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PREFACE 

While treating children with HIV in KwaZulu–Natal, South Africa, I noted the high 

mortality and the difficulties in managing severely malnourished HIV-infected children. On 

review of the literature there was a lack of evidence supporting management guidelines. This 

thesis emanates from a desire to provide evidence to guide clinical practice and change 

management guidelines of severely malnourished HIV-infected children.  
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ABSTRACT 

Background: 

Childhood malnutrition remains a common problem in many parts of the world and is a 

contributing factor in 45% of the 5.9 million annual deaths in children under 5 years. HIV-

infected children have a disproportionately higher prevalence of malnutrition and higher 

mortality associated with malnutrition as compared to non-infected children. Physiological 

changes associated with malnutrition and re-nutrition complicate antiretroviral treatment in 

these children. This thesis explores aspects related to antiretroviral treatment (ART) in severely 

malnourished HIV-infected children, including the timing of ART initiation, pharmacokinetics 

of antiretroviral drugs, co-infections with bacterial and mycobacterial infections and the effect 

of microbial translocation on immune restoration.  

Methods: 

Eight-two patients were enrolled in this randomized controlled trial, where HIV-infected 

children admitted with severe acute malnutrition (SAM) were initiated on ART either early 

(within 14 days of admission) or delayed (after 14 days with evidence of nutritional recovery). 

Clinical and laboratory parameters were collected during the admission and patients were 

followed up at 4, 8, 12, 24 and 48 weeks post admission. A pharmacokinetic evaluation of 

lopinavir (LPV) was conducted on Day1 and 14 of ART initiation. Samples for evaluation of 

microbial translocation and immune restoration were collected in 32 study patients and 75 

additional patients in 3 control groups.  

Results/Discussion: 

There were no significant differences in immunologic, virologic or anthropometric 

responses at 48 weeks between the early and delayed arms. However, significantly improved 

rates in the changes in viral load, WAZ (weight-for-age Z score) and HAZ (height-for-age Z 

score) favoured the delayed arm.  

Pharmacokinetic (pk) evaluation of the LPV, displayed significant pk variability, reduced 

bioavailability and consequently greater apparent clearance (CL/F) estimates in comparison to 

other pk studies of LPV in non-malnourished children. Fat-free Mass (FFM) was shown to 

affect LPV variability; however delay in ART initiation and “super-boosted” LPV/rtv did not 

affect LPV variability.  

Bacterial pathogens were identified in 51% of patients. Of the hospital acquired infections 

(HAI), 41% were extended spectrum beta-lactamase (ESBL)-producing gram-negative 

infections. Tuberculosis (TB) co-infection was common (25.6%), with bacteriological 

confirmation in 38% of treated cases. 



xvii 

Malnutrition was associated with increased microbial translocation, immune activation and 

immune exhaustion, with a negative impact on immune recovery in HIV-infected children on 

ART. 

Conclusions: 

Delaying ART initiation to at least 14 days after starting nutritional support is associated 

with improved rates of clinical (changes in WAZ and HAZ)  and virologic outcomes. However 

this delay did not improve LPV exposures and dose adjustment of LPV during nutritional 

recovery needs to be further evaluated. These results can be used to inform changes in clinical 

practice and national and international guidelines for the management of severely malnourished 

HIV-infected children.  

 

Word Count: 434 

 

Keywords: Antiretroviral Treatment, Severe acute malnutrition, ART Timing, Lopinavir 

Pharmacokinetics, Bacterial infections, Tuberculosis, Microbial translocation  
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

1.1.1 Epidemiology of Paediatric HIV infection and treatment 

UNAIDS estimated that, in 2015, there were 36.7 million people living with HIV globally 

and 2.1 million new infections (1). This represented a six percent reduction in new adult 

infections and a 50% reduction in new paediatric infections compared to 2010 (2). This large 

reduction in new paediatric infections is due in part to the expanded access to antiretroviral 

treatment (ART) in women for Prevention of Mother to Child Transmission (PMTCT). 

However the drop fell short of the 90% target set by the World Health Organisation (WHO) in 

2010 (3) and resulted in an estimated 150 000 newly infected children globally, more than a 

third of whom resided in eastern and southern Africa (4). 

Disparate access to ART across regions is vast, with over 95% of children in western and 

central Europe and North America accessing ART in contrast to 20% in northern and central 

Africa and 63% in southern and eastern Africa (1). Lack of or limited access to, early infant 

diagnosis (EID) and paediatric ART services contribute to these differences and to more 

advanced HIV disease at ART initiation (5). As a result, malnutrition is a common presenting 

clinical problem in HIV-infected children in low and middle income countries (LAMIC) and is 

often the initiating event prompting health-care seeking behavior (3,6,7).  

1.1.2 Epidemiology of malnutrition in children  

Malnutrition can be evaluated using invasive and non-invasive methods including 

measurement of lean body mass/fat free mass, albumin and other serum markers. For this 

dissertation, anthropometry (Z-scores) was chosen, as it is the most widely used method of 

evaluating malnutrition in clinical practice and in the literature. UNICEF estimates that globally 

there are approximately 48.8 million children under the age of 5 years who have wasting 

(Weight for Height Z-score <2). While less than 1% of children in North America and Australia 

are wasted, in Southern Asia and Africa the percentage is over 5% (8).  
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Figure 1. Global Burden of childhood wasting (8) 

 

Figure 2. Regional Contributions to the burden of severe wasting (8) 

Global figures for severe wasting (<-3 WHZ) are similar, with Asia and Africa 

contributing to the majority of the global burden (8). The South African National Health and 

Nutrition Examination Survey (SAHANES-1) conducted in 2012 found that 2.9% of the 

sampled children were wasted with 0.8% being severely wasted. In KwaZulu Natal, 2.4% were 

wasted and 0.1% were severely wasted (9). While anthropometry remains the standard for 

comparing malnutrition   

1.1.3 Dual epidemic of Malnutrition and HIV 

For children living in Africa, HIV and malnutrition are equally prevalent, resulting in a 

perfect storm.  In a systematic review conducted in 2008, the overall prevalence of HIV in Sub-

Saharan African children with severe acute malnutrition (SAM) was 29.2% (6). (Table 1) The 

WHO definition of SAM in children 6-59 months of age is a mid-upper arm circumference 

(MUAC) <115 mm or weight for height < - 3 Z score of the WHO growth standard or bilateral 
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oedema of nutritional origin. In children over 60 months additional criteria include body mass 

index < -3 Z score below the growth standard or MUAC 5-9 years < 13.5cm or < 16cm between 

10-14 years. 

Table 1. Studies identified in review by Fergusson et al. of HIV prevalence in children with SAM 

(6) 

 

In more recent studies, a similarly high incidence of malnutrition was seen in children 

accessing HIV care, despite improvements in HIV prevention and treatment. In a study of 1350 

children from Central and West Africa accessing HIV care, 42% were malnourished with 9% 

being acutely malnourished (10). The TREAT Asia cohort reported that although the 

prevalence of SAM at ART initiation decreased from 13.5% between 2003-2006 to 8.2% 

between 2011-2014, this was still higher that the expected prevalence in the general population 

(11).    

1.1.4 Pathogenesis of malnutrition in HIV-infected children 

The pathogenesis of malnutrition in HIV-infected children is multi-factorial. Factors 

include dysregulation of Resting Energy Expenditure (REE) (12), HIV-associated wasting 

syndrome, chronic/persistent diarrhea, HIV-associated enteropathy, the presence of co-

infections and food insecurity (13). Figure 3 provides a biological and social framework that 
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explores the contributing factors resulting in malnutrition in HIV-infected children.  Prevention 

and treatment therefore requires interventions at multiple levels both biomedical and social. 

 

Figure 3. Biological and social framework contributing to malnutrition in HIV-infected children 

(designed by Dr M Archary) 

Evidence based guidelines developed by the WHO for the management of severely 

malnourished children address many of the underlying pathogenic mechanisms including a 

standardised feeding schedule, routine administration of broad-spectrum antibiotics and anti-

helminthics and vitamin/mineral supplementation. However, these guidelines are based on 

studies in HIV negative children. There is a lack of specific evidence to guide the management 

of HIV-infected children (14).  
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1.2  Literature review 

1.2.1  Outcomes associated with ART initiation in malnourished children 

A review of the literature for published studies evaluating and comparing mortality (Table 

2) and anthropometric responses (Table 3) in HIV-infected and uninfected children was 

conducted.  

Table 2. Comparison of mortality associated with SAM in HIV-infected and uninfected children. 

No Study 
Study 

Setting 

Sample 

size 

Follow-up 

period 

Mortality 

HIV-

infected 

HIV 

Uninfected 

1. 
Boettiger, 2016 

(11) 

TREAT 

Asia 
355 36 months 15.8% Not reported 

2. 
Munthali, 2015 

(15) 
Zambia 9540 

Inpatient 

mortality (2009-

2013) 

Overall mortality 46% with 

HIV-infected children 80% 

more likely to die (HR= 1.8, 

95% CI: 1.6-1.2) 

3. 
Gebremichael, 

2015 (16) 

Southern 

Ethiopia 
929 

Inpatient 

mortality (mean 

admission 26 

days) 

9.3% (did not differentiate 

bet HIV positive and 

negative children) 

 
Asafo-Agyei, 

2013 (17) 
Ghana 247 (67) 

Inpatient 

mortality 
37.8% 10.1% 

4. 
Madec, 2011 

(10) 
Niger 477 

Inpatient 

mortality 
20% 14% 

5. 

Fergusson 

(systematic 

review), 2009 (6) 

Sub-

Saharan 

Africa 

3327 Variable 30.4% 8.4% 

 

Table 3. Comparison of growth responses of HIV-infected and uninfected children with SAM 

No Study 
Study 

Setting 

Sample 

size 
Parameter HIV-infected 

HIV 

uninfected 

1. 
Boettiger, 2016 

(11) 

TREAT 

Asia 
355 

WAZ 
-5.6 (baseline) to    -

2.8 (48 weeks) 
Not reported 

CD% 
3% (baseline) to 

12% (48 weeks) 
12% 

2 
Asafo-Agyei, 

2013 (17) 
Ghana 

247 

(67) 

Mean weight 

gain/kg/day 
2.4g/kg/day 7 g/kg/day 

3 
Madec, 2011 

(10) 
Niger 477 

Duration of re-

nutrition 
22 days 15 days 

 

Survival and growth outcomes of malnourished HIV-infected children are worse when 

compared to their non-infected counterparts. Nutritional rehabilitation is insufficient on its own 

to improve outcomes, and, even with ART initiation, malnutrition has been associated with 

higher mortality (18) and delayed immunological recovery (19). In a retrospective chart review 

of patients initiated on ART in KwaZulu-Natal, wasting at initiation was found not to influence 

growth, immune and virologic responses (20), however the effect of mortality and loss to 

follow-up was not assessed.  
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The reasons for the differences in outcomes between HIV-infected and uninfected severely 

malnourished children are not known, but may be related to altered pharmacokinetics in 

malnourished children, persistent co-infections, immunologic deficiencies associated with 

malnutrition (21), specific effects of micronutrient deficiency (22,23), and altered 

mitochondrial function (12).  

1.2.1  Outcomes associated with timing of ART initiation in malnourished children 

A review of the literature identified two published studies and one unpublished citation 

(personal communication) addressing the issue of timing of ART initiation in malnourished 

children (Table 4). 

Table 4. Studies reporting on the effect of ART timing on outcomes in malnourished children 

No Study Study Setting Study Design 
Sample 

Size 
Outcome 

1 
Kim, 2012 

(24) 

Malawi – 

uncomplicated 

malnutrition/ 

outpatient 

management 

Retrospective 

observational 

study 

140 

ART < 21 days: higher rate 

of nutritional recovery (86% 

vs 60%) and higher rate of 

weight gain (3.6 vs 1.6 

g/kg/day) 

2 
Unpublished 

(25) 
Uganda 

Retrospective 

cohort study 

345 

(21% 

MAM or 

SAM) 

ART < 10 weeks: higher 

mortality (OR:2.8, 95% CI 

10.33-5.9,p=0.007) 

3 
Njuguna, 

2016 (26) 
Kenya 

Randomised 

controlled trial 

177 

(32% 

MAM or 

SAM) 

ART < 48hr: No difference in 

mortality at 24 week 

compared to ART at 7-14 

days 

 

The optimal timing of ART initiation in malnourished children remains unresolved. The 

concerns associated with ART initiation prior to nutritional improvement, are the potential for 

altered pharmacokinetics of antiretroviral drugs and exposure to sub-therapeutic or supra-

therapeutic drug levels (27). In addition, the risk of developing Immune Reconstitution 

Inflammatory Syndrome (IRIS) reactions with early ART initiation is of concern (28). On the 

other hand, prolonged delays in ART initiation may result in excess mortality and morbidity 

(29). 

1.2.2  Potential mechanisms for worse outcomes 

1.2.2.1  Antiretroviral Pharmacokinetics in malnourished children 

Appropriate drug doses are generally based on pharmacokinetic (pk) evaluations 

performed in well-nourished individuals. Physiological alterations in the malnourished child, 

including alternations in absorption of oral medications, changes in serum albumin 

concentrations for drug binding, and hepatic, renal and mitochondrial dysfunction can affect 

drug pharmacokinetics (30). In one published study, malnourished children had higher 
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Nevirapine (NVP) bioavailability but lower Efavirenz (EFV) and Lopinavir (LPV) 

bioavailability compared to children without significant malnutrition (31). While several 

studies have evaluated LPV pk’s in non-malnourished children, the effect of rifampicin co-

administration and the timing of ART initiation have not been evaluated.  

1.2.2.2 Bacterial infections 

Bacterial infections are often the precipitating events in tipping the balance toward SAM 

in nutritionally vulnerable children (32). Common precipitating infections include septicaemia, 

urinary tract infections, gastrointestinal infections and pneumonias (33). Bacterial infections 

are responsible for significant mortality. In a randomized controlled trial, the routine use of 

antibiotics in children with SAM was associated with improved recovery and decreased 

mortality (34). 

In-patient management of HIV-infected children with SAM is complicated by the risk of 

acquiring nosocomial infections due to immune dysfunctions associated with malnutrition (35). 

Due to the lack of routine microbiological services in settings where malnutrition and HIV are 

common, few studies have reported on nosocomial infections in this patient population 

(3,33,35).  

1.2.2.3 Mycobacterium Tuberculosis (MTB) Co-infection 

In regions with high prevalence of HIV and malnutrition, MTB is also equally prevalent. 

As with other bacterial infections, MTB contributes to the pathogenesis of SAM by increasing 

energy requirements in nutritionally vulnerable children. In addition both HIV and malnutrition 

have been shown to independently increase the risk of MTB disease, however the cumulative 

risk has not been quantified (36,37). 

Management of malnourished HIV-infected children with MTB, is complicated by 

cytochrome P450 enzyme induction by rifampicin and the pharmacokinetic effect on the 

bioavailability of antiretroviral drugs including LPV/rtv and EFV resulting in sub-therapeutic 

drug conentrations in co-treated patients (38). 

1.2.2.4 Intestinal Microbiota, Bacterial Translocation and Immune activation 

Malnutrition can cause an altered intestinal microbiome or be a consequence of altered 

microbiota (39). During malnutrition structural and functional alterations occur in the intestinal 

mucosa, resulting in increased permeability and translocation of bacterial products into the 

systemic circulation, eliciting an immune response and activation (40). This state of persistent 

immune activation can result in cardiovascular events and other chronic illnesses later on in life 

(41). The effect of ART treatment and nutritional rehabilitation in malnourished HIV-infected 

children on this axis has not been previously described. 
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1.2.2.5 Immune Reconstitution Inflammatory Syndrome (IRIS) 

IRIS refers to a clinical entity characterised by a paradoxical clinical worsening of a pre-

existing infectious disease following ART initiation (42). Common forms of IRIS reactions 

described in children include TB IRIS, BCG IRIS and skin reactions (43–46). Patients with 

advanced HIV disease and low CD4 counts are at higher risk of IRIS following ART initiation 

(47). Children with SAM are therefore at a higher risk of IRIS reactions, however few studies 

have reported on the frequency of IRIS in this cohort. There has been case reports of onset of 

oedematous malnutrition following ART initiation that was considered to be an IRIS 

phenomenon (48). 

1.2.2.6 Refeeding Syndrome (RFS) 

Children with SAM are at risk of RFS following initiation of nutritional rehabilitation (49). 

RFS is characterised by alterations in biochemical (hypophosphatemia, hypomagneemia and 

hypokalaemia) and metabolic (abnormalities in glucose metabolism and fluid balance) function 

(50,51). The pathophysiology of RFS is secondary to changes in insulin secretion and the 

resultant effects on biochemical and metabolic pathways pre and post nutritional rehabilitation. 

Careful control of fluid and caloric intake during the initial phase of nutritional rehabilitation, 

together with early recognition and treatment of RFS can improve outcomes in children with 

SAM (49,51). 

1.3 Research problem and significance 

HIV-infected children from low and middle-income countries often present with 

malnutrition at initial presentation with a prevalence of 42% in some cohorts (10). Several 

studies have demonstrated that despite ART initiation and nutritional rehabilitation, mortality 

rates, growth, virologic and immunologic responses are adversely affected by malnutrition 

when compared to non-malnourished children (6,10,11,14–16) 

As highlighted in the literature review although the reasons for these differences in 

outcomes are not known, there are several postulated mechanisms. Malnutrition may be a 

surrogate marker of underlying factors such as poverty, food insecurity, poor parental 

education, maternal death and changing caregivers, which have been shown to independently 

affect outcomes (52–55). In addition several biological mechanisms have been discussed in the 

literature review. These include altered pharmacokinetics of antiretroviral drugs, bacterial 

infections, TB co-infections and alteration of the gut microbiota. The effect of delaying ART 

initiation until after nutritional improvement potentially will allow some of these factors to 

normalize and improve outcomes and reduce adverse events. Several review articles in the field 

have highlighted that the optimal timing of initiation of ART and the appropriate nutritional 

rehabilitation are priorities in the research agenda for developing countries (13,24,32,56).  
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The WHO nutrition advisory committee has identified the optimal timing of ART 

initiation, regimens and dosages in malnourished children, as areas for further research (56). 

Given the gaps in knowledge, the current thesis seeks to address some of these issues and assist 

with guiding the appropriate management of HIV-infected malnourished children. 

1.4 Research Questions/Hypothesis/Objectives 

1.4.1  Research Question 

What effect will initiating ART after 14 days of nutritional rehabilitation with evidence of 

nutritional improvement have on immunologic recovery, virologic and nutritional response in 

comparison to earlier ART initiation, in HIV-infected children (1 month – 12 years of age) 

admitted with SAM. 

1.4.2 Null Hypothesis  

Timing of ART initiation (early versus delayed) in newly diagnosed HIV-infected children 

presenting with SAM will have no effect on immunologic recovery, virologic and nutritional 

response. 

1.4.3 Objectives  

1.4.3.1 Primary Objectives 

a) To compare the immunologic and virologic responses* to ART at 48 weeks in HIV-

infected severely malnourished children started immediately on ART versus children in 

whom ART is delayed. 

b) To compare the nutritional response* at 48 weeks in HIV-infected severely malnourished 

children started immediately on ART versus children in whom ART is delayed. 

1.4.3.2 Secondary Objectives 

a) To compare the mortality at 48 weeks in HIV-infected severely malnourished children 

started immediately on ART versus children in whom ART is delayed. 

b) To describe the incidence and spectrum of adverse events related to the initiation of ART 

in severely malnourished children. 

c) To determine the pharmacokinetics of Lopinavir in severely malnourished children on 

Lopinavir/ritonavir. 

d) To describe the spectrum of bacterial pathogens isolated in HIV-infected severely 

malnourished children within the first 30 days of admission. 

e) To describe the frequency and spectrum of tuberculosis co-infection in HIV-infected 

severely malnourished children. 

f) To evaluate the effects of HIV-infection, severe acute malnutrition (SAM) and active TB 

disease on microbial translocation and consequentially on immune activation and immune 

exhaustion in HIV-infected children. 
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*Definitions: Virologic treatment response was defined as a HIV viral load <1000 copies/ml at 48 weeks. Immunologic 

treatment response was defined as an improved CD4 count to WHO Immune stage one and two. Anthropometric treatment 

response was defined as body mass index Z-score (BMIZ) or WHZ score of greater than –1 below the mean. 

1.5 Methodology 

1.5.1 Study Design 

The primary study was a prospective, randomized, controlled clinical trial. 

1.5.2. Study site 

Figure 4. Geographical location of King Edward VIII Hospital, Durban, KwaZulu-Natal   

King Edward VIII hospital (KEH) is a regional/tertiary level hospital with 100 

paediatric beds across 4 wards including a nutritional rehabilitation ward. The hospital is a 

referral hospital, based in the most populous district in KZN with a population of approximately 

3.5 million (57). 

