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Abstract

Classification and forecasting of solar irradiance patterns has become increasingly important for

operating and managing grid-connected solar power plants. A powerful approach for classification

of irradiance patterns is by clustering of daily profiles, where a profile is defined as irradiance

as a function of time. Classification is useful for forecasting because if the class of a day can be

successfully forecast, then the irradiance profile of that day will share the general pattern of the class.

In Durban, South Africa (29.871 ◦S; 30.977 ◦E), beam and diffuse irradiance profiles were recorded

over a one-year period and normalized to a clear sky model to reduce the effect of seasonality, from

which several variables were derived, namely minute-resolution beam, hourly-resolution beam and

diffuse, and hourly-resolution beam variability. To these variables, individually and in combination,

k-means clustering was applied, and beam irradiance was found to be the one that best distinguishes

between sky conditions. In particular, clustering of hourly-resolution beam irradiance produced four

classes with diurnal patterns characterized as sunny all day, cloudy all day, sunny morning-cloudy

afternoon, and cloudy morning-sunny afternoon. These classes were then used to forecast beam

and diffuse irradiance for the day ahead, in association with cloud cover forecasts from Numerical

Weather Prediction (NWP) output. Two forecasting methods were investigated. The first used k-

means clustering on predicted daily cloud cover percentage profiles from the NWP, which was a

novel aspect of this research. The second used a rule whereby predicted cloud cover profiles were

classified according to whether their averages in the morning and afternoon were above or below

50%. From both methods, four classes were obtained that had diurnal patterns associated with the

irradiance classes, and these were used to forecast the irradiance class for the day ahead. The two

methods had a comparable success rate of about 65%. In addition, hour-ahead forecasts of beam

and diffuse irradiance were performed by using the mean profile of the forecast irradiance class

to extrapolate from the current measured value to the next hour. The method showed an average

improvement of about 22% for beam and diffuse irradiance over persistence forecasts. These results

suggest that classification of predicted cloud cover and irradiance profiles are potentially useful for

development of class-specific, multi-hour irradiance forecast models.
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Chapter 1

Introduction

This chapter introduces solar forecasting and its importance for solar power plants. It briefly de-

scribes solar forecasting methods and some previous studies that used them. The chapter sets out the

different approaches that were considered during the development of a forecasting model for Dur-

ban, and the reasons that led to the use of clustering and cloud cover forecasts, to produce day-ahead

irradiance forecasts. It concludes with a list of research objectives and a thesis outline.

1.1 Solar forecasts for power plants

Forecasting of solar energy has become an important tool for efficiently operating and managing

grid-connected solar energy plants. The variability in irradiance at ground level results in fluctua-

tion of power output of solar power plants, causing grid instability and uncertainty in power output.

With the growing number of solar power plants, the need for forecasting technologies is increasing

as they become invaluable for grid operators who manage installations.

The variable nature of solar energy at ground level is due to clouds, aerosols and water vapour.

Of these, clouds are dominant and therefore there is a need to predict their amount, velocity and

transmissivity (Marquez and Coimbra, 2013). Cloud movement, having a highly stochastic nature,

presents a significant challenge to achieving an accurate depiction of the local cloud distribution.

Cloud properties such as size and spatial distribution, composition (vapour, liquid or ice particles)

and opacity are some of the characteristics responsible for their complex interaction with radiation.

These factors significantly contribute to the high level of difficulty associated with the development

of efficient solar forecasting models.

1



Chapter 1. Introduction 2

With the addition of large-scale solar power plants i.e. photovoltaic (PV) and concentrated so-

lar thermal (CST) systems, grid-related activities such as load following and management, power

scheduling and unit commitment, and maintenance scheduling as well as other necessary plant oper-

ations will greatly benefit from solar forecasts (Inman et al., 2013). Knowledge of irradiance levels

will enable plant operators to efficiently manage the above-mentioned activities and lower opera-

tional and maintenance costs by limiting the use of ancillary devices such as back-up generators.

1.2 Classification of irradiance

The development of an effective forecasting model is contingent on a proper understanding of solar

irradiance patterns at a location of interest. This is key to understanding and characterizing the

solar resource at a location. A powerful approach to understanding solar irradiance patterns is by

classification and characterization of irradiance profiles using cluster analysis (or clustering). A

profile is defined as irradiance as a function of time over a day. An example of a profile is given

in Figure 1.1, where the profile is the minute-resolution direct (beam) irradiance component and

is denoted as B. This thesis investigates the use of clustering for classification and forecasting of

irradiance profiles in Durban. Located on the east coast of South Africa, Durban is a region with

humid sub-tropical climate and significant cloud variation. Although its direct normal, global and

diffuse irradiance characteristics have been described (Lysko, 2006; Zawilska and Brooks, 2011),

limited work has been done to characterize the irradiance patterns using a clustering approach.

Furthermore, for Durban, there has been limited work related to classification of irradiance profiles

for forecasting.

As seen from the solar forecasting literature (Diagne et al., 2013; Inman et al., 2013; Kleissl,

2013), some well-known and commonly-used forecasting methods include statistical (linear and

non-linear), image-based (using satellite and ground-based sensors) and Numerical Weather Pre-

diction (NWP) methods. Statistical methods are applied to time series data and involve analyzing

their past patterns to make a forecast. These include techniques such as Linear Regression (LR),

Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA)

and Artificial Neural Networks (ANNs). Image-based methods use cloud imagery, either from a

satellite or a ground-based device, to track cloud motion. This is achieved by applying cloud mo-

tion vectors (CMVs) to consecutive cloud images and, based on their speed and trajectory, future
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Figure 1.1: Typical irradiance profile for the minute-resolution beam irradiance component, B, on a mostly

clear day for 9 June 2017 in Durban.

cloud positions are predicted. The NWP method uses mathematical models to simulate the state

of the atmosphere based on a set of initial conditions. Atmospheric variables such as temperature,

precipitation, humidity, pressure, wind speed and direction and cloud cover are available as outputs

from NWP forecasts (Chaturvedi, 2016; Kleissl, 2013). Of particular interest in the present work is

the cloud cover forecast from the NWP.

Clustering of daily irradiance profiles forms the basis of this thesis, and the main aim was to

investigate the use of clustering for forecasting. In general, the aim of cluster analysis is to identify

groups of similar objects, where objects in a cluster are more similar to each other than objects

in different clusters (Halkidi et al., 2001). Clustering therefore can reveal information about the

data that may have been previously unnoticed. For the present work, clustering of daily irradiance

profiles was used to conduct a classification and characterization of the solar irradiance patterns in

Durban. Classification is useful for forecasting because if the class of a day can be successfully

forecast, then the irradiance profile of that day will share the general pattern of the class. For the



Chapter 1. Introduction 4

classification and characterization of solar irradiance patterns in Durban the first part of this thesis,

and the first objective of this research, presents a clustering of minute-resolution beam irradiance

profiles.

Several early studies, for example Zangvil and Lamb (1997), Muselli et al. (2000), Muselli et al.

(2001), Maafi and Harrouni (2003), Diabaté et al. (2004), Harrouni et al. (2005), Soubdhan et al.

(2009), Gastón-Romeo et al. (2011) and Kang and Tam (2013) have investigated classification of

days based on solar irradiance profiles. The most commonly-used parameter among these studies

was the clearness index, kt, which is the ratio of the measured global horizontal irradiance (GHI)

at the Earth’s surface to the Top of Atmosphere (TOA) or extraterrestrial irradiance. In addition,

these studies focused mainly on classification of irradiance profiles and did not consider forecast-

ing. Studies that are more closely related to the present work include those of Badosa et al. (2013),

Badosa et al. (2015), Jeanty et al. (2013), McCandless et al. (2014) and McCandless et al. (2015).

McCandless et al. (2014) used clustering applied to kt to identify cloud regimes and thereafter so-

lar irradiance models were developed specifically for each regime. In McCandless et al. (2015), 7

cloud regimes were identified and used for forecasting, and several NWP outputs including cloud

cover were considered, but were not used for forecasting. Badosa et al. (2015) explored the use of

exogenous variables such as synoptic wind and humidity for day-ahead irradiance forecasts. Al-

though cloud cover was not used, the novelty of the study lay in using only exogenous variables

in the model. The method was successfully used for day-ahead irradiance forecasts. Similar to

the present work, Jeanty et al. (2013) used clustering for classification of the irradiance profiles in

Reunion Island, and the establishment of classes that describe the diurnal patterns. Even though the

authors indicate that the classes can be used for forecasting, the study did not pursue this avenue

of investigation. Instead, through clustering of a single variable, the study was limited to providing

a classification and characterization of the solar irradiance patterns in Reunion Island. The studies

discussed above provide a basis where much of the present study focuses on clustering and classifi-

cation, and how it can be applied to forecasting.

1.3 Development of a solar forecasting model for Durban

In the development of a forecasting model for Durban, different forecasting methods were investi-

gated including LR, ARIMA and ANNs. LR and ARIMA use a fit to time series data to extrapolate
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and predict future values. Examples of such studies that have used these approaches include Paoli

et al. (2010), Voyant et al. (2011), Voyant et al. (2012), Paoli et al. (2014) and Lauret et al. (2016).

A limitation of these time series approaches is that they are unable to accurately predict deviations

from the irradiance trend that are caused by clouds, and are referred to as excursions. With refer-

ence specifically to beam irradiance, excursions may occur during clear days where the irradiance

decreases from clear sky values to close to zero due to the presence of clouds obscuring the Sun.

Alternatively, excursions may occur during cloudy days where the irradiance increases from zero to

almost clear sky values due to gaps in the clouds.

Excursions are difficult to predict using only irradiance time series and it was for this reason

that LR and ARIMA techniques were not used in the present work. ANNs, on the other hand, are

able to model more complex behaviour in time series data but require a large amount of data for

training of the network. Due to the lack of uninterrupted, long-term meteorological and irradiance

records in Durban, ANNs were also not used. Furthermore, in an attempt to combine different data

sources in the forecasting method, the use of satellite imagery was also investigated. However, due

the high cost associated with acquiring high spatial and temporal resolution imagery over Durban,

this avenue was not pursued. Considering these factors, investigating the use of clustering and clas-

sification of available radiometric data for forecasting emerged as a promising avenue.

For the classification and characterization of the irradiance patterns in Durban, clustering was

applied to minute-resolution profiles of the beam irradiance, normalized to a clear sky model, over

a period of one year. As will be shown in Chapter 5, the horizontal beam irradiance variable used

for clustering by Jeanty et al. (2013) is dependent on seasonality. Although the present work is

similar to that of Jeanty et al. (2013), clustering was applied to the normalized beam irradiance. The

normalized beam irradiance removes seasonal dependency and hence any variation in the signal is

mainly due to cloud conditions. Since this study investigates clustering of irradiance profiles under

different cloud conditions, introducing the normalized beam irradiance was appropriate.

Due to the high number of dimensions present in the minute-resolution normalized beam ir-

radiance profiles, a pre-processing technique was applied prior to clustering. The pre-processing

technique was Principal Component Analysis (PCA), that takes high-dimensional data and reduces

it to a lower dimension while retaining most of the information. As described by Jolliffe (2002), this

is achieved by transforming to a new set of axes, called Principal Components, which are ordered

successively so that the first few components retain most of the variance present in the original data.
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The beam and corresponding diffuse irradiance classes resulting from the pre-processing and clus-

tering, characterize the diurnal irradiance patterns in Durban.

As mentioned earlier, cloud cover forecasts are of particular interest for the present work. Cloud

cover forecasts from NWP output are publicly-available from a weather-service provider at hourly-

resolution for the day ahead. One of the aims of the present work was to investigate how clustering

of irradiance and the resulting classes can be combined with cloud cover forecasts from the NWP,

to forecast irradiance for the day ahead. One of the steps to achieving this was to apply clustering

to cloud cover profiles, and to correlate them with irradiance clusters. However, since cloud cover

profiles were only available at hourly-resolution, the original minute-resolution irradiance profiles

were reduced to hourly-resolution to match the temporal resolution of the cloud cover forecasts.

Clustering was then applied to the hourly-resolution irradiance profiles and it will be shown that

(1) hourly-resolution profiles produce the same clustering as minute-resolution profiles and (2) the

clustering of the hourly-resolution beam irradiance profiles produces classes that can be associated

with those from the clustering of cloud cover. The clustering of cloud cover output from the NWP,

and its correspondence with clustering of beam irradiance for day-ahead forecasting, is a novel as-

pect of this thesis.

The conversion of beam irradiance profiles from minute-resolution to hourly-resolution can re-

sult in a loss of information. Therefore in order to regain some information that was originally

contained in the minute-resolution data, variability in the beam irradiance profiles was also inves-

tigated. Variability that in this context is the short-term fluctuations in the irradiance due to clouds

that occur at the minute-timescale. Studies that have applied clustering to irradiance variability in-

clude that of Watanabe et al. (2016) and Zagouras et al. (2013). However, these studies focused

on spatial variability over different geographical regions, rather than temporal variability at hourly-

scale for a single geographical location, as in the present work. For the present work, variability

in the beam irradiance derived from the minute-resolution data, and clustering were applied to the

resulting hourly-resolution beam variability profiles. In addition, investigating the beam variability

profiles led to clustering the combination of beam irradiance and its variability, to form a two-

variable clustering set. This combination was intended to investigate whether a stronger clustering

solution emerges to forecast irradiance for the day ahead.

For this thesis, forecasting daily irradiance class profiles uses cloud cover forecasts from the

NWP in combination with clustering of irradiance profiles. For day-ahead irradiance forecasts, two
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methods were investigated. The first uses clustering of cloud cover and the second uses a simple set

of decision rules called the “50% rule”. The methods provide a day-ahead forecast of the class mean

profiles for both beam and diffuse irradiance quantities. The reason for forecasting beam and diffuse

quantities is that they are both important for solar power plants. Furthermore, global irradiance can

be found if both quantities are known.

In addition to forecasting the irradiance class for the day-ahead, forecasts for individual hourly

values of beam and diffuse irradiance i.e. hour-ahead forecasts are presented. The method used

is called “Persistence of the Class Trend”. The method also makes use of the NWP cloud cover

forecast to classify the day into a class. Thereafter, the method uses the actual measured value and

the class mean for the current hour, and the class mean for the next hour to predict beam and diffuse

irradiance for the hour ahead. It will be shown that in some cases the method is an improvement

from traditional Persistence because it uses the class mean profile as a reference against which the

prediction for the next hour can be adjusted.

In summary, this investigation focuses on the use of clustering and classification of irradiance

combined with cloud cover forecasts for day-ahead irradiance forecasts. The clustering of several

irradiance variables which could be used for forecasting was investigated. In addition to minute-

resolution normalized hourly-resolution beam, hourly-resolution diffuse irradiance and variability

in the normalized beam irradiance were also clustered. To investigate which would be most useful

for forecasting, some of these variables were clustered separately and some combined to form a

multi-variable clustering set. From the clustering of the several irradiance variables, it is shown that

beam irradiance gives the best clustering solution for combination with cloud cover, for forecasting

irradiance in Durban.
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1.4 Research objectives

The specific objectives of this research are as follows:

• Use clustering analysis techniques to classify and characterize solar irradiance patterns in

Durban, South Africa.

• Investigate several irradiance clustering variables, for example normalized beam irradiance

and the combination of the normalized beam irradiance with its variability, to find which

gives the best clustering solution that can be used for day-ahead forecasting.

• Combine Numerical Weather Prediction cloud cover forecasts and the clustering results to

develop a model for day-ahead forecasting of daily normalized beam and diffuse irradiance

profiles for Durban.

1.5 Thesis outline

This thesis is structured into seven chapters. Chapter 2 contains a general overview of terrestrial

solar radiation. Ground-based solar radiation instrumentation for measurement of the three main

irradiance components is described. The normalization of the irradiance components was done by

the use of a clear sky model, whose selection and implementation are highlighted. The variables

used for clustering in the remaining chapters are defined.

Chapter 3 gives an overview of the different forecasting methods with their relevant strengths

and weaknesses. Three forecasting horizons are defined and a review of the solar forecasting liter-

ature within each of the forecasting horizons is presented. This chapter presents an illustration that

summarizes the most effective forecasting method for the different forecasting time horizons.

Chapter 4 begins with an introduction of cluster analysis and reviews the literature on the ap-

plication of clustering to solar irradiance measurements. The theory of dimension reduction, a

pre-processing step to cluster analysis and cluster analysis techniques which form the basis for

the development of a forecasting model for this research, are presented. In addition, a description

of how dimension reduction and clustering techniques are applied to understand, characterize and

classify solar irradiance patterns in Durban is given. A set of minute-resolution horizontal beam

irradiance profiles are used to illustrate the dimension reduction and clustering techniques.
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Chapter 5 details the classification of irradiance profiles using clustering. Clustering is applied

to several variables which are derived from radiometric data. Some variables are clustered on their

own and some in combination. Initial results and comparisons for each of the clustered variables

are presented. From clustering the normalized beam irradiance profiles, a set of classes that classify

and characterize the solar irradiance patterns in Durban are established.

Forecasting using the classes established in Chapter 5 is the focus of Chapter 6. First, day

forecasts (in the form of a class) are produced using two methods and second, hourly forecasts for

individual values of beam and diffuse irradiance are presented. Details of each of the forecasting

methods are described. Results such as the success rate of the forecasting methods, in the case of

the day forecasts, and quantification of the forecast error using an appropriate error metric, in the

case of hourly forecasts, are given.

A discussion of the clustering and forecasting results from previous chapters is presented in

Chapter 7. This includes a discussion of the clustering solution that provides the best characteri-

zation of the solar irradiance patterns in Durban and a comparison between forecasting methods.

Chapter 8 gives a conclusion of the main findings of this study.



Chapter 2

Solar radiation and instrumentation

This chapter includes an overview of solar radiation at ground level and its variation throughout

the year. Measurement of the solar resource using ground-based instrumentation is discussed, and

details of the sensors used for measuring direct (beam), diffuse and global irradiance are given.

The selection of a clear sky model is motivated and examples of clear sky profiles for Durban are

presented. The chapter concludes with the definition of a set of radiometric variables that are used

for clustering, and examples of the normalized daily beam and diffuse irradiance profiles.

2.1 The solar spectrum

The radiation emitted from the Sun is in the form of electromagnetic waves of varying wavelength,

λ. Most of the electromagnetic energy is concentrated in the ultraviolet (100< λ < 400 nm), visible

(400 < λ < 700 nm) and infrared (700 < λ < 1×106 nm) regions of the spectrum (Goswami et al.,

1999). Some of these wavelengths are screened from the Earth’s surface by different layers of the

atmosphere. The main wavelength reaching the surface is that of visible light. However, portions

on either side of the visible spectrum are not completely cut off and are able to pass through the

atmosphere. These are the ultra-violet and infrared ranges. The infrared range has wavelengths that

are too long to be seen by the naked eye, whereas the ultra-violet region contains wavelengths that

are too short. The solar spectrum is approximately equal to that of a black body at a temperature

of 5800 K. Due to the absorption of certain frequencies by atmospheric constituents such as water

vapour, dust particles, ozone and other molecules in the air, the spectrum that is received by the

Earth’s surface is significantly altered (Sen, 2008). Figure 2.1 shows the solar radiation spectrum.

10
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Figure 2.1: Spectral distribution of solar energy above the atmosphere (red) at zero air mass and the altered

spectrum (blue) that reaches the surface of the Earth at air mass equal to 1.5. Adapted from Lysko (2006).

As described by Duffie and Beckman (1991), irradiance is the rate at which radiant energy is

incident on a surface, per unit area of surface. It is typically measured in W/m2. The amount of

solar radiation reaching the surface of the Earth is greatly reduced by the absorption, reflection and

scattering of light. Factors such as air molecules, clouds, dust particles and water vapour contribute

to the reduction of the amount of sunlight received. Radiation that is scattered is referred to as

diffuse solar radiation. The radiation that does not undergo scattering, absorption or reflection is

known as direct or beam radiation. The direct and diffuse solar radiation can be summed to give the

global solar radiation. According to Myers (2005), the global (sky+solar disk) radiation, G, incident

on a horizontal surface is the sum of the beam radiation, B, projected onto the surface and hence

modified by the cosine of the incidence angle of the beam, ib, and diffuse sky radiation, D, from the

dome of the sky excluding the Sun. This relationship is expressed by

G = B cos(ib) +D. (2.1)
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2.2 Sun-Earth geometry

The orbit of the Earth around the Sun is slightly elliptical with an eccentricity ε (i.e. the ratio of

major to minor axis) of 0.0167. The eccentricity of the orbit produces changes in the Earth-Sun

distance, or “radius vector”. The speed of the Earth varies within its elliptical orbit i.e. is higher

at the perihelion (the closest approach of the Earth to the Sun) than at the aphelion (the farthest

approach of the Earth to the Sun) (Myers, 2013).

