

 

Figure 2-30. IEC 61850 protection test over the substation LAN [11] 

2.10.3 Testing merging units using primary injection 

A Stand Alone Merging Unit (SAMU) seeks to convert the analog signals or sampled information 

from the instrument CTs and VTs into digital data that can be sent to the IEDs that require it [2], 
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[7], [11]. Usually MUs are tested by the manufacturer before delivery since this process requires 

highly sensitive pieces of test equipment that produce time synchronised analog signals which are 

required to test the MUs operational functionality [11]. In addition, directly testing an MU from 

the network is referred to as secondary injection testing since the MU is tested exclusively from 

the test set. However, on the other hand, primary injection and testing of devices like an MU 

involves a direct analog current or voltage injection on the instrument CTs or VTs primary coil 

[11].  This means that the entire voltage or current path can be checked [11]. Hence, this infers 

that the sampled information from the CT or VT can be validated and analysed by a test set after 

or before it has passed to the MU. This method of testing was shown in Figure 2-31. 

 

Figure 2-31. SV testing and primary injection [11] 

During the course of the studies conducted in both Chapters 4 and 5 of this dissertation, testing 

was conducted using an Omicron current amplifier to mimic the nominal and fault effects of 

system currents and a real time digital simulator communicated with an RSCAD test model. This 

created a closed loop/feedback test system for the developed substation model. Testing of the 

aforementioned nature allowed the authors to test the operational nature of the proposed 

substation protection and automation network. This included the technical assessment of the 

benefits of certain communication protocols such as: the new and preferred IEC 61850 standard, 

serial Modbus RTU and legacy DNP 3, based on the configuration, connections and responses of 

the implemented system. 

2.10.4 Conformance testing 

The IEDs that are designed and built by a particular manufacturer must undergo system tests, 

routine tests and type tests in accordance with IEC 61850 standard regardless of the final design 

applications [3], [18]. These devices must also go through traditional Factory Acceptance Tests 

(FATs), site commissioning and Ste Acceptance Tests (SATs) to ensure that the equipment is 

functioning as was intended [3]. In addition to the aforementioned tests conformance testing is 

carried out to ensure that the vendors and their devices have complied with the IEC 61850 

communication protocol [3], [18]. Typically, conformance testing covers items like: document 
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verification, configuration, data models and mapping [3]. Conformance testing may be carried 

out by private test labs that have been accredited by the UCA International Users Group [3], [18]. 

2.11 Conclusion 

Substation protection, monitoring, automation and control collectively rely on the 

intercommunication of intelligent devices and equipment. This literature review presented a 

comprehensive review of the IEC 61850-based communication architecture and its associated 

implications for the protection of various electrical devices within a substations local 

environment. This new communication standard has had a marked effect on the way in which 

data, signals and functions can be shared between IEDs, control centres and other electronic and 

electrical elements within a substation. Modern relays from companies like SEL, ABB and 

Schneider are being developed with this new protocol in mind and can interoperate with other 

IEDs regardless of the manufacturer or vendor. Therefore, the age of legacy protection systems 

and conventional substations is at an end. 

Although technology has moved on, the IEC 61850 protocol is not without its technical short-

comings. Cyber-attacks, back-up IED protection, a need to develop and change substation 

architecture, network-based protection testing and inter-IED data transfer are all new and 

developing complications that must be tackled by engineers, manufacturers and utilities alike. 

The final standard as specified by the IEC defines a single protocol for modelling various pieces 

of data within a substation. It seeks to promote the interoperability and communication between 

IEDs that were developed by different vendors as well as synthesize a common method for storing 

information. The IEC 61850 standard also provides the basic services needed to transfer data, 

signals and enable control between IEDs and a central control unit or HMI. Lastly, the testing of 

electrical devices and the testing of protection schemes within the substation must also conform 

to the constraints of the IEC 61850 protocol. This makes checking and testing the operation of 

equipment easier and more efficient.  

When the IEC 61850 protocol is compared against traditional SCADA protocols like DNP 3 and 

simpler serial methods of data transmission like Modbus RTU then the benefits become obvious. 

During the course of this study (chapter 4 and 5) it was clear that as a result of the hardwired 

nature of Modbus, its lack of time stamped data, the serial aspects of its communication and the 

loss of data during a break in communications; that both DNP 3 and especially IEC 61850 offered 

far more significant advantages. 

Therefore, from the thorough investigation conducted in this chapter and indeed throughout this 

dissertation, it can be concluded that the newly developed IEC 61850 Ethernet-based protocol is 

at the forefront of the intercommunication between devices for information and data transfer, 
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signaling, control, protection and automation over the substation LAN. Hardwired 

electromechanical legacy-based systems are the past, IEC 61850 is the present and the future. 
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 METHODOLOGY 

The IEDs of both past and present substations have the ability to transmit data, commands and 

signals for the purposes of substation protection and automation. They can achieve this by 

applying one or more of the numerous alike and dissimilar serial- or Ethernet-based 

communication protocols. The goal of this dissertation was to assess the technical benefits and 

implications of the IEC 61850 standard on substation engineering. Therefore, it was necessary to 

implement the protocol independently as well as alongside standards like Modbus RTU and 

DNP3 on a communication network. Thus, a multi-protocol substation network was established 

during the preliminary experimental phase. This model then moved towards an almost exclusively 

IEC 61850 architecture during the course of the main research. The design process allowed the 

author to make deductions about the new IEC 61850 standard, identify the advantages and pitfalls, 

outline notable functions and features as well as critically and experimentally compared it to 

legacy protocols such as Modbus RTU and DNP3. This research gave the author insight into the 

effects of protocol-based communication on the important aspects of substation design, protection 

and automation. In the subsequent chapter the materials and methods of the experimental 

procedure were explored for both the preliminary and the main research models. The following 

subsections offered an explanation of the design process, how and why the study was conducted 

as well as why this form of practical experimentation was chosen. 

3.1 Preliminary research 

This section formed part of the initial stage of research, experimentation and concept development 

and contributed to the foundation of the principal study. It was during the preliminary 

developmental stage in chapter 4 that the basis for the main experimental procedure was 

formalized. 

3.1.1 Research design 

The basic research design that was explored in chapter 4 of this dissertation consisted of a station 

level SCADA model which was developed using the CitectSCADA software platform. This 

structured system monitored a physical network of connected protection equipment and related 

substation devices. The typical topology of a substation was used to define the feeders, incomers, 

buses, bays and the switchgear over which the SCADA model observed. Furthermore, the 

communication of information, commands and signals from and to different devices, equipment 

and the station computer was achieved using the IEC 61850 protocol, Modbus RTU and DNP3 

respectively. It was during this early experimental stage that the obvious advantages and 

disadvantages of IEC 61850, DNP3 and Modbus RTU were evaluated and discussed. 
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3.1.2 Equipment and software 

The preliminary design stage of this study required that a number of different protection, 

monitoring and supervisory devices and switchgear be obtained in order to effectively develop a 

typical substation model. Protocols including the IEC 61850 standard, DNP 3 and Modbus RTU 

should be supported by the substations protection hardware. The equipment that was obtained 

included primary and secondary devices to be connected on the station, bay and process levels 

respectively. The following list briefly describes the three fundamental component elements of 

substation engineering that were needed to develop the communication network that was 

investigated during the early experimental stage of chapter 4. 

1) Station computer, SCADA platform and IED software configurators 

2) Substation automation, monitoring and protection IEDs supporting multiple protocols 

3) Test devices and test software 

The type, manufacturer and model of the protection IEDs that were used in the early part of this 

study (including a detailed equipment list) could be viewed in the Appendix (Annex A and B). 

3.1.3 Procedure 

Here follows an outline of the experimental method, that was used in order to develop the research 

model for stage 1 of the study which was discussed in chapter 4. This process involved: 

1) Definition of an architecture which represented that of a typical electrical substation; 

The topology of the substation should consist of two 11kV buses, a connecting bus section as well 

as two incomers and up to three feeders on each bus. Standard switchgear such as an isolator, 

circuit breaker and earth switch should be present on each incomer and feeder respectively. The 

substation switchgear would be controlled by a network of process level automation and 

protection IEDs. This topology would form the physical layer over which a SCADA model could 

provide monitoring and control at the station level. 

2) Development of a station level SCADA model based on the chosen substation topology; 

i) CitectSCADA 

Schneider’s CitectSCADA software was used to create an automatic and interactive 

SCADA model of the physical system. This model should provide remote control points 

for the operation of circuit breakers and isolators, visual indications of the status of 

switchgear, modes of operation of devices, current readings as well as alerts, alarms and 

warnings under fault conditions.  
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3) Implementation of a network of connected hardware at station, process and bay level; 

i) SCADA 

The SCADA should exist on a host PC and should be connected to the RTU via an 

Ethernet switch i.e. over the substation LAN. 

ii) Ethernet switch 

Mediates data flow and traffic on the network and can be used to prioritize real time 

messages which are sent from one IED to another. 

iii) RTU 

Stores the information, variables, commands and databases which describe the overall 

electrical and graphical topology of the entire substation. 

iv) IEDs 

A network of interconnected IEDs was implemented to control the operation, automation 

and deliver protection to the equipment and switchgear of the substation model. The 

model code and manufacturer of these IEDs were those mentioned in the list of equipment 

in section 3.1.2 and shown in the appendix. 

v) Switchgear 

The switchgear used to interrupt the flow of power to the network were Omron relays. 

These contactors were used as an alternative to large industrial vacuum or oil circuit 

breakers which were not available, nor essential to this study. 

4) Establishing communication between IEDs, related equipment and the SCADA; 

i) DNP3 

DNP3 should be implemented on the telecontrol bus between the MiCOM C264 RTU 

and the host PC where the SCADA was located. DNP3 is traditionally used as a SCADA 

protocol and was ideally suited to this application. 

ii) Modbus RTU 

Modbus RTU was implemented on the legacy bus between the RTU and the MiCOM 

P122 IED. 

iii) IEC 61850 

The IEC 61850 protocol was implemented on the station bus between the RTU and the 

VAMP 255 and VAMP 259 IEDs. 
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5) Testing the substation, the equipment and the practical functions of the model; 

i) Steady state conditions 

Steady state conditions were used to assess the operational effectiveness of the 

experimental model and capture graphical, numerical and visual results of the workings 

of the system under operating conditions considered to be normal and stable. This was to 

be achieved using a test that involved the injection of secondary 3-phase current, an 

RSCAD test model and a real time digital simulator (RTDS). 

ii) Fault Conditions 

Fault conditions were used to assess the operational effectiveness of the experimental 

model and capture graphical, numerical and visual results of the workings of the system. 

This was to be achieved using a test that involved the injection of secondary 3-phase 

current, an RSCAD test model and RTDS. 

6) Assess and compare the technical benefits, disadvantages, implications, functions and 

features of the communication protocols that were implemented; 

i) Comparative study 

A comparative study was conducted in chapter 6 to critical analyse the benefits, 

ramifications, features and functions of the three protocols implemented in this study. 

7) Discuss recommendations and future works; 

8) Analyse, conclude and finalize the preliminary study. 

9) Move to the main research (chapter 5). 

3.1.4 Analysis 

Once the experimental model had been established its functionality was tested under steady state 

and fault conditions. In order to test the substations protection and automation functions 

secondary current was injected into the IEDs analog inputs using a current amplifier to mimic 

normal and over current conditions. Additional fault conditions were applied via the RTDS and 

the RSCAD test model.  In order to assess the workings of the model the following aspects were 

monitored and tested: 3-phase currents, breaker status, isolator status, earth switch status as well 

as fault conditions like earth fault, breaker fail and overcurrent characteristics. 

The results captured were those taken from the process analyst, alerts, alarms and visual aids of 

the SCADA model as well as from the HMI of the IEDs on the physical network. As a result of 

the implementation and operation of protocol-based communication between devices making up 

the substation network and based on the features and functions that each protocol possessed or 
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failed to possess an analysis was established which evaluated the technical implications of the 

IEC 61850 standard on substation engineering. In addition, resemblance, likeness and contrast 

was also drawn between the new standard and the legacy protocols DNP3 and Modbus RTU. The 

reason for this experimental approach was such that the author could describe the ramifications 

of the IEC 61850 substation protocol on a variety of substation criteria such as design, automation, 

communication and protection and compare this to that of the older legacy standards. A 

comparative study was included in chapter 6 which sought to compare the literature from each of 

the three protocols as well as the deductions made during the course of this research. 

3.1.5 Summary 

Stage 1 of experimentation sought to broadly define the main concepts of the study, gain a high-

level understanding of the research problem and formulate ideas about how to achieved the more 

acute goals of this research. In order to accomplish these aims and objectives the author completed 

a substation model, illustrated in Figure 3-1, consisting of switchgear, protection and automation 

equipment as well as a SCADA model. This network of connected equipment and IEDs used 

DNP3, Modbus RTU and the IEC 61850 protocol to transfer commands and data to and from 

their peers. This gave rise to a multi-protocol communication nexus that linked the SCADA host 

to an I/O device, the I/O device to the IEDs and the IEDs to the switchgear. Hence, using this 

basic approach, it was possible to assess the implementation, features, functions, implications, 

benefits and short-comings of protocols like Modbus RTU and DNP3 as compared to IEC 61850. 

This gave the author insight into the consequences of both modern and legacy-based engineering. 

The preliminary works which were conducted and included in chapter 4 provided the groundwork 

for the broader study which was explored in chapter 5. 

 

Figure 3-1. High-level experimental block diagram 
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3.2 Main research 

The main research, which was conducted in chapter 5, sought to accomplish the principal goals 

of this dissertation. It was here that the final works and concluding analysis of the undertaking 

were fulfilled. The purpose of the primary study was to build on the principles that were outlined 

during the course of chapter 4. Therefore, this component represented the stage 2 experimental 

development of the final research. 

3.2.1 Research design 

The principal research that was explored during the course of chapter 5 employed a station level 

SCADA model and a network of substation protection equipment that was developed as a direct 

result of stage 1 experimentation. The foremost purpose of this component of the study was to 

practically configure a fully IEC 61850-compliant protection architecture and assess the 

ramifications thereof on modern substation protection and design. The applications of the GOOSE 

message class were investigated and used to provide breaker fail, arc-flash and blocking-based 

protection to the substation model. Hence, it was during this final stage of the study that the 

implementation, benefits and shortcomings of the IEC 61850 standard and by extension the 

implications of the contemporary GOOSE message class, were examined. 

3.2.2 Equipment 

In order to develop a quintessential substation model which focused predominantly on the 

technical assessment of the IEC 61850 protocol; compliant protection, monitoring, supervisory 

devices and switchgear were required. Secondary investigations of Modbus RTU and DNP 3 were 

also conducted accordingly, such that the chosen protection devices still required compliance with 

these protocols. However, it remained that the most important characteristic of the specified 

equipment relied upon the communication compliance of the IEDs with the IEC 61850 standard. 

3.2.3 Procedure 

Here follows an outline of the experimental method that was used to fulfil the objectives of the 

research model for stage 2 of the study which was discussed in chapter 5. The following 

components discussed the configuration and implementation of an IEC 61850-compliant 

substation model. This process involved: 

1) Substation model 

The self-same typical substation model and SCADA that was developed and 

implemented during the preliminary experimental stage (chapter 4) was used during the 
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course of chapter 5. Minor modifications were made to the device configurations in order 

to investigate further applications of the IEC 61850 protocol and the GOOSE message 

class. However, the physical topology of the substation remained consistent. 

2) GOOSE message configuration 

i) Compliant protection devices and systems 

Multiple VAMP 259 and VAMP 255 IEC 61850-compliant protection IEDs and a 

MiCOM C264 RTU were connected over the substation LAN to provide relaying 

and automation to the substation model. A legacy-based MiCOM P122 was 

connected outside the IEC 61850 protection zone and communicated over serial RS 

485 using Modbus RTU. Information, commands and signals were communicated 

via the RTU to a CitectSCADA PC model using DNP3 on the telecontrol bus. 

ii) GOOSE message configuration 

The configuration procedure for GOOSE messaging for applications in breaker fail 

protection, arc-flash and blocking-based protection was followed using VAMPSET. 

Here the logical nodes, virtual outputs, control block logic, output matrix as well as 

publisher and subscriber information could be defined specific to each case. 

3) GOOSE-based breaker fail protection 

i) Protection architecture 

The GOOSE-based breaker fail protection characteristics of the experimental 

substation model were investigated simply by disconnecting the trip coil of a 

particular breaker. Thereafter, fault conditions or remote operation was applied to 

the breakers protection IED. A trip command would then be issued by the relay 

output to its respective breaker after which it should fail. Hence, the faulted circuit 

breaker was then to be isolated using GOOSE-based breaker fail protection. 

4) GOOSE-based arc-flash protection 

i) Protection architecture 

The GOOSE-based arc-flash protection characteristics of the substation model were 

studied using two arc sensors which were connected on the appropriate input of a 

particular IED. The purpose of this would be to detect cable and busbar arcing. Each 

arc sensor was tested by simply applying a flash close to the detection element which 

activated the device. Therefore, in order to isolate the arc-fault GOOSE-based arc-
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flash protection was implemented to the appropriate protection zone in order to 

extinguish the arc. 

5) GOOSE-based blocking response 

i) Protection architecture 

The GOOSE-based blocking response or sympathetic trip protection characteristics 

of the experimental system were explored. In this instance the GOOSE message class 

of a particular IED was configured to issue blocking signals to other neighbouring 

devices in order to prevent the operation of healthy circuit breakers and ensure that 

the appropriate protection zone had tripped. This helped to ensure proper protective 

coordination, grading and selectivity on the network. 

3.2.4 Analysis 

Once the IEC 61850-compliant experimental substation model of chapter 5 had been established 

its functionality was tested under breaker fail, arc-flash and blocking-based fault conditions. 

Therefore, this investigation sought to test the GOOSE-based substation protection and 

automation functions of IEC 61850. VAMPSET was used to apply fault conditions to the system 

such that the response of components and devices could be captured. In order to assess the 

workings of the IEC 61850 substation model the following aspects were monitored and tested: 3-

phase currents, circuit breaker status and operating conditions as well as fault parameters like 

breaker fail, cable arc, busbar arc and overcurrent blocking. 

The results captured were those taken from the process analyst, alerts, alarms and visual aids of 

the SCADA model as well as from the HMI of the IEDs on the physical network. As a result of 

the implementation and operation of GOOSE-based communication between devices an analysis 

was established to assess the technical implications of the IEC 61850 standard on substation 

protection. The reason for this experimental approach was such that the author could describe the 

ramifications of the IEC 61850 substation protocol on a variety of substation criteria such as 

design, automation, communication and protection and compare this to that of the older legacy 

protocols. A comparative study was included in chapter 6 which sought to compare the literature 

as well as the experimental deductions made during the course of this study. 

3.2.5 Summary 

Stage 2 of experimentation sought to definitively establish the main concepts of the study, gain 

an understanding of the research problem and conduct experimental investigation into the IEC 

61850 protocol and its intelligent GOOSE message class. In order to accomplish these aims and 
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objectives the author completed an analysis of the applications of GOOSE on breaker fail 

protection, arc-flash protection and blocking response.  Figure 3-2 shows the high-level functional 

block diagram which explained the procedure of the research conducted in chapter 5. 

