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ABSTRACT

As retinopathies such as diabetic retinopathy (DR) and retinopathy of

prematurity (ROP) continue to be the major causes of blindness globally,

regular retinal examinations of patients can assist in the early detection of

the retinopathies. The manual detection of retinal vessels is a very tedious

and time consuming task as it requires about two hours to manually detect

vessels in each retinal image. Automatic vessel segmentation has been help-

ful in achieving speed, improved diagnosis and progress monitoring of these

diseases but has been challenging due to complexities such as the varying

width of the retinal vessels from very large to very small, low contrast of

thin vessels with respect to background and noise due to nonhomogeneous

illumination in the retinal images. Although several supervised and unsu-

pervised segmentation methods have been proposed in the literature, the

segmentation of thinner vessels, connectivity loss of the vessels and time

complexity remain the major challenges. In order to address these prob-

lems, this research work investigated different unsupervised segmentation

approaches to be used in the robust detection of large and thin retinal ves-

sels in a timely efficient manner.

Firstly, this thesis conducted a study on the use of different global thresh-

olding techniques combined with different pre-processing and post-processing

techniques. Two histogram-based global thresholding techniques namely,

Otsu and Isodata were able to detect large retinal vessels but fail to seg-

ment the thin vessels because these thin vessels have very low contrast and

are difficult to distinguish from the background tissues using the histogram

of the retinal images. Two new multi-scale approaches of computing global

threshold based on inverse difference moment and sum-entropy combined

with phase congruence are investigated to improve the detection of vessels.

One of the findings of this study is that the multi-scale approaches of com-

puting global threshold combined with phase congruence based techniques

improved on the detection of large vessels and some of the thin vessels. They,

however, failed to maintain the width of the detected vessels. The reduction



in the width of the detected large and thin vessels results in low sensitivity

rates while relatively good accuracy rates were maintained. Another study

on the use of fuzzy c-means and GLCM sum entropy combined on phase

congruence for vessel segmentation showed that fuzzy c-means combined

with phase congruence achieved a higher average accuracy rates of 0.9431

and 0.9346 but a longer running time of 27.1 seconds when compared with

the multi-scale based sum entropy thresholding combined with phase con-

gruence with the average accuracy rates of 0.9416 and 0.9318 with a running

time of 10.3 seconds. The longer running time of the fuzzy c-means over the

sum entropy thresholding is, however, attributed to the iterative nature of

fuzzy c-means. When compared with the literature, both methods achieved

considerable faster running time.

This thesis investigated two novel local adaptive thresholding techniques for

the segmentation of large and thin retinal vessels. The two novel local adap-

tive thresholding techniques applied two different Haralick texture features

namely, local homogeneity and energy. Although these two texture features

have been applied for supervised image segmentation in the literature, their

novelty in this thesis lies in that they are applied using an unsupervised

image segmentation approach. Each of these local adaptive thresholding

techniques locally applies a multi-scale approach on each of the texture

information considering the pixel of interest in relationship with its spa-

cial neighbourhood to compute the local adaptive threshold. The localised

multi-scale approach of computing the thresholds handled the challenge of

the vessels’ width variation. Experiments showed significant improvements

in the average accuracy and average sensitivity rates of these techniques

when compared with the previously discussed global thresholding methods

and state of the art. The two novel local adaptive thresholding techniques

achieved a higher reduction of false vessels around the border of the optic

disc when compared with some of the previous techniques in the literature.

These techniques also achieved a highly improved computational time of 1.9

to 3.9 seconds to segment the vessels in each retinal image when compared

with the state of the art. Hence, these two novel local adaptive thresholding

techniques are proposed for the segmentation of the vessels in the retinal

images.

This thesis further investigated the combination of difference image and k-



means clustering technique for the segmentation of large and thin vessels in

retinal images. The pre-processing phase computed a difference image and

k-means clustering technique was used for the vessel detection. While inves-

tigating this vessel segmentation method, this thesis established the need

for a difference image that preserves the vessel details of the retinal image.

Investigating the different low pass filters, median filter yielded the best

difference image required by k-means clustering for the segmentation of the

retinal vessels. Experiments showed that the median filter based difference

images combined with k-means clustering technique achieved higher average

accuracy and average sensitivity rates when compared with the previously

discussed global thresholding methods and the state of the art. The median

filter based difference images combined with k-means clustering technique

(that is, DIMDF) also achieved a higher reduction of false vessels around

the border of the optic disc when compared with some previous techniques

in the literature. These methods also achieved a highly improved computa-

tional time of 3.4 to 4 seconds when compared with the literature. Hence,

the median filter based difference images combined with k-means clustering

technique are proposed for the segmentation of the vessels in retinal images.

The characterisation of the detected vessels using tortuosity measure was

also investigated in this research. Although several vessel tortuosity meth-

ods have been discussed in the literature, there is still need for an improved

method that efficiently detects vessel tortuosity. The experimental study

conducted in this research showed that the detection of the stationary points

helps in detecting the change of direction and twists in the vessels. The

combination of the vessel twist frequency obtained using the stationary

points and distance metric for the computation of normalised and non-

normalised tortuosity index (TI) measure was investigated. Experimental

results showed that the non-normalised TI measure had a stronger corre-

lation with the expert’s ground truth when compared with the distance

metric and normalised TI measures. Hence, a non-normalised TI measure

that combines the vessel twist frequency based on the stationary points and

distance metric is proposed for the measurement of vessel tortuosity.
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Chapter 1

INTRODUCTION

1.1 General Introduction

Medical imaging has become an important tool in medicine today due to the advances

in the hardware and software resources used for the acquisition, processing and storage

of the images [2], [3], [4], [5]. Medical imaging technology has significantly improved

the diagnosis and treatment planning of patients in the various aspects of the medical

field [6],[7], [8]. Although some earlier studies have been made on the automatic de-

tection of vessels and lesions in retinal images [9], [10], digital retinal photography and

image analysis in ophthalmology are increasingly becoming helpful in the diagnosis and

progress monitoring of diabetic retinopathy (DR), retinopathy of prematurity (ROP)

and cardiovascular diseases [11], [12], [13], [14], [15], [16]. The use of digital image

analysis by ophthalmologist is aimed at improving the reliability of physician’s judg-

ment by reducing human error as well as helping to achieve timely accurate diagnosis

and progress monitoring of the diseases. This, in turn, assists the ophthalmologists to

efficiently manage more patients within reasonable time [17].

Image segmentation is an important step in image analysis that involves the par-

titioning of a digital image into multiple regions with uniform and homogeneous at-

tributes such as intensity, colour or texture [18]. It is used to locate and detect bound-

aries and objects of interest in images. Retinal vessel network composed of veins and

arteries are elongated features visible in the retinal image. Retinal vessel segmentation

is a task in which these vessels are delineated from retinal images using specific vi-

sual criteria. Efficient vessel network detection and vessel feature analysis are of great

importance in ophthalmology for the diagnosis and progress monitoring of the various

retinopathies and vascular diseases [19]. Several automatic methods for retinal vessel
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segmentation [20], [21], [22], [23], [24, 25], [26], [27], [28],[29], [30], [31], [32], [33], have

been published in the literature. The vessel segmentation techniques are divided into

two major categories namely, supervised and unsupervised methods. Supervised meth-

ods [20], [22], [23], [28], [32], [34], [35], [36], [37] require some prior labelled training

samples for the segmentation of retinal vessels. Although the supervised vessel segmen-

tation techniques [20], [22], [23], [28], [32], [34], [35], [36], [37] have shown higher vessel

detection and accuracy rates than the majority of the unsupervised methods [21], [26],

[27], [38], [34], [39], [40], [41], [42], reliable labelled training samples by experts which

could sometimes be extremely difficult, expensive or unavailable is a major drawback

[16]. Moreover, the performance of these techniques is highly dependent on the labelled

training sample as a new set of labelled training sample is often required for retraining

to obtain good segmentation performance when detecting vessels on a new set of reti-

nal images [28]. Unsupervised vessel segmentation methods [21], [26], [27], [38], [43],

[34], [39], [40], [44], [45], [46], [41], [42], on the other hand search and use underly-

ing patterns to classify each pixel in the retinal image as either vessel or background.

Although unsupervised vessel segmentation methods are computationally faster when

compared with the supervised vessel segmentation methods since no training time is

required, there are major drawbacks such as connectivity loss of vessel network [21],

[38] and inability to detect thin vessels [38], [39], [42], [47], [48].

Tortuosity has been described to be a reliable vascular morphology feature in

differentiating ROP severity [49]. Increase in vessel tortuosity is also one of the first

changes in vessels morphology to occur in DR patients [50], [51]. Although several

tortuosity measurement techniques [52], [53], [54], [55], [56], [57], [58], [59], [60] have

been proposed, none has gained universal acceptance [61].

1.1.1 Diabetic Retinopathy

Diabetes, a disease characterised by abnormal high glucose levels in the blood and

excessive urination with persistent thirst, has become a growing menace worldwide

[63]. According to the international diabetes federation (IDF) [62], 382 million people

were affected by diabetes worldwide in 2013. There has also been a projection of 55%

increment in the number of people living with diabetes globally between the years 2013

and 2035 by IDF, with 109% increment in Africa, 96 % in the Middle East and North

Africa, 71% in South-East Asia, 60% in South and Central America , 46% in Western

Pacific, 37% in North America and Caribbean and 22% in Europe as shown in Figure

1.1. According to the projection, the number of people living with diabetes will have
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Figure 1.1: Population of People Living With Diabetes in 2013 [62]

increased from 382 million to 592 million people by the year 2035 as shown in Figure

1.2.

DR, an eye disease secondary to diabetes, is a major cause of visual loss and

blindness worldwide [64]. Recently, 35% of diabetic patients have been estimated to be

living with DR worldwide [65]. There are basically two stages of DR: the early stage,

which is the non-proliferative DR and the advanced stage, which is the proliferative DR

[66]. Although DR remains symptomless in the early stages [67], retinal vessels are the

predominant damage targets of diabetes at these early stages. Different abnormalities

such as changes in vessel shape, branching pattern, width, tortuosity, or the appearance

of retinal lesions, can be associated with the presence of retinopathies [68]. Regular

retinal examinations for diabetic patients can help in an early detection of DR and

significant reduction of the cases of blindness [69], [67], [70].

1.1.2 Retinopathy of Prematurity

Retinopathy of prematurity (ROP), a vasoproliferative disease of the eye that affects

premature newborns, has become a major cause of blindness to children in many middle

income countries [71]. There are at least 50,000 children that are blind due to ROP

globally [72]. Literature reports on children in schools for the blind indicated that
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Figure 1.2: Projection of People Living With Diabetes Between 2013 and 2035 [62]

ROP is becoming the main cause of blindness in China, South Asia, Latin America and

Eastern Europe [73]. ROP was also responsible for 10.6% of blindness cases of children

in schools for the blind in South Africa in 1995 [74]. Using the proxy indicator of infant

mortality rates in [75] gives a likely distribution chart of blindness in children resulting

from ROP as shown in Figure 1.3.

In order to improve on the prevention of blindness cases due to ROP epidemic,

automatic detection and analysis of retinal vessels are currently being explored for the

early detection and efficient management of ROP in babies [76].

1.2 Motivation

In the face of the global prevalence of DR and ROP, the cases of vision loss and blind-

ness (as shown in Figure 1.4) tend to increase in the absence of efficient detection and

management approaches of the diseases [67]. The families, communities and countries

affected by these epidemics are also likely to suffer serious economic setbacks caused

by the financial burden, reduced-earnings and reduced-productivity due to visual im-

pairment and blindness [62].

Ophthalmologists, with the help of detected vessel network, focus on retinal vessel

feature analysis during the diagnosis of the diseases [77]. Manual detection and analysis
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Figure 1.3: Distribution Chart of Children Blindness Due To ROP Using Proxy Indi-
cator of Infant Mortality Rates [75]

of the retinal vessels has been a very tedious and time consuming task that requires

about two hours to detect vessels in each retinal image [22] and requires trained and

skilled personnel who are often scarce [78], [79], [80]. However, with the help of auto-

matic vasculature segmentation and analysis, ophthalmologist can now diagnose and

efficiently manage the diseases [19].

In order to reliably and efficiently diagnose and manage these diseases, ophthal-

mologists need highly accurate and fast automatic segmentation techniques for the

detection of both large and thin vessels in the retinal images.

1.3 Problem Statement

Automated vessel segmentation has been a challenging problem due to complexities

such as varying width of retinal vessels from very large to very small, low contrast of

thin vessels with respect to background and noise due to nonhomogeneous illumination

caused by the complex acquisition of the retinal images [1], [47]. Although existing

methods have made great progress in this field, it remains the subject of on-going

research as there is need for further improvement. Supervised vessel segmentation

techniques are computationally expensive since training time is required [32], [81]. An-
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Figure 1.4: Vision Loss and Blindness Caused by
Retinopathies

other major drawback of the supervised vessel segmentation techniques is that their

performance is highly dependent on the labelled training sample by experts which

could sometimes be extremely difficult, expensive or unavailable [16]. Furthermore,

a new set of labelled training sample is often required for retraining to obtain good

segmentation performance when detecting vessels on a new set of retinal images [22],

[28]. Although some unsupervised vessel segmentation methods are computationally

fast when compared with the supervised segmentation methods, their major drawbacks

are connectivity loss of vessel network and inability to detect thin vessels [21], [38], [39],

[42], [47], [48], [82]. While some unsupervised techniques [43], [34], [46], [83], [84] have

made some progress at improving the automatic detection of retinal vessels, there is

need for further improvement in the detection of thinner vessels and the computational

running time required for the segmentation of vessels. The presence of a lot of false

positives around the border of the optic disk also remains a challenge in the vessel

segmentation techniques [20], [42].

Although several tortuosity measurement techniques [52], [53], [54], [55], [56], [57],

[58], [59], [60] have been proposed, results obtained suggest the need for further improve-

ment. The Arc-chord ratio techniques [52], [53], [54], [55], [56] failed to differentiate

varying vessels when they have the same length but different number of vessel twists.
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Techniques based on inflection points alone are also not robust enough as all the ves-

sels twists are not sufficiently described using them [85]. Although chain code has been

applied for vessel tortuosity measurement in [60], the major drawbacks of chain code

are the inaccuracies obtained in areas of high curvature and unacceptable errors in the

regions of low curvature [86].

1.4 Thesis Objectives

This research aims to propose fast unsupervised segmentation model for an automatic

detection of large and thin vessels, and characterise the detected vessel using tortuosity

measure. The specific objectives of this research are:

(a) To model a fast unsupervised segmentation technique that detects both large and

thin vessels in retinal images.

(b) To optimise the accuracy rate of the detected retinal vessels by minimising false

detection of vessels.

(c) To model vessel tortuosity measure that combines distance metric and vessel

twists.

1.5 Contributions

The major contributions of this thesis are presented in this section. Firstly, this

thesis contributes to knowledge by conducting a comparative study on the use of

different global thresholding techniques combined with different pre-processing and

post-processing techniques. Through the investigation of the phase congruence-based

global thresholding approach and Contrast Limited Adaptive Histogram Equalisation

(CLAHE)-based global thresholding approach, this thesis shows that global threshold-

ing techniques are limited in efficiently segmenting thin vessels in retinal images. This

thesis also shows that CLAHE based global thresholding techniques based on Otsu and

Isodata thresholds detected the large vessels but failed to detect the thin vessels due to

the fact that the thin vessels have very low contrast and are difficult to be distinguished

from the background tissues using these histogram based thresholding techniques. Two

new multi-scale approaches of computing global threshold based on the different texture

information such as inverse difference moment and sum-entropy combined with phase

congruence pre-processing that could help achieve an improved detection of large and
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some thin vessels were implemented to extend the technique proposed by Amin and

Hong [48] for the detection of retinal blood vessels. When compared with [48], the

two multi-scale approaches presented higher average accuracy rates. Another compar-

ative study on the use of fuzzy c-means combined with phase congruence and GLCM

sum entropy combined with phase congruence for vessel segmentation was achieved in

this thesis. The investigation demonstrated the higher average accuracy rate but a

longer running time fuzzy c-means combined with phase congruence when compared

with the multi-scale based sum entropy thresholding combined with phase congruence.

The longer running time of the fuzzy c-means over the multi-scale based sum entropy

thresholding is attributed to the iterative nature of fuzzy c-means. When compared

with the literature, both methods achieved considerable faster running time.

Another contribution of this thesis is the proposition of two novel local adaptive

thresholding techniques based on two different Haralick texture features, namely lo-

cal homogeneity and energy, for the segmentation of large and thin retinal vessels.

Although these two texture features have been applied for supervised image segmenta-

tion in the literature, their novelty in this thesis lies in that they are applied using an

unsupervised image segmentation approach. Each of these local adaptive thresholding

techniques locally applies a multi-scale approach on the different texture information

considering the pixel of interest in relationship with its spacial neighbourhood to com-

pute the local adaptive threshold. The localised multi-scale approach of computing the

thresholds handle the challenge of the vessel width variation. The visual results showed

that the two novel local adaptive thresholding techniques achieved higher reduction of

false vessels around the border of the optic disc when compared with the state of the

art. The average accuracy, average sensitivity rates and the AUC values of these local

adaptive thresholding techniques also show significant improvements when compared

with the unsupervised and supervised vessel segmentation methods in the literature.

When compared with the literature [22], [23], [28], [32], [33], [38], [43], [34], [39], [42],

[47], [48], [82], [87], [84], [88], [83], the local adaptive thresholding techniques achieve

highly improved computational time of 1.9 to 3.9 seconds to segment vessels in each

retinal image.

This thesis also contributes to knowledge by investigating various difference im-

ages combined with k-means clustering technique for the segmentation of large and thin

vessels in retinal images. Different low pass filters such as median filter, mean filter

and Gaussian filter are applied each to smoothen and compute various difference im-

ages. When investigating the difference images combined with the k-means clustering

technique, this research established that good vessel segmentation requires a difference
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image that preserves the vessel details of the retinal image. Investigating the differ-

ent low pass filters, the median filter yields the best difference image required by the

k-means clustering for the segmentation of retinal vessels. Further investigations show

that the linear combination of the median filter based difference images with Gaus-

sian and mean filter based difference images respectively when combined with k-means

clustering technique leads to the detection of more thinner vessels. The false detec-

tion around the border of the optic disc are however higher on the segmented vessel

obtained by using the hybrid difference images combined with the k-means clustering

but lesser on the segmented vessel obtained when using k-means combined with median

filter based difference images. The median filter based difference images combined with

k-means clustering technique achieved significantly improved average accuracy rates,

average sensitivity rates and the AUC values when compared with the state of the art.

Median filter based difference images combined with k-means clustering technique (that

is DIMDF) also achieved a higher reduction of false vessels around the border of the

optic disc when compared with some very good previous techniques in the literature.

When compared with the literature [22], [23], [28], [32], [33], [38], [43], [34], [39], [42],

[47], [48], [82], [87], [84], [88], [83], the median filter based difference images combined

with the k-means clustering technique achieved a highly improved computational time

of 3.4 to 4 seconds to segment vessels in each retinal image.

Furthermore, this thesis contributes to knowledge by utilising stationary points

on the vessels to detect vessel twists. The detection of the stationary point does not

only help in checking the change of direction and twists in the vessels but also helps

in detecting the straightness and non-straightness of the vessels. A new model that

combines distance metric and vessel twist frequency based on stationary points for

the computation of normalised and non-normalised tortuosity index (TI) measure was

investigated. This thesis demonstrated that the non-normalised TI measure has signif-

icantly improved performance when compared with distance metric and normalised TI

measures.

1.6 Scope of Research and Limitation

This research scope is to provide contributions toward the segmentation of vessels in

retinal images using relevant retinal vessel segmentation datasets with their ground

truths from publicly available online repositories. Contributions are also provided to-

ward the characterisation of detected vessels through the investigated tortuosity mea-

sures and the performances evaluated using the expert’s ground truth. The subjective
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decisions of the observers in the preparation of the ground truths of the datasets are

assumed ignorable throughout this thesis. This is based on the fact that no one knows

the reasons for the subjectivity of the human observations during the preparation of

the ground truth of the datasets considered in this thesis.

1.7 Thesis Outline

Chapter 2 reviews the state-of-the-art of retinal vessel segmentation and characterisa-

tion using tortuosity measure. In Chapter 3, the materials and methods such as global

thresholding techniques, local adaptive thresholding techniques, clustering-based tech-

niques and tortuosity measurement investigated in this research are presented. Different

image pre-processing algorithms are also presented. Chapter 4 presents the experimen-

tal results and discussion. The performances of the various methods investigated in this

research are also compared with the state of the art. Chapter 5 draws the conclusions

and presents the recommendations for future work.
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Chapter 2

LITERATURE REVIEW

2.1 Medical Imaging

Medical imaging has become a significant field of research due to the advances in the

hardware and software resources used for the acquisition, processing and storage of

the images [2], [3], [4], [5], [89]. With the help of several imaging modalities such

as magnetic resonance imaging (MRI), digital mammography, computed tomography

(CT), and some other imaging techniques, physicians are better informed with detailed

knowledge of healthy or diseased anatomy for efficient diagnosis, patient monitoring

and treatment as well as clinical studies [90].

2.1.1 Retinal Fundus Imaging

Retinal fundus imaging in ophthalmology has been of great use in medical diagnosis

and progression monitoring of various retinopathies such as diabetic retinopathy (DR),

retinopathy of prematurity (ROP) as well as hypertensive and cardiovascular diseases

[13], [91]. Several digital imaging modalities such as optical coherence tomography

(OCT) [92], [93], [94], fluorescein angiography [95], indocyanine green angiography [96],

[97], [98], fundus autofluorescence, multifocal electroretinography [99] and coloured fun-

dus photography [13] are used in ophthalmology. OCT has also been described as a

useful retinal imaging tool for the diagnosis and the monitoring of patients responses

to therapy [100], [101]. In fluorescein angiography [95], [102] and indocyanine green

angiography [96], [97], [98], fluorescein dye is administered. After the circulation of

the fluorescein dye across the body and the retinal blood vessels, a light beam with

a suitable wavelength is used to excite free fluorescein molecules [95], [102]. There is,

however, a higher transmission of wavelength in indocyanine green angiography when
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compared to the wavelength used in fluorescein angiography. Though similar to fluo-

rescein angiography, fundus autofluorescence [103], [104],[105] does not use fluorescein

dye. Multifocal electroretinography measures the local electroretinogram from different

parts of the posterior retinal by utilising the electrical receptions obtained through a

corneal electrode [106]. Modifications in the retinal functions both before and after

retinal detachment surgery are assessed with the aid of multifocal electroretinography

[107]. Coloured fundus photography however remains an important retinal imaging

modality due to its safety and cost-effective mode of retinal abnormalities documenta-

tion [13].

2.1.2 Anatomic Structures in Retinal Images

There are several important anatomic structures in the human retina (See Figure

2.1(a)). The robust detection of the different anatomic structures of the retina is nec-

essary for a reliable characterisation of healthy or diseased retina. Several automated

techniques have successfully been used to detect different anatomic features as well as

retinopathy features in retinal images [29], [30], [108], [109], [110] (See Figure 2.1(b)

& 2.1(c)).

Figure 2.1: Retinal Image Anatomic Structures

The localisation of optic disk was implemented using different techniques; different

features of the optic disk such as intensity, morphology and colour [30], [111], [112],

Hough transform [113], [114], [115], Principal Component Analysis (PCA)[30, 116],

convergence of blood vessels [117], [118] and colour space transformation combined

with mathematical morphological techniques [119].

The segmentation of the vessel network is of great use in ophthalmology as it helps

ophthalmologists to focus on retinal vessel morphological features which are often early
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indicators of some retinopathies [120] and are of prognostic importance in ROP [121].

In related development, several works have implemented the automatic detection of

various pathologies in retinal images using different segmentation techniques. Spencer

et al. [122] implemented a morphological transformation for microaneurysms segmen-

tation. Several other works such as [123], [124], [125], [126], [127] implemented microa-

neurysms segmentation using different automated approaches. Various investigations

have been performed on the automated detection of exudates and cotton wool spot

in retinal images in [124], [126], [128], [129]. However, there is still room for further

improvement in the separation of hard exudates from other bright lesion-like appearing

structures as well as the detection of tiny exudates [130].

2.2 Retinal Vessel Segmentation

Retinal vessel network composed of veins and arteries are elongated features visible

in the retinal image. Retinal vessel segmentation is a task in which these vessels are

delineated from retinal images using specific visual criteria. Efficient vessel network

detection and vessel feature analysis are of great importance for the diagnosis and

progress monitoring of the various retinopathies and vascular diseases. Manual detec-

tion and analysis of the retinal vessels have been very tedious and time consuming tasks

that require trained and skilled personnel who are often scarce [78], [79]. Automatic

vessel segmentation is of great use in ophthalmology in achieving timely and accurate

diagnosis of retinopathies [19].

Several retinal vessel segmentation techniques have been proposed in the literature

and the segmentation techniques can be divided into two major approaches namely un-

supervised and supervised methods. Two major publicly available databases (DRIVE

[131] and STARE [132]) are often used to evaluate the effectiveness and robustness of

the previously proposed vessel segmentation methods. The performance of the segmen-

tation results obtained in most of these previously proposed retinal vessel segmentation

methods is qualitatively and quantitatively analysed using sensitivity, specificity and

accuracy metrics. Sensitivity measure indicates the ability of a segmentation technique

to detect vessels in the retinal images while specificity measure indicates the ability

of a segmentation technique to detect the background in retinal images. The accu-

racy measure indicates the degree of conformity of the segmented retinal image to an

expert’s ground truth. In order to ascertain a good segmentation performance, the

sensitivity, specificity and accuracy measures of a segmentation method must be high

[69]. The area under the curve (AUC) is another performance measure used for retinal
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segmentation results. AUC is extracted from a receiver operating characteristic (ROC)

curve. ROC curve is a plot of rightly classified pixels versus the fraction of wrongly

classified pixels as vessels.

2.2.1 Supervised Vessel Segmentation Methods

In supervised vessel segmentation methods, different algorithms are used for learning

the set of rules required for the retinal vessel extraction. A set of manually segmented

retinal vessels by trained and skilled personnels is considered as the reference image.

These reference images are used for the training phase of the supervised segmentation

techniques. The availability of reliable labelled training samples by experts for the

supervised segmentation methods is sometimes expensive or unavailable [16].

Ricci and Perfetti [20] proposed automated vessel segmentation based on line oper-

ators. Two segmentation methods were considered. One of the segmentation methods

used two orthogonal line detectors with the grey level of the target pixel to construct

a feature vector for supervised classification. The training set was formed by pixel

samples from the 20 labeled training images on the DRIVE database while a training

set for STARE comprises of samples randomly extracted from test images on STARE.

A supervised classification of the pixels as either vessels or background is implemented

using support vector machine. An average accuracy rate of 0.9595 and an AUC value

of 0.9633 were achieved on DRIVE database while the average accuracy rate of 0.9646

and an AUC value of 0.9680 were achieved on STARE database. Although this method

presents the highest average accuracy rate while compared to all other supervised vessel

segmentation methods (see Table 2.1) and unsupervised vessel segmentation methods

(see Table 2.2), the average sensitivity rate of this method was not presented. The

high false detections around the border of the optic disc is a major drawback of this

technique. The need for a new set of training samples and the retraining of classifier

before applying it on a new dataset also remains the drawback of this method.

Staal et al. [22] utilised ridge information and k-nearest neighbour classifier with

sequential forward feature selection for retinal vessel segmentation. The accuracy rate

and the AUC rate of this method achieved on both databases are only available in the

paper. However, the detailed performance of this method on each image of DRIVE

dataset and the average performance rates are available on DRIVE website [131] while

the average sensitivity rate achieved by this method on STARE database is obtained

from Mendonca et al. [84]. An average sensitivity rate of 0.7345, average accuracy

rate of 0.9442 and an AUC value of 0.9520 were achieved on DRIVE database and an
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average sensitivity rate of 0.6970, average accuracy rate of 0.9516 and an AUC value

of 0.9614 were achieved on STARE database. They, however, used only 19 of the 20

images in the STARE database. One of the drawbacks of this technique is its inability

to segment thinner vessels. Another drawback is that this method required an average

time of about 900 seconds (15 minutes) to segment each image. Furthermore, this

method is expensive as it requires a time consuming manual labelling (about 2 hours

per image) and a retraining of the classifier before applying it on a new dataset.

Soares et al. [23] implemented the combination of two-dimensional (2-D) Gabor

wavelet transform and Bayesian classifier for retinal vessel segmentation. A feature

vector comprising a multi-scale 2-D Gabor wavelet transform responses and pixel in-

tensity was generated from the retinal images for training the classifier. The training

set was formed by pixel samples from the 20 labeled training images on the DRIVE

database while leave-one-out tests were performed (that is every image is segmented

using samples from the other 19 images) for the training set of the vessel segmentation

method on STARE database. Each of the pixels in the retinal image was further clas-

sified as vessel or background tissue using a Bayesian classifier. An average accuracy

rate of 0.9466 and an AUC value of 0.9614 were achieved on DRIVE database while an

average accuracy rate of 0.9480 and an AUC value of 0.9671 were achieved on STARE

database. Although the technique had a good performance, segmentation of thinner

vessels as well as false detections around the border of the optic disc remain a challenge.

Another drawback of this method is that it required 9 hours for the training phase and

an average time of about 190 seconds (3 minutes, 10 seconds) to segment vessels in

each retinal image. The need for a retraining of classifier before applying it on a new

dataset remains the limitation of this method.