The obliquity of the ecliptic i.e. the plane of the Earth’s annual orbital motion around the Sun

is another factor that contributes to variation in the Earth’s motion. As stated in Muller (1995),

the equal angles which the Sun in its apparent movement goes through in the ecliptic, does not

correspond to equal angles that are measured on the equatorial plane. The angles measured on

the equatorial plane are relevant for the measurement of time, since the daily movement of the

Sun is parallel to the equatorial plane. The angle between the equatorial plane and the ecliptic is

the declination angle, as will be defined in equation (2.2). The declination can be regarded as the

deviation between the projected equatorial plane and the orbital plane. The ecliptic is inclined to

the celestial equator by an amount equal to the declination, and it is this tilt that gives rise to the

obliquity. Therefore, the eccentricity of the Earth’s orbit and the obliquity of the ecliptic are the two

factors that are responsible for the Equation of Time (EOT ).

The amount of irradiance received at ground level varies with the Earth’s tilt and its motion as

it orbits the Sun. Due to the eccentricity of the Earth’s orbit, there is a 3% increase in the solar

radiation intensity at perihelion and a 3% decrease at aphelion. The 23.45 ◦ axial tilt of Earth’s

rotation axis, with respect to the plane of Earth’s orbit, produces the seasonal weather changes

(Myers, 2013). This angle is termed the declination angle and denoted as δ. The declination angle

also causes the daily variation in the points on the horizon where the sun rises and sets, the path of

the sun through the sky, and the day length Myers (2013). Therefore, depending on the season, the

amount of irradiance received at the surface of the Earth varies. The elliptical orbit of the Earth’s

path around the Sun is shown in Figure 2.2. It indicates the position of the Earth relative to the

Sun at different times of the year i.e. during the equinoxes and the solstices. For the southern

hemisphere the equinoxes occur in March and September and the winter and summer solstices in

June and December, respectively.
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Figure 2.2: Motion of the Earth about the Sun. For the southern hemisphere the equinoxes occur in March

and September and the winter and summer solstices in June and December, respectively. Adapted from

Kalogirou (2009).

The declination angle varies through the year and is at its extreme during the solstices (longest

or shortest length of day) and at zero during the equinoxes (equal day and night). The variation of

this angle, is shown in Figure 2.3 and the declination angle can be approximated by

δ = δo

(
sin

360 ◦(284 + n)

365

)
, (2.2)

where δ varies between +δo = +23.45 ◦ (mid-summer in the northern hemisphere) and −δo =

−23.45 ◦ (mid-winter in the northern hemisphere) and n = day number. (Twidell and Weir, 2006).

The time it takes Earth to traverse equal distances along its elliptical orbit varies through the

year, while the Earth’s daily rotation rate is constant. Therefore, the local standard time that the

Sun is located on the local meridian (local solar noon) will vary through the year. For solar energy

calculations, apparent solar time (ST ) is used to express the time of day. Apparent solar time is
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Figure 2.3: Variation of the declination angle through the year. The Earth’s circles of latitude are shown. A

declination angle of 0 ◦ denotes the two equinoxes. Adapted from Twidell and Weir (2006).

based on the apparent angular motion of the sun across the sky and does not coincide with clock

time (Duffie and Beckman, 1991). The difference between standard time and solar time is the EOT.

The relationship between apparent solar time and the local time at a location, referred to as the

local standard time (LST ), is calculated using the following equation:

ST = LST + EOT + (lst − llocal) · 4min/degree, (2.3)

where lst and llocal is the standard meridian of the local time zone and local longitude, respectively

and EOT is time in minutes approximately given by

EOT = 9.87 sin(2BEOT )− 7.53 cos(BEOT )− 1.5 sin(BEOT ), (2.4)

where BEOT = 360(n− 1)/364 degrees (Goswami et al., 1999).

The variation in the intensity of irradiance reaching the surface of Earth induced by the rotation

of the Earth and its position relative to the Sun, is predictable. This variation is not noticeable for

very short time intervals i.e. seconds to minutes, but becomes prominent for longer time intervals

(Kleissl, 2013). The short-term variation in irradiance that is less predictable, and that is of relevance

to the operation of solar power plants, is due to clouds.

2.3 Interaction of clouds with irradiance

A cloud is described by Lohmann et al. (2016) as “an aggregate of water droplets or ice crystals, or

a combination of both, suspended in air”. As described by Rogers and Yau (1989), the existence of
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clouds is due to the physical process of condensation. Condensation occurs primarily in response

to dynamic processes that include widely distributed vertical air movement, convection and mixing.

Within a cloud system there can be individual cloud structures or elements of a cloud that can be

identified by their shape and size. Their sizes could range from 1 to 100 km in spatial extent and

have lifetimes from minutes to hours. Together, they constitute the cloud system. As described by

Tapakis and Charalambides (2013), clouds can also be classified based on their altitude:

• Low level clouds: Cumulus (Cu), Stratocumulus (Sc), Stratus (St), and Cumulonimbus (Cb).

• Mid-level clouds: Altocumulus (Ac), Altostratus (As) and Nimbostratus (Ns).

• High level clouds: Cirrus (Ci), Cirrocumulus (Cc) and Cirrostratus (Cs).

Their composition can be either water droplets (low level clouds), ice crystals (high level clouds) or

a combination of both phases (mid-level clouds).

Measurements of cloud amount are either made automatically i.e. by satellites and ground-

based imagers, or from the ground by visual observation. The total cloud amount, or total cloud

cover, is the fraction of the celestial dome covered by all clouds visible. The assessment of the total

amount of cloud, therefore, consists in estimating how much of the total apparent area of the sky is

covered with clouds (WMO, 2008). According to the World Meteorological Organization (WMO),

the proportion of cloud amount is given in eighths or oktas as in Table 2.1 (Castro-Almazán et al.,

2015).
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Table 2.1: Total cloud amount in oktas and corresponding description of the sky condition. Adapted from

Castro-Almazán et al. (2015).

Oktas Description of sky condition

0 Completely clear

1 Clear

2 Clear

3 Partly cloudy

4 Partly cloudy

5 Partly cloudy

6 Cloudy

7 Cloudy

8 Cloudy

Forecasting of irradiance requires an understanding of its interaction with clouds. As explained

by Tapakis and Charalambides (2013), the effect of clouds on solar irradiance is due to factors

such as reflection, absorption and scattering of the incoming irradiance by cloud particles, and is

strongly dependent on cloud volume, shape, thickness and composition. Furthermore, it is noted

that not all clouds have the same effect on irradiance. There exists different cloud types that have

different dimensions, opacity and composition properties, and these features result in a different

effect on ground-received irradiance. In addition, a single cloud has a different effect on ground-

received irradiance as compared to multiple clouds or overcast sky conditions. According to Myers

(2013), clouds have a three-dimensional characteristic, making the modeling of solar radiation trans-

fer through them and the atmosphere a very complicated process.

Short-term temporal variability of irradiance caused by clouds and their various characteristics

can occur on timescales of seconds to minutes. This type of variability is of particular importance

to the solar power station since it causes disturbances in the power output due to shading of all or

part of the collector field.
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2.4 Clear Sky model

A Clear Sky Model (CSM) estimates ground received irradiance under cloud free skies as a function

of various atmospheric parameters, some of which include aerosols, water vapour, ozone, solar

altitude angle and altitude of the particular site above mean sea level (Reno et al., 2012). In the

absence of ground-based solar monitoring stations, CSMs play a vital role in estimating ground

irradiance which is an essential requirement for the deployment of solar power plants. Some clear

sky radiation models depend on atmospheric turbidity, commonly known as Linke Turbidity (TL)

(Linke, 1922).

Atmospheric attenuation is caused by the scattering of air molecules and aerosol particles, and

by absorption by various atmospheric constituents such as ozone, water vapour, oxygen, and carbon

dioxide (Jacovides, 1997). According to Muneer (1997), TL is defined as the number of clean, dry

atmospheres that would produce the same total depletion of direct solar radiation as that produced

by the actual atmosphere. It is used to describe the turbidity of the atmosphere, and hence the

attenuation of the beam solar radiation fraction and the increase of the diffuse fraction. The larger

the TL, the larger the attenuation of the radiation by the clear sky atmosphere. It depends on the

optical thickness of the clean and dry atmosphere which is sensitive to air mass. Therefore, TL

depends on air mass and consequently, on solar elevation (the solar angle describing the height of

the Sun above the horizon and compliment of the zenith) at the instant of its evaluation.

Many CSMs require several meteorological and/or atmospheric parameters that are generally

inaccessible. Examples of CSMs include Bird, Atwater, MAC and REST2 (Reno et al., 2012).

Table 2.2 lists these CSMs and the required atmospheric input parameters.
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Table 2.2: Clear sky models and the corresponding atmospheric input parameters required. The required

parameters for each model are marked with an “X”. Adapted from (Reno et al., 2012).

Parameter Atwater Bird MAC REST2

Precipitable water X X X X

Pressure X X X

Ground albedo X X X

Broadband aerosol optical depth X X X X

Reduced ozone vertical pathlength X X X X

Humidity X

Temperature X

Angstrom’s wavelength exponents X

Aerosol single-scattering albedo X X

NO2 pathlength X

Turbidity X X

Atwater and Ball (1981) developed a model that focused mainly on the transmittance of so-

lar radiation through clouds, where the different cloud levels were not distinguished. This differs

from the MAC model (Davies and McKay, 1982) which uses cloud information from the different

cloud levels. REST2 that was developed by Gueymard (1989) and the model that requires the most

number of parameters, is a two-band radiation model that divides the solar spectrum into an ultra-

violet/visible and an infra-red band. Within each band, the transmittance of each extinction layer

(ozone, water vapor, mixed gases, molecules and aerosols) is parameterized using spectral transmit-

tance functions.

According to Reno et al. (2012), many of the atmospheric parameters presented in Table 2.2

may be estimated using a constant value, however, doing so will decrease the accuracy of the model.

One method of acquiring a more accurate representation of these parameters is by employing a full

meteorological measurement station at the location of interest to measure all required parameters.

However, due to the high cost involved in the setup and operation of these stations, this option may

not always be possible. Many of the CSMs require several input parameters that are not easily

accessible for Durban. Furthermore, this thesis was restricted to the use of a model that required

only ground-measured radiometric data to estimate TL. Therefore, the Ineichen CSM was chosen.
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The advantage of the Ineichen model is that it requires only a single atmospheric parameter i.e. TL.

The TL values can be estimated using ground-measured beam irradiance data available for Durban,

which is recorded using a pyrheliometer as described in Section 2.5.

As described in Ineichen and Perez (2002), Linke (1922) expressed the total optical thickness

of a cloudless atmosphere as the product of two terms, δcda, the optical thickness of a clear and

dry atmosphere (water and aerosol free), and TL which represents the number of clean and dry

atmospheres producing the observed extinction according to

Bnc = Io · e(−δcda·TL·mA), (2.5)

where Bnc is the beam irradiance, the solar constant Io = 1367 W/m2 and mA is the air mass as a

function of the zenith angle θz. Given Bnc, equation (2.5) provides an estimate TL. To account for

the Earth’s curvature, Kasten and Young (1989) approximated mA as

mA =
1

cos(θz) + 0.50572(6.07995 + (90− θz)e−1.6364)
. (2.6)

Using measured Bnc, equation (2.5) can be solved for TL as

TL =
ln(Io/Bnc)

δcda ·mA

. (2.7)

Equation (2.7) enables TL to be estimated given measured Bnc and estimates of Io, δcda and mA.

Whereas estimation of Io and mA is straightforward, δcda is more complex. Linke (1922) defined

δcda as the integrated optical thickness of the atmosphere free of clouds, water vapor and aerosols,

which was computed from theoretical assumptions and which was validated in a dry mountain

atmosphere. For δcda, Linke (1922) produced the following formulation

δcda = 0.128− 0.054 · log(mA). (2.8)

An alternative formulation by Kasten (1980), was based on a series of spectral data tables published

by Feussner and Dubois (1930) which incorporated both molecular scattering and absorption by the

stratospheric ozone layer. Kasten (1980) fitted the following equation to these tables

δcda = (9.4 + 0.9 ·mA)−1, (2.9)

which is known as Kasten’s pyrheliometric formula. The Kasten Linke turbidity (TLK) is

TLK = ln(Io/Bn)[9.4 + 0.9 · (mA)]/mA, (2.10)
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whereBn is the measured beam irradiance. Studies by Grenier et al. (1995) and Louche et al. (1986)

have proposed the use of updated spectral data in an attempt to improve the formulation of δcda.

In the determination of a new Linke turbidity coefficient, the approach by Ineichen and Perez

(2002) was not to produce a better formulation of δcda, but rather to use TLK as a reference. Ineichen

and Perez (2002) introduced the Linke turbidity coefficient TLK at air mass 2, and a multiplicative

coefficient, b, that is dependent on the altitude, a, of the location. For the beam clear sky irradiance,

the following empirical expression was obtained

BncI = b · Io · e−0.09·mA·(TLK−1), (2.11)

where b = 0.664+0.163
fh1

and fh1 = e
(

−a
8000

)
. The value of 8000 refers to the scale height of the Rayleigh

atmosphere in meters. The parameter fh1 accounts for the altitude of the location with respect to

height of the Rayleigh atmosphere. At sea level, i.e. a = 0, fh1 equals unity and b is approximately

0.83, which is the fraction by which Io will be reduced. At higher altitudes, b > 0.83 and the

fractional decrease in Io is smaller, resulting in a larger fraction of Io reaching the location. Further-

more, for a clean and dry atmosphere i.e. when TLK = 1, there is no atmospheric attenuation and

the beam irradiance in equation (2.11) is simply a fraction of the solar constant.

The turbidity according to Ineichen and Perez (2002), and denoted as (TL), is

TLI =
[
11.1 · ln

( bIo
BncI

)
/AM

]
+ 1. (2.12)

Equation (2.12) was solved for mA = 2 in order to produce the Kasten (1980) clear sky global

irradiance

GhcK = 0.84 · Io cos(θz)e
−0.027·AM(fh1+fh2(TLK−1)), (2.13)

where fh2 = e
(

−a
1250

)
.

Ineichen and Perez (2002) adjusted the Kasten (1980) model for clear sky global horizontal

irradiance to produce

GhcI = cg1Io cos(θz)e
−cg2AM(fh1+fh2(TL−1))e0.01·AM

1.8

, (2.14)

where cg1 = (5.09×10−5)(a + 0.868) and cg2 = (3.92 × 10−5)(a + 0.0387). The cg1 and cg2 param-

eters are the corrections to the altitude of the location, applied by Ineichen and Perez (2002). The

coefficients fh1 and fh2 relate the altitude of the station with the altitude of the atmospheric inter-

actions. At sea level, there will be more atmospheric interaction between the solar irradiance and
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atmospheric constituents, as compared to higher altitudes. As suggested by Miller (1981), at higher

altitudes there are fewer scattering molecules between the Sun and the Earth’s surface.

Similar to equation (2.14), the clear sky diffuse horizontal irradiance (DhcI) may be found by

the difference between the global and direct components

DhcI = GhcI −BncI · cosθz. (2.15)

For normalization of the irradiance components that are required for clustering, the monthly

averages of TLI were estimated using radiometric data in Durban. The radiometric data used in

the Ineichen and Perez (2002) model was recorded in Durban during the year 2013 (Zhandire,

2015). Daily records of DNI for Durban used for computing the TLI values can be accessed from

the Southern African Universities Radiometric Network (SAURAN) data base (SAURAN, 2014).

Examples of daily DNI profiles from this data base are given in Figure 2.4 (a) and (b).

Figure 2.4: An illustration of the selection of clear sky periods from a typical beam irradiance profile during

(a) a day with clouds present in the morning and a clear afternoon and (b) a day with clouds present during

midday and the late afternoon and clear periods during the morning and early afternoon.

In order to compute the TLI values, only clear sky periods should be used as input into the Ine-

ichen model. The selection clear sky periods for computing the TLI values were chosen according

to the criteria described in Ineichen (2006), Chaâbane et al. (2004) and Reno and Hansen (2016).

Generally, clear days will have most of the values that satisfy the criteria described in Chaâbane

et al. (2004); Ineichen (2006); Reno and Hansen (2016). However, partly cloudy days that have
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intermittent periods of clear sky can be extracted and used for estimating TLI . This is illustrated

in Figure 2.4 where the clear sky periods (indicated in red) within typical partly cloudy days that

occur in Durban, may be extracted and used to estimate TLI . The TLI estimates together with the

MATLAB implementation of the Ineichen CSM developed by Sandia National Laboratories (Reno,

2012), produced clear sky estimates of BncI , DhcI and GhcI referred to as DNIc, DHIc and GHIc,

respectively.

Furthermore, to investigate the reliability of the estimated TLI values for Durban, they were

compared with turbidity estimates provided Remund et al. (2003), where Linke turbidity maps for

the world for each month using a combination of ground and satellite data where produced. This

has been made available on the Solar Radiation Data (SoDa) website (SoDa, 2011).The only avail-

able turbidity estimates available for Durban from SoDa was for the year 2003. Nevertheless, this

was still used to serve as a comparison for the TLI values computed using radiometric data. The

month average turbidity estimates for Durban computed for the year 2003, referred to as TLS , are

presented in Table 2.3, together with the computed TLI estimates for Durban. For Durban, estimated

TLI values range from 2.9 to 3.4 with the lowest and highest values being for July and November,

respectively. On the other hand, the estimates for TLS range from 2.9 to 3.9. The annual average

TLI and TLS were found to be 3.1 and 3.2, respectively. Overall, the month average TLI estimates

computed for Durban can be considered to be fairly reliable since they are relatively consistent with

those produced by Remund et al. (2003). According to Reno et al. (2012), the Ineichen and Perez

(2002) model was found to have an RMSE of 5%.

The DNIc, DHIc and GHIc profiles are shown in Figures 2.5 and 2.6 for winter and summer

solstices, respectively. In Durban, the summer months receive considerably high irradiance levels,

where DNIc almost reaches 1000 W/m2 and where GHIc exceeds this value. In winter DNIc and

GHIc is lower, reaching their maximum of 800 W/m2 and 600 W/m2, respectively, at midday.
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Table 2.3: Month averages of atmospheric turbidity for Durban for TLI and TLS , with their respective mean.

The largest difference in the month average mean TLI and TLS is observed during September. The annual

averages for TLI and TLS are relatively consistent.

Month TLI TLS

January 3.2 3.4

February 3.3 3.6

March 3.0 3.3

April 3.1 3.5

May 3.2 3.1

June 3.0 3.0

July 2.9 3.1

August 2.9 2.9

September 3.0 3.9

October 3.4 3.0

November 3.4 3.3

December 3.2 3.0

Average 3.1 3.2
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Figure 2.5: Clear sky profiles of direct (DNIc), diffuse (DHIc) and global (GHIc) irradiance for the winter

solstice (21 June 2014) in Durban using the Ineichen model (TL = 3.0).

Figure 2.6: Clear sky profiles of direct (DNIc), diffuse (DHIc) and global (GHIc) irradiance for the sum-

mer solstice (22 December 2014) in Durban using the Ineichen model (TL = 3.2).
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2.5 Solar radiation measurement instruments

The measurement of solar radiation is referred to as radiometry, and the purpose of a radiomet-

ric detector (or radiometer) is to convert photons of light into a measurable signal (Myers, 2013).

Terrestrial solar radiation is measured using instruments such as pyranometers and pyrheliometers.

Pyrheliometers measure shortwave direct solar irradiance. It must be pointed at the Sun such that

the incoming rays are normal to the optical window and the measured quantity is therefore referred

to as direct normal irradiance (DNI) or beam irradiance. Pyranometers measure shortwave global

radiation, and diffuse radiation by the use of a shadow band or shading ball across the sensor. Global

and diffuse irradiance are referred to as global horizontal irradiance (GHI) and diffuse horizontal ir-

radiance (DHI), respectively. The relationship between global, beam and diffuse irradiance is given

in equation 2.1.

