The use of Periphyton and Macro-invertebrates and their susceptibility to changes in river flow characteristics and nutrient composition as an indicator of river health.

Submitted in fulfillment of the requirements for the degree of Masters of Science at the University of KwaZulu-Natal

by

Samiksha Singh

Discipline of Geography School of Agriculture, Earth and Environmental Sciences University of KwaZulu-Natal

ABSTRACT

Freshwater systems are a valuable resource under increasing threat due to pollution from activities such as agriculture, industry, mining and domestic use which can pose a risk to human and animal health and may lead to eutrophication. In South Africa, river ecosystem management has shifted from the improvement of water quality to that of the creation of ecological reserves, ecological health and the improvement of biological integrity. This shift has allowed for the increased use of bio-indicators to determine ecosystem health. Macro-invertebrates, riparian vegetation and fish have been used in the suite of bio-monitoring mechanisms and the setting of environmental reserves. However, there is an increasing need to include periphyton as a tool in river ecosystem monitoring due to their absorptive nature and ability to indicate change environmental conditions.

In South Africa research suggesting algae as bio-indicators has been primary based on the use of diatoms as a bio- monitoring tool. This study aims to determine patterns and trends in periphyton communities in the summer rainfall region of KwaZulu-Natal, South Africa. This is achieved through five sampling sites aimed at determining the relationship between changes in nutrient and flow regimes on periphyton communities. Two sites on the Msunduzi River are comparable as they have similar flow but different nutrient levels, whilst on the Umgeni River the two sites are comparable as they have differences in flow regimes with similar nutrient conditions. The fifth site on the Hlatikhulu River, Kamberg, is used as a reference site. Sampling occurred over the period June 2014 to June 2015 on a monthly basis to collect algal and invertebrate samples and physico-chemical data.

Trends and relationships between physico-chemical and algal biomass were evident. Trends indicated the role rainfall played in increasing river depth and velocity which in turn influenced algal biomass growth and species composition and the effect that seasonality changes had on periphyton communities. Peaks in algal biomass was as a result of increases in nutrients within a particular system while decreases in algal biomass occurred due to an increase in invertebrate grazers. Sloughing events resulted due to increases in flow and velocity. General trends at all five sites showed peaks in algal biomass in early summer and a lesser algal biomass peak in early autumn. This research suggests that if better understanding of periphyton patterns and trends are established, periphyton can be used as an important bio-monitoring tool and aid in the creating and setting of ecological reserves.

Declaration

ISAMIKSHA SINGH..... declare that

- (i) The research reported in this dissertation, except where otherwise indicated, is my original work.
- (ii) This dissertation has not been submitted for any degree or examination at any other university.
- (iii) This dissertation does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other researchers.
- (iv) This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:

a) their words have been re-written but the general information attributed to them has been referenced;

b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced.

- (v) Where I have reproduced a publication of which I am an author, co-author or editor, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications.
- (vi) This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections.

Signed:

Date:

Acknowledgements The harder the struggle, the more glorious the triumph

A very special thank you to the Water Research Commission for funding this project and the members of the project steering committee whose guidance was appreciated. Thank you to Justine Ewart-Smith and Mark Graham for managing and assisting with this project as well as introducing me to periphyton.

The research for this thesis would not have been possible without the assistance of Groundtruth who not only provided the field vehicles and equipment but also provided very enthusiastic and helpful staff members who were always available when I needed them. A big thank you to Mahomed Desai, Anelile Gixaba and Sarah Lynn from Groundtruth who provided field assistance and made every field experience and adventure. Thank you too, to Vere Ross-Gillespie and Cole Grainger for assistance with certain aspects of my results section. To Pashni Pillay, you are simply wonderful. Thank you for the algal identification as well as for providing your expertise and time both under the microscope and by coming all the way to Pietermaritzburg from Cape Town to run an algal identification course for me.

Thank you to Umgeni Water and Kim Hodgson for providing me with water quality data. A huge thank you to Fazeka Dlamini who allowed me to use her lab at Umgeni water to do my chlorophyll *a* analysis and for her patience and guidance with this process. Thank you to Bheki at the UKZN chemistry lab who allowed me to utilise his lab to run my AFDM analysis. A special thank you to Victor Bangamvabo for assistance with the site map.

This thesis would have never been completed with the constant support and sometimes tough love from my closest friends and family. Thank you to Nqobile Lushozi for assistance with the identification of invertebrates and field work who went on to use these results for his own honours project. Your dedication and work ethic inspire me. Thank you to Salona Reddy, Perushan Rajah, Sashin Naidoo, Adwoa Awuah, Jarryd Gillham, Ashleigh Bliq and Simone Pillay for countless hours spent in the field, braving the harsh Pietermaritzburg heat.. Special thanks to these wonderful friends who constantly supported and motivated me throughout this project, here is too many more years together.

To my supervisor, Professor Trevor Hill, this thesis would not be complete without the time and your constant motivation spent on it. Thank you for assisting me in the field and organising laboratory facilities for me. Thank you for all the time spent reading drafts of this thesis. Thank you for assisting me in this masters process. Your guidance and dedication has allowed this thesis to finally come together. Lastly, even though they may never fully understand what I do, a special thank you to my mum and sister for the constant encouragement and support regarless.

Table of Contents

	ii
ABSTRACT	iii
Declaration	iv
Acknowledgements	v
List of Figures	x
List of Tables	xiv
List of Plates	xv
CHAPTER ONE	1
Introduction	1
1.1 Introduction	1
1.3 Research aim and objectives	3
1.4 Hypotheses	3
1.5 Structure of thesis	4
CHAPTER TWO	5
Literature Review	5
2.1 Introduction	5
2.2 Periphyton	6
2.2.1 Introduction	6
2.2.2 Role of Periphyton in Ecosystems	6
2.3 Factors affecting periphyton biomass accrual and loss in river systems	7
2.3.1 Nutrients	9
2.3.1.1 The interaction between nutrients and periphyton	
2.3.1.2 Nutrient limitation and enrichment in river ecosystems	
2.3.2 Flow	
2.3.2.1 Subsidy-stress response	
2.3.2.2 Floods events	
2.3.3 Light	
2.3.4 Temperature	
2.3.5 pH	
2.4 Grazing	
2.5 Temporal Patterns of benthic algal distribution in rivers	21
2.5.1. Short term temporal patterns- post disturbance recovery	
2.5.2 Long-term temporal patterns	

2.6 Spatial patterns	24
2.6.1 Micro-scale (biotypes)	25
2.6.2 Meso-scale (within catchment patterns)	25
2.6.3. Broad scale (inter-catchments patterns)	
2.7 Bio-monitoring	
2.8 Climate change	27
2.9 Conclusion	27
CHAPTER THREE	29
Methods	29
3.1 Introduction	29
3.2 Site selection	
3.3 Data acquisition	
3.3.1 Field sampling procedure	
3.3.2 Laboratory procedure	
3.3.2.1 Periphyton biomass	
3.3.2.2 Taxonomic identification of algae	39
3.3.2.3 Invertebrate grazer biomass	
3.4 Data analysis	40
CHAPTER FOUR	
Results	
4.1 Introduction	
4.2 Temporal physico-chemical patterns	
4.3 Water chemistry	
	50
4.4 Water quality	
4.5 Driving physico-chemical factors	
4.6 Algal biomass	
4.6.1 Algal biomass between sites	56
4.6.3. Algal biomass comparisons	
4.7 Invertebrate grazer and algal biomass relationships	
4.8 Invertebrate abundance, density and biomass trends	61
4.9 Invertebrate grazer density	
4.11 Species diversity index	67

4.12	2. Temporal patterns summary	. 67
4.13	3 Principal component analysis	72
4.14	4 Discharge and water temperature	75
		. 76
4.15	5 Algal abundance	. 77
4.16	5 Conclusion	. 80
CH	APTER FIVE	. 81
Disc	cussion	. 81
5.1	Introduction	. 81
5.2	Physico-chemical variations	. 81
5.3	Water quality	82
5.4	The implications of flow regimes on periphyton communities.	83
5.5	Periphyton-macro invertebrate relationships.	85
5.6.	Seasonal cycles and periphyton growth.	87
5.7	Key findings	88
5.	.7.1 Nutrient implications	88
5.	.7.2 The relationship between invertebrate and periphyton	88
5.	.7.3 Driving Factors at comparable sites	89
5.8	Comparison between summer and winter rainfall areas	90
5.9]	Reflections for ongoing research	91
5.10) Conclusion	92
СН	APTER SIX	93
Con	nclusion	93
6.1 i	introduction	93
6.2	Objectives	93
6. V: V:	.2.1 To measure flow and water quality at selected sites to determine changes in these ariables over a seasonal and temporal time scale to allow for patterns and trends in these ariables to be observed.	93
6. fl	.2.2 To collect, identify and determine biomass of periphyton communities in areas of alte low and nutrient levels as these altered conditions will provide an indication of periphyton	red
d	ynamics	. 93
6. re	.2.3 To collect and calculate abundance and biomass of macro-invertebrates to indicate the elationship between grazer density and periphyton biomass	њ 94
6.3	Hypotheses	. 94
6.4	Conclusion	. 94
Ref	erences	. 95
App	pendix 1	105