 

Figure 3-2. High-level experimental block diagram
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 SUBSTATION NETWORK 

The consideration, differentiation and implementation of substation communication protocols 

formed the basis for this dissertation. These communication standards included:  DNP3, Modbus 

RTU and mostly importantly, the new IEC 61850 substation protocol. Therefore, the aim of this 

chapter was to understand the technical applications, implications, perceived benefits and pitfalls 

of a multi-protocol protection and automation system. Chapter 4 saw the development of a typical 

substation model as well as the rudimentary implementation of protocol-based data dissemination. 

Hence, this component of the dissertation presented a brief explanation of the first experimental 

stage which included: the development of a working network, practical results as well as an 

analysis, discussion and a definitive conclusion. 

The point of departure, from which a working prototypical substation would evolve, focused on 

the development of an interactive substation SCADA which was designed on the CitectSCADA 

host platform. This SCADA model was equipped to communicate, transfer, control and monitor 

data from a network of physically connected substation hardware. The design of a typical 

protection and automation system provided a means to analyse the various alike and dissimilar 

methods of communication between substation devices. In addition, it was also possible to assess 

the operational effectiveness of the model itself. The electrical network of a substation was 

implemented to achieve the basic research outcomes and provide a spring board from which to 

further this study in the following chapter. The subsequent model consisted of a communication 

network that linked the SCADA host to an I/O device (RTU) which was connected to both legacy 

and IEC 61850-compliant IEDs. Hence, a multi-protocol substation communication network was 

established. In summary, the purpose of chapter 4 was to develop the foundation of the main 

research model. Hence, it demonstrated the primary conceptual development of the broader 

undertaking as well as the initial set of results that were captured during the early experimental 

stage. Lastly, the results obtained were those relating to both practical and simulation studies. 

4.1 Development of SCADA 

CitectSCADA software is a fast, reliable SCADA package that is commonly utilized for a variety 

of industrial applications [21]. SCADA software platforms such as this, provide functions for 

control, data acquisition, monitoring, graphical displays, event capturing, alarming, trending as 

well as the storage of data [21]. A quintessential substation SCADA system occurs at the station 

level and requires information from the physical hardware processes which the SCADA seeks to 

monitor and control [22]. Corrective control and monitoring actions can be performed by the 

SCADA host based on the information that has been acquired from the physical network [22]. 

This allows the SCADA to provide overall control remotely from a host platform [22]. The 
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substation network that was developed using Citect in Figure 4-2, provided remote control for the 

physical model ensuring that devices turned on and off at the appropriate time as well as 

monitoring system parameters and the response of automatic actions. There are four distinct levels 

of SCADA; these include: hardware instrumentation, RTUs, communication networks and 

SCADA host platforms [23]. The interactive hierarchy of these respective levels was illustrated 

in Figure 4-1. In the context of this undertaking, hardware instrumentation refers to the instrument 

devices and IEDs that measure, transmit and act upon the sensed information within the physical 

network. On the other hand, RTUs store and ferry the sensed electrical parameters and other 

commands or data over a particular communication medium to a station computer where the 

SCADA host then captures, interprets and monitors the received data. 

 

Figure 4-1. Four distinct levels of SCADA 

The interactive substation model illustrated in Figure 4-2 was configured to communicate with 

an intelligent I/O device or RTU. RTUs are microcomputers that can interface with a wide variety 

of equipment such as IEDs, HMIs, transducers and end equipment [24]. In addition, they can 

transfer information, data and commands from these components to a PC on which the SCADA 

host is located [24]. The SCADA can then identify, processes, distribute, analyse and display the 

relevant information [25], [26]. This helps the observer to interpret data from the greater network 

and make important decisions based on the alarms, readings and visual alerts of the model. 

4.1.1 Substation model 

The development of a typical substation was initially realized via the implementation of a station 

level SCADA as well as the associated physical hardware model on the bay and process levels 

respectively. This illustrative and interactive smart SCADA, which was demonstrated in Figure 

4-2, presided over a nexus of authentic hardware including a number of modern and legacy IEDs. 

The characteristic electrical network that was described in the layout on the following page 

consisted of three basic sub-architectures. Therefore, the substations graphical topology was 

comprised of two incomers, five outgoing feeders on bus 1 and 2 and lastly, a bus section which 

connected the two respective buses. Furthermore, each feeder, incomer and bus section had a 

framework of basic switchgear which included: a circuit breaker, an isolator and an earth switch 

on each bay. Hence, the aforementioned description was that of a quintessential substation.
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Figure 4-2. Substation SCADA model 
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The SCADA model in Figure 4-2 had a variety of supervisory features and visual alerts that 

interactively illustrated network activity to the observer. These display functions included status 

indicators for the isolator, breaker, local mode, trip coil supervision, cable earth, overcurrent trip, 

earth fault, breaker fail and 3-phase currents respectively. Furthermore, in order to open and close 

the switchgear in Figure 4-2, the SCADA model had two interactive control panels for the 

corresponding isolator or breaker. Hence, a pop-up window appeared upon clicking on each of 

these symbols. This allowed the user to remotely open or close the breaker or isolator in question, 

provided that the appropriate rules for interlocking had been observed. Interlocking prevented 

arcing across a particular isolator by ensuring that the contacts were not live during switching.  

4.1.2 Variable tags 

In order to communicate, control, monitor and capture data and signals from a physical network 

or an I/O device (RTU), SCADA models require descriptive tags that define the data and 

commands which it seeks to supervise. Table 4-1 showed an example of how the tags were 

catalogued for one of the incomers in the substation model depicted in Figure 4-2. A number of 

the descriptive tags in Table 4-1 had an attached time stamped alarm or an associated interactive 

trend. The alarms and alerts allowed certain critical events including: breaker fail, different fault 

conditions as well as isolator and breaker status to be captured and identified. On the other hand, 

the attached graphs acted as an analysis tool that provided a visual description of how certain 

system parameters within the SCADA model; like phase currents, breaker status, trip commands 

and fault conditions, were trending. In addition, the trends for each parameter could be viewed on 

the SCADAs trend page or alternatively within the process analyst. 

Table 4-1. Variable tags, alarms and trends 

Network Parameter Variable Tag Description Time Stamped Alarm Trend 

Circuit Breaker 1 

Transformer breaker 1 closed 
Yes Yes 

Transformer breaker 1 opened 

Transformer breaker 1 open/close command No No 

Isolator 1 
Isolator 1 closed 

Yes Yes 
Isolator 1 opened 

Earth Switch 1 Cable incomer 1 earthed Yes No 

Phase A Current I1 Current incomer 1 IA No Yes 

Phase B Current I1 Current incomer 1 IB No Yes 

Phase C Current I1 Current incomer 1 IC No Yes 

Local Mode CB 1 Local/Remote mode CB1 Yes No 

Earth Fault I1 Transformer 1 earth fault Yes Yes 

Overcurrent CB 1 Over current trip CB1 Yes Yes 

Breaker Fault CB 1 Breaker 1 failure Yes Yes 

Trip Coil Supervision CB 1 Breaker 1 trip coil supervision No No 

4.1.3  I/O device configuration 

CitectSCADA offers a number of different ways to configure an I\O device with the user’s 

software model. Firstly, the convenient express communication wizard can be recruited to 
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automatically setup a particular device as well as to identify the external device database. 

Alternatively, an I/O device can be manually configured using the Boards, Ports and I/O devices 

forms in the CitectSCADA project editor. Therefore, using the aforementioned methods, an I/O 

device like an RTU could be used to link the tags, which were populated in Table 4-1, to the data 

stored in the external data source of the RTU itself. 

RTUs are typically programmed independently of a SCADA model using a different proprietary 

configuration software [21], [26]. Hence, using its own configurator, the RTU for the model in 

Figure 4-2 was programmed with the necessary plant variables, parameters, functions and 

elements that were required by the graphical and electrical topology of the substation. Thus, this 

allowed the RTU to exchange data, information and control commands with the station computer 

and populate the tags within the SCADA model. Therefore, for the purposes of this dissertation, 

the aforementioned and described configuration techniques allowed the author to establish 

communications with the RTU using the Boards, Ports and I\O devices forms of CitectSCADA. 

This configuration procedure also defined the protocol over which the RTU and the SCADA host 

communicated.  

4.1.4 Citect system configuration overview 

The logical system configuration was graphically depicted in Figure 4-3. This diagram 

represented a brief overview of the symbiotic relationship between the SCADAs configuration 

parameters and the runtime components. The functional block diagram outlined a structure that 

required that the engineer: define an I/O server, define the transport type in the Boards form 

(TCP/IP), define the communication port in the Ports form and lastly, define the protocol-based 

driver (DNPR) [21]. 

 

Figure 4-3. Citect system configuration and runtime components [21] 
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4.1.5 Legacy SCADA and I/O device interface 

In this chapter the DNP3 protocol was used over an Ethernet communication link to connect the 

SCADA host to the RTU. DNP3 has been known to play a crucial role in electrical networks, 

where it is commonly utilized as a communication mechanism to link master control stations to 

substation RTUs [25]. In contrast to DNP3, basic serial protocols like Modbus RTU are byte-

orientated and can only exchange a single byte of information in order to communicate [25]. 

However, such protocols have evolved to become packet-orientated, with each packet containing 

a particular number of bytes structured in a certain way (header, data and checksum) [25]. In the 

packet structure for DNP3 a master (control PC on which the SCADA is active) will initiate and 

transmit a read request for an object or multiple objects from the slave [25]. The remote device 

or slave will then respond with the desired or requested data [25]. Furthermore, the master can 

also send an operate command which generates the output actions of the specific object reference 

[25], [26]. In addition, the remote device can send an automated message to the SCADA host 

when a particular event has occurred enabling it to send messages of alarm in the case of a fault, 

failure or trip [25], [26]. This concept was graphically illustrated in Figure 4-4 which showed the 

interaction between master and slave. 

 

Figure 4-4. SCADA master and RTU slave communication interface [25] 
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switches alike. The following segments discussed how such a network of interconnected 

components was established and configured as well as the communication mechanisms that 

allowed protocol-based data transport, over IEC 61850, DNP3 and Modbus RTU to take place. 

4.2.1 Configuration and structure 

The basic primary structure of the communication network that was established in chapter 4, is 

illustrated in Figure 4-5. This high-level overview depicts only the essential functional blocks of 

the system which identified the type of equipment used as well as the protocol-based method of 

communication between each element over the TCP/IP Ethernet-based LAN and serial RS 485. 

For the purposes of chapter 4, protocols like DNP3, the IEC 61850 standard and Modbus RTU 

were implemented between the SCADA and the RTU (Figure 4-4) as well as between the RTU 

and the IEDs (Figure 4-5) respectively. Hence, certain configurations and requirements for each 

device were statutory in order to setup the aforementioned protocol-based transport media. 

Importantly, since this dissertation focussed on the different communication mechanisms 

themselves rather than on the detailed functionality and setup of the protection hardware, the 

following discussion may omit certain details about the operational theory of such devices. 

Protocol-based communication between the SCADA host and related devices as well the peer to 

peer interoperability of the IEDs, illustrated in Figures 4-4 and 4-5, formed the basis for this 

analysis and discussion. 

 

Figure 4-5. Communication network 
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in Figure 4-2 [27], [28]. An RTU such as that described was implemented and configured during 

the development of chapter 4 to establish the topology of the network model and provide a 

variable, functional and technical description of the physical model. This allowed the IEDs, 

SCADA and the RTU to transfer relevant pieces of data, information and commands that were 

configured within the database. The aforementioned RTU can also be configured to provide 

sample value measurements of associated substation systems at regular intervals [27], [28]. These 

sampled values are delivered to the SCADA, which enables the user to achieve remote monitoring 

and control. The data facilities of the bay computer were designed for controlling and monitoring 

a substation’s switchgear which is subsequently governed by the IEDs to which the RTU is 

connected. A System Configurator Editor, called PACiS SCE, allowed the user to adjustment 

information, parameters and the overall description of the electrical network within the RTUs 

database [27], [28]. The following numbered segments describe some of the basic principles that 

were used to setup and configure the RTU that was used in the network of equipment that was 

established in chapter 4. 

(i) Communication 

This I/O device or bay computer has different communication levels which define the architecture 

or the particular substation component to which the RTU was connected [27], [28]. These levels, 

which were graphically illustrated in Figure 4-6, are referred to as the: telecontrol bus (TBUS), 

legacy bus (LBUS) and the station bus (SBUS) respectively. 

 

Figure 4-6. MiCOM C264 communication block diagram [27] 
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as many as 2 different serial telecontrol protocols on the TBUS. However, for the purposes of this 

chapter TCP/IP Ethernet-based communication transport mechanisms were implemented [27], 

[28].  

Alternatively, over the LBUS the RTU behaves as a master using legacy protocols like Modbus, 

DNP3 and IEC 60870 to transfer data, information and commands [27], [28]. Therefore, the 

LBUS could be used to connect devices such as the MiCOM P122 which uses legacy-based 

protocols such as those already mentioned. Hence, via the LBUS the RTU can communicate with 

other devices and relays using the RS 232 or RS 485 physical transport layers as well as via optical 

fibre [27], [28]. Lastly, SBUS protocols may be used for PACiS subsystems but are, however, 

also available for other applications such as data transport between the RTU and the IEDs. In this 

instance, the bay computer typically behaves as a server; however, it can also be used as a client 

for IEC 61850-based IEDs [27], [28]. On the SBUS the link layer is Ethernet-based with 10 to 

100 Mb/s speed data transfer. The physical layer uses copper twisted pair (J45) or optical fibre 

connections [27], [28]. Therefore, for the purposes of chapter 4 and 5 the SBUS was used to 

interface and communicate information between the IEDs and the RTU using IEC 61850 as well 

as directly between the IEDs themselves. 

(ii) Data exchange 

Since the bay computer is IEC 61850 compliant over the SBUS, it can obtain and transfer data 

over an IEC 61850 network using the REPORT/ GOOSE message mechanisms [27], [28]. The 

REPORT class allows for the specific exchange of information between the IED server and a 

particular client [27], [28]. Hence, REPORT messaging provides: 

• a data value; 

• data status or an equivalent quality attribute; 

• a time stamp of the last data value change; 

• and a time stamp quality attribute. 

The term ‘data quality’ defines if certain data is valid or not and is able to specify several different 

types of invalidity, including: an unknown state when a device is disconnected, saturated states 

as well as an undefined state [27], [28]. REPORT or GOOSE messages are sent/received 

periodically by devices along with the reason for inclusion (RFI) which specifies a state/value 

change or a means of control [27], [28]. In addition to REPORT, the GOOSE message class is a 

short message system which includes the data value and quality. Importantly, it is multicast to all 

the SBUS equipment that have subscribed to the message stream [27], [28]. GOOSE is typically 
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much quicker than REPORT messaging, thus, it was employed between the IEC 61850 IEDs in 

chapter 4 and 5. 

(iii) Transmission 

The RTU uses binary inputs to transfer data and messages. As a result of different configurations, 

a binary input can be distributed on a client/server basis or via the SBUS using two of the 

following modes: 

• Report based mode: a change of status is transferred to all the subscribers along with the 

associated time stamp and the reason for the aforementioned status change (RFI). Report 

modes are typically used if certain data is needed for displaying, printing or archiving 

between the RTU and the SCADA platform [27], [28]. 

• GOOSE based mode: a change of status is multicast to the devices that have subscribed 

to receive it. On an IEC 61850 network every binary value can be transferred using 

GOOSE messaging. In addition, the GOOSE message mode is commonly used to 

transmit vital packets of data as soon as it can be sent (immediately after acquisition). 

This ensures the that essential equipment is protected in an expedient manner [27], [28]. 

(iv) An overview of PACiS system configuration 

In order to define the RTUs substation variable data source using the PACiS system configurator; 

three fundamental aspects were considered. The first of these referred to the topology of the 

system which dealt with the composition of the device whose role it was to manage the client’s 

electrical process [27], [28]. The second aspect referred to the electrical topology of the proposed 

model and directly dealt with the definition of the client’s electrical process – in this case that of 

the substation SCADA model as was illustrated in Figure 4-2. Furthermore, this included the 

definition of electrical devices such as: earth switches, disconnectors and circuit breakers 

respectively [27], [28]. The third and final aspect to be considered was that of graphical topology. 

This topology referred to the layout of the model itself as well as the relevant graphical animations 

and descriptions which occurred on the substation control points and bay control points (HMI) 

respectively [27], [28].  

(v) Defining the addressing mapping of a station-bus network 

IEC 61850 address mapping refers to the conglomeration of logical devices that are composed of 

elements called bricks [27], [28]. Typically, the term ‘brick’ refers to a particular electrical device 

or an associated function. The brick seeks to provide its own real-time status data, measurements, 

controls and configurations by grouping data into these different categories. These are called 
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functional components and they group data objects that are seen as real-time equivalents of PACiS 

data points. When the IEC 61850 client needs the real-time value of a data point managed by 

another IEC 61850 server, the server transmits the information via a data object of its own IEC 

61850 mapping [27], [28]. Using PACiS and the SCE the operator, could define the IEC 61850 

clients and the IEC 61850 servers from and to which the clients transmit and retrieve information 

[27], [28]. Generally, IEC 61850 data objects have common class categories. The structures of 

these class stereotypes must be known by all the PACiS IEC 61850 compliant sub-systems. These 

common classes are referred to as the terminal description of the IEC 61850 data modelling 

system [27], [28]. The communication that took place on the station bus between the RTU and 

the IEDs was graphically depicted in Figure 4-5 and 4-7 respectively. 

(vi) Control points 

An electrical substation, such as that depicted in Figure 4-2, can be supervised and controlled 

using PACiS user interfaces called substation control points or bay control points as well as 

remotely via the SCADA host [27], [28]. Typically, the remote-control point of a substation is 

achieved using a legacy communication network. A variety of different legacy networks can be 

connected to a PACiS system, using a PC or alternatively a telecontrol gateway [27], [28]. As 

was previously stipulated, DNP3 was used as the legacy transport mechanism between the 

SCADA master and the RTU slave. This concept was diagrammatically illustrated on the TBUS 

of Figure 4-5 and 4-7. 

 

Figure 4-7. TBUS, SBUS and LBUS communication interfaces 
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features a packet prioritization feature that is used for both GOOSE and SV messages, an MMS 

server base for SCADA as well as a configuration wizard designed specifically for substation 

automation [9]. The prioritization feature of the Ethernet switch allows messages of the highest 

importance to be sent first which regulates data traffic on the network. In chapter 4 the advanced 

functions of the switch were not readily established and the device was used simply as an Ethernet 

switch to ferry data/information on the station bus to which the IEDs and RTU were connected. 

