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Abstract
Intelligent cognitive agents should be able to autonomously gather new knowledge and
learn from their own experiences in order to adapt to a changing environment. 3D vir-
tual worlds provide complex environments in which autonomous software agents may
learn and interact. In many applications within this domain, such as video games and
virtual reality, the environment is partially observable and agents must make decisions
and react in real-time. Due to the dynamic nature of virtual worlds, adaptability is of
great importance for virtual agents. The Reinforcement Learning paradigm provides a
mechanism for unsupervised learning that allows agents to learn from their own expe-
riences in the environment. In particular, the Q-Learning algorithm allows agents to
develop an optimal action-selection policy based on their experiences. This research
explores the adaptability of cognitive architectures using Reinforcement Learning to
construct and maintain a library of action-selection policies. The proposed cogni-
tive architecture, Q-Cog, utilizes a policy selection mechanism to develop adaptable
3D virtual agents. Results from experimentation indicates that Q-Cog provides an
effective basis for developing adaptive self-learning agents for 3D virtual worlds.
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Chapter 1

Introduction

The goal of artificial general intelligence (AGI) is to develop agents that may adapt

to different environments and are not specifically designed for a narrow task [32].

Cognitive agent architectures provide a framework to develop adaptive, intelligent

agents that are capable of learning to act in their environment. These architectures

are evaluated based on aspects such as agent learning capabilities and adaptability.

There has been a recent interest in evaluating these autonomous agents within virtual

3D environments [45]. Virtual environments provide researchers with a real-time

complex world that mimics real world properties. Researchers may also visualize

agent behaviour which assists in design and evaluation.

1.1 Background

1.1.1 Agent-Based Cognitive Architectures

A cognitive architecture draws inspiration from theories and concepts in cognitive

science to provide an architecture that models intelligent behaviour [11, 44, 27, 38].

An agent is an entity that is able to perceive its environment through sensors and act

on the environment through actuators without human intervention [40, 48]. Agents

possess knowledge about the environment that is either predefined by the developers

or learned through their own experience. A cognitive architecture may therefore be
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used to create a number of concrete, case-specific cognitive agents that are able to

learn and understand the environment [38, 25, 21]. The architecture defines how agent

knowledge is stored and processed in order to make decisions and achieve goals in the

current environment [25]. A cognitive architecture should contain minimal initial

data and structures and the agent should be able to learn from its own experiences

in the environment [12].

1.1.2 Reinforcement Learning

An important aspect of an agent architecture is the learning mechanism. Reinforce-

ment Learning (RL) is an unsupervised learning paradigm suitable for cognitive agents

[1]. Reinforcement values are used by the agent to learn to make behavioural deci-

sions. Unlike supervised learning paradigms, example data is not supplied to the

algorithm to identify errors in decision making while training. An action selection

policy may be generated from this reinforcement data allowing the agent to deter-

mine which action to select given each environment state. This policy determines

which actions the agent should select given each environment state. It utilizes both

exploration of new actions and the exploitation of its existing policy to identify the

consequences of its actions while acting in the environment [15].

The purpose of a RL algorithm is to learn a policy, also known as a strategy, that

can map environment states to optimal actions [49]. The agent follows this policy

in order to effectively interact with the environment. Given a particular environment

state, the agent may either choose to follow the action suggested by the existing policy

or perform an unexplored action in an attempt to obtain better results for that state.

Once an action is performed in a state, the agent may receive a reinforcement value

as feedback which may be used to refine the policy. A clear limitation of conventional

RL is that it is focused on learning a single task [9, 5]. There have been attempts to

solve this issue with recent work investigating the development of multiple policies

within a policy library in order for the agent to be able to adapt to a wider range of

tasks in the environment [5]. This allows the agent to refine the current policy using
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past learned policies as input.

The environment that the agent interacts with is generally represented by a

Markov Decision Process (MDP) which contains a finite set of states and actions

[49, 42]. During training, the agent performs a number of actions in different states

and observes the outcome or reward from the environment. These reward values are

then utilized to learn which actions are best to perform in each state. An RL algo-

rithm aims at maximizing the expected reward and eventually generates an action

selection policy that the agent may follow [13]. In many problem domains, such as

game playing, Reinforcement Learning is the only applicable learning mechanism to

create high quality intelligent agents as it is extremely difficult to provide accurate

training data [36].

Markov Decision Process (MDP)

A MDP contains a set of states as well as a set of possible actions that may be per-

formed in these states [13]. In a Markovian world, the result of an agent performing

an action in the environment is dependant only on the current state of the world and

the action performed [39]. In a MDP, it is assumed that the environment is fully

observable. Formally, a MDP may be defined by the tuple (S, A, T, R) where [39]:

• S represents the finite set of world states.

• A represents the finite set of actions that may be performed by the agent in the

environment.

• T represents the transition function defining the probabilities that an action a

performed in a state s will result in state s’.

• R represents the reward function which defines state utilities and action exe-

cution costs. This function may define reward values for executing particular

actions in particular states.
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Policy Libraries

Recently, there has been an interest in moving away from the standard notion of a

single policy generated by an RL algorithm to an approach where the agent maintains

a library of policies [5, 9]. The agent is able to refine the current policy or select a

more appropriate policy at each given time. This allows the agent to develop multiple

policies for different aspects of the environment instead of attempting to develop a

single general policy. The policy library enables agents to adapt to complex environ-

ments in which a single policy may not be sufficient for optimal decision making. A

policy library system requires both a storage mechanism for generated policies and a

policy selection mechanism to select the most appropriate policy. The policy selection

mechanism need not add complexity to the agent and may be specifically designed

for the problem domain.

1.1.3 Evaluating Agent Architectures in Virtual Worlds

Three-dimensional (3D) virtual worlds provide interesting environments for intelli-

gent agents and are increasingly being used for evaluating performance of agents

[19, 24, 46]. A virtual world will be defined as a computer generated three-dimensional

space in which objects may interact with one another. Applications of virtual worlds

include video games and virtual reality applications which attempt to create an im-

mersive environment for the human user. Virtual 3D environments provide unique

challenges for intelligent agents to overcome [19].

Virtual worlds have the following characteristics [19, 24]:

• Virtual worlds operate in real-time and so agents are forced to make decisions

in real-time. This results in a limitation on available resources as agent logic

competes with aspects such as graphics rendering and audio.

• Virtual worlds generally demand agents to solve multiple tasks simultaneously.

For example agents may need to learn world navigation while simultaneously

interacting with other agents in the environment.
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• These environments are usually dynamic. Agents are required to adapt their

behaviour when there are changes in the environment. Environment changes

may render previous agent knowledge invalid and it is important for agents to

change context in certain circumstances.

• Reinforcement Learning experimentation has largely taken place in 2D envi-

ronments with full observability. 3D virtual environments are predominantly

partially observable, which provides a far more realistic environment to evalu-

ate agent performance.

• Virtual worlds containing multiple agents allow for AI-AI interactions.

The graphical quality of modern virtual worlds has become increasingly realistic

over time [8]. This has stimulated a need for virtual agents to be able to match the

immersion level provided by computer graphics in applications such as games and

virtual reality applications. Unsupervised learning paradigms provide the necessary

support to allow agents to learn about an environment without necessarily adjust-

ing underlying agent logic. Reinforcement Learning in particular allows the agent

to develop a self-learned action selection policy without needing modify pre-defined

behaviours.

Agent Learning in Virtual Worlds

Virtual worlds contain a number of complexities, such as large state spaces and dy-

namic natures, that make agent learning difficult. Reinforcement Learning allows

agents to utilize their own experiences in the environment to attempt to develop an

optimal action selection policy. Supervised learning mechanisms may not allow the

agent to develop a complete model of the environment as the training dataset may

be incomplete.

The exploration process for an agent within a virtual world may never end as new

regions of the world are discovered and new unforeseen circumstances are encountered.

Agent learning within these worlds usually involves unsupervised learning methods
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such as Reinforcement Learning and the agent may need to constantly adjust its

policy within the environment in a similar way to a human [20].

1.2 Aims and Objectives

This research explores the effectiveness of Reinforcement Learning with a policy selec-

tion mechanism as the primary learning mechanism in a cognitive agent architecture.

The aim of this research is to design and evaluate a Q-Learning based cognitive agent

architecture that may be used to create intelligent, adaptive, self-learning agents

within the 3D virtual world domain. In particular, this architecture must provide

the required mechanisms for the agent to autonomously develop multiple policies to

adapt to changing aspects in the environment. The following outlines the objectives

of this research:

• Develop a virtual 3D experimental platform that may be reused in future agent-

based research.

• Design a cognitive agent architecture that allows 3D virtual agents to adapt to

a changing environment using concepts from state-of-the-art architectures.

• Integrate a policy library into the architecture to allow agents to adapt to drastic

environment changes.

• Evaluate the architecture using a complex scenario designed and implemented

within the experimental platform.

1.3 Impact and Contributions

The focus of the work is an architecture for developing intelligent and adaptive agents

in the 3D virtual world domain. The architecture provides a framework allowing

agents to adapt behaviour based on changes in the environment by utilizing a policy

selection mechanism. The performance of agents utilizing a cognitive architecture
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and Q-Learning with multiple policies is empirically evaluated within a 3D virtual

environment.

A reusable 3D experimental platform is built for the evaluation. The platform is

generic and reusable and has room for custom extensions. The platform was designed

to allow for ease of integration with new architectures and algorithms.

The outcomes of the work may be applied to many different fields including game

development and AI research. A major application of agent architectures in 3D

virtual worlds is game applications. Game developers constantly seek to improve the

realism and unpredictability of their agents. The architecture proposed in this work

provides an effective method of developing adaptive agents that may learn from their

environment. In the domain of game development, agents can gain insight into the

behavioural patterns of human players and develop interesting policies to challenge

the players. Researchers and educators may utilize the experimental platform to

evaluate and explain agent based systems. The extensible nature of the platform

provides the opportunity to explore many aspects of agent based research within

virtual 3D environments.

1.4 Structure of the Dissertation

The remainder of this dissertation is structured as follows: Chapter 2 introduces pre-

vious related work. Details of the proposed architecture is then described in chapter

3. Chapter 4 describes the implementation of the experimental platform. Chapter 5

then outlines experiments performed in order to evaluate the architecture and anal-

yses the results obtained from each experiment. Chapter 6 provides a discussion on

topics relating to the architecture and the experimental platform. Lastly, Chapter 7

provides concluding remarks and proposes future work.
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Chapter 2

Literature Review

This chapter introduces previous work in the field. The chapter firstly introduces

various well known agent architectures and cognitive agent architectures. Secondly,

previous work regarding Reinforcement Learning and policy libraries is mentioned.

Thirdly, various case studies involving Q-Learning agents in virtual worlds are de-

scribed. Lastly, previous work involving the evaluation of agent architectures is dis-

cussed.

2.1 Agent Architectures

This section introduces well known agent architectures and cognitive architectures

found in literature. This includes the Belief, Desire, Intention (BDI) framework and

the SOAR, ACT-R and CLARION cognitive architectures.

2.1.1 Belief, Desire, Intention

The BDI framework has been used extensively for intelligent cognitive agents [34, 40].

A BDI agent carries out complex behaviours through the use of a goal-plan structure

[40]. Agents are able to simultaneously manage several goals [35]. Each agent

contains a set of beliefs which forms the current belief state of the agent. The set of

desires indicates the goals that the agent is aiming to achieve. The set of intentions
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indicate the desires that the agent has decided to act on [4]. The BDI framework

provides a balance between goal planning and reactive behaviour. A standard BDI

implementation is, however, unable to deal with information that is not complete as

a result of sensors that may be unreliable or noisy [4].

2.1.2 ACT-R (Adaptive Control of Thought-Rational)

ACT-R is a widely used cognitive architecture focused on modelling human cognition

[18, 11, 25, 7]. It contains different modules, each of which focus on handling different

types of information.

Overview

A focus of the ACT-R architecture is modularity [12]. Each module processes infor-

mation independently of other modules and may communicate through buffers [18].