112

List of Figures

Factors effecting periphyton biomass accrual and loss in river ecosystems	8
Interaction between biomass and flow velocity of three periphyton communities (adapted	
from Biggs, 2000b)	15
Site map of KwaZulu-Natal indicating sampling sites (a) and the location of the study sites	
within the KwaZulu-Natal province (b.c)	30
Pictorial representation of sampling procedures	37
Monthly single sample water temperature data for the sampling period (June 2014- June	
2015) obtained during site visits	45
Monthly single sample % dissolved oxygen data for the sampling period (June 2014- June	
2015) obtained during site visits	45
Monthly single sample dissolved oxygen data for the sampling period (June 2014- June	
2015) obtained during site visits	46
Monthly single sample conductivity data for the sampling period (June 2014- June 2015)	
obtained during site visits	46
Monthly single sample pH data for the sampling period (June 2014- June 2015) obtained	
during site visits	46
Monthly single sample clarity data for the sampling period (June 2014- June 2015) obtained	
during site visits	46
Monthly average water depth data for the sampling period (June 2014- June 2015) (error	
bars ± 1 SD about the mean)	47
Monthly average water velocity data for the sampling period (June 2014- June 2015) (error	
bars ± 1 SD about the mean)	47
Monthly Physico-chemical changes (June 2014- June 2015) collected at Site A (nutrient	• •
unenriched: Msunduzi-Kwanoshezi)	48
Seasonal depth and velocity changes (June 2014- June 2015) at Site A (nutrient enriched:	10
Msunduzi- Kwanoshezi)	48
Monthly Physico-chemical changes (June 2014- June 2015) collected at Site B (nutrient	48
	Factors effecting periphyton biomass accrual and loss in river ecosystems Interaction between biomass and flow velocity of three periphyton communities (adapted from Biggs, 2000b) Site map of KwaZulu-Natal indicating sampling sites (a) and the location of the study sites within the KwaZulu-Natal province (b.c). Pictorial representation of sampling procedures. Monthly single sample water temperature data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample % dissolved oxygen data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample dissolved oxygen data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample dissolved oxygen data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample conductivity data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample pH data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample clarity data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample the data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample clarity data for the sampling period (June 2014- June 2015) obtained during site visits Monthly single sample clarity data for the sampling period (June 2014- June 2015) (error bars ± 1 SD about the mean) Monthly average water velocity data

	enriched: Msunduzi- Tannery)	
Figure 4.12:	Seasonal depth and velocity changes (June 2014- June 2015) at Site B (nutrient enriched:	
	Msunduzi- Tannery)	48
Figure 4.13	Monthly Physico-chemical changes (June 2014- June 2015) collected at Site C (unaltered	
	flow: Umgeni Petrustroom)	49
Figure 4.14:	Seasonal depth and velocity changes (June 2014- June 2015) at Site C (unaltered flow:	
	Umgeni Petrustroom)	49
Figure 4.15	Monthly Physico-chemical changes (June 2014- June 2015) collected at Site D (altered	
	flow: Umgeni York road)	49
Figure 4.16:	Seasonal depth and velocity changes (June 2014- June 2015) at Site D (altered flow:	
	Umgeni York Road)	49
Figure 4.17	Monthly Physico-chemical changes (September 2014- June 2015) collected at Site E	
	(Reference: Hlatikulu- Broadmoor)	50
Figure 4.18:	Seasonal depth and velocity changes (September 2014- June 2015) at Site E (Reference:	
	Hlatikulu- Broadmoor)	50
Figure 4.19:	Monthly ammonia levels recorded for the sampling period (June 2014- June 2015)	52
Figure 4.20:	Monthly soluble reactive phosphorus (SRP) levels recorded for the sampling period (June	
	2014- June 2015)	52
Figure 4.21:	Nitrite levels recorded for the sampling period (June 2014- June 2015)	52
Figure 4.22:	Algal biomass represented by AFDM and Chlorophyll a at (a)- site A (Nutrient	
	unenriched- Msunduzi-Kwanoshezi), (b)- Site B(Nutrient enriched- Msunduzi-tannery),	
	(c)- Site C (Unaltered flow- Umgeni-Petrustroom) and (d)- Site D (Altered flow- Umgeni-	
	York Road) for the sampling period June 2014 to June 2015	56
Figure4.22(e):	Algal biomass represented by ADFM and chlorophyll a at site E (Reference- Hlathikhulu	
	River) for the sampling period September 2014- June 2015	57
Figure 4.23:	Figure 4.23: Chlorophyll a and BenthoTorch comparisons for the sampling period April	
	2015 to June 2015 at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi) and (b)- site	
	B (Nutrient enriched- Msunduzi Tannery) and from March 2015 to June 2015 at (c)- site C	
	(Unaltered flow- Umgeni-petrustroom), (d)- site D (Altered flow- Umgeni-York Road) and	
	(e)- site E (Reference- Hlatikhulu River)	59
Figure 4.24:	Figure 4.24: Algal biomass and invertebrate grazer biomass at (a)- site A (Nutrient	
	unenriched- Msunduzi-Kwanoshezi), (b)- Site B(Nutrient enriched- Msunduzi-tannery),	
	(c)- Site C (Unaltered flow- Umgeni-Petrustroom) and (d)- Site D (Altered flow- Umgeni-	61

	York Road) for the sampling period June 2014 to June 2015	
Figure 4.24(e)	Algal biomass and invertebrate biomass trends at site E (reference-Hlatikhulu) for the	
	sampling period June 2014 to June 2015	62
Figure 4.25:	Invertebrate abundance trends over the sampling period (June 2014 to June 2015)	63
Figure 4.26:	Invertebrate density trends over the sampling period (June 2014 to June 2015)	63
Figure 4.27:	Invertebrate biomass trends for the sampling period (June 2014 to June 2015)	63
Figure 4.28:	Invertebrate grazer density at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi), (b)- Site B (Nutrient enriched- Msunduzi-tannery), (c)- Site C (Unaltered flow- Umgeni- Petrustroom) and (d)- Site D (Altered flow- Umgeni-York Road) for the sampling period June 2014 to June 2015	
Figure 4.28(e)	Invertebrate grazer density for the sampling period September 2014 to June 2015 at site E (reference-Hlatikhulu River)	65 66
Figure 4.29a:	Physico-chemical factors at Site A (Nutrient unenriched) and Site B (Nutrient enriched)	
		74
Figure 4.29b:	Distribution of sampling sites over the sampling period (June 2014- June 2015) in relation to physico-chemical	
	factors	74
Figure 4.30a:	Physico-chemical factors at Site C (Unaltered flow) and Site B (Altered flow)	74
Figure 4.30b:	Distribution of sampling sites over the sampling period (June 2014- June 2015) in relation	
	to physico-chemical factors	74
Figure 4.31a:	Algal biomass and invertebrate grazer families	75
Figure 4.31b:	Distribution of sampling sites of the sampling period (June 2014- June 2015) in relation to	75
Figure 4 32a.	Algel biomass and invertebrate grazers families	75
1.1801.0		75
Figure 4.32b:	Distribution of sampling sites of the sampling period (June 2014- June 2015) in relation to	
	algal biomass and invertebrate grazers)	75
Figure 4.33:	Surface water discharge for Sites A,B,C,D for the sampling period June 2014 to June 2015	75
Figure 4.34:	Daily water temperature collected using Hobo data loggers at sites C,D and E for the period	
	December 2014 to August 2015	75
Figure 4.35:	Modelled daily water temperature at sites C, D and E for the period June 2014 to June 2015.	75

Figure 4.36:	Algal class divisions at each site over the entire sampling period (June 2014- June 2015)	79
Figure 4.47:	Algal class divisions at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi), (b)- Site	
	B (Nutrient enriched- Msunduzi-tannery), (c)- Site C (Unaltered flow- Umgeni-	
	Petrustroom) and (d)- Site D (Altered flow- Umgeni-York Road) for the sampling period	
	June 2014 to June 2015	80
Figure 4.47(e)	Algal class divisions at site E (reference) for the sampling period September 2014 to June	
	2015	81
Figure 4.48:	Summary graph indicating relationships between periphyton biomass, invertebrates, nutrient	
	levels and flow dynamics within a system	81
Figure 5.1:	Schematic diagram of algal biomass loss and accrual and interaction between invertebrate	
	grazers and nutrients I the winter rainfall region of the western cape (after Ewart-Smith and	
	King, 2012)	92
Figure 5.2:	Schematic diagram of algal biomass accrual and loss and the interaction between	
	invertebrates and nutrients in the summer rainfall region of KwaZulu-Natal	92

List of Tables

Table 3.1:	Summary table of data analysis methods conducted	42
Table 4.1:	Comparisons between physico-chemical factors between Site A (Nutrient unenriched- Msunduzi- Kwanoshezi) and site B (Nutrient enriched-Msunduzi-Tannery) and between Site C (Unaltered flow- Umgeni Petrustroom) and Site D (Altered flow- Umgeni- York Road).	54
Table 4.2:	Two-way ANOVA of algal biomass between nutrient unenriched (Site A- Msunduzi Kwanoshezi) and nutrient enriched (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)	57
Table 4.3:	Two-way ANOVA of algal biomass between sites of altered (site C- Umgeni Petrustroom) and unaltered (Site D- York Road) flow over the sampling period (June 2014 to June 2015).	58
Table 4.4:	Two-way ANOVA of invertebrate density between nutrient unenriched (Site A- Msunduzi Kwanoshezi) and nutrient enriched (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)	67
Table 4.5:	Two-way ANOVA of invertebrate density between unaltered flow (Site A- Msunduzi Kwanoshezi) and altered flow (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)	67
Table 4.6:	Shannon Winer diversity index using macro- invertebrate families at comparable sites	68
Table 4.7	Physico-chemical and biomass fluctuations indicated at each site throughout the sampling period	69
Table 3.1:	Summary table of data analysis methods conducted	42
Table 4.1:	Comparisons between physico-chemical factors between Site A (Nutrient unenriched-Msunduzi- Kwanoshezi) and site B (Nutrient enriched-Msunduzi-Tannery) and between Site C (Unaltered flow- Umgeni Petrustrrom) and Site D (Altered flow- Umgeni- York Road)	54

List of Plates

Plate 3.1a:	Site A Msunduzi- KwanoShezi- Mcakweni photographed in winter (July 2014) and	
	summer (December 2014) showing changes in depth and siltation which is comparable	
	to Site B Msunduzi Tannery Site Photographed in winter (June 2014) and autumn (April	
	2015) showing very slight changes in depth	33-34
Plate 3.1b:	Site C Umgeni- Petrustroom photographed during winter (July 2014), during spring	
	(September 2014) and during autumn (April 2015) indicating changes in water depth and	
	velocity which is comparable to Site D Umgeni-Howick photographed during winter	
	(June 2014) and summer (February 2015) showing changes in water depth	34-35
Plate 3.1c:	Hlatikhulu River- Broadmoor photographed in summer (January 2015) and winter (June	
	2015) showing changes in water depth and the maize plantation	35

CHAPTER ONE

Introduction

1.1 Introduction

In South Africa freshwater resources are scarce and difficult to manage and are threatened by changes in flow regimes and nutrient levels (Taylor *et al.*, 2007). Large volumes of water are transferred in and out of the country to meet demands for domestic industrial and agricultural use, which results in increased amounts of effluent that are returned to rivers and streams (Taylor *et al.*, 2007). The increase in drought conditions due to climate change has placed increasing pressure on our freshwater resources whilst attempting to fulfil the water demands of the population. This degrading ecosystem has associated negative effects on other sectors such as economic and social development, biodiversity and river ecosystem health.