4.2.4 Configuration and interconnection of modern IEDs 

The VAMP 259/255 numerical line protection devices and feeder managers have a full protection 

scheme with distance and line differential functions as well as several standard protection 

functions that are typically needed for the protection of medium voltage transmission lines, cables, 

substation equipment, power plants and offshore applications [29]. These two devices have a wide 

variety of protection functions including, over- and undercurrent, over- and undervoltage, over- 

and under frequency, auto reclosing, earth fault as well as circuit breaker failure protection; to 

name but a few. Two VAMP 259 feeder managers and one VAMP 255 were employed during 

the development of the physical network for chapter 4. This allowed the author to implement, 

observe and analyse IEC 61850 communications between these IEDs and the RTU. Hence, the 

purpose of this dissertation was to focus on the communication capabilities, configuration and 

implementation of dissimilar and alike devices. Therefore, although a few protection functions 

like overcurrent, circuit breaker failure and earth fault protection were implemented in the 

network shown in Figure 4-2 the main focus was on inter-IED and SCADA communication. 

Hence, the protection functions themselves were not discussed in great detail. 

 

Figure 4-8. Principle block diagram of the VAMP hardware [29] 
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A/D converter as well as the advanced microcontroller [29]. The devices also contain a power 

supply and an interactive LCD (HMI). The current and voltage inputs of the IEDs take the analog 

response of the incoming signal and convert it into a digital value that can be interpreted by the 

device themselves, using the ADC (Analog to Digital Converter) [29]. In terms of the electrical 

network shown in Figure 4-2, a 3-phase test current was injected into a particular IED using a 

RSCAD test model along with a Real Time Digital Simulator (RTDS) and a current amplifier to 

test certain desired functionalities. This test procedure was demonstrated by Figure 4-9. Thus, the 

monitoring capabilities of the SCADA, intercommunication of devices as well as the overcurrent 

characteristics of the intelligent relays could be validated. The numerous components, 

connections, configurations and communications of the IEDs were discussed in the numbered 

segments that follow: 

(i) Digital inputs 

There are 32 digital inputs (DIs) available on the IEDs rear panel for input control. As expected, 

the DIs required an external AC or DC control voltage, from the connected equipment, in order 

to be activated [29]. These DIs were ideal for transferring the status information of switching 

devices like the circuit breakers, isolators and earth switches into the IED for the purposes of the 

network model shown in Figure 4-2 as well as the diagram in Figure 4-9. The label name and 

virtual description texts of the defined DIs could be edited within the IEDs VAMPSET software 

on a PC, according to the application of the input in question [29]. Therefore, the user defined 

what each digital input was used for by manipulating the configuration software [29]. This 

package also allowed the user to set and define the IEDs protection and configuration parameters. 

(ii) Digital outputs 

The outputs of the different protection stages, digital inputs, logic outputs and other internal 

signals can be connected to output relays, front panel indicators and virtual outputs using the IEDs 

output matrix [29]. Output relays are also referred to as digital outputs; to which any internal 

signal of the relay can be connected. [29]. The output relays on the IED were used to send trip 

commands to the circuit breaker, in the network shown in Figure 4-9; as a result of a disturbance 

or automatic trip request. The digital outputs can be configured on the IEDs output pins as follows 

in Table 4-2 [29]. 

Table 4-2. Digital output relays 

Parameter Value Description 

T1 – T14 0 or 1 Status of trip output relay. 

A1-A5 0 or 1 Status of alarm output relay. 

Remote Pulses  

A1-A5 
0.00 – 99.98 or 
99.99 

Pulse length for direct relay output control using communication protocols. 
99.99 = infinite. Released by writing 0 to the direct control parameter (SET). 
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(iii) Controllable objects 

These IEDs allow control for up to six objects, which include: circuit breakers, isolators and earth 

switches such as those in the substation network of Figure 4-2. The control of such objects can be 

achieved by using the ‘select-execute’ or ‘direct control’ principles [29]. Importantly, only the 

objects 1 – 6 are controllable while the objects 7 – 8 are only able to show the status of the devices 

such as those mentioned [29]. These control principles may be employed using the local HMI, 

through a remote communication and SCADA or using a digital input. The interconnection of an 

object to a particular output relay was achieved using the output matrix as previously mentioned 

(object 1 – 6 open output, object 1 – 6 close output) [29]. The signal “Object failed” may be 

activated if the control of a particular object was not completed [29]. This has implications for 

object parameters such as ‘breaker fail.’ Therefore, objects are said to have the following states 

as was shown in Table 4-3. 

Table 4-3. Controllable object states 

Setting Value Description 

Object state Undefined (00) State of the object. 

Open 

Closed 

Undefined (11) 

Table 4-4. Object control signals 

Output Signal Description 

Object x Open Open control signal for the object 

Object x Close Close control signal for the object 

 

Every control object, like the earth switch, circuit breaker and isolator of the substation network 

in Figure 4-2 has two associated controls in the control matrix. The control signals depicted in 

Table 4-4 use control pulses to send activation commands when an object is controlled by a digital 

input [29]. Hence, when a control command such as ‘circuit breaker close’ is sent from the 

SCADA via the RTU a control pulse is sent to the respective virtual input of the IED which singles 

that the IED should trip the relevant circuit breaker. Importantly, objects can be controlled using 

digital inputs, virtual inputs as well as virtual outputs [29]. If the IED is set to local control state, 

the remote-control inputs are ignored. Object control is activated when a rising edge is detected 

by the input in question [29]. The length of this control pulse must be at least 60 ms [29]. Hence, 

there are four settings for each controllable object as follows in Table 4-5. 

Table 4-5. Controllable object settings 

Setting Active 

DI for remote open/close control In remote state 

DI for local open/close control In local state 
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(iv) Local and remote mode  

When a device was in local mode the output relays could be controlled using the local HMI on 

the device itself, but they could not be controlled using the remote ethernet-based communication 

interface to the SCADA [29]. In remote mode, on the other hand, the output relays could not be 

controlled using the local HMI on the device. They could only be controlled using the remote 

Ethernet-based communication interface to the SCADA [29]. The selection of the Local/Remote 

mode could be achieved using the local HMI on the device, or by using one of the selectable 

digital inputs [29]. Hence, a digital input was implemented to change the device from local to 

remote mode and vice versa [29]. This digital input for remote and local mode was set and defined 

in the VAMPSET software. Hence, the operation of local/remote mode could be achieved by 

using a simple switch on the relevant digital input of the IED. 

(v) Communication ports 

The feeder managers have a number of different communication ports that can be used to 

communicate with other IEDs over various transport media. These communication means 

include: RS 232, RS 485 as well as Ethernet [29]. In the physical model developed for this chapter 

the IEDs were setup for TCP/IP Ethernet-based communication using the IEC 61850 protocol in 

VAMPSET. Hence, this allowed the IEDs to communicate with the RTU using IEC 61850 over 

their Ethernet ports on the station bus. TCP port 1st INST and TCP port 2nd INST are the ports 

on the IEDs that are used for and by ethernet-based communication protocols like IEC 61850 

[29]. The associated parameters of the aforementioned ports can be set using the HMI local to the 

device or using the appropriate menus in the VAMPSET software.  

(vi) Communication protocols 

The IEC 61850 protocol achieved the transfer of data and information between the IEDs and the 

RTU. This information included: events, status information, measurements and control 

commands. Hence, the VAMP 259 supported communication using the IEC 61850 standard. This 

protocol was available for implementation when using the optional inbuilt Ethernet port on the 

relays themselves. This communication standard can be used to read /write data from the relays 

as well as to receive events and to receive/send GOOSE messages to other IEDs [29]. In addition, 

the IEC 61850 server interface is capable of items such as [29]: 

• Selection of logical nodes for certain application functions; 

• Configurable pre-defined data sets; 

• Dynamic data sets defined by clients; 

• Reporting functions; 
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4.2.5 Configuration and interconnection of legacy IEDs 

The MiCOM P122 universal overcurrent relay developed by Schneider was implemented on the 

legacy bus using Modbus RTU and serial RS 485. This was in addition to DNP3 and the IEC 

61850 standard which were implemented in conjunction with the VAMP 259/255 IEDs on the 

telecontrol and station buses respectively [30]. The MiCOM P12X series relays are designed to 

control, protect and monitor substations, distribution networks and other industrial processes [30]. 

Furthermore, these devices can be used for back-up protection of high voltage (HV) transmission 

networks [30]. The following numbered segments briefly described how the MiCOM P122 was 

connected on the legacy bus of the experimental model that was shown in Figure 4-2.  

(i) Communication 

This legacy protocol-based IED has twin serial RS485 communication ports that allow the device 

to read, reinitialize and change its own software settings from a local or remote PC with the 

MiCOM S1 software package [30]. The physical transport medium for serial RS 485 is copper 

twisted pair that passes a particular potential difference between the two cables in order to 

communicate. This IED has a rear mounted RS485 communication port with dedicated terminals 

29, 30, 31 and 32 that are typically used to communicate with other IEDs on the legacy bus [30]. 

In addition to RS485 the relay also has a front mounted 9-pin RS232 communication port that is 

dedicated to the setting software and enables configuration by connecting the relay and a PC [30]. 

(ii) Protocols and standards 

The P122 IED can communicate using four standard protocol databases namely: Modbus RTU, 

Courier, DNP3 and IEC 608750-5-103 [30]. For the purposes of chapter 4 Modbus RTU was 

implemented between the IED and the RTU in addition to DNP3 which had already been 

established on the TBUS between the RTU and the SCADA host. The rear panel of the device 

provided a two-point RS 485 serial connection [30]. The speed of transmission could be adjusted 

by the user by selecting the appropriate baud rate from 300-38400 on the front panel of the relay 

[30]. In addition, there were different transmission modes that define the start bits, data, parity 

and stop bits. This defined the total number of bits in a message and was checked by a CRC [30]. 

Lastly, the frame sent and received by the relay consisted of the slave number, the function code, 

the data (information) and the CRC [30]. 

Therefore, by employing the IEDs aforementioned configuration features and communication 

mechanisms, it was possible to establish dialogue between the legacy-based IED and the RTU on 

bus 2, feeder 5 of the substation illustrated in Figure 4-2. Since, the MiCOM P122 overcurrent 
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relay only has three digital inputs it could only be utilized to control the operation of a single 

circuit breaker on feeder 5. The three inputs were subsequently used for the open and closed 

statuses of the circuit breaker as well as for the open/close command itself. Lastly, the breaker 

fail, overcurrent trip and earth fault alert functions were implemented as before. 

4.2.6 Test network 

In order to test the developed substation electrical network and by extension the SCADA model 

as well as the IEDs, RTU and associated connected devices; a test model was established using 

RSCAD, RTDS as well as a current amplifier. The test network depicted in Figure 4-9 shows how 

the RTDS and amplifier were used in conjunction with the RSCAD model to inject 3-phase analog 

test current into the IEDs. Hence in this way, the overcurrent trip characteristics of the relay could 

be tested. Additionally, using the same equipment, ground faults could also be applied to the 

conceptual network and the associated response of the IEDs and the SCADA could be assessed. 

 

 

Figure 4-9. Test network and hardware layout 

4.3 Preliminary results 

The following subsection of chapter 4 outlined a brief demonstration of the preliminary results 

that were recorded from the experimental substation model. The communication network that was 

established in this chapter transferred data and commands between the SCADA host and the RTU 

using DNP3 as well as between the RTU and the IEDs using the IEC 61850 substation protocol 

and Modbus RTU. The operation and functionality of the physical model itself was then tested 

and evaluated. Hence, the behaviour of the SCADA as well as the performance of the associated 

equipment on the network were simultaneously reviewed using the practical results captured from 

each unique aspect of the substation. Lastly, as a redundancy measure, the experimental tests were 

not repeated for each and every feeder or incomer of the model that was illustrated in Figure 4-2.  
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4.3.1 General operation of SCADA model and associated physical equipment 

(i) Circuit breaker, isolator, earth switch and basic system operation 

 

Figure 4-10. Energised and de-energised states of incomer 

The remote operation of the circuit breaker, isolator and earth switch for an incomer in the 

substation electrical network was graphically illustrated in Figure 4-10. In this figure the 

interactive status alerts of the breaker, isolator and earth switch were diagrammatically 

demonstrated. In addition, a table of the incomers 3-phase current as well as an animated display 

of the directional energised states of the incomer were visually depicted. When the incomer was 

de-energised the directional indicator, circuit breaker symbol, isolator symbol, earth switch and 

current numerals changed to green. Alternatively, when the incomer was in the energized state 

the directional indicator, circuit breaker symbol, isolator symbol, earth switch and current 

numerals changed to red. In the table of results depicted in Figure 4-10 a numerical reading of 0 

A was captured for the incomer whist in the energized state. This reading was as a result of the 

de-energized status of the associated feeder and bus section, hence, the resulting load current in 

this instance was 0 A. The energized state of the incomer with full load current was shown on the 

SCADA at a later stage under steady state conditions in Figure 4-15 as well as on the IEDs HMI 

in Figure 4-16. 

 

Figure 4-11. Circuit breaker control panel 

De-energised Energised 

(i) (ii) (iv) (iii) 
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In order to remotely open and close the substations switchgear, as was demonstrated in Figure 4-

10, an interactive control facility was developed using the intelligent templates of the 

CitectSCADA software model. Hence, by applying these facilities, the circuit breaker and isolator 

control panels were constructed as was illustrated in Figure 4-11. These windows, labelled: (i) to 

(iv), are pop-up windows and appeared when the operator clicked on either the circuit breaker or 

isolator symbols respectively. Once open, the operator could remotely open or close the particular 

circuit breaker or isolator in question. In addition, the status indicator in the pop-up window 

glowed green when the breaker was open and red when the breaker was closed i.e. green for safe 

and red for danger. The segments (i) and (ii) of Figure 4-11 visually demonstrated this concept. 

An important consideration of the switchgear model shown in Figure 4-10 was that of 

interlocking. This feature ensured that if the circuit breaker and isolator were both closed then the 

circuit breaker should be opened first. Alternatively, if the circuit breaker and isolator were both 

open then it followed that the isolator be closed first. Hence, segment (iii) of Figure 4-11 

prohibited the user from closing the breaker if the isolator was initially open. Lastly, if the mode 

of the IEDs controlling the switchgear was changed to ‘local mode’ then the circuit breaker or 

isolator in question could only be directly operated from the IED on the switchgear panel itself. 

This concept was illustrated in segment (iv) of Figure 4-11 where the window indicated that the 

device was in ‘local mode’. Thus, remote operation of the switchgear from the SCADA model 

was disabled.  

 

Figure 4-12. Interlocking of switchgear 

The interlocking of the switchgear on one of the incomers was graphically illustrated in the graph 

of Figure 4-12. In stage 1 the circuit breaker and isolator and were closed with the earth switch 
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open. The circuit breaker was opened first in stage 2 followed by the isolator and then the earth 

switch closed. This order of operation ensured that the mechanical components of the isolator 

were not live during the interlocking process. Thereafter, the earth switch was opened followed 

by the closing of the isolator and finally, the circuit breaker. Hence, this type of interlocking 

prevented arcing across the contacts of the isolator when it was opened or closed. Additionally, 

the earth switch could only be operated when both the isolator and breaker were in the open 

positions and the incomer was de-energised. 

 

Figure 4-13. Switchgear operation and states of local HMI 

The figures labelled (i) to (iii) in Figure 4-13 depicted the various stages of interlocking of the 

circuit breaker, isolator and earth switch on the IEDs HMI. This image showed both the isolator 

and circuit breaker as closed in segment (i) whilst the earth switch remained open. The circuit 

breaker was subsequently opened in (ii) followed by the isolator in segment (iii) which follows 

the appropriate rules of safe interlocking. The further operation of the earth switch could now be 

considered. Thereafter, this procedure was followed in reverse during reclosing from (iii) to (i).  

(ii) Alarms 

Table 4-6. Time stamped digital alarms 

 

Circuit Breaker and Isolator Operation and Interlocking 

(i) (ii) (iii) 

Circuit_Breaker_2_Closed          CB2-Close                 Circuit B2 Operation Closed 

Circuit_Breaker_2_Open            CB2-Close                   Circuit B2 Operation Open 

Isolator_2_Open                    I2-Open                    Isolator 2 Operation Open 

Isolator_2_Closed          I2-Close                   Isolator 2 Operation Close  

Incomer_2_Earth                        I2_Earth_Switch_Operation   Earth Switch Operated on I2 

Local_Mode_Incomer_2            Local_Mode_I2             Local Mode is Active 
on I2 CB2 
Overcurrent_Trip_CB2          CB2_Overcurrent_Trip                    Overcurrent Trip 
on CB2  
Circuit_Breaker_2_Fail          CB2_Fail                                                   Failure of CB 2
   
Earth_Fault_Incomer_2          Earth_Fault_I2                      Earth Fault on I2  

      Variable Tag    Alarm Name           Alarm Description 



4-80 
 

When a particular operation, fault or mode change was affected on the substations physical 

network, the SCADA model sent an alarm to the operator informing him/her of a particular event. 

The associated alarms for the incomer were populated in Table 4-6.  These alarms alerted the user 

to operated equipment such as the circuit breaker, isolator and earth switch respectively. The 

alarms could also warn the user about hazardous fault conditions including: overcurrent, circuit 

breaker fail and earth faults as shown. Additionally, these digital alarms were time stamped, and 

thus informed the operator of the exact moment in time in which certain events had occurred. As 

a result, a comprehensive record of the networks operational activity could be established. Lastly, 

these alarms could be acknowledged by the operator on the SCADAs alarm page in order to be 

deactivated or cleared. 

(iii) Status indicators 

 

Figure 4-14. Local/remote, trip coil supervision, cable earthed and overcurrent status indicators 

 

Figure 4-15. Earth fault and breaker fail status indicators 

The red and grey status indictors of Figure 4-14 and 4-15 illustrated items such as local mode, 

trip coil supervision, cable earth, overcurrent trip, earth fault and breaker fail conditions 

respectively. The indicators glowed red as shown when a particular feature or event was active 

and grey when inactive. In addition, when an overcurrent or earth fault had been applied to the 

Earth Fault Breaker Fail 
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system the circuit breakers in Figure 4-14 and 4-15 could be seen to have tripped and the current 

had fallen to 0 A. Alternatively, when the circuit breaker had failed it did not trip or clear the fault 

and the associated 3-phase current persisted. When a fault occurred, then an automatic trip signal 

would be created by the IED under normal operating conditions. Alternatively, an open command 

could be issued at any time by the remote end and delivered from the SCADA via the RTU to the 

IED. The IED may then issue a trip command and deliver it to the appropriate breaker. If the 

breaker did not trip within the appropriate time frame then it was said to have failed. Hence, when 

this occurred the breaker fail status indicator was activated. The result of this concept was 

illustrated in Figure 4-15.  

In addition to the alerts, alarms and status indicators of the SCADA model; the HMI of the IED 

may also display informative and relevant information to the operator. In Figure 4-16 the results 

of local mode, trip coil supervision, circuit breaker, isolator and earth switch status as well as the 

3-phase test currents were observed under steady state conditions. In addition, the IEDs HMI was 

also able to confirm the functionality of the circuit breaker fail indicator under fault conditions as 

and when an open command was delivered from the remote SCADA model to the IED. In Figure 

4-16 a numerical reading of 0 A was captured on the HMI for the incomer under breaker fail 

conditions. This reading was as a result of the de-energized state of the associated feeder and bus 

section, hence, the resultant load current was 0 A. 

