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Abstract 

 

Carbon nanotubes (CNTs) are among the most studied and extremely versatile and useful 

materials when it comes to nanoscience and nanotechnology.  CNTs are considered chemically 

stable, have excellent electrical and thermal conducting characteristics, and have excellent 

mechanical properties.  Their unique physical–chemical properties are the main reason they have 

found use in various applications that include sensors, batteries, supercapacitors, polymer 

composites, catalyst supports, display technology, absorbents, and construction materials.  One 

of the biggest challenges with low to intermediate temperature solid oxide fuel cells (SOFC) is 

developing a material that exhibits superior electrochemical performance and excellent ionic and 

electronic conductivity at 300–600 °C, i.e. low to intermediate temperatures, for solid oxide fuel 

cell operation.  To address this challenge, MWCNT/perovskite type (Ce0.6Sr0.4Fe0.8Co0.2O3) 

nanocomposites have been synthesized by Chemical Vapour Deposition (CVD) and sol–gel 

techniques.  The materials were characterized by Fourier Transform Infrared Spectroscopy 

(FTIR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), X–Ray Diffraction (XRD) 

and temperature programmed X–Ray Diffraction (XRD), Scanning Electron Microscopy Energy 

Dispersive X–Ray Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and 

High Resolution Transmission Electron Microscopy (HRTEM).  It was found that the CNT’s 

allowed for the formation of perovskite phases at temperatures as low as 600 °C. The 

nanocomposites have some thermal stability at 560 °C and above this temperature MWCNTs 

will rapidly burn.  CVD and sol–gel synthesis methods resulted in some coverage of the 

MWCNTs with the perovskite materials.  Tests at 300, 400 and 500 °C showed moderate power 

outputs of 44, 74 and 117 mW.cm
-2

, respectively.  These were better than the control system 

without nanotubes. 
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Chapter One 

Introduction 

 

Solid oxide fuel cells (SOFCs) are known as electrochemical energy conversion devices that 

produce electricity through chemical reactions between an oxidant and a fuel gas.  The important 

components for the chemical reactions in SOFC systems are an anode, a cathode and an 

electrolyte.  An external oxidant, normally oxygen from the air, is supplied at the cathode.  

Molecular oxygen is then reduced at the porous air electrode (cathode) to give oxygen anions [1, 

2].  The produced ions migrate through the solid electrolyte (in this case yttria–stabilized 

zirconia (YSZ)) to the fuel electrode, and chemically react with the fuel, H2 or a hydrocarbon 

(e.g. CH4), to give H2O or CO2 plus heat and electricity.  The advantages of SOFC over other 

types of fuel cells are higher energy efficiency and excellent fuel flexibility [3-5].  The 

applications of SOFCs can be found in mobile and also in stationary energy systems.  Some of 

the examples of stationary SOFCs are heat and power systems for a house, factory or off grid 

power for a small settlement [6-12].  In terms of transportation systems and portable equipment, 

some SOFC systems have been developed and demonstrated as auxiliary power units for 

commercial trucks, and as portable generators for home–based and commercial environments [6, 

7, 10-13].  

It is known that SOFC processes are mainly possible at higher temperatures (800–1000 °C).  

These higher temperatures are problematic because they result in various forms of degradation, 

provide immense technological challenges and economic obstacles [14].  In order to 

commercialize SOFC technology, operating temperatures need to be further reduced so that more 

conventional materials can be used.  In addition, this will allow more widespread applications in 

various mobile and portable systems.  Unfortunately, SOFC performance decreases as the 

operating temperature is reduced especially due to increased ohmic resistance at the cathode.  

Therefore, low temperature (300–600 °C) solid oxide fuel cells (LT–SOFCs) with improved 

electrochemical performance have been the subject of extensive investigation for several decades 

and still continue to be an active area of research [15].   
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Extensive research on the development of LT-SOFCs has been done by re–designing the cell, 

reducing the electrolyte thickness, or by developing new materials with higher ionic 

conductivities, high electrolytic activity, low chemical reactivity and superior physical 

characteristics [14].  Despite the fact that IT–SOFC materials operating at temperatures between 

600 - 800 °C have been reported in the literature there is still room for improvement to develop 

new systems that can operate below these temperatures [5, 16, 17].  This can be achieved by 

introducing materials with high mixed ionic–electronic conductivities (MIECs).  Additionally, a 

buffer layer of CGO can be used to avoid reactions between YSZ and GBCO and achieve high 

performance [18, 19].  

Perovskites (ABO3) with lanthanides or group two rare earth metals in the A–site and a mixture 

of transition metal occupying the B–site have shown excellent ionic–electronic conductivities.  

Previous research on perovskites as candidate materials for IT–SOFCs operating at temperatures 

ranging from 600–800 °C have found that the performance of the SOFC is not only dependent on 

the operating temperature of the system, but also depends on the particle size and morphology 

[17].   

Past research efforts have been focused on improving the electrochemical performance of LT–

SOFC materials by reducing the particle size of the material through the modification of sol–gel 

methods.  Stability under atmospheres containing CO and chemical compatibility of 

GdBaCo2O5+x with different oxide ion conductors as cathode materials for SOFC have been 

studied by Tarancon et al. [18, 19].  The introduction of multiwall carbon nanotubes (MWCNTs) 

as templates in the development of perovskite materials with reduced particle size has been 

found to be a promising strategy for developing LT–SOFCs with small particle size.  It was 

found that CNTs improve the performance of LT–SOFCs, and when used as composite materials 

with perovskite–type oxides resulted in enhanced electrical characteristics of LT–SOFCs [16, 17, 

20].  

The parameters of synthesis play a significant role in determining the microstructure of SOFC 

materials.  Currently, sol–gel methods are being used to synthesize MWCNT/perovskite type 

oxides as cathode materials that operate at 700–800 °C for SOFCs.  Little is known about the 

performance of these materials in SOFCs operating at temperatures of 300–500 °C.  The present 

work is focused on the synthesis and characterization of the electrochemical performance of 
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cathode composites for LT–SOFCs.  The use of MWCNTs as templates is proposed, as a 

possible way to achieving reduced particle size for the LT–SOFCs.   

The purpose of the present work is to investigate the electrochemical performance of new SOFC 

composite cathode materials developed for low operating temperatures (300–500 °C), using 

MWCNTs as templates.  Two synthesis methods will be compared; these are a modified sol–gel 

methodology, and a dry mix Chemical Vapour Deposition (CVD) method.  One of the main 

problems with SOFCs is the high polarization at the cathode during the reduction of oxygen [21].  

Improvement can be achieved by reducing the particle size to the nanoscale, hence, increasing 

the active area of the material [17].  The use of nanostructured materials seems as the most 

promising strategy at these temperatures with the high surface area compensating for the increase 

in resistance at lower temperatures [17, 22].  Perovskites such as Pr0.6Sr0.4Fe0.8Ce0.2O3 (PSFC) 

have shown promising performance for SOFCs operating at temperatures around 700 °C.  

Further reduction of temperatures seems possible.  Therefore, this study is focused on the 

synthesis and electrochemical characterization of MWCNT/CexSr1-xFeyCo1-yO3 

(MWCNT/CSFC) composites with 0.2 ≤ (x, y) ≤ 0.8 for SOFCs operating at temperatures of 

300–500 °C.  New methods need to be developed in order to prevent degradation issues caused 

by thermal cycling or diffusion at the interfaces as well as the reducibility of some materials at 

high temperatures.  Furthermore, the high costs of the current SOFC fabrication processes can be 

reduced by replacing expensive praseodymium (Pr) by the more abundant and commercially 

available cerium (Ce) in the A–site of the ABO3 structure [14, 19]. 

1.1 Research Motivation  

The chemical and physical properties of MWCNT/CexSr1-xFeyCo1-yO3 nanocomposite cathodes 

are influenced by the perovskite composition and microstructure in the nanocomposite.  

Synthesis method and heat treatment are factors which determine the physical–chemical 

properties and hence the electrical properties of these materials.  Mixed ionic–electronic 

conducting perovskites (MIEC) have been widely used as cathodes in SOFCs at high 

temperatures (700–1000 °C).  These high operating temperatures are problematic though and 

result in high costs and other issues like material incompatibility and degradation. 
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Here, the use of MWCNTs as template in the synthesis of CSFC perovskite nanocomposites 

materials is proposed.  Nanocomposites will be tested as cathode materials in SOFCs at reduced 

operating temperatures (300–600 °C).  A novel, sol–gel method is compared with the dry–mix 

CVD method.  It is therefore important to investigate the variation of the structural and hence the 

electrochemical properties of the MWCNT/CSFC cathode composites.  Chemical and physical 

characteristics of MWCNT/CexSr1-xFeyCo1-yO3 nanocomposite materials where 0.2 ≤ (x, y) ≤ 0.8 

in steps of 0.2 will be studied using Fourier Transform Infrared Spectroscopy (FTIR), Raman 

Spectroscopy, Thermogravimetric Analysis (TGA), X–Ray Diffraction (XRD) and temperature 

programmed X–Ray Diffraction (XRD), Scanning Electron Microscopy Energy Dispersive X–

Ray Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and High Resolution 

Transmission Electron Microscopy (HRTEM).  Current, power densities (polarization curves) 

and area specific resistances (ASR) will be measured as indicators of electrochemical 

performance.   

1.2 Problem Identification  

One of the biggest challenges with LT–SOFCs is developing materials that exhibit superior 

electrochemical performance and excellent ionic and electronic conductivity at 300–600 °C i.e. 

at low temperatures.  To address this challenge, the use of MWCNT/perovskite nanocomposites 

has been proposed [17].  Here MWCNT/CexSr1-xFeyCo1-yO3 nanocomposites for LT–SOFCs 

have been synthesized using CVD and a novel sol–gel technique.  The reduction of the SOFC 

high operating temperatures affects the materials performance negatively.  It has been shown that 

SOFC performances are based on materials microstructure.  So, a good method of fabricating 

cathode nanoparticles at low to intermediate temperatures is needed in order to control the 

particle size growth and achieve good electrochemical performances of the cell. 

1.3 Hypothesis  

It is proposed that the use of MWCNTs as template in the synthesis of cathode nanocomposite 

materials is a suitable technique for controlling the perovskite particle size and providing a 

suitable material for use at low operating temperatures for SOFCs.  The reduced particle size is 

significant in the improvement of the MWCNT/perovskite nanocomposites electrochemical 

characteristics at low to intermediate operating temperatures.  The substitution of Pr by Ce in the 
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MIEC perovskite (PrxSr1-xFeyCo1-yO3) structure on the A–site, can further improve the 

electrochemical performance at 300–600 °C.  The comparison of dry mix CVD and wet sol–gel 

methods at the above mentioned temperatures will reveal the contribution of chemical 

composition versus particle size in the improvement of MWCNT/perovskite nanocomposites for 

SOFC. 

1.4 Aims and Objectives  

The aim of this project is the design and fabrication of perovskite nanomaterials for the cathodes 

of low temperature SOFCs using carbon nanotubes as templates.  The perovskites will be 

synthesized in the presence of MWCNTs to form nanocomposites with reduced particle sizes 

compared to conventional synthesis techniques.  The morphology and microstructure of 

MWCNT/CexSr1-xFeyCo1-yO3 nanocomposites will be characterized before testing them as 

cathodes in a suitable SOFC button cell configuration operating at low temperatures.  The 

correlation between structural and chemical properties will be established.  The aim will be 

achieved via the following objectives:  

(i) Synthesize nano perovskites using wet (sol–gel) and dry (CVD) chemistry.  

(ii) Calcine the nanocomposite materials to form perovskites within the carbon nanotubes.  

(iii) Test the electrochemical performance of these nanocomposite materials as cathodes in 

low temperature regimes (300–500 °C) for SOFC applications. 

(iv) Compare microstructure and electrochemical properties for nanocomposites obtained by 

sol–gel or by CVD techniques. 
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Chapter Two 

Literature Review 

 

This Chapter gives background information on the properties of materials at the nanoscale 

level.  It will give some explanation on why materials behave differently when they are at the 

nanoscale level. A brief discussion on the structure, synthesis techniques, chemical properties 

and their potential applications is presented.  An overview of nanocomposites is given with 

specific reference to the use of MWCNTs as templates for the fabrication of 

MWCNT/perovskite oxide cathodes for low temperature SOFC.  The key effort in this 

Chapter is to develop background knowledge that will be used in understanding and 

analysing the chemical and physical properties of nanocomposite materials under 

investigation in Chapters 4 and 5.   

 

2.1 Fuel Cells 

Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly 

into electrochemical energy [6-10].  In every fuel cell there are two electrodes; an anode and 

a cathode.  The electricity is produced by the reaction taking place at the electrodes [8, 9].  

Every fuel cell also has an electrolyte which carries the electrically charged particles from 

one electrode to the other, and a catalyst for increasing the rate of reactions at the electrodes 

[10]. One big advantage of using fuel cells is that they do not greatly affect the environment 

negatively; they produce low levels of CO2, sulphur and nitrogen oxides (compared to fossil 

fuels), hence, they are taken as one of the promising power generation devices [6-8, 10]. 

Different types of fuels can be used in fuel cells; however, it is the type of electrolyte used 

that determines the type of fuel cell.  Five major types are known, and these are alkaline fuel 

cell (AFC), polymer electrolyte membrane fuel cell (PEMFC), phosphoric acid fuel cell 

(PAFC), molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) [8, 9].  AFCs 

use KOH as the electrolyte (OH
–
 are the mobile ions) and operate at 100–250 °C.  Their first 

successful use was in space vehicles e.g. in the Apollo and Shuttle programs by NASA [7, 9].  

PEMFCs have a sulfonated polymer membrane as the electrolyte (H
+
 are the mobile ions) and 
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operate at 60–120 °C and were initially used by NASA in the Gemini space program [7, 9].  

Currently PEMFCs are favoured in cars, scooters, and many other types of vehicles and have 

been used in combined heat and power (CHP) systems [9].  PEMFCs use hydrogen and 

oxygen to operate; however there exist other types of fuel cells that use methanol (direct 

methanol fuel cell–DMFC), ethanol, formic acid, or ethylene glycol but operate in a similar 

way to PEMFCs [9].  PAFCs operate at approximately 200 °C with concentrated phosphoric 

acid as the electrolytes and H
+ 

as the mobile ions.  PAFCs were the first commercially 

successful fuel cells developed and are usually applied as CHP systems [7-9].  In the MCFC, 

the electrolyte is a liquid carbonate salt of sodium, potassium or lithium, and CO3
2-

 acts as the 

source of mobile ions.  MCFCs operate at ~ 650 °C, are used in medium–large scale CHP 

systems, with capacities ranging from kilowatts to megawatts, and are the most common type 

of fuel cell based CHP installed globally [9, 23].   

Solid oxide fuel cells (SOFCs), commercial systems, operate at 800–1000 °C and use O
2-

 as 

the mobile ions and a solid ceramic as the electrolyte.  The applications of SOFCs are in all 

sizes of CHP systems, with kilowatt to megawatt units on the market [7-9].  SOFCs do not 

suffer from the disadvantages of liquid electrolytes like all other types of fuel cells, and can 

use hydrocarbons as a fuel.  With SOFCs, solid electrolytes are used to allow oxide ions to 

move from one electrode to the other.  A common solid electrolyte is yttria–stabilized 

zirconia (YSZ).  Oxide ions typically migrate slowly in solid Y2O2 and in ZrO2, but in YSZ, 

the ion conductivity increases [24, 25].  The basic fuel in all fuel cells is normally hydrogen, 

but oxygen is also essential, the aim being to generate electrical current that can be used to do 

work outside the cell [6].  The production of electrical current is dependent on the chemical 

reaction taking place in the fuel cell [7].  Figure 2.1 presents a schematic diagram that 

summarizes the operation of a fuel cell. 



8 
  

 

Figure 2.1: Schematic drawing of a fuel cell comprised of an electrolyte, an anode and a cathode [8] 

 

Generally, an external oxidant, normally oxygen from the air, is supplied at the cathode.  

Molecular oxygen is then reduced at the porous air electrode (cathode) to give oxygen anions 

[1, 2].  The produced ions migrate through the solid electrolyte to the fuel electrode, and 

chemically react with the fuel, H2 to give H2O, plus heat and electricity as shown in the 

equation below [8-10].   

Hydrogen + Oxygen  Water + electrical energy + heat 

The fuel cell requires an external source of fuel to operate [4, 7-10].  The production of 

electricity or usable energy by fuel cells is limited by the amount of fuel put in.  Fuel cells are 

a desirable alternative to battery technology, since they can produce usable current 

continuously for as long as fuel and oxidant are supplied–this makes the fuel cell a 

thermodynamically open system. 

2.2 Solid Oxide Fuel Cells (SOFC) 

Solid oxide fuel cells contain a solid ceramic electrolyte which in most cases is a metal oxide 

between an anode and a cathode [7-9, 24, 26-28].  In the operation of the SOFC, an external 

oxidant, normally oxygen from the air, is supplied at the cathode.  Molecular oxygen is then 

reduced at the porous air electrode (cathode) to give oxygen anions (O
2-

) [1, 2].  The 

produced ions migrate through the solid electrolyte to the fuel electrode.  The fuel is oxidized 
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at the anode, and if H2 or a hydrocarbon (or CO) is used, H2O and CO2 are produced.  

Additional, products are heat and electricity as in the equation shown below [7-9, 24, 26-28].   

Hydrocarbon + Oxygen  Water + Carbon dioxide + electrical energy + heat 

High temperature SOFCs achieve a high efficiency of conversion to power reactions, up to ~ 

60 % overall efficiency (versus less than 30 % with combustion engines) [7-9], and have the 

added advantage that the high operating temperatures can be used for internal reforming or 

direct use of hydrocarbons [8, 9, 29].  The SOFC is widely known as fuel–flexible as it can 

use a number of fuels without any external reforming [2, 29].  Examples of fuels that can be 

used in SOFCs include methane, diesel, bio–fuels, jet fuel and others [2, 29].  Other than the 

proton exchange membrane fuel cell, which operates at low temperatures but is dependent on 

noble metal catalysts, high temperature SOFCs do not depend on noble metal catalysts.  

Therefore, CO can be used as a fuel rather than act as a poison.  Hence, SOFC are considered 

as a promising emerging technology for stationary power generation systems [4, 8, 12].  

 

2.2.1 SOFC components and materials 

2.2.1.1 Electrolyte 

The most essential part of a SOFC is the electrolyte, which is a gas–tight ceramic membrane 

[12, 25].  The electrolyte must have high ionic conductivity, low electronic conductivity and 

good thermal and chemical stability in relation to the surrounding reactants and the 

contacting electrode materials [4, 30].  Additionally, the thermal expansion coefficient (TEC) 

of the electrodes and contacting components must be similar.  The electrolyte must be 

completely dense in order to optimize conductivity and reduce reactant cross–over [4, 31].  

Finally the electrolyte in the SOFC system must be cost effective and not lead to 

environmental problems [4].  Materials that are currently used as electrolytes for SOFC are 

zirconia–based solids, and for LT–SOFCs ceria–based oxides with (Li/Na) carbonates and 

perovskite materials [32-34]. 

Perovskites are a class of materials that can be used as oxygen–ion conductors, e.g. in SOFCs 

[4, 32-34].  In the crystal structure of the perovskite, there are two cationic sites which can be 

occupied by lower valence cations, resulting in a wide range of possible oxygen–ion 

conducting materials [35, 36].  Lanthanum with strontium doping on the A–site of the 

perovskite and magnesium on the B–site are employed as electrolytes at temperatures as low 
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as 600 ºC and have good ionic conductivity at a composition of La0.9Sr0.1Gd0.8Mg0.2O2.85 

(LSGM) [4].  The problem with LSGM lies in the preparation of single phase electrolytes and 

the challenge of matching the thermal expansion coefficients [4].  Perovskites meeting all the 

requirements for the electrolytes still need to be developed.  

 

2.2.1.2 Anode 

The anode plays an important role in the electro–oxidation of fuel by catalysing the reaction 

as well as facilitating fuel access and product elimination.  For optimal operation, anodes 

should have: (i) high stability under reducing conditions at elevated temperatures, (ii) 

electronic and ionic conductivity, therefore no loss of materials, (iii) comparable TEC to the 

electrolyte, (iv) good catalytic activity to oxidize the fuel (H2) and (v) relatively low 

resistance at high temperatures [26, 32, 37].  In terms of yttria–stabilized zirconia (YSZ), it is 

important that the YSZ in the electrolyte is well connected to the anode, and this is usually 

accomplished by using YSZ in the anode.  This provides a conduction path for O
2-

 ions into 

the anode and increases the triple phase boundary (TPB) in the electrodes which helps 

optimise the overall reaction within the electrode system [4, 26, 32, 37, 38].   

 

The limitations of the anode materials with lower temperature fuel cells (PEMFCs, AFCs and 

OAFCs) are that the catalysts are based on platinum group metals.  With SOFCs, non–

precious metal catalysts can be used, and the most common metal used is nickel.  Nickel– 

based anodes can withstand the reducing conditions, high operating temperatures, possess 

high electron conductivity and the Ni can form excellent interconnecting networks within the 

electrode [26, 32, 37].  The most widely used anode materials are made up of nickel and solid 

electrolytes, such as Ni/YSZ cement or Ni/samarium doped ceria (SDC).  These materials are 

targeted at maintaining porosity by avoiding sintering of the Ni particles and matching the 

TEC of anode and electrolyte [4, 26, 29, 37].  Nickel gives a good electronic conducting 

phase and helps transport electrons from the reaction site.  YSZ or SDC support for Ni 

particles inhibits sintering and improves the TEC.  However, because hydrocarbon fuels tend 

to deposit carbon on nickel–based anodes, quick carbon accumulation over the anode is often 

observed and leads to rapid degradation of the fuel cell’s performance, and as a result copper 

is often used to replace the nickel [2, 26, 29, 32, 37-40].  Here, in this thesis, NiO–YSZ is 

used as an anode electrode for the asymmetrical cells in Chapter 5. 
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2.2.1.3 Cathode 

The reduction of molecular oxygen happens at the cathode in SOFCs.  The cathode must be 

able to transport charged species directly to the electrolyte and to distribute the electrical 

current associated with the oxygen reduction reaction.  SOFC cathode materials therefore 

need to have the following properties: (i) be stable in oxidizing condition, (ii) have sufficient 

electronic and ionic conductivities, (iii) have a porous structure, and (iv) be stable at high 

temperature with (v) a thermal expansion coefficient (TEC) closely matching that of the 

electrolyte materials [2, 4, 28, 32, 41, 42]. 

Currently, there are many oxides that have been studied as cathode materials for SOFC, and 

these are usually perovskite–type materials.  There are a wide range of perovskite–structured 

materials that have been used as cathode materials in SOFC with interchanged A–site and B–

site compositions.  These include simple perovskites, layered perovskites and double 

perovskites [19, 32, 41].  For an oxide material to be used as a cathode in SOFCs it must have 

intrinsic p–type conductivity like the lanthanum strontium manganite (LSM) perovskites 

sometimes used with YSZ based electrolytes.  Furthermore, perovskites must possess both 

ionic and electronic conduction [32, 38, 41, 42].  Highly mixed ionic–electronic conductivity 

is necessary to obtain high performance cathodes.  In addition there have been several studies 

conducted on mixed oxygen ion and electron/hole conducting electrodes (MICEs) [43-45]. 

 

2.2.2 Synthesis of SOFC materials 

Electrolytes for SOFCs are normally processed by tape casting [33], citrate method [21] or 

uniaxial die–pressing [46].  These processing methods offer reduced reactive grain structures, 

controlled microstructural nanocrystalline grains and lower the diffusion distance of oxygen 

ions and the electrolytes resistance.  In this work, a commercial YSZ electrolyte is used 

because of its high ionic conductivity. 

 

The fabrication processes of cermet anode materials for SOFCs include a wide range of 

techniques such as solid–state reaction, sol–gel, glycine–nitrate, oxalate co–precipitation and 

carbon co–precipitation [47].  Additionally, anode and electrolyte powders can be mixed 

together by pressing and sintering the anode and electrolyte powders at high temperatures to 
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achieve dense Ni/YSZ anodes [26].  In this work Ni/YSZ is used which is made by mixing 

commercial nickel and YSZ powders. 

Pure perovskite powders are the most commonly used cathode materials.  They can be 

prepared by e.g. sol–gel process, solid–state reaction, nitrate and citrate routes or Penchini 

method [20, 45].  The performance is determined by the synthetic route and more specifically 

the particle size.  The problem with perovskite materials is the control of particle size during 

the fabrication processes and during operation at the desired high temperatures [19, 28, 41, 

42]. 

2.2.2.1 Synthesis of Cathode Materials Using Carbon Nanotubes  

Previously, a template–assisted route has been developed for achieving controlled perovskites 

particle sizes.  Santillan et al. [16] synthesized La0.6Sr0.4Fe0.8Co0.2O3 (LSFC) perovskites in 

the presence of carbon nanotubes using an electrophoretic co–deposition method.  Pinedo et 

al. [17, 48] used carbon nanotubes as composite material with perovskite–type oxides 

Pr0.6Sr0.4Fe0.8Co0.2O3 (PSFC) and Pr0.6Sr0.4Fe0.8Co0.2O3/Ce0.8Sm0.2O2 (PSFC/SDC) giving rise 

to improved electrochemical behaviour at intermediate temperatures.  Most of the previous 

reports use a sol–gel method and ionic surfactants.  New cathode materials using non–ionic 

surfactants for SOFC devices operating at low to intermediate temperatures have not been 

reported. 

 

2.2.3 Current Challenges with SOFCs 

High temperature SOFCs were first developed at Siemens Westinghouse and Rolls–Royce 

operating at temperatures of 850 °C and above [49].  The high operating temperatures (800–

1000 ºC) that these fuel cells required were problematic because of the thermal expansion 

mismatch, and high operating temperatures which lead to degradation of the cell [14, 32, 50].  

Consequently, low (300–500 ºC) to intermediate (600–800 ºC) temperature SOFCs with good 

performances have been the focus of recent research efforts globally [15, 32, 42, 50].  This 

has been achieved by decreasing the thickness of the electrolyte, anode, cathode or all three.  

In addition, the application of materials with higher ionic conductivities has had some success 

in decreasing operating temperatures [14, 15, 32, 34, 42, 50].  However, one problem 

associated with the reduction of temperature is an increase in the cell polarisation which then 

results in the lowering of the SOFC cell performance.  Controlling the particle size of the 

materials is another issue to be considered in developing low to intermediate temperature 
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SOFCs [32, 50].  Here, MWCNTs are used in trying to reduce the particle size of the 

perovskite cathodes. 

 

2.2.3.1 Development of low to intermediate temperature SOFC 

The current challenge in LT–SOFC is to reduce the internal resistance.  SOFC internal 

resistance can be due to various reasons such as the resistance of the electrolyte or the low 

oxygen ion conductivity of electrolyte materials [21].  Furthermore, electrode kinetics and 

polarisation resistance of the cathode are affected by the decrease in temperature [21]. 