The pollutants that contaminate river ecosystems are predominantly introduced into the system through anthropogenic dominance (Hart *et al.*, 2013). The effects of anthropogenic pollution can result in changes in aquatic species density and composition (Rader *et al.*, 2008). Therefore it is important to develop effective natural resource management strategies to combat and decrease the negative consequences of pollution in these fragile and vital river ecosystems (Venter *et al.*, 2003; Molinos and Donohue, 2010).

Recent efforts have been made to effectively manage river ecosystems in a sustainable manner and have shifted from a general improvement of water quality to that of the creation of ecological reserves, ecological health and an improvement in biological integrity in South Africa (Kleynhans *et al.*, 2005; Ewart-Smith and King, 2012). Ecological reserves refer to the amount of water needed to sustain aquatic health whilst ecological health is defined as the societal norms and goals identified which relate to sustained ecological conditions (Chessman *et al.*, 1999) and biological integrity is defined as the ability to sustain and support a biological system that is balanced, integrated and adaptive taking into account the process and elements found within that system (Karr, 1995). Ecosystem management in South Africa is achieved through the use of bio-monitoring (Ewart-Smith and King, 2012).

These monitoring techniques include; gauging stations, water temperature loggers and water quality monitoring programmes providing physical and chemical data including measurements such as algal biomass, invertebrate abundance and chemical concentrations (Boulêtreau *et al.*, 2008).

1.2 The use of periphyton in biological monitoring.

Bio-monitoring in South Africa is an integrated process. Methods such as whole effluent toxicity (WET), which is a tool used to evaluate effluent to ensure that it is not too toxic for discharge into rivers, can be used. The second approach to bio-monitoring is under the South African river health programme (RHP), which is used to assess river health in relation to anthropogenic factors making use of macro-invertebrates, fish and riparian vegetation as bio-indicators. Furthermore, the use of diatoms has recently been tested throughout South Africa as biological monitoring indices (De la Rey *et al.*, 2004; Taylor *et al.*, 2007).

Macro-invertebrates, riparian vegetation and fish have been used in the suite of bio-monitoring mechanism and the setting of ecological reserves in South Africa (Ewart-Smith and King, 2012). In recent years bio-monitoring has included benthic algae or periphyton in setting ecological reserves and being applied as bio-monitoring tools (Chessman *et al.*, 1999; Grown and Growns, 2001; Downes *et al.*, 2003; Chester and Norris, 2006). These periphyton communities are comprised of bacteria, fungi, algae including micro-algae and filamentous algae, meiofauna and protozoa, usually attached to substrates of cobbles or stones and are also known as biofilms (Stevenson, 1996; Villanueva and Modenutti, 2004; Ryder, 2004; Hodoki, 2005; Peters *et al.*, 2007; Hillebrand, 2009; Dorigo *et al.*, 2010; Larned, 2010). Benthic algae are usually the largest component in the periphyton community and as such the terms benthic algae and periphyton are often used interchangeably (Ewart-Smith and King 2012).

In unshaded, open canopied rivers periphyton in their role as primary producers convert dissolved nutrients into food for organisms at higher trophic levels (Biggs, 1996). These primary producers are good indicators of changing environmental conditions as a consequence of their rapid life cycles and wide geographic and temporal distributions (Matthaei *et al.*, 2003; Higgens *et al.*, 2008; Lear *et al.*, 2008; Yang *et al.*, 2009; Hart *et al.*, 2013). These communities play an important role as the link between the physical, chemical and biotic components of a river ecosystem (Lowe and Pan, 1996). Due to this pivotal ecological role, changes in periphyton biomass and community structure especially due to changes in flow regimes and nutrient alterations have a profound effect on the river ecosystem (Biggs and Thomsen, 1995; Biggs and Smith, 2002; Uehlinger *et al.*, 2003; Bergey and Resh, 2006). These factors suggest that periphyton communities are potentially an important to determine the factors that control periphyton dynamics in particular in terms of nutrient enrichment and flow regimes (Villeneuve *et al.*, 2011).

Research in South Africa on the use of periphyton as a bio-monitoring tool has been limited, with river research in terms of primary producers being dominated by diatoms as indicators of pollution (De la Rey *et al.*, 2004; Taylor *et al.*, 2007). The use of periphyton as a bio-monitoring tool is still difficult as the relationship between biotic and abiotic factors, biotic responses to regulatory changes in ecosystems and associated patterns in spatial and temporal dynamics in river ecosystems have to be understood (Stevenson, 1997). Recent work by Ewart-Smith and King (2012) has focused primarily on determining and understanding patterns in periphyton community structure and biomass in the winter rainfall region of the south Western Cape. Factors that drive patterns of periphyton communities in river management and ecological monitoring (Ewart-Smith and King, 2012). This research project will serve as a comparison to the research conducted in the winter rainfall region of the south King (2012). This research was conducted in the summer rainfall region of KwaZulu-Natal using periphyton community composition and biomass to determine the ecological condition of rivers at different flow and nutrient levels.

1.3 Research aim and objectives

To determine the role of periphyton communities as indicators of the ecological condition of rivers by determining periphyton community structure and biomass, taking into consideration their links to environmental variables and relationship with macro-invertebrates.

The objectives are:

- To measure flow and water quality at selected sites to determine changes in these variables over a seasonal and temporal time scale to allow for patterns and trends in these variables to be observed.
- To collect, identify and determine biomass of periphyton communities in areas of altered flow and nutrient levels as these altered conditions will provide an indication of periphyton dynamics
- To collect and calculate abundance and biomass of macro-invertebrates to indicate the relationship between grazer density and periphyton biomass.

1.4 Hypotheses

- Periphyton biomass is related to the seasonal patterns in selected rivers of KwaZulu-Natal. Biomass levels will change according to seasons.
- Periphyton community composition will change over annual cycles with specific communities observed in winter, spring, summer and autumn.
- Peak periphyton biomass will be evident in areas of greater nutrient enrichment regardless of flow

- Periphyton community composition and biomass will differ significantly between rivers with different flow and nutrient composition.
- Grazing pressure as a result of aquatic invertebrates will be greatest with the highest invertebrate abundance.
- Differences in invertebrate grazer abundance, density and biomass will occur between rivers of different flow and nutrient conditions.

1.5 Structure of thesis

The thesis is presented as five chapters. A review of relevant literature is presented in chapter two including understanding the role of periphyton in ecosystems, the effects of flow and nutrient regimes on these periphyton communities, invertebrate grazer- periphyton biomass relationships, the spatial and temporal distribution of periphyton communities and the use of periphyton as biological monitoring indicators. Chapter three consists of the methods section including; site descriptions, data acquisition and data analysis methods. The analysis of results section is presented in chapter four determining the effect that nutrients, flow and invertebrate grazers have on periphyton communities. Chapter five includes the discussion and conclusion section of the thesis determining the key drivers that influence periphyton communities. This research project is integrated and adapted for a greater Water Research Commission project, WRC project K5/2351, KSA 2: Water-linked ecosystems thrust 2: Ecosystem management and utilization, The development and application of periphyton as indicators of flow and nutrient alterations for the management of water resources in South Africa.

CHAPTER TWO

Literature Review

2.1 Introduction

Increased pollution, drought conditions and the transfer of large volumes of water into and out of South Africa have placed our valuable freshwater resources in a state of jeopardy (Venter *et al.*, 2003; Taylor *et al.*, 2007). Accumulation of inorganic and organic pollution may result in eutrophication affecting the quality of a water source and posing a risk to human and animal health (Biggs, 2000; Venter *et al.*, 2003; Lear *et al.*, 2008; Cardinale, 2011). In South Africa a transformation has occurred from simply determining the quality of a water source to identifying the ecological health of a river, understanding biological integrity of the ecosystem and the creation of ecological reserves (Kleynhans *et al.*, 2005; Ewart-Smith and King, 2012).

Ecosystem management in South Africa is predominantly concerned with the use of macroinvertebrates, fish and riparian vegetation in the suite of bio-monitoring mechanisms (Kleynhans *et al.*, 2005; Ewart-Smith and King, 2012). The use of periphyton composed of algae, protazo, bacteria and fungi usually attached to a substrate (Stevenson, 1996; Villanueva and Modenutti, 2004; Ryder, 2004; Hodoki, 2005; Peters *et al.*, 2007; Hillebrand, 2009; Dorigo *et al.*, 2010; Larned, 2010), is limited to the use of diatoms as indicators of pollution (De la Rey *et al.*, 2004; Taylor *et al.*, 2007).