 

Figure 4-16. VAMP 259 HMI under steady state and fault conditions 

(iv) Legacy relaying 

The SCADA and HMI results from the interconnection of the MiCOM P122 legacy IED on feeder 

5 of bus 2 were illustrated in Figures 4-17, 4-18 and 4-19 respectively. This relay communicated 

over the LBUS via serial RS 485 with the RTU.  In Figure 4-16 the energised and de-energised 

states of feeder 5 were represented. In the energised state a steady state three-phase current of 143 

A flowed through circuit breaker 8 and as a consequence the fault indicators remained inactive. 

In the de-energised state circuit breaker 8 was opened by the remote end cutting off the flow of 

current to the feeder as was shown by both Figure 4-17 and 4-18. Due to the limited number of 

digital inputs on the MiCOM P122 relay local mode, trip coil supervision, cable earth and the 

                     Steady State                      Fault 
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control of the operation and status of the isolator could not be implemented with only one IED. 

Therefore, the MiCOM P122 protection IED was only used to control the operation of circuit 

breaker 8 as well as monitor the currents, earth fault and breaker fail conditions over serial RS 

485 using legacy Modbus RTU. 

 

Figure 4-17. Energised and de-energized states of MiCOM P122 feeder 

The two blue graphs, which shown by Figure 4-18, demonstrated the operation of the circuit 

breaker on feeder 5 of the substation model. Initially in stage 1 the circuit breaker was open; a 

close comment was then delivered from the IED to the breaker in stage 2 and finally in segment 

3 the breaker was again opened. The first graph of Figure 4-18, labelled (i), showed the 

consequences of an interruption in communications between the MiCOM P122 relay and the 

RTU. This is characteristic of serial RS 485 and Modbus RTU since the lack of time stamped data 

means that information is lost during a communication outage. However, the component labelled 

(ii) is characteristic of what can be achieved in a DNP3 or in an IEC 61850-based environment 

where after a communication loss the time stamped data can be restored or updated to the system. 

 

Figure 4-18. Graph of MiCOM P122 circuit breaker operation on feeder 5 
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The two components of Figure 4-19, labelled (i) and (ii), demonstrated the HMI of the energised 

(steady state) and de-energized operation of the MiCOM P122 IED which was connected on 

feeder 5 to control circuit breaker 8. In this figure the HMI of the IED was illustrated with a steady 

state current of 142 A in the energized state and 0 A when circuit breaker 8 was opened via the 

IED by a command from the remote end. Both of the images, labelled (i) and (ii), supported the 

SCADA results that were shown in Figures 4-17 and 4-18 showing the state change of switchgear. 

 

Figure 4-19. HMI of the MiCOM P122 IED on feeder 5 

4.3.2 Steady state operation 

 

Figure 4-20. Steady state operation on incomer 2 

The steady state operation of the substations physical protection and automation network was 

simulated under normal operating conditions i.e. the injected current was below the pickup setting 

of the IEDs and there were no intentionally induced system faults. Therefore, as could be observed 

in Figure 4-20, the incomer was energized with a steady state load current of 143 A. In addition, 

there were no faults registered by the interactive status indicators. The injected load current was 

then changed using the test model from 143 A to a maximum of 186 A and a minimum of 86 A 

which was shown in Figure 4-21. This was done to simulate real-life changes in the load on bus 

2 of the substation model. The system remained under steady state conditions during this time 

                     Energized State         De-energized State 

(i) (ii) 

Steady State 
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since the load current still fluctuated below the pickup setting of the protection IEDs, hence the 

stability of the network was maintained. 

 

Figure 4-21. Steady state operation and changes in load current 

4.3.3 Fault Conditions 

(i) Overcurrent 

In this section of the results the 3-phase overcurrent characteristics of the substation model were 

tested in order to record the response of the protection equipment using the SCADA. A 3-phase 

test current was injected into one of the protection IEDs controlling a particular incomer. 

Therefore, in addition to the steady state conditions, by raising the injected 3-phase current the 

overcurrent protection of a particular IED could be tested. The graph shown in Figure 4-22 

illustrated 3 zones of operation for an incomer. The first zone dealt with steady state conditions, 

the second with overcurrent and the third respective zone represented the post trip stage. In Figure 

4-22 the incoming current was initially set at 143 A in stage 1, which was below the pickup setting 

of the IED, thereafter an overcurrent of 206 A was applied at point ‘X’. This overcurrent persisted 

according to the inverse time characteristics of the IED in question. After a time delay, the IED 

then finally issued a trip signal to the circuit breaker which opened at point ‘Y’. Hence, the 3-

phase circuit on the incomer was interrupted and the current had fallen to 0 A. This concept was 

illustrated in stage 3 of Figure 4-22. 
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Figure 4-22. Overcurrent trend 

(ii) Earth fault 

In this section of the results three separate earth faults were applied to the incomer to test and 

observe the earth fault response of the physical network. The results of each scenario were 

recorded using the SCADA model. For the purposes of display, the earth faults that were applied 

on the incomer were designed to persist for a longer period of time then would be practically 

expected under normal fault conditions. This procedure was adopted so that the spike in fault 

current could be registered by the process analyst of the SCADA host. The faster fault currents 

could not be monitored by the process analyst on the SCADA model as its fastest sampling rates 

were insufficient with regard to capturing the entire response. 

A. Single phase to ground 

A single phase to ground fault was the first earth fault to be applied on phase A of one of the 

incomers in the substation electrical network. As a result of this earth fault, there was an 

associated induced fault current on phase A as well as an unbalanced increase of the currents on 

the phases B and C respectively. The RMS value of the fault current of the single phase to ground 

fault was illustrated in Figure 4-23. This graph showed when the fault was applied as well as the 

associated tripping of the circuit breaker on the incomer which occurred after the appropriate time 

delay. The incomer current reduced to 0 A and when the circuit breaker opened and the fault was 

cleared. 
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Figure 4-23. Single phase to ground fault on red phase 

B. Double phase to ground 

A double phase to ground fault was applied on the phases A and B respectively. The resulting 

trend, illustrated in Figure 4-24, depicted the response of the unbalanced fault currents on each of 

the three phases. The circuit breaker tripped and the currents fell to 0 A when the fault was cleared. 

 

Figure 4-24. Double phase to ground fault on red and yellow phase 
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C. 3-phase to ground 

Lastly, a three phase to ground fault was applied on all the phases of the incomer at point X, as 

was demonstrated in Figure 4-25. Hence, there was an associated balanced fault current on each 

of the respective phases as was shown. As in the previous cases, the circuit breaker cleared the 

fault when it tripped and the currents reduced to 0 A. The operation of the circuit breaker during 

the three earth fault conditions was illustrated on the SCADA in Figure 4-14. 

 

Figure 4-25. 3-phase to ground fault on all phases 

D. Fault currents 

Ground faults can result in very high fault currents that flow in a three-phase system posing a 

possibility of damage to expensive equipment like transformers, underground cables, 

transmission lines, terminations, instrument devices and many other components of a power 

system. One such example is common with regard to the use of bundle conductor which is utilized 

over large transmission lines as well as within substations. When large fault current flows down 

a conductor bundle there is a resultant force that draws the individual cables together. This force 

can cause the bundle spacers to bend and deform under short circuit fault conditions. 

Hence, for our power systems, it is imperative that fast, reliable, secure and efficient 

communications be employed to ensure that fault currents are extinguished or isolated within the 
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appropriate amount of time before lasting damage is incurred on a particular system. It is because 

of the efficiencies, convenience and speed of communication (via GOOSE) which can be 

administered using the IEC 61850 substation protocol that protection IEDs located at different 

points on the network can coordinate effectively to clear such currents. In addition, if fault 

currents persist and conditions of breaker fail occur the intelligent IEC 61850 protocol with its 

GOOSE message class can be used to administer back-up protection to a system. This may be 

achieved much faster and in a more convenient and effective manner than was possible using 

traditional legacy back-up or overcurrent protection. This has all been made possible by the fast 

Ethernet-based communication networks, intelligent switches, advanced Gateways and compliant 

modern IEDs on which the technology of the IEC 61850 standard is based. 

4.4 Analysis and discussion 

In order to assess the perceived, preferred and technical benefits or downsides of different 

substation communication protocols, an experimental network was established. This involved 

designing a SCADA blueprint as was outlined in section 4.2 as well as a physical communication 

model consisting of an RTU, IEDs as well as the associated switchgear which was discussed in 

section 4.4. Therefore, in this chapter an analysis of the developed network as well as the 

implementation of protocols like the IEC 61850 standard, Modbus RTU and DNP3 was 

undertaken. In subsection 4.5 the preliminary results that were recorded from the elementary 

communication network were validated. The substation model comprised two incomers, five 

feeders, two buses and an associated bus section. In chapter 4, the performance of the substation 

and by extension its equipment was tested and the distinct functional outcomes of the model itself 

were captured. 

The SCADA that was demonstrated in Figure 4-2 and whose results were captured in the previous 

section, achieved remote operation and monitoring over the IEDs and switchgear that were 

connected on the physical network. The interactive alerts, alarms, displays and trends were 

illustrated under different fault conditions as well as under steady state. Therefore, it was 

demonstrated that information, data and commands could be transferred from a remote 

CitectSCADA host over an Ethernet link, using the telecontrol bus and DNP3 directly to an RTU 

which mediated the transfer of signals and the exchange of state variables on its database. Once, 

actionable variables within the RTU were changed or commands received this information was 

sent to the subscribing IEDs on the SBUS using the IEC 61850 substation protocol or to legacy 

relays using Modbus RTU over the LBUS. When information was sent and received by the IEDs 

the actionable outcomes of the commands or the change of state changes could be managed. The 

results of commands sent from the SCADA to the RTU and from the RTU to the IEDs and vice 
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versa were demonstrated by the trends, pictures and screen grabs of the open/close requests, fault 

conditions, trip responses, interlocking as well as mode and status changes demonstrated in the 

Figures 4-10 to 4-25. 

The results of chapter 4, illustrated in subsection 4.5, revealed and validated both the sound and 

effective operation of a quintessential substation physical network, SCADA and associated 

communications. The benefits of the chosen communication media, transport mechanisms and 

the implementation thereof were assessed as follows in the conclusion. 

4.5 Conclusion 

The primary objective of chapter 4 was to demonstrate the foundation of the broader research 

model. In order to achieve this, a typical electrical network was used to illustrate the functionality 

of substation equipment; specifically, the interfaces and transport links between IEDs that rely on 

protocols like DNP3, Modbus RTU and the IEC 61850 standard to communicate. 

The communication network that was established during the course of this chapter used a common 

protocol like DNP3 over the telecontrol bus between the SCADA host and the RTU as well as the 

new IEC 61850 standard and older Modbus RTU protocol between the RTU and IEDs on the 

station and legacy buses respectively. DNP3 is typically used as a SCADA protocol between the 

substation and the control centre due to the fact that it stores all the system changes and includes 

the time and date stamp of a particular event at the point at which the change had occurred [31]. 

The alarms and event capturing capabilities of the CitectSCADA model relied of this capacity of 

DNP3 so that time stamped digital alarms could be configured. When the RTU communicated 

with the SCADA it sent all the necessary information as and when it was required, therefore if 

there was a break in communications DNP3 ensured that the system updated all the missing time 

stamped data [31].  Additionally, DNP3 may be configured such that it only updates when a 

variable state toggles. This ensured that there were notifications for immediate problems whilst 

at the same time not clogging up the bandwidth of the network [31]. DNP3 also allowed the use 

of acknowledgements from the SCADA model which ensured that the data had been sent and 

received by the host [31]. Thus, DNP3 has advantages over protocols like Modbus RTU which 

does not store state changes or have any time stamping of its messages. This means that Modbus 

RTU, being a two wire RS485 serial communication mechanism, can only tell the user that a 

variable has changed, not when and how many times it has done so [31]. In addition, if 

communication is lost between the Modbus RTU slave and the master data that elapses during 

the outage is and cannot be updated. Hence, the DNP3 protocol was an obvious choice for the 

telecontrol bus in the network that was established in chapter 4. Alternatively, Modbus was 

implemented on the legacy bus between the RTU and a compliant IED. 
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The main focus of this dissertation was on the IEC 61850 protocol. Hence, not being a remote 

protocol, this standard was implemented within the substation itself between the RTU and the 

IEDs in chapter 4 as well as directly between the IEDs themselves in chapter 5. REPORT 

messaging was used between the RTU and the IEDs in order to report the changes in the status of 

components like circuit breakers, isolators and earth switches as well as fault conditions and 

modes of operation. Lastly, the GOOSE message class, which can be used between the IEDs in 

order to achieve fault clearing under breaker fail conditions, was investigated in the following 

chapter. The advantages of the IEC 61850 protocol ensured that each IED on the station bus was 

interoperable and aware of the state of operation of adjacent IEDs and could effectively 

interoperate as and when was required. In addition, both the IEC 61850 standard and DNP3 are 

“virtual” protocols that operate over a LAN. Hence, this works to reduce the number of cross-

wired binary copper connections between IEDs and related devices saving cost, labour and 

increasing efficiency. 

The introduction of protocols like DNP3 and the IEC 61850 standard in chapter 4 assisted the 

electrical network in Figure 4-2 during its operation and function as a typical substation. The 

results of this functionality were illustrated in subsection 4.5 which discussed the results of 

SCADA, general operation, interlocking, steady state, alarming, over current, earth fault and 

breaker fail conditions. This model formed the basis for the primary research objective. In the 

subsequent chapter further expansion of the IEC 61850 protocol as well as the assessment of rival 

protocols were explored.
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 PROTECTION-BASED APPLICATIONS OF IEC 61850 AND GOOSE 

The practice of implementing modern microprocessor-based relays, which show compliance with 

the IEC 61850 substation protocol, at distribution points has become more frequent. This has 

resulted in the optimization of protection schemes that were previously too complicated, too 

labour intensive or far too expensive to be justified [1]. Three such examples of these protection 

schemes include: breaker fail protection, arc-flash protection and blocking response which is also 

referred to as sympathetic trip protection [1]. Therefore, smart microprocessor-based relays, the 

IEC 61850 standard and its intelligent GOOSE message class have changed the way protection is 

administer to devices and equipment. This has ensured that relative simplicity, assured reliability 

and nominal security exists when applying the aforementioned methods of relaying to equipment 

at distribution points or substations [1]. 

It was in chapter 5 that the main body of research for this dissertation was demonstrated and 

discussed. The following section of this study was based on first principles, intensive background 

research as well as on the groundwork which was prepared during the course of the preliminary 

works in chapter 4. The subsections of chapter 5 sought to investigate the breaker fail, arc-flash 

protection and blocking applications of the IEC 61850-based GOOSE message class. The steady 

state operation of the substation model for chapter 5 (before disturbance) was illustrated in Figure 

5-1 as was shown. It is important to note that in Figure 5-1 there was an injected test current on 

the analog inputs of incomer 1 IED (unseen by the other relays) and that incomer 2 and feeder 3 

and 5 from chapter 4 were offline and played no part in further investigations.  

 

Figure 5-1. Unfaulted state of substation model for chapter 5 study 
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5.1 Breaker fail protection 

Today’s progressive developments in modern technology have seen the inception of new and 

innovative IEC 61850-compliant IEDs. Devices such as these have become commercially 

available from many different vendors including: ABB, Schneider, SEL, Siemens and Arcteq to 

name but a few. These manufacturers will typically incorporate numerous protection, monitoring, 

automation and control functions such as reclosing as well as breaker fail protection within their 

new products [4], [19]. Commonly, IEDs such as those mentioned, would possess sophisticated 

control structures that are capable of controlling up to two circuit breakers. Therefore, as a result 

of this dual control, the aforementioned protection structures can be implemented to manage 

substation equipment in breaker-and-a-half and ring bus protection schemes respectively [4], [19]. 

However, in some cases a power utility or design engineer could choose to use a single exclusive 

IED to perform the reclosing function or to initiate breaker fail protection within a particular 

substation [4], [19].  

Breaker fail protection is a function that traditionally occurs in combination with reclosing and 

most IEDs will typically have inbuilt breaker fail protection and other functions for a certain bay. 

It is often initiated by a trip command that is within or external to the protection terminal [32]. In 

conventional substations, breaker fail protection works using a timer that activates once an IED 

has issued a trip signal to a particular breaker [4], [19]. Furthermore, as the timer ticks the relevant 

IED will monitor the three-phase current through the circuit breaker to check whether or not it 

has been extinguished [4], [19]. Therefore, with no or a very brief time delay, the relay will issue 

a second trip signal or consequently trip the neighbouring breakers to isolate the faulted circuit if 

the breaker current was not initially completely interrupted [32], [4], [19].  

Alternatively, a separate dedicated IED may be used for breaker fail protection of a particular 

bay. The use of an extra IED enables the protection scheme to incorporate additional monitoring 

and control functions like gas pressure and ambient temperature supervision [4], [19]. In 

traditional substations, the control and trip signals may be exchanged using the IEDs physical 

inputs/outputs as well as using the serial copper hardwire connections of the legacy era. In the 

past, breaker fail relaying has been sparsely established at the distribution level because of the 

expense and the complications that were typically involved with the old electromechanical 

protection schemes [32]. However, the IEC 61850 protocol has allowed for the fast, reliable and 

secure exchange of GOOSE messages over the substation LAN. Hence, breaker fail protection 

can be achieved using this intelligent message mechanism making it far simpler and more efficient 

to implement. Therefore, protection can now be carried out ‘virtually’ over an Ethernet-based 

local area network using GOOSE and trip signals can be retransmitted as and when is required by 

the IEDs. 



5-93 
 

 

Figure 5-2. Intercommunication of feeder and incomer IEDs during breaker fail [22] 

An elementary example of breaker fail protection was diagrammatically illustrated in Figure 5-2. 

In the above schematic there was a ground fault which occurred on the outgoing feeder (labelled 

“F”) resulting in an overcurrent condition. This fault was seen by both the feeder IED (Relay B) 

and the incomer IED (Relay A) as a result of a rapid increase in current through both of the circuit 

breakers. Relay B on the outgoing feeder would detect the fault first, issue an open command to 

its circuit breaker and start the breaker fail protection procedure [22]. If the protection failed on 

the feeder and the circuit breaker managed by Relay B did not open then the fault must be cleared 

by other means. Therefore, after a certain amount of time the IED at Relay B would send out a 

backup message, in the form of a GOOSE request, to the incomer IED asking it to trip its circuit 

breaker [22]. Upon receipt of this GOOSE message from Relay B, Relay A would issue a trip 

command to its circuit breaker which would then operate and cleared the fault [22]. An example 

of this inter-IED GOOSE communication between Relay A and Relay B in the case of breaker 

fail during an outgoing feeder fault was shown in Figure 5-2. 

 

Figure 5-3. Breaker fail protection on a typical distribution bus scheme [19] 
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A slightly more complex example of breaker fail protection was shown by Figure 5-3 using a 

typical distribution bus scheme. Breaker fail protection is usually implemented at the distribution 

level of a network to prevent the occurrence of instability on the grid in the case of a breaker 

misoperation during a fault [19]. As previously mentioned, many IEDs have inbuilt protection 

functions that can achieve this outcome. Furthermore, IEC 61850-compliant IEDs make 

protection even more convenient using the GOOSE message class. Being a fast message system, 

GOOSE subscribes to the requirements of present day protection which calls for the decrease in 

the time duration of faults [19].  

