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Abstract

We investigate the Einstein system that governs the evolution of uncharged shear-free

spherically symmetric fluids. First we present the Einstein equations for the static

spherically symmetric gravitational fields in isotropic coordinates. Also the nonstatic

spherically symmetric gravitational fields are studied. We have demonstrated that

the fundamental differential equation governing the behaviour of the model is of the

Emden-Fowler type. Such equations also arise in applications in Newtonian physics.

The field equations governing the gravitational behaviour of the model are generated.

We integrate the system of partial differential equations and apply a transformation

that reduces the system to a second order ordinary differential equation. To solve

the resulting ordinary differential equation we employ the method of characteristics to

find different expressions for the gravitational potentials. We employ the method of

characteristics to obtain first integrals for the Emden-Folwer type equation. To apply

the method, we make use of the associated multipliers which are obtained via the Euler

operator acting on the arbitrary multiplier and differential equation. These multipliers

can be obtained under the various forms of the arbitrary function representing the

gravitational potential under which the equation becomes integrable. Thus expanding

the differential equation with the associated multiplier, we can find first integrals by

solving the system of partial differential equations. The study is comprised of various

forms of the multipliers associated to first integrals of the equation in question.
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Chapter 1

Introduction

Currently the theory of general relativity provides the best description of the behaviour

of the gravitational field. The predictions of general relativity have been shown to be

consistent with observational data in relativistic astrophysics and cosmology. In gen-

eral relativity the curvature of spacetime is described by the Riemann tensor. The

matter content is described by the symmetric energy momentum tensor; in this thesis

we consider only neutral perfect fluid matter distributions. More general matter dis-

tributions, for example including the effects of the electromagnetic field, may be added

for other applications. It is for these reasons that general relativity is considered the

best theory for describing strong gravitational fields, the early universe and present

observations. For a topical review on general relativity and applications see Ashtekar

and Petkov (2014).

The Einstein field equations relate the matter content to the curvature. In the

presence of an electromagnetic field these equations have to be supplemented with
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Maxwell’s equations which incorporate charge and current. The field equations satisfy

the conservation laws through the Bianchi identity. Determining explicit solutions to

the Einstein field equations is necessary for astrophysical and cosmological applica-

tions. The field equations may be modified to include higher order curvature terms;

an example of a modified gravity theory is given by Chilambwe et al (2005).

Spherically symmetric gravitational fields are important to describe the kinemat-

ics and dynamics of cosmological models. Such models have been widely studied by

a number of researchers. The earliest example of solutions which are isotropic and

homogeneous are the Friedmann universes, the Robertson-Walker spacetimes and their

generalizations. These spacetimes admit rotational and translational Killing vectors.

Examples of spacetimes with a conformal symmetry are given by Castejon-Amendo and

Coley (1992), Coley and Tupper (1990), Dyer et al (1987) and Maharaj et al (1993).

Other works admit inheriting Killing vectors with spherical symmetry such as Lortan

et al (2001) and Tupper et al (2003). A comprehensive list of known exact solutions,

containing spacetimes with spherical geometry and others, is given by Krasinski (1997)

and Stephani et al (2003). We find that many of these analyses reduce to studying

a differential equation of the Emden-Fowler type. The reader is referred, for example

to the investigations of Maharaj et al (1996), Srivastava (1987) and Stephani (1983).

The particular Emden-Fowler differential equation will be shown to arise in spherical

fields and we also generate new families of solutions.

We summarize the contents of our analyses. This dissertation has the following

breakdown:

• Chapter 2: We briefly discuss the concepts of general relativity essential for this the-
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sis. We briefly consider the spacetime geometry and the matter distribution that lead

to the formulation of the Einstein field equations. We highlight the crucial physical

concepts that are essential for the determination of a relativistic gravitational model.

• Chapter 3: The relativistic static gravitational model in isotropic coordinates is con-

sidered. We generate the Einstein field equations and the condition of pressure isotropy

for the shear-free spacetime in isotropic coordinates. We introduce new variables to

transform these equations into equivalent forms that can generate new exact solutions.

The condition of pressure isotropy is the master equation in the integration process.

• Chapter 4: The Einstein field equations are generated in terms of isotropic coor-

dinates where the potentials are functions of the radial and timelike coordinates. We

consider neutral perfect fluid matter distributions in static spherically symmetric space-

times. We then transform the resulting field equation into a second order differential

equation which is of the Emden-Fowler type.

• Chapter 5: Possible combinations of the form of the arbitrary function, related to the

potentials and its associated multiplier are generated via the characteristic approach

These forms make the model integrable. We illustrate the mathematical process that

has to be followed to find the multipliers with a particular example. The other inte-

grable cases are summarized.

• Chapter 6: The first integrals for the Emden-Fowler equation studied are generated.

The process of finding the first integral is shown in detail with a particular example.

The various other first integrals that are possible are given in form of a summary.

• Chapter 7: A brief overview of the chapters and the results are provided.
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Chapter 2

Differential geometry

2.1 Introduction

A variety of matter distributions arise in physical applications in cosmology and rel-

ativistic astrophysics in different scenarios as pointed out by Will (1981). Spherically

symmetric matter distributions are best described by Einstein’s theory of general rela-

tivity for strong gravitational fields. In this chapter we briefly consider the background

theory that provides us with the structure to generate a relativistic gravitational model.

We give a brief outline of the differential geometry and the matter distribution that

lead to the Einstein field equations. For more detailed information on differential man-

ifolds and tensor analysis the reader is referred to Bishop and Goldberg (1968), Misner

et al (1973) and Wald (1984). The metric tensor field and the metric connection coef-

ficients are introduced in §2.2. Then the Riemann tensor, the Ricci tensor, Ricci scalar

and the Einstein tensor are defined. In §2.3, we consider matter fields by introducing

the general energy momentum tensor and the special case for a perfect fluid. We also
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introduce the barotropic equation of state relating the pressure to the energy density.

The Einstein field equations are generated by relating the Einstein tensor to the energy

momentum tensor. In §2.4 we provide the mathematical tools necessary for solving the

resulting nonlinear perfect fluid model under investigation.