The use of diatoms has resulted in the identification of endemic diatom species indicating a need for a unique South African diatom index for water quality monitoring (Taylor *et al.*, 2007b). In unshaded, open canopied rivers periphyton in their role as primary producers convert dissolved nutrients into food for organisms at higher trophic levels (Biggs, 1996; Larned, 2010). They are reliable indicators of changing environmental conditions because of their rapid life cycles and wide geographic and temporal distributions (Matthaei *et al.*, 2003; Higgins et al., 2008; Lear et al., 2008; Yang *et al.*, 2009; Hart *et al.*, 2013), are good indicators of point source nutrients as they are attached to a substrate and act as nutrient recycling mechanisms (Montuelle *et al.*, 2010; Murdock, 2013). Periphyton communities affect water chemistry, hydraulics, food availability and habitat conditions in the river ecosystem (Larned, 2010), indicating the need and importance of incorporating periphyton in the suite of biomonitoring tools especially in South Africa.

2.2 Periphyton

2.2.1 Introduction

Periphyton are the dominant primary producer in river systems, providing a key step or linkage between dissolved nutrients and organisms such as invertebrates and fish at higher trophic levels (Biggs, 1996; Villanueva and Modenutti, 2004; Peters *et al.*, 2007; Hillebrand, 2009; Hart *et al.*, 2013). Bacteria, fungi, algae including micro-algae and filamentous algae, meiofauna and protozoa make-up periphyton communities that are usually attached to substrates of cobbles or stones and are known as biofilms (Stevenson, 1996; Villanueva and Modenutti, 2004; Hodoki, 2005; Peters *et al.*, 2007; Hillebrand, 2009; Dorigo *et al.*, 2010; Larned, 2010). The bacteria within the periphyton community are important decomposers of algal material and organic matter such as leaf litter (Hodoki, 2005).

Algae, the largest component of periphyton communities, are characterised as diverse phototrophic organisms that contain chlorophyll *a* and have unicellular reproductive systems. Algal species either benthic or phytoplanktonic, are difficult to identify and are under-estimated due to their diversity of habitats (Stevenson, 1996). Benthic algae are usually attached to substratum and consist of blue-green algae (Cynophyta), green algae (Chlorophyta), diatoms (Bacillariophyta) and red algae (Rhodophyta). Each algae can be motile or non-motile depending on the stage of succession (Stevenson, 1996). Algae can further be described as epilithon, epiphyton and epipelon, which are algae that grow on cobbles and boulders, filaments of aquatic plants or on sand grains respectively (Biggs, 2000b).

Periphyton communities differ both physiologically and morphologically resulting in different abiotic resource requirements that vary between taxa (Larned, 2010). Short-term resource availability changes result in physiological changes while long-term resource availability changes result in biomass and taxonomic changes of periphyton communities. Benthic algae are found at different water depths, photic zones, in a river ecosystem (Stevenson, 1996). Due to the short generational timespan of periphyton communities they are more susceptible to changes in environmental conditions as compared to organisms with longer generational time spans (Dorigo *et al.*, 2010).

2.2.2 Role of Periphyton in Ecosystems

It is important to quantify the relationship between periphyton abundance and biomass in relation to changes in flow regimes and nutrient composition to determine and manage the effects of water abstraction and eutrophication in rivers (Hoyle *et al.*, 2013). Management of these effects and the study of algal ecology are important as water is necessary to sustain life, is used in agriculture, power generation, and industrialisation and positively effects our economy (Hoyle *et al.*, 2013; Hoyle *et al.*, 2015). Initial studies in algal ecology focused on the description of algal communities. This later

advanced into studies of the effects that abiotic factors have on algal communities and the role of periphyton communities as an indicator of ecosystem health (Larned, 2010). Improvement in technology has resulted in better understanding of periphyton dynamics and has allowed for a deeper understanding of the interaction and relationship of anthropogenic influences on periphyton communities which can in turn be used as an indicator of ecosystem health (Larned, 2010).

Understanding factors that influence periphyton communities is crucial in understanding their importance as an indicator of ecosystem health. Moderate shifts in influencers such as flow conditions, biological factors and resource availability affect periphyton community structure and function (Larned, 2010), indicating the crucial role they play in predicting major ecosystem changes (Dorigo et al., 2010). These communities are reliable indicators of point source nutrients entering an ecosystem as they are attached to a substrate and act as nutrient cycling mechanisms (Fairchild et al., 1985; Montuelle et al., 2010; Murdock, 2013). Periphyton communities act as early warning systems to the introduction of water contaminants (Montuelle et al., 2010). For example, the introduction of sewage into a water course may have little to no identifiable effect on the composition of the water column but could impact on the periphyton community at the introduction point source (Fairchild et al., 1985). The conversion of inorganic nutrients to an organic form enables periphyton communities to be good chemical modulators (Stevenson, 1996; Matthaei et al., 2003). However, periphyton can affect the water chemistry, hydraulics, food availability and habitat conditions in a river ecosystem (Larned, 2010), together with the decrease of submerged aquatic plants as periphyton communities with a high biomass can decrease the amount of light, nutrient uptake and dissolved organic carbon that reach these macrophytes (Choudhury, 2014).

In lower order streams the increase in agricultural and domestic effluent in river ecosystems can result in algal blooms leading to eutrophication which can negatively affect river ecosystems and biodiversity (Biggs, 2000; Montuelle *et al.*, 2010). For example, eutrophication occurs when blue green algae such as *Oscillatoria simplicissima* blooms extensively. This algal bloom can be attributed to the increase in phosphorus and nitrogen supply entering the river ecosystem. This excessive algal growth is filamentous, produces a white soapy scum on the surface of the water and causes bad tastes and foul odours in the final purified product. This blue-green algae is said to be non-toxic however, its appearance hinders recreational activity, it producers a foul odour and has associated negative economic impacts such as the high cost of algal removal from the river which is heightened by the fact that the filamentous nature of *Oscillatoria simplicissima* clogs pipes and filters used in the water purification process (Venter *et al.*, 2003).

2.3 Factors affecting periphyton biomass accrual and loss in river systems.

Benthic algal growth is dependent on a number of factors including hydrological and biotic factors water quality, topography, slope, land use and vegetation. Differences in benthic algal growth differ

across river catchments due to changes in climate, geology and human activity (Biggs, 1996; Godwin *et al.*, 2009). Periphyton growth is controlled by factors that influence biomass accrual such as supply of nutrients, light and temperature that control metabolic rates (Biggs, 1996; DeNicola, 1996; Stevenson *et al.*, 1996; Anderson *et al.*, 1999; Dodds, 2003; Hill and Dimick, 2002) (Figure 2.1). Biomass loss occurs predominantly through disturbances which are defined as a discreet event that removes organisms at a rate faster than that of biomass accrual (Larned, 2010; Stanley *et al.*, 2010). Disturbances are comprised of physical disturbances such as floods and desiccation that occur over large spatial-temporal scales together with disturbances such as grazing that occur over shorter scales usually at a habitat level (Biggs, 1996) (Figure 2.1). Other disturbances include substratum instability, sediment abrasion and water velocity (Biggs, 1996).

Figure 2.1 Factors effecting periphyton biomass accrual and loss in river ecosystems.

The interaction between the factors that cause biomass accrual and loss is a complex one (Larned *et al.*, 2004). For example floods directly lead to biomass loss but nutrients are also moved during flood events which may result in algal growth. Flood events can remove grazers and therefore affect grazer-invertebrate relationships potentially leading to periphyton biomass accrual (Larned *et al.*, 2004). This complex nature of interactions between biomass loss and accrual factors is iterated in a study by Rosemond *et al.* (2000) who indicate that when elevated nutrient levels, grazers and increased light intensities are present in an ecosystem there was no change to algal biomass however, changes in these factors such as the removal of grazers and an elevation in light intensities did increase algal biomass.

Biomass accrual can occur when a number of different factors interact. Ecosystems with low to medium flood disturbances and grazing pressure may lead to algal biomass accrual with the predominance of erect stalked diatoms or filamentous green algae. Likewise, algal biomass loss can be a result of a number of interacting factors which is particularly evident with the combined effect of medium to high flood frequencies and invertebrate grazing pressure, as a result of habitat stability being determined by flood regimes (Biggs, 1996). Other factors that affect periphyton ecology in

terms of biomass and species composition include; thermal stress, ultraviolet radiation, pH and biological mechanisms such as grazing (Larned, 2010). These interactions are discussed below.

2.3.1 Nutrients

There is a link between the rate of algal growth and the concentration of nutrients in a water column (Borchardt, 1996). Within the water column nutrients are either taken up by free swimming phytoplankton or benthic algae that are attached to a substrate (Borchardt, 1996). The attached benthic algae create mats on the substrate that are many cells thick and differ physiologically and chemically according to the properties of the water column perpendicular to it (Borchardt, 1996). Nitrogen (N) as nitrates and ammonia and dissolved organic phosphorus (P) are considered to be the most important nutrients for algal production (Dodds and Welch, 2000; Dodds, 2003; Dodds, 2006; Mulholland and Webster, 2010). The varying quantities of these nutrients can result in either nutrient enrichment or nutrient limitation (Luttenton and Lowe, 2006).

Nutrient enrichment plays an important role in the increase of benthic algal biomass and taxonomic richness (Biggs and Smith, 2002). Algal growth is limited by the nutrient in least supply which can occur at all trophic levels. The growth of benthic algae is usually limited by N and P as the demand for these nutrients are often higher than availability (Borchardt, 1996; Larned, 2010; Ewart-Smith and King, 2012). Biggs and Smith (2002) showed that the greatest species richness was found in areas with the lowest nitrogen levels indicating a shift towards the dominance of nitrogen fixing taxa, which is the limiting factor. The pattern is dominant until the nitrogen fixing taxa become more abundant, causing phosphorus to become the limiting factor.