There are two predominant GOOSE-based methods of breaker fail protection which are defined 

by the location of the breaker fail protection element. In the first method the breaker fail protection 

element resides within the multifunctional transformer protection relay situated on the incomer 

[19]. When the distribution feeder IED operates it will send a GOOSE message to all the adjacent 

subscribing relays which indicates the change of state of its functional elements like switchgear 

[19]. The incomer IED will receive this information and perform the appropriate actions. If the 

feeder relay has failed to trip its circuit breaker, the fault will ensure that the system current 

remains above the pickup setting of the breaker fail detection element and after a particular delay 

in time the incomer IED will trip the appropriate circuit breakers [19].  

The second method of breaker fail protection relies on the inbuilt protection elements of each of 

the feeder relays. When the feeder IED sends a trip command it automatically initiates the breaker 

fail protection function. If the feeder IED fails to trip its circuit breaker the breaker fail protection 

function will activate and it will send a GOOSE message to all of the neighbouring IEDs 

informing them that they must act to extinguish the fault [19]. Once the neighbouring relays have 

sent trip commands to their respective breakers the fault can be cleared. Hence, this concept was 

visually depicted in Figure 5-3 on the previous page. 

5.1.1 GOOSE configuration 

In order to investigate the IEC 61850 GOOSE-based implications of breaker fail protection the 

substation communication network of chapter 4 was modified to study these outcomes. The 

station level SCADA model which was established on CitectSCADA was used to monitor the 

results of breaker fail and supervise the status of a network of interconnected substation hardware. 

The VAMP 259, VAMP 255, MiCOM C264 and MICOM P122 protection and automation 

devices were used. In addition, the configuration of inter-IED GOOSE messaging between the 

VAMP relays and the RTU was established using VAMPSET. Hence, this software configurator 

allowed the operator to setup communications between the IEDs themselves. The MiCOM P122 

communicated using serial Modbus RTU on the legacy bus and played no direct part in the 
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GOOSE investigation. The following VAMPSET menus were used to organise the IEDs GOOSE 

characteristics and setup the publisher and subscriber IED parameters: 

a. Publisher Configuration: this menu accessed the GOOSE control blocks and set 

parameters such as the GOOSE ID and application ID. 

b. Subscriber Configuration: defined the devices or IEDs that subscribed to receive 

information from a particular message stream. 

c. GOOSE Control Block Data Points: which selected which control signals were being 

configured as GOOSE. 

d. Subscriber Data Points: defined which IEDs can access information from other IEC 

61850 devices as well as to which message stream the current IED is subscribing. 

e. GOOSE Matrix: defined the signal name as well as the type of input. Network inputs are 

signals received by an IED via GOOSE over an Ethernet link whereas virtual inputs are 

those inputs that are internal to the device. 

f. Logic: here the logical outcome of the GOOSE message may be defined using gates to 

generate a virtual output. 

g. IED Output Matrix: the generated virtual output can be connected to one of the IEDs 

output relays such as T1 to trip a circuit breaker as well as to the alarms and LED 

indicators of the IED. 

5.1.2 Results of breaker fail protection 

(i) Elementary breaker fail protection 

On an IEC 61850-based network the protection IEDs can send critical information or control 

commands to their peers using the GOOSE message class. In the following subsection this 

concept was investigated under breaker fail conditions. When a circuit breaker of a particular 

feeder failed to operate, the IEDs on both the feeder and the associated incomer could 

communicate this failure using the GOOSE message class. Thus, the proper use of the breaker 

fail protection element and GOOSE can enable IEDs to trip the affected protection zone, isolate 

malfunctioning equipment and clear the fault. This concept was diagrammatically illustrated in 

Figure 5-4 of the experimental substation model which was represented in Figure 4-2 in chapter 

4. This schematic showed the associated states of the feeder and incomer circuit breakers under 

the simulated fault conditions. In Figure 5-4 a trip command was automatically sent from the 

outgoing feeder IED to the circuit breaker (CB3) on feeder 1 as a result of a double-phase to earth 

fault. The ‘breaker fail’ status indicator of feeder 1 became active since the circuit breaker (CB3) 

had failed to open within the appropriate timeframe (or did not operate at all). Thereafter, using 
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the breaker fail protection element, the feeder IED delivered a GOOSE message to the incomer 

IED which tripped the circuit breaker (CB1) on the incomer and the earth fault was extinguished. 

 

Figure 5-4. Circuit breaker fail on feeder 1 and GOOSE message response 

 

Figure 5-5. Breaker fail on feeder 1 and fault clearing using grading on incomer 1 

The pictures of the HMI from the feeder and incomer IEDs under breaker fail conditions were 

illustrated in Figure 5-5. These images demonstrated the failed operation of the feeder circuit 

breaker which remained in the closed position (i) as well as the associated operation of the 

incomer circuit breaker which opened in response to the GOOSE message that was sent from the 

feeder IED (ii). In addition, the “CB Fail” indictor of the feeder IED was active as was shown in 

segment (i). The items, labelled (i) and (ii), depicted in Figure 5-5 related to the substation model 

GOOSE 

        Breaker fail on feeder 1         Fault cleared on incomer 1 

(i) (ii) 
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given by Figure 5-4. In addition, the red LED trip indicators of both IEDs were active to illustrate 

the issuing of trip commands to the respective breakers and the yellow LEDs of phases A and B 

were in the latched state in segment (i). This indicated a double-phase to earth fault on the phases 

A and B of feeder 1 respectively. 

(ii) Breaker fail on a distribution bus scheme 

 

Figure 5-6. Breaker fail on CB3 of feeder 1 and inter-IED GOOSE message response 

 

Figure 5-7. Graph of the operation of substation switchgear and breaker fail on CB 3 
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Figure 5-8. Breaker fail on CB 4 of feeder 2 and inter-IED GOOSE message response 

 

Figure 5-9. Graph of the operation of substation switchgear and breaker fail on CB 4 

The concept of breaker fail protection, which was initially illustrated in Figure 5-4, was expanded 

upon as was demonstrated by the diagrams in Figure 5-6 and Figure 5-8.  In these two protection 

schemes breaker fail conditions were simulated on the circuit breakers of either feeder 1 (CB 3) 
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or on feeder 2 (CB 4). This was achieved by simply disconnecting the trip coil (TC) of the 

respective breaker and then sending a remote end open command using the SCADA model. Once 

the breaker on either of these two feeders had failed to open the breaker fail protection element 

within the feeder IED became active and a GOOSE message was sent from the feeder IED to the 

adjacent subscribing IEDs on bus 1. These relays then tripped their associated breakers in order 

to ensure that the failed feeder, and hence the fault, was completely isolated.  

Alternatively, the publisher IED controlling the failed breaker could issue a GOOSE message to 

the subscribing IED on the upstream incomer which then tripped the appropriate protection zone. 

In Figure 5-6 breaker fail was simulated on feeder 1 (CB 3) whereas in Figure 5-9 breaker fail 

had occurred on feeder 2 (CB 4). In each case the failed circuit breaker was isolated by tripping 

the bus section breaker, the incomer and the adjacent feeder. Noticeably, the breaker on feeder 3 

of bus 2 was unaffected and remained in the closed position since it played no role in the isolation 

of the failed protection zone. Additionally, the graphs shown by Figure 5-7 and Figure 5-9 

illustrated the operation or nonoperation of each of the circuit breakers in the substation models 

demonstrated in Figure 5-6 and Figure 5-8 respectively. Furthermore, the point at which the 

breaker fail protection element became active was also demonstrated on the aforementioned 

trends. 

 

Figure 5-10. HMI illustrating breaker fail on feeder 1 and fault clearing on feeder 2 and incomer 1 

The HMI of the two feeder and incomer IEDs under breaker fail conditions was demonstrated in 

Figure 5-10. This image depicted the status of the circuit breaker, labelled CB 3 on feeder 1, 

        Breaker fail on feeder 1         Fault cleared on incomer 1 

Fault cleared on feeder 2 
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which remained in the closed position after failing to operate. In addition, the HMI showed the 

associated operation of the circuit breaker (CB 1) on incomer 1 as well as the breaker on feeder 2 

(CB 4) which opened in response to the GOOSE message that was sent from the IED on feeder 

1. The HMI depicted in Figure 5-10 related to the substation model given by Figure 5-6. The very 

same results were recorded for the substation model illustrated in Figure 5-8 with the exception 

that breaker fail conditions occurred on CB 4 of feeder 2. In addition, the red LED trip indicators 

of both IEDs were active to illustrate the issuing of trip commands and the red breaker fail LEDs 

of all the phases A, B and C were in the latched state. Note that the bus section breaker was 

controlled by the same IED as that on the incomer. Hence, there was no HMI representing the 

status of the circuit breaker on the bus section (CB 5). 

5.2 Arc-flash protection 

Conventional arc-flash protection schemes commonly rely on and occur in combination with 

overcurrent protection. Here the arcing time is predominantly affected by the time taken for both 

the protection IED to operate and for the circuit breaker to extinguish the arc [33]. Traditional 

arc-flash protection techniques are typically hardwire-based and use the relays output contacts to 

connect to devices and switchgear [33]. Conventional approaches such as that described, may 

increase the cost and complexity of a particular project whilst at the same time being less effective 

at quenching arc-flash incidents [34].  

Importantly, the amount of energy that is released during an arc-flash incident is proportional to 

the duration of the arc itself [34]. Therefore, time is a critical consideration when it comes to 

detecting and reducing the impact of arcing on cables and busbars within substations [34]. If left 

unattended, arc faults that persist for up to and longer than 500 ms can result in major damage to 

substation equipment as well as danger to technical personnel [34]. However, if the time period 

of the arc-flash is reduced to less than 100 ms the potential for system damage decreases greatly 

[34]. Furthermore, if the arc-flash is quenched within a time of less than 35 ms the impact of the 

arc is considered to be almost negligible [34]. Unfortunately, the operating time of traditional 

overcurrent relays may be greater than the minimum arc protection time of 35 ms. This is usually 

because of the selectivity, coordination and grading settings between relays on the substation 

network [34]. Thus, conventional overcurrent relays may not be quick enough to clear the high 

currents associated with arc faults safely [34].  Therefore, by adopting an IEC 61850-compliant 

IED with built in arc protection, the fast GOOSE message class can be used to apply effective 

arc-flash protection in an expedient manner well below 35 ms. Hence, the IEC 61850 standard 

has important applications for arc-flash protection, ensuring that the security of the network is 

maintained and that its expensive equipment is safeguarded in the event of an arc fault. 
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Figure 5-11. Arc protection scheme using GOOSE [22] 

In Figure 5-11 the rudimentary concepts of busbar, circuit breaker and cable arc protection were 

diagrammatically demonstrated. This figure showed how Relay A (on the incoming line) and 

Relay B (on the outgoing feeder) were equipped with three arc-flash sensors [22]. When sensor 1 

of Relay B detected a busbar arc, Relay B sent a GOOSE message to Relay A on the incomer 

informing it that there was an arcing busbar [22]. Upon receiving this GOOSE message from 

Relay B, the IED on the incomer then checked the current level and issued a trip command to 

breaker A [22]. The same principle could be applied to protection in the case of cable arc or circuit 

breaker arc as was demonstrated by arc sensors 2 and 3 of Figure 5-11. Thus, the GOOSE message 

class enables fast protection in response to arc faults [22]. Therefore, using the IEC 61850 

protocol protection can be achieved in less than 23 ms whereas with traditional hardwire 

techniques protection may only be administered in under 37 ms [22]. Therefore, these outcomes 

ensure that the IEC 61850 substation communication protocol and the GOOSE message class 

subscribe to the standards of efficient, fast, effective and reliable protection. 

5.2.1 Configuration 

The same substation model that was used for breaker fail protection in 5.1 was also employed to 

test arc-flash protection in the following subsection. Additionally, the same GOOSE 

configuration procedure that was adopted in section 5.1.1 was used to configure the inter-IED 

communication between bays. In this study two arc sensors were used to test the impacts of cable 

arc and busbar arc. The arc sensors were tested using a simple flash to trigger each device. 

5.2.2 Results of arc-flash protection 

The upcoming subcomponents of chapter 5 presented the experimental results of arc-flash 

protection which was performed based on cable arc and busbar arc conditions that were simulated 
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on feeder 2. In this section GOOSE-based arc protection was used to extinguish fault conditions 

in each case. 

 

Figure 5-12. Cable arc on feeder 2 and GOOSE message response 

 

Figure 5-13. Graph of circuit breaker operation and cable arc on feeder 2 
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Figure 5-14. HMI of cable arc on feeder 2 and fault clearing on feeder 1 and incomer 1 

The concept of arc-flash protection (specifically cable arc) which was initially illustrated in Figure 

5-11, was expanded upon in this study as was demonstrated in Figure 5-12.  In this scheme, arc 

protection was simulated using a cable arc sensor that was connected on the appropriate input of 

the IED on feeder 2. The cable arc sensor was tested simply by applying a flash close to the 

detection element which activated the device. Once the arc had been detected by the sensor on 

the IED of feeder 2, the arc protection element become active. Thereafter, the relay published a 

GOOSE message on the substation LAN. This multicast GOOSE transmission was received by 

the subscribing IEDs which were controlling the incomer (CB 1), bus section (CB 5) as well as 

the first outgoing feeder (CB 3) respectively. The IEDs then issued trip commands to their 

associated breakers in order to ensure that the cable arc was completely isolated. Alternatively, 

the IED controlling the circuit breaker (CB 4) on the arcing feeder could have also issued an 

exclusive GOOSE message to the primary relay on the upstream incomer which would deliver 

the trip commands for the appropriate protection zone. In Figure 5-12 the cable arc alert indicator 

of the substation SCADA was illuminated on feeder 2. Additionally, Figure 5-13 demonstrated a 

trend of the trip signals of each of the subscribing IEDs as well as indicating the point at which 

the cable arc protection element became active. Noticeably, the breaker on feeder 3 of bus 2 was 

unaffected and remained in the closed position since it was located outside the protection zone 

and played no role in the isolation of the faulted area. Figure 5-14 depicted the HMI of each of 

the IEC 61850-compliant IEDs on the incomer and feeders respectively. This HMI showed the 

open status of each of the breakers of the model in Figure 5-12 as well as the cable arc indication 

         Cable arc on feeder 2         Fault cleared on incomer 1 

Fault cleared on feeder 1 
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on the HMI panel of feeder 2. Note that the bus section breaker was controlled by the same IED 

as that on the incomer. Hence, there was no direct HMI representing the status of the bus section 

breaker (CB 5). 

 

Figure 5-15. Busbar arc on feeder 2 and GOOSE message response 

 

Figure 5-16. Graph of circuit breaker operation and busbar arc on feeder 2 
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Figure 5-17. HMI of busbar arc on feeder 2 and fault clearing on feeder 1 and incomer 1 

A similar test approach to that performed during the simulation of a cable arc was carried out to 

capture the results of a busbar arc on bus 1 of the substation model. Hence, the busbar arc sensor 

was connected to the IED on feeder 2 using the appropriate input. Once a flash was detected, the 

busbar arc protection element of the IED was activated. A GOOSE message was published and 

delivered from the feeder IED to the subscribing relays located within the protection zone. 

Thereafter, trip commands were issued and delivered from the relevant IEDs to the incomer 

breaker (CB 1), bus section breaker (CB 5) and feeder breakers (CB 3) in order to isolate the arc 

fault on the busbar of bus 1. This concept was illustrated in the substation model of Figure 5-15. 

In addition, the trend in Figure 5-16 depicted a graph of the operating states of the respective 

switchgear as well as showing the point at which the busbar arc was detected. The HMI of the 

respective IEDs was illustrated in Figure 5-17 showing the persistence of the busbar arc on bus 1 

as well as the associated tripping of circuit breakers 1, 3, 4 and 5 respectively. Circuit breaker 8 

on bus 2 remained in the closed position since it was located outside the protection zone and 

played no role in extinguishing the arc. 

5.3 Blocking response and sympathetic trip protection 

As a result of the new IEC 61850 protocol and the smart GOOSE message class better protective 

coordination, selectivity and grading can be achieved between the IEDs within a substation [22]. 

This has become evident when one considers the concepts of blocking-based busbar protection 

and the overcurrent blocking principle. Multiple IEC 61850-compliant IEDs can be connected to 

        Busbar arc on feeder 2        Fault cleared on incomer 1 

Fault cleared on feeder 1 
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the substation LAN in distribution bus protection schemes [8], [10]. If a fault occurs on one of 

the substations feeders the feeder protection IED will detect the fault current and try to clear the 

disturbance. Furthermore, the same fault current will be detected by the protection IED located at 

the transformer of the incomer [8], [10]. When the overcurrent protection element of the feeder 

relay becomes active the IED will deliver a GOOSE message to indicate that the fault has been 

captured and that it has issued a trip signal to its breaker to clear the disturbance [8], [10]. The 

IEDs on the unfaulted feeders and incomer subscribe to this GOOSE message. Thereafter, the 

relays situated on the healthy protection zones can be blocked by adapting their overcurrent 

settings for a period of time during the inrush condition [8], [10].  Inrush conditions may be caused 

as a result of a voltage sag at the busbar which exists as a direct result of the fault itself or from 

fault clearing. In addition, an outcome of this condition could see the tripping of the circuit 

breakers on healthy feeders [8], [10].  

Alternatively, the faulted feeder IED can block the sensitive overcurrent stages (high set stage, 

low set stage and instantaneous stage) of the other IEDs using a GOOSE message as and when is 

required. The traditional approach to delay setting with instantaneous overcurrent protection 

achieves effective relaying within 100 ms [22]. However, using the IEC 61850 protocol the same 

principle can be achieved within 70 ms [22]. Figure 5-18 demonstrates how the instantaneous 

overcurrent stage of a particular IED can be blocked using IEC 61850 and GOOSE messaging. 

 

Figure 5-18. Blocking-based busbar protection [22] 

The benefit of this form of protection lies in the ease with which blocking signals can be 

transmitted between devices. Traditionally, in legacy substations there would be a large number 

of wires connecting the binary inputs and relay outputs of the IEDs [8], [10]. However, with IEC 
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61850, messages can be published and subscribed to easily over the substation LAN [8], [10]. 

Figure 5-19 shows an example of the inter-IED GOOSE blocking signals that can be sent between 

feeder IEDs during sympathetic trip protection on a distribution bus scheme. 

 

Figure 5-19. Inter-IED GOOSE blocking [8] 

5.3.1 Configuration 

The same substation model that was used for breaker fail protection in 5.1 was also employed to 

test blocking response in the following subsection. Additionally, the same GOOSE configuration 

procedure that was adopted in section 5.1.1 was used to configure the inter-IED communication 

between bays. Here blocking-based protection using GOOSE was implemented to block the 

overcurrent stages of a particular incomer to ensure that only the appropriate stage of the feeder 

protection operated when it was required. 