2.5.1 Pyrheliometers

A pyrheliometer is used to measure the direct (beam) solar radiation received at a particular loca-

tion. Pyrheliometers measure the nearly collimated radiation within a narrow field of view (FOV),

typically between 5.0 ◦ and 5.8 ◦. The angle of aperture for the instrument used for this study is

5.0 ◦ ± 0.2 ◦ (Kipp and Zonen, 2014). A schematic of a pyrheliometer is shown in Figure 2.7 (a).

The sensing element is placed at the bottom of the tube. When the phyreliometer is pointed at the

Sun (detector normal to the direct solar beam), only radiation within the FOV is captured by the

detector (Myers, 2005). The sensing element consists of a blackened thermopile that converts heat

into an electrical signal. To continuously measure direct solar radiation the pyrheliometer has to be

constantly following the Sun and this is achieved by the use of a Sun tracker. For this study, the

Kipp and Zonen CHP1 pyrheliometer used to measure the direct normal irradiance was mounted

onto the Solys2 tracker, as shown in Figure 2.7 (b).

The radiometery station in Durban is equipped with a Solys2 automatic sun tracker. The tracker

has a built-in GPS unit that retrieves information about the location, date and time. The solar

angles are then computed using a solar position algorithm. According to WMO stardards, the CHP1

pyrheliometer is of “first class” standard (Kipp and Zonen, 2014). The Absolute Cavity Radiometer

(ACR) is of the highest class and all other pyrheliometers are calibrated against it. As reported by

Myers and Wilcox (2009), the pyrheliometer has an uncertainty of ±2%.
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Figure 2.7: (a) Schematic of a pyrheliometer. Only radiation with the narrow FOV is captured by the sensing

element situated at the bottom of the tube. Adapted from Paulescu et al. (2013). (b) Kipp and Zonen CHP1

pyrheliometer use to measure the direct normal irradiance, mounted onto the Solys2 tracker.
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2.5.2 Pyranometers

Global and diffuse solar irradiance are measured using a pyranometer. Pyranometers measure the

radiation that is incident on them within the solid angle 2π. Similar to that of the pyrheliometer,

the instrument consists of a blackened thermopile sensing element which is housed in a domed

structure. The thermopile converts the temperature to a voltage. The function of the dome cover is

to shield the sensing element from wind and rain, as this may affect its temperature. However, the

dome still allows transmission of the solar radiation equally from all directions. A schematic of the

pyranometer is shown in Figure 2.8 (a). Measurement of the diffuse component can be achieved by

the use of a shadow band or shading ball covering the sensing element. The direct component of the

solar radiation is blocked by the shading device so that only the scattered and reflected irradiance can

be received by the sensor. Alternatively, if the direct component is known the diffuse component can

be calculated using equation (2.1). For this thesis, Kipp and Zonen CMP11 shaded and unshaded

pyranometers used to measure the diffuse and global components respectively, and are shown in

Figure 2.8 (b). As reported by Myers and Wilcox (2009), the pyranometer has an uncertainty of

±5%.
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Figure 2.8: (a) Schematic of a pyranometer. Adapted from Paulescu et al. (2013). (b) Shaded and unshaded

pyranometers mounted on a stationary plate on top of the Solys2 tracker, at the Howard College radiometry

station in Durban. The diffuse component is measured by the shaded pyranometer, which uses a shadow ball

to cover the sensor.
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The radiometry station consisting of the above-mentioned instrumentation is located in Durban

at the Howard College campus of the University of KwaZulu-Natal (S 29.871 ◦; E 30.977 ◦) 150

m above mean sea level, on a roof platform that has a largely unobstructed view of the horizon.

Figure 2.9 shows the radiometry station. The instruments are connected to an 8-channel Campbell

Scientific CR1000 data logger, and measurements of DNI, DHI and GHI are sampled at 0.5 Hz,

and averaged for minute, hourly and daily intervals. A solar panel at the site provides power to

the instrumentation and ensures continuous data collection. Instruments are also subject to regular

maintenance to ensure high quality measurements.

The Howard College station is part of the Southern African Universities Radiometric Network

(SAURAN) which is a national radiometric network that was established in 2014 in South Africa.

The network consists of 22 stations and aims to make high-resolution, ground-based solar radiomet-

ric data available from stations located across the Southern African region, including South Africa,

Namibia, Botswana and Reunion Island (Brooks et al., 2015).

Figure 2.9: Instrumentation at the radiometry station in Durban. The pyrheliometer, shaded and unshaded

pyranometers are mounted onto a Solys2 sun tracker.
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2.6 Data and definition of variables

The radiometric data used for this study were daily irradiance profiles in Durban that were recorded

from 28 January 2014 to 27 January 2015 during 8:30-16:30 solar time. This set of profiles was

used for the clustering analysis. Although this interval is not symmetric about solar noon, it does

not affect the clustering and forecasting methods. Testing of the forecasting methods were done

using a set of 100 days in 2017, including most days during the months of January to June. As

will be described in Chapter 6, the test set of 100 days were recorded at the same time as the cloud

cover forecasts from the NWP. Minute-resolution profiles of the DNI, DHI and GHI components

were recorded and from here on, they are referred to as B, D and G, respectively. Here, the clear sky

equivalents are denoted as Bc, Dc and Gc.

As discussed in Chapter 4, clustering of minute-resolution horizontal beam irradiance fraction,

kb, was used as an example to illustrate the pre-processing and clustering methods. Although the

present work is similar to that of Jeanty et al. (2013) where daily kb profiles were clustered, the

present work instead applies clustering to the normalized beam irradiance for reasons outlined in

Chapter 5. Nevertheless, for completeness of definition of variables, kb is defined here as

kb = 1− D

G
, (2.16)

where G must be greater than zero. The value of kb ranges from 0 to 1. kb close to 0 indicates cloudy

sky conditions. Alternatively, a kb value close to 1 indicates sunny sky conditions.

In this study, the normalized irradiance components will be used for clustering. To obtain the

minute-resolution normalized beam irradiance, Bn, the beam irradiance profiles, B, were normal-

ized to the beam component, Bc of the Ineichen clear sky model as follows:

Bn =
B

Bc

. (2.17)

In a similar manner, the minute-resolution normalized diffuse irradiance Dn is

Dn =
D

Dc

. (2.18)

The hour average of Bn, denoted as B̄n, is

B̄n =
1

p

p∑
i=1

Bni, (2.19)
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where i is the minute index and p = 60. The first minute (i = 1) is on the half-hour, e.g. 8:30 so

values of B̄n are known at times 9:00, 10:00, 11:00,...16:00. Similarly, the hour average of Dn,

denoted as D̄n, is

D̄n =
1

p

p∑
i=1

Dni. (2.20)

In addition to clustering irradiance profiles, profiles of the variability in the irradiance were also

clustered. The variability in the minute-resolution Bn is given by

VB =

√√√√1

p

( p∑
i=1

Bni − B̄n

)2
, (2.21)

where p = 60 and therefore VB is the variability over the hour.

For this thesis, normalization does not specifically refer to the mapping of the data onto a [0, 1]

range. Instead, Dn was normalized to the clear sky value so that it could be used as a reference, to

allow for the comparison between Dn for different days due to the presence of clouds. Therefore,

for a clear day Dn will be 1 and for cloudy days it will exceed 1. Figures 2.10 and 2.11 show

examples of Bn and corresponding Dn profiles for a highly variable day. Bn can vary considerably

within the hour and Dn exceeds 1, depending on the amount of cloud cover.

The single-point measurements using the radiometer serve as an indicator of conditions over the

whole sky. The relationship between irradiance and amount of cloud cover is described by Lam and

Li (1998) as, “less cloud cover means a clearer sky, and hence more solar radiation”. Therefore,

for the present work, it is assumed that the movement of clouds results in an irradiance signal that

varies with time and is correlated with cloud cover conditions.
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Figure 2.10: Bn profile for a highly variable day (17 January 2017) in Durban where Bn varies considerably

depending on the amount of cloud cover.

Figure 2.11: Dn profile for a highly variable day (17 January 2017) in Durban where Dn exceeds 1 for

cloudy conditions.
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Overview of solar forecasting methods

Different forecasting methods for different forecast horizons, from intra-day to several days ahead,

have been proposed (Marquez and Coimbra, 2013). These include statistical (linear and non-linear),

image-based, which involve the use of satellites and ground-imagers, and Numerical Weather Pre-

diction (NWP). An overview of these methods, their performance and the forecast horizon within

which they are most effective, are discussed.

3.1 Forecasting methods

Solar forecasting employs different methods that can be broadly categorized as statistical-based,

image-based and NWP-based. These methods make use of either time series irradiance measure-

ments, images of cloud cover from satellites or ground-based sensors, or meteorological variables

as inputs into mathematical models. The success of the forecasting method also depends on the

forecast horizon, which is the amount of time in the future for which the forecast is prepared. De-

pending on the forecast horizon, some methods perform better than others.

The objective of this thesis was day-ahead forecasting using clustering of irradiance profiles.

The approach taken was the combination of cloud cover forecasts from an NWP with irradiance

classes produced by clustering, for day-ahead forecasts of normalized beam and diffuse irradiance.

As will be discussed, other methods of forecasting such as application of CMVs to cloud imagery

from satellites and ground-based imagers, ARIMA and ANNs were not used. These methods either

require high temporal and spatial resolution imagery that is expensive to acquire, have a limited

forecast horizon or require large amounts of data for training and model development.

33
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Figure 3.1 gives a summary of the relationship between the different forecasting methods and

their corresponding spatial and temporal resolution within which they perform best. In general, sta-

tistical methods are best for short time horizons, NWP methods for long time horizons and satellite

methods for the intermediate. Each of these methods is discussed as well as the combination of two

or more methods, known as hybrid forecasting methods.

Figure 3.1: Summary of the relationship between the different forecasting methods and their corresponding

spatial and temporal resolution. Persistence and sky imagery are only applicable in the intra-hour range. Sta-

tistical models such as Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving Average

(ARIMA), Artificial Neural Network (ANN), as well as satellite imagery span the intra-hour and intra-day

ranges. Day-ahead forecast range is dominated by global and mesoscale NWP models. Adapted from Diagne

et al. (2013).
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3.1.1 Statistical

Statistical forecasting methods involve the use of historical data and can be broadly categorized as

linear models or non-linear models. Techniques in both these categories aim to establish relation-

ships between predictor variables and the variable to be predicted. Examples of linear statistical

models are ARMA, ARIMA, Multiple Linear Regression (MLR) and Exponential Smoothing (ES).

Alternatively, non-linear models include genetic algorithms (GAs), ANNs and wavelet neural net-

works (WNNs) (Diagne et al., 2013). Voyant et al. (2017) presents a review of several statistical

and machine learning techniques that are applied to solar radiation forecasting.

3.1.2 Image-based

Solar forecasts using imagery can either be from satellites or ground-based sky cameras. An image

from the visible (VIS) band of the satellite is a photograph of a specific region of the Earth that

captures the reflected sunlight from the upper surface of the clouds (Tapakis and Charalambides,

2013). Assuming cloud features remain constant and applying CMVs, future cloud positions (based

on their trajectory and velocity) are predicted and the amount of radiation reaching the ground can

be estimated. An example of a satellite cloud image with the CMVs applied is shown in Figure 3.2.

This method allows for accurate forecasts up to 6 hours ahead (Kostylev and Pavlovski, 2012). The

spatial scale covered by satellite images is much larger as compared to ground-based images. As

a result, satellite images are better suited to providing forecasts for time horizons of more than 3

hours ahead.

Sky images acquired using a ground-based sky camera, such as in Figure 3.3, offer a more

detailed picture of the cloud extent, structure and motion. However, their field of view is reduced

and their forecast horizon is limited to less than an hour (Pelland et al., 2013). Nevertheless, their

high temporal resolution (minute and sub-minute) makes them useful in the prediction of ramp rates,

defined by Kleissl (2013) as the change in irradiance over some time, as individual cloud motion

tracking is possible (Mathiesen, 2013).
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Figure 3.2: Cloud motion vectors applied to a satellite image. Adapted from Cros et al. (2014).

Figure 3.3: Sky images taken with a total sky imager (model TSI-440) in Durban on 24 December 2015. (a)

clear conditions at 8:44 (b) partly cloudy conditions at 14:21 and (c) cloudy conditions at 18:00.

3.1.3 Numerical Weather Prediction

Numerical Weather Prediction (NWP) relies on mathematical models to predict the evolution of the

atmosphere based on initial conditions. NWP models are generally categorized by their domain i.e.

global or regional. The initial atmospheric conditions required as input are obtained from satellite,

radar, radiosonde and a large network of ground measuring stations (Pelland et al., 2013). NWP

models provide a variety of outputs, including temperature, humidity, precipitation, wind speed and

direction, and cloud cover. It is cloud cover that will be used in the present study because of its
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strong association with beam irradiance intensity.

One of the most commonly-used global NWP models is the Global Forecast System (GFS),

which is operated by the National Oceanic and Atmospheric Administration (NOAA). The GFS

model has a spatial domain of 28 km x 28 km, is run every 6 hours to produce forecasts up to

180 hours (7.5 days) ahead and every 12 hours for forecasts up to 384 hours (16 days) ahead. In

addition to the 28 km x 28 km horizontal discretization, the GFS models 64 vertical layers of the

atmosphere. The coarse spatial resolution of NWP models limit them to large-scale atmospheric

conditions. As a result, NWP models are unable to resolve micro-scale conditions associated with

cloud formation (Chaturvedi, 2016; Inman et al., 2013). For solar forecasts, this is considered to be

one of the largest sources of error when using NWP models. In an attempt to overcome the issue

of coarse spatial resolution, regional models are used as an alternative to global models. Regional

models such as North American Mesoscale (NAM), Weather Research and Forecasting (WRF),

Rapid Update Cycle (RUC) and High Resolution Rapid Refresh (HRRR), cover a limited spatial

domain with greater detail and provide a better characterization of the cloud cover conditions which

are required for solar forecasts.

For this thesis, cloud cover forecasts for Durban from an NWP output were combined with

classes produced by clustering to forecast the normalized beam and diffuse irradiance profiles, for

the day ahead. Cloud cover forecasts were obtained from AccuWeather, a public weather- service

provider that uses the GFS model to produce hourly-resolution forecasts of cloud cover for the day

ahead.

3.1.4 Hybrid methods

Hybrid models are a combination of two or more of the previously-described forecasting methods.

These can also be referred to as combined models or ensemble models (Diagne et al., 2013). A mo-

tivation for the development of a hybrid model is that often it is possible to increase the forecasting

accuracy by taking advantage of the strengths of each methodology (Inman et al., 2013). It is clear

that no individual forecasting methodology is able to span all necessary spatial and temporal reso-

lutions. Therefore, by combining two or more methods, forecasts on several spatial and temporal

resolutions may be achieved.

With the intention of increasing forecast accuracy, Cao and Cao (2005) and Cao and Cao (2006)

developed a hybrid model, which was a combination of an ANN with wavelet analysis, to forecast
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total daily irradiance. Similarly, Cao and Lin (2008) used meteorological observations as inputs to

a model that combines an ANN with wavelets, to predict hourly GHI values.

Voyant et al. (2012) proposed a model that combined ARMA and ANN (in particular multi-layer

perceptron (MLP)) to forecast the hourly GHI for five places in the Mediterranean area. In another

study, Marquez and Coimbra (2013) developed a model that combined stochastic learning methods,

ground experiments and the National Weather Service (NWS) database, to forecast global and di-

rect irradiance. More recently, Aguiar et al. (2016) combined ground measurements with NWP and

satellite data inputs to improve intra-day solar forecasting of GHI.

3.2 Forecast horizon

Before discussing the above-mentioned forecasting methods and the temporal resolutions within

which they perform the best, three forecast horizons are defined. The forecast horizons defined by

Kostylev and Pavlovski (2012) and Diagne et al. (2013) are as follows:

• Intra-hour: 15 minutes to 2 hours ahead with 30 second intervals to 5 minute intervals.

• Intra-day: 1-6 hours ahead with hourly intervals.

• Day-ahead: 1-3 days ahead with hourly intervals.

Figure 3.4 illustrates the relationship between the forecasting horizons, the forecasting method

or models most appropriate for each horizon and the relevant industry related activity.
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Figure 3.4: Relationship between forecasting horizon, methods and the activity related to industry. Adapted

from Diagne et al. (2013).

3.2.1 Intra-hour forecasts

Forecasts in this range are defined by a temporal resolution of 15 minutes up to 2 hours and, in

industry, are mainly related to ramping events (Kamath, 2010). The simplest forecasting technique,

Persistence Forecasting, also known as the Naive Predictor, is based on the assumption that the

forecast, x, at time t+1 is the same as at t,

xt+1 = xt. (3.1)

It is worthwhile to implement a complex forecasting technique if it is able to improve on Persis-

tence. The accuracy of a Persistence Forecast decreases significantly with forecast duration and, in

general, is not an accurate forecast technique for time horizons exceeding 1 hour. Therefore, Persis-

tence Forecasts should only be used as a benchmark or a baseline to compare with more advanced

techniques (Diagne et al., 2013).

In order to evaluate forecast performance the three most commonly used metrics are Root Mean

Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE). The RMSE is a
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measure of the average spread of the errors and is given by the following equation

RMSE =

√√√√ 1

n

n∑
i=1

(xmeasured,i − xpredicted,i)2, (3.2)

where xpredicted,i and xmeasured,i represent the ith valid forecast and observation pair, respectively

and n is the number of evaluated data pairs. The MBE is a measure of the average bias of the model

expressed as

MBE =
1

n

n∑
i=1

(xmeasured,i − xpredicted,i), (3.3)

where MBE can be either negative (forecast is too small, on average), zero (forecast has no bias), or

positive (forecast is too large, on average) (Diagne et al., 2013). The MAE given by

MAE =
1

n

n∑
i=1

| xmeasured,i − xpredicted,i |, (3.4)

and considers only the absolute value of the errors. Of these metrics, RMSE is most commonly

reported when describing forecast accuracy (Inman et al., 2013).

A method of forecasting GHI up to 1 hour from HelioClim-3 images was proposed by Dambre-

ville et al. (2014). To estimate future GHI values, CMVs were obtained using a block matching

algorithm applied to successive cloud images. It was found that the relative RMSE for the 15, 30

and 45 minute time horizons remained below 30%, which was lower than the Persistence Forecast.

This indicated that the block matching algorithm approach was a significant improvement over Per-

sistence Forecasts, especially at longer time horizons.

Similar to the study by Dambreville et al. (2014), Hammer et al. (1999) also used satellite im-

ages in the forecast of solar radiation, but a statistical approach to derive the CMVs was employed.

Predictions were made for timescales from 30 minutes up to 2 hours. For the 30 minute and 2 hour

forecast horizon, RMSE values of 17 and 30%, respectively, were achieved. In addition, a reduction

between 7%-10% in RMSE for Persistence Forecasts was found.

In an attempt to apply a more advanced image processing technique, Cros et al. (2014) proposed

a forecasting method based on a 2D Fourier transform phase correlation algorithm for cloud motion

estimation. This method was found to be significantly improved over the Persistence Forecast, but

showed only slight improvement over the traditional block matching algorithm. However, it was

found that the computation time involved in the phase correlation method was approximately 25

times faster than previous methods.
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The main advantage of satellite technology is that a large area of the Earth can be imaged at once

due to the large field-of-view (FOV), therefore providing large-scale cloud information. However,

these images are of fairly coarse spatial resolution and of low temporal resolution. In addition, satel-

lites are unable to detect multi-layered clouds since they are only able to image the highest cloud

deck and clouds below this will be undetected. Due to this, low clouds contributing to local weather

conditions are not detected. Lastly, there is a high cost involved in the acquisition of measurements

from the satellite operator (Tapakis and Charalambides, 2013).

As an alternative, ground-based imagers can be employed to overcome some of the problems

associated with satellite imaging. Ground-based imagers are able to provide cloud information at

high spatial and temporal resolutions (which is not possible with satellites), and more recently, have

been used to produce intra-hour forecasts. The cross-correlation of consecutive sky images from a

ground-based imager provides a method of monitoring the direction of cloud movement and esti-

mation of their velocities. Irradiance is predicted for the current cloud shadow and then the cloud

shadow is moved forward in time based on cloud velocity and direction. The method assumes per-

sistence in the opacity, direction, and velocity of movement of the clouds (Pelland et al., 2013).

