
APPLICATION OF ARTIFICIAL INTELLIGENCE FOR DETECTING DERIVED

VIRUSES

OMOTAYO FAUSAT ASIRU

(215082564)

A dissertation submitted in fulfilment of the requirements

for the degree of Master of Science in Computer Science

in the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Durban, South Africa

July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchSpace@UKZN

https://core.ac.uk/display/196551331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION

The research was performed at the University of KwaZulu-Natal under the supervision of

Professor JM Blackledge and co-supervision of Mr MT Dlamini. I hereby declare that all

materials incorporated in this dissertation are my own original work except where

acknowledgement is made by name or in the form of a reference. The work contained herein

has not been submitted in part or whole for a degree at any other university.

OF Asiru

Date: 30 July, 2017

As the candidate’s supervisor, I have approved the dissertation for submission

Professor JM Blackledge

Date: 30 July, 2017

As the candidate’s co-supervisor, I have approved the dissertation for submission

Mr MT Dlamini

Date: 30 July, 2017

DECLARATION II – PLAGIARISM

I, Omotayo Fausat Asiru, declare that

1. The research reported in this dissertation, except where otherwise indicated, is my

original research.

2. This dissertation has not been submitted for any degree or examination at any other

university.

3. This dissertation does not contain other persons' data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other persons' writing, unless specifically

acknowledged as being sourced from other researchers. Where other written sources

have been quoted, then:

a. Their words have been re-written but, the general information attributed to them

has been referenced.

b. Where their exact words have been used, their writing has been placed in italics

and in quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables which are copied and pasted

from the internet, unless specifically acknowledged, and the source being detailed in

the dissertation and in References section.

Date: 30 July, 2017

iv

DEDICATION

This research work is dedicated to God Almighty, my creator for seeing me through this

research, to my loving husband, Olufikayo for his support and to my precious daughter,

Ayooluwa.

v

ACKNOWLEDGEMENT

My appreciation goes to God first for the successful completion of my master’s program; all

glory and adoration be unto him. My profound and sincere gratitude goes to my husband, Mr

Olufikayo Olowoyo for his love, prayer, physical and financial support. I could not have done

this without you, thanks for being there.

Special thanks go to my supervisor, Professor JM Blackledge for his contribution and support.

I am deeply grateful to my co-supervisor, Mr MT Dlamini for his counsel, guidance,

contribution and his tolerance throughout this program.

I want to appreciate Pastor and Mrs Kayode Akindeji, Mr and Mrs Peter Olukanmi for their

care, support and words of encouragement.

Finally, a big thank you goes to everyone that has contributed to the success of this project in

one way or the other. Thank you all and God bless.

vi

TABLE OF CONTENTS

DECLARATION ... ii

DECLARATION II – PLAGIARISM ... iii

DEDICATION .. iv

ACKNOWLEDGEMENT ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... x

LIST OF TABLES .. xi

LIST OF INCLUDED PAPERS .. xii

ABSTRACT ... xiii

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Motivation ... 1

1.3 Problem Statement .. 2

1.4 Research Questions ... 5

1.5 Research Aim .. 5

1.6 Research Objectives .. 6

1.7 Scope and Limitation .. 6

1.8 Definition of Terms ... 6

1.9 Overview of Chapters.. 9

vii

CHAPTER TWO ... 10

BACKGROUND ... 10

2.1 Introduction ... 10

2.2 Evolution of computer viruses .. 10

2.3 Computer virus life cycle .. 13

2.4 Anatomy of a computer virus .. 14

2.4.1 Replication routine ... 14

2.4.2 Payload routine .. 15

2.5 Classification of computer viruses .. 15

2.5.1 Classification by concealment technique ... 16

2.6 Computer Virus Mutation Techniques .. 20

2.6.1 Junk or Dead code insertion ... 20

2.6.2 Variable substitution .. 22

2.6.3 Instruction replacement .. 22

2.6.4 Instruction transposition... 23

2.7 Conclusion ... 24

CHAPTER THREE ... 26

LITERATURE REVIEW .. 26

3.1 Introduction ... 26

3.2 Current anti-virus software detection techniques .. 26

3.2.1 Signature Scanning .. 26

viii

3.2.2 Integrity Checker ... 28

3.2.3 Heuristic Scanner ... 29

3.2.4 Anomaly based detection ... 29

3.2.5 CPU / Code Emulation... 30

3.3 Review on previous research works .. 30

3.3.1 Research works for detecting new computing viruses 31

3.3.2 Research work for detecting derived computing viruses 36

3.4 Research Gaps ... 42

3.5 Conclusion ... 43

CHAPTER FOUR .. 44

PROPOSED MODEL .. 44

4.1 Introduction ... 44

4.2 Model .. 44

4.2.1 Virus signature database .. 44

4.2.2 Conversion of the virus signatures ... 47

4.2.3 Normalization .. 47

4.2.4 Neural network training ... 49

4.2.5 Neural network testing ... 50

4.3 Dataset ... 51

4.4 Model Implementation .. 51

4.5 Conclusion ... 52

ix

CHAPTER FIVE ... 53

RESULT AND DISCUSSION .. 53

5.1 Introduction ... 53

5.2 Mutation engine output ... 53

5.3 Model result... 54

5.3.1 The result of the model on training data .. 54

5.3.2 The result of the model on new data .. 55

5.4 Conclusion ... 66

CHAPTER SIX .. 67

SUMMARY, CONCLUSION AND RECOMMENDATIONS .. 67

6.1 Introduction ... 67

6.2 Summary ... 67

6.3 Conclusion ... 68

6.4 Recommendations for Future Work .. 69

REFERENCES .. 70

x

LIST OF FIGURES

Figure 2.1: The life cycle of a computer virus (Dhruw et al., 2016) 14

Figure 2.2: Evolution of concealment techniques (Singla et al., 2015) 16

Figure 2.3: Structure of an encrypted virus (Rad et al., 2012)... 17

Figure 2.4 : Structure of an oligomorphic virus (Rad et al., 2012) .. 18

Figure 2.5: Structure of replicator and mutation engine in metamorphic virus (Rad et al., 2012)

.. 20

Figure 2.6 : Instruction transposition ... 24

Figure 3.1: Steps of signature scanning (Mishra, 2010) .. 27

Figure 3.2 : Steps of an integrity checker (Mishra, 2010) ... 29

Figure 4.1: Virus detection Model ... 45

Figure 4.2: Existing virus signatures sample ... 46

Figure 4.3: A multilayer neural network (Zainal-Mokhtar & Mohamad-Saleh, 2013) 49

Figure 5.1: Graphical representation of experiment one result.. 57

Figure 5.2: Graphical representation of experiment two result ... 58

Figure 5.3: Graphical representation of experiment three result ... 59

Figure 5.4: Graphical representation of experiment eight result ... 61

Figure 5.5: Graphical representation of experiment nine result .. 62

Figure 5.6: Graphical representation of experiment ten result .. 64

Figure 5.7: Graphical representation of the result of all experiments 65

Figure 5.8 : Plot showing the results for all experiments with generations66 Figure 5.8: Plot showing the result for all experiments with generations............................ 66

xi

LIST OF TABLES

Table 2.1: Evolution of computer viruses (Rajesh et al. 2015) & (Joshi & Patil, 2012) 10

Table 2.2: Junk or Dead code insertion Version 1 ... 21

Table 2.3: Junk or Dead code insertion Version 2 ... 21

Table 2.4: Variable substitution Version 1 .. 22

Table 2.5: Variable substitution Version 2 .. 22

Table 5.1: Mutation engine output ... 53

Table 5.2: Training data results ... 54

Table 5.3: Experiment one result ... 56

Table 5.4: Experiment two result ... 57

Table 5.5: Experiment two result ... 58

Table 5.6: Experiment eight result ... 60

Table 5.7 : Experiment nine result ... 61

Table 5.8 : Experiment ten results ... 62

Table 5.9: Result for all experiments ... 64

Table 2. 6: I nstruction replac ement Version 1..23

Table 2. 7: I nstruction replac ement Version 2..23

Table 2.6:Table 2.6: Instruction replacement Version 1Table 2.6: Instruction replacement Version 1..23

Table 2.7: Instruction replacement Version 2..23

xii

LIST OF INCLUDED PAPERS

Conference paper published in 16th ECCWS 2017

O.F. Asiru, M.T. Dlamini, J.M. Blackledge, “Application of Artificial Intelligence for

Detecting Derived Viruses”. Proceedings of the 16th European Conference on Cyber Warfare

and Security ECCWS June 2017. pp. 647-655.

xiii

ABSTRACT

A lot of new viruses are being created each and every day. However, some of these viruses are

not completely new per se. Most of the supposedly ‘new’ viruses are not necessarily created

from scratch with completely new (something novel that has never been seen before)

mechanisms. For example, some of these viruses just change their forms and come up with

new signatures to avoid detection. Hence, such viruses cannot be argued to be new. This

research refers to such as derived viruses. Just like new viruses, we argue that derived viruses

are hard to detect with current scanning-detection methods.

Many virus detection methods exist in the literature, but very few address the detection of

derived viruses. Hence, the ultimate research question that this study aims to answer is; how

might we improve the detection rate of derived computer viruses?

 The proposed system integrates a mutation engine together with a neural network to detect

derived viruses. Derived viruses come from existing viruses that change their forms. They do

so by adding some irrelevant instructions that will not alter the intended purpose of the virus.

A mutation engine is used to group existing virus signatures based on their similarities. The

engine then creates derivatives of groups of signatures. This is done up until the third generation

(of mutations). The existing virus signatures and the created derivatives are both used to train

the neural network.

The derived signatures that are not used for the training are used to determine the effectiveness

of the neural network. Ten experiments were conducted on each of the three derived virus

generations. The first generation showed the highest derived virus detection rate compared to

the other two generations. The second generation also showed a slightly higher detection rate

than the third generation which has the least detection rate.

xiv

Experimental results show that the proposed model can detect derived viruses with an average

accuracy detection rate of 80% (This includes a 91% success rate on first generation, 83%

success rate on second generation and 65% success rate on third generation). The results further

show that the correlation between the original virus signature and its derivatives decreases with

the generations. This means that after many generations of a virus changing form, its variants

will no longer look like the original. Instead the variants look like a completely new virus even

though the variants and the original virus will always have the same behaviour and operational

characteristics with similar effects.

1

 CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter presents an overview of this dissertation and starts with a motivation of the study.

This is followed by a brief discussion on the problem statement which continues with a

statement on research question that the work aims to answer and a discussion on the aims and

objectives of the study. A discussion on the scope and limitation of the study is then presented.

The chapter also provides a definition of terms as defined for the purposes of this dissertation

and concludes with an overview of the organization of the rest of this dissertation.

1.2 Motivation

Computer viruses come with a wide variety of nefarious activities that range from consuming

an excess of memory to showing some funny and peculiar actions and performing serious

temporary or permanent damage to computing systems (Filiol, 2005). Criminals are now using

viruses to hijack and take over computers from unsuspecting users. Hijacked computers are

then used to create botnets to spread spam, perform a Distributed Denial of Service (DDoS)

and steal digital identities. Therefore, the effects of computer viruses have moved from just

showing annoying messages on the screen, for example, to having an impact on company

reputation and affecting business characteristics.

Several attempts have been made by a wide variety of anti-virus programs to solve the prevalent

virus problem in computing systems. For example, McAfee, Symantec's Norton and Kaspersky

are just a few of the market leaders in the anti-virus industry. In spite of all available anti-virus

programs in the market today, virus attacks do not seem to slow down. Singhal (2014) has

2

stated that it is possible for a computer that is connected to the internet to experience a virus

attack every 39 seconds. This could mean that at least 2215 computers are being infected by

virus on a daily basis.

Computer viruses are argued to cost businesses billions of dollars and the cost of the damage

is increasing yearly. The increasing cost of damage from viruses can be attributed to the fact

that new viruses are being created each day (Daoud, 2009). However, some of these supposedly

‘new’ viruses are not entirely ‘new’ per se. Most of the supposedly ‘new’ viruses are not

necessarily created from scratch with completely ‘new’ characteristics and attack mechanisms.

They just change their form and come up with different signatures to avoid detection (Feng &

Gupta, 2009). Hence, such viruses cannot be argued to be ‘new’. Examples of such viruses are

polymorphic and metamorphic viruses. A polymorphic virus uses a mutation engine to change

the virus code without changing the original algorithm (Khari & Bajaj, 2014). A metamorphic

virus uses obfuscation techniques to generate a different virus body but with the same overall

functionalities as with the original (Singla et al., 2015). This research refers to both of them as

“derived viruses”. A derived virus is a type of virus that modifies itself to produce another virus

body from an existing virus while maintaining the same functionalities as the original. Just like

new viruses, derived viruses are hard to detect with current scanning-detection methods. This

is because virus scanning-detection methods rely mainly on known or existing signatures.

Derived viruses on the other hand, and, at their first attempt in trying to infect a machine, do

not have any known or existing signatures (Silverman, 2001).

1.3 Problem Statement

Since the first appearance of computer virus in the 1970s, there has been a lot of research

targeted at solving the problem of virus attacks on computing devices. However, the protection

of computing devices against viruses is still a major problem within the field of information

3

security (Khorsand & Hamzeh, 2013). A recent incident of a virus attack was reported in

Kumar (2016) when the National Health Service network in England was compromised by a

computer virus. This led to cancellation of planned surgeries and medical appointments in

many hospitals. Hence, computer viruses at the extreme level could be argued to result in loss

of life. This could happen when patients are prevented by the acts of a computer virus from

getting the medical attention they need.

Currently, computer viruses attack at least a million computers every year. This causes damage

estimated to be billions of US dollars per year (Kamarudin et al., 2013). A virus named

“Mydoom” was reported to have caused damages worth 38.5 billion dollars. The virus attacks

window based computers and gets transmitted primarily through emails. It was reported to be

one of the most damaging computer virus ever (Rajesh et al., 2015). Similarly, another virus

named “I Love You” was reported to have caused damage worth 8.75 billion dollars. This virus

sends a copy of itself to every address on the host’s address book and overwrites files while it

renders the original file useless. Once this virus is on a computer system, it downloads a Trojan

horse which ‘steals’ usernames and passwords from the computer and sends them back to the

virus author (Rajesh et al., 2015). An incident of a virus attack which made headlines was

reported in Otake (2015) on a compromised Japanese pension system. This case led to 1.25

million cases of personal details being leaked. The data were leaked by agency employees who

opened a file containing a virus that was attached to an email. These are just a few of a number

of examples indicating the massive damages which computer viruses have caused users and

various organizations.

