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Abstract

Medical Imaging revolutionized the practice of diagnostic medicine by providing

a means of visualizing the internal organs and structure of the body. Computer

technologies have played an increasing role in the acquisition and handling,

storage and transmission of these images. Due to further advances in computer

technology, research efforts have turned towards adopting computers as

assistants in detecting and diagnosing diseases, resulting in the incorporation of

Computer-aided Detection (CAD) systems in medical practice. Computed

Tomography (CT) images have been shown to improve accuracy of diagnosis in

pulmonary imaging. Segmentation is an important preprocessing necessary for

high performance of the CAD. Lung segmentation is used to isolate the lungs for

further analysis and has the advantage of reducing the search space and

computation time involved in disease detection.

This dissertation presents an automatic lung segmentation method using Graph

Cut optimization. Graph Cut produces globally optimal solutions by modeling

the image data and spatial relationship among the pixels. Several objects in the

thoracic CT image have similar pixel values to the lungs, and the global solutions

of Graph Cut produce segmentation results where the lungs, and all other objects

similar in intensity value to the lungs, are included. A distance prior encoding

the euclidean distance of pixels from the set of pixels belonging to the object of

interest is proposed to constrain the solution space of the Graph Cut algorithm.

A segmentation method using the distance-constrained Graph Cut energy is also

proposed to isolate the lungs in the image. The results indicate the suitability of

the distance prior as a constraint for Graph Cut and shows the effectiveness of

the proposed segmentation method in accurately segmenting the lungs from a CT

image.
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Chapter 1

General Introduction

1.1 Introduction

The discovery of x-rays by Wilhelm Roentgen [3] in 1895 revolutionized the

practice of diagnostic medicine and gave rise to the field of radiology which

involves the use of imaging technologies to perform diagnosis and administer

treatments [4, 5]. Imaging technologies provide non-invasive ways of viewing the

interior of the body and produce detailed images of the structure of organs and

the skeleton within the body. Computed Tomography (CT), an imaging

technology, invented in 1972 by Godfrey Hounsfield [6] uses x-rays to produce

two-dimensional slices of a part of the body by placing the body through a ring

of x-ray tubes and detectors. The principle behind this x-ray imaging modality is

that various parts of the body absorb x-rays differently depending on their

densities; images are formed based on the amount of radiation absorbed, and the

higher the density of the body part, the higher the amount of x-rays absorbed

and the higher the intensity value in the resulting image. According to Linton

[7], the order of decreasing density of the anatomical parts of the body is as

follows: bones, soft tissue, fat, and air. The bones of the body are very dense

and absorb most of the radiation. This causes the bone region to appear white

on an x-ray image. The soft tissues of the body contain water, and are less dense

1



Chapter 1. General Introduction 2

than the bone. This allows more radiation to pass through and as a result, the

tissues appears gray on the image. Fat is less dense than water and appears less

grayish. Air is the least dense and appears almost black on the image because it

allows almost all of the x-rays to pass through. To form the CT slices, the x-rays

are projected from different angles onto the body and the amount of radiation

absorbed is recorded by the detectors. These slices are two dimensional in

nature, and can be stacked together to produce three dimensional views of the

body. The measurements from the different detectors are used to form the

images on a computer.

Computers have been an integral part of modern radiology. They are used to

compose and format medical reports by combining text and images from various

modalities [8]. The use of Picture Archiving and Communication Systems

(PACS) has became an invaluable way of storing and archiving images from

different modalities. Standards such as Digital Imaging and Communication in

Medicine (DICOM) were created to ensure proper handling, storage, printing

and transmission of medical images [9]. Individual workstations allowed images

to be accessed by the physicians, modified and stored for later use. Teleradiology

provides an efficient means of transmission of images across different locations

[10].

As the role of computers extended to acquiring, displaying and archiving images,

the possibility of using computers in other areas of diagnosis arose [11]. Studies

were carried out seeking to transform it into a diagnostician [12–14] as it was hoped

that computers would be able to independently identify images with abnormalities

from the normal images, and then perform the interpretive process of a physician

on each image and output the diagnosis. The interpretive process can be divided

into three steps: detection, description and differential diagnosis [11]. One of

the several obstacles that hindered the realization of automated diagnosis was

the inability of experts to explicitly define the reason behind their own decision–

making, and this, in turn, led to difficulty in creating an effective set of rules

to guide decision–making [14]. In addition, there was a lack of mature computer

algorithms at the time to handle tasks of such complexity [15]. Therefore, a greater
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Figure 1.1: A typical flow diagram for a CAD system for lesion detection in
thoracic images. Boxes with solid line are the major steps in CAD while the

boxes with dashed lines are the optional steps. From [23]

volume of research turned towards using the computer to assist in making more

accurate diagnoses [15–23].

Automation of the detection step in the interpretive process is usually done with

Computer-Aided Detection (CAD) systems using image processing and pattern

recognition algorithms to highlight areas with suspicious features. Studies have

shown that CAD systems improve the accuracy of diagnosis and increase the

productivity of the human expert [24–27]. Figure 1.1 gives the flow diagram of a

generic CAD system for lesion detection in the medical images. The first step is to

segment the organ of interest from the original image. The next step is to identify

possible regions within the segmented organ likely to be lesions. The next step

further analyses these regions by segmenting the individual lesion candidates and

collecting their pattern features. Finally, classification is carried out to determine

whether the lesions candidates are really lesions or not.

The organ of interest in this study is the lung, segmented from a thoracic CT

image. The purpose of lung segmentation is for accurate identification of the lung

tissue and boundary [20] and to make the rest of the steps of the CAD focus on the

lungs [23]. Lung segmentation is important because it reduces the computation

time required in image analysis as the lungs occupy only a fraction of the CT

image. It also ensures that all the parts of the lungs are considered for analysis
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and included in the final result, as excluded areas of the lung which cannot be

analyzed reduces the accuracy of the CAD system. Before the invention of CT,

chest radiographs were used in diagnosis of disorders of the lungs. However, CT

revolutionized thoracic imaging [28] by producing more detailed images than chest

x-rays, and it has been shown to provide better diagnostic performance [29–31]

due to the ease of detecting subtle changes in the lungs compared with using

conventional chest radiography images.

The approach to lung segmentation used in this dissertation is to formulate the task

of segmentation as a binary labeling problem and employ Graph Cut optimization

technique to efficiently solve it. The goal of binary labeling is to partition the

image into two classes by assigning labels to pixels in the original image. One of

the labels is assigned to pixels belonging to lungs while the other label is assigned

to pixels belonging to the chest structures and the background air surrounding the

chest wall.

Graph Cut provides an efficient method of solving the binary labeling problem [32].

The information in the image is represented by modeling the image data and the

spatial relationships existing between image pixels in an objective energy function.

The global minimum of the energy corresponds to the optimal segmentation result

[33].

1.2 Motivation

A method which accurately performs lung segmentation is the desired goal of this

dissertation. Segmentation is an ill-posed problem and depends on certain criteria

for grouping pixels, such as range of intensity values, gradient information or

texture. The domain of application determines the criteria and characteristics used

to group the pixels for a correct solution. This implies that there is still room for

improvement of the existing methods of lung segmentation due to the availability

of newer and more computationally efficient algorithms yielding potentially more

accurate results than those previously used.
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1.3 Problem Statement

The lungs are air-filled organs in the thoracic region of the human body. In a CT

image, the lungs appear as dark regions while the structures such as the bones

of the rib cage, muscles and blood vessels surrounding the lungs have intensity

values ranging from from gray to white. An axial slice CT image is shown in

Figure 1.2. For the purpose of subsequent discussions, three regions are identified

from a typical CT slice namely, the lungs, the chest structures and the background

surrounding the chest wall.