A ground-based imager typically consists of a charge-coupled device (CCD) camera that points

upwards and photographs the state of the sky at scheduled intervals (Tapakis and Charalambides,

2013). Ground-based imagers are able to provide local cloud information such as cloud cover

and cloud fraction, but they are not able to provide information on cloud base height (CBH) and

cloud type. An example of a commercially-available ground-based imager is the Total Sky Imager

(TSI) manufactured by Yankee Environmental Systems (YES). Ground-based imagers were initially

developed for the purpose of monitoring local sky conditions (Calbó et al., 2001; Calbó and Sab-

burg, 2008; Cazorla et al., 2008; Huo and Lu, 2009; Johnson et al., 1989; Kassianov et al., 2005;

Kazantzidis et al., 2012; Long et al., 2006; Martı́nez-Chico et al., 2011; Pfister et al., 2003; Shields

et al., 1993, 2013) on a continuous basis and in the case of cloud assessment and characterization,

to provide an alternative to the high cost associated with human observers.

More recently, however, their application has been extended to solar forecasting. For exam-

ple, Chow et al. (2011) developed a method of forecasting cloud movement and irradiance using

a ground-based sky imager. Cloud motion vectors were generated by the cross-correlation of two

consecutive sky imagers. Depending on the cloud height and speed, the authors suggest this method

is suitable for predicting GHI for the forecast horizon in the range of 5-25 minutes. Some of their
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future work includes employing additional sky imagers to increase coverage area and forecast hori-

zon, collocation of a ceilometer (an instrument for measuring cloud base height) with the imager for

cloud height retrieval and combining the present method with satellite and NWP-based forecasts to

yield a more comprehensive forecast method.

Rather than forecasting GHI as in the work of Chow et al. (2011), Marquez and Coimbra (2013)

used TSI imagery to produce intra-hour forecasts of direct normal irradiation (DNI). Their method

employed a technique known as Particle Image Velocimetry (PIV). As described by Abdulmouti

and Mansour (2006), PIV is a technique used for analyzing two or three-dimensional complex flow

fields, and is based on fluid visualization and image processing techniques. The flow of a fluid can

be visualized by seeded particles. The distances moved by particles in a flow field can be measured

from a series of consecutive images to calculate their speed and direction of the fluid flow. PIV pro-

duces a velocity vector map that describes the velocity vector field, and this could be used to extract

further physical information such as the pressure field and the vorticity field. When applied to cloud

images, the PIV technique produces a map of the cloud velocity field such that the future cloud

positions may be estimated in order to forecast irradiance. Marquez and Coimbra (2013) applied

the PIV technique to a sequence of TSI images taken at 1 minute intervals to obtain cloud velocity

fields. This together with estimating grid cloud fractions in an area of interest was used to forecast

DNI. When compared to the persistence model it was found that the optimal forecast period was 5

minutes ahead. In accordance with the work of Chow et al. (2011), the authors demonstrated that

the TSI is useful for predictions up to 15 minutes ahead, with the lowest error associated with the

5-6 minute time horizon.

A novel approach used for cloud tracking applied to TSI images was introduced by Quesada-

Ruiz et al. (2014). Termed the “sector-ladder” method, the process involves first identifying cloud

motion direction and thereafter a size-adjustable set of grid elements was used to assess DNI for

1 minute up to 20 minutes ahead. This method showed a reduction in DNI RMSE under different

sky conditions i.e. broken-sky, clear-sky and overcast days. Compared to the PIV method used by

Marquez and Coimbra (2013), the sector-ladder method showed an improvement in computational

time.

The disadvantages associated with ground-based imagers relate to systematic detection errors

such as misdetection of thin clouds and limitations in distinguishing cloud types (Tapakis and Char-

alambides, 2013). In addition, systems such as the TSI have limited FOV, thus limiting cloud
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information to a small area. Due to this, the maximum forecast horizon using a TSI is restricted to

30 minutes. A potential solution to extending the time horizon is to distribute an array of imagers

in order to obtain more information on the local cloud situation. Additionally, to obtain information

regarding the cloud height, a ceilometer can be co-located with the imager. Despite their short-

comings, these instruments provide on-site measurements of local cloud variation at high spatial

and temporal resolution, and due to this unique feature they will continue be a useful tool for solar

forecasting (Inman et al., 2013).

Reikard (2009) applied an ARIMA model to six GHI data sets at 5, 15, 30 and 60 minute reso-

lutions. A comparison was made with other methods such as transfer functions, hybrid models and

the ANN method. It was found that in most cases, the best results were obtained using the ARIMA

model. In addition, the author points out that the ARIMA model has the ability to capture transitions

in irradiance associated with the diurnal cycle more effectively than the other methods.

The present work focuses on forecasting for the day-ahead. Given the lack of availability of

ground-based sky imagery in Durban, their use was not pursued for this thesis. Furthermore, their

limited forecast horizon (i.e. sub-hourly) would not be effective, for this investigation, since clus-

tering produces classes that are based on diurnal irradiance patterns.

3.2.2 Intra-day forecasts

The forecasts in this category that are in the range of 1-6 hours are relevant to load-following

and variability associated with operations for grid connected solar powered systems. Some of the

previously-discussed methods are also applicable to the intra-day forecasting range. For example,

forecasting based on CMVs obtained from satellite images performs well in the temporal range of

30 minutes to 6 hours (Diagne et al., 2013), thus incorporating both, the intra-hour and the intra-day

forecast ranges.

NWP models are also used as a forecasting tool for the intra-day forecasting range. For example,

Remund et al. (2008) evaluated three NWP-based GHI forecasts (ECMWF, NDFD and GFS/WRF)

in the USA. The NWP MBEs were compared and ECMWF showed the best results, followed by

NDFD and GFS/WRF. The GFS next day GHI forecasts had an MBE of 19%. This MBE was found

to be approximately constant for intra-day (hour-ahead) forecast horizons.

Using METEOSAT data, Lorenz et al. (2004) applied motion vector fields to forecast cloud in-

dex images. Comparison with ground data showed a significant improvement in forecast accuracy
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when compared to satellite and ground-derived Persistence.

Studies incorporating non-linear statistical methods include Crispim et al. (2008) and Ferreira

et al. (2012). The first study made use of artificial intelligence techniques and cloudiness indices

obtained from pixel classification of TSI images. The cloud indices were used as inputs to an ANN,

optimized with a GA, for prediction of solar irradiance. Similarly, Ferreira et al. (2012) developed

their own portable sky imager and created ANN models optimized via a multi-objective GA to pre-

dict GHI, cloudiness and temperature for forecasting horizons up to 4 hours.

For intra-day forecasts with a time horizon more than an hour, ground-imaging systems such as

the TSI find limited application due to the restricted time of approximately 30 minutes for which

clouds are within the FOV (Inman et al., 2013). Nevertheless, the aforementioned methods are

successful in providing good forecasts within the intra-day range.

3.2.3 Day-ahead forecasts

For industry-related purposes, day-ahead forecasts are required for operational planning, program-

ming backup, maintenance and transmission scheduling, as well as for planning of reserve usage

and peak load matching. From 6 hours up to several days ahead solar irradiance forecasts rely

mainly on NWP models.

For the present work, day-ahead forecasts were the focus and particularly how the combination

of clustering of irradiance from ground-based instruments and cloud cover forecasts from the NWP

could be used to produce a day-ahead forecast of irradiance. The classes produced by clustering de-

scribe the diurnal irradiance patterns that can be correlated with diurnal cloud cover patterns. Cloud

cover forecasts from the NWP is easily accessible through AccuWeather, thus meeting the need

for high spatial and temporal resolution satellite images that are expensive and difficult to obtain.

Furthermore, AccuWeather provides a day-ahead forecast that is appropriate for combination with

clustering, since clustering of irradiance profiles finds patterns that is on the diurnal-scale. Consid-

ering this, the present study focused on day-ahead forecasts of irradiance for Durban.

An evaluation of three NWP forecasts i.e the North American Model (NAM), Global Forecast

System (GFS) and European Centre for Medium-Range Weather Forecasts (ECMWF) for predict-

ing global irradiance was conducted by Mathiesen and Kleissl (2011). For all models, MBE and

RMSE exceeded 30 and 110 W/m2, respectively. A general under-prediction in cloud cover was

also observed.
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Using the National Digital Forecast Database (NDFD), Perez et al. (2007) derived surface global

irradiance from the sky cover product to produce a forecasting model. Results showed that for 8-26

and 26-76 hour forecast horizons, the relative RMSE for hourly-averaged global irradiance was 38

and 40%, respectively.

Remund et al. (2008) evaluated three NWP-based GHI forecasts (ECMWF, NDFD and GFS/WRF)

in the USA, reporting relative RMSE values ranging from 20% to 40% for the day ahead forecast

horizon. Similar results were reported by Perez et al. (2010), where NWP-based irradiance forecasts

in several places in the USA were evaluated.

Currently, NWP models are unable to predict the position and extent of cloud fields precisely.

This is primarily due to their relatively coarse spatial resolution (1-20 km), rendering them inef-

ficient at resolving micro-scale physics associated with cloud formation. However, NWP models

have the advantage of producing forecasts over long time horizons (15-240 hours) and have been

shown to be more accurate than satellite-based models for time horizons exceeding 4 hours (Inman

et al., 2013). Mesoscale NWP models (such as MM5 and WRF) have higher spatial and temporal

resolution and may provide better accuracy in resolving cloud. However, even mesoscale models

may not be able to capture cloud movement on the short time scales required at solar power plants,

since their output is generally hourly.

Prediction of solar irradiance for more than one day ahead is not restricted to NWP-based mod-

els, but can also include statistical techniques. An example of such a study that was undertaken by

Martin et al. (2010). The authors presented a comparison of linear and non-linear statistical models

applied to half daily values of global solar irradiance with a temporal horizon of 3 days. It was

found that the neural network model yielded the best results. Other studies using similar techniques

include Paoli et al. (2010, 2014). Techniques using ANNs and other artificial intelligence methods

for modelling and forecasting of solar irradiance are presented by Mellit (2008).

It is evident from this discussion that certain forecasting techniques are successful within certain

time horizons. Therefore, the choice of forecasting model is strongly dependent on two factors: (i)

the forecast horizon and (ii) the available data at a particular site. Ground-based imagers have a

maximum forecast horizon of approximately 30 minutes. Statistical methods have been success-

fully applied to forecast solar irradiance for time horizons ranging from several minutes to a few

hours ahead. Satellite imaging is most accurate in producing forecasts up to 6 hours ahead. Fore-

casts beyond the 6 hour time horizon and up to several days ahead are most accurate if derived from
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NWP models.

The focus of this research was the use of clustering for classification and forecasting of irra-

diance for the day-ahead. Clustering was first used to understand and classify the solar irradiance

patterns in Durban. These classes have mean profiles that describe the diurnal irradiance patterns.

The classes produced by the clustering were then combined with cloud cover forecasts from the

NWP to forecast an irradiance class for the day ahead.



Chapter 4

Cluster analysis

Cluster analysis is a technique used for exploring and identifying interesting patterns and distri-

butions, and discovering natural groupings within data. This chapter reviews previous studies on

clustering, and thereafter focuses on the details of two clustering techniques i.e. hierarchical clus-

tering and k-means clustering and explains the purpose of each. Pre-processing of the data that is

applied prior to the clustering techniques is also discussed. The minute-resolution horizontal beam

irradiance fraction is used an example to illustrate all of the above-mentioned techniques.

4.1 Clustering of irradiance patterns

Accurate time series solar radiation data at a given location are vital for the design and deployment

of solar energy systems. In addition, time series data are also used for monitoring the performance

of these systems and predicting their output. One of the methods of analyzing the data is by cluster

analysis or clustering. Kaufman and Rousseeuw (1990) describe cluster analysis as the “art of

finding groups in data”. More formally, the aim of cluster analysis is to identify groups of similar

objects, where objects in a cluster are more similar to each other than objects in different clusters

(Halkidi et al., 2001). This technique can therefore reveal patterns that may exist and that may have

not yet been identified. One of the applications of clustering is classification. Classification is a

technique used in this thesis for understanding and characterizing the solar irradiance patterns in

Durban. Some previous studies that have applied clustering to irradiance data are discussed below.

47
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4.2 Review of irradiance clustering

As mentioned in Chapter 1, there have been previous studies that have investigated classification

of days based on solar irradiance profiles. Among these classification studies, the most commonly

used classification parameter was the clearness index, kt. In addition, the studies focused mainly on

using the classification results for optimization and sizing of solar power plants (such as PV) and

analyzing their performances.

A study by Zagouras et al. (2013) used clustering for identification of geographical zones of

GHI, and suggested that these zones could be used in forecasting. However, this is different from

the present study which is concerned with clustering daily irradiance profiles for the purpose of

forecasting at a single geographical location, namely Durban. Zagouras et al. (2014) also used clus-

tering for determining coherent climatic zones of GHI, where the knowledge of the coherent zones

could be used for deciding on the appropriate placement of solar farms.

For South Africa, Zhandire (2017) proposed a “solar utility index” (SUI) for solar resource clas-

sification that uses clustering to produce classes of SUI for each of nine radiometric stations across

the country, including Durban. This differs from the clustering presented here in that the SUI is a

daily average of beam and diffuse horizontal irradiance, whereas the present work considers diurnal

variation of beam irradiance. In addition, the primary aim of the study was to provide a new solar

resource index for classification in South Africa, and did not aim exclusively to characterize the

solar irradiance patterns in Durban or investigate the possibility of forecasting using classification

results. None of the above-mentioned studies used the clustering results for solar forecasting.

As mentioned earlier, studies that have used clustering and classification for forecasting include

those by McCandless et al. (2014) and McCandless et al. (2015). In common with the present work,

cloud regimes were identified by k-means clustering (McCandless et al., 2014), but by contrast Mc-

Candless et al. (2014) tested short-term forecasts, up to 3 hours ahead, rather than day forecasts. In

another study, Benmouiza and Cheknane (2013) used clustering combined with ANNs to generate

forecasts for hourly global radiation.

The aim of this thesis was to use clustering for forecasting. Of particular interest is the work of

Badosa et al. (2013), Badosa et al. (2015) and Jeanty et al. (2013) that serves as a basis for much

of the present study. A characterization of mesoscale and local-scale solar irradiance variability

for Reunion Island was conducted by Badosa et al. (2013). They combined satellite and ground-

based measurements to analyze the variability in cloudiness and surface irradiance from diurnal to
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seasonal scales. Since the largest amount of irradiance variability occurs at the diurnal scale, the

authors applied clustering analysis to three irradiance parameters to characterize this daily variabil-

ity. Results showed that the island’s diurnal variation can be classified into five main irradiance

regimes. Badosa et al. (2015), also explored the variability in local solar irradiance conditions and

cloud cover dynamics of Reunion Island using irradiance regimes presented in Badosa et al. (2013)

together with synoptic wind and relative humidity parameters. The novelty of this study was the use

of only exogenous variables to make day-ahead solar irradiance predictions.

As mentioned earlier, Jeanty et al. (2013) also investigated irradiance patterns for Reunion Is-

land. The study used cluster analysis applied to daily profiles of direct horizontal irradiance fraction,

kb, defined in Chapter 2. Similarly to Badosa et al. (2013), the study by Jeanty et al. (2013) revealed

five dominant patterns for the island. However, only four of the five patterns, corresponding to Clear,

Cloudy, AM Clear and PM Clear conditions, are positively correlated with the classes obtained by

Badosa et al. (2013).

In the present study, in a similar manner to Jeanty et al. (2013), minute-resolution irradiance

profiles were pre-processed by Principal Component Analysis (PCA) and then clustered by the

hierarchical and k-means methods. To illustrate the PCA and clustering methods, clustering of

minute-resolution values of kb was used as an example. Although k-means will be used for classi-

fication and forecasting, a comparison with hierarchical clustering is also presented. Clustering of

minute-resolution kb using hierarchical and k-means clustering serves as a comparison between the

two methods. As described in Chapter 2, for a period of one year in Durban, daily profiles of D and

G were recorded at one-minute intervals between 8:30-16:30. Minute-resolution profiles of kb for

the year were then derived using equation (2.16). Each minute of kb is a point in a 481-dimensional

space. An example of a kb profile for Durban is shown in Figure 4.1. Processing of the data and

implementation of the methods were done in MATLAB using the Statistics Toolbox.
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Figure 4.1: Typical kb profile for Durban on 21 April 2017. The regions indicated by 1 , 2 and 3

respectively denote morning, midday and afternoon periods of the day during this interval.

4.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a common pre-processing method used for dimension re-

duction and was applied for this purpose in the present study. Tufféry (2011) describes PCA as a

technique used for projecting a cloud of individual points on to subspaces with fewer dimensions.

For a set of p variables describing n individuals, each individual can be represented by a point in a

p-dimensional space Rp. The set of individuals is said to be a “cloud of points”.

As described by Jolliffe (2002), the main idea of PCA is to reduce the dimensionality of a data

set in which there are a large number of variables, while retaining as much as possible of the varia-

tion present in the data set. This is achieved by transforming to a new set of axes, called Principal

Components (PCs), which are ordered successively so that the first few components retain most of

the variance present in the original data. The first Principal Component (or first new axis) accounts

for the highest variance in the data, the second Principal Component the second highest variance
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and so on. Therefore, a small number of Principal Components may be able to account for most of

the variation in the data with minimal loss of information. Prior to applying PCA, the original data

should be normalized. In this case, normalization refers to re-scaling of the data so that variables

of two different scales may be compared. In general, the purpose of normalization is so that in the

case of applying PCA to variables with different scales, the variable with the largest scale does not

dominant over all variables in the data set. For the clustering presented in this thesis, Bn and Dn

were normalized to the CSM.

To illustrate the PCA technique, Figure 4.2 (a) shows the technique being applied to a 3-

dimensional data set. The first, second and third dimensions are the morning, midday and afternoon

averages of kb, respectively, and correspond to the regions indicated by 1 , 2 and 3 in Figure

4.1. The first dimension, PC1, accounts for most of the variance in the data, and the data is most

spread out along the direction of this component. The second dimension, PC2, also accounts for

a considerable amount of variance, but less than PC1. The spread of the data along this direction

is significant but smaller than the spread along the first. The third dimension, PC3, accounts for

only a small amount of variance i.e. very little spread along this direction. Therefore, only the first

two components are retained, meaning the data can be reduced to 2-dimensions since most of the

information about the original data is contained within them. As shown below in Figure 4.2 (b),

PC1 and PC2 become the new set of axes onto which the data points are transformed.
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Figure 4.2: Example of how PCA is applied to (a) 3-dimensional cloud of points to reduce it to (b) 2-

dimensions. The data has the highest variance along the first dimension, PC1, and the second highest variance

along the second dimension, PC2. The third dimension, PC3, accounts for only a small amount of variance,

and therefore can be eliminated.
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4.4 Choice of Principal Components

The primary objective of PCA is to reduce data with a large number of dimensions to fewer dimen-

sions. This technique is useful since there are a large number of dimensions from minute-resolution

irradiance observations throughout the day. Each Principal Component (or axis) accounts for a

certain percentage of the total variance, and the aim is to find the minimum number of Principal

Components that explain most of the variance in the data. In the case of data with a large number

of dimensions the first two Principal Components may not be sufficient to describe the information

in the data and so it is often the case that more than two components are included. In order to

choose the fewest number of Principal components to be retained, the cumulative percentage of the

total variation is used, where the minimum number of components with a cumulative percentage of

90% is retained (Jolliffe, 2002). The variance of each Principal Component is computed from the

elements in that component. The percentage variance, pn, of the n-th component is computed by

pn =
varn
varTOT

, (4.1)

where varn and varTOT are the variance of the n-th Principal Component and the total variance of

all components, respectively.

PCA was applied to the 481-dimensional set of minute-resolution kb profiles to determine the

fewest number of Principal Components that explain at least 90% of the data variance. Figure 4.3

shows a scree plot that is used to view the Principal Components and their fraction of the total

variance arranged in descending order. The scree plot shown in Figure 4.3 is of the first 10 Principal

Components. It can be seen that the first component has a high variance contribution, indicating

that this component itself contains 74% of the information about the data. Each of the subsequent

components explain less than 10% of the variance. For the case of minute-resolution kb, analysis

of the cumulative percentage showed that the first 5 Principal Components account for 90% of the

variance, and hence were retained.