The operating temperatures for SOFC could be further decreased if suitable materials were 

available.  Using materials with high ionic conductivities, SOFC operating temperatures can 

be reduced while still attaining high cell performances.  In the case of electrolyte materials, 

the thickness needs to be reduced in order to reduce the area specific resistance of the fuel 

cell and to improve the ionic conductivity of the electrolyte and hence the performance of the 

electrodes [21].  Issues such as property–microstructure relationships need to be considered 

in developing LT–SOFCs [21, 51, 52].  In this work, mixed ionic–electronic conducting 

(MIECs) perovskites with controlled particle size are developed in an effort to achieve 

improved electrochemical performance at reduced operating temperatures.  

 

2.2.3.2 Composite Approach 

Composite electrolytes and electrodes are a combination of two or more solid phases that 

have been mixed physically.  These materials possess unique ionic conductivities.  The 

conductivity of the fabricated material can be enhanced depending on the combination of the 

materials.   

Herein, the composite approach is applied to MWCNT/CexSr1-xFeyCo1-yO3 nanocomposites 

as cathodes for LT–SOFC.  In this case, MWCNTs are used for two reasons: (i) to enhance 

electrical performance by enhancing electronic conductivity of the composite materials [53], 

and (ii) to control the particle size growth of the perovskite nanoparticles for use in LT–

SOFCs [17].  This approach relies heavily on nanoscience, nanotechnology and 

nanomaterials. 
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2.3 Nanoscience, nanotechnology and nanomaterials 

Nanoscience focuses on the synthesis, characterisation and exploration of the physical and 

chemical properties of nanomaterials, while nanotechnology deals with the development of 

functional systems that exploit the properties of nanostructured materials [54].  Materials in 

nanoscience are classified as aggregates of atoms or molecules that characteristically have at 

least one dimension in the nanometer (1 nm = 10
-9

 m) range, i.e. 1<100 nm.  In this size range 

materials exhibit unique properties that differ from those in the bulk due to quantum 

confinement and surface effects [54, 55].  This has led to intense research worldwide that 

attempts to understand the unique chemical and physical properties exhibited by these 

nanomaterials [54].  Amid increasing global interest, strong national and international 

research and development (R&D) plans based on nanoscience have been developed in many 

countries.  Materials at nanoscale level can be either synthesized by using bottom–up or top–

down approaches [56].  Materials properties such as melting point, electrical or magnetic 

properties and chemical reactivity depend on the particle size [55].  Hence, fabrication 

methods for nanomaterials that allow the control of particle size are very important.   

Nanotechnology has had a significant impact on R&D in energy related materials, e.g. 

materials for SOFCs [34].  Bottom–up approaches have been used to fabricate electrolyte, 

cathode and anode with controlled thickness or particle size [56].  One of the problems in 

SOFCs is the high operating temperature of 800–1000 °C.  By applying nanocomposite 

synthesis methods, the reduction of SOFC operating temperatures down to 300 °C seems 

possible.  The current focus is on reducing the particle size of these components to nanoscale 

level.  The approaches from nanotechnology are presenting an interesting pathway in 

fabricating advanced fuel cell materials and technologies for LIT–SOFC with superior 

performance.  

Nanomaterials possess extremely reduced sizes with at least one of the dimension less than 

100 nm.  The nanoscale can be in one (nanowires), two (surface films or free standing 

structures) or three dimensions particles [57, 58].  Nanoparticles can have many different 

shapes.  They can e.g. be spherical, rod–or tube–shaped [58].  Examples of these range from 

zero–dimensional nanoparticles and one–dimensional nanowires to two–dimensional 

graphene sheets.  Individual particles can agglomerate and form nanocomposites or they can 

fuse together and build more complex structures.  Fabrication procedures of these different 

forms of nanomaterials play a significant role in achieving desired properties.  Moreover, 
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quantum confinement of electrons leads to the development of nanomaterials with novel 

electrical, optical and magnetic properties [57, 58].  Carbon nanotubes have found wide use 

in nanotechnology because of their easy bulk fabrication and interesting mechanical, 

chemical and electronic properties [57].   

The potential applications that use nanotechnology include nanoscale electronics and optics, 

nano–biological systems, nano–medicine, various areas in materials science, analytical 

applications, and fine chemical synthesis.  Furthermore, it has become the backbone for the 

development of new materials based on the unique chemical and physical characteristics 

observed at the nanoscale level [59].   

Nanotechnology may contribute to obtaining better sustainable energy systems and the more 

efficient use of finite energy sources.  Renewable energy technologies are considered as 

substitutes for the current technologies in order to reduce costs [60] and be more 

environmentally friendly than conventional energy generations [60, 61].  Based on the need 

for affordable energy technologies, it is important to consider some potential solutions 

leading to a cleaner energy technology [62].  Some of the examples of these solutions are 

energy conservation through advanced energy efficiency, a reduction in the fossil fuel use 

and an increase in the use of renewable energy sources and technologies [62].  

As a result of greenhouse gases emitted by conventional fossil fuel systems used for 

generation of energy in South Africa, the country is exposed to greenhouse effects and CO2 

emissions.  This forces South Africa to develop new energy strategies that are not dependent 

on the use of coal to generate electricity.  Some of the examples of the applications of 

nanomaterials to renewable energy technological systems are hydrogen fuel cells, solar cells 

and biotechnology.  The SOFC is considered as a good alternative for the problematic use of 

fossil fuels because it uses hydrogen instead of a fuel to produce clean energy [63].  

 

2.3.1 Properties of Nanomaterials: Size Effects 

Size effects are an important aspect of nanomaterials [64].  The effects on the fundamental 

properties of nanomaterials can be generally divided into two types.  The first one is based on 

the change in distribution of electrons, i.e. change in density of states (e.g., magic numbers of 

atoms in metal clusters, quantum mechanical effects at small sizes).  The second one is based 

on the increase in the relative surface area associated with nanostructures [65].  
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The electron distribution in materials especially in the case of shorter and stronger bonds 

between under–coordinated atoms plays an important role when a substance exists at the 

nanoscale [66].  Bulk materials do not have lone pairs of electrons around their bond but 

when those bonds are broken for self–assembly, lone pairs of electrons appear [3].  These 

lone electron pairs and the lone pair–induced dipoles result in the formation of functional 

groups [3].  

Another factor to consider, is that the decrease in particle size results in an increase in the 

fraction of atoms present at the surface versus those that are surrounded by other atoms on all 

sides [67].  Such atoms are much more energetic.  This is one reason why nanomaterials 

show distinct properties especially those related to reactivity compared to the bulk [67]. 

In the quantum size effect, electronic properties of solids change with a reduction in particle 

size as a results of confinement in the movement of electrons [68].  This phenomenon can be 

explained by the fact that the molecular orbital changes to delocalised band states [69].  In the 

case of semiconductors, an increase in the band gap is observed when the particle size is 

reduced to nanometer range [51].  Hence, physical and chemical characteristics of materials 

at the nanoscale change when the particle size is reduced and this gives nanomaterials their 

unique properties. 

 

2.3.2 Synthesis of Nanomaterials: Bottom–up approach 

The processes involved in the synthesis or assembly of nanoscale materials and devices 

involve either bottom–up or top–down approaches [56].  In the bottom–up approach chemical 

and physical forces are employed to assemble basic units such as atoms, ions or molecules 

into more complex structures [56, 70].  In the top–down approach bulk materials are reduced 

in size to the nanometer scale using suitable tools [56].  Examples of the top–down approach 

are ball–milling, photolithography, dip–pen lithography, nano–moulding or nano–fluidics to 

mention a few [56, 70].   

Bottom–up, nanomaterials can be synthesized using various methods such as membrane–

based synthesis [71], template–based synthesis [72], sol–gel [73] and Chemical Vapour 

Deposition (CVD) methods [70].  Most of the methods for the fabrication of nanomaterials 

aim to achieve reduced particle size and uniform size distribution.  Here, Chemical Vapour 

Deposition (CVD) and the sol–gel method, both examples of bottom–up approaches, are used 
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to synthesize MWCNT/perovskite nanocomposites.  A brief review is provided in the 

following sections. 

 

2.3.2.1 Chemical Vapour Deposition (CVD) 

Chemical Vapour Deposition (CVD) was developed early in the 1880’s for the production of 

incandescent lamps [74].  It was discovered that an improvement in the strength of the lamp 

filaments could be achieved by applying a coating of carbon or metal [74].  Since then, 

continuous development has improved the process and a number of reactions such as the 

carbonyl cycle, iodide decomposition and the magnesium–reduction reaction were developed 

for use in CVD [74, 75].  Figure 2.2 shows a schematic diagram of the basic CVD process 

[76, 77].  The general mechanism of the process involves three steps; (i)  the generation of 

the volatile carrier compound, (ii)  the delivery of volatile materials to the deposition 

chamber and (iii)  the chemical reaction resulting in the formation of the desired product [77].  

  

Figure 2.2: The basic steps in the CVD process: (i) formation of volatile compounds, (ii) transportation and (iii) 

deposition of coatings [53] 

 

CVD is a chemical process that deposits a thin solid film or individual nanoparticles onto a 

substrate at high temperatures.  In this process, reactant gases (precursors include gases, 

liquids or solids) are allowed to react with a heated substrate to form a solid surface film [75, 

78].  This can be done under vacuum or at pressures close to or above atmospheric pressure 

[78].  

In the development of CVD methods, it is important to use precursors that enable the 

deposition of films or nanoparticles with the desired stoichiometry.  Precursors need to be 

stable at high enough temperatures for the process to achieve sufficient vapour pressures, and 

hence achieve good to high rates of deposition [79].  Precursors based on fluorinated and 
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non–fluorinated beta–diaketone transition metal complexes such as copper and cobalt have 

been widely used in the CVD process since volatile and stable metal–containing species are 

formed [79, 80].  Here, desired elements are transported as volatile molecules (precursors), 

and the film is developed via chemical reactions of precursors, precursor fragments and with 

the substrate [81].   

CVD is very widely used in industries and scientific research fields such as hard coatings and 

functional coatings on glass, semiconductors, dense structural parts, optical fibres and 

microelectronics [81].  Furthermore, CVD has been applied in industrial catalysis and 

synthesis of composites [53, 82].  The advantages of CVD are the fact that reactions are easy 

to monitor, and the production of high purity materials is possible [76, 82, 83].  The 

processing and the control of the CVD method depend on various factors such as surface 

reaction, volatility of compounds and reactivity of gases. 

Dry deposition techniques taking place via surface modification of solid powders require the 

application of a reactive gas phase [76, 83].  In the CVD process, volatile chemical 

compounds are important in transporting non–volatile materials [76, 77, 83].  This leads to 

deposition due to chemical reactions such as reduction or thermal decomposition.  The CVD 

method can be used for the synthesis of nanocomposite materials [84] and here, it is used for 

the fabrication of nanocomposite materials which are applied in SOFCs for reduced 

temperatures.  

 

2.3.2.2 Chemical Vapour Deposition and Solid Oxide Fuel Cell Development 

CVD has been used to develop SOFC materials anodes, cathodes and electrolytes with high 

film qualities in an effort of reducing interfacial resistances which are a result of lower 

operating temperatures in LT and IT–SOFC [85].  This method has been used to modify film 

qualities for SOFC materials because it allows easy processing of vapour.  The deposition 

rates are not high; hence, dense films can be prepared with amorphous or crystalline 

structures.  It is also possible to fabricate films from dense to porous and nano–scale to 

micro–scale dimensions.  Besides their low costs and simple apparatus, CVD also has the 

advantage of allowing for easy control of desired stoichiometry by dissolving metal 

precursors into organic solvents [85].  Due to the challenges of high operating temperatures 

of conventional SOFCs (as discussed in section 2.2.3), CVD has found applications in the 
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development of suitable thin film techniques for SOFC fabrication.  Novel CVD techniques 

have been developed in the application of metal beta–diketone complexes as precursors to 

form thin films which are relevant to SOFC fabrication.  The advantages of these novel CVD 

processes are seen in the IT–SOFC and micro–SOFC where the production of dense and 

porous films, manipulation of parameters and easy access to multi–layer films has been 

achieved [86].  Since SOFC processes require cathode–or anode–supported thin film 

electrolyte cells, metal–organic Chemical Vapour Deposition (MOCVD) techniques have 

been used to obtain highly crystalline, pure and dense oxide materials on porous substrates 

[87-90].  Torres et al. [89] have synthesized IrO2–YSZ composite films with high 

conductivities using MOCVD.  A La0.8Sr0.2MnO3 cathode fabricated by MOCVD was 

developed by Toro et al. [91] and applied in the IT–SOFC process.  Activation losses 

occurring in the fuel cell which then decrease the performances can be prevented by applying 

materials prepared by Aerosol–Assisted Chemical Vapour Deposition (AA–CVD).  The work 

done by Schulpp et al. [92] has shown high power densities of 850 mW.cm
-2 

when fabricating 

gadolinia doped ceria (Ce0.8Ga0.2O2-δ) thin film for IT–SOFC using AA–CVD.  CVD 

principles have also been used in the fabrication of unsupported anode or cathode electrodes, 

for example Sansernnivet et al. [93] synthesized La0.8Sr0.2CrO3–based perovskites (LSC) 

using Flame–Assisted Chemical Vapour Deposition (FA–CVD) [93].   

Drawbacks of the CVD method are the requirement of dedicated equipment, its cost and the 

high temperatures required for deposition.  New methods are needed in order to overcome 

these drawbacks.  Sol–gel is the method of choice in trying to reduce costs and operating 

temperatures with the advantages of controlling microstructure and morphology of the 

targeted materials at low temperatures.  

 

2.3.2.3 Sol–Gel method 

The sol–gel method was developed from different studies such as Bergman’s [94, 95] studies 

on water around 1800, Ebelman’s [96] on atmospheric oxygen and carbon dioxide in 1847 

and Graham’s [97] research on silica gels during the 1800s [98].  It was then widely used in 

the science of colloids during the 1800s.  Since processing of ceramics and glasses requires 

high operating temperatures for the complete conversion of inorganic powders to dense 

materials through melting or sintering, the high temperature is the limiting parameter for the 

control of microstructure in these conventional ceramic processing methods [98, 99].  In 
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addition to the high operating temperatures, there are also limits to controlling the final 

materials properties, shape and surface features [99].  Based on this, sol–gel technologies 

operating at lower temperatures were introduced in hope of being able to fabricate novel 

shapes, unique and desirable surface properties, films, fibres and composites with improved 

performances [100].  It has been noticed that the low temperature sol–gel processes does 

require only few processing steps in order to develop nanosized particles.  Currently the sol–

gel process is used to achieve materials with controlled microstructures at nanometer level 

with physical and chemical properties different from the bulk [98].  This has led scientists to 

focus on the sol–gel process in attempting to design advanced nanomaterials with many 

advantageous applications in industries.   

The sol–gel method is a wet chemical process, and this synthetic route involves the 

dispersion of colloidal particles in a liquid and the interconnection of pores to form a rigid 

network (gels) [99].  A gel is a network of pores of submicrometer dimensions and molecular 

chains with polymeric properties [99, 101].  Sol–gel is the evolution of a molecular network 

through the formation of a colloidal suspension (sol) and gelation of the sol to form a network 

in a continuous liquid phase (gel) [99].  When the solution is allowed to dry, it evaporates and 

leaves behind a gel with strong network of atoms clustered together by polymeric solutions.  

The sol–gel process allows the control of particle size during the formation of nanoparticles.   

The general process of the sol–gel method involves homogenising and drying of the starting 

materials and solutions to form a gel.  Liquid precursors are mixed with alcohols in order to 

obtain permanent connections with the orientation of bonds more significantly the metal–

oxygen–carbons bonds which then lead to the formation of a gel.  In the sol–gel mechanism 

shown in Figure 2.3, liquid precursors and alcohols are mixed with water under stirring 

followed by the addition of acid and water to give a solution mixture.  Homogeneity is 

achieved with continuous stirring of the mixture. 

 

Figure 2.3: Mechanism of the sol–gel process: (i) mixing of liquid and alcohols, (ii) addition of acid and water, 

(iii) formation of the sol and (iv) formation of the gel [98, 99] 
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The sol–gel method has e.g. found use in the preparation of oxides and mixed oxides as 

catalytic materials.  Debecker et al. [102] have developed a sol–gel route to fabricate 

advanced silica materials which are then used in many industrial applications such as inks 

and coatings, catalysts for fine and specialty chemicals, ceramics and nanocomposites [101].  

This has been achieved by controlling the reaction rates of different molecular precursors, 

such as silicon and metal alkoxides, in hydrolysis and polycondensation reactions taking 

place in the sol–gel process [102].  In addition, the application of the sol–gel method is 

significant for materials for energy devices such as materials for SOFCs [17].  

 

2.3.2.4 Sol–Gel processes for Solid Oxide Fuel Cells 

Solid oxide fuel cell (SOFC) materials synthesized from sol–gel chemistry are important in 

trying to control the film thickness in the electrodes [103].  This technique allows deposition 

on the support using the dip–coating technique.  Dip–coating and sol–gel can take place in 

series as in the case of the NiO–YSZ electrolyte synthesized by Kim et al. [104].  This can be 

achieved by monitoring the sol viscosity and adjusting the ‘dipping rate’, and hence 

manipulate the film thickness.  Since SOFC performance is dependent on gas diffusion rates, 

a crack free film has to be prepared for SOFCs.  Other researchers have developed SOFC 

electrode materials using sol–gel composites because of its affordability and possibilities of 

microstructure modifications [17, 22, 45, 103, 105-107].  To overcome SOFC difficulties 

reviewed in more details in section 2.3.3, a colloidal method is needed in order to prevent gas 

leakage during cell operation which then leads to reduced SOFC performance [104].  This 

can be achieved by depositing thin films of solid electrolyte with high ionic conductivity onto 

the porous anode support.  Even though other chemical techniques can be used in the 

fabrication of dense SOFC electrodes, sol–gel is the method of choice because it produces 

highly homogeneous and fine grained films [104].  Kim et al. [104] and Gaudon et al. [108] 

have fabricated anode–supported electrolyte thin films and La1-xSrxMnO3+δ (0≤ x ≤0.6) 

perovskite type oxide for improving the SOFC performances at intermediate temperatures.  

Good electrical performances were obtained with peak power densities as high as 550 

mW.cm
-2

 at 850 ºC [104].  Further advancement for fabrication of IT–SOFC materials have 

resulted from the preparation of high–performing perovskites, specifically La3NiO2, using a 
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non–ionic surfactant with the sol–gel method [3].  This material shows high peak power 

densities of 848 mW.cm
-2

 and very low interfacial resistance when applied as cathodes in the 

IT–SOFC at 750 ºC [3].  

 

2.4 Carbon Nanotubes: Basic Structures and Properties 

Carbon nanotubes are defined as nanostructured materials with cylindrical shapes that consist 

of single– or multi–layers of rolled up graphitic planes [109].  The first discovery of carbon 

nanotubes was reported in 1991 by Iijima [110].  Single–walled carbon nanotubes (SWCNT) 

are made up of a single layer of graphene rolled into a cylindrical tube while multi walled 

carbon nanotubes are formed from several concentric layers of SWCNTs [111, 112].  Since 

the discovery of CNTs, synthesis, characterization, modification of properties and application 

of CNTs have received much attention [111, 112].  Carbon nanotubes exhibit interesting 

electronic, mechanical and structural properties [113].  These arise from their high surface 

area, high tensile strength and low density, with good mechanical, electrical, vibrational and 

thermal properties [109].  In nanotechnology applications, CNTs have been considered as an 

attractive metallic or semiconducting material.  Some of the CNTs applications are found in 

the chemical industry, where they are used as gas adsorbents, templates, catalyst supports, 

composite reinforcements, chemical sensors and nanopipes [114].  One of the drawbacks of 

using CNTs is their low solubility in organic solvents which leads to limitations in their use.  

It is possible to disperse CNTs using some solvents by means of sonication [113].  In 

addition, one can functionalise, purify and oxidize CNT surfaces using oxidising agents such 

as concentrated nitric acid, sulphuric acid, aqua regia, hydrogen peroxide and others.  Surface 

groups on the tubes serve as initiators for further chemistry on the tubes.  Defects on the CNT 

surfaces might be increased while trying to functionalise, purify or oxidise [115-117]. 

 

2.4.1 Synthesis of carbon nanotubes 

The synthesis of carbon nanotubes in sizeable quantities follows a bottom–up approach [118].  

Specific examples of producing carbon nanotubes include arc discharge [119, 120], laser 

ablation [121, 122] and chemical vapour deposition [123, 124].  Carbon nanotubes 

synthesized from these methods have both metallic and semiconducting properties [53, 119, 

121].  Arc discharge involves the use of a direct–current arc voltage across two graphite 
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electrodes immersed in an inert gas such as He.  In the presence of pure graphite rods, 

fullerenes are deposited in the chamber, and MWCNTs are deposited on the cathode.  

SWCNTs are generated when a graphite anode containing a metal catalyst (Fe or Co) is used 

with a pure graphite cathode [119, 120].  In the laser ablation method, a high power laser is 

used to vaporize carbon from a graphite target at high temperature.  MWCNTs and SWCNTs 

can be obtained from this method.  For SWCNTs production, metal particles as catalysts are 

added to the graphite targets similar to the arc discharge [121, 122].  Among several 

techniques of CNTs synthesis available today, Chemical Vapour Deposition (CVD) is most 

popular and widely used because of its low set–up cost, high production yield, and ease of 

scale–up.  Compared to arc–discharge and laser–ablation techniques, CVD is a simple and 

economic technique for synthesizing CNTs at low temperature and ambient pressure.  In this 

process, thermal decomposition of a hydrocarbon vapour is achieved in the presence of a 

metal catalyst.  Generally, low–temperature CVD (600–900 °C) yields MWCNTs, whereas 

high–temperature CVD (900–1200 °C) favours SWCNT growth [81, 123-125].  

 

2.4.2 The structure of carbon nanotubes 

In order to understand the structure of nanotubes it is important to start off with graphite, 

allotrope of carbon made entirely of carbon atoms just as diamond and fullerene.  Graphite is 

the most stable form of crystalline carbon with carbon–carbon sp
2
 hybridisation under 

standard conditions.  It has a layered planar structure with hexagonal rings (Figure 2.4 a).  

Graphene is the allotrope form of carbon in a two–dimensional sheet consisting of a single 

atomic layer of crystalline graphite (Figure 2.4 b) [57, 126].  The SWCNTs can be pictured as 

a rolled–up graphene structure which can be represented mathematically by a one–dimension 

vector V in Equation 2.1 [126, 127]: 

𝐕 = 𝑛 𝒂1 + 𝑚 𝒂2                                                                 (2.1) 

 

where a1 and a2 represents unit vectors, and n and m are integers.  This type of nanotube is 

called an (n, m) nanotube.  Depending on the way the graphene sheet is rolled up, the 

structure can be described as a zig–zag (n, m = 0) tube or an armchair (n = m) tube [57, 127].  

When the graphene sheet rolls up in the opposite direction of the symmetry, a chiral nanotube 

is formed [127].  Figure 2.4 shows the structure of graphite (a), a single layer of graphene (b), 

and the corresponding SWCNT and MWCNT (c). 
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Figure 2.4: The structure of carbon nanotubes: (a) graphite, (b) (n, m) nanotube and (c) graphene layer, rolled to 

form SWCNT or MWCNT [127] 

 

The outer diameter of MWCNTs ranges between 2 and 25 nm with interlayer distances of 

approximately 0.34 nm corresponding to the interlayer spacing in graphite [57, 126].  The 

nanotube is uniquely specified by the pair of integer numbers (n, m) or by its radius and chiral 

angle, theta ().  Tubes have angles of 0° <  < 30° and special tube types are the achiral 

tubes (tubes with mirror symmetry) [57, 126, 127].  All other tubes are referred to as chiral, 

tubes without mirror symmetry [57, 127].  The properties of CNTs are determined by the 

chiral angles in combination with their diameter.  It has been found that CNTs can possess 

semiconducting or metallic behaviours [53].   

 

2.4.3 Uses of carbon nanotubes in SOFC 

Based on the properties displayed by carbon nanotubes, these nanomaterials have been 

proposed for use in many applications including conductive and high–strength composites, 

energy storage and conversion devices [128], membranes [129], nanosensors [57, 86, 130], 

field emission displays and radiation sources, hydrogen storage media, and nanometer–sized 

semiconductor devices, probes and interconnects [57, 126] as well as electronic devices, 
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electro–catalytic systems and composite materials as cathode templates especially for the 

SOFCs process [53, 101, 114, 131].  In the field of SOFCs, carbon nanotubes are used 

because of their conductivity.  They can also contribute to the control of metal oxides particle 

size if used as templates with reports showing decreases in particle size from the order of 

micrometers to nano–scale [17].  The particle size can be modified by altering the CNT inner 

diameter.  Smaller channel diameters produce smaller oxide particles while bigger channel 

diameters give large oxide particle sizes when these are formed inside the CNTs [101].  

Oxide particles can also be formed outside the CNT surfaces as in the case of coatings with 

nanoparticles. 

The interest in using CNTs as catalytic support materials arises due to their large surface area, 

high aspect ratio and their ability to disperse catalytically active metal particles [101].  Pan et 

al [132] have shown that the well–defined nanosized channels of CNTs give an interesting 

confinement environment for catalysis.  Sub–nanometer–sized particles can be achieved 

within SWCNTs and DWCNTs.  The electronic behaviour of the catalyst on the tube walls 

enhances the catalytic activity [132].  In electro–catalysis carbon nanotubes have been 

considered as advantageous supports for the catalyst, in that they increases the performance 

of the fuel cell at low costs [133, 134].   

 

Recently, CNTs have been used in SOFCs as templates for the fabrication of cathode 

composites with perovskite–type oxides [17].  Carbon nanotubes are considered as potential 

materials to enhance the performance of these SOFC systems [135].  Furthermore, 

CNT/oxide composites with good electronic and ionic conductivities are employed as 

electrodes in some types of batteries and fuel cells [17].  

 

In the SOFC technology, carbon nanotubes present an important advantage compared to 

polymeric templates as MWCNTs are thermally stable up to temperatures of around 650 ºC.  

Here, the application of MWCNTs as a means of controlling the particle size of perovskites 

and improving the electrochemical performance of the electrode (cathode) is explored.  These 

MWCNTs/metal oxide composites will be tested in SOFCs operating at low temperatures 

(300–500 ºC). 
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2.5 Perovskites: Basic Structure and Properties 

Perovskite is a ternary oxide structure type with the general formula (ABO3) named after 

L.A. Perovski who identified the mineral CaTiO3 [32, 35, 36, 41, 136].  A range of 

perovskites has been developed with A being either an alkaline earth or a rare earth metal and 

B a transition metal with partially filled d–orbitals [137].  Perovskites can adopt a wide range 

of chemical compositions.  It is possible to occupy the A–sites with over 30% of the elements 

in the periodic table, and over half of the elements in the periodic table can be used in the B 

cation position, with almost 100% substitution [35, 137].  Advanced perovskites, e.g. for 

SOFC applications, have good ionic–electronic properties and are referred to as mixed ionic–

conducting (MEIC) perovskites with cations of large ionic radii.  An example of these MEIC 

perovskites is the one developed by Pinedo et al. [17], Pr0.6Sr0.4Fe0.8Co0.2O3 (PSFC), for solid 

oxide fuel cells.  In this work, the A site Pr
3+

 cation is replaced by other lanthanides metals 

such as Ce
3+

.  The advantages of using Ce
3+

 over Pr
3+

 are its abundance and affordability.  