Figure 1.2: Axial CT slice of the thoracic region. The regions marked ‘L’ are
the lungs. The region marked ‘C’ are the chest structures. The regions marked

‘S’ are the background surrounding the chest wall. Image from [34]

Several methods proposed in the literature for lung segmentation exploit the

contrast between the dark lungs and the brighter surrounding structures and

usually include a method for binary partitioning of the image usually performed

with thresholding. It is expected that the method will partition the image into

two classes with one class containing pixels of the lungs. However, certain

conditions under which CT images are acquired preclude them from conforming

to this expectation. CT images are prone to artifacts due to the high number of

independent measurements recorded from different detectors [35]. As a result,

distortions occur on the image where the attenuation value on the reconstructed
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image is different from the value recorded by the detectors. This becomes a

problem as the quality of the image is reduced and can result in misdiagnosis due

to normal tissues appearing abnormal and vice versa. Another difficulty in

segmentation of CT images lies in the fact that the range of pixel intensity values

for different anatomical regions overlap. In the case of the thoracic CT image,

the pixels of the lungs have similar intensity value with pixels of the air

surrounding the chest wall, and the pixels of the chest structures have similar

intensity with pixels of blood vessels and pathologies within the lungs and this

results in misclassified pixels.

Other methods proposed involve the use of prior knowledge of the lung to

perform segmentation. This prior knowledge could be acquired through training

and classification [36]. However, the accuracy of the methods will rely on the

number of training examples available and can be computationally expensive.

The prior knowledge can also be acquired interactively by the user specifying

pixels and regions belonging to different anatomical regions of the body [33]. The

challenge lies in determining the level of interactivity needed to obtain accurate

results, that is, the number of clicks needed to perform the segmentation and the

number of clicks needed to modify the result of the segmentation [37]. The

results are therefore subjective to the knowledge and experience level of the

users. Automatic methods are, however, much more desirable than manual or

semi-automatic method as the aim of CAD is to improve the results of diagnosis

by highlighting potentially abnormal areas which could be missed out due to

fatigue or observational oversight [25].

1.4 Research Objectives

The broad objective of this dissertation is to propose a method for performing

accurate lung segmentation using Graph Cut. Graph Cut algorithm allows the

incorporation of prior knowledge into its energy framework. Prior knowledge

consisting of contextual information can be used to output the required
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segmentation results. The energy is made up of functions which model the

appearance of the image and the spatial interaction between pairs of connected

pixels. Minimizing this energy produces global optimal solutions. This implies

that all regions satisfying the criteria of belonging to the object of interest will

be included in the segmentation result. The inclusion of a prior into the Graph

Cut energy serves to constrain the solution space. The challenge is therefore to

find a suitable prior to constrain the solution. One of the requirements for such a

prior includes the ability to handle the changing shape of the lungs. Traversing

down the lungs from the apex to the base, the appearance of the lungs varies.

Another requirement is that acquiring and incorporating the prior information

should not incur high computational costs. Specific objectives pursued in this

dissertation, therefore, include the following:

1. Investigate different lung segmentation methods currently used in the

literature

2. Identify a suitable prior to restrict the solution space of the segmentation

result using Graph Cut

3. Model an automatic framework for lung segmentation using the identified

prior with Graph Cut

4. Compare the proposed method with the state-of-the-art

1.5 Contributions of the Dissertation

The main contributions of this dissertation can be summarized as follows: the

introduction of a novel energy constraint for Graph Cut energy and a novel

segmentation algorithm for lung segmentation using Graph Cut. These

contributions are given as follows:

• A distance-constrained energy function: The distance-constrained

energy function consists of an additional term called a distance term which
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penalizes pixels based on their euclidean distance from the object of

interest. The conventional Graph Cut formulation contains two functions.

One function attempts to model the appearance of the data by associating

labels with the observed model while the other encourages coherence by

giving connected neighboring pixels similar labels. However, the function

responsible for modeling the appearance of the data is only effective in

modeling the global appearance. If there are other segments having the

same appearance model as the object of interest, then those segments are

also included in the segmentation result. Therefore, the distance term

ensures that labels are assigned only to the pixels of the region of interest

notwithstanding the presence of regions with similar appearance model.

• An automatic lung segmentation framework using Graph Cut: The

distance-constrained energy is applied to the problem of segmenting the lungs

from a CT image. This framework extends the work of Boykov and Jolly [33]

whose method is semi-automatic and produces unconstrained solutions. The

proposed method is automatic as it does not require user input and is carried

out in four steps. The first step detects the lungs from the image using Fuzzy

c-Means to cluster the image, Connected Components labeling to identify

the components in the image and a set of rules to identify the component

belonging to the lungs. The second step involves creating distance images by

a applying Distance Transform on binary images derived from the clustered

images. The third step formulates the energy to be minimized with Graph

Cut. The distance images provide the prior information about the distance

of pixels from the object of interest and is used to compute the distance term.

The region and boundary term are also computed, and the energy function

consisting of three terms is minimized. The fourth step uses morphological

area opening to correct misclassification of high intensity structures within

the lung.
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1.6 Organization of the Dissertation

The rest of this dissertation is organized as follows.

• Chapter 2 reviews the literature on lung segmentation and lays the

foundation for the work done in this study

• Chapter 3 provides details on the distance constraint incorporated into the

energy for accurate lung segmentation

• Chapter 4 provides details on the automatic lung segmentation method using

the distance-constrained energy

• Chapter 5 concludes the dissertation and provides directions for future work



Chapter 2

Background and Related Works

2.1 Introduction

This dissertation focuses on the formulation of segmentation as a binary labeling

problem where the goal is to find the optimal segment to which each pixel

belongs. This problem is usually solved by optimization. Inspired by both the

success of Graph Cut in image segmentation and the inclusion of additional

constraint into its basic energy formulation, an automatic segmentation method

using Graph Cut optimization is proposed that makes use of a

distance-constrained energy. In this chapter, The anatomy of the lungs and the

thoracic CT slice are briefly introduced, previous works done on segmenting the

lung from CT image and a general summary of works related to our approach in

terms of introducing constraints into the basic energy formulation for medical

imaging segmentation are presented .

10
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2.2 Lungs and CT

2.2.1 Anatomy of the Lungs

The lungs is a cone-shaped organ in the chest and is the site of gas exchange for

air coming into and leaving the body. There are two lungs; one on the left and one

on the right. The left lung is divided into the upper lobe and the lower lobe while

the right lung is divided into the upper, middle and lower lobes. The trachea is

the main air pathway allowing air in and out of the body. The trachea divides into

two bronchus, one enters the left lung and the other enters the right lung. The

bronchus divides into smaller branches called bronchi and moves deeper into the

lung tissue. The bronchi further divide into smaller pathways called bronchioles

which end in tiny air sacs called alveoli. The gas exchange occurs in these tiny

sacs.

The region of the lungs where the bronchi enters the lungs is called the hilum. The

space between the lungs is called the mediastinum and it houses the heart, blood

vessels, bronchi, and trachea. The space for the heart is called the cardiac notch.

Figures 2.1 and 2.2 show the positions of the structures of the lungs described

above.

2.2.2 Lungs in Thoracic CT image

The thorax can be viewed from the axial view, the coronal view, or the sagittal

view as shown in Figure 2.3. The images used in this study are from the axial

view.
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Figure 2.1: Lung anatomy showing the left and right lungs and the air
pathways. From [38]

Figure 2.2: Lung anatomy showing the hilum, mediastinum and cardiac notch.
From [39]
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(a) (b)

(c) (d)

Figure 2.3: Different viewing planes for a thoracic CT image (a) Planes of
the body. From [40] (b) axial view (c) coronal view (d) sagittal view. Double
arrows in (b), (c) and (d) show the location of the fissure in the three views.

From [41]

2.3 Previous Lung Segmentation Methods on

CT images

Given the contrast between the lungs and the surrounding chest structures in a CT

image, segmenting the lungs has traditionally been solved as a binary partitioning

problem with the pixels of the lung belonging to one class and the pixels of the

surrounding chest structures belonging to another. Several methods [42–50] begin

by initially partitioning the image into two classes with thresholding. Thresholding
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finds an optmal value, called a threshold, such that pixel intensities below the

threshold will be classified as lung pixels while pixel intensities above the threshold

will be classified as background pixels. Using the notation shown in Figure 1.2, the

lungs L, being air-filled organs, will have pixel intensity values similar to the air

surrounding the chest wall S. Also, within L resides some high intensity structures

such as blood vessels and possible pathological regions which have similar range

of intensity values as C. This causes some pixels to be misclassified. Therefore,

subsequent steps are necessary to correct this misclassification.

