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Abstract 

 

The Palmiet and Sezela Rivers, both located in KwaZulu-Natal, South Africa, are two rivers 

that have distinctively different anthropogenic activities. The Palmiet River is typically 

influenced by industrial activity whereas farming and agriculture are the predominant 

activities along the Sezela River. Total metal concentrations in water and sediment and 

bioavailable metal concentration in sediment for the different metals (Cr, Cu, Bi, Pb and Zn) 

as a function of seasonal variations as well as anions (NO3
 ̶, SO4

2 ̶, PO4
3  ̶ ) in water were 

measured to determine the effect of different anthropogenic activities. Metal concentrations 

were quantified using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES) and anions were quantified using ion chromatography (IC).  

 

Seasonal analysis of the total metal concentration in sediment and water showed statistically 

significant differences for both rivers (ANOVA, p > 0.05). The Palmiet and Sezela Rivers 

had higher concentrations of metal pollutants in sediment in winter and spring, respectively. 

Seasons with lowest and highest rainfall corresponded with highest and lowest metal 

concentrations, respectively. Metal concentrations in water were compared to the South 

African Water Quality Guidelines. The Palmiet River water exceeded permissible limits for 

Cr, Ni and Pb particularly in the industrial area. Water in the Sezela River exceeded the 

permissible limits for Pb. Anion concentrations were predominantly higher in winter for both 

rivers. Nitrate concentration exceeded guideline limits in both rivers while sulfate 

concentration was higher in the Sezela River. Sezela River had higher overall anion 

concentrations than the Palmiet River which is attributed to continuous fertiliser use. Both 

rivers showed no seasonal variation in pH and all pH values were within the permissible 

limits. The EC and TDS were higher in the Sezela River, particularly in summer and autumn, 

which was attributed to higher rainfall that lead to nutrient run-off into the river. 

 

Total metal concentrations for both rivers were compared to the Effects Range Median 

(ERM). All metals were greater than the ERM in the Palmiet River while only Ni exceeded 

this limit in the Sezela River. Palmiet River had higher overall metal concentrations than 

Sezela River which is attributed to the industrial input on the Palmiet River. Bioavailable 
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metals were determined using the BCR sequential extraction method. Sezela River had 

metals predominantly unavailable for uptake in the sediment. Palmiet River had bioavailable 

Cu, Ni and Zn within the sediment. Metal toxicity is therefore of concern in Palmiet River 

due to high metal concentrations and readily bioavailable metals. The data shows the type of 

anthropogenic pollutants in each river system.  
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Chapter 1 

Introduction 

 

Water is the crucial element of social and economic infrastructure and is a key component for 

sustainable development (Abhineet and Dohare 2014).Water resources worldwide have 

multiple uses; essentially a source of fresh drinking water, agricultural uses, and energy 

production (Anyanwu 2012). With the rapid increase in population growth and the need for 

water as a basic requirement, water resources are becoming scarce (Singh et al. 2014).  Fresh 

water contributes to 2.50% of the earth’s water (UNEP 2008). Only 0.30% of this water is 

surface water that is consumed and utilised. Rivers are the primary source of fresh water and 

are created by the melting of mountain snow and ground water.  

 

In many third world countries, including South Africa, locals depend on river water for their 

daily needs.  The consumption is hindered by lack and pollution of the resource. The 

degradation of fresh water systems is increasing with an influx of pollutants being introduced 

into the system by anthropogenic activities (Pheiffer et al. 2014).  

 

1.1. Problem Statement 

 

Life on earth is dependent on water which is an essential resource. The demand for this 

resource has been stressed in the urban, industrial and agricultural sectors.  Rivers have 

become disposal sites for pollutants that these sectors discard. Climate change may also have 

a direct or indirect link to water consumption.  

 

The sub-tropical climate of South Africa affects the temperature and weather of the country. 

South Africa does not have four distinct seasons but rather two transitional seasons, autumn 

and spring, which last for about two months each, and two main seasons, summer and winter, 

which last for four months each.  Winter experiences a lower rainfall than the summer 
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season. The rainfall in KwaZulu-Natal is strongly seasonally driven with the province 

experiencing 80% of the rainfall between October and March (WRC 2002). 

 

Rainfall can affect a river system by diluting and dispersing constituents in the system (Klerk 

et al. 2012, Rahman et al. 2012). This would change the actual concentration of an analyte 

within the system. Run-off is another process that occurs in river systems. Pollutants are 

transported into the system via run-off and increase the concentration of pollutants. This 

would primarily occur in agricultural regions where the use of vast amounts of fertilisers on 

fields is common. Heavy rains would wash these chemicals into the river and increase the 

concentration within the river system (Klerk et al. 2012). Industrial pollution is another type 

of anthropogenic pollution which generally have a high localised concentration of pollutants 

near the outlets of factories. Heavy rainfall will dilute and disperse these pollutants 

downstream of the outlet making concentrations appear low. 

 

Anthropogenic activities contribute to the decline in environmental systems. The analysis of 

water and surface sediment within river systems would provide an insight into the impact that 

these activities have on the rivers.  
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1.2. Aim 

 

This study intends to identify the possible sources of pollution along the Palmiet and Sezela 

Rivers by assessing the water quality using chromatographic and spectroscopic techniques. 

 

1.3. Specific objectives of the study 

 

 To identify and select suitable sampling points along the Palmiet and Sezela Rivers 

 To measure the total concentrations of Cr, Cu, Pb, Ni and Zn in the water using the 

ICP-OES and anion concentration (NO3
 ̶, SO4

2 ̶, PO4
3  ̶) using IC. 

 To determine the bioavailability of the metals in sediment and to establish toxicity  is 

of concern using microwave assisted digestion, sequential extraction techniques, and 

the ICP-OES 

 To determine and compare the impact of industrial and agricultural activity on rivers 

 To determine if the river water quality conforms to the South African Water Quality 

Guidelines by measuring water guideline parameters including pH, electrical 

conductivity, and total dissolved solids. 

 To investigate seasonal variation of metals in the river system 
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Chapter 2 

Study Area 

 

Different sources of anthropogenic influence affect the physico-chemical composition of both 

rivers. The Palmiet River is noted for the industrial input as well as residential input and is 

classified as an industrial-residential river. The Sezela River predominantly flows through 

agricultural fields and through rural areas and is classified as an agricultural river.  

 

Sample sites were selected with consideration to spatial distribution and anthropogenic 

activity. Both rivers were sampled at the source, upstream and downstream of industrial 

and/or agricultural activity and upstream and downstream of informal settlements. 

  

2.1. Palmiet River 

 

The Palmiet River, northwest of Durban, Republic of South Africa, is a 26 km tributary of the 

Umgeni River. The Umgeni River is a major river in KwaZulu-Natal which is monitored by 

Umgeni Water and eThekwini Municipality. It passes through four of the major dams in 

KwaZulu-Natal which supplies fresh water to the province. The Palmiet River is a relatively 

small drainage catchment area of approximately 37 km2 (du Preez and De Villiers 1986). The 

sedimentation of the study area is primarily Natal red-brown sandstone, granites and shale 

(WRC 2002).  

 

The river has been fully urbanised over the years with the exception of a 6 km nature reserve 

(Naidoo 2005). The river rises from an urbanised area northwest of Durban, Kloof (Sample 

point 1), and flows through the Pinetown-New Germany industrial area (Sample points 2-5). 

It is in this region of the river where pollutants enter the river due to the plastic, metal, and 

chemical manufacturing and processing industries. The river then flows through Westville, a 

residential area, and into the key drainage system, the Palmiet Nature Reserve. The river 

flows through the residential suburb of Clare Estate. Along the river, from this point, people 
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in informal settlements utilise the water for their daily requirements. The Palmiet River 

finally drains into the Umgeni River.   

 

 

Figure 2.1.: Locations of the sampling stations along the Palmiet River 
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Table 2.1: Palmiet River sampling sites-description and location in decimal degrees.  

Site Site Description Latitude Longitude 

1 
Dense vegetation is present on the riparian zones with 

a textile industry on one of the banks.  
-29.803933 30.870568 

2 

An industrial effluent pipe from the Pinetown 

industrial area that was fed into the river was visible 

and the sediment in this area was orange in colour. 

This effluent fed into the river.  

-29.814572 30.881639 

3 

This was a branch of the river that merged with the 

effluent arm (site 2) of the river. The river bed was 

mostly covered in gravel and this flow was from the 

Pinetown industrial district. 

-29.814598 30.881624 

4 
The two branches of sites 2 and 3 merged into one 

continuous river.  
-29.814626 30.881676 

5 
One of the banks at this site had dense mangroves 

whilst the other was a residential area of Pinetown.   
-29.819762 30.893227 

6 
This site passes through the Westville residential area 

and signs of dumping were noted. 
-29.817918 30.897869 

7 

A sample was collected from the residential area of 

Clare Estate. It was observed that there was dumping 

of construction material and refuse at this site. 

-29.815765 30.961806 

8 

Dense vegetation covers the banks of this site until it 

reaches the informal settlement. The river at this point 

flows under a bridge that leads to the University of 

KwaZulu-Natal, Westville Campus. This is a high 

traffic zone.  

-29.805474 30.965139 

9 
Dumping of refuse was noted at this site which is 

approximately 400 m from the Palmiet River mouth.   
-29.803184 30.975161 
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2.2. Sezela River 

 

The Sezela area is a small town which is located south west of Durban, KwaZulu-Natal. The 

area is predominantly used for agricultural purposes including sugarcane cultivation and 

livestock rearing. There are primarily low cost housing and informal dwellings in the area 

particularly along the river. The Sezela River emerges 13 km from the coast and 

predominantly flows through sugarcane fields.  

 

The river flows through the cane fields and towards the Sezela Sugar Mill located on the 

coastline. Invasive water plants including water hyacinth, water lettuce and water ferns were 

observed in abundance between the start and end of the mill area.  

 

 

Figure 2.2: Sample station location along the Sezela River.  
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Table 2.2: Sezela River sampling sites-description and location in decimal degrees. 

Site Site Description Latitude Longitude 

1 

The river source is found in the middle of a sugarcane 

field and flows through the cane fields amidst dense 

vegetation. 

-30.368395 30.607417 

2 
This site is on one side of a man-made bridge which is 

used as an access by heavy vehicles. 
-30.375778 30.606641 

3 
This site had orange sediment with indications of oil or 

fuel slicks. 
-30.37375 30.607024 

4 

The river then flows through rural area of Uswani 

where the residents utilise the water for domestic 

purposes. 

-30.385271 30.63757 

5 

The river runs under the N2 highway into Sezela Dam 

where the residents use the water for domestic and 

recreational purposes. 

-30.395384 30.654811 

6 
This site was before the Sezela sugar-mill and the 

invasive water plants are present. 
-30.407615 30.667011 

7 

Effluent pipes and concrete slabs are present at this 

site. The concrete slabs stabilize the banks of the 

estuary. A railway line runs across the estuary area.  

-30.414107 30.677112 

8 

This site opens to the Indian ocean during tide 

changes. It consists typically of course sea-sand. The 

water in this area had a brownish colour and the river 

mouth was closed during sampling. 

-30.414596 30.677348 

9 
Plants including water hyacinth, water lettuce and 

water ferns were observed at this site.  
-30.414668 30.676486 
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Chapter 3 

Theory 

 

3.1. Pollutants 

 

Pollution is the introduction of foreign substances that cause adverse effects to an ecosystem 

(Owa 2013). Discharge of pollutants into the atmosphere and water is a daily operation in 

industry. Although laws and limits of permissible contaminants have been standardised 

nationally and globally, industrial discharge above permissible levels continue. The 

manufacturing of processed, consumable goods promotes the increased activity of industries. 

Pollutants can be organic or inorganic in nature and can either exterminate organisms or 

accumulate in organisms. Organisms that spend a greater part of their life-cycle along 

riparian zones tend to accumulate pollutants which have an adverse effect not only on the 

organisms but to the food chain that they supply.  

 

3.2. Inorganic Pollutants 

 

Inorganic pollutants are defined as substances of a mineral origin and that are not composed 

of carbon except carbon oxides (Brandon 2012). Inorganic pollutants are classified as 

metallic or oxides.  Heavy metals are common inorganic pollutants however oxides can be 

included. Oxides of nitrogen, phosphorus and sulfur are of particular concern as anions tend 

to form and change the chemistry of systems (Mortvedt 1996). Nitrates and ammonium ions 

are very mobile in systems compared to sulfates and phosphates (Maghanga et al. 2013). 

Nitrates leach heavy metals and increase metal mobility in systems. These anions are primary 

constituents of inorganic fertilisers. Commercial fertilisers contain heavy metal contaminants 

which enter the ecosystem upon fertilisation of agricultural soil (Mortvedt 1996).   
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3.3. Heavy Metals 

 

A heavy metal may be any transition metal or metalloid that has a relatively high density and 

is associated with contamination, potential toxicity and ecotoxicity even at low 

concentrations (Street 2008, Lenntech 2016).  

 

The earth’s crust is the principal source of heavy metals which have been used for a range of 

aspects from industrial, commercial to agricultural (Järup 2003). The most common is the 

motor and mechanics manufacturing industry which uses metals including Zn, Cu, Cr and Ni, 

amongst other metals, for consumer production (Schneider et al. 2014).  

 

The production of heavy metals has increased since the 19th century with a resultant increase 

in heavy metal emissions (Järup 2003). Climatic and geographical conditions promote the 

dispersion of the emitted metal species.  Once these species settle, plants take up these metals 

from soil and water and translocate them through the food web. Animals and humans ingest 

these elements via food and water and elevated levels may have negative effects on metabolic 

activities (Singh et al. 2014).  

 

Despite having potential toxicity to humans, heavy metals may be required in trace quantities 

for structural, physiological, catalytic or hormonal functions (Tchounwou et al. 2012). At 

higher concentrations some are more toxic than others and thus pose a significant problem in 

that metals do not biodegrade and can cause major damage to internal tissue (Street 2008). 

Metabolic and physiological pathways are adversely affected by the accumulation of metals 

in both humans and wildlife (Pheiffer et al. 2014). Carcinogenesis is the core effect of heavy 

metals including Pb, which is toxic and, Cu, Zn, Cr, and Ni which are toxic at elevated levels 

(Pheiffer et al. 2014, Singh et al. 2014). 
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3.3.1. Chromium 

 

Chromium in the metallic form is a white, hard, brittle, lustrous metal that dissolves easily in 

non-oxidizing mineral acids (Shupack 1991). Chromium in both its metallic and salt form are 

utilized in the paint and pigment, tanning and textile, wood preservative, catalyst, stainless 

steel, fungicide, chrome alloy and plating industries (Shupack 1991, WHO 1996, Swarnalatha 

and Radhakrishnan 2015). Chromium has oxidation states from (II) to (VI), of which the (III) 

and (VI) states are of particular importance (Shupack 1991, Elangovan et al. 2015). Trivalent 

chromium is the more stable state in water and is generally found in complex form with 

hydroxyl counter-ions (Shadreck and Mugadza 2013). Chromium(III) and Cr(VI) are 

contrasted in their functions in the human body; Cr(III) is an essential element in human 

nutrition involved in glucose metabolism while Cr(VI) has been identified as a carcinogenic 

substance to both animals and man (WHO 1996). The distribution of trivalent and hexavalent 

chromium in sediment and water is dependent on the redox potential, pH, solubility of 

compounds, and kinetics of the compounds (Shupack 1991, Oliveira 2012). Trivalent 

chromium is predominant in sediment as Cr(VI) (the more toxic form) is easily reduced by 

organic matter in sediment (Shupack 1991). Chromium concentrations in surface water 

indicates the extent of anthropogenic activity with most surface waters containing 0.1 ppm 

Cr, naturally (WHO 1996, Elangovan et al. 2015). 