Over the years, the number of computer viruses such as the one responsible for breaching the

Japanese pension system has increased. The number of computer viruses in the year 1992 was

estimated to be between 1000 and 2300 (Daoud, 2009). It is also reported by Daoud (2009) that

over ten years since then, (i.e. in the year 2002) the number of known viruses had increased to

4

60,000. By 2009, there were over 100,000 known computer viruses (Daoud, 2009). In year

2016, Kaspersky Lab (2016) in their antivirus solution reported a total of 69,277,289 unique

malicious viruses. This is against 4,000,000 unique malicious viruses that were reported by the

same product in the previous year (i.e. in 2015) (Ivanov et al., 2015). These statistics reflects a

1631.9% increase within a year, i.e. between 2015 and 2016. Furthermore, Symantec's internet

security threat report shows a 125% increase in the number of zero-day vulnerabilities between

2014 and 2015. This is an indication that todays’ threats are increasing at an exponential rate.

Many of today’s threats are not new per se but just use some modern techniques to change

forms thereby looking different each time while retaining their functionalities and basic

characteristics. For example, nowadays, some virus writers are creating mutation engines.

Mutation engines are used to create virus codes that have the ability to change their signatures

at every infection to avoid detection. The self-modification ability that modern day viruses

possess has put strain on the current scanning detection methods (Kumar, 2016).

An example of such is a tool kit called the “Dark Avenger's Mutation Engine" (Muhtadi, 2014).

This tool has the self-modification capability which makes it hard for current anti-virus tools

to detect viruses. On the other hand, the same tool makes it easier even for non-programmers

to create a virus that mutates. This is done in such a manner that in taking any two files infected

by the same virus, their signatures appears to be totally different and without any correlation.

Hence, it can be argued that the reported exponential increase in the number of viruses is

somehow inflated. The increase may be due to some viruses using different techniques to

change their form and signatures. Therefore, it could happen that the same virus could be

detected more than once but each time as something completely different from the original

signature. Existing signature based anti-virus tools have failed to detect mutating viruses and

those that have made successful attempts have a low detection rate (Hamza & Hussain, 2014).

5

In a bid to increase the detection rate of computer virus, many studies (as reported in the known

literature) have focused on virus detection methods. However, only a few of these address the

detection of derived viruses that change their form or signature. For example, Wang et al.

(2009) proposes a method of detecting mutating virus by using a candidate virus gene library.

The major drawback of their proposed method is the inability to increase the diversity of the

genes in the virus library. The work of Nguyen et al. (2012) proposed a method based on

memory abstraction for handling obfuscation in what they refer to as a polymorphic virus. The

major characteristic of a polymorphic virus is its self-modification ability. However, the

challenge of the proposed solution therein is that it requires an abstract form that captures the

memory state of every executed instruction. Hence, Golovko & Bezobrazov (2015) argue that

the best modern anti-virus tools can only detect 90% of known viruses and 70% of mutating or

polymorphic viruses.

The detection of a derived virus remains the greatest threat, not because it is worse than a

normal virus in terms of the damage it causes, but because it is hard to detect by current

detection techniques as it changes its ‘look’ at every infection. The research reported in this

dissertation therefore explores a novel approach to try and improve the detection rate of derived

viruses. The following section discusses the research question that this study aims to answer.

1.4 Research Questions

The ultimate research question that this study aims to answer is; how might we improve the

detection rate of derived computer viruses?

1.5 Research Aim

This research aims to derive a virus detection model to help improve the rate of detecting

derived viruses from 70% as per Golovko & Bezobrazov (2015).

6

1.6 Research Objectives

The above aim is accomplished by fulfilling the following research objectives:

1. Investigate and review existing literature on computer virus detection in order to

examine the reasons behind the failure of current detection methods in detecting derived

viruses.

2. Design, develop and evaluate a model that correctly classifies virus signatures into

existing or derived forms

3. Finally, make recommendations on how to further improve the detection rate of derived

viruses.

1.7 Scope and Limitation

The scope of the research reported in this dissertation is limited in the sense that it only

considers virus signatures of a fixed length i.e. 32 bytes. This is because our solution requires

the input to be represented as a fixed-length feature vector (Le et al., 2014). Furthermore, this

research scope does not consider virus signatures with special characters and those that are

encrypted. It only considers virus signatures that are limited to the normal character set i.e. 0-

9, a – z and A – Z.

1.8 Definition of Terms

A few terms are defined in this section, as used throughout this dissertation:

 Virus: Hamza & Hussain (2014) defines a virus as a program that can make copies of

itself using a host computer and eventually causes temporary or permanent damage to

the system. Nguyen et al. (2012) defines a virus as a block of binary code that can copy

itself from one program into another without the knowledge of the program owner.

7

According to Dhruw et al. (2016), a computer virus is a piece of software that infects

other programs within a computing device by modifying them. Based on these

definitions and for the purposes of this dissertation, we define a computer virus as a

piece of computer code that replicates itself by attaching itself to a host computer and

performs unwanted operations within the computer system.

 Virus Signature: Mishra (2010) defines a virus signature as a sequence of bytes that can

be found in a virus program code but is unlikely to be found in any other place.

According to Zhong et al. (2012), a virus signature is a specific pattern of sequences of

bytes that defines a virus. Khorsand & Hamzeh (2013) defines a virus signature as a

unique byte sequence of the virus program code. Based on the definitions above and

for the purposes of this dissertation, we define a virus signature as a unique string of

characters or numbers that makes up a fingerprint that can be used to identify a virus.

Our definition excludes special characters.

 Existing Virus: A virus whose signature is already known to the current virus detecting

techniques.

 Metamorphic Virus: Dhruw et al. (2016) define a metamorphic virus as a virus that

mutates by rewriting itself at every infection. Kakad et al. (2014) define a metamorphic

virus as a type of virus that uses code obfuscation techniques to change its code at every

infection. According to Rad et al. (2012), a metamorphic virus is a virus that mutates

all its body with the help of a mutation engine.

 Polymorphic Virus: Dhruw et al. (2016) define a polymorphic virus as a virus that

mutates with every infection in order to make detection by signature impossible.

According to Kakad et al. (2014), a polymorphic virus is a virus that changes some

instructions in new generations in order to overcome signature scanning. Joshi & Patil

8

(2012) define a polymorphic virus as a type of virus that uses encryption in order to

appear differently at every infection thereby avoiding detection.

 Derived Virus: Based on the definitions of a metamorphic and polymorphic virus

above, and, for the purposes of this dissertation, we define a derived virus as any virus

that modifies itself using a mutation engine and evolves to have a signature that is

different from its original or predecessor at every infection in order to avoid detection

by signature scanning.

 Artificial Intelligence: Banerjee (2015) defines an artificial intelligence as the science

of automating intelligent behaviours currently achievable by human beings. Pannu

(2015) defines artificial intelligence as the development of intelligent machines and

software that can reason, learn and communicate with objects. According to Borana

(2016), artificial intelligence is the intelligence exhibited by an artificial entity to solve

complex problems. Based on the definitions above, and, for the purposes of this

dissertation, we define artificial intelligence as the development of intelligent systems

capable of performing tasks that normally require human intelligence.

 Artificial Neural Network: Also referred to as neural network, Heaton (2011) defines

a neural network as computerized simulation of an actual biological neural network.

Sonali & Wankar (2014) define a neural network as an information processing

paradigm that is inspired by biological nervous system such as brain processes

information. Banerjee (2015) defines neural networks as biologically inspired systems

that convert a set of inputs into a set of outputs by a network of neurons. Based on the

definitions above, and, for the purposes of this dissertation, we define a neural network

as an information processing paradigm inspired by the human brain which learns from

sets of inputs to produce an output.

9

1.9 Overview of Chapters

This dissertation is structured as follows:

Chapter two discusses the background to computer viruses, i.e. evolution, anatomy and

classification. Chapter three provides an overview of current virus detection techniques and a

review of related literature. Chapter four presents and discusses the proposed model. Chapter

five highlights and discusses the result of various experiments conducted with the proposed

model. Finally, chapter six concludes this study and provides recommendations for future

work.

10

 CHAPTER TWO

 BACKGROUND

2.1 Introduction

The previous chapter positioned our study and reflect on its growing importance and relevance

to the field of cyber security. Chapter one has set the scene for this chapter to build on. This

chapter briefly discusses the evolution of computer viruses and reflects on how they have

evolved since their first appearance. This chapter goes on to discuss the anatomy of a computer

virus and its classification. Lastly, it also discusses some virus mutation techniques in

preparation for the next chapter.

2.2 Evolution of computer viruses

Over the years, virus writers have used different approaches to create viruses that can replicate

easily and effectively. Using different approaches, viruses have evolved over the years and are

becoming more and more difficult to detect. Furthermore, the damage caused by viruses is

increasing year after year. Early viruses had little impact apart from annoying pop up messages.

However today’s viruses have a reputation and financial impact.

The table below summarizes how computer viruses have evolved over the years with a

description of each virus and the worth of damages caused by some of these viruses.

Year Virus Name Virus Description

1974 Wabbit This is also known as Rabbit virus. This virus makes

multiple copies of itself at a very high speed on a single

computer until it clogs the computer, reducing performance

and crashes the computer when a threshold is reached.

Table 2.1: Evolution of computer viruses (Rajesh et al. 2015) & (Joshi & Patil, 2012)

11

1975 Animal This virus asked a number of questions from the user in an

attempt to guess the type of animal the user was thinking of,

while the program creates a copy of itself and animal in

every directory to which the user had access.

1981 Apple Viruses 1,2,3 These are some of the first viruses in the public domain.

They were found on Apple 11operating system and spread

through Texas A & M via pirated computer games.

1988 Jerusalem This virus is activated every Friday the 13th. It affects both

.exe and .com files and deletes any program runs on that day.

1991 Tequila This is the first widespread polymorphic virus found in the

wild. Tequila changes its appearance at every infection.

1995 Word Concept This virus spreads only through Microsoft word documents.

1996 Baza, Laroux and

Staog

These are the first set of viruses to infect Windows95 files,

Excel and Linux respectively.

1999 Happy99 This virus attaches itself to emails, displays fireworks to hide

the changes being made and wishes the user a happy new

year.

Melissa Melissa executes a macro virus in a document attached to an

email. Thereafter, it forwards the document to 50 people in

the user’s outlook address book. This virus also infects other

word documents and mails them out as attachments. The

damage caused by this virus is estimated to be $1.1 billion.

2000 I Love You This virus spread quickly across the globe by sending a copy

of itself to every address in its host outlook address book. It

overwrites important files with a copy of itself, marks all

mp3 files as hidden and downloaded a Trojan horse that

would steal user names and passwords and send them to the

virus’s author. The estimated damage caused by this virus is

$8.75 billion.

Stages This virus disguised as a joke email about the stages of life

and spreads fast across internet.

2001 Anna Kournikova This virus which was written with a virus tool kit copies

itself to the Windows directory and sends the file as an

12

attachment to all addresses listed in Microsoft Outlook e-

mail address book of its victim. The estimated damage is

$166,827.

Nimda Nimda infects hundreds of thousands of computers in the

world. The virus is one of the most sophisticated viruses with

as many as five different methods of replicating and

infecting systems. The estimated damage of this virus is

$645 million.

Klez Klez and its variants are considered to be one of the most

persistence viruses ever. It selects one email address from

the host’s address book to use as the “from” address, then

sending the virus to all the other addresses. The estimated

damage caused by this virus is $18.9 billion.

2003 SQL Slammer This virus takes advantage of buffer overflow bugs in

Microsoft’s SQL Server database. It infected 75,000

computers in approximately 10 minutes and caused damages

worth $1.2 billion.

2004 Mydoom This virus spreads through email and file sharing software.

It slowed overall Internet performance by about 10%, and

average web page load times by about 50%. The worth of

damages caused by mydoom virus is $38.5 billion.

Sasser The sasser virus affected one million computers running

windows. The virus causes computers to reboot repeatedly

and the damage caused by this virus is estimated to be $14.8

billion.

2008 Conficker This virus infected somewhere between nine and fifteen

million servers worldwide which include servers of large

government organizations. It caused damage estimated to be

$9.1 billion.

2010 Stuxnet This virus targets Siemens industrial software through

Microsoft window.

2012 Flame Flame virus records skype conversations, audio, keyboard

activities, network traffics and screenshots.

13

The table above summarizes how computer viruses have evolved between the year 1974 and

2012. Computer viruses are almost as old as computers themselves with the first computer

virus being discovered in the 1970s and yet, it is still one of the major challenges of computing

devices. Since then viruses have evolved from being spread through floppy disks to spreading

through the Internet. Thus, it can be concluded that the evolution of the Internet and computer

networks also brought about the evolution for computer viruses. This is because viruses spread

faster and easier through the Internet as compared to when viruses were mostly spread by

floppy disk.

The creation of signature scanning techniques for virus detection brought about the evolution

of morphed viruses. These viruses can create variants with same functionalities but different

body structure. This was done to prolong the process of analysis and also to make detection

with signature scanning difficult. Operating systems and application software also brought

about evolution in viruses as virus writers explore the vulnerabilities in newer versions of

software to make viruses gain unauthorized access and cause damage on computers. Hence,

viruses are likely to keep evolving in order to take advantage of the vulnerabilities in new

software. The next section unveils the life cycle of a computer virus.

2.3 Computer virus life cycle

The major characteristic of a computer virus is its self-replication ability. Replication includes

making a copy of the virus to the infected program. The infected program can then go on to

infect other programs. In this way a virus can continue to spread to infect more programs. The

most common computer viruses are parasitic in nature. This means that they work by attaching

themselves to carrier objects. The carrier object may be a file or other entity that is likely to be

transmitted to another computer such as an executable program. A virus is attached to its host

14

in such a way that it activates when the host program is executed. Once activated, the virus

looks for other suitable carrier objects and attaches itself to them. At this point, replication and

spreading requires little or no human intervention.

The figure above summarizes the life cycle on how a virus move from one carrier to another

infecting its targets. Having discussed the life cycle of a virus, the next section explores the

anatomy of a virus.

2.4 Anatomy of a computer virus

The virus code has two major parts, i.e. replication and payload routine. The next sub-section

discusses each of these two parts.

2.4.1 Replication routine

The replication routine locates suitable objects and copies the virus to these objects (Dhruw et

al., 2016). Computer virus sometimes remains in the memory and monitor a system’s activity.