Hu et al. [42] used connected components labeling and topological analysis to

distinguish the surrounding non-body air from the air within the lungs, followed

by separation of the right and left lung, and a series of morphology operations

including morphological closing, erosion and a variation of morphological

opening to smooth the boundaries along the lung mediastinum where the major

vessels and bronchi enter the lung. Antonelli et al. [43] used a method to first

remove the air surrounding the chest wall before applying thresholding, thus

eliminating the need to identify the lung pixels after thresholding. Subsequent

steps include morphological opening and closing operations to enhance the

borders, Sobel operator to identify the borders, thinning of the borders, lung

border detection, border reconstruction and finally, filling of the lung cavities.

Iqbal et al. [46] used a series of morphological operations to produce the final

segmentation results. Mesanovic et al. [49] performs region growing after

thresholding the image followed by edge detection and morphological operations

to create a filled binary mask which is multiplied with the original image to

separate the lung parenchyma from the image. Wei et al. [50] useds connected

components labeling to eliminate the air surrounding the chest wall followed by

region growing to remove the airway which may still be present after eliminating

the background. Next, left and right lung separation is performed, if necessary.

The final step uses Bresenham Algorithm to smooth the lung boundary based on

an improved chain code.

In the event that thresholding fails to find the optimal threshold separating the

image into two classes with one class belonging to the air pixels, it becomes
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impossible to use the subsequent steps of the method. An illustration is provided

in Figure 2.4 where the optimal threshold does not produce the expected result.

This failure is due to the fact that thresholding heavily depends on the intensity

distribution of the image and assumes that its histogram is bimodal, and thus

finding the center between each peak provides the optimal threshold value.

(a) (b) (c)

Figure 2.4: Comparison between a bimodal and trimodal histogram showing
a scenario where thresholding fails. The green dotted line on the histogram in
column (c) shows the threshold value selected by Otsu’s [51] method. The red
dotted line on the bottom histogram shows a possible threshold value which

would have yielded the expected result

To reduce the dependency on thresholding, other methods such as [52–55] have

been proposed. Shojaii et al. [52] proposed a method which segments the lung

region by placing internal and external markers on a gradient image. Watershed

transform is then used to find significant edges between the markers

corresponding to the lung edges, and is followed by contour smoothing and filling

of the area within the edges found by the transform. Abdollahi et al. [53]

proposed a method consisting of four steps. In the first step, the Gaussian scale

space of the image is created. The second step involves modeling the image data

with Markov-Gibbs Random field (MGRF). The third step involves an initial
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segmentation on all images in the scale space. The final step performs a fusion of

the iterative refinement of the initial scale space segmentation to produce the

final segmentation result. Kothavari and Deepa [55] used a robust active shape

matching (RASM) model. The model is trained using the contours on manually

delineated images done by experts. An initial contour is generated after training

and is iteratively deformed to fit the shape of the lungs in the test images. The

shape of the lungs varies depending on the part of the lung being examined, and

depending on the position of the patient.

Reduced dependence on thresholding reduces the dependence on the pixel

information to perform segmentation. Prior knowledge in the form of contextual

information is incorporated within the method to get the required final result. In

[52], knowledge of the range of intensity values for the anatomical objects in the

CT image is required for correct placement of the internal and external markers.

In [53], the assumption that the image can be modeled with an MGRF is the

prior knowledge that is used for the data modeling step of the algorithm. In [55],

manually delineated images provide the prior knowledge for the method.

The drawback of the reduced dependence is the increase in computational cost.

The computational cost incurred using the method in [42] is far less expensive

than the method in [55]. Therefore, accuracy and reproducibility of the results

need to be balanced against computational costs.

2.4 Related Works

2.4.1 Binary Labeling and Graph Cut

Before presenting the related works, the binary labeling problem is defined and

the solution with Graph Cut is shown. Many problems in Computer Vision are

formulated as labeling problems. The goal of labeling is to assign values to objects

based on observed data. To formally define the labeling problem, let Q represent

the set of pixels i = 1, 2, ..., n and L represent the set of k possible labels. The
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labeling of Q over L is simply a function f : Q → L [56]. The labeling problem

seeks to find the optimal labeling among a set of possible labels. For a problem

with k labels and n pixels, the search space for the optimal labeling is of size kn.

As an example, consider the case of an image with 512×512 pixels with four labels

to be assigned. The size of the search space is 2621444. Thus, efficient algorithms

are required to optimize the search for the optimal labeling.

There are two main groups of solutions proposed for optimization [57], namely,

combinatorial optimization methods and linear programming methods. The

problems solved by combinatorial optimization methods can be formulated as

Maximum A Posteriori (MAP) inference problems [58] on discrete graphs and

can be expressed as a MAP estimate of a Markov Random Field (MRF) [59, 60].

Combinatorial algorithms such as simulated annealing [59, 61] and Iterated

Conditional Modes [60] were used to find the MAP estimate of the MRF. Greig

et al. [32] showed that the solutions produced by the previous methods were far

from the true labeling and proposed an exact optimization method for finding

the MAP estimate in a binary labeling problem using the min-cut/max-flow

theory [62]. This was the introduction of Graph Cut to computer vision and was

first used in image restoration.

Boykov and Jolly [33] extended the Graph Cut method in [32] to image

segmentation. Therefore, the MAP estimate refers to the segmented image and

the binary labels L to be assigned are L = {O,B} where O denotes pixels

belonging to the object of interest and B denotes pixels belonging to the other

regions generally referred to as the background. Let A be a binary vector that

defines the segmentation. Therefore, for an image I with i number of pixels, the

components of A = (A1, A2, ..., Ai) specify the label L assigned to each pixel in I.

Let N represent the set of all unordered pairs {i, j} of neighboring elements in I

derived from a standard neighborhood system e.g. 4-, 8- or 26- neighborhood

system.

E(A) = λ ·R(A) +B(A) (2.1)
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where

R(A) =
∑
i∈I

Ri(Ai) (2.2)

B(A) =
∑
{i,j}∈N

Bi,j.δAi 6=Aj
(2.3)

and

δAi 6=Aj
=

1, ifAi 6= Aj

0, ifAi = Aj

R(A) is called the regional term. It is the cost of assigning pixel i with either label

O or B and is calculated as negative log-likelihoods for each pixel i with intensity

qi as shown in equation (2.4).

Ri(O) = − ln Pr(qi|O)

Ri(B) = − ln Pr(qi|B)
(2.4)

The regional term is used to compute the cost for the edges connecting each pixel

to the terminal nodes. These edges are called t-links. The higher the likelihood of

a pixel belonging to O, the higher the cost on the t-link connecting the pixel to

the source terminal and vice versa. Similarly, the higher the likelihood of a pixel

belonging to B, the higher the cost on the t-link connecting the pixel to the sink

terminal and vice versa.

B(A) is called the boundary term. It is responsible for the smoothness of the

boundary of the final segmentation and penalizes dissimilarities between

neighboring pixels. It is calculated as shown in equation (2.5).

Bi,j(qi, qj) = exp

(
(qi − qj)2

2σ2

)
(2.5)

where qi and qj are neighboring pixels and σ can be estimated as “camera noise”.

The boundary term is used to compute the cost for the edges connecting

neighborhood pixels. These edges are called n-links. The higher the similarity of

intensity value of pixels pairs within the same neighborhood, the more likely they
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are to be assigned the same label, thus the cost on the n-link will be higher and

vice versa.

λ is used to determine the relative importance of the regional term to the

boundary term. The contribution of each term in the energy function affects the

final segmentation result, and λ is used to balance the contribution of each term.

In literature, λ is usually determined experimentally.

Fig. 2.5 illustrates image segmentation with Graph Cut. The min-cut/max-flow

algorithm [62] finds the minimum sum of edge costs (both t-links and n-links)

on the graph such that when the edges contributing to the minimum costs are

removed, the graph is partitioned into two classes; one class is labeled as the

object of interest and the other is labeled as the background.

2.4.2 Incorporating Constraints into the Graph Cut

Energy

In medical image segmentation, the objective is to segment the image into objects

corresponding to anatomical parts of the body. In most cases, a specific body part

is the region of interest for further study, and segmentation is used to extract this

region from the image. Graph Cut produces globally optimal solutions which are

topologically unrestrained [63] meaning that all regions with similar properties are

assigned the same labels. This makes the segmentation of medical images difficult

because pixel intensity values of the objects in the image overlap and, in some

cases, boundaries separating the different objects are unclear. Therefore, using

the function in equation (2.1) includes both the anatomical object of interest and

other regions with similar properties to the object of interest in the segmentation

result. The following studies show the incorporation of extra constraints in the

energy function for segmentation of medical images.