This allows each module to run in parallel without interfering with the processing of

another module. The modules in ACT-R include the sensory, action, intentional and

declarative modules and have been associated with different regions of the human

brain [11]. Each module has its own buffer which collectively makes up the short-

term memory of the architecture. Each buffer may store up to one chunk which is a

collection of name-value pairs [11]. Standard modules in ACT-R are:

• The Procedural module is the central module in the architecture. Production

rules are present here and may activate to output an action when a particular

condition is met.

• The Manual module performs manual actions such as pressing keys and moving

the mouse.

• The Goal module provides context for the actions of agents. It allows the current

goal to be broken up into smaller sub-goals that the agent may achieve. The

current goal is stored within the goal buffer that is accessible to production

rules.
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• The Declarative module contains facts about the world that other modules may

utilize.

• The Visual module observes and encodes all visual data.

• The Vocal module converts strings into speech.

• The Aural module observes and encodes audio data.

• The Imaginal module temporarily stores incoming perceptions.

All modules may communicate with each other via the Procedural module, as

illustrated in Figure 2-1 taken from [11].

Figure 2-1: An overview of the ACT-R cognitive architecture from [11].

ACT-R stores both declarative and procedural knowledge [37]. Declarative knowl-

edge represents perceived or factual information, for example the agent may store the

location of a 3D object within a virtual world. Procedural knowledge consists of

condition-action rules that the agent follows. When the condition of a production

rule is satisfied, the corresponding action may be executed.

Learning and Action Selection

ACT-R uses utility values to determine which action is the most appropriate to ex-

ecute given the current environment state [11]. This utility value is calculated using

the difference between the estimated cost and benefit of each production rule. The
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production rule with the highest expected utility is selected and executed.

ACT-R utilizes production compilation and rule utility [12]. Production compi-

lation involves creating new production rules to replace multiple existing rules which

reduces execution time in future cycles. The utility values are used to determine the

best action to select at a given time. As an action is performed, the success and cost

is re-evaluated [25].

The ACT-R architecture has been used in human-robotic interaction simulations

[25]. Certain video game developers have previously utilized the ACT-R architecture

when developing virtual agents [37].

2.1.3 SOAR (State, Operator and Result)

Overview

SOAR was one of the first cognitive architectures to be proposed [7]. The architecture

focuses on the idea of problem solving. It begins at an initial state with the aim of

reaching one of the goal states by selecting the best available operator at each update

[12, 23]. An operator is applied to the current state to produce a new state [23].

The architecture is symbolic as symbols are used to represent objects [27]. Figure 2-2

depicts an overview of the architecture taken from [12].

Information about the current state, including both sensed environment data and

internal inferences, are stored in working memory elements which represent the short

term memory [12, 22, 31]. These working memory elements are attribute-value pairs.

Working memory additionally contains information relating to the current goal.

The long term memory consists of procedural, semantic and episodic memory

as illustrated by Figure 2-2. Knowledge in long term memory is structured as sets

of production rules [12, 31]. When the conditions specified by a production rule

are satisfied based on the contents of working memory, the production rule fires its
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Figure 2-2: An overview of the SOAR cognitive architecture

action [31]. This action may modify the contents of working memory. Modifications

to working memory may result in actions being performed on the environment which

may then result in additional production rules firing to create a continuous cycle.

A unique aspect of the SOAR architecture is that it allows all matching production

rules to fire in parallel [31].

Learning and Action Selection

The current problem is represented internally by the current state in working memory

[27, 23]. During the action selection process, when the condition of a production rule

is met based on the contents of working memory, the operator specified by that rule

is selected for execution [31]. This operator is applied to the current state in order

to produce a resulting state [31]. In a similar way to ACT-R, SOAR uses utility

values to select an operator with the highest expected performance given the current

state [27, 12, 22]. When two operators are tied for selection, the current goal of the

architecture is changed to the task of determining which operator to select [27, 25]. A

more detailed description of the decision cycle of SOAR, taken from [12], is as follows:

1. Update working memory with input from sensors.

2. Execute all rules with conditions that match working memory. The results of

these rules firing are placed into working memory. This stage ends once no new
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knowledge has been added to working memory and it is stable.

3. Production rules propose applicable operators based on their conditions and

the contents of working memory. Rule conditions ensure that operators are

only proposed when relevant.

4. Select an operator by evaluating the operators proposed in (3) with respect to

the contents of working memory.

5. Production rules that match the selected operator make changes to the current

state. This includes the creation of motor commands.

6. Motor commands are processed.

Originally, the focus of SOAR was to build its knowledge base using predefined

expert knowledge [12]. A process known as chunking is now used during learning

[27, 25]. Chunking involves adding new rules to long-term knowledge using data

in short-term memory [22]. The chunking module in SOAR activates whenever an

impasse occurs. When the current knowledge is not sufficient to reach the desired

goal, an impasse is reached [12]. When an impasse is resolved, chunking allows the

system to generate a new rule (now referred to as a chunk) that will prevent a future

impasse in this situation. The chunk is generated by converting the collected working

memory elements during the impasse into conditions and actions of production rules

[27].

SOAR-RL

The SOAR architecture largely uses a symbolic knowledge representation [30]. The

SOAR-RL modification includes the addition of a Reinforcement Learning aspect

which provides numeric knowledge representations. The extension allows agents to

identify the expected rewards of performing actions. Reward values are received as

additional inputs from the environment.
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Originally, operator selection in SOAR was performed based on symbolic pref-

erence values. The addition of Reinforcement Learning allows the consideration of

numeric preferences in the case where symbolic preferences do not provide enough

information in order to make a decision.

The SOAR architecture has been applied to virtual environments such as the

Haunt 2 game environment. A SOAR agent was developed by Helie and Sun [12] to

navigate the environment and find an object of interest.

2.1.4 CLARION (Connectionist Learning with Adaptive Rule

Induction ON-line)

Overview

The CLARION architecture allows agents to function with very little prior knowledge

[12, 21, 27]. CLARION is divided into four main subsystems: The action-centered

subsystem (ACS), the non-action-centered subsystem (NACS), the motivational sub-

system (MS) and the meta-cognitive subsystem (MCS). Each subsystem is divided

into a top and bottom level. The top level encodes explicit knowledge and the bottom

level encodes implicit knowledge.

• The ACS controls all agent actions. These actions may be external such as

motor commands, or internal such as knowledge reasoning. The bottom level of

the ACS allows CLARION to adapt to situations that may not necessarily be

solved using basic top level rules. It is made up of many connectionist networks

which each handle a different type of input or task. The top level contains

explicit symbolic rules.

• The NACS contains knowledge about the world in the form of semantic and

episodic memory. The knowledge stored in both the top and bottom levels

are non-action-centered. Actions performed by this subsystem include memory

retrieval and inference.
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• The MS maintains agent goals. It autonomously selects and focuses on impor-

tant environment aspects. It contains both explicit goals and implicit drives.

• The MCS provides feedback to other modules regarding actions performed as a

form of Reinforcement Learning. It may also guide and control the processing

of other modules to improve performance.

Top-Down and Bottom-Up Learning

Within each module, CLARION uses a combination of bottom-up and top-down

learning [21, 27, 12]. Bottom-up learning involves the conversion of implicit knowledge

into explicit knowledge which is stored at the top level. Top-down learning involves

the conversion of explicit knowledge into implicit knowledge which is stored at the

bottom level.

2.1.5 Summary of Architectures

The focus of this section was aimed at reviewing commonly used cognitive agent archi-

tectures. The three discussed cognitive architectures: SOAR, ACT-R and CLARION

contain many fundamental aspects of developing intelligent agents. Apart from the

structural differences in these architectures, each architecture uses different learn-

ing techniques. These learning techniques include: Production compilation and rule

utility in ACT-R, chunking in SOAR and top-down and bottom-up learning in CLAR-

ION. The SOAR architecture has also recently integrated a Reinforcement Learning

module known as SOAR-RL in order to provide numeric knowledge representation.

2.2 Reinforcement Learning and Policy Libraries

This section introduces the concept of Reinforcement Learning and policy libraries.

A policy may be viewed as a rule that agents may follow in order to select actions

for each environment state. It is a mapping from environment states to actions
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[41]. Temporal difference methods and the Q-Learning algorithm are described and

previous work relating to policy libraries is discussed.

2.2.1 Temporal Difference Learning

There are many ways for an agent to learn a policy. Temporal difference (TD) is a

Reinforcement Learning method that uses reward values to generate an action-value

function [42]. The action with the highest value at each state is selected for execution.

This method of learning provides a method of foreseeing the effects of an action in

order to build an optimal policy [26].

2.2.2 Q-Learning Overview

Q-Learning is a model-free Reinforcement Learning algorithm that assigns reward

values to state-action pairs [47]. When action a is performed in state s to produce

a resulting state s’, a reward value is received and used to calculate the correspond-

ing Q-Value for the state-action pair (s, a) using Equation 2.1 [28]. By learning the

outcomes of actions through reinforcement values, Equation 2.1 allows the agent to

develop expected utilities for executing and action a in a state s. The action selection

process then involves maximizing the expected utility by selecting the action with

the highest Q-Value in each environment state. The learning process, similar to that

of Temporal Difference Learning [47], is to execute an action in a given state and

evaluate the consequences based on reward feedback received.

The Q-Learning algorithm has been proved to eventually converge to the optimal

policy within any finite MDP [15, 14]. A disadvantage of the algorithm is that the

convergence rate varies based on the complexity of the environment [29]. Traditional

Q-Learning only modifies a single Q-Table entry at a time and so with larger state

spaces in complex environments, such as virtual 3D worlds, convergence may be

significantly slower than in other environments.
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Q(st+1, at+1) = Q(st, at) + ↵ · [�+ � ·maxa02AQ(s0, a0)�Q(st, at)] (2.1)

Equation 2.1 represents the standard Q-Learning algorithm where: ↵ represents

the learning rate of the algorithm, � is the reward value and � is the discount factor.

The value of � represents the extent to which the algorithm considers future rewards.

A � value of zero indicates that only immediate reward feedback is considered whereas

a value of one indicates that future rewards are greatly considered. maxa02AQ(s0, a0)

represents the maximum possible Q-Value that may be obtained given the next state

s

0 and all actions a

0.

After each interaction with the environment, the value function of the current

state-action pair is updated using Equation 2.1 [33]. The Q-Learning algorithm

selects the action with the highest Q-Value corresponding to the current state. Q-

Values may be stored in a tabular structure referred to as a Q-Table.

2.2.3 Policy Libraries

The process of policy reuse involves the storing of learned policies for later reuse [9]. A

library is maintained by the agent in order to store and retrieve a number of policies.

Initial work by Fernandez and Veloso [9] investigated effective ways of developing

a policy library. A similarity metric was proposed to identify new policies that should

be added to the library. If a new policy was substantially unique, it was added to the

library. The proposed method of library formation was evaluated within a 2D robot

navigation environment. The robot was aware of its location in the world and was

able to move in four directions to reach the goal state. Their experiments obtained

promising results and showed a 100% increase in performance due to policy reuse.

Recent work by Chalmers et al. [5] incorporated ideas explored by Fernandez and

Veloso. This work explored ways to improve the adaptation times of agents when re-
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acting to changes in the environment. They proposed the use of transfer learning to

do this in order to utilize previously learned information. Abstraction of state spaces

involves removing state variables that are not necessarily required in certain situa-

tions. Chalmers et al. [5] proposed a method of combining a state-space hierarchy

with a policy storage and retrieval system. The hierarchical state space allowed them

to adapt previous policies to recent problems in the environment. Context switching

was also incorporated, where the agent is able to store recent state transitions and

select a policy from memory that best predicted these transitions. Chalmers et al.

[5] evaluated the work within a 2D robot navigation environment where the goal of

the agent remained constant. The results of experiments where the agent utilized the

extensions done by Chalmers et al. [5] are compared to that of an agent that utilized

standard RL algorithms. It was found that the integration of their hierarchy-based

adaptation allowed the agent to learn certain policies faster. The agent implement-

ing standard RL was unable to compete as it was not able to adapt fast enough to

changes in the environment.

Policy reuse allows the architecture to store a new policy in memory to be utilized

and modified later. Collectively, these policies form a library in memory. Previous

work done in this area showed promising results but evaluation was limited to 2D

virtual environments.

2.3 Applications of Q-Learning in 2D-3D Virtual Worlds

The following section aims to outline state-of-the-art applications of the Q-Learning

algorithm.