4.5 Comparison between clustering methods

For this thesis two clustering methods, hierarchical and k-means, were applied to daily minute-

resolution kb profiles for Durban. Application of clustering to the same set of kb profiles serves

as a comparison between the two methods. Even though only k-means clustering was used for
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Figure 4.3: Scree plot which shows that the first 10 components that account for a total of 95% of the variance

in the data. The first 5 Principal Components account for 90% of the variance. The first component alone

accounts for 74% of the variance and the second component accounts for 8%.

classification and forecasting, it was interesting to observe how hierarchical clustering performs

i.e. if the hierarchical method can produce similar clustering to k-means. In the sections below,

hierarchical clustering is first presented and thereafter k-means clustering. The clusters resulting

from both methods are compared using a Silhouette Index (SI). Furthermore, they can be combined

as a hybrid method, where the number of clusters obtained from the hierarchical method is used to

initialize k in the k-means method. However, for the reasons outlined at the end of this chapter, the

present work used only k-means and applied the silhouette criterion to choose the optimal number

of clusters.

4.6 Optimal cluster number and cluster validation

In order to quantify the compactness and separation of each cluster the SI (Silhouette Index) was

used as a guide. A silhouette is a graphical display of how well an object has been clustered. Com-

parison of cluster compactness and separation is displayed by combining the silhouette of every

object into a single plot. The silhouette shows which objects lie well within their cluster, and which
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ones are close to the border of clusters (Rousseeuw, 1957). The SI for each point provides a value

based on the relation of that point to all the points in its respective cluster compared to points in

other clusters. According to Rousseeuw (1957), let a(i) be the average distance between object i

and all the other members of its own cluster. For another cluster C, let d(i, C) be the average dis-

tance between object i and the members of C. Let b(i) be the minimum of d(i, C) over all the other

clusters. Then SI is given by

SI =
b(i)− a(i)

max{b(i)a(i)}
. (4.2)

The SI value ranges from −1 to 1. An SI that approaches unity is indicative of a object belonging

to a coherent cluster and one can say that the object has been “well-clustered”. Alternatively, an SI

value approaching −1 indicates that the object is not well-suited to that cluster (Rousseeuw, 1957).

The average SI for an individual cluster (denoted here as SIC where C is a cluster label), or for the

entire set of objects (denoted here as SITOT ) is used as an index of overall clustering compactness.

Lletı́ et al. (2004) consider a SI of 0.6 to be a good clustering result, which will be used in this

thesis as a criterion for acceptable compactness. In practice it may often be difficult to achieve this

value for all clusters. Therefore, a compromise between the SI and the number of clusters (i.e.

the largest number of clusters that give the highest SITOT ) is sought, and used to determine the

best clustering solution for the data set (Benmouiza and Cheknane, 2013). A detailed discussion on

silhouette interpretation and validity can be found in Rousseeuw (1957). The silhouette plots are

used to analyze cluster compactness for both hierarchical and k-means methods.

4.7 Hierarchical clustering

A Hierarchical clustering procedure is one which successively merges smaller clusters into larger

ones (agglomerative), or divides larger clusters into smaller ones (divisive). This process may be

represented by a tree-like structure called a dendrogram which depicts the relationship between

objects or clusters. The dendrogram shows how single objects and clusters are grouped together

at each step and provides a measure of similarity between them. This similarity is the Euclidean

distance where if the distance between two clusters is small then they are close together and hence

more similar. If the distance is large then the clusters are less similar. The Euclidean distance on
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the y-axis on the dendrogram is the distance between the singletons, and thereafter are the distances

between centroids of clusters.

Figure 4.4 demonstrates the hierarchical clustering method by way of an example. Figure 4.4 (a)

shows a set of 5 points of morning and afternoon averages of kb. The method starts off by assuming

each point is a cluster on its own. Then the clusters that are closer together merge to form a new

cluster. The distance between clusters 3 and 4 is 0.04, and are clearly closer to each other than to

other clusters, hence they merge to form cluster 6. The distances between clusters 2 and 1 and 2 and

5 are 0.23 and 0.21, respectively. Therefore, clusters 2 and 5 merge to form cluster 7. For merging

clusters, Ward linkage was used. There are also other linkage options such as single, average and

complete. However, according to Tufféry (2011) the Ward linkage (Ward, 1963) is considered the

most effective linkage method. At the last step, clusters 6 and 8 merge.
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Figure 4.4: (a) Five points that will be clustered using the hierarchical method. Each point starts off as a

cluster on its own. (b) Dendrogram showing how clusters in (a) were merged. Clusters 3 and 4 and 2 and 5

were merged at distance 0.04 and 0.21, respectively. The centroid of cluster 7 was merged with cluster 1 at a

distance of 0.4. Lastly, the centroids of clusters 6 and 8 were merged at distance 1.4.
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To demonstrate the use of hierarchical clustering on the minute-resolution kb profiles, the method

was applied to the kb Principal Components. The Ward’s linkage method was used with the Eu-

clidean distance as the metric. According to equation 4.3, the Ward’s linkage method minimizes the

total within-cluster sum of the squared error (SSE) when merging two clusters. The Ward’s distance

between two clusters A and B having centers a and b and frequencies nA and nB, is given by

d(A,B) =
d(a, b)2

nA−1 + nB−1
, (4.3)

where a and b are the centroids of clusters A and B, respectively. Once all of the objects are clustered

the dendrogram is produced. Cutting the dendrogram at a desired level will result in a set of disjoint

groups (or clusters). However, in the present study, the optimal number of clusters was not known

a priori. The choice of the optimal number of clusters in order to specify the level at which the

dendrogram should be cut must be decided using an appropriate method. The present work used the

cluster sum of squares as a guide to finding the level at which the dendrogram should be cut to yield

the optimal number of clusters.

Computing the cluster sum of squares for different clustering solutions, can be used as a guide

for choosing the optimal number of clusters. According to Tufféry (2011), the total sum of squares,

I, of the cluster is the weighted mean of the squares of the distances of the individual points from

the cluster center (or centroid), and is given by

I =
∑
i∈I

pi(xi − x̄)2, (4.4)

where x̄ is the mean of xi and pi is the weight associated with observation i. In a similar manner,

the sum of squares of a cluster is computed with respect to its own center

Ij =
∑
i∈Ij

pi(xi − x̄j)2. (4.5)

If the data is partitioned into k clusters, each with sums of squares I1, . . ., Ik, then within-cluster

sum of squares, IW , is

IW =
k∑
j=1

Ij. (4.6)
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The between-cluster sum of squares, IB, is defined as the mean of the squares of the distances of

the centers of each cluster from the global center, given by

IB =
∑

j∈clusters

(∑
i∈Ij

pi

)
(xj − x̄)2. (4.7)

Therefore, the total sum of squares is the sum of the within-sum of squares and between-sum of

squares, given as

I = IW + IB. (4.8)

The illustration in Figure 4.5 depicts the total sum of squares for a set of points which is the sum

of the within-sum of squares and between-sum of squares.

Figure 4.5: The total cluster sum of squares (I) is the sum of the within-sum of squares (IW ) and between-

sum of squares (IB). Global cluster centers are indicated in red. Adapted from Tufféry (2011).

The value for IW can be used to find the optimal number of clusters present in the data. If all

points belong to one cluster i.e. k = 1, IW will be high since there will be points that are far away

from the cluster centroid, thus increasing the sum of squares. As k increases, IW decreases since

there are more centroids and the clusters become more homogeneous. However, finding the largest

k is not necessarily the best clustering solution. Instead the number of clusters should be increased

such that if the last significant decrease in IW occurs when moving from k to k + 1 clusters, the

partition into k + 1 clusters is correct. This is demonstrated in Figure 4.6.

To decide on the level of cutting of the dendrogram and to obtain the kb clusters, Figure 4.6
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shows IW computed for values of k ranging from 1 to 10. The curve starts off at a high value for

k = 1 which is expected since all objects are assigned to one cluster. As k increases, IW decreases

dramatically and thereafter begins to flatten out as k approaches 10. Tufféry (2011) recommends that

the value of k should be chosen such that on moving from k to k + 1, there is an insignificant decrease

in IW . However, Tufféry (2011) provides no criteria for what constitutes an insignificant decrease

of IW , so choosing the cut-off value of k is a matter of judgement. For the minute-resolution kb

data, the last significant decrease was chosen to be k = 3 to k = 4. Therefore, the optimal number of

clusters is set to 4. The dendrogram can now be cut at the level that yields 4 clusters.

Figure 4.6: Within-cluster sum of squares for varying values of k, for kb clusters using the hierarchical

method. For k = 1, IW is high. As k increases, IW decreases dramatically and thereafter begins to flatten as

k approaches 10. The optimal value of k is 4 since moving from k = 3 to k = 4 results in a small decrease in

IW .

The silhouette plot for the hierarchical kb clusters of the Durban data is given in Figure 4.7.

Cluster 1 has a low SIC and is rather weakly clustered. Cluster 2 also has a low SIC . The SIC for

Cluster 3 is above 0.8 indicating a compact cluster. Cluster 4 has a slightly lower SIC than Cluster
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Figure 4.7: Silhouette plot for clusters 1 to 4. Clusters 1 and 2 have low SIC indicating less compact clusters.

Clusters 3 and 4 have high SIC indicating compact clusters. The percentage of days in each cluster is also

given. Negative SI values are days that lie closer to the border of the cluster.

3, but nevertheless still sufficiently high to be regarded as compact. The percentage of days in each

cluster is also given. Days with negative are close to the border of two clusters and comprise 11%

of days. For all 4 clusters produced by the Ward’s hierarchical method, the SITOT was found to be

0.61.

The Ward’s hierarchical clustering procedure applied to the PCA-reduced kb data, produced the

dendrogram in Figure 4.8. Using the with-cluster sum criterion in Figure 4.6, the dendrogram was

cut at the level that produced 4 clusters. A cluster map showing the first two Principal Components

is given in Figure 4.9. Cluster 3 and Cluster 4 are relatively compact. However, Clusters 1 and 2 are

less compact.
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4.8 Partitional clustering: k-means

The k-means algorithm, developed by MacQueen (1967), is a well-known and commonly used

partitional clustering algorithm. It belongs to the family of clustering algorithms which require the

a priori specification of a desired number of clusters. Given a set of n objects, this method constructs

k partitions of the data, where each partition represents a cluster and where k ≤ n. The partition

divides the data into k groups such that each group contains at least one object. The primary aim of

k-means clustering is to optimize the following objective function:

ED =
c∑
i=1

∑
x∈Ci

d(x,mi), (4.9)

Figure 4.8: Dendrogram depicting the clustering in the data, from single observations to one final cluster.

The Euclidean distance scale is a measure of how similar two observations and clusters are. The lower the

horizontal line that links two observations or clusters, the smaller the Euclidean distance between them and

the more similar they are. Large vertical gaps on the dendrogram indicate observations or clusters are less

similar to each other.
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Figure 4.9: Cluster map of kb PC1 and PC2 that shows how days are clustered using the hierarchical method.

PC1 accounts for 74% of the variance and PC2 accounts for 8%. Cluster 3 and Cluster 4 have a high degree

of compactness (i.e. high SIC) and Clusters 1 and 2 have a low degree of compactness (i.e. low SIC).

where ED is the criterion function, mi is the center of the cluster Ci and d(x,mi) is the Euclidean

distance between a point x and mi. The criterion function attempts to minimize the distance of each

point from the center of the cluster to which the point belongs (Halkidi et al., 2001). In general, the

k-means iterative clustering method is implemented as follows:

1. Choose a k value.

2. Select k objects arbitrarily. Use these as the initial set of k centroids.

3. Assign each of the objects to the cluster for which it is nearest to the centroid.

4. Re-calculate the centroids of the k clusters, which is done by averaging the members of the

cluster.

5. Repeat steps 3 and 4 until the centroids no longer move (Bramer, 2007).
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There is no guarantee that k-means finds the global minimum, but it does find a local minimum

for a given initial choice of centroids. In order to check for variation in clustering due to different

initial centroids, k-means was run several times.

The k-means clustering was applied to the resulting data, after the PCA was applied. The best

clustering solution was chosen by considering the results for various values of k, guided by SITOT

as well as values of SIC for each cluster. The aim was to find the “natural” clustering, which

corresponds with finding the largest number k of compact clusters. The guideline used was to

maximize k while keeping SITOT greater than 0.6, and also seeking to maintain SIC as high as

possible for each of the clusters obtained. Figure 4.10 shows how SITOT varies with k, where k

ranges from 2 to 10. The largest SITOT is for k = 4, which is the optimal clustering solution for kb

using k-means. Although k = 2 has a distinctly higher SITOT , as mentioned, the aim was to find the

largest k with an SITOT greater than 0.6.

Figure 4.10: SITOT for varying values of k for kb where values above 0.6 correspond to k = 2, 3, 4.

The cluster map depicting the k-means clusters is given in Figure 4.11. The variation of the data

is highest along the x-axis (PC 1) and second highest along the y-axis (PC 2). The silhouette plot,

Figure 4.12, shows how well the kb data has been clustered. For Clusters 1 and 2 there are large SIC

values indicating that these days belong in these clusters. Clusters 3 and 4 have lower SIC values
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which suggests that days in these clusters are closer to the border of the clusters. A total of 3% of

days for the entire data set have negative SI values. This indicates that having 4 clusters is a good

clustering solution for the data since 97% of the days fall into a cluster. The SITOT for the entire

data set is 0.74, which again shows that the data has been well-clustered.

Figure 4.11: Cluster map of kb PC1 and PC2 that show how days are clustered using the k-means method.

Clusters 1 and 2 are compact while Clusters 3 and 4 are significantly less compact. A total of 97% of the days

fall into a cluster.
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Figure 4.12: SIC for each of the 4 clusters and the corresponding frequency of day in each cluster. Clusters

1 and 2 have SIC > 0.75, which indicates compact clusters. Clusters 3 and 4 have SIC below 0.35 and hence

are not compact. A total of 3% of days for the entire data set have negative SI values.



Chapter 4. Cluster analysis 67

Two clustering techniques were applied to one year of minute-resolution kb profiles. Due to the

large number of dimensions i.e. 481, PCA was applied as a pre-processing step prior to clustering.

The first technique, Ward’s hierarchical clustering, produced 4 clusters as the optimal clustering

solution. The choice of the number of clusters was based on analysis of the within-cluster sum of

squares for varying k from 1 to 10. Ward’s clustering produced two dominant clusters each with

SIC above 0.7, and two weak clusters with values for SIC less that 0.2.

The second technique, k-means clustering, also produced 4 clusters as the optimal solution as

guided by the SITOT . As shown in Figure 4.10, only values of k = 2, 3 and 4 have SITOT above 0.6.

SITOT for k = 5 is 0.6 and SITOT is less than 0.6 for the remaining k values. Therefore, choosing

the highest k from with SITOT values above 0.6 gives k = 4 as the best solution. The silhouette plot

for the k-means clusters show that Clusters 1 and 2 are compact clusters. Clusters 3 and 4 are less

compact with SIC of 0.34 and 0.32, respectively.

As mentioned earlier, it is often difficult to attain SIC > 0.6 for all clusters. Both clustering

techniques produce two compact clusters and two weakly compact clusters. However, the k-means

clustering produces a slight improvement on the weakly compact clusters, where for both clusters

SIC is greater than 0.3. In addition, as compared to hierarchical clustering, the k-means method

produces a higher SITOT , more clusters with higher SIC and fewer days with negative SI values.

Overall, both clustering techniques produce a similar clustering solution i.e. 4 clusters. Out of

the clustering sample which comprised one year of daily kb profiles, 88% of days were found to be

in the same class when clustered by both techniques. Therefore, it is sufficient to apply only one of

them to find irradiance patterns to be used for classification and forecasting.

An important feature of the k-means is that the distance criterion between a point and its cluster

centroid, is the same as the error that is computed between individual profiles and the profile of the

cluster mean. This error is the smallest for k-means because the minimization of point to centroid

distances of a cluster is the essence of the k-means clustering algorithm. This is however not the

case for the hierarchical clustering. Furthermore, the k-means clustering is a widely used method

as compared to hierarchical clustering. Therefore, for this thesis, clustering of all variables will be

done using the k-means clustering method.
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Classification of irradiance profiles

This chapter presents a classification of irradiance profiles where the profiles are either normalized

beam and diffuse irradiance, variability in the beam irradiance, or a combination of normalized

beam and diffuse irradiance. As shown in the previous chapter clustering using the hierarchical

method yields similar patterns to clustering by k-means. Therefore, as mentioned in Chapter 4,

clustering of all profiles are done by the k-means method.

5.1 Clustering of profiles

For this thesis, clustering of several radiometric variables was investigated. For classification,

minute-resolution profiles of Bn were clustered, and the classes established have distinct diurnal

profiles that characterize the irradiance patterns in Durban. To match the temporal resolution of the

NWP cloud cover output, hourly-resolution B̄n profiles were also clustered. This further led to the

investigation of clustering of VB, the variability in Bn, to regain information that could have been

lost through averaging. SinceBn was the main clustering variable for distinguishing sky conditions,

and since VB may contain information about Bn, this then led to the clustering of the combination

of Bn and VB. Furthermore, the combination of Bn and Dn was also considered. Classification of

daily profiles is based on the clusters that will be determined, so the terms “cluster” and “class” are

used interchangeably.

As shown at the end of Chapter 4, clustering was applied to minute-resolution kb. However, a

significant characteristic of kb is that it is dependent on seasonality. To illustrate this, kb profiles for

winter and summer solstices for Durban are shown in Figure 5.1. These are theoretical kb profiles

68
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that were derived using equation 2.16 and the D and G components of the Ineichen clear sky model

(Ineichen and Perez, 2002), discussed in Chapter 2. On a clear day, kb rises in the first hour after

dawn to near unity and declines in late afternoon during the last hour before sunset. As the seasons

change, sunrise and sunset times change accordingly so the kb profiles vary in the start and end times

of the rising and declining phases. This seasonal variation in profile, even for clear days, creates

differences that are not due to cloud conditions. These differences can be eliminated by using a

normalized quantity such as Bn.

Figure 5.1: Theoretical kb profiles using clear sky components of D and G for winter and summer solstices

in Durban.

Therefore, due to the seasonal dependency of kb causing differences between profiles not due

to cloud conditions, Bn was used for classification and forecasting. Shown in Figure 5.2, are the

normalized profiles for Bn for winter and summer solstices. Bn is zero before sunrise and after

sunset and these times vary with season. However, within the interval 8:30-16:30 i.e. the time

during which clustering was applied, the shape of the Bn profile is independent of seasonality.

Between the sunrise and sunset times its shape depends on cloud conditions but for a clear day

its profile is a horizontal line. The upper limit of Bn is close to 1, depending on the atmospheric
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turbidity. Since this study focuses on clustering irradiance profiles based on how they are affected

by clouds, introducing the Bn variable was an appropriate step in the method, as will be shown in

the present chapter. In a similar manner to Bn, Dn was also introduced. The value of Dn exceeds 1

depending on the amount of cloud cover. Knowledge of the beam irradiance component is required

for CST plants, but both beam and diffuse components are required for PV plants. Furthermore, if

the two components are known then the normalized global irradiance, Gn, can be obtained.

Figure 5.2: Theoretical clear sky Bn profiles for winter and summer solstices in Durban. Within 8:30-16:30,

the shape of the Bn profile is independent of seasonality.

5.2 Minute-resolution normalized beam irradiance, Bn

Each daily profile of Bn consisted of a set of 481 values for each minute during the interval 8:30 to

16:30 (solar time). Therefore, each Bn profile corresponds to a point in a 481-dimensional space,

which was reduced to a low-dimensional space by PCA. The first 8 components accounted for 90%

of the variance, using equation 4.1, and were hence retained. Figure 5.3 shows a scree plot, where

the percentage variance of the first 10 Principal Components are shown. The first component alone
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accounts for 72% of the variance and the second component accounts for 8%. The cumulative

percentage variance of all 10 components is 91%.

Figure 5.3: The first 10 Principal Components of Bn and the percentage variance explained. The cumulative

percentage for the first 8 and 10 Principal Components are 90% and 91%, respectively.