Furthermore the Ce
3+

 cation is larger than Pr
3+

, hence the A–sites will be occupied by larger 

cations which may results in a perovskite with less distortions and higher conductivities 

compared to other perovskites with partially filled A–site [5, 35, 36, 41, 137].  

 

2.5.1 The structure of perovskite 

The oxygen sub–lattice of perovskite can be considered as cubic close–packed.  The A–ion is 

most likely a pre– or post–transition element of lower charge (+1, +2 or +3) [137].  A 

occupies a site with 12–fold oxygen coordination.  The B–site is filled by a transition–metal 

ion of higher charge (+3, +4 or +5) which is octahedrally coordinated by six oxygen atoms 

[4, 35, 41].  The A–site ions are larger than the B–site ions.  The A–and–B cations occupy 

sites with cubic symmetry, Oh point group, whereas the O–anions occupy sites with D4h 

symmetry (Figure 2.5) [35, 36, 41, 137]. 
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Figure 2.5: The perovskite structure (ABO3) type: (a) 12–fold coordination of the larger A–cation (blue), (b) 6–

fold coordination of the B–cation (red), (c) The BO6 octahedra link all vertices forming the cubic framework 

[36, 41, 137] 

 

The ABO3–type perovskite structure consists of building units of BO6–octahedra that are 

corner connected with charge–balancing A–site cations occupying interstitial positions.  In 

the high MEIC perovskites, a number of cations can occupy the A– and B positions.  An 

example is the PSFC perovskite, where A = (Pr + Sr) and B = (Fe + Co).  There are 

distortions in the perovskite structure as a result of displacement and first–order Jahn–Teller 

anti–symmetric breathing distortions of the BO6–octahedra [137, 138].   

The relationship between ionic radii rA, rB and rO is geometrically expressed in a 

characteristic tolerance factor (t) as shown in equation 2.2 [35, 36, 41, 137], which is a 

measure of site occupation by A and B cations: 

𝑡 =  
√2 x (rA + rO)       

2 x (rA + rO)
                                                    (2.2) 

In most cases, the ionic radii of A, B and O do not satisfy the condition that t = 1, hence, the 

perfect cubic structure of the perovskite shows structural distortions.  The distortions that can 

usually be expected are due to the rotation of the BO6 octahedra about high symmetry axes.  

In addition, the perovskite can also deviate from the ideal cubic structure by distortion of the 

rigid BO6 octahedra by changes in B–O bond lengths.  These alterations in the B–O bond 

lengths are possible and expected in systems with d
4
 or d

7
 electronic configurations on the B 



28 
  

atoms, leading to Jahn–Teller type anti–symmetric breathing of the BO6 octahedra.  A change 

from the cubic symmetry to a structure of lower symmetry is common with a combination of 

rigid rotations and bond length distortions [5, 35, 36, 41, 137, 138]. 

 

2.5.2 Uses of perovskites  

Perovskite–type oxides possess high electronic conductivity, substantial electrocatalytic 

activity towards oxygen reduction at high temperatures and moderate thermal expansion 

coefficient compatible with commonly used solid electrolytes, such as yttria–stabilized 

zirconia (YSZ) [32, 35, 41, 138].  Perovskite materials are good candidates for the cathode in 

the field of SOFCs.  Popular compositions for the cathode have included strontium–doped 

lanthanum cobaltite, strontium–doped lanthanum manganite and compositions from the 

quaternary system LnxSr1-xCoyFe1-yO3 (Ln = Lanthanides, Ce or Pr).  Lanthanides have a 

positive effect on the electrochemical activity for oxygen reduction reactions due to their 

redox couples like Pr
3+

 ↔ Pr
4+

 or Ce
3+

 ↔ Ce
4+

.  The perovskite systems containing 

lanthanides (Ce or Pr) allow high reaction rates due to the catalytic redox couple of Ce, 

(Ce
4+

/Ce
3+

 and Pr, (Pr
4+

/Pr
3+

).  Consequently, the oxygen reduction steps are enhanced.  

Since there are oxygen vacancies, the oxidation state of the B–site cations varies (Co
2+

 → 

Co
3+

 → Co
4+

, Fe
2+

 → Fe
3+

 → Fe
4+

).  These materials are applied as cathodes because they 

have high oxygen reaction rates due to the redox couple at intermediate temperatures and 

therefore improved performance [5, 32, 34, 35, 41].    

 

2.6 Characterisation of nanomaterials 

2.6.1 Fourier Transform Infrared Spectroscopy (FTIR) 

Infrared Spectroscopy is used to detect functional groups present in a compound and it 

focuses on the infrared region of the electromagnetic spectrum, where the wavelength is 

longer than that of visible light [139].  This technique is based on vibrations in a molecule 

that show as absorption in a spectrum.  The components of FTIR are; light source, 

interferometer, sample compartment, detector, amplifier, analogue-to-digital convertor and a 

computer.  The source generates radiation which travels through the sample and reaches the 

detector [140].  The signal is digitalized by an amplifier and analog–to–digital convertor.  By 

Fourier transform the signals can be read on a computer as a spectrum (Fig 2).   



29 
  

Samples selectively absorb radiation of specific wavelengths when exposed to infrared 

radiation, causing a change in their dipole moments.  Vibrational excitations from ground 

states to higher excited states occur due to absorption of radiation [140].  The frequency of 

the absorption peak and the number of absorption peaks is dependent on the vibrational 

energy gap [140] the number of vibrational freedom of the molecule [140, 141] while the 

intensity of absorption peaks is related to the change of dipole moment and the possibility of 

the transition of energy levels [140].     

 

Figure 2.6: Schematic diagram of an FTIR instrument [140, 141] 

 

In the case of pure CNTs, the functional groups could be considered as defects [139].  One 

can also apply FTIR in the analysis of impurities stemming from fabrication or coating of 

materials on the CNTs walls.  This involves the determination of the infrared active modes 

which relies on the symmetry of the CNT which can either be chiral, zig–zag or armchair 

[115, 127].  In order for a vibrational mode in a molecule to be IR active, it must have a 

change in the dipole moment [115].  

The important active modes for CNTs in IR spectroscopy are the A2u and E1u rotational 

modes which resonate at ~ 868 and 1575 cm
-1

, respectively [142-144].  The presence of 

functional groups on the walls of the tubes changes the wettability of the nanotubes in 

different surfactants and might change their toxicity [115, 127].  In the structure of CNTs, the 

rolled up graphene sheets consist of C–C and C=C bonds resonating at ~ 1440 and ~ 1500 

cm
-1

, respectively.  In the structure of functionalised CNTs, there will be peaks corresponding 

to the bending modes of C–O at ~1450 cm
-1

, carbonyl groups (C=O) around 1600 and 1725 
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cm
-1 

and hydroxide groups (OH) from water or ethanol at 3450 cm
-1

.  In addition to that, there 

will be several peaks resonating around 3000 cm
-1

 corresponding to CHx groups [115, 127].  

In a MWCNT/perovskite composite, the fingerprint of metal–oxide bonds in the perovskite 

structures will be visible at lower energies in the IR spectrum, at ~ 500–800 cm
-1

.   

 

2.6.2 Raman Spectroscopy 

Raman spectroscopy is a vibrational spectroscopy technique used to collect unique chemical 

fingerprint of a molecule from vibrational, rotational and other low–frequency modes of 

scattering [145].  There are three primary components to any Raman spectrometer: an 

excitation source, a sampling apparatus, and a detector.  In Raman spectroscopy the sample is 

irradiated with monochromatic light and the photons are either inelastically or elastically 

scattered [140].  The inelastically scattered light, known as Raman scatter, has lost (Stokes) 

or gained (Anti–Stokes) energy during this interaction and the emitted photon contains 

information about the molecular structure of the sample [140, 146, 147].  The elastically 

scattered light has the same energy as the incident laser light and is called Rayleigh scatter 

[140, 148].  Each molecule has a different set of vibrational energy levels, and the photons 

emitted have unique wavelength shifts.  Modern Raman instruments are designed to filter out 

the Rayleigh light as only one in every million photons will be Raman scattered [140, 148].  

These modes are based on the Raman scattering of light in the visible, near infrared or near 

ultraviolet range.  The information on the vibrational modes is obtained from the shift of 

energy that results from the interaction of the electromagnetic radiation used and the 

molecular vibrations [148].  The vibrational information is specific to the chemical bonds and 

symmetry of molecules, and therefore, provides a fingerprint by which a molecule can be 

identified.  For a vibrational mode of a molecule to be Raman active it must possess a change 

in the overall polarisability [148].  A schematic diagram of a Raman spectrometer is 

presented in Figure 2.7.  

http://en.wikipedia.org/wiki/Chemical_bond
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Figure 2.7: Schematic diagram of a Raman spectrometer [148] 

 

Allotropic forms of carbon such as fullerenes, CNTs, amorphous carbon and crystalline 

carbon are known to be Raman active.  Hence, Raman spectroscopy is applied in the 

characterisation of carbon nanotubes.  The different forms of carbon can be determined by 

the position, width and relative intensity of bands [149].  The characteristic features are: (i) 

the low frequency peaks between 100–400 cm
-1

, usually seen with SWCNTs and not 

MWCNTS, are assigned to the radial breathing mode from A1g vibrational modes and 

sensitive to tube diameter; (ii) the D band at ~ 1340 cm
-1

 comes from a double resonance 

vibration associated with amorphous carbons or defects on nanotube walls; (iii) the G band at 

~ 1550 cm
-1

 which corresponds to tangential in–plane stretching vibrations of carbon–carbon 

bonds along a graphene sheet, which is a characteristic feature of CNTs or any carbon 

allotrope containing graphene sheets [115, 127, 149, 150].  Depending on the laser frequency 

and intensity used, other bands can be observed at ~ 1620 cm
-1

 for the D’ band (shoulder 

peak of the G-band), and at ~ 2700 cm
-1

 for the 2D mode [115, 127, 149].   

 

2.6.3 Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis is a method of thermal analysis in which changes in chemical 

(such as combustion) and physical (such as melting) transitions of materials are analysed as a 

function of increasing temperature with constant heating rate, or as a function of time with 

constant temperature and/or constant mass loss.  The analysis is carried out under controlled 

atmosphere as the mass of a material changes upon heating [151].  The results from TGA 

analysis provide information about physical–chemical phenomena, such as vaporisation, 

sublimation, adsorption, desorption and decomposition.  Moreover, information on the 
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stability of composite materials in a particular temperature range can be obtained.  

Applications of this technique are the analysis of compounds, explosives, ceramics, 

polymers, carbon allotropes (especially carbon nanotubes) and other materials [151, 152].  

When used to analyse the thermal stability of a material, there will be no observed mass 

change if a species is thermally stable in a desired temperature range.  The maximum 

temperature at which a material is usable can also be determined.   Beyond this temperature 

the material will begin to degrade [151].  The schematic diagram of a TGA is shown in 

Figure 2.8. 

  

Figure 2.8: Schematic of a TGA instrument [152-154] 

 

The basic principle of TGA involves the change in mass of a sample as it is heated, e.g. in an 

oxidative atmosphere (air or oxygen and inert gas mixtures) [154-156].  A sample can lose 

mass as it is heated up because of processes such as decomposition, reduction or evaporation 

[154].  On the other hand, a sample can also gain mass because of oxidation or absorption.  

The TGA tracks the change in mass of the sample using a micro–analytical balance inside the 

instrument [154].  Results can be plotted as weight percent versus time or temperature.   
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Thermogravimetric Analysis is a quick tool to identify purity and, to some extent, 

compositional carbon in MWCNT samples [115, 116, 157].  Furthermore, TGA gives 

important information on the relative amounts of amorphous carbon, catalytic metals and 

structured carbon (MWCNTs) within the sample [115, 116, 157, 158].  The complete 

decomposition of carbon in MWCNTs samples provides information about the oxidation 

temperature of carbon nanotubes and the residual mass [115-117, 157].  Knowing the 

decomposition temperature can be helpful in order to understand physical–chemical 

properties of MWCNTs in composite materials [158].  Furthermore the effect of 

functionalization or addition of external groups on MWCNTs can be revealed by TGA [115-

117].  This allows e.g. to determine whether the adhesion of a coating on the MWCNT walls 

is good and if composites can be formed [158].  TGA does not require special sample 

preparation; hence, possibly fewer structural defects on MWCNTs surfaces are created before 

analysis. 

 

2.6.4 Powder X–Ray Diffraction (PXRD) 

Powder X–ray diffraction is an analytical technique primarily used for phase identification of 

a crystalline material by comparing the “fingerprint” of a diffraction pattern from a sample 

with reference data.  This technique can further provide unit cell dimensions and lattice 

spacings [159, 160].  During the analysis, the diffraction angles and intensities of X–ray 

beams from a small area of the sample are recorded [159, 160].  A schematic diagram of an 

X–ray diffractometer is shown in Figure 2.9. 

 

Figure 2.9: Schematic diagram of a powder X–ray diffractometer [159, 160] 
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In this technique, primary X–rays from the X–ray source are focused on a powder sample.  

Due to the wave like nature of the X–rays, the diffracted beams undergo either constructive 

or destructive interference and are diffracted to a certain angle [159, 160].  The position of a 

peak in the diffraction pattern depends on the lattice spacing of the diffracting lattice planes.  

The relationship is given by the Bragg condition [159, 160]: 

𝑛𝜆 = 2𝑑 sin 𝜃 

In the characterisation of MWCNT composites by powder XRD the number of layers and 

tube diameters can be revealed.  Thus, the main features in CNT X–ray diffraction patterns 

tend to be related to that of graphite.  Measurements of the interlayer spacing can be done 

from the peak position and lattice parameters can also be calculated [127, 161].  The crystal 

systems in which perovskite phases crystallise such as cubic, rhombic and orthorhombic, can 

be identified using powder XRD analysis and suitable reference patterns [35, 36].  

 

2.6.5 Electron Microscopy  

2.6.5.1 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a method that is used to investigate surface 

morphology and microstructure of materials [162-164].  Furthermore, the local composition 

of a material can be analysed using Energy Dispersive X–ray Spectroscopy (EDS).  When 

SEM imaging is combined with EDS, the information can be used for elemental mapping 

[163].   

In the MWCNT/perovskite composite materials, SEM is used to obtain information about 

perovskite particle distribution on the surface of MWCNTs, particle size and also the local 

elemental composition, surface morphology, elemental distribution and microstructure of the 

MWCNT/CSFC composites.   

In this technique (Figure 2.10), an electron beam from an electron gun is focused onto the 

sample surface using electro–magnetic lenses [162-164].  The beam is then scanned over a 

selected area of the sample.  In the sample, electrons get decelerated and scattered, back 

scattered electrons are fed to the detector and then to a cathode ray tube through an amplifier, 

where the images are formed, which gives the information on the surface of the sample [162-
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164].  There are two imaging modes: secondary electrons (SE) give information mainly on 

morphology, backscattered electrons (BSE) give information on composition. 

 

Figure 2.10: Schematic diagram of Scanning Electron Microscope [162] 

 

The condenser lens controls the amount of current that passes down the rest of the column by 

focusing the electron beam to variable degrees.   

 

2.6.5.2 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy is a tool used to obtain quantitative information on 

particle and/or grain size, morphology, size distribution and defects (in the case of CNTs) 

[161, 162].  Materials having electron densities exceeding that of amorphous carbon can be 

imaged straight forwardly.  Some of the examples of these materials are polymer 

nanoparticles, carbon nanotubes, metals (e.g. silver, gold, copper, aluminium, etc.), oxides 

(e.g. silica, aluminium oxide, titanium oxide, etc.) and quantum dots [162, 165].  In the 

MWCNT/perovskite composite materials, carbon nanotube diameters can be obtained and it 

is possible to observe whether perovskites particles are seated on the outside or inside of the 
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CNTs [162].  Schematic diagram of a transmission electron microscope is shown in Figure 

2.11.   

  

Figure 2.11: Schematic diagram of the Transmission Electron Microscope [163, 165-167] 

 

The electron beam from the electron source (electron gun) is focused into a small, thin 

coherent beam by the condenser lens [163, 165, 166].  The focused beam is then restricted by 

the condenser aperture, excluding high angle electrons.  The beam then hits the sample where 

it scattered.  The scattering angle depends on sample thickness and atomic number of the 

sample.  An objective aperture is used to exclude high–angle scattered electrons in the 

transmitted beam from contributing to the image.  Areas of the sample with high average 

atomic number or thicker areas appear there for darker than areas with lower average atomic 

number or thinner areas (mass–thickness–contrast).  In crystalline materials diffraction of the 

incident beam of lattice plane is the dominant contrast mechanism.  When the Bragg 

condition is fulfilled and the incident beam is diffracted enough to a higher angle, the 

corresponding grain or crystallite will appear dark [163, 166, 167].  The transmitted beam is 

recorded on film or using a charge couple device (CCD) camera [163, 165-167].   
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2.6.5.3 High Resolution Transmission Electron Microscopy (HRTEM) 

High resolution transmission electron microscopy (HRTEM) is an instrument for high–

resolution studies of materials at the atomic scale [168].  This tool can be used to determine 

the way in which tubular structures are arranged, e.g. concentric or nested tubes, rolled 

sheets, stacked cup arrays, herringbone–types, etc. [169].  In addition, by the use of HRTEM 

it is possible to measure the inner and outer diameters of concentric tubes.  The morphology 

and microstructure can be further studied from TEM/HRTEM in addition to SEM analysis.  

The lattice spacing in MWCNTs can be determined by HRTEM analysis.  In addition to that, 

determination of the perovskite crystal structures and lattice spacings is possible.   

The operating principle of the high resolution electron microscopy involves the use of phase 

contrast and simulation is needed to interpret HRTEM images.  While conventional TEM 

uses mass thickness and diffraction contrast [168].   

 

2.7 Testing the electrochemical performance of nanomaterials 

Although the synthesis of nanocomposite materials for SOFCs is possible and easy to 

achieve, testing under application conditions is very important.  The testing of the physical 

characteristics of synthesized materials is usually done on the zirconia–based solids, ceria–

based oxides electrolyte with (Li/Na) carbonates and perovskite materials in the SOFCs.  The 

parameters of interest are potential (V), current (mA), current density (mA.cm
-2

) and power 

density (mW.cm
-2

).  The analysis is performed in the presence of an oxidant and a fuel gas at 

intermediate temperatures (300–600 °C).  An estimate of power output of the cell is possible 

and provides information about the performance of the cell.  Moreover, the stability of the 

cell over time can be determined.  

 

2.7.1 Mathematical model of SOFCs 

The SOFC working mechanism is based on a co–ionic conducting electrolyte.  Hydrogen is 

the fuel input and air is the oxidant.  Assuming electrochemical reactions are occurring at the 

electrode–electrolyte interface only [170, 171], it is known that both O
2-

 (YSZ electrolytes) 

and H
+
 (proton conducting perovskites) can migrate via the electrolyte.  Half–reactions taking 

place in the electrodes are as follows: 
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Anode: 2 H2 + 2 O
2- 
 2 H2O + 4e

- 

Cathode: 2 O2 + 4e
- 
 2 O

2- 

Overall: 2 H2 + O2 2 H2O 

 

2.7.2 Current density and overpotential 

The relationship between current density i (fuel cell current per unit area of the electrode, in 

units of mA.cm
-2

) and cell voltage V (V) is shown in Figure 2.12.  

 

 

Figure 2.12: Polarization plot showing the relationship between cell voltage and current density [170] 

 

The theoretical maximum voltage of this fuel cell is 1.2 V.  This is called the open circuit 

voltage (OCV).  The hydrogen reaction rate is directly proportional to the current, since for 

each hydrogen molecule that reacts, two electrons are formed.  Any drop from this maximum 

value is termed overvoltage.  It is desired to minimize the overvoltage so that the fuel cell can 

operate as efficiently as possible.  There is a critical current density called the exchange 

current density with symbol io.  For current densities i < io, the cell voltage is equal to the 

theoretical value.  For current densities i > io, there is a rapid fall in cell voltage, due to a slow 
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reaction rate constant (kinetics).  It is desirable to have as high a value of io as possible, and 

as rapid kinetics as possible.  The effect of a linear fall in voltage as the current density 

increases is due to the fact that there is a resistance to current flow within the fuel cell.  As 

the current increases, the voltage drop will increase.  In physics and electrical engineering, 

this effect is referred to as Ohm’s law.  It is desired to have as small a resistance as possible.  

At very high current densities, the hydrogen reaction rate is high.  However, the hydrogen 

cannot diffuse to the electrode fast enough to react.  Thus, mass transfer is limiting and the 

voltage rapidly drops to zero.  In fuel cells, the overvoltage ∆V due to kinetics is a function of 

the current density (which is directly proportional to the reaction rate) and is often described 

by the Tafel equation given by Equation 2.3 [172]: 

 

∆𝑉 = 𝐴 ln (
𝑖

𝑖𝑜
) = 𝐴 ln(𝑖) − 𝐴 ln(𝑖𝑜)                                      (2.3) 

 

where A is called the Tafel constant (units of V) and io is called the exchange current density 

(units of mA.cm
-2

).   

 

The Tafel equation will be used to model and predict overvoltage in SOFC systems (which 

operate at temperatures of about 300–500 °C).  The Tafel equation is mostly used to estimate 

the cathode exchange current density io using a straight line relationship from the recorded 

data and transformed equation.  To compute this exchange current density, the equation of the 

general straight line is used (Equation 2.4): 

𝑦 = 𝑚𝑥 + 𝑐                                                                   (2.4) 

where m = slope of the line, c = y–intercept.  The exchange current density is equivalent to 

the constant term of the Tafel equation and can be equated to the general straight line 

constant, hence obtaining io [172].  The regression model of the polarization curve used for 

the parameter estimation of the experimental data is described in Equations 2.5, 2.6, 2.7 and 

2.9 [170, 173, 174]: 

 

𝑉 = 𝐸 (𝑇, 𝑝) − ƞ𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  − ƞohmic − ƞconcentration                             (2.5)  

ƞ𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑇

1.4 ×  𝐹
log (

𝑖

𝑖𝑜,𝑐𝑎𝑡
)                                              (2.6) 
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ƞohmic = 𝑅𝑜ℎ𝑚𝑖𝑐 × ic                                                               (2.7) 

where ic is the current density and Rohm is the internal resistance of the cell, which can be 

estimated from the effective distance between the cells components coupled with 

conductivity data (Equation 2.8). 

 

𝑹𝒐𝒉𝒎𝒊𝒄 =  
𝜹𝒂𝒏𝒐𝒅𝒆

𝝈𝒂𝒏𝒐𝒅𝒆
+  

𝜹𝒄𝒂𝒕𝒉𝒐𝒅𝒆

𝝈𝒄𝒂𝒕𝒉𝒐𝒅𝒆
+  

𝜹𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒍𝒚𝒕𝒆

𝝈𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒍𝒚𝒕𝒆
                                  (𝟐. 𝟖) 

 

parameters δanode, δcathode and δelectrolyte are the thickness of the anode,  the cathode and the 

electrolyte, respectively, and σanode, σcathode and σelectrolyte are the conductivities of the anode, 

the cathode and the electrolyte, respectively [173].  

 

ƞconcentration = − 
𝑅𝑇

2 × 𝐹
 𝑙𝑜𝑔 (1 −  

𝑖

𝑖𝑎𝑠

)                                         (2.9) 

ias is the anode limiting current density [174].  The actual voltage calculation is shown in 

Equation 2.10. 

 

𝑽 = 𝑶𝑪𝑽 − 𝑹𝒐𝒉𝒎𝒊𝒄  ×  𝒊𝒄  −
𝑹𝑻

𝟏. 𝟒 × 𝑭
 𝒍𝒐𝒈 (

𝒊

𝒊𝒐,𝒄𝒂𝒕
) +

𝑹𝑻

𝟐 × 𝑭
 𝒍𝒐𝒈 (𝟏

−  
𝒊

𝒊𝒂𝒔
)                         (𝟐. 𝟏𝟎) 

 

The estimated parameters are the total ohmic cell resistance 𝑅𝑜ℎ𝑚𝑖𝑐,   𝑡𝑜𝑡, the cathode exchange 

current density io, cat  and the anode limiting current density ias [173, 174]. 

 

2.8 Summary 

The application of nanoscience and nanotechnology plays a significant role in the synthesis 

of new materials with improved physical and chemical properties.  The enhanced 

performance shown by materials at the nanoscale is based on their high surface area and 

quantum confinement.  CNTs have gained wide applications in material science because of 

their properties based on surface and electronic effects at nanoscale level.  They have been 

proposed as materials for SOFCs because of their high conductivities and the ability to act as 
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template in the synthesis of LT–SOFC materials.  Cathode composites of MWCNTs and high 

mixed ionic conducting perovskites oxides are known as promising materials for SOFCs.  

Nanocomposites materials can be characterized by a number of complementary techniques 

FTIR, Raman spectroscopy, TGA, XRD, SEM, TEM and HRTEM.  Moreover, 

electrochemical performance of nanomaterials in SOFCs can be determined in terms of 

polarization curves. 
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Chapter Three 

Experimental Techniques 

 

The following Chapter describes synthesis and physico–chemical characterization techniques 

used in this work.  Methods used to synthesize nanomaterials are Chemical Vapour 

Deposition (CVD) and sol–gel.  Metal acetylacetone (acacs) complexes were coated onto 

MWCNT surfaces in an effort to develop perovskite structures within MWCNTs used as 

templates for particle size control.  The composite approach was used in order to enhance 

chemical and physical properties of the nanocomposite materials.  The performance of the 

nanocomposites was tested in the low temperature region (300–500 °C) for solid oxide fuel 

cell operations.  The MWCNT/perovskite cathode materials were studied in single, 

symmetrical and asymmetrical cells with the use of YSZ electrolyte and NiO–YSZ as the 

standard anode under asymmetrical cells.  Polarization curve characterization techniques for 

the cells were developed.  

 

3.1 Materials 

Pluronic F–127, cerium (III) acetylacetone hydrate (99.9%), strontium acetylacetone hydrate 

(98.5%), iron (III) acetylacetone (97%), and cobalt (III) acetylacetone hydrate (99.9%) were 

purchased from Sigma Aldrich (South Africa, Durban) and were used without further 

purification.  Multiwall carbon nanotubes were purchased from Cheaptubes™ (Brattleboro) 

and were used as received (with purity of > 95 wt. %, diameter range of 8–15 nm, average 

length of (10–20 µm as per the manufacturers).  Deionized water was employed during the 

whole synthesis (sol–gel method).  Crude ethanol was used for the preparation of polymeric 

solutions (sol–gel).  An YSZ electrolyte (YSZ–SUB2.0D, purchased from 

fuelcellmaterials.com) was used as received with a thickness of 300 μm.  Powders of YSZ 

and NiCO3 were purchased from Sigma Aldrich and were used as received.  For painting the 

materials electrodes on the YSZ electrolyte, Polvin walls and ceilings paint (Shalom 

Laboratory Suppliers) was used with a set of tensile paint brushes and stencils.  
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3.2 Synthesis 

3.2.1 Surfactant Preparation 

Using two measuring cylinders, 155 mL of ethanol were added to the first measuring cylinder 

(200 mL) and 45 mL of deionized water to the second measuring cylinder (50 mL).  The 

content of the two measuring cylinders were added simultaneously to a 200 mL Erlenmeyer 

flask and mixed thoroughly by shaking and inverting the flask several times.  The solution 

was then transferred to four 50 mL volumetric flasks (four aliquots).  Pluronic F–127 (6.00 g) 

was added as the surfactant to the four different 50 mL solvent system solutions.  The 

solutions were then sonicated for 5 minutes and left covered with foil in the fume hood for 3 

days (this resulted in a viscous solution) at room temperature.  