2.2 Spacetime geometry

The local neighbourhood of a point in the spacetime manifold possesses the same

structure as the open neighbourhood of a point in <n. The global structure of the

spacetime manifold in general is different from <n. A pseudo-Riemannian manifold is

a manifold with an indefinite metric tensor field. In general relativity, we assume that

the spacetime M is a four-dimensional differentiable manifold endowed with a metric

tensor field g. The symmetric and nonsingular metric tensor field g has signature

(−+ ++). The metric tensor field g represents the gravitational potentials. Points in

the manifold are labelled by the real coordinates (xa) = (x0, x1, x2, x3), where x0 = ct

(where c is the speed of the light in vacuum) is the timelike coordinate, and x1, x2, x3

are spacelike coordinates. In this dissertation we use the convention that the speed of

light c = 1.

The line element is given by

ds2 = gabdx
adxb, (2.1)

which measures the infinitesimal interval between neighbouring points on a curve. In

the line element (2.1), g represents the metric tensor field. We use the line element
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(2.1) to generate the metric connection coefficients

Γabc =
1

2
gad(gcd,b + gbd,c − gbc,d), (2.2)

where commas denote partial differentiation. We use the definition of the connection

coefficients in equation (2.2) to generate the Riemann curvature tensor R which is

given by

Ra
bcd = Γabd,c − Γabc,d + ΓaecΓ

e
bd − ΓaedΓ

e
bc, (2.3)

which is nonvanishing in general since the covariant derivative is not commutative. We

contract the Riemann curvature (2.3) to get the Ricci tensor as follows

Rab = Rc
acb,

= Γcab,c − Γcac,b + ΓcdcΓ
d
ab − ΓcdbΓ

d
ac. (2.4)

A second contraction yields the Ricci scalar R which has the form

R = Ra
a

= gabRab. (2.5)

We use the Ricci tensor (2.4) and the Ricci scalar (2.5) to form the Einstein tensor G

which is given by
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Gab = Rab −
1

2
Rgab. (2.6)

Note that the divergence of the Einstein tensor is zero, i.e.

Gab
;b = 0. (2.7)

This is sometimes called the Bianchi identity and generates the conservation laws via

the field equations.

2.3 Matter fields

The matter content is decribed by the energy momentum tensor T. The energy mo-

mentum tensor is given by

T ab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (2.8)

where ρ is the energy density, p is the isotropic pressure, q is the heat flux vector

(qau
a = 0), πab is the anisotropic stress tensor (πabua = 0 = πaa) and u is a timelike

four-velocity (uaua = −1). The terms for the heat flux and the anisotropic stress vanish

in perfect fluids (qa = 0, πab = 0). Then the energy momentum tensor for a perfect

fluid has the form

T ab = (ρ+ p)uaub + pgab. (2.9)

For many applications it is required that the matter distribution satisfies the

7



barotropic equation of state

p = p(ρ). (2.10)

A particular case is the equation of state

p = aρ+ b, (2.11)

where a and b are constants. The above form is often assumed in cosmology and

is called the linear equation of state. The parameter a (with b = 0) has different

values which describe familiar matter distributions: dust (a = 0), radiation (a = 1
3
)

and stiff matter (a = 1). When a 6= 0 and b 6= 0 then the equation of state (2.11)

includes matter distributions for quark, strange and exotic configurations (Komathiraj

and Maharaj 2007, Mak and Harko 2004, Sharma and Maharaj 2007). Another case is

the polytropic equation of state which has the form

p = kρ1+
1
n , (2.12)

where k and n are constants. This equation of state is assumed in describing gravita-

tional systems in relativistic astrophysics (Shapiro and Teukolsky 1983).

The Einstein field equations follow by relating (2.6) to (2.8) so that

Gab = Rab − 1

2
Rgab

= T ab, (2.13)
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where the coupling constant is set to unity. The field equations (2.13) govern the

interaction between the curvature of the spacetime and the matter distribution. From

(2.13) and (2.7) we have the result

T ab;b = 0, (2.14)

which is the conservation law for matter. In general the field equations (2.13) are a

highly nonlinear system of differential equations which are difficult to integrate with-

out making simplifying assumptions. For detailed information on general relativity

and the formulation of the Einstein field equations the reader is referred to de Felice

and Clark (1990), Narlikar (2002) and Stephani (2004). Exact solutions to the field

equations which are applicable in many physically relevant relativistic models are listed

in Krasinski (1997) and Stephani et al (2003).

2.4 Differential equations, multipliers and first inte-

grals

To describe a physical system it is often necessary to integrate a differential equation

and generate a first integral. We briefly explain the idea of a first integral and its

importance in the physical sciences via an example. Consider the free particle equation

y′′ = 0. (2.15)

If we integrate this equation once then we get

y′ = I1,
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where I1, is a constant. We say that

I1 = y′, (2.16)

is a first integral of equation (2.15). In physics we talk of a constant of the motion

or a conservation law. The main requirement for a nontrivial function I, to be a first

integral of an ordinary differential equation is that

I ′ = 0,

when the equation is taken into account. We can usually find an infinite number of

first integrals for a given equation (especially because any function of a first integral is

itself a first integral) but there are only a finite number of independent first integrals.

In the case of equation (2.15) we can multiply by x and integrate to obtain another

first integral given by

I2 = y − xy′,

which is independent of equation (2.16). Since both I1 and I2 are independent, we

can write down the general solution to equation (2.15) by eliminating y′ from each

expression. This leads to

y = I2 + xI1,

which we recognise as the general solution of equation (2.15). It is clear that, in simple

cases, we can calculate the first integrals by inspection.

Intrinsic to a Lie algebraic treatment of differential equations is the universal

space A. A locally analytic function f(x, u, u1, . . . , uk) of a finite number of vari-

ables {u, u1, . . . , uk} denotes the collections of all first, second,· · · , kth-order partial

10



derivatives, that is

uαi = Di(u
α), uαij = DjDi(u

α), . . . (2.17)

respectively, with the total differentiation operator with respect to xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . i = 1, . . . ,m (2.18)

The space A is the vector of all differential functions of all finite orders and forms an

algebra. A total derivative converts any differential function of order k to a differential

function of order k + 1. Hence, the space A is closed under total derivations Di. The

Euler operator is defined by

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 . . . Dis

∂

∂ui1...is
, α = 1, . . . ,m. (2.19)

Consider an rth-order system of partial differential equations of n independent

variables x = (x1, x2, . . . , xn) and m dependent variables u = (u1, u2, . . . , um) so that

E(x, u, u(1), . . . , u(r)) = 0, µ = 1, . . . , m̃. (2.20)

It can be shown that every multiplier Q(x, u, u(1) . . . ) can be admitted such that

δ

δu
Q(x, u, u(1) . . . ) E(x, u, u(1), . . . , u(r)) = 0, (2.21)

where δ
δu

is the Euler operator, holds identically for the equation E(x, u, u(1), . . . , u(r)).