1.5.3 General Subject management 

1.5.3.1 Recruitment/Inpatient Management 

Patients admitted to KEH, who met the inclusion and exclusion criteria (Table 5) were 

eligible to be enrolled into the study. Children between the age of 1 month to 12 years were 

eligible for inclusion. The study age criteria was designed to reflect the real world scenario, 

where very young HIV-infected children presenting with symptomatic HIV disease in the first 

year of life (rapid progressors) and older children with a missed HIV diagnosis (intermediate 

or slow progressors) present to health care facilities with advanced HIV disease and SAM. 

The anthropometric measurements of premature infants were plotted at their chronological 

age, corrected for gestational age during the first year of life. Thereafter premature children 

were plotted at their chronological age. 

King Edward VIII Hospital 

eThekwini health district 

Available from: https://www.researchgate.net/figure/236207880_fig1_Figure-1-Geographical-location-of-KwaZulu-

Natal-with-the-six-study-areas-indicated [accessed 05 November 2016] 

https://www.researchgate.net/figure/236207880_fig1_Figure-1-Geographical-location-of-KwaZulu-Natal-with-the-six-study-areas-indicated
https://www.researchgate.net/figure/236207880_fig1_Figure-1-Geographical-location-of-KwaZulu-Natal-with-the-six-study-areas-indicated
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Table 5. Inclusion/Exclusion Criteria 

Inclusion criteria Exclusion Criteria 

Age between 1 month to12 years 

Enrolled in other interventional 

studies 
HIV infection defined as a positive ELISA or Rapid HIV test in 

children over 18 months or a positive DNA PCR in children 

under 18 months 

ART-naïve except for antiretroviral prophylaxis given for 

PMTCT 
Lack of availability of 

parent/guardian willing and able to 

provide informed consent and 

adhere to study protocol 

Severe acute malnutrition (SAM) by WHO criteria:  

Weight-for-length z-scores -3 below the WHO growth standards 

median, or  

mid-upper arm circumference (MUAC) < 115 mm, or  

peripheral oedema. 

Eligible for initiation of ART by the SA national treatment 

guidelines. 

The parent/legal guardian was approached and informed about the study. Informed consent 

was signed prior to performing any study related procedures. Routine care was provided by 

clinical staff. A standardized management protocol for the inpatient management of severely 

malnourished children was used (Appendix 1). Patients were fed a lactose-free ready-to-use 

formula (Appendix 2), which provided an equivalent nutritional content due to the lack of 

availability of the WHO specified feeds (F-75/F-100) with the following energy and protein 

content (Table 6). 

Table 6. Energy and Protein content of feeds used during nutritional rehabilitation 

Day post admission Energy (Kcal/kg) Protein (g/kg) 

Day 1-2 33 - 37 1 

Day 3-4 50-56 1.5 

Day 5-6 67-74 2 

Day 6-7 83-93 2.5 

> Day 7 100-112 3 

 

Following study enrolment, subjects were randomised to one of two arms (Early vs 

Delayed arms). Criteria for early and delayed arms are shown in Table 7. 

  



12 

Table 7. Criteria for early and delayed arm 

Early arm Delayed arm 

ART initiated within 14 days of 

admission to the hospital for 

management of severe acute 

malnutrition. 

ART initiated after more than 14 days of admission to the 

hospital for management of severe acute malnutrition 

and 

Weight/length (for infants < 87 cm) or weight/height (for 

infants >87 cm of -2 z-score or 

Achieving at least 15% weight gain or 

Resolution of oedema + return of appetite 

 
Randomisation was communicated to hospital clinical staff responsible for routine clinical 

care of the patients. All inpatient management was at the discretion of the treating clinician. 

1.5.3.2 Antiretroviral regimen  

< 3 years or < 10kgs ABC + 3TC + LPV/rtv 

> 3 years and > 10kgs ABC + 3TC + EFV 

Drug doses were prescribed as per the South African National ART guidelines (2012-

2015) based on the WHO weight band dosage charts. Patients on rifampicin and LPV/rtv were 

prescribed additional ritonavir (“super-boosted” LPV/rtv) as per the weight banded dosage 

table (Appendix 3). The criteria for ART initiation was as per the South African National ART 

guideline (2012-2015). 

Following discharge from hospital, subjects were reviewed at weeks 4, 8, 12, 24 and week 48. 

1.5.4 Management related to specific objectives 

Specific management related to the specific objectives will be discussed in the individual 

chapters. 

1.5.5 Ethical issues 

The study was approved by the Postgraduate Committee of the University of KwaZulu–

Natal (Appendix 4), the Biomedical Research and Ethics Committee (BREC) of the University 

of KwaZulu-Natal – BFC 126/11 (Appendix 5) and the Department of Health – King Edward 

VIII Hospital (Appendix 6) and KwaZulu–Natal Department of Health (Appendix 7). 

Parents or legal guardians of all study participants signed an informed consent (Appendix 

8) prior to any study related procedures being performed. Informed consent was conducted in 

English or isiZulu depending on the care-givers’ preference (Translation Certificate – Appendix 

9). 

1.6 Overview of the Thesis  

The thesis is presented in the form of 5 articles (Chapter 2 – 6) and a synthesis chapter 

(Chapter 7) 
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Chapter 2: HIV-infected children with severe acute malnutrition: a randomized controlled 

clinical trial comparing early versus delayed initiation of antiretroviral treatment. 

In this chapter a comparison of the treatment outcomes of severely malnourished children 

randomised to either early or delayed ART initiation is presented. The differences in mortality, 

adverse events, growth responses (WAZ, HAZ and WHZ), immune recovery and virologic 

responses between the two arms are presented. A random effects logistic regression is presented 

to compare the responses by trial arms. The manuscript was submitted for publication to 

International Journal of Antimicrobial Agents, IJAA-D-16-01055 and is under review  

Chapter 3: Population pharmacokinetics of lopinavir in severely malnourished HIV-infected 

children and the effect on treatment outcomes  

A pharmacokinetic model is presented that describes the lopinavir pharmacokinetics in 

severely malnourished children. The effect of baseline factors (age, sex), trial arm, co-treatment 

with rifampicin and anthropometry on lopinavir pharmacokinetics is described. Further, the 

effect of lopinavir pharmacokinetics on treatment failure (Death or Viral load >1000 c/ml) or 

treatment success (alive and Viral load < 1000c/ml) at 12 and 48 weeks is explored. The 

manuscript was submitted to the Paediatric Infectious Diseases Journal, PIDJ-216-994 and is 

under review 

Chapter 4: Bacterial infections in HIV-infected children admitted with severe acute 

malnutrition in Durban, South Africa  

In this chapter the frequency and bacteriological characteristics (identification and antibiotic 

susceptibility) of pathogens isolated during the first 30 days following admission is described. 

The impact of bacterial infections both at admission (positive cultures within the first 72hrs 

following admission) and hospital-acquired infections (positive cultures after 72hrs following 

admission) on mortality is explored. The manuscript was published in the Paediatr Int Child 

Health. 2016;Jul 4:1-8. 

Chapter 5: Tuberculosis in HIV-infected South African children with complicated severe acute 

malnutrition. 

A description of the frequency of clinically diagnosed and culture-confirmed 

mycobacterium Tuberculosis (MTB) infection in this cohort of severely malnourished HIV-

infected children is presented together with a description of sampling techniques. Factors 

predicting culture-confirmed MTB using a regression analysis is explored. The manuscript was 

submitted to: International Journal of Tuberculosis and Lung Disease, IJTLD-10-16-0753 and 

is under review.  

Chapter 6: Malnutrition increases microbial translocation, systemic immune activation and 

immune exhaustion and impairs immune recovery in HIV-infected children.   

In this chapter the effect of malnutrition on microbial translocation, systemic immune 

activation and immune exhaustion is explored by comparing these factors in four cohorts 

http://www.ncbi.nlm.nih.gov/pubmed/27376401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/27376401?dopt=Abstract
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(HIV+/SAM+, HIV+/SAM-, HIV-/SAM+ and HIV-/SAM-). In the HIV-infected children, the 

effect of malnutrition on immune recovery at week 48 is described. The manuscript was 

submitted to AIDS Research and Human Retroviruses, #AID-2016-0261 and is under review. 

This chapter was a collaborative effort, with the involvement of multiple different 

laboratories and partners who contributed. The individual author contributions have been 

declared in the Declaration (Pg iii/iv) 

Chapter 7: Synthesis  

In this chapter a synthesis of major findings of the previous chapters are presented. 

Recommendations arising from these findings and implications for future research are 

discussed.  
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BRIDGING TEXT:  

In the literature review, the optimal timing of ART initiation in severely malnourished 

children has been identified as a knowledge gap. In the following chapter the effects of initiating 

ART during the acute phase of malnutrition (early arm) compared with ART initiation after 

nutritional improvement (delayed arm), are explored in a randomized controlled trial with a 48-

week follow-up period. 
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CHAPTER 2 

HIV-INFECTED CHILDREN WITH SEVERE ACUTE MALNUTRITION: A 

RANDOMIZED CONTROLLED CLINICAL TRIAL COMPARING EARLY 

VERSUS DELAYED INITIATION OF ANTIRETROVIRAL TREATMENT 

Submitted to: International Journal of Antimicrobial Agents, IJAA-D-16-01055 

Archary M, Sartorius B, La Russa P, Sibaya R, Healy M, Bobat RA 

2.1 Abstract 

Background: 

Delays in prompt HIV diagnosis and antiretroviral treatment (ART) initiation in children 

from low and middle-income countries frequently results in malnutrition at initial presentation. 

Despite ART initiation, HIV positive children with malnutrition have a higher mortality and 

delayed immune recovery. The optimal timing of ART initiation in children with malnutrition 

has not been established.  

Methods: 

Eighty-two HIV-infected children with severe acute malnutrition (SAM) admitted to King 

Edward VIII Hospital between July 2012 and December 2015 were enrolled. Patients were 

randomized to initiate ART within 14 days from admission (Early arm) or delay ART initiation 

until nutritional recovery and more than 14 days from admission (Delayed arm). All patients 

received a standardized treatment and feeding protocol and were evaluated at 4, 8, 12, 24 and 

48 weeks.  

Findings: 

The average age of the patients at baseline was 23·3 months (SD 27·9, range 1.6–129 

months). The mean time from admission to ART initiation was 5·6 days (SD 4·4) in the early 

arm and 23 days (SD 5·8) in the delayed arm (p<0·001).  

There was no significant difference in mortality (p=0·621), virologic response (p=0·527) 

and anthropometric response (p= 0·566) between the two groups at 48 weeks. However the 

rates of change in CD4, HIV viral load, Weight-for-age Z-score and Height-for-age Z-score 

occurred earlier and favored the delayed arm. 

Interpretation: 

The results of this study support delaying ART initiation to 14 days after starting 

nutritional rehabilitation in HIV-infected children admitted with SAM. 

Keywords: 

Severe Acute Malnutrition (SAM), Timing, ART Initiation 

2.2 Introduction 

Over 240,000 children under the age of 15 years were living with HIV in South Africa in 

2015 (1). Ensuring early access to antiretroviral treatment (ART) is vitally important for 
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improving outcomes of these children; however only 34% of eligible children receive ART (2). 

This large gap in ART access is likely due to delays in HIV diagnosis and ART initiation, 

resulting in children presenting with more advanced clinical presentations such as malnutrition. 

Malnutrition therefore remains a common clinical syndrome at initial presentation in HIV-

infected children from low and middle income countries (LAMIC) (3). 

HIV-infected children with severe–acute malnutrition (SAM) represent a distinct clinical 

entity characterized by a complex interplay between increased energy expenditure with an 

increased basal metabolic rate, higher rates of co–infections, diarrhea and malabsorption, 

increased micronutrient deficiencies and higher rates of food insecurity and poverty (4). 

Management is complicated by gastro–intestinal side effects to antiretroviral drugs, perturbed 

lipid and glucose metabolism, and altered pharmacokinetics of ART and antibiotics (5).  

ART initiation is further complicated by physiological changes during nutritional recovery 

in malnourished children. These changes include continuous shifts in the oxidative stressors, 

lean body mass and drug distribution, intestinal absorption of oral medications, serum albumin 

concentration for drug-binding, and the magnitude of mitochondrial, hepatic or renal 

dysfunction and re-feeding syndrome (6–7). The potential effect on the frequency of adverse 

effects and pharmacokinetics following ART initiation has not been previously addressed. 

Despite nutritional rehabilitation, the CD4 counts in HIV–infected severely malnourished 

children continue to decline, and they have a three–fold higher probability of mortality 

compared to their non-infected counterparts (8,9). Although ART in HIV-infected children has 

significantly improved survival and quality of life, SAM remained an independent predictor of 

mortality even with appropriate immunologic and virologic responses to ART (10-14). 

In 2010 the World Health Organization’s (WHO) Nutrition Guideline Advisory Group 

identified determining the optimal timing of ART initiation and ART dosing for HIV–infected 

children with SAM as a key issue for which guidance must be developed (15,16). A more recent 

systematic review found a paucity of quality data in this area and found no randomized 

controlled trials addressing antiretroviral treatment of HIV-infected children with SAM (17). 

Only a handful of observational studies have presented data on the nutritional status of children 

started on ART and helped to very indirectly inform the timing, dosing, and management of 

complications, such as immune reconstitution inflammatory syndrome (IRIS) in this group. We 

therefore conducted a prospective randomized controlled trial to evaluate and compare the 

virologic, immunologic and anthropometric responses of initiating ART before or after 

nutritional recovery in HIV-infected children admitted with SAM. 

2.3 Patients and Methods 

Patients were recruited from July 2012 to December 2015 from King Edward VIII 

Hospital, a referral hospital with a 100 bed paediatric unit in Durban, South Africa. All ARV 
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naïve HIV positive children admitted with SAM were eligible for inclusion in the Malnutrition 

and Antiretroviral Timing in Children with HIV (MATCH) trial (Clinical trial registry number: 

PACTR 21609001751384). 

SAM was defined as per the WHO definition i.e. a Weight-for-length more than 3 z-scores 

below the median, Mid-upper arm circumference (MUAC) < 115 mm or peripheral oedema 

(18). HIV was diagnosed as per the South African National HIV Treatment Guidelines (19). In 

children less than 18 months, two HIV polymerase chain reactions (PCR) were performed 

(Taqman HIV–1 Qualitative Test (Roche Molecular Systems, Inc.), while in children over 18 

months two HIV rapid tests or an enzyme–linked immunosorbent assays was performed.  

All patients were managed as per the standardised hospital policy based on the WHO 

Guidelines for the In–patient Treatment of Severely Malnourished children with standardized 

re-feeding guidelines (18). Medical management of patients was at the discretion of the treating 

clinician. 

Patients were randomized to either initiate ART within 14 days from admission (Early 

arm) or delay ART initiation (Delayed arm) until nutritional recovery (as defined below) and 

more than 14 days from admission. Patients achieved nutrition recovery when they reached a 

weight for height z–score (WHZ) of –2, achieved at least 15% weight gain or demonstrated 

resolution of edema and return of the patient’s appetite. A pre–determined computer generated 

randomization table was used, with randomization blocks of 10 weighted to ensure equal 

numbers of patients with tuberculosis (TB) in each arm. 

Antiretroviral treatment was as per the South African National ART treatment guidelines 

(2012–2015) (19). Children less than three years were started on Abacavir, Lamivudine and 

Lopinavir/ritonavir while children over three years were started on Abacavir, Lamivudine and 

Efavirenz. Drug doses were as per country specific guidelines (based on the WHO weight band 

dosage charts). Patients requiring Rifampicin and Lopinavir/ritonavir had additional ritonavir 

prescribed as per the weight band dosage table (19). 

Patients were followed up at four, eight, 12, 24 and 48 weeks following admission. Clinical 

assessment included a clinical examination for adverse effects and anthropometric evaluations 

(weight, height, MUAC and skin fold thickness over two sites: triceps, subscapular). At each 

study visit patients had an HIV viral load, CD4 count, Full Blood Count, Liver Function test, 

Urea and Electrolytes, Triglycerides/Cholesterol and Blood Glucose performed. Virologic 

treatment response was defined as a HIV viral load <1000 copies/ml at 48 weeks. Immunologic 

treatment response was defined as an improved CD4 count to WHO Immune stage one and two 

(20). Anthropometric treatment response was defined as body mass index Z-score (BMIZ) or 

WHZ score of greater than –1 below the mean. Patients were clinically assessed at each study 

visit for features of an Immune Reconstitution Inflammatory Syndrome (IRIS) event (a new 

onset or worsening of a condition associated with ≥1 log drop in HIV viral load as defined by 
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the IRIS diagnostic criteria by French) (21). All laboratory results were graded using the 

DAIDS Grading tables (22) and Grade three and four laboratory results were managed 

according to the South African National ART treatment guidelines (19). 

Written informed consent was obtained from the caregivers of all children enrolled in the 

MATCH study. The trial was approved by the Biomedical Research Ethics Committee (BREC) 

of the University of KwaZulu-Natal and King Edward VIII Hospital. The study was supported 

in part by grant number: R24TW008863 from the Office of the U.S. Global AIDS Coordinator 

and the U. S. Department of Health and Human Services, National Institutes of Health (NIH 

OAR and NIH ORWH).  

The sample size was calculated using SAS Version 9·2 to detect a difference in nutritional 

recovery between the two arms (mean difference of 0·5 Z–score in WHZ) to achieve a power 

of 80% and a significance of 5% (23). 

Data were analysed using Stata 13·0 (StataCorp 2013. Stata Statistical Software: Release 

13. College Station, TX: StataCorp LP). The student T-Test was used to compare the means 

and standard deviations between the two arms. Analyses were performed as per intention–to–

treat. Significant time point comparisons of categorical endpoints by trial arm were assessed 

using the Fishers exact test. A mixed effects linear model was employed to assess change in 

continuous markers over time by trial arm. A random effects logistic regression was used to 

assess dichotomous endpoints (e.g. response) by trial arm. An adjusted p–value of <0·05 was 

considered statistically significant. 

2.4 Results 

A total of 82 Black African patients were enrolled in the study, 40 in the early arm and 42 

in the delayed arm. At week 48, in the early treatment arm 27 patients (68%) completed follow-

up (six deaths and seven lost to follow-up (LTFU)) while in the delayed arm 31 patients (74%) 

completed follow-up (eight deaths, three LTFU) (Figure 5). 
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Figure 5. Study Schema over 48 weeks 

Caregivers of patients who defaulted the week 48 visit were contacted telephonically. Of 

the seven patients who were LTFU in the early arm, only two caregivers were contactable and 

reported that the child was alive, in–care but relocated to another city. Two of the three patients 

who were LTFU in the delayed arm were contacted. Both patients were alive and in–care at 

another facility. The reason for relocating was to return to family homes in neighboring 

provinces or countries. Fewer patients were LTFU in the delayed arm as compared to the early 

arm, however this difference was not statistically significant (17·5% vs. 7·1%, p= 0·189). 

The average age of the patients at baseline was 23·3 months (SD 27·9, range 1·6–129 

months) with a slight male preponderance (n=47·58%). The majority (78%) of the patients had 

low CD4 counts (WHO immune stage 3 or 4) and 58% were classified severely immune-

compromised (WHO immune stage 4). Lopinavir/ritonavir based ART was the most common 

regimen with 87·8% (n=35) and 88% (n=37) of subjects on this regimen in the early and 

delayed arms respectively. 

Comparison of patient characteristics by treatment arm at baseline revealed no significant 

differences apart from time from admission to ART initiation (p<0·001) i.e. mean of 5·6 days 

(SD 4·4) in the early arm and 23 days (SD 5·8) in the delayed arm. (Table 8). 
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Table 8. Patient Characteristics at baseline (at study entry/admission) 

 

2.4.1 Mortality 

During the 48-week study period 14 patients (17%) demised, six (15%) in the early arm 

and eight (19%) in the delayed arm. The difference in the mortality between the two arms was 

not statistically significant (p=0·626). The average time from enrollment to death was 74·4 

days (SD: 59·9), range 12–252 days. The mean time to death was 92·7 days in the early arm 

compared with 60·8 days in the delayed arm. No patient demised prior to ART initiation. The 

majority (78·6%) of deaths occurred before 12 weeks, 67% and 87·5% in the early and delayed 

arms respectively.  

Adverse Effects/IRIS 

A total of 23 IRIS events were documented in 21 (25%) patients (Two patients had both 

TB and BCG IRIS), 13 (56·5%) in the early arm and 10 (43·5%) in the delayed arm (p=0·381). 