 

3.2.2 Synthesis of CexSr1-xFeyCo1-yO3 Perovskites 

In the CVD method for the preparation of perovskites the values of x and y were chosen as x 

= y.  The method involves mixing four commercial metal acacs in stoichiometric amounts, by 

first weighing them in different weighing boats and transferring them into a mortar, grinding 

with a pestle for homogenisation of the mixture for about 2 minutes.  The exact masses and 

ratios of the samples are given in Table 3.1. 

 

Table 3.1: Required masses of metal acacs for the preparation of CexSr1-xFeyCo1-yO3 perovskites by CVD 

technique 

Composition Ce(acac)3/g Sr(acac)2/g Fe(acac)3/g Co(acac)3/g 

x = y = 0.2 0.0874 0.2286 0.0508 0.02057 

x = y = 0.4 0.1749 0.1715 0.1016 0.1542 

x = y = 0.6 0.2624 0.1143 0.1524 0.1028 

x = y = 0.8 0.3499 0.0571 0.2032 0.0514 

 

For the sol–gel method, the metal acacs were weighed stoichiometrically as described above.  

The metal acacs were then transferred into a 100 mL beaker and dissolved in 10 mL of the 

Pluronic F–127 pre–made solution.  This mixture was stirred for 15 hours before placing the 
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beakers in a convection oven (ODWFH18 and GWD520) at 100 °C for 2 hours until the 

samples were dry.  The exact masses and ratios of the samples are given in Table 3.2. 

 

Table 3.2: Required masses of metal acacs and volumes of Pluronic F–127 for the synthesis of  

CexSr1-xFeyCo1-yO3 perovskites by sol–gel technique  

Composition Ce(acac)3/g Sr(acac)2/g Fe(acac)3/g Co(acac)3/g Pluronic F–127 / 

mL 

x = y = 0.2 0.0873 0.2285 0.0506 0.02054 10 

x = y = 0.4 0.1748 0.1720 0.1009 0.1528 10 

x = y = 0.6 0.2772 0.1103 0.1549 0.1121 10 

x = y = 0.8 0.3396 0.0580 0.2046 0.0563 10 

 

CexSr1-xFeyCo1-yO3 samples made by the two different methods were then packed into a 

homemade stainless steel reactor assembled from standard Swagelok
TM

 parts (Figure 3.1) for 

heat treatment.   

 

Figure 3.1: The reactor used for calcining MWCNT/perovskite composites in the Labofurnace 
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The sealed reactor was placed into a horizontal tube furnace, and the reactor was then 

connected to a vacuum pump, with appropriate valves along the vacuum line.  The set–up 

used is shown in Figure 3.2.  After evacuation to approximately 10
-3

 mbar, valve 2 was 

closed and the furnace set to heat slowly to 400 °C with a ramp rate of 1 °C per minute for 8 

hours.  After allowing the furnace to cool down, the samples were taken for characterization. 

 

 

Figure 3.2: Experimental apparatus used for calcination of CexSr1-xFeyCo1-yO3 

 

3.2.3 Synthesis of Carbon Nanotube–CexSr1-xFeyCo1-yO3 composite materials 

(i) MWCNTs to CSFC ratios of 1:0.5, 1:1, 1:2 and 1:3 were prepared using the CVD method.  

MWCNTs were weighed in a beaker, added to the homogenized metal acacs, and further 

ground together for 2 minutes.  Table 3.3 gives the exact quantities of the metal acacs and 

MWCNTs used.  
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Table 3.3: Required amounts for the synthesis of MWCNT/CSFC composites with different mass ratios 

MWCNT/CSFC MWCNT / g Ce0.6Sr0.4Fe0.8Co0.2O3 / g 

(1:0.5) 0.5010 0.2511 

(1:1) 0.5236 0.5289 

(1:2) 0.5362 1.0548 

(1:3) 0.5246 1.5241 

 

(ii) In the sol–gel method, the general synthetic route involved first sonication of MWCNTs 

using Hielscher UP400S sonicator at 80% amplitude and 0.3 cycles per minute in water for 5 

minutes to disperse MWCNTs.  Stoichiometric amounts of metal acacs were then dissolved 

in 10 mL of Pluronic F–127 prepared as shown in section 3.2.1.  This mixture was added to 

the dispersed MWCNTs and stirred for 15 hours.  The stirred samples were transferred to a 

convection oven (ODWFH18 and GWD520) at 100 °C, and left for approximately 2 hours 

until the powders were dry.  Figure 3.3 shows the MWCNTs under sonication, the metal 

acacs and the surfactant (Pluronic F–127 in ethanol water solvent system). 

 

 

Figure 3.3: (a) MWCNTs under sonication, (b) metal acacs, and the numbers referred to perovskites without 

MWCNTs (c) Surfactant Pluronic F–127 in ethanol water solvent system 
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Synthesis of perovskites with x = 0.6 and y = 0.8 and with different MWCNTs amounts was 

done following the method of Pinedo et al. [17].  The ratios of MWCNT to CSFC were kept 

at 1:3 while varying x and y values in the perovskite structure (Table 3.4).  

 

Table 3.4: Composites synthesized by either CVD or sol–gel methods 

Sample number Sample ID Note 

1. 1 MWCNT : 3 Ce0.2Sr0.8Fe0.2Co0.8O3 New ratio in this work 

2. 1 MWCNT : 3 Ce0.4Sr0.6Fe0.4Co0.6O3 New ratio in this work 

3. 1 MWCNT : 3 Ce0.6Sr0.4Fe0.6Co0.4O3 New ratio in this work 

4. 1 MWCNT : 3 Ce0.6Sr0.4Fe0.8Co0.2O3 From reference [17] 

5. 1 MWCNT : 3 Ce0.8Sr0.2Fe0.8Co0.2O3 New ratio in this work 

 

Heat treatments were performed as shown in Figure 3.2.  After heat treatments, samples were 

allowed to cool down to room temperature before further characterisation and 

electrochemical testing.   

 

3.3 Characterisation of the synthesized MWCNT/CSFC composites 

3.3.1 Fourier–Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the samples were recorded using a PerkinElmer Spectrum 100 with 

Universal ATR sampling accessory between 400–4000 cm
-1

 and a resolution of 0.4 cm
-1

.  A 

small amount of the powder was placed on the ATR disc of the universal sampling accessory 

and pressed.  The pressure exerted was monitored by a force gauge on the screen.  When the 

pressure reached 20, the sample was scanned.  Raw data were collected and infrared spectra 

drawn using Origin software.  The FTIR instrument used is shown in Figure 3.4. 
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Figure 3.4: Instrument used for FTIR Spectroscopy 

 

3.3.2 Raman Spectroscopy 

Raman spectroscopy was performed on a DeltaNu advantage 532™ Raman Spectrometer 

equipped with a power of 100 mW Nd–YAG laser with an excitation wavelength of 532 nm 

(Figure 3.5).  Spectra were recorded between 200 and 3500 cm
-1

.  A small amount of the 

sample was loaded in a sample holder with a hole and the laser was shone on the surface of 

the powders in the dark.  The instrument was set to a medium laser power with an integration 

time of 10 seconds.  Twenty spectra were recorded for each sample and an average calculated 

and recorded.  The raw data were saved and smoothed; the spectra plotted using Origin 

software. 

 

Figure 3.5: Instrument used for Raman Spectroscopy 
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3.3.3 Thermogravimetric Analysis (TGA) 

MWCNT/perovskite composites were thermally analysed using a SDT Q 600 (V 20.9 

Instrument Build 20) TGA instrument.  10–20 mg of each sample were used for each run.  

The heating rate was kept to 10 °C/min with air as the purge gas at a flow rate of 50 mL/min.  

Heating was performed from ambient temperature to 1000 °C.  The TGA instrument is shown 

in Figure 3.6. 

 

Figure 3.6: Thermogravimetric Analysis instrument used  

 

3.3.4 X–Ray Diffraction (XRD) Analysis 

The X–ray powder diffraction (XRD) was carried out in–situ for the CSFC and the 1:1 

MWCNT/CSFC composite on a Bruker Advance D8 diffractometer shown in Figure 3.7.  

The radiation used was Cu Kα with a wavelength of 1.5401 Å, and the generator was 

operated at 40 kV.  Data were collected in a 2θ range between 0° and 90° with a step size of 

0.02° from 100–650 °C in 50 °C intervals Data were collected in air for the perovskites and 

under N2 for the composites.   
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Figure 3.7: Bruker D8 ADVANCE diffractometer used for the in–situ XRD  

 

The remaining samples were analysed at iThemba LABS on a Phillips PW3710 operated at 

40 kV and 35 mA, using Cu Kα as the radiation source.  The XRD patterns were recorded for 

2θ values between 0° and 90° with a step size of 2° per minute.  The particle sizes for all 

samples were estimated using the most intense peak (200) in the XRD patterns using the 

Debye Scherrer equation with a Gaussian curve fitted using Origin software (Equation 3.1). 

𝐷 =
0.9𝜆

𝐵 𝑐𝑜𝑠 𝜃
                                                                    (3.1) 
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where D = average particle size in Å, λ = the wavelength (1.5401 Å) of Cu Kα radiation, B 

the full width (in radian) of the XRD diffraction peak at half of its maximum intensity 

(FWHM), θ the Bragg diffraction angle of the peak.  The Miller indices were calculated as 

sine of the angle and the product was squared, the outcomes were multiplied by the integers 

1, 2 and 3 then h k l values were obtained [175].  

 

3.3.5 Electron Microscopy 

Electron microscopy was used to study the surface morphology, microstructure and particle 

distribution.  Both the surface and the bulk of the materials were investigated.  

 

3.3.5.1 Scanning Electron Microscopy (SEM)  

A LEO 1450 Scanning Electron Microscope (SEM) (Figure 3.8) and a ZEISS Field–Emission 

Gun Scanning Electron Microscopy (FEG–SEM) Ultra Plus equipped with an Energy–

Dispersive X–ray Spectrometer (EDS) were used to examine the morphology, size 

distribution and elemental composition of the samples.  To obtain SEM images, powders 

were pressed onto carbon tape coated aluminium stubs and gold coated before being inserted 

into the instrument.  
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Figure 3.8: Instrument used for Scanning Electron Microscopy (LEO 1450)  

 

3.3.5.2 Transmission Electron Microscopy (TEM)  

In order to get information about the bulk of the samples and to perform phase identification, 

a JEOL JEM–1010 Transmission Electron Microscopy (TEM) was used at an accelerating 

voltage of 200 kV.  Samples for TEM were prepared by dispersing the powders in small vials 

in ethanol followed by sonication using an ultrasound bath.  Lacey carbon grids were dipped 

into the solution.  Ethanol was allowed to evaporate and carbon grids were inserted into the 

TEM sample holder and inserted into the instrument shown in Figure 3.9. 



53 
  

 

Figure 3.9: Instrument used for Transmission Electron Microscopy (JEOL JEM–1010)  

 

3.3.5.3 High Resolution Transmission Electron Microscopy (HRTEM)  

The HRTEM instrument used to study the materials was a JEOL JEM–2100 Transmission 

Electron Microscope using an accelerating voltage of 200 kV.  For HRTEM analysis, small 

amounts of the samples were dispersed in ethanol using an ultrasound bath.  Carbon coated 

TEM grids were first dipped in ethanol and then immersed into the solution mixture.  Ethanol 

was allowed to evaporate.  Images were recorded on a 1K x 1K CCD camera.  Particle sizes 

were measured using Image J software.  The instrument is shown in Figure 3.10. 
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Figure 3.10: Instrument used for High Resolution Transmission Electron Microscopy (JEOL JEM–2100)  

 

3.4 Button Cell Fabrication and Electrochemical Measurements 

In this section the fabrications of the cells using the YSZ electrolyte, NiO–YSZ anode and 

MWCNT/CSFC composite materials as cathode electrodes are outlined as well as the method 

for testing the electrochemical properties.  

 

3.4.1 Cell Assembly 

Button cells were assembled by painting a mixture of Polvin Walls and ceilings paint (Salon 

Laboratory suppliers) and anode or cathode material, onto 20 mm diameter Yttrium 

Stabilized Zirconia (YSZ) discs (Purchased from fuelcellmaterials.com).  Paint was used 

since it has a suitable binder and also being insoluble material for pore formation [176].  The 

paint was used as received.  Three drops (~ 0.0200 g) were mixed with 0.0100 g 

MWCNT/perovskite composite for the cathode and 0.0100 g of NiO and 0.0088 of YSZ 
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powder as the anode.  MWCNT/CSFC composites were painted onto the YSZ discs using a 

fine paint brush and a stencil to ensure good coverage within a defined area.  To prevent short 

circuiting in the cells, the paint slurry was applied to a defined area (~ 1.76 cm
2
) of the 

electrolyte.  Samples were then sintered in air at low temperatures (300 °C) for 5 hours. 

Symmetrical cells with the configuration [composite material |YSZ| composite material] were 

prepared by painting cathode slurries on both sides of the YSZ electrolyte.  The same 

procedure was employed for the preparation of the asymmetrical and single cells.  In the 

single cells, cathode slurries were only painted on one side, leaving the other side blank.  This 

configuration is [composite material |YSZ|]. 

For the fabrication of asymmetric cells, nickel carbonate was used as the precursor for the 

anode materials.  To obtain NiO, two methods were compared: In the first method, nickel 

carbonate was mixed with the paint, then painted on one side of the YSZ electrolyte and 

sintered at 800 °C for 5 hours.  In the second method, nickel powders were first heat treated 

at 800 °C for 5 hours, before being painted on the YSZ electrolyte.  Finally, asymmetric cells 

were fabricated by taking NiO–YSZ |YSZ|, sintered at 800 °C, and painting cathode powders 

(MWCNT/perovskites) on the blank side of the electrolyte.  The button cells were then dried 

at 300 °C for 5 hours. 

Meshes of platinum and wires were used as current collectors and were adhered by paste on 

both sides of the electrolyte.  YSZ was used as electrolyte because of its high ionic 

conductivity but with optimal performance at high temperatures.  The cell was placed 

between the meshes on the anode and cathode sides electrodes with ceramic felts covering the 

cell button. 

 

3.4.2 Electrochemical measurements 

3.4.2.1 Polarization curves 

Button cells were mounted in an open flange test set–up from Fiaxell SOFC Technologies™.  

The test–bed was placed in a Kittec Squadro muffle furnace and appropriate gas tight fittings 

were attached for the delivery of humidified air and hydrogen gas to the cell.  The pressure 

exerted in the system was monitored by the use of callipers to find the uniform length of the 

spring after tightening the sandwiched cells.  When the furnace had reached the desired 

temperature, the system was flushed with air as an oxidant to the cathode side at a flow rate 
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of 200–300 mL.min
-1

.  After 5 minutes hydrogen gas was fed to the anode side as a fuel at a 

flow rate of 100 mL.min
-1

.  The test cell was conditioned for 2 hours before beginning of the 

test.  Current and voltage from the cell were measured with a Nuvant™ Powerstat 05 

Potentiostat and galvanostat power ware software.  Polarization curves were recorded 

between 300–500 °C (at a potential of 1.2–0.1 V, in 0.1 V intervals) with a fuel consisting of 

hydrogen and 4–20% water on the anode side and air on the cathode side.  Galvanostatic and 

Potentiostatic durability testing was carried out in order to assess long–term static stability of 

the cell at 500 °C for over 15 hours.  Surface morphology and CNT modifications were 

studied by SEM and HRTEM after the test.  Figure 3.11 shows a schematic diagram of the 

cell set–up inside the furnace for the SOFC process. 

 

 

Figure 3.11: Schematic diagram of the SOFC set–up showing all cell components: (1) and (2) electrodes, (3) to 

(6) bottom view of the open flanges test set–up 
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The exterior view of the whole apparatus used is shown in Figure 3.12. 

 

Figure 3.12: SOFC apparatus for measuring electrical performance. (1) Top view of the open flanges test 

fixture, (2) complete set–up 

 

3.4.3 Fuel Cell Parameter Calculations 

Raw data from the Potentiostat were obtained and polarization curves had to be plotted.  The 

problem with the obtained raw data was that when current densities versus potential curves 

were plotted, curves with positive slopes were obtained instead of the expected curves with 

negative slopes.  This means the voltage obtained from the Potentiostat was not the actual 

voltage.  The data had to be manipulated in order to obtain a linear decrease in the voltage as 

the current density increases.  The actual voltage was calculated from Equation 3.2 taking 

into account the ohmic, activation and concentration overpotentials [173]: 

 

𝑉 = 𝑂𝐶𝑉 − 𝑅𝑜ℎ𝑚𝑖𝑐  ×  𝑖𝑐  −
𝑅𝑇

1.4 ×  𝐹
𝑙𝑜𝑔 (

𝑖𝑐 

𝑖𝑜,𝑐𝑎𝑡
) +

𝑅𝑇

2 ×  𝐹
𝑙𝑜𝑔 (1 −  

𝑖𝑐 

𝑖𝑎𝑠
)            (3.2) 

 

where OCV (measured by a voltmeter during the course of the test) stands for open circuit 

voltage and Rohmic is the ohmic resistance (the internal resistance of the cell) and was 

estimated using Equation 3.3 [173]: 
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𝑅𝑜ℎ𝑚𝑖𝑐 =  
𝛿𝑎𝑛𝑜𝑑𝑒

𝜎𝑎𝑛𝑜𝑑𝑒
+  

𝛿𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝜎𝑐𝑎𝑡ℎ𝑜𝑑𝑒
+  

𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
                                      (3.3) 

 

 δanode, δcathode and δelectrolyte are the thickness of the anode, cathode and the electrolyte, 

respectively, and σanode, σcathode and σelectrolyte are the conductivities of the anode, cathode and 

the electrolyte, respectively.  The ic is the current density obtained from the Potentiostat and 

io, cat is the cathode exchange current density which was calculated from the Tafel plot as 

described in Chapter 2 (section 2.8.2).  The parameter R is the ideal gas constant, T the 

operating temperature (in K) and F the Faraday’s constant.  The ias is the anodic limiting 

current density and is calculated by taking into account the diffusion coefficient associated 

with anode/cathode gas transport (diffusivity) as shown in Equation 3.4 [177]:  

 

𝑖𝑎𝑠 =
4 × 𝐹 × 𝑃𝐻2

𝑂  𝐷𝐻2−𝐻2𝑂
𝑒𝑓𝑓

𝑅𝑇𝑙𝑎
                                                             (3.4)  

 

𝑃𝐻2

𝑜  is the partial pressure of hydrogen, 𝐷𝐻2−𝐻2𝑂
𝑒𝑓𝑓

 is the effective binary diffusivity and la is the 

thickness of the electrode (anode).  The effective diffusion coefficient of a porous layer is 

calculated using Equation 3.5 [173, 177]. 

𝐷𝐻2−𝐻2𝑂 =  

10−3  ×  𝑇1.75√
1

𝑀𝐻2

+
1

𝑀𝐻2𝑂

𝑝[ (∑ 𝑣𝐻2
)1/3 + (∑ 𝑣𝐻2𝑂)1/3)]2

                                           (3.5) 

 

p is the total pressure, 𝑀𝐻2
/𝑀𝐻2𝑂  is the molecular weight of hydrogen/water and ∑ 𝑣 is the 

diffusion volume  [173, 177].  The output voltage is expressed as the difference between the 

sum of the ohmic, activation and concentration overpotentials and the open–circuit voltage as 

shown in Equation 3.2 [173].  After calculating the actual voltage and plotting it against the 

current density, the slope of the line was negative as manipulated.  Polarization curves were 

then plotted and maximum current and power densities determined for different test 
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temperatures.  The performance was further studied by means of area specific resistances 

(ASRs) which were obtained from the slopes of the polarization curves. 

3.5 Summary 

The synthesis of cathode materials in this work involved two different techniques, CVD and 

sol–gel.  In the CVD method, no solvent was employed; metal acacs were dry mixed, while 

in the sol–gel method solvent has been used.  Starting materials (metal complexes, [Ce 

(acac)3], [Co (acac)3], [Fe (acac)3] and [Sr (acac)2]) were commercial available.  Pluronic F–

127 was used as a surfactant and it was prepared by dissolving Pluronic F–127 in ethanol and 

water solvent system solution.  The properties of synthesized materials were determined by a 

range of characterisation techniques.  Lastly, cell preparation was accomplished by brush 

painting cathodes and anodes slurries on an YSZ electrolyte and letting them dry.  The 

parameters determined were current and power densities and ASRs.  The summary of the 

whole process is shown in the schematic diagram depicted in Figure 3.13. 

 

 

Figure 3.13: Schematic diagram of the experimental work 
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Chapter Four 

Characterization of MWCNT/CexSr1-xFeyCo1-yO3 Nanocomposite Materials for Low to 

Intermediate Temperatures Solid Oxide Fuel Cells (LIT–SOFC) 

 

The chemical properties of carbon nanotubes/perovskite composites depend on composition, 

synthesis technique and heat treatment.  In this Chapter the results of a variation of the 

chemical composition of the MWCNT/CexSr1-xFeyCo1-yO3 (MWCNT/CSFC) nanocomposite 

(where 0.2 ≤ (x, y) ≤ 0.8 in 0.2 intervals), are presented.   

The aim of the current work is to synthesize nanoparticles of CexSr1-xFeyCo1-yO3 perovskite 

for SOFC cathodes using MWCNTs as templates.  The hypothesis is that MWCNTs can be 

used to control the particle size and growth.  Pinedo et al. [17, 22] have synthesized 

Pr0.6Sr0.4Fe0.8Co0.2O3 perovskite using the sol–gel technique (citrate and glycol) at 700 °C.  In 

this work, a non–ionic surfactant (Pluronic F–127) has been employed.  Praseodymium (Pr) 

is substituted by the more abundantly and economically available cerium (Ce).  The 

temperature of perovskite formation has been reduced to 300–600 °C.  Here, it was 

investigated how MWCNT/CSFC properties changes as the MWCNT: CSFC ratio is varied.  

For comparison, the CVD method was also used to synthesize MWCNT/CexSr1-xFeyCo1-yO3 

(MWCNT/CSFC) nanocomposites for low to intermediate temperature (300–600 °C).  The 

nanocomposite materials were characterized using a range of techniques such as Fourier 

Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X–ray Diffraction (XRD), 

Thermogrametric Analysis (TGA), Scanning Electron Microscopy with Energy Dispersive 

X–Ray Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and High 

Resolution Transmission Electron Microscopy (HRTEM). 

4.1 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 

To identify functional groups, Infrared spectroscopy was used on both for starting materials 

with x = 0.6 and y = 0.8 and for composites.  Figure 4.1 shows FTIR spectra for a ratio of 1:3 

MWCNTs to CSFC.  This material is representative, but showed more intense peaks than 

those of lower loadings of CSFC perovskites.  The IR spectrum of a perovskite prepared by 

the CVD method and recorded before heat treatment shows vibrational modes with broad 

bands at 1371 and 3357 cm
-1

.  In addition to that, there are two vibrational bands at around 
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700 and 800 cm
-1 

and small peaks at 1642 and 2420 cm
-1

 (Appendix A1).  The peaks at 700 

and 800 cm
-1 

are attributed to symmetric stretching of metal–oxygen, O–(FeCo)–O and O–

(CeSr)–O) bonds.  The sharp and broad peaks at 1371 and 3357 are assigned to the FeCoO6 

octahedra and adsorbed water molecules, respectively.   

After heat treatment at 400 °C, there is a shift to lower frequencies in the metal–oxygen peaks 

at 533 and 870 cm
-1

.  The peak assigned to the FeCoO6 octahedra shifted slightly to a higher 

frequency of 1458 cm
-1

.  The peak for adsorbed water molecules at 3357 cm
-1

 is diminished 

after heat treatment at 400 °C.  The remaining peak can be attributed to adsorbed moisture 

during the cooling process of the CSFC perovskite (Appendix A1).  The most significant 

vibrational bands occur at 500 and 1400 cm
-1

 due to the stretching of the metal–oxygen bonds 

in the perovskite structure.  The peak assigned to the rigid octahedra does not change much 

during the heat treatment process [5, 18, 178].   

In the IR spectrum of the CSFC synthesized from sol–gel before heat treatment, there are 

vibrations at 435, 668, 931, 1103, 1366, 1562, 2861 and 3388 cm
-1

 (Appendix A1).  The 

peaks at 668 and 931 cm
-1

 are attributed to symmetric stretching of metal–oxygen O–(FeCo)–

O and O–(CeSr)–O bonds.  The sharp peak at 1103 cm
-1

 is attributed to the C–O band, carbon 

from the acac and oxygen from water or alcohol.  Other sharp peaks at 1366 and ~ 1500 cm
-1

 

are attributed to the FeCoO6 octahedra and C=C and C=O groups originating from the 

polymeric solution.  The bands at 2861 and 3388 cm
-1

 are assigned to the OH groups from 

alcohol and water, respectively.  After heat treatment at 400 °C, the spectrum has vibrational 

bands at 429, 607, 822, 1090, 1323, 1501 and 2000 cm
-1

.  Bands have shifted to lower 

frequencies and the peaks for OH groups disappear [5, 18, 178] (Appendix A1).   

The FTIR spectra of MWCNT/CSFC synthesized by sol–gel and by CVD are shown in 

Figure 4.1 (a) and (b), respectively.  For the MWCNTs, bands are attributed to the symmetric 

(2674 cm
-1

) and asymmetric (2098 cm
-1

) stretch of vCH groups, vC–H sp
3
 hybridized (2423 

cm
-1

), carbonyl stretching mode vC=O (1764 cm
-1

), graphene layers vC=C sp
2
 hybridized 

(1540 cm
-1

), vibrations of methylene (CH2) groups (1400 cm
-1

), vibrational bands of vC–O 

bonds (1057 cm
-1

) and a C–C stretching mode at 997 cm
-1

 [59, 179].  The CSFC perovskite in 

the composites vibrates at around 800 cm
-1 

with symmetric stretching of (FeCo)–O and 

(CeSr)–O and at around 500 cm
-1

 showing the asymmetric stretching mode of O–(FeCo)–O, 

and O–(CeSr)–O in the spectrum [5, 18, 88].  The metal to oxygen (O–FeCo–O and O–CeSr–

O) bonds at ~ 500 cm
-1

, the H–O bonds at ~ 1550 cm
-1 

and the H bond at ~ 3330 cm
-1 

might 
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come from intermolecular condensation of the perovskite [18, 87, 88, 180].  The IR spectra of 

MWCNT/CSFC composites show three broad IR adsorption peaks at positions similar to 

those of perovskites.  There are strong interactions between the polar groups on the 

perovskites and MWCNTs.  Additional functional groups in the sol–gel originate from 

MWCNTs (–OH, C–H, C=C, CH2, C–C), ethanol and water and residual acacs ligands (C–H, 

C=C, C=O, CH2, C–C, –OH) present in the perovskite structure.   
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Figure 4.1: Representative Fourier transform infrared spectra of 1 MWCNT/3 Ce0.6Sr0.4Fe0.8Co0.2O3 

nanocomposite: Synthesized by (a) CVD and (b) sol–gel method after heat treatment at 400 °C 
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Table 4.1 summarizes the functional groups and corresponding wavenumbers of 

MWCNT/CSFC (x = 0.6, y = 0.8) composite materials synthesized by CVD and sol–gel 

methods.  The wavenumbers of functional groups in MWCNT/CSFC composites synthesized 

from sol–gel method are slightly shifted to lower frequencies compared to those synthesized 

by CVD.  The main differences in the spectra are the peaks at 1430, 1295 and 858 cm
-1

 which 

are dominant in the composites synthesized by sol–gel method.  These peaks are attributed to 

residual carbon after heat treatment at 400 °C for 8 hours.  The acacs functional groups in the 

sol–gel method have reacted with the polymeric solution and some of the functional groups 

were burned off during heat treatment.  Other peaks could be due to the MWCNT walls and 

the peak at around 800 cm
-1

 is associated with the stretching of the perovskite in the 

composite [5, 18, 87, 88, 180].  