2.3.1 Q-Learning for Autonomous Mobile Robot Navigation

Muhammad and Bucak [29] proposed a modification of the Q-Learning algorithm

by improving the rate at which the Q-Table of an agent converges to optimal values.

Traditionally, Q-Learning modifies only a single Q-Table value per training episode. In
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large state spaces the convergence rate becomes impractical. The algorithm proposed

involves state-clustering in order to rearrange the state-action trajectory into non-

repeated loops of states and actions [29]. It was noted that it is important for the

agent, in this case a robot, to be fully autonomous in the domain of robot navigation.

RL was chosen as it allows agents to modify a policy given their own experiences in

the environment. The domain was chosen due to a high number of discrete states

and possible actions.

The environment is a 2D world in which a robot must find its way to the goal

state while avoiding obstacles. Figure 2-3 provides an illustration of the environment.

The agent is able to observe both its position in the world and obstacles in its path.

The agent may move left, right, up or down by either 1, 3, 10 or 15 pixels resulting

in a total of 16 possible actions that may be executed.

Figure 2-3: A depiction of the 2D robot navigation world utilized by Muhammad and
Bucak [29].

A simulation was executed 1400 times. The rate of change in Q-Values was

recorded and compared to that of traditional Q-Learning. The proposed algorithm

greatly improved the rate of change in Q-Values. The convergence rate of the pro-

posed algorithm was found to improve on traditional Q-Learning.
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2.3.2 A Q-Learning Based E-pet

An E-pet may be either a virtual or robot animal companion. Cheng et al [6] pro-

posed a Reinforcement Learning based framework for controlling the behaviour of an

intelligent E-pet. The Q-Learning algorithm was utilized along with a lookup table

containing the corresponding Q-Values. The framework aimed to utilize a planning

scheme to reach a desired goal state.

The E-pet was implemented as a virtual 3D agent which interacted with human

users as depicted in Figure 2-4. The agent had to select actions to perform in the

environment based on instructions given by human users and reward signals received.

Figure 2-4: A 3D model of the E-pet developed by Cheng et al [6].

Users interacted with the E-pet by issuing commands using an interface depicted

in Figure 2-5. After each interaction, the agent updates a Q-Table given the reward

value issued by the user. This reward value is issued based on the extent to which

the E-pet correctly performed the requested task.

Figure 2-5: Human interaction with the E-pet developed by Cheng et al [6].

The agent was trained using seven commands from the user. These commands
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were: Circle, run, up, sit, down, lie and come. The agent was trained for a total

of 60 iterations per instruction. Each action was evaluated according to how many

iterations it took to reach the goal state. Results indicate that the number of planning

states in their proposed framework is reduced by Q-Table updates.

2.3.3 Q-Learning for the Flocking of Agents

Hung et al [13] proposed a framework, known as Q-flocking, based on the Q-Learning

algorithm for the flocking behaviour of UAVs. There has been an interest in in-

vestigating the deployment of multiple unmanned aerial vehicles (UAVs) that may

collaborate for both military and civilian applications. Intelligent UAVs may be ap-

plied in areas such as rescue missions and agriculture. An evident solution, and the

solution that has been utilized in previous work, is flocking and swarming AI algo-

rithms. A complete model of the environment is often not available to the agent and

so there has been investigation into autonomous robots that learn through their own

experiences as opposed to having pre-defined models.

Q-flocking was evaluated using UAVs that learned flocking behaviours within a

stochastic environment. Two experiments were performed and results were compared

to related work by testing and comparing the performances of generated policies. The

goal of the first experiment was to evaluate if Q-flocking was viable to allow agents to

learn a flocking behaviour policy within a stochastic environment. Results indicated

that agents were able to develop a policy allowing flocking behaviour involving a

single leader. It was shown that the Q-flocking framework allows agents to find a

near optimal policy given sufficient time. The goal of the second experiment was to

verify that agents could adapt previous policies to a new environment. The results

of the first experiment were used as the benchmark for the new results obtained.

Results indicated that agents were able to successfully adapt their policies to the new

environment, indicating that Q-flocking works effectively in stochastic non-stationary

environments.
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2.3.4 Deep Q-Learning in a Blocks World Environment

Barron et al [3] investigated agent performance while visually processing 3D virtual

worlds and trained using Deep Q-Learning Networks. Evaluation consisted of a 3D

blocks world similar to that developed by Johnson et al [19]. Figure 2-6 depicts a

scene in the blocks world used.

Figure 2-6: A depiction of the 3D blocks world utilized by Barron et al [3].

The agent viewed the world from a first-person perspective. It received 84x84

pixel screenshots of the world at each time step. The discrete actions available to the

agent were as follows:

• Rotate the camera view up, down, left or right.

• Step forward, backwards, left or right.

• Jump forward.

• Attempt to break a block within the world.

The first set of experiments involved evaluating how effectively the agent may

determine the distances to visible objects in the environment. This is important
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given the first-person perspective as the agent is acting within a 3D world. Results

indicated that the networks can determine distances to a relatively high degree of

accuracy.

The second set of experiments presented a number of tasks for the agent to com-

plete within the world. These tasks involved breaking the correct block types and

avoiding certain blocks while navigating through the world. The complexity of the

world was increased over a number of scenarios. Both shallow and deep networks

were evaluated in these tasks and it was found that the shallow network performed

better in the simple tasks.

2.3.5 Deep Q-Learning in a First-Person Shooter Game

Lample and Chaplot [24] proposed an architecture to be used within first person

shooter games. Both Deep Q-Networks and Deep Recurrent Q-Networks were utilized

within the architecture. They note that previous applications of these algorithms

were within 2D games that do not effectively represent real world properties. They

evaluated their proposed architecture within the 3D first-person shooter game Doom

depicted in Figure 2-7.

Lample and Chaplot noted certain unique challenges that 3D environments pro-

vide for agents to solve. These challenges include:

• Navigation through a complex 3D terrain.

• Item collection.

• Enemy recognition and combat simulations.

• States are usually partially observable.

The game world utilized provided the agent with a first-person view allowing the

work to be closely related to robotics applications.

The agents were evaluated by firstly being trained utilizing Lample and Chaplot’s

[24] architecture and evaluated against the standard built-in game agents. Simulations
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Figure 2-7: A screenshot of the first-person shooter game Doom.

were performed in both known and unknown environments and metrics such as the

number of agent kills were recorded. Agents were secondly trained and evaluated

against a number of human players. Their results indicated that the agent was able

to perform better than both the standard game agents and the human players used.

2.4 Agent Evaluation Methods and Environments

This section provides scenarios and environments that have been used to evaluate

agents.

2.4.1 The Malmo Platform

An artificial intelligence testing platform known as Malmo has recently been released

by Johnson et al [19], an example scene is illustrated in Figure 2-8. This platform was

built on an exploration based video game known as Minecraft. The platform provides
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an interface for creating agents within a virtual 3D game environment. The main

goal of the platform is to assist in research involving Artificial General Intelligence; in

particular, the platform seeks to provide assistance when experimenting with agents

that should be flexible in nature and adapt to their surroundings. Johnson et al

noted that an efficient means of RL experimentation is one of the contributions of

the platform [19].

Figure 2-8: A screenshot within the Malmo platform from [19].

2.4.2 Haunt 2 Navigation Agent

A SOAR agent was developed to navigate through the Haunt 2 game environment

[12]. The purpose of the agent was to autonomously learn the subgoals and opera-

tions required to find an item of interest in the environment. Experimentation aimed

to verify that agents were able to learn to navigate the environment. The agent was

trained using input from another hard-coded SOAR agent that had previously run the

simulation demonstrating that one SOAR agent may be trained using the knowledge

of another.

These virtual environments provide complex scenarios that challenge the adap-

tive learning capabilities and highlight the importance of realistic environments for

evaluating virtual self-learning agents.
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2.4.3 Predator-Prey Simulations

A predator-prey simulation was performed by Kazemifard et al [21] while investigating

the processing of emotion [21]. The goal of the prey is to survive as long as possible.

The three agent types are predators, prey and grass. The predators are not able to

be killed and their population increased over time. The population of the prey is

also able to grow however, the grass population slowly decreases. This stresses the

importance of an adaptive prey, as the prey with the best plan would survive the

longest.

A similar predator-prey simulation was performed by O. Javier and R. Lopez [17]

involving an environment known as Animat. Prey in the environment compete for

food and water sources while attempting to avoid predators.

2.5 Summary of Literature Review

The goals of this literature review were as follows:

• Identify state-of-the-art agent architectures used when developing intelligent

and autonomous agents.

• Analyse previous case studies involving Reinforcement Learning based autonomous

agents in virtual world environments.

• Identify realistic methods and environments for agent evaluation.

Three commonly used cognitive agent architectures: SOAR, CLARION and ACT-

R were identified and examined. These architectures surpass simple behaviour control

techniques by giving agents the capability to learn and adapt to their environment.

In particular, recent additions to the SOAR architecture includes a Reinforcement

Learning module. This allows reinforcement values from the environment to be uti-

lized in the SOAR decision cycle. Although this allows agent experiences in the

environment to effect the outcome of decisions, the basis of the architecture is not

centred around Reinforcement Learning. An advantage of centering an architecture
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around Reinforcement Learning is that it allows the agent to learn purely based on

its own experiences in the environment as opposed to requiring a certain amount of

pre-inserted expert knowledge. This may be particularly important in game envi-

ronments similar to the one utilized by Lample and Chaplot [24] where the agent

competes against human players with largely stochastic behaviour. The outputs of

such an architecture is one or more strategies that the agent may follow to interact

optimally within the environment.

In order to allow agents to learn from their own experiences in the environment,

the Q-Learning algorithm was explored as well as a policy library extension. It is

evident that the policy library extension has greatly improved agent performance in

previous work performed. Other applications of the Q-Learning algorithm within 2D

and 3D virtual worlds were also explored.

The review also highlighted the need for complex, realistic virtual environments

in order to evaluate agent architectures. A great deal of previous work has been

performed using 2D environments that do not provide the level of complexity and

realism that 3D environments contain.

27



Chapter 3

Design and Implementation of the

Q-Cog Architecture

This research explores the effectiveness of Reinforcement Learning with a policy selec-

tion mechanism as the primary learning mechanism in a cognitive agent architecture.

This chapter describes the design and implementation of Q-Cog, a cognitive agent

architecture for adaptive self-learning agents in complex and uncertain virtual 3D

environments. The architecture allows agents to gather knowledge about the envi-

ronment through their own experience and thus an important feature of the archi-

tecture is a Reinforcement Learning mechanism. The mechanism is enhanced with

a dynamic policy selection mechanism that allows agents to adapt effectively to new

and previously unknown situations in the environment.

3.1 Architecture Objectives

The purpose of the architecture is to allow the development of adaptive self-learning

agents in 3D virtual environments. The requirements of the architecture are:

• Provide a dynamic policy generation and selection mechanism to allow agents

to learn and adapt effectively to changes in the environment. Policies must be

automatically generated and refined by the architecture during runtime.
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• Provide a mechanism for generating perceptions from environment observations

(defined below in Section 3.2). This allows complex 3D environment observa-

tions, such as the 3D world locations of other agents to be simplified into a set

of perceptions that may be utilized during learning and action selection.

The Q-Cog architecture is centered around 3D virtual agents. Agent sensors gen-

erate observations which require interpretation. These observations are interpreted

and discretized into a set of perceptions that are far easier to process in later steps

of the architecture’s decision cycle.

3.2 Architecture Overview

Certain components of the architecture, such as the central processing and memory

components, were inspired by the SOAR and ACT-R cognitive architectures, while

components that form the policy selection mechanism were uniquely crafted in order

to satisfy the objectives. The proposed architecture is shown in Figure 3-1 and each

component is described in detail thereafter.

Figure 3-1: The Q-Cog agent architecture.
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3.2.1 Modules

The Central Processing Module

The Central Processing Module controls the flow of execution by controlling the input

and output of other modules. The module calls appropriate functions within other

modules in order to execute the main event loop of the architecture. As depicted in the

architecture overview (Figure 3-1), actions proposed for execution from Production

Memory are firstly retrieved by the Central Processing Module before being passed as

input to the Q-Learning Module. This allows tight control over the flow of information

and module execution order at each world update. Additionally, it is the only module

that interacts with the environment by receiving observations and performing selected

actions at each timestep.