Even if there is more than one nutrient near limiting levels there is essentially only one nutrient that is limiting at a given time (Borchardt, 1996). Experiments to predict the effect that nutrients have on algal biomass has yielded varying results (Fairchild *et al.*, 1985). However it was determined that the type of taxa present determines if an increase in certain nutrients will result in an increase in algal biomass. An experiment by Fairchild *et al.* (1985) showed that if a certain blue-green algal species *Rhopalodia gibba* was present in an aquatic system then algal biomass blooms could be attributed to an increase in phosphorus within that system. Other algal taxa such as *Achnanthes, Gomphonema* and *Cocconeis* are nitrogen limited.

The interaction between seasonality and nutrients in a river system can effect algal biomass. Experiments conducted by Rosemond *et al.*, (2000) suggest that in spring algal growth was limited by the lack of nutrients however once nutrient levels increased algal growth became limited by macro-invertebrate grazers in the system. In summer, nutrients were not a limiting factor to algal growth. The experiments concluded that algal biomass increases are present regardless of the season but highest

algal biomass estimates was experienced in spring and autumn as compared to summer in treatments with the absence of grazers (Rosemond *et al.*, 2000).

2.3.1.1 The interaction between nutrients and periphyton

Nutrient ratios in river systems have been calculated to indicate the interaction between nutrients and periphyton communities (Luttenton and Lowe, 2006). These ratios include the Resource Ratio Hypothesis (RRH), the ratio between dissolved inorganic nitrogen (DIN): Soluble reactive phosphorus (SRP) and the ratio between total nitrogen (TN): total phosphorus (TP). The RRH describes the level of displacement of neighbouring taxa by the dominant one. As the resource ratio increases there is greater displacement of neighbouring taxa (Luttenton and Lowe, 2006). However, if the amount of resources within a system is greater than the resource ratio the RRH becomes null and void. A critique of the RRH according to Luttenton and Lowe (2006) is that it cannot be used to explain population dynamics as there are no changes in the dominant algal community.

Luttenton and Lowe (2006) established that algal biomass levels decreased when there was lower nitrogen: phosphorus ratio. This could be attributed to the fact that elevated phosphorus levels result in elevated potassium levels which has growth inhibiting properties. This growth inhibition can decline with the introduction of nitrogen into the system. The DIN: SRP ratio indicates nutrient deficiency, trophic state and the interaction between nutrients and those that are limiting (Dodds, 2003). A limitation of this ratio is that the ratios are measured as unit mass/volume whereas nutrient supply is indicated as a change in unit mass/time (Dodds, 2003). TN: TP ratios estimate nutrient deficiency and trophic state and are used to indicate the nutrients used by the algal biomass and the nutrients available to be utilised by the algal biomass (Dodds, 2003). Nitrogen to phosphorus ratios (N: P) are used to determine which nutrient is limiting (Borchardt, 1996). The Redfield ratio indicates that N: P ratios greater than (20:1) are considered P-limited while N: P ratios that are less than 10:1 are N-limited (Dorigo *et al.*, 2010). Therefore, a low N: P ratio can lead to algal blooms (Venter *et al.*, 2003).

The limitation of these ratios are the ratios assumption that nutrient stock within a river system is indicative of supply, and the ratios cannot be used to determine turnover and demand rates for the nutrients. For example, nutrient content in a river system may be lower however supply is higher. The supply is said to be higher as it is utilised by biota in the system, causing an imbalance (Dodds, 2003). Dissolved inorganic nutrient levels are not a good indicator of trophic state as they cannot be correlated to algal biomass. On the other hand, the dissolved inorganic nitrogen ratios are beneficial when nutrient levels are high (Dodds, 2003).

2.3.1.2 Nutrient limitation and enrichment in river ecosystems

Nutrients such as nitrogen and phosphorus can be highly limiting as opposed to less limiting nutrients such as potassium and magnesium. A nutrient becomes limiting when the demand for that nutrient by

the system is higher than supply (Larned, 2010). According to Larned (2010), periphyton communities can be limited by more than one nutrient at a time, this is in contrast to Borchardt (1996) who states that if there is more than one nutrient that is near limiting levels, it is essentially only one nutrient that is limiting at a time. Periphyton are adapted physiologically and morphologically for the uptake of nutrients. For example long filamentous algae are found in nutrient poor streams contrary to the belief that larger algae need more nutrients showing that morphological adaptations are important. Nutrient limitation occurs either under low light or high light intensities (Larned, 2010). An example from the Thames River indicates the concept of nutrient limitation. An increase in algal blooms still occurred even when phosphorus was added to the system by sewage treatment indicating that phosphorus was not a limiting nutrient (Bowes *et al.*, 2012).

Aquatic foodweb structures are strongly determined by nutrient enrichment experienced in a particular system. Nutrient enrichment can occur from agricultural run-off (Montuelle *et al.*, 2010), pesticides, herbicides, fungicides, insecticides and anthropogenic pollution (Dorigo *et al.*, 2010). The introduction of pollutants, in particular inorganic nitrogen and phosphorus, can cause rapid periphyton community growth and can cause changes to the structure and function of river systems (Hill *et al.*, 2010; Hoyle *et al.*, 2013; Trochine *et al.*, 2014). Not only does the introduction of a pollutant have detrimental effects of periphyton growth but the frequency, duration, and intensity of a pollutant will determine the effects the contaminant will have on the ecosystem. Long-term exposure to low pollution concentrations has a greater effect on periphyton communities than short duration, acute exposure to the pollutant (Dorigo *et al.*, 2010). Godwin *et al* (2009) identified that in higher order streams the increase in pollution from fertilizer and contaminants increase the nitrogen levels in the river system due to run-off causing a growth in the algal community. Murdock (2013) suggests that improvements in fertilizer developments and the addition of atrazine in these fertilizers can inhibit periphyton growth.

Due to the absorptive nature of periphyton communities they have the ability to remove large quantities of contaminants from the water column (Godwin *et al.*, 2009; Hill *et al.*, 2010) indicating the importance for conserving the ecosystem for nutrient uptake, recycling and storage (Cardinale, 2011). On the other hand high levels of contaminants within periphyton communities can harm organism at higher trophic levels (Hill *et al.*, 2010).

2.3.2 Flow

Hydrological patterns and flow regimes play an important role in community composition, structure and function of aquatic biodiversity (Bunn and Arthington, 2002; Choudhury, 2014) and can affect flow dynamics, water quality, sedimentation and substratum structure (Collier, 2002). Flow regimes in river ecosystems are developed through the interaction of variables such as seasonal patterns and timing and duration of floods and drought events (Olden and Poff, 2003). These interactions in

particular with physical variables, can determine the type and abundance of aquatic species present in a particular system (Bunn and Arthington, 2002). Temporal variations in flow regimes influence differences in population dynamics, community structure and function (Biggs *et al.*, 2005) and flow has an effect on algal resistance and resilience (Peterson and Stevenson, 1992).

Flow can either be measured as discharge or velocity (Olden and Poff, 2003). Flow velocity influences algal immigration, reproduction and post-disturbance recovery (Peterson and Stevenson, 1992; Matthaei et al., 2003), and has an effect on biomass accrual through nutrient mass transfer and biomass loss through sloughing (Biggs et al., 1998). Velocity can guide algal distribution and community structure (Hart et al., 2013). The effect that velocity has on an algal community depends on the algal growth forms within the community. For example, tightly woven mucilaginous diatoms and cyanobacteria are less likely to be affected by displacement and dislodgement by shear-stress at high velocity, indicating that these growth forms are more resistant to high velocities than filamentous algae. This results in biomass accrual through nutrient transfer at increased velocity. Filamentous algae on the other hand experience high rates of diffusion even at low velocity (Biggs et al., 1998; Schwendel et al., 2010). In contrast to the above however, Larned (2010) believes that velocity is not the major cause of biological change in river ecosystems. Abrasion, friction, drag effects, sloughing and scouring are as a result of increases in flow velocity (Growns and Growns, 2001; Schwendel et al., 2010). Increases in velocity according to Choudhury (2014) will result in increases in periphyton biomass. This could be attributed to increased nutrient renewal in fast currents (Peterson and Stevenson, 1992), however, nutrient uptake is limited through the viscous sub-layer surrounding each filamentous or protruding structure in the current (Larned, 2010).

Abrasion refers to the movement of sediments that are carried by high flows over the river bed, that can cause the scouring or spinning of small substratum in the river bed. At times, under extreme flow conditions, the entire river bed can be altered changing the habitat structure of the river ecosystem, displacing aquatic species (Larned, 2010; Schwendel *et al.*, 2010). The effect of abrasion is iterated by studies conducted by Downes and Street (2005) who concluded that abraded rocks had a recolonisation rate between 30% - 50% while overturned and abraded rocks could not re-colonise to a state that was as high as pre-disturbance states. Therefore, biomass loss due to scouring and abrasion is greater depending on the intensity of rainfall and flow velocity (Yang *et al.*, 2009). Rocks that have been abraded and overturned have a greater influence on algal re-colonisation than rocks that have been abraded only (Downes and Street, 2005; Larned, 2010).

Sloughing refers to algal community loss when the attachment strength of algal mats to a substratum is exceeded by the weight of the developing algal mat above it. During high flow events the attachment of these mats to the substratum is broken resulting in algal loss (Biggs, 2000) and in free periphyton propagules within the water column (Larned, 2010). With the onset of disturbances

periphyton communities may be reduced to a pioneer stage of succession (Biggs *et al.*, 2005). Filamentous algae are more susceptible to sloughing because of their large surface areas (Biggs *et al.*, 1998), while erect algal growth forms are susceptible not only to sloughing but also to abrasion and scouring (Yang *et al.*, 2009).