Figure 2.1: The life cycle of a computer virus (Dhruw et al., 2016)

15

This enables a virus to infect files when they are used and spread easily. Instead of searching

for the carrier files, the virus just scan files as they come through memory. There are several

ways that viruses use for replication. However, it is common for the virus code to get executed

when the carrier object is being used. Viruses that infect program files may attach the virus

code to the beginning or the end of the program file, and patch the entry point so that when the

program is run the virus code is executed first.

2.4.2 Payload routine

The payload of a virus is the part of the software that delivers the malicious code and causes

the damage to computing devices (Joshi & Patil, 2012). In other words, the payload is the part

of the code that contains the intended purpose of the virus and the conditions of execution. For

example, a payload might be the part of the virus code that monitors keyboard to spy on

passwords and email the password to an anonymous email address (Van der Made, 2003). A

payload announces the presence of the virus by displaying a pop up message or displaying

graphics, play music or videos in order to catch user’s attention. The next section discusses the

various ways in which viruses can be classified.

2.5 Classification of computer viruses

Computer viruses can be classified according to their different characteristics. The

classification may be based on infection mechanism, targeted environment or concealment

technique (Rad et al., 2011). A virus can either be a resident or non-resident virus when

classified by infection mechanism. Based on virus classification by targeted environment, a

virus can be classified as a file infector, boot sector infector, multipartite or macro infector

(Dhruw et al., 2016). This dissertation is concerned more about derived virus and as such, it

discusses more on virus classification by concealment technique as compared to the others.

The next sub-section discusses some of these concealment techniques.

16

2.5.1 Classification by concealment technique

This is the technique that a virus uses to hide itself in order to avoid detection. The figure below

shows how computer viruses are classified based on concealment techniques according to

Singla et al. (2015).

The early viruses were developed without any encryption mechanism that could make their

detection difficult. Therefore, it was easier for the anti-virus companies to get good detection

results for the early viruses. Virus writers started to use different techniques to create more

sophisticated viruses such as encrypted virus, oligomorphic virus, polymorphic and

metamorphic viruses that would evade detection. The aim was to try and frustrate the effort of

anti-virus companies. The next sub-sections discuss each of these concealment techniques in

detail.

Figure 2.2: Evolution of concealment techniques (Singla et al., 2015)

17

2.5.1.1 Encrypted virus

This is one of the first and easiest methods that virus writers used to hide the functionality of

virus code. An encrypted virus usually consists of two parts. The first part is a small code that

encrypts and decrypts. The second part is the encrypted part of the code (Rad et al., 2011).

According to Edward & Slulason (1990), the major aim of virus writer that writes encrypted

virus is to have a virus that cannot be easily detected by string matching signature-based virus

detection mechanisms. The figure below shows the structure of an encrypted virus

The figure above shows the structure of an encrypted virus before and after decryption. The

body of an encrypted virus which contains the payload is not visible before decryption. It only

becomes visible after decryption when the virus is ready to execute its payload and infect a

new target. The first part creates a random encryption key that is used to encrypt the remainder

of the virus. When an infected program is invoked, the virus uses the stored random key for

decryption. When the virus replicates, a different random key is selected. For every instance,

the virus is encrypted with a different key. Hence, there is no constant bit that identifies an

encrypted virus (Dhruw et al., 2016).

Figure 2.3: Structure of an encrypted virus (Rad et al., 2012)

18

2.5.1.2 Oligomorphic virus

Unlike an encrypted virus that uses a decryptor, an Oligomorphic virus randomly picks one

decryptor from a pool of decryptors to be used in its new variants (Rad et al., 2012). Therefore,

detection of Oligomorphic viruses with signature scanning is more difficult.

The figure above shows the structure of an Oligomorphic virus with its multiple decryptors.

Before decryption, the virus body is encrypted. When the virus discovers a new target to infect,

it choses one of the decryptors and decrypts the virus body with the chosen decryptor after

which infects. A different decryptor which is selected from the pool of decryptors is used at

every instance of the virus.

2.5.1.3 Polymorphic virus

This type of a virus uses a mutation engine to change its form and develop a different signature

at every infection. The mutation engine is used to modify some pieces of the virus body code

(Rad et al., 2011). The modification is done with some mutation techniques such as insertion

of junk codes or substitution of instructions. This is done to make detection by signature

Figure 2.4 : Structure of an Oligomorphic virus (Rad et al., 2012)

19

matching difficult. For example, an original signature of a particular polymorphic virus might

be “881600808826000dcd13cd19". This virus can produce a derivative by adding a No

Operation (NOP) instruction. A NOP instruction is an assembly language command that does

nothing (Silva et al., 2015). The NOP instruction is used to allow future modification of code

without rewriting or recompiling it (Clements, 2014). By adding a NOP instruction to the above

polymorphic virus code, the signature becomes

"88160080908826000d9090cd13909090cd19”. This same virus can further produce another

supposedly “new" virus signature by adding a JUMP instruction. The JUMP instruction

transfers program execution flow by jumping from one location to the other within the program

(Kahanwal, 2013). By adding a JUMP instruction to the above polymorphic virus code, the

signature becomes “eb10908826000deb0f9090cd13909090cd198816008088ebed"

(Silverman, 2001). This now looks very different from the original signature and detection by

signature matching becomes difficult.

2.5.1.4 Metamorphic virus

Unlike a polymorphic virus that mutates by changing some components of its body, a

metamorphic virus mutates all of its body. A metamorphic virus has the ability to edit, rewrite

and recompile its whole virus code to create another variant with a different body but still has

the same functionality (Ling & Sani, 2017). For example, the signature of a particular

metamorphic virus before an instruction replacement might be

“558BEC8B760885F6743B8B7E0C09FF743431D2". The signature becomes

“55545D8B760809F6743B8B7E0C85FF743428D2" after some instructions replacement. Just

by making some changes to the instructions, another supposedly “new" virus signature is

created. According to Ling & Sani (2017), a metamorphic virus contains 80% metamorphic

engine and 20% malicious code.

20

As shown in the figure above, a metamorphic engine contains the following parts; a

disassembler, a code analyser, a code transformer and an assembler. A metamorphic virus

locates its code after discovering a new host, the code is passed to the mutation engine where

it is disassembled, analysed, transformed and re-assembled again. Thereafter, the virus attaches

itself to the new host but now with a different look. Hence, there is no constant signature for a

metamorphic virus. Having classified computer viruses based on concealment techniques, the

next section discusses some of the mutation techniques used by modern viruses.

2.6 Computer Virus Mutation Techniques

Modern computer viruses use different mutation techniques in order to make their code difficult

to understand, analyse and in turn avoid detection by coming up with different signatures at

every infection. The following are some of the mutation techniques used today by many virus

writers.

2.6.1 Junk or Dead code insertion

The insertion of junk code is one of the easiest solutions to modify the binary sequence of a

virus program. Junk insertion does not affect the functionality and behaviour of the code (Rad

Figure 2.5: Structure of replicator and mutation engine in metamorphic virus (Rad et al., 2012).

21

& Masrom, 2010). These additional instructions do not change the content of CPU registers or

memory. Hence, they are similar to a NOP instruction. Junk or dead code is also referred to as

garbage instructions. For example, adding a zero to a variable or a register, or assigning a

register value to itself, do not have any effect on the results of execution, yet this has effect on

the virus detection. The tables below show how a particular virus produced two variants using

junk insertion according to Rad & Masrom (2010).

Binary Opcode Assembly Code

C7060F000055 mov [esi], 5500000Fh

C746048BEC5151 mov[esi+0004],5151EC8Bh

Signature:

C7060F000055C746048BEC5151

As seen in the tables above, the two variants have different signatures due to junk codes that

are inserted in the second version of the virus but both variants perform same operation. Both

transfer two double words into memory address specified by esi. Hence, there cannot be a

signature that will identify the above virus and detection with signature scanning will be

difficult.

Binary Opcode Assembly Code

BF0F000055 mov edi,5500000Fh

893E mov [esi],edi

5F pop edi

52 push edx

B640 mov dh,40

BA8BEC5151 mov edx,5151EC8Bh

53 push ebx

8BDA mov ebx,edx

895E04 mov [esi+0004],ebx

Signature:

BF0F000055893E5F52B640BA8BEC5151538BDA895E04

Table 2.2 : Version 1(Rad & Masrom, Table 2.3: Version 2(With junk insertion)

22

2.6.2 Variable substitution

The register or memory variables are exchanged in different instances of a virus (Rad et al.,

2012). This method does not change the behaviour of the code but it modifies its binary

sequence. Hence, making each variant looks different from the former. The tables below show

register substitution in variants of a particular virus according to Rad & Masrom (2010).

Some register variables in the tables above are substituted which leads to the creation of another

supposedly “new” virus because they have different signatures which is as a result of the

variables substitution. For example, register edx on the first line of version 1 has been replaced

with register eax in version 2. This causes some changes in the binary sequence and produced

a new signature. Hence, detection with signature scanning will be difficult.

2.6.3 Instruction replacement

This method replaces some instructions with their equivalent instruction. This is like solving

same programming task with different code instruction. This approach could be used to

produce variants of a particular virus since the opcode pattern changes due to instruction

Binary Opcode Assembly Code

5A pop edx

BF04000000 mov edi,0004h

8BF5 mov esi,ebp

B80C000000 mov eax,000Ch

81C288000000 add edx,0088h

8B1A mov ebx,[edx]

899C8618110000 mov [esi+eax*4+00001118],ebx

Signature:

5ABF040000008BF5B80C00000081C2880000008

B1

A899C8618110000

Binary Opcode Assembly Code

58 pop eax

BB04000000 mov ebx,0004h

8BD5 mov edx,ebp

BF0C000000 mov edi,000Ch

81C088000000 add eax,0088h

8B30 mov esi,[eax]

89B4BA1811000 mov [edx+edi*4+00001118],esi

Signature:

58BB040000008BD5BF0C00000081C08800000

08B3089B4BA18110000

Table 2.4: Version 1(Rad & Masrom, 2010) Table 2.5: Version 2 (With variable substitution)

23

replacement (Venkatachalam, 2010). Hence, the variants of the virus have different patterns of

opcode but perform the same functionalities. Tables 2.6 and 2.7 show how a particular virus

produced two variants as shown in Rad & Masrom (2010).

 Table 2.7: Version 2(With instruction replacement)

Binary Opcode Assembly Code

55 push ebp

8BEC mov ebp, esp

8B7608 mov esi, dword ptr [ebp + 08]

85F6 test esi, esi

743B je 401045

8B7E0C mov edi, dword ptr [ebp + 0c]

09FF or edi, edi

7434 je 401045

31D2 xor edx, edx

Signature:

558BEC8B760885F6743B8B7E0C09FF743431D2

As shown in the two tables above, some instructions are replaced with their equivalent. For

example, instruction mov ebp, esp is replaced by push esp and instruction test esi, esi is replaced

with or esi, esi. The instructions replacement changed the opcode pattern. Hence, the variants

have different signatures and detection with signature scanning becomes difficult.

2.6.4 Instruction transposition

In this method, the instructions in the virus code are reordered in a random fashion and control

flow is adjusted to make it execute in the same order. This is accomplished by providing labels

for each reorder and then using conditional jump instructions to jump the control to the labels

(Rad et al., 2012). Thus, the instructions are reordered inside the code without altering the

control flow. Figure 2.6 shows an example of instruction transposition in a particular virus.

Binary Opcode Assembly Code

55 push ebp
54 push esp
5D pop ebp
8B7608 mov esi, dword ptr [ebp + 08]
09F6 or esi, esi
743B je 401045
8B7E0C mov edi, dword ptr [ebp + 0c]
85FF test edi, edi
7434 je 401045
28D2 sub edx, edx

Signature:
55545D8B760809F6743B8B7E0C85FF743428D2

Table 2.6: Version 1(Rad & Masrom 2010)

24

The first part of the figure shows the instructions in order 4, 5, 1, 2, 3. The second part of the

figure shows the instructions in order 2, 3,5,1,4 and lastly the third part shows the instructions

in order 3, 4, 5, 1, 2. Although the virus code is reordered, it is important to note that the control

flow still remain the same. This is achieved by the several jump instructions introduced. A

close look at the figure shows that control flow execution for the above three virus code is start,

execute instruction 1, 2, 3, 4 and 5.

2.7 Conclusion

Over the years, computer viruses have changed from those that can be easily detected to those

that replicate and cause unwanted changes within a computer system. Virus writers keep

coming up with different techniques to make virus detection difficult. It started with encrypted

virus and is currently on metamorphic virus. It is observed that as computer virus evolves, there

has been an advancement in the concealment technique used and therefore making the latter

always more difficult to analyse and detect than the previous. It is difficult for the current virus

detection methods to detect today’s viruses because by the time they get detected, they would

have already changed one or more of its components to look different from its predecessors.

This has contributed to the huge number of viruses available today.

Figure 2.6 : Instruction transposition (Rad et al., 2012).

25

Amongst other things, the next chapter discusses virus detection techniques that are currently

in use and also state their advantages and disadvantages.

26

 CHAPTER THREE

 LITERATURE REVIEW

3.1 Introduction

The previous chapter discussed the background of computer viruses, their anatomy, the

evolution milestones and computer virus classification. Virus code obfuscation techniques

were also discussed in the previous chapter.

This chapter provides an overview of the virus detection techniques that are currently in use

and states their advantages and disadvantages. It then gives a review of research works done

on virus detection. Ever since the first computer virus was found in the mid-1970s, several

research works have been conducted to detect and remove virus from infected files and recover

the files back to their original state. Anti-viruses are used for this purpose. The main functions

of an anti-virus program are virus detection, file protection, removing virus from infected files

and recovering damaged files (Mishra, 2010). Previous research works has resulted to the

development of a variety of anti-virus programs that are currently in use today. The next section

discusses some of the anti-virus software detection techniques.

3.2 Current anti-virus software detection techniques

The major methods used by anti-virus software for virus detection are as follow: signature

scanning, integrity checker, heuristic scanner, anomaly based detection and CPU emulation

(Mishra, 2010). In the following section, we discuss each of these techniques.