The Perception Module

Many observations from the world are continuous values, such as locations in the 3D

space or terrain navigation data. This results in an infinite number of possible world

states. The Perception Module discretizes observations into perceptions by mapping

continuous world space data into a set of discrete values. For example, the module

may translate world locations into discrete distance representations of near and far.

The Production Memory Module

Production memory contains information relating to actions the agent may perform

in the environment. Production rules of the form: (Conditions) ! Propose(Action)

specify the conditions that determine when an action is proposed for execution. Each

production rule defines the conditions for a single action to be proposed. Perception

data may cause a number of these production rule conditions to be true and thus

propose the associated actions.

Firstly, the module receives perceptions generated by the perception module.

When the condition(s) of a particular action is met based on the current percep-

tions, that corresponding production rule will fire and the action will be proposed.
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For e.g: (PredatorCount > 3) ! Propose(Flee) relates to a humanoid agent surviv-

ing in an environment containing a number of predators. This example production

rule proposes the action Flee when the number of perceived predators is greater than

three. In this example, the Perception Module would firstly output the value of

PredatorCount based on raw observations in the environment. There may be addi-

tional variables contributing to state information. The Production Memory Module

would then insert this value into the rule engine to infer proposed actions. In the

case that the value of PredatorCount exceeds three, the rule engine would output

the Flee action along with other actions that are appropriate for the current state.

Once all state information from the Perception Module has been inserted into the

rule engine, a set of proposed actions is generated and fed through to the Central

Processing Module. The Q-Learning module will then only consider the proposed

action subset when selecting an action.

The Q-Learning Module

The Q-Learning Module aims to produce and refine a number of policies for the agent

to follow to allow it to act effectively and efficiently within the environment. At the

lowest level, the Q-Learning algorithm is used to refine a policy during learning. The

module takes as input the proposed actions for this decision cycle and outputs a

selected action from the proposed actions which may be optimal depending on the

amount of training the agent has received. Reinforcement values are also received

from the environment and are utilized by the Q-Learning algorithm during policy

refinement. The Q-Learning Module refines a selected policy at each timestep. This

selected policy is then used by the module in order to select an action to perform.

All generated policies are then stored in the Policy Selection Module for later use.

The Episodic Memory Module

After an action is performed in a particular state, the mapping to the resulting state

is stored. A function defined by F (s, a|s0), which maps a state-action pair (s, a) to a

resulting state s

0 will eventually be formulated using this stored data. The Q-Value
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calculation (Equation 2.1) has therefore been adapted to include the data stored in

episodic memory. The adapted equation 3.1 utilizes the formulated function which

maps state-action pairs to resultant states. All possible resulting states are used in

the equation as a single resulting state may not always be guaranteed in stochastic

environments. The agent is therefore able to learn P (s0|s, a), which is the probability

of reaching state s

0 given that action a was performed in state s, by making use of

episodic memory. The agent is therefore able to learn a state transition model for the

environment. This information may then be shared across multiple agents in order

to increase the learning rate or may be passed to future agents to be utilized in other

simulations.

Q(st+1, at+1) = Q(st, at) + ↵ · [�+ � ·maxs02S,a02AQ(s0, a0)�Q(st, at)] (3.1)

In the above equation, ↵ represents the learning rate of the algorithm, � is the

received reward value and � is the discount factor. The value of � represents the extent

to which the algorithm considers future rewards. A � value of zero indicates that only

immediate reward feedback is considered whereas a value of one indicates that future

rewards are weighted more. The change from equation 2.1 involves maxs02S,a02A

whereby each possible resulting state is visited when calculating the maximum Q-

Value as opposed to the standard Q-Learning algorithm where a single resulting

state is assumed. This change was introduced due to the stochastic nature of virtual

environments. A definitive resulting state is not always guaranteed and so all possible

resulting states must be taken into account when refining Q-Table values.

3.2.2 The Q-Cog Decision Cycle

The decision cycle of the architecture is the main event loop that defines information

flow and decision points. The decision cycle of Q-Cog in Figure 3-1 can be generalized

into 6 main steps and is outlined in Figure 3-2.

1. Observations from the environment are stored in the Central Processing Module.
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2. The observations from the Central Processing Module are passed to the Per-

ception Module. The Perception Module then processes these observations into

perceptions.

3. Production Memory retrieves the perceptions generated by the Perception Mod-

ule from the Central Processing Module. These perceptions are then used as

input to a rule engine to infer possible actions for the agent.

4. Proposed actions along with the contents of Episodic Memory are taken as input

by the Q-Learning Module for use during action selection.

5. State information, that is, the collection of perceptions, is then given to the

Policy Selection Module and a policy is selected from memory for execution.

6. Using the selected policy along with the proposed actions, the Q-Learning Mod-

ule selects an action to perform and returns it to the Central Processing Module

which execute the action.

Figure 3-2: A diagram outlining the decision cycle of Q-Cog.

3.3 Policy Selection

A policy is a rule that an agent may follow in order to select an action given the

current environment state. Policies map environmental states to actions that agents
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may perform [42]. The architecture maintains a library of policies and allows for the

selection of a single policy to execute and refine at a given time. In this proposed

design, each policy consists of a single Q-Table that may be modified when reinforce-

ment values are received from interactions in the environment. The pseudo code for

the Q-Learning Module with the addition of policy selection is shown in Listing 3.1.

Individual Q-Tables are stored within the Policy Selection Module and are refined

and utilized by the Q-Learning Module.

Listing 3.1: Q-Learning Module and Policy Selection Module Interaction

Update Current State Information

Receive Proposed Actions

ReadEpisodicMemoryTransitions ()

BestAction = PolicySelectionModule.SelectAction ()

PolicySelectionModule.UpdateQValues ()

UpdateEpisodicMemory ()

return BestAction

The number of policies in Lample and Chaplot’s [24] system did not change over

time. The mechanism within Q-Cog allows the agent to maintain many specialized

policies to handle different areas of the environment as opposed to maintaining a sin-

gle general policy. The Policy Selection Module extends the Q-Learning Module by

storing and selecting learned policies during execution. At each time-step the most

applicable policy, as defined by either a learned or pre-defined mapping of situations

to policies, is selected for execution. This does not force the agent to finish learning a

complete policy before learning another. The agent is able to maintain multiple poli-

cies and refine them independently. A rule base may be used to define the conditions

for policy selection. When the conditions of a rule are met, the policy specified by

the output of the rule may then be selected. Rules can be pre-inserted by developers

or a rule compilations system may be designed and integrated for automation of the

process.
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As depicted in Figure 3-3, the module is able to store all learned policies in memory

and maintain a reference to the current active policy for action selection and learning.

The Q-Learning Module may then work with the current active policy during learning

and action selection. When reinforcement values are received from the environment,

these values are applied to the current active policy by the Q-Learning Module.

Figure 3-3: The situation-policy mapping within the Policy Selection Module.

The diagram in Figure 3-4 depicts the work flow of the Policy Selection Module.

The flow is as follows:

1. State information is received from the Q-Learning Module and used to select

an appropriate policy. This selection is based on the conditions of a rule set.

When the condition of a rule matches state information, the policy specified by

that rule is selected for use by the Q-Learning Module.

2. If no applicable policy is found during this process, a new policy is generated

and stored within the policy library.

3. Either the selected policy from memory or the newly generated policy is set as

the current active policy and will be updated by Reinforcement Learning using

Equation 3.1 and used during action selection.
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4. Utilizing the current active policy, the optimal action is selected based on the

current state of the environment.

Figure 3-4: The Policy Selection Module.

3.4 Reference Q-Cog Implementation

The following section outlines the reference implementation of the Q-Cog architecture.

The architecture was designed, implemented and tested through an iterative process.

Testing was performed in a developed experimental platform (Chapter 4) using various

crafted scenarios. These scenarios aimed to measure how effectively the architecture

adapted to environment changes.

The architecture was implemented using the Java programming language. The

following sections outline the implementation of each of the modules of the archi-

tecture. Examples used in this section draw from the proposed scenario involving a
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humanoid agent acting within a 3D virtual environment containing hostile predator

agents. This scenario is elaborated further in later chapters.

3.4.1 Module Implementation

An overview UML diagram of the architecture is depicted in Figure 3-5.

Figure 3-5: A UML diagram of the reference Q-Cog implementation.

The Central Processing Module

The Central Processing Module controls the flow of information between other mod-

ules. It therefore contains a reference to each of these modules in order to obtain the

output of each module and to supply the input to the next module in the decision

cycle. The Run() method iterates through the decision cycle that involves generating

perceptions, proposing actions from these perceptions and finally selecting an action

to perform utilizing a policy. For example, it would invoke the GeneratePerceptions()

method within the Perception Module when in the second step of the decision cycle.

The Run() method returns an action obtained from the Q-Learning Module as a re-

sult of the action selection process. This action is then performed on the environment
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and the decision cycle is run again from the beginning. Additional environment data,

such as reinforcement values, are firstly received by the Central Processing Module

and then routed to their respective destination modules.

The Perception Module

The function of this module is to translate environment observations from the Central

Processing Module into a set of perceptions that collectively make up the current

state. Although these observations are case specific, in most cases within the virtual

3D domain they are 3D vectors encoding directions or agent world locations. These

vectors are of the form (x, y, z).

A state is generated in the GeneratePerceptions() method and returned to the

Central Processing Module to be passed on throughout execution. The current imple-

mentation of the observation discretization process involves a set of predefined rules

governing the translations. Example state information includes danger and health

indication values of a humanoid agent. Given environment observations relating to

hostile agents in the environment, the Perception Module will generate a discretized

danger value based on aspects such as the collective distance to each of these hostile

agents. A new state will then be returned by the module containing this danger value

along with other generated state information. A simplified example of such a rule

pertaining to humanoid health is as follows:

Algorithm 1 A Depiction of the Discretized Health Value
if Health <= 20 then

CurrentState.HealthIndicator = 0
else if Health > 20 & Health <= 60 then

CurrentState.HealthIndicator = 1
else

CurrentState.HealthIndicator = 2
end if

Future implementations may utilize various techniques, such as Artificial Neutral

Networks, to automate the discretization process of observations.
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The Production Memory Module

Production rules within the Production Memory Module are represented using the

Jess Rule Engine in the Java programming language. The Jess Rule Engine provides

a rule-based language to define various production rules. These rules are sets of

condition-action statements that utilize certain facts to govern when the action of

each rule is performed. The rule engine may then be extended with further production

rules without requiring changes to application logic.

The Production Memory Module contains a reference to a rule engine that contains

production rules relating to agent actions. Using the state information supplied as

input by the Central Processing Module, a list of proposed actions may be inferred

from the rule engine within the ProposeOperators() method. The example Jess rule

below proposes the Engage Predator action if a predator has been sighted and the

predator is still alive. This does not necessarily mean that the action will be selected

for execution, the action is merely proposed to be considered in the decision making

process.

Listing 3.2: An Example Jess Rule

(defrule PredatorSighted

"A rule defining how to engage a sighted predator"

?o <- (Predator {health > 0})

=>

(bind ?action_list (new ArrayList ))

(? action_list add (new Symbol 9)) ;; Action 9 = Engage Predator

(add ?action_list ))

The production rule above may be translated into if-then statements as follows:

List <Action > ProposedActions

Observation O ; Inserted Observation

if (O.Predator && O.Predator.Health > 0) then

ProposedActions.Add(Action.EngagePredator(O.Predator ))
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For the purpose of this implementation, Jess production rules were pre-developed

and were not modified at runtime by the agent. Future implementations of the

architecture may include production compilation techniques similar to that in the

ACT-R architecture.

The Q-Learning Module

The Q-Learning Module utilizes policies in order to select an action. Each policy is

represented as a table with each table containing the Q-Values for each state along

with each action that may be performed in that state. The example section of a

policy shown in Table 3.1 pertains to a humanoid agent needing to select an action

when state information indicates a medium environment danger level, a low health

indication and there is an available food source nearby. The first three columns

represent state information, the fourth column indicates the action identifier and the

last column is the corresponding Q-Value. In this particular example, the highest Q-

Value correlates to the Retrieve Food action in row three of the table and so this action

will be selected for execution. Based on the outcome of this action, reinforcement

values received will then be used to refine this table entry within this policy.