 

Table 4.1: Characteristic wavenumbers of functional groups in MWCNT/CSFC (x = 0.6, y = 0.8) composites in 

FTIR 

CVD sol–gel 

Wavenumber/cm
-1

 Functional group Wavenumber/cm
-1 

Functional group 

518 

520 

O–(FeCo)–O 

O–(CeSr)–O 

500 

510 

O–(FeCo)–O 

O–(CeSr)–O 

640 wagging–OH 621 wagging–OH 

800 

820 

(FeCo)–O 

(CeSr)–O 

858 

870 

(FeCo)–O 

(CeSr)–O 

997 C–C 997 C–C 

1057 C–O 1059 C–O 

1291 deformation O–H 1295 deformation O–H 

1430 CH3, CH2, CH 1430 CH3, CH2, CH 

1540 C=C 1531 C=C 

1764 C=O 1772 C=O 

2841 symmetric C–H 2838 symmetric C–H 

2909 asymmetric C–H 2935 asymmetric C–H 

3437 stretching O–H 3674 stretching O–H 
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4.1.1 Effect of MWCNT:CSFC ratio on FTIR spectra 

The FTIR spectra of composites showed some differences in the functional groups when 

depending on the MWCNT to CSFC ratios.  In Figure 4.2 (a), the CVD synthesized 

composites exhibit the same peaks assigned to functional groups as discussed in section 4.1 

for the 1:3 composites.  An increase in the perovskite peak intensities at around 500 and 800 

cm
-1 

was observed when changing the ratio from 1:0.5 to 1:3.  Since the perovskite 

nanoparticles are being formed within the MWCNTs, composites with low perovskite 

loadings 1:0.5 do not show all the functional groups.  As the loading increases from 1:1 to 1:3 

the perovskite functional groups start to appear in the spectrum.  There was no significant 

difference in the nature of the functional groups with varying ratios.  The only difference was 

in the intensities of the peaks indicating increased mass ratios of the perovskites.  The same 

functional groups were observed and the major ones are indicated with dotted lines in Figure 

4.2 (a).  As the perovskite loading increases from 1:0.5 to 1:1, the functional groups of the 

MWCNTs dominate.  This is an indication that the perovskite nanoparticles are formed on 

the outer walls of MWCNTs surface.  But high perovskite loadings like in the ratio 1:3 have 

high peak intensities of the perovskite functional groups at around 800 cm
-1

.  This is an 

indication of increased perovskite concentration in the composite. 

The same trend is observed in the sol–gel synthesized composites (Figure 4.2 (b)), but here 

the number of functional groups on the surface of MWCNTs has increased.  Some of the 

peaks develop and disappear as the perovskite loading is increased from 1:0.5 to 1:1.  

Perovskite functional groups at around 700–800 cm
-1

 appear in the composites with low 

perovskite loadings, but as the ratio increases to 1:1, those groups start to disappear and they 

re–appear for the 1:3 composite.  This is because at 1:1 sample ratio, the MWCNT suppresses 

the perovskite functional groups but as the loading increases to 1:3, perovskite peaks start to 

develop.  The perovskite nanoparticles are formed within the MWCNTs as in the case of 

composites synthesized by CVD in Figure 4.2 (a).  For the sol–gel method the number of 

functional groups has increased, probably due to the liquid solution used in the sol–gel 

method (Pluronic F–127 in ethanol and water and the groups resulting from the reactions of 

metal acacs and polymer).  The most dominant peaks are marked with dotted lines in the 

spectrum.  The major perovskite functional groups at around 1200 cm
-1

 [88] are dominating 

in the composite with low CSFC ratio (i).   
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Figure 4.2: Representative Fourier transform infrared spectra of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 nanocomposite 

with varying compositions, (i) (1:0.5), (ii) (1:1) and (iii) (1:3), synthesized by (a) CVD and (b) sol–gel method 

and heat treated at 400 °C 
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4.2 Raman Spectroscopy 

Raman spectroscopy was used to study the vibrational modes of the MWCNT/CSFC 

composite materials.  Figure 4.3 shows Raman spectra of composites synthesized by CVD 

and sol–gel methods.  The 1:0.5 composite is used as representative example.  The spectra 

have been adjusted with base line correction using a linear function and smoothing function, 

afterwards both the peak position and line width were determined by fitting to a Lorentzian 

curve.  For the MWCNTs in the composite, there are two important bands, one is at ~ 1575 

cm
-1

 (G–band) and the other at 1338 cm
-1

 (D–band), which represents the sp
2
 and sp

3
 

hybridized carbons, respectively.  Here the D–band mode is found at 1342 cm
-1

 for the CVD 

sample and at 1345 cm
-1

 for the sol–gel sample.  The D band is due to defects present on the 

MWCNTs surface and carbonaceous particles that might be present along with the tubes.  

FTIR results showed that there are groups attached to MWCNTs surfaces (C=O, metal–

oxygen bonds and other oxygen containing groups) as discussed in section 4.1.  Raman 

spectroscopy also confirmed the presence of defects on the MWCNTs which are due to the 

presence of these functional groups on the MWCNTs walls.  Moreover, the G–band mode 

was found at 1599 cm
-1

 and 1594 cm
-1 

in the Raman spectra of the composites synthesized by 

CVD and sol–gel methods, respectively.  The G–band mode was assigned to the tangential 

modes E2g of the two dimensional graphite.   
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Figure 4.3: Raman spectra of MWCNT/CSFC (x = 0.6, y = 0.8) nanocomposite: Synthesized by (a) CVD and 

(b) sol–gel methods, after heat treatment at 400 °C 
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There are 15 Raman active modes in the spectrum of the ABO3 (CexSr1-xFeyCo1-yO3) 

perovskite structure [18].  Here, three Raman active modes for the cubic structure are 

observed; these are A1g, E2g, and T2g modes at ~ 523, 821 and 1041 cm
-1

, respectively, in the 

CVD sample.  The peak a 1041 cm
-1

 is due to asymmetric stretching of the FeCo–O–FeCo 

bond.  No additional modes were observed at lower frequencies even after heating.  Only 

weak bands were observed at higher frequencies, i.e. the band at ~ 1500 cm
-1

.  Vacancies 

within the perovskite structure arise because of the redox couple reactions taking place in the 

A and B–site metals [18, 87].  In the Raman spectrum of the composite synthesized by sol–

gel method, low frequency bands normally at about 523 and 821 cm
-1

 for perovskite, are 

absent.  This might be attributed to the removal of acacs groups by heat treatment or the 

interactions of acacs ligands with liquid solution (unlike in the CVD) whereby the presence 

of acacs ligands aides in the formation of perovskite (to be discussed in section 4.3).  In the 

Raman spectrum of the composite, an additional Raman active mode appears at ~ 2330 cm
-1

.  

This can be attributed to the 2D mode of the MWCNTs and/or to the vibrations of H3O
+
 in 

the crystal structure of the perovskite due to the substitution of cations by H3O
+ 

from the 

metal site [90].  These two bands for MWCNTs and perovskite crystal structure occur at the 

same wavenumber of the Raman spectrum. 

The integrated band intensity ratio (ID/IG) gives information on the distribution of defect sites 

on the MWCNTs.  The ratio increases as more covalent bonds are formed due to the 

formation of sp
3
 hybridized carbon defect sites, and less graphitic carbon is present within the 

sample [115].  This ID/IG ratio is taken as the quality index of MWCNTs.  Table 4.2 shows 

the intensity ratios of the D and G–band of the MWCNTs in the MWCNT/CSFC 

nanocomposite materials synthesized by CVD and sol–gel methods before and after heat 

treatment.   
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Table 4.2: Raman D and G bands intensity ratios of the MWCNT/CSFC composites before and after heat 

treatments at 400 °C for both CVD and sol–gel composites 

 

Composites 

CVD (D/G band peak areas) sol–gel (D/G band peak areas) 

Before heat 

treatment 

After heat 

treatment 

Before heat 

treatment 

After heat 

treatment 

(1:0.5) 0.13 0.01 0.19 0.19 

(1:1) 2.48 2.50 0.41 0.28 

(1:3) 0.68 0.17 0.06 0.04 

 

From Table 4.2, it can be seen that the ID/IG ratio generally was low for the 1:0.5 ratio but 

increased for the 1:1 ratio and dropped again for the 1:3 ratio, for heat treated and untreated 

samples.  For all samples, there was generally a decrease in this ratio between the unheated 

samples and the heat treated samples, except for the 1:1 ratio sample prepared by CVD 

method.  This increase might have been caused by the disorder on the MWCNTs surfaces.  

The disorder decreases as the perovskite loading was raised to 1:3.  The same trend occurs in 

the sol–gel method.  This might be because perovskite metal precursors and acac ligands 

form more bonds with the MWCNTs surface groups (carbonyl, etc identified from FTIR), 

which then lead to fewer disorder sites on the MWCNTs walls, which could in turn decrease 

the D–band intensity.  More clearly, the disorder on the 1:0.5 sample decreases after heat 

treatment for the samples synthesized by CVD method.  For the 1:0.5 sol–gel composites 

there was no change in the disorder even after heat treatments at 400 °C.  Lastly, sol–gel 

synthesized composites with 1:3 ratio showed less disorder on the MWCNTs walls before 

and after heat treatment.  The composite materials with increased values of ID/IG, were more 

graphitic with vacancies or defects occupied as in 1:1 ratios of all samples. 

4.3 X–Ray Diffraction Studies 

The crystallographic structures of the as prepared and heat treated CSFC perovskites and 

MWCNT/CSFC composites at 400 °C were examined by X–ray diffraction.  The 

measurements were performed on an XRD diffractometer with Cu Kα radiation of 

wavelength λ = 1.5406 Å.  The analysis of the data shows the perovskite–type oxide structure 

and different phases of CeO2 (JCPDS: 000340394), SrFe12O19 (JCPDS: 0000391083), Fe3O4 

(JCPDS: 000030863) and SrCoO2.29 (JCPDS: 000391083).  These perovskite structures were 
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formed after the heat treatments at 400 °C for 8 hours.  The major peaks correspond to the 

reflections from the (111), (200), (210), (211), (300), (221), (310), (311), (321), (410), (322), 

(420), (422), (511) and (521) planes.  These planes were attributed to different phases of 

perovskite structures.  The crystallite sizes of the nanocomposites materials were calculated 

from the peak broadening of the most intense peak, the (200) peak, using the Scherrer 

equation as described in Chapter 3 (section 3.3.4).   

The temperature at which perovskite phases start to form was determined by in–situ XRD 

experiments.  The changes in the relative amounts of perovskites and nanotubes were studied.  

In addition to that, the effects of different compositions of the perovskite structures were 

investigated. 

 

4.3.1 In–situ XRD experiment 

The temperature at which the perovskite phases start to form was determined by powder in–

situ powder XRD of the perovskites (Ce0.6Sr0.4Fe0.8Co0.2O3) and the 

MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composites synthesized by both CVD and sol–gel methods.  

The perovskite and carbon nanotubes composite materials were heat treated in the XRD 

chamber in the temperature range from 100–650 °C in 50 °C intervals.  In the XRD patterns 

in Figure 4.4 (a) the phase formation starts at low temperatures; from 300 °C for perovskites 

synthesized by CVD method.  This may indicate that the acetylacetonate exothermic 

decomposition in air aides in the formation of these complex materials.  For the composite 

materials, synthesized in a 1:1 ratio by CVD method, (Figure 4.4 (b)), phase formation starts 

at temperature of ~ 300 °C as with the case of perovskites.  These acac ligands would still be 

present in the composites formed by CVD method unlike in the case of a wet chemical 

method whereby these ligands react with any liquid present in the reaction.  The 

diffractogram in Figure 4.4 (b), with MWCNTs also shows peaks at ~ 24.90 and 45.29° 

which were indexed to the reflections of hexagonal graphite in the MWCNT structure [84].  

The XRD diffractogram in Figure 4.4 (a) show the peak for the CSFC perovskite at ~ 25.20° 

and this peak also appear in the diffractogram of the composites with MWCNTs (Figure 4.4 

(b)) [181].  The peaks observed in the powder patterns were mainly for perovskites and metal 

acacs as marked with an asterisk in the diffractogram.  The diffraction peaks at 2θ values of 

24.90, 31.02, 32.80, 34, 90, 36,30, 41.00, 43.80, 47.20, 49.62, 56.09, 58.55, 68.94, 76.32, 

78.71, 84.37 and 87.89° correspond to the (111), (200), (210), (211), (202), (300), (310), 
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(311), (321), (410), (420), (422), (333), (432) and (521) planes of the Ce0.6Sr0.4Fe0.8Co0.2O3 

phase, indicating a perovskite structure adopted during calcination.  In the XRD diffraction 

patterns of the composite with MWCNTs in Figure 4.4 (b), there was no significant 

difference except for two additional peaks for the MWCNTs.  The additional diffraction 

peaks at 2θ values of ~ 24.90 and 45.29° for the MWCNTs reflections overlap with those of 

perovskite at these 2θ angles.   
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Figure 4.4: In–situ powder XRD diffractions synthesized by CVD method: (a) Ce0.6Sr0.4Fe0.8Co0.2O3 under air 

and (b) MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composite under N2 gas. The samples were heat treated at different 

temperatures from 100–650 °C in 50 °C increments.  Perovskite phases formed are indexed with (*) 

 

Figure 4.5 shows the XRD diffraction patterns of the samples synthesized by sol–gel method 

and dried in the oven at 100 °C for 2 hours.  The dried materials were heat treated in the 

instrument from 100–650 °C in 50 °C intervals using the same procedure as that for the CVD 
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method.  The XRD patterns in Figure 4.5 (a) shows that perovskite phases did not form well.  

The phases formed were not only for the perovskite, but also for metal oxides as marked with 

an asterisk.  The XRD diffraction peaks at 2θ values of 25.53, 26.46, 44.54, 45.29, 55.68 and 

81.85° correspond to the (111), (200), (310), (311), (321), (432) and (521) planes of the 

perovskite and the other metal oxides.  The metal oxides are present since in the sol–gel 

method there is no decomposition of acetylacetonate as in the case of the CVD method.  The 

acacs reacts with the polymeric surfactant solution and the ligands fall off to produce 

acetylacetone [182].  The composites are also synthesized at the low temperature due to the 

reactor limits (550 °C) and also to keep the MWCNTs intact.  The composite materials, 

synthesized in the 1:1 ratio by sol–gel method Figure 4.5 (b) seem to only start developing 

perovskite phases at about 300 °C as in the case of the perovskite alone.  The diffractogram 

in Figure 4.5 (b) shows peaks at ~ 24.90 and 45.29° which were indexed to the reflections of 

hexagonal graphite in the MWCNT structure [84].  The XRD diffractogram in Figure 4.5 (a) 

shows a peak for the CSFC perovskite at ~ 25.20° which also appears in the diffractogram of 

the composites with MWCNTs (Figure 4.5 (b)) [181].  The phases formed are for perovskites 

and metal acacs and are marked with an asterisk in the diffractogram.   

The absence of acacs resulted in the incomplete formation of perovskites in these materials.  

Sol–gel use a liquid to form networking array of atoms, so these acacs ligands react with any 

liquid present in the reaction and eventually form acetylacetone [182].  As seen from the 

FTIR results in section 4.1, the presence of polymeric solution in the reaction for the sol–gel 

process resulted in the formation of additional functional groups and new bonds, which can 

be attributed to the acetylacetone formation.   
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Figure 4.5: In–situ powder XRD diffractions synthesized by sol–gel method: (a) Ce0.6Sr0.4Fe0.8Co0.2O3 under air 

and (b) MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composite under N2 gas. The samples were heat treated at different 

temperatures from 100–650 °C in 50 °C increments. Perovskite phases formed are indexed with (*) 

 



76 
  

Table 4.3 shows the actual values of the angle 2, diffraction spacings (d) and Miller indices 

of the peaks obtained from the in house XRD instrument for the perovskite synthesized by 

CVD and MWCNT/CSFC composite synthesized by sol–gel methods.   

 

Table 4.3: Diffraction angles (2θ), d values and Miller indices (h k l) for the CSFC and 1MWCNT/1 CSFC (x = 

0.6, y = 0.8) nanocomposite materials from in–situ experiments between 100 and 650 °C  

2θ (°) d value (Å) Miller Indices (h k l)  

CSFC MWCNT:CSFC CSFC MWCNT:CSFC CSFC MWCNT:CSFC 

7.33 8.45 12.04 10.45 - - 

24.9 25.53 3.57 3.48 (111) (111) 

28.32 26.46 3.14 3.36 (200) (200) 

31.02 30.54 2.88 2.92 (210) (210) 

32.8 - 2.72 - (210) - 

34.9 - 2.56 - (211) - 

36.3 - 2.46 - (211) - 

41.0 - 2.19 - (202) - 

43.8 - 2.06 - (300) - 

47.2 44.54 1.92 2.03 (310) (310) 

49.62 45.29 1.83 2.00 (311) (311) 

56.09 55.68 1.63 1.64 (321) (321) 

58.55 59.41 1.57 1.55 (410) (410) 

68.94 61.18 1.36 1.51 (420) (420) 

76.32 66.97 1.24 1.39 (422) (422) 

78.71 75.32 1.21 1.26 (333) (333) 

84.37 81.85 1.14 1.17 (432) (432) 

87.89 85.49 1.10 1.13 (521) (521) 

 

The perovskite phases from the study were compared with XRD data from JCPDS files of 

CeO2, Fe2O3, Fe3O4 and SrCoO2.29 obtained from iThemba Labs.  The 2θ values of the 

prepared materials matched those from data base and the perovskite and metal oxides phases 
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present.  The unkown wide peak at 2θ = 7.33° was attributed to the effects of working at low 

angles in the XRD instrument.   

From these XRD diffraction data base for metal oxides used in the phase identification, it was 

possible to index CexSr1-xFeyCo1-yO3 perovskite planes.  The materials formed revealed all 

the phases present in these data base set.  The major XRD diffraction angles for the 

perovskites present were at the 2θ values of 28.55, 31.04, 33.08, 34.18, 35.61, 36.04, 40.85, 

44.92, 47.47, 49.48, 56.08, 57.67, 69.08, 76.70, 78.76, 83.93 and 88.41°.  These XRD 

diffraction patterns corresponds to the (111), (008), (200), (114), (110), (202), (205), (207), 

(310), (311), (222), (218), (400), (422), (333), (432) and (521) planes for the CexSr1-xFeyCo1-

yO3 perovskite.  Table 4.4 shows the XRD reference data base for the metal oxides used in 

the phase identifications to try and show the individual metal oxides were not present. 
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Table 4.4: XRD reference data for the metal oxides used in the phase identifications 

Cerium Oxide (CeO2)  Strontium Iron Oxide 

SrFe12O19  

Strontium Cobalt 

Oxide SrCoO2.29  

Iron  (III) Oxide               

Fe2O3 

2θ (°) (h k l) 2θ(°) (h k l) 2θ (°) (h k l) 2θ (°) (h k l) 

- - 23.15 (006) 22.71 (100) 24.13 (012) 

28.55 (111) 29.06 (106) - - - - 

- - 31.04 (008) - - - - 

33.08 (200) 32.35 (107) 32.28 (110) - - 

- - 34.18 (114) - - 33.15 (104) 

- - 36.04 (202) - - 35.61 (110) 

- - 40.37 (205) 39.91 (111) 40.85 (113) 

- - 44.92 (207) - - 43.51 (202) 

47.47 (220) 46.85 (100) 46.35 - - - 

- - 50.24 (110) 52.26 (210) 49.48 (024) 

56.08 (222) 56.41 (304) - - 56.15 (211) 

- - 57.50 (218) 57.67 (211) 57.42 (122) 

69.08 (400) 69.01 (211) 67.69 (220) 66.02 (208) 

76.70 (331) 76.69 (106) 77.03 (310) 75.43 (220) 

79.07 (420) 79.11 (406) - - 78.76 (223) 

- - 83.93 (432) 81.58 (311) 82.94 (034) 

88.41 (422) - - 86.04 (222) 88.54 (226) 

 

The grain sizes, crystallite sizes of perovskite nanoparticles formed within MWCNTs were 

calculated using the Debye–Scherrer formula as mentioned in Chapter 3 (section 3.3.4).  The 

crystallite size was calculated using the (200) peak occurring at 2θ = 28.32° in the 

diffractogram of CSFC perovskite and MWCNT/CSFC composite synthesized by CVD.  The 

peak at 2θ = 44.45° was used for the same sample but synthesized by sol–gel since the peak 

at 2θ = 28.32° only develops at high temperatures.  The crystallite sizes increased with an 

increase in temperature.  It must be stressed that the presence of MWCNTs as templates have 

facilitated the reduction of crystallite sizes as can be seen from Table 4.5 for the perovskite 

synthesized by CVD and MWCNT/CSFC composite synthesized by sol–gel from the in–situ 

XRD experiment.   
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Table 4.5: Calculated crystallite sizes of perovskite nanoparticles from the in–situ XRD experiment 

Temperature / °C Particle Size / Å 

CSFC MWCNT/CSFC 

300 80.96 5.98 

350 74.33 4.65 

400 83.77 5.15 

450 76.46 6.55 

500 105.15 8.51 

550 105.15 7.29 

600 143.26 59.07 

650 191.76 33.73 

 

From the in–situ XRD results it was concluded that the formation of perovskite nanoparticles 

occurred at temperatures of 300–650 °C.  Since the study focuses on low to intermediate 

temperatures, the remaining samples were prepared at 400 °C.  The samples were first 

prepared and heat treated at 400 °C for 8 hours then X–rayed at room temperature.  The in–

situ XRD experiment was used to determine the temperature at which perovskite phases start 

to form. 

 

4.3.2 Influence on different MWCNT/CSFC mass ratios 

The powder X–ray diffraction patterns for the composites prepared by CVD and by sol–gel 

methods at the ratios of 1:0.5, 1:1 and 1:3 are given in Figure 4.6 (a) and 4.6 (b) respectively.  

For the CVD method all the ratios were calcined to 400 °C over 8 hours.  All the high 

intensity peaks for the perovskites some of which disappear as the loading increases from (i), 

to (ii) to (iii) as shown in Figure 4.6 (a).  The major peaks that disappear are (200), (210), 

(310), (420), (511) and (521) seen in the 1:0.5 composite.  There seems also to be a change in 

peak intensity as the loading of CSFC increases.  In contrast, for the higher loadings of CSFC 

in the sol–gel method (Figure 4.6 (b)) perovskite peaks are still present.  It also seems like the 

presence of MWCNTs do not aid the formation of perovskite probably due to the low 

operating temperatures.  The (200), (210), (310), (420), (422), (511) and (521) reflections 

diminish as the perovskite loadings were raised from 1:0.5 to 1:3 MWCNT to CSFC ratios.  



80 
  

In fact the intention here was to keep the MWCNTs intact throughout the process suggesting 

that MWCNTs catalyze the formation of the perovskite phases at low temperatures.  

Furthermore, as the CSFC ratio increases the formation of full perovskites and other new 

phases start to develop.  The important reflections of the MWCNTs are marked with the 

dotted line at 2θ = 25.50°.  The phases formed from both methods were not different from 

each other, but the influence of different MWCNT/CSFC mass ratio was not the same. 
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Figure 4.6: Room temperature XRD pattern of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 nanocomposites: (i) (1:0.5), (ii) 

(1:1) and (iii) (1:3) synthesized by (a) CVD and (b) sol–gel method after heat treatment at 400 °C 
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Table 4.6 shows the 2θ values and Miller indices for MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 

composites.  Only the peaks at 2θ = 42.21 and 49.91° are absent for the samples synthesized 

by CVD method.  In all different ratios of nanotubes to perovskites there was a consistent 

phase formation, irrespective of the synthetic method.   

 

Table 4.6: Room temperature diffraction angles (2θ) and Miller indices of the (1MWCNT/0.5 

Ce0.6Sr0.4Fe0.8Co0.2O3) composite heat treated at 400 °C 

Chemical Vapour Deposition sol–gel 

2 θ / ° (h k l) 2 θ/ ° (h k l) 

25.70 (111) 25.57 (111) 

28.19 (200) 28.32 (200) 

32.45 (210) 32.58 (210) 

35.20 (211) 35.33 (211) 

- - 42.21 (300, 221) 

47.16 (310) 47.44 (310) 

- - 49.91 (311) 

56.79 (321) 56.24 (321) 

62.56 (322, 410) 62.43 (410, 322) 

69.03 (420) 69.18 (420) 

76.60 (422) 76.45 (422) 

78.53 (511) 78.79 (511) 

88.42 (521) 88.42 (521) 

 

4.3.3 Influence of Varying x and y on CSFC with a 1:1 MWCNT/CSFC mass ratio 

In this section the values of x and y are kept the same in each perovskite structure, CexSr1-

xFeyCo1-yO3, but varied from 0.2 to 0.8 for the different perovskites (Figure 4.7).  For the 

composites synthesized by CVD method, as the values of x and y are varied perovskite 

phases are formed.  The difference is observed by the change in the peak intensity of the 

(111), (200) and (211) planes as x and y increases from 0.2 to 0.8.  The measurement 

conditions used such as step size; sample size and preparation were kept standard for each 
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increase.  Perovskite phases are formed in all compositions from x = y = 0.2 to x = y = 0.8.  

The only difference was in the peak intensities.  This can be attributed to the site occupation 

in the ABO3 structure of the perovskite as the cation compositions were altered.  There is 

unfilled A and B site which lead to perovskite with distortions.  The plane (200) is fully 

formed at high values of x and y and this has been matched with the plane seen in the 

perovskite with x = 0.6 and y = 0.8 when comparing different MWCNT to CSFC ratios.  

There was a significant difference in the composites with varying x and y values.  A number 

of phases have changing peak intensities.  The MWCNT reflection peaks are marked with a 

dotted line in the diffractogram at around 25.50°. 