A current φ = (φ1, . . . , φn) is conserved if it satisfies

Diφ
i = 0, (2.22)

along the solutions of (2.17). It can be shown that every admitted conservation law

arises from multipliers Qu(x, u, u1 . . . ) such that,

QuE
u = Diφ

i (2.23)
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holds identically for some current φi. The conserved current may then be obtained by

the homotopy operator.

Another way in which first integrals can be found is through the use of symmetry

analysis. In general, we must take into account the notion of symmetries. Suppose

that equation (2.20) has a symmetry

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

A function f(x, y, y′) also possesses the symmetry G if

G[1]f = 0

ξ
∂f

∂x
+ η

∂f

∂y
+ (η′ − y′ξ′) ∂f

∂y′
= 0.

This has an associated Lagrange’s system

dx

ξ
=
dy

η
=

dy′

η′ − y′ξ′
.

The two characteristics are, say u and v so that

f(x, y, y′) = g(u, v).

Now f is a first integral of the differential equation E = 0 if

df

dx

∣∣∣∣
E=0

= 0

=⇒ u′
∂g

∂u
+ v′

∂g

∂v
= 0,

which has the associated Lagrange’s system given by

du

u′
=
dv

v′
.

The system has the one characteristic w, and so f(x, y, y′) = h(w), where h is an

arbitrary function of its argument. Usually h is taken to be the identity, but this is
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not necessary. In general a scalar ordinary differential equation of the nth order

E(x, y, y′, . . . , y(n)) = 0,

has a first integral

I = f
(
x, y, y′, . . . , y(n−1)

)
,

associated with the symmetry

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

if

G[n−1]f = 0,

and
df

dx

∣∣∣∣
E=0

.

2.4.1 The multiplier approach in this study

The method of obtaining first integrals with an associated multiplier used in our study

is demonstrated below. Suppose the given multiplier is Q(x, u, u(1) . . . ) found via the

equation (2.21) and the generalised first integral is I(x, u, u(1), . . . , u(r)), we can obtain

the first integral by solving the system of partial differential equations via the formula

Q(x, u, u(1) . . . ) E(x, u, u(1), . . . , u(r)) = Di I(x, u, u(1), . . . , u(r)). (2.24)

We demonstrate the method in the given example. Consider a differential equation

given by

2(x− 1)yy′′ + 2(1− 2x)yy′ + (1− 4x+ 3x2)y′
2

= 0, (2.25)

13



where our multiplier is µ = e2x

y′2
. By applying equation (2.25) to (2.24), we obtain

e2x

y′2

[
2(x− 1)yy′′ + 2(1− 2x)yy′ + (1− 4x+ 3x2)y′

2
]

=
∂I

∂x
+ y′

∂I

∂y
+ y′′

∂I

∂y′
.

By equating coefficients of y′′,

∂I

∂y′
=
e2x

y′2
[2(x− 1)y] . (2.26)

Integrating equation (2.26) results in,

I = − 2

y′
e2xy(x− 1) + ψ(x, y).

By differentiating and equating corresponding coefficients we have

∂I

∂y
= − 2

y′
e2x(x− 1) + ψy(x, y),

∂I

∂x
= − 4

y′
e2xy(x− 1)− 2

y′
ye2x + ψx(x, y),

which results in

2e2x(1− 2x)
y

y′
+ e2x(1− 4x+ 3x2) =

∂I

∂x
+ y′

∂I

∂y
,

2e2x(1− 2x)y + e2xy′(1− 4x+ 3x2) = −4e2xy(x− 1) + 2ye2x

+ψx + y′
[
−2e2x(x− 1) + y′ψy

]
.

Separate by powers of y′ we then obtain

y′
2

: ψy = 0 =⇒ ψ(x),

y′ : e2x(1− 4x+ 3x2) + 2e2x(x− 1) = ψx,

y′
0

: 2e2x(1− 2x)y = −4e2xy(x− 1)− 2ye2x.

Thus ψ(x, y) is given by

ψ =

∫
e2x(3x2 − 2x− 1)dx.

14



Integrating this by parts yields,

I1 =
1

2
e2x(3x2 − 2x− 1)− 1

2

∫
e2x(6x− 2)dx.

Then integrating the second half of I1 by parts, we get

I2 =
1

4
e2x(6x− 2)−

∫
6

4
e2xdx =

1

4
e2x(6x− 2)− 3

4
e2x + C.

And thus, I1 results in

I1 =
1

2
e2x(3x2 − 2x− 1)− 1

4
e2x(6x− 2) +

3

4
e2x + C,

where C is the integration constant.
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Chapter 3

Isotropic coordinates

3.1 Introduction

In this chapter we consider the static relativistic gravitational model in isotropic coor-

dinates. Particular solutions in isotropic coordinates have been found which are useful

in astrophysical applications (Stephani et al 2003). In §3.2, we consider the spacetime

geometry of the shear-free spacetime in isotropic coordinates. We generate the nonzero

components of the connection coefficients, the Ricci tensor, the Ricci scalar and the

Einstein tensor. We consider the energy momentum for the perfect fluid matter dis-

tribution in §3.3. The components of the energy momentum tensor are related to the

components of the Einstein tensor to generate the Einstein field equations. We deduce

the condition of pressure isotropy from the Einstein field equations. The condition of

pressure isotropy is a second order differential equation with variable coefficients. This

is a nonlinear differential equation in general. We analyse two sets of transformation

that enable us to express the condition of pressure isotropy in equivalent form. The
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transformations lead to a simpler ordinary differential equation for isotropic pressures.

3.2 Spacetime geometry

In this section we consider the isotropic line element which has the following form

ds2 = −A2(r)dt2 +B2(r)[dr2 + r2(dθ2 + sin2 θdφ)], (3.1)

where A(r) and B(r) are arbitrary functions. This line element is accelerating but is

shear-free. The line element is used to describe relativistic compact objects such as

neutron stars in astrophysics.

The line element (3.1) is important for the determination of the connection co-

efficients Γabc. We use equation (2.2) and the above isotropic line element (3.1) to

determine the nonvanishing connection coefficients:
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Γ0
10 =

A′

A
,

Γ1
00 =

AA′

B2
,

Γ1
11 =

B′

B
,

Γ1
22 = −r2

(
B′

B
+

1

r

)
,

Γ1
33 = −r2 sin2 θ

(
B′

B
+

1

r

)
,

Γ2
12 =

B′

B
+

1

r
,

Γ2
33 = − sin θ cos θ,

Γ3
13 =

B′

B
+

1

r
,

Γ3
23 = cot θ.