5.3.2 Results of blocking-based protection 

The subsequent component of chapter 5 demonstrated the results of blocking-based overcurrent 

protection using the GOOSE message class. In this section sympathetic trip protection (blocking 

response) was applied to a busbar with a single incomer and a single feeder which were both in 

simultaneous operation. This sub-model was taken from the substation in Figure 4-2 from chapter 

4. The IED located on the outgoing feeder used GOOSE to block the overcurrent stages of the 

IED on the incoming line. Here the IEDs were of the same family, with the same overcurrent 

protection settings (pick-up) and were both IEC 61850-compliant. A fault, located on the feeder, 

was applied to the system thus creating an overcurrent condition so that the associated responses 

could be recorded. In Figure 5-20 the energized and de-energized states of the single incomer-

feeder model were illustrated. Firstly, a steady state current of 143 A was passed to incomer 1 of 

the substation model as shown in the figure. The circuit breakers on both incomer and feeder 

remained closed since the system was under steady state and devoid of faults. However, once an 
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overcurrent was applied to the model both circuit breakers (CB1 and CB4) tripped as a result. The 

IEDs on both the incomer and feeder saw the same fault current and hence issued trip signals to 

their respective circuit breakers. This dual trip occurred due to that fact that these IEDs were both 

of the same family with identical overcurrent protection settings. The tripping of both breakers 

represented a non-ideal operation of switchgear especially since the fault was located downstream 

of the feeder breaker. Therefore, the circuit breaker on the incoming line needlessly tripped. 

 

Figure 5-20. Energized and de-energized states of the single incomer-feeder model 

 

Figure 5-21. Blocking-based protection using GOOSE 
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In order to prevent the unnecessary tripping of unfaulted lines, such as incomer 1 in Figure 5-20, 

a blocking response could be issued by a particular IED to suppress the overcurrent protection 

element of another relay. This concept was illustrated in Figure 5-21. Here a fault occurred on the 

outgoing feeder which affected the overcurrent characteristics of both the IED controlling CB 4 

as well as that controlling CB 1. Since the fault occurred downstream of CB 4 it makes sense that 

this circuit breaker should trip in order to isolate the fault. Hence, the IED controlling CB 1 sent 

a blocking response to the incomer IED which blocked the overcurrent element of this relay (I>, 

I>>, I>>>). Thus, only CB 4 opened and cleared the overcurrent fault condition. These concepts 

were illustrated in the HMI of the IEDs in Figure 5-21. The HMIs showed that the incomers circuit 

breaker remained closed and the feeder circuit breaker opened to extinguish the fault. 

 

Figure 5-22. Graph of the operation of switchgear and the 3-phase incomer current 

Figure 5-22 demonstrated the graphical characteristics of the blocking-based protection model 

illustrated by Figure 5-21. This graph showed the associated operation and non-operation of CB 

4 and CB 1 respectively. The circuit breaker on feeder 2 (CB 4) opened to clear the downstream 

overcurrent fault, whilst the upstream breaker on incomer 1 remained closed after receiving the 
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blocking signal. The black, red and green pens of the graph in Figure 5-22 depicted the 3-phase 

current of the incomer and feeder. Initially the current remained under steady state at 143 A; it 

was then increased to 205 A and after a time delay (according to inverse time characteristic of the 

relay) the fault current was cleared by CB 4 and immediately dropped to 0 A.   

5.4 Provision for future works 

In addition to the IEC 61850 GOOSE-based applications of breaker fail protection, arc-flash 

protection and blocking response, the standard also has implications for busbar earthing and 

disturbance recording. Thus, during the course of future works it may be necessary to investigate 

these two additional protection applications of the GOOSE message class. The following 

subsection briefly outlined the underlying principles of each of the aforementioned protection 

schemes. 

5.4.1 Busbar earthing 

In this protection scheme a busbar may be grounded by closing an earth switch on a particular 

bus. If the busbar earth switch is in the closed position then there must be a blocking signal that 

is sent from the upstream IED on the incomer (Relay A) to ensure that none of the other IEDs 

(Relays B and C) close their breakers [22]. The circuit breaker positions of all the breakers 

connected to that particular busbar must be published. The subscribing IEDs receive this 

information and deliver it to the blocking input of the control functional block within the relay 

[22]. Hence, this process prevents the closing of the relevant circuit breakers [22]. Alternatively, 

this protection scheme can be configured in reverse where the circuit breaker positions on the 

feeders and incomer can block the operation of the earth switch on the busbar [22]. Figure 5-23 

illustrated the concept of GOOSE-based busbar earth protection. 

 

Figure 5-23. GOOSE-based busbar earth blocking principle [22] 
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5.4.2 Disturbance Recording 

The IEC 61850 protocol can also be used to initiate the disturbance recording function within 

IEDs. In this case a GOOSE message from one IED may be used to activate the disturbance 

recorder of a different relay one an adjacent bay [22]. If a fault is detected on one of the feeders 

(Relay B or C) or on an incomer (Relay A) of the substation model illustrated by Figure 5-24, 

then a GOOSE message can be used to trigger the disturbance recorders of the IEDs on the 

adjacent feeders [22]. This facility could be used to create trends and monitor the substations 

system parameters like power, currents and voltage levels during fault conditions. Beneficially, 

disturbance recorders can be triggered almost instantaneously without any considerable time 

delays. Figure 5-24 demonstrated the concept of disturbance recording using GOOSE-based 

techniques. 

 

Figure 5-24. GOOSE-based disturbance recording [22] 

5.4.3 1 of N blocking 

In this protection scheme (Figure 5-25) the operator may send a ‘select breaker before operate’ 

command from the substation control system (SCS) to a feeder on which a particular IED is 

located [22]. A GOOSE-based blocking signal is then sent from the users remotely chosen feeder 

IED to all other feeders and incomers of the protection zone [22]. Importantly, no other control 

commands of any kind are permitted during the course of this ‘select before operate’ timeout 

period [22]. The selected IED (publisher) sends out the circuit breaker control selection using the 

GOOSE message class to all of the subscribing IEDs on the network [22]. The receiving IEDs 
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connect this signal to the blocking input of the control functional block [22]. Lastly, when the 1 

of N blocking control sequence is terminated, the publisher IED delivers the new value change to 

all of its subscribers which frees the control function block situated within those IEDs [22]. The 

aforementioned concepts were diagrammatically demonstrated by Figure 5-25. 

 

Figure 5-25. 1 of N blocking using GOOSE [22] 

5.4.4 Selective backup tripping 

Typically, a single protection IED is used on a particular substation feeder or incomer [19]. 

However, if this protection IED fails to clear a fault then it must be extinguished by the backup 

overcurrent protection of the incoming line (transformer protection) which trips its breaker and 

the bus section [19]. The disadvantage of this approach is that protective relaying may not be 

administered quickly enough [19]. The IEC 61850 GOOSE message class delivers a repetitive 

retransmission mechanism that ensures expedient protection, health of communication and 

eliminates hardwiring [19]. A better method of relaying for backup protection uses selective 

backup tripping which monitors the normally closed contacts of the feeder relays that close when 

a relay has failed [19]. The backup IED can make its own decision if it sees a fault and does not 

receive a blocking signal from the feeder relays [19]. There are two possible cases that the backup 

protection must consider. Firstly, the fault could be on the feeder with the failed relay or secondly, 

the fault might be on the busbar [19]. The probability of a feeder fault is much higher than a bus 

fault, therefore, the backup overcurrent protection IED on the incomer tries to trip the feeder 

breaker [19]. If the fault persists the source breakers (on the incomer and the bus section) are then 

also issued trip commands [19]. 
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The incomer IED (transformer IED) subscribes to all the GOOSE messages of the feeder 

protection IEDs [19]. Thus, if one of the IEDs on the feeders stops transmitting its GOOSE 

messages then the relay on the incomer knows that it has failed [19]. This will then activate the 

selective backup trip element of the transformer protection on the incoming line [19]. The 

concepts of selective backup tripping were illustrated in Figure 5-26. 

 

Figure 5-26. Selective backup tripping using GOOSE [19] 

5.4.5 Priority Tagging/ VLAN 

The IEC 61850-based GOOSE message class is considered to be a multicast or broadcast Ethernet 

compliant message system [4]. Thus, these terms suggest that protection IEDs can use GOOSE 

to send messages to a particular group of devices (multicast) or to every device that is connected 

to a substation network (broadcast) [4]. Hence, broadcast and multicast messages can greatly 

increase the data traffic on a particular LAN [4]. When an Ethernet switch receives a GOOSE 

message from a publisher it will forward it to all of the other network ports on the LAN; except 

to that from which it was sent [4]. Unfortunately, a large number of published messages on the 

substation network can quickly use up all of the available bandwidth [4]. However, there are two 

convenient engineering methods that can be used to elevate this problem. The first uses VLANs 

which divide the network up into serval virtual local area networks (Figure 5-27) [4]. This solution 

helps to segregate network traffic from different areas of the substation and adds a number of new 

Ethernet switches to the network in order to effectively handle the increase in traffic [4]. The 

second solution to the problem of bandwidth saturation uses the concept of priority tagging.  

During this approach the Ethernet switch will monitor or decipher the priority segment of the 

information frame and then transmit the highest-level priority GOOSE messages first [4]. 

Therefore, it is by using either of these basic techniques that the network traffic of a substation 

can be efficiently managed and that commands, messages and information can be reliably 
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distributed for expedient protection and automation. The diagram that was illustrated by Figure 

5-27 sought to demonstrate the concept of VLANs. 

 

Figure 5-27. Concept of VLANs for bandwidth efficiency 

5.5 Conclusion 

The applications of the GOOSE-message class in substation protection and automation have 

benefitted substation design and simplified physical protection architecture. It is because of the 

IEC 61850 standard that messages can be periodically multi-cast from publisher devices to 

subscriber IEDs which promotes coordination, reliability and system security. Not only is 

GOOSE reliable but it is fast; achieving message speeds of up to 3 ms which allows it to be used 

for protective relaying. By using this smart message system for breaker fail, arc-flash and 

blocking-based protection it is possible to reduce the clearing time of faults, decrease lengthy and 

expensive copper wiring within the substation, reduce cable resistance and eliminate CT 

saturation using cleverly positioned MUs as well as efficiently broadcast information to the 

‘virtual’ substation LAN. 

In a conventional substation the protection techniques that were discussed in chapter 5 would 

have been implemented using hardwire-based techniques and the many digital inputs, digital 

outputs and output relays of the IEDs to perform substation protection, monitoring and 

automation. Not only is traditional hardwiring slower than IEC 61850, it is labour intensive, 

expensive and especially tedious, complicated and time consuming to implement. The GOOSE 

message class is the most powerful and flexible tool of the IEC 61850 protocol. 
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 COMPARATIVE STUDY 

The foregoing chapters of this dissertation considered the design, implementation and 

experimental evaluation of a prototypical substation and its corresponding communication 

structures. The substation protocols including: Modbus RTU, DNP3 and the IEC 61850 standard 

were utilized between intelligent equipment on a physical network. Therefore, this chapter sought 

to establish a research consensus regarding the benefits and drawbacks of the aforementioned 

communication protocols as well as offer a critical analysis and comparison between the 

researched literature on Modbus RTU, Modbus TCP, DNP3 and the IEC 61850 protocol, as well 

as between the findings that were observed during the experimental procedure. The subsequent 

components of chapter 6 included a critical literary survey of Modbus RTU, Modbus TCP and 

DNP3 in addition to the review on the IEC 61850 standard that was compiled in chapter 2. The 

author discussed the technical inferences that could be drawn from both the practical studies and 

researched literatures that were discussed in this thesis. 

6.1 Modbus 

Modbus is an application layer, legacy communication protocol that can be used for transmitting 

data over serial links between electronic devices like programmable logic controllers (PLCs) [35], 

[36], [44]. In addition, Modbus is based on the ‘master/slave principle’ whereby the master station 

delivers a request to the slave and the addressed slave sends back the appropriate response [35]. 

Therefore, the control device that sends a request for the data is referred to as the master 

(traditionally only one, especially in RS485 networks) and the device that transmits the data is 

called the slave (there can be up to 247 slaves) [35], [36]. Each slave has an address from 1 - 247 

to which the masters may write or read different information [36]. Since serial Modbus is a 

protocol that is independent of the physical network layer, it can be easily integrated into Ethernet-

based TCP networks, using gateway devices such as smart RTUs [35]. Modbus has been widely 

used within industry as a free protocol for manufactures and vendors alike. Therefore, users are 

allowed to implement Modbus and use it within their industry products as they see fit [35]. This 

protocol is typically used to communicate data or signals between instrumentation devices and 

control devices such as relays, RTUs and data acquisition systems (SCADA), within an electrical 

substation [35], [36].  In a SCADA network Modbus is typically used to connect a supervisory 

computer to a remote terminal unit (RTU) for data supervision, monitoring, control and 

information capture [35]. In the context of this dissertation Modbus RTU was used to connect a 

compliant IED of a particular feeder to the substation RTU. Here Modbus was used to deliver 

control commands like breaker trips and send alerts for items like breaker fail, earth fault and 

overcurrent conditions as they appear on the relay. 
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6.1.1 Operation and integration 

As previously mentioned, Modbus is a protocol that allows information to be transmitted serially 

over different hardwire links. Modbus can communicate using serial RS485 or serial RS232. 

RS232 uses approximately three wires; a transmit wire, a receive wire and a common wire in a 

point to point communication system between two devices [35], [36]. Since the transmit (TX) and 

Receive (RX) functions occur on different circuits data is able to flow both ways at the same time. 

RS232 sends data in the form of a timed-series of bits. An example of an RS232 based serial 

communication cable was shown in Figure 6-1. This cable can be used to connect a master device 

to a slave. In Modbus, the data is sent in binary as ones and zeros [37]. Each bit represents a 

voltage so that the one’s correspond to + 5 V and zeros to – 5 V. The information is transferred 

at rates of up to and exceeding 9600 bits per second [35], [37]. RS485, on the other hand, is a 

differential system. In this case, there are only two wires and the difference in the potential 

(voltage level) between the two wires determines what the bits or binary values of the data packet 

are; Modbus RTU is essentially a RS485 protocol [35], [36]. Modbus RTU (RS485) is multi-

dropped which means that there can be one master with a large number of slaves, however data 

can only be sent in one direction along a communication link at a time [35], [36]. 

 

Figure 6-1. Serial Communication Cable [35] 

 

Figure 6-2. Binary Sequence of Bits [35] 

A large string of ones and zeros in a complex binary sequence, shown in Figure 6-2, can be quite 

difficult to read and translate so Modbus requires that each block of four bits be divided into the 

hexadecimal number from 0 to F as shown in Table 6-1 [35]. Each byte of data, which consists 

of 8 bits, can be described using one of the 256-character representations from 00 to FF [35]. 

Table 6-1. Hexadecimal system [35] 

0000 = 0 0100 = 4 1000 = 8 1100 = C 

0001 = 1 0101 = 5 1001 = 9 1101 = D 

0010 = 2 0110 = 6 1010 = A 1110 = E 

0011 = 3 0111 = 7 1011 = B 1111 = F 
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6.1.2 Data storage 

In Modbus data and information is stored in the slave device in four different tables [35]. Discrete 

values (such as those representing on/off states) are stored in two tables called coils. However, 

the other two tables which are referred to as registers, store numerical values. Each pair of tables 

that make up the coils and registers have a read-only table and a read-write table respectively. 

These tables each have 9999 values [35]. In addition, each individual coil is represented by 1 bit 

and has a data address from 0000 to 270E. On the other hand, the registers are each comprised of 

1 word which is 16 bits long or two bytes. Here the data is also addressed in hexadecimal from 

0000 to 270E as was demonstrated by table 6-2 [35]. 

Table 6-2. Coils and registers [35] 

Coil/Register Number Address Type Table Name 

1-9999 0000-270E Read-write Discrete Output Coils 

10001-19999 0000-270E Read-only Discrete Input Contacts 

30001-39999 0000-270E Read-write Analog Input Registers 

40001-49999 0000-270E Read-only 
Analog Output Holding 
Registers 

The coil or register numbers are also referred to as location names and do not appear within the 

frame of the transmitted message; only the data address is used in the message to ensure that the 

appropriate information is stored correctly [35]. The primary difference between the data address 

and the register or coil number is the offset. Hence, table 6-2 showed how each of the coil and 

register tables had a numerical offset as follows: 1, 10001, 30001, 40001 [35], [36]. 

6.1.3 Slave ID 

The many slave devices that may exist within a physical substation network are individually 

assigned a specific slave ID which is defined from 0 to 247 [35], [36]. Therefore, Modbus is 

constrained to one master with up to 247 slaves.  Importantly, when the Modbus master requires 

data or information from a particular slave IED the first byte it sends in a message is the slave 

address or slave ID. This ensures that the message is delivered to the correct device and that the 

other slaves ignore the message if the slave ID or address is not theirs [35], [36].  

6.1.4 Function code 

The second byte of information that the master sends to a slave device is called the function code. 

This byte of data tells the slave IED, such as an RTU, which table it needs to use (coils or registers) 

and if it is going to read or write data to the particular table in question [35], [36]. The various 

Modbus function codes, their table names and actions were populated in Table 6-3 on the 

following page. 
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Table 6-3. Modbus function codes [35] 

Function Code Action Table Name 

01 (01 hex) Read Discrete Output Coils 

05 (05 hex) Write Single Discrete Output Coils 

15 (0F hex) Write Multiple Discrete Output Coils 

02 (02 hex) Read Discrete Input Contacts 

04 (04 hex) Read Analog Input Registers 

03 (03 hex) Read Analog Output Holding Registers 

06 (06 hex) Write Single Analog Output Holding Register 

16 (10 hex) Write Multiple Analog Output Holding Registers 

Therefore, based on the past few subsections, the Modbus data package that the master device 

sends to the slave consists of four specific items, namely: device/slave ID (addressed from 1 to 

247), the function code (FC), data address (of the coils/registers) and lastly, the data packet itself 

[35], [37]. In addition to these four items, a cyclic redundancy check (CRC) could be included at 

the end of each message package so that the receiving IED can check for any errors in the sent 

data [35], [37]. 

6.1.5 Cyclic redundancy check 

A CRC refers to the two bytes that should be added to the end of any Modbus message in order 

to perform a specific type of error detection. Each byte of information that exists within a 

particular message frame can be used to determine or calculate the CRC [35], [37]. The slave 

device that receives the Modbus message also determines the CRC and attempts to compare this 

calculated value with that of the CRC of the sending master. If even a single bit in the sent message 

is received incorrectly the CRCs of the master and slave will not be the same and an error will 

have occurred [35], [37].  

6.1.6 Modbus RTU 

Modbus RTU is a serial RS232 or RS485 communication protocol that communicates data 

between a single master and multiple slaves [37]. The Modbus RTU packets can only send the 

data itself whereas items like point name, resolution and units can only be send using other 

protocols such as Modbus TCP/IP [37]. In Modbus RTU the packets are send with the least 

important bit first and devices must decipher each byte of information with this procedure in mind 

[37]. A transmitted byte of data is coded as was shown in Figure 6-3 and in the top half of Figure 

6-4 as an 8-bit binary value. The Modbus RTU memory map was populated in Table 6-4 on the 

following page. 