Table 3.1: A table depicting an example section of a generated policy.

Danger
Indicator

Health
Indicator

Food
Indicator Action Q-Value

Medium Danger Low Health Food Available Explore 0
Medium Danger Low Health Food Available Attack -4.183
Medium Danger Low Health Food Available Retrieve Food 3.1
Medium Danger Low Health Food Available Flee -5.465

The SelectAction() method is the main control method in the Q-Learning Module.

The execution order within the SelectAction() method is as follows:

1. Select a policy using the Policy Selection Module reference and state informa-

tion. If no policy exists given the supplied state information, generate a new

policy and set it as the current active policy.
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2. Using the current active policy and proposed actions from Production Memory,

select an action based on Q-Table values. The proposed action with the highest

Q-Value with regards to the current active policy is selected for execution.

3. Return the selected action to the Central Processing Module to be performed

on the environment.

The Episodic Memory Module

Episodic Memory stores all state transitions in a hash map that maps state-action

pairs to resulting states i.e. F : s, a ! s

0. Given a state action pair < s, a >, the

function returns a list of possible resultant states. This then allows the Q-Learning

Module to infer the list of possible resultant states that the agent may move to given

that a particular action is performed in a particular state. A simple example of a state

transition may include a humanoid agent moving from a state of high environment

danger to a low danger state when the Flee action is performed. Whenever the state

of the agent changes, a check is done to verify if the current state-action pair contains

a mapping to this new state. If no mapping exists, a mapping to the new state is

stored within this module.

3.4.2 The Policy Selection Module

The first requirement of the Policy Selection Module is to store all policies available

to the agent. These policies are stored in a list which may be enlarged and reduced

with ease at runtime. These policies are then accessed when a request is received by

the Q-Learning Module to select a policy. When this request is received, the Policy

Selection Module extracts relevant state information in order to identify a policy to

select. A hash map that maps state information to policies will retrieve and return the

relevant policy. If no policy exists, a new policy is generated and the corresponding

state information is used as the key of the hash map which will link to this new policy.

When a new policy is generated, all Q-Values in the table are defaulted to a value
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of 0. The output is therefore a blank policy that will be refined once activated. When

the agent activates this policy for the first time it continues the exploratory process

of performing actions and generating Q-Values for the new policy.

3.5 Summary

The proposed architecture aims to provide a mechanism to develop adaptive, self-

learning agents that may utilize dynamic policy generation and selection within the

3D virtual world domain. Various concepts adopted from the state-of-the-art cognitive

architectures SOAR, ACT-R and CLARION were integrated with Q-Learning and a

policy generation mechanisms to fulfill the listed architecture requirements.
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Chapter 4

Design and Implementation of the

Experimental Platform

The following chapter outlines the implementation details of the experimental plat-

form used to evaluate Q-Cog agents. The platform is reusable and provides support

for developing and experimenting with agent-based simulations in 3D virtual worlds.

The chapter firstly outlines the requirements of the platform. Secondly, the support

provided by the platform is discussed. Thirdly, the mechanism used to link agent

architectures to the platform is described. Lastly, an overview on how to use the

platform is provided and scenario-specific extensions are described.

4.1 Platform Requirements

The aim of the platform is to provide the necessary support for developing and evalu-

ating agent-based models. The required components and specifications of the platform

are as follows:

1. Provide the necessary support for engineering and building agents.

(a) Sensory support.

(b) Actuator support.
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2. Provide the required tools to allow for the development of the 3D environment.

3. Provide simulation support allowing users to run specialized experiments uti-

lizing custom agent architectures.

4. Contain generic, extensible components that may be customized to suit the

requirements of the user.

4.2 The 3D Experimental Platform

The following section outlines the details of the reusable 3D experimental platform

designed to provide an environment for agent development with sensors and actuators.

The experimental platform was implemented using the Unity3D Game Engine [43].

The Unity Engine was selected as it provided tools for 3D rendering, agent pathfinding

algorithms and a physics engine. These Unity3D tools were utilized to develop the

specialized platform based on the listed requirements. Figure 4-1 depicts an example

simulation within the experimental platform.

Figure 4-1: An example simulation within the experimental platform.
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4.2.1 The Generic Platform

The experimental platform provides various components for the development of agents

including sensory support and actuators. The following subsections provide details

on each aspect of the platform.

Agent Development Support

The experimental platform provides the following support for agents:

• Customizable sensory support allowing agents to observe the environment.

• Navigation support allowing agents to traverse the environment.

• Item collection and storage allowing agents to collect and utilize specified world

entities.

Figure 4-2: A diagram providing an overview of entities within the experimental
platform.

A world entity within the experimental platform defines any object placed in the

environment. The diagram in Figure 4-2 provides an overview of the entity system

within the platform. Each agent maintains certain components allowing it to act

within the environment. Other world entities, such as items, contain information

relating to how agents interact with them. For example, an agent may collect an
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edible item and store it within the inventory component. This item may then be

utilized by the agent at a later stage.

The entity system and entity components have been designed to be generic and

extensible. Scenario-specific entities are therefore expected to be defined to suit ex-

perimental requirements.

Sensory Support

Agent sensors were designed and implemented in order to observe world entities in the

environment within a certain range and only when in line-of-sight. This allows objects

in the environment to block the vision of agents and force additional exploration.

Complete environment information is not available to agents at the start of each

simulation. Deformations in the environment may also block agent vision and hence

provide higher complexity for the agent.

(a) Vision Radius of the Agent                                                                           (b) Eye Location of the Agent

Figure 4-3: The agent’s vision.

The vision radius of the agent may be controlled by editing the radius of a sphere

in a manner similar to that seen in Figure 4-3. This radius may be increased or

decreased as required for each experiment or simulation. Figure 4-3 also provides an

example depicting the eye location of an agent in the experimental platform. This

46



eye location, along with the vision radius, is used to calculate whether an object is

currently visible via a technique known as raycasting. At each update, a number of

rays are projected from the eye location to each potentially visible entity in the world.

The projection distance of each ray is indicated by the sight radius of the agent and

the origin of the ray is defined by the agent’s eye location. The percentage of rays

that hit the target entity indicate how certain the agent is that the entity is actually

at that location. An outline of the sensory process of environment agents is as follows:

1. Once another entity has entered the vision radius of the agent, that entity is

marked to be tested for line-of-sight visibility.

2. A number of rays are then fired from the agent’s eye location to each of the

marked entities. The number of rays projected determines the accuracy of the

sensor and is modifiable before each simulation.

3. The percentage of rays that successfully intersect the target entity without first

intersecting other entities indicates how certain the agent is that the entity is

actually present at that location (i.e. the confidence rating). A confidence rating

of zero immediately marks the entity as not visible.

4. Each entity, along with their corresponding confidence rating, collectively make

up the current visible entities for the agent.

Actuator Support

Actuator support was provided in the form of a navigation system. Agents traverse

the world by moving to navigable areas defined by a navigation mesh. This navigation

mesh is generated by the Unity3D engine. The supplied Unity3D pathfinding system

then allows agents to plan an optimal path to reach a specified point in the 3D world.

A depiction of the navigation mesh in the environment is shown in Figure 4-4. In

this image, supplied by the Unity3D engine developers, the blue area highlights the

generated navigable regions of the world. The cylindrical agent is then able to move

to any location within this region via pathfinding algorithms.
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Figure 4-4: A depiction of the navigation mesh in Unity3D. From:
docs.unity3d.com/Manual/nav-BuildingNavMesh.html

The Architecture Connector

The experimental platform utilizes a connector in order to communicate with a con-

nected agent architecture. This satisfies the requirement of a plug and play feature

as new architectures may utilize the platform through the connector with minimal

configuration. This was achieved through a Transmission Control Protocol (TCP)

socket connection as is shown in Figure 4-5 and the broad platform overview is shown

in Figure 4-6. The connector receives incoming observations from the experimental

platform while transmitting selected actions, selected by the concrete agent architec-

ture, to the platform for execution. An advantage of this approach is the possibility

of running the experimental platform and the agent architecture implementation on

separate physical devices in order to improve performance.

Figure 4-5: A depiction of the TCP connection from the experimental platform to
the agent architecture.
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Figure 4-6: An overview of the experimental platform architecture.

Once information has been received via the TCP connection, a complete model

of the environment is constructed based on each agent’s observations. The specific

architecture in use may then retrieve this information and utilize it during action

selection and learning. Once a specific action has been selected, the architecture

notifies the connector to transmit the action details to the experimental platform to

be carried out by the agent.

Transmitted Data

All agent observations are transmitted to the agent architecture from the experimental

platform to be used during reasoning. These are raw observations containing visible

entity locations in the world and agent attribute information. Consider the example

situation depicted in Figure 4-7. Agent A and an item F are visible to the humanoid

agent. Agent B however is blocked due to deformities in the terrain. Location

information of the item and agent A will therefore be the observation data transmitted

to the agent architecture and information relating to agent B is not transmitted.
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Figure 4-7: An example of observation data transmission.

4.2.2 The Simulation Engine

The platform is required to provide support for various simulations to be performed.

This includes features such as: Running an experiment for a certain number of it-

erations, recording important metrics and replaying simulations after completion for

further analysis. This support is controlled by the simulation engine section of the

platform as depicted in Figure 4-8.

Figure 4-8: An overview of the simulation engine in the experimental platform.

Simulation Settings

A simulation is parameterized by various settings. Firstly, the speed of the simulation

must be defined. This determines the rate at which world entities traverse the world
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and perform actions. This allows for a lengthy simulation to be completed at a faster

rate. The length of the simulation is defined by the number of iterations performed.

Once an iteration is completed, world entities are reset to their initial states and a

new iteration is started.

Metric Recording

The data recorder allows various metrics, such as success rate, to be recorded during

each simulation. Users may then define the points in the execution for which they

require data to be stored. Once the simulation has been completed, the data file

containing this information is output to the user for analysis.

Recording and Playback

The playback engine allows simulations to be recorded and played back at a later

stage for further analysis. The engine constantly records the attributes and actions

of every world entity during a simulation. Once a simulation has completed, the

recording is stored. Users may then load a particular recording file to playback the

simulation. The data pertaining to each world entity is stored in a separate file. Each

file is then loaded by the playback engine when performing a playback.

4.3 Platform Customization and Setup

The following section provides an overview of how the generic experimental platform

may be utilized.

4.3.1 Agent Development

In order to develop a custom agent within the experimental platform, the user must

firstly provide the appropriate 3D model of the agent within the Unity3D editor as

depicted in Figure 4-9. This is only a visual customization and does not effect agent

behaviour.
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Figure 4-9: A 3D humanoid model in the experimental platform.

Secondly, the desired components of the agent should be defined as per Unity3D

object creation protocol. The defined components of a humanoid agent are shown in

Figure 4-10. The component outline is as follows:

Figure 4-10: The components of a humanoid agent within the experimental platform.

1. The Field of View Sight component is the provided platform sensory support.

This defines how the agent is able to observe the environment by defining at-

tributes such as vision radius and the eye location.

2. The Entity Movement component specifies movement information of the agent.

Aspects, such as movement speed, relating to how the agent traverses navigable

terrain are defined here. An example code snippet is shown in Figure 4-11.
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3. The Inventory component monitors the item collection aspect of the agent.

This includes the maximum carrying weight of the agent and references to the

currently collected world entities.

4. The Custom Humanoid component contains the specialized agent behaviour

that defines any unique aspects relating to how the agent interacts with other

world entities.

Figure 4-11: An example code snippet from the Entity Movement script.

4.3.2 Setting Up a Simulation

The following are the steps required to setup a simulation within the experimental

platform:

1. Develop the required environment setup within the Unity3D editor by using a

number of 3D models.

2. Using the navigation mesh tool as depicted in Figure 4-4, define the navigable

areas of the developed terrain. This completes the development of the 3D

environment.

3. Develop a number of agents with specialized behaviour as is outlined in section

4.3.1 and place agents in appropriate locations in the world.

4. Define the simulation settings such as iteration count and simulation speed.
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5. Launch the implemented agent architecture and then launch the experimental

platform simulation.

6. Once an iteration has completed, agents will be reverted back to starting loca-

tions and metrics will be recorded.