The primes denote differentiation with respect to the radial coordinate r. By using

the above connection coefficients we generate the Ricci tensor components for the line

element (3.1). We substitute the above connection coefficients in equation (2.4) which

is the general form for the Ricci tensor in order to obtain the following nonvanishing
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components

R00 =
A

B2

[
A′′ + A′

(
B′

B
+

2

r

)]
, (3.2a)

R11 = −
(
A′′

A
− A′

A

B′

B

)
− 2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
, (3.2b)

R22 = −r2
(
A′

A

B′

B
+

1

r

A′

A

)
− r2

(
B′′

B
+

3

r

B′

B

)
, (3.2c)

R33 = sin2 θR22, (3.2d)

with Rab = 0 for a 6= b.

We use the Ricci tensor components (3.2) and equation (2.5), which is the definition

of the Ricci scalar, to compute the value

R = − 2

B2

[
A′′

A
+
A′

A

(
B′

B
+

2

r

)]
− 2

B2

[
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
, (3.3)

in terms of the potentials A and B.

In equation (2.6) we defined the Einstein tensor. For isotropic coordinates we use

the Ricci tensor components (3.2) and the Ricci scalar (3.3) to generate the nonvan-

ishing components of the Einstein tensor. These are given by the following equations
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G00 = −
(
A

B

)2 [
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
, (3.4a)

G11 = 2
A′

A

(
B′

B
+

1

r

)
+
B′

B

(
B′

B
+

2

r

)
, (3.4b)

G22 = r2
(
A′′

A
+

1

r

A′

A

)
+ r2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
, (3.4c)

G33 = sin2 θG22, (3.4d)

with Gab = 0 for a 6= b.

3.3 Einstein field equations

Since the fluid four velocity is comoving we have ua = 1
A
δa0 for the metric (3.1). The

nonvanishing energy momentum tensor components are given by

T00 = ρA2, (3.5a)

T11 = pB2, (3.5b)

T22 = pB2r2, (3.5c)

T33 = sin2 θT22, (3.5d)
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with Tab = 0 for a 6= b.

We use the Einstein tensor components (3.4) in conjunction with the energy mo-

mentum tensor components (3.5) in isotropic coordinates to generate the Einstein field

equations. We thus obtain the following field equations

ρ = − 1

B2

[
2
B′′

B
− B′

B

(
B′

B
− 4

r

)]
, (3.6a)

p = 2
A′

A

(
B′

B3
+

1

r

1

B2

)
+
B′

B3

(
B′

B
+

2

r

)
, (3.6b)

p =
1

B2

(
A′′

A
+

1

r

A′

A

)
+

1

B2

[
B′′

B
− B′

B

(
B′

B
− 1

r

)]
, (3.6c)

for isotropic coordinates.

Equating equation (3.6b) to (3.6c) gives the following equation

A′′

A

1

B2
+
B′′

B3
− 1

r

A′

A

1

B2
− 2

B2

B4
− 2

B′

B3

(
A′

A
+

1

r

)
= 0, (3.7)

which is the condition of pressure isotropy. The above equation (3.7) is the master

equation for the gravitating model in isotropic coordinates. The condition of pressure

isotropy has equivalent forms. A second equivalent version of (3.7) is the more compact

form

A′′

A
+
B′′

B
=

(
A′

A
+
B′

B

)(
2
B′

B
+

1

r

)
, (3.8)

in terms of the potentials A and B. A third form is found using the transformation

x = r2. Then a more compact form is

21



(
A

B

)
xx

= 2A

(
1

B

)
xx

. (3.9)

The forms (3.8) and (3.9) are particularly suited to conformally flat metrics. They have

been used by Herrera et al (2004) and Maharaj and Govender (2005) to study radiating

relativistic stars undergoing gravitational collapse with vanishing Weyl stresses.
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Chapter 4

Expanding models

4.1 Introduction

In this chapter we consider the Einstein field equations in terms of isotropic coordinates

which are comoving in a shear-free geometry. The field equations are then expressed in

an equivalent form which may be easier to integrate. In §4.2 we analyse the spacetime

geometry for spherically symmetric gravitational fields which depend on time, by speci-

fying the line element in isotropic form. The components of the connection coefficients,

the Ricci tensor, the Ricci scalar and the Einstein tensor are explicitly generated in this

section. In §4.3 we compute the Einstein field equations by relating the components of

the energy momentum tensor for the perfect fluid to the components of the Einstein

tensor. The condition of pressure isotropy is also found in this section. It is possible

to write the Einstein field equations in a different form by introducing new variables.

In this section we consider particular transformations that are relevant to the relativis-

tic gravitational model. These transformations were first studied by Buchdahl (1959),

23



Durgapal and Bannerji (1983), Srivastava (1987), Fodor (2000), and Tewari and Pant

(2010). The condition of pressure isotropy is also written in new variables using the

relevant transformations. Particular exact solutions are found in chapter 6 in terms of

elementary functions for the condition of pressure isotropy. These functions are new

solutions to the field equations.

4.2 Spacetime geometry

We consider spacetime which is nonstatic and spherically symmetric and define local

coordinates (xa) = (t, r, θ, φ). In contrast to the case studied in chapter 3, the spacetime

manifold is expanding and the gravitational potentials are dependent on time. Then

the shear-free line element in comoving coordinates can be written as

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)[dr2 + r2(dθ2 + sin2 θdφ2)] (4.1)

where ν(r, t) and λ(r, t) are arbitrary functions representing the gravitational poten-

tials. This line element was first studied systematically by Kustaanheimo and Qvist

(1948) and is mostly used to represent cosmological models. It may also be used to

describe physical processes in relativistic compact objects such as superdense stars

and neutron stars in astrophysics (Komathiraj and Maharaj 2007, Sharma et al 2001,

Thirukkanesh and Maharaj 2008).

The line element is very important for the calculation of the connection coefficients

Γabc which are defined in equation (2.2). The nonvanishing connection coefficients for

the metric (4.1) are
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Γ0
00 = νr,

Γ0
10 = νr,

Γ0
11 = λt exp(2λ− 2v),

Γ0
33 = r2λt sin2 θ exp(2λ− 2ν),

Γ1
00 = νr exp(2ν − 2λ),

Γ1
10 = λt,

Γ1
11 = λr,

Γ1
22 = −r(1 + rλr),

Γ1
33 = −r sin2 θ(1 + rλr),
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Γ2
12 =

1 + rλr
r

,

Γ2
21 = λt,

Γ2
33 = − sin θ cos θ,

Γ3
13 =

1 + rλr
r

,

Γ3
30 = λt.