Shear-stress is characterised as a hydraulic disturbance (Larned, 2010). These disturbances result in periphyton removal from substrates by the movement of bed materials which can lead to sedimentation. However, the effects of shear-stress have only been observed and not quantified with equations and theoretical observations. Due to this the observed effects of shear-stress are not suitable to make predictions (Schwendel *et al.*, 2010).

Nutrient mass transfer refers to the uptake of nutrients by producers and by invertebrates through grazing and predation and the uptake of nutrients by fish through predation (Biggs *et al.*, 2005). Nutrient mass transfer allows for the increase in algal photosynthetic, reproductive and specific growth rates. Nutrient mass transfer and biomass accrual is dependent on the periphyton community. For example, nutrient mass transfer will have the greatest effect on mucilaginous as compared to filamentous algal communities (Biggs *et al.*, 1998).

During low flows there is no transportation of displaced sediment resulting in the patchy distribution of algal communities and invertebrates (Schwendel *et al.*, 2010; Hart *et al.*, 2013). Experiments by Boulêteau *et al.* (2008) indicate that flood free, low flow periods result in greater periphyton biomass within that particular system due to low shear-stress. In contrast to this Biggs *et al.* (1998) believe that increased periphyton biomass is as a result of increased velocity as mucilaginous algae under periphyton mats are nutrient limited, until such time that velocity increases to levels at which shear-stress becomes a limiting factor. In systems with low flow velocity, light is a limiting factor (Peterson and Stevenson, 1992). Systems with natural changes in flow consist of periphyton communities that are in early to mid-successional stages as compared to stagnant water were high nutrient loads lead to biofilms in late successional stages (Ryder, 2004).

Flow regimes can be altered naturally or by anthropogenic factors. Natural flow can be altered along longitudinal gradients down a river course (Collier, 2002). Flood events can naturally alter flow regimes and can affect water chemistry, light intensity and temperature (Rader *et al.*, 2008). Anthropogenically, flows can be altered through the creation of dams. The presence of dams have many associated effects such as flow regime changes, water quality degradation, base flow changes and water temperature changes (Collier, 2002; Rader *et al.*, 2008) and slower natural flows, constant water temperature and a higher periphyton biomass downstream of the dam (Robinson *et al.*, 2004; Collier, 2002).

Anthropogenic changes in flow regimes usually occur over a short-time scale thereby degrading the health of a river ecosystem (Hart *et al.*, 2013). Alteration of flow regimes result in the introduction of

non-indigenous aquatic plant species. For example, water hyacinth propagation, due to anthropogenic flow changes, floats on the surface of the water, hinders recreational activity, interferes with flow regimes and water transport and blocks light from penetrating through the water column. Inter-basin water transfer schemes are another example of anthropogenic flow alterations. For example the Orange-Vaal River and the Tugela-Vaal River transfer schemes in South Africa can propagate and spread alien species, alter the distribution of biota and aid in the spread of pests and disease (Bunn and Arthington, 2002). One of the major challenges with regard to anthropogenic flow alteration from factors such as transfer schemes or the creation of dams, is to meet the water demands of the population without causing major alterations to river ecosystems (Hart *et al.*, 2013).

2.3.2.1 Subsidy-stress response

The relationship between flow velocity and periphyton biomass can be determined through the subsidy-stress response. The model indicates that two direct, opposing factors relating to the effect of flow changes on biomass (Biggs and Thomsen, 1995). A change in flow from near zero levels will result in an increase in periphyton biomass due to nutrient mass transfer (Biggs and Stokseth, 1996; Biggs et al., 1998; Larned et al., 2004). As flow velocity increases there is an increase in sheer-stress and a decrease in algal immigration rates. Equilibrium is reached when the optimum flow velocity is reached and there is no difference between periphyton biomass accrual and loss. If the current velocity increases after this point of equilibrium there is a decrease in periphyton biomass (Biggs and Thomsen, 1995; Borchardt, 1996, Biggs et al., 1998). The current velocity, periphyton biomass relationship is affected by the algal community growth form. For instance, filamentous algae are loosely woven and result in nutrient mass transfer at all velocity levels. For these filamentous growth forms the highest biomass was observed at the lowest velocity. Loosely woven stalked diatoms and short filamentous algae showed a peak biomass with increase nutrient transfer this was followed by a sharp decline. The third algal growth form, which are mucilaginous diatoms, had the lowest biomass at near zero velocity levels reaching highest biomass levels as velocity increases suggesting that diatoms are less vulnerable to sheer stress and sloughing than filamentous algae (Biggs et al., 1998; Biggs, 2000b) (Figure 2.2).

Figure 2.2: Interaction between biomass and flow velocity of three periphyton communities (adapted from Biggs, 2000b).

2.3.2.2 Floods events

Disturbances in terms of frequency, timing and intensity of floods play an important role in the dynamics and structure of river ecosystems affecting algal community structure, function and physiology (Peterson and Stevenson, 1992). Disturbances in slow current communities result in biomass loss, when discharge surpasses a threshold (Peterson and Stevenson, 1992; Schwendel *et al.*, 2010). During high flows, disturbances can result in algal communities retreating to a pioneer stage of succession (Biggs *et al.*, 2005). Disturbances resulting in patch dynamics can affect algal communities in different ways depending on the community attributes at the time of disturbance which may affect post-disturbance recovery (Matthaei *et al.*, 2003). The decrease of algal biomass could result from natural disasters (Godwin *et al.*, 2009) or result in an increase in algal biomass through scoring which removes the top layer of senescent algal cells leaving the more productive layer exposed to lights and nutrients in the water column (Molinos and Donohue, 2010).

Disturbance plays a role in species-coexistence by recolonization either through propagules from upstream refugia or from the resilient species left behind on substratum after disturbances. The type of species that will recolonize after a disturbance will depend on substratum size and geographic location of the disturbed patch (Steinman, 1996). The Intermediate Disturbance Hypothesis (IDH) is used to explain the role of species co-existence (Steinman, 1996; Downes and Street, 2005). The IDH indicates that the maximum species richness will occur at an intermediate stage of succession after a disturbance of average frequency (Steinman, 1996; Biggs and Smith, 2002). The dominant taxa is characterised as those that reproduce rapidly and are known as R-strategists. These organisms will exploit newly available, exposed habitats but will usually be outcompeted by more complex taxa with

slower immigration rates known as C-strategists. This indicates that a community is in a transition from that of colonisation to that of a climatic state. The second prediction of the IDH is that species richness will peak in areas at which intermediate rates of disturbance is experienced (Biggs and Smith, 2002). However, the patterns of the IDH were not experienced in all experiments which could be attributed to ecosystem differences or differences in the type of disturbance experienced (Downes and Street, 2005). According to studies by Biggs and Smith (2002) those experiments that did not follow the predictions of the IDH, were as a result of fast colonisation of pioneer taxa and high variation in the immigration of climax taxa.

Other physical disturbances such as desiccation, freezing, substrate movement, increases in hydraulic processes, light and heat affect periphyton communities in manners that are difficult to predict (Larned, 2010). The longer the interval between disturbance events, the greater the effect of the disturbance. This is attributed to the fact that with a lack of disturbance algal mats grow in thickness resulting in senescent cells at the bottom of the mat near the substrate. Therefore, when a disturbance event occurs, even under low shear-stress, algal biomass loss is substantial due to the weak attachment of senescent cells to the substrate (Larned, 2010).

Disturbances from flood events can alter periphyton community composition, biomass and density (Uehlinger, 1991; Peterson, 1996; Biggs *et al.*, 2005; Francoeur and Biggs, 2006; Schwendel *et al.*, 2010). Disturbances are an important spatial and temporal control mechanism, in lotic ecosystems (Webb *et al.*, 2006; Schwendel *et al.*, 2010). Floods are accompanied by bed load transportation, increased sheer-stress and velocity and a change in species composition biomass and density of periphyton and invertebrate communities (Webb *et al.*, 2006; Schwendel *et al.*, 2010). Flooding events can result in patchy distribution of periphyton biomass, each of these patches have species of different ages and therefore a different species index (Robinson *et al.*, 2004; Downes and Street, 2005). Experiments conducted to determine the effect of floods on algal colonisation showed that there was no significant decrease in species richness due to propagules immigration (Biggs and Smith, 2002). Experiments in New Zealand streams showed that mean monthly taxonomic richness was higher after flood events however over a long period of time taxonomic richness was greater in years with less frequent flooding which can be attributed to the fact that there is a lower taxonomic richness in algal communities that are at early succession (Biggs and Smith, 2002).

The re-establishment of algal communities after a flood event occurs in two phases. The first, rapid phase, occurs a few days after the flood event and is composed of algae with high reproductive and immigration rates. The algae found in this early phase are highly tolerant to disturbance. The second phase of re-establishment can take up to a few months and is dominated by algae that are less resistant to disturbances and have slower immigration and growth rates (Biggs and Smith, 2002). Therefore, the relationship between flow velocities and disturbance events play a complex integrated role in the

development of algal communities in terms of algal biomass, growth forms, community structure and function.

2.3.3 Light

Other factors such as light, temperature, pH and grazing affect biomass accrual and loss. Changes in light intensity play a role in algal community structure and growth (Hill, 1996). The effect that ultraviolet radiation (UVR) has on periphyton communities is influenced by the amount of shading, water depth and sedimentation of a particular system (Larned, 2010). Most periphyton are autotrophs and therefore use light in the process of photosynthesis to convert inorganic compounds into living matter (Hill, 1996; Larned, 2010). The rate of photosynthesis is effected by self-shading of the algal communities, shading due to riparian vegetation and can be affected by inorganic and organic dissolved particles in the water column (Hill, 1996).