 

Figure 4.7: Room temperature XRD diffractogram of 1 MWCNT/1 CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) 

nanocomposite synthesized by CVD method after heat treatment at 400 °C  

 

The actual 2θ values and their corresponding Miller indices are listed in Table 4.7 for 

different compositions (x and y) of perovskites.  The diffraction peak at 2θ = 28.32° has very 
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low intensity in the composites with x = y = 0.2 but as the values were raised to 0.6 and 0.8 

this phase start to develop with high intensity.  Other missing peaks are marked with dash 

lines in the table.  This shows that, high amounts of Ce and Fe cations are needed in order to 

form complete perovskite structure of this type and they play a major role in the oxygen 

reduction reaction for electrochemical performance in Chapter 5. 

 

Table 4.7: Room temperature diffraction angles and their Miller indices for the MWCNT and CexSr1-xFeyCo1-

yO3 composite synthesized by CVD  

x = y = 0.2 x = y = 0.4 x = y = 0.6 x = y = 0.8 

2 Ɵ / ° h k l 2 Ɵ / ° h k l 2 Ɵ / ° h k l 2 Ɵ / ° h k l 

25.27 (111) 25.27 (111) 25.27 (111) 25.27 (111) 

28.32 (200) 28.34 (200) 28.62 (200) 28.49 (200) 

29.64 (200) 29.60 (200) 29.46 (200) - - 

31.42 (210) 31.42 (201) 31.27 (201) - - 

- - 32.95 (210) 33.10 (210) 33.10 (201) 

36.17 (211) 36.30 (211) 36.17 (211) 35.46 (210) 

41.48 (220) 41.35 (220) 41.35 (220) 43.4 (303) 

44.13 (300) 44.00 (300) 44.13 (300) 44.13 (303) 

45.54 (300) 45.54 (300) 45.54 (300) - - 

47.50 (310) 47.50 (310) 47.63 (310) 47.77 (310) 

49.86 (311) 49.86 (311) 49.86 (311) 49.86 (310) 

- - 56.30 (321) 56.43 (321) 56.30 (321) 

58.95 (321) 58.40 (321) 58.81 (321) - - 

64.83 (330) 63.84 (330) 63.00 (330) 62.87 (322) 

- - - - 69.44 (422) 69.44 (420) 

75.86 (333) 76.01 (422) 76.85 (422) 76.85 (321) 

- - - - 79.37 (431) 79.50 (431) 

- - 88.32 (521) 88.59 (521) 88.59 (521) 

 

The room temperature XRD of the composites synthesized by sol–gel method and heat 

treated at 400 °C for 8 hours is shown in Figure 4.8.  The perovskite planes did not form well; 
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there is a combination of perovskites and metal oxide and secondary phases.  The reason why 

perovskite peaks were not formed alone might be due to the low synthesis temperature as 

explained before.  The low calcination temperature was applied in order to prevent the 

decomposition of MWCNTs and the limiting temperature of a reactor was 550 °C. 

 

Figure 4.8: Room temperature XRD pattern of the 1 MWCNT/1 CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) 

nanocomposites synthesized by sol–gel method after heat treatment at 400 °C 

 

Table 4.8 shows the actual 2θ values of nanocomposite materials synthesized by sol–gel 

method and their corresponding h k l values.  The phases formed were not uniform for 

different compositions of x and y values with a number of missing peaks in the diffractogram.  

For the composites with x = y = 0.2, most of the diffraction peaks have shifted to different 2θ 

values in the diffractogram of the composites.  In the case of the composites with x = y = 0.4 

there are a number of developing peaks, here perovskites together with metal oxides phases 

were formed and these metal oxides were not fully converted to perovskites because of low 
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operating temperatures.  When compared to the XRD diffraction patterns of the perovskites 

synthesized from the in–situ XRD, there is a number of diffraction peaks that were not 

observed. 
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Table 4.8: Room temperature diffraction angles and their Miller indices for the 1 MWCNT and 1 CexSr1-

xFeyCo1-yO3 composites synthesized by sol–gel  

x = y = 0.2 x = y = 0.4 x = y = 0.6 x = y = 0.8 

2 Ɵ / ° h k l 2 Ɵ / ° h k l 2 Ɵ / ° h k l 2 Ɵ / ° h k l 

-  23.44 (111) - - 23.44 (111) 

25.12 (111) 25.12 (111) 25.27 (111) 25.12 (111) 

- - 25.96 (200) 25.96 (111) 25.82 (200) 

- - 26.95 (200) - - 26.95 (200) 

28.62 (200) 28.05 (200) 28.91 (200) 28.49 (200) 

29.60 (200) 30.01 (210) - - 30.59 (201) 

31.42 (201) 32.81 (211) - - 32.68 (211) 

32.68 (210) 33.52 (211) 33.10 (210) 33.37 (211) 

36.30 (211) 36.30 (211) 36.17 (211) 35.61 (211) 

- - 37.71 (220) - - - - 

41.35 (220) 40.09 (221) - - 41.06 (300) 

- - 42.03 (300) - - - - 

44.13 (300) 44.13 (310) 44.13 (300) 44.13 (310) 

45.25 (300) 45.25 (311) - - 45.25 (311) 

46.66 (301) 46.66 (311) - - - - 

47.50 (310) - - 47.63 (310) 47.35 (311) 

49.86 (311) - - - - - - 

- - 51.69 (321) - - 51.54 (321) 

- - 54.62 (321) - - - - 

- - 56.17 (400) 56.85 (321) - - 

- - 57.56 (410) - - 57.00 (322) 

58.95 (321) 59.37 (411) - - - - 

62.59 (322) 63.00 (322) 62.87 (322) 63.00 (420) 

65.52 (330) - - - - - - 

- - - - - - 69.58 (430) 

71.96 (322) - - - - - - 

73.63 (332) - - - - - - 

77.54 (430) - - 77.82 (430) - - 

- - - - - - 79.21 (521) 

- - - - 88.87 (521) - - 

 

The crystallite sizes of the nanoparticles have been calculated for different x and y values in 

order to see which composition of MWCNTs and CSFCs have reduced particle size.  It was 
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believed that the composites with small particle size would have high electrical performance 

as discussed in Chapter 5.  Tabulated results (Table 4.9) show the change in the crystallite 

growth as the x and y values in the perovskite structure changes.  The presence of MWCNTs 

as templates seems not contribute to reducing the crystallite sizes of the perovskites.  

However from the in–situ XRD analysis, MWCNTs seems to play a significant role in 

reducing crystallite sizes of nanoparticles.  In some cases, perovskites formed in the absence 

of MWCNTs have small crystallite sizes as in the case of CSFC perovskite with x = y = 0.8 

while in other cases, the presence of MWCNTs reduced the crystallite sizes for example 

MWCNT/CSFC composite with x = y = 0.2 synthesized by sol–gel method (Table 4.9).  

Generally, the CVD synthesized nanomaterials had reduced crystallite sizes.   

 

Table 4.9: Calculated crystallite size for the MWCNT/CexSr1-xFeyCo1-yO3 nanocomposites  

Electrode 

Material 

 

x 

 

y 

Particle size / Å 

CVD sol–gel 

CSFC 0.2 0.2 138.5 177.1 

CSFC 0.4 0.4 188.2 119.0 

CSFC 0.6 0.6 292.7 125.1 

CSFC 0.6 0.8 72.36 95.36 

CSFC 0.8 0.8 43.51 32.49 

1CNT:1CSFC 0.2 0.2 92.83 25.37 

1CNT:1CSFC 0.4 0.4 61.58 497.7 

1CNT:1CSFC 0.6 0.6 104.3 30.82 

1CNT:1CSFC 0.8 0.8 43.51 67.36 

1CNT:0.5CSFC 0.6 0.8 68.82 91.75 

1CNT:1CSFC 0.6 0.8 83.27 243.25 

1CNT:2CSFC 0.6 0.8 96.16 221.00 

1CNT:3CSFC 0.6 0.8 54.28 176.82 

 



89 
  

4.4 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis has been used to study the thermal stability of the 

MWCNT/CSFC composite materials.  From the weight loss curves the initiation temperature, 

the oxidation temperature and the residual mass has been determined using the TA universal 

analysis software.  The initiation temperature is defined as the temperature at which material 

starts to decompose.  The oxidation temperature is the point of maximum rate of weight loss 

and is identified as the peak in the derivative of the weight loss as a function of temperature 

[115].  Furthermore, the heat flow curve gives information on the heat lost or gained as 

exothermic (pointing upwards) or endothermic (pointing downwards) peaks.  The oxidation 

temperature can be taken as the thermal stability of the material.  The residual mass is the 

mass remaining after heating.  In the case of MWCNTs, the residual mass is attributed to the 

metal catalyst present in the MWCNTs synthesis.  

Here, the above discussed parameters are measured in different composites, with changing 

MWCNT to CSFC ratio and perovskite compositions.  In this case the purity of MWCNTs is 

expected to alter because of defects as the perovskite loading is raised from 1:0.5 to 1:3.  For 

confirming different phases from room temperature XRD, TGA analysis for different 

MWCNT/CSFC ratios has been conducted.  

 

4.4.1 Comparison of CVD versus sol–gel Synthesized Composites 

Results of the thermogravimetric analysis of the MWCNT/CSFC 1:0.5 composites 

synthesized from both CVD and sol–gel methods are plotted in Figure 4.9.  The initiation 

temperature of these composites is at around 300 °C and the oxidation temperature is at 560 

°C, and occurs at the same point as the maximum rate of change of weight percent in the 

derivative weight curve.  Heat flow curves show that these materials maximum exothermic 

peak is at the same point as the maximum rate of change of weight percent.  Heat flow curves 

have peaks pointing upwards, then this process is exothermic in nature and these materials 

give off heat at the maximum rate of weight loss.  Since the oxidation temperature is taken as 

an indicator of thermal stability [115], then the MWCNT/CSFC nanocomposite is thermally 

stable up to 560 °C and above this temperature MWCNTs will rapidly burn.  It is important 

not to exceed the temperature at which MWCNTs thermally decompose in order to keep them 

for characterizations and applications (electrochemical testing in Chapter 5).  At temperatures 

above 580 °C only the residual mass is left up to the end of the heating process at 1000 °C.  
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There was no significant difference between the two syntheses methods.  The composites 

have fewer defects exposed on the MWCNTs surface as results of coating with perovskites 

nanoparticles.  This corresponds to the results from Raman spectroscopy which pointed out 

that the low loading perovskites composites have low values of ID/IG ratios which was due to 

less disorder from the covered defects.  The small peaks on the derivative weight curves were 

assigned to the loss of weakly adsorbed water molecules at ~ 330 °C for the composite 

synthesized by CVD.  In the sol–gel synthesized composite the small peak at ~ 180 °C was 

associated with the loss of weakly adsorbed water molecules in combination with other 

organic groups present from acacs and polymeric solution.  Here, this peak is at very low 

temperature, this confirms the formation of other functional groups in the FTIR results for the 

sol–gel synthesized composites.  From TGA curves (Figure 4.9 (a) and (b)), there is a small 

peak observed in the derivative weight curve at 800 °C and it was assigned to the loss of 

unknown moieties (possibly OH groups, or trapped carbon) from the perovskites materials. 
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Figure 4.9: TGA curves of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 synthesized by (a) CVD and (b) sol–gel method. 

Purge gas: air at 50 mL/min. Temperature program: ambient–1000 ̊C, and with a heating rate of 10 °C /min 

 

4.4.2 Influence of different MWCNTs to CSFC mass ratios 

As the ratios of CSFC perovskites to MWCNTs were raised to 1:1, 1:2 and 1:3, the thermal 

stability of MWCNT/CSFC altered.  In the TGA curves of the samples synthesized by CVD 
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method (Figure 4.10 (a)), there was no trend observed on the decomposition temperatures 

based on different ratios of CSFC.  The composite with 1:3 ratio decomposes first followed 

by the composites with the 1:0.5 and 1:2 ratio.  The composite with the 1:1 ratio has the 

maximum weight loss at higher temperatures ~ 800 °C.  In the sol–gel synthesized 

composites (Figure 4.10 (b)), the composites with increased perovskite concentration were 

found to be less stable and decompose at an earlier temperature as compared to that with low 

Ce0.6Sr0.4Fe0.8Co0.2O3 loadings 1:0.5.  Heat treatment reduces the disorder on the MWCNTs 

walls, high loading of CSFC on the surface of nanotubes reveal the decrease in defects after 

heat treatment at 400 °C for 8 hours.  The increase in the Ce0.6Sr0.4Fe0.8Co0.2O3 perovskite 

concentration led to more defects.  In the 1:0.5 composites, the CSFC perovskites have 

covered the defects sites, thus there is an increase in stability when compared to other 

samples.  Furthermore, the increase in the perovskites loading resulted in more than one 

decomposition temperatures indicating weak complexation of the perovskites to the MWCNT 

surfaces.  The polymeric solution used in the sol–gel method was easily burned off at the heat 

treatment temperature (400 °C) [84].  TGA shows that MWCNTs completely decompose at 

560 °C and as a result these composites should be used at low temperatures in order to keep 

MWCNT present in the whole process.   

The difference in the TGA curves of the composites synthesized by CVD and sol–gel 

methods is that, in the CVD method, materials start to loss weakly bounds groups such as 

adsorbed water molecules at lower temperatures.  The composite with high loadings of 

perovskites losses water first because there is a high concentration of perovskites, hence, 

more adsorbed water molecules.  For the low perovskite loadings, the material only 

decompose at high temperature, there is no significant removal of adsorbed water molecules 

because the perovskite loading is low.  This agrees with the Raman results that, materials 

with high perovskite loadings on the MWCNTs walls have more defects.  In the sol–gel 

synthesized materials, same trend was observed.  But here, there is no removal of the 

adsorbed water molecules, because there were removed during the drying of these samples at 

100 °C in the oven. 
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Figure 4.10: TGA curves of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 with different mass ratios, synthesized by (a) CVD 

and (b) sol–gel method. Purge gas: air at 50 mL/min. Temperature program: ambient–1000 ̊C, and with a 

heating rate of 10 °C /min 
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The exact % weight losses, and oxidation temperatures of all composites synthesized from 

the CVD and sol–gel methods are shown in Table 4.10.  The data represents replicates that 

could be done factoring in instrument availability.  Here, the values of the composites with 

varying MWCNTs to CSFC mass ratios are shown.  In the sol–gel synthesized composites, 

the maximum weight loss of 79.28% occurred with the composites with 1:1 MWCNTs to 

CSFC ratio at 506.3 °C.  While in the composites synthesized by CVD method, the observed 

maximum weight loss of 68.55% was in the 1:0.5 MWCNTs to CSFC ratio at 555.2 °C.  The 

minimum weight loss in the composites synthesized by sol–gel occurred with the sample with 

high loading of the perovskite, 1:3 ratio; which is expected since these samples have the most 

perovskite material.  While in the CVD synthesized composite the minimum weight loss 

occurs with the composite with the 1: 1 ratio, which is most likely an outlier.   

 

Table 4.10: TGA results of the MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composites with different mass ratios 

synthesized by sol–gel and CVD methods and heat treated at 400 °C 

 Sol–Gel  

Sample Theoretical % 

Weight Loss 

Actual % Weight 

Loss  

Oxidation Temperature (°C) 

1MWCNT:0.5CSFC 66 71.98 564.10 

1MWCNT:1CSFC 50 79.28 506.3 

1MWCNT:2CSFC 33 26.11 288.2 

1MWCNT:2CSFC 33 44.77 511.5 

1MWCNT:3CSFC 25 23.46 278.3 

1MWCNT:3CSFC 25 37.65 523.9 

 CVD 

Sample  % Loss (%) Oxidation Temperature (°C) 

1MWCNT:0.5CSFC 66 68.55 555.2 

1MWCNT:1CSFC 50 7.949 869.1 

1MWCNT:2CSFC 33 13.15 326.1 

1MWCNT:2CSFC 33 49.77 550.0 

1MWCNT:3CSFC 25 27.80 201.6 

1MWCNT:3CSFC 25 16.33 310.2 

1MWCNT:3CSFC 25 27.44 550.4 
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4.4.3 Influence of Varying x and y on CSFC using a 1:0.5 MWCNT/CSFC mass 

ratio 

Figure 4.11 shows the TGA curves of the MWCNT/CexSr1-xFeyCo1-yO3 composites where x 

and y ranges from 0.2 to 0.8 in 0.2 intervals.  The composite with 1:0.5 ratio have been 

chosen because it has one oxidation temperature other composites decompose at different 

temperatures.  The perovskite with the composition x = 0.6 and y = 0.8 does not cover all 

defects site on the MWCNTs surface, since the composites start to decompose at 

temperatures of around 560 °C (as shown in Figure 4.9).  The other perovskites with unique 

values of x and y covers the defects on the MWCNT walls; this can be seen from the thermal 

stability of the composites.  These composite materials are more stable towards thermal 

oxidative destruction.  The composites containing perovskites with x = y = 0.8, show two 

exothermic peaks the first one at ~ 560 °C followed by the second peak at ~ 800 °C.  This 

means that not all MWCNTs defects sites has been covered by CSFC perovskites, the 

decomposition at 560 °C corresponds to the defected MWCNTs and the decomposition at 

800 °C is due to the MWCNTs without defects.  Additionally, the rest of the perovskites 

structures with x = y = 0.2, 0.4, 0.6 covers these defects sites and provide MWCNTs 

composites with more stability towards oxidative destruction.  In these composites, the major 

decomposition temperature is occurring at temperature more than 800 °C. 

 

Figure 4.11: TGA curves of MWCNT/CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) synthesized by CVD method. 

Purge gas: air at 50 mL/min. Temperature program: ambient–1000 ̊C, and with a heating rate of 10 °C /min 
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The exact weight losses, oxidation temperatures and residual masses of all composites 

synthesized by CVD method are shown in Table 4.11.  Here, the values of the composites 

with perovskites of varying x and y values in the structure are shown.  The maximum weight 

loss of 65.31% is occurring in the composite with x = 0.6 and y = 0.8 at 522.7 °C.  When the 

values of x and y were increased in the same order (x = y), the loss is low about 16.28%.  

There was a huge loss in the composites as the perovskite compositions were increased. 

 

Table 4.11: TGA results for the MWCNT/CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) nanocomposites synthesized 

by CVD and heat treated at 400 °C 

 

Sample 

 

x 

 

y 

 

Loss (%) 

Oxidation 

Temperature 

(°C) 

 

Size (mg) 

 

Residual Mass 

(mg) 

1MWCNT:0.5CSFC 0.2 0.2 16.28 856.2 3.722 3.306 

1MWCNT:0.5CSFC 0.4 0.4 7.802 861.4 4.485 3.841 

1MWCNT:0.5CSFC 0.6 0.6 8.603 838.3 4.317 3.934 

1MWCNT:0.5CSFC 0.6 0.8 65.31 522.7 3.423 1.912 

1MWCNT:0.5CSFC 0.8 0.8 9.045 512.1 5.524 5.001 

1MWCNT:0.5CSFC 0.8 0.8 8.719 813.9 5.001 4.873 

 

The same analysis as in Table 4.11 was done for the sol–gel composites in order to present 

the actual values of the important parameters from the TGA curves.  Table 4.12 shows the 

results of all x and y values from 0.2 to 0.8 as well as different MWCNTs to CSFC mass 

ratios, 1:0.5, 1:1, 1:2 and 1:3.  The composite with x = 0.6 and y = 0.8 have major weight loss 

while those with x = y = 0.2, 0.4, 0.6 and 0.8 possess low loss.  The major weight loss in the 

composite with x = 0.6 and y = 0.8 is about 79.28% at oxidation temperature of 506.3 °C.  

There was no observable trend in the composites with different MWCNTs to CSFC ratios. 
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Table 4. 12: TGA results for MWCNT/CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) nanocomposites with different 

mass ratios synthesized by sol–gel method and heat treated at 400 °C 

 

Sample 

 

x 

 

y 

 

% Loss 

(%) 

Oxidation 

Temperature 

(°C) 

 

Size (mg) 

 

Residual Mass 

(mg) 

1MWCNT:0.5CSFC 0.2 0.2 15.61 700.5 8.911 7.765 

1MWCNT:0.5CSFC 0.2 0.2 1.64 906.2 7.765 7.372 

1MWCNT:0.5CSFC 0.4 0.4 6.10 933.9 9.087 8.525 

1MWCNT:0.5CSFC 0.6 0.8 71.98 564.1 7.540 2.110 

1MWCNT:1CSFC 0.6 0.8 79.28 506.3 10.97 2.271 

1MWCNT:2CSFC 0.6 0.8 26.11 288.2 5.078 3.733 

1MWCNT:2CSFC 0.6 0.8 44.77 511.5 3.731 1.475 

1MWCNT:3CSFC 0.6 0.8 23.46 278.3 11.55 8.840 

1MWCNT:3CSFC 0.6 0.8 37.65 523.9 8.845 4.491 

1MWCNT:0.5CSFC 0.8 0.8 3.524 54.28 6.834 6.106 

 

4.5 Electron microscopy analysis of MWCNTs and CSFCs composites 

4.5.1 SEM/EDS 

The morphology of the MWCNT/CSFC nano composite materials was borne out from the 

SEM micrographs.  The SEM images of the synthesized powders showed carbon nanotubes 

with nanosized perovskite particles in combination with agglomerates.  Figure 4.12 (a) and 

(b) represent the SEM images of the composites materials synthesized by CVD and sol–gel 

methods respectively.  It is seen in the SEM images that the synthesized powders consisted of 

an irregular aggregate of CSFC perovskites and MWCNTs.  Perovskite particles are 

distributed over the MWCNTs surfaces (Figure 4.12 (d)) and are also covered by carbon 

nanotubes.  In addition to that, the particles agglomerate into big structures as can be seen in 

the SEM micrograph of the composite in Figure 4.12 (a) and (b). 
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Figure 4.12: SEM images of 1MWCNT/1 Ce0.6Sr0.4Fe0.8Co0.2O3 composites materials heat treated at 400 °C: (a) 

synthesized by CVD, (b) synthesized by sol–gel methods, (c) EDS elemental maps for Co, Sr, Ce, C, O and Fe 

and (d) EDS layered image of the composite materials synthesized by CVD method and heat treated at 400 °C 

 

Furthermore, elemental distribution was confirmed by EDS analysis on the marked area in 

the SEM image of the composite (Figure 4.12 (b)).  Elements are well distributed over the 

MWCNT surfaces this can be seen from the EDS layer of the composites in Figure 4.12 (d).  

Elemental distribution spectrum of the powders show the presence of Ce, Sr, Fe, Co, C and O 

peaks Figure 4.13.  The carbon content had not been change even after heat treatment at 400 

°C, the composite is carbon rich.  This shows that MWCNTs has not been burned out at this 

temperature (400 °C).     
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Figure 4.13: EDS spectrum of the mapped 1 MWCNT/1CSFC (x = 0.6, y = 0.8) composite synthesized by 

CVD method and heat treated at 400 °C 

 

The EDS spectrum in Figure 4.13 and Table 4.13 reveal that only 1.27 wt. % of Ni was 

present and this is a metal impurity most likely from the catalyst used in the synthesis of 

MWCNTs. For the EDS analysis, a built in standard is used and the detector is pre–calibrated 

and the software has a library of standards to reference to.  The EDS mapping shows the 

distribution of elements over the surface of the carbon nanotubes.   

 

Table 4.13: EDS elemental analysis of the 1 MWCNT/1Ce0.6Sr0.4Fe0.8Co0.2O3 nanocomposites synthesized by 

CVD method 

Element Weight % 

Oxygen (O) 45.28 

Iron (Fe) 9.29 

Cobalt (Co) 9.17 

Nickel (Ni) 1.27 

Strontium (Sr) 18.73 

Cerium (Ce) 16.28 

Total 100 
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4.5.2 TEM/HRTEM/STEM 

Figure 4.14 represents high resolution TEM micrographs of MWCNTs and CSFC composites 

synthesized by CVD and sol–gel and heat treated at 400 °C for 8 hours.  High Resolution 

Transmission Electron Microscopy (HRTEM) images of CSFC show the presence of 

different lattice planes within the perovskite structure (Appendix A6).  This confirms the 

formation of the perovskite structures in the composites.  In the HRTEM micrograph of 

MWCNTs and CSFC composite, perovskite particles cover the surface of MWCNTs (Figure 

4.14 (a), (d)).  The lattice fringes of the perovskites are seen on top of the MWCNTs surface 

and the atoms are 0.34 nm apart; hence MWCNTs are coated with CSFC perovskite 

nanoparticles (Figure 4.14 (b), (e)).  The insert in Figure 4.14 (b) shows the lattice fringes of 

the perovskite and the distance between them.  Dark field imaging and Scanning 

Transmission Electron Microscopy (STEM) confirmed the coating of CSFC onto MWCNT 

walls (Figure 4.14 (c), (f)).   
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Figure 4.14: HRTEM images of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 (1:1) nanocomposite after heat treatment at 400 °C. CVD method: (a) low, (b) high magnification and (c) 

dark field imaging: sol–gel method samples (d) low, (e) high magnification and (f) dark field imaging of the samples 
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In the HRTEM micrographs, the perovskite (Ce0.6Sr0.4Fe0.8Co0.2O3) is seen coated onto the 

MWCNTs outer walls.  This gives the composite enhanced conductivities, because the 

conductivities of the MIECs have been combined with that of the MWCNTs.  This could give 

the composite high electrochemical performance when these nanocomposites are tested as 

cathodes in SOFC at low temperatures (Chapter 5). 

The outer diameter of MWCNTs was calculated to be ~ 18.19 nm and an inner diameter of 

8.882 nm using Image J software on the image by taking the average from different locations.  

Moreover, MWCNTs thickness was determined to be 6.114 nm using Image J software.  The 

perovskite particles were well dispersed and deposited on the surface of MWCNTs.  

4.6 Conclusions 

The MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 nanocomposite powders were successfully fabricated by 

the sol–gel and CVD methods.  FTIR results show the presence of expected functional groups 

in the MWCNT, Ce0.6Sr0.4Fe0.8Co0.2O3 and additionally chelating agent.  In the sol–gel 

method, liquids (polymeric solution) used have added functional groups on the MWCNTs 

walls.  The FTIR results of the composites synthesized by sol–gel method showed many 

vibrational bands because of the additional functional groups from the polymeric solution 

(Pluronic F–127 in ethanol and water solvent system).  Heat treatment temperature removed 

the organic groups originated from the polymeric solution.  In the case of the composites 

synthesized by CVD method, there were no additional functional groups different from those 

of MWCNTs and CSFC, except the functional group of adsorbed water molecules resulting 

from waters of hydration in the metal complexes.  Perovskites are formed on the MWCNT 

walls and as the loading increases, perovskite peaks were seen form both CVD and sol–gel 

methods.  In addition to that, Raman spectroscopy indicated the presence of defects in the 

composites which decrease by heat treatments and high perovskite loadings.   

There were three Raman active modes for the perovskites, A1g (523 cm
-1

), B2g (821 cm
-1

) and 

T2g (1041 cm
-1

) as well as the mode corresponded to the crystalline perovskite at high 

wavenumbers (2330 cm
-1

).  In addition to that, the disorder on the MWCNTs walls decreased 

as the perovskite loadings were raised after heat treatments at 400 °C.  This suggests that, 

most of the defect sites on the MWCNTs have been occupied.   