3.2.1 Signature Scanning

Signature scanning is regarded as the oldest and most common virus detection technique which

is still being used today by many anti-virus software (Kamarudin et al., 2013). It involves a

27

careful analysis of a particular virus with the aim of detecting a specific string of bytes called

a virus signature. A virus signature is a unique string of bytes that correctly identifies a

particular virus (Kamarudin et al., 2013). Virus signatures of the actual viruses are stored in

the database of an anti-virus program which is then installed on the computer system. The anti-

virus software works by comparing signatures of files in a computer against the signatures of

viruses that are stored in the anti-virus software database. If a signature of any file matches a

signature in the installed anti-virus database, such a file is declared infected and necessary

action is taken whether to delete or quarantine it (Kakad et al., 2014). This method of virus

detection is effective and gives accurate result but only to known viruses. The disadvantages

of this method includes but not limited to its inability to detect new viruses and also its inability

to detect derived viruses (i.e. viruses that use modern techniques to change form in order to

avoid detection) (Hamza & Hussain, 2014). Another major drawback of signature scanning is

the time lag between virus creation and detection. This is the amount of time it takes to get the

signature that can be used to detect a virus after its creation. During this period, a new virus

can easily spread and cause damage on billions of computing devices without being detected.

The virus can continue to infect and cause damage for as long as it takes before the signature

is found. Figure 3.1 below shows the steps of signature scanning as described by Mishra

(2010).

Figure 3.1: Steps of signature scanning (Mishra, 2010)

28

The figure above shows that to obtain signature for a new virus, the virus must have infected

some files and that is where the steps to finding a virus signature begins. The infected file is

analysed carefully in order to get the string of bytes (signature) that will correctly identifies the

virus. When the signature is found, the anti-virus company distribute the newly found virus

signature to their customers by uploading it to their central database. Each customer is expected

to download the new virus signature by connecting to the anti-virus central database and

download updates to the virus signature database on user computer. Thereafter, customers scan

files on their computer for the newly found virus pattern.

3.2.2 Integrity Checker

An integrity checker keeps a small hash value or fingerprint of uninfected programs and files

in a secured location at the beginning when a system is presumed to be clean from virus

infections. It then detects the presence of a virus by comparing the hash value of a file with the

hash value of its clean version. If there is no difference between the two hash values then the

file is deemed to be clean. Otherwise, if the two hash values are different, then the file is

considered to be infected. This method works on the basis that it is impossible for a virus not

to make any change to its host program or file. Integrity checker can detect any type of virus.

This could include new, unknown and even derived viruses. One of the major drawbacks of

integrity checker is that when a change in a file or program is detected, it is often difficult to

determine whether the change was induced by a virus or by a user changing the file. Hence,

false positive is possible with this method. Another drawback of an integrity checker is its

ineffectiveness if the computer has already been infected at the time when the program hash

values are first calculated (Mishra, 2010).

29

As shown in the figure above, the fingerprint or hash value of an application is created and

stored in a secret location when the system is assumed to be uninfected. Before the application

executes, its fingerprint is checked again and it is compared with the stored fingerprint. If the

two fingerprints match then the application is not infected. Otherwise, if the two fingerprints

do not match, the application is restored before it runs.

3.2.3 Heuristic Scanner

A heuristic scanner anti-virus program examines a target program and analyses its code to

determine if it appears to be like a virus. A heuristic engine detects the commands within a

program that are not typically found in normal application programs. This may include

replication commands that are normally associated with viruses. This approach is relatively

fast. However, heuristic scanners must look for a large number of different ways which virus-

like operations may be implemented in order to reliably detect a malicious behaviour. This is

because viruses may open files by using different codes and methods (Mishra, 2010).

3.2.4 Anomaly based detection

Anomaly is defined as something that is not normal. Anomaly based detection monitors the

processes or activities on a host machine for any abnormal activity (Kakad et al., 2014). This

could be activities that attempt to reformat a disk or move a file into one of the operating system

folder which is generally not the activity of a normal program. If any such activity is found,

Figure 3.2 : Steps of an integrity checker (Mishra, 2010)

30

the system flags for a potential threat. This method is capable of detecting new and derived

viruses. However, false positive is possible with this approach (Kakad et al., 2014).

3.2.5 CPU / Code Emulation

This is an emulation based technology that loads a target program into a CPU emulator. The

CPU emulator acts as a simulated virtual computer. As the target program is emulated, its

malicious operations are identified and catalogued. An anti-virus software is used to determine

if the target program is a virus or not from the catalogue of malicious operations. This method

can detect new and derived viruses. However, this method is ineffective for viruses that activate

only when a certain arbitrary conditions are met (Mishra, 2010). For example, a logic bomb

that is programmed to execute on a particular date, if the condition is not met, a CPU emulator

will not observe the infectious behaviour. Hence, a virus can go undetected.

In summary, the observation is that within the field of anti-virus, there is an increasing number

of viruses released daily. These have really stretched the traditional virus detection techniques.

This has increased the demand for techniques that identify new and derived viruses. The

ineffectiveness of the signature based scanning method for detecting new and derived viruses

call for an immediate solution. Some of the above detection methods listed above can handle

this, but they are still far from perfection.

The next section reviews previous research works.

3.3 Review on previous research works

Several research works have already been conducted to find solutions to the problem of virus

detection. These are discussed below. Some of these research findings are based on providing

a solution to derived viruses while some are based on detecting new viruses. A new virus is a

virus that is created from scratch with a new mechanism that has never been seen before. A

31

derived virus is any virus that modifies itself using a mutation engine and come up with a

signature different from its original or predecessor at every infection in order to avoid detection

by signature scanning.

3.3.1 Research works for detecting new computing viruses

A method of virus detection based on immune theory and N-Gram analysis was proposed by

Qin et al. (2009). Qin et al. (2009) uses N-Gram to extract the common features of known virus

programs. This approach is used on the assumption that viruses have certain characteristics in

common. The most frequent N-Gram is used as gene library. Immature cells are generated from

the gene library and some are generated randomly. The immature and randomly generated

detector experience a self-tolerance period. Any detector that matches any self antigen is

eliminated (negative selection). The immature detectors that survive maturity are activated if

viruses are detected. The activated detectors are transferred into memory so that they can

quickly fight a virus if it re-surfaces. The detectors that are not activated are eliminated. This

research work does not show how new detectors are generated. Hence, continuity of the

immune system might be a problem.

An approach of virus detection that uses a high speed time delay neural networks was proposed

by El-Bakry (2010). Neural networks are first trained in time domain to classify virus from

non-virus. In the virus detection phase, each sub-matrix in the incoming data is tested for the

presence or absence of a virus. At each position in the incoming input matrix, each sub-matrix

is multiplied by a window of weights. The outputs of neurons in the hidden layer are multiplied

by the weights of the output layer. If the final output is high, it means that the sub-matrix under

test contains a virus. There is no experiment to show how the proposed method really works.

Therefore, its efficiency and accuracy cannot be determined.

32

Zolkipli & Jantan (2010a) discusses a framework for malware detection using a combination

of techniques i.e. signature based and genetic algorithm. The framework uses signature based

technique as first defence for malware attack. The genetic algorithm is then used to select

chromosomes from the signature based on selective value from the population. New

chromosomes are produced according to the combination of the bit string from existing

chromosomes in the existing population. Finally, the signature generator captures the malware

behaviour and analyse the gene using genetic algorithm detection module. This is to generate

the signature pattern and update it into malware. There is no experiment that shows how the

framework works. Therefore, its efficiency cannot be guaranteed.

Yunlong et al. (2012) propose malicious code detection based on least square estimation. This

method provides a pre-processing approach that sequences virus behaviour based on time

correlation and subject-object orientation. Yunlong et al. (2012) proposes a threat judging

method based on least-square estimation. An expert experience approach is used to introduce

the code detection and then simulate experts to judge the threat values of malicious code. This

approach can be used to complement the current antivirus software. However, training the

experts might be a challenge. It was stated that this research is 87% accurate in detecting

malware.

Han et al. (2012) propose a method of detecting malicious or illegal code by monitoring task

behaviour of software applications. The top-down calling sequence of software applications

within a computer is developed into a behaviour resource tree. When a user runs an application,

if the calling sequence of the task deviates from the sequence in the behaviour resource tree, it

is declared as illegal. Han et al. (2012) also came up with illegal code judgement rule based on

known behaviours of malicious code. The challenge of this method is how to build behaviour

resource tree for new application software. Moreover, legal activities such as a user updating

software can cause false positive. Furthermore, one other disadvantage of rule based systems

33

is that the system is as good as the defined rules. Anything that falls outside or deviates from

the stated rules cannot be picked.

Multiple sequence alignment and an artificial neural network for malicious software detection

were proposed by Chen et al. (2012). Chen et al. (2012) uses multiple sequence alignment

techniques from bioinformatics to align variable length computer viral and worm code. An

artificial neural network is then used to learn the critical features to determine the class of the

aligned patterns. The algorithm for alignment involves some sort of gap insertion. However,

there is no guarantee that the same number of gap insertions is made thereby making length of

virus set alignment different from worms set alignment. An approach that does not require gap

insertion is needed for the result to be trusted. This experiment was reported to be 88.89%

accurate if the viral sequences are doubly aligned.

A multi-component feature for detecting malware by classifying portable executable file as

benign or malware is proposed by Vinod et al. (2013). The multi-component feature comprises

of portable executable metadata, principal instruction code, mnemonic bi-gram and prominent

unigrams. Portable executable of malicious programs is first unpacked using generic

unpackers. Unpacked samples are disassembled using a disassembler which generates

assembly code. A parser is then developed to filter out mnemonics from assembly files. These

processed files are used to extract prominent unigrams and bi-grams. This header information

is filtered out from each malware and benign executable. The extracted features are used to

generate multi-component feature. A multi-component feature is used to create a feature vector

table. The table is used to construct a classification model for malware and benign family. The

performance of classification model is evaluated by monitoring the evaluation metrics. The

accuracy of this proposed model in percentile is not stated. However, Vinod et al. (2013) said

that the proposed model performs better than some other model that exist in literature.

34

Khorsand & Hamzeh (2013) propose an idea of detecting malware by using portable executable

(PE) header to train prediction by partial matching (PPE) model. PE file is a format of

executable binaries that the windows operating system uses. PPE is a model that keeps frequent

occurrence of symbols. Its encoder encodes each input symbol with probability provided by its

map. PPE is trained by using the header of programs and strings in the body of the program.

The experiment shown in this work uses small subset of binary content of files for modelling.

Since, it is generally known that malware is made up of both malicious and benign code, using

a small subset of binary content might decrease the effectiveness of the model.

A computer virus detection system based on an artificial immunity concept was proposed by

Hamza & Hussain (2014). The system uses an algorithm that was developed based on clonal

selection in an artificial immune system. The algorithm uses a set of downloaded virus

signature to create virus clones and infects some already benign files with virus clones. This

approach then uses various files to test the algorithm for virus identification and elimination.

The algorithm shows how virus clones can be created and the created clones are used as

prediction of future viruses. However, the algorithm does not show how virus can be detected.

An average of 95% of detection rate was reported for this experiment. It must be mentioned

that Hamza & Hussain (2014) did not specify if this include existing, derived or new viruses.

A method of detecting derivative malware samples using de-obfuscation-assisted similarity

analysis is proposed by Wrench & Irwin (2015). The method uses a decoder developed to de-

obfuscate and normalise code prior to analysis. The first part is achieved by using a decode

function in php. This function scans the entire code for functions that obfuscate a segment of

code. If any is found, it is processed and the normal code is extracted and replace what it

represents. Thereafter, code normalisation is done. After de-obfuscation, both extracted and

raw data are passed to a matrix module to produce matrices that represent the observed

similarity between all given samples based on specified measure of similarity. The

35

disadvantage of this system is that a virus written in any other language other than PHP cannot

be detected. This is because the system scans for only php functions that obfuscate a segment

of code.

A Neural Network Artificial Immune System for malicious code detection was proposed by

Golovko & Bezobrazov (2015). The system uses a combination of Artificial Immune System

and Artificial Neural Networks concepts. It works according to basic principles of the artificial

immune system whereby a neural network is used as the immune detector to detect a malicious

pattern by means of the analysis and structure of the executable code. The trained neural

networks are then accepted as part of the Artificial Immune System component. The work of

the neural network detector is to randomly scan the files and classify them as legitimate or

malicious. If a detector is able to pick a malware, then cloning and mutation will occur on the

detector that detects the malware. This is to be able to quickly fight the malware and have the

detector registered in the memory in case the same malware shows up again. The idea of

combining an artificial immune system and artificial neural network sounds great. However, it

is stated that an increase in the number of malware leads to decrease detection rate. Also, the

neural network used requires a unique node in the hidden layer for all inputs. This is often too

large to work on real world problems. Even though the accuracy of the system was not stated,

it was reported that the system performed better and more accurate than some of the current

antivirus programs in use.

Andree & Nhien-An (2016) uses statistical methods, Naïve-Bayes algorithm and N-grams to

find out if there is significant data that could be used to classify malware in control flow change.

In order to find a discriminator between a malware and good software, Andree & Nhien-An

(2016) first calculate and compare statistical values of the median, variance, variance

coefficient and spread for both malware and good software. The second approach used by

Andree & Nhien-An (2016) to find a discriminator is a Naïve-Bayes classifier. The classifier

36

is first trained with sample datasets comprising of raw jump length data for both malware and

good software. Thereafter, the classifier test unknown software against the data that has been

learned by the classifier. The third approach used by the authors is based on the extraction on

N-grams of words from a text. The N-grams of sample datasets are extracted and saved to a

database for further comparison. Test samples are processed the same way the sample datasets

are processed and saved into another database. The categorization test searches for occurrence

of the to-test n-grams in the sample datasets and check for similarities. The data found in this

work is not usable and its likelihood is too low to make a decision.

A combination of an artificial neural network and artificial immune system for virus detection

was also proposed by Khang et al. (2016). This research describes three main components for

the proposed model. The first component called the training data consists of a set of viral and

benign files used for training and detecting stage. The second component is the population of

detectors called antibodies. These are the ANN that are trained with the first component of the

model and are used as detectors for recognizing malicious and benign files. The third

component is the artificial immune network (Ainet) which is used for generating mature

detectors. The proposed model results into set of ANN that can be used as computer virus

detector. An average detection rate of 87.98% with an acceptable false positive rate was

reported for this work. However, Khang et al. (2016) did not specify if the detection rate

includes existing, derived or new viruses.

The next sub-section reviews research work that has been done for detecting derived viruses.