Five patients (21·7%) developed unmasking TB IRIS during the study period, two in the early 

arm and three in the delayed arm, while seven patients (30·4%) developed BCG IRIS (all with 

local BCG scar ulceration with regional lymphadenitis), four in the early arm and three in the 

delayed arm. The remaining IRIS events were dermatological manifestations, three patients 

with seborroheic dermatitis, three patients with candida skin rashes and one patient each with 

 
Early 

N (SD) 

Delayed 

N (SD) 
p value 

Total number (82) 40 42  

Age (months) 
25·7 

(1·7–129) 

21·1 

(1·6–99·7) 
0·64 

Gender (M:F) 60%(24): 40%(16) 55%(23): 45%(19) 0·52 

CD4 Abs (mean) 805 (800) 952 (745) 
0·59 

CD4 % (mean) 16% (4.5) 18% (8) 

HIV Viral load 

(copies/mL) 
1893372 (3125480) 

2774529 

(2534080) 
0.27 

ABC/3TC/EFV 12% (10) 12% (5) 
0·35 

ABC/3TC/LPV/rtv 88% (30) 88% (37) 

Time to ART 

initiation (days) 
5·6 (4.5) 23 (5.8) 0·0001 

Tuberculosis at 

baseline 
38% (16) 35·7% (15) 0·49 

WAZ (mean) -3·5 (1.2) -3·4 (1.6) 0·54 

WHZ (mean) -2·2 (1.6) -2·2 (2.2) 0·36 

MUAC (mean) 11·4 (1.6) 11·7 (2.1) 0·66 

Hb (admission) 8·9 (2.1) 8·8 (2.1) 0·37 

TP (mean) 66 (17.7) 65 (16.6) 0·44 

Alb (mean) 22·5 (8.3) 23·8 (6.9) 0·66 
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Herpes stomatitis, planar warts, vulval warts, molluscum contagiosum and tinea corporis. None 

of the IRIS events required discontinuation of ART or resulted in mortality. 

Following discharge from hospital after study entry, 14 patients required readmission to 

hospital, five (12·5%) in the early arm and nine (21·4%) in the delayed arm. Majority (64%) of 

re–admissions were due to lower respiratory tract infections followed by acute gastroenteritis 

(21%). Sixty four percent of re–admissions occurred within the first 12 weeks following study 

entry.  

None of the patients required alteration or discontinuation of ART due to a graded 

laboratory abnormality. Table 9 provides a summary of DAIDS grade three and four laboratory 

investigations at entry, week 24 and week 48. 

Table 9. Summary table of Grade 3 and 4 Laboratory toxicities at baseline, 24 weeks and 48 

weeks 

  Hb Platelets Total Bili ALT GGT 

Grade 3 

Baseline 5 4 1 1 3 

24 wks 2   3 2 

48 wks   1   

Grade 4 

Baseline 9 1   4 

24 wks     2 

48 wks   1   

Hb: Haemoglobin, Total Bili: Total Bilirubin, ALT: Alanine Transaminase, GGT: Gamma-glutamyl transpeptidase 

 

2.4.2 CD4 Count 

At 48 weeks, 58·5% of patients were WHO immune stage one, 19·5% stage two, 12·2% 

stage three and 9·8% stage four compared to 16%, 10·7%, 28·6% and 44·6% at baseline.  

There was a significant increase in the overall mean CD4 count from a baseline count of 

878·5 cells/uL (SD 772·8) to 1447·9 cells/uL (SD 739·0) at 48 weeks (p–value=0·001). The 

mean CD4 count at week 48 was 1366·7 (SD 732·4) cells/uL in the early arm and 1518·2 

(749·8) cells/uL in the delayed arm (p=0·532)  

Comparison of the change in CD4 count using a multiple mixed effects linear regression 

model (Figure 6) suggested no statistically significant difference in immune recovery between 

the two groups. However the delayed arm did have a higher mean CD4 (more rapid gain) by 

week 12 compared to the early arm with this difference narrowing towards 48 weeks. This 

difference at 12 and 24 weeks was not statistically significant (p=0·433 and 0·436 respectively). 
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Figure 6. (a) Mean CD4 and (b) delta mean CD4 from baseline by trial arm and time point 

2.4.3 Viral Load 

At 24 weeks, 67·3%18 of combined patients achieved protocol define response (VL <1000 

copies/ml) overall, 59·7%11 in the early arm compared to 75%7 in the delayed arm, but this 

difference was not statistically significant. By 48 weeks the number of patients with protocol 

defined virologic response increased to 81·1% overall11, 77·8%6 in the early arm and 84%5 

in the delayed arm. This difference at 48 weeks was not statistically significant before and after 

multivariable adjustment (OR=1·66, p=0·527, 95% CI 0·34–8·06). (Table 10).  
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Table 10. Comparison of (a) primary endpoints at 48 weeks (b) anthropometric change from 

baseline to 48 weeks by trial arm 

 
 

Using a stricter definition of virologic response (VL < 400 copies/ml), 77·9% of patients 

achieved virologic response at 48 weeks, 83·9% in the delayed arm and 70·37% in the early 

arm, again this difference was not statistically significant (OR= 2·02, p= 0·231, 95% CI 0·64–

6·36). 

A multiple mixed effects linear regression model evaluating viral load endpoint and 

change therein at weeks four, eight. 12, 24 and 48, showed an appropriate delay in viral load 

reduction in the delayed arm compared to the early arm at week four (+1·57 mean log VL in 

delayed arm, p<0·001) and eight (+0·79 mean log VL in delayed arm, p=0·098) (Figure 7). At 

week 12 the log VL fall was equivalent (+0·22 mean log VL in delayed arm, p=0·625, 95% CI 

–0·66 to 1·1) in both arms, however by week 24 the delayed arm had a statistically significant 

higher drop in log VL compared to the early arm (–1·06 mean log VL in delayed arm, p=0·018, 

95% CI –1·94 to –0·18). This difference persisted to week 48, and remained statistically 

significant (–0·99 mean log VL in delayed arm, p=0·025, CI –1·85 to –0·12). 
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Figure 7. (a) Mean log VL, (b) delta mean VL from baseline and (c) virologic response 

proportion by trial arm and time point 
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2.4.4 Anthropometry 

At week 48, 76·6% of patients achieved an adequate anthropometric response, with similar 

responses in both arms (77·2% in early arm and 76·6% in the delayed arm (p= 0·918)). The 

adjusted comparison of anthropometric response at week 48 was not significant (OR=1·66, 

p=0·566, 95% Cl 0·29–9·31) 

There were no significant differences in BMIZ or WHZ scores between the two arms at 

48 weeks (OR=0·79, p=0·43, 95% CI –0·96–2·25). At week 48 the difference in weight for age 

Z-score (WAZ) between the two arms was marginally significant (OR=1·67, p=0·094, 95% CI 

0·11–1·44) whilst the difference in height for age Z-score (HAZ) was statistically significant 

(OR=2·51, p=0·012, 95% CI 0·27–2·25). (Figure 7) After adjusting for age, gender, immune 

stage, tuberculosis, haemoglobin (Hb), total protein (TP) and albumin (Alb), only the change 

in HAZ remained marginally significant. (Figure 8). 
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Figure 8. (a) Mean BMI for age z-score, (b) Mean Height-for-age z-score (HAZ), (c) Mean 

Weight-for-age (WAZ) z-score and (d) mean Weight-for-height z-score (WHZ) by trial arm and 

time point 
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2.5 Discussion 

This prospective randomized controlled trial comparing early versus delayed ART 

initiation in a cohort of HIV-infected children, admitted with severe acute malnutrition has 

demonstrated no significant differences in immunologic, virologic or anthropometric treatment 

responses at 48 weeks. However significantly improved rates of change in the viral load, WAZ 

and HAZ favored the delayed arm. 

The WHO Consolidated ART guidelines have, since 2013, recommended that all children 

less than five years of age initiate ART on diagnosis irrespective of WHO clinical stage or CD4 

count. This was extended to all children, adolescents and adults in 2016 (24).4 Despite this “test 

and treat” approach to ART management in young children, ART initiation targets in children 

have lagged behind adult targets. Delayed HIV diagnosis and treatment, together with the rapid 

clinical deterioration of HIV-infected children has resulted in children from resource 

constrained settings frequently being malnourished on diagnosis of HIV infection. The question 

of the optimal timing of ART initiation in malnourished children has thus far not been addressed 

in a randomized controlled trial.  

In a Malawian retrospective observational study of children with uncomplicated 

malnutrition receiving outpatient therapeutic feeding, ART initiation within 21 days had a 

higher rate of nutritional recovery (86% vs. 60% p < 0·01) and higher rate of weight gain (3·6 

vs. 1·6g/kg/day) when compared to those who had delayed ART initiation (25). In contrast, in 

unpublished retrospective analysis of 345 HIV-infected Ugandan children, where 21% of the 

cohort were moderate or severely malnourished, mortality in children who initiated ART within 

ten weeks of diagnosis was higher compared to those starting ART later after adjustment for 

age, sex, CD4%, and WHO clinical stage (OR: 2·8, 95% CI: 1 0·33–5·9, P=0·007) (17). A 

randomized controlled trial comparing urgent versus post-stabilization ART initiation in 

Kenyan hospitalized children (32% were malnourished) showed no difference in mortality at 

24 weeks (26). No study reported on the timing of the introduction of ART with respect to that 

of nutritional rehabilitation for SAM (27).  

In a systematic review of mortality associated with SAM in sub-Saharan Africa, HIV 

positive children had a significantly higher mortality compared to HIV negative children 

(30·4% vs. 8·4%) during rehabilitation (28). Few studies have reported specifically on 

mortality in HIV positive children with SAM beyond the rehabilitation phase (29). In the 

MATCH cohort, the mortality at 48 weeks and the inpatient mortality rate was far lower than 

the reported mortality. The in–patient mortality was in line with the expected mortality in a 

well–resourced tertiary hospital, where patients were management in a high–care setting. No 

significant difference was demonstrated between the two treatment arms, although the study 

was not powered to detect differences in mortality. The majority of the mortality (78·6%) and 

hospitalizations (64%) occurred in the first three months following study entry, which is similar 
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to other studies. Potential strategies to decrease these events, such as more frequent clinical 

assessments, education of caregivers of danger signs and the need for urgent review at a health 

care facility and opportunistic infection prophylaxis may be of benefit. In the REALITY trial, 

severely immune–compromised HIV positive adult and children initiating ART with a regimen 

of enhanced opportunistic infection (OI) prophylaxis compared to standard prophylaxis 

demonstrated decreased mortality, new TB, cryptococcal or candida infections and 

hospitalizations (30). Further studies evaluating enhanced OI prophylaxis should be considered 

in HIV–infected children with SAM and other high–risk criteria at ART initiation. 

IRIS is a common clinical entity in children initiating ART in LAMIC, with a prevalence 

in the literature ranging from 20–38% which is similar to the incidence reported in this study 

(21,31). TB IRIS was the most frequent presentation in a study of HIV-infected children in 

Uganda, (29%). Time on ART and pre ART CD4 count were significantly associated with IRIS 

events however malnutrition (WHZ <–2SD) was not associated with increased incidence of 

IRIS in the same study (32). The absence of a significant difference in the frequency of TB 

IRIS between the arms could be due to the high proportion (36·9%) of patients who were 

initiated on TB treatment. In the current study, BCG IRIS was the most frequent IRIS event, 

which was not reported in the studies of Ugandan and Thai children, however BCG IRIS has 

been reported in cohorts South African children initiating ART (31,33–35). The presence of 

high incidence of BCG IRIS may be related to the timing of vaccination and strain of BCG 

used in South Africa.  

Once initiated on ART, maintaining patients in care is vitally important in order to achieve 

the WHO goal of 90% virologic suppression in patients initiated on ART (36). In this study all 

patients received the same package of counseling sessions, one post-test counseling session and 

three adherence counseling sessions (37) and counselors were unaware of the randomization of 

the patients. Patients in the early arm were started on ART before the counseling sessions were 

complete. The psychological impact of a caregiver being informed of a child’s HIV status 

concurrently with being counseled regarding the need to administer ART, may account for the 

difference in numbers of LTFU between the two arms although this difference was not 

significant. Caregivers may require time to first assimilate and accept the diagnosis of HIV 

before being able to fully understand and accept the adherence counseling sessions.  

Data on virologic responses in children with SAM are limited due to limited access to 

routine viral load testing in settings where SAM is common. Several studies have reported on 

virologic responses in sub-Saharan Africa and included malnourished children. In the 

PROMOTE trial, virologic response (VL<400c/ml) at 48 weeks was 80% and 76% for a 

Lopinavir/ritonavir based regimen and Efavirenz based regimens respectively (38). Although 

the difference in virologic response did not reach statistical significance in our study, the 

multiple mixed effects linear regression model revealed a significant difference favouring the 
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delayed arm at week 24 and week 48. The model did confirm the delay in viral load decline in 

the delayed arm at week four due to the delay in ART initiation. Altered pharmacokinetics of 

antiretroviral drugs in patients initiating ART during the acute phase of nutritional recovery 

may account for the differences in the viral load change, significantly favouring the delayed 

arm at week 24 and 48. A population pharmacokinetic study conducted during this study and 

an ongoing IMPAACT study may address this important research question. 

Several studies from sub-Saharan Africa have documented good immunologic and growth 

responses in HIV-infected children initiated on antiretroviral treatment. However children with 

SAM have impaired immunologic recovery compared with well-nourished children (8,9). 

Although the difference in immunologic recovery between the arms was not statistically 

significant in our study, the increase in the CD4 count occurred earlier in the delayed arm. 

Delaying ART initiation may allow the gut microbiota time to normalize, decreasing microbial 

translocation and immune activation, thus facilitating more rapid immune recovery (39,40). 

Similarly the better WAZ and HAZ scores may suggest an improved gut recovery and 

absorptive capacity in the delayed arm, possibly mediated by changes in the gut microbiota.  

Future studies are required to explore this finding and develop potential adjunctive treatment 

strategies to improve immune recovery and growth. 

There are several limitations to the study, including that the small sample size was not 

powered to detect smaller differences between the study arms. Mortality and LTFU, further 

limited the ability of the study to detect difference at 48 weeks.  

2.6 Conclusion 

HIV–infected children admitted with SAM and initiated on ART demonstrated significant 

improvements in CD4 counts and anthropometric parameters, together with significant viral 

load reduction compared to baseline. In this randomized controlled trial comparing early versus 

delayed ART initiation in HIV-infected children admitted with SAM, although the differences 

in CD4 count, viral suppression and anthropometric response at 48 weeks was not significant, 

the rates of change in CD4, viral load, WAZ and HAZ scores occurred earlier and favored the 

delayed arm. Based on the results of this study, we recommend that ART initiation in children 

with SAM should be delayed for at least two weeks after starting nutritional rehabilitation.  
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BRIDGING TEXT:  

Delaying ART initiation to after nutritional recovery resulted in improved rates in change 

of WAZ, HAZ and viral load compared to ART initiation during the acute phase of 

malnutrition. A potential biological mechanism explaining this observation is the alternation of 

antiretroviral drug pharmacokinetics in malnourished children. In the literature review, the 

absence of data describing lopinavir pharmacokinetics in severely malnourished children 

specifically and the limited data describing lopinavir pharmacokinetics in malnourished 

children in general was described. In the following chapter, the pharmacokinetics of lopinavir 

is explored in severely malnourished children by developing a model to describe the observed 

lopinavir levels and explore the relationship of this model with patient and treatment 

characteristics. 

 

  



41 

CHAPTER 3 

POPULATION PHARMACOKINETICS OF LOPINAVIR IN SEVERELY 

MALNOURISHED HIV INFECTED CHILDREN AND THE EFFECT ON 

TREATMENT OUTCOMES 
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3.1 Abstract 

Background: In developing countries, malnutrition remains a common clinical 

syndrome at antiretroviral treatment (ART) initiation. Physiological changes due to 

malnutrition and during nutritional recovery could affect the pharmacokinetics of 

antiretroviral drugs.  

Methods: HIV-infected children admitted with severe acute malnutrition were 

randomised to early or delayed initiation of lopinavir/ritonavir, abacavir and 

lamivudine using WHO weight-band dosage charts. Lopinavir concentrations were 

measured on day 1 and day 14. Thereafter patients were followed-up to week 48. The 

population pharmacokinetics of lopinavir was described using NONMEM v7.3. 

Covariates were screened to assess their influence on the pharmacokinetics of lopinavir 

and the relationship between pharmacokinetic variability and treatment outcomes was 

assessed. 

Results: 502 lopinavir concentrations were collected from 62 paediatric patients aged 

1.6-78 months (median: 12 months). Rifampin-based antituberculosis treatment and 

“super-boosted” lopinavir/ritonavir was prescribed in 20 patients. Lopinavir disposition 

was well described by a one-compartment model with first order elimination. Neither 

randomisation to early or delayed ART, tuberculosis co-medications nor 

anthropometrical measurements explained the pharmacokinetic variability. 

Allometrically scaled fat-free mass (FFM) influenced apparent clearance 

(CL/F,3.1L/h/5.6kg) and volume of distribution (Vd/F,9.6L/5.6kg). Pharmacokinetic 

exposure did not correlate with virologic outcomes or death at 12 or 48 weeks. 

Conclusions: Lopinavir pharmacokinetics was influenced by FFM and not by timing 

of ART initiation or tuberculosis co-medication in severely malnourished HIV-infected 

children. Lopinavir pharmacokinetics was found to be highly variable and 
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bioavailability greatly reduced, resulting in a high CL estimate in this population. The 

role of lopinavir dose adjustment should be further evaluated in severely malnourished 

children initiating ART. 

3.2 Introduction 

Malnutrition is a common clinical feature at initial Human Immunodeficiency 

Virus (HIV) diagnosis in sub-Saharan African children (1,2) and is a significant risk 

factor for mortality (2). The causes of malnutrition in this setting are multifactorial 

including delays in HIV diagnosis and antiretroviral treatment (ART) with resultant 

prolonged viraemia with an increased energy expenditure and basal metabolic rate 

together with higher rates of opportunistic co-infections, diarrhoea, malabsorption, 

food insecurity and poverty (3,4). 

Immunologic and virologic responses together with the mortality (5,6) of severely 

malnourished HIV-infected children are higher compared to their non-malnourished 

counterparts despite nutritional rehabilitation and ART in HIV-infected children  (7,8). 

The cause of this difference has not been determined, and may be caused by altered 

pharmacokinetics of antiretroviral medications in malnourished children. Alternatively 

food insecurity may be a surrogate marker of an unstable social environment and poor 

adherence, resulting in poorer outcomes (9). 

The physiologic characteristics of malnutrition and changes following nutritional 

recovery are particularly dynamic due to shifts in oxidative stressors, areas of lean body 

mass, serum albumin levels, intestinal changes and degrees of mitochondrial, hepatic 

or renal dysfunction (10,11). These physiological characteristics can potentially affect 

the pharmacokinetics of medications in malnourished children resulting in increased 

adverse events due to supra-therapeutic drug levels. Alternatively, resulting in 

prolonged exposure to sub-therapeutic antiretroviral drug levels, which is a major 

contributor to the evolution of HIV drug resistance (12).  

There is a paucity of data evaluating the pharmacokinetics of antiretroviral drugs 

in malnourished children. The most extensively studied antiretroviral drug in 

malnourished children is nevirapine, which is no longer the preferred agent for 

treatment of ART naïve children in current WHO guidelines (13). Malnutrition had no 

effect on plasma total or unbound nevirapine exposures in Malawian children, of whom 

32% had mild to moderate malnutrition (13). Other studies found lower nevirapine 

concentrations in stunted children compared with non-stunted children (12,14). Most 
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recently, it was reported that efavirenz and lopinavir (LPV) exposures were reduced in 

Ugandan children, 48% of whom were malnourished, compared to historical data from 

children in resource-rich countries (15). 

Overall, the impact of severe malnutrition on the pharmacokinetics of antiretroviral 

drugs is difficult to predict as drug absorption and elimination is decreased in 

malnutrition resulting in opposing effects (10). There is no data evaluating the use of 

different ART regimens or strategies in severely malnourished HIV-infected children. 

This study aimed to determine the effects of nutritional rehabilitation on LPV 

pharmacokinetics in severely malnourished HIV-infected children and to explore the 

relationship between LPV pharmacokinetic exposure and virologic outcomes in this 

study cohort. 

3.3 Methods 

3.3.1 Patients and Data 

Between June 2012 and December 2015, HIV infected infants and children 

admitted to King Edward VIII Hospital, Durban, South Africa, with severe acute 

malnutrition (weight for height below -3 z score, mid-upper arm circumference 

<11.5cm or oedema) was enrolled in the MATCH (Malnutrition and ART Timing in 

Children with HIV) Study (Clinical trial registry number: PACTR 21609001751384). 