Slabaugh and Unal [1] presented a method for segmentation using elliptical shape

priors to reduce the effect of misleading cues such as weak boundaries and noise

from the solution space. They used an iterative method which identifies an initial
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Image Segmentation using Graph Cut (a) Original Image (b)
and (c) show the graph construction from the image. The edge weights are
depicted by the thickness of the edges. In (b) the blue arrows show the n-links
connecting neighborhood pixels. In (c) the t-links are included showing the
pixels’ connection to the source and sink terminals. (d) the cut on the graph
is shown in red dotted lines (e) shows the removed edges (f) segmented image

showing the pixels labeled as object and background

ellipse, constructs the graph within that ellipse in a narrow band and performs

a minimum cut on the graph. The new ellipse formed by finding the best fitting

ellipse to the points of the segmentation. A new narrow band is formed around

the new ellipse and the methods iterates until convergence. Figure 2.6 provides

the narrow band used in the method. The energy used for the segmentation is
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Figure 2.6: Narrow band containing the ellipse used in [1]. The minimum cut
is shown as a dark contour

made up of two energy terms, and each of the energy terms is of the form

E(L) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq) (2.6)

where E is the energy, p and q are pixels, N is the neighborhood connectivity,

Dp(fp) measures the cost of assigning the label fp to p while Vp,q(fp, fq) measures

the cost of assigning labels fp, fq to neighboring pixels p, q.

The first energy term is the image-based energy term. Given an ellipse, the mean

intensity of the pixels inside an outside the ellipse is ui and uo respectively. The

energy is given as follows:

Dp(foreground = |I(p)− ui|

Dp(background = |I(p)− uo|
(2.7)

and Vp,q is the as described in [33].

The second energy term is the shape-based energy term. For the shape prior, a

shape mask M is formed which is a binary image such that inside the ellipse is 0

and outside the ellipse is 1. The energy is given as follows:

Dp(foreground = |M(p)− 1|

Dp(background = |M(p)− 0|
(2.8)
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and Vp,q is the as described in [33]. λ measures the contribution of the shape term.

Figure 2.7 provides an example of the results of the elliptical prior.

Figure 2.7: An example showing the results of elliptical prior used by
Slabaugh and Unal to find a blood vessel in a pelvic MRI image. (a) shows
the user clicks yellow (b) shows the evolution of the ellipse until (c) where it
achieves the segmentation. (d) shows the result of the segmentation without the
elliptical prior. Graph Cut included all the regions which had the same pixel

characteristics as the region of interest

Funka-Lea et al. [2] added a blob prior to prevent the inclusion of surrounding

organs from the solution when segmenting the outer surface of the heart from a
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cardiac CT scan. The function is given as

E(f) = Esmooth(f) + Edata(f) + Eblob(f) (2.9)

Esmooth(f) and Edata(f) are given as

Edata(f) =
∑
p∈P

Dp(fp)

Esmooth(f) =
∑
{p,q}∈N

Vp,q(fp, fq)
(2.10)

where Dp(fp) is the likelihood function of label fp for a given pixel p and Vp,q is the

interaction function between pixels {p,q} in a neighborhood given a neighborhood

system N.

An energy consisting of only Esmooth(f) and Edata(f) is the basic formulation for

Graph Cut. Esmooth(f) imposes the smoothness constraint on the segmentation

result while Edata(f) measures how well the label f fits with the data. Eblob(f) in

equation (2.9) is the extra constraint included in the energy and is given as

Eblob(f) =
∑
{p,q}∈N

Bp,q(fp, fq;C) (2.11)

where C is the center of the seed-region and Bp,q is a Potts interaction model which

penalizes discontinuity depending on the angle between line segments pq and pC.

Therefore,

Bp,q(fp, fq) =

(pq, pC) ∗ T (fp 6= fq), if (pq, pC) < 0

0, else

The introduction of the blob prior makes the cuts produced by the energy function

to appear as a convex blob.
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(a) (b)

Figure 2.8: An example showing the results of blob prior used by Funka-Lea
et al. [2] to segment the heart. (a) shows the initial “balloon” expanded within

heart (b) The heart segmented out of the image appearing as a convex blob

2.5 Conclusion

The dependence on thresholding for initial binary partitioning of the image may

lead to inconsistent results. Several successful methods have been proposed

which reduce or totally eliminate the need for thresholding. However, there is an

accompanying increase in computational cost, especially in those methods which

include training a model or a shape prior.

The success of Graph Cut in image segmentation is the motivation for its use in

this study. However, the general formulation of the energy function does not allow

the accurate isolation of a single body part due to the fact that, in medical images,

the range of pixel intensity for different anatomical regions tend to overlap, and

graph cut produces globally optimal solutions. This, therefore, implies that all the

regions which have the same range of intensity as the body part of interest will be

included in the final result.

Several energy formulations have been proposed which incorporate an additional

constraint to reduce the solution space, thereby producing the required

segmentation result. However, the solutions proposed have some characteristics
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in common which might limit their success in lung segmentation. Firstly, the

anatomy of interest usually has approximately the same shape across a variety of

images. Secondly, only one connected region or anatomy is usually sought. In

the case of the lungs, its shape changes moving from the apex to the base of the

lung. Therefore, a flexible prior which takes into account the changing shape of

the lungs is needed to segment the lungs from the image. In the axial CT slice,

two unconnected regions of different shape and size are the required output of

the segmentation.

Finally, most implementations of Graph Cut are semi-automatic or interactive in

nature. They involve the user selecting certain pixels, called seeds, to belonging

the object of interest and the background. While, this provides certain control

over the results, there is a lack of control over how many seeds are required for

each image, and the best location to place the seeds to get the best results.

The next chapter introduces the distance prior proposed as the additional

constraint on the solution space. Several experiments are carried out which

demonstrate its suitability in producing accurate lung segmentation results.



Chapter 3

The Distance-Constrained Energy

(DCE) function

3.1 Introduction

Graph Cut optimization is a technique used to find the optimal segment. The

optimal solution determined by Graph Cut is dependent on the energy function

used to define the segmentation problem [33]. In this chapter, a

distance-constrained energy function is presented for lung segmentation.

The distance prior is introduced in section 3.2 and the distance-constrained energy

incorporating the distance prior will also be described. The experimental setup

and results demonstrating the suitability of the distance prior in constraining the

segmentation solution will be discussed in sections 3.3 and 3.4 respectively.

3.2 Distance Prior

A distance prior is proposed as the additional constraint in the energy function

using Graph Cut to accurately segment the lungs from the CT image. The distance

refers to the Euclidean distance between pixels. Specifically, a distance term K(A)

26
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is incorporated into equation (2.1) to provide the extra constraint. The distance

term can be estimated from distance images which is discussed in detail in Section

4.2.2. The new equation will be referred to as the distance-constrained energy

(DCE) and is given in equation (3.1).

E(A) = λ
∑
i∈I

R(A) +
∑
{i,j}∈N

B(A) +
∑
i∈I

K(A) (3.1)

The distance constraint, therefore, assigns weight on the T-links as follows:

Ki(qi ∈ O|disti < Tho) =

∞, for Si

0, for Ti

(3.2)

Ki(disti > Thb) =

0, for Si

∞, for Ti

(3.3)

where disti is the distance of pixel i and Tho and Thb are thresholds on the

distance, Si and and Ti are the source and sink terminal links for the pixels

satisfying the conditions (qi ∈ O|disti < Tho) and (disti > Thb). The condition

in equation 3.3 does not specify whether the pixel belongs to O or B and thus

affects any pixel at a distance greater than the specified threshold Thb. Figure

3.1 illustrates the weight placement on the graph and shows the final result.

Pixel 3 has been assigned ∞ on the source T-link and has no sink T-link (≡ 0).