3.3.2 Research work for detecting derived computing viruses

A method of detecting virus mutations via dynamic matching was proposed by Feng & Gupta

(2009). The research work is based on the fact that virus developers do not often write new

codes in creating newer virus. Rather, the code of an existing virus is altered in such a way that

37

the behaviour remains the same but the flow of the code differs. This makes it difficult for a

signature to detect the supposedly ‘new’ variants. In their work, the behaviours of a virus are

studied using CPU emulator and saved in a database during runtime. The database continues

to grow based on the behaviours of viruses at run time. When a new virus is encountered, it is

checked to see if it has behaviour similar to any in the database. If it does, then it will be

confirmed as the mutated version of a virus that has been encountered before. The idea is good

but since a CPU emulator is used, it will be difficult to get the behaviours of viruses that are to

be executed based on some conditions. It was stated that the experiments performed showed

that their work is effective in detecting the variants of six viruses out of seven viruses used for

the experiment.

Daoud (2009) propose a model for detecting metamorphic viruses based on Artificial Immune

System. The model uses three different layers of defence to detect a virus by imitating the

human immune system. This model defines what self and non-self means at each layer.

Moreover, an algorithm is developed for each layer based on the self and non-self idea. At the

first layer, self is the hash of all trusted files and non-self is the hash strings of known viruses.

The algorithm in this layer serves as the entry point to the computer files. The hash value of

the file is calculated, if the value matches one of the self hash strings, then the file is clean. If

the hash string matches one of the non-self then it is an infected file. Otherwise, the file is sent

to the second layer to perform additional checks. At the second layer, self is the trained neural

network on the flow graph of safe assembly codes. Non-self is the trained neural network on

the flow graph of virus assembly codes. The algorithm on this layer disassembles the file,

encodes the data and represents the flow graph by two dimensional matrix. If the result of the

file sent from layer one is similar to self flow graph then the file is clean. If the result is similar

to non-self flow graph, then the file is infected. Otherwise, the file is sent to the third layer to

perform additional checks. At the third layer, self is the trained neural network on the receptor

38

data of safe assembly codes. The non-self is a trained neural network on the receptors data of

the viruses’ assembly codes. If the encoded data is similar to three of the self receptors, then

the file is clean. If the encoded data is similar to three of the non-self, then, the file is infected.

The disadvantage of this system is that it can produce high false positive and false negative if

the computer files are infected before the hash string is first computed. Furthermore, the system

still requires self and non-self updates for new files and viruses respectively. This experiment

reported 86% detection rate of metamorphic virus.

An approach was proposed by Wang et al. (2009) which involves characterization of the

generation of virus detectors under supervision. This approach collects correlation of

instructions within a virus program. This approach is based on an Artificial Immune System

model which uses a training set as a guide to generate a candidate virus gene library. The gene

library is then upgraded to a virus detection gene library. It does this by deleting all the non-

viral information with negative selection in artificial immunity. This allows legal programs in

the training set to be memorized. The model then compares genes on a gene level (DNA),

analyse suspicious program on individual level and make classification decision by using the

entire gene library. It is stated that the drawback of the model is its inability to maintain or

increase the diversity of the genes in the virus library. An average recognition rate of 94% for

derived virus was reported for this experiment.

Zolkipli & Jantan (2010b) proposes a framework for malware identification and classification.

The proposed framework therein consists of two activities which are behaviour identification

and malware classification. Samples of malware are run in a windows virtual machine

environment. This is to understand the characteristics and behaviour of the malware and also

to know its purpose and function. The defined malware behaviour for each sample is used for

malware classification. Related classification techniques are applied for identifying the shared

behaviour of each malware family. The classification process is also optimized by using an

39

artificial intelligent technique. However, it should be stated that this framework has not been

implemented and its accuracy is not stated.

A dynamic approach using signatures from an API for detecting metamorphic malware is

proposed by Vinod et al. (2010). The API calls made by a family of malware is used to form

matrix. A principal component analysis is used to extract the most significant API calls called

critical API calls. The frequency of the critical API calls is used to create a family signature for

each malware family. The signature is saved in the database. To test if a particular malware

belongs to one of the known malware family; the API calls of the signature are extracted and

compared to that in the database. It is reported that the results from the experiments performed

are in accordance with some other result in literature.

A neural network ensembly method for detecting computer viruses was proposed by Liu et al.

(2010). The research work discusses how machine learning could be used for virus detection.

The characteristics of a virus are first extracted for classification learning through the system

calling sequence of a program. Different machine learning approaches are then used to

construct the ensemble. The results of the machine learning are combined according to

Dempster Shafers evidence theory to form the final output of the system. This research work

only discusses how an artificial neural network can be trained but does not show how the output

of the trained artificial neural network detects a computer virus. However, an astounding 97%

accuracy was reported for this work when compared with other traditional ways. It must be

mentioned though that Liu et al. (2010) did not specify if this include derived or new viruses.

Vinod et al. (2012) proposes a method of detecting variants of metamorphic malware using

bioinformatics techniques effectively used for Protein and DNA matching. In their proposed

method, multiple sequence alignment is used to arrange opcode sequence of malware. This is

to determine similarity among malware samples and also to determine frequent occurring

40

pattern in a malware family. The frequent pattern depicts maliciousness. It is reported that the

result of the experiments is comparable with some of the anti-virus software that are commonly

in use today.

A memory-based abstraction approach to handle obfuscation in a polymorphic virus was

proposed by Nguyen et al. (2012). The aim of this research work is to handle obfuscation in

polymorphic virus. The methodology involves abstracting the binary code based on their

memory states and analyse the abstracted states to detect useless instructions. This method is

proposed because in spite of any obfuscation technique employed, the actual malicious code,

once executed produces the same memory state patterns when properly abstracted. However,

the major challenge of this approach is the need to develop an abstract form that captures the

memory states affected by each instruction when executed. As such, it is stated that the

approach is not practically possible because of the high complexity.

Zhong et al. (2012) proposes a malware classification method based on similarity of function

structure to determine a program as a variant of a known malware program. In their approach,

programs are characterized according to the functions they contain. Functions are characterized

based on their features. A database is developed based on the extracted features of the known

malware. Unknown programs are tested against the data in the database created as mentioned

above to determine the family that they belong to. When given an unknown program, it is

disassembled, divided into functions, and their binary, strings and lists of called APIs are

obtained through the same process described above. This work is reported to have virus variants

detection rate of 78%.

Kamarudin et al. (2013) conducted an analysis on the effectiveness of signature based anti-

virus software in detecting metamorphic viruses. In their work, Kamarudin et al. (2013) created

a seed virus using a virus generator. Thereafter, the seed virus is run on their morphine engine

41

which contains some code obfuscation techniques. This process is done to generate a family of

metamorphic variants for the seed virus and it was conducted 20 times which gives 20

metamorphic variants of the seed virus with each generated variant different from one another.

This explains the reason why detection of metamorphic virus is difficult with signature based

anti-virus software. Kamarudin et al. (2013) also performed a similarity test on 4 generations

of metamorphic variants and the original seed. It was discovered that the similarity decreases

with higher generations. The first generation virus is similar to the virus seed with about 60%

and the fourth generation virus has an average similarity of 19.7% with the virus seed.

A model to classify files into malware or benign was developed by Kuriakose & Vinod

(2014b). They use feature selection methods such as term frequency, inverse document

frequency among others to develop the model. Malware and benign portable executables are

unpacked and disassembled to get bi-gram data set. The bi-gram dataset is used for training

and testing. The experiment shows that the model can detect more synthetic metamorphic

viruses with average detection rate of 92%.

Gang & Zhongquan (2014) developed a malicious code detection solution that is based on

fuzzy reasoning. The research work adopts a comprehensive scheme to get behaviours in such

phases as file structure analysis and function call identification. It also analyses the most

common obfuscation technique that insert data after call instruction and provide an algorithm

that identifies information calls. A dynamic fuzzy neural network decision system is then used

in order to determine mutating and unknown malicious executable viruses. The system does

not show how viruses are detected. However, 95.2% detection accuracy was reported for this

work’s experiment.

Kuriakose & Vinod (2014a) proposes a non-signature based approach using feature selection

technique for the detection of metamorphic viruses. A classification model for identifying viral

42

and benign samples is developed from the proposed model. The metamorphic samples are

unpacked and disassembled. Thereafter, bi-gram mnemonics are extracted from each file based

on prior studies. Relevant bigram mnemonics are selected from the total bigram feature space.

The obtained feature space is further pruned using the feature ranking method such as

Categorical Proportional Distance (CPD), Weight of Evidence of Text (WET), Term

Frequency – Inverse Document Frequency (TF-IDF) and Term Frequency-Inverse Document

Frequency.

3.4 Research Gaps

The review presented in this chapter shows that a virus detection techniques based on signature

characterisation is the oldest and most commonly used technique (Kamarudin et al., 2013) and

has many disadvantages such as human intervention in signature extraction, the need for users

to regularly update the signature database (Vinod et al., 2010), the time lag between virus

creation and detection and most importantly, the inability to detect new and derived viruses

(Mishra, 2010). Some other approaches that use behaviour to detect the presence of a virus

have high false positives while some are still far from perfection. Some of the methods

proposed in the literature involve some error prone pre-processing and some of these are too

complex to implement. Another approach that sounds promising might be to use the concept

of artificial immune systems to enhance computing devices with their own immune system.

However, training on how to differentiate non-viral files from viral files seems to be a big

challenge. This is important in a computing system where application software is installed and

uninstalled on a regular basis. Some research explored the use of artificial intelligence in

detecting computing viruses but more research still needs to be done in order to fully explore

more of the available branches of artificial intelligence. Furthermore, very few research efforts

focused on detection of derived viruses and the ones that do considered metamorphic viruses

43

rather than considering detection of all variants of existing viruses irrespective of the type of

variant it is. These are the challenges faced by the current virus detection techniques and also

the techniques that are proposed in literature.

3.5 Conclusion

The review shows that more emphasis needs to be laid on the detection of derived viruses. This

is because the major challenge of virus detection is the ability of the virus to change its form

by using any of the modern techniques in order to avoid being detected by most of the current

available anti-virus software. The review also shows that artificial intelligence in the form of

artificial neural networks still needs to be explored further. Therefore, this research focuses on

investigating how artificial intelligence in the form of artificial neural networks might be used

to increase the detection rate of derived viruses.

The next chapter presents the proposed model for computing derived virus detection.

44

CHAPTER FOUR

 PROPOSED MODEL

4.1 Introduction

In view of the current problems of detecting derived viruses as identified in the previous

chapter, there is a need for a better solution. The solution should be dynamic in nature and not

dependent on pre-defined virus signatures. The solution should also learn from existing virus

signatures and be able to predict and detect derived viruses thereof. Hence, a model is proposed

base on these requirements.

4.2 Model

The model is as shown in figure 4.1. The proposed model comprises of various building blocks

depicting different processes. The next sub-section discusses the processes in each block.

4.2.1 Virus signature database

This is the first block of the model. This block generates the dataset using the following steps:

4.2.1.1 Existing/known virus signatures

The first step in building a virus signature database is to obtain existing virus signatures. The

existing virus signatures can be obtained from any source such as VX Heaven and nlnetlabs

website. However for this particular research, the signatures were obtained from nlnetlabs

website. The size of a single signature string can vary (Wang, 2008). This experiment considers

virus signatures of 32 bytes, this is because our solution requires the input to be represented as

a fixed-length feature vector. The sample of existing virus signatures downloaded is as shown

in figure 4.2.

45

Figure 4.1: Virus detection Model

46

Figure 4.2: Existing virus signatures sample

4.2.1.2 Derive virus signatures

This is the second step of this block. A mutation engine is built and used here to generate derive

virus signatures. This is achieved by combining sets of known virus signatures based on a pre-

determined algorithm. The aim here is to simulate a derived virus signature using existing virus

signatures and train the neural network with it. This is necessary since this research aims to

train a neural network to be able to detect derived viruses based on the existing viruses. For

example, given a group of existing virus signatures, we can generate a number of signatures.

Derived virus signatures are generated up until the third generation using the built mutation

engine. The process starts by arranging known virus signatures into groups based on their

similarities. Each group can be argued to be a particular virus family consisting of related

viruses. The virus signatures in a family are randomly combined to produce a derived virus

signature for that family. The first derived signature is then added to the family. Thereafter,

another randomization is conducted again on both the existing signatures and the newly

generated derivative. This process is repeated until three new derivatives are generated. The

same process is repeated for all the groups (families). For example, a family which originally

has three virus signatures, the fourth signature for that family is generated by random

combination of the three existing virus signatures. The newly created derive virus signature is

47

added to the family and the family now consist four virus signatures. The fifth signature for

that family is generated by random combination of the four virus signatures. The newly created

derive virus signature is added to the family and the family now has five virus signatures.

Lastly, the sixth signature for that family is generated by random combination of the five virus

signatures. The newly created derive virus signature is added to the family and the family now

has six virus signatures. All this is done by the mutation engine. Using this approach, the

mutation engine was able to generate new virus derivatives of three generations grouped into

a number of families.

4.2.2 Conversion of the virus signatures

The second block of the model is to convert the signatures obtained in stage 1 above from their

strings representation to decimals forms. This is achieved with a pre-defined algorithm that

converts string to decimal. This is necessary since neural networks are designed to accept

numbers as their input (Heaton, 2011). It is also possible to represent the signatures in other

numerical formats like binary and ASCII. However, this might introduce more complexity. For

example, binary representation of each signature might generate lots of 0’s and 1’s which might

not be easy to manage. For example, the first four characters of this signature

“b840008ed8a11300b106d3e02d00088e” gives “0110001000111000 0011010000110000” in

binary. Furthermore, ASCII representation might not be necessary since we have chosen to

exclude special characters. An example of a particular virus signature in decimal is

“30,64,38,34,30,36,33,65,32,30,38,38,38,65,30,61,34,30,30,61,65,64,38,32,30,38,66,38,34,6

1,38,32”

4.2.3 Normalization

The output from the block above is the signatures written in a decimal form. This is normalized

to improve the efficiency of the model. There are two different categories of data entering the

48

neural network for training. First is the numeric data and the other is the class each numeric

input belongs. This two categories need to be normalized.

4.2.3.1 Normalizing signatures

Normalizing a numeric value is a process of mapping the existing numeric value to well-

defined numeric range, such as -1 to +1 or 0 to +1. Normalization causes all of the attributes to

be in the same range with no one attribute more powerful than the others (Heaton, 2011). Each

virus signature used has 32 bytes and each of this is an attribute in which the neural network

learns from. All virus signatures in decimal are normalized to values between +1 and -1 using

the normalization formula below. This is because hyperbolic tangent activation function is used

to scale the output.