Fraz et al. [24, 25] implemented a supervised segmentation technique based on

an ensemble classifier of bootstrapped decision trees for the segmentation retinal vessel

network. This ensemble classifier was constructed by using 200 weak learners and

trained on 200000 training samples from DRIVE training set and 75000 training samples

from STARE. An average sensitivity rate of 0.7406, average accuracy rate of 0.9480 and

an AUC value of 0.9747 were achieved on DRIVE database while average sensitivity rate

of 0.7548, average accuracy rate of 0.9534 and an AUC value of 0.9768 were achieved

on STARE database. The required time to train the classifier for the DRIVE database

is 100 seconds and the ensemble for STARE takes 49 seconds. The time required to

process a retinal image is about 100 seconds. The limitation of this method is that

the higher the training samples, the higher the time required. Another drawback of

this method is its need for a new set of training samples and the retraining of classifier
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before applying it on a new dataset. There is also a need to improve the computational

time and the ability to detect the thinner vessels.

Marin et al. [28] generated a 7-D vector composed of grey-level and moment

invariants-based features for pixel representation, and a multilayer feed forward artifi-

cial neural network (ANN) classifier was used for the vessel segmentation. The classifier

used in this method was trained only on DRIVE images to segment vessels on both

DRIVE and STARE databases. An average sensitivity rate of 0.7067, average accuracy

rate of 0.9452 and an AUC value of 0.9588 were achieved on DRIVE database and an

average sensitivity rate of 0.6944, average accuracy rate of 0.9526 and an AUC value of

0.9769 were achieved on STARE database. This technique required an average time of

about 90 seconds to segment each retinal image. Although good accuracy rates were

obtained, the drawback of this technique is its inability to detect thinner vessels. There

is also a need for the improvement of the computational time.

Lupascu et al. [32] implemented a supervised segmentation technique for detecting

vessels using Ada-Boost classifier. A feature vector comprising of local and spatial

properties of the vessels were generated from the responses of various filters ( matched

filters, Gabor wavelet transform, Gaussian filter and its derivatives). Ada-Boost classier

was further trained and used to classify each pixel as either vessel or non-vessel. An

average sensitivity rate of 0.6728, average accuracy rate of 0.9597 and an AUC value

of 0.9561 were achieved on DRIVE database. This method required 4 hours for the

training phase and an average time of about 125 seconds (2 minutes, 4 seconds) to

segment each image on DRIVE test database. The drawback of this method is the

high computational time required to segment vessels in each retinal image. Another

drawback of this method is its inability to detect the thin vessels.

Niemeijer et al. [35] implemented vessel segmentation method based on pixel clas-

sification. Each pixel of the green plane of the retinal image and responses of Gaussian

matched filter were used to construct feature vectors. Subsequently, these feature vec-

tors were used for the training and classification of pixels as vessels or background using

a kNN-classifier. An average sensitivity rate of 0.7145, average accuracy rate of 0.9416

and an AUC value of 0.9294 were achieved on DRIVE database. The major drawback

of this technique is its inability to detect thin vessels.

You et al. [133] combined radial projection with SVM using a semi-supervised

self-training approach for the segmentation of vessels. Radial projections were used

to locate the vessel centre-lines and the low contrast blood vessels. Having enhanced

the vessels using modified steerable wavelet, a feature vector was generated using line

strength measures. SVM classifier was used further in a semi-supervised self training
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Table 2.1: Performance of Supervised Methods on DRIVE & STARE Databases

Methods
Average
Accuracy

Average
Sensitivity

AUC
Average

Time
DRIVE STARE DRIVE STARE DRIVE STARE Seconds

Human observer [131],[132] 0.9473 0.9354 0.7761 0.8949 N/A N/A 7200
Ricci and Perfetti [20] 0.9595 0.9584 N/A N/A 0.9558 0.9602 N/A
Staal et al.[22] 0.9442 0.9516 0.7345 0.6970 0.9520 0.9614 900
Soares et al.[23] 0.9466 0.9480 N/A N/A 0.9614 0.9671 190
Fraz et al. [24, 25] 0.9480 0.9534 0.7406 0.7548 0.9747 0.9768 49 &100
Marin et al. [28] 0.9452 0.9526 N/A N/A 0.9588 0.9769 90
Lupascu et al. [32] 0.9597 N/A 0.6728 N/A 0.9561 N/A 125
Niemeijer et al. [35] 0.9377 N/A 0.7145 N/A 0.9294 N/A N/A
You et al. [133] 0.9434 0.9497 0.7410 0.7260 N/A N/A N/A

manner for the classification of each pixel as either vessel or non-vessel. An average

sensitivity rate of 0.7410 and an average accuracy rate of 0.9434 were achieved on

DRIVE database while an average sensitivity rate of 0.7260 and an average accuracy

rate of 0.9497 were achieved on STARE database. A major drawback of this method

is the over-estimation of narrow vessels due to vessel-like noise.

2.2.2 Unsupervised Vessel Segmentation Methods

The approaches based on unsupervised classification attempt to discover inherent pat-

terns of blood vessels in retinal images that can be used further to determine that a

particular pixel belongs to vessel or not. The training data or hand labelled ground

truths do not contribute to the design of the algorithms of this approach.

2.2.2.1 Matched filtering-Based Techniques

Earliest automatic techniques used for the detection of retinal vessels utilise matched

filter response (MFR). A 2-D kernel is designed for properties such as vessel curvature,

vessel diameter and pixel intensity in the retinal image combined with MFR and addi-

tional image processing techniques were used for retinal vessel network segmentation.

Chaudhuri et al. [26] implemented MFR by initially approximating the intensity

of grey-level profiles of the cross-sections of retinal vessels using a Gaussian shaped

curve. An Otsu global thresholding technique was further applied to the matched

filter response image to segment the retinal vessels. The results achieved by [26] are

obtained from [35] and DRIVE database website [131]. This technique however achieved

a poor detection of the vessels with the low average sensitivity rate of 0.3357, an

average accuracy rate of 0.8773 and an AUC value of 0.7878 were achieved on DRIVE

database. This technique presents the lowest performance while compared to all other
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unsupervised vessel segmentation methods (see Table 2.2).

Hoover et al. [21] identified that a single global threshold does not provide adequate

classification. Hoover et al. [21] further segmented retinal vessels by applying a thresh-

old probing technique combining local vessel attributes with region-based attributes on

MFR image. While compared to [26] where a basic global thresholding of an MFR

image was implemented, the method proposed in [21] reduced the false positive rate by

as much as 15 times. Although the performance of this method was not available in

the paper, the average accuracy rate and the AUC rate achieved by this technique was

presented by Staal et al. [22]. The average sensitivity rate and the average accuracy

rate of this method on STARE database are obtained from Mendonca et al. [84]. An

average sensitivity rate of 0.6751, an average accuracy rate of 0.9275 and an AUC value

of 0.7590 were achieved on STARE database. The single scale matched filter applied by

Chaudhuri et al. [26] and Hoover et al. [21] however failed to produce strong responses

to all the vessels in the retinal image as there are large variations in the widths of the

vessels.

Chanwimaluang and Fan [27] proposed the combination of matched filter and en-

tropy for the segmentation of retinal vessels. The performance measure of the proposed

technique was only visual. Zhang et al. [33], having identified that the general matched

filter (MF) responds to both vessels edges and the non-vessel edges, extended the gen-

eral matched filter with the first-order derivative of the Gaussian (FDOG) properties

of the retinal vessels. The MF-FDOG implemented in [33] is composed of the original

MF, which is a zero-mean Gaussian function, and the first-order derivative of Gaus-

sian(FDOG). An average accuracy rate of 0.9382 and an average accuracy rate of 0.9475

were achieved on DRIVE and STARE databases respectively. This method however

failed to segment the thinner vessels. This method required an average time of 10

seconds to segment vessels in each retinal image.

Wang et al. [43] proposed multi-wavelet kernels and multi-scale hierarchical de-

composition for the detection of retinal vessels. Vessels were enhanced using matched

filtering with multi-wavelet kernels. The enhanced image was normalised using multi-

scale hierarchical decomposition. A local adaptive thresholding technique based on

the vessel edge information was used to generate the segmented vessels. An average

accuracy rate of 0.9461 and an AUC value of 0.9543 were achieved on DRIVE database

while the average accuracy rate of 0.9521 and an AUC value of 0.9682 were achieved

on STARE database. Although good accuracy rates were obtained, this method fails

to detect thin vessels. Another drawback of this method is its average computational

time of 210 seconds (3.5 minutes) to segment vessels in each retinal image.
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Cinsdikici and Aydin [82] implemented the combination of matched filter and an

ANT colony algorithm for the detection of retinal vessels. An average accuracy rate of

0.9293 and an AUC value of 0.9407 were achieved on DRIVE database. This method

required an average time of 35 seconds to segment vessels in each retinal image. The

drawbacks of this method are its inability to detect thinner vessels and over-estimation

of detected vessels.

Chakraborti et al [39] implemented an unsupervised segmentation technique that

combines vesselness filter and matched filter using orientation histogram for the segmen-

tation of retinal vessels. An average sensitivity rate of 0.7205 and an average accuracy

rate of 0.9370 were achieved on DRIVE database while an average sensitivity rate of

0.6786 and an average accuracy rate of 0.9379 were achieved on STARE database. Al-

though this method achieves a fast computational time of 8 seconds to segment vessels

in each retinal image, it fails to segment the thin vessels.

2.2.2.2 Multi-Scale-Based Techniques

In order to handle the limitation of single scale matched filter weak responses due

to large variation in the widths of the vessels, multi-scale filters were introduced for

segmentation of vessel networks.

Vlachos and Dermatas [41] proposed a multi-scale retinal vessel segmentation

method. The algorithm is based on multi-scale line-tracking procedure and morpho-

logical post-processing. An average sensitivity rate of 0.7468 and an average accuracy

rate of 0.9285 were achieved on DRIVE database. The drawback of this method is its

inability to detect the thin vessels.

Li et al. [47] implemented the multi-scale production of the matched filter (MPMF)

responses as the multi-scale data fusion strategy. The proposed MPMF vessel extraction

scheme applied multi-scale matched filtering, scale multiplication in the image enhance-

ment step and double thresholding in the vessel classification step. Incorporating the

multi-scale information assist to concurrently detect the vessels with variant widths.

Vessel segmentation results generated by using MPMF without any post-processing on

DRIVE achieved an average sensitivity rate of 0.7154 and an average accuracy rate of

0.9343 on DRIVE database. Vessel segmentation results generated by using MPMF

combined with a post-processing phase achieved an average sensitivity rate of 0.7191

and the average accuracy rate of 0.9407 were achieved on STARE database. This

method required 8 seconds to detect vessels without post-processing and required 30

seconds to detect vessels while combined with a post-processing phase. Although this
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method achieved a faster computational time without post-processing, the accuracy

rate is relatively low. It is also noted that this method spent most of the time on the

post-processing phase. The three scales applied by this method failed to accurately

segment the thin vessels. Hence, there is a need for further improvement.

Yedidya and Hartley [134] implemented a method based on Kalman filter for the

tracking of vessels. They applied a set of matched filters of different widths and orien-

tations to detect seed points. Vessels were tracked using the gradient information from

both edges of the blood vessel on the detected seed points. The ROC curve presented

by Staal et al. [22] was slightly higher while compared to the method proposed by these

authors. The drawback of this method is its inability to detect the thin vessels due to

poor gradient information. The time (20 to 40 seconds) required by this method to

segment the vessel network in a retinal image also needs further improvement.

Martinez-Perez et al. [135] used a combination of scale space analysis and region

growing to segment the vessel network. The performance of this method obtained

from Niemeijer et al. [35] and DRIVE database website [131] showed that an average

sensitivity rate of 0.6389 and average accuracy rate of 0.9181 were achieved on DRIVE

database. The major drawbacks of this method are its inability to segment thin vessels

and a lot of false detection of vessels around the border of the optic disc.

Yin et al. [87] implemented a probabilistic tracking-based method for vessel seg-

mentation. A Bayesian method with maximum a posteriori (MAP) was used for detect-

ing the retinal vessel edge points. The proposed segmentation method in [87] achieved

an average sensitivity rate of 0.6522 and an average accuracy rate of 0.9267 on DRIVE

database while an average sensitivity rate of 0.7248 and an average accuracy rate of

0.9412 were achieved on STARE database. One of the drawbacks of this method is its

inability to detect thin vessels. Another drawback is that this method required a very

high average time of about 378 seconds (6.3 minutes) to segment vessels in each retinal

image.

2.2.2.3 Morphological Processing-Based Techniques

Zana and Klein [40] implemented a vessel segmentation method based on the use of

mathematical morphology and cross-curvature evaluation. Having established the fact

that vessels are piecewise linear and connected, this method enhances and differenti-

ates the vessels from the background using mathematical morphological operators with

linear structuring elements. The performance of [40] on DRIVE database is available

in [35], [131]. An average sensitivity rate of 0.6971, average accuracy rate of 0.9377
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and an AUC value of 0.8984 were achieved on DRIVE database. The drawback of this

technique is its inability to segment the thinner vessels.

Fraz et al. [34, 44, 45] combined vessel centre-lines detection and morphological

bit plane slicing for the detection of vessel network in retinal images. A first-order

derivative of a Gaussian filter was used to extract vessel centre-lines. The orientation

and shape of the vessels were further determined using multidirectional morphological

top-hat operator with linear structural elements followed by bit plane slicing. Different

colour representations such as the green component of the original RGB image, the

Intensity channel of the HSI colour space, the luminosity channel of NTSC (YIQ)

colour space and the L* component of the L*A*B* representation were analysed in

[45]. Vessel centre-lines were extracted using the different colour channel but the vessel

shape and orientation maps were generated from the green channel of RGB using

the morphological bit plane slicing. The final segmented image was obtained by the

reconstruction of these two images. Fraz et al. [45] achieved an average sensitivity

rate of 0.7152 and an average accuracy rate of 0.9430 on DRIVE database while an

average sensitivity rate of 0.7311 and an average accuracy rate of 0.9442 were achieved

on STARE database. Fraz et al. [34] also detected vessel centre-lines by applying

difference of offset Gaussian filter in four directions to the background of normalised

retinal image. This was followed by the evaluation of average derivative values of the

filter response images using the method proposed by Mendonca and Campilho [84]. Fraz

et al. [34] achieved an average sensitivity rate of 0.7302 and an average accuracy rate of

0.9422 on DRIVE database while an average sensitivity rate of 0.7318 and an average

accuracy rate of 0.9423 were achieved on STARE database. Fraz et al. [34] required an

average 37.4 seconds and 39.5 seconds for the vessel segmentation of each retinal image

on DRIVE and STARE databases respectively. Although these techniques made good

progress, there is need for further improved processing time and the detection of more

thin vessels.

Mendonca and Campilho [84] combined differential filters for centre-line extraction

with morphological operators for filling vessel segments while considering intensity and

morphological properties. A multi-scale top-hat transform using circular structuring

elements of different radius was applied to detect vessels of different widths in the

retinal images. An average sensitivity rate of 0.7315 and an average accuracy rate of

0.9463 were achieved on DRIVE database while an average sensitivity rate of 0.7123 and

an average accuracy rate of 0.9479 were achieved on STARE database. This method

required about 150 seconds to segment vessels in each retinal image. Although this

method made great progress, there is still need for improvement on the segmentation
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of thinner vessels and the computational time.

Miri and Mahloojifar [88] found ridges by applying multi-structure elements to

enhanced retinal image. Morphological operators by reconstruction was further applied

to get rid of the ridges outside the vessel tree. An average sensitivity rate of 0.7352

and an average accuracy rate of 0.9458 were achieved on the DRIVE database. This

method also required about 50 seconds to segment vessels in each retinal image. This

technique achieved a good performance, but some thin vessels were not detected. There

is also a further need to improve its processing time.

Jiménez et al. [136] implemented vessel centre-lines detection and a combina-

tion of morphological operations for retinal vessel segmentation. Vessel centre-lines

were extracted by applying difference of offset Gaussian filter in four directions to the

background of normalised retinal image. Morphological enhancement using modified

top-hat transform with variable size structural elements and binary morphological re-

construction are further applied to the vessel. A region growth process is subsequently

applied to centre-lines for the vessel filling phase. An average sensitivity rate of 0.6960

and average accuracy rate of 0.9430 were achieved on DRIVE database. This technique

failed to detect the thin vessels.

2.2.2.4 Adaptive Thresholding-Based Techniques

Jiang and Mojon [38] implemented an adaptive local thresholding based on a verification-

based multi-threshold probing scheme for the detection of vessel network. Vessels’

properties such as contrast, curvilinear angle, width, and size were modelled into the

verification phase, and a number of thresholds were used to probe and detect vessel

network. The combination of the resulting detected vessel networks obtained from

probed thresholds followed by post processing phase generated the final segmented ves-

sel network. An average sensitivity rate of 0.6399, average accuracy rate of 0.9212 and

an AUC value of 0.9114 were achieved on DRIVE database while the average accuracy

rate of 0.9009 and an AUC value of 0.929 were achieved on STARE database. This

technique required an average time of about 8-10 seconds to segment each image. The

drawback of this technique is its inability to detect the thin vessels and the limitation

of unconnected vessel network.

Akram and Khan [46] enhanced the vascular pattern using 2-D Gabor wavelet

and followed by a multilayered thresholding technique that applied different threshold

values iteratively to generate grey level segmented image. An average accuracy rate of

0.9469 and an AUC value of 0.9632 were achieved on DRIVE database while an average
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accuracy rate of 0.9502 and an AUC value of 0.9706 were achieved on STARE database.

Although this technique made good progress in the detection of vessels, there is a need

for further improvement on detection of thinner vessels.

Qin et al. [137] combined multi-scale analysis based on Gabor filters, scale mul-

tiplication and region based thresholding to achieve adaptive thresholding for vessel

segmentation. The drawback of this technique is its inability to detect the thin vessels.

2.2.2.5 Model-Based Techniques

Szpak and Tapamo [138] combined the gradient based approach and level set technique

to segment vessels in retinal images. An average accuracy rate of 0.9299 was achieved

on DRIVE database. This method was however unable to detect the thin vessels.

Zhao et al. [139] implemented a segmentation method based on level set and region

growing for the detection of retinal vessels. The contrast limited adaptive histogram

equalisation and 2-D Gabor wavelets were applied in the pre-processing phase to en-

hance the vessels. An anisotropic diffusion filter was further applied to smooth the

image and preserve the boundaries of vessels. Two methods namely, region growing

method and a region-based active contour model with level set were further applied to

extract the retinal vessels. The segmentation results obtained from the methods were

combined to obtain the final segmented vessel network. An average sensitivity rate

of 0.7354 and an average accuracy rate of 0.9477 were achieved on DRIVE database

while an average sensitivity rate of 0.7187 and an average accuracy rate of 0.9509 were

achieved on STARE database. This method required an average time of less than 120

seconds to segment each image.

Salazar-Gonzalez et al. [140] proposed a vessel segmentation method based on

graph cut technique. The blood vessels were enhanced using a contrast enhancement

process on the green channel of the coloured retinal image using an adaptive histogram

equalisation. The final vessel segmentation was obtained using a graph constructed

based on the prior information and the spatial pixel connections. An average sensitivity

rate of 0.6782 and an average accuracy rate of 0.9478 were achieved on DRIVE database

while an average sensitivity rate of 0.7197 and an average accuracy rate of 0.9479 were

achieved on STARE database. This method was unable to detect the thinner vessels.

Cai and Chun [141] applied an unsupervised segmentation approach based on

normalised cut technique to segment blood vessels in retinal images. A candidate

window which may contain blood vessels was selected using gradient matrix while

normalised cut is applied to detect the vessels on the selected window. A tracking
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strategy is applied in the post-processing phase to remove noise. The ROC curve

presented by this method is slightly lower while compared to the method proposed by

Staal et al. [22] and Soares et al. [23]. The segmentation performance and the time

(30 seconds) required by this method to segment the vessel network in a retinal image

also needs further improvement.

Xiao et al. [83] proposed a Bayesian method with spatial constraint for the seg-

mentation of retinal vessels. The spatial dependence of the posterior probability of

each pixel in relation to their neighboring pixels was utilised. An energy function was

further defined. Furthermore, the vessel network were detected by applying the mod-

ified level set approach to minimise the energy function. An average sensitivity rate

of 0.7513 and an average accuracy rate of 0.9529 were achieved on DRIVE database

while an average sensitivity rate of 0.7147 and an average accuracy rate of 0.947 were

achieved on STARE. The execution time of this technique to segment each image is

about 81 seconds as each iteration required less than 10 seconds and the convergence

of the algorithm may be achieved in less than 10 iterations.

2.2.2.6 Phase Congruence-Based Techniques

Kovesi [142] proposed a combination of different log-Gabor filters using Fourier phase

information to measure phase congruency. The proposed phase congruence model in

[142] that uses the Fourier phase information has been very promising in the detection

of object boundary in the presence of noise due to illumination and contrast variation.

Amin and Yan [48] implemented the detection of retinal blood vessels using phase

congruency at an high speed. The threshold values used were, however, not dynamically

computed but ranged from 0.32 to 0.37. An average sensitivity rate of 0.6608 and an

average accuracy rate of 0.9191 were achieved on DRIVE database while an average

sensitivity rate of 0.7261 and an average accuracy rate of 0.9081 were achieved on

STARE database. This method required 10 seconds to segment vessels in each retinal

image. Although the technique performed well in terms of speed, there is a need

for improved accuracy rates and a dynamically computed thresholding approach that

addresses the detection of the thin vessels. Vessels cross-sectional profiles in the Fourier

domain were represented and characterised using phase congruence by Zhu [143]. A

bank of Gabor filter was used to transform the input image. The performance of the

proposed technique in [143] was only done by the visual assessment of results.

Tagore et al. [144] applied phase congruency to improve the contrast of vessel

segments against the retinal background. A hierarchical clustering based histogram
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thresholding was then used to segment the contrast enhanced vessels. An average

accuracy rate of 0.9424 and an AUC value of 0.9531 were achieved on DRIVE database

while an average accuracy rate of 0.9497 and an AUC value of 0.9611 were achieved on

STARE database. This method is limited in its ability to detect thin vessels.

Dai et al [145] implemented a multi-scale line filter combined with phase congruency

for retinal vasculature segmentation. The multi-scale line filter was used to reduce the

influence of step edges while phase congruency was used for the post processing to detect

low contrast vessels. An average sensitivity rate of 0.6542 and an average accuracy

rate of 0.9347 were achieved on DRIVE database while an average sensitivity rate of

0.6503 and an average accuracy rate of 0.9392 were achieved on STARE database. The

drawback of this method is its inability to accurately detect vessel widths. This method

also failed to detect some thin vessels.

2.2.2.7 Clustering-Based Techniques

Saffarzadeh et al. [42] implemented a pre-processing phase based on k-means followed

by the use of multi-scale line operators for the detection of retinal vessel network.

With the help of k-means, the visibility of the vessels was enhanced and the impact of

bright lesions reduced. The retinal vessels were finally detected using the line detection

operator in three scales. An average accuracy rate of 0.9387 and an AUC value of

0.9303 were achieved on DRIVE database while an average accuracy rate of 0.9483 and

an AUC value of 0.9431 were achieved on STARE database. This technique required

an average time of about 7.6 seconds to segment each retinal image. The drawback of

this method is the presence of false vessel detection across the retinal images and the

border of the optic disc. This method also failed to detect the thinner vessels.

Tolias and Panas [146] implemented a fuzzy c-means algorithm to segment vessels

in retinal angiogram images starting from the optic disc. This method is a tracking-

based approach that applies local information to detect vessels between two points

using 1-D vessel profile. The major drawback of this method is the incompletion in

the detection of vessels due to termination at branch points. This method also failed

to segment thinner vessels due to their low contrast against background. Kande et

al. [147] combined matched filtering and a spatially weighted fuzzy c-means for vessel

segmentation in retinal images. Intensity information from red and green channels of

the same retinal image were used to correct uneven illumination in coloured retinal

images. The matched filter was used further to enhance the contrast of the blood

vessels and a spatially weighted fuzzy c-means was used to segment the retinal vascular
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tree. An average accuracy rate of 0.8911 and an AUC value of 0.9518 were achieved on

DRIVE database while an average accuracy rate of 0.8976 and an AUC value of 0.9298

were achieved on STARE database. The major drawback of this method is the high

detection of false vessels around the border of the optic disc.

An hybrid approach comprising of a fuzzy clustering and mathematical morphol-

ogy was proposed by Yang et al. [148]. A morphological top-hat operation was used

for retinal image smoothing and background information removal. The vessels were

then extracted through fuzzy clustering. The algorithm was only tested through vi-

sual comparisons. While compared to Otsu thresholding, their method presented a

better result. Sun et al. [149] implemented morphological multi-scale enhancement in

combination with fuzzy filter and watershed transformation for vascular segmentation.

The proposed technique in [149], however, did not use any full retinal image in its

experiment.

Table 2.2: Performance of Unsupervised Methods on DRIVE & STARE Databases

Methods
Average
Accuracy

Average
Sensitivity

AUC
Average

Time
DRIVE STARE DRIVE STARE DRIVE STARE Seconds

Human observer [131], [132] 0.9473 0.9354 0.7761 0.8949 N/A N/A 7200
Hoover et al. [21] N/A 0.9275 N/A 0.6751 N/A 0.7590 N/A
Chaudhuri [26] 0.8773 N/A 0.3357 N/A 0.7878 N/A N/A
Zhang et al. [33] 0.9382 0.9475 N/A N/A N/A N/A 10
Jiang and Mojon [38] 0.9212 N/A 0.6399 0.9009 0.8984 0.929 10
Wang et al. [43] 0.9461 0.9521 N/A N/A 0.9543 0.9682 210
Fraz et al. [34] 0.9422 0.9423 0.7302 0.7318 N/A N/A 37.4
Chakraborti et al [39] 0.9370 0.9379 0.7205 0.6786 N/A N/A 8
Zana and Klein [40] 0.9416 N/A 0.6971 N/A 0.8984 N/A N/A
Fraz et al. [45] 0.9430 0.9442 0.7152 0.7311 N/A N/A N/A
Akram and Khan [46] 0.9469 0.9502 N/A N/A 0.963 0.970 N/A
Vlachos and Dermatas [41] 0.9285 N/A 0.7468 N/A N/A N/A N/A
Saffarzadeh et al. [42] 0.9387 0.9483 N/A N/A 0.9303 0.9431 7.6
Li et al. [47] 0.9343 0.9407 0.7154 0.7191 N/A N/A 8 & 30
Amin and Yan [48] 0.9191 0.9081 0.6608 0.7261 N/A N/A 10
Cinsdikici and Aydin [82] 0.9293 N/A N/A N/A 0.9407 N/A 35
Xiao et al. [83] 0.9529 0.9470 0.7513 0.7147 N/A N/A 81
Martinez-Perez et al. [135] 0.9181 N/A 0.6389 N/A N/A N/A N/A
Yin et al. [87] 0.9267 0.9412 0.6522 0.7248 N/A N/A 378
Mendonca and Campilho [84] 0.9463 0.9479 0.7315 0.7123 N/A N/A 150
Miri and Mahloojifar [88] 0.9458 N/A 0.7352 N/A N/A N/A 50
Jiménez et al. [136] 0.9430 N/A 0.6960 N/A N/A N/A N/A
Szpak and Tapamo [138] 0.9299 N/A N/A N/A N/A N/A N/A
Zhao et al. [139] 0.9477 0.9509 0.7354 0.7187 N/A N/A 119
Salazar-Gonzalez et al. [140] 0.9478 0.9479 0.6782 0.7197 N/A N/A N/A
Tagore et al. [144] 0.9424 0.9497 N/A N/A 0.9531 0.9611 N/A
Dai et al [145] 0.9347 0.9392 0.6542 0.6503 N/A N/A N/A
Kande et al. [147] 0.8911 0.8976 N/A N/A 0.9518 0.9298 N/A
Lupascu et al. [150] 0.9459 N/A 0.6562 N/A N/A N/A N/A
Lupascu et al. [150] 0.9482 N/A 0.6565 N/A N/A N/A N/A

Lupascu et al. [150] trained a self-organising map (SOM) on retinal images and
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proposed two vessel segmentation techniques. The map was further divided into two

classes using k-means clustering technique and modified fuzzy c-means clustering algo-

rithm. The entire image is fed into the SOM again and the class of the best matching

unit on the SOM is assigned to each pixel. A post-processed technique based on hill

climbing strategy on connected components was used to detect the vessel network. An

average sensitivity rate of 0.6562 and an average accuracy rate of 0.9459 were achieved

using the k-means clustering technique on DRIVE database while an average sensi-

tivity rate of 0.6565 and an average accuracy rate of 0.9482 were achieved using the

fuzzy c-means clustering on DRIVE database. The drawback of this method is the high

presence of false vessel detection around the border of the optic disc. This method also

failed to detect the thinner vessels.

2.3 Retinal Vessel Tortuosity Measurement

Retinal vessel morphological features such as vessel tortuosity, vessel width, branching

angle and branching coefficient are often early symptom indicators of some retinopathies

[68], [120] and are of prognostic importance in ROP [121]. One of the first changes in

vessels morphology to occur in DR patients is the increase in vessel tortuosity [50],

[51], [61]. Tortuosity has also been identified as a more reliable vascular parameter

in differentiating ROP severity than the vessel width [49]. Retinal vessel network

tortuosity is the measure of twists and curvature of a vessel. Vessel tortuosity measures

are used to determine the possibility of retinal images to be healthy or diseased even

when there are no visible pathologies as shown in Figure 2.2.

High blood pressure has been linked to diabetes due to its relationship with hyper-

tension [151], [152], [153] and tortuosity has also been identified as an indicator of high

blood pressure. The degeneration of retinal vessel walls and changes in their elastic

properties have also been identified to be major causes of vessel tortuosity [52]. The

duration of diabetic disease has a strong effect on changes in vessel tortuosity [154],

[155]. DR is often accompanied by an increase in the tortuosity of small vessels [156],

[157], [158], [159].