The k-means algorithm was applied to the PCA-reduced set of Bn profiles. The k-means cluster

map of the first two Principal Components is given in Figure 5.4. The x-axis (PC1) accounts for

72% of the variance and the y-axis (PC2) accounts for 8%. We refer to Cluster 1, 2, 3 and 4 as Class

A, B, C and D, respectively. The frequency of days in each cluster and the cluster SIC value are

presented in Table 5.1. Classes A and B have SIC > 0.7, but SIC for Classes C and D are much

lower. The total number of days with SI < 0 is 19 and SITOT = 0.63.
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Figure 5.4: Cluster map of the first two Principal Components (PC1 and PC2) of the minute-resolution Bn

profiles.

Table 5.1: Summary of Bn clustering.

Class Cluster Frequency of days Proportion SIC SIC < 0

A 1 135 37% 0.78 0

B 2 124 34% 0.78 0

C 3 65 18% 0.31 10

D 4 41 11% 0.21 9
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5.3 Physical interpretation of the classes

To better understand the physical meaning of the classes established through clustering, class mean

profiles are shown in Figure 5.5 and 5.6. The profiles describe the diurnal patterns of each class.

Figure 5.5 suggests that there are four classes of diurnal variation in beam irradiance on the half-day

scale, namely sunny all day (Class A), cloudy all day (Class B), sunny in the morning and cloudy

in the afternoon (Class C) and cloudy in the morning and sunny in the afternoon (Class D). These

classes are hence identified as irradiance pattern classes, which are labeled as follows: Class A:

sunny, Class B: cloudy, Class C: sunny AM-cloudy PM and Class D: cloudy AM-sunny PM.

From the mean profiles in Figure 5.5, Class A has Bn values > 0.8 throughout the day, therefore

these days are sunny with little or no cloud cover. Class B has low Bn levels throughout the day i.e.

Bn values that are < 0.2. This indicates that these days experience cloudy and overcast conditions.

Class C is one which is characterized by relatively high Bn values (> 0.6) in the morning up until

about midday and then decreases during the rest of the day. However, even though the mornings

are regarding as sunny, they are not as sunny as the morning of day that belongs to Class A. This

could indicate that days in this class have some cloud present that lowers the Bn levels during

the sunny period, and these clouds become more dominant over clear sky conditions during the

afternoon. Days in Class D start off cloudy in the morning and become sunny (0.4< Bn <0.65) in

the afternoon. Similar to Class C, the Bn levels during the sunny region in Class D do not reach the

same maximum values in the afternoon, as compared to days in Class A.
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Figure 5.5: Mean profiles of the Bn classes. Cloudy and sunny conditions are characterized by low and high

Bn values, respectively. Class A has high Bn values throughout the day, while Class B has low Bn values.

Class C has high Bn levels in the morning and low Bn in the afternoon. Class D has low Bn in the morning

and high Bn in the afternoon.

The set of associated Dn profiles for each Bn class is given in Figure 5.6. For Class A, Dn is

low throughout the day due to the absence of clouds and persistence of clear sky conditions. Class

B has high levels ofDn for most of the day due to thick cloud cover. Class C has low levels ofDn in

the morning and increases as cloud cover increases toward the afternoon. Class D has the opposite

trend of Class C. The low regions of Dn in Class C and D are not as low as Class A indicating that

there are some clouds present that increase the diffuse irradiance during these times.
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Figure 5.6: Mean profiles of the Dn classes. Cloudy and sunny conditions are characterized by high and low

Dn values, respectively. Class A has low cloud levels and low Dn all day. Class B has high Dn for most

of the day due to high cloud levels. Class C has low cloud levels in the morning and hence low Dn values

and higher Dn in the afternoon. Class D has high Dn in the morning and low Dn in afternoon the afternoon,

indicating high levels of cloud cover in the morning and low in the afternoon.

To establish the range of uncertainty in the classes, all the profiles belonging to each class of

Bn and Dn are presented in Figures 5.7-5.10. To smooth out the minute-to-minute fluctuations and

to visualize the diurnal pattern of the members of a class more clearly, a one hour moving average

was applied to the Bn and Dn profiles. In general, there is a large variation in the individual class

members for both Bn and Dn. For Bn, Classes A and B have a large portion of their days in a fairly

small range, but the range within which the days in Class C and D vary is rather broad. For Dn,

Class A has the smallest range of variation indicating that for sunny days the diffuse irradiance does

not vary significantly from the mean profile. Classes B, C and D have much larger variation in their

profiles. Overall, this shows that even though a day may be in the class, and it is best suited to that

class according to its SI value, it can be significantly far away from the mean profile of the class.

Nevertheless, this is useful for forecasting as it quantifies the range of variation for a typical day
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that falls into each of the Bn and Dn classes.

Figure 5.7: Class A minute-resolution profiles after applying a one hour moving average to smooth out

minute fluctuations in (a) Bn class members and (b) Dn class members. Also shown is the mean profile of

the class superimposed as a thick line.
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Figure 5.8: Class B minute-resolution profiles after applying a one hour moving average to smooth out

minute fluctuations in (a) Bn class members and (b) Dn class members. Also shown is the mean profile of

the class superimposed as a thick line.
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Figure 5.9: Class C minute-resolution profiles after applying a one hour moving average to smooth out

minute fluctuations in (a) Bn class members and (b) Dn class members. Also shown is the mean profile of

the class superimposed as a thick line.
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Figure 5.10: Class D minute-resolution profiles after applying a one hour moving average to smooth out

minute fluctuations in (a) Bn class members and (b) Dn class members. Also shown is the mean profile of

the class superimposed as a thick line.
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5.4 Frequency and distribution of the Bn classes

For completeness of characterization of the irradiance patterns in Durban, the annual distribution of

Bn classes are presented in Figure 5.11. Class A dominates during April to July. During this period,

the months of June and July have 73% and 77% of their days that are sunny. This is consistent with

Durban having clearer skies during winter (Zawilska and Brooks, 2011). Class A comprises 10% of

the days during the month of November and is therefore the month with lowest proportion of sunny

days. Cloudy days that form Class B have highest prevalence during January to March and October

to December. These months are characterized by high amounts of opaque cloud cover. In particular,

November and December have the highest proportion of Class B days of 63 and 58%, respectively.

Class C has the highest occurrence in August and September, with more than 30%, and lowest in

June with only 3%. Class D is fairly evenly distributed throughout the year with the exception of

July. The months with the largest percentage of Class D days i.e. 20 and 22% are April and October,

respectively.

Figure 5.11: Annual distribution of Bn class occurrences. Class A and B dominate during winter and

summer, respectively. Class C is most prevalent in August and September. Class D has fairly even distribution

throughout the year with the exception of July.

The present work focuses on forecasting the class for the day ahead, at the start of the day.

However, some public weather-service providers, such as AccuWeather, provide hourly-resolution
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cloud cover forecasts for three days in advance. Therefore, if the current forecasting method is

to be extended to forecasting the irradiance class for 2 or more days ahead, how often the classes

occur for consecutive days will be of interest. Figure 5.12 (a) shows how frequently classes occur

individually and in sets of consecutive days. The days in a set range from 1, which indicates that

the class occurred individually, to 7, which indicates that the class occurred in a set of 7 consecutive

days. It can be seen that all classes A-D occur most frequently as individual days in the year. Class

C has the highest frequency followed by Class D, A and B. Regarding the classes occurring on two

consecutive days, Class B is distinctly different from the others by the fact that it has a rather high

frequency as compared to classes A, C, and D. In addition, Class B occurs individually in the year

almost as often as it occurs in two consecutive days. Interestingly though, only Classes A and B

occur in a set of 5 and 6 consecutive days, and only Class A occurs in a set of 7 consecutive days.

These frequencies are fairly low.

Figure 5.12 (b) show the frequency of next day class occurrences given the current class of day.

More specifically, if a day is currently a Class A, how often is the next day a Class A, or a Class B,

C or D. Again, this is useful for forecasting for more than one day ahead. Class A is followed by a

Class A day more frequently than any other class. This is also the case for Class B. Class C days

however, are most often followed by a Class B, which makes sense since the afternoons of Class C

days are cloudy. Class D days have almost similar chance of having the next day be a Class A, B, C

or remain a Class D.
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Figure 5.12: (a) Frequency of Bn classes occurring individually and in sets of consecutive days ranging from

2 to 7. (b) Frequency of next day occurrence given the current Bn class of day.
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5.5 Comparison with local cloud observations

Since cloud cover is closely related to irradiance, the annual total cloud cover (TCC) distribution

was compared with the annual Bn class distribution. In Durban, total cloud cover was recorded

by a cloud observer twice a day i.e. at 0600 UTC and 1200 UTC. The TCC in oktas for all cloud

levels i.e. low, middle and high at 0600 UTC and 1200 UTC are presented in Figure 5.13 (a)

and (b), respectively. Morning TCC (i.e. UTC 0600) between the range of 3 to 5 oktas comprise

less than 30 days across all months. However, for afternoon TCC (i.e. UTC 1200) observations

this is only the case for 5 oktas. A small number of days across all months have a total cloud

coverage of 4 and 5 oktas for the morning and afternoon, respectively. This suggests that morning

and afternoon sky coverage, where half the sky or slightly less than half the sky is obscured by

clouds, is fairly uncommon for Durban. The months that had the most number of days with a TCC of

zero oktas were June and July, which indicates that these months comprised mostly sunny days. This

is consistent with the classification and characterization results for Durban, where clustering of the

Bn irradiance profiles revealed that the months of June and July had the highest proportion of Class

A days. In addition, October, November and December have days with high amounts of TCC and

which confirms that Class B (cloudy days) does indeed have a high prevalence during these months.

Given that the distribution of cloud cover observations show high correlation with the distribution

of irradiance classes, this confirms that the k-means clustering produces groups that represent the

dominant irradiance patterns in Durban relatively well. Although cloud cover observations are

only recorded twice a day, and not as often as irradiance measurements, the information contained

in those limited observations nevertheless provides a way of validating the 4 dominant irradiance

classes that characterize the irradiance patterns in Durban.
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Figure 5.13: Annual distribution of total cloud cover for Durban at (a) 0600 UTC and (b) 1200 UTC.
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5.6 Hourly-resolution normalized beam irradiance, B̄n

For each hour, the minute-resolution data was averaged according to equation 2.19. This resulted

in a reduced set of profiles of 8 dimensions, where each dimension is the B̄n value for the hour.

The purpose of clustering the hourly-resolution B̄n was to match the hourly-resolution cloud cover

profiles output from the NWP, which was used for forecasting. Secondly, B̄n was clustered to in-

vestigate whether the same clustering patterns from Bn can be re-gained.

Since averaging the minute-resolution profiles to hourly-resolution is in itself a form of data

reduction, no PCA is applied to B̄n. Clustering was applied directly to all 8 dimensions. A cluster

map produced is a projection onto a 2-d plot that shows a particular view of the data for example,

morning and afternoon averages or day averages. For convenience, “k-means cluster map” or “clus-

ter map” are used interchangeably when describing the clustered profiles, irrespective of the number

of dimensions used for clustering.

The k-means cluster map for B̄n is given in Figure 5.14, which shows morning (8:30-12:30) av-

erage of B̄n on the horizontal axis and afternoon (12:30-16:30) average on the vertical axis. Classes

A and B are compact and widely separated whereas Classes C and D, in the region between A and

B, are less compact and have members at their edges that are closer on average to A and B than to

their own cluster, resulting in negative SI for those members. A minor difference between the B̄n

and Bn clustering is that the number of profiles with negative SI decreased from 19 for Bn to 16

for B̄n. Table 5.2 summarizes the clustering information.

Table 5.2: Summary of B̄n clustering.

Class Cluster Frequency of days Proportion SIC SIC < 0

A 1 135 37% 0.79 0

B 2 124 34% 0.79 0

C 3 65 18% 0.33 9

D 4 41 11% 0.25 7
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Figure 5.14: B̄n cluster map of the morning average (8:30-12:30) and afternoon average (12:30-16:30).

Class A days have high morning and afternoon averages, whereas Class B is low for both. Class C has high

morning averages and low afternoon averages. Class D is the opposite with low morning averages and high

afternoon averages.



Chapter 5. Classification of irradiance profiles 87

Class mean profiles for B̄n, denoted as 〈B̄n〉, are shown in Figure 5.15. The mean profiles are

similar to those the profiles of Bn. Class A contains days that have high levels of B̄n throughout

the day. Alternatively, Class B has low levels of B̄n. For Class C B̄n is high until midday and

thereafter is low. Class D is the opposite of Class C. In addition to B̄n, there are a set of associated

hourly-resolution profiles for the normalized diffuse irradiance D̄n. These are given in Figure 5.16.

Figure 5.15: Mean profiles of the B̄n classes. Class A has high levels of B̄n all day, while Class B is the

opposite. B̄n is high in the morning and low in the afternoon for Class C, and vice-versa for Class D. All

profiles are similar to profiles of Bn.
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Figure 5.16: Mean profiles of the D̄n classes. These profiles are similar to those of minute-resolution Dn.
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For forecasting it is important to have knowledge of the range of uncertainty. The hourly-

resolution B̄n class mean profiles in the form of box plots are shown in Figures 5.17 and 5.18,

calculated for each hour. The more compact clusters (A and B) have smaller interquartile (i.e. low

variability) range than the less compact clusters (C and D), which have a larger interquartile range

(i.e. high variability). This is because sunny and cloudy conditions have low variability in the Bn

as compared to days with mixed conditions (Classes C and D). A forecast that places a day into a

class will thus be predicted to have an irradiance profile similar to that class mean profile within an

uncertainty corresponding to the class standard deviation. It is therefore expected that forecasts of

A and B class will have less uncertainty than for C and D.

The associated 〈D̄n〉 profiles with their corresponding box plot for each B̄n class are presented

in Figures 5.19 and 5.20. The D̄n profiles have diurnal trends that are the inverse of B̄n, where Class

A D̄n is very low throughout the day at 1. Class B has high D̄n due to the scattering of the beam

fraction by clouds. Classes C and D have high D̄n during the cloudy periods, however the D̄n levels

are not as high as in the case of Class B thus indicating less scattering. Class A has a rather small

range of uncertainty as compared to Classes B, C and D.
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Figure 5.17: Box plots for hourly class mean profiles of B̄n for (a) sunny (Class A), (b) cloudy days (Class

B). Classes A and B have relatively small interquartile range in comparison to Classes C and D.
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Figure 5.18: Box plots for hourly class mean profiles of B̄n for (a) sunny AM-cloudy PM (Class C) and (d)

cloudy AM-sunny PM days (Class D). Classes C and D have relatively large interquartile range as compared

to Classes A and B.
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Figure 5.19: Box plots for hourly class mean profiles of D̄n for (a) sunny (Class A), (b) cloudy days (Class

B). Classes A and B have relatively small interquartile range as compared to Classes C and D.
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Figure 5.20: Box plots for hourly class mean profiles of D̄n for (a) sunny AM-cloudy PM (Class C) and (d)

cloudy AM-sunny PM days (Class D). Classes C and D have relatively large interquartile range as compared

to Classes A and B.
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5.7 Hourly-resolution variability, VB

Variability in Bn (VB) was investigated since VB may contain information about Bn that may have

been lost through averaging. This led to the clustering of VB, since clustering could find some pat-

tern that may exist in VB that is potentially useful for forecasting.

Variability of irradiance on the diurnal scale i.e. movement of the Sun during the day is de-

terministic and can therefore be easily predicted (Kleissl, 2013). Alternatively, variability due to

atmospheric effects, in particular clouds, is difficult to predict especially on the minute-resolution

timescale. Due to this rapid fluctuation in the minute-resolution data being difficult to predict, an

average value for the variability that takes into account these fluctuations was used. For this thesis,

the variability in Bn defined in Chapter 2 was used as a measure for the variability over the hour.

Figure 5.21: V̄B cluster map of the morning average and afternoon average. Cluster 1 contains days that

have low morning and afternoon average variability. Days in Cluster 2 have low morning and high afternoon

variability. Cluster 3 and 4 have a combination of low and high variability in the mornings and afternoons.



Chapter 5. Classification of irradiance profiles 95

Similar to Bn, there were 8 VB dimensions and no PCA was applied. The cluster map for

the morning and afternoon average of VB is shown in Figure 5.21. Similar to B̄n, there are two

clusters with low and high values for VB, and two clusters with intermediate VB values. Table 5.3

summarizes the VB clustering. The mean profiles of the clusters in Figure 5.21 are shown in Figure

5.22. From the mean 〈V̄B〉 profiles it is not clear which B̄n class of days A, B, C or D are contained

in the VB clusters. The profile with low 〈V̄B〉 throughout the day can be associated with Class A and

B days i.e. sunny or cloudy all day, respectively, since the sky conditions are persistent throughout

the day and hence 〈V̄B〉 will be low. The remaining VB profiles do not show a pattern that can be

correlated with a B̄n class. For this reason, the associated mean B̄n profiles are given in Figure 5.23.

This set of B̄n profiles lack the distinct diurnal patterns as compared to the profiles in Figure 5.15,

and all four of these profiles lie in the range 0.27-0.65. This is because days that were separated

originally in a B̄n Class A, B, C or D are now mixed, and based on this particular clustering solution,

one B̄n class may contain a combination of Class A, B, C or D days. This results in the average

over the 〈B̄n〉 class members having no distinct diurnal pattern.

Table 5.3: Summary of VB clustering.

Cluster Frequency of days Proportion SIC SIC < 0

1 59 16% 0.08 20

2 198 54% 0.74 0

3 53 15% 0.17 11

4 55 15% 0.20 10
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Figure 5.22: Mean profiles for VB clusters.

Figure 5.23: Associated mean profiles for B̄n for VB clusters.



Chapter 5. Classification of irradiance profiles 97

5.8 Combination of {B̄n, VB}

As mentioned earlier, clustering of B̄n combined with VB denoted as {B̄n, VB} was investigated.

Clustering of this combination was to investigate whether B̄n with its variability has any effect on the

clustering structure and more specifically, if stronger clustering patterns emerge. The combination

of the hourly values of {B̄n, VB} resulted in 16 dimensions and k-means clustering was applied

directly to the 16-dimensional set. Table 5.4 summarizes the clustering information for the {B̄n,

VB} combination. The cluster maps for the {B̄n, VB} combinations for the morning and afternoon

averages are shown in Figures 5.24 and 5.25. The day averages of B̄n and VB are shown in Figure

5.26.

Table 5.4: Summary of {B̄n, VB} clustering.

Cluster Frequency of days Proportion SIC SIC < 0

1 54 15% 0.11 20

2 59 16% 0.33 5

3 131 36% 0.78 0

4 121 33% 0.78 0



Chapter 5. Classification of irradiance profiles 98

Figure 5.24: Cluster map of the morning and afternoon B̄n average for the combination of {B̄n, VB}.

Figure 5.25: Cluster map of the morning and afternoon VB average for the combination of {B̄n, VB}.
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Figure 5.26: Cluster map of B̄n and VB averaged over all hours of the day.

The mean profiles for B̄n and VB are shown in Figure 5.27 and 5.28. The B̄n profiles are similar

to those produced by clustering B̄n on its own (Figure 5.15). The mean profiles for VB show that

Classes A and B have fairly similar trends i.e. low VB throughout the day. An exception is the last

hour of Class A, where VB tends to show a slight increase. Classes C and D have higher VB levels

than A and B, which is expected due to the change in sky conditions for these types of days.
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Figure 5.27: Mean profiles for B̄n when combined with VB .

Figure 5.28: Mean profiles for VB when combined with B̄n.
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5.9 Combination of {B̄n, D̄n}

To investigate whether the additional information of diffuse irradiance yields a different clustering

solution, B̄n and D̄n were combined, denoted as {B̄n, D̄n}, and clustered also as a 16-dimensional

set. The cluster map of the morning and afternoon averages of the {B̄n, D̄n} combination are

presented in Figures 5.29 and 5.30, respectively. When combined with D̄n, the cluster map for B̄n

results in Class A being relatively compact and well separated, but Classes B, C and D are weakly

compact. Alternatively, the cluster map for D̄n shows an improvement in compactness in all classes.

Figure 5.29: Cluster map of B̄n when combined with D̄n. Class A is relatively compact and well separated,

but Classes B, C and D are weakly compact.
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Figure 5.30: Cluster map of D̄n when combined with B̄n.