 

Figure 6-3. Data packet (1 byte) [37] 

1 Start Bit 8 Data Bits 1 Parity Bit Even 1 Stop Bit 
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Table 6-4. Modbus RTU memory map [37] 

Modbus RTU Data Type Common name Starting address 

Modbus Coils Bits, binary values, flags 00001 

Digital Inputs Binary inputs 10001 

Analog Inputs Binary inputs 30001 

Modbus Registers Analog values, variables 40001 

6.1.7 Modbus TCP/IP 

In addition to Modbus RTU, which is a serial protocol, Modbus was also developed to operate 

over Ethernet using a separate communication standard called Modbus TCP/IP. The acronym 

TCP stands for Transmission Control Protocol and IP stands for Internet Protocol, hence, these 

two protocols can be used together to transport data over the internet [38]. When a message is 

sent the required data is first delivered to the TCP layer where certain transmission specific 

information is attached to the package [38]. Thereafter the IP layer transfers the data into a packet 

and transmits it to the requested location. This is achieved by the Modbus TCP master which 

establishes a communication link with the slave server. In contrast to Modbus RTU, the slave 

device does not have a slave ID; instead it has an IP address [38]. In addition, one of the major 

differences between Modbus RTU and Modbus TCP is the 7-bit MBAP Header (Modbus 

Application Header) that is added to the Modbus RTU data packet [38]. This header includes a 2-

byte transaction identifier which is set by the client in order to identify the request. In addition to 

the MPAB, there is a 2-byte protocol identifier which is also set by the Client, a 2-byte length 

which specifies the number of bytes in the data message and lastly, a 1-byte unit identifier which 

identifies the connection of the slave device [38]. This structure was illustrated in Figure 6-4 and 

offered a comparison between the frames of Modbus RTU and Modbus TCP/IP. 

 

Figure 6-4. Modbus RTU versus Modbus TCP/IP [38] 

The construction of a typical TCP/IP packet which can be transmitted using an Ethernet-based 

substation network connection using Modbus TCP/IP was illustrated in Figure 6-5 on the next 

page [38]. 
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Figure 6-5. Construction of a TCP/IP Ethernet data packet [38] 

6.2 DNP3 

Distributed Network Protocol 3 (DNP3) was primarily designed as an open source substation 

protocol that was developed to provide a standard means of communication between the IEDs, 

instrumentation devices, RTUs and station computers that exist within and external to an electrical 

substation [39]. This protocol can be defined as a set of serial and TCP/IP-based communication 

rules that conform to the stringent standards of Working Group 3 of the IEC Technical Committee 

57 [39], [43]. DNP3 is exclusively available to all and can be easily accessed for free by vendors 

and utilities alike [39]. Importantly, all DNP3-based devices communicate using the same 

language allowing them to easily interoperate with peer equipment [40]. In times past, different 

IEDs from foreign vendors communicated using proprietary protocols known only to the devices 

developed by the same manufacturer [40]. Therefore, with the advent of DNP3 the integration of 

equipment from different companies and the communication between devices within a substation 

has become a far simpler, easier to implement, efficient and cost-effective reality [40]. 

DNP3 can communicate via range of different means such as by high speed Ethernet and via low 

speed radio links; thus, making it robust and versatile for engineers [40]. It also allows many 

devices to communicate and interact on the same network, which increases the efficiency of the 

interactions between equipment and limits the number of physical hardwire connections between 

IEDs and related technologies [40]. Hence, the installation and maintenance of the network is less 
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labour intensive and it saves copper and therefore money. Figure 6-6 shows a high-level diagram 

which depicts how DNP3 communicates from one point to another.  

 

Figure 6-6. High-level DNP3 communication diagram [41] 

Commonly considered as a SCADA protocol between RTUs and PCs, DNP3 employs the 

definition ‘outstation’ to refer to remote computers (like intelligent RTUs) which are located 

within substations [43]. Furthermore, the term ‘master’ is used to refer to the station level 

computers located at central control points [43]. Hence, DNP3 defines the set of rules for master 

and outstation (slave) devices in order to transfer information, data and control commands [43]. 

Outstation or slave devices are used to gather information that can be transmitted to the station 

level master, this data includes [43]: 

• Binary data that is used to monitor dual-state equipment such as a circuit breaker which 

can be either in the closed or open positions; 

• Analog data that denotes voltage levels, currents and electrical power; 

• Counter data that monitors energy consumption in kWh; 

• Files with configuration information. 

The master station, on the other hand, is used to issue control signals such as [43]: 

• Open or close commands for a particular circuit breaker; 

• Analog output values to set a required voltage level. 

The mater and outstation also communicate items and perform functions such as: synchronizing 

the time and date, sending recorded or logged data, waveforms and disturbances [43]. DNP3 was 

primarily intended for SCADA applications and was developed to simplify the transmission of 

information, acquisition of data as well as the delivery of control commands from one station 
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computer to the next [43]. The conceptual organisation of arrays at the top of the outstation in 

Figure 6-7 illustrates the location in which different data is stored within the outstations database 

[43]. Firstly, the array of binary inputs on the left depicts the state of logical devices, whereas the 

values in the analog input array depict variables that the outstation has measured or calculated. 

Furthermore, the array of counters illustrates count values that monitor items like power and 

increase until a maximum is reached before resetting to zero [43]. Additionally, the control 

outputs exist in an array that denotes logical on-off and, lastly, the array of analog outputs 

illustrates logical analog variables respectively [43]. The DNP3 master also has a similar database 

for the arrays already mentioned. Typically, the master utilizes variables in its database to display 

system states, control outputs and alarms [43]. The master database constantly updates and it 

achieves this by requesting information from the other outstations asking them to return the 

desired values in their databases; this is referred to as polling [43].  

 

Figure 6-7. Master and outstation communication [43] 

6.2.1 DNP3 communication 

DNP3 may incorporate one-to-one communication between one master and a slave, or multidrop 

between a mater and multiple outstations gathering different data and information from each [43]. 
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master and a remote [42].  These functions include items that allow the master to request and 

accept status data from a remote device or a remote centre [42]. Other uses of the function codes 

are to configure and adjust a remote, control the remote or its associated equipment and to allow 

automated message responses to certain events which enables outstations to report alarms [42].  

6.2.2 DNP3 object library 

DNP3 has a library of objects that are commonly used for applications that involve SCADA. The 

objects that occur in this library may include items like binary inputs which deal with discrete 

instances such as on/off states and breaker open/closed [42]. Alternatively, the analog inputs allow 

the protocol to communicate characteristics that have a variety or a range of parameters [42]. 

Objects allow remote centres to communicate information with upstream masters enabling them 

to capture data from outstations for decision making processes [42].  

6.2.3 Message structure 

Basic protocols like Modbus RTU are byte-orientated and can exchange a single byte of 

information in order to communicate [42].  Modbus can also be organized into a packet-orientated 

structure, with each packet containing a certain number of bytes structured in a particular way 

(header, data and checksum). DNP3 can also be used as packet-orientated protocol with a 

structure as was shown in the DNP3 frame in Figure 6-8 as well as in the application layers 

illustrated in Figure 6-9 [42]. 

 

Figure 6-8. DNP3 frame and data payload [42] 

The DNP3 frame is comprised primarily of a header and the user data [43]. The header section 

defines the size of the frame, has data link control information and identifies the source and 

destination addresses [43]. The user data is typically referred to as the payload and includes the 

data that has been passed down from the transport and application layers [43]. Additionally, each 

frame starts with two bytes called the magic that allow the receiver to determine where the frame 

begins [43]. Furthermore, the length segment of the packet defines the number of bytes in the rest 
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of the frame [43]. The data payload of the link layer contains the CRC pair for every 16 data 

octets. This means that communication errors can be detected by analysing the checksum. The 

maximum number of octets in the payload is 250 whereas the maximum length of the link frame 

is 292 octets if the CRC and the header are included [43]. Using the illustrated packet structure in 

Figure 6-8 and Figure 6-9 a master will initiate and transmit a read request for an object or multiple 

objects [43]. The remote will then respond/reply with the desired or requested data [42]. The 

master can also send an operate command which generates the output actions of the specific object 

reference [42]. In addition, the remote device can also send an automatic message when a 

particular event has occurred enabling it to send alarms in the case of a fault [42]. 

6.2.4 Layered communication 

The master and the outstation illustrated in Figure 6-7 both have two different software layers 

[43]. The top most layer is referred to as the DNP3 user layer. In the case of the master, it interacts 

with the database and requests outstation data [43]. In the outstation, it fetches the requested data 

from the outstation database in response to the master request. The second layer which is the 

DNP3 user code layer, uses the DNP3 software to transmit master requests to the associated DNP3 

outstation user code [43]. The DNP3 software layer can be further layered into 3 additional 

segments.  

The application layer of DNP3 includes an Application Service Data Unit (ASDU) which is a 

packed object as well as an Application Protocol Control Info (APCI) block which makes up the 

Application Protocol Data Unit (APDU) [42]. Importantly, messages from the application layer 

are segmented into fragments with the normal size range from 2048 to 4096 bytes [42]. The 

transport layer seeks to break down the APDU into smaller modules which are of a size of no 

more than 16 bytes [42]. Thus, the transport layer is given the job of dismembering long 

application layer messages into much smaller packets that are suitable for the link layer to transmit 

[43]. This layer also reassembles frames into longer application layer messages when receiving 

messages. In DNP3 the transport layer is incorporated into the application layer [43]. The 

transport package consists of an 8-bit transport control header as well as a 16-bit module which 

contains the CRC. This creates the transport frame. The link layer attaches a header to the control 

and address data which ensures the entire packet is ready to be transmitted to a particular 

destination [42]. The link layer ensures that the physical link is reliable. It achieves this using 

error detection as well as duplicate frame detection to avoid redundant frames [43]. The link layer 

sends and receives packets called frames, as was illustrated in Figure 6-2 and Figure 6-9. In some 

cases, the transmission of more than one frame may be necessary to transport all of the 

information from one point to the next [43]. 
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Figure 6-9. DNP3 application layers [42] 

In addition, the aforementioned layers can be mapped onto a four-layer model depending on how 

the information and data is being sent [42]. If the packet is sent via a LAN then the three 

previously mentioned DNP3 layers can be packaged into a single application layer [42]. This 

packet is then enclosed in a TCP by the transport layer which is additionally wrapped in a IP by 

the internet layer [42]. The fourth and final layer to be mentioned in this instance is the network 

interface layer [42]. This stage is where the wrapped and layered packet of data is interfaced via 

a method or medium of transportation such as a co-axial or fibre optic cable [42]. This 

aforementioned process of layer communication can be seen by the graphical representation in 

Figure 6-10.  

 

Figure 6-10. Layer communication model [42] 
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included [42]. This contains the IP addresses of both the Remote and Master devices. Finally, the 

completed packet is transferred to the network interface layer which places the packet on a 

particular medium, like fibre optics, for it to be transmitted to the Remote [42].  

When the sent package is received by the Remote device it must pass through the exact same four 

layers but in the opposite order as it did in the Master [42]. It is firstly pulled off the transportation 

medium (cable) by the network interface layer where it passes to the IP layer [42]. The IP verifies 

the addresses and passes the packet to the TCP/UDP layer [42]. If an application is listening at 

the target point then the packet passes to the application layer [42]. However, if the application 

listening is the Remote DNP3 process then the packet is passed to the three DNP3 layers to 

identify the request and send the appropriate information back to the Master [42]. When the 

message/data is send from the Remote device it follows the identical process in the reverse 

direction back to the Master. 

The user layer in the master station generates its appeal for data from the outstation by informing 

the application layer of the functions that it needs to execute (like reading) and it also defines the 

data types that it requires [43]. Additionally, this request can specify the number of objects it 

wants [43]. The application layer then delivers the request through the transport layer to the link 

layer, which sends the message to the outstation [43]. The link layer checks the frame for any 

errors and then delivers it to the transport layer where the message is constructed in the outstation 

application layer [43]. The application layer then informs its user layer which groups and format 

variations were requested. Variations and groups define the format and type of data whether it be 

static or analog, integer of floating point [43]. 

Responses are similar since the outstation user layer retrieves the desired data and delivers it to 

the application layer which uses the group and variation numbers to format user layer data into 

objects [43]. Data is then sent across the communication medium to the master’s application layer. 

The data objects are then finally given to the master user layer [43]. 

6.2.6 Data and Addressing 

(i) Addressing 

The destination address identifies which DNP3 device must process the data, whereas the source 

address identifies which device sent the message [43]. Hence, the receiver knows where to direct 

its responses. There are 65520 individual addresses available [43]. Naturally, each DNP3 device 

must have its own distinct address within the network of substation devices that all send and 

receive messages [43]. 
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(ii) Static and Event Data 

In DNP3, the term ‘static’ is utilized to define the present value of data. Therefore, static binary 

data may refer to the on/off state of a dual-state device [43]. Static analog data contains the 

instantaneous value of an analog signal [43]. The term ‘event’ is associated with state changes, 

values exceeding certain thresholds, varying data, transient data and new information. An event 

may occur when a particular binary value changes from an on state to an off state. DNP3 can 

report events with or without time stamps if required [43]. The master user layer can request 

events and may be updated quickly if it polls for events from the outstation and only occasionally 

requests for static data. This is because reason the number of events generated is small and, thus, 

less data must be returned to the master [43]. DNP3 may also classify events into three classes 

[43]. Class 1 events are considered to have highest priority, class 2 events have medium priority, 

and lastly, class 2 events have the lowest priority [43]. The user layer can request the application 

layer to poll for combinations of class 1, 2 or 3 events [43]. 

6.2.7 DNP3 in SCADA systems 

This section discusses an important list of considerations that need to be kept in mind when using 

DNP3 within a SCADA system and the associated controls, actions, roles and functions of the 

Master as well as the Remote [42]. 

• Masters should be able to deliver concise alarm information/messages. 

• Masters should be able to recognize and identify alarms that have been cleared. 

• Masters should be able to capture a concise history of the active and cleared alarms. 

• Remote devices should support emergency power and power back-up. 

• Remote devices should provide on-site SCADA so that units can be browsed on site. 

• Master devices should be able to sort through and sift through alarms 

• Masters should support automatic/manual notifications, monitoring and status events. 

• Lastly, Masters should not only be limited to DNP3 communication protocols but should 

also support other standards like Modbus. 

6.3 Comparative analysis 

6.3.1 Literary analysis 

(i) DNP3 

The DNP3 protocol, because of its many features listed below, helps enormously in implementing 

a complex system [45]. This in turn helps to decrease the operational and maintenance costs of 



6-128 
 

the system which benefits the client as well as the end‐user [45]. The advantages of DNP3 are as 

follows: 

• Open protocol allowing the end‐user to install equipment from different vendors while 

maintaining a single top end SCADA (or DNP3 master). DNP3 and Modbus are both 

open protocols, Modbus being the mostly commonly used due to its compatibility with a 

variety of devices and simplicity to implement [45]. IEC 61850 on the other hand is not 

exclusively open source although some free implementations available. 

• DNP3 allows the user to categorize field data, thus allowing for efficient communications 

and data transfer between a master and outstation. DNP has common classes 0, 1, 2, and 

3 to group data. Classes 1, 2 and 3 are used for objects that require time stamped 

information. The class also has a variation parameter associated with it that allows the 

user to select the data type, time and diagnostic information to be recorded [45]. Modbus 

RTU on the other hand offers no way of representing object classes whereas the IEC 

61850 standard takes this idea to new heights. 

• Unsolicited reporting – allows events to be reported from the outstation as and when they 

occur rather than only when they are polled by the master; something Modbus RTU is 

incapable of doing [45]. 

• DNP3 and IEC 61850 both have the ability to log an event with a time and date stamp as 

and when it occurs. There are two primary advantages of this: firstly, if an event occurs 

at a different instant in time to which the outstation is being polled then the time of the 

event is not lost or misjudged. Secondly, if there is a communication failure between the 

outstation and the master the outstation can still record the event and time stamp and 

restore this information to the master when communication is restored [45]. 

• Time Synchronisation – accurate and reliable time-based scheduling. 

• Secure authentication with dynamic key management between a DNP3 master and 

outstation. This allows the slave and master to determine whether or not they are 

communicating with the appropriate master or slave. This may be achieved using the 

‘select-before-execute’ principle where the master sends a ‘selects’ signal to an outstation 

and awaits its response, the outstation will only execute the control action if the ‘operate’ 

command has been received from the master within a given amount of time [45]. 

• Communication to multiple DNP3 Masters, thus making the same data available at 

multiple locations. Data is made available to system-wide top-end masters. This is 

important if systems are spread out over a large area and many operators require access 

to the local data [45]. The IEC 61850 standard also achieves this to great effect within 

the confines of the substation. 
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(ii) Modbus 

The primary advantage of Modbus is its simplicity for small devices and the very large range of 

devices that have some sort of Modbus interface. It is widely used in process control and SCADA 

systems [44]. However, when one compares Modbus to protocols like the IEC 61850 standard 

and DNP3 it has many disadvantages in this new technologically advanced era. These include: 

• The Modbus protocol standard does not specify how the 16-bit register values are sent. 

They may be sent high-byte first or low-byte first, signed or unsigned [44]. Successive 

registers may even be combined to create floating point numbers. [44] Many Modbus 

device manufacturers add custom extensions to their devices to extend the functionality 

beyond that provided by standard Modbus [44]. This and the common use of outputs as 

inputs sometimes makes it quite difficult to make even simple Modbus devices inter-

operate [44]. Since the data types are not strictly defined, knowledge of how the device 

sends data is required in order to interpret the value that is sent. This adds an additional 

step of complexity to the Master station setup [44]. 

• No standard way exists for a node to find the description of a data object, for example, to 

determine if a register value represents a temperature between 30 and 175 degrees. [37] 

• Since Modbus is a master/slave protocol, there is no way for a field device to “report by 

exception” (except over Modbus TCP/IP) [37]. 

• No time stamps or time synchronization. Modbus treats all data as "present value". 

Standard Modbus does not have a concept of events or time. Any data that is not collected 

by reading it is lost when new field data updates it [44]. 

• Modbus is restricted to addressing 247 devices on one data link, which limits the number 

of field devices that may be connected to a master station (once again Modbus TCP/IP 

the exception) [37]. 

• Modbus data transmissions must be continuous which limits the type of remote 

communication devices to those IEDs that can buffer data to avoid gaps in the 

transmission. [37] 

(iii) IEC 61850 

The advantages of the IEC 61850 substation protocol are boundless; it vastly out matches the 

capabilities of Modbus RTU and Modbus TCP as well as building substantially from the 

foundations set by DNP3. For example, the use of virtual LANs and priority flags for GOOSE 

and SV messages allow for the intelligent use of Ethernet switches which was not previously 

possible [46], [7]. This on its own can deliver significant benefits to users in terms of optimizing 

bandwidth traffic which is not possible using other approaches [46], [7]. For the sake of economy, 
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the author lists some of the more typical features that provide tremendous benefits to users who 

employ the IEC 61850 standard [46], [7]: 

• Virtualized Model: The virtual model which consists of logical devices, logical nodes and 

Common Data Classes (CDCs) allows for the definition of the information, commands 

as well as the behavior of devices. The protocol itself is used to define how the data is 

transmitted over the network. 