In the above equations, subscripts denote partial differentiation with respect to the

timelike and radial coordinates t and r respectively. By using the above connection

coefficients we can generate the nonvanishing Ricci tensor components for the line

element (4.1). Substituting the above connection coefficients in the definition of the
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Ricci tensor equation (2.4) we obtain the following components

R00 =
1

re2λ
[rνrλre

2ν + rν2r e
2ν + rνrre

2ν − 3rλtte
2λ − 3rλ2t e

2λ

+3rλte
2λ + 2νre

2ν ], (4.2a)

R10 = −2λtr + 2νrλt,

R11 = − 1

re2ν
[2λre

2ν + 2rλrre
2ν − 3rλ2t e

2λ − rλtνte2λ − rλtte2λ

+rνrre
2ν − 2rνrλre

2ν + rν2r e
2ν ], (4.2b)

R22 = − r

e2ν
[3λre

2ν + rλrre
2ν + rλ2re

2ν − 3rλ2t e
2λ + rλtνte

2ν − rλtte2λ

+νre
2ν + rνrλre

2ν ], (4.2c)

R33 = sin2 θ R22, (4.2d)

with Rab = 0 for a 6= b for the other combinations. We then compute the Ricci scalar

which is obtained from the nonvanishing Ricci tensor components. The Ricci scalar

has the form

R =
2

re(2(λ+ν))
[−4λre

2ν − 2rλrre
2ν + 6λ2t e

2λ − 3rλtνte
2λ + 3rλtte

2λ (4.3)

−rνrre2ν − rνrλre2ν − rν2r e2ν − rλ2re2ν − 2νre
2ν ]

for a shear-free spherically symmetric metric.

We defined the Einstein tensor (2.6) in tensor form in terms of the Ricci tensor
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and Ricci scalar. The relevant components of the Einstein tensor are given by

G00 =
1

re2λ
[
3rλ2t e

2λ − 4λre
2ν − 2rλrre

2ν − rλ2re2ν
]
, (4.4a)

G10 =− 2λtr + 2νrλt,

G11 =− 1

re2ν
[−2λre

2ν + 3rλ2t e
2ν − 2rλtνte

2λ

+ 2rλ2t e
2λ − 2rνrλre

2ν − rλ2re2ν − 2νre
2ν ], (4.4b)

G22 =− r

e2ν
[−λre2ν − rλrre2ν + 3rλ2t e

2ν − 2rλtνte
2λ

+ 2rλtte
2λ − νre2ν − rνrre2ν − rν2r e2ν ], (4.4c)

G33 =− sin2 θG22, (4.4d)

with Gab = 0 for a 6= b for the other combinations.

4.3 Einstein field equations

Since the fluid four-velocity is comoving we have ua = e−νδa0 for the metric (4.1). The

nonvanishing components of the energy momentum tensor are given by
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T00 = ρe2ν , (4.5a)

T11 = pe2λ, (4.5b)

T22 = pr2, (4.5c)

T33 = sin2 θT22, (4.5d)

with Tab = 0 for a 6= b. The Einstein field equations for a perfect uncharged fluid can

be written as a system

ρ =
3λ2t
e2ν
− 1

e2λ

[
2λrr + λ2r +

4λr
r

]
, (4.6a)

p =
1

e2ν
[
−3λ2 − 2λtt + 2νtλt

]
+

1

e2λ

[
λ2r + 2νrλr +

2νr
r

+
2λr
r

]
, (4.6b)

p =
1

e2ν
[
−3λ2 − 2λtt + 2νtλt

]
+

1

e2λ

[
νrr + νrλ

2
r +

νr
r

+
λr
r

+ λrr

]
, (4.6c)

0 = νrλt − λtr. (4.6d)

In the above ρ is the energy density and p is the isotropic pressure which are measured

relative to the four-velocity vector ua = (e−ν , 0, 0, 0). Subscripts refer to partial deriva-

tives with respect to that variable. The Einstein system (4.6) is a coupled system of

equations in the variables ρ, p, ν and λ. The system of partial differential equations

(4.6) can be simplified to produce a single underlying nonlinear second order equation.
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The system (4.6) may be extended to include the presence of the electromagnetic in

which case we need to study the Einstein-Maxwell equations

Note that (4.6d) can be written as

νr = (lnλt)r.

Then (4.6b) and (4.6c) imply that[
eλ
(
λrr − λ2r −

λr
r

)]
t

= 0,

which after integration leads to

−F̃ = eλ
[
λrr − λ2r −

λr
r

]
,

and the potential ν has been eliminated. Then from further simplifications of (4.6),

the Einstein field equations can be written in a more compact equivalent form as

ρ = 3e2h − e−2λ
[
2λrr + λ2r +

4λr
r

]
, (4.7a)

p =
1

λte3λ

[
eλ
(
λ2r +

2λr
r

)
− e3λ+2h(t)

]
, (4.7b)

eν = λte
−h, (4.7c)

−F̃ = eλ
[
λrr − λ2r −

λr
r

]
, (4.7d)
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where h(t) and F̃ (r) are functions of integration.

Further simplification is possible by eliminating the exponential factor eλ in the

condition of pressure isotropy (4.7d). We introduce the new variables

x = r2, (4.8a)

y = e−λ. (4.8b)

Then (4.7d) becomes

yxx(t, x) =
F̃ (r)

4r2
y2.

We then let

K(r) =
F̃ (r)

4r2
, (4.9)

so that we can express (4.7d) in the more compact form

yxx(t, x) = K(x)y2(t, x). (4.10)

This equation will be investigated for its integrability conditions in the next chapter.

Note that a solution to the differential equation (4.10) generates an exact solution to

the Einstein system (4.7) by construction.
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Chapter 5

Multiplier formulations for the model

5.1 Introduction

We consider the integrability of the second order differential equation of the form

yxx = K(x)yn. (5.1)

In the study of solutions of Einstein’s field equations, the equation (5.1) occurs in

different physical situations. For example when n = 2, this differential equation arises

in the description of shear-free spherically symmetric perfect fluid solutions. Other

applications of this equation are considered in the treatment of Krasinski (1997). In

the previous chapter, y is a function of t and x. It is possible that y is a function of

x only. We will consider only the static case with n = 2 in our study under which the

equation becomes

y′′(x) = K(x)y2(x), (5.2)

where the primes represent differentiation with respect to x only and K(x) is arbi-

trary. The solutions of equation (5.2) are important in relativistic astrophysics. They
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are applicable to highly dense objects, superdense stars, neutron stars, quark stars

and strange stars. Leach and Maharaj (1992) indicated that (5.2) is applicable to the

Newtonian systems involving plasmas, spherical gas clouds and particle motion in an

axially symmetric magnetic field.