Patients were randomized to either initiate ART within 14 days from admission to 

the hospital (early arm) or delay ART initiation until after 14 days from admission or 

when nutritional improvement was demonstrated (delayed arm). Patients demonstrated 

nutritional improvement when they reached a weight for height z–score (WHZ) of –2, 

achieved at least 15% weight gain or demonstrated resolution of oedema and return of 

their appetite. Apart from the timing of ART, all other management was as per the 

standard of care. Antiretroviral treatment was administered as per the South African 

National ART guidelines (2012-2015) (16). Children less than three years or less than 

10kgs were started on abacavir, lamivudine and lopinavir/ritonavir (LPV/rtv). Drug 

doses were according to country specific guidelines and WHO weight band-based 

dosage charts. Patients requiring rifampicin containing anti-tuberculosis treatment 

received “super-boosted” LPV/rtv (LPV:rtv ratio of 1:1) as per the weight band dosage 

table (16). Adherence to medication during hospitalization was verified by review of 

the hospital prescription chart. 
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Blood samples were drawn on the first day of ART initiation and day 14 post ART 

initiation according to the following sampling schedules; on day 1, samples were drawn 

at the following nominal time points: 1.3 - 1.8 hrs. post dose, 3 – 4 hrs. post dose, 5 - 7 

hrs. post dose and 8 – 10 hrs post dose. On day 14, one sample was drawn 30 minutes 

prior to dosing, and 1.3 - 1.8 hrs. post dose, 3 – 4 hrs. post dose, 5 - 7 hrs. post dose and 

8 - 10 hrs. post dose. Patients remained inpatients between Day 1 and Day 14. Whole 

blood was transported to the laboratory on ice within an hour of being drawn and 

centrifuged at 2 000 rpm for 10 minutes using a refrigerated centrifuge. Plasma (500uL) 

was aliquoted into cryotubes and stored at -70 0C before being shipped on dry ice for 

measurement of drug concentrations. 

HIV viral loads (Cobas Ampliprep/ Cobas TaqMan system supplied by Roche ) 

were measured at 12 and 48 weeks following study entry. Treatment failure was defined 

according to virological status, where VL >1000 copies/mL or death was considered 

treatment failures and VL <1000 copies/mL was defined as treatment success. 

3.3.2 Assay 

LPV assay: Samples were analysed for LPV using a validated liquid 

chromatography-mass spectrometry method as described previously (17). The lower 

Limit of Quantification (LoQ) for LPV was 0.0195ug/mL.  

3.3.3 Pharmacokinetic Modeling 

The population modeling was conducted using NONMEM® version 7.3 [19], Intel 

FORTRAN compiler and PsN® version 4.1 [20]. Structural model parameter estimates, 

inter-individual variability (IIV) and residual unexplained variability (RUV) were 

obtained by first-order conditional estimation with interaction (FOCE+I). The 

pharmacokinetic structural base model for LPV was initially explored followed by 

stochastic model evaluation, covariate model development and model evaluation steps. 

The IIV was modeled exponentially and inter-occasion variability (IOV) was modeled 

by an additional random effects parameter, as described previously (18) where Pjj 

represents the estimate of a parameter P for subject i on occasion j about the typical 

population value (Ppop). Parameter i,P is a random variable distributed with a mean value 

of 0 and variance of 2
P which represents the IIV variability of P in the population. 

Parameter К is a random variable, was assumed to be sampled from a normal 

distribution of mean value 0 and a variance of π2, representing the variability of P on 

different occasions. An occasion was defined as a dose followed by at least one 
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observation. Here the maximum possible number occasions per patient was three, (i) 

day 1 observations grouped together, (ii) day 13 trough observation and (iii) day 14 

observations grouped together. The RUV was estimated using proportional, additive 

and combined error models. First LPV concentration reported as below LoQ values 

within a dosing interval was set to a value of ½ LoQ, others discarded. 

Covariates screened to assess their influence on the pharmacokinetics of lopinavir 

included: early versus delayed ART initiation, study day, time since LPV start, weight, 

fat-free mass (FFM) (19) age, cholesterol, triglyceride, anthropometrical 

measurements, and the combined effect of rifampicin and extra ritonavir (in children 

on tuberculosis treatment and “super-boosted” LPV/rtv). Covariates were added and 

retained in the model when they: improved the fit of the model to the data; if 

biologically plausible, and; if a significant decrease in the objective function value 

(OFV) generated by NONMEM was noted. For nested models, the difference between 

a pair of OFV values when a covariate was included (full model), then excluded 

(reduced model), approximates to the Chi-square (X2) statistic which can be tested for 

significance (X2
1, 0.05 = 3.84). Covariates representing continuous data items were 

screened separately using linear, power and exponential functions in which the 

parameterization was centered on a standard covariate value. For model evaluation 

diagnostics goodness-of-fit (GOF) plots and prediction- and variance corrected visual 

predictive checks (pred-var VPC) were used. The percentile bootstrap 95% confidence 

intervals around the final population model parameters were obtained using an 

automated nonparametric bootstrap with sample replacement (n=500 runs). 

3.3.4 Treatment Outcomes versus Pharmacokinetics 

Treatment outcomes were related to LPV concentrations on each study day 

(maximum 3 days/patient), by comparing patients with any sample below the Limit of 

Quantification (LoQ) (< 0.0195ug/mL) versus patients without any sample below the 

LoQ using a Chi-squared test, comparing the proportions.  

Individual estimates of apparent LPV clearance (CL/F) and LPV exposure (AUC0-

12 h∙mg/L) for all study days were compared against treatment success and failure at 12 

and 48 weeks using a one-way analysis of variance (ANOVA) test followed by Tukey’s 

test for post hoc analysis using RStudio (Version 0.99.484) with p <0.01 considered as 

statistically significant.  
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3.4 Results 

3.4.1 Patients and Data 

A total of 62 patients had samples performed on day 1. Four patients demised and 

two were transferred between day 1 and day 14, resulting in 56 patients having samples 

drawn on Day 14. A total number of 502 LPV concentrations (8% of them reported as 

below LoQ, half of them were discarded) were available for analysis. Treatment 

outcomes were available for 37 patients at week 12 and 50 patients at week 48. Table 

11 summarizes the patient characteristics of patients for the early and the delayed ART 

start groups.  

Table 11. Demographic and pharmacokinetic data of the study population at baseline 

 
Early 

(mean±SD) 

Delayed 

(mean±SD) 
p-value 

Patients assessed on day1:day14  34:31 29:27 - 

Age (months) 15.5 (16.3) 14.59 (10.8) 0·57 

Sex (M:F) 19:15 17:12 0·52 

Oedema at admission (N) 5 7 0.65 

Rifampicin co-administration (N)  10 10 0·19 

Time to ART initiation (days) 6.2 23.7 0·0001 

Weight for Age Z-score -3.6 (1.2) -3.2 (1.6) 0.12 

Weight (kg) 6.5 (2.8) 6.6 (2.6) 0.86 

Height for age Z-score -3.6 (1.7) 2.9 (1.5) 0.08 

BMI Z-score -2.5 (1.8) -1.8 (2.0) 0.15 

Fat free mass (FFM) 5.1 (1.8) 5.5 (1.9) 0.41 

Mid-upper arm circumference (cm) 11.1 (1.7) 19.0 (2.3) 0.15 

HIV Viral load (copies/mL) 
573134 

(1709192) 

1444639 

(1897897) 
0.14 

Haemoglobin (g/dL) 8.9 (2.1) 8.8 (1.9) 0.74 

Total Protein (g/dL) 65.0 (17.8) 65.2 (16.5) 0.99 

Albumin (g/dL) 22.7 (8.0) 21.6 (6.4) 0.34 

Creatinine 33.9 (34.2) 35.4 (31.6) 0.87 

Cholesterol 2.7 (1.2) 2.9 (1.1) 0.48 

Triglyceride 3.2 (2.4) 2.3 (1.5) 0.28 

SD: Standard deviation, M: Male, F: Female, N: number, ART: antiretroviral 

treatment, BMI: Body mass index   

3.4.2 Lopinavir Pharmacokinetics 

The time-course of LPV disposition was well described by a one-compartment 

model with first order elimination. Typical population parameter estimates (BOV 



47 

(%CV)) were CL/F (L/h/5.6kg): 3.1 (126%), apparent volume of distribution (Vd/F, 

L/5.6kg): 9.6 and absorption rate (ka, h-1): 0.385 (56.8%). Using IOV to estimate 

variability on CL/F and ka was superior to IIV. Estimation of IIV for the relative 

bioavailability (F; IIV= 69.5%) resulted in model improvement, with the individual 

estimates of F being constrained between 0 and 1 using logit- transformation. The 

proportional RUV (%CV) was 37.7% for samples taken within the first 5 hours after 

the dose and 27.2% with a BSV of 15.5%, allowing the RUV magnitude to vary from 

patient to patient (20). Final parameter estimates are shown in Table 12. 
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Table 12. Parameter estimates and bootstrap results for the final model 

Parameter Units 
Parameter 

estimates 

IIV (%) 

[Shrinkage (%)] 

IOV (%) 

[Shrinkage (%)] 

Bootstrap median (95%CI) 

Parameter estimate IVV % IOV (%) 

Clearance (CL/F) L/h/5.6 kg 3.1 - 126.5 [23] 3.0 (2.9 – 3.5) - 122.3 (101.1 – 147.4) 

Volume of distribution 

(Vd/F) 
L/5.6 kg 9.6 - - 9.7 (9.1 – 11.7) -  

Absorption rate 

constant (ka) 
/h 0.39 - 56.8 [16] 0.40 (0.28 – 0.48) - 55.6 (26.5 – 75.8) 

Reduction of relative 

bioavailability (F) for 

non-study days 

-fold 3.2 69.5 [18] - 3.2 (2.3 – 3.8) 70.8 (32.6 – 86.4) - 

Increase of F with 

increasing cholesterol 

above 3 mmol/L  

% 20.7   12.8 (4.0 – 45.3)   

Proportional for <5 h % 37.7 
15.5 [20] 

- 37.8 (30.7 – 44.8) 
14.5 (5.7 – 22.6) 

- 

Proportional for >5 h % 27.2 - 26.7 (18.8 – 35.6) - 

IOV: inter-occasion variability; IIV: inter-individual variability; CL/F: apparent clearance; Vd/F: apparent volume of distribution; CI: confidence interval 

Final model for study days, given an F of 1: 

CL (
L

h
) = 3.1 × (

FFM

5.6
)
0.75

× (1 + 0.207 × (𝐶𝐻𝑂𝐿 − 3)) 

Vd(L) = 9.6 × (
FFM

5.6
) 
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Inclusion of FFM, allometrically scaled, into the model, showing its influence on 

clearance (CL) and volume of distribution (Vd) improved the fit of the model (ΔOFV = 

-8.7). Reduced adherence, based on the pre-dose sample taken on day 14, which is 

linked to the dose on the previous day, was identified as influential on F of LPV and 

reduced F 3.2 fold (ΔOFV = -19.3). Further, increased cholesterol was shown to be 

linearly related to F, with a 20.7% increase in F for every 1 mmol/L increase in 

cholesterol above 3 mmol/L (ΔOFV = -4.8). None of the other tested covariates 

including randomisation to early or delayed ART, tuberculosis co-medications nor 

anthropometrical measurements, explained the variability on CL, Vd or ka. 

The final LPV model was evaluated using a pred-varVPC and a bootstrap. Figure 

1 demonstrates that the model describes the data well, particularly for day 1. However an 

under-prediction of the median peak concentrations on day 14 was noted, which could not 

be improved upon after intensive evaluation of differences between day 1 and day 14 and 

no further covariate inclusion. The bootstrap produced similar parameters estimates to 

the final model (Figure 9), indicating that the estimates for the population PK 

parameters in the final model are robust and stable.  

 

Figure 9. Lopinavir concentrations versus time after dose: Prediction- and variance- corrected 

visual predictive check for Lopinavir concentrations (mg/L) versus time after dose (h) for day 1 

(left) and day14 (right). Blue dots represent concentrations observed in the children, blue lines 

represent the observed 2.5th, 50th, 97.5th percentile. The grey areas present the 90% CI around 

the model predicted 2.5th, 50th, 97.5th percentile. 

Prediction- and variance- corrected visual predictive check for Lopinavir concentrations (mg/L) 

versus time after dose (h) for day 1 (left) and day14 (right). Blue dots represent concentrations 

observed in the children, blue lines represent the observed 2.5th, 50th, 97.5th percentile. The grey 

areas present the 90% CI around the model predicted 2.5th, 50th, 97.5th percentile 
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3.4.3 Treatment Outcomes versus Pharmacokinetics  

Twenty-three patients had one or more of the nine samples which were measured 

below the lower LoQ, 13 of these patients had one sample below LoQ, five patients had 

two samples measured below LoQ, two patients had three samples below LoQ and three 

patients had four samples with concentrations below LoQ. Comparison of frequency of 

LoQ samples for patients with treatment failure to patients with treatment success 

showed no statistical difference at 12 weeks (p=0.41) and 48 weeks (p=0.44).  

Comparison between patients with treatment failure to patients with treatment success 

of the individual estimates of apparent LPV clearance (CL/F) and LPV exposure 

(AUC0-12 h∙mg/L) showed no statistical difference at 12 weeks (p=0.89, p=0.95) and 48 

weeks (p=0.92, p=0.65), respectively. Results are displayed in Table 13.  
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Table 13. LPC concentrations below the Limit of Quantification (LoQ), individual apparent LPV clearance and LPV exposure (AUC0-12) versus virological and 

treatment outcomes at week 12 and 48.  

 

Patients with 

concentrations 

below LoQ (%) 

p -

value* 

CL (L/h) 

(median 

[IQR]) 

p-

value* 

AUC0-12 (h∙mg/L) 

(median [IQR]) 
p-value* 

Treatment outcome week 12 (n= 54), LTFU=4, Missing VL=4 

Failure (n=38) 28% 
0.41 

4.5 [1.9 – 11.9] 
0.89 

23.6 [10.2 – 62.8] 
0.95 

Success (n=16) 42% 4.3 [2.1 – 12.6] 28.4 [  9.0 – 61.8] 

Treatment outcome week 48 (n=58), LTFU =8, Missing VL=4 

Failure (n=17) 41% 
0.44 

3.2 [1.7 – 13.9] 
0.92 

25.5 [  8.7 – 69.0] 
0.65 

Success (n=33) 30% 3.5 [2.0 – 10.4] 31.4 [11.8 – 60.8] 

*compared to ‘Failure’ category, n= number of patients included, LoQ- Limit of Quantification, LPV – lopinavir 
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3.5 Discussion 

In this pharmacokinetic evaluation of LPV, severely malnourished children displayed 

significant pharmacokinetic variability, reduced bioavailability and consequently greater CL/F 

estimate of 0.6 L/h/kg in comparison to reports from other studies in non-malnourished 

children of LPV CL/F ranging from 0.2 to 0.4 L/h/kg (15,21,22). The findings are in keeping 

with the results from a recently published study conducted in Ugandan children, where there 

was a trend towards lower LPV bioavailability in malnourished compared to non-malnourished 

children. However in that study only 8% of the Ugandan study population was wasted and the 

evaluations were performed at least 14 days after ART initiation (23). In comparison, in this 

study, all patients were severely malnourished and exposures were measured on day 1 and 14 

of ART initiation. We have found that observed peak concentrations were slightly increased on 

day 14 compared to those predicted by the model (see Figure 10), however the difference could 

not be explained by any of the available explanatory factors collected in the study. The increase 

could be due to recovery of the children in regards to their clinical condition as well as their 

nutritional status. LPV in serum is highly protein bound to albumin and alpha-1-acid 

glycoprotein (AAG), changes in AAG following nutritional rehabilitation, which was not 

measured in this study could account for this finding. A similar under-predicted peak 

concentration for LPV was noted in the study of Ugandan children (15).  

 

Figure 10. Distributions of LPV exposure (AUC0-12, h∙mg/L) for individuals with treatment success (top, 

probability = 1) and treatment failure (bottom, probability = 0) at week 12 (left) and 48 (right) post ART initiation. 

Treatment failure were defined as: death or viral load > 1000 copies/mL and treatment success as: alive and viral 

load < 1000 copies/mL. The red line presents the binary logist regression model illustrating the realtionship 

between exposure and probability of treatment success. P-values presented in the graphic are greater than the 

significance level of 0.01, and therefore show that there is no statistically significant association between treatment 

success at week 12 and 48 and LPV exposure from day 1 and day14 of ART.
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LPV/rtv based treatment has been demonstrated to result in superior virologic 

suppression rates in children less than 3 years of age (24,25), and therefore remains part 

of the WHO recommended first line regimen in young children (26). LPV 

pharmacokinetics has been well described in non-malnourished children and has 

formed the basis for the development of the WHO weight band dosages for LPV that 

were used in this study (27). As the majority of young children requiring ART reside in 

countries where up to 42% of children are malnourished at ART initiation (28), using 

standard mg/kg dosing may result in sub-optimal drug concentrations in a significant 

proportion of children initiated on ART. The role of LPV dose adjustment to achieve 

therapeutic dose during the acute phase of malnutrition needs to be further evaluated.  

This study showed that FFM was superior to total body weight in describing 

variability around CL/F and Vd/F, which may be due to the relatively high FFM 

proportion of total weight. Initial weight gain in malnourished children especially if 

associated with stunting is predominately due to an increase in fat mass with lean body 

mass increasing later (29). The average time to ART initiation in the delayed arm was 

significantly longer (mean 6.2 vs. 23.7 days; p=0.0001). It is likely that a more 

prolonged delay in ART initiation is required for lean body weight to normalize. 

However delaying ART initiation comes at a potential risk of excess mortality and 

morbidity, (30) especially in children with advanced HIV disease. We failed to 

demonstrate that improved LPV exposure (AUC) during the acute phase of malnutrition 

predicted virologic failure or death at 12 and 48 weeks. However, sub-therapeutic 

plasma concentrations in children initiating ART early during nutritional recovery when 

the HIV viral load is high may result in archived mutations that can potentially affect 

long-term management. Dose adjustment of LPV may facilitate earlier ART initiation 

while achieving adequate LPV exposures although the rountine use of FFM to calculate 

doses in rountine practice is impractical. 

Therapeutic drug monitoring (TDM) in hair or blood samples to detect sub-

optimal drug concentrations has been used as a marker of virologic treatment failure 

and development of HIV drug resistance (31,32). In our study, neither the proportion of 

patients with LPV concentration below LoQ or estimates of apparent LPV clearance 

and LPV exposure (AUC) during the acute phase of malnutrition predicted virologic 

failure or death at 12 or 48 weeks. However, sub-therapeutic plasma concentrations at 

ART initiation when the HIV viral load is high may result in archived mutations that 

can potentially affect long-term management. In a paediatric study of LPV TDM from 
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samples collected between 10-80 weeks post ART initiation, sub-therapeutic LPV 

levels were linked with HIV drug resistance. The authors postulated that the sub-

therapeutic LPV levels were most likely a surrogate marker of prolonged poor 

adherence resulting in the evolution HIV drug resistance (32). The sampling in our 

study was performed soon after ART initiation and sub-therapeutic plasma levels were 

most likely a result of altered pharmacokinetics of LPV associated with malnutrition, 

the effect of FFM and other factors such as inflammatory processes related to high 

burden of HIV and other opportunistic infections that might affect metabolic pathways. 

The altered pharmacokinetics due to these factors may reverse following nutritional 

recovery, returning the LPV plasma level to their normal while poor adherence may 

not, accounting for the lack of association in our study. 

Mycobacterium Tuberculosis was a common diagnosis, requiring co-

administration of “super-boosted” LPV/rtv (LPV/rtv with additional ritonavir to 

achieve a ratio of 1:1) in rifampicin co-treated patients in line with WHO and South 

African National ART Guidelines (33). In our study population of severely 

malnourished children, the approach using “super-boosted” LPV/rtv in children on 

tuberculosis treatment resulted in similar LPV exposures to children without 

tuberculosis (34). A population pharmacokinetic model developed by Zhang et al. 

suggested that the recommend doses of LPV/rtv needed to be increased in malnourished 

children with and without concomitant rifampicin-based tuberculosis treatment. The 

model predicted the doses of “super-boosted” LPV/rtv needed to maintain LPV trough 

concentrations > 1mg/L in 95% of children. Children in the 3-5.9 kg weight band 

needed close to twice the dose per kilogram of body weight (LPV/rtv 22/22 mg/kg) 

compared to the 14-19.9 kg weight band (LPV/rtv 12/12 mg/kg) (21). The weight band 

dosage table used in our study achieved similar doses (LPV/rtv 20/25mg/kg for children 

between 3-5.9 kg and 11.7/12 mg/kg for children between 14-19.9 kg) however still 

resulted in lower LPV exposures . 