All the pixels apart from pixel 3 have been given an ∞ weight on the sink

T-links and no weight (≡ 0) on the source T-links. This ensures that pixel 3 is

given a different label from pixel 1 and 2. This forces only the N-links and

T-links connecting pixel 3 to be cut (shown in Figure 3.1(c)) and labeled

differently from the other object pixels (shown in Figure 3.1(d)).

In equation (2.1), R(A) determines the weight on the T-links. However, in equation

(3.1), both R(A) and K(A) are responsible for weighting the T-links. Only the

weight on the T-links are being reweighed because the boundary term is sufficient
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(a) (b)

(c)

Figure 3.1: (a) Original Image (b) Graph showing the edge weight (note the
thickness of each T-link) (c) Edges cut from the Graph (note the edges around

pixel 3) (d) Segmented image

enough to produce smooth boundaries in the final segmentation. The regional

term, however, is not sufficient to correctly isolate the lungs from the image due

to the presence of air surrounding the chest cavity which have intensity values

similar to the lungs. Since the regional term controls the weights on the T-links,

any modification will be done on the T-links. This is why the distance term has

been introduced; to assist the regional term. Figure 3.2 provides an illustration of

the regions which the conditions for the distance term operate upon in a lung CT

image. In Figure 3.2(b), any pixel within the shaded region having pixel intensity

similar to the object of interest is given an∞ weight on the source T-links and 0 on

the sink T-links. In Figure 3.2(c), any pixel within the shaded region is assigned

an ∞ weight on the sink T-links and 0 on the source T-links. The borders of the

shaded regions represent the distance thresholds Tho and Thb.

Therefore, any pixel which does not satisfy either condition in the distance term

is weighted by the regional term. The procedure for weighting the T-links using

both R(A) and K(A) is given in Algorithm 1
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(a) (b)

Figure 3.2: Illustration of the regions upon which the distance term operates.
The image is a CT scan which has been clustered into three classes. (a) Original
Image (b) Shaded region disti < Tho within which the object pixels are searched

for (c) Shaded region disti > Thb

Algorithm 1 Computing the weights on the t-links for the DCE

if i ∈ O and disti < Tho then
Si = ∞
Ti = 0

else if p ∈ B and disti > Thb then
Si = 0
Ti = ∞

else
Si = −λ ln Pr(qi|B)
Ti = −λ ln Pr(qi|O)

end if

3.3 Experimental Setup

In this section, the results of using the distance prior for segmentation is

evaluated. The image data used in the experiments are first described and then

the experimental results are presented.

3.3.1 Image Data

The images were randomly selected from two publicly available databases namely:

the Lung Image Database Consortium and Image Database Resource Initiative

(LIDC-IDRI) and Lung Test Images from Motol Environment (Lung TIME). A

total of 100 images were used in the experiments.
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1. LIDC-IDRI: The LIDC-IDRI database [64] was a project initiated by the

National Cancer Institute (NCI), further advanced by the Foundation for

the National Institutes of Health (FNIH), and accompanied by the Food

and Drug Administration (FDA). The database consists of 1018 cases of

diagnostic and lung cancer screening thoracic CT scans with annotated

lesions taken from different scanners supplied by different vendors. Each

slice has a size of 512 × 512 pixels stored in DICOM format

2. Lung Test Images from Motol Environment (Lung TIME): Lung TIME

database [65] was made in cooperation with the Centre of Machine

Perception of Czech University, Prague and department of Imaging

Methods of Motol Hospital in Prague. The dataset consists of two parts.

The first part (TIME1) contains data from adolescent patients with 148

scans, 5mm slice thickness and 1mm slice spacing. The second dataset

(TIME2) contains 9 scans with 5mm thickness and 5mm slice spacing. The

images are stored in DICOM 3.0 format and have a size of 512 × 512

pixels.

3.3.2 Performance Metrics

Sensitivity, Specificity and Accuracy [66] are the metrics used to measure the

performance of the distance prior in segmenting the lungs.

Sensitivity =
TP

TP + FN
(3.4)

Specificity =
TN

TN + FP
(3.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)
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where TP is the number of pixels correctly labeled as lung pixels, FP is the

number of pixels incorrectly labeled as lung pixels, FN is the number of pixels

incorrectly labeled as non-lung pixels, and TN is the number of pixels correctly

labeled as non-lung pixels.

Sensitivity measures the ability of the algorithm to correctly identify the lung

pixels. Specificity measures to the ability of the algorithm to correctly identify

the non-lung pixels. Accuracy measures the ability of the method to isolate the

lungs from the image. The performance indices for the three metrics range from

zero to one, with an index of zero signifying poor performance and an index of

one signifying high performance.

3.4 Experimental Results

To validate the distance prior, the segmentation results using the DCE are

compared with the segmentation results using the energy in Boykov and Jolly’s

Graph Cut algorithm [33] to show the improvements made by the use of the

distance prior in the segmentation results. The experiments were implemented in

MATLAB R© R2010a using its Image Processing toolbox on a system with Intel

Core(TM) i7-4770S @ 3.10Ghz, 8.00GB RAM. The max-flow algorithm by

Boykov and Kolmogorov [67] is used for energy minimization.

The results of the comparison are presented in Tables 3.1, 3.2, 3.3 and Figure 3.3.

The distance prior increases the sensitivity of the results slightly but improves

the specificity and accuracy of the results tremendously. Without the distance

prior, the specificity is low because the background surrounding the chest wall is

incorrectly labeled as part of the lungs, and this in turn reduces the Accuracy of

the segmentation.

The visual segmentation results for images from LIDC, TIME1 and TIME2 are

presented in Figures 3.4, 3.5 and 3.6 respectively. Segmentation with distance

prior is successful in separating the lung pixels from pixels with similar intensity
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values surrounding the chest walls compared to the segmentation without distance

prior which includes the background air surrounding the chest wall.

Table 3.1: Quantitative Comparison of the LIDC-IDRI segmentation results
with and without distance prior

Without DP With DP

Sensitivity 0.9659 0.9978
Specificity 0.4155 0.9944
Accuracy 0.4776 0.9953

Table 3.2: Quantitative Comparison of the TIME1 segmentation results with
and without distance prior

Without DP With DP

Sensitivity 0.9542 0.9865
Specificity 0.7040 0.9999
Accuracy 0.7834 0.9957

Table 3.3: Quantitative Comparison of the TIME2 segmentation results with
and without distance prior

Without DP With DP

Sensitivity 0.9333 0.9792
Specificity 0.5801 0.9991
Accuracy 0.6369 0.9959

3.5 Conclusion

In this chapter, the nature of Graph Cut has been discussed including its

formulation as a binary labeling problem and the globally optimal solutions it

produces. Due to the nature of the CT images, a distance prior, which penalizes

pixels based on their euclidean distance to the lung region, has been introduced

as an extra constraint in the energy framework to ensure that only the pixels

belonging to the lungs are labeled as such. The segmentation results using the

distance prior have been compared to segmentation results without the distance

prior to show the improvements made to the results with the introduction of the

distance prior.
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In the next chapter, an automated segmentation method which utilizes the

distance-constrained energy will be presented. The various steps necessary for a

more robust segmentation method are discussed in detail. The experiments

carried out will be presented and the experimental results obtained will be

discussed.
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(a)

(b)

(c)

Figure 3.3: Graphical Comparison of the Sensitivity, Specificity and Accuracy
of the segmentation results with and without the distance prior (a) LIDC-IDRI

(b) TIME1 (c) TIME2
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(a) (b) (c) (d)

Figure 3.4: Comparison of segmentation results using images from the LIDC
database (a) Original Image (b) Ground Truth (c) Segmentation result without

distance Prior (d) Segmentation with distance prior
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(a) (b) (c) (d)

Figure 3.5: Comparison of segmentation results using images from TIME1
database (a) Original Image (b) Ground Truth (c) Segmentation result without

distance Prior (d) Segmentation with distance prior
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(a) (b) (c) (d)

Figure 3.6: Comparison of segmentation results using images from the TIME2
database (a) Original Image (b) Ground Truth (c) Segmentation result without

distance Prior (d) Segmentation with distance prior
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Automatic Lung Segmentation

4.1 Introduction

Although segmentation results are influenced by the choice of energy function

used, several other algorithms are often necessary for a robust performance of

a segmentation method. In this chapter, the novel method for automatic lung

segmentation using Graph Cut optimization, comprising of algorithms for lung

region detection, calculation of the distances used for the distance prior, energy

minimization and post-processing to correct mislabeled lung pixels, is presented.