Although vessel tortuosity are visually analysed and determined by ophthalmol-

ogists based on the curvature and twisting rate of vessels, qualitative grading of ves-

sel tortuosity suffers from inter-observer and intra-observer variations [160]. Several

methods have been applied to quantitatively (numerically) determine the measure of

tortuosity of a vessel [68], [85]. The term often called the tortuosity index (TI) is used

for the estimation of the vessel tortuosity. TI provides a reproducible measure of vessel
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Figure 2.2: (a) Coloured Retinal Image With Normal Vessels (b) Coloured
Retinal Image With Tortuos Vessels.

characteristics. Several tortuosity measurement methods have been proposed in the

literature. Vessel tortuosity was first computed as the ratio of the actual vessel length

to the length of the underlying chord by Lotmar et al. [55] and further applied in [53],

[54], [56], [57]. This approach assumes a vessel to be non-tortuous if it is a straight

line and tortuous while the radius of curvature is longer than the chord length of the

vessel. The techniques, however, failed to differentiate varying vessels with the same

length but with different tortuosity as shown in Figure 2.3.

Figure 2.3: (a) & (b) have the same arc length and chord length but
different tortuosity i.e. if T = L

X [85].

Bullit et al. [85] applied the number of inflection points for the automatic vessel

tortuosity measure to overcome the drawback of the arc length over chord length ra-

tio methods. The use of inflection points as described in [85] is, however, insufficient
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to describe all the vessels twists. Hart et al. [58] implemented automatic tortuosity

measurement using the integral curvature methods. Dougherty and Varro [161] used

second derivatives along central axis of the blood vessels for automatic tortuosity mea-

surement. Grisan et al. [59], [162] implemented automatic tortuosity measures using

the arc to chord ratio and the points of changing curvature sign. This algorithm ap-

plied manually traced vessel centre points for inflection point placement. Capowski

et al [49] addressed tortuosity measurement using the number of direction changes in

vessel course. Azegrouz et al. [52] proposed a vessel-thickness tortuosity measurement

method utilising the average of the two curvature values computed at two boundary

points of the vessel. Vessel tortuosity measurement based on a chain code was recently

proposed in [60]. The major drawbacks of chain code are its inaccuracies in areas of

high curvature and regions of low curvature [86].

Generally, automatic tortuosity measurement methods based on local tortuosity

measurement perform better while compared to the techniques based on global tortu-

osities [57]. However, the contribution of each local tortuosity measure is considered

for computing the global tortuosity measure.

2.4 Summary

In the face of the global prevalence of DR and ROP, the cases of vision loss and blindness

tend to increase in the absence of efficient detection and management approaches of

the diseases. The use of automatic vessel segmentation and analysis in retinal images

by ophthalmologist, however, provides an efficient means of diagnosis and management

of the various retinopathies thus alleviating the limitation of manual detection and

analysis of the retinal vessels.

Although the superior performance of the supervised methods over the unsuper-

vised methods have been shown in the literature, these supervised methods are compu-

tationally expensive since training time is required [32], [81]. Another major drawback

of the supervised vessel segmentation techniques [20], [22], [23], [32] is that their per-

formance is highly dependent on the labelled training sample by experts which could

sometimes be extremely difficult, expensive or unavailable [16]. Furthermore, a new set

of labelled training sample is often required for retraining to obtain good segmentation

performance when detecting vessels on a new set of retinal images [20], [22], [23]. While

some of the previous unsupervised segmentation methods [21], [38], [39], [41], [42], [47],

[48], [82] are computationally faster when compared to the supervised vessel segmen-

tation methods, they are, however, faced with the inability to detect the thin vessels
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[41], [42], [69], [135] as well as the limitation of unconnected vessel network structures

[38]. Although some unsupervised techniques [43], [34], [46], [83], [84] have made some

progress in improving the automatic detection of retinal vessels, there is a need for fur-

ther improvements in the detection of thinner vessels and the computational running

time required for the segmentation of vessels. The presence of a lot of false positives

around the border of the optic disk also remains a challenge in the vessel segmentation

techniques [20], [42].

Although several vessel tortuosity methods have been discussed in the literature,

there is still need for an improved method that efficiently detects vessel tortuosity.

The drawback of the arc-chord ratio methods [53], [54], [56], [57] was identified as the

inability to differentiate varying vessels tortuosity when they have the same length

but different number of vessel twists. Methods based on inflection points are also not

robust enough as all the vessels twists are not sufficiently described [85]. The major

drawbacks of chain code based curvature measurement method were also identified to

be inaccuracies obtained in the areas of high curvature and regions of low curvature

[86].

The following chapter shall investigate the use of unsupervised segmentation ap-

proach for a robust automatic segmentation of retinal vessel network. An investiga-

tion into the tortuosity measurement method that efficiently detects vessel directional

change and twists shall also be presented.
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Chapter 3

Materials and Methods

3.1 Introduction

Generally, automated vessel segmentation is a challenging problem due to complexities

such as the varying width of retinal vessels from very large to very small, low contrast of

thin vessels with respect to background and noise due to nonhomogeneous illumination

caused by the complex acquisition of the retinal images [1], [47]. Since efficient vessel

network detection is a very important step needed in ophthalmology for reliable retinal

vessel characterisation, an efficient segmentation technique that requires no labelled

training sample and performs the segmentation of large and thin vessels in a timely

efficient manner is highly needed. This chapter describes the dataset used in this

research. The unsupervised segmentation methods investigated in this research are

also presented. Furthermore, an investigation on the vessel tortuosity measures that

combine distance metric and vessel twists for the characterisation of the detected vessel

is presented.

3.2 Dataset

The retinal images used for vessel segmentation in this research were obtained from

two major publicly available databases namely, DRIVE (Digital Retinal Images for

Vessel Extraction) [131] and STARE [132]. These two databases are selected because

the retinal vessel segmentation methodologies are evaluated on them.

DRIVE [131] is a publicly available database consisting of 40 colour retinal fundus

images. These images were obtained from a diabetic retinopathy screening program in

the Netherlands. The images were acquired using a Canon CR5 non-mydriatic 3CCD
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camera with a 45 degree field of view (FOV). Each image was captured using a 24-bit

RGB colour at 768 × 584 pixels. The FOV of each image is circular with a diameter

of approximately 540 pixels. This set of forty colour retinal fundus images are divided

into two groups. The first group of the images is a training set made up of twenty

images. The second group is a testing set made up of twenty images. All the human

observers that manually segmented the vessels in the retinal images were instructed

and trained by an experienced ophthalmologist. They were asked to mark all the pixels

for which they were for at least 70% certain that they were vessel. A set of manual

segmentation of the vessel network is available for the training images. Two manual

segmentations sets X and Y are available for the test cases. In set X, 577,649 pixels

were marked as vessel and 3,960,494 pixels as background (12.7% vessel). In set Y,

556,532 pixels were marked as vessel and 3,981,611 as background (12.3% vessel). It

was, however, observed that it took a human observer an average time of 7200 seconds

(2 hours) to segment the vessels in each of the retinal images. Set X of the manual

segmentations of the test cases is used as gold standard while set Y is often compared

to the performance of the automatic segmentation techniques on the database. Figure

3.1 shows an image in set X (that is gold standard) and its equivalent in set Y (i.e

second human observer) on DRIVE database.

Figure 3.1: (a) Segmented vessels of an image on DRIVE database by
the first human observer (also referred to as Set X) used as the ground
truth of DRIVE database in the literature (b) Segmented vessels of
the same image on DRIVE database by the second human observer
(also referred to as Set Y).

STARE (STructured Analysis of the Retina) [132] is a publicly available database
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that consists of 20 retinal images captured with the use of TopCon TRV-50 fundus

camera with 24-bit grey-scale resolution and spatial resolution of 700 × 605 pixels.

The approximate diameter of the FOV is 650 × 500 pixels. Two observers manually

segmented all the images. The first observer segmented 10.4% of pixels as vessel,

against 14.9% vessels for the second observer. The segmentations of the two observers

are fairly different in that the second observer segmented many more of the thinner

vessels than the first one. The 20 manually segmented images provided by the first

observer is used as the ground truth for the comparative performance evaluation of

different vessel segmentation algorithms in the literature. Figure 3.2 shows a ground

truth of segmented vessel and its equivalent for the second human observer on STARE

database.

Figure 3.2: (a) Segmented vessels of an image on STARE database by
the first human observer used as the ground truth of in the literature
ground truth (b) Segmented vessels of the same image on STARE
database by the second human observer.

In related development, 50 digital fundus images containing 50 different vessel

segments were used for the vessel tortuosity measurement. An expert’s ground truth

that determines the state of each vessel segment as either tortuous or normal was also

obtained from an ophthalmologist consultant.

3.3 Unsupervised Segmentation Method

In the previous chapter, this research showed that the supervised vessel segmentation

methods [20], [22], [23], [28], [32], [34], [35], [36], [37] achieved higher vessel detection

and accuracy rates than the previously proposed unsupervised methods [21], [38], [39],
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[42], [47], [48], [82]. The major drawbacks of the supervised vessel segmentation tech-

niques [20], [22], [23], [32] were shown to be the high dependence of their performance

on the labelled training sample by the experts which could sometimes be extremely dif-

ficult, expensive or unavailable [16] and the requirement of new sets of labelled training

sample for the retraining of the classifiers to obtain good segmentation performance

when detecting vessels on new sets of retinal images [23], [28]. The previous chap-

ter also showed that supervised vessel segmentation approach is time-consuming as it

requires manually detected vessels and supervised training before the classification of

pixel as either vessel or background. In contrast to the supervised vessel segmentation

methods, unsupervised segmentation methods do not require labelled data for training.

It was also showed in the previous chapter that while some of the previous unsuper-

vised segmentation methods [21], [38], [39], [41], [42], [47], [48], [82] are computationally

faster when compared to the supervised vessel segmentation methods, they are faced

with the inability to detect the thin vessels [41], [42], [69], [135] and connectivity loss

of vessel network structures [38], [69]. Although some unsupervised techniques [43],

[34], [46], [83], [84] have made some progress at improving the automatic detection of

retinal vessels, their needs for further improvements in the detection of thinner vessels

and the computational running time required for the segmentation of vessels were also

discussed. The need for the reduction of false vessels around the border of the optic

disk in the segmented vessels [20], [42] was also identified.

In the following sections 3.4, 3.5 and 3.6, different unsupervised vessel segmentation

methods are investigated to address the problems of inability to detect the thinner

vessels [41], [42], [69], [135], connectivity loss in vessel network [38], computational

running time complexity [43], [34], [46], [83], [84], [32], [81] and false vessels around

the border of the optic disk [20], [42]. Since unsupervised vessel segmentation are not

dependent on labelled training set, the investigated methods also overcome the major

drawback of supervised segmentation methods which is their high dependence on the

labelled training [16], retraining of the classifiers [23], [28].

The unsupervised vessel segmentation methods investigated in this research are

grouped into three categories namely global thresholding techniques, local adaptive

thresholding techniques and clustering-based techniques.

3.4 Global Thresholding Techniques

Retinal fundus images are often characterised by noise due to illumination and contrast

variation. Due to this, the use of global thresholding techniques for the detection of
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vessels in these noisy retinal images becomes challenging. Although global thresholding

technique was applied on matched filter response (MFR) in [26], a threshold probing

technique that combined local vessel attributes with region-based attributes improved

the performance of the global thresholding method applied on the MFR for retinal

vessel segmentation in [21]. It is also important to state that a poor choice of pre-

processing technique applied to handle the retinal image noise can also result in a poor

detection of vessel in retinal images [33].

Figure 3.3: Phase Congruence-Based Global Thresholding Approach.

This section presents a further study on the use of different global thresholding tech-

niques while combined with different pre-processing and post-processing techniques.

Two different techniques namely Contrast Limited Adaptive Histogram Equalisation

(CLAHE) and phase congruence while combined with different filtering techniques are

used to enhance the vessels in the pre-processing phase. For the purpose of simplifica-

tion, the segmentation techniques used in this section are categorised into two major

approaches namely CLAHE-based global thresholding approach and phase congruence-

based global thresholding approach. The phase congruence-based global thresholding

approach investigates the use of texture-based global thresholds and histogram-based
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global thresholds for the segmentation of retinal vessels as described in Figure 3.3. In a

related development, the CLAHE-based global thresholding approach investigates the

use of Otsu and ISODATA thresholding for retinal vessel segmentation as described in

Figure 3.4.

Figure 3.4: CLAHE-Based Global Thresholding Approach.

3.4.1 Pre-Processing Phase

Complexities such as noise due to illumination and contrast variation make the de-

tection of large and thin vessels a very challenging problem [47]. The use of efficient

pre-processing techniques to remove the noise and enhance the vessels are highly needed

to produce good retinal vessel segmentation results. The different techniques applied

in the pre-processing phase are described in sections 3.4.1.1 and 3.4.1.2 below.
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3.4.1.1 Contrast Limited Adaptive Histogram Equalisation (CLAHE)

CLAHE is an efficient technique for enhancing images [163]. CLAHE algorithm is used

for partitioning the retinal image into contextual regions, and the histogram equalisa-

tion is applied to each one. Figure 3.5 shows the coloured, grey scale and the green

channel of the retinal fundus image.

Figure 3.5: (a) Coloured Retinal Image (b) Grey-Scale Retinal Image (c) Green Channel
of the Coloured Retinal Image

CLAHE further computes the local histogram at each pixel of the retinal image,

performs histogram clipping, histogram renormalisation and output pixel mapping to an

intensity proportional to its rank within the histogram. Given that hi is the histogram

bin and (m × m) the contextual region, the rank rp for a pixel with intensity p is

computed as

rp =

∑p
i=0min(β, hi) + (p+ 1)

(∑N
k=0max(0,hk−β)

m×m

)
m×m

(3.1)

where the clip limit β determines the contrast enhancement limit and
∑p

i=0min(β, hi)

describes the rank in a clipped histogram. Since each region will have a different number

of clipped pixels, It is beneficial to redistribute the part of the histogram that exceeds

the clip limit β evenly among all histogram bins to normalise the ranks computed in

different regions. This normalisation is provided by
∑p

j=0

∑N
k=0max(0,hk−β)

m×m , where hk is

the histogram bin in the different region. The rank of intensity iin at (x,y) is computed,

and scaled to produce a fractional rank r, such that 0.0 ≤ r ≤ 1.0.

The output intensity level iout is then computed in some grey scale ranging between
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i1 and i2 as:

iout = i1 + r × (i2 − i1) (3.2)

where i1 and i2 are the minimum and maximum intensity levels respectively.

3.4.1.2 Phase Congruence

A phase is congruent when the phases of all the Fourier components at the positions are

aligned [143]. Morrone and Owens [164] defined phase congruency function in relation

to the Fourier decomposition of a signal at some position x to be:

PC(x) = maxφ(x)ε[0,2π]

∑
k Ak cos(φk(x)− φ(x))∑

k Ak(x)
(3.3)

where the amplitude Ak is the kth Fourier component, and φk(x) is the local phase

at location k. The amplitude weighted mean local phase angle of all the Fourier terms

at the position under consideration yields the value φ(x) that maximises equation (3.3).

Computing the cosine of the difference between the actual phase angle of a frequency

component and the weighted mean, φ(x), gives the Taylor expansion cos(x) ≈ 1−x2/2

for lower values of x.

Venkatesh and Owens [165] as an alternative to [164], computed points of maximum

phase congruency through the search for the local energy function peaks. The local

energy function E(x) of a luminance profile I (x) is defined in [165] as

E(x) =
√
F 2(x) +H2(x) (3.4)

Such that F(x) is the signal I(x) after the removal of its DC component while H(x) is

the Hilbert transform of F(x).

Given that I is the signal and Mk
e and Mk

o are the even-symmetric (cosine) and

odd-symmetric (sine) wavelets respectively at scale k, the amplitude of the transform

is computed as

Ak(x) =
√

((I(x) ∗Mk
e ) + (I(x) ∗Mk

o )) (3.5)

and the phase is computed as

φ(x) = arctan 2(I(x) ∗Mk
e , I(x) ∗Mk

o ) (3.6)

The energy E(x) was further computed in terms of phase congruency PC(x) and
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Fourier amplitudes Ak in [165] as

E(x) = PC(x)
∑
k

Ak(x) (3.7)

Given phase offset φk(x) and weighted mean phase angle of φ(x), the local energy

|E(x)| is also computed as

E(x) =
∑
k

Ak(x) cos(φk(x)− φ(x)) (3.8)

Hence, the phase congruency is computed as

PC(x) =
|E(x)|∑
k Ak(x)

, 0 ≤ PC(x) ≤ 1 (3.9)

Kovesi [142] handled the ill-conditioned computation of phase congruency when

all the Fourier amplitudes are very small by adding a small positive constant ε, to the

denominator of the phase congruency expression as

PC(x) =
|E(x)|∑

k Ak(x) + ε
(3.10)

where the value of ε is determined by the precision of the performance of the different

operations on the signal.

Kovesi [142] also estimated the level of noise in the calculation of the local energy on

the premise that when a signal noise is additive, the noise power spectrum is constant,

and that the features like edges occur only at disjointed locations. Hence, the phase

congruency that includes the removal of the estimated signal noise is computed as

PC(x) =

∑
θ

∑
kWθ(x)bAk,θ M φk,θ(x)− T c∑

θ

∑
k Ak,θ(x) + ε

(3.11)

In order to compute an overall measure of phase congruency in 2-D images, a

computationally efficient phase congruence model on 2-D images was proposed in [142].

Hence, equation (3.11) for signal is rewritten for 2-D images in [142] as

PC(x, y) =

∑
θ

∑
kWθ(x, y)bAk,θ M φk,θ(x, y)− Tθc∑

θ

∑
k Ak,θ(x, y) + ε

(3.12)

where (x,y) is the position of the pixel in the green channel of the retinal image,

while k and θ represent the scale and orientation respectively. Wθ is the weighing

factor for the distributed frequency, while Tθ estimates the image noise. The energy is
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computed using Ak,θ M φk,θ(x, y), while ε is added to the denominator such that the

divisor will be nonzero. Figure 3.6 shows the output of pre-processed images using

phase congruence.

Figure 3.6: (a) to (d) Coloured Retinal Images on DRIVE database (e) to (h) Phase
Congruence-Based Pre-Processed Images

3.4.2 Global Thresholding

Automatic thresholding is potentially useful to dynamically select an optimal grey-level

threshold value for the segmentation of retinal vessels in the image from the background

tissue based on their intensity distribution. Global thresholding methods apply infor-

mation obtain globally (for example, image histogram, global texture properties) to the

entire image [166]. The different global thresholding techniques studied in this research

are discussed in sections 3.4.2.1, 3.4.2.2, 3.4.2.3 and 3.4.2.4.

3.4.2.1 Otsu Thresholding

Global thresholding technique based on Otsu [167] is used on the results computed

from phase congruence and CLAHE with filters for the initial estimation of the vessel

network. The threshold that minimises the intra-class variance as a weighted sum
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of variances of the two classes is explored in Otsu’s method. The weighted sum of

variances of two classes is expressed as

σ2
ω(t) = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) (3.13)

such that weights ωi describe the probabilities of the two classes separated by a

threshold t and σ2
i variances of the classes. The class probability ω1(t) is then computed

from the histogram as:

ω1(t) =
t∑
0

p(i) (3.14)

Figure 3.7: Segmented vessels obtained through CLAHE with Otsu thresholding tech-
nique and different filters. (a) DRIVE coloured retinal image. (b) DRIVE database
gold standard image. (c) Segmented vessels using Otsu threshold with Gaussian filter.
(d) Segmented vessels using Otsu threshold with average filter. (e) Segmented vessels
using Otsu threshold with adaptive filter. (f) Segmented vessels using Otsu threshold
with combination of average and Gaussian filters.

where p(i) is the normalised frequency of each grey level value i. The class mean
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µ1(t) is computed as:

µ1(t) =
[
∑t

0 p(i)x(i)]

ω1
(3.15)

such that x(i) is the value at the centre of the ith histogram bin. ω2(t) and µ(t) can

likewise be computed on the histogram for bins greater than t. Otsu further showed

that minimising the intra-class variance is the same as maximising inter-class variance.

Hence, the desired threshold σ2
b (t) is given as

σ2
b (t) = σ2(t)− σ2

ω(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]2 (3.16)

where µ1(t) and µ2(t) are the mean of the first and second group respectively. Hence,

the Otsu threshold is

Th = σ2
b (t) (3.17)

Figure 3.7 shows the segmented vessels obtained from CLAHE and Otsu thresh-

olding after post-processing on DRIVE database.

3.4.2.2 Isodata Threshold Selection

Isodata threshold technique divides the histogram of the image output from phase con-

gruence method into two using an initial threshold value t0. The threshold is computed

as:

th =
m1 +m2

2
(3.18)

where m1 and m2 are the mean values of the two different parts of the histogram.

This process continues until th ≈ th−1 and Isodata threshold is

Th = th (3.19)

Figure 3.8 shows the segmented vessels obtained from CLAHE and Isodata thresh-

olding after post-processing on DRIVE database

3.4.2.3 Inverse Difference Moment (IDM)-Based Thresholding

Image signal statistics, particularly first- and second-order statistics, are good tex-

ture feature descriptors used for supervised segmentation techniques. Moments, first-

order statistics, are concerned with individual image pixel properties while second-order
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Figure 3.8: CLAHE and ISODATA thresholding technique with different filters. (a)
DRIVE coloured retinal image.(b) DRIVE database gold standard image. (c) Seg-
mented vessels using ISODATA threshold with Gaussian filter. (d) Segmented vessels
using ISODATA threshold with average filter. (e) Segmented vessels using ISODATA
threshold with adaptive filter. (f) Segmented vessels using ISODATA threshold with
combination of average and Gaussian filters.

statistics such as grey level co-occurrence matrix (GLCM) are concerned with individual

pixel properties as well as the spatial inter-dependency of the two pixels at particular

relative positions.

GLCM is popularly known for its usage in texture image segmentation [168]. Har-

alick features [168] computed from GLCM have been used for both supervised [169],

[170] and unsupervised [171], [172], [173] [174] image segmentation techniques. Six

of the features proposed by Haralick et. al.[168] were considered to be the most rel-

evant [175]. The features considered are Energy (ENER), Entropy (ENT), Contrast

(CONTR), Variance (VAR), Correlation (COR) and Inverse Difference Moment (IDM).

Some other unsupervised grey level co-occurrence based segmentation techniques have

also been proposed in the literature [175], [176], [177].

Although IDM was originally used in [168] for supervised segmentation, this re-

search utilises it for an unsupervised segmentation approach. The IDM texture infor-
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mation applied in this research is computed using the GLCM of the grey scale of the

retinal fundus image. Due to the large variation in the widths of the vessels [47], a

multi-scale approach is adopted for the computation of a global threshold to segment

the vessel network. The GLCM for the retinal fundus image is computed using the

relative distance ‘d’ between the pixel pair and their relative orientation ‘Φ’ across

four directions (horizontal: 00, diagonal: 450, vertical: 900 and anti-diagonal: 1350) as

Ci,j =
M−1∑
x=0

N−1∑
y=0

(P{V (x, y) = i & V (x± dΦ1, y ± dΦ2) = j}) (3.20)

where V (x, y) = i, means i is the grey level of the pixel (x, y), and P is defined as

P (x) =

1 if x is true

0 Otherwise
(3.21)

The IDM feature across the different distances, ‘d’, and varying relative orienta-

tions, ‘Φ’, is defined as

IDM(d,Φ) =
∑
i,j

p(i,j)/(1 + (i+ j)2) (3.22)

where p(i,j) is the (i, j)th entry in a normalised grey scale spatial dependence matrix

C(i,j)/R and R is the number of neighboring resolution cell pairs.

A Multi-Scale IDM-Feature measurement across the varying distance ‘d’ and

relative orientation ‘Φ’ is used in the computation of an IDM feature matrix as:

F =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

 (3.23)

where fij = IDMdi,Φj
with orientations (Φj)i=1,...,4, such that Φ1= 0o, Φ2= 45o,

Φ3= 90o and Φ4 = 135o, with distances (di)i=1,...,4. Since the width of retinal vessels can

vary from very large (15 pixels) to very small (3 pixels)[47], the multi-scale approach

adopted investigates the distances (di)i=1,...,4 across the four orientations as it covers

adequate spectrum of vessel texture information (4 × 4 = 16) to compute the global
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threshold. The range measure of F is given below as:

RΦ = max
1≤j≤4

(fij)− min
1≤j≤4

(fij) (3.24)

where 1 ≤ i ≤ 4 and RΦ is a row vector containing the range of each column of matrix

(F).

The threshold value that will be used for the binarisation of the output image from the

phase congruence and average filter is computed as:

Th = max(RΦ) +mean(RΦ) (3.25)

Figures 3.9 and 3.10 show the segmented vessels obtained from phase congru-

ence and IDM-based global thresholding after post-processing on DRIVE and STARE

databases respectively.

Figure 3.9: Retinal images and the segmented vessels obtained through phase con-
gruence using different global-based thresholding techniques. Images (a) and (e) are
DRIVE database gold standards. Images (b) and (f) are images segmented using IDM-
based threshold values while images (c) and (g) are images segmented using ISODATA
threshold values. Images (d) and (h) are images segmented using Otsu threshold values.
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Figure 3.10: (a) STARE database ground truth. (b) Pre-processed image using Phase
Congruence. (c) Retinal Image Mask (d) Segmented vessel network using Phase
Congruence-Based global thresholding approach.

3.4.2.4 Sum Entropy-Based Thresholding

Entropy has been one of the few major Haralick features that has often been used

for unsupervised segmentation. Different entropy based thresholding such as global,

local, joint and relative entropy have been proposed in [171], [172], [173] and [174].

The unsupervised segmentation approach applied in this research is different from the

previously proposed methods [171], [172], [173] and [174] in that a multi-scale approach

is applied in this thesis to compute a global threshold based on sum entropy information

to segment the vessel network. A grey-level threshold value based on GLCM sum

entropy feature information is computed for the segmentation of the retinal vasculature

from the background using the image output from phase congruence technique. The

GLCM for the retinal fundus image is computed as described in equation (3.20). The

sum entropy feature across the varying distances, ‘d’, and relative orientation, ‘Φ’, is

defined as

Entr+
(d,Φ) = −

2Ng∑
i=2

px+y(k)log{px+y(k)} (3.26)

where px+y(k) =
∑Ng

i=1

∑Ng

j=1 p(i, j)
(i+j=k)

and p(i,j) is the normalised matrix.

A multi-scale feature measurement of the sum entropy across the varying dis-

tance ‘d’ and relative orientation ‘Φ’ to manage the variation in the widths of the

vessels [47] is applied in the computation of a feature matrix as:

E = (eij), 1 ≤ i, j ≤ 4 (3.27)
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where

eij = Entr+
(di,Φj), 1 ≤ i, j ≤ 4 (3.28)

Such that Φ1= 0o, Φ2= 45o, Φ3= 90o and Φ4 = 135o, with distances (di)i=1,...,4.

Distances (di)i=1,...,4 across the four orientations are considered as adequate spec-

trum of vessel texture information (4 × 4 = 16) is also covered to compute the global

threshold based on sum entropy.

The threshold value used for the segmentation of the vessels using the output image

from the phase congruence and a mean filter is computed as

Th = max
1≤i≤4

‖ max
1≤j≤4

(eij)− min
1≤j≤4

(eij) ‖ (3.29)

Hence, the segmented image is given as

Sim =

0, if F (x, y) ≤ Th
1, otherwise

(3.30)

where F(x,y) is the output image of the pre-processing phase.

Figures 3.11 and 3.12 show the segmented vessels obtained from phase congruence

and sum entropy-based thresholding technique after post-processing on DRIVE and

STARE databases respectively.

Figure 3.11: (a) Coloured Retinal Image (b) Drive Gold Standard (c)
Segmented Vessels Using GLCM Sum-Entropy Threshold Combined
with Phase Congruence

3.4.3 Post-Processing Phase

The combination of median filter and morphological opening are used for the post-

processing phase to remove noisy pixels and restore the connectivity of several vessel
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Figure 3.12: (a) & (d) STARE Database Ground Truth. (b) & (e) Segmented Vessels
Using GLCM Sum-Entropy Threshold Combined with Phase Congruence. (c) & (f)
Segmented Vessels Presented by Hoover et al. [21].

lines by revealing some hidden pixels that belong to vessel lines. Median filtering is

a non-linear smoothing operation often used in image processing to reduce noise and

preserve edges at the same time. In this research, the median filtering is performed

by moving a 2× 2 sliding-window through all the pixels of the binarised retinal image

containing detected vessels. Since this noisy pixels are isolated from the vessels and

surrounded by a wider space of non-vessel background, a 2× 2 median filter is applied.

This is followed by morphological opening. In the application of morphological opening

to the filtered image, erosion is applied to remove the remaining noisy pixels and dilation

is subsequently applied for the restoration of the connectivity of several vessel lines.

Given that the filtered segmented image is Sfilteredim , the final output image after the

application of morphological opening is computed as:

γ(Sfilteredim ) = δ(ε(Sfilteredim )) (3.31)

where γ(Sfilteredim ) is the final segmented vessel network after post-processing and

ε(Sim) describes the application of erosion and δ(Sfilteredim ), the application of dilation.
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3.5 Local Adaptive Thresholding Techniques

The segmentation of retinal vessels are challenging problems due to the noise from

nonhomogeneous illumination as well as complexities such as varying width of retinal

vessels from very large to very small, and low contrast of thin vessels with respect

to background [1], [47]. Since efficient vessel network detection is a very important

step needed in ophthalmology for reliable retinal vessel characterisation, an efficient

segmentation technique that will perform the detection of large and thin vessels in a

timely efficient manner is highly needed. Local adaptive thresholding technique is a

very good choice of segmentation when the background of an image is uneven as a

result of poor or non-homogeneous illumination conditions. Although some adaptive

thresholding techniques [38], [110], [137] have been implemented for the segmentation

of retinal vessels, their inability to efficiently detect some large vessels [38] as well

as thin vessels [38], [110], [137] and vessel connectivity loss remain unresolved [38] as

shown in Figure 3.13. Such inabilities to detect large vessels and thin vessels as well

as the problem of vessel disconnection will make the analysis of retinal vascular for

retinopathy disease detection very difficult as the detailed vessel information required

for vessel morphological analysis and disease diagnosis is not available.