The estimated bioavailability of LPV was greatly reduced on days when no full 

pharmacokinetic sampling was undertaken (day 13, pre-dose), which is likely due to 

poor adherence or administration on these ‘non-observed’ days. All study patients 

remained in-patients between day 1 and day 14, the caregiver under the supervision of 

clinical staff administered ART. The poor palatability of LPV/rtv syrup due to the bitter 

taste often makes administration of this formulation difficult (35) and is the likely cause 

for this finding. Alternative formulations of LPV/rtv in young children have been 
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studied with variable success. Crushed LPV/rtv tablets do not result in adequate plasma 

levels (36,37), and while LPV/rtv “mini-pills” result in adequate plasma levels, the 

palatability of the formulation is still sub-optimal (38). A granule formulation with 

adequate taste masking is under development by Drugs for Neglected Diseases 

Initiative (DNDi) and in the future may result in a formulation with good palatability 

and tolerability (39). 

Weaknesses: The inability to detect effects of TB co-treatment, and timing of ART 

initiation may be due to lack of power to do so given the extreme variability 

encountered in the data. Further the variable adherence of the in-patient cohort despite 

verification of administration in hospital prescription charts was not anticipated. The 

design therefore did not allow definitive accounting for the effect of adherence on LPV 

variability. Adherence could also have potentially confounded the evaluation of timing 

of ART initiation (delayed ART) and TB co-treatment.  

3.6 Conclusions 

The timing of ART initiation or the use of super-boosted LPV/rtv in TB co-

infected patients did not affect LPV pharmacokinetics. Only FFM and cholesterol 

explained some variability in the pharmacokinetics of LPV in severely malnourished 

HIV-infected pediatric patients. As LPV pharmacokinetics was found to be highly 

variable and bioavailability greatly reduced, resulting in a greater CL/F estimate in 

comparison to other studies, doses of LPV/rtv may need to be adjusted in malnourished 

infants and young children initiating ART. 
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BRIDGING TEXT:  

In the literature review, the higher mortality associated with HIV-infected malnourished 

children compared to their uninfected counterparts was described. Although the mortality 

described in Chapter 2 was lower than that described in the literature for HIV-infected children 

with SAM, the mortality was higher than the WHO mortality norms for children with SAM. 

Majority of the mortality described occurred within the first 3 months following admission. 

The excess mortality is postulated to be related to bacterial infections on admission or acquired 

during hospitalization. In the following chapter the bacterial pathogens identified in this cohort 

of severely malnourished HIV-infected children is described and the relationship between the 

identification of bacterial pathogens and mortality is explored. 
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CHAPTER 4 

BACTERIAL INFECTIONS IN HIV-INFECTED CHILDREN ADMITTED 

WITH SEVERE ACUTE MALNUTRITION IN DURBAN, SOUTH AFRICA 
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Table 14. Admission cultures: comparison of 82 patients with positive vs negative cultures 
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Table 15. Hospital-acquired infections: description of Gram-negative organisms cultures 

 
  



 

67 

Table 16. Description of all Gram-positive organisms cultured 
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BRIDGING TEXT:  

South Africa is one of the 30 tuberculosis (TB) high burden countries, which collectively 

account for 85-89% of the global burden of TB disease. In addition to bacterial infections, we 

postulate that the excessive mortality described in the literature review and chapter 2 in severely 

malnourished HIV-infected children is due to a higher burden of TB disease. Childhood, 

malnutrition and HIV infection can independently increase the risk of TB disease, however few 

studies have described the cumulative risk of all three factors. In the following chapter we 

describe the frequency of both clinically diagnosed and culture confirmed cases of TB in 

severely malnourished children. 
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CHAPTER 5 

 TUBERCULOSIS IN HIV-INFECTED SOUTH AFRICAN CHILDREN WITH 

COMPLICATED SEVERE ACUTE MALNUTRITION 

Submitted to: International Journal of Tuberculosis and Lung Disease #IJTLD-10-16-0753. 
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5.1 Summary 

Setting: Academic tertiary referral hospital in Durban, South Africa 

Objective: To describe the incidence and diagnostic challenges of TB in HIV-infected children 

with severe acute malnutrition (SAM) 

Design: Post-hoc analysis of a randomised controlled trial that enrolled ART-naïve, HIV-

infected children with SAM. Trial records and hospital laboratory results were explored for 

clinical diagnoses and bacteriologically confirmed cases of TB. Negative binomial regression 

was used to explore associations with confirmed cases of TB, excluding cases where the clinical 

diagnosis was not supported by microbiological confirmation.  

Results: Of 82 children enrolled in the study, 21 (25.6%) were diagnosed with TB, with 

bacteriological confirmation in 8 cases. Sputum sampling (as opposed to gastric washings) was 

associated with an increased risk of subsequent diagnosis of TB (adjusted relative risk 1.134, 

95% CI 2.1%—26%). A culture-proven bacterial infection during the admission was associated 

with a reduced risk of TB (aRR 0.856, 0.748—0.979), which may reflect false negative 

microbiologic tests secondary to empiric broad spectrum antibiotics.  

Conclusion: TB is common in HIV-infected children with SAM. While microbiological 

confirmation of the diagnosis is feasible, empiric treatment remains common, possibly 
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influenced by suboptimal testing and false negative TB diagnostics. TB investigation should be 

integrated into the programmatic management of HIV and SAM.  

5.2 Introduction 

Tuberculosis (TB), HIV infection and severe acute malnutrition (SAM) are individually 

responsible for high levels of morbidity and mortality among children across sub-Saharan 

Africa. Research is ongoing into how these three interact, although the potency of the 

combination has been recognised for some time (1).  

Over 650,000 cases of paediatric TB occur annually in the 22 highest-burden countries 

(2), resulting in an estimated 140,000 annual deaths (3). Over 2.6 million children across the 

world are living with HIV, with 90% of these living in sub-Saharan Africa (4). HIV was 

responsible for 150,000 childhood deaths in 2014. SAM is responsible for as much as 10% of 

all global mortality in children aged <5 years (5), with severe wasting alone accounting for over 

500,000 deaths annually in this age group (6).  

In South Africa, over 36,000 cases of childhood TB occur annually, one quarter of which 

are believed to be HIV co-infected (7,8). HIV is responsible for 17% of all deaths in South 

African children aged under 5 years (8). One study found that 10% of children initiating 

antiretroviral therapy (ART) in rural South Africa also had SAM (9).  

While SAM combined with HIV has already been recognised as a challenging clinical 

entity, associated with increased mortality (10,11), the contribution of TB in this scenario is 

uncertain. Malnutrition is associated with increased mortality in paediatric TB (12), particularly 

with HIV co-infection (13). TB causes cachexia and wasting, and may itself be impacted by 

poor nutritional status (14,15). HIV is an independent risk factor for both TB and malnutrition, 

worsening the outcomes of either condition (10,16). A description of TB in a cohort of 

paediatric patients who all have the specific combination of both HIV and SAM has not yet 

been studied. A randomised controlled trial (Malnutrition and Antiretroviral Timing in Children 

with HIV, MATCH) assessing the clinical and pharmacokinetic responses to early versus 

delayed ART in HIV-infected children with SAM was conducted in Durban, South Africa (17). 

We present a post-hoc analysis of TB diagnoses in these patients.  

5.3 Study Population and Methods 

5.3.1 Setting 

King Edward VIII Hospital (KEH) has a 100-bed paediatric ward, including 10 nutritional 

rehabilitation beds, providing regional tertiary-level care.  

5.3.2 Recruitment and Eligibility 

All children presenting with SAM and newly diagnosed with HIV were eligible for 

inclusion in the trial, and randomised either to early (within ten days of admission) or delayed 
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(at four weeks or at protocol-defined nutritional recovery) ART (17). Recruitment was carried 

out between 2012 and 2014.  

SAM was defined as weight-for-height z score below -3 standard deviations from the 

World Health Organisation (WHO) mean or a mid-upper-arm circumference of <115mm, with 

or without bilateral oedema (18) and was managed according to the latest WHO guidelines 

(19).  

Patients were classified as bacteriologically confirmed TB (based on positive sputum 

smear microscopy, mycobacterial culture or nucleic acid amplification), clinically diagnosed 

(empirically treated) TB, or no TB, as per the WHO (20). A more detailed classification of 

clinically-diagnosed cases was not possible, as patients’ original files and radiographs were 

frequently unavailable.  

5.3.3 Data Collection 

We retrospectively searched the National Health Laboratory Service’s laboratory 

information management system for TB diagnostic test results from all patients in the MATCH 

trial, from the date of admission with SAM to any hospital in Durban, through to 1 month after 

transfer to KEH and enrolment in the study. We also recorded routine biochemical, 

haematological and immunological laboratory results from the day of admission. Clinical 

parameters and tuberculin skin test results at admission were not captured routinely, as children 

were only enrolled after admission and a positive HIV test.  

Investigations for pulmonary TB were performed on at least three samples of induced 

sputum or gastric washings, at the discretion of the treating clinician. Fluorescent microscopy 

was performed on sputum smears, followed by culture in mycobacterial growth indicator tubes. 

Specimens that were smear positive and cultures that flagged positive were further subjected to 

polymerase chain reaction by line-probe assay (LPA; MTBDRplus, Hain Lifescience, 

Germany). In-vitro drug sensitivity testing was performed for both first and second line anti-

tuberculosis drugs. The Xpert MTB-RIF platform (hereafter referred to as Xpert) was 

introduced in late 2013, replacing sputum smear microscopy.  

5.3.4 Statistical Analysis 

We present a descriptive analysis of all TB diagnoses in the MATCH study. TB-negative 

patients, bacteriologically-confirmed TB cases and clinically-diagnosed cases were compared 

using ANOVA (for continuously-distributed data) or chi-square (for categorical variables). In 

addition, we assessed associations between patient characteristics (including laboratory results, 

TB sampling method and ART strategy) and the diagnosis of TB using a negative binomial 

logistic regression model comparing children with and without a confirmed diagnosis of TB; 

empirically-treated children were excluded from this model, as were any children with missing 

data. We hypothesised that anaemia (Hb <10g/dL), leukocytosis (white cell count >12 x 109), 
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thrombocytosis (platelets >400 x 109) and hypoalbuminaemia (<25g/L) might, as surrogate 

markers of inflammation, be associated with a diagnosis of TB (ESR and CRP levels were 

infrequently measured, and therefore were not included in the model). Following univariate 

analysis, all variables were included in a fully-adjusted multivariate model. A parsimonious 

adjusted model was then reached via a backward stepwise approach, sequentially excluding 

variables whose p value was >0.1 and selecting a final model that minimised the Akaike 

information criterion. Results are presented as adjusted relative risks (aRR) with 95% 

confidence intervals (CI), and p values <0.05 were considered significant. All analyses were 

performed using SPSS version 22 (IBM).  

5.3.5 Ethics 

Written informed consent was obtained from the caregivers of all children enrolled in the 

MATCH study. The trial was approved by the Biomedical Research Ethics Committee of the 

University of KwaZulu-Natal and King Edward VIII Hospital.  

5.4 Results 

5.4.1 Descriptive Analysis 

We enrolled 82 children in the MATCH trial. Figure 11 outlines the recruitment and TB 

diagnostic process, while Table 17 outlines the patients’ baseline characteristics and sites of 

TB. The mean age at admission was 23 months, 46.3% (n = 38) were girls, the mean CD4 

percentage was 17.46% and 21.95% (n = 18) presented with oedematous malnutrition. The 

mean duration between initiation of TB treatment and ART was 16.4 days (SD 11.6). 

 

Figure 11. Recruitment and diagnostic process  
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Table 17. Baseline characteristics of the patients in this study 

 

Values are given as mean ± SD or n (%) as appropriate. P values are for a three-way comparison. 
Bacterial infection refers to any positive blood/sputum/urine culture for pathogenic bacteria 
within the first month of admission.  
*Both were smear positive but culture negative 
†Both were culture positive 

Seventy five children were investigated for TB and 21/82 (25.6%) were determined to 

have TB. Eight (10.9%) had bacteriologically confirmed pulmonary TB (one of whom died 

before the culture flagged positive) while thirteen were clinically diagnosed. Eight were treated 

empirically after admission, while five were on treatment at enrolment but had no positive TB 

results on record. All six culture-positive TB isolates were fully sensitive in vitro.  

62 patients had sputum samples, while the remaining 13 had gastric aspirates. The mean 

ages of those with sputum or gastric aspirate samples did not differ significantly (25 versus 21 

months, p = 0.7). No gastric aspirate samples tested positive for TB; two empirically-treated 

patients had had gastric aspirate samples tested. Xpert was employed in 45 patients, but was 

only positive in two, both of whom were subsequently culture positive. Of the 37 patients 

enrolled before Xpert was widely available, five had confirmed TB and seven were empirically 

treated, versus three confirmed and six empirically treated after Xpert was introduced 

(p=0.199). Thus, the introduction of Xpert did not appear to affect the rates of empiric treatment 

for TB in smear-negative patients, though it should be underlined that this study was carried 

out while local clinicians were still familiarising themselves with Xpert.  

One empirically-treated child was suspected of having TB meningitis clinically and on 

cerebrospinal fluid analysis (leukocytosis and elevated protein levels), but was TB culture 
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negative from all specimens. The remainder of those commenced on empiric treatment at our 

centre were suspected of having pulmonary TB. Prior to their admission to KEH, two children 

were on treatment for suspected pulmonary TB, two for suspected disseminated TB, and one 

for suspected abdominal TB.  

5.4.2 Regression Analysis 

Fifty-three children had sufficient data for inclusion in the multivariate analysis, including 

7 of those with proven TB (the eighth child, who was smear-positive but culture-negative, was 

excluded for lack of a full blood count result). Results of the regression analysis are presented 

in Table 18. While leukocytosis was associated with a slight increased risk of TB in the final 

model (aRR 1.81, 95% CI 1.067—1.308), thrombocytosis was unexpectedly associated with a 

reduced risk (aRR 0.868, 95% CI 0.774—0.974). The diagnosis of a culture-proven bacterial 

infection during the admission was associated with a reduced risk of TB (aRR 0.856, 0.748—

0.979). Sputum sampling (as opposed to gastric washings) was associated with a 13.4% 

increased risk of subsequent diagnosis of TB (95% CI 2.1%—26%). While allocation to the 

“delayed ART” group was associated with a 13.8% increased risk of TB in the full model, this 

association disappeared when the parsimonious model was created and it was omitted from the 

final model. There was a small reduction in risk for children with CD4 percentages between 

20—25% (aRR 0.864, 95% CI 0.765—0.976 with CD4 percentage >25% used as the reference 

category), but no other CD4 values were associated with either increased or decreased risk.  
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Table 18. Results of regression analysis. Data are presented as: (a) n (%); (b) median (IQR); (c) RR (95% CI) 
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5.5 Discussion 

In our prospective cohort of 82 HIV-infected South African children, admitted to a 

university teaching hospital for the management of complicated SAM, we found a 25.6% 

incidence of TB, with bacteriological confirmation in 38% of cases (n = 8/21).  

Children with HIV often present with paucibacillary TB disease with poor sensitivity on culture 

and Xpert compared to adults, difficult sample acquisition (particularly in the case of 

extrapulmonary TB and young children) and malnutrition is a component of most clinical 

diagnostic scoring systems, rendering these less reliable in a population of malnourished 

children (21). We found few associations between routine laboratory parameters 

(thrombocytosis, white blood cell monocytosis and high globulin fraction) and culture-proven 

TB. Ultimately our best regression model was still not a particularly good fit for the data, likely 

due to unmeasured confounders and a lack of clinical and radiological details, and the 

associations we identified were not strong enough to be useful in a predictive model. Further 

studies are required to identify biomarkers of active TB that are reliable in severely-

malnourished, HIV-infected children (22).  

In the regression model, sputum sampling was associated with a diagnosis of TB when 

compared with gastric aspirates, which is consistent with previous studies showing superior 

sensitivity of sputum sampling (23). Some of the other associations that we identified require a 

nuanced interpretation. The association of delayed ART and TB was seen in the fully adjusted 

model but not the final parsimonious model, and is not likely to be a true association, as all but 

one positive sputum sample were acquired during the first week of admission—i.e. early ART 

would not have prevented these diagnoses of TB. In addition, randomisation was stratified by 

TB status at enrolment. Possibly this finding indicates sampling bias by clinicians in this open-

label study. The strongest conclusion one could draw is that the lack of increased risk of TB 

following early ART assuages concerns regarding immune reconstitution inflammatory 

syndrome (IRIS) reactions in these children (although, of note, Bacille Calmette-Guérin IRIS 

did occur in one child in the early ART group; this child was not classified as having TB in our 

study).   

Culture-proven bacterial infection was associated with a 14.4% reduced risk of culture-

proven TB—not only is it exceedingly unlikely that bacterial infections are protective against 

mycobacterial infections, but multiple simultaneous opportunistic infections are in fact 

expected in severely immunosuppressed children. It is more likely that treatment for bacterial 

infections led to false-negative TB samples, or that treatment for TB resulted in false-negative 

bacterial cultures. Broad-spectrum antibacterials—empiric or otherwise— (including 

Tazobactem, amikacin, ciprofloxicillin and carbapenem) were frequently administered to the 

children in this study, as SAM is frequently associated with infections at time of presentation, 
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and hospital-acquired infections are also common in this patient group.(58) While the local 

formulary dictates that quinolones only be prescribed if indicated by antibiotic susceptibility 

profiles or on the advice of the infectious diseases service, aminoglycosides are frequently 

employed, as were carbepenems (24), both of which have activity against TB (25). We were 

unable to access the original charts for most patients, meaning that we could not correlate actual 

antibiotic prescriptions with the likelihood of a TB diagnosis. However, it is reasonable to 

assume that TB diagnoses could be masked by the treatment of other infections (or vice versa) 

in severely unwell children with HIV and SAM, or not considered when a child with SAM 

presents to hospital with a sepsis-like syndrome and therefore it would be advisable to include 

TB investigation as part of the standard admission workup in order to minimize the risk of false 

negatives in the acute phase of malnutrition management.  

This is, to our knowledge, the first study describing TB in children who all have both HIV 

and SAM. Looking beyond the multivariate model in a subset of patients, there were 13 

additional patients in this study who were empirically treated for TB. The true rate of TB in 

children with SAM and HIV remains unquantifiable as long as so many cases remain 

unconfirmed. Table 19 summarises a sample of studies of such populations (26,27): while the 

rate of confirmed TB in children with SAM appears to rise in parallel with increasing rates of 

HIV (allowing for local variation in baseline TB rates), rates of empiric treatment vary 

substantially. Thus, it is impossible to assess the separate contributions of HIV and SAM to the 

pathogenesis of TB in children, though Table 19 does suggest that HIV is a key risk factor for 

TB in SAM—with increasing numbers of malnourished children now having HIV as an 

underlying cause, it is important for clinicians to particularly consider TB in such cases. Our 

own study shows that, despite the inherent challenges, microbiological confirmation of 

suspected pulmonary TB is possible in severely malnourished children with HIV.  

Table 19. Examples of other studies of children admitted for the management of SAM in 

different sub-Saharan African settings 

These data suggest that, as rates of HIV increase, so too do rates of bacteriologically 

confirmed TB in children with SAM—however, rates of empiric treatment differ markedly 

between studies and confound accurate assessment 

 
(a) n (%)  
*51 with an AIDS-defining-illness, 14 with confirmed HIV. An additional 30 had suspected HIV 
but this was not confirmed (not included in this table) 
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Other studies in Africa have started with a diagnosis of TB and looked backwards for 

associations with malnutrition and/or HIV, usually finding strong and independent associations 

with both of these risk factors and TB mortality (12,13,28). The only other studies that we can 

find that began with malnourished children and looked for associations with TB were carried 

out in South Asia, where paediatric HIV prevalence is far lower, and differ in many important 

methodological factors from our study (29,30). One such study examined 405 severely 

malnourished Bangladeshi children with respiratory symptoms and radiographic pulmonary 

infiltrates: 7% had confirmed TB and a further 16% were treated based on clinical suspicion 

(30). HIV prevalence was not determined, but was known to be rare in that locale. While this 

study is important in raising awareness of TB mimicking acute pneumonia in children with 

SAM, the TB prevalence in a select population with radiologic changes will obviously be higher 

than the TB prevalence in malnourished children in general.  

Strengths of our study include prospective recruitment of patients and access to tertiary-

level diagnostic facilities. Limitations include the relatively small number of patients, missing 

data, practice changes during the course of the trial (e.g. the introduction of Xpert) and the 

single-centre setting, limiting the generalisability to other settings in sub-Saharan Africa and 

beyond. Due to the retrospective nature of the study, poor availability of patients’ original 

hospital files meant that we lacked data regarding clinical findings, radiographs and tuberculin 

skin tests, which would have been a useful addition to our analysis. We considered our two 

patients who were smear-positive but culture negative to have confirmed TB, in keeping with 

the WHO classification (20), but these may have been false positives due to non-tuberculous 

mycobacteria—equally, we considered patients who started treatment in other centres to be 

empirically-treated, when they may in fact have had a confirmed diagnosis which was not 

identifiable on the national laboratory online system.  