4.4 Summary

The developed experimental platform contributes a reusable and extensible means of

experimenting with agent-based simulations in the 3D virtual world domain. The

platform provides the necessary support such as sensory and navigation tools. These

are combined with a simulation structure containing metric storage, simulation record-

ing and playback support to supply a full experimental platform package.
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Chapter 5

Experimental Design and Results

The usability of the experimental platform and the adaptability of Q-Cog agents

were evaluated. This chapter describes the empirical evaluation of the adaptability

of Q-Cog agents and evidence for the usability of the experimental platform is also

provided. The platform was successfully used by other research projects involving

many different areas of artificial intelligence: Ontologies, Bayesian Networks, Delib-

erative and Reactive Architectures and Deep Learning [2, 16]. This variety aimed

to show that the platform may be used in many different areas of AI research. The

hypothesis tested for Q-Cog was that a policy library will improve the adaptability

of Q-Cog agents. The platform was used to setup scenarios within which the agents

were expected to survive against hostile agents. Q-Cog agents with and without the

policy library were evaluated and it was found that the agent utilizing the policy

library had a significantly higher performance as the complexity of the environment

was increased.

5.1 Scenario Overview

The hypothesis tested was that Q-Cog agents utilizing a policy library will adapt to

changes in the environment better than agents without the policy library. Several

experiments were carried out by pitting agents with and without the policy library

against hostile agents with varying combat strengths. The scenario is that a humanoid
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agent must adapt to changing circumstances to survive. The scenario consisted of a

number of hostile predators that need to be eliminated through combat simulations

while available food sources provide a source of regeneration during or after combat.

The humanoid agent is required to adapt its behaviour and gather knowledge about

the environment in order to overcome certain challenges discussed below. The preda-

tor is a hostile agent that wanders the environment and whose primary goal is to

eliminate the humanoid when sighted. Agents were required to reason about threats

and food sources and make optimal decisions when to fight or flee and when to con-

sume food. The scenario was setup within the complex 3D virtual world experimental

platform (Chapter 4).

When a predator sights the humanoid in the world, it attempts to engage it in

combat. The environment contains predators of varying strengths. The strength

of the predator is determined by health and combat damage attributes which indi-

cate their combat effectiveness. An objective of the humanoid agent is to distinguish

between different predators and adapt its behaviour appropriately to effectively elim-

inate them in combat.

The goal of the humanoid is to eliminate all predators in the world while avoiding

death. The humanoid fails a simulation when it is eliminated in combat. All agents

in the world contain a health attribute. The act of combat decreases health and

when the health value of an agent reaches zero, the agent is eliminated. Consuming

food is the only method of regaining health. The humanoid is required to consume

food which is present around the world in order to regain the health lost as a result

of combat. This food is available only for the humanoid agent. The quantity of

food is finite and so the humanoid must carefully choose when it is most appropriate

to consume the available food. The negative implications of consuming food at the

incorrect moment results in potential health being lost as the humanoid may not

exceed its starting total health value. Therefore the optimal food collection process

involves only consuming food after combat. With regards to predator combat, the

appropriate actions include disengaging from combat and seeking food when dealing

with stronger predators as they may not be eliminated in a single combat scenario.
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5.2 Experimental Platform Extension: Agent Com-

bat

To accommodate the requirements of the scenario, the experimental platform was

extended to include a combat sub-system allowing agents to engage each other in

realtime combat. Firstly, agents were modified to allow for an assigned health value.

This value determines how close the agent is to dying. Once the health value of an

agent reaches zero, the agent is eliminated until the next run. Secondly, a combat

component was added to the platform defining how agents may engage each other.

This combat component maintains a particular damage attribute as well as an attack

frequency attribute. The damage attribute indicates how much health is removed

from the other agent as a result of an engagement with this agent during combat.

The attack frequency attribute determines the interval at which the damage attribute

is applied to the health of the opposing agent. A typical engagement involves:

1. Agents first move within hand-to-hand range of one another.

2. In realtime, each agent removes a certain amount of health from the other agent

based on their combat damage attribute.

3. If the corresponding health indicator of either of the agents reaches a value less

than or equal to zero, that agent is eliminated and removed from the current

run.

Agents are able to disengage from combat at any time and continue to perform

other tasks in the world. This does not prevent the other agent from continuing

combat. For example, if one agent decides to flee during combat, the second agent

may pursue and continue to attack. Figure 5-1 shows two agents engaged in combat.

Predator agent behaviour was defined by a Finite State Machine. Predators engage

the humanoid when within a certain radius. When the humanoid moves out of this

radius, the predator will disengage. The disengage radius is randomly generated for

each predator which provides a degree of non-determinism.
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Figure 5-1: An screenshot from a simulation in the experimental platform where two
agents have engaged in combat.

5.3 Experimental Design

5.3.1 Environment Design

Environment Rewards

The Q-Cog architecture utilizes Reinforcement Learning and so reinforcement values

were associated with important environment events. Whenever the humanoid agent

performs an action on the environment, an immediate reward value is given as feed-

back. The reward values for each environment event are available in Table 5.1. These

reward values were finalized prior to experimentation setup. A set of initial values

were selected as the starting point and a number of tests were run to calibrate the

simulations.

Table 5.1: Reward values received as a result of each environment event.

Environment Event Reward Value
Predator Eliminated +2

Humanoid Killed -4
Food Consumed at
Appropriate Time +2

Food Consumed
and Wasted -2
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The reward values with regards to food consumption in Table 5.1 are calculated

based on whether or not food has been wasted. Food is wasted when the agent

consumes an item of food when it is at maximum health and does not require it.

Environment States

Various properties in the environment, such as distances to predators and location

of food are continuous variables. Thus, the environment, at any time could be in an

infinite number of states. To make the learning problem tractable, the state space was

discretized. These states are shown in table 5.2. The danger level of Low indicates

that there are no nearby predators while a danger level of High indicates one or more

predators nearby. Humanoid health represents the three numeric health values that

the humanoid may have (Low = 1, Medium = 2, High = 3). The food available

may either be True or False and indicates if food is in the immediate vicinity of the

humanoid.

Table 5.2: A table representing the discretized state space.

State
Number

Danger
Level

Humanoid
Health

Food
Available

1 Low Low False
2 Low Low True
3 Low Medium False
4 Low Medium True
5 Low High False
6 Low High True
7 High Low False
8 High Low True
9 High Medium False
10 High Medium True
11 High High False
12 High High True

In each experiment, the agent refines an optimal activity selection policy to ensure

that it survives for the maximum amount of time that it can and defeats all predators

in the environment. A policy is an optimal mapping from each state, listed in Table

5.2, to one of the following activities:

1. The Explore activity involves the agent searching random areas of the envi-
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ronment in order to find either food or predators.

2. The Engage activity involves the agent engaging the closest visible predator in

combat.

3. The Flee activity involves the agent running away from surrounding predators.

4. The Eat activity involves the agent approaching and consuming a nearby visible

food source.

5.3.2 Metrics

Two metrics were used to measure the performance of the agent: success rate and

survival time. The success rate indicates the percentage of predators eliminated by the

humanoid during each run. The calculation of the success rate is shown in Equation

5.1.

Success Rate =
Eliminated Predator Count

Initial Predator Count
(5.1)

An example dataset containing success rates is shown in Figure 5-2. This contains

a portion of data indicating the success rate of the humanoid after each run. Each

value indicates the percentage of predators eliminated during the run with 100%

indicating that all predators in the environment were eliminated. The average success

rate of the humanoid during this simulation may be plotted from this data.

The survival time indicates the length of time per run that the humanoid is able

to survive in the environment without being eliminated. At the start of each run, a

timer is started which records this metric. When the run is completed the time is

recorded. A run is completed when either the humanoid is eliminated or all predators

are eliminated.

5.3.3 Setup and Execution of Simulation

The experimental platform allows for easy integration and modification of different

scenarios. The Prefab system within the Unity3D engine allows various object types
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Figure 5-2: A figure depicting a portion of a dataset containing simulation results.

to be saved for later use. This allows researchers to quickly switch out agents in the

Unity editor and begin new experiments. An example of a scenario setup is shown

in Figure 5-3. In this depiction, three predator prefabs and the humanoid prefab

are available to be inserted into the environment. Any number of predators may be

placed in the world at different locations.

This experimentation begins each run by randomly placing predators and food

sources in the environment subject to a minimum distance constraint of 30 Unity

units. Predators are randomly placed in the environment with a minimum distance

between other predators. A similar generation system is used for food sources. This

distance constraint was implemented to prevent the generation of clusters of predators

or food sources in the environment. Once the environment is generated, the humanoid

is placed at a designated starting location and the experimentation is started.

5.4 Experiments and Results

Experiments were carried out to demonstrate that:

1. The Q-Cog architecture allows the agent to learn an optimal survival strategy

in a complex 3D virtual world.

2. The policy selection mechanism allows the agent to adapt effectively to dynamic
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Figure 5-3: Prefabs in the Unity engine allows various object types to be stored for
later use and added to the scenario.

environments.

3. The experimental platform may be used successfully to test and evaluate cog-

nitive agents in virtual 3D worlds.

The reference Q-Cog implementation is used to control the behaviour of the humanoid

agent within the world given various experimental scenarios defined. In all experi-

ments performed, the humanoid agent must eliminate a number of predators while

consuming available food sources at the appropriate time in order to stay alive. The

humanoid agent contains no initial knowledge of the environment. The agent is re-

quired to learn the results of its own actions on the environment and is unaware of

the nature of other agents. The knowledge acquired by the agent is re-utilized in each

run and so the agent is able to refine a policy during an experiment.
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5.4.1 Experimentation

Six experiments were conducted with each experiment consisting of sixty runs. This

allowed for three parameter sets to be run twice over. The experimental parameters

are as follows:

• The Run Count defines the number of complete runs of each simulation. A run

is completed when the humanoid agent is either eliminated or has eliminated

all predators in the environment.

• The Predator Count defines the number of predator agent in the environment

at the start of each run.

• The Predator Type Count parameter defines the variety in predator be-

haviour. For example, a type count of three indicates that the initial predator

count will be populated using three different predator types. The number of

predators from each type will always be equal. Each predator differs in health

values and combat damage values.

• The Available Food Sources parameter defines the number of food sources

distributed around the environment at the start of each run.

Experiment Objectives

This experimentation process aims to provide a performance comparison between

agents utilizing policy selection versus agents without policy selection.

Experimental Parameters

Three experiments were conducted with the parameter sets as shown in Table 5.3.

Each experiment was performed with and without policy selection, resulting in a total

of six experiments. The run count, number of predators and food sources were kept

constant and only the number of predator types was varied to test the adaptability

of agents. The three predator types used, namely types A, B and C, vary in strength

with predator type A being the weakest and C being the strongest.
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Table 5.3: Experimental Parameter Sets.

Parameter Name Set 1 Set 2 Set 3
Run Count 60 60 60

Predator Count 6 6 6
Available Food Sources 3 3 3
Predator Type Count 1 2 3

Increasing the predator type count parameter increases the complexity of the

environment for the humanoid agent. A consistent predator count of six was selected

to allow for an even distribution in the amount of predators of each type as the

predator type count attribute was increased. For example, when the predator type

count attribute is three, there will be two predators of each type in the environment

at the start of each run. The food source parameter was kept at half the predator

count to force the humanoid to correctly preserve the supply.

Results

The policy library and policy selection extension to the architecture allowed the agent

to develop separate strategies for each predator as illustrated in Figure 5-4. The figure

depicts a confrontation between the agent and a predator of type A.

The sequence of events within the Policy Selection Module when a predator of

type A is perceived is as follows:

1. Insert state information into the policy mapping function. The type A predator

policy is the output of this function given the state information.

2. Set the type A predator policy as the current active policy in memory.

3. Select the appropriate action given the type A predator policy in memory.

The predator type A policy is selected based on the conditions of a production

rule being satisfied. In the above case, state information indicates that the humanoid

is currently perceiving a predator of type A. This matches the conditions of the pro-

duction rule governing the selection of the predator type A policy and so the policy
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Figure 5-4: A depiction of the policy library containing the policies for predators A,
B and C.

is output for selection.