𝐹(𝑥) =
(𝑥 − 𝑑𝐿) (𝑛𝐻 − 𝑛𝐿)

(𝑑𝐻 − 𝑑𝐿) + 𝑛𝐿

The above equation normalizes a value x, where the variable dH represents the high value of

the data, variable dL represents the low value of the data and the variable n represents the high

and low normalization range desired i.e. -1 and +1.

4.2.3.2 Normalizing the classes

This is otherwise known as encoding because it is basically a way of representing nominal

values. The nominal values here are existing signatures and derived signatures which are the

two classes into which a signature can be grouped. One-of-n encoding is used here. This is

because there are just two nominal classes to encode. Therefore, with one-of-n encoding, the

neural network has two output neurons. Each of these two neurons represents each class

(derived and existing virus signatures). A one (1) is assigned to a neuron that corresponds to

the input signature and a zero (0) to the second neuron. So existing virus signature is encoded

as one and zero (1, 0) and similarly a derived virus signature is encoded as zero and one (0, 1).

49

Thus an output value of (1, 0) assigned to a particular input means the input is an existing virus

signature. Likewise, an output value of (0, 1) assigned to a particular input means the input is

a derived virus signature. The output neuron with the highest activation is the class predicted

by the neural network.

4.2.4 Neural network training

A neural network is trained and used as the virus detector. A supervised multilayer feed-

forward neural network is used for this research. This is because a multilayer feed-forward

neural network can learn a mapping of any complexity. The neural network being supervised

means each input during the training is matched to its corresponding output which the neural

network learns from. The network learning is based on repeated presentation of training

samples. Multilayer perceptrons are feed-forward networks with one or more nodes between

the input and output layer. The layer between the input and output layer is called hidden layer.

Scaled conjugate gradient back-propagation is used because feed-forward neural network is

often trained with the error back propagation training algorithm. The back propagation

algorithm is an iterative process in which an output error signal is propagated back through the

network and is used to modify weight values so that the current least mean square classification

error is reduced. The figure below shows a multilayer feed-forward neural network.

Figure 4.3: A multilayer neural network (Zainal-Mokhtar & Mohamad-Saleh, 2013)

50

The above figure shows how training is done in a multilayer neural network. The first layer is

the input layer which accepts data (x1, x2…xn) into the neural network and it is linked directly

to the hidden layer. The hidden layer lies between the input layer and the output layer. The

output layer is the last layer. This layer gives the neural network predicted output to the external

party where it is needed for further processes or decision. Each node in the input layer has value

for every input (x1, x2…xn). The neural network initially assigns weights (w11, w21…w4n) to each

connection. Each input is multiplied by its corresponding weight and the result of each

connection is summed together and passed to the hidden layer nodes (h1, h2, h3…hn). A

hyperbolic tangent activation (∫) function is used to scale the result and the final value becomes

the value for the node the connections entered. This calculation is also performed on the nodes

in the hidden layer using the values that entered the hidden layer nodes and the assigned weights

(w211…w2m4) and result is sent to the output layer (y1, ym). The neural network checks its

predicted output against the desired output; error is calculated by subtracting the desired output

from the predicted output. The weights are adjusted based on the error and the iteration

continues until the error becomes very small or insignificant.

4.2.5 Neural network testing

The performance of neural networks is determined by their generalization ability.

Generalization is the property of trained neural networks to classify an input correctly even if

it is not a member of the training set (Urolagin et al., 2011). This is what block five of this

model does. New samples that are not part of the training dataset are given to the trained neural

network for classification. A correct classification of the hidden samples means such a network

has learned. Incorrect classification means otherwise.

Finally, the trained neural network is used as a virus detector especially for derived viruses.

The next section discusses the dataset used for this research.

51

4.3 Dataset

The training dataset consist of both existing and derived virus signatures. As earlier mentioned,

the existing virus signatures were obtained from nlnetlabs website. The website contains virus

signatures of various lengths. The obtained virus signatures were carefully examined and

signatures with 32 bytes seem to be common more than any other bytes. Therefore, this

research considers only virus signatures with 32 bytes. The derived virus signatures used were

the output of the mutation engine. The mutation engine randomly combined the existing virus

signatures as discussed earlier. The next section discusses the implementation of the model.

4.4 Model Implementation

The part of the model that was implemented first is the mutation engine. The mutation engine

was developed with console C# in Microsoft visual studio 2013. The Microsoft visual studio

runs on a 2.60GHz Intel core i5 PC with 4GB of memory and 64 bit OS running windows 8.1

professional. The mutation engine picks its data from a database that contains raw signatures

of existing viruses and randomly combines the signatures to produce derived virus signatures.

Furthermore, it converts both the existing and derived virus signatures to decimal and save

them to another database accordingly.

The neural network training is the model part that was implemented secondly. The training is

done with Matlab 2014 neural network pattern recognition tool (nprtool). Nprtool is a

multilayer feed-forward neural network tool used to create and train a neural network for

pattern recognition. The nprtool runs on a computer with same configuration as specified

above. Training data was divided into three, 70% was for training, 15% for validation and 15%

for testing the neural network. The neural network has 32 inputs, that is the bytes of virus

signatures in use as each byte represents a feature and two outputs which are the classes.

Parameter such as the number of hidden layers were varied a couple of times in order to get a

52

neural network that best solves the problem of classifying any given virus signature into

derived or existing signature. Training automatically stops when generalization stops

improving, as indicated by an increase in the mean square error of the validation samples. This

is done to avoid overfitting. Overfitting is a condition that arises when a neural network has

mastered its training data. This is bad because it makes the neural network to have poor

performance on new data. The program code for the neural network training is then written as

a function and deployed using Matlab deploy tool. This created a class library (.dll) for the

trained neural network. The created trained neural network library is used for the final part of

the model.

The last part of the model is implemented with visual C# using Microsoft visual studio 2013.

The Microsoft visual studio runs on a PC with same configuration as the mutation engine. The

trained neural network library is used as the classifier in the C# program code. This last part

reads a database that contains virus signatures; send the signatures to the trained neural network

and the neural network based on the training predicts whether the signatures are existing or

derived virus signatures.

4.5 Conclusion

This chapter gives a full detail of the model as proposed base on requirements. The model has

learnt successfully from both existing and derived virus signatures presented to it during

training. Hence, it can now classify any given virus signature into existing or derived.

The next chapter discusses the result of the experiments conducted with the model.

53

 CHAPTER FIVE

RESULT AND DISCUSSION

5.1 Introduction

The previous chapter discussed the proposed model for computer virus detection. The model

uses a mutation engine to create derivate of existing virus signatures and uses a trained neural

network as detector within a computer system.

This chapter presents and discusses the result of the experiments conducted with the model.

The training data are first presented to the model for classification. Thereafter, the mutation

engine created new derived virus signatures, these new virus signatures are presented to the

model to classify and the results are shown and discussed.

5.2 Mutation engine output

The mutation engine was given a number of existing virus signatures. These signatures were

grouped by the mutation engine based on similarities. Thereafter, three variants each are

created for all the groups as discussed in the previous chapter. The table below shows what the

mutation engine output looks like.

Name Signature Name Signature

8-Tunes1 0fe0cd213d314c753d2e813e2b004d5a Italian –D1 72225002000e2f20e00f70200ca0005c

8-Tunes2 33f6b9da03f3a550bb230353cb8ed0bc Italian –D2 0d7260d5c08a2c26c0200bd27a3b67c6

8-Tunes -D1 53e53bda339503e55d21c3e069e5530d Italian –D3 c0007000000580b20ebeee042fce7007

8-Tunes -D2 5e8f65e135def133313c93eee3083383 403 (B) 342e892603012e8c1605012ea307018d

8-Tunes -D3 e0030db38d503311d3a155bb33e0d505 403 (A) 2135cd21891e59018c065b018cc88ed8

Italian-#1 ec020e1ff3a4b82125061fbab300cd21 403 -D1 05025dde26885117001801d1e5771152

Italian-Gene b106d3e02dc0078ec0be007c8bfeb900 403 –D2 00c130e05238c568cc1751c03101105c

Table 5.1: Mutation engine output

54

The mutation engine created a number of families (groups) from the existing virus signatures

given. Thereafter, derivation is done on each family up until the third generation. The first,

second and third generations have suffix “D1”,”D2” and “D3” respectively as shown in table

5.1 above.

5.3 Model result

This section shows the result of the model using the trained neural network to classify any

given virus signature into either existing or derived virus signature. As discussed in the

previous chapter, existing virus signature is encoded with “1, 0” and derived virus signature is

encoded with “0, 1”. Therefore, during testing, the output neuron with the highest activation

(output) is the class predicted by the neural network (Model).

5.3.1 The result of the model on training data

The derived virus signatures used for training are presented to the model. The table below

shows to which group the model classified each virus signature.

Derived virus signatures used for training

First generation Second generation Third generation

0,0112 0,9902 Derived 0,1679 0,8182 Derived 0,2529 0,8603 Derived

0,0971 0,878 Derived 0,2572 0,7532 Derived 0,1764 0,8246 Derived

0,0238 0,9704 Derived 0,1057 0,8758 Derived 0,3473 0,8538 Derived

0,1056 0,9331 Derived 0,5885 0,4675 Existing 0,1826 0,8004 Derived

0,0334 0,9769 Derived 0,0575 0,9153 Derived 0,0517 0,9699 Derived

0,0559 0,9708 Derived 0,2106 0,9103 Derived 0,9311 0,1538 Existing

Total Signatures (%) 100 Total Signatures (%) 100 Total Signatures (%) 100

Derived found (%) 93,5 Derived found (%) 84,4 Derived found (%) 77,9

Existing found (%) 6,5 Existing found (%) 15,6 Existing found (%) 22,1

Table 5.2: Training data results

55

The table above shows some of the result of the experiment conducted with the model. The

first result (0,0112 and 0,9902) for the first generation has its second value greater than the

first. This means the model categorized the input signature as a derived virus signature since

we decoded derived virus signatures as “0, 1” during the training. Furthermore, the last result

for the third generation (0,9311 and 0,1538) has its first value greater than the second. This

means the model categorized the input signature as an existing virus signature since we

decoded existing virus signatures as “1, 0” during the training. All experiment results are

interpreted in the same way.

As shown in the table, the model was able to classify 93,5% virus signatures successfully as

derived virus signatures and 6,5% were incorrectly classified as existing signatures in the first

generation. Furthermore, in second generation, 84,4% virus signatures were successfully

classified as derived virus signatures while 15,6% virus signatures were incorrectly classified

as existing virus signatures. Lastly, for the third generation, 77,9% virus signatures were

successfully classified as derived virus signatures and 22,1% signatures were incorrectly

classified as existing virus signatures.

5.3.2 The result of the model on new data

The mutation engine of the model created new variants of existing virus signatures for ten

experiments. That is, it generated first, second and third generations for ten experiments. The

new variants are presented to the model and the result is shown in the tables below. It is

observed that the model performance on the ten experiments in terms of the derived and

existing virus signatures classified is similar with a difference of two to five signatures

classified or not classified for each generation in all the ten experiments. Therefore, we will

only show results for experiment 1, 2, 3, 8, 9 and 10.

56

5.3.2.1 Experiment one

First generation Second generation Third generation

0,0844 0,9638 Derived 0,3122 0,8133 Derived 0,016 0,98 Derived

0,2178 0,8955 Derived 0,227 0,7478 Derived 0,4707 0,6803 Derived

0,0394 0,9632 Derived 0,1119 0,9274 Derived 0,2625 0,8817 Derived

0,2533 0,8172 Derived 0,4435 0,679 Derived 0,7716 0,3993 Existing

0,1989 0,7582 Derived 0,2726 0,8031 Derived 0,0601 0,9293 Derived

0,0317 0,9595 Derived 0,1582 0,8777 Derived 0,1452 0,9406 Derived

0,5437 0,5096 Existing 0,7354 0,3186 Existing 0,413 0,7465 Derived

0,0366 0,9446 Derived 0,8389 0,2525 Existing 0,974 0,0679 Existing

0,3315 0,6154 Derived 0,1179 0,9066 Derived 0,1294 0,8627 Derived

0,2279 0,866 Derived 0,184 0,9006 Derived 0,9366 0,1676 Existing

Total virus signature

(%)

100 Total virus signature

(%)

100 Total virus signature

(%)

100

Derived found (%) 90,9 Derived found (%) 81,8 Derived found (%) 66,2

Existing found (%) 9,1 Existing found (%) 18,2 Existing found (%) 33,8

In the first generation, the model was able to classify 90,9% signatures successfully as derived

signatures out of the virus signatures given and 9,1% signatures were incorrectly classified as

existing virus signatures. For the second generation, the model classified 81,8% signatures

successfully as derived virus signatures and the remaining 18,2% signatures were incorrectly

classified as existing virus signatures. Lastly, for the third generation, the model was able to

classify 66,2% signatures successfully as derived signatures and the remaining 33,8%

signatures were incorrectly classified as existing virus signatures. The result is shown

graphically in the figure below

Table 5.3: Experiment one result

57

.

Figure 5.1 above shows the output of the model graphically for the first experiment. The

percentage of derived and existing virus signatures found for each generation is shown.

5.3.2.2 Experiment two

First generation Second generation Third generation

0,4164 0,636 Derived 0,1497 0,8725 Derived 0,841 0,347 Existing

0,2998 0,6644 Derived 0,04 0,9651 Derived 0,6937 0,4485 Existing

0,4208 0,6119 Derived 0,0479 0,9156 Derived 0,6841 0,45 Existing

0,4861 0,5689 Derived 0,3519 0,6855 Derived 0,2757 0,7225 Derived

0,1619 0,8758 Derived 0,5317 0,5808 Derived 0,0976 0,9433 Derived

0,145 0,9211 Derived 0,5325 0,7153 Derived 0,1128 0,9216 Derived

0,0033 0,9954 Derived 0,5371 0,659 Derived 0,7874 0,2685 Existing

0,0433 0,9291 Derived 0,0115 0,9857 Derived 0,0097 0,9889 Derived

0,6313 0,359 Existing 0,1557 0,8416 Derived 0,8012 0,2969 Existing

0,4478 0,5141 Derived 0,0667 0,9305 Derived 0,5261 0,5437 Derived

Total Signatures (%) 100 Total Signatures (%) 100 Total Signatures(%) 100

Derived found (%) 88,3 Derived found (%) 77,9 Derived found (%) 62,3

Existing found (%) 11,7 Existing found (%) 22,1 Existing found (%) 37,7

The table above shows experiment two result. In the first generation, the model was able to

classify 88,3% signatures successfully as derived virus signatures and 11,7% signatures were

1st Generation 2nd Generation 3rd Generation

Total (%) 100 100 100

Derived(%) 90,9 81,8 66,2

Existing(%) 9,1 18,2 33,8

0

20

40

60

80

100

120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

Figure 5.1: Graphical representation of experiment one result

Table 5.4: Experiment two result

58

incorrectly classified as existing virus signatures. Furthermore, in the second generation, 77,9%

signatures were successfully classified as derived virus signatures and the remaining 22,1%

signatures were incorrectly classified as existing virus signatures. Lastly, in the third

generation, the model successfully classified 62,3% signatures as derived virus signatures and

37,7% signatures were incorrectly classified as existing virus signatures. The figure below

shows the graphical representation of the results.