Due to the non-homogeneous illumination, low contrast of thin vessels and large

variation in the widths of the retinal vessels [47], this section investigates the use of two

new local adaptive thresholding techniques for the segmentation of large and thin retinal

vessels based on two different Haralick [168] texture features namely local homogeneity

and energy. Although these two texture features have been applied for supervised

image segmentation in the literature [168], their novelty in this thesis lie in that they

are applied using an unsupervised image segmentation approach. Rather than adopting

a global approach, each of these local adaptive thresholding techniques locally applies

a multi-scale approach on the different texture information considering the pixel of

interest in relationship with its spacial neighbourhood to compute the local adaptive

threshold. The multi-scale thresholding approach handles the challenge of vessel width

variation. Figure 3.14 presents the flowchart of the adaptive thresholding methods

investigated in this research. An unsharp filter is used to sharpen the image. This is

followed by the smoothing of the image through an average filter and the enhancement

of the image contrast to improve the contrast of thin vessels. Each pixel of the enhanced

image in relation to a local neighbourhood is convolved through a median filter of local
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Figure 3.13: (a) & (d) DRIVE Database Ground Truth. (b) & (e) Sec-
ond Human observer on DRIVE Database (c) & (f) Segmented Vessels
Presented by the adaptive thresholding Presented by Jiang and Mojon
[38].

window size w*w as

U(i, j) = H(x, y) ∗ V 1
w∗w(x, y) (3.32)

where U(i,j) is the convolved retinal image, V 1(x, y) is the result obtained in (1) and the

convolution mask H(x,y) is a local median filter. The enhanced image is subtracted from

the convolved image to balance the illumination of the retinal image. The difference

image D(x,y) with the balanced illumination is computed as

D(x, y) = U(i, j)− V 1(x, y) (3.33)

This is followed by the computation of the adaptive thresholds based on the two

texture information namely local homogeneity and energy which are further discussed
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in sections 3.5.1 and 3.5.2 respectively. The segmented image is

Simage(x, y) =

0, if D(x, y) ≤ T (x, y)

1, otherwise
(3.34)

where T(x, y) is the computed adaptive threshold. The post-processing phase

described in section 3.4.3 is applied to Simage obtained from the adaptive thresholding

techniques to remove the falsely detected vessel pixels to obtain the vessel network.

Figure 3.14: Flowchart of the Investigated Adaptive Thresholding Approach

3.5.1 Adaptive Thresholding Based on Local Homogeneity Informa-

tion

Information based on inverse difference moment (that is local homogeneity) texture

feature from GLCM is utilised in this adaptive thresholding technique. Inverse dif-

ference moment (IDM) is a local feature that reflects the homogeneity of a pixel in

relationship with the pair pixel within distance d and relative orientation Φ. Since the

width of retinal vessels can vary from very large (15 pixels) to very small (3 pixels)[47],

51



the multi-scale approach applied investigates the distances (di)i=1,...,4 across the four

orientations as it covers adequate spectrum of vessel texture information (4 × 4 = 16)

to compute the local threshold for each pixel of interest. The GLCM for the retinal

fundus image is first computed as described in equation (3.20). The IDM feature across

the varying distances, d, and relative orientation, Φ, is computed as

IDM =
∑
i

∑
j

p(i,j)/(1 + (i− j)2) (3.35)

where p(i,j) is the (i, j)th entry in a normalised grey scale spatial dependence matrix

C(i,j)/R, with 1/R the normalising factor.

3.5.1.1 Multi-Scale IDM-Feature Measurement

As the distance ‘d’ in a given orientation increases, there is a higher likelihood to have

variation of local homogeneity measure due to the variation in the spatial relationship

among neighbouring pixels. The variation of local homogeneity information within the

varying distance ‘d’ and relative orientation ‘Φ’ is potentially useful in the design

of an adaptive thresholding technique for image segmentation. An IDM feature matrix

across different orientation and distances is formed. The IDM feature matrix, F, is

defined as

F =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

 (3.36)

where fij = IDMdi,Φj
with orientations (Φj)i=1,...,4, such that Φ1= 0o, Φ2= 45o, Φ3=

90o and Φ4 = 135o, with distances (di)i=1,...,4. The range measure of F is given below

as

RangeΦ = Range(F ) (3.37)

such that RangeΦ is a row vector containing the range of each column of F, while the

inter-quartile range is given as

IQRΦ = IQR(F ) (3.38)

such that IQRΦ is a row vector containing the inter-quartile range of each column

of matrix F. Three different threshold values are computed from each of the row vectors
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above. The thresholds for the range measure are:

IDMthresh1 = 0.5(MIN(RangeΦ)) (3.39)

IDMthresh2 = 0.5(MAX(RangeΦ)) (3.40)

IDMthresh3 = 0.5(MEAN(RangeΦ)) (3.41)

While the thresholds for the inter-quartile range measure are:

IDMthresh4 = MIN(IQRΦ) (3.42)

IDMthresh5 = MAX(IQRΦ) (3.43)

IDMthresh6 = MEAN(IQRΦ) (3.44)

Figure 3.16 and Figure 3.17 show the segmented vessels obtained from the inves-

tigated local adaptive thresholding technique based on IDM information.

3.5.2 Adaptive Thresholding Based on Energy Information

Energy, which is also called angular second moment (ASM) or uniformity, is a Haralick

feature that measures the textural uniformity of an image. A multi-scale approach is

also applied to investigate the distances (di)i=1,...,4 across the four orientations as it cov-

ers adequate spectrum of vessel texture information (4 × 4 = 16) to compute the local

threshold for each pixel of interest. Having computed the GLCM as described in equa-

tion (3.20), the ASM feature across the varying distances, d, and relative orientation,

Φ, is computed as

ASM =
∑
i

∑
j

h(i, j)2 (3.45)

where h(i, j) is the (i, j)th entry in a normalised grey-tone spatial dependence matrix

C(i,j)/R, with 1/R the normalising factor.

The visibility of vessels in a coloured fundus retinal image with its grey-scale inten-

sity image and the green channel of the retinal image was previously shown in Figure
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Figure 3.15: (a) & (d) STARE Database Ground Truth. (b) & (e) Seg-
mented Vessels Using Adaptive Thresholding Technique based on ASM.
(c) & (f) Segmented Vessels Using Adaptive Thresholding Technique based
on IDM.
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Figure 3.16: Retinal images and the segmented vessels obtained through adaptive
thresholding using different IDM Interquartile range Information. Images (a) and
(e) are DRIVE database gold standards. Images (b) and (f) are images segmented
through adaptive thresholding using minimum IDM Interquartile range value. Images
(c) and (g) are images segmented through adaptive thresholding using maximum IDM
Interquartile range value. Images (d) and (h) are images segmented through adaptive
thresholding using mean IDM Interquartile range value.
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Figure 3.17: Segmented vessels obtained through adaptive thresholding using different
IDM range Information. Images (a) and (e) are DRIVE database gold standards. Im-
ages (b) and (f) are images segmented through adaptive thresholding using minimum
IDM range values. Images (c) and (g) are images segmented through adaptive thresh-
olding using maximum IDM range values. Images (d) and (h) are images segmented
through adaptive thresholding using mean IDM range values.
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3.5. The grey level intensity and green channel of the retinal image are further investi-

gated for the segmentation of the retinal vessels using the local adaptive thresholding

technique based on ASM information investigated in this research.

3.5.2.1 Multi-Scale ASM-Feature Measurement

The variation of energy information within the varying distance ‘d’ and relative

orientation ‘Φ’ is useful in the design of an adaptive thresholding technique for the

vessel segmentation due to its multi-scale approach. An ASM feature matrix across

different orientations and distances is computed and defined as

A = (aij), 1 ≤ i, j ≤ 4 (3.46)

where

aij = ASM(di,Φj), 1 ≤ i, j ≤ 4 (3.47)

Such that Φ1= 0o, Φ2= 45o, Φ3= 90o and Φ4 = 135o, with distances (di)i=1,...,4.

The range measure of A is given below as

RangeΦ = Range(A) (3.48)

Such that RangeΦ is a row vector containing the range of each column of A. Three

different threshold values are computed from each row vector to segment the retinal

vessels. The thresholds from the range measure are:

ASMthresh1 = 0.5(MIN(RangeΦ)) (3.49)

ASMthresh2 = 0.5(MAX(RangeΦ)) (3.50)

ASMthresh3 = 0.5(MEAN(RangeΦ)) (3.51)

Figure 3.18 and Figure 3.19 show the different segmented vessels obtained from the

grey-scale intensity image and the green channel of the coloured fundus image using

ASM-based local adaptive thresholding technique. Figure 3.15 also visually compares

the segmented vessels obtained from the two adaptive thresholding techniques investi-

gated in this research with the ground truth on STARE database.
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Figure 3.18: (a) DRIVE Database Gold Standard (b) Manually Segmented Vessel by
the Second Human Observer on DRIVE Database (c) Segmented Vessel of the Green
Channel Using ASM Range Information-Based threshold value (d) Segmented Vessel of
the Grey-Scale Intensity Image Using ASM Range Information-Based threshold value.

3.6 Clustering-Based Techniques

Clustering is an unsupervised learning approach in pattern recognition that attempts

to determine which pixels of image data naturally belong to the same group according

to the properties of each image pixel [178]. Like other unsupervised segmentation meth-

ods, clustering techniques are not dependent on the labelled training sample. Clustering

techniques are also less dependent of rigid threshold values [179]. The use of clustering

techniques for the detection of vessels in retinal images without pre-processing is chal-

lenging because retinal fundus images are characterised by noise due to illumination and

contrast variation. Hence, this section combines phase congruence pre-processing tech-

nique with fuzzy c-means for vessel network detection in retinal images. The combina-

tion of difference image and k-means clustering for retinal vessel network segmentation

is also investigated in this section.

3.6.1 Fuzzy C-Means Combined with Phase Congruence

Fuzzy C-Means (FCM) is a soft computing-based clustering method introduced by

Dunn [180]. FCM algorithm requires no hand-labeled ground truth images for training,

but examines and utilises underlying patterns to classify image pixels into appropri-

ate groups. The FCM algorithm is applied on the output image obtained from the

phase congruence. The n sample of the image input data points is expressed as X =

{x1, x2, ...., xn} while the corresponding cluster centres of the image data points is ex-

pressed as V = {v1, v2, ...., vc}, where c is the number of clusters. µij is the membership

degree of the image data point xi to the cluster centre vj Fuzzy clustering computes

the optimum partition based on the minimisation of the objective function given that
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Figure 3.19: Adaptive Thresholding Using Different ASM Range Information on
DRIVE database. (a) DRIVE database coloured retinal image (b) DRIVE Database
Gold Standard. (c) Segmented vessel through adaptive thresholding using minimum
ASM mid-range threshold value for the grey-scale intensity image. (d) Segmented ves-
sel through adaptive thresholding using maximum ASM mid-range threshold value for
the grey-scale intensity image. (e) Segmented vessel through adaptive thresholding
using mean ASM mid-range threshold value for the grey-scale intensity image (f) Seg-
mented vessel through adaptive thresholding using minimum ASM mid-range threshold
value for the green channel. (g) Segmented vessel through adaptive thresholding using
maximum ASM mid-range threshold value for the green channel. (h) Segmented ves-
sel through adaptive thresholding using mean ASM mid-range threshold value for the
green channel.
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µij satisfies

n∑
i=1

µij = 1, 1 ≤ j ≤ n. (3.52)

The cluster centre (i.e centroid) vj is computed as:

vj =

∑n
i=1 µ

m
ijxi∑n

i=1 µ
m
ij

(3.53)

where m is the fuzziness index parameter and m ∈ [1,∞).

Given that:

dij =‖ xi − vj ‖ (3.54)

The dissimilarity between the centroids vj and the data points xi is computed as:

Jm =

n∑
i=1

c∑
j=1

(µij)
mdij (3.55)

Such that dij is the Euclidean distance between the ith data point and the jth centroid

while µij ∈ [0, 1] and the fuzziness index parameter m ∈ [1,∞)

The new membership value is further computed as:

µij =
1∑c

k=1[
dij
dik

]
2

m−1

(3.56)

This is iteratively computed until

‖ µ(k+1)
ij − µ(k)

ij ‖< λ (3.57)

where k is the iteration step and λ ∈ [0, 1] is the criterion for terminating the iteration.

Figure 3.20 and Figure 3.21 show the segmented vessels obtained from fuzzy c-

means combined with phase congruence on DRIVE and STARE databases respectively.

3.6.2 K-Means Clustering Combined With Difference Image

K-means clustering is an unsupervised clustering technique used in defining the natural

group of pixels in an image. This is achieved by classifying input image data points

into different classes through a set of distances computed using the image data points

and centroids. Retinal fundus images are often characterized by noise due to illumina-
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Figure 3.20: (a) Coloured Retinal Image (b) Drive Gold Standard (c) Fuzzy C-Means
Combined with Phase Congruence

Figure 3.21: (a) STARE Database Ground Truth. (b) Segmented Vessels Using Fuzzy
C-Means Combined with Phase Congruence. (c) Segmented Vessels Presented by
Hoover et al. [21].
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tion and contrast variation. Due to this, the use of k-means clustering technique for

the detection of vessels in these noisy retinal images becomes challenging. In order to

solve this problem, the green channel of the coloured fundus image is extracted and

convolved using different filtering techniques. A difference image is generated to min-

imize the effect of illumination variation. The retinal vessels are then segmented by

applying k-means clustering technique on the difference image. A post-processing phase

that combines median filter and morphological opening is applied to remove the few

remaining misclassification. A detailed discussion on the vessel segmentation method

investigated in this section is further discussed in the following sections 3.6.2.1, 3.6.2.2,

3.6.2.3 and 3.6.3.

3.6.2.1 Filtering Techniques

The green channel of the retinal image is enhanced using different filtering techniques.

Linear filters such as mean filter and Gaussian filter are used for smoothing images.

Although these filters reduce image noise, they are weak at preserving edges in an

image. Non-linear filter, particularly the median filter, is efficient at removing image

noise as well as preserving edge information in images. It is, however, worth noting

that the selected filter window sizes should not be too large in order to efficiently

manage the noise due to illumination variation conditions of the retinal image. It is

also important to carefully select the window sizes that have sufficient data points for

good enhancement. For the purpose of investigation, mean, Gaussian and median filters

are considered for the enhancement of the retinal image. The convolution of the retinal

image is described as

U = H
⊗

V (3.58)

hence

U(x, y) =
∑

(a,b)εH(x−a,y−b)εV

H(a, b) V (x− a, y − b) (3.59)

where U is the convolved retinal image, V is the green channel of the retinal image

and the convolution mask H is any of the filtering technique under investigation.
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Figure 3.22: (a) DRIVE Database Gold Standard. (b) Segmented Vessels
Using K-Means With DIMDF. (c) Segmented Vessels Using K-Means With
DIMNF. (d) Segmented Vessels Using K-Means With DIGF.

3.6.2.2 Difference Image

A difference image is generated by subtracting the green channel of the coloured retinal

image from the convolved retinal image. The difference image D(x,y) is given below as:

D(x, y) = U(x, y)− V (x, y) (3.60)

such that D(x,y)= {D%(x, y), Dυ(x, y), Dσ(x, y)}, where D%(x, y) is the difference image

based on median filter (DIMDF), Dυ(x, y) is the difference image based on mean filter

(DIMNF) andDσ(x, y) is the difference image based on Gaussian filter (DIGF). A model

that combines two possible difference images was also investigated. The combinations

obtained are:

D%
υ = D%(x, y) +Dυ(x, y) (3.61)

D%
σ = D%(x, y) +Dσ(x, y) (3.62)

Dυ
σ = Dυ(x, y) +Dσ(x, y) (3.63)

where D%
υ is the combination of median filter and mean filter based difference im-

ages (DIMDMNF), D%
σ is the combination of median filter and Gaussian filter based

difference images (DIMDGF) and Dυ
σ is the combination of mean filter and Gaussian

filter based difference images (DIMNGF). The results obtained in equations (3.60) to

(3.63) are normalised to the interval [0, 255].
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3.6.2.3 K-Means Clustering

K-means clustering technique is used for n sample input data points of X = {x1, x2, ...., xn}
into a group of k clusters. This is achieved by considering the similarities among the

input points within the same cluster as well as the differences among the different clus-

ters. Sum of squared errors is a very useful criterion measure for clustering. Given k

clusters, the sum of squared errors is computed as:

V =
k∑
i=1

∑
xj∈Si

||xj − ci||2 (3.64)

such that ci is the centroid of the ith cluster Si, for i = 1, 2, .... k.

Each of the image data points is assigned to one of the k clusters using the minimum

distance principle, that is

di = min
j
||x(i) − ci|| (3.65)

A new centroid is computed for each cluster

ci = 1/m
m∑
j=1

xj (3.66)

Given that 1 ≤ m ≤ k.

Equations 3.65 and 3.66 are continually executed until the centroids stop changing.

In such a situation, the clustering criterion
∑k

i=1

∑m
j=1 ||xj − ci||2 will converge.

The K-means clustering technique described in Algorithm 1 is used to segment

the vessel network from the background tissue in the retinal images using the results

generated from equations (3.60) to (3.63).

3.6.3 Post-Processing Phase

A combination of median filter and morphological opening as discussed in section 3.4.3

is applied for the post-processing phase.

Figure 3.22 and Figure 3.23 shows the segmented vessels obtained from k-means

combined with various difference images on DRIVE database. Figure 3.24 compares

the segmented vessels obtained from k-means combined with DIMDF and k-means

combined with DIMDMNF with the ground truth on STARE database. Figure 3.25

compares the segmented vessels obtained from k-means combined with DIGF,DIMNF

and DIMNGF on STARE database. Figure 3.26 compares the segmented vessels pre-

sented by Hoover et al. [21] and STARE database ground truth with k-means combined
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Figure 3.23: (a) DRIVE Database Coloured Fundus Image (b) DRIVE Database Gold
Standard (c) Segmented Vessels Using K-Means With DIMDF (d) Segmented Vessels
Using K-Means With DIMNGF (e) Segmented Vessels Using K-Means With DIMDGF
(f) Segmented Vessels Using K-Means With DIMDMNF.

Figure 3.24: (a) STARE Database Ground Truth. (b) Segmented Vessels
Using K-Means With DIMDF. (c) Segmented Vessels Using K-Means With
DIMDMNF.
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Algorithm 1: K-Means Algorithm

Input: Image data points of X = {x1, x2, . . . , xn}, and Number of clusters k,
Limit of iterations MaxIter = 120.

Output: Segmented Image of Vessels Y = {y1, y2, . . . , yn}, where

l(yi) =

{
1, if xi ε V

0, if xi ε B

for i = 1, 2, . . . , n and l(y) is the label of the pixel y, V is the set of
vessel pixels and B is the set background pixels.

1 Initialize the centroids C = {c1, c2, . . . , ck} to chosen pixels from X ( It is
randomly selected in our case.)

2 iter ← 0
3 repeat

/* Update the cluster by saving the old centroids for

convergence test. */

4 OldCentroid ← C
/* Assign labels to each datapoint based on centroids. */

5 for xi ε X do
6 l(xi)← argminDistance(xi, cj) j ε {1.......k}
7 end

/* Assign centroids based on datapoint labels */

8 for i = 1 to k do
9 ci = Centroid(L, X, i)

10 end
11 iter ++

12 until OldCentroid = C OR iter = MaxIter
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Figure 3.25: (a) Segmented Vessels Using K-Means With DIGF. (b) Segmented Vessels
Using K-Means With DIMNF (c) Segmented Vessels Using K-Means With DIMNGF.

with DIMDF.

3.7 Vessel Tortousity Measurement

Retinal vessel network tortuosity is the measure of twists and curvature of a vessel

[50], [59], [61],[162]. Several clinical studies have described the relation between vessel

tortuosity and retinopathies such as diabetic retinopathy (DR) [156], [157], [158], [159]

and retinopathy of prematurity (ROP) [49], [51], [60]. Figure 3.27 shows the variation

in the directional changes, frequency of twists and the differences in the vessel lengths

of the different vessels a, b, c, d, e, f and g.

3.7.1 Description of Tortuosity

With the help of ophthalmologic rules and clinical definition, metric that provides

numeric index for vessel tortuosity measurement is utilised [68], [85]. Although chain

code has been used for vessel tortuosity measurement in [60], it is not always accurate

in areas of high curvature and may also lead to unacceptable error in the regions of low

curvature [86]. Rather than inflection points alone which cannot sufficiently describe

all the twists [85], this research considers the stationary points of the vessel to be very

important for computing the tortuosity measure. The detection of the stationary point

does not only help at checking the change of direction and twists in the vessels but also

helps at detecting the straightness and non-straightness of the vessels.

The combination of arc-chord ratio [53], [54], [56], [57] with the total number of

twists is used to compute tortuosity index in this research using the local tortuosity

measurement approach.

The tortuosity measure applied in this research utilises the chord length, arc length

and the frequency of vessel twists using the stationary points. The blood vessel is
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Figure 3.26: (a) & (d) STARE Database Ground Truth. (b) & (e) Seg-
mented Vessels Presented by Hoover et al. [21]. (c) & (f) Segmented
Vessels Using K-Means With DIMDGF.

skeletonised to extract the center line of the vessel.

The chord length Lchord of the skeletonised blood vessel is defined as

Lchord =
√

(xn − x1)2 + (yn − y1)2 (3.67)

where Lchord is the straightline connecting two points of the skeletonised blood

vessel.

The arc length Larc of the skeletonised blood vessel is defined as

Larc =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (3.68)

where Larc is the actual length of the skeletonised blood vessel.

The pixel locations of skeletonised blood vessels are extracted to plot a vessel

description graph. The stationary points of the vessel description graph are computed

using the gradients of the vessel description graph. The stationary points are points on

the vessel description graph where the gradient is zero. There are however three major

types of stationary points: minimums, maximums and inflection points as illustrated
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Figure 3.27: Retinal Vessels With Different Twists

Figure 3.28: Graph Describing Different Stationary Points Between Point A & Point
B .

in Figure 3.29. The detection of the stationary point does not only help in checking the

change of direction and twists in the vessels but also helps in detecting the straightness

and non-straightness of the vessels.

Given the skeletonised blood vessel T with vessel coordinates X and Y, the gradients

of the vessel description graph are computed as:

G =
dY

dX
(3.69)

such that X= {x1, x2, . . . , xn}, Y= {y1, y2, . . . , yn}, G = {g1, g2, . . . , gn} and

−1 ≤ G ≤ 1 where GεI.
The nature of each type of the stationary points is shown in Figure 3.29 and Table

3.1:

The stationary points in the vessel description graph are computed using the vector

of gradient obtained from equation (3.69) and the nature table in Table 3.1 as described

in Algorithm 2.
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Figure 3.29: (a) Maximal Point (b) Minimal Point (c) & (d) Points of Inflection .

Table 3.1: Stationary Points Nature Table

Sign of dy
dx

at P
Sign of dy

dx
at R

Graphical
Behavior

Inference

+ - Figure 3.29(a)
The stationary point is a turning

point corresponding to maximum (S1)

- + Figure 3.29(b)
The stationary point is a turning

point corresponding to minimum (S2)

+ + Figure 3.29(c)
S3: The stationary point is an

inflection point (S3)

- - Figure 3.29(d)
S4: The stationary point is an

inflection point (S4)

We investigate a normalised TI metric TIfreq1 that combines distance metric and

the vessel twist frequency obtained using the stationary points. This is computed as:

TIfreq1 =
SPCcount
Lchord

((Larc − Lchord)/Lchord) (3.70)

where SPCcount is the twist frequency of the vessel curves.

Although the previously presented distance metric [53], [54], [56], [57] divided the

arc length by the chord length, a different distance metric that divides the chord length

by the arc length is used for the non-normalised TI. The non-normalised TI is computed

as

TIfreq2 = SPCcount(Lchord/Larc) (3.71)
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Algorithm 2: Vessel Twist Detection Based on Stationary Points Algorithm

Input: S1, S2, S3, S4 are the sets of stationary point detectors. T is the thinned
segmented vessel.

Output: SPCcount is total number of vessel twists, Di is the set of gradient
pattern obtained from the detectors and Ej is the set of gradient
pattern obtained from the thinned segmented vessel

1 for i ≤ 4 do
2 while s ε Si do
3 Di = diff(s) // diff computes the gradient patterns

/* Updates the computed gradient patterns of the detectors

based on stationary points. */

4 UpdateDetectorPattern(Di)

5 end

6 end
7 counter ← 0 // Initialize the vessel twist counter to zero.

8 while t ε T do
9 Ej = diff(t)

/* Updates the computed gradient patterns of the segmented

vessel. */

10 UpdateRealV esselPattern(Ej) for i ≤ 4 do
11 if Matches (Ej , Di) then
12 counter + + // Increments the vessel twist counter.

13 end

14 end

15 end
16 SPCcount ← counter
17 return SPCcount

3.8 Summary

Different segmentation approaches based on global thresholding approach, local thresh-

olding approach and clustering have been investigated in this chapter. The segmented

vessels obtained from these investigated segmentation techniques were also shown. The

segmented vessels obtained from the different investigated segmentation techniques vi-

sually show that ASM-based local adaptive thresholding technique, IDM-based local

adaptive thresholding technique and k-means combined with DIMDF detected more

large and thin vessels while compared to the global thresholding approaches and fuzzy

c-means methods.

This research investigates the use of stationary points to detect vessel twists on
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vessel lines. The combination of vessel twist frequency, chord length and arc length

for the computation of normalised and non-normalised tortuosity index (TI) measure

is also formulated to measure the vessel tortuosity.

The next chapter shall give a detailed experimental results and discussion on the

different vessel segmentation techniques and formulated TI measures investigated. Fur-

thermore, the performances of the various methods investigated shall be compared to

state of the art in the next chapter.
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Chapter 4

Experimental Results and

Discussions

4.1 Introduction

This chapter presents the experimental setup, results and discussions of the vessel seg-

mentation techniques and tortuosity-measure indexes investigated in this research. A

detailed discussion is done on the performance comparison of the investigated tech-

niques with the results achieved in the literature.

4.2 Experimental Setup

The description of the system development environment and the performance evaluation

measures used in the experiments are presented in this section.

4.2.1 System Development Environment

The algorithms for the vessel segmentation techniques and the vessel tortuosity mea-

surement were implemented using MATLAB 2010aTM on an Intel Core i5 2410M CPU

(2.30 GHz, 4GB RAM).
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4.2.2 Performance Evaluation Measures

The performance measures used are sensitivity, specificity and accuracy rates. The

measures are described in the equations (4.1) to (4.3) below as:

Sensitivity = TP/(TP + FN) (4.1)

Specificity = TN/(TN + FP ) (4.2)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4.3)

where TP = True Positive, TN = True Negative, FP = False Positive and FN = False

Negative.

An instance is said to be TP when a pixel is rightly segmented as a vessel and TN

when correctly segmented as background. In related development, an instance is said

to be FN if a vessel-pixel is segmented to be a background, and FP when a background

pixel is segmented as a pixel in the vessel. A sensitivity measure indicates the ability of

a segmentation technique to detect the pixels belonging to the vessel while a specificity

measure indicates the ability of a segmentation technique to detect background pixels.

The accuracy measure indicates the degree of conformity of the segmented retinal image

to the ground truth.

A receiver operating characteristic (ROC) curve is a plot of the rightly classified

pixels, referred to as the true positive rate (TPR) versus the fraction of the wrongly

classified pixels as vessels referred to as a false positive rate (FPR). The area under the

curve (AUC) is a performance measure extracted from the ROC curve.

4.2.3 Performance Assessment and Comparison

The differences between the various results achieved by the methods investigated in

this thesis are assessed by means of z-test statistics [181]. The sensitivity is the pro-

portion of the rightly detected vessel pixel while the accuracy rate is the proportion

of the rightly detected pixel in the retinal image. To evaluate the variability of the

performance of the different methods on the same dataset, we used the same set of

data point samples. The significant difference in average sensitivity rate indicates the

significant difference in the detection rate of the vessels and the significant difference

in accuracy rate indicates the significant difference in the accuracy rate of the retinal

vessel segmentation. Both measures are very important as good vessel segmentation

74



method for efficient vessel analysis in ophthalmology requires that sensitivity and accu-

racy rates of the segmentation be good [69]. The statistical significance of a difference

between two proportions is evaluated as

z =
| p1 − p0 |√

p̄(1− p̄( 1
n1

+ 1
n0

)
(4.4)

where p̄ = x1+x0
n1+n0

with x0 and x1 representing the number of cases of the rightly

detected pixel in the classifications of sample data-points of size n0 and n1 respectively.

The statistically difference is computed at an asymptotic confidence level of 95% (α =

0.05).

4.3 Experimental Results and Discussions

The results obtained from the unsupervised segmentation methods investigated in this

research and the discussions of the results are presented in this section. Tables 4.2 and

4.3 show the performance of the different segmentation techniques using DRIVE and

STARE databases. The computational time of the different segmentation techniques

investigated in this research in comparison with the ones in the literature are shown

in Table 4.1. The average time taken to process each image on DRIVE and STARE

databases by ASM-based local adaptive thresholding technique and IDM-based local

adaptive thresholding technique ranged from 1.9 to 3.9 seconds. K-means combined

with DIMDF takes 3.4 to 4.0 to process each image on DRIVE and STARE databases.