• Names for data: Each and every component of the IEC 61850 data model is given a name 

using descriptive strings to describe the information or command. Legacy protocols like 

Modbus tend to identify data by items like storage location, index numbers and register 

numbers respectively. 

• Standard Object Names: The names and descriptions of the information or commands 

used by an IEC 61850 device are not defined by the device vendor or by the user. They 

are determined in the standard itself and are provided within the context of a power 

system. This allows an engineer to quickly identify the meaning of data without having 

to look at protocol message class mappings or match index numbers, register locations or 

addresses to power system data. 

• Self-describing devices: IEC 61850 clients that communicate with IEC 61850 compliant 

devices have access to the descriptions of all the data of the device without any prior 

configuration of data objects or names. 

• High Level Services: The GOOSE, GSSE and SV classes are just a few of the special 

message capabilities of the IEC 61850 protocol that allow generic and efficient 

communication. 

• Standard Configuration Language: SCL allows devices to be configured and precisely 

defines the role of devices within the power system using XML files. When a new device 

is added the SCL configuration files of the previous devices are simple added. 

• Economic Viability: The IEC 61850 standard offers lower installation cost to substations, 

lower commissioning costs, cheaper maintenance and lower transducer costs to name but 

a few of the economic advantages of this standard. 

6.4 Evaluation of experimental observations 

6.4.1 Preliminary work 

The study that was conducted during the course of chapter 4 sought to achieve the implementation 

of a multi-protocol substation communication network and SCADA. This section saw the 

execution of DNP3, Modbus RTU and IEC 61850 on the substation network. Once the 

preliminary model was developed the engineering features, functions and facilities of the 
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experimental substation could be tested. Chapter 4 formed a basis for future work and laid the 

groundwork for the main research which was accomplished at a later stage in chapter 5. 

One of the main observations made during the course of the preliminary work was based on the 

technical and economic obstacles that multi-protocol communication networks pose to engineers. 

Convoluted amalgamations of different substation protocols which exist on the same substation 

network require expensive gateway devices, knowledge of a wide variety of communication 

standards, different physical transport layers over copper or fibre (RS232/RS485 serial or 

Ethernet), IEDs with an extensive range of protocol compliance, complicated labour-intensive 

installation and maintenance as well as different device configuration and setup procedures. These 

numerous aspects lead to the inception of ‘hybrid’ substations which, in comparison to a solely 

IEC 61850 substation architecture, are less efficient both technically and economically in their 

approach to design, automation and protection. 

Secondly, during the establishment of both modern (IEC 61850) and legacy (Modbus RTU and 

DNP3) communication standards on a multi-protocol network it became evident that there were 

certain limitations to the latter. Modbus RTU in particular was considerably more constrained in 

its approach to communication between devices. This means that certain functions and features 

of modern substation automation and protection could not be achieved using Modbus RTU. The 

most prominent among these was the absence of time stamped data; because of this Modbus RTU 

was unable to give exact information about the time of events or the number of events (like 

breaker operation) that had occurred. This means that if there was a break in communications 

between Modbus RTU devices then information could be missing or lost since it could not be 

updated after communication was restored. This left gaps in captured trends and missing data 

upon loss of signal. In addition, certain protection features like blocking response (sympathetic 

trip protection) are far more tedious to implement in legacy schemes using Modbus RTU since 

they rely on a huge number of cross wired binary inputs between all the appropriate relays 

connected on the network. Therefore, the use and expense of copper hardwire related connections 

between devices on the network could be large and inefficient. 

DNP3 over Ethernet was much more effective in its approach to the transfer of data, commands 

and signals between substation devices and SCADA. Here data is time stamped which means that 

engineers could be informed of the exact moment in time in which certain events (like breaker 

operation) had occurred. In addition, if there was a break in communication then graphical and 

numerical data could be restored along with the associated time stamps. As a result, DNP3 could 

be used to enable alarms and alerts on the substation SCADA model as well as for time related 

trending and graphs. 
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Finally, the IEC 61850 substation protocol allows for a huge variety of automation, protection 

and communication features and functions. During the course of the preliminary study the IEC 

61850 standard was only implemented on the station bus between the RTU and the IEDs. Here 

only messaging directly between the RTU and the IEDs (GOOSE and Report) was used to deliver 

the status of equipment and commands from the remote end. Further investigation of the 

automation and protection applications of inter-IED communication using GOOSE was 

implemented during the course of chapter 5. However, just based on the basic implementation of 

the IEC 61850 standard during stage 1 experimentation a number of advantages were revealed. 

The most obvious of which related to the ‘virtual’ Ethernet-based architectures on which the 

protocol was based. IEC 61850 allows for communication over a local TCP/IP-based network 

which reduced the number of complex physical copper hardwire connections within the 

substation. In addition, the IEC 61850 protocol used functions called logical nodes to transfer 

commands and properties between the RTU and the IEDs. These logical nodes could be used to 

define breaker operation and status as well as isolator, earth switch and the mode of operation of 

the IED. This was both an efficient and effective way of controlling smart devices. 

6.4.2 Main research 

The final segment of the study (chapter 5) which was concluded prior to this chapter sought to 

discover and appraise the IEC 61850 and GOOSE-based implications on substation protection 

and design. This section saw the configuration of breaker fail, arc-flash and blocking-based 

protection techniques using the descriptive attributes of the GOOSE message class. 

Modbus RTU is considered to be a rather simple and primitive form of communication relying 

on the potential difference between two wires to transfer data over serial RS 485. The 

interconnection of devices using a copper hardwired-based physical layer such as this is 

complicated, confusing, expensive as well as labour intensive and time consuming. Therefore, 

legacy-based breaker fail, arc-flash and blocking protection is far to inconvenient and inefficient 

to be using serial protocol techniques. Hence, Modbus RTU was implemented outside the IEC 

61850 protection zone of the model in chapter 5. Making the migration to “virtual” Ethernet 

networks using DNP3 is a step in the correct direction. This standard includes valuable features 

like time stamping and priority messages that can be communicated using TCP/IP-based means. 

Often used as a telecontrol protocol, DNP3 was implemented between the SCADA and the PC 

during the course of the final research. 

The IEC 61850 substation standard, on the other hand, seeks to build on the more convenient 

foundations left by DNP3. It did so by providing an intelligent, descriptive and expedient message 

class using GOOSE. Chapter 5 saw the implementation of GOOSE for breaker fail, arc-flash and 
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blocking-based protection. Therefore, this protection used the logical nodes, attached parameters 

and corresponding objects of GOOSE to configure an appropriate message in each case. This 

allowed the IEDs of adjacent feeders, incomers and systems to share status, position, operation 

and fault conditions of associated switchgear and cables with subscribing devices. This gives 

devices a much larger understanding of the actionable outcomes and ongoing of many different 

functions of different IEDs throughout the protection zone. Therefore, using the GOOSE message 

class many different types of protections, including those mentioned, can be carried out quickly 

and effectively improving coordination, grading and selectivity on the grid. GOOSE and by 

extension the IEC 61850 standard is forcing legacy substations to convert to a “virtual” ethernet-

based SAS environment relying on compliant protection IEDs, IOUs, MUs, priority switches and 

modern gateways. Hence, the design of substations has been greatly impacted and transformed as 

a direct result of the IEC 61850 protocol. 

6.5 Discussion, recommendations and conclusion 

The experimental and literary-based inferences that were drawn from this comparative study 

concluded that the IEC 61850 substation protocol was both intelligent and powerful in its 

approach to substation communication. Hence, this standard was considered to be advantageous, 

convenient and favourable when compared to legacy protocols such as Modbus RTU and DNP3. 

The IEC 61850 protocol is a standard for substations of the future and should be implemented 

more frequently as old and aging infrastructure is replaced or upgraded. This universal 

specification for substation communication owes its success and innovation to the advanced 

GOOSE message class, the implications of GOOSE messaging on various methods of protection 

and automation, its interoperability between vendors as well as its ‘virtual’ Ethernet-based 

architectures. Legacy standards, including Modbus RTU and DNP3, lag substantially behind the 

IEC 61850 protocol in all aspects and applications. This is a gap which should only broaden with 

development and future progress in substation engineering. 
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 CONCLUSION 

7.1 Final discussion 

The future-proof IEC 61850 substation communication protocol is both universal and unique in 

its approach to substation engineering. The strongest merits of this standard arise from its sturdy 

design philosophies which promote interoperability, reliability, coordination and system security. 

IEC 61850 is both resilient and flexible which makes it capable of adapting to future 

developments in communication technology. Therefore, as a result of this robustness, it is unlikely 

that it will become redundant or obsolete in the coming years [47]. The IEC 61850 standard 

achieves this longevity as a result of its design architecture which separates substation-specific 

applications from innovative communication technologies [47]. The slow growing aspects of 

substation engineering and the expedient and explosive growth of ‘virtual’ communication 

systems have called for this basic design approach [47]. Hence, the IEC 61850 protocol has been 

referred to as future-looking as well as long-term since it seeks to safeguard the investments of 

current infrastructure, technology and systems [47]. 

The raison d’etre of this dissertation was the consideration of the IEC 61850 substation protocol 

and its implications for protection, automation and substation design. The principal goals of this 

study were prosecuted by a literature review in chapter 2, an initial experimental phase in chapter 

3, a main research component in chapter 5 as well as a comprehensive comparative assessment in 

chapter 6. In was within these four segments that the key justifications of this dissertation were 

defended. Firstly, the literature study comprised a fact-finding investigation which critically 

reviewed scientific texts, published works as well as the standards of industry. The aims of this 

review were to garner a technical understanding of IEC 61850, its methods of communication, 

structures, applications as well as its impact on substation engineering. In addition to the literary 

investigation, the inceptive design component of this dissertation was introduced during the 

course of chapter 4 where a multi-protocol communication model was created based on a typical 

substation architecture. It was here that DNP3, Modbus RTU and the IEC 61850 protocol were 

implemented between both modern and legacy IEDs, an RTU and the station computer. 

Furthermore, a substation SCADA was developed to monitor and control equipment as well as 

administer interactive dialogue with the operator whilst being interfaced with the physical 

hardware model. Finally, the terminus of the main study was reached during the course of chapter 

5. This concluding stage of research explored the GOOSE-based aspects of IEC 61850 and 

assessed the implications of the GOOSE message class on breaker fail, arc-flash and blocking-

based protection that took place within the substation model. Ultimately a detailed comparative 

assessment of each of the substation communication protocols that was explored in this study was 
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presented in chapter 6. It was at the end of this chapter that the merits of the IEC 61850 

communication standard were discussed and evaluated. 

The development of a multi-protocol communication network highlighted the limitations of 

legacy protocols as well as the disadvantages of complicated multi-protocol substations. These 

concepts were tackled during the preliminary research phase that was conducted in chapter 4. An 

intricate marriage of proprietary communication protocols existing between the IEDs within a 

substation can present both technological and economic barriers to engineers and utilities alike. 

By having different communication standards such as Modbus RTU, DNP3 and IEC 61850 the 

system can become constrained by a variety of different limitations that each protocol may 

present. In particular Modbus RTU lacks the ability to time stamp data, is hardwire-based, relies 

on continuous communication, is a ‘present value’ system, and does not allow for time 

synchronisation between IEDs. DNP3 on the other hand expands on the lack of Modbus 

functionality by adding time stamping, classed data for priority messages, and is based on a 

‘virtual’ Ethernet architecture. Furthermore, the configuration, connection and maintenance of a 

multi-protocol network can become incredibly labour intensive, complex and therefore expensive 

to implement. In addition, technologies like smart gateways must be added to the network in order 

to interface different protocols. Chapter 4 works achieved a functional substation hardware model, 

communication network and SCADA using DNP3, Modbus RTU and IEC 61850. The breaker 

fail, earth fault, overcurrent, local mode and steady state conditions for the model were tested, 

trended and interactively represented using the substation SCADA, RTDS, a current amplifier 

and an RSCAD test model. These results validated the sound operation of the model itself and 

drew attention to the disadvantages of legacy-based Modbus RTU in comparison to the further 

advanced standards such as DNP3 and especially IEC 61850. 

The kingpin of the IEC 61850 protocol must be the convenient yet powerful GOOSE message 

class. This fundamental playmaker of IEC 61850 is famous for its intelligent retransmission 

mechanism that transfers commands, switchgear status and data periodically after an exponential 

decay in time (4 ms, 8 ms, 16 ms etc) [48]. In chapter 5 this approach ensured that messages 

which were multi-cast to the substation LAN by a publisher IED were received by the appropriate 

subscribing devices [48]. A primary process object as well as a protection or control function 

could be modelled into a standard logical node with common classed data that was grouped under 

a particular logical device [48]. Using this model, an IED could be configured to transfer a 

GOOSE message that had been grouped into a data set which contained value and status 

information along with certain attributes, parameters and instances [48]. 
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A more detailed consideration of the IEC 61850 standard was implemented during the course of 

the main research component which was demonstrated in chapter 5. It was here that the GOOSE 

message class was used to provide breaker fail, arc-flash and blocking-based protection to the 

substation model. The results, analysis and evaluation of each of the aforementioned protection 

schemes was presented in the aforementioned chapter. In order to setup GOOSE-based 

communications between the respective IEDs within the substation model the VAMPSET 

software configurator was used. VAMPSET allowed the user to prepare the GOOSE data set, 

setup the GOOSE control block parameters to specify how data was sent as well as define the 

subscribing IEDs. In breaker fail protection GOOSE provided a quick yet effective way to 

automatically isolate a fault that was present as a result of the loss of a particular circuit breaker. 

In addition, arc-flash protection using GOOSE sought to quench an arcing busbar or cable by 

opening all the circuit breakers that were connected to the affected bus. Sympathetic trip 

protection or blocking logic, on the other hand, used GOOSE messaging to help decreased fault 

clearing time and increased system performance. Hence, a protection scheme by GOOSE can 

provide improved reliability, greater security, easy relay interoperability, simple expansion as 

well as large cost savings to both a substation and its utility [48].  

An IEC 61850-based architecture greatly differs from the topology of a conventional substation. 

Therefore, the upgrade of aging infrastructure is creating a shift from legacy and hybrid 

substations to an almost completely ‘virtual’ IEC 61850 environment [49]. This has greatly 

reduced the demand for copper hardwire connections within substations, decreasing the need for 

deep cable trenches to the control room, expensive terminations and lengthy wiring. Furthermore, 

IEC 61850-compliant equipment such as MUs can be placed at or near the switchgear adjacent to 

the CTs which can help to reduce the length of copper cables from the CTs to the control room. 

This process shortens the conductor and therefore can drastically drop the total resistance of a 

particular cable which is a contributing factor towards the elimination of CT saturation. Therefore, 

from just one example, it has been revealed that substation design is and must change to suit the 

requirements of IEC 61850 and its associated systems. 

The future-proof IEC 61850 standard has defined the way substation-specific information, 

commands and data can be transferred quickly between similar or vendor-diverse devices over an 

Ethernet-based local area network [49], [50]. This protocol has represented a leap in convenience, 

application, efficiency, reliability and security of communications [49], [50]. Legacy-based 

protocols such as Modbus RTU and DNP3 represent the past. The IEC 61850 protocol is a 

sovereign standard of tomorrow and is changing the design, automation and protection of 

substations for the better. 
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7.2 Future works and development 

This careful study considered a functional multi-protocol substation communication network, 

formed comparisons between standards like Modbus RTU, DNP3 and IEC 61850 as well as 

implemented the GOOSE message class for breaker fail, arc-flash and blocking-based protection 

schemes. Despite this, the IEC 61850 protocol and the smart GOOSE message class have yet 

further applications for substation engineering. The following items, which were discussed in 

greater detail at the end of chapter 5, could be examined during the course of later works. 

• Busbar earthing using GOOSE 

• Disturbance recording 

• GOOSE-based 1 of N blocking 

• Selective backup tripping 

• Priority tagging/VLANs 

It must be noted, during the course of this conclusion, that the equipment (IEDs, Gateway/RTU 

and other devices) which was used during the course of this study was not necessarily preferred 

in this context. The author could not advocate for a particular device by a certain manufacturer 

since only those from Schneider Electric were utilized during this investigation. Unfortunately, 

the study was limited by the equipment which was donated and available to the university at the 

time. Therefore, a benchmark was obtained, however, since the IEDs of rival vendors were not 

worked on the author could not adequately say that one device/manufacturer should be preferred 

over the other. Alternatively, it could be concluded that the VAMP 259/255 IEDs were user 

friendly, both in the operation of the HMI as well as in the ease of their configuration using 

VAMPSET. In addition, the VAMPs were also compliant with a variety of different serial and 

Ethernet based communication protocols, including the IEC 61850 standard. The MiCOM P122 

IED on the other hand, was a legacy relay with drawbacks in terms of the limited serial protocols 

which it supported, however it provided simple and reliable relaying to the system over Modbus 

RTU. Lastly, the MiCOM C264 was found to be an intelligent, convenient and advanced 

gateway/bay computer which was configured with the graphical, electrical and communication 

topology of the developed substation. This allowed for the ease of interface of devices operating 

over different protocols as well as for the development and interaction of a SCADA model on 

CitectSCADA. Finally, part of the future expansion of this study could be to obtain a wider variety 

of protection, automation and monitoring equipment in order to gain a better understanding of 

which devices and vendors are preferred over others as well as to show how protocol-based 

communication differs between various manufacturers. 
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The IEC 61850 protocol has thus far been limited to protection schemes and engineering 

applications that form part of the internal abstract components of a substation [51], [52]. 

Protections that require inter-substation (external) communication have yet to properly benefit 

from the IEC 61850 substation standard. However, this type of external communication has 

already begun to develop and the first inter-substation IEC 61850 communications have now 

started their early implementation phase [51], [52]. As this protocol becomes more widely 

implemented the future growth, technical development, expansion and longevity of the future-

proof IEC 61850 standard is assured. 
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 APPENDICES 

ANNEX A – PROTECTION IEDS 

A. IEC 61850-Compliant IEDs 
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B. Legacy IEDs 
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C. Remote terminal unit 
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ANNEX B – DETAILED EQUIPMENT LIST 

A. List of software and equipment 

1) Station computer and configurators 

i) Equipment 

(1) Station Computer (PC) 

ii) Software 

(1) CitectSCADA 

(2) PACiS System Configurator 

(3) VAMPSET 

(4) MiCOM S1 

2) Substation network, monitoring and protection hardware 

i) IEC 61850 compliant IEDs 

(1) VAMP 259 

(2) VAMP 255 

ii) Legacy IED 

(1) MiCOM P122 

iii) Remote terminal unit 

(1) MiCOM C264 

iv) Ethernet switch 

(1) Moxa PowerTrans PT-7728 series 

v) Circuit breaker 

(1) Omron MK2KP 

3) Test devices 

i) Equipment 

(1) PC 

(2) Real Time Digital Simulator (RTDS) 

(3) Omicron current amplifier 

(4) Arc sensors 

ii) Software 

(1) RSCAD simulator 
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