Figure 5.2 above shows the output of the model graphically for experiment two. The percentage

of derived and existing virus signatures found for each generation is shown.

5.3.2.3 Experiment three

First generation Second generation Third generation

0,0667 0,9164 Derived 0,9795 0,0607 Existing 0,4704 0,6508 Derived

0,0221 0,9663 Derived 0,1279 0,8741 Derived 0,6663 0,4095 Existing

0,7873 0,215 Existing 0,833 0,1313 Existing 0,3939 0,6194 Derived

0,4884 0,646 Derived 0,7332 0,4721 Existing 0,624 0,4892 Existing

0,1943 0,9068 Derived 0,0066 0,9886 Derived 0,4569 0,7153 Derived

0,6466 0,3631 Existing 0,4023 0,7275 Derived 0,1757 0,8966 Derived

1st Generation 2nd Generation 3rd Generation

Total (%) 100 100 100

Derived (%) 88,3 77,9 62,3

Existing (%) 11,7 22,1 37,7

0

20

40

60

80

100

120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

Figure 5.2: Graphical representation of experiment two result

Table 5.5: Experiment three result

59

0,1512 0,8905 Derived 0,1851 0,781 Derived 0,8623 0,2772 Existing

0,8919 0,2201 Existing 0,0246 0,9584 Derived 0,0296 0,9763 Derived

0,0715 0,8905 Derived 0,909 0,149 Existing 0,2413 0,8007 Derived

0,3493 0,7011 Derived 0,0474 0,933 Derived 0,0147 0,9903 Derived

Total signatures (%) 100 Total signatures (%) 100 Total signatures (%) 100

Derived found (%) 89,6 Derived found (%) 81,4 Derived found (%) 67,5

Existing found (%) 10,4 Existing found (%) 18,6 Existing found (%) 32,5

The table above presents experiment three result. In the first generation, the model was able to

successfully classify 89,6% signatures as derived virus signatures and the remaining 10,4%

signatures were incorrectly classified as existing virus signatures. Furthermore, for second

generation, the model was able to classify 81,4% signatures as derived virus signatures while

the remaining 18,6% signatures were incorrectly classified as existing virus signatures. Lastly,

for the third generation, the model was able to classify 67,5% virus signatures as derived and

the remaining 32,5% signatures were classified as existing. The figure below shows the

graphical representation of the results.

Figure 5.3 above shows the output of the model graphically for experiment three. The

percentage of derived and existing virus signatures found for each generation is shown.

1st Generation 2nd Generation 3rd Generation

Total (%) 100 100 100

Derived(%) 89,6 81,4 67,5

Existing(%) 10,4 18,6 32,5

0

20

40

60

80

100

120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

Figure 5.3: Graphical representation of experiment three result

60

5.3.2.4 Experiment Eight

First generation Second generation Third generation

0,0991 0,8904 Derived 0,0718 0,9299 Derived 0,2443 0,7419 Derived

0,0445 0,9678 Derived 0,2033 0,8199 Derived 0,1266 0,924 Derived

0,1829 0,8369 Derived 0,1007 0,9336 Derived 0,0319 0,9588 Derived

0,2079 0,7856 Derived 0,0396 0,9652 Derived 0,6252 0,4111 Existing

0,17 0,8998 Derived 0,0097 0,9836 Derived 0,321 0,712 Derived

0,2269 0,8581 Derived 0,148 0,8647 Derived 0,1415 0,8433 Derived

0,5946 0,402 Existing 0,0389 0,9541 Derived 0,5859 0,3602 Existing

0,0223 0,9692 Derived 0,2605 0,7276 Derived 0,0895 0,9363 Derived

0,1451 0,9196 Derived 0,2634 0,7358 Derived 0,1212 0,9216 Derived

0,2192 0,7603 Derived 0,1527 0,8983 Derived 0,544 0,7212 Derived

Total signatures (%) 100 Total signatures (%) 100 Total signatures (%) 100

Derived found (%) 89,6 Derived found (%) 83,1 Derived found (%) 58,4

Existing found (%) 10,4 Existing found (%) 16,9 Existing found (%) 41,6

The table above shows experiment eight result. In the first generation, the model was able to

classify 89,6% signatures successfully as derived virus signatures and 10,4% signatures were

incorrectly classified as existing virus signatures. Furthermore, in the second generation, 83,1%

signatures were successfully classified as derived virus signatures and the remaining 16,9%

signatures were incorrectly classified as existing virus signatures. Lastly, in the third

generation, the model successfully classified 58,4% signatures as derived virus signatures and

41,6% signatures were incorrectly classified as existing virus signatures. The figure below

shows the graphical representation of the results.

Table 5.6: Experiment eight result

61

The figure above shows the output of the model graphically for experiment eight. The

percentage of derived and existing virus signatures found for each generation is shown.

5.3.2.5 Experiment Nine

First generation Second generation Third generation

0,2722 0,8287 Derived 0,1444 0,906 Derived 0,0634 0,9227 Derived

0,2824 0,7584 Derived 0,1611 0,8864 Derived 0,2157 0,893 Derived

0,9387 0,2627 Existing 0,4565 0,6876 Derived 0,2024 0,7508 Derived

0,3796 0,5423 Derived 0,1706 0,8696 Derived 0,0022 0,9961 Derived

0,1678 0,8315 Derived 0,5549 0,6878 Derived 0,1299 0,8336 Derived

0,0456 0,9691 Derived 0,5947 0,4937 Existing 0,0286 0,9565 Derived

0,4005 0,7387 Derived 0,2557 0,8671 Derived 0,0737 0,8717 Derived

0,363 0,7467 Derived 0,2226 0,8558 Derived 0,0444 0,9569 Derived

0,301 0,8319 Derived 0,0428 0,9588 Derived 0,352 0,7141 Derived

0,0607 0,9461 Derived 0,082 0,8875 Derived 0,2113 0,8303 Derived

Total signatures (%) 100 Total signatures (%) 100 Total signatures (%) 100

Derived found (%) 92,2 Derived found (%) 85,7 Derived found (%) 61,0

Existing found (%) 7,8 Existing found (%) 14,3 Existing found (%) 39,0

1st Generation 2nd Generation 3rd Generation

Total (%) 100 100 100

Derived (%) 89,6 83,1 58,4

Existing (%) 10,4 16,9 41,6

0

20

40

60

80

100

120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

Figure 5.4: Graphical representation of experiment eight result

Table 5.7 : Experiment nine result

62

The table above presents experiment nine result. In the first generation, the model was able to

classify 92,2% signatures successfully as derived virus signatures and 7,8% signatures were

incorrectly classified as existing virus signatures. Furthermore, in the second generation, 85,7%

signatures were successfully classified as derived virus signatures and the remaining 14,3%

signatures were incorrectly classified as existing virus signatures. Lastly, in the third

generation, the model successfully classified 61% signatures as derived virus signatures and

39% signatures were incorrectly classified as existing virus signatures. The figure below shows

the graphical representation of the results.

The figure above shows the output of the model graphically for experiment nine. The

percentage of derived and existing virus signatures found for each generation is shown.

5.3.2.6 Experiment Ten

First generation Second generation Third generation

0,3301 0,7172 Derived 0,0989 0,9382 Derived 0,0328 0,9539 Derived

0,0561 0,9468 Derived 0,5398 0,5812 Derived 0,0648 0,9434 Derived

0,2357 0,8563 Derived 0,3037 0,8131 Derived 0,2076 0,8535 Derived

1st
Generation

2nd
Generation

3rd
Generation

Total (%) 100 100 100

Derived (%) 92,2 85,7 61

Existing (%) 7,8 14,3 39

0
20
40
60
80

100
120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt Virus Detection Rate

Figure 5.5: Graphical representation of experiment nine result

Table 5.8 : Experiment ten results

63

0,2907 0,87 Derived 0,0179 0,9721 Derived 0,2528 0,7142 Derived

0,0119 0,9841 Derived 0,76 0,3854 Existing 0,3144 0,7639 Derived

0,3118 0,8458 Derived 0,1355 0,8211 Derived 0,7956 0,2975 Existing

0,2621 0,8241 Derived 0,22 0,8828 Derived 0,0808 0,9362 Derived

0,0164 0,9711 Derived 0,9518 0,064 Existing 0,8016 0,2788 Existing

0,2098 0,8558 Derived 0,7917 0,3095 Existing 0,03 0,9686 Derived

0,1972 0,8228 Derived 0,8034 0,2937 Existing 0,216 0,884 Derived

Total signatures (%) 100 Total signatures (%) 100 Total signatures (%) 100

Derived found (%) 90,9 Derived found (%) 87,0 Derived found (%) 67,5

Existing found (%) 9,1 Existing found (%) 13,0 Existing found (%) 32,5

The table above shows some experiment ten result. In the first generation, the model was able

to classify 90,9% signatures successfully as derived virus signatures and 9,1% signatures were

incorrectly classified as existing virus signatures. Furthermore, in the second generation, 87%

signatures were successfully classified as derived virus signatures and the remaining 13%

signatures were incorrectly classified as existing virus signatures. Lastly, in the third

generation, the model successfully classified 67,5% signatures as derived virus signatures and

32,5% signatures were incorrectly classified as existing virus signatures. The figure below

shows the graphical representation of the results.

1st Generation
2nd

Generation
3rd Generation

Total (%) 100 100 100

Derived (%) 90,9 87 67,5

Existing (%) 9,1 13 32,5

0
20
40
60
80

100
120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

64

The figure above shows the output of the model graphically for experiment ten. The percentage

of derived and existing virus signatures found for each generation is shown.

5.3.2.7 Overall result for all experiments

Experiment
1st Generation (%) 2nd Generation (%) 3rd Generation (%)

Derived Existing Derived Existing Derived Existing

1 90,9 9,1 81,8 18,2 66,2 33,8

2 88,3 11,7 77,9 22,1 62,3 37,7

3 89,6 10,4 81,4 18,6 67,5 32,5

4 90,9 9,1 80,5 19,5 70,1 29,9

5 89,6 10,4 83,1 16,9 64,9 35,1

6 92,2 7,8 83,1 16,9 62,3 37,7

7 90,9 9,1 84,4 15,6 72,7 27,3

8 89,6 10,4 83,1 16,9 58,4 41,6

9 92,2 7,8 85,7 14,3 61,0 39,0

10 90,9 9,1 87,0 13,0 67,5 32,5

The ten experiments conducted consist of a number of derived virus signatures. In the first

generation of all the experiments, the model was able to classify an average of 90,5% signatures

successfully as derived virus signatures and 9,5% signatures were incorrectly classified as

existing virus signatures. Furthermore, in the second generation of all the experiments, an

average of 82,9% signatures were successfully classified as derived virus signatures and the

remaining 17,1% signatures were incorrectly classified as existing virus signatures. Lastly, in

the third generation of all the experiments, the model successfully classified an average of

Figure 5.6: Graphical representation of experiment ten result

Table 5.9: Result for all experiments

65

65,3% signatures as derived virus signatures and 34,7% signatures were incorrectly classified

as existing virus signatures. The figure below shows the graphical representation of the overall

results.

The figure above presents the overall results for all the ten experiments conducted with the

model and also shows the percentage of derived and existing virus found in each generation.

1st Generation 2nd Generation 3rd Generation

Total (%) 100 100 100

Derived (%) 90,5 82,9 65,3

Existing (%) 9,5 17,1 34,7

0

20

40

60

80

100

120

V
ir

u
s

S
ig

n
at

u
re

 C
ou

nt

Virus Detection Rate

0

20

40

60

80

100

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

Experiments plot

1st Gen Derived 2nd Gen Derived 3rd Gen Derived

1st Gen Existing 2nd Gen Existing 3rd Gen Existing

Figure 5.7: Graphical representation of the result of all experiments

Figure 5.8 : Plot showing the results for all experiments with generations

66

The plot above shows the percentage of derived and existing virus signatures as classified by

the model. As shown in the graph, the count of virus signatures that are classified as derived

drops as the generation increases. On the contrary, the count of virus signatures classified as

existing keeps increasing as the generation increases even though all signatures used are

derived. This means that at a point after many generations, the derived virus signatures will be

seen as a new or different virus signature. This explains the reason why signature scanning

could not detect derived viruses.

5.4 Conclusion

This chapter presents the results of the experiments conducted with the model proposed in the

previous chapter. It is observed in all the experiments conducted that the first generation has

highest number of derived virus detection rate than the other two generations. The second

generation also showed a higher detection rate than the third generation which has the least

detection rate. Based on this, a conclusion can be drawn that the correlation between the actual

virus signature and its derivatives decreases further down along the generations. This means

that after many generations of a virus changing forms, its variants will no longer look like the

original. The variants will look like a completely new virus even though the variants and the

original virus will always have same behaviour and operation with similar effects.

The next chapter concludes this dissertation and highlights future work.

67

 CHAPTER SIX

SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.1 Introduction

This is the concluding chapter of this dissertation. The research work is summarized along with

an evaluation of the achievement of research objectives. The direction for future work is

highlighted.

6.2 Summary

The problem studied has a serious impact in information security. The protection of computing

devices against computer viruses has been a major problem in the field of information security

since its first appearance in the 1970s and the damage caused by viruses is increasing year after

year. Early viruses had no serious impact asides displaying some annoying pop up messages.