XRD analysis showed that perovskite phases start to develop at low temperatures as low as 

300 °C from the in–situ XRD experiment.  The in–situ XRD experiment showed it may be 



103 
  

possible to get a reduction in crystallite sizes while the room temperature XRD of the final 

calcined samples showed reduced crystallite sizes in some cases, most of the time this was 

with the CVD method.  Sol–gel method did not form complete perovskites phases under the 

in–situ conditions.  However the room temperature XRD, showed that both CVD and sol–gel 

resulted in the formation of perovskites phases, due to the long treatment time of 8 hours at 

400 °C.  As the perovskite loadings on the MWCNTs were changed, perovskites phases were 

not fully formed with the sol–gel method.  This was because of the low operating temperature 

for the sol–gel method and the absence of metal acacs that aided in the formation of 

perovskites as in the case of CVD.  Additionally, the presence of MWCNTs in the CVD 

method catalyzed the formation of the perovskite phases.   

TGA results showed that, the composites with Ce0.6Sr0.4Fe0.8Co0.2O3 perovskites are stable up 

to temperatures of ~ 560 °C.  On the other hand, composites with CexSr1-xFeyCo1-yO3 

perovskites with 0.2 ≤ (x, y) ≤ 0.8 are more thermally stable and decompose at ~ 800 °C.  

High loadings of perovskite in the composites resulted in more defects and the materials start 

to lose weight at earlier temperatures from both CVD and sol–gel methods.   

Perovskite nanosized particles cover the surface of MWCNTs with the outer and inner 

diameters of 18.19 and 6.114 nm respectively.  The perovskite particles were formed and at 

the same time, the particles agglomerated to form big structures.  This can be also confirmed 

by the big crystallite sized that has been determined by XRD analyses most of the time in the 

sol–gel method.  To sum up, the observed properties of MWCNT/CexSr1-xFeyCo1-yO3 implies 

that, these nanocomposites powders can be used as cathode materials in the SOFCs at low to 

intermediate temperatures as can be seen in Chapter 5.   
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Chapter Five 

Electrochemical Performance of MWCNT/CexSr1-xFeyCo1-yO3 Composites Applied as 

Cathodes for Low to Intermediate Temperatures Solid Oxide Fuel Cells (LIT–SOFC) 

 

This chapter focuses on the electrochemical performance of the MWCNT/CexSr1-xFeyCo1-yO3 

(0.2 ≤ (x, y) ≤ 0.8) nanocomposite cathode materials synthesized by modified sol–gel 

technique with a non–ionic surfactant Pluronic F–127.  For comparisons, materials 

synthesized by CVD method are also tested.  Materials are applied as cathodes following 

their characterizations.  Here the study is focused on the electrochemical performance of the 

cathode materials under different mass ratios, perovskite compositions and cell geometries.  

The performance is studied by looking at the current and power densities as outputs produced 

by the cells with the potential as the input into the cells at low temperatures (300–500 °C).  

The reduction of molecular oxygen in the cathode was monitored by determining the area 

specific resistance values (ASR) from tangents slopes of polarization curves.  ASR values are 

normally crystallite size dependent and is directly proportionate, a property that is vital for a 

materials used as cathode for LT–SOFC [183-185].  The values calculated for the composites 

were low and these compared well with the best literature values [5, 183, 186].  Three types 

of cells are tested for the above quantities.  The cells comprised of; (i) yttria–stabilized 

zirconia [YSZ] electrolyte; single cells comprising of [composite |YSZ|] to study cathode 

performance and symmetrical cells comprising of [composite |YSZ| composite] to study 

anode and cathode.  (ii) asymmetrical cells comprising of [NiO–YSZ |YSZ| composite in 

which the composite is the cathode and nickel oxide (NiO) is the anode.  This was obtained 

by heat treating a mixture of NiCO3, Zirconium acac and yttrium acac (in a 50%: 50 % 

compositions) in air.  NiO–YSZ cement meet the requirement for electronic conductivity and 

an YSZ phase for ionic conduction has excellent electrical conductivity, good mechanical 

strength and high electrochemical activity in H2 [38, 187].  The results obtained from CVD 

and sol–gel methods were discussed in the same manner since the mechanism behind for the 

cell performance was the same.   
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5.1 Electrochemical Properties of MWCNT/CSFC Nanocomposites Synthesized by 

CVD method 

A number of studies have been carried out in order to monitor the performance of 

MWCNT/CSFC composite.  The study has been focused on the effect of ratios of MWCNT: 

CSFC by altering the loading of CSFCs and also by changing the CSFC structure in altering 

compositions of cerium and iron.  Polarization properties were tested in air as oxidant and 

humidified hydrogen (H2 + 10% H2O) as fuel at temperature intervals of 300–500 °C.  The 

thickness of the electrolyte was 0.03 mm, the cathode material was 0.02 mm and the anode 

was 0.045 nm.  The aim is to verify that the materials can be active at reduced operating 

temperatures and decreased interfacial polarization resistances. 

 

5.1.1 Influence of ratios of MWCNT: CSFC on Polarization Curves 

The ratios of MWCNTs and CSFCs with x = 0.6 and y = 0.8 in the composites tested are 1:1, 

1:2 and 1:3.  Figure 5.1 is a plot of polarization curves of the cells with 1:1, 1:2 and 1:3 

MWCNT: CSFC, ratios operated at 500 °C.  The cells used are symmetrical, [composite 

|YSZ| composite], meaning the composite is used both as anode and cathode.  It was observed 

that there was a general linear fall in the voltage (overvoltage) for all three ratios.  The cell 

with 1:2 composite had the higher voltage at lower current densities but all three were fairly 

the same at higher current densities.  Normally the aim is to minimize overvoltage in order to 

minimize the use of H2 as a fuel [5, 188-190].  This overvoltage is caused by resistance flow 

from the cathode as the current density increases [5, 188-190].  The power density on the 

other hand equally increases for three composite ratios as current density increases.  

The open circuit voltage (OCV) of the cell decreased and was stable at 0.7 V.  This value is 

lower than the Nernst thermodynamic value and is caused by a reduction in hydrogen 

pressure at the anode/electrolyte interface caused by the gas crossover that flows through the 

electrolyte due to cold power compacting temperature [105, 191-194].  These could leave 

residual pores and leakages through the connected pore in the cathode electrolyte layer, 

composite |YSZ.  However, another factor could be the low temperature used affects the YSZ 

electrolyte. 
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Figure 5.1: I–V and I–P curves of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composites with different ratios synthesized 

by CVD method. The cathodes were tested under symmetrical cells for 2 hours at 500 °C under air (100 

mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 mL.min
-1

) 

 

The current density for the 1:1 mass ratio is 243.2 mA.cm
-2

 while the peak power density was 

109.4 mW.cm
-2

.  For the 1:2 and 1:3 composites, the current densities are 243.3 mA.cm
-2

, 

245.8 mA.cm
-2

 with the corresponding peak power densities being 110.5 mW.cm
-2

 and 112.2 

mW.cm
-2

, respectively.  The performance exhibited by the three composites is not 

significantly different.  Polarization results are much lower than that reported by other 

researchers for the perovskites of this type [3, 5, 17, 184, 195].  This decrease is attributed to 

the microstructure of the cathode composites.  The minimum slope in the polarization curves 

(I–V) give lowest area specific resistance (ASR) in the linear regime.  Here, the minimum 

slopes (ASR) values are lower for all composites ratios; 0.2341 Ω.cm
2
 for 1:1, 0.2334 Ω.cm

2
 

for 1:2 and 0.2318 Ω.cm
2
 for 1:3 ratios at 500 °C.  It is clear from this that even though the 

crystallite sizes were smaller for the 1:3 (54.28 Å) composite; the ASR value was comparable 

to those of 1:1 and 1:2 ratios.  These ASR values are much lower than that reported for other 
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perovskites such as BSFC; this indicates that CSFC has a catalytic activity for oxygen 

reduction reaction [5, 183, 186].  However there was a general slight decrease associated with 

the ratios, thus there is a possibility of using these as LT–SOFCs [183-185].  Based on these 

results, the 1:3 composites were used to further test electrochemical performance.  This is 

also because the composite had strong perovskite phases from the powder XRD.  

 

5.1.2 Influence of Varying x and y ratio on Electrochemical Properties with a 1:3 

MWCNT/CSFC mass ratio  

The nanocomposites cathode materials were tested under different cell configurations (half–

cells, symmetrical cells and asymmetrical cells) in order to investigate the effect of the cell 

geometry.  Under each cell configuration, the compositions of x and y in the perovskite 

structure were varied in the manner x = y = 0.2, x = 0.6 and y = 0.8, and x = y = 0.8.  The 

investigation was on the electrochemical performance of different perovskite compositions 

over MWCNTs at different temperatures 300, 400 and 500 °C.  Furthermore, the effect of 

changing the composition of cerium and iron in the perovskite structure was studied.  This is 

because the mixed ionic–electronic conductors (MIECs) have a positive effect in the 

electrochemical activity for oxygen reduction reaction due to their redox couples like Ce
3+

 ↔ 

Ce
4+

.  Since there are more oxygen vacancies in the perovskite structure, then, the oxidation 

state of the B–site cations varies in the manner Co
2+

 → Co
3+

 → Co
4+

, Fe
2+

 → Fe
3+

 → Fe
4+

 

which then enhances the oxygen reduction steps [5].  

 

5.1.2.1 Half–Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 0.8 and x = 

y = 0.8 in cerium and in iron 

Figure 5.2 shows polarization curves of the cathodes tested under a single cell with different 

compositions of cerium and iron in the composite [MWCNT/CSFC |YSZ|] at 300, 400 and 

500 °C.  The electrochemical performances of the MWCNT/CSFC composites were 

investigated by using as the cathode with no anode.  The obtained polarization curves 

exhibited a linear fall in voltage as the current density increased.  This overvoltage limits the 

fuel to operate efficiently due to the resistance flow.  This indicates an increase in the 

overvoltage caused by the increase in the current density.  This increase in overvoltage is 

associated to the fact that there is a resistance to current flow within the fuel cell (in the 
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cathode).  The increase in current density and the drop in voltage is referred to as Ohm’s Law 

[188-190].  At very high current densities, the hydrogen reaction rate is high, however, the 

hydrogen cannot diffuse to the electrolyte fast enough to react.  The OCV was changing with 

operating temperature and stabilizes at 0.7 V.  The cell with x = y = 0.2 in Figure 5.2 (a) gave 

maximum current densities of 229.0, 226.3 and 225.0 mA.cm
-2

 with corresponding peak 

power densities of 40.42, 73.20 and 106.8 mW.cm
-2

 at 300, 400 and 500 °C, respectively.  

When the loadings of cerium and iron were increased to x = 0.6 in cerium and y = 0.8 in iron, 

the cell performances were not significantly different from those of the cathodes with low 

cerium and iron (x = y = 0.2).  The 1 MWCNT/3 Ce0.6Sr0.4Fe0.8Co0.2O3 composites tested as 

single cells had maximum current densities of 225.7, 226.1 and 224.5 mA.cm
-2

 with the 

corresponding peak power densities of 43.01, 73.54 and 108.9 mW.cm
-2 

at 300, 400 and 500 

°C, respectively (Figure 5.2 (b)).  The electrochemical performance of the cell with 

perovskite of high compositions of cerium (x = 0.8) and iron (y = 0.8) show slight 

improvement, in terms of current density when compared to the cell with x = 0.6 and y = 0.8.  

This cathode display maximum current densities of 230.4, 239.1 and 239.5 mA.cm
-2

 at 300, 

400 and 500 °C.  The corresponding peak power densities are 40.62, 68.38 and 104.1 

mW.cm
-2

 at same temperatures (Figure 5.2(c)).  At 300 °C the current density for the cathode 

increased from 225.7 by about 5 mA.cm
-2

 from that of the composite with x = 0.6 and y = 

0.8.  But as the operating temperatures are raised to 400 and 500 °C, the increase in the 

current densities is more pronounced.   
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Figure 5.2: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 cathodes synthesized by CVD method. (a) x 

= y = 0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under single cells for 2 hours at each 

temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 mL.min
-1

) 

 

From all polarization curves it is clear that there is a drop in the power density at 300 °C and 

this is attributed to the conductivity of the YSZ electrolyte which performs well at higher 

temperatures.  As the measuring temperature increase from 400–500 °C the ionic 

conductivity of the electrolyte increases, this influence the reduction of adsorbed molecular 

oxygen to O
2-

 ions and improves the diffusion of these ions to the electrode/electrolyte 

interface.  The increase in temperature increases the diffusion of the ions in the electrodes, 

the discharge of the ions to form hydrogen atoms and oxygen atoms on the surface of the 

electrode and the formation of water molecules [5].  An increase in the overall rate of the 

diffusion process reduces polarisation resistance; hence, the losses are smaller at 400 and 500 

°C.  The minimum ASR values are lower for all temperatures, 0.2286 Ω.cm
2
 at 300 °C, 

0.2256 Ω.cm
2
 at 400 °C and 0.2243 Ω.cm

2
 at 500 °C in the cathode with x = y = 0.2.  The 
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slope of the curves (ASR) decreases in high current density because of the decreasing internal 

resistance. For the composite with x = 0.6 and y = 0.8 in Figure 5.2 (b), the ASR of these 

curves are lower for all temperatures: CNT/Pr0.6Sr0.8Fe0.2Co0.8O3 = 0.14 and 0.23 Ω.cm
2
 (at 

700 and 600 °C, respectively) [17]; MWCNT/Ce0.6Sr0.8Fe0.2Co0.8O3 = 0.2064, 0.2066 and 

0.2051 Ω.cm
2
 at 300, 400 and 500 °C, respectively.  When the cerium and iron compositions 

were raised to x = y = 0.8, the ASR values were 0.2298 Ω.cm
2
 at 300 °C, 0.2296 Ω.cm

2
 at 

400 °C and 0.2268 Ω.cm
2
 at 500 °C.  The slopes of the curves (ASR) decreases in high 

current densities because of the decreasing internal resistances in the cell [183, 184].  The 

obtained results are much lower than those reported on the cells with similar perovskite [17].  

A possible explanation for this decrease in the performance of the composite cathode can be 

attributed to several factors such as the electrolyte used, the change in the perovskite 

microstructure, the presence of MWCNTs as template [17, 40, 196] and the incomplete redox 

reaction in the half–cell.  The change in the temperature is significant in the performance of 

this cathode material when tested under single cell conditions and is mainly due to the 

electrolyte used since ionic conductivity of YSZ is not optimized at low temperatures [197-

199].   

 

5.1.2.2  Symmetrical Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 0.8 

and x = y = 0.8 in cerium and in iron 

The performance of the composite materials 1 MWCNT/3 Ce0.2Sr0.8Fe0.2Co0.8O3 used in 

symmetrical cells with configuration [composite |YSZ| composite] generally showed very low 

performance.  The maximum current densities were 132.9, 133.4 and 133.8 mA.cm
-2

 with 

peak power densities of 43.24, 65.66 and 79.12 mW.cm
-2

 at 300, 400 and 500 °C as shown in 

Figure 5.3 (a).  The reduction in the current and power densities produced by the cathode can 

be attributed to the lack of pores formation and the composition of the perovskite 

nanoparticles.  The same cathode material used in a single cell (section 5.1.2.1), gave current 

and power densities that were significantly higher.  This might suggest that, 1 MWCNT/3 

Ce0.2Sr0.8Fe0.2Co0.8O3 cathodes is not suitable for use as the anode and the cathode.  This 

reduced performance is attributed to the lack of fine particles and pore formation in this 

cathode material.  This is also associated to the synthetic method of the nanoparticles (CVD) 

which does not in-cooperate the use of any solvent [200, 201].  The electrochemical 

performance of the cell with increased perovskite compositions in cerium (x = 0.6) and iron 
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(y = 0.8) show current densities of 244.6, 242.8 and 242.3 mA.cm
-2

 with corresponding 

power densities of 43.68, 73.85 and 110.2 mW.cm
-2 

at 300, 400 and 500 °C, respectively.  

Here the performance is higher than those reported in the case of perovskite with reduced 

cerium and iron compositions (Figure 5.3 (b)).  Figure 5.3 (c) shows polarization curves of 

the cathode composite with maximum compositions of cerium and iron (x = y = 0.8) in the 

composite.  Obtained results show maximum current densities of 238.6, 237.2 and 237.4 

mA.cm
-2

 with corresponding peak power densities of 42.43, 72.81 and 109.1 mW.cm
-2 

at 300, 

400 and 500 °C, respectively.  Here the performance has decreased slightly and this decrease 

is attributed to the synthetic approach of the perovskite nanocomposites.  The electrochemical 

performance of this cathode is not significantly different when tested under symmetrical cells 

as compared to the single cell testing discussed before.  The performance of the composite is 

seen to be dependent on the operating temperature.  The change in the temperature is 

significant in the performance of this cathode material.  There is no drop in voltage for the 

cathode with low cerium and iron compositions (Figure 5.3 (a)) at 300 °C as compared to 

polarization curves in Figures 5.3 (b) and (c).  The OCV changes with operating temperature 

and became stable at 0.7 V in all cathode composites. 
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Figure 5.3: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 cathodes synthesized by CVD method.  (a) x 

= y = 0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under symmetrical cells for 2 hours 

at each temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 mL.min
-1

) 

 

From all polarization curves in Figure 5.3, a linear fall in overvoltage is observed.  The 

explanation for this is the same as stated before.  Cathode materials with x = 0.6 and y = 0.8 

and x = y = 0.8 can work simultaneously as the anode and the cathode electrodes in the 

symmetrical cells due to the enhanced electrochemical properties in both reducing and 

oxidising conditions.  In order to improve the electrochemical performance of these cells, a 

standard anode such as NiO–YSZ has to be used. 
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5.1.2.3 Asymmetrical Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 

0.8 and x = y = 0.8 in cerium and in iron 

The electrochemical performance of the cathode materials was tested for the asymmetrical 

cells employing nickel oxide and YSZ as the anode with the cell configuration [NiO–

YSZ|YSZ| composite].  In the polarization curves shown in Figure 5.4, there is a linear fall in 

the voltage as the current density increased and this is due to the resistance flow in the 

cathode which shows an increase in the current density.  It can be seen from the polarization 

curves that, cell performance increases as the temperature increases 400 to 500 °C.  At 300 

°C there is a huge drop in the voltage (ohmic loss) because of low ionic conductivity of YSZ 

electrolyte at low temperatures.  The OCV increases with the increase in the operating 

temperature and stabilizes at 0.7 V for all the cells in Figure 5.4.  The cathode with x = y = 

0.2 gave maximum current and power densities of 248.0, 246.3 and 244.1 mA.cm
-2

 and 

43.32, 72.94 and 111.3 mW.cm
-2

 at 300, 400 and 500 °C, respectively (Figure 5.4 (a)).  There 

is a slight improvement in the performance of this cathode when tested under asymmetrical 

cell configurations.  For the first time the cathode synthesized by CVD method show high 

current and power densities.  The improved performance might be due to the complete redox 

reaction occurring in the anode, cathode and electrolyte electrodes.  The anode plays an 

important role in the electro–oxidation of fuel by catalysing the reaction as well as facilitating 

fuel access and product elimination.  Nickel oxide (NiO) anode has high stability under 

reducing conditions, sufficient electronic and ionic conductivity for conducting electrons and 

porous structure to allow the fuel to flow towards the electrolyte [4, 38, 202, 203].  As the 

perovskite compositions were increased to x = 0.6 and y = 0.8 in Figure 5.4 (b), the current 

and power densities became 246.7, 247.0 and 246.2 mA.cm
-2

 and 44.27, 74.03 and 117.1 

mW.cm
-2 

at 300, 400 and 500 °C, respectively.  The improvement in the current and power 

densities is attributed to the increase in the composition of cerium and iron in the perovskite 

structure which then enhances the redox couple.  Moreover, the presence of nickel as the 

anode catalyzes the electro–oxidation reaction of fuel and facilitates fuel access.  The 

perovskite cathode composite with x = 0.8 in cerium and y = 0.8 in iron has slightly reduced 

current and power densities as compared to the composite with x = 0.6 and y = 0.8, but the 

values are still high.  The maximum values were 243.3, 241.8 and 240.8 mA.cm
-2

 for the 

current densities, and 44.41, 75.20 and 110.6 mW.cm
-2

 for the power outputs at 300, 400 and 

500 °C, respectively (Figure 5.4 (c)).   
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Figure 5.4: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 cathodes synthesized by CVD method.  (a) x 

= y = 0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under asymmetrical cells with NiO–

YSZ as the anode for 2 hours at each temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a 

fuel (200 mL.min
-1

) 

 

The minimum ASR values decreases with an increase in temperature: 0.2473, 02456 and 

0.2433 Ω.cm
2
 at 300, 400 and 500 °C for the composite with x = y = 0.2.  In the cathode with 

x = 0.6 and y = 0.8, the obtained ASR values were low at all operating temperatures, 0.2460, 

0.2462 and 0.2454 Ω.cm
2
 at 300, 400 and 500 °C, respectively.  Lastly, the ASR values 

decreases when the temperature increases, 0.2283 Ω.cm
2
 at 300 °C, 0.2255 Ω.cm

2
 at 400 °C 

and 0.2242 Ω.cm
2
 at 500 °C in the perovskite with high compositions of cerium x = 0.8 and 

iron y = 0.8.  In all three cases, the ASR values are lower (promising) as compared to the 

results from other perovskites of this type [17, 85, 183, 204] showing that these cathodes can 

be used in the LIT–SOFC. 

Table 5.1 combines all current and power densities obtained for cathode nanocomposites 

materials synthesized by CVD method at different operating temperatures under all tested cell 
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configurations.  It can be seen from the table that, the cathode tested under asymmetrical and 

symmetrical cells configurations have high current and power densities.  In the single cells 

testing, high current densities are observed in the MWCNT/Ce0.2Sr0.8Fe0.2Co0.8O3 composite 

cathode.  In the symmetrical cells the MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composite cathode 

possesses high current densities.  Asymmetrical cells have high current densities on the 

MWCNT/Ce0.2Sr0.8Fe0.2Co0.8O3 and MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 this can be assigned to 

the reduced crystallite sizes for the cathode with x = 0.6 and y = 0.8. 

 

Table 5.1: Electrochemical performances of MWCNT/CexSr1-xFeyCo1-yO3 cathode materials synthesized by 

CVD  

Electrode 

Material 

x y Cell 

Type 

Current Density/mA.cm
-2 

Power Density/mW.cm
-2 

300 °C 400 °C 500 °C 300 °C 400 °C 500 

°C 

1CNT:3CSF

C 

0.2 0.2 single 229.0 226.3 225.0 40.42 73.20 106.8 

1CNT:3CSF

C 

0.6 0.8 single 225.7 226.1 224.5 43.01 73.54 108.9 

1CNT:3CSF

C 

0.8 0.8 single 230.4 239.1 239.5 40.62 68.38 104.1 

1CNT:3CSF

C 

0.2 0.2 symmetrical 132.9 133.4 133.8 43.24 65.66 79.12 

1CNT:3CSF

C 

0.6 0.8 symmetrical 244.6 242.8 242.3 43.68 73.85 110.2 

1CNT:3CSF

C 

0.8 0.8 symmetrical 238.6 237.2 237.4 42.43 72.81 109.1 

1CNT:3CSF

C 

0.2 0.2 asymmetrical 248.0 246.3 244.1 43.32 72.94 111.3 

1CNT:3CSF

C 

0.6 0.8 asymmetrical 246.7 247.0 246.2 44.27 74.03 117.1 

1CNT:3CSF

C 

0.8 0.8 asymmetrical 243.3 241.8 240.8 44.41 75.20 110.6 

 

The increase in the cerium and iron compositions in the perovskite structure is significant in 

the electrochemical performance in terms of current and power densities of this cathode.  As 
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observed in Chapter 4 from XRD results, full perovskite phases were formed in the 

compositions with increased amounts of cerium and iron and the perovskite with high 

compositions of cerium and iron had reduced crystallite sizes.  Lanthanides have a positive 

effect in the electrochemical activity for oxygen reduction reaction due to their redox couples 

like Ce
3+

 ↔ Ce
4+

.  The perovskite systems containing high compositions of lanthanides (Ce) 

possess high reaction rates due to the catalytic redox couple of Ce (Ce
4+

 or Ce
3+

).  

Consequently, the oxygen reduction steps are enhanced.  Since there are more oxygen 

vacancies, then, the oxidation state of the B–site cations changes (Co
2+

 → Co
3+

 → Co
4+

, Fe
2+

 

→ Fe
3+

 → Fe
4+

) [5].  . 

5.2 Electrochemical Properties of MWCNT/CSFC Perovskite Nanocomposites 

Synthesized by Sol–Gel method 

In this section, nanocomposites materials synthesized using sol–gel method are tested 

electrochemically.  The effects of firstly different mass ratios of MWCNTs: CSFCs then 

varying x and y ratios of the perovskites is investigated.  The performance is tested as in the 

CVD method discussed in section 5.1 and all the polarization curves are collected under the 

same conditions such as gases used and electrodes thickness.  Since the materials in this 

section are synthesized by a wet chemical method, there should be a reduction of the 

operating temperature and decrease in the interfacial polarization resistances when 

investigating. 

 

5.2.1 Influence of different ratios of MWCNT/CSFC Perovskite on Polarization 

Curves 

MWCNT/ Ce0.6Sr0.4Fe0.8Co0.2O3 composites with different ratios 1:1, 1:2 and 1:3 were tested 

to investigate the effect of different loadings of CSFCs on the electrochemical performance 

of the cathode materials.  Figure 5.5 shows the current and power densities of the cells with 

varying ratios operated at a temperature of 500 °C using symmetrical cells.  The composite 

materials were used both as the anode and the cathode.  There seems not to be a significant 

difference for the different ratios in terms of electrochemical activity.  The polarization 

curves exhibited a linear fall in voltage as the current density increased as was seen to cells 

built from CVD method.  This drop in voltage is termed overvoltage and it needs to be 

minimized so that the fuel can operate as efficiently as possible.  The overvoltage is due to 
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the resistance flow occurring in the cathode, which indicates an increase in the overvoltage 

because of the increase in the current density [189, 190].  The open circuit voltage (OCV) of 

these cells was stable at 0.7 V, and this value is lower than the theoretical value (1.2 V) 

because of the reduction in hydrogen pressure at the anode/electrolyte interface [105, 191-

193, 204].   