5.2 Integration process

To integrate (5.2) we apply the method outlined in §2.4. This involves finding the

multiplier µ so that (5.2) can be written in the form (2.24). This can be achieved for

particular forms of the function K. We will present the various cases for which this is

possible in the next section. To illustrate the method let us write (2.24), in our case,

in the form

µ[y′′ −Ky2] = DxI, (5.3)

where I is the first integral. Then solving (2.21) gives specific forms of K and µ. This

is a complicated procedure in practice. However this is possible in particular cases. We

will illustrate the process by an example . If we take

K =
F ′′1
F1y

, (5.4a)

µ = F1, (5.4b)

then (5.3) becomes

F ′′1 y − F ′′1 y = Ix + y′Iy + y′′I ′y. (5.5)

Hence according to the theory in §2.4, equation (5.5) is integrable.
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5.3 Multipliers for the model

As pointed out earlier it is necessary to find the multipliers to proceed with the inte-

gration of (5.2). We now list the various multipliers for the equation (5.2) through the

formula in (2.23) using the method demonstrated in the example given in §5.2.

5.3.1 Case 1

The function K given by

K(x) =
F ′′1 (x)

F1y
, (5.6)

has an associated multiplier

µ(x, y, y′) = F1. (5.7)

5.3.2 Case 2

In a more general form of the function K given by

K(x) =

∫ F ′′′2(
exp

(
F2

yC1

))2dx+ C2

∫ exp

(
2F ′2
yC1

)
dx, (5.8)

we have the associated multiplier

µ(x, y, y′) = C1y
′ + F ′2. (5.9)
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5.3.3 Case 3

It is possible that K is an explicit function in y. Then the form

K(x) =
1

2C2
2y
, (5.10)

has an associated multiplier

µ(x, y, y′) = C1y
′ +

a2

2 exp
(
x
C2

) [a21(exp

(
x

C2

))2

+ 1

]
, (5.11)

where the constants a1 = exp
(
C3

C2

)
and a2 =

(
−C4

a21

) 1
2 .

Two simple cases are contained in (5.11) depending on the values of a1 and a2.

Case 3.1: When a2 = 0, we obtain a simplified form for the multiplier

µ(x, y, y′) = C1y
′. (5.12)

Case 3.2 : When a2 = 1 and a1 = 0, we obtain another simplified form for the

multiplier

µ(x, y, y′) = C1y
′ +

1

2
exp

(
− x

C2

)
. (5.13)

5.3.4 Case 4

It is possible that the quantity K is a constant. When K(x) ∈ R, it has an associated

multiplier of the form

µ(x, y, y′) = C1y + C2 exp
[√

2Kyx
]

+ C3 exp
[
−
√

2Kyx
]
. (5.14)
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For particular values of the constants C1 ,C2 and C3 we obtain simpler forms of

the multiplier µ. The various cases are considered below.

Case 4.1: When C1 = 1, C2 = C3 = 0, we obtain a simplified form for the multiplier

µ(x, y, y′) = y. (5.15)

Case 4.2: When C2 = 1, C1 = C3 = 0, we obtain the simplified form for the multiplier

µ(x, y, y′) = exp
[√

2Kyx
]
. (5.16)

Case 4.3: When C3 = 1, C1 = C2 = 0, we obtain the simplified form for the multiplier

µ(x, y, y′) = exp
[
−
√

2Kyx
]
. (5.17)

Case 4.4: When C1 = C2 = 1, C3 = 0, we obtain the simplified form for the multiplier

µ(x, y, y′) = y + exp
[√

2Kyx
]
. (5.18)

Case 4.5: When C1 = C3 = 1, C2 = 0, we obtain the simplified form for the multiplier

µ(x, y, y′) = y + exp
[
−
√

2Kyx
]
. (5.19)

Case 4.6: When C2 = C3 = 1, C1 = 0, we obtain the simplified form for the multiplier

µ(x, y, y′) = exp
[√

2Kyx
]

+ exp
[
−
√

2Kyx
]
. (5.20)
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5.3.5 Case 5

It is possible that K vanishes. Then the choice

K(x) = 0, (5.21)

it has an associated multiplier

µ(x, y, y′) = C1x+ F2(y
′). (5.22)

A simple subcase arises in (5.22).

Case 5.1: When C1 = 0, we obtain a simplified form for the multiplier

µ(x, y, y′) = F2(y
′). (5.23)
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Chapter 6

First integrals for model

6.1 Introduction

The equations in astrophysical problems involve second order differential equations.

First integrals are the result of integrating once, to reduce the second order equations

to a first order differential equation. First integrals were introduced in physical prob-

lems which dealt with laws of motion and later on used in many other fields of applied

mathematics. Any quantities which are not changing with time are called “first in-

tegrals". There are many ways in which first integrals can be found. If we are able

to reduce our equation from second order to a first order differential equation, it be-

comes much simpler to solve. Many astrophysical problems can be quite complicated

to solve directly. By the use of first integrals, we are able to obtain exact solutions to

our systems. These solutions may allow us to make physical conclusions regarding the

behaviour of our systems. We use the multipliers generated in chapter 5 for equation

(5.2) to find first integrals for all the cases that are listed in §5.3.
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6.2 Formulation of the first integrals

There are different methods to finding first integrals; here we are use the characteristic

approach. This technique produces a general form for the multiplier, allowing us to

extract other simplified forms of K(x) in (5.2). The functions F, y and y′ and their

derivatives are functions of x unless otherwise specified.