 

3.3.2. Copper 

 

Copper metal is a malleable, ductile and an excellent thermal and electrical conductor which 

is found in electrical wiring, pipes, building materials, fittings and valves, amongst other 

materials (WHO 2004). Copper compounds are also used in fungicides, algicides and 

insecticides, and is added to fertilisers to support plant growth (WHO 2004, Okocha and 

Adedeji 2012, Nel 2014). Copper has two oxidation states, Cu(I) and Cu(II). In water, Cu(II) 

is more common (WHO 2004, Giacalone et al. 2005). Copper in water adsorbs strongly to 

clay minerals as well as organic solids but this is pH dependent (WHO 2004, Nel 2014). 

Copper is an essential element and toxicity increases at concentrations greater than 2 mg L-1 

(Nel 2014). Ingestion of Cu(II) causes gastrointestinal bleeding and renal failure amongst 

other complications (WHO 2004). Fate of copper in the environment, like all metals, is 
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dependent on the pH and presence of oxidising agents (WHO 2004). Copper has a tendency 

of accumulating in aquatic organisms, particularly bivalves (Nel 2014).   

 

3.3.3. Lead 

 

Lead is present in the earth’s crust in relatively small amounts (13 to 16 mg kg-1) as a bluish-

grey metal (Botes 2003, Tchounwou et al. 2012). Lead is a poor conductor of with only two 

oxidation states, lead(II) and lead(IV) (Botes 2003). Lead has been used in industrial, 

agricultural and domestic applications including lead-acid batteries, pipes, paints and 

pigments, and X-ray shields (Botes 2003, Tchounwou et al. 2012). Lead released into the 

atmosphere settles in soil and water. The mobility of lead in sediment is related to the 

sediment pH where the higher the pH, the more labile the Pb complex (Botes 2003). Lead is a 

well-studied carcinogenic, teratogenic and genetic disruptor which is toxic and affects the 

gastrointestinal tract and other endocrine organs (Botes 2003).  

 

3.3.4. Nickel 

 

Nickel is a hard, silver-white metal with five oxidation states ranging from (0) to (V). The 

most common and stable states are Ni(0) and Ni(II) (Botes 2003). Nickel is utilised in the 

manufacturing of alloys, batteries and electronic components (Botes 2003, Iyaka 2011). The 

main sources of Ni pollution comes from Ni refining and phosphate fertilizers (Botes 2003). 

The mobility of Ni in natural systems increases when the pH of the system decreases (Botes 

2003). Nickel is mobile in plants which gives it a high potential to enter the food chain (Iyaka 

2011). It has been reported that Ni may accumulate in plants including cabbage, cauliflower, 

turnip and leguminosae (Iyaka 2011). In humans, Ni is an important micronutrient which 

functions as a metalloenzyme and aids in the adsorption of Fe in the blood (Avenant-

Oldewage and Marx 2000). The toxicity of Ni is dependent on physical parameters but also 

the route of exposure and the solubility of the compound (Harasim and Filipek 2015). Nickel 

has the ability to exchange with divalent ions and enables incorporation in physiological 

functions and can cause cancer (Cempel and Nikel 2006).  
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3.3.5.   Zinc 

 

Zinc is a soft, bluish-white metal which is mainly found in a Zn(II) ionic state (Botes 2003). 

Zinc is commonly used in galvanising, paint pigments, fertilizers, batteries, and in cement 

(Botes 2003, Nel 2014, Swarnalatha and Radhakrishnan 2015). It is a highly mobile metal in 

acidic soils and under alkaline conditions, it is found in the hydroxide form as a precipitate 

(Botes 2003). Zinc has an affinity for organic matter and forms organo-metallic complexes 

which are less soluble (Botes 2003).  Zinc pollution arises mainly from industrial wastes and 

over fertilization (Botes 2003, International Zinc Association 2014). It is commonly used in 

fertilizers as more than 50% of the agricultural soil worldwide is Zn deficient (International 

Zinc Association 2014).  Zinc is an essential element to both plants and animals and is 

utilized in enzymatic activities (Lu et al. 2004, Plum et al. 2010). Unlike other metals, Zn has 

low toxicity and poisoning causes gastrointestinal problems and may induce vomiting and 

diarrhoea (Botes 2003, Plum et al. 2010). 
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3.4. Water Quality 

3.4.1. Water Quality Parameters 

 

Water quality may be defined as the biological, chemical and physical characteristics of water 

(Abhineet and Dohare 2014, Plessis et al. 2014). Physical parameters refer to physical 

properties of water including odour, taste and temperature. Chemical parameters refer to the 

chemical composition of solutes in the water. The biological parameters include identification 

and quantification of pathogens and micro-organisms present in water (Plessis et al. 2014). 

Water quality parameters are dependent on the intended use of the water. Drinking water 

parameters include low concentrations of dissolved metals, no algal growth or pathogens, no 

odour or colour whereas industrial water has less stringent guidelines (DWAF 1996). 

 

The key water quality parameters are alkalinity, electrical conductivity, total dissolved solids, 

odour, anions, chemical and biological oxygen demand. Some key parameters are discussed 

below:  

 Alkalinity refers to the pH of the water. A neutral pH is ideal to sustain aquatic life in 

water (Jayalakshmi et al. 2011).  Most natural waters are alkaline in nature due to 

dissolved atmospheric carbon dioxide forming carbonates and bicarbonates (Abhineet 

and Dohare 2014). Biochemical activities including photosynthesis can deplete the 

carbon dioxide levels in water and decrease the pH of the system (Abhineet and 

Dohare 2014). At a lower pH, metal ions are soluble and mobile in water. Most metals 

at a higher pH precipitate out of solution into the sediment.  

 Electrical conductivity (EC) is the capacity of water to conduct a current caused by 

electrolytes (Jayalakshmi et al. 2011, Abhineet and Dohare 2014). Dissolved salts 

from the bedrock can be related to conductivity and can be used to identify the region 

that sediment has been transferred from particularly in larger river systems 

(Jayalakshmi et al. 2011). The higher the EC, the greater the quantity of dissolved 

metals and anions in solution.  

 Anions (nitrates, sulfates and phosphates) may precipitate metals from the water 

depending on the concentration of the anion, its’ affinity to the metal cation and pH of 

the solution. Sulfates are naturally present in water and vary depending on the mineral 

content of the area (Abhineet and Dohare 2014). They are usually deficient in natural 

waters having concentrations lower than 5 mg L-1 and tend to accumulate in shallow 
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ground water in areas of urban and agricultural run-off (DWAF 1996, Abhineet and 

Dohare 2014). Nitrates are of particular concern, they change haemoglobin in the 

blood and decrease oxygen carrying capacity (Canadian Council of Resource and 

Environment Ministers 1987, Abhineet and Dohare 2014). Phosphates, 

orthophosphates and organically bound phosphates are released by microbial activity 

in water (Abhineet and Dohare 2014). Phosphates are used as indicators for algae 

growth which may cause eutrophication (Abhineet and Dohare 2014, Pavan and 

Benarjee 2015). Permissible limits of anions in drinking water (Table 3.1) have been 

set by organisations and governments around the world as an indication of pollution. 

Concentrations exceeding the guideline limits for nitrates, sulfates and phosphates 

may cause methaemoglobinaemia in infants, laxative effects and kidney damage, 

respectively (WHO 2006). 

 

Table 3.1: WHO guidelines on selected anions (WHO 2006) 

Anion Phosphate Nitrate Sulfate 

WHO limit / mg L-1 5 50 500 
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3.4.2. Water Quality Guidelines 

 

Water quality guidelines determine if the water is fit for use or if it has the potential to spread 

water borne diseases (Carr and Neary 2006). A water quality guideline is a set of criteria 

provided for specific water quality constituents. The South African Water Quality Guidelines 

(SAWQG) compiled by the Department of Water Affairs and Forestry (DWAF) is utilised as 

a primary tool to judge the fitness of water for use as domestic, agricultural or industrial 

water (DWAF 1996).  

 

Table 3.2: Water guidelines or standards of selected metals by international organisations or 

countries (DWAF 1996, Carr and Neary 2006, Mamba et al. 2008)  

Element Unit 
WHO 

(Guidelines) 

European Union 

(Standards) 

South Africa 

(Guidelines) 

Chromium μg L-1 50 50 100 

Copper μg L-1 2000 2000 1000 

Lead μg L-1 10 10 20 

Nickel μg L-1 20 20 150 

Zinc μg L-1 3000 # 5000 

# - Not mentioned 

 

The WHO guidelines and European Union (EU) standards are adopted by most countries 

worldwide (Carr and Neary 2006). The South African guidelines are higher for specific 

chemical parameters as timeframe provisions are allocated for accumulation of these 

chemicals in humans before an effect is observed (Mamba et al. 2008). The WHO and EU 

guidelines do not make provisions for timeframe accumulation.  
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3.4.3. Sediment 

 

Sediment is an essential component of any river system (Islam et al. 2015).  Sediments are 

classified as sinks and carriers of pollutants in aquatic environments. The analysis of 

sediments is therefore employed to evaluate the health of an aquatic system (Bartoli et al. 

2012). Natural and anthropogenic sources promote the metal content in sediment and also 

influence the form in which these elements behave in the environment. Changes including 

pH, temperature, redox potential, and ion exchange affects the fate of the metals in sediment 

(Filgueiras et al. 2002). Carbohydrates and minerals including iron and manganese oxides 

adsorb trace elements (Bartoli et al. 2012). Physical and chemical variations in the 

environment contribute to the release or binding of potentially toxic elements from 

anthropogenic sources to the fine particles in the sediment (Bartoli et al. 2012). 

 

In addition, particle size distribution of the sediment is directly related to the heavy metal 

adsorption capacity by the sediment (Bartoli et al. 2012, Sadeghi et al. 2012). Metal ions bind 

to finer particles in sediment due to the higher surface area available. These ions partition 

between the organic matter, oxyhydroxides of Fe, Al and Mn, phyllosilicate materials, 

carbonates and sulfides (Filgueiras et al. 2002).  

 

Heavy metals in sediment can be analysed in two ways viz. total and Bioavailable. Total 

metal content is the total amount of a metal in all fractions of sediment. The sediment is 

subjected to strong acids to decompose the sediment sample rendering metals aqueous. The 

total metal concentration in sediment is not sufficient for the assessment of environmental 

impact since the total concentration is not the driving factor to an elements toxicity (Islam et 

al. 2014).  The major concern for heavy metals in sediment is the bioavailability and toxicity 

to organisms. The availability of metals for uptake by an organism is the determinant of 

toxicity. In order to determine the bioavailable metal content in sediment, fractionation of the 

sediment is utilised. Fractionation of sediment is a vital part of understanding the interactions 

of heavy metals and their concentrations and bioavailability within ecosystems (Islam et al. 

2014).  It is easier to monitor the soil from which plants uptake trace metals and introduce 

them into the food web indirectly (Ivezić et al. 2013).  
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The single extraction and sequential extraction procedures are the two main approaches 

utilised in the assessment of bioavailability. Single extractions utilise a single reagent to 

extract metals from a component in sediment while sequential extraction uses a series of 

reagents to extract metals from each of the components in sediment (Ivezić et al. 2013). The 

sequential extraction method is suitable for trace metal determination in soil however, it has 

been criticised for its lack of selectivity resulting from reagents dissolving compounds of 

little to no toxic effects, metals extracted in previous steps can be reabsorbed and 

redistributed, and speciation of the metal can change here are notable deviation of results 

between the single and sequential extraction procedures (Mossop and Davidson 2002, Ivezić 

et al. 2013). Sequential extraction is time consuming but provides vital information about the 

behaviour of metals in an ecosystem and their potential for ecotoxicity (Filgueiras et al. 

2002).  

 

Sequential extraction has become a widely used method for fractionation of trace metal 

concentration in sediment (Mossop and Davidson 2002). Different techniques have been 

developed using a range of reagents that have similar underlying principles. The Commission 

of the European Communities, Community Bureau of Reference (BCR) have produced a four 

step method to fractionate trace metals in sediment (Mossop and Davidson 2002). This 

sequential extraction method utilises four steps for extracting metals from different 

components of the sediment. 

 

Fraction 1 (Exchangeable, water and acid-soluble): The first step of the BCR extraction 

utilises a weak acid e.g. acetic acid to release metals bound to carbonates and that are 

exchangeable with the extracting solution (Filgueiras et al. 2002, Mossop and Davidson 

2002). These metals are bioavailable for plant uptake and are affected by the ionic strength of 

the extractant (Filgueiras et al. 2002). 

 

Fraction 2 (Reducible iron and manganese oxides): Hydroxylamine hydrochloride adjusted to 

pH 2 is widely used in this step. The iron and manganese oxyhydroxides are well known 

structures that encage heavy metals (Filgueiras et al. 2002). The reduction of Fe(III) and 

Mn(IV) under anoxic conditions release adsorbed trace metals (Filgueiras et al. 2002). 
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Fraction 3 (Oxidisable organic matter and sulfides): This fraction of sediment requires 

oxidation of the organic and sulfide matter with hydrogen peroxide to release the metal ions 

and then extract the ions with a buffer e.g. ammonium acetate. This fraction is generally 

associated with humic substances and is not very mobile in sediment. This is important in 

polluted sediment as most pollution is composed of organic matter (Filgueiras et al. 2002). 

Organic substances have a high affinity for divalent ions particularly Cu and Pb in aquatic 

environments and retain these elements for a longer period of time (Filgueiras et al. 2002, 

Giacalone et al. 2005). 

 

Fraction 4 (Residual): The residual fraction is digested with strong acids including nitric and 

hydrochloric acids. This fraction consists of metals bound to silicates which are mainly clay 

type minerals, and potentially holds the highest concentration of metals which are not 

bioavailable for uptake by organisms.   

 

Table 3.3: Summary of the sequential extraction method 

Fraction Extractant Associated Metal Partitioning 

1 Acetic acid Exchangeable, water and acid-

soluble 

2 Hydroxylamine hydrochloride 

(pH 2) 

Reducible iron and manganese 

oxides 

3 Hydrogen peroxide, Ammonium 

acetate 

Oxidisable organic matter and 

sulfides 

4 Nitric and hydrochloric acids Residual 
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3.4.4. Sediment Quality Guidelines 

 

All metals are toxic to organisms above a threshold limit. There have been numerous 

investigations into the effects of elevated metal concentrations on organisms and the 

environment. Guidelines established by various environmental agencies are based on 

biological effects exhibited by organisms to differing levels of metal concentrations. 

Sediment quality guidelines have been developed by many researchers in three main 

approaches, equilibrium-partitioning modelling, laboratory bioassays, and field studies (Long 

et al. 1995).  Data was collated from all major guideline developments to prepare the 

informal guidelines for the National Oceanic and Atmospheric Administration (NOAA). The 

observed concentrations of metals in sediment were compared to marine organisms to 

determine the species responses to the metal concentration (Dong et al. 2012). The results 

were divided into three ranges by two threshold limits; the “effects range low” (ERL) and the 

“effects range median” (ERM). ERL and ERM are specific values of a chemical at which 

toxicity effects have been observed in 10% and 50% of a population using the NOAA 

bioassay, respectively (Long et al. 1995, O’Connor 2004, Dong et al. 2012). At 

concentrations below the ERL value, organisms exhibit minimal toxic effects and at 

concentrations above the ERM value, organisms exhibit toxic effects (Long et al. 1995, 

Binning and Baird 2001). Concentrations between the ERL and ERM values indicate 

potential infrequent toxicity (Table 3.4). These guideline values correspond closely with 

guidelines of other methods with the draw-back of only being derived for nine trace metals 

and nineteen organic pollutants (Long et al. 1995). The advantage of this guideline is that it 

collates different methods and data to produce a unified quantitative value (Long et al. 1995). 