Phase congruence combined with IDM global threshold and phase congruence com-

bined with sum entropy global threshold require 10.3 seconds to segment each image.

Phase congruence combined with fuzzy C-means is the slowest of all the investigated

techniques in this research with an average time of 27 seconds.

4.3.1 Global Thresholding Methods

The optimal values of the parameters used in CLAHE global thresholding were em-

pirically selected. These parameters and their values are shown in Table 4.4.

CLAHE based global thresholding approaches on the other hand maintained high

average accuracy and specificity rates across DRIVE and STARE databases. This is due

to the fact that the with of segmented vessels by the approaches were highly accurate

when compared with the ground truth. Although good accuracy and specificity rates

were achieved, their sensitivity rates ranging from 0.6027 to 0.6729 and 0.6099 to 0.6258
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Table 4.1: List of the Running Time of the Investigated Segmentation Techniques and
Techniques in the Literature

Serial
No.

Technique
Running Time

Per Image
(Seconds)

Hardware Software

1. Human observer [131] 7200 N/A N/A

2. Staal et al. [22] 900
Pentium III CPU

(1.0 GHz)
Matlab

3. Soares et al. [23]
190

(9 hours training)
P III (1.5 GHz)
(512 MB RAM)

Matlab

4. Marin et al. [28] 90

Intel Core II
Duo CPU

(2.13 GHz)
(2 GB RAM)

Matlab

5. Lupascu et al. [32] 125

Intel Core II
Duo CPU

(3.16 GHz)
(3 GB RAM)

Matlab

6. Zhang et al. [33] 10 N/A N/A

7. Jiang and Mojon [38] 10
Pentium III
(600MHz)

(3 GB RAM)
N/A

8. Wang et al. [43] 210
Core 2 Duo
(3.16 GHz)

(2.0 GB RAM)
Matlab

9. Fraz et al. [34] 37.4 N/A Matlab

10. Chakraborti et al [39] 8
Intel i3-2350M

(2.3 GHz)
Matlab

11. Saffarzadeh et al. [42] 7.6
Core 2 Duo
(2.24 GHz)

(2.0 GB RAM)
Matlab

12. Li et al. [47] 8 & 30 N/A N/A

13. Amin and Yan [48] 10
Intel Pentium

(2.66 GHz)
(512 MB RAM)

Matlab

14. Cinsdikici and Aydin [82] 35 N/A N/A
15. Yin et al. [87] 378 N/A N/A

16. Mendonca and Campilho [84] 150
Pentium IV
(3.2 GHz)

(960 MB Memory)
Matlab

17. Miri and Mahloojifar [88] 50 N/A N/A
18. Xiao et al. [83] 81 N/A N/A

19. Otsu Thresholding Combined with CLAHE 1.8
Core i5 2410M

(2.30 GHz)
(4GB RAM)

Matlab

20. ISODATA Thresholding Combined with CLAHE 1.8 ”” ””
21. GLCM Sum Entropy Combined with Phase Congruence 10.3 ”” ””
22. IDM thresholding Combined with Phase Congruence 10.3 ”” ””
23. Adaptive Thresholding Technique Based on IDM 1.9 to 3.9 ”” ””
24. Adaptive Thresholding Technique Based on ASM 1.9 to 3.9 ”” ””
25. Fuzzy C-Means Combined with Phase Congruence 27.1 ”” ””
26. K-means Clustering Combined with Difference Image 3.4 to 4.0 ”” ””
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Table 4.2: Performance of Different Segmentation methods on DRIVE Database

Method
Average
Accuracy

Average
Sensitivity

Average
Specificity

Human observer [131] 0.9473 0.7761 0.9725
Staal et al. [22] 0.9442 0.7345 0.9773

Niemeijer et al. [35] 0.9416 0.7145 0.9801
Zana and Klein [40] 0.9377 0.6971 0.9769

Jiang and Mojon [38] 0.9212 0.6399 0.9625
Vlachos and Dermatas [41] 0.9285 0.7468 0.9551

Wang et al. [43] 0.9461 N/A N/A
Martinez-Perez et al [135] 0.9181 0.6389 0.9496
Szpak and Tapamo [138] 0.9299 N/A N/A

Chaudhuri [26] 0.8773 0.3357 0.9794
Soares et al.[23] 0.9466 N/A N/A

Akram and Khan [46] 0.9469 N/A N/A
Mendonca et al. [84] 0.9463 0.7315 N/A

Marin et al. [28] 0.9452 N/A N/A
Ricci and Perfetti [20] 0.9595 N/A N/A

Xiao et al. [83] 0.9529 0.7513 0.9792
Yin et al. [87] 0.9267 0.6522 0.9710

Our Investigated CLAHE-Based Global Thresholding Techniques
With Average Filter using Otsu 0.9494 0.6535 0.9780
With Gaussian Filter using Otsu 0.9498 0.6729 0.9765

With Average & Gaussian Filters using Otsu 0.9427 0.6416 0.9717
With Adaptive Filter using Otsu 0.9368 0.6160 0.9677

With Average Filter using ISODATA 0.9516 0.6163 0.9780
With Gaussian Filter using ISODATA 0.9500 0.6701 0.9770

With Average & Gaussian Filter using ISODATA 0.9510 0.6027 0.9846
With Adaptive Filter using ISODATA 0.9521 0.6435 0.9819
Our Investigated Phase Congruence-Based Global Thresholding Techniques

With IDM-Based Threshold 0.9430 0.7152 0.9650
With GLCM Sum-Entropy 0.9416 0.7026 0.9646

Our Investigated Adaptive Thresholding Based on IDM
IDMthresh1 = 0.5(MINRange) 0.9468 0.7644 0.9645
IDMthresh2 = 0.5(MAXRange) 0.9502 0.7612 0.9686
IDMthresh3 = 0.5(MEANRange) 0.9506 0.7390 0.9711

IDMthresh4 = MINIQR) 0.9511 0.7509 0.9706
IDMthresh5 = MAXIQR) 0.9532 0.7327 0.9746
IDMthresh6 = MEANIQR) 0.9521 0.7454 0.9722

Our Investigated Adaptive Thresholding Based on ASM
ASMthresh1 = 0.5(MINRange)(Grey Intensity) 0.9488 0.7397 0.9691
ASMthresh2 = 0.5(MAXRange)(Grey Intensity) 0.9511 0.7313 0.9724
ASMthresh3 = 0.5(MEANRange)(Grey Intensity) 0.9503 0.7375 0.9709
ASMthresh1 = 0.5(MINRange)(Green Channel) 0.9449 0.7650 0.9623
ASMthresh2 = 0.5(MAXRange)(Green Channel) 0.9477 0.7560 0.9663
ASMthresh3 = 0.5(MEANRange)(Green Channel) 0.9461 0.7632 0.9634

Our Investigated Clustering Techniques
With Fuzzy C-Means 0.9431 0.6725 0.9693

K-Means With DIMDF 0.9556 0.7399 0.9766
K-Means With DIMNF 0.9555 0.6459 0.9855
K-Means With DIGF 0.9555 0.6315 0.9869

K-Means With DIMDMNF 0.9516 0.7581 0.9703
K-Means With DIMDGF 0.9531 0.7518 0.9726
K-Means With DIMNGF 0.9523 0.7079 0.9759
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Table 4.3: Performance of Different Segmentation methods on STARE Database.

Method
Average
Accuracy

Average
Sensitivity

Average
Specificity

Human observer [132] 0.9354 0.8949 N/A
Hoover et al. [21] 0.9275 0.6751 0.9567

Staal [22] 0.9516 0.6970 N/A
Jiang and Mojon [38] 0.9009 N/A N/A

Marin et al. [28] 0.9526 N/A N/A
Ricci and Perfetti [20] 0.9584 N/A N/A

Soares et al.[23] 0.9480 N/A N/A
Akram and Khan [46] 0.9502 N/A N/A

Wang et al. [43] 0.9521 N/A N/A
Mendonca et al. [84] 0.9479 0.7123 N/A

Xiao et al. [83] 0.9476 0.7147 0.9735
Yin et al. [87] 0.9412 0.7248 0.9666

Our Investigated CLAHE-Based Global Thresholding Techniques
With Average Filter using Otsu 0.9409 0.6258 0.9662
With Gaussian Filter using Otsu 0.9435 0.6138 0.9698

With Average & Gaussian Filters using Otsu 0.9468 0.6144 0.9735
With Adaptive Filter using Otsu 0.9456 0.6135 0.9722

With Average Filter using ISODATA 0.9421 0.6238 0.9676
With Gaussian Filter using ISODATA 0.9442 0.6099 0.9709

With Average & Gaussian Filter using ISODATA 0.9471 0.6127 0.9740
With Adaptive Filter using ISODATA 0.9458 0.6115 0.9726
Our Investigated Phase Congruence-Based Global Thresholding Techniques

With IDM-Based Threshold 0.9340 0.5202 0.9682
With GLCM Sum-Entropy 0.9318 0.5846 0.9595

Our Investigated Adaptive Thresholding Based on IDM
IDMthresh1 = 0.5(MINRange) 0.9546 0.7530 0.9710
IDMthresh2 = 0.5(MAXRange) 0.9550 0.7661 0.9702
IDMthresh3 = 0.5(MEANRange) 0.9529 0.7613 0.9684

IDMthresh4 = MINIQR) 0.9492 0.7662 0.9642
IDMthresh5 = MAXIQR) 0.9526 0.7506 0.9690
IDMthresh6 = MEANIQR) 0.9511 0.7501 0.9676

Our Investigated Adaptive Thresholding Based on ASM
ASMthresh1 = 0.5(MINRange)(Grey Intensity) 0.9485 0.7458 0.9649
ASMthresh2 = 0.5(MAXRange)(Grey Intensity) 0.9500 0.7428 0.9668
ASMthresh3 = 0.5(MEANRange)(Grey Intensity) 0.9504 0.7427 0.9672
ASMthresh1 = 0.5(MINRange)(Green Channel) 0.9457 0.7542 0.9612
ASMthresh2 = 0.5(MAXRange)(Green Channel) 0.9500 0.7641 0.9651
ASMthresh3 = 0.5(MEANRange)(Green Channel) 0.9510 0.7626 0.9657

Our Investigated Clustering Techniques
With Fuzzy C-Means 0.9346 0.4886 0.9711

K-Means With DIMDF 0.9509 0.7372 0.9681
K-Means With DIMNF 0.9312 0.6516 0.9535
K-Means With DIGF 0.9344 0.6567 0.9564

K-Means With DIMDMNF 0.9492 0.7752 0.9633
K-Means With DIMDGF 0.9500 0.7666 0.9648
K-Means With DIMNGF 0.9340 0.6979 0.9526
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Table 4.4: Parameter Values For CLAHE Global Thresholding Approaches

Filtering
Technique

Filter
Window size

CLAHE
Clip-Limits

CLAHE
Number of Tiles

Adaptive Filter 4× 4 0.05 75× 75
Average Filter 3× 3 0.05 75× 75

Gaussian Filter (Sigma = 0.5) 3× 3 0.04 75× 75

on DRIVE and STARE respectively show that histogram-based global thresholding

approaches are still limited to efficiently segmenting the thin vessels. They detected

the large retinal vessels but failed to segment the thin vessels because the thin vessels

have very low contrast and are difficult to distinguish from the background tissues using

the histogram of the retinal images.

Different optimal values were empirically selected for the parameters used in phase

congruency. Table 4.5 gives an overview of the parameter description and optimum

parameter values of the phase congruence technique.

Table 4.5: Phase Congruence Parameter Description and Parameter Values

Parameter
Description

Parameter
Symbol

Parameter
Value

(DRIVE)

Parameter
Value

(STARE)
Number of wavelet scales. nscale 4 3

Number of filter orientations. norient 6 5
Wavelength of smallest scale filter. minWaveLength 3 2.5

Scaling factor between successive filters. mult 2.1 2.9
Ratio of the standard deviation of

the Gaussian describing the log Gabor
filter’s transfer function in the frequency

domain to the filter centre frequency.

sigmaOnf 0.55 1.5

Ratio of angular interval between
filter orientations and the standard
deviation of the angular Gaussian
function used to construct filters

in the frequency plane.

dThetaOnSigma 1.2 1.7

No of standard deviations of the
noise energy beyond the mean at

which we set the noise threshold point.
k 2.3 3

The fractional measure of frequency
spread below which phase congruency

values get penalised.
cutOff 0.5 0.5

Controls the sharpness of the
transition in the sigmoid function
used to weight phase congruency

for frequency spread.

g 10 14

This research shows that the combination of phase congruence with IDM-based

global thresholding achieved an average accuracy rate of 0.9430 and sensitivity rate of

0.7152 while phase congruence combined with GLCM sum entropy global thresholding

achieved an average accuracy rate of 0.9416 and sensitivity rate of 0.7026 on DRIVE
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database. Both phase congruence-based global thresholding techniques were at their

best on DRIVE database. Phase congruence combined with IDM-based thresholding

achieved an average accuracy rate of 0.9340 and sensitivity rate of 0.5202 while phase

congruence combined with GLCM sum entropy with average accuracy rate of 0.9318

and sensitivity rate of 0.5846 on STARE database. Although the investigated inverse

difference moment and sum-entropy combined with phase congruence pre-processing

with average sensitivity rates 0.7152, 0.7026 and average accuracy rates 0.9416, 0.9430

improved the detection of vessels when compared with CLAHE based global threshold-

ing with the maximum average sensitivity rate of 0.6729 and an average accuracy rate

0.9498, their lower performances on STARE are due to some undetected thin vessels

and the fact that the widths of detected vessel are smaller when compared with the

widths of the vessels in the ground truth. This however resulted in low sensitivity rates

but relatively good accuracy rates are still maintained.

4.3.2 Local Adaptive Thresholding Methods

Different experimental study showed that the two novel local adaptive thresholding

techniques based on two different Haralick texture features namely local homogeneity

and energy detected both large and thin vessels. The multi-scale approach applied lo-

cally using the different texture information considering the pixel of interest in relation-

ship with its spacial neighbourhood to compute the local adaptive threshold achieved

a good vessel segmentation performance.

The use of IDM Interquartile range Information for adaptive thresholding effectively

detected the majority of large and thin vessels, while a very few thinner vessels remained

undetected. The false detection and other artifacts around the border of the optic disc

were also reduced. Majority of the large and thin vessels are detected while a very few

thinner vessels also remain undetected. The false detection around the border of the

optic disc are also reduced by this technique. Adaptive thresholding technique based

on IDM information was applied to vessel segmentation in [1]. Different morphological

openings with line structuring elements orientated in five different directions namely 0o,

30o, 60o, 120o, 150o and morphological reconstruction were used for the post-processing

phase in [1]. Although the results presented by the adaptive thresholding technique in

[1] segmented both large and thin vessels, three of the six average sensitivities and five

of the six average accuracies presented in this thesis using the post-processing technique

described in section 3.4.3 improved with significant differences when compared with the

technique in [1].
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Although all the threshold values of the adaptive thresholding technique based on

IDM information in this thesis achieved good results, the results obtained shows that

adaptive thresholding using maximum IDM range information achieved higher average

sensitivity rates of 0.7612 and 0.7661 while maintaining high average accuracy rates of

0.9502 and 0.9550 on DRIVE and STARE databases respectively. When compared with

the average sensitivity rates of the other adaptive thresholding using IDM information,

adaptive thresholding using maximum IDM range information improved with significant

differences on DRIVE and STARE databases. Minimum average accuracy rates of

0.9468 and 0.9492 with minimum average sensitivity rates of 0.7327 and 0.7501 were

achieved by the adaptive thresholding technique based on IDM information on DRIVE

and STARE respectively. The time required to segment each retinal image using this

technique ranged from 1.9 to 3.9 seconds.

The AUC value of 0.9722 achieved by adaptive thresholding technique based on

maximum IDM range information is significantly higher when compared with the AUC

rates 0.9682, 0.9699, 0.9705, 0.9707 and 0.9713 of the other adaptive thresholding tech-

niques based IDM information on DRIVE database. The maximum AUC value 0.9824

of the adaptive thresholding technique based on minimum IDM range information is

higher when compared with the AUC values 0.9642, 0.9705, 0.9741 of the three adaptive

thresholding techniques based on IDM IQR information with significant differences on

STARE database. The maximum AUC value 0.9824 of the adaptive thresholding tech-

nique based on minimum IDM range information when compared with the AUC rates

0.9818 and 0.9819 of the other IDM range information-based thresholding techniques

achieved slight significant differences.

Different segmentation results were obtained through adaptive thresholding using

different GLCM-energy (ASM) range information for both the green channel of the

coloured retinal image and the grey-scale of the coloured retinal image. The use of

ASM Information for adaptive thresholding effectively detected majority of the large

and thin vessels, while a very few thinner vessels remained undetected. The false

detection and other artefact around the border of the optic disc were also reduced.

The results obtained showed that adaptive thresholding based on ASM range in-

formation using the green channel achieved the highest average sensitivity rates of

0.7632 and 0.7641 with improved significant differences when compared with the other

adaptive thresholding based on ASM information using the grey-scale of the retinal im-

ages on DRIVE and STARE databases respectively. The average accuracy rate 0.9510

achieved by the average sensitivity rate 0.7641 is significantly higher when compared

with the average accuracy rates of four adaptive thresholding based on ASM informa-
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tion on STARE database. The average accuracy rate 0.9461 achieved by the average

sensitivity rate 0.7632 is however not higher when compared with the average accu-

racy rates of the other adaptive thresholding based on ASM information on DRIVE

database. A minimum average sensitivity rates of 0.7313 and 0.7427 were achieved

by the adaptive thresholding technique based on ASM information using grey-scale on

DRIVE and STARE respectively. The time taken to segment each retinal image using

this technique ranged from 1.9 to 3.9 seconds.

A maximum AUC value of 0.9711 achieved by the adaptive thresholding technique

based on maximum ASM range information of grey level intensity image is higher when

compared with all the AUC rates 0.9656, 0.9698, 0.9634, 0.9680 and 0.9658 of the other

adaptive thresholding technique based on ASM information with significant differences

on DRIVE database. The maximum AUC value of 0.9782 achieved on STARE database

by the adaptive thresholding technique based on maximum ASM range information on

green channel of the retinal image is significantly higher when compared with four AUC

rates 0.9671, 0.9681, 0.9695 and 0.9745 of the other adaptive thresholding technique

based on ASM information on STARE database.

Empirically, we established that window sizes ranging from (11× 11) to (17× 17)

covered adequate spectrum that effectively minimised illumination variation while using

the adaptive thresholding techniques for the segmentation of the retinal vessels. There

was however a higher amount of noise and an increase in the computational time when

the the window size was too large (that is, larger than 17 × 17). In such a situation,

the further post processing for removal of noise led to the removal of the thin vessels as

well as some large vessels. In a related development, there is a possibility of insufficient

data when the window size is too small (that is, lesser than 11× 11). This leads to the

loss of some large and thin vessels during segmentation.

4.3.3 Clustering Methods

Phase congruence combined with fuzzy c-mean was the slowest of all the investigated

techniques in this research with an average time of 27.1 seconds. The computational

complexity of this technique was due to the iterative nature of fuzzy c-means. Keeping

the number of data points for each retinal image constant to n = 226907 image pixels

for DRIVE database and 357500 image pixels for STARE database, the number of

cluster c was set to 2, and the maximum number of iterations i was set to 120. The

value of the criterion for terminating the iteration was set to λ = 0.0001. Although

phase congruence combined with fuzzy c-means was at its best on DRIVE database

82



with an average accuracy rate of 0.9431 and an average sensitivity rate of 0.6725,

its performance on STARE database showed a lower average accuracy rate of 0.9346

and an average sensitivity rate of 0.4886. Just like the other phase congruence based

techniques previously discussed, the lower average sensitivity and average accurate

rates achieved by phase congruence combined with fuzzy c-mean were also due to the

reduced-vessel width detection and some undetected thin vessels. This segmentation

technique may, however, be unsuitable for situations where vessel width measurement

and thinner vessels in retinal images are of great importance. Another limitation of

phase congruence based techniques investigated in this research was the false vessel

detection and other artefact around the border of the optic disc.

Different low pass filters such as median, mean and Gaussian filters were applied

to smoothen and compute various difference images. This research established that

in order to achieve a good vessel segmentation using difference images combined with

k-means clustering technique, a difference image where the vessel details of the retinal

image were preserved was required. Experimental study showed that median filter

yields the best difference image that preserves the vessel details. K-means clustering

technique combined with DIMDF achieved average accuracy rates of 0.9556 and 0.9509

and average sensitivity rates of 0.7399 and 0.7372 on DRIVE and STARE respectively.

K-means with DIMNF achieved average accuracy rates of 0.9555 and 0.9312 and average

sensitivity rates of 0.6459 and 0.6516 on DRIVE and STARE respectively. There are

significant improvements in the average sensitivity rates obtained from k-means with

DIMDF when compared with the average sensitivity rates of k-means with DIMNF

on both DRIVE and STARE databases. On STARE database, there is a significant

improvement in the accuracy rate obtained from k-means with DIMDF when compared

with k-means with DIMNF. K-means with DIGF also achieved a lower segmentation

performance with average accuracy rates of 0.9555 and 0.9344 and average sensitivity

rates of 0.6315 and 0.6567 when compared with k-means combined with DIMDF. The

average sensitivity rates obtained from k-means with DIMDF significantly improved

when compared with the average the sensitivity rates of k-means with DIGF on both

DRIVE and STARE databases. The average accuracy rate obtained from k-means

with DIMDF also improved significantly when compared with k-means with DIGF on

STARE database.

DIMDF combined with k-means clustering detected majority of the large and thin

vessels, while a very few thinner vessels remained undetected. The false detection

around the border of the optic disc while applying DIMDF combined with k-means

clustering were fewer when compared with DIMNF and DIGF combined with k-means
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clustering. This is due to the fact that the median filter preserved edge information of

the vessels and effectively minimized the image noise during the enhancement of the

retinal image.

K-means combined with DIMDF achieved significantly higher AUC of 0.9735 and

0.9756 when compared with k-means combined with DIMNF (0.9615, 0.9426) and k-

means combined with DIGF (0.9610, 0.9454) on DRIVE and STARE respectively.

Furthermore, experimental study showed that the linear combination of the median

filter based difference images with Gaussian and mean filter based difference images

respectively while combined with k-means clustering technique led to the detection

of more thinner vessels. The results obtained from vessels segmented using DIMDF

DIMDMNF, DIMDGF and DIMNGF while combined with k-means clustering tech-

nique showed that majority of large and thin vessels were detected while a very few

thinner vessels still remained undetected. The results obtained by the combination

of DIMDMNF, DIMDGF and DIMNGF with k-means clustering produced a higher

false detection around the border of the optic disc when compared with the results

obtained from the combination of k-means and DIMDF. The average sensitivity rates

of 0.7581 and 0.7752 were achieved by DIMDMNF combined with k-means clustering

while DIMDGF combined with k-means clustering achieved average sensitivity rates

of 0.7518 and 0.7666 on DRIVE and STARE databases respectively. When compared

with each other, the average sensitivities of DIMDMNF combined with k-means clus-

tering slightly improved when compared with DIMDGF combined with k-means on

DRIVE and STARE databases with significant differences. The average sensitivities

of DIMDMNF combined with k-means clustering (0.7581, 0.7752) and DIMDGF com-

bined with k-means (0.7518, 0.7666) improved when compared with average sensitivi-

ties of DIMDF combined with k-means (0.7399, 0.7372) on both DRIVE and STARE

databases with significant differences. These improved significant differences in the

segmentation performances are due the linear combination with DIMDF. The time

required to segment each retinal image using this technique ranged from 3.4 to 4.0

seconds on DRIVE and STARE databases.

K-means combined with DIMDGF achieved AUC rates 0.9758 and 0.9734 while

k-means combined with DIMDMNF achieved AUC rates of 0.9749 and 0.9728, and

k-means combined with DIMNGF achieved AUC rates of 0.9719 and 0.9734 on DRIVE

and STARE respectively. A higher AUC rate 0.9758 obtained from DIMDGF combined

with k-means showed improvement in the detection of vessels when compared with the

AUC rates 0.9749, 0.9735 and 0.9719 of DIMDMNF, DIMDF and DIMNGF respectively

combined with k-means clustering on DRIVE database with significant differences.
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The higher AUC rate 0.9756 obtained from DIMDF combined with k-means showed

improvement in the detection of vessels when compared with the AUC rates 0.9734,

0.9728 and 0.9463 of DIMDGF, DIMDMNF and DIMNGF combined with k-means

clustering respectively on STARE database with significant differences.

4.3.4 Proposed Vessel Segmentation Methods

K-means clustering combined with difference image based on median filtering achieved

average sensitivity rates of 0.7399, 0.7518 and 0.7581 on DRIVE and average sensitivity

rates of 0.7372, 0.7666 and 0.7752 on STARE and average accuracy rates of 0.9556,

0.9531 and 0.9516 on DRIVE and average accuracy rates of 0.9509, 0.9500 and 0.9492

on STARE. The two local adaptive thresholding techniques achieved minimum average

sensitivity rate of 0.7313 with maximum average sensitivity rate of 0.7650 on DRIVE

and minimum average sensitivity rate of 0.7427 with maximum average sensitivity

rate of 0.7661 on STARE. The two local adaptive thresholding techniques achieved

a minimum average accuracy rate of 0.9449 and a maximum average accuracy rate

of 0.9532 on DRIVE database. The two local adaptive thresholding techniques also

achieved a minimum average accuracy rate of 0.9457 and a maximum average accuracy

rate of 0.9550 on STARE database. The global thresholding techniques and fuzzy c-

means achieved average sensitivity rates ranging from 0.6027 to 0.7152 on DRIVE with

0.4886 to 0.6258 on STARE and average accuracy rates ranging from 0.9368 to 0.9521

on DRIVE with 0.9318 to 0.9471 on STARE respectively.

K-means clustering combined with difference image based on median filtering and

the two local adaptive thresholding techniques are the best of all the vessel segmenta-

tion techniques investigated as they outperformed the global thresholding techniques

and fuzzy c-means on DRIVE and STARE databases for the detection of more vessels

in the retinal images with significant differences. This was demonstrated as their sensi-

tivity rates indicating the rate of the detection of vessels significant outperformed the

sensitivity rates of these global thresholding techniques and fuzzy c-means on DRIVE

and STARE databases. Although the accuracy rates of these segmentation techniques

were considered, the sensitivity rates were considered first since they (that is, sensi-

tivity rates) indicated the rate of the vessel detection. K-means clustering combined

with difference image based on median filtering and the two local adaptive thresholding

techniques are computationally fast (1.9 to 4.0 seconds), robust for the segmentation

of both large and thin retinal vessels, and also reduce the false detection of vessels

around the border of the optic disc. We hereby propose k-means clustering combined
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with difference image based on median filtering and the two local adaptive threshold-

ing techniques based on their improved performances as demonstrated by their higher

average sensitivity, average accuracy and very good specificity rates when compared

with other investigated techniques as shown in Tables 4.2 and 4.3.

4.4 Comparison With Existing Segmentation Methods

The performance measures of the different previously proposed techniques on DRIVE

and STARE databases are compared with all the investigated techniques in Tables

4.2 and 4.3. The best performing methods of the proposed methods presented higher

average sensitivity rates, average accuracy rates and AUC values when compared with

the average sensitivity rates, average accuracy rates and AUC values of the previous

techniques in the literature. Although the work of Ricci and Perfetti [20] presented no

average sensitivity rate and yielded a higher accuracy rate when compared with the

proposed methods, it presented a significantly lower AUC value when compared with

the AUC values of the best performing methods of the proposed methods.

Figure 4.1 gives a visual description that compares the results obtained from some

vessel segmentation techniques in the literature. The method proposed by Ricci and

Perfetti [20] achieved the segmentation of large and part of the thinner vessels but has

a very high false detection around the border of the optic disc.

It can be observed that Jiang and Mojon [38] were unable to segment the thin vessel

as some large vessels. Although Martinez-Perez et al. [182] had a good segmentation

performance, they achieved a very high false detection around the border of the op-

tic disc and failed to segment the thin vessels. In a related development, supervised

segmentation techniques by Niemeijer [35], Staal [22] and Soares et al.[23] segmented

the large and most of the thinner vessels. The segmented vessels obtained in the two

proposed local adaptive thresholding techniques and k-means combined with DIMDF

improved by reducing the false detection around the border of the optic disc and also

segmented both large and part of the thinner vessels.