We indicate how the first integral is generated using the example in §5.2. We have

K =
F ′′1
F1y

, (6.1a)

µ = F1. (6.1b)

Then from the relation given in equation (2.23), we obtain the expression

F1[y
′′ − F ′′1 y] = Ix + y′Iy + y′′Iy′ . (6.2)

We separate the expression by equating coefficients. Equating coefficients of y′′ gives

I ′y = F1. (6.3)

Integrating (6.3) gives the first integral

I = F1y
′ + ψ(x, y), (6.4)

where ψ(x, y) is a result of the integration process. Then differentiating (6.4) partially

with respect to x and y we get

Ix = y′F ′1 + ψx(x, y), (6.5a)

Iy = ψy. (6.5b)

Substituting (6.5) into (6.2) we get

−F ′′1 y = y′F ′1 + ψx(x, y) + y′ψy(x, y). (6.6)
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Next we equate powers of y′, to obtain

F ′1 + ψy(x, y) = 0. (6.7)

Then integrating (6.7) with respect to y, we have

ψ(x, y) = −F ′1y + f(x), (6.8)

where f(x) is also a result of the integration process. Now differentiating (6.8) partially

with respect to x, we get

ψx(x, y) = −F ′′1 y + f ′(x), (6.9)

and substituting (6.9) into (6.6) we get

−F ′′1 y = −F ′′1 y + f ′(x). (6.10)

In (6.10) we integrate with respect to x, and get

f(x) = C, (6.11)

where C is a constant resulting from the integration process. Substituting (6.11) into

(6.8) we get

ψ(x, y) = −F ′1y + C. (6.12)

Hence back substituting (6.12) into (6.4) we get

I = F ′1y
′ − F ′1y + C. (6.13)

In this case we can perform a second integration. Rewriting (6.13) we get

y′ =
I

F1

+
F ′1
F1

y,

which can be further integrated to get∫
I

F1

dy +

∫
F ′1y

F1

dy =
dy

dx
.
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This finally results in

y =
I

F ′1
ln |F1|+

∫
F ′1
F1

ydx+ C. (6.14)

6.3 First integrals

As indicated earlier it is required to find the first integrals in (5.2). We now list the

various first integrals for equation (5.2) corresponding to the multipliers given in §5.3

of chapter 5. We have checked the accuracy of our results using the computer software

package Maple.

6.3.1 Case 1

The function

K(x) =
F ′′1 (x)

F1(x)y
, (6.15)

has an associated multiplier

µ(x, y, y′) = F1(x). (6.16)

The first integral is

I = y′F1 − yF ′1 (6.17)

as shown in the previous section a second integration gives

y =
I

F ′1
ln |F1|+

∫
F ′1
F1

ydx+ C, (6.18)

as shown above. Note that in this case we have been in a position to perform the

second integration and (6.18) contains no derivatives in terms of y. This is not possible

in general.
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6.3.2 Case 2

In this case we look at another possible form of K which is

K(x) =

∫ F ′′′2(
exp

(
F2(x)
yC1

))2dx+ C2

∫ exp

(
2F ′2(x)

yC1

)
dx, (6.19)

and has an associated multiplier of the form

µ(x, y, y′) = C1y
′ + F ′2. (6.20)

From the relation

µ(x, y, y′)[y′′ −Ky2] = Ix + y′Iy + y′′Iy′ ,

the first integral given by

I =
C1

2
y′2 − C1

3
Ky3 + y′F ′2 − F ′′2 y +

∫ (
F ′′′2 y −Ky2F ′2

)
dx. (6.21)

A simple case is contained in (6.21) when C1 = 0. The associated multiplier takes

the form µ(x, y, y′) = F ′2 and our first integral is simpler becoming

I = y′F ′2 − F ′′2 y +

∫ (
F ′′′2 y −Ky2F ′2.

)
dx. (6.22)

6.3.3 Case 3

In this case we look at another possible form of K which is

K(x) =
1

2C2
2y
, (6.23)

and has an associated multiplier of the form

µ(x, y, y′) = C1y
′ +

a2

2 exp
(
x
C2

) [a21(exp

(
x

C2

))2

+ 1

]
, (6.24)
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where

a1 = exp

(
C3

C2

)
, a2 =

(
−C4

a21

) 1
2

.

From the relation

µ(x, y, y′)[y′′ −Ky2] = Ix + y′Iy + y′′Iy′ ,

our first integral is given by

I =
C1

2
y′2 +

C1

3
Ky3 +

a2

2 exp
(
x
C2

) [a21(exp

(
x

C2

))2

+ 1

]
y′

− a2
C2

[
a21 exp

(
x

C2

)
− exp

(
− x

C2

)]
y

+a2

∫
1

2 exp
(
x
C2

) [a21(exp

(
x

C2

))2

+ 1

]

+a2

∫
1

C2
2

[
a21 exp

(
x

C2

− C2 exp

(
− x

C2

))]
. (6.25)

Setting a2 = 0 we get a simpler form of the first integral which is given by

I =
C1

2
y′2 +

C1

3
Ky3. (6.26)

With the value of K(x) from (6.23) we see that the first integral can be further inte-

grated to get y explicitly ∫ (
2

C1

I +
1

3C2
1

y2
)− 1

2

dy = dx.

Letting a3 = 2
C1
I and a4 = 1

3C2
1
which are constants, we get∫ (
a3 + a4y

2
)− 1

2 dy = dx,

and then through integration we get y explicitly as

y = ±

√
a3 exp(2a4(x+ C))− 1

2a4
,
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which is highly desired. This is one the few cases in which y can be written explicitly

as a function of x when solving the Emden-Fowler equation (5.2).

6.3.4 Case 4

In this case we look at another possible form of K which is K(x) ∈ R, and has an

associated multiplier of the form

µ(x, y, y′) = C1y + C2 exp
[√

2Kyx
]

+ C3 exp
[
−
√

2Kyx
]
. (6.27)

From the relation

µ(x, y, y′)[y′′ −Ky2] = Ix + y′Iy + y′′Iy′ , (6.28)

our first integral is given by

I =
C1

2
y′2 +

C1

3
y3 + y′C2 exp

[√
2Kyx

]
+KC2

∫
y exp

[√
2Kyx

]
√

2Kyx
dy

+y′C3 exp
[
−
√

2Kyx
]
−KC3

∫
x exp

[
−
√

2Kyx
]

√
yx

dy. (6.29)

Three simple cases are contained in (6.29) depending on the particular values of

C1, C2 and C3.