The rate of photosynthesis is affected by self-shading especially in rivers were the overhead canopy shades the water body. Riparian vegetation does not form uniformly therefore certain areas receive more light than others (Hill, 1996). With this type of vegetation growth and patchy distribution of light, it has been observed that periphyton growth rates are higher in unshaded than shaded streams (Quinn *et al.*, 1997; Ewart-Smith and King, 2012). This problems is not experienced in large rivers and lakes were riparian vegetation shading is not a concern (Hill, 1996).

Low light intensities in the Thames River reduced algal biomass levels by 50% (Bowes *et al.*, 2012). Similarly studies by Han *et al.* (2000) using a dynamic model identified that high light intensities cause a decrease in periphyton biomass. The amount of light within a river system decreases further down the water column due to inorganic particles, phytoplankton and suspended sediments, and decreases with the increase in algal mat thickness (Dodds, 1992; Hill, 1996; Biggs *et al.*, 1999; Higgins *et al.*, 2008).

Seasonality changes in light intensity play a role in algal biomass levels. For example in spring and autumn when existing high levels of light intensity are increased there is less effect on algal biomass levels as compared to an increase in light intensity in summer when light intensities are low, resulting in the increase in algal biomass (Rosemond *et al.*, 2000). The correlation between high biomass levels and increased light intensities allows for periphyton biomass indicators such as Ash Free Dry Mass (AFDM) and chlorophyll *a* estimations to be used as a parameter to measure light intensity. However, grazer density and abundance has to be taken into account in these situations (Hill, 1996).

2.3.4 Temperature

Water temperature has a significant impact on organism and water quality in lotic environments in terms of dissolved oxygen and suspended sediment concentrations (Webb *et al.*, 2008), influencing the establishment of aquatic plants and animals (Bunn and Arthington, 2002). Water temperature is susceptible to both natural and anthropogenic changes. (Webb *et al.*, 2008). Natural changes in water temperature can occur from solar radiation or from conduction and convection (DeNicola, 1996), while anthropogenic change can result from climate change, global warming, water abstraction, divergence and impoundment (Webb *et al.*, 2008; Rosa *et al.*, 2013).

These changes in water temperature can effect algal communities, macro-invertebrates and fish. For example cold, un-oxygenated water from dam releases can cause a decrease in macro-invertebrate populations as these communities synchronise their emergence patterns with water temperatures (Bunn and Arthington, 2002), in contrast to this, Collier (2002) believed that dam flow releases do not cause significant changes in water temperature.

Optimum growth temperatures range between 0° C to 30° C as heat stress can reduce the growth of periphyton communities (DeNicola, 1996; Larned, 2010). Species diversity is greatest between the temperatures of 0° C to 25° C and tend to decline at temperatures greater than 30° C (DeNicola, 1996). Most algal species have their own optimum temperature for survival, for example diatoms usually dominate at temperature between 5° C- 20° C, chlorophytes between 15° C and 30° C and cyanobacteria at temperatures above 30° C (DeNicola, 1996).

Some algal communities are resistant to changes in water temperature due to differences in spatial distribution (Larned, 2010) while lateral and vertical temperature changes can be attributed to spatial changes (DeNicola, 1996; Webb *et al.*, 2008). Changes in metabolic rates, community structure and function, biodiversity, latitude, altitude and groundwater can occur due to changes in water temperature (DeNicola, 1996; Rosa *et al.*, 2013). Temperature differences have different effects on algal taxa. An example of this is cyanobacteria that is more tolerant of higher temperature than diatoms or rhodophyta (Larned, 2010).

Seasonal changes in water temperature can affect the periphyton community. A study by Webb *et al.* (2008) determined that water temperature changes were more pronounced in summer. The effect that seasonal temperature changes has on periphyton communities is iterated by studies conducted by Rosa *et al.* (2013) who indicate that metabolic and respiration changes occurred in spring which was attributed to temperature changes, high temperature and high levels of light intensity. Highest algal biomass levels were observed in autumn due to nutrients leeched from leaf litter (Rosa *et al.*, 2013) which is in contrast to experiments conducted by De Nicola (1996) who observed highest periphyton biomass in spring and lowest biomass observations in winter depending on the driving factors within those particular seasons.

Temperature changes can affect periphyton differently at different ecological levels. At a physiological level there are changes in respiratory and photosynthetic enzymes of the algal species, at a population level temperature determines optimal growth rate, at a community level changes in temperature result in changes in geographic distribution and at a global level changes in temperature affect the paleo-climatic assemblages of periphyton communities (DeNicola, 1996). It is evident that temperature is a limiting factor under extreme conditions but can be counteracted in some cases due to temperature acclimation by algal species which will result in photosynthesis even in cold climates (Larned, 2010).

2.3.5 pH

Stream pH can influence the growth and taxonomic composition of periphyton communities. Environments that are highly acidic are comprised of algal species that are acidophilic and acidotolerant (Gross, 2000; Larned, 2010). Acidophilic species survive in these highly acidic environments through proton influx as they have to tolerate an environment that has lower amounts of carbon dioxide for photosynthesis (Gross, 2000). The most common component found in acidic environments is sulphuric acid (Gross, 2000). Acidic environments lead to low species diversity and usually have no higher order organisms except for macro-invertebrates and organism that only partially rely on photosynthesis (Gross, 2000). If there is a decrease in acidophilic species in an ecosystems it can be deduced that acid mitigation measures were successful (Larned, 2010).

2.4 Grazing

Grazing in aquatic ecology refers to the removal of periphyton biomass by aquatic macroinvertebrates, providing a top-down control of algal biomass, in particular in steams with low to moderate disturbances (Steinman, 1996; Hillebrand, 2009; Yang *et al.*, 2009). The species abundance and richness of grazers are dependent on water velocity, depth, deposition, substratum size, location and the rate of biomass accrual within a particular system (Collier, 2002). The effects of invertebrate grazers on periphyton biomass cannot be generalised as many invertebrates are specially adapted to feed on certain algal growth forms (Steinman, 1996). Mature benthic algae usually consist of three layers. The lowest layer contains low profile algal species, the second layer consists of stalked or upright algal species and the last layer consists of filamentous species. Even though these layers are not always clearly defined they aid in determining algal-grazer interactions as grazers are separated into the zone they are most morphologically adapted too. For example, mayflies feed on loose portions of the periphyton mat or on the outer layers because of their gathering, collector feeding mouthpart structures, while, snails and caddisflies have scraping and rasping mouthparts that are better suited to feeding on lower parts of the algal community were the tightly attached algae are found (Steinman, 1996). Food web composition is important in river systems as it determines grazer-algal relationships (Maasri *et al.*, 2010). Grazers reduce periphyton biomass and can cause a change in periphyton community and physiognomy composition (Peters *et al.*, 2007; Hillebrand, 2009). Invertebrates are usually unselective on the stage of succession at which the periphyton community is at. This results in the removal of entire algal mats (Hillebrand, 2009). Each invertebrate group can exert a different pressure on the periphyton community depending on mouth parts, foraging ability, motility, morphology and the successional stage of the periphyton community (Villanueva and Modenutti, 2004; Hillebrand, 2009). Therefore, invertebrates act as a control of periphyton biomass (Hillebrand, 2009). However, the resultant algal biomass loss due to invertebrate grazing is more apparent and detectable when initial periphyton biomass is high (Villanueva and Modenutti, 2004).

Periphyton biomass can increase with a decrease in grazers (Taylor *et al.*, 2002) and some algal species can resist the effect of grazers and have no change to their biomass if there is an increase in nutrients in that particular system (Rosemond *et al.*, 2000). In areas of uniform invertebrate abundance the effect on periphyton biomass may be different. This can be attributed to the interaction of other physical factors such as flow regimes (Peters *et al.*, 2007). In rare cases periphyton biomass does not decline with the increase in invertebrate grazers or in some cases grazing may result in the increase in periphyton biomass (Steinman, 1996). Periphyton increases could occur when grazing removes senescent cells allowing healthy cells to gain resources and nutrients from the water column (Steinman, 1996).

The lack of decline in periphyton biomass with the increase in grazers could have occurred because algal decline is dependent on the abundance of invertebrates and in some cases there are not enough invertebrates to result in a substantial decline in periphyton biomass. This suggests that algal-invertebrate relationships can be density dependent. In other cases, invertebrate morphology and body parts may not be adapted to graze on a particular algal growth form (Steinman, 1996). Certain large grazers such as mayflies and caddisflies have a detrimental effect on algal abundance, growth and biomass. Small invertebrates however, do not have the ability to graze on a wide range of algal growth assemblages which makes them more selective in their foraging habitats, thereby having a greater effect on algal species composition rather than abundance (Maasri *et al.*, 2010).

Algal-grazer relationships can be affected by external factors such as flow regimes and disturbances. Disturbances, especially large scale infrequent disturbances, have a drastic effect on invertebrate community composition, biomass and density (Biggs *et al.*, 2005; Schwendel *et al.*, 2010). After a disturbance event the distribution of invertebrates are usually patchy and are predominantly found on stable substratum (Matthaei *et al.*, 2003). Through the processes of disturbances and scouring which removes algae, macro-invertebrates lose an important habitat and food source which can affect the recolonisation of macro-invertebrates (Downes and Street, 2005). Other factors, such as increasing

water temperatures, result in an increase in invertebrates due to an increase in metabolic activity (Hillebrand, 2009). The lack of floods have an effect on invertebrate abundance as there is decreased abundance of invertebrates below a dam (Rader *et al.*, 2008). In contrast to this Robinson *et al.* (2004) believes that flooding causes a decline in some invertebrate families such as Chironomids and simuliidaes while other invertebrates flow downstream into the drift as a specific behavioural mechanism to decrease the effects that flood events have on invertebrate abundance. Increased sedimentation can result in a decrease in invertebrate abundance and species richness (Collier, 2002). Another concept of algal- invertebrate relationships in river ecosystems is the concept of efficiency increases with an increase in availability as a result of increased accessibility. This is iterated by the fact that invertebrate grazer abundance increases with an increase in periphyton biomass which in turn results in the increased removal of algae (Hillebrand, 2009).