4.4.1 Global Thresholding Approaches on DRIVE Database

The global thresholding techniques achieved average sensitivity rates ranging from

0.6027 to 0.7152 with average accuracy rates ranging from 0.9368 to 0.9521 on DRIVE

database. The method presented by Chaudhuri et al. [26] achieved a significantly

lower average accuracy rate of 0.8773 and a significantly lower average sensitivity rate
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Table 4.6: Comparison of Proposed Techniques with Previous Works on DRIVE

Method Avg. Sens. Avg. Acc. AUC

Staal [22] 0.7345 0.9442 0.9520
Niemeijer [35] 0.7145 0.9416 0.9294

Zana and Klein [40] 0.6971 0.9377 0.8984
Jiang and Mojon [38] 0.6399 0.9212 0.9114

Wang et al. [43] N/A 0.9461 0.9543
Chaudhuri [26] 0.3357 0.8773 0.7878
Soares et al.[23] N/A 0.9466 0.9614

Akram and Khan [46] N/A 0.9469 0.963
Marin et al. [28] N/A 0.9452 0.9588

Ricci and Perfetti [20] N/A 0.9595 0.9558

Proposed Adaptive Thresholding Based on IDM

IDMthresh1 = 0.5(MINRange) 0.7644 0.9468 0.9682
IDMthresh2 = 0.5(MAXRange) 0.7612 0.9502 0.9707
IDMthresh3 = 0.5(MEANRange) 0.7390 0.9506 0.9699

IDMthresh4 = MINIQR) 0.7509 0.9511 0.9713
IDMthresh5 = MAXIQR) 0.7327 0.9532 0.9722
IDMthresh6 = MEANIQR) 0.7454 0.9521 0.9705

Proposed Adaptive Thresholding Based on ASM

ASMthresh1 = 0.5(MINRange)(Grey Intensity) 0.7397 0.9488 0.9656
ASMthresh2 = 0.5(MAXRange)(Grey Intensity) 0.7313 0.9511 0.9711
ASMthresh3 = 0.5(MEANRange)(Grey Intensity) 0.7375 0.9503 0.9698
ASMthresh1 = 0.5(MINRange)(Green Channel) 0.7650 0.9449 0.9634
ASMthresh2 = 0.5(MAXRange)(Green Channel) 0.7560 0.9477 0.9680
ASMthresh3 = 0.5(MEANRange)(Green Channel) 0.7632 0.9461 0.9658

Proposed K-Means Clustering Techniques

K-Means With DIMDF 0.7399 0.9556 0.9735
K-Means With DIMNF 0.6459 0.9555 0.9615
K-Means With DIGF 0.6315 0.9555 0.9610

K-Means With DIMDMNF 0.7581 0.9516 0.9749
K-Means With DIMDGF 0.7518 0.9531 0.9758
K-Means With DIMNGF 0.7079 0.9523 0.9719
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Table 4.7: Comparison of Proposed Techniques with Previous Works on STARE

Method Avg. Sens. Avg. Acc. AUC

Staal [22] 0.6970 0.9516 0.9614
Jiang and Mojon [38] N/A 0.9009 0.929

Wang et al. [43] N/A 0.9521 0.9682
Soares et al.[23] N/A 0.9480 0.9671

Akram and Khan [46] N/A 0.9502 0.970
Marin et al. [28] N/A 0.9526 0.9769

Ricci and Perfetti [20] N/A 0.9584 0.9602

Proposed Adaptive Thresholding Based on IDM

IDMthresh1 = 0.5(MINRange) 0.7530 0.9546 0.9824
IDMthresh2 = 0.5(MAXRange) 0.7661 0.9550 0.9818
IDMthresh3 = 0.5(MEANRange) 0.7613 0.9529 0.9819

IDMthresh4 = MINIQR) 0.7662 0.9492 0.9642
IDMthresh5 = MAXIQR) 0.7506 0.9526 0.9741
IDMthresh6 = MEANIQR) 0.7501 0.9511 0.9705

Proposed Adaptive Thresholding Based on ASM

ASMthresh1 = 0.5(MINRange)(Grey Intensity) 0.7458 0.9485 0.9695
ASMthresh2 = 0.5(MAXRange)(Grey Intensity) 0.7428 0.9500 0.9681
ASMthresh3 = 0.5(MEANRange)(Grey Intensity) 0.7427 0.9504 0.9745
ASMthresh1 = 0.5(MINRange)(Green Channel) 0.7542 0.9457 0.9671
ASMthresh2 = 0.5(MAXRange)(Green Channel) 0.7641 0.9500 0.9782
ASMthresh3 = 0.5(MEANRange)(Green Channel) 0.7626 0.9510 0.9781

Proposed K-Means Clustering Techniques

K-Means With DIMDF 0.7372 0.9509 0.9756
K-Means With DIMNF 0.6516 0.9312 0.9426
K-Means With DIGF 0.6567 0.9344 0.9454

K-Means With DIMDMNF 0.7752 0.9492 0.9728
K-Means With DIMDGF 0.7666 0.9500 0.9734
K-Means With DIMNGF 0.6979 0.9340 0.9463
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Figure 4.1: (a) DRIVE Gold Standard (b)Local Adaptive Threshold Using Local Homo-
geneity information (c)Local Adaptive Threshold Using Energy information (d)Result
obtained from the proposed K-means combined with DIMDF (e)Result obtained in
Ricci and Perfetti [20] (f) Result obtained by Jiang & Mojon [38] (g) Result obtained
in Martinez-Perez et al. [182] (h) Result obtained in Niemeijer [35] (i) Result obtained
in Staal [22] (j) Result obtained in Soares et al.[23].

of 0.3357 when compared with all the global thresholding methods investigated in this

research. The work of Jiang and Mojon [38] also achieved significantly lower aver-

age accuracy rates of 0.9212 and 0.9009 when compared with all the different global

thresholding-based approaches presented in this thesis. Five of the global thresholding

techniques with average sensitivity rates 0.6535, 0.6729, 0.6701, 0.7026 and 0.7152 sig-

nificantly outperformed the average sensitivity rate of 0.6399 presented by Jiang and

Mojon [38] on DRIVE database. Although Niemeijer et al [35] presented a lower aver-

age sensitivity rate of 0.7145 and an average accuracy rate of 0.9416 when compared

with the maximum average sensitivity rate of 0.7152 and its corresponding average

accuracy rate of 0.9430 obtained from the global thresholding approaches presented in

this thesis, there was no significant difference. Although seven average sensitivity rates

of 0.6416, 0.6435, 0.6535, 0.6701, 0.6729, 0.7026 and 0.7152 with their corresponding

average accuracy rates of 0.9427, 0.9521, 0.9494, 0.9500, 0.9498, 0.9416 and 0.9430 re-

spectively achieved by the global thresholding approaches presented higher values when

compared with the average sensitivity rate of 0.6389 and 0.9181 achieved by Martinez-

Perez et al. [135], only five of the presented approaches improved performances with

significant differences. Staal et al. [22] presented a higher average sensitivity rate of
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0.7345 when compared with all the average sensitivity rates of the global thresholding

approaches. Marin et al. [28] and Soares et al.[23] present a higher average accu-

racy rates of 0.9452 and 0.9466 respectively when compared with six of the average

accuracy rates obtained through the global thresholding approaches presented in this

thesis. Two average sensitivity rates of 0.7026 and 0.7152 with their corresponding

average accuracy rates of 0.9416 and 0.9430 respectively presented slightly significant

improvement in the detection of vessels when compared with the average sensitivity rate

of 0.6971 and average accuracy rate of 0.9377 achieved by Zana and Klein [40]. The

human observer presented a significantly higher average sensitivity rate of 0.7761 when

compared with all the average sensitivity rates of the global thresholding approaches

ranging from 0.6027 to 0.7152. The higher detection rate of both large and thin vessels

by the human observer [131] resulted in the higher average sensitivity rate achieved by

the human observer [131].

4.4.2 Global Thresholding Approaches on STARE Database

The global thresholding techniques achieved average sensitivity rates ranging from

0.5202 to 0.6258 with average accuracy rates ranging from 0.9318 to 0.9471 on STARE

database. Hoover et al. [21] presented a lower average accuracy rate of 0.9275 but a

higher average sensitivity rate of 0.6751 when compared with all the global thresholding-

based approaches investigated in this research. All the global thresholding-based ap-

proaches investigated in this thesis achieved significantly higher accuracy rates ranging

from 0.9318 to 0.9471 when compared with the work of Jiang and Mojon [38] with

average accuracy rate of 0.9009. Staal et al. [22], Mendonca et al. [84] and Xiao et al.

[83] presented significantly higher average sensitivity rates of 0.6970, 0.7123, 0.7147 and

corresponding average accuracy rates of 0.9516, 0.9479, 0.9476 when compared with all

the average sensitivity rates of the global thresholding approaches presented in this

thesis ranging from 0.5202 to 0.6258 with average accuracy rates ranging from 0.9318

to 0.9471. Akram and Khan [46], Marin et al. [28], Ricci and Perfetti [20], Soares et

al.[23] and Wang et al. [43] presented significantly higher average accuracies rates of

0.9502, 0.9526, 0.9584, 0.9480 and 0.9521 respectively when compared with the average

accuracy rates of all the global thresholding-based approaches presented in this thesis.

Yin et al. [87] presented a significantly higher average sensitivity rate of 0.7248 when

compared with the average sensitivity rates of all the global thresholding approaches

presented in this thesis ranging from 0.5202 to 0.6258. The human observer [132] pre-

sented a significantly higher average sensitivity rate of 0.8949 when compared with all
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the average sensitivities of the global thresholding approaches. The higher detection

rate of both large and thin vessels by the human observer [132] resulted in the higher

average sensitivity rate achieved by the human observer [132].

Although all the CLAHE-based global thresholding techniques and all the phase

congruence-based global thresholding techniques are computationally faster when com-

pared with the techniques presented in [22], [23], [28], [43], [83], [84], the computing

environment are different. All the CLAHE-based global thresholding techniques and

the phase congruence-based global thresholding techniques are computationally faster

when compared with the human observer [131] 4000 times and 699.03 times respectively.

4.4.3 Adaptive Thresholding Techniques on DRIVE Database

The adaptive thresholding using different IDM information techniques investigated

achieved average sensitivity rates of 0.7327, 0.7390, 0.7454, 0.7509, 0.7612 and 0.7644

with corresponding average accuracy rates of 0.9532, 0.9506, 0.9521, 0.9511, 0.9502 and

0.9468 respectively on DRIVE database. All the adaptive thresholding using different

IDM information techniques presented significantly higher average sensitivity rates of

0.7327, 0.7390, 0.7454, 0.7509, 0.7612 and 0.7644 with significantly higher average

accuracy rates of 0.9532, 0.9506, 0.9521, 0.9511, 0.9502 and 0.9468 when compared

with Chaudhuri et al. [26], Jiang and Mojon [38], Zana and Klein [40], Martinez-Perez

et al. [135], Niemeijer et al [35] and Yin et al. [87] with average sensitivity rates

of 0.3357, 0.6399, 0.6971, 0.6389, 0.7145 and 0.6522 with their corresponding average

accuracy rates of 0.8773, 0.9212, 0.9377, 0.9181, 0.9416 and 0.9267 respectively.

Five of the six adaptive thresholding techniques using different IDM information

presented significantly higher average accuracy rates of 0.9532, 0.9506, 0.9521, 0.9511

and 0.9502 when compared with average accuracy rates of 0.9469, 0.9452, 0.9466, 0.9299

and 0.9461 achieved by Akram and Khan [46], Marin et al. [28], Soares et al.[23], Sz-

pak and Tapamo [138] and Wang et al. [43] respectively. Three of the six adaptive

thresholding techniques using different IDM information presented significantly higher

average sensitivity rates of 0.7509, 0.7612 and 0.7644 when compared with the average

sensitivity rate of 0.7468 achieved by Vlachos and Dermatas [41]. All the adaptive

thresholding techniques using different IDM information presented significantly higher

average accuracy rates of 0.9532, 0.9506, 0.9521, 0.9511, 0.9502 and 0.9468 when com-

pared with the average accuracy rate of 0.9285 achieved by Vlachos and Dermatas [41].

Four of the six adaptive thresholding techniques using different IDM information pre-

sented significantly higher average sensitivity rates of 0.7454, 0.7509, 0.7612 and 0.7644
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when compared with Mendonca et al. [84] and Staal et al. [22] with average sensitivity

rates of 0.7315 and 0.7345. Five of the six adaptive thresholding techniques using dif-

ferent IDM information presented significantly higher average accuracy rates of 0.9532,

0.9506, 0.9521, 0.9511 and 0.9502 when compared with Mendonca et al. [84] and Staal

et al. [22] with average accuracy rates of 0.9463 and 0.9442. Ricci and Perfetti [20]

presented no average sensitivity but a higher average accuracy rate of 0.9595 when

compared with the average accuracy rates of all the adaptive thresholding techniques

based on IDM information ranging from 0.9468 to 0.9532. Although Xiao et al. [83]

presented a higher average accuracy rate of 0.9529 when compared with five of the six

investigated adaptive thresholding techniques based on IDM information, there were

only significant differences when compared with three average accuracy rates. Two

of the six adaptive thresholding using different IDM information techniques presented

significantly higher average sensitivity rates of 0.7612 and 0.7644 when compared with

the average sensitivity rate of 0.7513 achieved by Xiao et al. [83]. The human observer

presented a significantly higher average sensitivity rate of 0.7761 when compared with

all the average sensitivity rates of 0.7327, 0.7390, 0.7454, 0.7509, 0.7612 and 0.7644

achieved by the adaptive thresholding techniques based on IDM information. The

higher detection rate of both large and thin vessels by the human observer [131] re-

sulted in the higher average sensitivity rate achieved by the human observer [131]. Five

of the six adaptive thresholding techniques based on IDM information present higher

average accuracy rates of 0.9532, 0.9506, 0.9521, 0.9511 and 0.9502 when compared

with the average accuracy of 0.9473 achieved by the human observer with significant

differences.

The adaptive thresholding using different ASM range information techniques in-

vestigated achieved average sensitivity rates of 0.7313, 0.7375, 0.7397, 0.7560, 0.7632

and 0.7650 with corresponding average accuracy rates of 0.9511, 0.9503, 0.9488, 0.9477,

0.9461 and 0.9449 respectively on DRIVE database. All the adaptive thresholding us-

ing different ASM range information techniques presented significantly higher average

sensitivity rates of 0.7313, 0.7375, 0.7397, 0.7560, 0.7632 and 0.7650 with significantly

higher average accuracy rates of 0.9511, 0.9503, 0.9488, 0.9477, 0.9461 and 0.9449

when compared with average sensitivity rates of 0.3357, 0.6399, 0.6971, 0.6389, 0.7145

and 0.6522 with their corresponding average accuracy rates of 0.8773, 0.9212, 0.9377,

0.9181, 0.9416 and 0.9267 achieved by Chaudhuri et al. [26], Jiang and Mojon [38],

Zana and Klein [40], Martinez-Perez et al. [135], Niemeijer et al [35] and Yin et al. [87]

respectively. Three of the six adaptive thresholding techniques using different ASM in-

formation presented significantly higher average sensitivity rates of 0.7560, 0.7632 and
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0.7650 when compared with the average sensitivity rate of 0.7468 achieved by Vlachos

and Dermatas [41]. All the adaptive thresholding techniques using different ASM in-

formation presented significantly higher average accuracy rates 0.9511, 0.9503, 0.9488,

0.9477, 0.9461 and 0.9449 when compared with the average accuracy rate of 0.9285

achieved by Vlachos and Dermatas [41].

Szpak and Tapamo [138] presented no average sensitivity but a significantly lower

average accuracy rate of 0.9299 when compared with all the average accuracy rates of

0.9511, 0.9503, 0.9488, 0.9477, 0.9461 and 0.9449 achieved by adaptive thresholding

using different ASM range information. Four of the six adaptive thresholding using

different ASM range information techniques presented higher average accuracy rates

of 0.9511, 0.9503, 0.9488 and 0.9477 when compared with an average accuracy rate of

0.9452 achieved by Marin et al. [28] with significant differences. Three of the six adap-

tive thresholding using different ASM range information techniques presented higher

average accuracy rates of 0.9511, 0.9503 and 0.9488 when compared with the average

accuracy rate of 0.9469 achieved by Akram and Khan [46] with significant differences.

Mendonca et al. [84] presented a lower average sensitivity rate of 0.7315 when compared

with five of the six average sensitivity rates of 0.7375, 0.7397, 0.7560, 0.7632 and 0.7650

achieved by proposed adaptive thresholding techniques based on ASM information with

significant differences. Four of the six proposed adaptive thresholding techniques based

on ASM information presented higher average accuracy rates of 0.9511, 0.9503, 0.9488

and 0.9477 when compared with average accuracy rates of 0.9466 and 0.9463 presented

in [23] and [84] with significant differences.

Staal et al. [22] presented a lower average sensitivity rate of 0.7345 when compared

with five average sensitivity rates 0.7375, 0.7397, 0.7560, 0.7632 and 0.7650 achieved

by proposed adaptive thresholding techniques based on ASM information with signif-

icant differences. A lower average accuracy rate of 0.9442 was also presented in [22]

when compared with five average accuracy rates of 0.9511, 0.9503, 0.9488, 0.9477, and

0.9461 achieved by the adaptive thresholding techniques based on ASM information

with significant differences. Wang et al. [43] presented no average sensitivity but a

lower average accuracy rate of 0.9461 when compared with four average accuracy rates

0.9511, 0.9503, 0.9488 and 0.9477 achieved by adaptive thresholding techniques based

on ASM information with significant differences. Ricci and Perfetti [20] presented no

average sensitivity but a higher average accuracy rate of 0.9595 when compared with

all the average accuracy rates of the adaptive thresholding techniques based on ASM

information. Xiao et al. [83] presented a higher average accuracy rate of 0.9529 when

compared with all the average accuracy rates of the adaptive thresholding techniques
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based on ASM information but a lower average sensitivity rate of 0.7513 when compared

with three average sensitivity rates 0.7560, 0.7632 and 0.7650 of the six proposed adap-

tive thresholding techniques based on ASM information with significant differences.

The human observer presented a significantly higher average sensitivity rate of 0.7761

when compared with all the average sensitivity rates of 0.7313, 0.7375, 0.7397, 0.7560,

0.7632 and 0.7650 achieved by the adaptive thresholding techniques based on ASM

information. Three of the proposed adaptive thresholding techniques based on ASM

information presented higher average accuracy rates of 0.9511, 0.9503 and 0.9488 when

compared with the average accuracy rate of 0.9473 achieved by the human observer

with significant differences.

4.4.4 Adaptive Thresholding Techniques on STARE Database

The adaptive thresholding using different IDM information techniques investigated

achieved average sensitivity rates of 0.7501, 0.7506, 0.7530, 0.7613, 0.7661 and 0.7662

with corresponding average accuracy rates of 0.9511, 0.9526, 0.9546, 0.9529, 0.9550

and 0.9492 respectively on STARE database. Hoover et al. [21] presented a signif-

icantly lower average sensitivity rate of 0.6751 and average accuracy rate of 0.9275

when compared with all the average sensitivity rates of 0.7501, 0.7506, 0.7530, 0.7613,

0.7661 and 0.7662 with corresponding average accuracy rates of 0.9511, 0.9526, 0.9546,

0.9529, 0.9550 and 0.9492 respectively achieved by the adaptive thresholding techniques

based on different local homogeneity information. The work of Jiang and Mojon [38]

achieved a significant lower average accuracy rate of 0.9009 when compared with all the

average accuracy rates of 0.9511, 0.9526, 0.9546, 0.9529, 0.9550 and 0.9492 achieved by

the adaptive thresholding using different local homogeneity information. Staal et al.

[22] presented a lower average accuracy rate of 0.9516 when compared with four average

accuracy rates of 0.9526, 0.9529, 0.9546 and 0.9550 achieved by the adaptive thresh-

olding techniques based on local homogeneity information with significant differences.

Staal et al. [22] also presented a significantly lower average sensitivity rate 0.6970

when compared with all the average sensitivity rates of 0.7501, 0.7506, 0.7530, 0.7613,

0.7661 and 0.7662 achieved by the adaptive thresholding techniques based on local

homogeneity information. Mendonca et al. [84], Xiao et al. [83] and Yin et al. [87] pre-

sented lower average sensitivity rates of 0.7123, 0.7147 and 0.7248 with corresponding

lower average accuracy rates of 0.9479, 0.9476 and 0.9412 when compared with all the

average sensitivity rates of 0.7501, 0.7506, 0.7530, 0.7613, 0.7661 and 0.7662 with cor-

responding average accuracy rates of 0.9511, 0.9526, 0.9546, 0.9529, 0.9550 and 0.9492
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respectively achieved by the adaptive thresholding techniques based on different local

homogeneity information with significant differences. Marin et al. [28] presented no

sensitivity rate but a lower average accuracy rate of 0.9526 when compared with three

average accuracy rates 0.9529, 0.9546 and 0.9550 obtained using adaptive thresholding

techniques based on local homogeneity information. Two of the three average accu-

racy rates achieved significant improvements when compared with the average accuracy

rate of 0.9526 presented by Marin et al. [28]. Wang et al. [43] presented no sensitivity

rate but a lower average accuracy rate of 0.9521 when compared with four average

accuracy rates 0.9526, 0.9529, 0.9546 and 0.9550 obtained using adaptive thresholding

techniques based on local homogeneity information. Two of the four average accuracy

rates achieved significant improvements when compared with the average accuracy rate

of 0.9521 presented by Wang et al. [43]. Akram and Khan [46] presented no sensitiv-

ity rate but a lower average accuracy rate of 0.9502 when compared with five average

accuracy rates 0.9526, 0.9546, 0.9529 and 0.9550 obtained using adaptive thresholding

techniques based on local homogeneity information with slight significant differences.

Soares et al. [23] also presented a lower average accuracy rate of 0.9480 when compared

with all the average accuracy rates 0.9492, 0.9511, 0.9526, 0.9529, 0.9546 and 0.9550

obtained using adaptive thresholding techniques based on local homogeneity informa-

tion with significant differences. Ricci and Perfetti [20] presented no sensitivity rate but

a higher average accuracy rate of 0.9584 when compared with all the average accuracy

rates 0.9511, 0.9526, 0.9546, 0.9529, 0.9550 and 0.9492 obtained using adaptive thresh-

olding techniques based on local homogeneity information. The human observer [132]

presented a significantly higher average sensitivity rate of 0.88949 when compared with

all the average sensitivity rates of 0.7501, 0.7506, 0.7530, 0.7613, 0.7661 and 0.7662

achieved by the adaptive thresholding techniques based on local homogeneity informa-

tion. The higher detection rate of both large and thin vessels by the human observer

[132] resulted in the higher average sensitivity rate achieved by the human observer

[132]. The human observer [132] presented a significantly lower average accuracy rate

of 0.9354 when compared with all the average accuracy rates 0.9492, 0.9511, 0.9526,

0.9529, 0.9546 and 0.9550 achieved by the adaptive thresholding techniques based on

local homogeneity information.

All the proposed adaptive thresholding using different local homogeneity informa-

tion presented higher AUC rates 0.9682, 0.9707, 0.9699, 0.9713, 0.9722 and 0.9705 (see

Table 4.6) when compared with the AUC rates 0.9520, 0.9294, 0.8984, 0.9194, 0.9543,

0.7878, 0.9614, 0.963, 0.9588 and 0.9558 achieved by the previously proposed techniques

on DRIVE database with significant differences.
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All the proposed adaptive thresholding using different local homogeneity infor-

mation presented higher AUC rates 0.9642, 0.9705, 0.9741, 0.9818, 0.9819 and 0.9824

when compared with the AUC rates 0.9602, 0.9614 and 0.929 achieved by Ricci and

Perfetti [20], Staal et al. [22] and Jiang and Mojon [38] respectively with significant

differences on STARE database. Five AUC rates 0.9705, 0.9741, 0.9818, 0.9819 and

0.9824 obtained by the proposed adaptive thresholding using different local homogene-

ity information are significantly higher than the AUC rates 0.9671 and 0.9682 achieved

by Soares et al. [23] and Wang et al. [43] respectively on STARE database. Four AUC

rates 0.9741, 0.9818, 0.9819 and 0.9824 obtained by the proposed adaptive threshold-

ing using different local homogeneity information are significantly higher than the AUC

rate 0.970 achieved by Akram and Khan [46] on STARE database. Three AUC rates

0.9818, 0.9819 and 0.9824 obtained by the proposed adaptive thresholding using differ-

ent local homogeneity information are significantly higher than the AUC rate 0.9769

achieved by Marin et al. [28] on STARE database.

The adaptive thresholding using different ASM range information techniques in-

vestigated achieved average sensitivity rates of 0.7427, 0.7428, 0.7458, 0.7542, 0.7626

and 0.7641 with corresponding average accuracy rates of 0.9504, 0.9500, 0.9485, 0.9457,

0.9510 and 0.9500 respectively on STARE database. All the adaptive thresholding tech-

niques based on different ASM range information achieved significantly higher average

sensitivity rates of 0.7427, 0.7428, 0.7458, 0.7542, 0.7626 and 0.7641 with significantly

higher average accuracy rates of 0.9504, 0.9500, 0.9485, 0.9457, 0.9510 and 0.9500 when

compared with the average sensitivity rate of 0.6751 and average accuracy rate of 0.9275

achieved by Hoover et al. [21]. All the adaptive thresholding techniques based on dif-

ferent ASM range information achieved significantly higher average accuracy rates of

0.9504, 0.9500, 0.9485, 0.9457, 0.9510 and 0.9500 when compared with the average

accuracy rate 0.9009 achieved by Jiang and Mojon [38]. Staal et al. [22] presented a

higher average accuracy rate of 0.9516 when compared with all the average accuracy

rates of 0.9504, 0.9500, 0.9485, 0.9457, 0.9510 and 0.9500 achieved by the adaptive

thresholding techniques based on ASM range information. Staal et al. [22], however,

presented a significantly lower average sensitivity rate of 0.6970 when compared with

all the average sensitivity rates of 0.7427, 0.7428, 0.7458, 0.7542, 0.7626 and 0.7641

achieved by the adaptive thresholding techniques based on ASM range information.

Mendonca et al. [84], Xiao et al. [83] and Yin et al. [87] presented significantly lower

average sensitivity rates of 0.7123, 0.7147 and 0.7248 when compared with all the av-

erage sensitivity rates 0.7427, 0.7428, 0.7458, 0.7542, 0.7626 and 0.7641 achieved by

the adaptive thresholding techniques based on different ASM range information. Yin
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et al [87] presented a lower average accuracy rate of 0.9412 when compared with all

the average accuracy rates 0.9504, 0.9500, 0.9485, 0.9457, 0.9510 and 0.9500 obtained

using adaptive thresholding techniques based on ASM information with significant dif-

ferences. Mendonca et al. [84] presented a lower average accuracy rate of 0.9479 when

compared with five average accuracy rates 0.9485, 0.9500, 0.9500 0.9504 and 0.9510

obtained using adaptive thresholding techniques based on ASM information. Four of

the five average accuracy rates achieved significant improvements when compared with

the average accuracy rate of 0.9479 achieved by Mendonca et al. [84]. Xiao et al. [83]

presented a significantly lower average accuracy rate of 0.9476 when compared with

five average accuracy rates 0.9485, 0.9500, 0.9500 0.9504 and 0.9510 obtained using

adaptive thresholding techniques based on ASM information. Marin et al. [28], Ricci

and Perfetti [20] and Wang et al. [43] presented no sensitivity rate but higher average

accuracy rates 0.9526, 0.9584 and 0.9521 when compared with all the average accu-

racy rates 0.9504, 0.9500, 0.9485, 0.9457, 0.9510 and 0.9500 obtained using adaptive

thresholding techniques based on ASM information. Akram and Khan [46] presented

no sensitivity rate but a lower average accuracy rate of 0.9502 when compared with two

average accuracy rates 0.9504 and 0.9510 obtained using adaptive thresholding tech-

niques based on ASM information. The difference between the average accuracy rate

achieved in [46] and the two average accuracy rates obtained by adaptive thresholding

techniques based on ASM information is not significant. Soares et al. [23] presented a

lower average accuracy rate of 0.9480 when compared with five average accuracy rates

0.9504 and 0.9510 obtained using adaptive thresholding techniques based on ASM in-

formation. Four of the five average accuracy rates achieved significant improvements

when compared with the average accuracy rate of 0.9480 achieved by Soares et al. [23].

The human observer [132] presented a significantly higher average sensitivity rate of

0.88949 when compared with all the average sensitivity rates of 0.7427, 0.7428, 0.7458,

0.7542, 0.7626 and 0.7641 achieved by the adaptive thresholding techniques based on

ASM information. The higher detection rate of both large and thin vessels by the hu-

man observer [132] resulted in the higher average sensitivity rate achieved by the human

observer [132]. The human observer [132] presented a significantly lower average accu-

racy rate of 0.9354 when compared with all the average accuracy rates 0.9504, 0.9500,

0.9485, 0.9457, 0.9510 and 0.9500 achieved by the adaptive thresholding techniques

based on ASM information.

All the proposed adaptive thresholding methods based on different ASM informa-

tion achieved higher AUC rates 0.9656, 0.9711, 0.9698, 0.9734, 0.9680 and 0.9658 when

compared with the AUC rates 0.9520, 0.9294, 0.8984, 0.9194, 0.9543, 0.7878, 0.9614,
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0.963, 0.9588 and 0.9558 achieved by the previously proposed techniques on DRIVE

database with significant differences.

All the proposed adaptive thresholding methods based on different ASM informa-

tion presented higher AUC rates 0.9671, 0.9681, 0.9695, 0.9745, 0.9781 and 0.9782when

compared with the AUC rates 0.9602, 0.9614 and 0.929 achieved by Ricci and Perfetti

[20], Staal et al. [22] and Jiang and Mojon [38] respectively on STARE database with

significant differences. Four AUC rates 0.9695, 0.9745, 0.9781 and 0.9782 obtained by

the proposed adaptive thresholding using different ASM information are significantly

higher than the AUC rates 0.9671 and 0.9682 achieved by Soares et al. [23] and Wang

et al. [43] respectively on STARE database. Three AUC rates 0.9745, 0.9781 and

0.9782 obtained by the proposed adaptive thresholding using different ASM informa-

tion are significantly higher than the AUC rate 0.970 achieved by Akram and Khan

[46] on STARE database. Two AUC rates 0.9781 and 0.9782 obtained by the proposed

adaptive thresholding using different ASM information are significantly higher than the

AUC rate 0.9769 achieved by Marin et al. [28] on STARE database.

While all the adaptive thresholding techniques are computationally faster when

compared with the techniques presented in [22], [23], [28], [43], [83], [84], the computing

environment are different. All the adaptive thresholding techniques are computationally

faster when compared with the human observer [131](1846.15 times).