The Benguela Current Large Marine Ecosystem (BCLME), in 2006, which encompasses 

Angola, South Africa and Namibia investigated the different sediment quality guidelines in 

an attempt to define sediment quality guidelines for the African coast and it was proposed 

that South Africa use the values stipulated by the NOAA (Taljaard 2006). 

 

Table 3.4: ERL and ERM guideline values (ppm, dry weight) for selected trace metals in 

sediment (Long et al. 1995). 

Metal Cr Cu Pb Ni Zn 

ERL value  81 34 46.7 20.9 150 

ERM value  370 270 218 51.6 410 
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3.5. Quality Assurance 

 

Certified reference materials (CRMs) are an important tool for validating analytical methods 

(Marsland 2007). A CRM is defined as a “reference material, accompanied by a certificate, 

which has one or more properties whose value is certified by a procedure that establishes 

traceability to the accurate realisation of the unit in which the values of the properties are 

expressed, and for which each certified value is accompanied by a stated uncertainty with a 

given level of confidence” (Ulberth 2006).  

 

Due to an increase in stringent regulations pertaining to analysis, quality assurance is 

guaranteed by the use of a CRM. CRMs focus on achieving accuracy of the method rather 

than precision. The precision of the method gives no indication on how close a quantified 

value is to the actual value (Rasberry 1988). The CRM should be a material that matches 

closely to the matrix of the sample being analysed to eliminate interferences and provide 

accurate results (Ulberth 2006). 

 

3.6. Statistical Analysis 

 

Statistical analysis was done using GraphPad Prism 6.01 and Minitab 17. The one-way 

Analysis of Variance (ANOVA) was done on GraphPad Prism to determine the variability of 

seasonal metal concentration. The null hypothesis stated that there was no significant 

difference between the seasons for each metal at different sampling sites. If the p-value was 

greater than 0.05, the null hypothesis was rejected.  

 

Minitab was used to for the Principle Component Analysis (PCA) and Cluster Analysis (CA). 

PCA is a chemometric method that assumes a bilinear model that reduces the number of 

components to explain data variance (Terrado et al. 2006, Felipe-Sotelo et al. 2007). PCA is 

represented as a score plot of the loadings (original data reduced to fewer components) and 

similarities between them. CA uses Ward’s Method which is an effective method that 

standardises data and clusters or groups data that are similar to each other but are different 

from other data sets within the same analysis (Felipe-Sotelo et al. 2007). The CA is 

represented as a dendogram which clearly shows the clusters or similar data. 



24 
 

3.7. Analytical Techniques 

3.7.1. Microwave Assisted Digestion 

 

Two methods are used to make metals bound to sediments labile; microwave assisted 

digestion and hot plate digestion. Microwave assisted digestion has been reported to be more 

effective. It is the most suitable technique for complex matrices such as soils and sediment 

(Bettinelli et al. 2000). The high temperature, high pressure closed system and type of acid 

used are critical factors that ensure complete digestion of the sample into a clear liquid 

(Ghanthimathi et al. 2012). The advantages of microwave assisted acid digestion include 

shorter digestion times, reduction in external contaminants, efficient digestion, low volume 

and minimal loss of volatile metals (Bettinelli et al. 2000, Shirdam et al. 2008, Roa et al. 

2010). It is for these reasons that it has been adopted as an EPA method to extract metals 

from soil, sludge and sediments. 

 

3.7.2. Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES) 

 

ICP-OES is a versatile, sensitive method of elemental analysis (Butcher 2010). ICP-OES is 

utilised for multi-elemental analysis of analytes in a shorter time and to achieve a wider 

sample characterisation (Bettinelli et al. 2000). ICP-OES is widely utilised due to low costs, 

reduced interferences and sensitivity for many elements in the parts-per-billion range (ppb) 

(Butcher 2010). 

 

Components of a typical ICP-OES instrument include: 

 a sample introduction system, comprised of a peristaltic pump, nebulizer, 

spray chamber and a drain assembly 

 the plasma, ICP torch and gas supply 

 transfer optics and an optical spectrometer 

 detectors  

 data collection unit and display output (Botes 2003) 
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Biological, geological and environmental samples are introduced into the ICP in liquid form 

via the peristaltic pump (Botes 2003, Skoog et al. 2004). The peristaltic pump controls the 

sample flow rate and aids in rinsing the system thus minimising analysis time. The sample 

enters the nebulizer where it is converted into an aerosol or fine mist which is a few microns 

in diameter (Botes 2003). Argon gas carries the aerosol and the flow rate of the gas 

determines the size of the droplets. Larger droplets are not carried to the plasma by the argon 

gas and are condensed in the spray chamber and led to the drainage system.  

 

An ICP torch is made of quartz which does not absorb light in the infrared (IR) region of the 

electromagnetic spectrum. The quartz material ensures that it withstands extremely high 

temperatures (Skoog et al. 2004). Argon gas interacts with a high energy radio frequency 

magnetic field which produces plasma (Botes 2003). The magnetic field is generated by coils 

made of gold or silver. These materials provide minimum resistance to the radio frequencies 

that travel along the surface and do not form oxides when exposed to plasma (Skoog et al. 

2004). Plasma is a highly ionisable gas that is electrically neutral and composed of ions, 

electrons and atoms (Skoog et al. 2004). Using radio waves, the argon gas is heated and 

atomization occurs in a non-reactive, stable environment which minimizes interferences. 

Infinite number of electrons and cations are present in the plasma which has the ability to 

conduct electricity. The aerosol is atomised and the metal analyte absorbs energy. The metal 

ion electrons upon absorbing the energy are excited and elevated to higher energy levels but 

instantaneously emit the absorbed energy and return to their ground states (Skoog et al. 

2004). 

 

Two torch configurations are utilised in ICP-OES analysis viz. radial and axial. Axial view is 

horizontal to the optical system and radial is vertical to the optical system  (Trevizan and 

Nóbrega 2007). Axial view has better limits of detection but increased interferences 

(Trevizan and Nóbrega 2007). 

 

Spectrometers select a specific wavelength in the emission spectrum and isolate it hence the 

spectrometer must have a high resolution, line throughput, stability, and minimal stray light 

(Botes and Staden 2004). Emissions are converted into electrical signals and are normally 

amplified by transducers using photomultipliers which ensures a smaller margin of error and 

a better, higher output to be generated (Skoog et al. 2004). The photomultiplier functions on 

the principle of the photoelectric effect. The emission of electrons is generated by photons 
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emitted by the sample that strike the cathode of the tube. The electrons generated strike the 

dynodes which result in more electrons being generated and this response produces the 

amplification of the signal. Concentration can be determined by the current which is 

proportional to the sample emission (Skoog et al. 2004). Since concentration of an element is 

proportional to the energy emitted, ICP-OES can be utilised to detect very low concentrations 

of trace elements.  

 

ICP-OES is susceptible to errors of matrix and spectral natures. Matrix errors can be physical, 

chemical or ionisation interferences (Botes 2003, Skoog et al. 2004). Physical interferences 

include changes in density, viscosity and surface tension of the solution which affects the 

droplet size and influence the sensitivity of the instrument (Botes 2003, Trevizan and 

Nóbrega 2007). Chemical interferences occur when undesired compounds form and prevents 

the atomisation of an element (Skoog et al. 2004). The ionisation interference is due to the 

temperature of the plasma, ionisation potential of the element, and concentration of the 

element (Botes 2003). Spectral overlaps are one of the major problems of the ICP-OES and is 

directly linked to the high temperatures. The ICP-OES allows for the selection of various 

emission lines due to an overlap of emission lines either direct or winged is plausible.  

 

 

3.7.3. Ion Chromatography 

 

Ion chromatography (IC) is a branch of liquid chromatography that is based on the principle 

of ion exchange (Jackson 2006).  The ions are separated on a resin exchange column and then 

on a second suppressor exchange column before detection (Shpigun 1985). Ion 

chromatography is widely used in the analysis of inorganic ions in environmental samples 

due to low detection limits, high sensitivity in complicated matrices, high determination 

speed, simple sample pre-treatment, and no preliminary concentration (Shpigun 1985, 

Bolanča et al. 2006, Jackson 2006). Cations and anions have different modes of detection 

although IC is generally more utilised for anions (Shpigun 1985).  
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Table 3.5: Differences in the key components of IC in analysis of cations and anions 

(Shpigun 1985). 

 Cation Anion 

Separation Column The column has an acidic cationic 

exchange resin that is protonated. 

The column has a basic anionic 

exchange resin. 

Suppressor Column The column is a basic anionic 

exchange resin that is hydroxylated. 

The column is a protonated acidic 

cationic exchange resin. 

Eluent Diluted HCl NaHCO3 

 

 

3.8. Comparative Studies 

 

River pollution has always been of major concern globally with much research being 

conducted. The research provides a state of river health analysis which help governments to 

implement policies and provide clean-up efforts to affected areas.  

 

Pollutants, in the form of discharge of solid waste, organic waste, industrial waste, heavy 

metals, oils and tar, are released into fresh water systems on a daily basis. It is found that 

industrial activities including metal smelting and refining, consumer products as well as 

burning of waste contributed to the metal levels in the rivers (Singh et al., 2015). The metals 

either adsorbed onto particulate matter, formed free ions or soluble complexes for 

bioavailable uptake. Industrial and agricultural activities are two of the largest contributors to 

anthropogenic input in ecosystems.  

 

The heavy metal concentration in the Ganges and Mithi Rivers in India (Table 3.6) exceed 

the ERM values for all elements. The ERM value indicates the level at which toxic effects 

would be experienced.  Compared to the Sinos and Tembi Rivers, metal concentrations in the 

Indian rivers are at toxic levels. The Sinos and Tembi Rivers have lower metal concentrations 

which suggests stringent monitoring of released effluent in these industrial rivers.  It is 

expected that the industrial rivers would exhibit higher metal concentrations.  

 



28 
 

Agricultural activities have increased over the last decade as human populations across the 

world increases. The demand for food has increased and supply needs to meet the demand. 

Crops are grown faster with the aid of fertilisers. Commercial fertilisers have trace elements 

which contaminate soil. Continual use of fertilisers contaminate soil rendering it toxic.  

Agricultural rivers are expected to have low metal concentration and a high anion 

concentration. Anions are introduced into fresh water systems as run-off from fertilised 

fields. The agricultural rivers (Table 3.6) have metal concentrations lower than the ERM 

values. Nickel in Korotoa River, Bangladesh, is above the ERM value which is attributed to 

over-fertilisation or area geology.  

 

South Africa, like much of the world, has many rivers, tributaries and catchments that build 

the water resources of the country. Intensive research has been done within South Africa on 

rivers and catchments, investigating pollution and its’ effects on humans and the 

environment. These water bodies often run through industrial or agricultural areas and may 

become polluted with different waste material.  

 

The Umgeni River is a major river in KwaZulu-Natal which has been documented over the 

years for high contaminant levels. It has anthropogenic activities including industrial, 

recreational and agricultural. Anthropogenic activities have been identified as the primary 

reason for ecosystem collapse.  The Palmiet River has been known for metal and anion 

contamination since 1985 (De Villiers and Malan 1985). The Palmiet River exhibited higher 

physico-chemical parameters than the major Umgeni River that it feeds into (Dikole, 2014). 

The Pinetown area has been of concern with elevated sediment metal concentrations (Dikole, 

2014). This industrial center was identified as a key contributor to metal contamination in the 

Palmiet River.  
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Table 3.6: Comparison of pseudo-total heavy metal concentration (average concentration) from river studies  

River Country Type of River 

Metal Concentration / mg kg-1 

Reference 

Cr Cu Ni Pb Zn 

Mithi India Industrial 477.33 - 860.33 849 - (Singare et al. 2012) 

Tembi Iran Industrial 48.75 58.25 101.4 202.5 38 (Shanbehzadeh et al. 2014) 

Sinos Brazil Industrial 252.78 87.45 43.96 36.95 206.11 (Schneider et al. 2014) 

Ganges India Industrial 3740 2240 - 5950 14390 (Gupta et al. 2008) 

Ebro Spain Agricultural 56.25 43.10 31.18 40.68 292.58 (Terrado et al. 2006) 

Lis Portugal Agricultural 68.36 38.5 21.23 27.03 189.38 (Vieira et al. 2009) 

Korotoa Bangladesh Agricultural 108.5 76.5 94.5 58.5 - (Islam et al. 2015) 

Values in red represent concentrations greater than the ERM value
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Chapter 4 

Methodology 

 

4.1. Sampling 

 

Sampling was conducted over four seasons for both rivers in July 2014, October 2014, 

January 2015 and April 2015. Sediment and water samples were collected in the field and 

taken to the laboratory for analysis. Physical parameters (electrical conductivity (EC), pH, 

and total dissolved solids (TDS)) were measured in the field. Electrode measurements for 

physical parameters (TDS and EC) were done in situ using a WTWTM LF340 conductivity 

meter that was calibrated with KCl solution. The pH was measured using a Metrohm 827 pH 

lab meter. 

  

4.1.1. River sediment sampling 

 

Surface sediment samples were collected in plastic beakers. At each site numerous samples 

were collected in polyethene beakers and stored in plastic bags. A number of locations at 

each site were sampled to make a composite sample. The samples were taken to the 

laboratory and stored before sample preparation.   

 

4.1.2. River water sampling 

 

Samples were collected in 50 mL plastic vials that were washed with 10% (v/v) nitric acid, 

followed by double distilled water before use.  The tubes were rinsed twice with river water 

prior to sample collection where the tubes were submerged and water collected.  Samples 

were stored in a refrigerator.  
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4.2. Sample Preparation 

4.2.1. River sediment  

 

Samples were air-dried, ground using a mortar and pestle and sieved using stainless steel 

sieves. The sample fraction < 90 μm was collected for analysis and stored in plastic bags.  

 

4.2.2. River water  

 

A sample volume of 15 mL were filtered using a 0.45 μm Whatman ® membrane filter. A 

portion of the water was stored at 4°C for ion chromatography analysis. The remaining 

filtered water was preserved with a few drops of concentrated HNO3 (Analytical Grade, 

Merck) until ICP-OES analysis. 

 

4.2.3. Certified Reference Material 

 

SRM 2702 (Inorganics in Marine Sediment) was used to determine total metal concentration 

in the rivers (Appendix A). BCR-701 was used for sequential metal extraction analysis in 

fresh water systems. It provides certified values for all fractions for Cr, Cu, Ni, Pb and Zn 

(Appendix A). 

 

4.2.4. Acid digestion: Sediment  

 

Approximately 0.5 g of the sieved sediment or CRM was accurately weighed into a  Teflon 

digestion tube together with 10 mL of concentrated HNO3 (Analytical grade, Sigma-Aldrich). 

The sediment or CRM was left to pre-digest for 30 minutes. The digestion vessels were then 

sealed and placed onto a microwave rotor (following the procedure outlined by the user 

manual). The rotor was then placed into a MARS 6 CEM microwave unit for digestion.  
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Table 4.1: CEM microwave digestion unit parameters 

Parameter Setting 

Ramp Time / min. 15 

Ramp Rate / °C min.-1 12 

Hold Time / min. 15 

Hold Temperature / °C 180 

Cool down time / min 15 

 

After complete digestion, the samples were then filtered into a 25 mL volumetric and made to 

the mark using double distilled water. The solutions were transferred into a plastic vial before 

being stored in the refrigerator. Three replicate digestions were conducted for each sample.  