Agents with and without policy selection were evaluated using the three parameter

sets. The predator type count parameter is varied between parameter sets in order

to demand a higher level of adaptable behaviour from agents. The average success

of each agent and the average survival time is then compared for each parameter set

in Figures 5-5 and 5-6. The average success and average survival time of an agent is

calculated over the 60 runs in a simulation.

These results indicate that the policy selection mechanism allows the agent to

adapt to an increase in predator types to a significantly greater extent than the agent

without the mechanism. As the number of predator types increase, both agents

display a drop in performance however the agent utilizing policy selection reveals a

lower performance drop and a significantly higher average performance throughout

experimentation. The reason for this difference in performance is due to the fact that

the agent utilizing policy selection is able to maintain specialized policies for each

predator type. Consider the policies generated by each agent for parameter set 3 as

depicted in Figures 5-7, 5-8, 5-9 and 5-10. Each policy contains desired actions to
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Figure 5-5: A figure depicting the average success of each agent utilizing the three
parameter sets.

select given each environment state listed in Table 5.2.

During execution in parameter set 3, the agent utilizing policy selection was able

to develop and refine three policies corresponding to predator types A, B and C

respectively. This then allowed the agent to utilize the correct policy when dealing

with each type of predator. The generic nature of the Policy Selection Module allowed

the agent to automatically identify the need for three separate policies via predator

attribute information. Whenever a new type of predator type was identified, the

agent developed a new policy and stored it in the policy library. For example: When

the agent encountered predator type A for the first time, a new policy was generated

and inserted into the library. Once predator type B was identified via environment

observations, another policy was then generated and utilized. The policies developed

by the agent for facing predators A, B and C are depicted in Figures 5-8, 5-9 and

5-10 respectively.

Agent policies will yield the same results if the optimal actions for each state are

equal in both policies. The policy developed in parameter set 3 by the agent without

policy selection in Figure 5-7 matches the policy generated by the agent with policy

66



Figure 5-6: A figure depicting the average survival time of each agent utilizing the
three parameter sets.

Figure 5-7: The single policy of the agent without policy selection in parameter set
3.

selection for predator type A in Figure 5-8. This indicates that the agent without

policy selection was only able to account for a single predator type in the environment

and so would result in a far lower success rate. Consider Figure 5-7, relating to a
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Figure 5-8: The developed policy for the agent against predator type A as stored in
the policy library in parameter set 3.

Figure 5-9: The developed policy for the agent against predator type B as stored in
the policy library in parameter set 3.
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Figure 5-10: The developed policy for the agent against predator type C as stored in
the policy library in parameter set 3.

policy developed by an agent without policy selection and Figure 5-10, relating to a

policy developed by an agent with policy selection to account for stronger predators

(Type C). Consider the proposed action in each of the policies for state number eight

which correlates to a high danger level, a low health value and the availability of

food being true. Regardless of surroundings and predator types, the agent without

policy selection will always choose to engage nearby predators. If it was assumed

that there are strong predators nearby (Type C), the agent utilizing policy selection

would decide to seek food. The result of this defensive approach in this scenario

would be improved survival time and a higher chance of survival in combat against

the stronger predators. The agent not utilizing policy selection would be eliminated

by any predators stronger than type A. This crucial difference in decision making

results in the far lower success rate without the policy selection mechanism.

Figure 5-6 provides insight as to the average duration agents are able to survive

in the world. On average, the agent utilizing policy selection is able to survive for a

substantially longer period of time with a total average survival time of 46 seconds

over the three parameter sets versus the 35 second average of the other agent. This

indicates that the agent contains a more efficient method of adapting to the environ-
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ment as it is able to survive for longer periods of time and achieve the given task of

eliminating predators to a greater extent.

5.5 Experimental Platform Evaluation

The experimental platform was designed to be reusable by supplying extensible sen-

sory, actuator and simulation support. Although it may be relatively easy to extend

the existing support, should developers require a completely unique sensory or ac-

tuator system, such as an image capture sensor, this functionality would need to be

integrated separately. An advantage of the current platform architecture does how-

ever allow developers to easily integrate new functionality with the existing system.

If a new sensor mechanism was required, developers would simply need to replace the

current sensory system and forward the corresponding sensor output to the relevant

platform components.

5.5.1 The Q-Cog Application

The experimental platform was utilized in this work to evaluate the Q-Cog architec-

ture. A scenario involving a humanoid agent with the goal of surviving in a virtual 3D

world was created and implemented. The platform allowed for various simulations

to be performed and the necessary results obtained. The Q-Cog application pro-

vides supporting evidence that the experimental platform may successfully be used

to evaluate agent and cognitive agent architectures in 3D virtual environments.

5.5.2 Other Applications

Apart from the work done with the platform to evaluate the Q-Cog architecture, the

platform was successfully utilized in three different research projects, two of which

have been elaborated on below.
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Deep Learning vs Shallow Learning in Support Decision Making in a 3D

Virtual World

The research done by Ikram [16] aimed to compare the performance of deep and

shallow neural networks for decision making in 3D environments. Two different agents

were developed: One was trained with a shallow neural network while the other used

a deep neural network. The experimental platform was utilized in this research to

create scenarios whereby a humanoid agent would attempt to survive against hostile

agents in a 3D environment. The combat extension was used to achieve the desired

predator-prey system. The survival rate of the humanoid and agent eliminations was

used as evaluation metrics. Figure 5-11 depicts cumulative agent kills obtained for the

best performing shallow and deep learning agents in one experiment. The simulation

engine of the experimental platform allowed for retrieval of the required metric data at

appropriate events. Using these results from the platform, it was concluded that the

supervised shallow learning network performs better than the deep learning network

in the given scenario.

Figure 5-11: Cumulative agent kills based on results obtained by Ikram [16].

Ikram made the decision to utilize the architecture connector in order to implement

back-end agent code in the Java language. All neural networks were then implemented

separately from the experimental platform and simply utilized the connector to issue

agent instructions and receive data.
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A Comparison of Deliberative vs Reactive Agent Architectures in a 3D

Virtual Environment

Research done by Ballim [2] aimed to compare various agent architectures within

the 3D virtual world domain. Ballim evaluated deliberate and reactive architectures

using the experimental platform. The research specified the following requirements

for the evaluation platform:

• 3D sensory support.

• Multi-language support to utilize both the Java and C# programming lan-

guages.

• A stream of sensory data that may be analyzed by the architectures.

Ballim extended the platform to provide a hearing sensor as depicted in Figure 5-

12. Each entity was modified to contain a hearing radius and objects in the world were

given the capability to emit noise. This additional sensory data was then included in

the sensory data stream to be processed by the architecture.

Figure 5-12: A depiction of the hearing sensor as implemented by Ballim [2].

Ballim created one scenario in the experimental platform which involved an agent

maximizing the number of objects it can collect while avoiding other hostile agents in
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the environment. Two experiments were successfully performed. The first experiment

monitored agent survival time and the second experiment monitored the number

of collected objects in order evaluate agent performance. Figure 5-13 provides a

section of results obtained from the platform by recording the amount of collected

objects by agents with different architecture implementations. Based on the scenarios

implemented, it was concluded that the BDI agent architecture outperformed other

architecture implementations in the domain.

Figure 5-13: Results obtained by Ballim relating to agent object collection for different
architecture implementations [2].

5.5.3 Experimental Platform Results Summary

The evaluation of the experimental platform indicate that it may effectively be used

to evaluate agents in a 3D virtual environment. Ballim [2] and Ikram [16] utilized

the platform and were able to use provided support and easily add extensions in order

to satisfy their experimentation requirements.

5.6 Summary

This chapter detailed the evaluation of the Q-Cog architecture and the experimental

platform. Using the humanoid scenario within the experimental platform, six exper-
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iments were conducted to evaluate the architecture. Results from experimentation

indicate that the policy selection mechanism in the Q-Cog architecture allows agents

to adapt more effectively to changes in the environment than agents without the

mechanism. Evaluation of the experimental platform indicated that it may be used

for many areas of artificial intelligence research including: Cognitive Agent Archi-

tectures, Deliberative and Reactive Architectures, Deep Learning and Reinforcement

Learning. Researchers were able to extend the platform to meet their experimental

requirements.
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Chapter 6

Discussion

This chapter discusses the proposed Q-Cog architecture, its implementation and its

empirical evaluation. This chapter is divided into three main parts: Theoretical

analysis of the Q-Cog architecture and policy selection mechanism, analyzing the

re-usability of the experimental platform and the empirical evaluation of the Q-Cog

architecture.

6.1 Analysis of the Q-Cog Architecture

Q-Cog was inspired by several commonly used cognitive architectures, mainly, ACT-

R [12], SOAR [23] and CLARION [27]. Table 6.1 outlines the main similarities of

Q-Cog with existing cognitive architectures. The coordination mechanism, learning

mechanism and knowledge representation scheme were used as dimensions for the

comparisons. These dimensions will be explained below.

6.1.1 System Design

Coordination

Both the SOAR and ACT-R cognitive architectures contain a central processing mod-

ule that controls the flow of information. The central processing module within SOAR

maintains the current state of the world and also stores a representation of the current
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Table 6.1: A comparison of cognitive architectures.

Architecture Coordination Learning
Mechanisms

Knowledge
Representation

Q-Cog

A Central Processing
Module to control inter-
module communication
and perform actions on

the environment.

A policy library stores learned
policies that may be dynamically
added and executed at runtime.

The Q-Learning algorithm is then
utilized when selecting an action

and refining policies.

Contains a mixed approach
with production rules and

reinforcement values.

ACT-R

The procedural module
coordinates all other ACT-R

modules. Other modules
communicate with this
module through buffers.

Production compilation is
used to generate new productions

by merging separate rules into one.
These may then replace multiple
rules and reduce execution time.
Utility values are also used when
selecting actions and are refined

after action execution.

Contains a mixed approach
with utility values and production

rules.

SOAR/
SOAR-RL

Working memory contains
current state information in
the form of working memory
elements. It also coordinates
the execution of actions on

the environment.

Chunking is utilized in order
to generate new procedural

knowledge. SOAR-RL introduced
Reinforcement Learning into the

architecture.

Largely a symbolic architecture
with the introduction of SOAR-

RL adding a numeric aspect.

CLARION
The meta-cognitive subsystem
controls and manages other

subsystems in the architecture.

Utilizes bottom-up and top-down
learning. Each module is then

split into a top and bottom level.
The bottom level utilizes
Q-Learning while the top

level utilizes rule extraction.

The top level of a module contains
symbolic production rules with
the bottom level containing a

numeric representation.

goal of the agent. This module serves a similar purpose within the ACT-R architec-

ture which is to provide a mode of communication between all other modules. Each

module in ACT-R must utilize the procedural module in order to communicate with

other modules. The central processing in Q-Cog was designed using principles similar

to that of ACT-R and SOAR as the Central Processing Module controls the flow of

information between all other modules. This allows tight control over the flow of

information within the architecture.

Knowledge Representation

The SOAR architecture is predominantly symbolic. Knowledge is largely stored in

symbols which function as a reference to an object or a rule. For example, a symbol

may represent a real world object such as a tree. SOAR has recently included nu-

meric representations, such as reinforcement and utility values, via the introduction

of SOAR-RL. Numeric knowledge is utilized in SOAR when symbolic knowledge is

not sufficient to make a decision. Both ACT-R and CLARION contain a mix of both
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symbolic and numeric representations. In particular, CLARION divides each module

into a symbolic and non-symbolic section due to its top-down and bottom-up learning

approach.

Q-Cog has also taken a mixed approach to knowledge representation with the main

focus on numeric representations. Numeric data is used when deciding on an action to

select and symbolic data is used to constrain the actions in order for a subset of actions

to be proposed. Production rules stored in production memory are used along with

the Q-Learning Module when selecting actions. This approach has been utilized in

both ACT-R [37] and CLARION [27] with the SOAR-RL architecture moving in the

same direction [30]. A mixed approach reduces the amount of uncertainty in decision

making as was found in the SOAR architecture [30]. When deciding on an action to

perform, the architecture has access to both numeric and symbolic preference data.

When symbolic data is not sufficient to make a decision, numeric knowledge may be

utilized and vice-versa. This approach is more flexible.