4.4.5 Clustering-Based Approaches on DRIVE Database

Phase congruence combined with fuzzy c-means achieved an average sensitivity rate of

0.6725 and an average accuracy rate of 0.9431 on DRIVE database. Phase congruence

combined with fuzzy c-means presented significantly higher average sensitivity rate of

0.6725 and average accuracy rate of 0.9431 when compared with Chaudhuri et al. [26],

Jiang and Mojon [38], Martinez-Perez et al. [135] and Yin et al. [87] with average

sensitivity rates of 0.3357, 0.6399, 0.6389, 0.6522 and corresponding average accuracy

rates of 0.8773, 0.9212, 0.9181 and 0.9267 respectively. Phase congruence combined

with fuzzy c-means achieved a lower average sensitivity rate of 0.6725 but a higher

average accuracy rate of 0.9431 when compared with Niemeijer et al [35], Vlachos and

Dermatas [41] and Zana and Klein [40] with average sensitivity rates of 0.7145, 0.7468

and 0.6971 with corresponding average accuracy rates of 0.9416, 0.9285 and 0.93377

respectively. Mendonca et al. [84], Staal et al. [22] and Xiao et al. [83] presented higher

average sensitivity rates of 0.7315, 0.7345 and 0.7513 with average accuracy rates of

0.9463, 0.9442 and 0.9529 when compared with phase congruence combined with fuzzy
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c-means with average sensitivity rate of 0.6725 and average accuracy rate of 0.9431.

The higher sensitivity rates achieved in [84], [22], [83] indicated the ability of those

techniques to detect more vessels. Akram and Khan [46], Marin et al. [28], Soares et

al. [23], Ricci and Perfetti [20], and Wang et al. [43] presented significantly higher

average accuracies rates of 0.9502, 0.9526, 0.9584, 0.9480 and 0.9521 respectively when

compared with phase congruence combined with fuzzy c-means. Phase congruence

combined with fuzzy c-means achieved a significantly higher average accuracy rate of

0.9431 when compared with the average accuracy rate of 0.9299 achieved by Szpak

and Tapamo [138]. The average sensitivity rate of 0.6725 and average accuracy rate

of 0.9431 achieved by phase congruence combined with fuzzy c-means are significantly

lower than the average sensitivity rate of 0.7761 and average accuracy rate of 0.9473

achieved by the second human observer [131]. The higher detection rate of both large

and thin vessels by the human observer [131] resulted in the higher average sensitivity

rate achieved by the human observer [131].

The k-means clustering techniques investigated achieved average sensitivity rates

of 0.6315, 0.6459, 0.7079, 0.7399, 0.7518 and 0.7581 with corresponding average accu-

racy rates of 0.9555, 0.9555, 0.9523, 0.9556, 0.9531 and 0.9516 respectively on DRIVE

database. Four of the techniques that combined difference image with k-means clus-

tering presented significantly higher average sensitivity rates of 0.7079, 0.7399, 0.7518

and 0.7581 with significantly higher average accuracy rates of 0.9523, 0.9556, 0.9531

and 0.9516 when compared with the average sensitivity rates of 0.3357, 0.6399, 0.6971,

0.6389 and 0.6522 with their corresponding average accuracy rates of 0.8773, 0.9212,

0.9377, 0.9181 and 0.9267 achieved by Chaudhuri et al. [26], Jiang and Mojon [38],

Zana and Klein [40], Martinez-Perez et al. [135] and Yin et al. [87] respectively. Three

of the techniques that combined difference image with k-means clustering presented

significantly higher average sensitivity rates of 0.7399, 0.7518 and 0.7581 with signifi-

cantly higher average accuracy rates of 0.9556, 0.9531 and 0.9516 when compared with

the average sensitivity rates of 0.7315, 0.7145 and 0.7345 with their corresponding av-

erage accuracy rates of 0.9463, 0.9416 and 0.9442 presented by Mendonca et al. [84],

Niemeijer et al [35] and Staal et al. [22] respectively. Two of the techniques that com-

bined difference image with k-means clustering presented significantly higher average

sensitivity rates of 0.7518 and 0.7581 with significantly higher average accuracy rates

of 0.9531 and 0.9516 when compared with the average sensitivity rate of 0.7468 and

average accuracy rate of 0.9285 achieved by Vlachos and Dermatas [41]. Although two

of the techniques that combined difference image with k-means clustering presented

higher average sensitivity rates of 0.7518 and 0.7581 when compared with Xiao et al.
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[83] where an average sensitivity rate of 0.7513 was achieved, one of of the technique

presented a significantly higher average sensitivity rate of 0.7581 when compared with

the average sensitivity rate 0.7513 achieved by Xiao et al. [83]. All the k-means clus-

tering techniques investigated achieved significantly higher average accuracy rates of

0.9555, 0.9555, 0.9523, 0.9556, 0.9531 and 0.9516 when compared with Akram and

Khan [46], Marin et al. [28], Soares et al.[23], Szpak and Tapamo [138] and Wang et

al. [43] where no average sensitivity rate was presented but average accuracy rates of

0.9469, 0.9452, 0.9466, 0.9299 and 0.9461 were achieved respectively. All the differ-

ence images combined with k-means presented lower average sensitivity rates of 0.6315,

0.6459, 0.7079, 0.7399, 0.7518 and 0.7581 but significantly higher average accuracy rates

of 0.9555, 0.9555, 0.9523, 0.9556, 0.9531 and 0.9516 when compared with the second

human observer with average sensitivity rate of 0.7761 and average accuracy rate of

0.9473.

4.4.6 Clustering-Based Approaches on STARE Database

Phase congruence combined with fuzzy c-means achieved an average sensitivity rate

of 0.4886 and an average accuracy rate of 0.9346 on STARE database. Hoover et al.

[21] presented significantly higher average sensitivity rate of 0.6751 and a lower average

accuracy rate of 0.9275 when compared with the combination of phase congruence and

fuzzy c-means with an average sensitivity rate of 0.4886 and an average accuracy rate of

0.9346. The combination of phase congruence and fuzzy c-means presented a significant

higher average accuracy rate of 0.9346 when compared with the work of Jiang and

Mojon [38] that achieved an average accuracy rate of 0.9009. Staal et al. [22], Mendonca

et al. [84], Xiao et al. [83] and Yin et al. [87] presented significantly higher average

sensitivity rates of 0.6970, 0.7123, 0.7147 and 0.7248 with higher average accuracy

rates of 0.9516, 0.9479, 0.9476 and 0.9412 respectively when compared with the average

sensitivity rate of 0.4886 and the average accuracy rate of 0.9346 achieved by phase

congruence combined with fuzzy c-means. Akram and Khan [46], Marin et al. [28], Ricci

and Perfetti [20], Soares et al.[23] and Wang et al. [43] presented significantly higher

average accuracy rates of 0.9502, 0.9526, 0.9584, 0.9480 and 0.9521 when compared

with the average accuracy rate of 0.9346 achieved by phase congruence combined with

fuzzy c-means. The human observer achieved significantly higher average sensitivity

rate of 0.8949 when compared with the average sensitivity rate of 0.4886 achieved on

phase congruence combined with fuzzy c-means. Higher average sensitivity rate was

achieved by the human observer reflected the higher detection rate of both large and
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thin vessel when compared with phase congruence combined with fuzzy c-means.

While fuzzy c-means combined with phase congruence is computationally faster

when compared with the techniques presented in [22], [23], [28], [43], [83], [84], the

computing environment are different. Fuzzy c-means combined with phase congruence

is computationally faster when compared with human observer [131](265.7 times).

The k-means clustering techniques investigated achieved average sensitivity rates

of 0.6516, 0.6567, 0.6979, 0.7372, 0.7666 and 0.7772 with corresponding average accu-

racy rates of 0.9312, 0.9344, 0.9340, 0.9509, 0.9500 and 0.9492 respectively on STARE

database. Four of the techniques that combined difference image with k-means cluster-

ing presented significantly higher average sensitivity rates of 0.6979, 0.7372, 0.7666 and

0.7772 with significantly higher average accuracy rates of 0.9340, 0.9509, 0.9500 and

0.9492 when compared with the average sensitivity rate of 0.6751 and average accuracy

rate of 0.9275 achieved by Hoover et al. [21]. All the k-means clustering techniques in-

vestigated presented significant higher average accuracy rates of 0.9312, 0.9344, 0.9340,

0.9509, 0.9500 and 0.9492 when compared with the work of Jiang and Mojon [38] that

achieved an average accuracy rate of 0.9009. Although four of the techniques that

combined difference image with k-means clustering presented higher average sensitivity

rates of 0.6979, 0.7372, 0.7666 and 0.7772 when compared with the average sensitivity

rate of 0.6951 achieved by Staal et al. [22], only three of the average sensitivity have

significant differences when compared with Staal et al. [22]. Three of the techniques

that combined difference image with k-means clustering presented significantly higher

average sensitivity rates of 0.7372, 0.7666, 0.7772 and significantly higher average accu-

racy rates of 0.9509, 0.9500 0.9492 when compared with the average sensitivity rates of

0.7123, 0.7147 and 0.7248 with corresponding average accuracy rates of 0.9479, 0.9476

and 0.9412 presented by Mendonca et al. [84], Xiao et al. [83] and Yin et al. [87] re-

spectively. Marin et al. [28], Ricci and Perfetti [20] and Wang et al. [43] presented no

sensitivity but higher average accuracy rates 0.9526, 0.9584 and 0.9521 when compared

with the average accuracy rates of all the k-means clustering segmentation techniques

in the range 0.9312 to 0.9509. Akram and Khan [46] presented no sensitivity but a

lower average accuracy rate of 0.9502 when compared with average accuracy rate of

0.9509 obtained using one of the k-means clustering segmentation techniques with no

significant difference. Soares et al. [23] also presented a lower average accuracy rate

of 0.9480 when compared with the average accuracy rates of 0.9509, 0.9500 and 0.9492

obtained from three of the k-means clustering segmentation techniques with signifi-

cant differences. The human observer [132] presented a higher average sensitivity of

0.88949 when compared with all the average sensitivity rates of k-means clustering
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segmentation techniques. The higher average sensitivity rate achieved by the human

observer [132] showed the higher detection rate of both large and thin vessels by the

human observer in the retinal images. The human observer [132], however, presented a

significantly lower average accuracy rate of 0.9354 when compared with the average ac-

curacy rates of 0.9509, 0.9500 and 0.9492 obtained from three of the k-means clustering

segmentation techniques.

Four of the proposed k-means clustering techniques (see Table 4.6) presented sig-

nificantly higher AUC rates of 0.9719, 0.9735, 0.9749 and 0.9758 when compared with

the AUC rates 0.9558, 0.9520, 0.9614, 0.7878, 0.9588, 0.9294, 0.9114 0.8984, 0.9543 and

0.963 achieved by the previously proposed techniques by Ricci and Perfetti [20], Staal

et al. [22], Soares et al. [23], Chaudhuri et al. [26], Marin et al. [28], Niemeijer et

al [35] , Jiang and Mojon [38], Zana and Klein [40], Wang et al. [43] and Akram and

Khan [46] on DRIVE.

Three of the proposed k-means clustering techniques on STARE (see Table 4.7)

presented significantly higher AUC rates of 0.9728, 0.9734 and 0.9756 when compared

with the AUC rates of 0.9602, 0.929, 0.9614, 0.9671, 0.9682 and 0.970 achieved by Ricci

and Perfetti [20], Jiang and Mojon [38], Staal et al. [22], Soares et al.[23], Wang et al.

[43] and Akram and Khan [46] respectively.

While all the difference image combined with k-means are computationally faster

when compared with the techniques presented in [22], [23], [28], [43], [83], [84], the

computing environment are different. All the difference image combined with k-means

are computationally faster when compared with the human observer [131](1800 times).

4.5 Tortuosity Measures With Ground Truth

The tortuosity measures computed in the previous chapter utilised chord length, arc

length and the frequency of twists using the stationary points of the vessel curves.

The non-normalised tortuosity index (TI) combined a different distance metric and

the vessel twist frequency as described in equation (3.71). The normalised TI as de-

scribed in equation (3.70), utilised the chord length for the normalisation previously

presented distance metric combined with the twist frequency measure. Table 4.8 shows

the correlation of the tortuosity measures obtained with the expert ground truth using

Spearman’s rank correlation coefficient.

The result obtained shows that the non-normalised metric (TIfreq2) has a stronger

correlation with the expert ground truth with significant differences when compared

with the other techniques investigated.
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Table 4.8: Correlation of Tortuosity Measures With Expert’s Ground Truth

Tortuosity Measure Normal TI Tortuous TI Correlation Measure

Lcurve/Lchord 0 ≤ TI ≤ 1 TI>1 0.73

TIfreq1 0 ≤ TI ≤ 1 TI >1 0.73

TIfreq2 0 ≤ TI ≤ 1 TI >1 0.80

4.6 Summary

The results obtained from the different investigated segmentation techniques show

that the ASM-based local adaptive thresholding technique, IDM-based local adap-

tive thresholding technique and k-means combined with DIMDF, DIMDMNF, and

DIMDGF detect both large and thin vessels in the retinal images.

K-means clustering combined with difference image based on median filtering

(DIMDF) as well as the local adaptive thresholding techniques based on local ho-

mogeneity information and energy information are computationally efficient, robust for

the segmentation of both large and thin retinal vessels, and also reduce the false de-

tection of vessels around the border of the optic disc. These were demonstrated as the

proposed adaptive thresholding techniques and k-means clustering presented higher av-

erage sensitivity, average accuracy and very good specificity rates when compared with

previous works.

The experimental results showed that the proposed TI presented a stronger cor-

relation with the expert’s ground truth. The non-normalised tortuosity index that

combined the different distance metric and the vessel twist frequency has a stronger

correlation with the expert ground truth when compared with the previously presented

distance metric measure in [53], [54], [55], [56], [57] and the normalised TI investigated

in this thesis. Hence, the non-normalised TI measure that combines vessel twist fre-

quency and distance metric is proposed for the measurement of vessel tortuosity in this

thesis.

The next chapter shall give the conclusion of this research and recommendations

for future work.
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Chapter 5

Conclusion and
Recommendations for Future
Work

5.1 Summary and Contribution

A detailed survey of the literature on retinal vessel segmentation and vessel tortuosity

measurement was carried out in this research. Previously proposed unsupervised seg-

mentation methods in the literature are faced with the inability to detect thin vessels as

well as the limitation of connectivity loss of vessel network structures [38], [80]. While

some unsupervised techniques have made significant progress at further improving the

automatic detection of retinal vessels, the detection of thinner vessels remained a chal-

lenge [34], [43]. Although the previously proposed supervised methods achieved higher

average accuracy and sensitivity rates when compared with the previously proposed

unsupervised methods in the literature, the inability to detect thinner vessels and the

high dependence of the supervised methods on training set with the requirement of

retraining when vessels segmentation is performed on new datasets remain their major

drawbacks [16]. The non-availability of reliable labelled training samples by experts for

the supervised segmentation methods which could sometimes be expensive or unavail-

able and the time complexity of supervised segmentation are their other drawbacks

[32], [81]. Furthermore, the reduction of the false positives around the border of the

optic disk in the vessel segmentation techniques [20], [42] needs to be improved. Al-

though several vessel tortuosity methods were discussed in the literature, the need for

an improved tortuosity method is still required.

The afore-mentioned drawbacks of the previous methods in the literature served as
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the motivation of this research to investigate fast unsupervised segmentation model for

an automatic detection of large and thin vessels and the characterisation of the detected

vessels using tortuosity measure that combines distance metric and vessel twists. In

order to address the problems, this research work investigated different unsupervised

segmentation approaches such as global thresholding, local adaptive thresholding and

clustering methods for the robust detection of large and thin retinal vessels in a timely

efficient manner.

Firstly, this research contributes to knowledge by conducting a comparative study

on the use of different global thresholding techniques combined with different pre-

processing and post-processing techniques [69]. Through the investigation of the phase

congruence-based global thresholding approach and Contrast Limited Adaptive His-

togram Equalisation (CLAHE)- based global thresholding approach, this research showed

that some global thresholding techniques are limited in efficiently segmenting thin ves-

sels in retinal images. While investigating the global thresholding approaches, this

research showed that CLAHE based global thresholding techniques based on Otsu and

Isodata thresholds detected the large vessels but failed to detect the thin vessels. This

was due to the fact that the thin vessels have very low contrast and are difficult to distin-

guish from the background tissues using these histogram based thresholding techniques.

Two new multi-scale approaches of computing global threshold based on the different

texture information such as inverse difference moment and sum-entropy combined with

phase congruence pre-processing that could help achieve an improved detection of ves-

sels were implemented to extend the technique proposed by Amin and Hong [48] for

the detection of retinal blood vessels. When compared with [48], the two multi-scale

approaches presented higher average accuracy rates. Phase congruence combined with

the multi-scale approaches of computing global threshold segmented large and some

thin vessels but achieved lower performances on STARE due to some undetected thin

vessels and the reduced width of detected large and thin vessels. Although this resulted

in low sensitivity rates, relatively good accuracy rates are still maintained. Another

comparative study on the use of fuzzy c-means combined with phase congruence and

the GLCM sum entropy combined with phase congruence for vessel segmentation was

achieved in this research. The investigation demonstrated the higher average accuracy

rate but a longer running time fuzzy c-means combined with phase congruence when

compared with the multi-scale based sum entropy thresholding combined with phase

congruence. When compared with the literature, both methods achieved considerable

faster running time.

Another contribution of this research is the implementation of the two novel local
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adaptive thresholding techniques for the segmentation of large and thin retinal vessels

based on two different Haralick texture features namely, local homogeneity and energy.

Although these two texture features have been applied for supervised image segmenta-

tion in the literature, their novelty in this thesis lies in that they are applied using an

unsupervised image segmentation approach. Rather than adopting a global approach,

each of these local adaptive thresholding techniques locally applied a multi-scale ap-

proach on the different texture information considering the pixel of interest and its

relationship with the spacial neighbourhood to compute the local adaptive threshold.

The multi-scale approach handles the challenge of vessel’s width variation. Experiments

showed that the two novel local adaptive thresholding techniques achieved a higher re-

duction of false vessels around the border of the optic disc when compared with some

very good previous techniques in the literature. Experimental results showed that the

average sensitivity rates, average accuracy rates and AUC values of these local adap-

tive techniques showed significant improvements when compared with the unsupervised

and supervised vessel segmentation methods in the literature. These techniques also

achieved a highly improved computational time of 1.9 to 3.9 seconds when compared

with state of the art. Hence, the two novel local adaptive thresholding techniques are

proposed for the segmentation of vessels in retinal images in this thesis.

Another contribution of this research is the investigation of various difference im-

ages combined with k-means clustering technique for the segmentation of large and thin

vessels in retinal images. Different low pass filters such as median filter, mean filter and

Gaussian filter are applied each to smoothen and compute various difference images.

This research established that in order to achieve a good vessel segmentation using

difference images combined with k-means clustering technique, a difference image that

preserves the vessel details of the retinal image is required. The investigation, however,

showed that the median filter yielded the best difference image required by k-means

clustering for the segmentation the retinal vessels. Further experiments showed that

the linear combination of median filter based difference images with Gaussian and mean

filter based difference images respectively when combined with k-means clustering tech-

nique led to the detection of more thinner vessels. Experiments showed that the false

detection around the border of the optic disc were higher on the segmented vessels

obtained by using DIMDMNF, DIMDGF and DIMNGF while combined with k-means

clustering but lesser on the segmented vessels obtained while using k-means combined

with DIMDF. Experimental results showed that the average sensitivity rates, average

accuracy rates and AUC values of these median filter based difference images com-

bined with k-means clustering technique (that is, DIMDF, DIMDMNF and DIMDGF)
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achieved significant improvements when compared with the literature. The median

filter based difference images combined with k-means clustering technique (that is,

DIMDF) also achieved a higher reduction of false vessels around the border of the

optic disc when compared with some very good previous techniques in the literature.

These methods also achieved a highly improved computational time of 3.4 to 4 seconds

when compared with the literature. Hence, median filter based difference images com-

bined with k-means clustering technique (that is, DIMDF, DIMDMNF and DIMDGF)

are proposed for the segmentation of vessels in retinal images.

Furthermore, this research contributes to knowledge by utilising stationary points

on the vessels to detect vessel twists. The detection of the stationary point did not

only help at checking the change of direction and twists in the vessels but also helped

at detecting the straightness and non-straightness of the vessels. The combination of

vessel twist frequency and distance metric for the computation of normalised and non-

normalised tortuosity index (TI)measure was investigated in this research. Experimen-

tal results showed that the non-normalised TI measure has a stronger correlation with

the expert’s ground truth when compared to the distance metric and the normalised TI

measures. Hence, the non-normalised TI measure that combined vessel twist frequency

and distance metric is proposed for the measurement of vessel tortuosity in this thesis.

5.2 Recommendations for Future Work

Considering the high sensitivity, accuracy, AUC and timely efficient rates of the two pro-

posed local adaptive thresholding techniques and the proposed difference images com-

bined with k-means clustering technique (that is, DIMDF, DIMDMNF and DIMDGF),

future work could extend the use of these proposed vessel segmentation techniques to

retinal biometric-based systems. The proposed tortuosity measure that combines vessel

twist frequency based on stationary points with distance metric could be applied for

the progress monitoring of the various retinopathies. The inclusion of retinal images

from various African descents over a period of time may possibly provide interesting

insights into further use of the proposed vessel tortuosity in the progress monitoring of

the retinopathies.
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Table A.1: Comparison of the average sensitivity rates of the different adaptive thresh-
olding technique based on IDM information in the thesis and [1] on DRIVE database.

Method I Method II Z-Score Significant

Thesis IDM(MINRange)
0.7644

IDM(MINRange)[1]
0.7600

5.6 Yes

Thesis IDM(MAXRange)
0.7612

IDM(MAXRange)[1]
0.7612

0 No

Thesis IDM(MEANRange)
0.7390

IDM(MEANRange)[1]
0.7548

19.5 Yes

Thesis IDM(MINIQR)
0.7509

IDM(MINIQR)[1]
0.7354

19.1 Yes

Thesis IDM(MAXIQR)
0.7324

IDM(MAXIQR)[1]
0.7507

22.5 Yes

Thesis IDM(MEANIQR)
0.7454

IDM(MEANIQR)[1]
0.7243

25.7 Yes

Table A.2: Comparison of the average accuracy rates of the different adaptive thresh-
olding technique based on IDM information in this thesis and [1]on DRIVE database

Method I Method II Z-Score Significant

Thesis IDM(MINRange)
0.9468

IDM(MINRange)[1]
0.9447

5 Yes

Thesis IDM(MAXRange)
0.9502

IDM(MAXRange)[1]
0.9474

6.8 Yes

Thesis IDM(MEANRange)
0.9506

IDM(MEANRange)[1]
0.9469

9 Yes

Thesis IDM(MINIQR)
0.9511

IDM(MINIQR)[1]
0.9513

0.5 No

Thesis IDM(MAXIQR)
0.9532

IDM(MAXIQR)[1]
0.9483

12.2 Yes

Thesis IDM(MEANIQR)
0.9521

IDM(MEANIQR)[1]
0.9525

1 No
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Table A.3: Comparison of the average sensitivity rate 0.7612 achieved by adaptive
thresholding technique based on maximum IDM range information and 0.7644 of min-
imum IDM range information with the average sensitivity rates of the other adaptive
thresholding technique based on IDM information on DRIVE database.

Method I Method II Z-Score Significant

IDM(MAXRange)
0.7612

IDM(MEANRange)
0.7390

27.6 Yes

IDM(MAXRange)
0.7612

IDM(MINIQR)
0.7509

12.9 Yes

IDM(MAXRange)
0.7612

IDM(MAXIQR)
0.7327

35.2 Yes

IDM(MAXRange)
0.7612

IDM(MEANIQR)
0.7454

19.7 Yes

IDM(MINRange)
0.7644

IDM(MEANRange)
0.7390

31.6 Yes

IDM(MINRange)
0.7644

IDM(MINIQR)
0.7509

16.9 Yes

IDM(MINRange)
0.7644

IDM(MAXIQR)
0.7327

39.3 Yes

IDM(MINRange)
0.7644

IDM(MEANIQR)
0.7454

23.7 Yes

Table A.4: Comparison of the average accuracy rate 0.9502 achieved by adaptive thresh-
olding technique based on maximum IDM range information with the average sensi-
tivity rates of the other adaptive thresholding technique based on IDM information on
DRIVE database.

Method I Method II Z-Score Significant

IDM(MAXRange)
0.9502

IDM(MINRange)
0.9468

8.3 Yes

IDM(MAXRange)
0.9502

IDM(MEANRange)
0.9506

1 No

IDM(MAXRange)
0.9502

IDM(MINIQR)
0.9511

2.2 Yes

IDM(MAXRange)
0.9502

IDM(MAXIQR)
0.9532

7.5 Yes

IDM(MAXRange)
0.9502

IDM(MEANIQR)
0.9521

4.7 Yes
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Table A.5: Comparison of the average sensitivity rate 0.7661 achieved by adaptive
thresholding technique based on maximum IDM range information with the average
sensitivity rates of the other adaptive thresholding technique based on IDM information
on STARE database.

Method I Method II Z-Score Significant

IDM(MAXRange)
0.7661

IDM(MINRange)
0.7530

17.8 Yes

IDM(MAXRange)
0.7661

IDM(MEANRange)
0.7613

6.6 Yes

IDM(MAXRange)
0.7661

IDM(MINIQR)
0.7662

0.1 No

IDM(MAXRange)
0.7661

IDM(MAXIQR)
0.7506

21.1 Yes

IDM(MAXRange)
0.7661

IDM(MEANIQR)
0.7501

21.7 Yes

Table A.6: Comparison of the average accuracy rate 0.9550 achieved by adaptive thresh-
olding technique based on maximum IDM range information with the average sensi-
tivity rates of the other adaptive thresholding technique based on IDM information on
DRIVE database.

Method I Method II Z-Score Significant

IDM(MAXRange)
0.9550

IDM(MINRange)
0.9546

0.4 No

IDM(MAXRange)
0.9550

IDM(MEANRange)
0.9529

2.2 Yes

IDM(MAXRange)
0.9550

IDM(MINIQR)
0.9492

6.1 Yes

IDM(MAXRange)
0.9550

IDM(MAXIQR)
0.9526

2.6 Yes

IDM(MAXRange)
0.9550

IDM(MEANIQR)
0.9511

4.1 Yes
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Table A.7: Comparison of the maximum AUC rate 0.9722 achieved by adaptive thresh-
olding technique based on maximum IDM IQR information with the AUC rates of the
other adaptive thresholding technique based on IDM information on DRIVE database.

Method I Method II Z-Score Significant

IDM(MAXIQR)
0.9722

IDM(MINRange)
0.9682

12.6 Yes

IDM(MAXIQR)
0.9722

IDM(MAXRange)
0.9707

4.8 Yes

IDM(MAXIQR)
0.9722

IDM(MEANRANGE)
0.9699

7.4 Yes

IDM(MAXIQR)
0.9722

IDM(MINIQR)
0.9713

2.9 Yes

IDM(MAXIQR)
0.9722

IDM(MEANIQR)
0.9705

5.5 Yes

Table A.8: Comparison of the maximum AUC rate 0.9824 achieved by adaptive thresh-
olding technique based on minimum IDM range information with the AUC rates of the
other adaptive thresholding technique based on IDM information on STARE database.

Method I Method II Z-Score Significant

IDM(MINRANGE)
0.9824

IDM(MAXRange)
0.9818

2.6 Yes

IDM(MINRANGE)
0.9824

IDM(MEANRange)
0.9819

2.2 Yes

IDM(MINRANGE)
0.9824

IDM(MINIQR)
0.9642

65.6 Yes

IDM(MINRANGE)
0.9824

IDM(MAXIQR)
0.9741

33.1 Yes

IDM(MINRANGE)
0.9824

IDM(MEANIQR)
0.9705

17.5 Yes
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Table A.9: Comparison of the maximum average sensitivity rate 0.7632 achieved by
adaptive thresholding technique based on maximum ASM range information using green
channel with the average sensitivity rates of the other adaptive thresholding technique
based on ASM range information on DRIVE database.

Method I Method II Z-Score Significant

ASM(MEANRange)
(Green Channel))

0.7632

ASM(MINRange)
(Grey Intensity)

0.7397
29.2 Yes

ASM(MEANRange)
(Green Channel))

0.7632

ASM(MAXRange)
(Grey Intensity)

0.7313
39.4 Yes

ASM(MEANRange)
(Green Channel))

0.7632

ASM(MEANRange)
(Grey Intensity)

0.7375
31.9 Yes

ASM(MEANRange)
(Green Channel))

0.7632

ASM(MINRange)
(Green Channel)

0.7650
2.3 Yes

ASM(MEANRange)
(Green Channel))

0.7632

ASM(MAXRange)
(Green Channel)

0.7560
9.1 Yes
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Table A.10: Comparison of the average accuracy rate 0.9461 (of the maximum average
sensitivity rate) achieved by adaptive thresholding technique based on maximum ASM
range information using green channel with the average accuracy rates of the other
adaptive thresholding technique based on ASM range information on DRIVE database.

Method I Method II Z-Score Significant

ASM(MEANRange)
(Green Channel))

0.9461

ASM(MINRange)
(Grey Intensity)

0.9488
6.5 Yes

ASM(MEANRange)
(Green Channel))

0.9461

ASM(MAXRange)
(Grey Intensity)

0.9511
12.2 Yes

ASM(MEANRange)
(Green Channel))

0.9461

ASM(MEANRange)
(Grey Intensity)

0.9503
10.2 Yes

ASM(MEANRange)
(Green Channel))

0.9461

ASM(MINRange)
(Green Channel)

0.9499
9.2 Yes

ASM(MEANRange)
(Green Channel))

0.9461

ASM(MAXRange)
(Green Channel)

0.9477
3.8 No
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Table A.11: Comparison of the maximum average sensitivity rate 0.7641 achieved by
adaptive thresholding technique based on maximum ASM range information using green
channel with the average sensitivity rates of the other adaptive thresholding technique
based on ASM range information on STARE database.