Section 4.2 presents the overview of the proposed method and describes each

step in detail. Section 4.3 provides the experimental setup including the image

data, evaluation metrics and the experimental parameters used for performance

evaluation. The experimental results are presented and discussed in section 4.4

4.2 Overview of the Proposed Method

The flow of the proposed segmentation method is shown in Figure 4.1. The first

step involves splitting the image into non-overlapping blocks. The purpose of

splitting the image is to reduce the effects of artifacts and stabilize the output

38
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of the clustering, which is the next step after image splitting. It also has the

advantage of reducing the runtime of the algorithm as instead of dealing with the

pixels of the whole image, only a subset of pixels are used to represent the pixels

within the each block of the image. After splitting the image, the mean of the

pixels in each block are clustered into three classes. This is used to pre-label the

image to get an initial estimate of the locations of the objects in the image.

Figure 4.1: Proposed Method for Lung Segmentation

As the ultimate aim of binary segmentation is to partition the image into two,

the logical step is to cluster the image into two classes. However, it has been

found that binary partitioning does not always produce the desired result on some

images [68]. Another observation made was that a 2-class FCM yielded unstable

results due to the fact that FCM is sensitive to initialization. Using 3-class FCM

provided stable results and for every time it was used, the results were always

consistent.

Connected Components labeling is used to label the identified objects in the

image after clustering. The bounding box surrounding each component and their

respective areas are calculated. The aim of splitting, clustering and labeling the

identified components in an image is to detect the lung components. This is
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determined using the width to height ratio, the size of the components, and the

proximity of the components to each other. The output of the lung region

detection stage is an image with the bounding box delineating the detected lung

components.

This is followed by computing the distances of pixels from the detected lung region.

For this step, two binary images are derived from the output of the lung detection

stage and two distance images are created by applying the distance transform

on each image. The created images are referred to as object distance images

and background distance images. The distance images provide the distance prior

information to be incorporated into the energy framework of Graph Cut.

The final lung segmentation is done with Graph Cut making use of the DCE

described in Chapter 3. The energy, formulated by computing the region term,

the boundary term and the distance term, is minimized to yield the binary image

where one class belongs to the lungs and the other class belongs to the chest

structures and background surrounding the chest wall. There are some structures

within the lungs which should be assigned the same label as the lungs, however,

they have pixels with high intensity values similar to the chest structures, and thus,

are assigned the same label as the chest structures. To correct this mislabeling,

morphological area opening is used to assign the lung label to the structures within

the lungs.

4.2.1 Region Detection

The lung detection process described in [68] is used for region detection. Let I

represent the original CT image containing M ×N pixels. The image is split into

M/p×N/q non-overlapping blocks of size p× q. Let bk,l be the (k, l)th block. The

mean b̄k,l of this block is calculated as

b̄k,l =
1

p× q

p−1∑
i=0

q−1∑
j=0

I(i+p×k), (j+q×l) (4.1)
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Let J represent the dataset containing b̄k,l. Each element jk,l ∈ J is the mean

of bk,l. The size of J is M/p × N/q. FCM is run on J to partition it into three

classes. The resulting clustered image is also of size M/p×N/q.

To restore the clustered image back to the size of the original image, let C represent

the clustered image of J with element ck,l. The value of ck,l represents the class

that b̄k,l belongs to. Therefore, ck,l will be assigned to all the pixels in the (k, l)th

block of the original image. Fig 4.2 provides an example of how the original image

is split, clustered and restored back its original size

(a) (b) (c) (d) (e)

(f)

Figure 4.2: Example of an image of size 512× 512 split into non-overlapping
blocks of size 64×64 which reduces the image to a size of 8×8(a) Original image
(b) Image split into non-overlapping blocks bk,l (c) J containing the mean of
each block b̄k,l (enlarged for clarity) (d) C the clustered image of J (enlarged
for clarity) (e) The class membership of each ck,l in the C is transfered to the
pixels in bk,l. Each value in the matrix corresponds to one block of pixels in the

image (f) Clustered image restored to the same size as the original image

Connected components labeling with 8-neighborhood connectivity is used to

identify and label components in the clustered image. Figure 4.3 shows the

identified components.

Properties such as the bounding box, area and size of each identified component

are calculated. To identify the lungs, the size of the components and the width to

height ratio of the bounding box are used. The rationale for these criteria is that
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textbf(a) (b) (c) (d)

Figure 4.3: Connected Component labeling (a) Clustered Image. (b) -
(d) shows the identified components for each partition. All the identified
components are shown in different colors. The white colored areas are not

part of the components.

the ratio of the width to height of the lungs is usually < 1 in most CT images

and they are usually larger in size compared to other components whose ratios

are also < 1. Other criteria was used in cases where the lung shape did not meet

the ratio and area criteria. These include identifying components with relatively

comparable sizes and determining whether they belong to the same class. The

rationale is that the area of the two lungs in a CT image are usually close in

size. Therefore, two components with similar area size and belonging to the same

cluster have a high probability of being the lung components.

Figure 4.4 provides a summary of the region detection step.

(a) (b) (c) (d) (e)

Figure 4.4: Figure showing the steps of region detection (a) Original image
(b) Image split into non-overlapping blocks (c) Clustered image (e) Detected

lung component surrounded by a bounding box

4.2.2 Distance Computation

Once the lungs have been detected, the next step is to calculate distances of

pixels from the detected lung region. The output of this step are distance images
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computed by applying the distance transform on binary images. These distance

images are images where the value of each pixel is the distance of that pixel to

the nearest pixel belonging to a set of pixels of the object of interest. The

distance transform is the operator which works on a binary image to produce the

distance image. Euclidean distance transform is a transformation using the

Euclidean metric [69] and is employed in this study for calculating the pixel

distances.

Figures 4.5 shows the formation of the distance images. The first binary image

is used to create the distance image which computes the distance of pixels from

the detected lung components. The pixels within the lung components are treated

as the object pixels and the pixels not belonging to the lung components are

treated as the background, thus forming a binary image. The distance transform

is applied to the binary image creating a distance image called the object distance

images. The second binary image is used to create the distance image which

computes the distance of pixels from the bounding box surrounding the detect

lungs. All the pixels within the bounding box are treated as object pixels, while

pixels outside the bounding box are treated as the background, thus creating a

binary image. The distance transform is applied to the resulting binary image

creating the background distance images.

4.2.3 Energy Minimization

The energy function to be minimized has been introduced in Chapter 3 is referred

to as the distance-constrained energy (DCE) and is given as

E = λ
∑
p∈P

Rp +
∑
{p,q}∈N

Bp,q +
∑
p∈P

Kp (4.2)

The negative log-likelihoods for the regional term in equation (2.4) is calculated

from an intensity distribution histogram of the image. This histogram is created

using selected pixels called “seeds” marking pixels which belong to the “object”
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Figure 4.5: Formation of the distance images. From the image showing the
detected lung component surrounded by a bounding box, two binary images are
derived. The distance transform is applied on these binary images to create the

object and background distance images

and “background”. In [33], the “seeds” are selected interactively by the user. In

this work, the seeds are chosen automatically using the knowledge of the absorption

rate of x-rays by different parts of the body. The lungs are made of air, and

therefore, have low intensity values. The chest structures consisting of bones,

fat and soft tissue have intensities ranging from gray to white, and thus, have

higher intensity values. Therefore, the seeds selected for the “object” will be the

pixels with lowest intensities in the detected lung components, while seeds for the

“background” will be the pixels on the border of the bounding box surrounding

the detected lung component. To ensure that the pixels selected are representative

of the chest structure, this study used three rows of pixels starting from the border

of the bounding box and moving outward. This is illustrated in Figure 4.6.

The distance term is estimated from the distance images and is calculated using

equations (3.2) and (3.3). The boundary term is calculated using equation (2.5).

Figure 4.7(a) shows examples of the result of energy minimization which are binary

images showing the pixels labeled as the lungs and pixels not part of the lung
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Figure 4.6: Seed selection. The object pixels are chosen from the white region
marked ”O” while the background seeds are chosen from the pixels beneath the

three boxes colored red, yellow and blue.

labeled accordingly. The pixels of the lung are labeled with black pixels.