Case 4.1: In this case we consider C3 = C2 = 0 and C1 = 1. The associated multiplier

becomes

µ(x, y, y′) = y, (6.30)

and our first integral is given by

I =
1

2
y′2 +

1

3
y3. (6.31)
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Case 4.2: In this case we take C3 = C1 = 0 and C2 = 1. The associated multiplier

becomes

µ(x, y, y′) = exp
[√

2Kyx
]
, (6.32)

and the first integral is given by

I = y′ exp
[√

2Kyx
]

+K

∫
y exp

[√
2Kyx

]
√

2Kyx
dy. (6.33)

Case 4.3: In this case we consider C1 = C2 = 0 and C3 = 1. The associated multiplier

becomes

µ(x, y, y′) = exp
[
−
√

2Kyx
]
, (6.34)

and our first integral is given by

I = K

∫
x exp

[
−
√

2Kyx
]

√
2Kyx

dy. (6.35)

Case 4.4: In this case we consider C3 = C2 = 1 and C1 = 0. The associated multiplier

becomes

µ(x, y, y′) = exp
[√

2Kyx
]

+ exp
[
−
√

2Kyx
]
, (6.36)

and our first integral is given by

I = K

∫
y exp

[√
2Kyx

]
√

2Kyx
dy + y′ exp

[
−
√

2Kyx
]
−K

∫ − exp
[
−
√

2Kyx
]

√
2Kyx

dy. (6.37)

Case 4.5: In this case we take C3 = C1 = 1 and C1 = 0. The associated multiplier

becomes

µ(x, y, y′) = y + exp
[
−
√

2Kyx
]
, (6.38)

and our first integral is given by

I =
1

2
y′2 +

1

3
y3 + y′ exp

[
−
√

2Kyx
]
−K

∫
x exp

[
−
√

2Kyx
]

√
2Kyx

dy. (6.39)

45



Case 4.6: In this case we consider C1 = C2 = 1 and C3 = 0, the associated multiplier

becomes

µ(x, y, y′) = y + exp
[√

2Kyx
]
, (6.40)

and our first integral is given by

I =
1

2
y′2 +

1

3
y3 + y′ exp

[√
2Kyx

]
+K

∫
y exp

[√
2Kyx

]
√
yx

dy. (6.41)

6.3.5 Case 5

In this case we investigate another possible form of K which is K(x) = 0. We have an

associated multiplier of the form

µ(x, y, y′) = C1x+ F2(y
′). (6.42)

From the relation

µ(x, y, y′)[y′′ −Ky2] = Ix + y′Iy + y′′Iy′ ,

The first integral given by

I = C1xy
′ + y′F2(y

′)− C1y + C. (6.43)

A simpler case is contained in (6.39) when we let C1 = 0.

Case 5.1: With K(x) = 0, the associated multiplier of the form µ(x, y, y′) = F2(y
′).

The first integral given by

I = y′F2(y
′) + C. (6.44)

In this chapter we have found a variety of first integrals for equation (5.2). Each

of the integrals generated corresponds to the multipliers in §5.3. It is remarkable that

our integration procedure has produced such a variety of first integrals to the Emden-

Fowler equation (5.2). There are two cases of particular interest. Firstly, the integral
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corresponding to Case 3 in §6.3.3 enables us to write the solution for the function y in

terms of the variable x explicitly. Secondly we have perfomed a second integration to

generate the solution (6.18) in §6.3.1 and no derivatives of y are present. The results

for the various cases are tabulated in Table 6.1.
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Table 6.1: Summary of results without the special cases*

Case K(x) Associated multiplier First integral

1 F ′′
1 (x)

F1(x)y
F1(x) y′F1(x)− yF ′1(x)

2 F3 C1y
′ + F2(x)′ C1

2
y′2(x)− C1

3
Ky3(x)

3 1
2C2

2y(x)
F4

C1

2
y′2(x) + C1

3
K(x)y3(x)

4 K ∈ R
C1y(x) + C2e

√
2Kxy(x)

+C3e
−
√

2Kxy(x)

C1

2
y′2(x) + C1

3
Ky3(x)

5 0 C1x+ F2(y
′(x))

C1xy
′(x) + y′(x)F2(y

′(x))

−C1y(x) + C

In Table 6.1 we have set *

F3 =


∫ F ′′′2(

exp
(
F2(x)
y(x)C1

))2
 dx+ C2

∫ exp

(
2F ′2(x)

yC1

)
dx,

and

F4 = C1y
′(x) +

a2

2 exp
(
x
C2

) [a21(exp

(
x

C2

))2

+ 1

]
.
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Chapter 7

Conclusion

Our aim in this thesis was to examine the spherically symmetric spacetimes and the

Einstein field equations in relativistic astrophysics. Our main objective was to generate

new exact solutions of the Einstein field equations with isotropic pressures. Since the

Einstein field equations are highly nonlinear in general we used new variables in order

to transform the field equations to equivalent forms. We transformed the condition of

pressure isotropy by reducing it to less complicated second order differential equations

with variable coefficients. We have shown that the fundamental equation governing

the gravitational potentials is of the Emden-Fowler type. This equation also arises in

Newtonian physics. We obtained several new exact solutions in terms of elementary

functions by choosing specific gravitational potentials in order to solve the master

equation. We generated a number of algorithms that produce a new solution if a

particular model is specified. The new exact solutions are useful in many applications

in general relativity, realistic stellar models and Newtonian physics.

We now provide a brief outline of the dissertation by giving the main results achieved
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in our course of study:

• In chapter 2, we briefly introduced the concepts of differential geometry and the

matter distribution that are essential for generating the Einstein field equations. We

formulated the Einstein field equations for neutral perfect fluid matter distributions.

We also briefly introduced the barotropic equation of state relating the pressure to the

energy density. We outlined the physical conditions that are relevant for a realistic

relativistic gravitational model.

• In chapter 3, we considered the static gravitational model in isotropic coordinates.

We generated the Einstein field equations by using the energy momentum for a perfect

fluid. From the Einstein field equations we deduced the condition of pressure isotropy

which is a second order differential equation with variable coefficients.

• In chapter 4, we generated the Einstein field equations in terms of isotropic coordi-

nates for neutral perfect fluid matter distribution in nonstatic spherically symmetric

spacetimes. We then transformed the resulting field equation into a second order dif-

ferential equation. We showed that the equation

y′′ = K(x)y2, (7.1)

is of the Emden-Fowler type.

• in chapter 5, we gave a summary of the possible combinations of the form of the

unknown function K(x) and its possible associated multiplier under which the Emden-

Fowler model (7.1) was integrable.

• In chapter 6, we made use of the method of multipliers to find first integrals and their

50



explicit solutions where possible. In addition we considered some special cases allowing

combinations of constants to vanish. It is interesting to observe that for a particular

multiplier it is possible to write the solution for y only in terms of the independent

variable x. Our results are summarized in tabular form in Table 6.1.
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