 

4.2.5. Sediment sequential extraction procedure 

 

Approximately 0.5 g of sediment samples were accurately weighed and subjected to the 

procedure (Rauret et al. 2001).  

 

Step 1: 20 mL of a 0.11 M acetic acid solution (Merck) was added to the sediment sample in  

a 50 mL centrifuge tube, sealed and placed side-on an orbital shaker for 16 hours. The 

extract was then separated from the solid residue by centrifugation for 20 minutes. 

The extract was decanted into a vial and stored in the refrigerator prior to analysis. 

The residue was washed using 20 mL distilled water, shaken for 20 minutes on the 

orbital shaker and centrifuged for 20 minutes. The supernatant was discarded. 

 

Step 2: A 0.5 M solution of hydroxylammonium chloride was prepared and acidified with  

25 mL of 2 M nitric acid. The sediment residue from step 1 was added to 20 mL of 

the hydroxylammonium chloride solution, sealed and placed side-on an orbital shaker 

for 16 hours. The extraction procedure was followed as in step 1. 
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Step 3: The residue from step 2 was placed in a 50 mL centrifuge tube and partially sub- 

merged in a water bath. Hydrogen peroxide was added (5 mL) and the vial loosely 

sealed for an hour. The vial was then uncapped and the solution allowed to evaporate 

to near dryness. Hydrogen peroxide was then added dropwise for 30 minutes with 

constant shaking. Another 5 mL of hydrogen peroxide was added and the process 

repeated. A 1 M ammonium acetate solution was prepared and the pH adjusted to 2 

with nitric acid. To the residue in the vial, 25 mL of the ammonium acetate solution 

was added, sealed and placed side-on an orbital shaker for 16 hours. The extraction 

procedure was followed as in step 1. 

 

4.3. Analysis 

4.3.1. ICP-OES  

  

The Perkin Elmer Optima DV5300 ICP-OES was calibrated with standards prepared from 

commercial 1000 mg L-1 solutions (Sigma-Aldrich). Matrix matching was done with the 

different sets of standards. Wavelengths (Table 4.2) were selected due to their detection 

limits and potential interferences. 

 

Table 4.2: Wavelengths and detection limits for axial analysis 

Element Wavelength / nm Detection Limit / mg L-1 

Cr 267.716 0.0071 

Cu 327.393 0.0097 

Ni 231.604 0.0150 

Pb 220.857 0.0042 

Zn 213.857 0.0018 
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Table 4.3: Perkin Elmer Optima DV5300 ICP-OES parameters 

Parameter Setting 

Power /W 1500 

Auxiliary gas Nitrogen 

Auxillary gas flow / L min-1 0.2 

Nebuliser gas Argon 

Nebuliser gas flow / L min-1 0.8 

Sample introduction rate / mL min-1 1 

Sample replicates 3 

 

4.3.2. Ion Chromatography  

 

A Metrohm 762 Compact Ion Chromatograhy (Leonberg, Germany) with a Metrosep A Supp 

5 150 x 40 mm column was used to quantify the nitrate, sulfate and phosphate ions in the 

filtered water samples.  

 

Table 4.4: IC analysis parameters 

Eluent 1.0 mM NaHCO3 and 3.2 mM Na2CO3 

Flow Rate / mL min-1 0.7 

Suppressor solution 50 nM H2SO4 and deionised water 

 

4.3.3. Statistical Analysis 

 

 Statistical analysis was done using GraphPad Prism 6.01 and Minitab 17. The one-way 

Analysis of Variance (ANOVA) was done on GraphPad Prism. Minitab was used to for the 

Principle Component Analysis (PCA) and Cluster Analysis (CA). 
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Chapter 5 

Results and Discussion 

 

This chapter provides data on rainfall patterns, physical parameters, pseudo-total and 

bioavailable metal concentrations in the Palmiet and Sezela Rivers. Both rivers are 

contrasting in their anthropogenic influence. The aim of this chapter is to investigate the 

impact of industry on an aquatic environments using rivers subjected to industrial and 

agricultural activities. 

 

5.1. Quality Assurance 

 

Validation of the sample preparation and the analytical methods were conducted using 

CRMs. Two CRMs i.e Inorganics in marine sediment (SRM 2702, NIST) and Lake Sediment 

(BCR-701, IRMM) were used for the total and sequential extraction of metals from sediment 

respectively. The digests/extracts were analysed by ICP-OES and compared to certified 

values (Tables 5.1 and 5.2).  

 

Table 5.1: Certified and calculated values for SRM 2702, NIST 

Element Certified Value / mg kg-1 Experimental Value / mg kg-1 

Cr 352 ± 22 349.4 ± 29.5 

Cu 117.7 ± 5.6 118.0 ± 11.6 

Ni 75.4 ± 1.5 72.7 ± 7.8 

Pb 132.8 ± 1.1 123.8 ± 17.1 

Zn 485.3 ± 4.2 491.7 ± 81.7 

 

The percent recovery for the total metal CRM analysis ranged from 93.22% to 101.32%, 

indicating the validity of the method.  
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Table 5.2: Certified (bold) and experimental values for BCR-701 

Element Step 1 

(Exchangeable, water 

and acid soluble) 

Step 2 

(Reducible iron and 

manganese oxides) 

Step 3 

(Oxidisable organic 

matter and sulfides) 

Cr 
2.22 ± 0.47 

2.26 ± 0.16 

45.9 ± 9.1 

45 ± 2 

142.6 ± 28.3 

143 ± 7 

Cu 
49.7 ± 0.23 

49.3 ± 1.7 

110.2 ± 18 

124 ± 3 

45.1 ± 1.1 

55.2 ± 4 

Ni 
14.6 ± 1.5 

15.4 ± 0.9 

25 ± 7 

26.6 ± 1.3 

14.7 ± 3.2 

15.3 ± 0.9 

Pb 
3.14 ± 0.18 

3.18 ± 0.21 

113.4 ± 3.3 

126 ± 3 

9.3 ± 0.46 

9.3 ± 2 

Zn 
180 ± 0.8 

205 ± 6 

102.7 ± 5.9 

114 ± 5 

40.5 ± 0.7 

45.7 ± 4 

 

The experimental values calculated had percent recoveries greater than 85% indicating that 

the sequential extraction method was valid. Errors in the analysis that may have contributed 

to lower recovery include loss of analyte during decanting between extractions.  
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5.2. Seasonal Rainfall 

 

The average rainfall from June 2014 to May 2015 in the Pinetown and Sezela areas were 42.1 

mm and 51.6 mm, respectively (Table 5.3). The rainfall pattern in both regions is similar i.e. 

lower rainfall during the winter months and high rainfall in the summer months. During the 

high rainfall months, October to March, the river flow would have increased.  

 

Table 5.3: Rainfall data collected during June 2014 – May 2015 for the Pinetown 

(eThekwini-Municipality 2011) and Sezela areas (SASRI). 

 

Season 

Average rainfall / mm 

Palmiet Sezela 

Winter 2014 5.6 13 

Spring 2014 46.5 80.6 

Summer 2014/5 85.7 70.8 

Autumn 2015 30.7 42.1 

Average Rainfall 42.1 51.6 
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5.3. Palmiet River 

5.3.1. Physical Parameters 

 

Physical parameters provide information about the studied environment. The physical 

parameters were measured using electrodes in situ (Table 5.4).   

 

Table 5.4: Physical parameter data for the Palmiet River 
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1 7.84 7.05 6.89 6.87 340 276 334 359 338 142 174 320 

2 7.37 6.74 7.15 7.45 422 355 349 70 420 179 181 73 

3 6.56 7.2 7.05 7.07 450 188 360 384 450 95 236 420 

4 6.71 5.67 7.06 6.82 412 276 363 347 411 141 187 382 

5 7.09 6.99 7.45 7.06 495 327 436 81 495 165 227 76 

6 8.68 6.6 7.42 7.61 386 538 343 67 386 278 200 63 

7 7.88 5.89 7.35 7.58 381 420 415 75 381 217 216 71 

8 7.85 7.18 7.27 7.58 398 131 413 76 398 131 215 73 

9 7.91 6.26 7.19 7.53 415 479 414 79 414 249 215 72 

Values in red indicate above the permissible limits (Carr and Neary 2006). 

 

The target water pH for SAWQG ranges from 6.5 - 9.0 which can sustain most species of fish 

in rivers (DWAF 1996). The seasonal pH (7.2 ± 0.4) was comparatively stable with minimal 

fluctuations. All of the pH values were within the target water pH range. The pH of the water 

may impact the adsorption capacity of soluble metals to particulates and sediment. Typically, 

low pH values keep metals in solution.  

 

The EC is above the permissible limits for spring, summer, and winter. Autumn, however, 

has a high conductivity at the source and industrial area and this decreases downstream. 

Generally, TDS increases at the industrial area and decreases downstream before increasing 

at the last sample site. TDS and EC are directly related especially in clean water systems.  
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The geology of the area affects the EC and factors may be used to correlate the EC to TDS 

(DWAF 1996). Conductivity and TDS in fresh water have limits of 250 μS cm-1 (Carr and 

Neary 2006) and 1000 mg L-1, respectively  (DWAF 1996). The elevated EC is possibly due 

to the ions (responsible for conductivity) being precipitated out of solution, or an uptake of 

ions by biota. Generally, high rainfall dilutes the conductivity whilst low flow periods (e.g. 

winter) result in higher conductivity.  

 

5.3.2. Metal Concentration in Water 

 

Metal concentrations in water are predominantly low due to dilution and dispersion and were 

below the SAWQG (Table 5.5). They fluctuate either due to physico-chemical (e.g. pH or 

Eh) or anthropogenic factors and are often governed by adsorption/desorption processes. 

Anthropogenic input often increases the metal concentrations in water since it is often 

associated with pH changes (Jonnalagadda and Mhere 2001).  

 

Variations along the river can be attributed to bio-accumulation of metals in organisms and 

vegetation along the river, point source inputs via anthropogenic activities or physico-

chemical changes.  

 

There is no apparent trend of metal distribution between the seasons. Chromium and Ni 

indicated a few elevated concentrations. The Cr concentrations were higher than the SAWQG 

limit of 100 μg L-1 at the tail-end of the river. Lead concentrations fluctuate between < 1 ppb 

and values above the permissible level, with a maximum of 86.58 ppb. 

 

There is an increase of Cr from sites 5 to 9 and Ni is elevated in winter and spring at the 

industrial area. The increase in TDS and EC at these sites suggest anthropogenic activity. The 

Ni concentrations in summer and autumn are below the permissible limits but from sites 3 to 

6 concentrations are comparatively higher than other sites. The elevated Pb levels in water at 

specific may be introduced by anthropogenic inputs including Pb-acid batteries and cement 

products (Thambiran 2002).   
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Table 5.5: Dissolved metal concentration in the Palmiet River water in μg L-1 (ppb) 

Sample 

Site 

Cu Zn 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

1 104.12 < 0.4 < 0.4 < 0.4 1908.1 22.14 13.3 8.83 

2 46.16 < 0.4 < 0.4 < 0.4 847.51 119.97 12.25 13.71 

3 6.26 17.12 < 0.4 8.23 49.71 107.82 13.99 12.12 

4 14.21 15.29 0.78 0.29 144.75 109.59 80.97 136.66 

5 30.36 20.09 16.61 8.35 150.69 140.31 251.47 484.25 

6 0.17 9.37 3.87 < 0.4 15.82 94.52 93.8 68.36 

7 < 0.4 < 0.4 < 0.4 < 0.4 33.64 18.33 20.3 14.32 

8 14.24 < 0.4 < 0.4 < 0.4 56.53 20.41 10.94 13.38 

9 7.44 < 0.4 6.68 0.07 48.2 7.01 8.14 10.28 

   
Sample 

Site 

Cr Pb 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

1 21.92 0.2 < 0.2 < 0.2 86.58 < 1 1.8 52.08 

2 < 0.2 1.96 1.77 < 0.2 < 1 < 1 < 1 < 1 

3 5.51 45.73 < 0.2 < 0.2 < 1 < 1 < 1 41.14 

4 2.68 33.72 0.84 0.29 < 1 7.38 < 1 < 1 

5 57.74 11.84 6.7 0.74 < 1 48.61 17.46 23.48 

6 5.54 4.02 12.02 0.3 < 1 < 1 4.72 < 1 

7 69.87 < 0.2 99.93 0.98 47.68 < 1 < 1 < 1 

8 107.52 0.97 37.8 0.24 2.14 < 1 35.24 27.03 

9 111.81 < 0.2 7.13 1.92 16.33 14.8 < 1 26.96 

         Sample 

Site 

Ni 

    Winter Spring Summer Autumn 

    1 52.83 11.7 20.85 13.38 

    2 23.49 5.33 14.03 16.75 

    3 514.71 2429.9 55.78 112.73 

    4 451.21 2269.15 51.31 112.05 

    5 1371.35 1202.96 101.1 83.22 

    6 58.84 1043.5 67.39 45.65 

    7 19.57 76.18 29.86 20 

    8 14.62 78.8 22.41 22.08 

    9 24.13 34.32 24.48 18.79 

    Values in red exceed the South African Guidelines for water 
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5.3.3. Anion Concentration in Water  

  

Only nitrates and sulfates were detected in the water of the Palmiet River at sites 1, 6 and 8 

(Figure 5.1). There is clear seasonal variation (ANOVA, p > 0.05), with summer 

concentrations being significantly lower than winter. Sulfate concentrations are below the 

guideline limits (500 mg L-1) in all seasons. Nitrates were above guideline limits at sites 6 

and 8 in winter and also show an increase in concentration downstream of the source. While 

low water flow undoubtedly contributes to the higher levels present, there appears to be input 

of nitrates potentially from metal processing industries to the system (Thambiran 2002). 

  

  

Figure 5.1: Concentration of selected anions in the Palmiet River in summer and winter  
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5.3.4. Total Metal Concentration in Surface Sediment 

 

Metal distribution along the river clearly indicates the impact of industry to the Palmiet River 

(Figure 5.2). Typically, metals at the source are lower in concentration than at all other sites. 

Low concentrations are also apparent at site 2, which represent an effluent stream from alloy 

industries. It is clear that some attempt to clean up effluent waste prior to their entry into the 

environment has been made. Site 3, which represents the river flowing past the industrial 

area, shows the highest concentrations for all metals investigated and is a good indication that 

illegal dumping of waste by-products does occur. The point of the effluent stream joining the 

river (site 4) shows a dilution effect in some instances (for Cu and Ni). There is a general 

decrease of metal concentrations downstream of the industrial area.  There are significant 

differences between metal concentrations between the four seasons (ANOVA, p > 0.05). In 

addition, there are differences in metal concentrations at some individual sites, indicating 

potential point sources of pollutants. An example of this is the elevated concentrations of all 

metals at the source in summer. 

 

5.3.4.1. Chromium and Copper 

 

Chromium and Cu exhibit similar trends in their total metal distribution both seasonally and 

downstream. They vary between the seasons but the general trend observed is               

autumn > spring > summer > winter (Figure 5.2a). Deviations from the trend are noted at the 

source in summer and sites 3 and 5 in spring. At the source in summer, the Cr and Cu 

concentrations are elevated and this may be due to anthropogenic input from a textile industry 

in the area. Effluent from textile industries have been reported to contain elevated levels of Cr 

and Cu which accumulate in soil (Manzoor et al. 2006).  