5.7 Conclusions 

TB is common in HIV-infected children with severe acute malnutrition. While 

microbiological confirmation of the diagnosis is feasible, empiric treatment remains common 

in this patient group, possibly influenced by suboptimal testing (gastric aspirates as opposed to 

induced sputum) and false negative TB diagnostics secondary to antibacterial therapy. Future 

studies should focus on diagnostic strategies that are sufficiently robust for this important, 

vulnerable population of children in resource-poor settings. With SAM being increasingly seen 

in conjunction with HIV in sub-Saharan Africa, it is important that TB diagnosis and treatment 

be integrated into the programmatic management of these conditions.  
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BRIDGING TEXT 

Delaying ART initiation until after nutritional recovery resulted in improved rates of WAZ 

and HAZ change in severely malnourished HIV-infected children (chapter 2). However, the 

proposed mechanism for this difference (altered lopinavir pharmacokinetics) was found not to 

be influenced by the delay in ART initiation (chapter 3). In the literature review we described 

the influence of intestinal microbiota on nutrition and propose an alternative mechanism for 

this difference. In the following chapter the influence of malnutrition and HIV infection on 

bacterial translocation, immune activation and immune exhaustion is explored. The effect of 

malnutrition on these factors, following ART initiation in severely malnourished and non-

malnourished HIV-infected children is further explored. 
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CHAPTER 6 

MALNUTRITION INCREASES MICROBIAL TRANSLOCATION, 

SYSTEMIC IMMUNE ACTIVATION AND IMMUNE EXHAUSTION AND 

IMPAIRS IMMUNE RECOVERY IN HIV-INFECTED CHILDREN 

Submitted to: AIDS Research and Human Retroviruses #AID-2016-0261. 

Muenchhoff M, Healy M, Singh R, Roidera J, Groll A, Kindra C, Sibaya T, Moonsamy A, 

McGregor C, Phan MQ, Palma A, Kloverpris H, Leslie A, Bobat R, LaRussa P, Ndung’u T, 

Goulder P, Sobieszczyk ME, Archary M. 

6.1 Abstract  

Objectives 

This study aimed to assess the impact of malnutrition on immune pathogenesis and treatment 

outcomes in HIV-infected children.  

Design 

We studied markers of microbial translocation (16sDNA), intestinal damage (iFABP), 

monocyte activation (sCD14), T-cell activation (CD38, HLA-DR) and immune exhaustion 

(PD1) cross-sectionally in a cohort of 32 HIV-infected and 15 HIV-uninfected malnourished 

children compared to 41 HIV-infected and 19 HIV-uninfected children with normal nutritional 

status. In the longitudinal part of this study we assess the effects of 48 weeks of antiretroviral 

therapy on these markers and investigated their association with different treatment outcomes 

in HIV-infected children. 

Methods 

Plasma levels of 16sDNA, iFABP and sCD14 were measured by quantitative real time PCR, 

ELISA and Luminex, respectively. T-cell phenotype markers were measured by 

flowcytometry. Multiple regression analysis was performed using Generalised Linear Models 

(GLMs) and the Least Absolute Shrinkage and Selection Operator (LASSO) approach for 

variable selection. 

Results 

Microbial translocation, T-cell activation and exhaustion were increased in HIV-infected and 

HIV-uninfected malnourished children compared to HIV-uninfected children with normal 

nutritional status. Malnutrition, age, microbial translocation, monocyte and CD8 T-cell 

activation were independently associated with decreased rates of CD4% immune recovery after 

48 weeks of ART. Microbial translocation, immune activation and exhaustion remained 

elevated despite viremic suppression after 48 weeks of antiretroviral therapy. 

Conclusions 

Malnutrition is associated with microbial translocation, immune activation, immune exhaustion 

and impaired immune recovery in HIV-infected children on ART. 
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6.2 Introduction 

Malnutrition was estimated to be the underlying cause for 45% of deaths in children less 

than five years of age in 2011 globally (1). The prevalence of malnutrition in HIV-infected 

children is as high as 40% making clinical management of this vulnerable population even more 

challenging (2,3). Co-occurrence of severe acute malnutrition (SAM) and HIV results in 

increased morbidity and mortality largely due to increased incidence and severity of concurrent 

infections (4–6). Immunological alterations such as systemic inflammation and impaired 

cellular immune responses have been attributed to malnutrition (7) that could explain this 

increased susceptibility to infection especially when exacerbated by HIV-infection, but the 

underlying mechanisms remain largely unresolved. 

Malnutrition is characterized by functional and structural alterations in the intestinal 

mucosa associated with chronic intestinal inflammation (8). Direct effects of protein 

malnutrition (9) and perturbations in the gut microbiome (10) that are only partially restored 

after nutritional interventions (11,12) have been proposed as a primary cause for persistent 

intestinal inflammation and epithelial damage. In HIV-infection breakdown of the intestinal 

barrier, depletion of gut-resident CD4+ T-cell populations and mucosal immune dysregulation 

result in microbial translocation that drives systemic immune activation (13). Chronic immune 

activation is a hallmark of disease progression in HIV-infected children and results in 

accelerated loss of CD4 T-cells, immune-dysregulation and immune exhaustion (14). 

It is not known whether SAM exacerbates the degree of microbial translocation, leading 

to increased immune activation and immune exhaustion in HIV-infected children and whether 

this is modulated by ART. We thus sought to describe and compare levels of microbial 

translocation, immune activation and exhaustion in a cohort of HIV-uninfected and HIV-

infected ART-naïve children presenting with SAM and after one year of ART. We hypothesize 

that (i) malnutrition increases microbial translocation, immune activation and immune 

exhaustion in HIV-infected and –uninfected children; (ii) malnutrition, microbial translocation 

and immune activation are associated with detrimental treatment outcome in HIV-infected 

children on ART. Data from this study may add to the currently limited knowledge guiding 

management of HIV and SAM and shed light on the extent of microbial translocation in this 

population and potential ways of curbing this process. 

6.2.1 Materials and methods 

6.2.1.1 Study subjects and procedures 

Study participants were recruited from pediatric clinics and wards at the Ithembalabantu 

Clinic, Umlazi, and the King Edward VIII Hospital, Durban, South Africa. We studied four 

different groups of children: (i) 32 ART-naïve HIV-infected children with severe acute 

malnourishment (HIV+SAM+); (ii) 41 ART-naïve HIV-infected children without SAM 

(HIV+SAM-); (iii) 15 HIV-uninfected children with SAM (HIV-SAM+); (iv) 19 HIV-



 

87 

uninfected children without SAM (HIV-SAM-). HIV+SAM+ children were recruited as part of 

the previously described MATCH cohort15. HIV-uninfected siblings from HIV+SAM- children 

were recruited for the HIV-SAM- control group. 

SAM was defined based on 2009 WHO criteria as presence of: (i) weight-for-height more than 

three SD below the median, (ii) mid-upper arm circumference < 115mm or (iii) the presence of 

bilateral lower extremity pitting edema of nutritional origin. The WHO anthro software package 

3.2.2 for SPSS (http://www.who.int/childgrowth/software) was used to calculate 

anthropometric z-scores.  

Management of SAM was initiated according to WHO recommendations. All children 

with SAM received antibiotics (Penicillin and Gentamicin) and antihelminthics (albendazole). 

HIV+SAM+ children additionally received Cotrimoxazole prophylaxis. All HIV-infected 

children were initiated on ART according to the current South African guidelines using a 

combination of abacavir and lamivudine plus either efavirenz or ritonavir boosted lopinavir. 

HIV+SAM+ children were initiated on ART after a median time of 11 days following 

hospitalization. Baseline blood samples were taken on the same day before the first dose of 

ART was given. HIV-positive children were followed up at week 12, 24 and 48. All children 

were screened for active Tuberculosis disease and if indicated treated according to national 

guidelines.  

Written informed consent was obtained from caregivers for all study participants and, 

additionally, assent to participate in the study was given directly by children in the appropriate 

age groups. The study was reviewed and approved by the University of KwaZulu-Natal Ethics 

Review Board, Columbia University Institutional Review Board and the Oxford Research 

Ethics Committee. 

6.2.1.2 CD4 count and viral load measurements 

Viral load levels were determined using the COBAS AmpliPrep/COBAS TaqMan HIV-1 

Test v2.0 by Roche. CD4+ T cell counts and percentage were measured by flow cytometry. 

6.2.1.3 Quantification of plasma biomarkers  

Plasma levels of sCD14 were quantified using a luminex kit (R&D systems, Minneapolis, 

MN) at a 100-fold dilution in duplicate as per manufacturer’s recommendations. Plasma 

concentrations of intestinal fatty acid-binding protein (iFABP) were quantified using an ELISA 

kit (R&D systems, Minneapolis, MN) in duplicate at a 1:10 dilution according to the 

manufacturer’s instructions. Results were expressed in pg/ml. 

6.2.1.4 Real-time PCR quantitation of 16S rDNA in plasma 

To minimize the risk of contamination blood samples were obtained using standard aseptic 

techniques following cleansing of the skin with 2% chlorhexidine/alcohol solution. 

Subsequently, all samples were handled in laminar flow cabinets under sterile conditions. Total 

DNA was extracted from 200μl plasma using the column-based QIAmp DNA mini kit 

http://www.who.int/childgrowth/software
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(Qiagen). 16S rDNA was amplified using the following published primers16: 5’- 

AGAGTTTGATCCTGGCTCAG -3’ (forward) and 5’- CTGCTGCCTCCCGTAGGAGT - 3’ 

(reverse). Each PCR comprised 3.5 mmol/μL MgCl2, 0.125 pmol/μL of each primer, 5 μL of 

SYBR Green I Master Mix (2X) (Roche), 2 μl of DNA, and water to 10 μL. Reactions were 

run in triplicate on a Roche LightCycler 480 version 1.5 as follows: 1 cycle at 95°C for 10min, 

followed by 45 cycles at 95°C for 30s, at 60°C for 30s, and at 72°C for 30s. A standard curve 

was created from serial dilutions of DH5α bacterial DNA containing known copy numbers of 

the template calculated by molecular weight as described previously17. Individual samples were 

then analyzed against the standard curve and 16s rDNA copy numbers per microliter of plasma 

were calculated.  

6.2.1.5 Surface phenotypic staining and flowcytometry 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll density gradient 

centrifugation and used for staining with fluorochrome-conjugated monoclonal antibodies 

against cell surface markers for T-cell activation, exhaustion and memory differentiation. 

Briefly, isolated PBMCs were washed in PBS and incubated with titrated concentrations of the 

following antibodies in a staining volume of 50ul: CD3-BV605 (BD), CD4-V450 (BD), CD8-

HV500 (BD), CD38-PECy7 (BD), CCR7-PE (R&D), HLA-DR-FITC (BD), CD45RA-

AlexaFluor700 (Biolegend) and PD1-APC (eBioscience). Near-infra red Live/dead marker 

(Invitrogen) was used to exclude non-viable cells. Fluorescence minus one (FMO) staining was 

used to determine the cut-off for PD1-high cells. After 20 minutes incubation at room 

temperature cells were washed twice in PBS and resuspended in PBS with 2% 

paraformaldehyde (PFA). Data was acquired on a LSR-II driven by FACS DiVa software (BD) 

and analyzed using FlowJo software v8.8.6 (Treestar, Ashland, OR). 

6.2.1.6 Statistical Analysis 

Baseline characteristics were compared between study groups using Wilcoxon rank sum 

tests. Spearman correlations were used to explore bivariate associations. Differences in 

mortality rates were calculated using Chi-Square tests. These statistical analyses were 

performed using GraphPad Prism version 6.0c (GraphPad Software Inc., La Jolla, CA, USA). 

Multiple regression analysis was used to assess associations between clinical and 

immunological covariates with CD4 T-cell immune activation in a Gaussian generalized linear 

model (GLM) with log link function.  

For the analysis of associations between baseline predictors and treatment outcomes a 

model with favorable properties in regards of model complexity and statistical inference is 

needed due to the relatively small sample size in relation to the number of regarded covariates. 

Moreover, because of a high degree of correlation between some of the co-variates the model 

should be able to handle a certain level of multicollinearity. We therefore used an approach for 

variable selection applying the Least Absolute Shrinkage and Selection Operator (LASSO) 
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principle on scaled covariates (18). Subsequently, on the set of covariates selected by LASSO 

an un-regularized conventional GLM was fitted in order to obtain un-shrinked coefficient 

estimates together with standard errors. For better comparison of coefficient estimates between 

the LASSO and GLM all covariates have been scaled. For the regression analysis of the binary 

outcome ‘W48 virologic suppression’ a binomial GLM with logit link function was used. For 

the continuous outcome ‘CD4% immune recovery’ a Gaussian GLM with log link function was 

chosen. ‘Virologic suppression’ was defined as viral load levels below limits of detection at the 

48week study visit. ‘Immune recovery of CD4%’ was defined as the difference of CD4% at the 

48week study visit and baseline. The statistical software R (R Development Core Team, 2014) 

was used for all computations applying the R-packages glm and glmnet (19). 

6.3 Results 

6.3.1 Baseline characteristics 

Clinical characteristics of each study groups are summarized in Supplementary Table 20. 

Among HIV-infected children, those with SAM were younger than their counterparts without 

SAM reflecting accelerated disease progression in this population that results in earlier clinical 

presentation. Children with SAM, regardless of HIV status, were generally stunted with low 

height for age z-scores (haz) and showed signs of mixed, i.e. chronic and acute, malnutrition as 

expressed in low weight for age (waz) combined with low weight for height z-scores (whz). 

HIV+SAM- children were mildly stunted with low haz scores, but normal waz and whz scores. 

Prevalence of active tuberculosis (TB) disease was higher in malnourished children with 15 

cases out of 32 HIV+SAM+ children and only 5 out of 41 HIV+SAM- children at baseline 

(p=0.0003). TB therapy was initiated as per current South African guidelines.  

Table 20. Clinical characteristics of study groups defined by HIV-status and severe acute 

malnutrition (SAM) at baseline.  

 

 
 
 
 
 
 
 
 
 
 
 
Median values with interquartile range or number of study subjects with percentage are shown for each 
clinical parameter by study group.  
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6.3.2 Malnourishment and HIV-infection have differential effects on microbial 

translocation, intestinal damage and monocyte activation 

Microbial translocation, as measured by levels of bacterial 16sDNA in plasma, was 

significantly increased in all groups of HIV-infected and malnourished children compared to 

healthy controls (Fig 12a). Children with SAM had higher plasma levels of iFABP, a marker 

of intestinal damage, compared to children without SAM, regardless of HIV status. The marker 

of monocyte activation and inflammation differed by HIV but not by SAM status: sCD14 levels 

were higher in the HIV-infected compared to HIV-uninfected group but SAM did not result in 

higher sCD14 in the HIV-infected group (Fig 12b,c). In HIV-infected children, high iFABP 

levels were associated with stunting (low height for age) and underweight (low weight for age) 

(Fig 12d). In the HIV+SAM- group, iFABP correlated with sCD14 and sCD14 inversely 

correlated with CD4% (Fig 12e).  
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Figure 12. Plasma biomarkers by study group. 

A-C: Plasma levels of 16sDNA (A), iFABP (B) and sCD14 (C) in children stratified by HIV-status and presence of severe acute malnutrition (SAM) at 

baseline. Open symbols indicate active tuberculosis disease; red symbols indicate children that passed away during the study period. Medians are shown as 

horizontal bars. Mann-Whitney test was used to determine statistical significance (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). D+E: Correlations 

between plasma markers and clinical parameters in all HIV-positive children (D) and HIV-positive children without SAM (E). Statistical significance was 

calculated using Spearman tests. 



 

92 

6.3.3 Immune activation is increased by malnutrition and HIV-infection 

We next investigated T-cell activation by measuring CD38 and HLA-DR expression in 

CD4+ and CD8+ T-cells. Levels of immune activation in the CD4+ and CD8+ T-cell 

compartment were highest in the HIV-infected study groups, but also significantly elevated in 

HIV-uninfected children with SAM compared to healthy controls (Fig 13a,b,c). In regression 

analysis SAM (β -coefficient=0.48, p-value=0.0083) and HIV-infection (β -coefficient=1.04, 

p-value<0.0001) were independently associated with increased CD4+ T-cell activation 

controlling for age, sex and TB-status (Supplementary Table 21). 
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Figure 13. T-cell activation by study group. 

A: Representative CD4+ T-cell immune activation FACS data from an HIV-positive child with severe acute malnutrition (HIV+SAM+, top) and a healthy 

control (HIV-SAM-, bottom). B+C: Immune activation of CD4+ and CD8+ T-cells in children stratified by HIV-status and nutritional state. Open symbols 

represent children with active tuberculosis disease; red symbols represent children that passed away during the study period. Mann-Whitney test (*p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001). D: Correlation between markers of microbial translocation and CD4 T-cell activation for all groups. E-F: Correlation 

between CD4+ T-cell activation and clinical parameters for all HIV-positive children. Spearman r. 
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Table 21: Effect of clinical and immunological covariates on CD4+ T cell activation 

Results are shown for multiple regression analysis with ‘CD4+ T cell activation’ as dependent 

variable and a set of clinical covariates. ‘HIV-infection’ and ‘SAM’ (severe acute malnutrition) 

are independently associated with higher levels of ‘CD4+ T cell activation’. 

 

CD4+ T-cell activation correlated with higher levels of 16sDNA and sCD14 (Fig 13d). In 

HIV-infected children, high levels of CD4+ T-cell activation were associated with stunting 

(low height for age) and underweight (low weight for age) (Fig 13e). T-cell activation, 

especially of CD4+ T-cells, showed strong correlations with clinical markers of disease 

progression (Fig 13f), highlighting the central role of systemic immune activation in the 

pathogenesis of HIV-infection. 

6.3.4 PD1 expression is increased in malnourished and HIV-infected children and 

associated with immune activation 

We next hypothesized that higher levels of immune activation in malnourished and HIV-

infected children would be associated with increased immune exhaustion and studied PD1 

expression, a marker of immune exhaustion (20). PD1 surface expression was increased in 

CD4+ and CD8+ T-cells in all malnourished and HIV-infected study groups (Fig 14a, b, c).  

Because PD1 expression is commonly higher in T-cells with a more terminally 

differentiated memory phenotype (21), we next assessed PD1 expression on different memory 

subsets. PD1 expression was highest in the CD4+ and CD8+ T effector memory populations 

(Tem) and similarly increased in malnourished and HIV-infected children compared to healthy 

controls (Fig. 14d, e). We observed strong correlations between T-cell activation and PD1 

expression (Fig 14f) reflecting the overlap in the regulation of cellular activation and expression 

of co-inhibitory molecules such as PD1.  
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Figure 14. PD1 expression by study group. 

A: CD8+ T-cell PD1 FACS data showing an FMO control (top) and a representative HIV+SAM+ sample (bottom). B+C: PD1 expression in CD4+ and CD8+ 

T-cells by study group. Open symbols indicate active TB disease; red symbols indicate children that passed away during the study period. Mann-Whitney test 

(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). D+E: PD1 expression on CD4 and CD8 T-cell memory subsets defined by CD45RA and CCR7 expression 

(T naive: CD45RA+CCR7+, T central memory: CD45RA-CCR7+, T effector memory: CD45RA-CCR7-, T effector memory RA: CD45RA+CCR7-). Mann-

Whitney test (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). F: Correlation between T-cell activation and PD1 expression. Spearman test 
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6.3.5 Severe acute malnutrition is associated with higher mortality in HIV-infected 

children starting ART 

All HIV-infected children were initiated on ART according to the current South African 

guidelines. During the 48week follow up period of this study, 5 out of 32 children in the 

HIV+SAM+ group and 1 out of 41 children in the HIV+SAM- group deceased despite optimal 

clinical care. The higher mortality rate of children with SAM was statistically significant 

(p=0.021, Chi-square test, data not shown) and independent of active TB disease. Excluding all 

TB cases from the analysis, 3 out of 17 children in the HIV+SAM+ group died compared to 0 

out of 36 children in the HIV+SAM- group (p=0.0047, Chi-square test). 

6.3.6 Malnutrition, microbial translocation and immune activation are associated with 

detrimental treatment outcome in children initiating ART 

We next evaluated if any clinical and immunological parameters at baseline were 

predictive of treatment outcomes in HIV-infected children after 48weeks of ART.  

For the 48 HIV-infected children who completed the follow up period with available data 

for all parameters at baseline we first assessed which variables were associated with virologic 

suppression at week 48. Because of the fairly large number of covariates compared to the 

relatively low number of cases studied here, we used the LASSO approach for variable 

selection with subsequent confirmation of the selected co-variates in a generalized linear model 

(GLM). Active TB disease and high levels of sCD14 and 16sDNA at baseline were 

independently associated with virologic failure at W48 (Table 22). 
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Table 22: Effect of clinical and immunological predictors on treatment outcomes. 