In the 1:1 mass ratio the obtained current and power densities are 245.2 mA.cm
-2

 and 105.9 

mW.cm
-2

 and in the 1:2 and 1:3 composites obtained current densities were 245.1 mA.cm
-2

, 

245.3 mA.cm
-2

 and the corresponding peak power densities are 111.6 mW.cm
-2

 and 116.9 

mW.cm
-2

, respectively.  The current densities are not significantly different from those 

obtained from the composites synthesized by CVD method and tested at 500 °C.  The power 

density is high at 1:3 ratio in the composite synthesized by CVD method.  The minimum 

slopes (ASR) values are lower for all composites with different ratios, 0.2332 Ω.cm
2
 (1:1), 

0.2330 Ω.cm
2
 (1:2) and 0.2321 Ω.cm

2
 (1:3) at 500 °C.  These ASR values are much lower 

than that reported for other perovskites such as BSFC; and this indicates that CSFC has a 

catalytic activity for oxygen reduction reaction [5, 183, 186].  There was a general slight 

decrease associated with the ratios, these materials can also be used as cathodes in the LT-

SOFCs [183-185].  Based on these results, the 1:3 composites were used to further test 

electrochemical performance.  This is also because the composite had strong perovskite 

phases from the powder XRD.  
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Figure 5.5: I–V and I–P curves of MWCNT/Ce0.6Sr0.4Fe0.8Co0.2O3 composite cathodes with different ratios 

synthesized by sol–gel method. The cathodes were tested under symmetrical cells for 2 hours at each 

temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 mL.min
-1

) 

 

 

5.2.2 Influence of Varying x and y ratio with a 1:3 MWCNT/CSFC mass ratio  

 

For the second time, the nanocomposites cathode materials were tested under different cell 

configurations (half–cells, symmetrical cells and asymmetrical cells) as in the CVD method.  

The investigation was on the effects of the different cell geometries.  The compositions of x 

and y in the perovskite structure were varied in the manner x = y = 0.2, x = 0.6 and y = 0.8, 

and x = y = 0.8.  The investigation was on the electrochemical performance of different 

perovskite compositions over MWCNTs at different temperatures 300, 400 and 500 °C.  

Furthermore, the effect of changing the composition of cerium and iron in the perovskite 

structure was also studied as before.  This is because these mixed ionic–electronic conductors 
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(MIECs) are known to act positively in the electrochemical activity for oxygen reduction 

reaction due to their redox couples like Ce
3+

 ↔ Ce
4+

 as stated before [5].  

 

5.2.2.1 Half–Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 0.8 and x = 

y = 0.8 in cerium and in iron 

Figure 5.6 shows the polarization curves of the composite cathodes with different perovskite 

compositions.  The electrochemical performance of the MWCNT/CSFC composite cathodes 

was investigated by applying the composite as the cathode without the anode (single cell).  

The obtained polarization curves exhibited a linear fall in voltage as the current density 

increases.  This overvoltage limits the fuel to operate as efficiently as possible and is due to 

the resistance flow in the cathode electrode which indicates an increase in the overvoltage 

because of the increase in the current density.  This is associated to the fact that there is a 

resistance to current flow within the fuel cell.  As the current density increases, the voltage 

drops, this effect is referred to Ohm’s Law [5].  At very high current densities, the hydrogen 

reaction rate is high, however, the hydrogen cannot diffuse to the electrolyte fast enough to 

react [38, 184, 187].  There is also a decrease in the OCV from a theoretical value because of 

the reduction in hydrogen pressure in the anode/electrolyte interface.  In Figure 5.6, it can be 

seen that all cathode materials perform significantly better at 400 and 500 °C and this is 

ascribed to an improvement on the oxygen reduction process taking place in the cathode and 

high ionic conductivities in the electrolyte.  There is a huge drop in the power density at 300 

°C and this is attributed to the conductivity of the YSZ electrolyte which performs well at 

higher temperatures.  As the measuring temperature increases from 400–500 °C the ionic 

conductivity of the electrolyte increases, this influence the reduction of adsorbed molecular 

oxygen to O
2-

 ions and improves the diffusion of these ions to the electrode/electrolyte 

interface [199].  The increase in temperature increases the diffusion of the ions in the 

electrodes, the discharge of the ions to form hydrogen atoms and oxygen atoms on the surface 

of the electrode and the formation of water molecules [194].  An increase in the overall rate 

of the diffusion process reduces polarisation resistance; and the losses are smaller at 400 and 

500 °C.   
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Figure 5.6: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 synthesized by sol–gel method.  (a) x = y = 

0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under single cells for 2 hours at each 

temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 mL.min
-1

) 

 

The cathode with x = y = 0.2 show maximum current densities of 226.7, 209.7 and 228.0 

mA.cm
-2

 with peak power densities of 42.9, 73.2 and 109.4 mW.cm
-2

 at 300, 400 and 500 °C 

(Figure 5.6 (a)).  When the compositions of cerium and iron were raised in the composites 

with Ce0.6Sr0.4Fe0.8Co0.2O3 perovskite structure, obtained maximum current densities are 

231.8, 232.9 and 230.6 mA.cm
-2

 with corresponding peak power densities of 42.74, 73.16 

and 98.74 mW.cm
-2 

at tested temperature (Figure 5.6 (b)).  The current densities obtained in 

the composites synthesized by sol–gel method are slightly high than those from the CVD 

method under the same cell configuration.  While the power densities are quite the same 

except at 300 and 400 °C but at 500 °C the composite synthesized by sol–gel method have 

improved results.  Further, improvement in the performance was observed in the cathode 

composite with high compositions of cerium x = 0.8 and iron y = 0.8.  This cathode material 
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produced maximum current densities of 240.4, 236.9 and 236.6 mA.cm
-2

 and the peak power 

densities of 43.02, 75.59 and 112.4 mW.cm
-2 

at 300, 400 and 500 °C, respectively (Figure 5.6 

(c)).  The current densities for this cathode increased slightly as compared to those of the 

composite with x = 0.6 and y = 0.8 discussed above.  In terms of power outs, the cathode 

material showed improved performance especially at 400 and 500 °C.  The minimum ASR 

values in Figure 5.6 (a) are lower for all temperatures, 0.2261 Ω.cm
2
 at 300 °C, 0.2090 Ω.cm

2
 

at 400 °C and 0.2273 Ω.cm
2
 at 500 °C.  In the cathode with x = 0.6 and y = 0.8, the ASR 

values are also lower for all temperatures and comparable to the literature values: 

CNT/Pr0.6Sr0.8Fe0.2Co0.8O3 = 0.14 and 0.23 Ω.cm
2
 (at 700 and 600 °C, respectively) [17]; 

MWCNT/Ce0.6Sr0.8Fe0.2Co0.8O3 = 0.2118, 0.2127 and 0.2111 Ω.cm
2
 (at 300, 400 and 500 °C, 

respectively).  There was no significant difference in the ASR values of the cathode with x = 

y = 0.8, 0.2397 Ω.cm
2
 at 300 °C, 0.2362 Ω.cm

2
 at 400 °C and 0.2358 Ω.cm

2
 at 500 °C.  The 

slopes of the curves (ASR), decreases in high current densities because of the decreasing 

internal resistances in the cell.  These values are lower than those for the perovskites of this 

type reported elsewhere [5, 17, 48, 183, 186, 204] showing that these cathodes can be used in 

the LIT–SOFC. 

 

5.1.2.2 Symmetrical Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 0.8 

and x = y = 0.8 in cerium and in iron 

The polarization curves of the cathodes synthesized by sol–gel method and tested in 

symmetrical cells [composite |YSZ| composite] are shown in Figure 5.7.  The cathode with x 

= y = 0.2 has maximum current densities of 243, 240 and 240 mA.cm
-2 

and peak power 

densities of 57.23, 75.44 and 112.2 mW.cm
-2

 at 300, 400 and 500 °C, respectively (Figure 5.7 

(a)).  The cathode with x = 0.6 in cerium and y = 0.8 in iron has maximum current densities 

of 245.2, 245.1 and 244.3 mA.cm
-2

 with peak power densities of 43.63, 74.42 and 105.9 

mW.cm
-2 

at 300, 400 and 500 °C, respectively (Figure 5.7 (b)).  The composite cathode 

containing high compositions of cerium and iron in the perovskite structure shows no 

significant difference on the performance in the current densities as compared to the 

composite with x= 0.6 and y = 0.8 compositions discussed above.  As the cerium and iron 

compositions were increased to x = y = 0.8, the obtained current and power densities are 

246.8, 245.6 and 244.1 mA.cm
-2

 and 44.34, 73.97 and 113.4 mW.cm
-2

 at 300, 400 and 500 

°C, respectively (Figure 5.7 (c)).  The peak power output has improved at 500 °C when 
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compared to that of the cathode with x = 0.6 and y = 0.8.  There is a significant improvement 

in the performance of these cathodes when tested under symmetrical cells in terms of current 

and power densities.  This might be attributed to the fact that electrochemical properties in 

both reducing and oxidising conditions have been enhanced because of the high compositions 

of cerium and iron.  When the same materials but synthesized by CVD method were tested 

under symmetrical cells, current and power densities were exceptional low.  The 

improvement here could also be assigned to the reduced crystallite size achieved by sol–gel 

method in the x = y = 0.2 cathode [200, 201].  For the cathodes with high compositions of 

cerium and iron, the improvement in the current and power densities can be assigned to the 

enhanced ionic conductivities. 

 

 

Figure 5.7: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 composite cathodes synthesized by sol–gel 

method.  (a) x = y = 0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under symmetrical 

cells for 2 hours at each temperature under air (100 mL.min
-1

) as an oxidant and humidified H2 as a fuel (200 

mL.min
-1

) 
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A linear fall in voltage is observed from the I–V curves of these cathodes as the current 

density increases.  This loss in voltage can be explained as before, as due to the resistance to 

flow within the fuel cell.  In Figure 5.7 (a), it can be seen that the loss is occurring at both 300 

and 500 °C.  The performance of this cathode is not satisfactory at these temperatures.  This 

is attributed to the microstructure of this cathode.  There is an increase in the oxygen 

reduction rate in the cathode, and ionic conductivity of electrolyte is high at these 

temperatures especially at 400 °C.  The performance at 300 and 500 °C is low and the 

material start to degrade at an earlier current density.  In Figure 5.7 (b), the performance of 

the cathode is higher at 400 and 500 °C because of the improved ionic conductivities in the 

YSZ electrolyte and increased cerium and iron compositions in the perovskite.  Here the 

OCV is higher at 400 °C and it is dropping as the temperature increase to 500 °C.  The 

cathode performance is exceptionally good in the perovskite with x = y = 0.8.  This is 

because of the microstructure and enhanced ionic conductivities of the cathode.  The 

calculated ASR values for the cathode in Figure 5.7 (a) are 0.2432, 0.2400 and 0.2398 Ω.cm
2
 

at 300, 400 and 500 °C, respectively.  For the cathode with x = 0.6 and y = 0.8, the ASR 

values are 0.2444 Ω.cm
2
 at 300 °C, 0.2444 Ω.cm

2
 at 400 °C and 0.2436 Ω.cm

2
 at 500 °C 

(Figure 5.7 (b)).  Lastly, in the cathode shown in Figure 5.7 (c), the ASR values became 

0.2461, 0.2449 and 0.2434 Ω.cm
2
 at 300, 400 and 500 °C, respectively.  It must be stressed 

that, in overall these cathode materials have better electrochemical performance at low to 

intermediate temperature solid oxide fuel cell (LIT–SOFC) in terms of current and power 

densities.   

 

5.2.2.3 Asymmetrical Cell Testing on 1 MWCNT/3 CSFC with x = y = 0.2, x = 0.6, y = 

0.8 and x = y = 0.8 in cerium and in iron 

The electrochemical performance of the cathode materials was tested under asymmetrical 

cells employing nickel oxide and YSZ as the anode with the cell configuration [NiO–YSZ 

|YSZ| composite].  In the polarization curves shown in Figure 5.8, there is a linear fall in the 

voltage as the current density increases and this is due to the resistance flow present in the 

cathode which shows an increase in the current density.  The OCV increased with an increase 

in the operating temperature and stabilized at 0.7 V.  It can be seen from the polarization 

curves that, the performance of the cells increases with temperature especially at 400 to 500 

°C.  At 300 °C there is a huge drop in the voltage (ohmic loss) because of low ionic 
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conductivity of YSZ electrolyte at low temperatures (is not optimized).  In Figure 5.8 (a) for 

the cathode with low compositions of cerium and iron, x = y = 0.2, the obtained maximum 

current densities were 237.7, 236.5 and 235.5 mA.cm
-2  

with peak power densities of 43.60, 

73.93 and 111.7 mW.cm
-2

 at 300, 400 and 500 °C, respectively.  The minimum ASR values 

for this cell decreases with an increase in temperature: 0.2370, 02358 and 0.2348 Ω.cm
2
 at 

300, 400 and 500 °C.  The cathode 1MWCNT/ 3Ce0.6Sr0.4Fe0.8Co0.2O3 showed current 

densities of 245.5, 244.1 and 242.2 mA.cm
-2

 with peak power densities of 42.52, 75.68 and 

116.9 mW.cm
-2 

(Figure 5.8 (b)).  The performance of this composite cathode is higher than 

that of the cathode with x = 0.2 and y = 0.2 perovskite compositions.  The power output has 

significantly improved for the composites with x = y = 0.2 and x = 0.6 and y = 0.8 from a 

value of 111.7 to 116.9 mW.cm
-2

 at 500 °C.  The improvement in the current and power 

densities is attributed to the increase in the composition of cerium and iron in the perovskite 

structure (x = 0.6 and y = 0.8) which then enhances the redox couples.  The obtained ASR 

values for the cathode with x = 0.6 and y = 0.8 were low at all operating temperatures, 

0.2441, 0.2434 and 0.2454 Ω.cm
2
 at 300, 400 and 500 °C, respectively (Figure 5.8 (b)).  The 

MWCNT/CSFC composite cathode material with x = y = 0.8 possess maximum current 

densities of 242.2, 240.7 and 240.2 mA.cm
-2

 with the corresponding peak power densities of 

43.85, 73.01 and 113.6 mW.cm
-2 

at 300, 400 and 500 °C, respectively (Figure 5.8(c)).  The 

minimum ASR values are 0.2415 Ω.cm
2
 at 300 °C, 0.2400 Ω.cm

2
 at 400 °C and 0.2394 

Ω.cm
2
 at 500 °C.  The slopes of the curves (ASR) decreases in high current densities because 

of the decreasing internal resistance in the cell [183]. 
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Figure 5.8: I–V and I–P curves of 1MWCNT/3CexSr1-xFeyCo1-yO3 composite cathodes synthesized by sol–gel 

method. (a) x = y = 0.2, (b) x = 0.6, y = 0.8 and (c) x = y = 0.8. The cathodes were tested under asymmetrical 

cells with NiO–YSZ as the anode for 2 hours at each temperature under air (100 mL.min
-1

) as an oxidant and 

humidified H2 as a fuel (200 mL.min
-1

) 

 

Table 5.2 combines all current and power densities obtained for cathode nanocomposites 

materials synthesized by sol–gel method at different operating temperatures under all tested 

cell configurations.  The cathodes tested under asymmetrical and symmetrical cells 

configurations have high current and power densities.  In the single cells testing, high current 

densities are observed in the composite cathode with x = y = 0.8.  In the symmetrical cells the 

composites cathodes with high compositions of cerium and iron (both 0.6 and 0.8) possess 

high current and power densities.  Asymmetrical cells also have high current and power 

densities on the composite with high compositions of cerium and iron.  
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Table 5. 2: Electrochemical performance of MWCNT/CexSr1-xFeyCo1-yO3 cathode materials synthesized by sol–

gel technique 

Electrode 

Material 

x y Cell 

Type 

Current Density/mA.cm
-2 

Power Density/mW.cm
-2 

300 °C 400 °C 500 °C 300 °C 400 °C 500 

°C 

1CNT:3CSFC 0.2 0.2 single 226.7 209.7 228.0 42.91 73.18 109.4 

1CNT:3CSFC 0.6 0.8 single 231.8 232.9 230.6 42.74 73.16 98.74 

1CNT:3CSFC 0.8 0.8 single 240.4 236.9 236.6 43.02 75.59 112.4 

1CNT:3CSFC 0.2 0.2 symmetrical 243.9 240.7 240.5 57.23 75.44 112.2 

1CNT:3CSFC 0.6 0.8 symmetrical 245.2 245.1 244.3 43.67 74.42 105.9 

1CNT:3CSFC 0.8 0.8 symmetrical 246.8 245.6 244.1 44.34 73.97 113.4 

1CNT:3CSFC 0.2 0.2 asymmetrical 237.7 236.5 235.5 43.60 73.93 111.7 

1CNT:3CSFC 0.6 0.8 asymmetrical 245.5 244.1 246.2 42.52 75.68 116.9 

1CNT:3CSFC 0.8 0.8 asymmetrical 242.2 240.7 240.2 43.85 73.01 113.6 

 

In the single cell configuration, the performance exhibited by the nanocomposites cathodes 

(with low amounts of cerium and iron) synthesized by both CVD and sol–gel methods are not 

significantly different.  The difference was observed when the amount of cerium and iron 

were raised to x = 0.6, 0.8 and y = 0.8 in the perovskite structure.  In the cathode 

nanocomposites synthesized by CVD method, there is no such improvement at high 

compositions of cerium and iron.  Even in the case of composite cathode with high values of 

cerium (x = 0.8) and iron (y = 0.8) a slight change was observed for the nanocomposites 

synthesized by CVD method and tested under single cells but for the same material 

synthesized from sol–gel method there was super high performance when compared to the 

above discussed results.  The difference in the performance is due to the synthetic route 

undertaken, so, the sol–gel synthesized cathode nanocomposites have high performance 

under single cells.   

In the symmetrical cells configurations there is a drastical decrease in the performance for the 

cathode with low values of cerium x = 0.2 and iron y = 0.2 synthesized from CVD method 

while for the sol–gel synthesized cathodes there is a significant improvement.  In the cathode 

with x = 0.6 and y = 0.8 there is no significant difference observed from both CVD and sol–

gel methods.  Lastly, the performance has decreased in the cathode nanocomposites with x = 

y = 0.8 in the perovskite structure when synthesized by CVD method as compared to that 

from the sol–gel method.   
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The CVD synthesized cathodes only have high performance when tested under asymmetrical 

cells with NiO–YSZ as the anode and the MWCNT/CSFC as the cathode with all 

compositions of cerium and iron.  But there is a slight difference in the performance which is 

attributed to the perovskites formed in the CVD method while in the sol–gel method 

perovskites did not form well because of low operating temperatures.  The results for the 

asymmetrical cells were supposed to be higher than that of both single and symmetrical cells 

but did not.  The explanation for this might be based on the incomplete reduction of NiO to 

Ni metal.  There was no correlation between the crystallite size and electrochemical 

performance.  In most cases, the nanoparticles were not controlled enough in order to obtain 

very small sizes and hence good performance.  Particles have agglomerated into complex 

structures.  It was also observed that the nanocomposites cathodes synthesized by sol–gel 

method have slightly high performance than those synthesized by CVD method under single 

and symmetrical cells.  For the asymmetrical cells, perovskites nanocomposites synthesized 

by CVD method have high performance.  

5.3 Stability over long period 

The cathode nanocomposite with x = 0.6 in cerium and y = 0.8 in iron was used for the study 

of long term performance.  In Figure 5.9, the voltage is plotted as a function of time for the 

symmetrical cells with configuration [composite |YSZ| composite] operating at 500 °C.  The 

performance of the cathode material was very stable under a cell voltage of 0.7 V at 500 °C 

for more than 15 hours, demonstrating stable power output without observable degradation.  
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Figure 5.9: Long term stability measurement for a test cell, 1MWCNT/3Ce0.6Sr0.4Fe0.8Co0.2O3 

|YSZ|1MWCNT/3Ce0.6Sr0.4Fe0.8Co0.2O3 synthesized by sol–gel method and tested under symmetrical cells at a 

constant cell voltage of 0.7 V at 500 °C for 15 hours 

 

SEM/TEM was used to check the presence of MWCNTs, after the stability test.  Figure 5.10 

(a) and (b) show the SEM micrograph of cathode after testing for 15 hours at 500 °C, and it 

show the presence of MWCNTs (shown with arrows).  When the samples were view under 

TEM, it was noticed that the oxidation of the tubes occurred, since the tubes are now chopped 

into small parts.  The dominating species in the composites are only perovskite oxides after 

the test at 500 °C (Figure 5.10 (c) and (d)). From the micrographs the composites with low 

values of current and power densities has the highest amount of MWCNTs than that with 

high values. This means that the rate of oxidation reaction is higher in the former cathodes. 
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Figure 5.10: (a) and (b) SEM images of the cathode composite after a test for over 15 hours, (c) and (d) TEM 

images of low performance (1MWCNT/3Ce0.6Sr0.4Fe0.8Co0.2O3) and high performance 

(1MWCNT/3Ce0.6Sr0.4Fe0.8Co0.2O3), respectively 

 

5.4 Conclusions 

Cathode composite materials showed low current density and power output for the cathode 

operated under single cell. The composite with x = y = 0.2 synthesized by CVD and tested 

under symmetrical cells possess very low electrical performances (132 mA.cm
-2

) at low to 

intermediate temperature from 300–500 °C.  While the asymmetrical cells with the same 

compositions of cerium and iron in the perovskite structure have high current and power 

densities of 248.0 mA.cm
-2

 and 111.3 mW.cm
-2

at 500 °C.  The composites with high values 

of x and y have improved performance under both symmetrical and asymmetrical cells.  The 

materials performance in terms of fuel cell stability was determined to be promising, since 

the cell was stable for up to 15 hours at 500 °C.  It was observed that, the OCV was 
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significantly lower than reported values by others 0.7 V [183, 195].  The microstructure of 

the composite cathodes was not controlled enough; hence the composites possess decreased 

performances.  Furthermore, gas leakage between the anode, cathode and electrolyte 

interfaces was the cause of this decreased in electrochemical performance.  Current methods 

presented in Chapter 3 do not improve performance at low to intermediate temperatures, 

because the crystallite sizes formed were not consistent.  It was interesting to observe from 

TEM images that the composites with low electrical performance have incomplete oxidation 

of MWCNT while in that with high performance all MWCNTs have been oxidized 

completely.  The obtained area specific resistances for all the cathodes were small and this 

showed that the materials can be used as cathodes in the low to intermediate solid oxide fuel 

cells. 

Results obtained prove that the cathodes with small particle sizes and high loadings of cerium 

and iron have high performances.  In most cases synthetic route has an impact on 

electrochemical performance of these cathodes nanocomposites materials.  The observed 

change can be further attributed to the structure of the perovskite nanoparticle materials.  

There is still room for improvement in the present cathodes in order to enhance cell 

performance.  This can be achieved by further controlling the microstructure and morphology 

of the electrodes and by using materials with super high electrical conductivities.  Replacing 

YSZ electrolyte with the electrolyte possessing high ionic conductivities such as samarium 

doped ceria (SDC) at low temperatures will be an alternative.  Hypothetically, there is a need 

for fabricating button cells of these cathode materials by pressing the powders together 

because the present paint brushing method might lead to contamination problems.   
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Chapter Six 

General Conclusions 

 

Perovskites nanoparticles alone as well as within (outside) the MWCNTs as templates have 

been successfully synthesized using both dry CVD and sol–gel methods under heat treatment 

at 400 °C for 8 hours.  The presence of MWCNTs has facilitated the formation of 

nanoparticles at low temperatures from 300 to 600 °C and carbon nanotubes acted as bundles 

for controlling the crystallite size growth more significantly in the in–situ experiment.  The 

in–situ XRD experiment showed the formation of nano perovskite under the CVD method.  

But for the sol–gel method, there was incomplete perovskite formation, perovskite together 

with starting materials (metal oxides).  For the CVD method, the acacs present in metals have 

aided the formation of perovskites nanoparticles while in the sol–gel method a non–ionic 

surfactant Pluronic F–127 has been used to form a networking array of MWCNTs and CSFC 

perovskites after heat treatments.  In–situ was used to deduce the temperature at which 

perovskites phases start to develop.  In room temperature XRD experiments, perovskites 

nanoparticles were detected from both CVD and sol–gel methods at 400 °C.  Different 

compositions of CSFC perovskites have been prepared on MWCNTs surfaces with varying 

compositions of cerium and iron in the perovskite structure.  Finally the testing of 

electrochemical performance for these nano materials has been done by examining 

polarization curves at 300, 400 and 500 °C.   

The MWCNT/CexSr1-xFeyCo1-yO3 (0.2 ≤ (x, y) ≤ 0.8) nanocomposite powders were 

successfully fabricated by the sol–gel and CVD methods with grain size in the range of 

25.37–497.67 Å.  The grain size has been controlled using MWCNTs as templates.  The low 

operating temperature did not allow the formation of full perovskites phases under sol–gel 

with changing composition (x and y) in the structure.  Different amounts of perovskites have 

been added to the carbon nanotubes in order to obtain the smallest grain size and hence 

improved electrochemical performances.  The requirements for SOFC materials in terms of 

microstructure modification have not been met because inconsistent particle sizes have been 

formed.  Heat treatment reduces the disorder on the MWCNTs walls; moreover, high 

loadings of CexSr1-xFeyCo1-yO3 on the surface of nanotubes reveal the decrease in defects 

after heat treatment with higher amount of CSFC.  MWCNTs have been coated with 
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perovskites nanoparticles in an effort of enhancing electrochemical performances, and the 

performance of the composites is higher than that of the control system (perovskites alone).  

This means that, the composite approach is significant in enhancing electrochemical 

properties of the composites.  This has been done at reduced temperatures (400 °C), and 

hence SOFCs operating costs has been lowered.  To sum up, the observed properties of 

MWCNT/CexSr1-xFeyCo1-yO3 implies that, these nanocomposites powders can be used as 

cathode materials in the SOFCs at low to intermediate temperatures because they give some 

values of current and power densities.  

The tested materials showed performance that is not satisfactory as compared to the literature.  

Cathodes synthesized from CVD method with low amounts of cerium and iron has shown 

maximum current density of 132 mA.cm
-2

 at 500 °C when tested under symmetrical cells.  

While the same composites show better performance with maximum current density of 248 

mA.cm
-2

 in asymmetrical cells at 500 °C with NiO–YSZ as the anode.  There was a slight 

change in the electrochemical performances of these materials as the composition of cerium 

and iron changes.  Electrochemical performance of these materials depends on the 

conductivity of the materials under test.  The increase in the composition of cerium and iron 

in the perovskite structure result in the enhanced electronic conductivities of the cathode 

which is than good for hydrogen reduction reactions.  The oxidation of MWCNT during the 

test has resulted in damaging the surface of the MWCNTs.  In the samples with low current 

and power densities, the surface of MWCNTs is not completely damaged.  While in the 

samples with high current and power densities, all MWCNTs have been violated.  There was 

no significant change in the performance of the samples with different composition of 

perovskites and carbon nanotubes.  Single cell tested materials have low performance beaten 

by the symmetrical and asymmetrical cells.  In the symmetrical cells there is a huge loss 

because the MWCNT/CSFC cannot act as anode, so it blocks the movement of oxygen ions 

on the anode side.  Materials tested under asymmetrical cells are not promising because the 

anode was not porous and nickel was not reduced properly to Ni metal which then led to low 

performances in these materials. 

 

6.1 Recommendations and Future Work 

For recommendations and future work, more research based on the modification of the 

microstructure of the new cathodes need to be done aiming to achieve higher performances of 
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the cells.  This can be achieved by the use of micro–SOFC to take advantage of CNTs 

mechanical, thermal and electrical properties.  The use of MWCNTs arrays need to be studied 

since these will allow high operating temperature without burning MWCNTs.  It is also 

required to employ electrolytes that are optimized for low temperature and the use of 

perovskite materials that are optimized for 300–400 °C to avoid degradation of CNTs.  

Lastly, for further performance analysis we will have to employ Electrochemical Impedance 

Spectroscopy (EIS) on these cathode materials and button cells in the near future. 
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