 

Cr appears to be problematic in both the sediment and water, with high concentrations also 

present in water. Winter exhibited high Cr concentrations in water. This would suggest a 

potential input due to high Cr concentrations in the sediment at the same sampling sites. A 

probable cause of this may be dumping of refuse in this area.  
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Chromium sediment concentrations in the Palmiet River range from 10 – 1200 mg kg-1 and 

are above both the ERL and ERM values for most sites and seasons. The potential for 

mortality of organisms due to Cr toxicity is therefore high. Elevated levels of Cr (> 1.4 mg 

kg-1) are reported to be carcinogenic, particularly the Cr(VI) species (CCME 1999).  Typical 

sources of Cr that are found in the industrial area of Pinetown are from tool manufacturing 

and electroplating (Thambiran 2002). Previous studies on the electroplating company in the 

area reported that a third of the company waste was chromium in terms of mg L-1 effluent 

(Ghebregziabher 2004).  The correlation between elevated water and sediment concentrations 

is an indication that companies of this type contribute to increased Cr levels present in 

sediment.  

 

Concentrations of Cu range from 0 – 2000 mg kg-1 and are above both the ERL and ERM 

guideline values (Figure 5.2a). Concentrations in the industrial area are significantly higher 

than the ERM value and therefore toxic effects will be experienced by organisms in this area. 

Higher organisms may encounter renal failure amongst other complications due to Cu 

toxicity. In addition, these levels are elevated in comparison to the 23.12 mg kg-1 reported in 

2004 indicating the increase of waste input into the system as the development of industries 

in the area continues (Moodley et al. 2014).



53 
 

  

 

 

 

 

 

 

 

 

 

Figure 5.2a: Total surface sediment concentration in the Palmiet River 
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Figure 5.2b: Total surface sediment concentration in the Palmiet River
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5.3.4.2. Nickel 

 

Nickel concentrations exhibit the trend spring > summer > autumn > winter (Figure 5.2a). 

The distribution within the sites is not uniform and there are indications of point sources of 

Ni in different seasons. Nickel decreases downstream in winter and summer but fluctuates in 

spring and autumn. It is present at low concentrations before the industrial area however, 

elevated levels of Ni at the source (in summer) are attributed to the textile industry (Manzoor 

et al. 2006). Concentrations in the industrial area during spring are higher than the other 

seasons. Industries in the area that may contribute to Ni pollution include metal finishing 

industries, electroplating industries and ceramic industries (Thambiran 2002, Omolaoye J.A. 

et al. 2010, Moodley et al. 2014). The correlation of the winter and spring water data to the 

sediment data, provides further evidence of anthropogenic input in the industrial area as the 

dissolved Ni in water also exceed the SAWQS guidelines and the ERM sediment values. 

 

As with Cu and Cr, Ni concentrations are all above the ERL and ERM values. This indicates 

that river biota would experience toxicological effects such as genotoxic and carcinogenic 

effects, gastrointestinal problems and possibly mortality (Carr and Neary 2006, USEPA 2011, 

Tchounwou et al. 2012).  

 

5.3.4.3. Lead 

 

The seasonal trend in Pb concentrations is different compared to Cr, Cu and Ni,               

autumn ≈ spring > summer > winter (Figure 5.2b). Lead concentrations are above the ERL 

values and are primarily below the ERM values except at the industrial area. This clearly 

indicates the contribution of Pb into the environment by industrial activity. Increased Pb 

levels would stunt plant growth and accumulate in animal liver resulting in gastrointestinal 

problems (Gupta et al. 2008). Lead concentrations decrease downstream after the industrial 

zone clearly indicating the influence of industrial activity on the river. Once again, the 

elevated Pb concentration at the source in summer is attributed to the textile industry in the 

vicinity of the source (Manzoor et al. 2006). Industrial contributions of Pb arise from the 

electroplating, metal finishing, cement and lead-acid battery industries in Pinetown 

(Thambiran 2002). Increased Pb concentrations may have accumulated over time from 
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cement dust and cement products that have been discarded into the river. Lead has a tendency 

to be mobile particularly in cement dust and is generally present in the surface sediment, less 

than 20 cm in depth (Gupta and Sharma 2013). The correlation between the water and 

sediment concentrations are further evidence of anthropogenic influence on the river 

particularly with elevated levels in spring and autumn in the industrial area. Permissible 

levels of Pb are exceeded as per the SAWQG and sediment concentrations are above the 

ERM values.   

 

5.3.4.4. Zinc 

 

There are differences in the seasonal and spatial distribution of Zn compared to other 

elements. The seasonal trend of Zn concentration is spring > autumn > summer > winter 

(Figure 5.2b). Concentrations peak at the industrial area and gradually decrease downstream. 

Zinc concentrations before the industrial area are typically low, however, the elevated Zn 

concentration at the source in summer is attributed to the textile industry in the area. High Zn 

concentrations are common in soils where textile effluents are discharged (Manzoor et al. 

2006).  Zinc is above the ERL and ERM values suggesting that the chances of Zn ecotoxicity 

is high. Zinc toxicity generally induces gastrointestinal problems. Metals finishing industries, 

electroplating industries as well as scrap metal yards contribute to the load of Zn in the river 

surface sediment (Thambiran 2002).  
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5.3.5. Bioavailable Metal Concentration in Surface Sediment 

 

Total metal concentrations provide information on the metal content in sediment but not on 

the availability for uptake by organisms. Metals in sediment are bound to four fractions viz. 

exchangeable/water/acid soluble fraction, oxidisable fraction, reducible fraction and residual 

fraction. The fractionation of metals provides more information on the availability for uptake 

and the potential for toxicity. This section investigates the distribution of Cr, Cu, Ni, Pb and 

Zn in the sediment. The concentrations of metals are sometimes compared to ERL and ERM 

values to determine the potential toxicity problems. The bioavailable fractions are considered 

as the exchangeable/water/acid soluble, oxidisable, and reducible fractions of which the 

readily available fraction is the exchangeable/water/acid soluble fraction. The residual 

fraction exhibited the predominant concentration which is in accordance with literature 

(Zerbe et al. 1999, Vieira et al. 2009).  

 

5.3.5.1. Chromium 

 

The concentration of bioavailable Cr follows the seasonal trend of winter > autumn > spring 

> summer (Figure 5.3). The general bioavailability distribution is residual > oxidisable > 

reducible > exchangeable. Deviations from this pattern typically occur in the industrial area.  

 

Winter and autumn exhibit similar trends and this may be due to the lower rainfall during 

these two seasons. The distribution of Cr in the bioavailable fraction (fractions 1, 2 and 3) 

decreases downstream with the last site having a similar distribution to the source. In terms of 

pollutants in the exchangeable fraction, sites 1, 2, 7, 8 and 9 have less than 19% bioavailable 

Cr. This is significant as it suggests that very little of the Cr entering the environment will be 

available for uptake by plants and other organisms unless a change to the environment was 

recorded. The residual fraction accounts for approximately 85% of the Cr concentration prior 

to the industrial area. This implies that the Cr is not bioavailable for uptake as it is bound in 

the silicate material. The metal will become bioavailable when physical changes occurs 

within a system e.g. change in pH or redox potential. At site 3, this pattern changes in autumn 

and winter, and more than 85% of the Cr is bioavailable according to the BCR procedure. 

This is significant as the bioavailable Cr concentration at site 3 is greater than even the ERL 
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and ERM value which is a guideline for total metal concentration. Thus there are serious 

concerns for ecotoxicity during these two seasons. Site 6 and further downstream have less 

than 50% of Cr in the bioavailable form. The trend displayed in winter and autumn indicates 

a high concentration of oxidisable matter which is confirmed by the high TDS values in 

winter. The highest concentration of bioavailable Cr is found in winter site 3.Spring and 

summer have higher rainfall patterns which keeps metals soluble (Sinclair-Knight-Merz 

2013). Thus the distribution, whilst similar to the other seasons, have majority of the Cr in the 

residual fraction. However, the change in distribution is still prevalent in site 3 clearly 

indicating that the input is anthropogenic and released into the environment as aqueous or 

soluble waste. 

  

  

 

Figure 5.3:  Bioavailable Cr in Palmiet River sediment  
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5.3.5.2. Copper 

 

Copper concentrations are different seasonally however, winter and spring have a similar 

trend in Cu concentration i.e residual > organic > oxyhydroxides > exchangeable (Figure 

5.4). Similarly, the trend in autumn and summer is residual > exchangeable > oxyhydroxides 

> organic. Copper in the residual fraction is predominant in most seasons however there are 

sites where the distribution is different.  

 

At the industrial sites, the exchangeable/water/acid soluble fraction contributes approximately 

20% towards bioavailable Cu. This is a cause for concern as this exceeds the ERL value (for 

total metal) signifying that Cu is mobile and ready for uptake by organisms. The total metal 

data supports this theory as the total Cu concentrations are higher than the ERM value at the 

industrial sites. In spring, the exchangeable fraction is close to the ERM value which may 

pose a problem. Approximately 30% of Cu has the potential to become bioavailable if pH/Eh 

changes occur which is of concern as any changes to the system would release Cu into the 

system. This would have negative effects on the plants and biota as Cu accumulation in 

organisms cause physiological problems including renal failure (WHO 2004).  
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Figure 5.4:  Bioavailable Cu in Palmiet River sediment  
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5.3.5.3. Nickel 

 

There is no apparent distribution pattern in Ni within the seasons however, all the seasons 

have a predominant trend of residual > exchangeable > oxyhydroxides > organic (Figure 5.5). 

The total Ni concentration was the highest in spring and the lowest in winter and these two 

seasons appear to be most similar despite the differences in rainfall (Figure 5.2). As with 

other metals, the BCR metal distribution is markedly different in the industrial area (Sites 3-

5). At the source, the Ni is predominantly in the residual fraction for all seasons. The 

exchangeable fraction accounts for 20 - 30% of the total Cu concentration in sediment. This 

is of concern as the ERM value is exceeded ten-fold in the first fraction. Effects including 

respiratory problems and enzymatic complications (Cempel and Nikel 2006).  
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Figure 5.5:  Bioavailable Ni in Palmiet River sediment  
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5.3.5.4. Lead 

 

There is no apparent trend in Pb distribution between seasons however, the predominant trend 

between spring and summer is residual > oxyhydroxides > organic > exchangeable (Figure 

5.6). Autumn and winter exhibit a different trend; oxyhydroxides > residual > organic > 

exchangeable. Lead exists predominantly in the oxyhydroxide fraction which has been 

reported in other freshwater systems in literature (Sutherland and Tack 2007, Pillay 2011). 

Winter and autumn have distributions that are not typical i.e. the residual fraction is not the 

dominant fraction, and may be due to the low flow which may have changed the redox 

potential. The organic fraction has low concentrations of Pb; this could possibly be due to 

over extraction of Pb from the reducible fraction. Studies have shown that 

hydroxylammonium chloride in nitric acid can over extract Pb in the reducible fraction from 

the organic fraction (Filgueiras et al. 2002). The exchangeable fraction accounts for less than 

5% of the total Pb concentration. This is below the ERM value therefore immediate toxicity 

problems would not be experienced by organisms.  
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Figure 5.6:  Bioavailable Pb in Palmiet River sediment  
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5.3.5.5. Zinc 

 

Autumn, spring and summer have a similar distribution trend i.e. residual > exchangeable > 

oxyhydroxides > organic (Figure 5.7). Winter exhibits a different trend, exchangeable > 

oxyhydroxides > residual > organic. The first fraction in all seasons is of particular concern. 

The Zn in the first fraction is exchangeable and bioavailable. The typical sediment metal 

association of Zn is bound to organic matter and/or sulfur (Botes 2003). Zinc had elevated 

total concentrations along the river (Figure 5.2) and it would be expected for a large quantity 

of Zn to be present in the exchangeable fraction as it was also detected in the water (Table 

5.5).  
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Figure 5.7:  Bioavailable Zn in Palmiet River sediment  
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5.3.6. Statistical Analysis of the Palmiet River 

  

The cluster analysis (CA) clearly indicates that sites 3-4 are not associated with the other sites 

sampled (Figure 5.8). This is a significant result since these two sites represent the industrial 

area, and is an indication that the metal input is different. Sites 5-6 exhibit a similar 

association which is expected since these two sites are of the residential area. Sites 2 and 9 

exhibit similar association which is incorporated into a larger cluster of sites 1, 2, 9, 6 and 7. 

This cluster has a 50% association with sites 5 and 6. 

 

The score plot for Ni in the Palmiet River (Figure 5.9) is similar to the other metals studied. 

The score plot confirms the association of the Palmiet River sampling sites and their metal 

distribution associations. Sites 3 and 4 have similar distribution. Sites 1, 2, 7, 8 and 9 have a 

similar distribution whereas sites 5 and 6 do not correspond to similar distribution patterns.  
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Figure 5.8: Dendogram (left) of the sampling sites and their associations in the Palmiet River 

and score plot (right) of the Ni distribution in the Palmiet River 
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5.3.7. Synopsis 

  

There were seasonal variations in the metal concentration in the Palmiet River. Metal 

concentrations in water and sediment exceeded the guideline limits. The nitrate 

concentrations exceed the guideline values while sulfate concentrations were comparatively 

low and phosphates were below detection limits. The bioavailable metal data illustrates that 

Cu, Ni and Zn are of particular concern as these elements are readily available for biological 

uptake. Statistical data demonstrates that certain sites along the river are similar in metal 

distribution and confirms the source of metals to be similar at these sites. 
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5.4. Sezela River 

 

The Sezela River is predominantly a sugarcane farming and processing region. The physical 

parameters were measured as an indicator to the water quality. No water data was obtained 

for winter site 3 and summer sites 1-2 as the river flow had reduced and the river bed was 

drying up. The total metal concentrations of Cr, Cu, Ni, Pb and Zn in water and surface 

sediment were quantified to identify pollutants in the river. Partitioning of the selected heavy 

metals were measured to identify the bioavailability of the metals.    

 

5.4.1. Physical Parameters 

 

The pH of river systems is essential in sustaining life as most species of fish and plants are 

tolerable to threshold concentrations of hydronium and hydroxide ions. The target water pH 

has been established to be in a range of 6.5-9.0 to accommodate all species which are pH 

dependent (DWAF 1996). The seasonal pH was stable at 7.6 ± 0.4 and fell within the normal 

pH range (Table 5.6). The pH exhibited a trend of increasing from the source to the river 

mouth in all seasons.  

 

TDS and EC have a direct relationship which is correlated using numerical constants (DWAF 

1996). The TDS and EC increase downstream to the estuary and ranged from 81 μS cm-1 to 

2140 μS cm-1. Conductivity and TDS in fresh water have SAWQG limits of 250 μS cm-1 (Carr 

and Neary 2006) and 1000 mg L-1 (DWAF 1996). The river has EC values greater 

predominantly greater than this limit. The activities in Sezela is farming, particularly 

sugarcane. Fertilisers, commonly used in crop farming have been reported to increase the 

conductivity of water (Kambwiri et al. 2014). Additionally, the sugar milling process may 

also result in the elevated TDS levels. Sugar milling effluent consists of high levels of TDS 

which would contribute to the elevated levels found in the Sezela estuary (Saranraj and Stella 

2014). 
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Table 5.6: Physical parameter data for the Sezela River  
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1 7.84 7.21 7.51 ND 225 81 85 ND 218 42 44 ND 

2 7.01 6.7 7.71 ND 447 86 441 ND 227 45 230 ND 

3 7.24 ND 7.41 6.84 523 ND 452 87 263 ND 236 51 

4 6.8 6.54 7.49 7.3 585 110 301 539 300 57 278 281 

5 7.36 6.61 7.45 7.41 355 87 224 431 181 45 272 228 

6 7.79 7.5 7.68 8.03 969 317 1126 1691 497 165 584 885 

7 7.93 7.51 7.62 7.89 3650 762 1200 2130 1882 396 1284 1121 

8 8.24 7.54 7.58 7.89 3490 764 1275 2140 1799 396 1285 1125 

9 8.24 7.62 7.67 7.72 103 761 1286 2140 1804 395 1285 1124 

ND – No data available; Values in red exceed guideline limits 
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5.4.2. Metal Concentration in Water 

 

Metals are found in minerals within sediment. Chemical and physical changes including 

redox potential changes and desorption processes render these metals mobile in water. The 

metals generally exist in water as ions or complexes and are found in low concentrations due 

to dilution and dispersion.  The Sezela area does not have many activities which would 

release metals into the environment and it is expected that metal concentrations would be 

predominantly low.  