Figures 5.31 and 5.32 show the class mean profiles for B̄n and D̄n, respectively. It is quite

evident that the B̄n classes have a different set of members and therefore produce different mean

profiles as compared to Figure 5.15. Classes A and B are regained even when combined with D̄n

however, Classes C and D are weak in their B̄n profiles and tend to lose the distinct shapes that were

present in Figure 5.15. On the other hand, Classes C and D are stronger in their D̄n profiles with

their afternoons being strongly separated. The mean profiles for D̄n are fairly consistent with those

in Figure 5.16, in the sense that they represent the same diurnal patterns in the diffuse irradiance.
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Figure 5.31: Mean profiles for B̄n when combined with D̄n.

Figure 5.32: Mean profiles for D̄n when combined with B̄n.



Chapter 6

Forecasting using classes

This chapter describes forecasting of irradiance profiles using classes. Day forecasts are presented

using two methods, both of which depend on cloud cover output from the NWP. Intra-day forecast-

ing, in particular, hourly forecasts for B̄n and D̄n are presented. All forecasting methods depend

on the clustering results and the classes of B̄n and D̄n that were established through clustering in

Chapter 5. Testing of forecasting was done using a set of 100 days during January to June in 2017.

The test set included radiometric and cloud cover profiles. Forecasting results are presented with

the relevant success rates and error metrics.

6.1 Day forecasts

The class mean profiles of B̄n, presented in Chapter 5, were used for forecasting the class of day.

More specifically, forecasting was done using a day-ahead forecast of Q to forecast the class of the

day, and then using 〈B̄n〉 for that class as the forecast of the B̄n profile. Although Q was specified

on the hour in “clock time” (SAST), and hence offset from solar time, the difference of at most 20

minutes was small compared with the one-hour resolution of the Q profile and was not significant.

Forecasting was done using two methods. The first uses classes of Q found by k-means clustering.

The second method uses a simple set of decision rules referred to as the “50% rule”.

6.1.1 Clustering of hourly-resolution cloud cover, Q

Forecasting day-ahead irradiance used cloud cover forecasts from the NWP that were clustered by

the k-means method. Hourly cloud cover profiles, Q, were recorded for 243 days in the year 2016.

104
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As mentioned earlier, these were obtained from AccuWeather, a public weather-service provider,

to produce a daily profile from 9:00 to 16:00 SAST (South African Standard Time). The Q output

from AccuWeather makes use of the GFS NWP model run by National Oceanic and Atmospheric

Administration (NOAA). Q profiles are available at hourly temporal resolution for at least 12 hours

ahead. Therefore, at the start of the day, the Q profile for the entire day ahead at each hour is

available.

Clustering of Q profiles from the NWP output was a novel aspect of this thesis, and was done

so that the classes of Q could be used to forecast the irradiance class. The forecast of Q is assigned

to one of the classes, which in turn is associated with one of the classes of B̄n. However, in order

to use classes of Q to forecast the irradiance class, it was necessary to have four classes of cloud

cover. Because low B̄n is correlated with high Q, it was expected that they should exhibit similar

clustering considering that NWP is designed to model the weather pattern as accurately as possible.

Nevertheless, k was varied from 2 to 10 as for irradiance profiles in order to check whether k =

4 was a good solution. It was found that k = 4 was indeed a good solution, with SITOT = 0.74.

Since Q profiles were at hourly intervals, similar to B̄n, the number of dimensions were 8, and so

no pre-processing was applied. k-means clustering was applied directly to the 243 days of the 8-

dimensional profiles.

The cluster map of the morning and afternoon average of Q is given in Figure 6.1, with morning

average of Q on the horizontal axis and the afternoon average on the vertical axis. The four clusters

have cloud cover conditions that are associated with the B̄n classes and are given the same labels,

but with primes. Thus the Q classes are Class A′: low Q all day, Class B′: high Q all day, Class C′:

low Q in morning and high Q in afternoon, and Class D′: high Q in morning and low Q in afternoon.

Class A′ correspond to sunny days, Class B′ to cloudy days, Class C′ to days that are sunny in the

morning and cloudy in the afternoon and Class D′ to days that are cloudy in the morning and sunny

in the afternoon. Table 6.1 summarizes the results of clustering of daily Q profiles. The total number

of days with SIC < 0 were 6. The mean Q profiles of the clusters in Figure 6.1 are given in Figure

6.2.
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Figure 6.1: Cluster map of Q with daily profiles averaged for morning (9:00-12:00) and afternoon (13:00-

16:00).

Table 6.1: Summary of Q clustering.

Class Cluster Frequency of days Proportion SIC SIC < 0

A′ 1 63 26% 0.88 0

B′ 2 108 44% 0.86 0

C′ 3 20 8% 0.46 2

D′ 4 52 21% 0.42 4
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Figure 6.2: Class mean profiles for Q. Class A′ has low levels of Q all day. These correspond to sunny

days. Class B′ is the opposite where Q is high throughout the day corresponding to cloudy days. Class C′

has low Q in the morning and high Q in the afternoon, corresponding days that have sunny mornings and

cloudy afternoons. Class D′ is the opposite with relatively high Q in the morning and low Q in the afternoon,

corresponding to days that have cloudy mornings and sunny afternoons.
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6.1.2 Forecasting using Q clustering

The first forecasting method was to use the four classes of Q obtained from clustering daily Q

profiles. For a given day, the Q forecast was obtained and the day assigned to one of the Q classes

by finding the nearest centroid in the 8-dimensional cluster space. The associated irradiance class

was then regarded as the forecast of the irradiance class of that day. The forecast irradiance profile

is the class mean profile, with estimated uncertainty given by the class standard deviation. For

example, suppose that a given day is forecast to belong to Q Class A′. Then the irradiance forecast

is that the day belongs to the associated B̄n Class A. The forecasting results using the clustering of

Q are presented in Table 6.2. Each cell in Table 6.2 shows the number of days in a predicted class

that were found to be in an actual class, with marginals in the rightmost column and lowest row.

Shown in brackets are the number in a cell as a percentage of the total in the rightmost column. For

example, the first row shows the 36 days predicted to be in Class A, of which 26 were actually in

Class A, 1 in B, 4 in C and 5 in D. Thus 72% of days predicted to be in Class A were actually in

Class A, whereas 3% were actually in Class B, 11% in C and 14% in D. The number of correct

predictions are in the main diagonal.
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Table 6.2: Forecast results using classes of Q on the testing sample of 100 days in 2017. Each cell shows the

number of days in a predicted class that were found to be in an actual class, with marginals in the rightmost

column and lowest row. Shown in brackets are the number in a cell as a percentage of the total in the rightmost

column.

Actual B̄n class

A B C D Total forecast

Pr
ed

ic
te

d
B̄

n
cl

as
s

26 1 4 5 36

A (72%) (3%) (11%) (14%)

0 23 8 4 35

B (0%) (66%) (23%) (11%)

3 2 5 0 10

C (30%) (20%) (50%) (0%)

2 4 2 11 19

D (11%) (21%) (11%) (58%)

Total actual 31 30 19 20 100
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6.1.3 Forecasting using the 50% rule

The second forecasting method uses a simple decision rule, termed the “50% rule” because it assigns

a predicted Q profile from the NWP to a class depending on the cloud cover averages for the morning

and afternoon. This method was chosen as a simple alternative to k-means clustering that takes into

account the diurnal variation of the B̄n classes. Forecasting the class of day as Class A, B, C or D

using the 50% rule uses a set of decision rules based on Q. The day is partitioned into two parts, i.e.

morning and afternoon, where the morning hours are from 9:00 to 12:00 and the afternoon hours

are from 13:00 to 16:00. The average Q percentage for the morning and afternoon are taken over

the respective periods, and is referred to as QAM and QPM , respectively. A set of decision rules

presented in Table 6.3 are applied to morning and afternoon Q averages, and the day is assigned to

a B̄n class depending on whether QAM and QPM are above or below 50%. The mean profile for

the associated B̄n class is the forecast for the day. The 50% rule produced the forecasting results in

Table 6.4.

Table 6.3: Decision rules for morning and afternoon average Q percentage and the associated B̄n class. Class

A (sunny), Class B (cloudy), Class C (sunny morning-cloudy afternoon) and Class D (cloudy morning -sunny

afternoon).

Associated B̄n Class QAM QPM

A ≤ 50% ≤ 50%

B ≥ 50% ≥ 50%

C ≤ 50% > 50%

D > 50% ≤ 50%

Table 6.4 shows that the 50% rule produces a prediction success rate of 63%. The success rate

for the individual classes A, B, C and D are 64%, 59%, 63% and 83%, respectively. This method,

however, shows increased performance for Classes C and D, and a decrease in performance for

Classes A and B.
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Table 6.4: Forecasting results using the 50% rule. This table has the same format as Table 6.2.

Actual B̄n class

A B C D Total forecast

Pr
ed

ic
te

d
B̄

n
cl

as
s

30 4 4 9 47

A (64%) (9%) (9%) (19%)

0 23 10 6 39

B (0%) (59%) (26%) (15%)

1 2 5 0 8

C (13%) (25%) (63%) (0%)

0 1 0 5 6

D (0%) (17%) (0%) (83%)

Total actual 31 30 19 20 100
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Table 6.5 shows the average RMSE values, computed using equation 3.2, for each class using

the respective forecasting method. Overall, the average RMSE per class are fairly similar using the

two forecasting methods, with smaller RMSE for Classes A and B using Q clustering, and smaller

RMSE for Classes C and D using the 50% rule. The largest difference was in Class A.

Table 6.5: Average RMSE for each class using the two forecasting methods for day ahead forecasts of B̄n.

Class Q clustering 50% rule

A 0.20 0.27

B 0.22 0.24

C 0.32 0.29

D 0.34 0.29

6.2 Hourly forecasts of B̄n and D̄n

6.2.1 Forecasting using Persistence of the Class Trend

In addition to day forecasts, intra-day forecasts of B̄n and D̄n were also investigated. The B̄n and

D̄n quantities were forecast separately since they each have a set of class mean profiles that are used

for the intra-day forecasting method. The method used to forecast hourly values of B̄n and D̄n used

classes that were established through clustering of B̄n. As seen in Chapter 5, each B̄n class has an

associated D̄n mean profile that characterizes the class in terms of the diffuse irradiance levels. To

produce forecasts at hourly intervals, these mean profiles were used to forecast B̄n and D̄n for the

next hour based on how far away B̄n and D̄n are from the class mean profile in the current hour.

The method called “Persistence of the Class Trend” (PCT) uses the mean profile of the class as a

reference, together with the current actual B̄n and D̄n values, to forecast B̄n and D̄n for the next

hour, according to the equations 6.1 and 6.2. The PCT forecasting method is illustrated in Figure

6.3.
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Figure 6.3: Description of the PCT method. The Q forecast for the day is retrieved from AccuWeather and

QAM and QPM are computed. The 50% rule is applied to forecast the class of day and thereafter the mean

profiles for that class are used to forecast hourly values of B̄n and D̄n.

First, the Q forecast is obtained from AccuWeather the start of the day. Then Q is averaged

for the morning and afternoon and the 50% rule from Table 6.3 is applied to forecast the day as

Class A, B, C or D. Then, once the class of day is established, the PCT method is applied using the

corresponding mean profile for B̄n and D̄n for that specific class.

An example of a Q forecast from AccuWeather is given in Figure 6.4. This particular profile is
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typical of a sunny day in Durban.

Figure 6.4: An example of a Q forecast obtained from AccuWeather that is required for the PCT method.

This Q profile was the forecast for 29 July 2017. This profile is typical of a sunny day in Durban, where Q is

low throughout the day.

Using the class mean profile, the hour-ahead forecast of B̄n denoted as Bnforecast
is given by

Bnforecast
=
Bnactual

×Mt+1

Mt

, (6.1)

where Bnactual
is the actual B̄n value, Mt is the mean of the B̄n class at hour t and Mt+1 is the mean

of the B̄n class at hour t + 1. Similarly, the hour-ahead forecast for D̄n, denoted as Dnforecast
is

given by

Dnforecast
=
Dnactual

×Mt+1

Mt

, (6.2)

where Dnactual
is the actual D̄n and where in this case, Mt is the mean of the D̄n class at hour t and
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Mt+1 is the mean of the D̄n class at hour t + 1. The a first actual irradiance value is required by

the PCT method to estimate how far the actual value is from the mean profile. As a result, hourly

forecasts of B̄n and D̄n start an hourly later.

Figures 6.5-6.8 (a) and (b) illustrate the PCT method for hourly forecasts of B̄n and D̄n. Ex-

amples of each class are shown with the actual and forecasted profiles for B̄n and D̄n. The mean

profile of the class was also included to illustrate the effect of the PCT method.
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Figure 6.5: Example of Class A using the PCT method for 2 April 2017. Hourly forecast of (a) B̄n and (b)

D̄n.
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Figure 6.6: Example of Class B using the PCT method for 14 April 2017. Hourly forecast of (a) B̄n and (b)

D̄n.
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Figure 6.7: Example of Class C using the PCT method for 18 March 2017. Hourly forecast of (a) B̄n and

(b) D̄n.
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Figure 6.8: Example of Class D using the PCT method for 5 April 2017. Hourly forecast of (a) B̄n and (b)

D̄n.
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6.2.2 Forecast error using the PCT method

Performance of the PCT forecasting method is quantified using the RMSE. This is the most commonly-

used error metric for comparing how close a forecast is to the actual. For each class, the RMSEs for

B̄n and D̄n for all the days in that hour are presented in Figure 6.9. In addition, the variance for B̄n

(denoted as σBn) and D̄n (denoted as σDn) in each hour is shown in Figure 6.10.

6.2.3 Comparison to Persistence

To establish the performance of a forecasting method, a comparison is made using the Persistence

forecasting method. The Persistence method was applied to the same set of test days as the PCT

method and the RMSE for each hour was computed. Tables 6.6-6.9 present the percentage im-

provement in the RMSE in each hour for Classes A to D, respectively. In each table the percentage

improvement in B̄n and D̄n for the hour are in the second and third columns. From the total number

of days in each class that were tested, not all forecasts using the PCT method showed an improve-

ment over Persistence. This is expected since Persistence is difficult to improve upon when sky

conditions remain fairly static i.e. sunny and cloudy days. The percentages presented in these tables

are for the days where the PCT method did show an improvement over Persistence. Listed in the

last two columns are the number of days (out of the class total) for B̄n and D̄n that were found to

have shown improvements over Persistence, and are denoted as NBn and NDn .

For Class A, the PCT method showed most improvement in B̄n during the afternoon. The im-

provement in D̄n was relatively low (< 5%) for all hours with the exception of hour 16:00. Classes

B, C and D show higher improvements in B̄n and D̄n, but the sample sizes for Classes C and D are

much smaller and this increases the percentage quite substantially. The average improvement for all

hours in each class is given in the last row of each table. Overall, the average improvement of the

PCT method over Persistence for all classes was found to be 22.2% for B̄n and D̄n.

For all classes, for the remaining days for which Persistence Forecasts performed better than the

PCT method, the average decrease in Persistence RMSE was found to be 35% and 25% for B̄n and

D̄n, respectively. For B̄n this is slightly higher that that of McCandless et al. (2015), but for D̄n it

is relatively similar.
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Figure 6.9: RMSE for Classes A-D using the PCT method. (a) RMSE for each hour of B̄n (b) RMSE for

each hour of D̄n.
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Figure 6.10: Variance for Classes A-D using the PCT method. (a) variance for each hour of B̄n (b) Variance

for each hour of D̄n.
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Table 6.6: Class A percentage improvement in RMSE over Persistence using the PCT forecasting method,

for the set of days indicated the in last two columns. Class A has a total of 47 days.

Hour Improvement in Bn RMSE Improvement in Dn RMSE NBn NDn

10:00 1.3% 2.6% 25 20

11:00 0.43% 1.7% 21 25

12:00 0.2% 0.1% 29 18

13:00 2.6% 3.1% 28 26

14:00 6.7% 1.1% 20 20

15:00 10.3% 3.5% 22 15

16:00 17.4% 14.8% 23 29

Average 5.6% 3.8%

Table 6.7: Class B percentage improvement in RMSE over Persistence using the PCT forecasting method,

for the set of days indicated the in last two columns. Class B has a total of 39 days.

Hour Improvement in Bn RMSE Improvement in Dn RMSE NBn NDn

10:00 13.4% 21.7% 14 27

11:00 33.2% 7.4% 14 12

12:00 48.9% 7.3% 17 16

13:00 26.2% 13.6% 17 18

14:00 1.5% 42.8% 20 14

15:00 14.2% 52.6% 10 20

16:00 1.8% 50.6% 5 30

Average 19.9% 28.0%
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Table 6.8: Class C percentage improvement in RMSE over Persistence using PCT the forecasting method,

for the set of days indicated the in last two columns. Class C has a total of 8 days.

Hour Improvement in Bn RMSE Improvement in Dn RMSE NBn NDn

10:00 8.5% 7.7% 5 5

11:00 0.3% 23.6% 5 5

12:00 42.3% 13.6% 5 5

13:00 76.5% 0% 2 1

14:00 60.6% 16.9% 4 4

15:00 44.1% 29.6% 7 5

16:00 89.9% 89.1% 5 3

Average 43.0% 25.0%

Table 6.9: Class D percentage improvement in RMSE over Persistence using PCT the forecasting method,

for the set of days indicated the in last two columns. Class D has a total of 6 days.

Hour Improvement in Bn RMSE Improvement in Dn RMSE NBn NDn

10:00 2.1% 15.3% 5 3

11:00 41.6% 24.1% 3 2

12:00 8.0% 40.3% 6 5

13:00 14.7% 24.5% 5 4

14:00 1.7% 24.5% 5 4

15:00 30.9% 40.9% 2 2

16:00 44.7% 53.2% 2 3

Average 20.5% 31.8%
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Discussion

A discussion of the results from the clustering analysis and forecasting are presented in this chapter.

A comparison of the clustering results for the different variables, and a comparison of the forecast-

ing methods using classes are discussed. The chapter concludes with an overall summary of the

classification and forecasting results for Durban.

7.1 Classification of irradiance profiles

7.1.1 Minute-resolution irradiance profiles

One of the aims of this research was to use clustering for classification of irradiance patterns. Clas-

sification of the solar irradiance patterns in Durban was obtained by clustering of minute-resolution

Bn profiles. Due to the large number of dimensions i.e. 481 in the minute-resolution profiles, PCA

was applied as a pre-processing technique. As indicated by the scree plot in Figure 5.3, the first

8 components explain more than 90% of the variance in the data, therefore reducing the number

of dimensions to 8 from the original 481. Table 7.1 lists the individual percentage and cumulative

percentages of the first 8 components. This demonstrates that for Durban the first 8 components are

sufficient to describe 90% of the variance in all dimensions.

The solution of four clusters produced a relatively high SITOT value i.e. 0.64, in keeping with

the benchmark of a good silhouette value suggested by Lletı́ et al. (2004). Furthermore, this solution

produced 5% of days with a negative SI which indicates that 95% of the days in Durban are well

represented by these four clusters. The clustered Bn profiles have a set of associated Dn profiles.

125
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Table 7.1: Individual and cumulative percentage variance for the first 8 Principal Components for Bn minute-

resolution profiles.

Principal Individual percentage Cumulative percentage

component variance variance

1 72 72

2 8 80

3 4 84

4 2 86

5 1 87

6 1 88

7 0.8 89

8 0.8 90

The mean profiles in Figures 5.5 and 5.6 characterize the Bn and Dn classes and describe the

irradiance levels for the day.

Although the present work focused on forecasting for the day-ahead, Figures 5.12 (a) and (b)

may be used in future work for developing models for forecasting the irradiance class for more

than one day ahead. Figure 5.12 (a) shows the frequency of classes occurring in sets. Mostly, only

Classes A and B occur for more than three consecutive days. Figure 5.12 (b) shows the frequency

of next day class occurrences. If forecasting for more than one day ahead is pursued, this can assist

in deciding the most appropriate forecasting tools. For example, if the current day is a Class A, the

next day is most likely to be a Class A and therefore forecasting tools such as satellite and ground-

based imagers may not be required to track cloud motion and instead statistical techniques could be

sufficient. On the other hand, if the current day is a Class D, the next day could either be either a

Class A, B, or C. In this situation it would be necessary to have satellite and ground-based cloud

imagery to monitor large cloud masses and track individual clouds.