4.2.4 Post Processing

In Figure 4.7(a), the lungs are labeled with black pixels. In the region of black

pixels, white specks can be seen. These white specks correspond to high intensity

structures within the lungs such as blood vessels and pathology. According to the

intensity histogram distribution, the high intensity structures should be assigned

different labels from the lungs. However, the goal of segmentation is to extract the

lung region in the image, and thus those high intensity structures need to be re-

labeled to have the same label as the lung pixels. For this purpose, morphological

area opening is employed to correct the mislabeling and targets connected groups
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(a) (b)

Figure 4.7: Examples of the results after energy minimization and after
morphological area opening. The black pixels are the labels for the lungs while
the white pixels label the background. (a) shows the binary image after energy

minimization. (b) shows the mask after morphological area opening

of white pixels smaller than a certain size and eliminates them. Figure 4.7(b)

shows the final binary image after morphology.
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4.3 Experimental Setup

4.3.1 Performance Metrics

The Dice coefficient, Jaccard similarity and Accuracy are the performance metrics

used to evaluate the proposed segmentation method. The Dice coefficient [70] and

Jaccard Similarity [71] measure the degree of similarity and overlap between the

ground truth (GT) masks and the segmentation results (SR). The performance

index ranges from zero to one with an index of zero signifying no overlap between

GT and SR while an index of one signifies perfect overlap between them. The

Dice coefficient (DC) is given as

DC = 2
|GT ∩ SR|
|GT |+ |SR|

(4.3)

The Jaccard similarity (JS) is given as

JS =
|GT ∩ SR|
|GT ∪ SR|

(4.4)

The Dice coefficient and Jaccard Similarity are widely used in evaluating

segmentation results and provide a way of comparing the results of this study

with other methods in literaure, in addition to evaluating the performance of the

proposed method.

The Accuracy is defined in 3.3.2 and calculated using the formula given in equation

(3.6).

4.3.2 Experimental Parameters

Each image is split into non-overlapping blocks of size 8× 8. Distance thresholds

for the distance calculation are as follows: Tho = 20 and Thb = 0. The value of

λ = 1 is used in the DCE. σ in equation (2.5) has been calculated as the variance

of the whole image.
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4.3.3 Experimental Data

The proposed method is tested on subset of images from each database by

comparing ground truth masks with the segmentation results, and calculating

the DC, JS and Accuracy for each image. 100 images were selected from

LIDC-IDRI, TIME1 and TIME2 databases described in Section 3.3 and used for

the experiments. Specifically, 40 images were chosen from LIDC-IDRI and 30

images each were chosen from TIME1 and TIME2 databases. The images in

LIDC-IDRI database are arranged in folders according to similar characteristics

of the pathology found in each set of image. Therefore, each folder contains a

varied mix of images from different patients acquired from CT modality under

different conditions. The images in TIME1 and TIME2 contain images from full

CT exams of different patients. Each exam is stored in different folders for each

patient. In each folder, the images are arranged contiguously from the apex of

the lungs to the base. Ground truth masks were created using K-Space

segmentation tool set [72] and an atlas showing the anatomy of the chest on a

CT image [73].

It was observed that some images from the LIDC-IDRI database posed a

challenge to thresholding using the method in [51], and these images were

included in the experiments. The images selected from the Lung TIME database

are chosen randomly to include the different shapes of the lungs from different

locations in the chest region from the axial view, and were selected to investigate

the performance of the proposed method on images acquired under different

conditions and from CT machines of different manufacturers.

4.4 Experimental Results and Discussion

Table 4.1 shows the performance of the proposed method on images from each

of the three databases and the overall performance on all the images used in the

experiments and is evaluated using DC, JS and Accuracy. The results presented



Chapter 4. Automatic Lung Segmentation 49

in Table 4.1 show that the proposed method has a high performance on the images

tested from all the databases. Figure 4.8 shows the performance of the results on

some images from the three databases.

Table 4.1: Quantitative evaluation using Dice Coefficient (DC), Jaccard
Similarity (JS) and Accuracy

Data Set DC JS Accuracy

LIDC 0.9974± 0.0011 0.9949± 0.0021 0.9953± 0.0020

TIME1 0.9970± 0.0022 0.9940± 0.0043 0.9957± 0.0030

TIME2 0.9975± 0.0017 0.9949± 0.0034 0.9958± 0.0025

Mean 0.9973± 0.0012 0.9946± 0.0024 0.9956± 0.0019

Visual results are presented in Figures 4.9, 4.10, and 4.11. Figure 4.9 shows

examples of images from the LIDC-IDRI database. Figure 4.10 shows examples of

images from TIME1 dataset. Figure 4.11 shows examples of images from TIME2

dataset.

Figure 4.8: Performance of the Proposed method evaluated with Dice
Coefficient (DC), Jacquard Similarity (JS) and Accuracy on a subset of images
from the three databases. Images numbered from 1 to 8 are from LIDC-IDRI
database. Images numbered from 9 to 16 are from TIME1 database. Images

numbered from 17 to 24 are from TIME2 database
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(a) (b) (c) (d)

Figure 4.9: Examples of segmentation results using the proposed method on
images from LIDC-IDRI database. (a) Original Image (b) Ground Truth (c)

Segmented Lungs (d) Segmented Lungs overlaid on the Original Image

4.4.1 Comparison with the State-of-the-Art

This section provides an indirect comparison with methods in literature due to

the different conditions under which their experiments were carried out. Table

4.2 presents the results of the methods described from literature and compares

them with the average results obtained by the proposed segmentation method.

The method developed by Massoptier et al. [45] was tested on 168 lung CT slices

obtained for clinical purposes and achieved a mean Dice Coefficient index of 97.42%

and a distance error of 0.97mm when comparing the segmentation results against

manually-delineated images made by an expert. Pu et al. [48] achieved a Jaccard

Similarity of 95.1±2.0% and RMS error of 0.15±0.092 after testing their method

on 230 lung CT images from three different sources. The ground truth images

were obtained from manual delineations of the images done by a radiologist. Wei
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(a) (b) (c) (d)

Figure 4.10: Examples of segmentation results using the proposed method
on images from TIME1 database. (a) Original Image (b) Ground Truth (c)

Segmented Lungs (d) Segmented Lungs overlaid on the Original Image

et al. [50] performed the evaluation of their method on two databases. 97 CT

images were selected from a Lung Nodule database and 25 scans were selected

from a Juxtapleural Nodule Database. They obtained a mean Jaccard Similarity

of 95.24% by comparing their segmentation results with gold standards obtained

from manually traced contours from three experienced chest radiologists.

Table 4.2: Comparison with other methods in the Literature

Method JS DC

Massoptier et al [45] − 97.42%

Pu et al [48] 95.1± 2.0% −

Wei et al [50] 95.24% −

Proposed Method 99.46± 0.24% 99.73± 0.12%
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(a) (b) (c) (d)

Figure 4.11: Examples of segmentation results using the proposed method
on images from TIME2 database. (a) Original Image (b) Ground Truth (c)

Segmented Lungs (d) Segmented Lungs overlaid on the Original Image

4.4.2 Computation Time

The proposed method was implemented in MATLAB R© R2010a using its Image

Processing toolbox on a system with Intel Core(TM) i7-4770S @ 3.10Ghz, 8.00GB

RAM. The average runtime for an image of size 512 × 512 is 1.71seconds ±

0.584. Figure 4.12 shows the average time taken to complete each step. Energy

minimization has the highest runtime while morphological area opening has the

lowest. The runtime of the detection step has been reduced from about 0.54

seconds to 0.14 seconds by splitting the image into non-overlapping blocks ensuring

that FCM algorithm runs on a smaller data size rather than on the original image

size. Using FCM on an image of size 512 × 512 implies that the input data size

is 262, 144. However, by splitting the image into non-overlapping blocks of size

8 × 8, the input data size becomes 4096. Since the distance computation simply
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Figure 4.12: The average time taken to complete each step of the algorithm

involves applying a distance transform on binary images from the detection step,

the runtime is very low.