 

Copper and Cr have concentrations generally below the detection limits (Table 5.7). Zinc and 

Ni have low concentrations, all below the SAWQG. However, the source has elevated levels 

of Zn and Ni. This may be due to the use of fertilisers around the source area. Studies have 

shown that the use of fertilisers increase the Zn and Ni content in soil and inadvertently in the 

water (Thomas et al. 2012).   

 

Lead concentrations varied and were < 1 ppb or they exceeded permissible limits. The Sezela 

sugar cane industry relies solely on heavy machinery which run on fossil fuels. The 

combustion of these fuels release Pb as particulate matter that settle on sediment and in water 

(Ramessur and Ramjeawon 2002). This may account for the sporadic appearance of Pb along 

the river.  
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Table 5.7: Dissolved metal concentration in the Sezela River water in μg L-1 (ppb) 

Site 
Cu Zn 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

1 3.93 < 0.4 ND 43.57 45.37 0.51 ND 229.57 

2 < 0.4 < 0.4 ND < 0.4 0.51 0.49 ND 3.13 

3 ND < 0.4 < 0.4 < 0.4 ND 0.79 0.67 0.15 

4 < 0.4 < 0.4 0.72 < 0.4 3.29 < 0.2 0.97 6.84 

5 < 0.4 < 0.4 < 0.4 < 0.4 1.97 0.26 0.16 5.36 

6 < 0.4 < 0.4 < 0.4 < 0.4 0.19 0.16 1.19 0.93 

7 < 0.4 < 0.4 < 0.4 < 0.4 0.02 0.021 1.08 0.62 

8 < 0.4 < 0.4 8.74 < 0.4 0.71 1.43 < 0.2 0.3 

9 < 0.4 < 0.4 1.5 0.93 0.88 0.75 0.5 0.84 

   

Site 
Cr Pb 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

1 10.23 0.12 ND 4.26 35.06 < 1 ND < 1 

2 0.11 0.01 ND < 0.2 15.54 < 1 ND < 1 

3 ND < 0.2 < 0.2 1.17 ND 1.46 < 1 10.42 

4 < 0.2 < 0.2 < 0.2 < 0.2 < 1 < 1 22.64 5.76 

5 < 0.2 < 0.2 0.72 < 0.2 < 1 18.15 < 1 8.09 

6 0.47 0.7 0.13 < 0.2 80.87 < 1 33.6 10.68 

7 < 0.2 < 0.2 < 0.2 0.71 < 1 < 1 < 1 4.86 

8 < 0.2 < 0.2 < 0.2 < 0.2 17.14 41.56 27.32 12.59 

9 < 0.2 < 0.2 < 0.2 1.11 14.29 30.58 24.68 < 1 

         
Site 

Ni 

    Winter Spring Summer Autumn 

    1 35.75 28.94 ND 41.19 

    2 25.92 25.67 ND 18 

    3 ND 23.46 18.91 18.41 

    4 16.49 16.77 13.61 13.49 

    5 4.66 10.23 11.21 11.62 

    6 37.03 19.22 40.3 25.58 

    7 24.41 30.61 36.59 30.22 

    8 23.44 30.39 28.95 25.76 

    9 16.88 31.67 28 27.01 

    ND – No data obtained; Values in red exceed the South African Guidelines for water 

 

 



  73 
 

5.4.3. Anion Concentration in Water 

 

Phosphates, sulfates and nitrates were analysed in the Sezela River for summer and winter 

(Figure 5.10). The effect of seasonal variation (ANOVA, p > 0.05) on anion concentration 

was evident for all anions. No phosphate was detected at the source however the estuary had 

phosphate concentrations exceeding the permissible limits (Figure 5.10). Phosphate 

concentrations were higher in summer than winter. An increasing trend was observed in both 

seasons from the source to the river mouth. Nitrates and sulfates typically have a higher 

concentration in winter than summer. In winter, the source (Site 1) exceeded the permissible 

limit for nitrates while all sulfate concentrations were below the permissible limit. The high 

levels of anions could be due to the excessive use of fertilisers on crop.  
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Figure 5.9: Anion concentration in the Sezela River in summer and winter 
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5.4.4. Total Metal Concentration in Surface Sediment 

 

Total metal concentrations in surface sediment for Cr, Cu, Ni, Pb and Zn at the different sites 

for the four different seasons are represented in Figure 5.11. There are significant differences 

in metal concentrations between the four seasons (ANOVA, p > 0.05). In addition, there are 

differences in metal concentrations at different sites, indicating potential point sources of 

pollutants. Metal distribution along the river indicates an introduction of metals into the 

system via the agricultural and sugar milling industry on the Sezela River, at the tail end of 

the river. In literature, sugar milling industries and plantations have shown elevated levels of 

Cr and Cu in both the water and sediment (Molisani et al. 1999, Saranraj and Stella 2014). 

Typically, metal concentration is highest at the estuary which is in close proximity to Sezela 

Sugar Mill. The metal concentration decreases from the source downstream and then 

increases at the estuary.  
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Figure 5.10a: Total surface sediment concentration in the Sezela River
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Figure 5.10b: Total surface sediment concentration in the Sezela River
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5.4.4.1. Chromium and Copper 

 

Chromium and Cu exhibit similar trends in their total metal distribution both seasonally and 

spatially. Concentrations vary between the seasons but the general trend observed is       

spring > summer > winter > autumn (Figure 5.10a).  

 

Deviations from the trend are noted at the estuary in summer where the Cr and Cu 

concentrations are elevated. This may be due to anthropogenic input from the sugar milling 

industry in the area. Typical sugarcane treated effluent has been found to contain up to        

40 μg L-1 Cr and 60 μg L-1 Cu (Shiva Kumar and Srikantaswamy 2015). Metals in the effluent 

adsorb to surface sediment or precipitate out of solution increasing the total metal 

concentration in the sediment.  

 

Chromium concentrations in the Sezela River range from 60 – 390 mg kg-1 and are typically 

above ERL but below ERM values for most sites and seasons. The estuary has a high 

concentration of Cr. The estuary opens to the ocean during high tide and Cr may change its 

species to Cr(VI) which is carcinogenic and predominant in seawater (Bonnand et al. 2013). 

The Cr(VI) form would also be prevalent if the redox potential of the system increased or the 

concentration of dissolved oxygen increased (Bonnand et al. 2013, Shadreck and Mugadza 

2013). Chromium(VI) is highly mobile and if absorbed by marine organisms, it can cause 

mutations and mortality (Shadreck and Mugadza 2013).  

 

Concentrations of Cu ranged from 40 – 260 mg kg-1 in the Sezela River. These concentrations 

are below the ERM guideline value. The Sezela River flows primarily through sugarcane 

fields and it is expected that sugarcane soil would have Cu concentrations that range from                

7 – 725 mg kg-1  (Rahman et al. 2012). The lower Cu concentrations from sites 1 to 6 may be 

due to uptake of Cu by sugarcane which assimilates and may have concentrations up to      

0.4 mg L-1 in the sugarcane juice (Damodharan and Reddy 2014). At neutral pH conditions, 

Cu generally forms precipitates with sulfur and oxides. The precipitation of Cu is evident 

from the low concentrations in water.  
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5.4.4.2. Nickel 

 

Ni concentrations exhibit a different seasonal trend compared to Cr and Cu; spring > winter > 

summer > autumn (Figure 10a). The distribution within the sites is not uniform and there are 

indications of an external input to the system as seen by elevated concentrations of Ni at all 

sites. Nickel concentrations exceed both the ERL and ERM values. This suggests that 

organisms within the river would experience toxicological effects such as genotoxic effects, 

carcinogenic effects, gastrointestinal problems and possibly mortality (Carr and Neary 2006, 

USEPA 2011, Tchounwou et al. 2012). The elevated Ni concentration in soil is 

predominantly from fertiliser which may contain up to 396 mg kg-1 d.m (Mohiuddin et al. 

2011, Harasim and Filipek 2015).  

 

5.4.4.3. Lead 

 

The seasonal trend for Pb concentration is spring > winter > summer > autumn (Figure 10b). 

Total Pb concentrations along the river have values higher than the ERL but lower than the 

ERM. A potential source of the Pb is the machinery used for the planting, cultivation and 

transportation of the sugarcane. These machines rely on the combustion of fossil fuels which 

promote the release of heavy metals into the environment. Lead released by fossil fuel 

combustion accumulates in the environment over time (Callender and Rice 2000, 

Nomngongo and Ngila 2014). 

 

5.4.4.4. Zinc 

 

Zinc concentrations follow the seasonal trend winter > summer > spring > autumn (Figure 

10b). Concentrations in the sediment are predominantly below the ERL and ERM values 

hence minimal toxic effects by Zn would be experienced by organisms.                                                              
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5.4.5. Bioavailable Metal Concentration in Surface Sediment 

 

 

Collectively, the exchangeable/water/acid soluble fraction, oxyhydroxide fraction and 

oxidisable fraction is considered to be the bioavailable fraction. The first fraction 

(exchangeable/water/acid soluble) is the readily available fraction. 

 

5.4.5.1. Chromium  

 

The concentration of bioavailable Cr follows the seasonal trend of trend winter > autumn > 

spring > summer (Figure 5.11). The general bioavailability distribution is residual > 

oxidisable > reducible > exchangeable. Deviations from this pattern typically occur in the 

industrial area.  

 

Winter and autumn exhibit similar trends and this may be due to the lower rainfall during 

these two seasons. The distribution of Cr in the bioavailable fraction (fractions 1, 2 and 3) 

decreases downstream with the last sites having a similar distribution to the source. In terms 

of pollutants in the exchangeable fraction, these sites (1, 2, 7, 8 and 9) have less than 19 % 

bioavailable. This is significant as it suggests that very little of the Cr entering the 

environment will be available for uptake by plants and other organisms unless a change to the 

environment was recorded. The residual fraction accounts for approximately 85 % of the Cr 

concentration prior to the industrial area. , This implies that the Cr is not bioavailable for 

uptake as it is bound in the silicate material. The metal will become bioavailable when 

physical changes occurs within a system e.g. change in pH or redox potential. At site 3, this 

pattern changes and more than    85 % of the Cr is bioavailable according to the BCR 

procedure. This is significant as the bioavailable Cr concentration at site 3 is greater than 

even the ERL and ERM value which is a guideline for total metals concentration. Thus there 

are serious concerns for ecotoxicity. Site 6 and further downstream have less than 50 % of Cr 

in the bioavailable form. The trend displayed in winter and autumn indicates a high 

concentration of oxidisable matter which is confirmed by the high TDS values in winter.  
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Spring and summer have higher rainfall patterns which keep metal soluble (Sinclair-Knight-

Merz 2013). Thus the distribution, while similar to the other seasons, has the majority of Cr 

in the residual fraction. However, the change in distribution is still prevalent in site 3 clearly 

indicating that the input is anthropogenic, released into the environment as aqueous or soluble 

waste. The highest concentration of Cr is in autumn. 

 

  

  

 

Figure 5.11:  Bioavailable Cr in Sezela River sediment  
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5.4.5.2. Copper 

 

Copper concentrations are different seasonally however, winter and spring have a similar 

trend in Cu concentration i.e. residual > organic > oxyhydroxides > exchangeable (Figure 

5.12). Similarly, the trend in autumn and summer is residual > exchangeable > 

oxyhydroxides > organic. Copper in the residual fraction is predominant in most seasons 

however there are sites where the distribution is different.  

 

At the industrial sites, the exchangeable/water/acid soluble fraction contributes approximately 

20 % of the total Cu. This is a cause for concern as this exceeds the ERL value (for total 

metal) signifying that Cu is mobile and ready for uptake by organisms. The total metal data 

supports this theory as the total Cu concentrations are higher than the ERM value at the 

industrial sites. In spring, the exchangeable fraction is close to the ERM value which may 

pose a problem. Approximately 30 % of Cu has the potential to become bioavailable if pH/Eh 

changes occur which is of concern as any changes to the system would release Cu into the 

system. This would have negative effect on the plants and biota as Cu accumulation in 

organisms cause physiological problems including renal failure (WHO 2004).  
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Figure 5.12:  Bioavailable Cu in Sezela River sediment  
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5.4.5.3. Nickel 

 

All seasons have a predominant trend of residual > organic > oxyhydroxides > exchangeable 

which is similar to Cr and Cu (Figure 5.13). This distribution of Ni is observed in both clean 

and polluted rivers (Liu et al. 2016).  Nickel concentrations in the bioavailable fraction 

increase downstream to the estuary. Nickel is predominantly in the residual fraction for all 

seasons. This distribution of Ni is observed in both clean and polluted rivers (Liu et al. 2016). 

Less than 1 % of the Ni is present in the exchangeable fraction. The bioavailable fractions 

have a lower concentration of Ni than the ERM. Fertilisers play a role in the introduction of 

Ni to an ecosystem however the bioavailable Ni concentrations are low (Harasim and Filipek 

2015). 

 
 

  

 

 

 

Figure 5.13:  Bioavailable Ni in Sezela River sediment 
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5.4.5.4. Lead 

 

Autumn, spring and summer have the same distribution trend for Pb viz.                        

residual > oxyhydroxides > organic > exchangeable while winter follows the trend        

residual > organic > oxyhydroxides > exchangeable (Figure 5.14). Typically, in freshwater 

sediment, the highest concentration of Pb is found in the oxyhydroxide fraction which is not 

seen predominantly in this river profile (Mossop and Davidson 2002). Summer site 3 is an 

anomaly to the distribution pattern since oxyhydroxides > organic > residual > exchangeable 

which fits the typical distribution trend. The predominant fraction is the residual fraction 

indicating that the Pb is unavailable for uptake. The exchangeable/water/acid soluble fraction 

has approximately 0.5 % and will not have an impact on the environment.   

 

  

  

 

Figure 5.14:  Bioavailable Pb in Sezela River sediment  
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5.4.5.5. Zinc 

 

The predominant distribution of Zn in autumn, winter and summer is                            

residual > organic > oxyhydroxides > exchangeable (Figure 5.15). The distribution trend in 

spring differs and is residual > organic > exchangeable > oxyhydroxides. The predominant 

distribution observed does not fit the distribution trends in other studies of freshwater systems 

which was exchangeable > oxyhydroxides > organic > residual (Segura et al. 2006, Vasile et 

al. 2008). However, in autumn site 3 follows the typical Zn distribution trend (Vasile et al. 

2008).    

 

  

  

  

Figure 5.15:  Bioavailable Zn in Sezela River sediment  
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5.4.6. Statistical Analysis of the Sezela River 

 

The CA for the Sezela River (Figure 5.16) show some important associations. Site 1-6 are 

associated with each other indicating similar contaminant or metal inputs into the system. Site 

7 which showed the most variability in terms of metal concentrations, and bioavailable 

distribution is not associated with other sites. It is the site at which the mill effluent enters the 

Sezela River. The effluent is not considered to be a contaminant since levels are below the 

guideline values. The change in the BCR associations from the other sites clearly show that 

industrial input has the potential to change metal mobility. The closest association to site 7 

are sites 8-9 which is expected as these are the sites that follow.  