7.1.2 Hourly-resolution irradiance profiles

In order to match the hourly-resolution of the NWP cloud cover, and to investigate whether the same

diurnal patterns can be regained with lower temporal resolution data, hourly-resolution profiles, B̄n,

were clustered. The class mean profiles in Figure 5.15 show the same diurnal patterns were indeed
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regained. This high degree of similarity indicates that the sub-hourly temporal structure in Bn did

not result in any significant difference in clustering compared with the temporal structure in the

hourly average. These four B̄n and D̄n classes successfully characterize the solar irradiance pat-

terns in Durban.

As mentioned in Section 5.3, B̄n profiles presented in Figure 5.15 show a difference in the

strength of the irradiance levels in the sunny regions for Classes C and D as compared to Class A.

More specifically, the values of B̄n in the sunny regions of Classes C and D are significantly lower

(0.6 < B̄n < 0.8) than that of Class A (> 0.9). In Durban, low clouds occur more frequently in

the late afternoon or evening, as well as in the early morning hours (South African Weather Ser-

vice, 2010). As described by Wood (2012), stratocumulus clouds exhibit strong diurnal modulation

largely due to the diurnal cycle of solar insolation and consequently absorption of solar radiation

during the daytime in the upper regions of the cloud. This results in a suppression of the total

radiative driving, resulting in weaker circulation during daytime than at night and a less efficient

coupling of the clouds with the surface moisture supply. Because of this, the maximum coverage

of stratocumulus tends to be during the early hours of the morning. Eastman and Warren (2013)

state that low clouds respond to the day-night cycle of solar flux. During the day, solar heating

of the surface results in convection and cumuliform cloud formation due to destabilization of the

atmospheric boundary layer (i.e. the lowest part of atmosphere that is closest to the Earth’s surface).

At night the boundary layer cools, resulting in condensation and the formation of stratiform clouds.

Both cumuliform and stratiform clouds fall into the category of low cloud types. This may explain

the possibility of Classes C and D having reduced morning and afternoon average B̄n levels. More

specifically, for Class C days, if there is stratocumulus or cumulus cloud present in the early morn-

ing, they may not completely dissipate by 9:00 and so the morning average B̄n level will be lower

that than of Class A. Similarly, for Class D days, if there is stratocumulus cloud present in the late

afternoon, there may be presence of their formation during the early afternoon (14:00-16:00) that

results in a lower afternoon average B̄n, as compared to the Class A.

The possibility of the presence of cloud in the sunny regions of Classes C and D may be observed

by the difference in the morning D̄n levels of Classes C and D from Class A. More specifically, Class

A has a morning D̄n average of about 1, whereas Classes C and D have a morning D̄n average that

exceeds 1.5 despite their being classified as a “sunny” morning. For Class D, the morning average

D̄n is more than double that of Class A. According to Haurwitz (1948), low clouds reduce the in-
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solation by approximately 65%. This implies that the diffuse irradiance may be almost doubled in

the presence of low clouds. Therefore, this could further explain the possibility of the occurrence of

low cloud in Class D, where the morning D̄n average is more that twice the level of Class A.

In Figure 5.16, the D̄n profile for Class B exceeds 3.5 during midday. According to Miller

(1981), as cloud cover fraction increases from about 0.3 to 0.7, the diffuse irradiance increases by

about half, from 130 W/m2 to 200 W/m2. Furthermore, the midday flux density or diffuse radiation

ranges up to 200-300 W/m2. This could be an explanation for the D̄n Class B trend that has been

observed, i.e. increasing trend towards midday where it peaks and thereafter decreases toward the

afternoon.

Durban frequently experiences cold fronts, which develop as closed low-pressure cells in the

Western Atlantic and move across Southern Africa in a west-northwest to an east-southeast direc-

tion (Nel, 2009). As shown in Figure 5.12 (a), they most frequently last for 2 consecutive days, and

occasionally for 3. Cold fronts exceeding 3 consecutive days are rare for Durban. It is therefore

expected that days in Classes C and D may be a transition between days in Classes A nd B. More

specifically, the cloudy afternoon of Class C suggests a start of a 2 day cold front, and the cloudy

morning of Class C suggests an end of a cold front. Since Figure 5.15 suggests that Classes C and

D contain days that undergo a transition from a sunny morning to cloudy afternoon and vice-versa,

this could explain the distinctly lower B̄n in the sunny regions. A possible reason is that lower B̄n is

observed since in order to transition from a sunny morning to a cloudy afternoon it is expected that

there will be some clouds present in the morning, where their formation progresses toward midday

and becomes more distinct in the afternoon. Similarly for Class D, the day transitions from a cloudy

morning to a sunny afternoon, where clouds tend to dissipate during midday and results in a sunny

afternoon. However, the maximum B̄n in the afternoon for Class D will be lower than that of Class

A due to the presence of some residual cloud cover.

Another feature of D̄n seen in Figure 5.16 is that D̄n for Classes B, C and D have a decreasing

trend toward the afternoon. D̄n for Class B reaches a maximum around midday (11:00-13:00), de-

creases substantially after 13:00, and reaches to an almost clear sky level at 16:00. During this time,

the B̄n profile of Class B remains below 0.2 throughout the day with little fluctuation in the average

trend. It is possible that during cloudy days, D̄n weakens in the afternoon (i.e. after 13:00) and it

may also be weak in the early morning. However, the asymmetry of the time interval over which

the clustering was applied prevents inspection of D̄n before 9:00 (for example at 8:00 or at 7:00).
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From Figure 5.14 it can be seen that Class C has very few days that have mornings as sunny as

the mornings in Class A i.e. B̄n ≈ 1. The cluster map suggests that Class C days that have a B̄n

morning average in the range 0.6-0.8, tend to have B̄n afternoon averages less than 0.4. Similarly,

only a few days in Class D reach the same B̄n afternoon average as that of a Class A. According to

the cluster map, almost all days in Class D will reach a maximum of about 0.8 in the afternoon. The

cluster map therefore confirms that Classes C and D do not reach the same maximum levels in their

sunny regimes as does Class A.

As observed in Figure 5.11, Durban is dominated by sunny days (Class A), followed by cloudy

days (Class B). Days that have sunny mornings and cloudy afternoons (Class C) are prevalent during

the months of August and September. Days that start off cloudy in the morning and become sunny

in the afternoon (Class D) occur mostly during October. Figure 7.1 shows the yearly evolution of

the B̄n classes where Clusters 1, 2, 3 and 4 denote Classes A, B, C and D, respectively. This further

illustrates how sunny and cloudy days (Classes A and B) dominate among the 4 irradiance patterns

in Durban.

Figure 7.1: Sequence of irradiance classes where clusters 1, 2, 3 and 4 denote Class A, B, C and D, respec-

tively. Classes A and B are dominant throughout the year.

The B̄n classes established for Durban are very similar to four of the five classes obtained for

Reunion Island by Jeanty et al. (2013) and Badosa et al. (2013). The fifth class that resulted from
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the clustering by Jeanty et al. (2013) consist of days that are sunny until mid-morning (9:00-9:30)

and cloudy thereafter, which was termed “intermittent bad days”. These types of days were found

to be dominant from November to January (i.e. during summer). Jeanty et al. (2013) suggested that

this could be an effect of the land breeze combined with trade winds that could produce orographic

clouds (clouds that develop in response to the forced lifting of air by the local topography for ex-

ample, mountains). As outlined by Réchou et al. (2014), there is the formation of deep convective

systems caused by high relative humidity and weak trade winds that are present during the island’s

summer season, which may be another explanation for the occurrence of intermittent bad days.

The orographic clouds produced by the complex terrain of Reunion Island coupled with specific

meteorological conditions (high relative humidity and weak trade winds) may be responsible for

producing the fifth irradiance class that is dominant during the island’s summer season, and which

does not appear to be present in Durban’s classification system.

As described by Badosa et al. (2015), the advected trade cumuli and large-scale cloud systems

are responsible for only a part of the cloudiness affecting the island, since in most cases clouds are

formed locally by convection as a result of the interaction between synoptic wind, local thermal

winds and the orography. This local cloud formation has a pronounced diurnal cycle as it is driven

by the combined effects of trade winds and thermal winds.

For Durban, the seasonal distribution of low cloud is approximately similar to the distribution of

rainfall (South African Weather Service, 2010). As described by Dedekind et al. (2016), Southern

Africa receives most of its rainfall during the period October to March. It is therefore expected that

the summer months are the cloudiest of the year, which is consistent with the high occurrence of

Class B days in Durban during summer. This is clearly observed in Figure 5.11, where the months

of October to March do indeed show the largest percentage of Class B days, as compared to the

months of April to September.

The B̄n classes established for Durban were also similar to the three classes obtained by Mc-

Candless et al. (2014), of which the sunny (Class A) and cloudy days (Class B) formed two distinct

classes whereas the partly cloudy days in the McCandless et al. (2014) classification were subdi-

vided here by diurnal pattern into Classes C and D. Even though the work by Jeanty et al. (2013) and

Badosa et al. (2013) served as a basis for much of this study, they did not use the classes established

through clustering for forecasting. Furthermore, in contrast with Badosa et al. (2013) neither studies

by Jeanty et al. (2013) or McCandless et al. (2014) use a combination of irradiance-derived variables
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for clustering such as {B̄n, VB} or {B̄n, D̄n} and instead only cluster with a single variable.

Results from the clustering of VB on its own did not show a stronger clustering pattern than for

B̄n. Clustering VB by itself results in the VB classes having a mixture of different B̄n class days. For

example, both sunny and cloudy days have low variability, and when clustered using VB only they

fall into the same class even though they have distinctly different B̄n profiles, which was expected.

Considering that one of the aims of the present work is to distinguish between sky conditions, VB

was not the best clustering variable to achieve this.

In order to investigate the effect of variability, {B̄n, VB} were clustered together as a 16-

dimensional set. It was found that clustering of {B̄n, VB} yielded a solution that was driven more

strongly by the B̄n quantity, and hence did not necessarily result in a stronger clustering solution

despite the additional information of variability.

Similar to the {B̄n, VB} combination, the purpose of the combination {B̄n, D̄n} was to inves-

tigate whether the clustering produced a better solution when combined with diffuse irradiance.

Figure 5.29 shows that Class A is compact and well separated and Class B is less compact but still

relatively separated. Classes C and D, however, have low compactness and are no longer distinctly

separated. This is more evident in the class mean profiles of B̄n in Figure 5.31, where the diur-

nal patterns in Classes C and D are significantly suppressed. Therefore, the clustering solution no

longer produces a distinction between days that have sunny mornings-cloudy afternoons and cloudy

mornings-sunny afternoons. This is clearly an undesirable result since there are in fact days in

Durban that have diurnal patterns of Class C and D, and in order to forecast, the classes that best

represents the irradiance patterns in Durban should be used. Furthermore, even though the diurnal

patterns are clearly distinguishable in the D̄n mean profiles, it is beam irradiance that is most closely

related to cloud cover and hence the best description of their patterns is required.

From the clustering of several irradiance variables it was found that they produce varying pat-

terns for describing the irradiance in Durban. Some variables are able to produce well-defined

clusters and hence distinct mean profiles, while others are not. In addition, their clustering can pro-

duce different solutions when clustered separately, as was seen with VB, and in combinations, as

seen with {B̄n, VB} and {B̄n, D̄n}. Having a multi-variable did not necessarily produce a better

clustering solution, and in the case of {B̄n, D̄n}, it results in less distinguishable profiles. From all

the variables clustered, B̄n (derived fromBn), on its own has shown to be the best clustering variable

in for classifying and characterizing irradiance patterns and therefore to be used for forecasting.
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7.2 Forecasting using classes

7.2.1 Day forecasts of B̄n

As mentioned previously, a novelty of this study was clustering of Q profiles into classes in a sim-

ilar manner to the radiometric variables. As explained in Chapter 6, in order to use classes of Q to

forecast the irradiance class, it was necessary to have four classes of cloud cover. The class mean

profiles of Q in Figure 6.2 also show a correspondence with the B̄n profiles. More specifically, Q

is low for Class A′ which corresponds to the B̄n Class A of sunny days. Q is high for Class B′

corresponding to B̄n Class B of cloudy days. Class C′ corresponds to the sunny AM-cloudy PM B̄n

Class C. Lastly, although Class D′ has a less prominent diurnal trend, the days contained therein still

correspond to the cloudy AM-sunny PM B̄n Class D. These were used by both forecasting methods.

As explained in Chapter 5, forecasting the B̄n class for the day ahead was done using two meth-

ods, although both methods used the Q forecast from AccuWeather. The forecasting results using

the classes of Q presented in Table 6.2, show that overall the method has a moderate success rate.

Table 6.2 shows that prediction success rate per class ranges from 50%-72%, with Classes A and

B having the highest rates. Regarding incorrect predictions, predicted Class A (sunny all day) was

actually Class B (cloudy all day) for only one day (3%) and predicted Class B was actually Class A

in zero cases. This makes sense because for a good NWP it should be unusual for a sunny day to be

wrongly forecast as a cloudy day and vice-versa. Classes C and D had a higher percentage of incor-

rect predictions, although Class D’s success rate of 58% is not much lower than that of Class B. The

success rate of 65% over all classes may only be applied to the period January to June from which

the sample of 100 days was drawn, but it so happens that a standardized rate based on weighting

with class frequencies over one year, given in Table 5.2, also gives a success rate of 65%.

The second forecasting method uses the 50% rule as described in Table 6.3 in Chapter 6 and the

results produced in Table 6.4 also show a fairly moderate overall success rate. In fact, the success

rate of this method differs only by 2% from the success rate of the first method. Table 6.4 shows that

the 50% rule produces prediction success rate per class in the range 59%-83%, which is somewhat

better than that of the Q clustering forecast, except that there is a higher rate (9%) of Class B incor-

rectly predicted as Class A. The Class D success rate was significantly better, although the sample

is rather small. Furthermore, Class D predicted by the 50%rule has only about a third of the days

predicted to be in Class D by Q clustering because, as may be seen in Figure 6.1, Class D′ has a
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large number of days with CAM ≤ 50% which are therefore predicted by the 50% rule to be in Class

A. This increased the number of sunny (Class A) days predicted by the 50% rule. A consequence is

that the 50% rule results in more Class A days being incorrectly predicted than in the Q clustering

method. In comparison with Q clustering, the prediction success rate decreased for Classes A and B

(by 8% and 7%, respectively) and increased for Classes C and D (by 13% and 25%, respectively).

The overall raw success rate is 63%, and the standardized success rate is 64%, both of which, apart

from being almost identical, are very close to that of the Q clustering method.

Table 6.5 shows the average RMSE values for the two day-ahead forecasting methods. Q clus-

tering showed the best performance in predicting sunny days (Class A), followed by cloudy days

(Class B). This may be due to the NWP model being able to distinguish between cloud-free and

cloudy situations relatively well. By contrast, the 50% rule had a success rate that is better for the

mixed conditions of Classes C and D. This may be due to the stronger separation of cloud cover

conditions by the 50% rule as compared with clustering. Average profile error as quantified by

RMSE was in the range 0.2-0.34. Overall, the average RMSE per class are fairly similar using the

two forecasting methods.

These results are similar to those of Badosa et al. (2015), where the lowest RMSE was for sunny

conditions. However, in contrast to the present study where the highest RMSE was found for mixed

conditions, Badosa et al. (2015) found the highest forecasting errors were associated with cloudy

conditions. The main difference in the methods is that the present work used cloud cover output of

NWP, with clustering of cloud cover profiles, and uses beam rather than global irradiance.

The forecasting methods presented in this work have moderate success, which may be attributed

both to the degree of accuracy of NWP and the existence of clusters of diurnal irradiance profiles

which show a high degree of clustering for sunny and cloudy conditions but are less well-clustered

for mixed conditions.

The novelty of this investigation was the use of clustering of cloud cover output from NWP,

as well as the 50% rule, for day-ahead forecasts of beam irradiance using classification of daily

irradiance profiles. Although previous studies such as Jeanty et al. (2013), Badosa et al. (2013) and

Zhandire (2017) used clustering of irradiance to produce classes, they were not combined with cloud

cover. The study by Zagouras et al. (2013) applied clustering to satellite-derived cloud estimates,

but in contrast with the present work, this was for several geographical locations. McCandless

et al. (2015) considered several outputs from the NWP including cloud cover, but were not used for
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forecasting.

7.2.2 Hourly forecasts of B̄n and D̄n

Intra-day forecasts of B̄n and D̄n were done at hourly intervals using the PCT method. The RMSE

for B̄n and D̄n in each hour in all classes is given in Figure 6.9 (a) and (b), respectively. Class D

showed the highest RMSE in B̄n for most hours of the day, but are lower than other classes for D̄n.

Classes A, B and C have RMSE of at most 0.25 for all hours. In most cases, for D̄n, Classes B, C

and D show the highest RMSE. The variance of the classes in Figure 6.10 are the highest for A and

B in B̄n and D̄n.

The PCT method was compared to traditional Persistence and in some cases was found to show

an improvement. Using the PCT method, the average improvement in RMSE over Persistence in

B̄n for all classes range from 6%-43% and in D̄n from 4%-31%. For all classes, the average RMSE

improvement of the PCT method over Persistence was found to be 22% for B̄n and D̄n. This can be

compared with an average percentage improvement of 18% achieved by McCandless et al. (2015)

which also used cloud regime classes for forecasting.

7.2.3 General summary of classification and forecasting results

From the classification and clustering results using the k-means clustering method, beam irradiance

was found to be the most appropriate variable for clustering since it was able to distinguish be-

tween sky conditions sufficiently well. Diffuse irradiance is another potentially useful quantity for

describing sky conditions and a more in depth investigation of their combination with beam irra-

diance, could be considered for future studies. Furthermore, sub-hourly variability in the diffuse

irradiance could be investigated as another possibility.

From the forecasting results of beam and diffuse irradiance, both methods using the cloud cover

from the NWP were shown to have moderate success. To improve the performance of the forecast-

ing methods, an opportunity for future work may include the use of cloud imagery.
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Conclusion

Solar power plant operators have the problem of dealing with the variable nature of solar irradiance,

which impacts grid stability and reliability and affects activities such as load following and man-

agement, unit commitment and maintenance scheduling. This emphasizes the need for forecasting

the amount of irradiance that would be available to the power plant at a certain time and therefore

minimizing and possibly eliminating disturbances in the power output.

One of the essential steps to developing a forecasting model is to first have a proper understand-

ing of the solar irradiance patterns at the given location. This study used the approach of clustering

to understand, classify and characterize irradiance patterns. Clustering was applied to normalized

hourly beam irradiance profiles (B̄n) in Durban, South Africa between 8:30 and 16:30 for 365 days

during January 2014-January 2015. Results from the clustering yielded four B̄n classes with dis-

tinct diurnal mean profiles that characterize the irradiance patterns for Durban. These were Class

A: sunny all day, Class B: cloudy all day, Class C: sunny morning-cloudy afternoon and Class D:

cloudy morning-sunny afternoon. In addition, there was a set of associated normalized diffuse irra-

diance profiles (D̄n) that describe the diurnal diffuse patterns.

The B̄n irradiance classes were associated with predicted cloud cover percentage (Q) from the

Numerical Weather Prediction for day-ahead forecasts. Clustering of Q was performed to obtain

four classes with diurnal patterns associated with the B̄n classes. Two forecasting methods were

applied to forecast the class of B̄n and D̄n. The first used the Q classes to forecast associated B̄n

classes, and the second used the 50% rule. The forecasting results showed that the two methods pro-

duced comparable prediction success rates in the range 50%-83%, with overall success rate about

65% for both methods. The Q clustering method showed the best performance in predicting sunny

135
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days, followed by cloudy days. On the other hand, the 50% rule had a success rate that was better

for the mixed cloud conditions of Classes C and D. Average profile error as quantified by Root Mean

Square Error (RMSE) was in the range 0.2-0.34.

Hourly forecasts of B̄n and D̄n for the day ahead were produced using the Persistence of the

Class Trend (PCT) method. The PCT method also used the Q forecast and the 50% rule to forecast

an irradiance class. Thereafter, hour-ahead forecasts of B̄n and D̄n were performed using the class

mean profiles to extrapolate to the next hour using the measured value at the current hour. Overall,

for all classes, the PCT method showed an improvement over Persistence of approximately 22% in

B̄n and D̄n.

The clustering results presented in this work provide a classification of beam irradiance profiles

for Durban, and a novel approach to day-ahead forecasting using classification of cloud cover pre-

dictions. Day-ahead forecasts have value in predicting the general daily profile, and are potentially

useful for constraining models for multi-hour predictions on a particular day.
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