In the left panel, results are shown for analysis of the clinical outcome ‘W48 virologic suppression’ (i.e. viral load below detectable limits at the 48week study 

visit). LASSO selected three predictor variables, ‘active TB (tuberculosis) disease’, ‘sCD14’  and 16sDNA at baseline, to be negatively associated with 

successful viremic suppression out of a set of 14 predictor variables. These results of the LASSO were confirmed using ‘active TB disease’, ‘sCD14’ and 

‘16sDNA’ in a generalised linear model. In the right panel, results are shown for analysis of recovery of CD4% from baseline at week 48, i.e. the difference 

between CD4% at the week48 study visit and baseline. LASSO selected 8 predictors of which ‘sCD14’, ‘16sDNA’, ‘SAM’ (severe acute malnutrition), 

‘Age’, ‘CD8 T cell activation’ and ‘CD4% at baseline’ could be confirmed in a generalised linear model to be negatively associated with immune recovery at 

a statistically significant level. For better comparison of beta-coefficients, scaled data was used for all models.
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Subsequently we investigated the relationship of the clinical and immunological 

parameters at baseline with the rate of immune reconstitution as measured by recovery of 

CD4%. We here defined the rate of CD4% recovery, i.e. the difference of CD4% between the 

week 48 study visit and baseline, as the dependent variable. Out of the set of 14 predictor 

variables, 8 variables were selected by the LASSO approach. SAM, sCD14, 16sDNA, CD4% 

and CD8+ T-cell activation at baseline were associated with lower rates of immune recovery at 

a statistically significant level in the confirmatory GLM (Table 22). These results demonstrate 

a negative impact of SAM, microbial translocation and systemic immune activation on CD4% 

recovery in children initiated on ART. 

6.3.7 Microbial translocation persists at high levels, but immune activation and immune 

exhaustion are partially reduced after 48 weeks of ART 

We next investigated the effects of ART on microbial translocation, immune activation 

and immune exhaustion in children with viremic suppression at week 48. Levels of microbial 

translocation and iFABP remained elevated in HIV-infected children despite 48 weeks of ART 

(Fig 15a). Monocyte activation, however, as measured by plasma levels of sCD14, decreased 

significantly to levels similar to healthy controls.  

After 48 weeks of ART CD4+ and CD8+ T-cell activation in the central memory 

compartment (Fig 15b) and to a lesser degree in the effector memory compartment (data not 

shown) was decreased, but persisted at higher levels than in healthy controls. 

PD1 expression was significantly reduced (Fig 15c) and the decrease in PD1 expression was 

strongly correlated to the change of CD4+ T-cell activation (Fig 15d). The decrease in CD4+ 

T-cell activation was positively correlated with weight for age recovery in HIV-infected 

children after 48 weeks of ART (Fig 15e), highlighting the link between malnutrition and 

systemic immune activation. 
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Figure 15. Immune reconstitution in children with virologic suppression after 48weeks of antiretroviral therapy (ART). 

A: Reduction of sCD14 plasma levels in HIV-positive children after 48weeks of ART (blue) compared to baseline (red) and healthy controls (green). No 

change in levels of iFABP and 16sDNA. Mann-Whitney test for comparison with HIV-SAM- children and Wilcoxon test for paired data. B: Decrease of CD4 

and CD8 T cell activation in the central memory (Tcm) compartment, but persistently elevated levels compared to healthy controls after 48 weeks on ART. C: 

Reduced PD1 expression of CD4 and CD8 T effector memory (Tem) cells after 48 weeks of ART, but persistently elevated levels compared to healthy 

controls. D: Correlation between decrease in CD4 T cell activation and weight for age recovery. Correlation between decrease in CD4 T cell activation and 

CD4 PD1 expression. Spearman r
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6.4 Discussion 

While microbial translocation, immune activation and immune exhaustion have been 

identified as key drivers in the pathogenesis of HIV disease, their role in malnutrition remains 

unclear. We here show that childhood malnutrition is associated with increased microbial 

translocation, immune activation and immune exhaustion and has a negative impact on 

treatment outcome in children on ART.  

In our study, microbial translocation was not only increased in HIV-infected children as 

previously reported (22,23), but also in HIV-uninfected malnourished children. Childhood 

malnutrition leads to alterations of the intestinal microbiome, chronic gut inflammation and 

structural changes in the epithelium resulting in enteropathy with loss of intestinal barrier 

functions (7). We here show that plasma levels of iFABP, which is released by dying epithelial 

cells and used as a plasma marker of intestinal damage (24), were elevated in malnourished 

children independent of HIV-status indicating structural intestinal damage that predisposes to 

microbial translocation. 

Translocation of luminal bacterial products into the systemic circulation triggers immune 

activation (13). Bacterial lipopolysaccharide (LPS) activates monocytes by binding to CD14, a 

co-receptor of the TLR4 complex (25). Upon monocyte activation CD14 is shed from the cell 

and can be measured as a soluble marker of monocyte activation in the peripheral blood 

compartment. However, interpretations of sCD14 as an indirect marker of microbial 

translocation should be taken carefully as monocytes are also activated independent of LPS, 

e.g. directly by HIV-replication (26), and sCD14 is also secreted as an acute phase protein by 

hepatocytes (27). In this study, plasma levels of sCD14 were significantly elevated in HIV-

positive children consistent with previous reports (22), but not in HIV-negative malnourished 

children despite increased levels of microbial translocation in this group. Possibly, the degree 

of microbial translocation in this study group was not sufficient to trigger monocyte activation 

to levels significantly different to healthy controls. Furthermore, levels of sCD14 were 

markedly reduced in HIV-infected children after 48 weeks of ART despite ongoing microbial 

translocation consistent with a previous study of HIV-infected children (28). Taken together 

the discrepancies between markers of microbial translocation and sCD14 indicate that 

monocyte activation as measured by sCD14 is not solely dependent on microbial translocation, 

but is rather part of a complex cascade of generalized hyper-activation of the innate immune 

system in chronic HIV-infection. 

In this study T-cell activation was increased independently by HIV-infection and 

malnutrition. In pediatric HIV-infection chronic T-cell activation is a key component of 

systemic immune activation and plays a central role in HIV-pathogenesis (14). Consistent with 

previous reports (22) we observed increased levels of T-cell activation in HIV-infected children 

that correlated with markers of disease progression, microbial translocation and monocyte 
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activation. Earlier studies of malnourished children without apparent infections reported 

activation of the innate immune system with elevated leukocyte counts and increased acute 

phase responses7. We here show that T-cell immune activation is also increased in HIV-

uninfected malnourished children and confirmed an independent effect of SAM on CD4+ T-

cell activation controlling for HIV-infection, age, sex and TB-status in a multivariate analysis. 

Furthermore, the decrease in immune activation was strongly correlated with weight gains in 

children on ART highlighting the link between malnutrition and systemic immune activation. 

Taken together, these data show that increased T-cell immune activation forms part of the 

complex immunological alterations in malnutrition. 

Studies of lymphocyte function in malnourished children consistently showed deficits in 

cellular immunity such as reduced proliferative responses to PHA stimulation (29) and 

impaired cytokine production upon in vitro stimulation (30–33). These functional deficits 

resemble the effects of immune exhaustion on T-cell function as previously described in studies 

of chronic viral infections (LCMV, HIV) and cancer (34). We therefore hypothesized that the 

alterations in T-cell function observed in malnourished children are associated with immune 

exhaustion and measured expression levels of PD1, a marker of immune exhaustion (20,35). 

PD1 expression on T-cells was increased in malnourished HIV-uninfected children to levels 

similar to HIV-infected children. PD1 levels strongly correlated with T-cell activation at 

baseline and decreased in parallel with immune activation in children on ART suggesting that 

immune exhaustion is driven by immune activation as previously hypothesized (36,37). T-cell 

activation and PD1 expression was significantly reduced in children on ART, but persisted at 

higher levels than in HIV-uninfected subjects as reported in adults (38–40).  

In the prospective part of this study we evaluated the impact of malnutrition, microbial 

translocation and immune activation on treatment outcomes in HIV-positive children initiated 

on ART. Consistent with previous reports (4,5), SAM at baseline was highly predictive of all-

cause mortality in children on ART. Monocyte activation, microbial translocation and active 

TB disease were independently correlated with viremic failure at 48 weeks of ART. Monocyte 

activation, microbial translocation, malnutrition, age and CD8+ T-cell activation at baseline 

independently had negative effects on immune recovery. These findings are consistent with 

previous studies in HIV-infected adults that found high levels of T-cell activation (41) and 

microbial translocation (42,43) to be associated with poor immune recovery. 

Our study has a number of important limitations: First, there are considerable age 

differences between the study groups. This might affect the levels of biomarkers such as iFABP 

that have been reported to be elevated in early life (28,44). These results should therefore be 

interpreted carefully and be confirmed in further studies of malnourished infants and children. 

Second, there is a high degree of comorbidities such as active TB disease in the group of 

malnourished HIV-infected children with potential impact on the assessed biomarkers. Third, 
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in the prospective part of the study the number of participants with available data was relatively 

low and hence we only followed an exploratory, hypothesis building approach in our analysis. 

These results should be validated in larger cohorts of malnourished HIV-infected children. 

Finally, due to the observational character of this study we can only describe associations. 

Causalities between malnutrition, microbial translocation and immune activation could be 

studied further in animal models. 

In summary, we demonstrate that childhood malnutrition is associated with increased 

microbial translocation, immune activation and immune exhaustion with a negative impact on 

immune recovery in HIV-infected children on ART. Taken together these findings imply that 

microbial translocation, immune activation and immune exhaustion are viable targets for 

additional interventions in malnourished and HIV-infected children. 
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CHAPTER 7  

SYNTHESIS 

7.1 Introduction 

Improving child health is a global priority and is encompassed in the Millennium 

Development Goals. One of these goals was a 2/3 reduction in childhood mortality by 2015 

(59). Despite gains in achieving these goals, low and middle income countries (LAMIC) have 

lagged behind due to the impact of poverty, food insecurity and infectious diseases particularly 

Human Immunodeficiency Virus (HIV) and Mycobacterium Tuberculosis (TB) on the health 

of children (60–64). 

Africa and South-east Asia are the regions where the burden of malnutrition and infectious 

diseases meet, resulting in a vicious cycle (8). Malnutrition results in alterations in immune 

function resulting in children being more susceptible to infectious diseases (65,66). Conversely, 

infectious diseases result in an alteration in the biological functions increasing the risk of 

childhood malnutrition (67). Both these disease entities occur on the backdrop of a contributing 

social milieu of poverty and food insecurity (13,52).  

Preventative strategies directed against decreasing the incidence of paediatric HIV and 

malnutrition have resulted in decreasing these burdens and need to be strengthened to result in 

further reductions (2). However, paediatric malnutrition and HIV remain as problems faced by 

health-care workers in LAMIC. In a review of childhood in-patient mortality in South Africa, 

despite reductions in the mortality of hospitalized children, malnutrition and HIV remain major 

contributing factors (68). The over-arching aim of this thesis and the papers presented there-in, 

is to provide evidence to support the development of guidelines for the management of HIV-

infected severely malnourished children. Further, to identify areas of future research for 

improving the clinical management of these children.   

7.2 Key aspects of the main findings 

This randomised controlled clinical trial comparing the treatment outcomes of severely 

malnourished HIV-infected children initiating antiretroviral treatment (ART) either during the 

acute phase of malnutrition (early arm) or following nutritional recovery (delayed arm) 

supported the null hypothesis. At 48 week there was no significant difference by trial arm, 

related to the key treatment outcomes (mortality and immunologic, virologic and 

anthropometric responses) as identified in the primary and secondary objective. 

7.2.1 Key findings at baseline and during admission 

In this cohort of severely malnourished HIV-infected children blood cultures performed 

on admission had a relatively low yield despite laboratory evidence suggesting the presence of 

infection. This was postulated to be most likely due to pre-hospital administration of broad-
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spectrum antibiotics. Urine cultures had the highest bacterial–culture yield. TB was also a 

common clinical and culture-confirmed diagnosis. Induced sputum proved to have a higher 

yield as compared to gastric aspirates for culture-confirmed TB. None of the routine laboratory 

parameters performed predicted culture-confirmed TB cases. High rates of hospital-acquired 

infections (HAIs), especially with extended spectrum beta-lactamase (ESBL) producing Gram-

negative bacteria were described. 

Severely malnourished children had higher levels of microbial translocation, T cell 

activation and exhaustion compared to the non-malnourished children. 

LPV pharmacokinetics was highly variable with lower bioavailability compared to previous 

studies conducted in non-malnourished and moderately malnourished children. This variability 

was not affected by the timing of ART initiation or TB co-treatment with “super boosted” 

Lopinavir/ritonavir (LPV/rtv). Fat-free mass (FFM) was found to be the only factor that 

affected the variability of LPV 

7.2.2 Key findings during longitudinal follow-up 

Using a multiple mixed effects linear regression model, the change in VL, height for age 

Z-score (HAZ) and weight for age Z-score (WAZ) favored the delayed arm. Most deaths 

occured in the first 3 months following enrollment. Although Immune reconstitution 

inflammatory syndrome (IRIS) was common, it did not result in death or ART interruption. 

The most common IRIS phenomenon was BCG IRIS, followed by dermatological IRIS 

conditions. Adverse drug reactions were uncommon, and again did not result in death or ART 

interruption. 

7.2.3 Key outcomes at week 48 

Delaying ART initiation to after 14 days from admission and following nutritional 

improvement did not result in a statistically significant difference in immune, virologic and 

anthropometric responses, nor in mortality compared to early ART initiation even after 

adjusting for age, gender, WHO immune stage, TB and baseline laboratory parameters. 

Treatment success (Viral load (VL) <1000 copies/ml) or treatment failure (death or VL >1000 

copies/ml) was found to be not influenced by lopinavir (LPV) pharmacokinetics (LPV 

exposures and levels below the limits of quantification) performed during the first 14 days 

following ART initiation. Patients with a bacterial pathogen isolated during admission had a 

trend towards higher mortality at 48 weeks. Despite 12 months on ART, levels of microbial 

translocation, immune activation and exhaustion remained persistently high. Immune recovery 

was independently affected by malnutrition, age, microbial translocation, monocyte and CD8 

T cell activation. 
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7.2.4 Strengths and weaknesses 

As a randomized controlled trial, many of the potential confounding factors were equally 

distributed between the two arms as seen in the baseline characteristics (chapter 2, table 8).  

The study was powered to detect a mean difference of 0.5 WAZ score following nutritional 

recovery between the two study arms. Both arms of the study had a significant improvement in 

the WAZ by 48 weeks, thus with the study sample size the difference observed between the 

study arms was less than that projected and did not reach statistical significance. However it 

could be argued that a smaller difference even if statistically significant would not have been 

clinically relevant and alter clinical practice. 

The loss to follow up (LTFU) potentially may have affected the ability of the study to 

detect a statistically significant difference in the primary outcome. Although every effort was 

made to keep in contact with parents and caregivers, in this vulnerable peri-urban population 

movement of patients due to economic and social reasons was a major factor determining 

LTFU. The sample size calculation did underestimate the numbers of patients lost to follow up. 

The study did identify a non-significant difference in LTFU between the arms, which is a 

potential area requiring a qualitative assessment of the impact of ART timing on 

parent/caregiver understanding and acceptance of treatment plans and rates of LTFU.  

In the pharmacokinetic evaluation, as per the study protocol, adherence to LPV during 

hospitalization on non-assessment days was determined by in-patient prescription chart review. 

In the evaluation of LPV pharmacokinetics, the LPV exposures were found to be lower during 

the non-assessment days. The general narrative following discussion with nursing staff at the 

hospital was that although LPV/rtv was administered, it was difficult for staff to determine the 

volume actually ingested due to the small volumes and the poor palatability 

7.2.5 Generalizability  

The study population is generalizable to other peri-urban populations in Africa, with 

overall high rates of poverty, food insecurity and burden of infectious diseases. The study site 

is not in a malaria endemic region and therefore the influence of malaria on the mortality and 

anthropometric outcomes cannot be predicted.  

Majority of the study population was of black African ethnic decent and HIV subtype C 

predominates in KwaZulu-Natal . The generalizability of the study findings to other ethnic 

groups and regions with other HIV subtypes requires further evaluation. 

7.3 Discussion 

The results presented in this thesis have both added to the existing knowledge and provided 

new insights into the ART management of severely malnourished HIV-infected children. 

The primary research question was to determine the optimal timing of ART initiation in 

severely malnourished HIV-infected children. Two studies were identified in the literature 
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review (excluding the unpublished study due to inability to evaluate the study findings) 

addressing this research question. 

The effect of ART timing on growth responses was assessed by Kim et al when comparing 

ART initiation to no ART initiation within 21 days post admission to a nutrition program (23). 

The study demonstrated improved growth rates, WHZ scores at 24 weeks and reduced time to 

nutritional recovery in children who had initiated on ART within 21 days, However in the 

comparator cohort only 52% (44/85) of the patients had initiated ART and may account for the 

relatively poorer growth responses (WHZ -0.46 +/-1.4) in the comparator cohort at 24 weeks. 

In results described in chapter 2, whilst there was no difference in anthropometric response 

(WHZ scores) between the early and delayed arms at 48 weeks, the growth rates (change in 

WAZ and HAZ) favored the delayed arm. Overall, while children in both arms eventually 

reached similar WHZ score at week 48, the rate of gain was greater in the delayed arm. 

Therefore there is benefit in delaying ART initiation until 14 days following the start of 

nutritional rehabilitation. A similar effect was seen with virologic responses at 48 weeks and 

the change in VL. 

In the study by Njuguna I.N et al (only 32% of patients were classified as malnourished) 

the effect of urgent ART  (mean time to ART initiation=1 day, IQR 1.1) versus post-

stabilization ART (mean time to ART initiation=8 days, IQR 7.11) had no effect on mortality 

at 24 weeks (25). A similar effect on mortality was reported by Kim et.al (23). Interestingly in 

the study by Kim et al, the findings are similar to the lack of effect ART timing has on mortality 

as described in chapter 2. From the current evidence, ART timing has no impact on mortality 

at 24 or 48 weeks. 

LPV pharmacokinetics was not affected by the timing of ART initiation; however it was 

influenced by FFM. FFM is a measure of body composition, which is made up of the lean body 

mass (LBM), bone mass, solid organs and water. In severely malnourished children, especially 

if associated with stunting, much of the initial weight gain following nutritional recovery is due 

to an increase in the fat mass with less LBM gained (69). Delaying ART initiation for an 

improvement in the FFM, would likely result in unacceptable delays in ART initiation. 

There are also several practical considerations in routine clinical practice that influence 

timing of ART initiation. Delays in pre–test counseling of parents/caregivers, delays in getting 

HIV diagnostic test results especially for a young child requiring an HIV DNA PCR and delays 

in performing post–test counseling, inherently delay ART initiation of in–hospital patients. 

Difficulties in administering medication to children is of particular concern, esp when the 

formulations have poor palatability, require more frequent dosing and are not formulated as fix 

dose combinations. 
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LPV pharmacokinetics has been well described in non-malnourished children (37,70–72). 

In a cohort of Ugandan children (48% of whom where malnourished) lower LPV exposures 

were described (30). In contrast, the pharmacokinetics of LPV (Cl and AUC) in this cohort of 

severely malnourished children described in chapter 3, was far lower than previously described. 

Further, delaying ART initiation to after 14 days of nutritional rehabilitation and evidence of 

nutritional recovery did not alter the LPV variability. Therefore even if ART initiation is 

delayed, therapeutic drug monitoring (TDM) and/or dose adjustment is required to achieve 

adequate LPV exposures. Dose adjustment of antiretroviral drugs is part of standard 

pharmacology practice in patients with hepatic and renal dysfunction (73) due to alterations in 

normal physiology. Severely malnourished children have similar physiological alterations 

therefore the use of TDM and dose adjustment requires further evaluation. 

 

 

 

 

Evaluation of “super-boosted” LPV/rtv in non-malnourished TB co-infected children has 

been previously studied (72,74). In this cohort of severely malnourished children, “super-

boosted” LPV/rtv did not affect LPV variability; however, it did result in lower LPV exposures. 

Therefore TDM and dose adjustment should be further evaluated. 

 

 

 

 

Severely malnourished HIV-infected children are susceptible to HAIs particularly gram-

negative organisms. Often these patients are nursed in general paediatric wards. There are no 

current Infectious Prevention and Control (IPC) policies that specifically speak to additional 

measures in severely malnourished children. IPC policies used in other high-risk category 

patients to prevent HAIs should be further evaluated.  

Induced sputum rather than gastric aspirate was more likely to be culture positive for TB. 