 

The score plot for Cr distribution in the Sezela River (Figure 5.16) is similar to other heavy 

metals studied. The score plot provides further evidence of the site associations to metal 

distribution in the Sezela River. Sites 1, 2 and 5 have similar distribution while sites 3, 4 and 

6 are closely related. Sites 8-9 are similar and site 7 has no association with other sites. 

 

  

Figure 5.16: Dendogram (left) of the sampling sites and their associations and score plot 

(right) distribution of Cr in the Sezela River. 

 

 

Figure: Score plot distribution of Cr in the Sezela River 
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5.4.7. Synopsis  

  

The Sezela River has Pb water concentrations exceeding the guideline which is of concern. 

The sediment metal concentrations are below ERM values with the exception of Ni. The 

bioavailable metal distribution illustrates metals to be predominantly in the residual fraction 

hence unavailable for uptake. The phosphate and sulfate concentrations exceed guideline 

values which would be expected as agricultural rivers have elevated fertiliser components. 

The PCA and CA illustrates that the metal distribution is different at the estuary compared to 

the river.  
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5.5. Comparison of the Palmiet and Sezela Rivers 

 

A comparison between the two rivers is made to determine the activities which place a stress 

on the ecosystem. The Palmiet River is defined as an industrial-residential river whereas the 

Sezela River is defined as an agricultural-agricultural processing river. The Palmiet River is 

therefore expected to exhibit higher heavy metal concentrations while the Sezela River may 

be more prone to inorganic anion pollutants due to the nature of agricultural activities.   

 

5.5.1. Anion Pollutants 

 

A comparison of the average phosphate, nitrate and sulfate concentrations in both rivers was 

done (Table 5.8). All three anions are different to each other in the rivers. Phosphates and 

sulfates in the Palmiet River are lower than the Sezela River. These anions are deposited in 

the river via run-off from the fertilised sugarcane fields. However, the levels present in Sezela 

are not above the listed guideline values. Nitrate levels in the Palmiet River are higher than 

the Sezela River. Additionally, the levels exceed the stipulated guideline value. The influx of 

nitrates may be due to the use of nitric acid in industrial processing in the Pinetown area 

(Thambiran 2002). 

 

Table 5.8: Average metal (sediment) and anion (water) concentrations of the Palmiet and 

Sezela Rivers. 

River 

Inorganic Element / mg kg-1 Anion / mg L-1 

Cr Cu Ni Pb Zn PO4
3- SO4

2- NO3
- 

Palmiet 415.90 334.27 296.35 212.82 713.96 < DL 23.31 135.00 

Sezela 147.48 87.80 110.83 124.79 123.04 2.65 64.27 34.02 

Values in red indicate concentrations exceeding the ERM values (metals) and guideline values (anions) 
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5.5.2. Metal Pollutants 

 

The Palmiet River had higher average metal concentrations in sediment than the Sezela River 

(Table 5.8). The Palmiet River has metal, metal processing, paint and chemical 

manufacturing industries in the Pinetown area which contribute significantly to the metal 

concentrations in the river. Chromium, Cu, Ni and Zn exceed the ERM values which 

indicates that the risk of metal toxicity is greater. In comparison, metal concentrations in the 

Sezela River are significantly different to Palmiet (ANOVA, p >0.05) and are considerably 

lower. The effect of industrial activities on metal introduction into the environment can be 

clearly seen in these two river systems.   

 

5.5.3. Comparison of Palmiet and Sezela Rivers to other South African (SA) 

Rivers 

 

The two rivers studied were compared to a number of other SA rivers where significant 

research has been carried out. The Palmiet River is a tributary of the Umgeni River.  

 

5.5.3.1. Anions 

 

Other industrial rivers are compared with the Palmiet River (Table 5.9). No phosphates were 

detected in the Palmiet and Umgeni Rivers. The nitrate concentration in both these rivers are 

above the guideline value which suggests that nitrate contamination is a problem since the 

Jukskei River has comparatively lower concentrations. Sulfates are of concern with 

concentrations greater than 500 mg L-1 (WHO 2006). Sulfates are generally precipitates due 

to its solubility with cations particularly of Ba, Sr, Pb and Ca.  

 

Sezela River has average anion concentrations below guideline limits (Table 5.9). Compared 

to other agricultural rivers, the Sezela River has elevated levels of anions. Fertilisers are 

primary input sources of anions into freshwater systems. The Sezela River flows through 

sugarcane plantations similar to the Umdloti River (Olaniran et al. 2013). This suggests that 
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commercial fertilisers are being used excessively in these regions as other agricultural rivers 

have much lower concentrations.  

 

Table 5.9: Comparison of average anion concentrations in this study and other South African 

rivers. 

River Type of River 

Anion / mg.L-1 

Reference 

PO4
3- NO3

- SO4
2- 

Palmiet Industrial 0.00 135.00 23.31  

Umgeni Industrial - 66.97 193.57 (Dikole 2014) 

Jukskei Industrial 0.4 22.3 195 (Huizenga and Harmse 2005) 

Sezela Agricultural 2.65 34.02 64.27  

Umdloti Agricultural 1.06 0.13 27.86 (Olaniran et al. 2013) 

Crocodile Agricultural 0.043 0.49 - (van der Laan et al. 2012) 

Pongola Agricultural 0.034 0.45 - (van der Laan et al. 2012) 

Values in red indicate concentrations exceeding the guideline values  

 

 

 

 

 

 

 

 

 

 

 



92 
 

5.5.3.2. Metal Contaminants 

 

Rivers with similar anthropogenic activities in South Africa were compared to the Palmiet 

and Sezela Rivers (Table 5.10). The Umgeni and Isipingo Rivers are well documented rivers 

for heavy metal pollution (Carnie 2014). Industrial effluent containing dissolved metals are 

released into rivers and waterways. These metals accumulate in sediment and begin to affect 

the environment. The Palmiet River, a tributary river, has higher concentrations in sediment 

than the major rivers which is of concern. Industrial rivers have higher concentrations of 

metals than the agricultural rivers. This suggests that toxicity is of concern particularly in 

industrial rivers.  

 

The Sezela River has higher average metal concentrations in sediment than similar 

agricultural rivers (Table 5.10). Metal accumulation in the sediment may be due to the use of 

fertilisers and additives to the sugarcane fields. The geology of the region contributes to the 

total metal concentration of the area. The agricultural activity around the Sezela River is a 

larger scale activity compared to the Tyume and Mvudi regions which rationalises the higher  

concentrations as more fertiliser and resources are utilised. 
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Table 5.10: Comparison of total heavy metal concentration (average concentration) in sediment from South African river studies  

River Type of River Cr / mg kg-1 Cu / mg kg-1 Ni / mg kg-1 Pb / mg kg-1 Zn / mg kg-1 Reference 

Palmiet Industrial 415.9 334.27 296.35 212.82 713.96  

Umgeni Industrial 82 85 - 172 145 (Dikole 2014) 

Isipingo Industrial 248.44 195.75 32.76 228.75 1796 (Pillay 2011) 

Vaal Industrial 68.77 32.27 71.27 9.4 46.27 (Pheiffer et al. 2014) 

Orange Industrial 16.8 20.1 33.8 4.6 31.3 (Pheiffer et al. 2014) 

Swartkops Industrial 20.3 6.8 - 33 36 (Binning and Baird 2001) 

Sezela Agricultural 147.48 87.8 110.83 124.79 123.04  

Tyume Agricultural - 0.279 0.6 0.052 0.329 (Awofolu et al. 2005) 

Mvudi Agricultural 97.8 30.24 - 4.28 26.56 (Edokpayi et al. 2016) 

Values in red represent concentrations greater than the ERM value 
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Chapter 6 

Conclusion 

 

The chemical composition of Palmiet and Sezela Rivers were analysed to highlight the effect 

that different types of anthropogenic input viz. industrial and agricultural, have on the river 

health.   

 

The Palmiet River has a higher concentration of metals than the Sezela River. The spatial 

distribution of sampling sites within each river indicated that there were direct inputs and 

anthropogenic hubs along the river. Industries in Pinetown are key enterprises in metal 

processing, metal manufacturing, chemical manufacturing, and motor mechanics in the 

municipality which impacts the water quality of the river. These industries utilise Cr, Cu, Ni, 

Pb and Zn on a regular basis and generally discard these metals in effluent. The partitioning 

of metals in sediment using the BCR sequential extraction method was performed. The 

Palmiet River had Cu, Ni, Pb and Zn predominantly in the bioavailable fraction. This is a 

potential problem due to metal toxicity on aquatic and plant life in the river and riparian 

zones. PCA and CA were utilised to confirm this as distinct regions of input were illustrated. 

Industrial input is clearly seen to affect the metal concentrations more severely than 

agricultural input. Deeper management is required on the Palmiet River to prevent the system 

from degrading further.  

 

There was no statistical differences in pH seasonally in both rivers. The average pH over all 

seasons were 7.2 and 7.6 for the Palmiet and Sezela Rivers, respectively. Electrical 

conductivity and TDS varied seasonally in both rivers. Electrical conductivity is higher in 

Sezela River particularly in summer and autumn. Conversely, the EC and TDS values are the 

lowest in the Palmiet River. Sezela River had experienced a higher rainfall than the Palmiet 

River which may have contributed to the run-off of nutrients from fertile soil into the river. 

This would provide a plausible explanation for the elevated EC and TDS levels in the Sezela 

River. The Sezela River had higher concentrations of sulfates and phosphates. Metal 

concentrations were below the ERM value and metals were predominantly in the residual 
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fraction. The system would require a harsh event to mobilise the metals from the residual 

fraction which is highly unlikely. Agricultural activities may not introduce a metal 

contamination stress on the system over a short period of time but, has the potential to 

accumulate the contaminants and introduced toxicity problems over a period of time.  

 

A recommendation for the Palmiet and Sezela Rivers would be the implementation of regular 

monitoring of nutrient and metal concentrations with the addition of more stringent protocols 

in place. Nutrient analysis would be important, particularly in agricultural systems, as an 

influx in nutrients enhance the effects of algal bloom.  

 

Future Work 

 

The inorganic contaminant analysis leads to several other avenues of research.  

 Nutrient Analysis 

Analysis of agricultural rivers for nutrients which would provide information on water 

quality and suitability of use. It would also provide information on fertilisers and the 

capacity of crop to absorb nutrients. 

 Geological deposition 

Analysis of sediment cores in industrial rivers to determine the time period of 

pollutant deposition. This would help identify if pollution in a river has been a long 

standing problem or a current problem. 

 Pesticide Analysis 

Analyses of water and sediment for pesticides to determine if organic pollution is a 

problem in rivers.  

 Metal speciation of Cr 

Speciation of Cr in the rivers to identify and quantify Cr(VI). 
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A comparative study of the effect of anthropogenic 

activity on the Palmiet and Sezela Rivers, South 

Africa 
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Appendix B 

Total Metal Concentrations (mg kg-1) Palmiet River  

Site 
Pb 

Autumn 

Pb 

Winter 

Pb 

Spring 

Pb 

Summer 

Cr 

Autumn 

Cr 

Winter 

Cr  

Spring 

Cr 

Summer 

Ni 

Autumn 

Ni 

Winter 

Ni 

Spring 

Ni 

Summer 

1 111.32 120.04 87.21 317.13 202.65 82.12 93.52 281.43 83.33 58.25 73.81 234.12 

2 117.09 56.48 104.86 149.85 75.12 24.43 85.33 264.51 75.79 12.89 70.02 109.22 

3 258.34 187.11 384.01 695.79 1079.92 588.33 1224.16 1012.85 608.18 467.46 1564 593.34 

4 530.37 634.85 329.05 454.52 1178.66 479.93 833.5 887.31 441.46 368.44 417.17 606.36 

5 155.39 216.36 367.9 191.23 586.55 376.36 863.91 275.59 278.17 154.92 708.28 201.89 

6 321.74 92.32 181.21 170.57 814.97 150.57 449.37 246.72 932.1 154.73 364.69 143.6 

7 113.11 122.36 126.11 102.77 144.71 111.11 306.53 233.69 79.08 98.98 311.14 221.86 

8 138.51 111.29 125.83 99.64 596.56 111.73 204.41 182.5 438.41 96.09 111.36 90.2 

9 139.21 95.7 136.29 115.8 422.27 91.17 184.56 225.3 179.73 76.82 118.28 124.31 

             
Site 

Cu 

Autumn 

Cu 

Winter 

Cu 

Spring 

Cu 

Summer 

Zn 

Autumn 

Zn 

Winter 

Zn 

Spring 

Zn 

Summer 

    1 72.45 79.17 60.79 236.57 267.65 302.86 131.39 803.7 

    2 85.57 16.63 64 92.11 342.27 161.65 351.55 424.56 

    3 2024.72 519.71 1659.52 1196.22 1185.32 856.3 1554.53 1476.32 

    4 903.66 387.52 489.63 593.19 1637.8 1505.42 1215.7 1363.7 

    5 220.7 258.89 629.28 186.98 799.42 803.11 1359.73 891.84 

    6 408.74 95.02 241.59 95.58 1130.79 527.19 787.05 674.58 

    7 70.92 93.28 181.38 194.54 241.75 342.15 1223.76 466.93 

    8 182.12 94.54 84.71 71.7 747.32 241.28 371.91 223.61 

    9 143.07 76.82 104.14 118.37 334.74 199.6 455.21 299.77 
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Total Metal Concentrations (mg kg-1) Sezela River 

Site 
Pb 

Autumn 

Pb 

Winter 

Pb 

Spring 

Pb 

Summer 

Cr 

Autumn 

Cr 

Winter 

Cr 

Spring 

Cr 

Summer 

Ni 

Autumn 

Ni 

Winter 

Ni 

Spring 

Ni 

Summer 

1 95.85 122.91 131.14 174.58 75.93 112.22 130.08 131.38 84.23 106.62 110.97 147.48 

2 67.1 95.94 127.29 193.25 60.32 91.59 110.57 158.95 59.12 98.03 110.84 166.85 

3 84.5 132.48 129.62 79.57 62.58 96.46 108.54 73.81 73.09 106.07 112.85 71.19 

4 84.38 102.68 131.8 80.98 85.83 96.87 108.84 99.5 70.83 85.78 111.27 66.21 

5 74.65 116.29 91.03 162.52 64.01 101.76 88.2 131.68 63.29 97.24 76.94 139.68 

6 80.06 122.45 167.5 73.86 72.73 114.97 151.59 107.77 72.45 104.79 143.98 61.79 

7 81.55 171.97 184.61 183.82 124.3 273.98 266.52 293.79 73.46 165.27 167.91 155.24 

8 111.95 209.5 209.94 107.5 103.86 292.99 197.62 156.96 95.8 191.99 178.94 91.12 

9 85.51 115.76 181.48 126.54 127.11 376.93 389.79 269.11 81.7 110.02 168.75 167.96 

 
            