Method I Method II Z-Score Significant

ASM(MAXRange)
(Green Channel))

0.7641

ASM(MINRange)
(Grey Intensity)

0.7458
24.7 Yes

ASM(MAXRange)
(Green Channel))

0.7641

ASM(MAXRange)
(Grey Intensity)

0.7428
28.7 Yes

ASM(MAXRange)
(Green Channel))

0.7641

ASM(MEANRange)
(Grey Intensity)

0.7427
28.9 Yes

ASM(MAXRange)
(Green Channel))

0.7641

ASM(MINRange)
(Green Channel)

0.7542
13.5 Yes

ASM(MAXRange)
(Green Channel))

0.7641

ASM(MEANRange)
(Green Channel)

0.7626
2.1 Yes
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Table A.12: Comparison of the maximum average accuracy rate 0.9510 achieved by
adaptive thresholding technique based on mean ASM range information using green
channel with the average accuracy rates of the other adaptive thresholding technique
based on ASM range information on DRIVE database.

Method I Method II Z-Score Significant

ASM(MEANRange)
(Green Channel))

0.9510

ASM(MINRange)
(Grey Intensity)

0.9485
6.2 Yes

ASM(MEANRange)
(Green Channel))

0.9510

ASM(MAXRange)
(Grey Intensity)

0.9500
2.5 Yes

ASM(MEANRange)
(Green Channel))

0.9510

ASM(MEANRange)
(Grey Intensity)

0.9504
1.5 No

ASM(MEANRange)
(Green Channel))

0.9510

ASM(MINRange)
(Green Channel)

0.9457
12.9 Yes

ASM(MEANRange)
(Green Channel))

0.9510

ASM(MAXRange)
(Green Channel)

0.9500
2.5 Yes

Table A.13: Comparison of the maximum AUC rate 0.9711 achieved by adaptive thresh-
olding technique based on maximum ASM range information of grey intensity image
with the AUC rates of the other adaptive thresholding technique based on ASM infor-
mation on DRIVE database.

Method I Method II Z-Score Significant

ASM(MAXGrey)
0.9711

ASM(MINGrey)
0.9656

16.9 Yes

ASM(MAXGrey)
0.9711

ASM(MEANGrey)
0.9698

4.1 Yes

ASM(MAXGrey)
0.9711

ASM(MINGreen)
0.9634

23.3 Yes

ASM(MAXGrey)
0.9711

ASM(MAXGreen)
0.9680

9.7 Yes

ASM(MAXGrey)
0.9711

ASM(MEANGreen)
0.9658

16.3 Yes

116



Table A.14: Comparison of the average sensitivity rates of K-Means With DIMDMNF,
K-Means With DIMDGF and K-Means combined with other Median Based Difference
Images on DRIVE database.

Method I Method II Z-Score Significant

K-Means With DIMDMNF
0.7581

K-Means With DIMDF
0.7399

22.6 Yes

K-Means With DIMDMNF
0.7581

K-Means With DIMDGF
0.7518

7.9 Yes

K-Means With DIMDGF
0.7518

K-Means With DIMDF
0.7399

14.7 Yes

Table A.15: Comparison of the average sensitivity rates of K-Means With DIMDMNF,
K-Means With DIMDGF and K-Means combined with other Median Based Difference
Images on STARE database.

Method I Method II Z-Score Significant

K-Means & DIMDMNF
0.7752

K-Means & DIMDF
0.7372

51.5 Yes

K-Means & DIMDMNF
0.7752

K-Means & DIMDGF
0.7666

11.9 Yes

K-Means & DIMDGF
0.7666

K-Means & DIMDF
0.7372

39.6 Yes

Table A.16: Comparison of the AUC rates of K-Means With DIMDMNF, K-Means
With DIMDGF and K-Means combined with other Median Based Difference Images
on DRIVE database.

Method I Method II Z-Score Significant

K-Means & DIMDGF
0.9758

K-Means & DIMDMNF
0.9749

3.1 Yes

K-Means & DIMDGF
0.9758

K-Means & DIMDF
0.9735

7.9 Yes

K-Means & DIMDGF
0.9758

K-Means & DIMNGF
0.9719

13.1 Yes
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Table A.17: Comparison of the AUC rates of K-Means With DIMDMNF, K-Means
With DIMDGF and K-Means combined with other Median Based Difference Images
on STARE database.

Method I Method II Z-Score Significant

K-Means & DIMDGF
0.9734

K-Means & DIMDMNF
0.9728

2.2 Yes

K-Means & DIMDF
0.9756

K-Means & DIMDGF
0.9734

8.1 Yes

K-Means & DIMDF
0.9756

K-Means & DIMDMNF
0.9728

10.3 Yes

K-Means & DIMDF
0.9756

K-Means & DIMNGF
0.9463

87.9 Yes
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Table A.18: Comparison of the average sensitivity rates 0.7327, 0.7390, 0.7454, 0.7509,
0.7612 and 0.7644 achieved by adaptive thresholding technique based IDM information
using green channel with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Sens. rates

of Local IDM Info.
0.7327

Chaudhuri et al. [26]
0.3357

427.7 Yes

””
Jiang and Mojon [38]

0.6399
107.5 Yes

””
Zana and Klein [40]

0.6971
42.4 Yes

””
Martinez-Perez et al. [135]

0.6389
108.6 Yes

””
Niemeijer et al [35]

0.7145
21.9 Yes

””
Yin et al. [87]

0.6522
93.7 Yes

Local IDM info.
rate 0.7509

Vlachos and Dermatas [41]
0.7468

5.1 Yes

Local IDM info.
rate 0.7612

Vlachos and Dermatas [41]
0.7468

18 Yes

Local IDM info.
rate 0.7644

Vlachos and Dermatas [41]
0.7468

22 Yes

Local IDM info.
rate 0.7454

Mendonca et al. [84]
0.7315

17 Yes

Local IDM info.
rate 0.7509

Mendonca et al. [84]
0.7315

23.8 Yes

Local IDM info.
rate 0.7612

Mendonca et al. [84]
0.7315

36.7 Yes

Local IDM info.
rate 0.7644

Mendonca et al. [84]
0.7315

40.7 Yes

Local IDM info.
rate 0.7454

Staal et al. [22]
0.7345

13.4 Yes

Local IDM info.
rate 0.7509

Staal et al. [22]
0.7345

20.2 Yes

Local IDM info.
rate 0.7612

Staal et al. [22]
0.7345

33 Yes

Local IDM info.
rate 0.7644

Staal et al. [22]
0.7345

37.1 Yes

Local IDM info.
rate 0.7612

Xiao et al. [83]
0.7513

12.4 Yes

Local IDM info.
rate 0.7644

Xiao et al. [83]
0.7513

16.4 Yes
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Table A.19: Comparison of the average sensitivity rates 0.7313, 0.7375, 0.7397, 0.7560,
0.7632 and 0.7650 achieved by adaptive thresholding technique based ASM information
using green channel with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Sens. rates

of Local ASM Info.
0.7313

Chaudhuri et al. [26]
0.3357

426.2 Yes

””
Jiang and Mojon [38]

0.6399
105.8 Yes

””
Zana and Klein [40]

0.6971
40.7 Yes

””
Martinez-Perez et al. [135]

0.6389
106.9 Yes

””
Niemeijer et al [35]

0.7145
20.2 Yes

””
Yin et al. [87]

0.6522
92.1 Yes

Least of the Five
Avg. Sens. rates

of Local ASM Info.
0.7375

Mendonca et al. [84]
0.7315

7.3 Yes

Least of the Three
Avg. Sens. rates

of Local ASM Info.
0.7560

Vlachos and Dermatas [41]
0.7468

11.4 Yes

Local ASM info.
rate 0.7375

Staal et al. [22]
0.7345

3.7 Yes

Local ASM info.
rate 0.7397

Staal et al. [22]
0.7345

6.3 Yes

Local ASM info.
rate 0.7560

Staal et al. [22]
0.7345

26.5 Yes

Local ASM info.
rate 0.7632

Staal et al. [22]
0.7345

35.6 Yes

Local ASM info.
rate 0.7650

Staal et al. [22]
0.7345

37.8 Yes

Local ASM info.
rate 0.7560

Xiao et al. [83]
0.7513

5.9 Yes

Local ASM info.
rate 0.7632

Xiao et al. [83]
0.7513

14.9 Yes

Local ASM info.
rate 0.7650

Xiao et al. [83]
0.7513

17.2 Yes
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Table A.20: Comparison of the average sensitivity rates 0.7501, 0.7506, 0.7530, 0.7613,
0.7661 and 0.7662 achieved by adaptive thresholding technique based IDM information
using green channel with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Sens. rates

of Local IDM Info.
0.7501

Hoover et al. [21]
0.6751

96.4 Yes

””
Staal et al. [22]

0.6970
69 Yes

””
Mendonca et al. [84]

0.7123
49.6 Yes

Local IDM info.
rate 0.7612

Xiao et al. [83]
0.7147

46.5 Yes

””
Yin et al. [87]

0.7248
33.4 Yes

Table A.21: Comparison of the average sensitivity rates 0.7427, 0.7428, 0.7458, 0.7542,
0.7626 and 0.7641 achieved by adaptive thresholding technique based ASM information
using green channel with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Sens. rates

of Local IDM Info.
0.7427

Hoover et al. [21]
0.6751

86.5 Yes

””
Staal et al. [22]

0.6970
59.2 Yes

””
Mendonca et al. [84]

0.7123
39.7 Yes

””
Xiao et al. [83]

0.7147
36.6 Yes

””
Yin et al. [87]

0.7248
23.5 Yes
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Table A.22: Comparison of the average accuracy rates 0.9532, 0.9506, 0.9521, 0.9511,
0.9502 and 0.9468 achieved by adaptive thresholding technique based IDM information
with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

of Local IDM Info.
0.9468

Chaudhuri et al. [26]
0.8773

82.7 Yes

””
Jiang and Mojon [38]

0.9212
34.7 Yes

””
Zana and Klein [40]

0.9377
13.1 Yes

””
Martinez-Perez et al. [135]

0.9181
38.5 Yes

””
Niemeijer et al [35]

0.9416
7.6 Yes

””
Yin et al. [87]

0.9267
27.8 Yes

””
Vlachos and Dermatas [41]

0.9285
25.5 Yes

””
Szpak and Tapamo [138]

0.9299
23.7 Yes

Least of the Five
Avg. Acc. rates

of Local IDM Info.
0.9502

Akram and Khan [46]
0.9469

5 Yes

””
Marin et al. [28]

0.9452
7.6 Yes

””
Soares et al.[23]

0.9466
5.5 Yes

””
Wang et al. [43]

0.9461
6.2 Yes

””
Mendonca et al. [84]

0.9463
5.9 Yes

””
Staal et al. [22]

0.9442
9 Yes

””
Human Observer [131]

0.9473
4.4 Yes
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Table A.23: Comparison of the average accuracy rates 0.9511, 0.9503, 0.9488, 0.9477,
0.9461 and 0.9449 achieved by adaptive thresholding technique based ASM information
with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

of Local ASM Info.
0.9449

Chaudhuri et al. [26]
0.8773

80 Yes

””
Jiang and Mojon [38]

0.9212
31.9 Yes

””
Zana and Klein [40]

0.9377
10.3 Yes

””
Martinez-Perez et al. [135]

0.9181
35.7 Yes

””
Niemeijer et al [35]

0.9416
4.8 Yes

””
Yin et al. [87]

0.9267
25 Yes

””
Vlachos and Dermatas [41]

0.9285
22.7 Yes

””
Szpak and Tapamo [138]

0.9299
20.9 Yes

Least of the Five
Avg. Acc. rates

of Local ASM Info.
0.9461

Staal et al. [22]
0.9442

2.8 Yes

Least of the Four
Avg. Acc. rates

of Local ASM Info.
0.9477

Marin et al. [28]
0.9452

3.7 Yes

””
Soares et al.[23]

0.9466
1.7 Yes

””
Mendonca et al. [84]

0.9463
2.1 Yes

””
Wang et al. [43]

0.9461
2.4 Yes

Least of the Three
Avg. Acc. rates

of Local ASM Info.
0.9488

Akram and Khan [46]
0.9469

2.9 Yes

””
Human Observer [131]

0.9473
2.3 Yes
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Table A.24: Comparison of the average accuracy rates 0.9511, 0.9526, 0.9546, 0.9529,
0.9550 and 0.9492 achieved by adaptive thresholding technique based IDM information
with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

of Local ASM Info.
0.9492

Hoover et al. [21]
0.9275

38.1 Yes

””
Jiang and Mojon [38]

0.9009
77.6 Yes

””
Mendonca et al. [84]

0.9479
2.5 Yes

””
Xiao et al. [83]

0.9476
3.1 Yes

””
Yin et al. [87]

0.9412
14.9 Yes

””
Soares et al.[23]

0.9480
2.3 Yes

””
Human Observer [132]

0.9354
25 Yes

Least of the Four
Avg. Acc. rates

of Local ASM Info.
0.9526

Staal et al. [22]
0.9516

2 Yes

””
Akram and Khan [46]

0.9502
4.7 Yes

0.9529
Marin et al. [28]

0.9526
0.6 No

0.9546
Marin et al. [28]

0.9526
4 Yes

0.9550
Marin et al. [28]

0.9526
4.8 Yes

0.9526
Wang et al. [43]

0.9521
1 No

0.9529
Wang et al. [43]

0.9521
1.6 No

0.9546
Wang et al. [43]

0.9521
5 Yes

0.9550
Wang et al. [43]

0.9521
5.8 Yes
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Table A.25: Comparison of the average accuracy rates 0.9504, 0.9500, 0.9485, 0.9457,
0.9510 and 0.9500 achieved by adaptive thresholding technique based ASM information
with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

of Local ASM Info.
0.9457

Hoover et al. [21]
0.9275

31.6 Yes

””
Jiang and Mojon [38]

0.9009
71.2 Yes

””
Yin et al. [87]

0.9412
8.2 Yes

””
Human Observer [132]

0.9354
18.4 Yes

0.9485
Mendonca et al. [84]

0.9479
1.1 No

0.9500
Mendonca et al. [84]

0.9479
4 Yes

0.9500
Mendonca et al. [84]

0.9479
4 Yes

0.9504
Mendonca et al. [84]

0.9479
4.8 Yes

0.9510
Mendonca et al. [84]

0.9479
6 Yes

Least of the Five
Avg. Acc. rates

of Local ASM Info.
0.9485

Xiao et al. [83]
0.9476

1.7 Yes

0.9485
Soares et al.[23]

0.9480
1 No

0.9500
Soares et al.[23]

0.9480
3.8 Yes

0.9500
Soares et al.[23]

0.9480
3.8 Yes

0.9504
Soares et al.[23]

0.9480
4.6 Yes

0.9510
Soares et al.[23]

0.9480
5.8 Yes

0.9504
Akram and Khan [46]

0.9502
0.4 No

0.9510
Akram and Khan [46]

0.9502
1.6 No
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Table A.26: Comparison of the average sensitivity rates 0.6315, 0.6459, 0.7079, 0.7399,
0.7518 and 0.7581 achieved by K-means clustering methods with the other techniques
in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Four
Avg. Sens. rates

K-means clustering
0.7079

Chaudhuri et al. [26]
0.3357

400.4 Yes

””
Jiang and Mojon [38]

0.6399
78 Yes

””
Zana and Klein [40]

0.6971
12.7 Yes

””
Martinez-Perez et al. [135]

0.6389
79.1 Yes

””
Yin et al. [87]

0.6522
64.2 Yes

Least of the Two
Avg. Sens. rates

K-means clustering
0.7518

Vlachos and Dermatas [41]
0.7468

6.2 Yes

Least of the Three
Avg. Sens. rates

K-means clustering
0.7399

Niemeijer et al [35]
0.7145

30.6 Yes

””
Mendonca et al. [84]

0.7315
10.2 Yes

””
Staal et al. [22]

0.7345
6.6 Yes

0.7518
Xiao et al. [83]

0.7513
0.6 No

0.7581
Xiao et al. [83]

0.7513
8.5 Yes
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Table A.27: Comparison of the average sensitivity rates 0.6516, 0.6567, 0.6979, 0.7372,
0.7666 and 0.7772 achieved by K-means clustering methods with the other techniques
in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Four
Avg. Sens. rates

K-means clustering
0.6979

Hoover et al. [21]
0.6751

28.6 Yes

0.6979
Staal et al. [22]

0.6970
1.1 No

0.7372
Staal et al. [22]

0.6970
51.9 Yes

0.7666
Staal et al. [22]

0.6970
91.3 Yes

0.7772
Staal et al. [22]

0.6970
105.9 Yes

Least of the Four
Avg. Sens. rates

K-means clustering
0.7372

Mendonca et al. [84]
0.7123

32.4 Yes

””
Xiao et al. [83]

0.7147
29.3 Yes

””
Yin et al. [87]

0.7248
16.3 Yes
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Table A.28: Comparison of the average accuracy rates 0.9555, 0.9555, 0.9523, 0.9556,
0.9531 and 0.9516 achieved by K-means clustering methods with the other techniques
in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

K-means clustering
0.9516

Chaudhuri et al. [26]
0.8773

89.5 Yes

””
Jiang and Mojon [38]

0.9212
42 Yes

””
Zana and Klein [40]

0.9377
20.5 Yes

””
Martinez-Perez et al. [135]

0.9181
45.7 Yes

””
Niemeijer et al [35]

0.9416
15 Yes

””
Yin et al. [87]

0.9267
35.1 Yes

””
Vlachos and Dermatas [41]

0.9285
32.8 Yes

””
Szpak and Tapamo [138]

0.9299
31 Yes

””
Akram and Khan [46]

0.9469
7.2 Yes

””
Marin et al. [28]

0.9452
9.7 Yes

””
Soares et al.[23]

0.9466
7.7 Yes

””
Wang et al. [43]

0.9461
8.4 Yes

””
Mendonca et al. [84]

0.9463
8.1 Yes

””
Staal et al. [22]

0.9442
11.2 Yes

””
Human Observer [131]

0.9473
6.6 Yes
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Table A.29: Comparison of the average accuracy rates 0.9312, 0.9344, 0.9340, 0.9509,
0.9500 and 0.9492 achieved by K-means clustering methods with the other techniques
in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
Avg. Acc. rates

K-means clustering
0.9312

Hoover et al. [21]
0.9275

6.1 Yes

””
Jiang and Mojon [38]

0.9009
46.2 Yes

Least of the Three
Avg. Acc. rates

K-means clustering
0.9492

Mendonca et al. [84]
0.9479

2.5 Yes

””
Xiao et al. [83]

0.9476
3.1 Yes

””
Yin et al. [87]

0.9412
14.9 Yes

””
Soares et al.[23]

0.9480
2.3 Yes

””
Human Observer [132]

0.9354
25 Yes

0.9509
Akram and Khan [46]

0.9502
1.4 No
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Table A.30: Comparison of the AUC rates 0.9682, 0.9707, 0.9699, 0.9713, 0.9722 and
0.9705 achieved by the proposed adaptive thresholding techniques based on different
IDM information with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
AUC rates

of Local IDM Info.
0.9682

Chaudhuri et al. [26]
0.7878

296.2 Yes

””
Jiang and Mojon [38]

0.9114
128.3 Yes

””
Zana and Klein [40]

0.8984
150.3 Yes

””
Ricci and Perfetti [20]

0.9558
34.9 Yes

””
Niemeijer et al [35]

0.9294
94.6 Yes

””
Staal et al. [22]

0.9520
44.5 Yes

””
Wang et al. [43]

0.9543
38.7 Yes

””
Marin et al. [28]

0.9588
26.9 Yes

””
Akram and Khan [46]

0.963
15.3 Yes

””
Soares et al. [23]

0.9614
19.8 Yes
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Table A.31: Comparison of the AUC rates 0.9642, 0.9705, 0.9741, 0.9818, 0.9819 and
0.9824 achieved by the proposed adaptive thresholding techniques based on different
IDM information with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
AUC rates

of Local IDM Info.
0.9642

Jiang and Mojon [38]
0.929

91 Yes

””
Ricci and Perfetti [20]

0.9602
12.2 Yes

””
Staal et al. [22]

0.9614
8.6 Yes

Least of the Five
AUC rates

of Local IDM Info.
0.9705

Wang et al. [43]
0.9682

7.8 Yes

””
Soares et al. [23]

0.9671
11.4 Yes

Least of the Four
AUC rates

of Local IDM Info.
0.9741

Akram and Khan [46]
0.970

14.5 Yes

Least of the Three
AUC rates

of Local IDM Info.
0.9818

Marin et al. [28]
0.9769

20 Yes
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Table A.32: Comparison of the AUC rates 0.9656, 0.9711, 0.9698, 0.9734, 0.9680 and
0.9658 achieved by the proposed adaptive thresholding techniques based on different
ASM information with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Six
AUC rates

of Local ASM Info.
0.9656

Chaudhuri et al. [26]
0.7878

290.6 Yes

””
Jiang and Mojon [38]

0.9114
121.2 Yes

””
Zana and Klein [40]

0.8984
143.5 Yes

””
Ricci and Perfetti [20]

0.9558
27.1 Yes

””
Niemeijer et al [35]

0.9294
87.2 Yes

””
Staal et al. [22]

0.9520
36.8 Yes

””
Wang et al. [43]

0.9543
31 Yes

””
Marin et al. [28]

0.9588
19.2 Yes

””
Akram and Khan [46]

0.963
7.5 Yes

””
Soares et al. [23]

0.9614
12 Yes
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Table A.33: Comparison of the AUC rates 0.9671, 0.9681, 0.9695, 0.9745, 0.9781 and
0.9782 achieved by the proposed adaptive thresholding techniques based on different
ASM information with the other techniques in the literature on STARE database.

Method I Method II Z-Score Significant

Least of the Six
AUC rates

of Local ASM Info.
0.9671

Jiang and Mojon [38]
0.929

99.8 Yes

””
Ricci and Perfetti [20]

0.9602
21.4 Yes

””
Staal et al. [22]

0.9614
17.8 Yes

Least of the Four
AUC rates

of Local ASM Info.
0.9695

Wang et al. [43]
0.9682

4.4 Yes

””
Soares et al. [23]

0.9671
8 Yes

Least of the Three
AUC rates

of Local ASM Info.
0.9745

Akram and Khan [46]
0.970

15.9 Yes

Least of the Two
AUC rates

of Local ASM Info.
0.9781

Marin et al. [28]
0.9769

4.7 Yes
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Table A.34: Comparison of the AUC rates 0.9735, 0.9749 and 0.9758 achieved K-means
clustering methods with the other techniques in the literature on DRIVE database.

Method I Method II Z-Score Significant

Least of the Three
AUC rates

K-means clustering
0.9719

Chaudhuri et al. [26]
0.7878

304.3 Yes

””
Jiang and Mojon [38]

0.9114
138.7 Yes

””
Zana and Klein [40]

0.8984
160.4 Yes

””
Ricci and Perfetti [20]

0.9558
46.4 Yes

””
Niemeijer et al [35]

0.9294
105.5 Yes

””
Staal et al. [22]

0.9520
55.9 Yes

””
Wang et al. [43]

0.9543
50.2 Yes

””
Marin et al. [28]

0.9588
38.5 Yes

””
Akram and Khan [46]

0.963
27 Yes

””
Soares et al. [23]

0.9614
31.4 Yes
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Table A.35: Comparison of the AUC rates 0.9463, 0.9728, 0.9734 and 0.9756 achieved
K-means clustering methods with the other techniques in the literature on STARE
database.

Method I Method II Z-Score Significant

Least of the Three
AUC rates

K-means clustering
0.9728

Jiang and Mojon [38]
0.929

117.8 Yes

””
Ricci and Perfetti [20]

0.9602
40.7 Yes

””
Staal et al. [22]

0.9614
37.2 Yes

””
Wang et al. [43]

0.9682
15.8 Yes

””
Akram and Khan [46]

0.970
9.8 Yes

””
Soares et al. [23]

0.9671
19.4 Yes

Table A.36: Comparison of the maximum correlation value 0.80 achieved by non-
normalised metric (TIfreq2) with the normalised metric (TIfreq1) and distance metric
Lcurve/Lchord of the vessel tortuosity measures.

Method I Method II Z-Score Significant

non-normalised metric
(TIfreq2)

0.80

distance metric
Lcurve/Lchord

0.73
12 Yes

non-normalised metric
(TIfreq2)

0.80

normalised metric
(TIfreq1)

0.73
12 Yes
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Appendix B

Additional Dataset

MESSIDOR database was established to facilitate studies on computer-assisted diag-

noses of diabetic retinopathy. The database is made up of 1200 eye fundus coloured

retinal images acquired by 3 ophthalmologic departments using a color video 3CCD

camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45 degree field of

view. The retinal images were captured using 8 bits per color plane at 1440*960,

2240*1488 or 2304*1536 pixels. Eight hundred images were acquired with pupil dila-

tion (one drop of Tropicamide at 0.5%) and four hundred images without dilation. This

database has no ground truth for vessel segmentation but rather provides grading for

diabetic retinopathy and risk of macular endema. We randomly selected 261 coloured

retinal images from this database and the vessel segmentation techniques proposed in

this research are applied on the dataset.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure B.1: Difference Images Combined With K-Means Clustering Technique for Ves-
sel Segmentation on Messidor database [183]. (a) to (d) Messidor database Coloured
Retinal Images. (e) to (h) Segmented Retinal Vessel Using Difference Image Based on
Median Filter Combined With K-Means Clustering Technique. (i) to (l) Segmented
Retinal Vessel Using Difference Image Based on Median Filter and Gaussian Filter
Combined With K-Means Clustering Technique. (m) to (p) Segmented Retinal Ves-
sel Using Difference Image Based on Median Filter and Mean Filter Combined With
K-Means Clustering Technique.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure B.2: Difference Images Combined With K-Means Clustering Technique for Ves-
sel Segmentation on Messidor database [183]. (a) to (d) Messidor database Coloured
Retinal Images. (e) to (h) Segmented Retinal Vessel Using Difference Image Based on
Median Filter Combined With K-Means Clustering Technique. (i) to (l) Segmented
Retinal Vessel Using Difference Image Based on Median Filter and Gaussian Filter
Combined With K-Means Clustering Technique. (m) to (p) Segmented Retinal Ves-
sel Using Difference Image Based on Median Filter and Mean Filter Combined With
K-Means Clustering Technique.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure B.3: Adaptive Thresholding Techniques for Vessel Segmentation on Messidor
database [183]. (a), (d), (g), (j) & (m) Messidor database Coloured Retinal Images.
(b), (e), (h), (k) & (n) Segmented Retinal Vessel Using Adaptive Thresholding Based
on Energy Information. (c), (f), (i), (l) & (o) Segmented Retinal Vessel Using Adaptive
Thresholding Based on IDM Information.
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Figure B.4: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on IDM Inter-Quartile Range Information on DRIVE

Figure B.5: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on IDM Range Information on DRIVE
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Figure B.6: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on IDM Inter-Quartile Range Information on STARE

Figure B.7: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on IDM Range Information on STARE
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Figure B.8: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on ASM Using Grey-Scale on DRIVE

Figure B.9: ROC Curves Showing the Performance of each of the Adaptive Threshold-
ing Based on ASM Using Green-Channel on DRIVE
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Figure B.10: ROC Curves Showing the Performance of each of the Adaptive Thresh-
olding Based on ASM Using Grey-Scale on STARE

Figure B.11: ROC Curves Showing the Performance of each of the Adaptive Thresh-
olding Based on ASM Using Green-Channel on STARE
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Figure B.12: ROC Curves Showing the Performance of K-Means Clustering Combined
with each of the Single Difference Image on DRIVE

Figure B.13: ROC Curves Showing the Performance of K-Means Clustering Combined
with each of the Hybrid Difference Image on DRIVE
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Figure B.14: ROC Curves Showing the Performance of K-Means Clustering Combined
with each of the Single Difference Image on STARE

Figure B.15: ROC Curves Showing the Performance of K-Means Clustering Combined
with each of the Hybrid Difference Image on STARE
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[150] C. A. Lupaşcu, “Unsupervised segmentation of retinal vessels.”

[151] A. J. Bedell, “Retinal vessel proliferation in diabetes,” Transactions of the Amer-

ican Ophthalmological Society, vol. 43, p. 271, 1945.

[152] J. Kylstra, T. Wierzbicki, M. Wolbarsht, M. Landers III, and E. Stefansson, “The

relationship between retinal vessel tortuosity, diameter, and transmural pressure,”

Graefe’s archive for clinical and experimental ophthalmology, vol. 224, no. 5, pp.

477–480, 1986.

[153] M. Patasius, V. Marozas, A. Lukosevicius, and D. Jegelevicius, “Model based

investigation of retinal vessel tortuosity as a function of blood pressure: prelimi-

nary results,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007.

29th Annual International Conference of the IEEE. IEEE, 2007, pp. 6459–6462.

[154] L. S. Lim, C. Y. Cheung, X. Lin, P. Mitchell, T. Y. Wong, and S.-M. Saw,

“Influence of refractive error and axial length on retinal vessel geometric charac-

teristics,” Investigative ophthalmology & visual science, pp. iovs–10, 2010.

[155] M. B. Sasongko, J. J. Wang, K. C. Donaghue, N. Cheung, P. Benitez-Aguirre,

A. Jenkins, W. Hsu, M.-L. Lee, and T. Y. Wong, “Alterations in retinal mi-

crovascular geometry in young type 1 diabetes,” Diabetes Care, vol. 33, no. 6, pp.

1331–1336, 2010.

[156] G. Dougherty, M. J. Johnson, and M. D. Wiers, “Measurement of retinal vas-

cular tortuosity and its application to retinal pathologies,” Medical & biological

engineering & computing, vol. 48, no. 1, pp. 87–95, 2010.
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