However, today’s viruses have a reputation and financial impact. Over the years, computer

viruses have become and operate in stealth mode to avoid detection. This is usually achieved

with many modern obfuscation techniques. Although, it is argued that new viruses are created

daily. However, most of the supposedly ‘new’ viruses are not necessarily created from the

scratch, rather the supposedly ‘new’ viruses are products of the existing viruses using different

obfuscation techniques to change their look and form thereby looking like a new virus at every

infection. The self-modification ability that the modern viruses’ exhibit has put strain on virus

detection by signature scanning which is regarded as the oldest and the most commonly used

detection technique. The problem of computing device against virus is not just about protection

against known virus but also against unknown viruses. The unknown virus could be new or

derived virus (Virus that comes into existence as a result of modification of existing viruses).

68

This research work therefore explores the use of neural networks together with a mutation

engine to try and increase the detection rate of derived viruses. The mutation engine creates

derivatives of existing virus signatures. The neural network is trained with both derived and

existing virus signatures and is used as a detector to detect existing viruses and their variants

in a computer system.

6.3 Conclusion

This research presents a novel model for detecting derived virus. The ability of the proposed

model to accurately classify derived virus signatures means that it can be used as virus detector

in a computer system. The model has successfully improve the rate of detecting derived viruses

from 70% as per Golovko & Bezobrazov (2015). Furthermore, the model is better than

signature scanning. This is mainly because it does not depend solely on a set of pre-defined

virus signature; it also postulate what future signatures might look like and makes an attempt

to detect them. Moreover, the model is able to classify viruses used for the training and also

their new variants that were not used during the training. Currently, the proposed model has an

average success rate of:

 80.2% on detecting existing signatures,

 85.2% on signatures used for training and

 80% on the average for derived virus signatures.

In terms of the derived virus signatures; this includes success rate of 91% on first generation,

83% on second generation and 65% on third generation. Of note in these results is that the

accuracy of detecting derived viruses decreases linearly as the number of generations increase.

For example, the success rate would have been even lower on the fourth generation than it is

on the third. This is to be expected because as more generations are added to the training set;

69

the difference between the original and the derivative virus signature gets even bigger.

Furthermore, this explains the difficulty in current anti-virus systems to detect derived viruses.

Although, the result seems to have a lesser accuracy as compared to some existing solutions; it

is important to note that the proposed model was able to detect derived viruses which cannot

be detected by existing systems.

6.4 Recommendations for Future Work

Our future work will try and improve the accuracy of the model. Furthermore, future work will

experiment with variable virus signature sizes and those that contain special characters. Finally,

the model is to be trained with encrypted virus signatures for robustness.

It is recommended that future research efforts continue along the direction of this study to

explore this area in depth. It will be a great benefit to the field of information security to have

a virus detection mechanism that does not detect only known viruses but also the new and

derived viruses.

70

 REFERENCES

Andree, L., Nhien-An, L., 2016. Control Flow Change in Assembly as a Classifier in Malware

Analysis. 4th IEEE International Symposium on Digital Forensics and Security, pp. 2-7.

Banerjee, R., 2015. Artificial Intelligence in Power Station. International Journal Of

Innovative Research In Electrical, Electronics, Instrumentation And Control Engineering,

3(7), pp.86.

Borana, J., 2016. Applications of Artificial Intelligence and Associated Technologies.

Proceeding of International Conference on Emerging Technologies in Engineering,

Biomedical, Management and Science ,2016 , pp.64–67.

Chen, Y., Narayanan, A., Pang, S., Tao, B., 2012. Multiple sequence alignment and artificial

neural networks for malicious software detection. 8th International Conference on

Natural Computation, (Icnc), pp.261–265.

Clements, A., 2014. The No Operation Instruction. Available at:

http://alanclements.org/nops.html [Accessed August 11, 2016].

Daoud, E. A., 2009. Metamorphic Viruses Detection Using Artificial Immune System.

International Conference on Communication Software and Networks Metamorphic,

pp.168–172.

Dhruw, M.K., Dewangan, Y., Patel, P., 2016. An Introduction of Computer Virus , History and

its Evolution. International Journal of Research, 3(4), pp.275–282.

Edward, W., Slulason, F., 1990. Computer Virus Prevention, Recognition and Removal. , Virus

Bulletin Ltd(November 1990).

El-Bakry, H.M., 2010. Fast virus detection by using high speed time delay neural networks.

71

Journal in Computer Virology, 6(2), pp.115–122.

Feng, M., Gupta, R., 2009. Detecting virus mutations via dynamic matching. IEEE

International Conference on Software Maintenance, Canada. pp. 105–114.

Filiol, E., 2005. Computer viruses : From theory to Applications First Edition, Springer Berlin

Heidelberg New York.

Gang, G., Zhongquan, C., 2014. A Kind of Malicious Code Detection Scheme Based on Fuzzy

Reasoning. 7th International Conference on Intelligent Computation Technology and

Automation, pp.19–22.

Golovko, V., Bezobrazov, S., 2015. Neural Network Artificial Immune System for Malicious

Code Detection. ResearchGate, pp. 1–7. Available at:

https://www.researchgate.net/publication/268377401

Hamza, A., Hussain, D.J., 2014. Computer Virus Detection Based on Artificial Immunity

Concept. International Journal of Emerging Trends and Technology in Computer Science

(IJETTCS), 3(2), pp.68–74.

Han, L., Fu, C., Zou, D., Lee, C., Jia, W., 2012. Task-based behavior detection of illegal codes.

Mathematical and Computer Modelling, 55(1–2), pp.80–86.

Heaton, J., 2011. Programming Neural Networks with Encog3 in Java 1st Edition, Heaton

Research, Inc.

Ivanov, A., Makrushin, D., van der Wiel, J., Garnaeva, M. Namestnikov, Y., 2015. Kaspersky

Security Bulletin 2015. Overall statistics for 2015. Available at:

https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-

bulletin-2015-overall-statistics-for-2015/ [Accessed October 25, 2016].

72

Joshi, M.J., Patil, B.V., 2012. Computer Virus: Their Problems & Major attacks in Real Life.

Journal of Advanced Computer Science and Technology, 1(4), pp. 316-324.

Kakad, A.R., Kamble, S.G., Bhuvad, S.S., Malavade, V.N., 2014. Study and Comparison of

Virus Detection Techniques. International Journal of Advanced Research in Computer

Science and Software Engineering, 4(3), pp.251–253.

Kamarudin, I.E., Sharif, S.A.M and Herawan, T., 2013. On Analysis and Effectiveness of

Signature Based in Detecting Metamorphic Virus. , 7(4), pp.375–386.

Kaspersky Lab, 2016. Kaspersky Security Bulletin: Overall statistics for 2016. Available at:

https://securelist.com/statistics/ [Accessed January 16, 2017].

Khari, M., Bajaj, C., 2014. Detecting Computer Viruses. International Journal of Advanced

Research in Computer Engineering & Technology 3(7), pp. 2359.

Khang, M.T., Nguyen, V.T., Le, T.D., 2016. A Combination of Artificial Neural Network and

Artificial Immune System for Virus Detection. Rev Jounal on Electronics and

Communication 5(3), pp.52–57.

Khorsand, Z., Hamzeh, A., 2013. A Novel Compression-Based Approach for Malware

Detection Using PE Header. 5th Conference on Information and Knowledge Technology

(IKT). Shiraz: IEEE, pp. 127–133.

Kahanwal, B., 2013. Abstraction Level Taxonomy of Programming Language Frameworks.

International Journal of Programming Languages and Applications, 3(4) pp. 5.

Kumar, A., 2016. What is a Polymorphic Virus and how do you deal with it. Available at:

http://www.thewindowsclub.com/polymorphic-virus [Accessed October 26, 2016].

 Kumar, M. Hundreds Of Operations Canceled After Malware Hacks Hospitals Systems. The

73

Hacker News. N.p., 2016. Available at : http://thehackernews.com/2016/11/hospital-

cyber-attack-virus.html [Accessed January 13, 2017].

Kuriakose, J., Vinod, P., 2014a. Discriminant Features for Metamorphic Malware Detection.

Contemporary Computing (IC3), Seventh International Conference, IEEE, pp. 1-3.

Kuriakose, J., Vinod, P., 2014b. Metamorphic Virus Detection using Feature Selection

Techniques. 5th International Conference on Computer and Communication Technology.

IEEE, pp. 141–146.

Le, Q., Mikolov, T., Com, T.G., 2014. Distributed Representations of Sentences and

Documents. 31st International Conference on Machine Learning, Beijing, China, 2014 ,

32, p.1.

Ling, Y.T., Sani, F.M., 2017. Review on Metamorphic Malware Detection in Hidden Markov

Models. International Journal of Advanced Research in Computer Science and Software

Engineering, 7(2), pp. 63.

Liu, G., Chen, W., Fen, H., 2010. A Neural Network Ensemble based Method for Detecting

Computer Virus. International Conference on Computer, Mechatronics, Control and

Electronic Engineering (CMCE), 1, pp.391–393.

Mishra, U., 2010. Methods of Virus Detection and Their Limitations. SSRN Electronic Journal.

Available at: http://ssrn.com/abstract=1916708 [Accessed January 1, 2017].

Muhtadi, M., 2014. Computer Viruses : Now and Then. Al-Nasser University journal, pp.10.

Nguyen, B.T., Ngo, B.T., Quan, T.T., 2012. A Memory-Based Abstraction Approach to

Handle Obfuscation in Polymorphic Virus. 19th Asia-Pacific Software Engineering

Conference, pp.158–161.

74

Otake, T., 2015. Japan Pension Service hack used classic attack method. Available at:

http://www.japantimes.co.jp/news/2015/06/02/national/social-issues/japan-pension-

service-hack-used-classic-attack-method/#article_history, [Accessed January 10, 2017].

Pannu, A., 2015. Artificial Intelligence and its Application in Different Areas. International

Journal of Engineering and Innovative Technology, 4(10), pp.79.

Qin, R., Li, T., Zhang, Y., 2009. An Immune Inspired Model for Obfuscated Virus Detection.

International Conference on Industrial Mechatronics and Automation. China: IEEE, pp.

228–231.

Rad, B.B., Masrom, M., Ibrahim, S., 2012. Camouflage in Malware : from Encryption to

Metamorphism. International Journal of Computer Science and Network Security. 12(8),

pp.74–83.

Rad, B.B., Masrom, M., Ibrahim, S., 2011. Evolution of Computer Virus Concealment and

Anti-Virus Techniques : A Short Survey, International Journal of Computer Science

Issues, 8(1), pp.113–121.

Rad, B.B., Masrom, M., 2010. Metamorphic Virus Variants Classification Using Opcode

Frequency Histogram. Latest trends on computers (1), pp.148-152.

Rajesh, B., Reddy, Y.R.J., Reddy, B.D.K., 2015. A Survey Paper on Malicious Computer

Worms. International Journal of Advanced Research in Computer Science & Technology,

3(2), pp. 163, 165.

Singhal, D., 2014. Computer Viruses in India. International Journal of Computer Applications,

National Conference on Innovations and Recent Trends in Engineering and Technology,

pp.26.

75

Singla, S., Bansal, D., Gandotra, E., Sofat, S., 2015. Detecting and Classifying Morphed

Malwares. International Journal of Computer Applications, 122(10), pp. 29.

Silverman, J., 2001. Understanding Polymorphic Viruses. 2001. Available at:

http://www.commercialventvac.com/UnderstandingPolymorphicViruses.html [Accessed

January 12, 2017].

Silva, C.P., Dias, D.M., Bentes, C., Pacheco, M.A., CuperTino, L.F., 2015. Evolving GPU

Machine Code. Journal of Machine Learning Research, (16), pp. 680.

Sonali, B.M., Wankar, P., 2014. Research Paper on Basic of Artificial Neural Network.

International Journal on Recent and Innovation Trends in Computing and

Communication, 2(1), pp.96.

Urolagin, S., Prema, K.V., Reddy, N.V.S, 2011. Generalization capability of artificial neural

network incorporated with pruning method. Proceedings of the 2011 international

conference on Advanced Computing, Networking and Security, pp. 171.

Van der made, P., 2003. Computer immune system and method for detecting unwanted code

in a P-code or partially compiled native-code program executing within a virtual machine.

Available at : https://www.google.com/patents/US20030212902.

Venkatachalam, S., 2010. Detecting Undetectable Computer. Master's Theses and Graduate

Research, San Jose State University.

Vinod, P., Jain, H., Golecha, Y.K., Gaur, M.S. Laxmi, V., 2010. MEDUSA : MEtamorphic

malware dynamic analysis using signature from API . MEDUSA . pp. 263-269. Available

at: : http://www.researchgate.net/publication/221506943.

Vinod, P., Laxmi, V., Gaur, Naval, S., Faruki, P., 2013. MCF : MultiComponent Features for

76

Malware analysis. 27th International Conference on Advanced Information Networking

and Applications Workshops, pp. 1076-1079.

Vinod, P., Laxmi, V., Gaur, M.S., Chauhan, G., 2012. MOMENTUM : MetamOrphic Malware

Exploration Techniques Using MSA signatures. International Conference on Innovations

in Information Technology , 32, pp.232–237.

Wang, Q., 2008. Fast Signature Scan. , p.1. Available at:

https://www.google.com/patents/US7454418 [Accessed January 25, 2017].

Wang, W., Zhang, P., Tan, Y., He, X., 2009. A Hierarchical Artificial Immune Model for Virus

Detection. International Conference on Computational Intelligence and Security, 1, pp.1–

5.

Wrench, P., Irwin, B., 2015. Towards a PHP Webshell Taxonomy using Deobfuscation-

assisted Similarity Analysis. Information Security for South Africa, pp. 1–13.

Yunlong, W., Chen, C., Huiquan, W., Xinhai, X., Jie, Z., 2012. Research on Malicious Code

Detection Based on Least-squares Estimation. International Conference on Computer

Science and Electronics Engineering. China: IEEE, pp. 124–128.

Zainal-Mokhtar, K., Mohamad-Saleh, J., 2013. An Oil Fraction Neural Sensor Developed

Using Electrical Capacitance Tomography Sensor Data. OALib Journal, 13(9), pp. 11392.

Zhong, Y., Yamaki, H., Takakura, H., 2012. A Malware Classification Method based on

Similarity of Function Structure. 12th International Symposium on Applications and the

Internet, pp. 256-261.

Zolkipli, M.F., Jantan, A., 2010a. A Framework for Malware Detection Using Combination

Technique and Signature Generation. Second International Conference on Computer

77

Research and Development, pp.196–198.

Zolkipli, M.F., Jantan, A., 2010b. An Approach for Malware Behavior Identification and

Classification. School of Computer Science ,Universiti Sains Malaysia. pp.191-194.