Site 
Cu 

Autumn 

Cu 

Winter 

Cu 

Spring 

Cu 

Summer 

Zn 

Autumn 

Zn 

Winter 

Zn 

Spring 

Zn 

Summer 

    1 55.05 69.85 75.47 96.15 32.43 122.08 88.62 74.92 

    2 40.88 58.93 76.44 112.2 56.45 82.05 96.81 102.33 

    3 48.38 71.9 77.05 52.68 52.22 108.27 143.27 118.28 

    4 48.31 59.03 77.69 52.47 133.89 102.28 142.77 111.01 

    5 42.49 73.38 47.24 92.96 51.06 305 85.17 105.26 

    6 48.36 74 98.75 45.34 97.79 256.05 167.46 120.96 

    7 67.63 236.36 261.44 213.43 86.36 198.46 125.64 233.99 

    8 66.87 140.21 111.27 72.14 82.07 176.56 78.14 100.49 

    9 58.83 83.28 124.38 129.89 68.53 96.57 77.96 348.15 

     

 



113 
 

Appendix C 

BCR Metal Concentration (mg kg-1) - Palmiet River 

Cr Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.62 5.16 36.72 66.65 0.29 2.67 8.79 70.37 0.23 3.18 12.29 31.73 0.15 3.77 2.74 102.64 

2 0.41 5.47 1.55 61.07 0.11 3.06 0.34 20.91 15.94 4.27 0.63 22.74 0.23 4.49 0.00 109.42 

3 41.32 345.42 548.66 1466.87 12.47 124.99 400.02 97.35 22.32 127.68 137.44 1091.74 12.59 109.48 250.62 350.10 

4 18.86 168.53 561.77 567.31 9.07 51.07 224.04 195.76 10.39 46.93 210.46 154.70 7.04 55.49 151.70 356.55 

5 9.11 68.56 227.68 345.35 5.23 72.40 172.97 162.52 0.63 104.55 235.18 114.61 2.09 15.85 67.69 60.49 

6 9.18 83.81 217.82 608.14 1.75 18.83 53.81 76.17 5.79 46.97 124.33 48.21 1.42 5.17 37.30 134.78 

7 0.67 2.42 20.14 117.55 1.56 10.50 25.12 76.34 1.94 26.35 66.44 61.02 1.77 8.88 33.46 55.09 

8 4.22 42.57 161.48 134.65 1.14 7.49 26.28 76.70 1.50 6.85 31.94 63.44 0.71 2.05 8.87 68.21 

9 2.50 29.27 62.96 139.82 0.83 3.21 25.91 73.06 0.95 9.51 23.55 59.56 0.92 6.27 11.76 91.38 

 Cu Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 5.56 15.60 16.05 13.51 5.34 20.32 14.30 29.02 0.24 9.78 9.59 9.36 3.68 22.65 25.94 87.12 

2 21.10 10.61 7.75 28.44 0.17 13.15 0.50 2.81 4.74 19.76 6.18 4.71 6.45 19.97 10.32 2.72 

3 474.09 400.51 166.76 712.26 125.61 191.17 115.68 22.05 258.39 217.93 167.32 1653.09 393.01 275.16 208.40 107.38 

4 200.55 172.86 208.41 100.54 84.78 68.23 114.06 120.45 90.86 82.82 90.08 96.76 127.39 117.55 92.74 48.80 

5 31.20 58.84 41.46 66.89 43.02 71.24 83.28 31.90 12.19 145.06 159.10 157.23 33.21 36.49 49.30 24.46 

6 48.57 75.09 180.09 9.45 11.20 13.52 39.58 30.72 32.93 46.46 62.32 41.82 6.49 2.39 20.72 42.97 

7 4.04 18.62 13.58 19.71 5.50 5.94 16.99 45.63 15.12 32.90 48.79 43.70 22.78 14.92 51.57 34.79 

8 33.76 48.81 47.08 38.95 1.77 20.98 16.48 31.27 8.06 2.94 29.59 23.93 3.32 1.58 2.82 40.27 

9 10.75 23.66 32.52 47.14 2.37 1.01 14.77 40.31 6.90 14.38 23.51 32.48 9.15 10.76 8.75 59.81 
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Ni Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 14.35 0.97 5.16 9.07 3.26 3.26 1.88 13.75 3.87 1.30 0.70 14.86 6.03 0.67 1.88 34.18 

2 2.05 3.13 0.00 4.55 1.25 2.30 0.31 2.59 1.80 3.98 0.00 4.97 1.33 2.86 0.00 6.04 

3 148.03 213.59 28.79 140.19 268.04 166.41 47.72 0.00 420.09 269.51 44.41 959.64 300.26 222.41 62.79 8.34 

4 167.16 145.03 50.97 53.22 86.60 36.05 16.48 45.09 305.52 69.84 23.03 21.99 126.39 89.51 24.74 0.00 

5 96.45 72.80 30.96 44.00 121.89 76.95 20.84 0.00 34.79 282.41 56.57 357.35 88.98 35.77 18.12 0.00 

6 232.38 98.11 32.88 44.09 32.29 19.23 8.68 17.16 238.86 114.87 31.17 0.00 37.88 12.75 6.37 17.26 

7 8.07 5.08 4.42 9.70 20.27 14.18 3.91 5.87 67.53 57.25 14.42 1.63 79.30 21.97 7.54 0.00 

8 132.63 86.31 24.58 0.00 14.06 9.46 5.39 11.05 35.19 13.61 5.71 0.00 15.88 9.50 3.48 7.48 

9 25.95 28.96 9.15 19.45 6.37 2.69 3.70 9.91 21.61 17.46 5.72 2.41 19.64 14.36 3.73 28.50 

 Pb Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 7.04 44.14 27.96 0.00 0.16 30.44 8.68 12.90 0.44 11.10 8.39 0.00 1.91 50.25 26.71 10.27 

2 15.64 82.54 22.59 0.00 8.41 22.95 4.41 0.00 5.57 32.94 8.48 1.97 6.00 36.84 18.29 0.00 

3 7.17 164.92 109.04 0.00 14.09 154.57 36.35 0.00 5.70 114.60 23.07 40.53 38.93 238.53 44.60 0.00 

4 21.41 184.49 40.29 11.50 59.69 53.94 40.02 163.77 17.74 81.14 20.18 38.96 29.66 165.22 51.55 0.00 

5 6.84 78.89 19.95 0.00 12.68 231.65 30.76 0.00 12.91 165.92 38.07 0.00 8.71 94.81 48.21 0.00 

6 9.61 92.29 23.96 26.24 2.96 82.54 21.69 0.00 3.40 86.73 25.21 0.00 6.46 54.85 26.60 0.00 

7 2.68 60.36 16.89 0.00 0.60 42.07 5.84 0.63 2.75 64.34 12.47 0.00 5.25 43.43 21.32 0.00 

8 2.51 64.35 19.82 0.00 0.54 43.12 16.20 0.00 4.11 50.18 11.48 0.00 2.30 46.62 18.37 0.00 

9 0.68 51.36 18.46 0.00 1.61 41.75 5.53 0.00 0.35 44.72 10.53 0.13 1.89 48.87 25.97 0.00 
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Zn Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 129.34 18.82 13.30 48.83 77.60 2.83 14.06 208.36 24.16 22.84 0.00 4.59 158.59 22.18 19.67 302.59 

2 234.62 52.66 15.19 0.00 129.49 20.30 5.96 5.90 204.73 23.77 9.03 40.87 132.60 17.52 25.23 9.12 

3 478.49 293.85 4.93 353.72 554.78 233.73 67.30 0.00 376.71 140.68 27.21 688.23 328.52 237.34 61.08 147.25 

4 661.19 272.43 53.66 335.17 1022.23 208.34 68.28 206.57 681.84 79.36 30.04 188.22 647.00 205.37 45.05 29.37 

5 317.73 127.27 52.10 258.28 522.85 232.39 57.79 0.00 52.63 273.94 81.28 688.57 291.18 63.11 47.37 30.23 

6 407.10 163.41 51.87 262.51 321.42 120.29 47.95 37.53 321.64 130.87 47.68 55.72 170.44 23.27 36.66 118.13 

7 62.49 36.82 27.75 76.51 161.45 83.46 15.84 0.00 207.74 127.09 34.06 614.60 141.30 15.53 12.73 46.08 

8 218.40 136.62 40.04 69.81 86.12 50.00 36.33 68.06 175.67 43.29 26.30 56.41 53.22 19.34 17.19 50.48 

9 40.04 63.99 18.46 145.25 77.72 36.58 14.64 33.83 86.39 57.74 30.67 35.94 71.32 27.01 13.45 154.88 
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BCR Metal Concentration (mg kg-1) - Sezela River 

Cr Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.20 1.70 21.04 39.57 0.04 2.08 16.87 12.68 0.06 0.41 19.83 22.11 0.00 1.99 12.14 1.44 

2 0.02 1.54 15.08 18.32 0.20 1.61 15.49 13.16 0.02 0.54 15.18 10.41 0.06 0.51 14.34 9.51 

3 0.18 1.54 13.32 13.66 0.34 1.35 14.12 3.90 0.05 0.58 12.36 17.64 0.01 0.46 11.67 16.42 

4 0.05 2.04 12.20 23.40 0.13 1.43 13.98 18.73 0.00 0.54 12.81 9.26 0.24 0.53 11.57 31.18 

5 0.08 1.92 15.05 13.19 0.20 1.02 16.43 12.78 0.01 0.15 16.61 20.08 0.07 1.07 13.61 7.16 

6 0.08 2.20 14.87 34.26 0.16 0.56 13.95 22.62 0.09 1.96 16.45 25.05 0.07 0.81 13.25 37.50 

7 0.19 3.50 24.15 43.54 0.29 2.80 16.85 95.27 0.11 4.37 17.26 91.64 0.26 10.26 34.60 210.77 

8 0.78 6.74 19.44 144.69 0.15 2.45 14.68 103.28 0.11 1.48 13.55 145.16 0.94 2.46 20.90 122.44 

9 0.21 10.41 36.80 97.04 0.16 12.51 55.50 120.72 0.09 10.49 81.84 76.83 0.04 10.58 28.69 156.17 

 Cu Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.03 3.15 11.46 0.00 0.00 2.08 12.18 0.00 0.55 6.10 11.00 0.00 0.83 5.19 10.58 0.00 

2 0.10 3.17 12.74 0.00 0.00 3.29 12.05 0.00 1.20 6.63 12.33 0.00 0.04 6.57 11.46 0.00 

3 0.80 2.44 11.91 0.00 0.00 4.42 15.61 0.00 0.10 6.47 11.58 0.98 0.23 6.19 12.05 0.00 

4 0.17 4.08 10.54 0.00 0.02 2.97 11.79 0.00 0.06 6.86 13.62 0.00 1.04 7.75 13.88 0.00 

5 0.15 3.95 12.53 0.00 0.00 2.34 12.93 6.78 0.86 4.87 11.10 0.00 0.68 6.51 11.83 0.00 

6 0.13 4.36 13.72 0.00 0.00 7.64 10.84 0.00 1.00 7.63 12.42 0.00 0.57 7.29 12.44 0.00 

7 0.41 11.35 36.07 0.00 1.78 11.02 15.37 146.37 0.75 14.22 97.97 91.28 0.64 31.97 93.84 0.00 

8 6.80 14.38 17.58 0.00 0.36 10.56 13.02 12.28 1.09 7.40 13.01 0.00 0.51 11.53 14.93 0.00 

9 0.22 8.01 22.39 3.35 0.00 12.91 42.45 0.00 0.87 9.57 34.40 0.00 0.67 10.46 17.63 0.00 
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Ni Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.85 1.06 3.81 2.44 0.17 1.12 3.46 3.00 0.68 1.49 3.46 3.84 0.32 0.33 3.01 0.00 

2 0.36 1.19 3.81 1.99 0.37 1.13 3.13 16.85 0.20 1.09 3.62 3.93 0.26 0.86 3.44 1.98 

3 0.37 1.05 3.72 0.00 0.12 0.57 3.21 0.00 0.44 1.00 3.46 4.36 0.07 0.84 3.26 4.08 

4 0.03 1.66 3.34 3.68 0.55 1.32 4.12 1.50 0.62 1.25 4.10 1.27 0.73 0.83 3.34 2.94 

5 0.39 1.06 3.54 0.00 0.02 1.33 3.68 2.38 0.17 1.58 4.10 6.37 0.20 1.06 3.69 0.83 

6 0.53 2.02 4.39 5.59 0.42 1.80 3.71 4.37 0.89 2.10 3.99 5.12 0.38 1.86 3.57 6.58 

7 1.13 2.13 5.11 7.27 0.37 2.10 3.66 15.51 3.94 6.77 5.54 12.46 3.39 9.34 8.45 0.00 

8 1.69 8.33 5.54 0.15 0.06 1.72 3.56 10.89 1.71 4.20 4.56 5.10 0.47 1.77 4.38 5.70 

9 2.48 7.42 6.33 13.58 0.67 1.96 8.35 4.99 0.90 6.87 12.00 4.16 0.40 2.78 5.13 54.10 

 Pb Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.55 18.06 14.52 0.00 0.24 10.66 17.65 0.00 0.55 14.88 8.09 0.00 0.24 8.48 21.91 0.00 

2 0.13 11.13 9.25 0.00 0.53 10.36 6.90 0.00 0.40 10.19 8.31 0.00 0.63 11.66 11.61 0.00 

3 0.27 15.13 8.59 0.00 0.02 6.99 10.09 0.00 0.92 9.09 6.86 0.00 0.28 11.40 18.46 0.00 

4 0.05 12.43 15.66 0.00 0.07 8.24 15.55 0.00 0.57 11.67 7.51 0.00 0.37 44.43 26.13 0.00 

5 0.16 14.19 18.34 0.00 0.30 9.33 18.73 0.00 0.41 14.49 7.40 0.00 0.11 34.93 17.49 0.00 

6 0.15 16.81 20.64 0.00 0.19 11.86 17.79 0.00 0.40 19.45 6.54 0.00 0.07 14.38 17.44 0.00 

7 0.59 13.75 18.69 0.00 0.40 1.97 23.14 0.00 0.80 25.86 8.66 0.00 0.07 42.28 43.53 0.00 

8 0.82 31.16 17.26 0.00 0.34 5.81 17.90 0.00 0.95 18.22 8.38 0.44 0.10 17.52 20.77 0.00 

9 0.57 17.94 15.00 0.00 0.69 14.82 16.90 0.00 0.00 22.54 13.71 0.00 0.15 35.15 24.04 0.00 
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Zn Autumn Winter Spring Summer 

Site F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 

1 0.20 6.54 13.15 32.25 0.00 18.96 11.86 12.11 1.59 0.00 10.62 21.31 0.00 0.00 10.13 14.10 

2 0.00 0.00 11.61 25.21 0.00 0.00 10.22 42.71 0.00 0.00 12.22 16.43 0.00 0.00 10.93 20.07 

3 0.21 30.48 10.84 18.82 3.11 0.89 13.92 46.69 0.00 0.00 0.00 42.20 1.83 2.60 12.01 41.26 

4 6.41 0.15 11.99 59.20 14.19 0.73 16.65 25.22 11.61 1.04 18.11 11.37 3.61 3.78 14.62 41.13 

5 0.00 0.00 12.40 57.39 0.00 31.06 12.22 135.04 0.00 0.00 11.03 15.44 0.00 0.00 12.71 18.44 

6 6.30 5.98 16.25 51.33 2.11 6.09 15.25 51.27 3.47 0.90 15.85 33.65 4.26 6.09 13.10 46.14 

7 6.54 0.21 13.04 29.49 3.74 0.00 12.50 41.62 19.35 2.87 13.22 36.98 18.55 31.54 29.63 19.13 

8 5.18 5.98 14.37 30.97 4.53 0.00 9.47 87.21 5.86 0.00 9.97 11.35 6.17 0.99 9.78 21.17 

9 9.10 18.66 13.87 33.19 6.54 7.53 21.71 24.85 10.95 28.27 23.53 0.00 5.71 8.53 13.26 192.84 

 

 

 

 

 