4.4.3 Effect of block size

The block size affects the accuracy and speed of the region detection step of the

proposed method. Figure 4.13 shows an example of the output of clustering as

the block size is varied. As the block size increase, it becomes increasing difficult

to determine which components belong to the lungs’ segment. As can be seen

in Figure 4.13(f), thin areas of the lungs get separated at larger block sizes, and

gradually disappears. In Figure 4.13(h), the left and the right lung merge together

to become a single component. In Figure 4.13(j), the result of the clustering does

not yield semantically meaningful partitions. Although progressively increasing

the block size increases the difficulty of detecting the lung components from the

image, it has advantage of reducing the time taken to complete clustering. This

is illustrated in Figure 4.14.
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(a) (b) (c)

(d) (e)(f)

(g) (h) (i)

(j)

Figure 4.13: Example of the output of FCM clustering as the block size is
varied in the region detection step (a) Original Image (b) block size = 1× 1 (c)
block size = 2 × 2 (d) block size = 4 × 4 (e) block size = 8 × 8 (f) block size
= 16 × 16 (g) block size = 32 × 32 (h) block size = 64 × 64 (i) block size =

128× 128 (j) block size = 256× 256
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Figure 4.14: Graph of FCM clustering computation time against the block
size used in splitting the image showing that as the size of the block increases,

the computation time decreases.

4.4.4 Images from LIDC-IDRI dataset which pose a

challenge to an optimal thresholding method

Figure 4.15 presents the results of images from LIDC-IDRI dataset which did not

yield the required result when initially partitioned with the optimal thresholding

method in [51]. They were successfully partitioned using the proposed method.

4.4.5 Worst case Examples

There are some cases where the algorithm is unable to isolate the lungs accurately.

In some images, the trachea is very close to the lungs causing it to be included

in the final results. Another problem is the presence of high intensity structures

connected to the boundary of the lungs making it difficult to find the true boundary

of the lungs. In other images, the lung boundaries are indistinct and appear

blurred, thus making it difficult to find the true lung boundary. Figures 4.16, 4.17

and 4.18 presents some examples of the worst case example. The performance of

the proposed method on these images are part of the figures presented in Table

4.1.
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4.5 Conclusion

In this chapter, the proposed lung segmentation method has been described. The

method includes algorithms for detecting the lung region and calculation of the

distance of pixels from the detected region. Subsequent steps of the method include

algorithms for the energy formulation incorporating the distance prior, and energy

minimization producing the binary labeling of the image. Finally, morphological

area opening is used to ensures that all regions within the lungs are included in

the final segmentation results. The experimental results have been presented and

discussed and show the proposed method gives a high performance and produces

highly accurate segmentation of the lungs from a CT image.

The next chapter concludes the dissertation and provides directions for future

work.
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(a) (b) (c) (d)

Figure 4.15: Segmentation results on images from LIDC-IDRI database which
pose a challenge to Otsu thresholding. (a) Original Image (b) Ground Truth

(c) Thresholding with Otsu’s [51] method (d) Segmented Lungs
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(a) (b) (c)

Figure 4.16: Examples of images showing the failure of the proposed method
to exclude the trachea from the segmentation results. (a) Original Image (b)

Ground Truth (c) Segmentation Result
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(a) (b) (c)

Figure 4.17: Examples of images showing the failure of the proposed method
to accurately segment the boundary of the lungs due to blurred edges of the

lungs (a) Original Image (b) Ground Truth (c) Segmentation Result
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(a) (b) (c)

Figure 4.18: Examples of images where high intensity structures are connected
to the lung boundaries. (a) Original Image (b) Ground Truth (c) Segmentation

Result
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Conclusion and Future Work

5.1 Conclusion

Segmentation is very important in medical imaging, especially in the area of

medical image analysis. Advances in data acquisition technologies have inspired

research on ways that Diagnostic Medicine can benefit from the increasing

capability of the computers. Early works attempted to make the computer

output diagnosis independently, but were met with limited success as it proved

difficult to program the complex human thought process into the machine.

Recent research has turned towards the use of computers to assist the diagnostic

process by acting as a second-opinion while the physician makes the final

judgment. The adoption of Computer-aided Detection (CAD) systems has been

quite slow due to the high rate of false positive detections which limit the

reliability of its output. Therefore, much work still needs to be done to increase

the accuracy of the results.

Segmentation is an important step which greatly influences the accuracy of the

CAD system. Many studies have been carried out on segmenting the lungs from

thoracic CT images. However, many of these methods have only been tested on

small image datasets, and thus the performance on a wide range of images acquired

from different sources is unknown. In addition, absence of benchmark results

61



Chapter 5. Conclusion and Future Work 62

greatly affects the evaluation of these methods which tend to make it subjective

to the knowledge of the available expert.

In this dissertation, an automatic segmentation model was proposed using Graph

Cut optimization for isolating the lungs’ tissues from a CT image, done by

incorporating a distance prior as an additional constraint into its energy

framework. The distance prior is calculated as the euclidean distance of pixels

from the border of the lung region, and thus the first step of the segmentation

model involves detecting the lung region. The proposed method does not require

the user to select seeds as this is done automatically.

Experiments were carried out to compare between the segmentation results when

the Graph Cut energy is used with the distance prior and without the distance

prior to determine its suitability as a constraint for restricting the solution space

of Graph Cut optimization with the aim of segmenting only the pixels of the lungs.

The energy with the distance prior, referred to as the distance-constrained energy

(DCE), is then minimized and outputs the binary labeled image with the pixels

of the lungs belonging to one class and the rest of the image belonging to another

class.

The results obtained from the experiments which compare the segmentation

results using the Graph Cut energy with and without the distance prior show

that the DCE greatly improves the Specificity and Accuracy of the results while

the Sensitivity is largely unchanged. This is because both energy functions were

able to accurately identify the pixels of the lungs, which accounts for the

Sensitivity index. However, the DCE is also able to isolate the pixels of the lung

from pixels with similar intensity to those of the lungs, which accounts for the

improvements to Specificity and consequently, the Accuracy indices of the result.

These results demonstrate the viability of the distance prior as a constraint

enabling the Graph Cut optimization to achieve more accurate lung

segmentation results.

The proposed lung segmentation model achieved high performance indices from

the experiments carried out using the Dice Coefficient, Jaccard Similarity and
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Accuracy performance metrics for evaluation. Specifically, the model achieved a

Dice Coefficient of 0.9973± 0.0012, a Jaccard Similarity index of 0.9946± 0.0024

and an Accuracy of 0.9956 ± 0.0019. The performance of the proposed method

is usually affected by the presence of high intensity structures within the lungs

attached to the border of the lungs. Compared to the methods in the literature

using the same performance metrics, the proposed segmentation model achieved

better results.

5.2 Future Work

The proposed model using Graph Cut optimization is able to successfully segment

the lungs from CT images. However, its success is dependent on the good choices of

parameters in several steps of the method, and therefore, future work will involve

finding ways to automatically determine these parameters.

Firstly, the block size used in the image splitting step determines the success

of the region detection stage. The smaller the block size, the longer the time to

perform clustering and vice versa. Furthermore, the larger the block size, the more

difficult it is to detect the lungs from the image. This has been demonstrated in the

previous chapter. Therefore, future work will involve finding a suitable algorithm

for image splitting or oversegmenting the image. It could also involve finding other

algorithms for the image splitting and clustering steps.

Secondly, the clustering method used in this study was FCM. In future studies, the

sensitivity of using other clustering methods could be explored. Also, the effect of

varying the number of partitions in the image could be examined.

Thirdly, the euclidean distance between pixels was used in defining the distance

prior in this study. Future work could include the testing of the sensitivity of the

distance prior definitions using other types of distances such as chessboard, city

block, or quasi-euclidean.



Chapter 5. Conclusion and Future Work 64

Fourthly, the energy minimization step has the highest computational cost of all

the steps in the proposed method. One reason is that the size of the graph to

be constructed affects the speed of the energy minimization. An image of size

512× 512 pixels connected with four neighborhood will have about 262, 146 nodes

and at least 1, 574, 916 vertices. Therefore, future work could involve using efficient

methods to reduce the graph size to speed up the computation time and reduce

the overhead incurred.

The proposed method was only tested on 100 images from three databases.

Future work will involve testing their performance on more images and from

other databases.
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