Learning and Action Selection

The SOAR architecture selects a particular operator to execute on every decision cy-

cle. Since SOAR uses a state-based representation, an operator modifies the current

state in some way. Each operator is assigned a preference indication that provides a

utility that operators use to compete for selection based on the current state. The

operator with the highest preference is selected for execution. If two operators contain

equal preferences, SOAR enters what is known as an impasse to solve this. When

this impasse occurs, SOAR uses it as a learning procedure. The process known as

chunking takes a "snapshot" of the current contents of working memory. This snap-

shot is then used to generate a new production rule that will eliminate the need for an

impasse if a similar situation ever arises again. The recent introduction of SOAR-RL

added a Reinforcement Learning aspect to the original architecture [30]. Operator

preferences are now updated by including reinforcement values from the environment.
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ACT-R utilizes a learning mechanism known as production compilation. Produc-

tion compilation is a deductive process that involves the creation of new rules. These

new rules are created to handle more specific tasks. These rules may then be used

in the future to save processing time as they would replace the more general rules.

Similar to the operator preference values in SOAR, ACT-R uses rule utility values

where the utility of a rule is based on its success rate [11, 12].

The CLARION architecture uses a combination of bottom-up and top-down learn-

ing [21, 27, 12]. This involves the symbolic modules at the top level learning informa-

tion by utilizing the numeric bottom level and vice-versa. Bottom-up learning is used

to generate new rules. Top-down learning involves training the bottom-level neural

network using data from the top level.

The goal of learning in Q-Cog is to allow agents to effectively adapt to changes in

the environment. Reinforcement provides the means for agents to learn using their

own experiences and hence environment changes will be taken into consideration.

Q-Cog learning allows a virtual agent to develop a number of policies to adapt and

perform optimally within a changing environment utilizing the policy selection mech-

anism. For this reason the Q-Learning and Policy Selection Modules were integrated

into the architecture as the central learning modules. The focus of the learning pro-

cess in Q-Cog is to develop multiple policies that the agent may utilize throughout

execution as opposed to a single policy in traditional Q-Learning. Memory aspects

such as episodic memory, commonly found in cognitive architectures, are important in

order to achieve this due to the fact that agents require a means of storing important

data.

Policy Selection

Other cognitive architectures such as CLARION utilize the Q-Learning algorithm but

they do not maintain a policy library such as that in Q-Cog. The integration of the

policy library in Q-Cog brings potential for cognitive architecture to focus on a dif-
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ferent area of learning in the form of context-switching via policies [5]. The dynamic

policy generation mechanism in Q-Cog allows the agent to maintain a library of spe-

cialized policies for different areas and situations within the environment as opposed

to attempting to develop a single general policy that may be ineffective. Knowledge

gathered in the policy library from previous iterations is stored and utilized in fur-

ther iterations which reduces the need to start the learning process again. Consider

the example of an agent acting within the Malmo platform outlined in Section 2.4.1.

A standard agent in this environment may be required to navigate the world while

constructing various objects or structures. The policy library proposed in Q-Cog al-

lows for the world navigation and object construction to be separated into different

policies as opposed to having a single general policy. Further separation may then

occur within both the navigation and object construction policy subsets to develop

specialized policies for different activity sets. This mechanism allows Q-Cog agents

to maintain a high level of adaptability and flexibility. When agents encounter new

portions of the state space, they are able to either use existing policies or generate a

new policy to better adapt to the changes.

Empirical Evaluation of Q-Cog

The results of experimentation show that the Q-Cog architecture increases the adapt-

ability of agents. Utilizing policy selection, agents are able to maintain specialized

policies improving adaptability when the environment changes. Results were obtained

for agents with and without policy selection i.e. agents A and B respectively. A com-

parison of the results obtained for the two agents in Figures 5-5 and 5-6 indicate a

substantial performance improvement due to the utilization of policy selection. The

performance difference is mostly evident when the number of predator types in the

environment is increased. As the predator types increase, the need for adaptabil-

ity becomes more important as agents must account for varying predator behaviour.

Agent A is able to adapt to the increase in predator types to a far greater extent

than agent B. This shows that the policy selection mechanism allows Q-Cog agents

to adapt more effectively to environmental changes. The results obtained thus indi-
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cate that the selection mechanism improves the performance of the agent within the

given scenario as agent B was unable to successfully adapt to environment changes.

6.2 The Policy Library

6.2.1 Design and Integration

The role of policy selection in Q-Cog is to allow the agent to have specialized policies

for different aspects of the environment. The policy selection mechanism was inte-

grated into the architecture through the addition of a new module which maintains

a policy library. An optimal policy contains optimal actions for an agent to perform

in each environment state. Q-Cog generates and refines policies at runtime while

continuously selecting the best policy to execute at a given time-step. This selection

mechanism utilizes agent observations from the environment in order to correctly

select the best policy. Agent observations are inserted into a function that maps en-

vironment states to policies and the relevant policy is retrieved for execution. As seen

in work done by Lample and Chaplot [24], the complex tasks of navigation and combat

were split into two policies and handled separately. Q-Cog allows for any number of

policies to be generated and stored within the policy library to handle specific aspects

of the environment such as: Navigation, combat and item collection. As an example,

consider again the case of a humanoid agent surviving in a world containing hostile

predators. These predators may vary drastically in behaviour to the extent that a

single policy is not sufficient to allow the agent to survive in the environment. Once

environment states have been formed, the agent may then autonomously develop a

mapping of situations to policies which would allow for adaptation to each type of

predator behaviour by selecting the appropriate policy. The potential of this mecha-

nism may include the agent autonomously developing the map without the need for

additional observation data to be inserted by developers. One possible area of interest

for future work may include implementing deep learning for this purpose to allow the

agent to autonomously identify unique aspects of the environment.
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6.2.2 The Policy Selection Process

Section 2.2.3 outlined previous work on policy libraries by Fernandez and Veloso [10]

and Chalmers et al [5]. The role of the policy selection mechanism in Q-Cog is to

maintain a library of policies that each pertain to particular situations, i.e. a set

of states, in the environment. The mechanism developed by Fernandez and Veloso

probabilistically utilizes previous policies to assist in the learning of a new policy.

The approach taken by Chalmers et al [5] extended the work done by Fernandez and

Veloso. The mechanism involved context-switching whereby the agent maintained a

library of learned policies and would select the best policy to execute given environ-

ment data. The agent checks the appropriateness of the current policy given recent

state transition history and may either continue utilizing the current policy or retrieve

a different policy from memory. The comparison with the design in Q-Cog hence lies

in the selection process. Q-Cog does not utilize state transition history and instead

utilizes a function that maps a set of environment states to a policy in order to select

the most appropriate policy. The architecture generates this function automatically

by analysing differences in environment observations. These differences are defined

by the developer and utilized in the function. This may result in a more reliable pol-

icy selection scheme as developers may insert certain environment observations that

may assist in the construction of this mapping function. An example of this can be

seen in the results from experimentation where the agent was able to distinguish the

three predator types from environment observation data and generate three separate

policies.

6.2.3 Policy Selection in Game Environments

Previous work performed by Waltham and Moodley [46] investigated the addition of

stochastic behaviour to agents in game environments. Although this provides less

predictable opponents for human users, it does not successfully allow agents to adapt

in order to counteract the strategy of opposing players. Agents in virtual worlds, and

particularly in game environments, should be able to develop and modify a policy that
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allows them to react to potentially drastic changes in the environment and human

user actions. The policy selection mechanism in Q-Cog may be applied to a wide

range of virtual world applications. Take for example a first-person shooter game

similar to that used by Lample and Chaplot [24]. In this virtual world application,

the agent has the task of competing against a number of human players. Each human

player in the game will presumably have a unique style of play. It is thus difficult

to generate a single generic strategy to effectively deal with all opposing players.

Therefore, if the proposed policy selection mechanism was utilized, each time a new

player is encountered by the agent in the world a new policy may be generated and

maintained for dealing with that particular player. The agent would then simply have

to select the appropriate policy when dealing with the corresponding player. This

policy selection function would simply involve a mapping of policies to all players in

the game and when a player is encountered, the appropriate policy is selected. The

flexibility of the architecture allows for more strategies to be added as new players

join the game.

6.3 The Experimental Platform

The experimental platform was developed and packaged to provide support for the

integration and evaluation of agent-based research in 3D virtual worlds. The virtual

nature of the platform provides researchers with a cost effective means of performing

experimentation as opposed to utilizing physical devices such as robots. Experimen-

tation in the real world brings about challenges in terms of controlling parameters.

Virtual platforms allow the user to easily modify and control parameters such as sim-

ulated physical constants. This removes the need for expensive lab equipment and

accelerates the development of an environment to perform experiments. This may

however also reveal a limitation of utilizing virtual environments as they may not

accurately mimic real world properties. The environment does provide a suitable em-

ulation of real world properties such that researchers may gain insight as to how the

work may function in a real world scenario. If the work has been found to be effective
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through virtual world evaluation, it may validate the expense and time required to

implement the work in real world scenarios such as robot interactions.

The research done using the platform involves many different areas of agent-based

experimentation: Cognitive Agent Architectures, Deliberative and Reactive Archi-

tectures, Deep learning and Reinforcement learning. This shows that the platform

does provide the necessary tools to allow for artificial intelligence based research to

be performed within 3D virtual environments. The experimental platform provides

an extensible, modular tool for developing and evaluating virtual 3D agents. Addi-

tional features may be added to craft ideal scenarios for different areas of agent-based

research in virtual environments.
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Chapter 7

Conclusion and Future Work

The objectives of the research were as follows:

• Design a cognitive agent architecture that allows 3D virtual agents to adapt to

a changing environment using concepts from state-of-the-art architectures.

• Develop a virtual 3D experimental platform that may be reused in future agent-

based research. Design and implement a complex scenario within this platform

to evaluate the architecture.

• Integrate a policy library into the architecture to allow agents to adapt to drastic

environment changes.

• Evaluate the architecture.

This research proposes Q-Cog: A Q-Learning based cognitive agent architecture

for adaptive 3D virtual agents. An experimental platform was designed and imple-

mented to evaluate the Q-Cog architecture. Various scenarios were designed within

the experimental platform and experiments were performed. The architecture used

key concepts of state of the art architectures such as CLARION, ACT-R and SOAR.

A complex humanoid scenario was designed and implemented within the experi-

mental platform in order to test the effectiveness of the architecture in various sce-

narios. A major outcome of experiments includes validating the adaptiveness of the
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architecture as a result of the proposed policy selection mechanism. The proposed

scenario, involving a humanoid attempting to survive in a simulated virtual world,

provides various complexities unique to the domain, such as, 3D world navigation. A

concrete implementation of the Q-Cog architecture was developed in order to control

the behaviour of the humanoid agent.

The architecture, when used without policy selection, was found to perform well

in simple scenarios in the environment and was able to achieve a high average success

rate over the course of 60 iterations. As the complexity of the scenarios was increased,

the performance of the architecture without the policy selection mechanism rapidly

decreased. The performance of an agent utilizing policy selection was significantly

better for scenarios of higher complexity and outperformed the agent without the

mechanism. Comparisons of results over a number of simulations indicated that the

policy selection mechanism in Q-Cog successfully improves the adaptability of agents

within the domain.

The experimental platform holds much potential for artificial intelligence research

in virtual worlds. The platform was used successfully in a number of artificial in-

telligence areas such as: Cognitive Agent Architectures, Deliberative and Reactive

Architectures, Deep Learning and Reinforcement Learning. This platform may be

extended in future work to support a wider variety of scenarios that developers may

implement for various artificial intelligence requirements.

In summary, the proposed policy selection mechanism in the Q-Cog architecture

has been shown to improve the adaptability of agents in the 3D virtual world domain.

The developed experimental platform assisted the experimentation performed in this

work. Results gained indicate that the platform may successfully be used to perform

agent-based research in the virtual world domain.

85



7.1 Future Work

• Future implementations of the Q-Cog architecture may include production com-

pilation techniques similar to that in the ACT-R architecture in order to improve

the policy selection mechanism. This may be used to autonomously generate

policy selection rules in addition to predefined rules by developers.

• One major application of the proposed architecture and RL includes 3D video

games. Future work may therefore include evaluating this architecture within a

complex video game environment and comparing results obtained with previous

work done by Waltham and Moodley [46].
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