The advantage of sputum induction is that it can be conducted as an outpatient and does not 

require a nasogastric tube insertion (75,76).  

In clinical teaching, we often cite thrombocytosis, white blood cell monocytosis and high 

globulin fraction as supporting evidence of TB based on historical/anecdotal experience (77–

Recommendation 

HIV-infected children admitted with SAM can safely initiate 

ART after 14 days of nutritional rehabilitation 

Recommendation 

Therapeutic drug monitoring and/or dose adjustments of 

LPV/rtv should be further evaluated in severely malnourished 

HIV-infected children  

Recommendation 

“Super-boosted” LPV/rtv in TB co-infected children severely 

malnourished HIV-infected children is supported, however 

TDM and dose adjustment should be further evaluated  
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79). In this cohort of patients these were found not to have a strong prediction of culture-

confirmed TB. HIV and other infections may influence these traditional makers of TB infection 

in children. There is a need for further research evaluating other biomarkers and TB diagnostic 

tests including urinary LAM (80) in these children. Children with SAM have a high burden of 

TB, either as a precipitating event or due to increased susceptibility to TB infection. Early 

recognition and treatment of adult patients with TB together with evaluation and prophylaxis 

in exposed children should be a priority. 

The long-term impact of microbial translocation, immune activation and exhaustion in 

malnourished children needs further evaluation. Adult studies have linked these factors with 

cardiovascular risk (40). 

 

 

 

 

 

 

7.4 Conclusion 

This thesis has added to current knowledge and has provided new in-sights into the 

management of severely malnourished HIV-infected children. Delaying ART initiation to at 

least 14 days after starting nutritional support was associated with improved rates of clinical 

improvement (changes in WAZ and HAZ) and decrease in viral load. However this delay did 

not improve LPV exposures. Therapeutic drug monitoring and dose adjustment of LPV during 

nutritional recovery should be further evaluated. These results can be used to inform changes 

in clinical practice and national and international guidelines for the management of severely 

malnourished HIV-infected children.   

Clinical Recommendations 

Severely malnourished HIV-infected children are at high-risk 

of HAIs and require additional infection prevention and control 

practices 

 

Induced sputum should be used for TB specimen collection 

Future Research Gaps  

Health systems and Social determinates resulting in delayed access to ART care  

TDM and dose adjustments of LPV during nutritional rehabilitation  

INH prophylaxis in children with SAM initiating ART 

Effect of prebiotics or probiotics on bacterial translocation and immune activation  
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APPENDIX 1: GUIDELINES FOR THE INPATIENT TREATMENT OF 

SEVERELY MALNOURISHED CHILDREN 

Ashworth A, Khanum S, Jackson A, Scholfield C. Guidelines for the inpatient treatment of 

severely malnourish children. World Health Organisation, 2003. Available on: 

http://www.who.int/nutrition/publications/guide_inpatient_text.pdf [Accessed on 16 

November 2016]. 

 
  

http://www.who.int/nutrition/publications/guide_inpatient_text.pdf
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APPENDIX 2: KING EDWARD VIII HOSPITAL PEM PROTOCOL 

 

 

KCAL KILOJOULES PROTEIN CARBOHYDRATE FAT

67 280 1.8g 7g 3.75g

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
37 1 56 56 1.5 84 74 2 111

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hrs
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hrs
2 15ml 120ml 2 20ml 160 ml 2 30ml 240ml
3 20ml 160ml      3 30ml 250 ml 3 45ml 360 ml
4 30ml 240ml 4 40ml 320 ml 4 55ml 440 ml

5 35ml 278ml 5 50ml 400 ml 5 70ml 556 ml
6 40ml 320ml 6 65ml 520 ml 6 85ml 680 ml
7 50ml 400ml  7 75ml 600ml 7 100ml 800ml
8 55ml 440 ml 8 85ml 680ml 8 110ml 880ml 
9 65ml 520ml 9 95ml 760ml 9 125ml 1000ml 

10 70ml 556ml 10 105ml 840ml 10 140ml 1120ml 

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg

93 2.5 139 112 3 167

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
2 35ml 278 ml 2 40ml 320 ml 
3 50ml 400 ml 3 65ml 520 ml
4 70ml 556 ml 4 85ml 680 ml

5 90ml 720 ml 5 105ml 840 ml
6 105ml 840 ml 6 125ml 1000 ml
7 120ml 960ml 7 145ml 1160ml
8 140ml 1120ml 8 170ml 1360ml 
9 155ml 1240ml 9 190ml 1520ml 

10 175ml 1400ml 10 210ml 1680ml 

Similac Alimentum

STEP 2 

Similac Alimentum
Day 3 - 4

STEP 3

Similac Alimentum
Day 1 - 2 Day 5 - 6 

KEH PEM PROTOCOL                                                                                                                                                                                      PROTOCOL 1                                               

SIMILAC ALIMENTUM                                                                                                                                                                                                                                              

FOR PEDIATRICS 0 - 12 MONTHS                          

DESCRIPTION OF FEED: A nutritionally complete hypoallergenic infant formula that is lactose free 

CONTENT OF FEED PER 100ML

STEP 1

Day 6 - 7
Similac Alimentum

STEP 4 STEP 5 (Catch up)

Day 7 +
Similac Alimentum

KCAL KILOJOULES PROTEIN CARBOHYDRATE FAT

70 293 2.1g g g

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
33 1 48 50 1.5 72 67 2 95

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hrs
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hrs
2 15ml 120ml 2 20ml 160 ml 2 25ml 200 ml 
3 20ml 160ml      3 30ml 240 ml 3 35ml 280 ml
4 25ml 190ml 4 35ml 280 ml 4 50ml 400 ml
5 30ml 240ml 5 45ml 360 ml 5 60ml 480 ml
6 35ml 280ml 6 55ml 440 ml 6 70ml 560 ml
7 40ml 320ml  7 65ml 520ml 7 85ml 680ml
8 50ml 400ml 8 70ml 560ml 8 95ml 760ml 
9 55ml 440ml 9 80ml 640ml 9 110ml 880ml 

10 60ml 480ml 10 90ml 720ml 10 120ml 960ml 

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
83 2.5 119 100 3 143

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
2 30ml 240 ml 2 35ml 280 ml 
3 45ml 360 ml 3 55ml 440 ml
4 60ml 480 ml 4 70ml 560 ml
5 75ml 600 ml 5 90ml 720 ml
6 90ml 720 ml 6 110ml 880 ml
7 105ml 840ml 7 125ml 1000ml
8 120ml 960ml 8 145ml 1160ml 
9 135ml 1080ml 9 160ml 1280ml 

10 150ml 1200ml 10 180ml 1440ml 

Alfare
Day 1 - 2 Day 5 - 6 

STEP 1

Alfare 

STEP 2 

Alfare
Day 3 - 4

KEH PEM PROTOCOL                                                                                                                                                                                      PROTOCOL 2                                               

ALFARE                                                                                                                                                                                                                                                         

FOR PEDIATRICS 0 - 12 MONTHS                          

DESCRIPTION OF FEED: A nutritionally complete semi elemental feed that is lactose and sucrose free  

CONTENT OF FEED PER 100ML

STEP 3

Day 6 - 7
Alfare 

STEP 4 STEP 5 (Catch up)

Day 7 +
Similac Alimentum

KCAL KILOJOULES PROTEIN CARBOHYDRATE FAT

100 415 2.6g 10.3g 5.4g

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
77 2 77 100 2.6 100 116 3 116

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hrs
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hrs
2 20 ml 160 ml 2 25ml 200 ml 2 30ml 240 ml 
3 30 ml 240 ml 3 40ml 320 ml 3 45ml 360 ml
4 40 ml 320 ml 4 50ml 400 ml 4 60ml 480 ml
5 50 ml 400 ml 5 65ml 520 ml 5 70ml 560 ml
6 60 ml 480 ml 6 75ml 600 ml 6 90ml 720 ml
7 70 ml 560 ml 7 90ml 720 ml 7 100ml 800 ml
8 80 ml 640 ml 8 100ml 800 ml 8 115ml 920 ml 
9 90ml 720 ml 9 115ml 920 ml 9 130ml 1040 ml 

10 95ml 760 ml 10 125ml 1000ml 10 145ml 1160 ml 

Infantrini
Day 5 - 6 Day 7+

STEP 3

Infantrini

STEP 4 

Infantrini
Day 6 - 7 

KEH PEM PROTOCOL                                                                                                                                                                                      PROTOCOL 3                                               

INFANTRINI                                                                                                                                                                                                                                                     

FOR PEDIATRICS 0 - 18 MONTHS                          

DESCRIPTION OF FEED: A nutritionally complete energy dense feed, suitable for catch up growth

CONTENT OF FEED PER 100ML

STEP 5
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KCAL KILOJOULES PROTEIN CARBOHYDRATE FAT

100 420 2.8g 11g 5g

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
33 1 33 50 1.5 50 67 2 67

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hrs
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hrs
5 20ml 160ml 5 30ml 240 ml 5 40ml 320 ml 
6 25ml 200ml      6 40ml 320 ml 6 50ml 400 ml
7 30ml 240ml 7 45ml 360 ml 7 60ml 480 ml

8 35ml 280ml 8 50ml 400 ml 8 65ml 520 ml
9 38ml 304ml 9 55ml 440 ml 9 75ml 600 ml

10 40ml 333ml  10 65ml 520ml 10 85ml 680ml
11 45ml 360ml 11 70ml 560ml 11 90ml 720ml 
12 50ml 400ml 12 75ml 600ml 12 100ml 800ml 
13 55ml 440ml 13 80ml 640ml 13 110ml 880ml 

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg

83 2.5 83 100 3 100

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
5 50ml 400 ml 5 65ml 520 ml 
6 60ml 480 ml 6 75ml 600 ml
7 70ml 560 ml 7 90ml 720 ml

8 85ml 680 ml 8 100ml 800 ml
9 95ml 760 ml 9 115ml 920 ml

10 105ml 840ml 10 125ml 1000ml
11 115ml 920ml 11 140ml 1120ml 
12 125ml 1000ml 12 150ml 1200ml 
13 135ml 1080ml 13 160ml 1280ml 

Pediasure Fibre 

STEP 4 STEP 5 (Catch up)

Day 7 +
Pediasure Fibre

KEH PEM PROTOCOL                                                                                                                                                                                      PROTOCOL 4                                               

PEDIASURE FIBRE                                                                                                                                                                                                                                                

FOR PEDIATRICS > 1 YEAR                          

DESCRIPTION OF FEED: A nutritionally complete lactose free feed that contains fibre 

CONTENT OF FEED PER 100ML

Day 6 - 7

STEP 3

Pediasure Fibre 
Day 1 - 2 Day 5 - 6 

STEP 1

Pediasure Fibre 

STEP 2 

Pediasure Fibre 
Day 3 - 4

KCAL KILOJOULES PROTEIN CARBOHYDRATE FAT

100 420 3g 13.8g 3.9g

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
33 1 33 50 1.5 50 67 2 67

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hrs
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hrs
5 20ml 160ml 5 30ml 240 ml 5 40ml 320 ml 
6 25ml 200ml      6 40ml 320 ml 6 50ml 400 ml
7 30ml 240ml 7 45ml 360 ml 7 60ml 480 ml
8 35ml 280ml 8 50ml 400 ml 8 65ml 520 ml
9 38ml 304ml 9 55ml 440 ml 9 75ml 600 ml

10 40ml 333ml  10 65ml 520ml 10 85ml 680ml
11 45ml 360ml 11 70ml 560ml 11 90ml 720ml 
12 50ml 400ml 12 75ml 600ml 12 100ml 800ml 
13 55ml 440ml 13 80ml 640ml 13 110ml 880ml 

kcal/kg prot g/kg ml/kg kcal/kg prot g/kg ml/kg
83 2.5 83 100 3 100

Weight (kg)
Volume per 

3hrly feed

Volume per 

24 hours
Weight (kg)

Volume per 

3hrly feed

Volume per 

24 hours
5 50ml 400 ml 5 65ml 520 ml 
6 60ml 480 ml 6 75ml 600 ml
7 70ml 560 ml 7 90ml 720 ml
8 85ml 680 ml 8 100ml 800 ml
9 95ml 760 ml 9 115ml 920 ml

10 105ml 840ml 10 125ml 1000ml
11 115ml 920ml 11 140ml 1120ml 
12 125ml 1000ml 12 150ml 1200ml 
13 135ml 1080ml 13 160ml 1280ml 

Peptamen Junior 

STEP 4 STEP 5 (Catch up)

Day 7 +
Peptamen Junior 

KEH PEM PROTOCOL                                                                                                                                                                                      PROTOCOL 5                                               

PEPTAMEN JUNIOR                                                                                                                                                                                                                                                

FOR PEDIATRICS > 1 YEAR                          

DESCRIPTION OF FEED: A nutritionally complete semi elemental feed 

CONTENT OF FEED PER 100ML

Day 6 - 7

STEP 3

Peptamen Junior 
Day 1 - 2 Day 5 - 6 

STEP 1

Peptamen Junior 

STEP 2 

Peptamen Junior 
Day 3 - 4
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APPENDIX 3: ANTIRETROVIRAL DRUG DOSING CHART FOR CHILDREN 2013 
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APPENDIX 4: STUDY WAS APPROVAL FROM THE POSTGRADUATE 

COMMITTEE OF THE UNIVERSITY OF KWAZULU–NATAL 
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APPENDIX 5: APPROVAL FROM THE BIOMEDICAL RESEARCH AND 

ETHICS COMMITTEE (BREC) OF THE UNIVERSITY OF KWAZULU-

NATAL – BFC 126/11 
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APPENDIX 6: APPROVAL FROM THE DEPARTMENT OF HEALTH – 

KING EDWARD VIII HOSPITAL 
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APPENDIX 7: APPROVAL FROM THE KWAZULU–NATAL 

DEPARTMENT OF HEALTH 
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APPENDIX 8: INFORMED CONSENT FOR PARENTS OR LEGAL 

GUARDIANS OF ALL STUDY PARTICIPANTS  

INFORMATION DOCUMENT 

Date:  

STUDY INFORMATION FOR PROSPECTIVE SUBJECTS 

Study title:  Malnutrition and Antiretroviral Timing in Children with HIV (MATCH) 

Greetings patient & family: 

We are asking for your permission to include your child in a research study on severe 

malnutrition in children infected with HIV. Your child was chosen because he/she is HIV 

positive, underweight and needs to be started on HIV medicines according to the South African 

HIV Treatment guidelines. Research is just the way to learn the answer to a question. In this 

study, we are trying to see when is the best time to give a very underweight child the medicines 

for HIV, which has not been answered by other research studies. In this study children will 

either be started on HIV medicines soon after being admitted to hospital (within 10 days) or 

will wait until his/her weight has improved or at most 4 weeks after admission before starting 

HIV medicines. The decision about which group your child will be in, will be made by chance 

(flip of a coin).  

During the first two weeks of being in the study, your child will be admitted to King Edward 

VIII Hospital (KEH). During this time he/she will be treated for being underweight and any 

other infections he/she may have. After this stay at KEH, the doctors involved in the study will 

decide whether your child will stay longer at KEH, be transferred to Clairwood Hospital or be 

discharged to home depending on how sick your child still is. We will need to take blood from 

your child a total of 7 times over 48 weeks. We will also need to measure your child’s height 

and weight. Finally we will need to use a special instrument called a caliper that pinches the 

skin to measure how thick it is. This measurement helps us know how healthy your child’s 

muscles are. 

Participating in this study will require a maximum of 4 follow-up clinic visits. We will try to 

make sure these visits happen on the same day as any other appointments you may have here 

at KEH. If you must come here so that we can take measurements for this study, we will provide 

you with R150 to cover your travel expenses.   

All children who are a part of this study will be given a study identification number (SID). All 

blood samples and study information will only have this SID number and not your child’s name 

on it to protect your family’s privacy. Any information that may be linked to your child will be 

kept in locked cabinets. Only members of this study team will have access to this information. 

As part of this study, we will also need to store some samples of your child’s blood so that we 

can look at them later. These blood samples will be stored in the Department of Paediatrics and 

Child Health Laboratory and the Doris Duke Medical Research Institute, NRMSM, UKZN. 
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These samples will not be labeled with your child’s name, only their study identification 

number. No one but the members of this study team will be able to access these samples. The 

samples will be stored for at most 10 years.  

The study may involve the following risks and/or discomforts. Any time we take blood from a 

patient with a needle there is the small possibility of infection or discomfort at the puncture 

site. However, trained doctors will perform the blood draws and so the risk of these problems 

is very low.  Finally, there may be some discomfort during the pinching of the skin with the 

calipers. 

Your child will receive the same treatment for his/her very low weight and the same HIV 

medicines as all other children admitted to King Edward VIII Hospital. Some of the side-effects 

of the HIV medicines are: 

Lamivudine (3TC, Epivir®): Headache, Feeling tired, Dizziness, Upset stomach, Vomiting, 

Loose or watery stools, Numbness, tingling, and pain in the hands or feet, Decrease in the 

number of white blood cells that help fight infection, An increase in a substance in the blood (a 

type of a pancreatic enzyme) which could mean a problem with the pancreas, Increased liver 

function tests, which could mean liver damage  

Abacavir (Ziagen): Headache, Nausea and vomiting, loose or watery stools, Hypersensitivity 

reaction. 

Lopinavir/Ritonavir (LPV, Kaletra®) Pancreatitis (inflammation of the pancreas), which may 

cause death. If your child develops pancreatitis, your child may have one or more of the 

following: stomach pain, nausea, vomiting or abnormal pancreatic function blood tests , 

Abnormal bowel movements (stools), including loose or watery stools, upset stomach and 

stomach pain, Large increases in triglycerides and cholesterol in the blood, Liver problems and 

worsening liver disease, which may result in death. People with these conditions may have 

abnormal liver function blood tests, Feeling weak and tired, Headache, Rash (seen in children) 

 There may be no direct benefits to you participating in this study. However, we hope we hope 

this study will lead a greater understanding of malnutrition in HIV-positive children. 

Participation in this research is completely voluntary. If you decide to refuse to participate or 

stop participating at any point, you and your family will not be denied treatment or any medical 

benefits. There are no consequences to withdrawing from the study. You may inform the 

researchers of your decision to withdraw from the study at any point in time.  

Confidentiality: Every effort will be made to keep personal information private or 

“confidential”.  Unfortunately, we cannot guarantee absolute confidentiality.  If required by the 

law, we may need to disclose some information. However, all results, if published will be kept 

anonymous; no information that can identify you will be published publicly.  
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Organizations that may inspect and/or copy your research records for quality assurance and 

data analysis include groups such as the Research Ethics Committee, Data Safety Monitoring 

Committee and the Medicines Control Council (where appropriate). 

CONSENT TO PARTICIPATE in RESEARCH STUDY 

 

I ______________________________________ have been informed about the study entitled 

“Early versus Delayed initiation of HAART in severely malnourished HIV-infected children” 

by ___________________________, clinical research fellow. 

I understand the purpose and procedures of the study.  

I have been given an opportunity to answer questions about the study and have had answers to 

my satisfaction. 

I declare that my child/wards participation in this study is entirely voluntary and that I may 

withdraw at any time without affecting any treatment or care that I would usually be entitled 

to. 

I have been informed about any available compensation or medical treatment if injury occurs 

to me as a result of study-related procedures. 

If I have any further questions/concerns or queries related to the study I understand that I may 

contact the researcher Dr. Moherndran Archary at Tel:  (31) 2604355. 

This study has been ethically reviewed and approved by the UKZN Biomedical research Ethics 

Committee (approval number BCF 126/11). 

If I have any questions or concerns about my rights as a study participant, or if I am concerned 

about an aspect of the study or the researchers then I may contact: 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION 

Research Office, Westville Campus 

Govan Mbeki Building 

Private Bag X 54001  

Durban  

4000 

KwaZulu-Natal, SOUTH AFRICA 

Tel: 27 31 2604769 - Fax: 27 31 2604609 

Email: BREC@ukzn.ac.za  

Administrator: Ms P Ngwenya Email:   ngwenyap@ukzn.ac.za 

Chair: Email: Prof D R Wassenaar  c/o ngwenyap@ukzn.ac.za  

If you agree to participate, you will be given a signed copy of this document and the participant 

information sheet, which is a written summary of the research. 

The research study, including the above information, has been described to me orally. I 

understand what my involvement in the study means and I voluntarily agree to participate. I 
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have been given an opportunity to ask any questions that I might have about participation in 

the study. 

 

 

 

____________________  _____________________ 

Signature of Caregiver   Date 

 

 

 

____________________  _____________________ 

Signature of Witness                                Date 

 

 

 

____________________  _____________________ 

Signature of Translator                  Date (Where applicable) 
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APPENDIX 9: TRANSLATION CERTIFICATE 

 