Finally, seasonality and nutrients can effect grazer-algal relationships, for example, during summer and autumn, the negative grazing effects on periphyton biomass is heightened by an increase of nutrients in summer and light in autumn (Rosemond *et al.*, 2000). Experiments by Rosemond *et al.* (2000) indicate that the effect of grazers is greater than the effect of resource availability on periphyton biomass. This could result in grazer resistant algal species are slower growers than the other more productive algal species which are consumed by grazers that are morphologically and physiologically adapted to graze on these species (Rosemond *et al.*, 2000). Nutrient deficiency may be experienced by invertebrate grazers when nutrients are limiting. This can in turn result in a high grazing pressure on periphyton communities as they are rich in nutrients such as nitrogen and phosphorus (Dodds, 2003; Hillebrand, 2009). The effect of grazing is less severe in environments that are nutrient enriched due to high periphyton biomass in these systems (Hillebrand, 2009). Therefore, disturbances and external factors can impact algal invertebrate relationships. Comparative studies in rivers, lakes and marine systems suggest that the effect of periphyton removal was similar between all three habitats indicating that functional feeding groups and invertebrate-algal size relations are more important than differences in flow regimes and salinity (Hillebrand, 2009).

2.5 Temporal Patterns of benthic algal distribution in rivers

There is a complex interaction between abiotic and biotic factors in a river ecosystem that operate over a wide spatial and temporal scale, altering patterns in periphyton biomass and community composition. These alterations can occur at a fine scale, within micro-habitats over a few days or at broad scales, between catchments over years (Stevenson, 1997). Spatial and temporal ecology of a river is influenced by the way in which water moves across a landscape. Changes in algal assemblages are as a result of scouring, abrasion, substrate stability, desiccation, velocity and shear-stress due to flow regime changes. Physical disturbances such as droughts and floods influence spatial and temporal patterns in benthic algal communities (Bunn and Arthington, 2002).
Temporal variations in periphyton patterns such as biomass are influenced by seasonality changes. Studies by Yang *et al.* (2009) identified that there was greater algal biomass in the dry season than the wet season due to scouring and abrasion as a result of high flows in unpolluted rivers in Hong Kong. The effect that temporal variations have on periphyton biomass are often decreased in comparison to the effect that grazing invertebrate have on periphyton biomass. (Yang *et al.*, 2009).

2.5.1. Short term temporal patterns- post disturbance recovery

After a flood event periphyton communities are usually in a stage of biomass accrual through the immigration and colonisation of propagules from upstream or from growth or reproduction of cells that survived the flood event (Poff *et al.*, 1990; Biggs, 1996; Larned, 2010). Once a peak algal biomass is reached, algal loss occurs through death, immigration, grazing and sloughing (Poff *et al.*, 1990; Biggs, 1996). These biomass accrual and loss patterns are influenced by a number of factors including the size and type of the propagules pool from upstream refugia which influences colonisation, near-bed velocity and substratum texture (Biggs, 1996).

These variations in algal accrual and loss patterns can result in differences in algal species composition. During the biomass accrual phase bacteria, fungi and a mucilage develop as an organic film over stable substrata. This development usually occurs a few hours after a disturbance. This is followed by the introduction of diatoms together with fungi bacteria and polysaccharides (Peterson *et al.*, 1990; Peterson, 1996). With an increase in phosphorus levels in aquatic ecosystems, through the process of succession, there is a shift in dominance from macrophytes and periphyton to that of phytoplankton which is an indication of nitrogen limitation (Trochine *et al.*, 2014).

The rate of succession and the recovery of algal communities can be dependent on the starting point of succession and regrowth or reproduction. For example, catastrophic disturbances can remove all living periphyton from a substratum while less severe disturbances may result in resilient taxa remaining on the substratum. During severe disturbance events refugia from upstream dominates recovery while less severe disturbances result in recovery from the growth of residual algal taxa after the vulnerable taxa was removed by the disturbance (Ewart-Smith and King, 2012). Therefore the initial phase of biomass accrual within the succession process can either be dominated by recovery of periphyton biomass from residual cells or the colonisation of periphyton from propagules from upstream refugia. The time taken for the periphyton community to reach peak biomass is depended on whether the initial phase was regrowth or re-colonisation (Stevenson, 1990). During low intensity floods, colonisation and growth is rapid and peak biomass is reached within two weeks, however during high intensity floods, regrowth is slow and peak periphyton biomass is only reached between 70 - 100 days after the disturbance event (Biggs, 1996). This illustrates that the severity of a disturbance is an important consideration when assessing periphyton community recovery (Ewart-Smith and King, 2012).

Morphological adaptations of algal taxa are important in terms of short-term recovery following a disturbance event. For example, taxa are more resistant to floods if they have a low profile, are tightly woven and have strong adhesion to substratum (Peterson, 1996). Examples of these low profile taxa include the diatoms *Achnanthes* and small *Navicula* species while examples of adhesive taxa include green algae such as *Stigeclonium*. Interwoven cyanobacteria are also resistant to floods (Biggs and Hickey, 1994). Taxa including filamentous green algae such as *Spirogyra* are loosely attached to substrata and are more susceptible to floods (Ewart- Smith and King, 2012).

Grazing can affect the succession trajectory during short-term recovery post-disturbance (Poff and Ward, 1995; Rutherford *et al.*, 2000). For instance grazers can either inhibit or maintain succession rates but it essentially depends on the characteristics of both grazers and periphyton communities (Poff and Ward, 1995; Steinman, 1996; Rosemond *et al.*, 2000). Grazers can become a limiting factor on periphyton growth over seasonal time scales. Grazers become a limiting factor in spring while nutrients become a limiting factor in summer (Rosemond *et al.*, 2000).

The above demonstrates that the availability of resources such as light, temperature and nutrients have an effect on algal growth and reproduction (Biggs, 1996). Peak biomass is usually reached faster in nutrient enriched than in unenriched streams. Sometimes however, diffusion of nutrients into algal mats become limiting in nutrient poor systems resulting in sloughing early on in the algal biomass accrual cycle (Lohman *et al.*, 1992; Biggs, 1996). Peak biomass is often greater in nutrient enriched environments in systems with similar velocity, temperature and light conditions (Biggs, 1995). Periphyton community structure affects the value of peak biomass. For example chlorophyll *a* estimates indicate that a higher peak biomass is experienced for filamentous green algae as compared to diatoms or cyanobacteria (Biggs, 1995). Algal loss is experienced after peak algal biomass is achieved by processes such as autogenic sloughing and factors such as age, parasitism and disease which affects the periphyton community (Ewart-Smith and King, 2012).

2.5.2 Long-term temporal patterns

Long-term temporal patterns are affected by flood frequency together with interactions between nutrients and light (Biggs, 1996). There are three main long-term temporal patterns, first, temporal patterns with a relatively constant biomass throughout the year. The second temporal pattern is found in rives with a moderate flood frequency and moderate nutrient and light levels, these patterns include that of cycles of accrual and sloughing. Finally, the third pattern comprises of seasonal growth with prevailing periods of moderate to low biomass (Biggs, 1996; Biggs, 2000b).

The temporal pattern of relatively constant low biomass occurs in systems with frequent flooding in which the periphyton communities are unable to reach a stage of biomass accrual due to the onset of the next flood. This frequent flooding devalues the positive effects of nutrients and light. In some cases these low biomass values are as a result of low nutrient and light supply (Biggs, 1995). However, these systems are usually oligotrophic so it is difficult to determine if low biomass levels are as a result of frequent flooding or low resource supply (Biggs, 1996). These systems are dominated by diatoms that are resistant to abrasion and turbulent flow (Francoeur and Biggs, 2006).

Other reasons for relatively low constant biomass in the absence of frequent flooding could be regulated by high densities of invertebrate grazers. This increased grazing prevents biomass accrual and algal composition present is comprised of grazer resistant species (Rosemond, 1994). Seasonal shifts are evident in these systems of low biomass. Nutrient light and grazers all play a limiting role on algal biomass accrual however, light availability was limiting in autumn and summer, while nutrient levels was the limiting factor in spring while grazing by snails for example can limit biomass accrual all year round in studies conducted in the Western Cape (Ewart- Smith and King, 2012).

In systems with seasonal flooding and moderate supplies of lights and nutrients, periphyton communities can develop and increase their biomass at different levels of succession (Uehlinger, 1991; Yang *et al.*, 2009). Flood events do not remove all algal growth and the period between flood disturbances result in biomass accrual. During this time periphyton growth can be considerable in particular in the absence of invertebrate grazers. Invertebrate grazer absence is particularly evident after a flood event when regrowth and re-colonisation is slower than that of the algal community (Biggs, 1996). This increase in periphyton biomass occurs until such time as there is an increase in grazing pressure. This illustrates the shift from abiotic to biotic control of periphyton biomass after a flood event (Ewart-Smith and King, 2012).

Seasonality of disturbances, grazer density and light intensities affect periphyton growth and biomass at a seasonal time scale. Disturbances to the river ecosystems usually correlate with seasonal changes (Sabater and Sabater, 1992). In contrast to this, Hill and Dimick (2002) indicate that the availability of resources control periphyton growth over a seasonal time scale. Seasonal patterns of periphyton dynamics occur through the interaction of flood frequency, grazers and resource availability. For example in a Mediterranean climate, periods of flow stability in summer is followed by flood events in winter. These abiotic forces dominate in winter while biotic forces dominate in summer (Tornes and Sabater, 2010). This illustrates the importance of the relationship between resource availability, grazing and disturbance events.

2.6 Spatial patterns

Spatial variations are characterised by differences in biotype, flow type, substratum type, suspended material and water solutes (Lear *et al.*, 2008). Interactions between hydrological, biological and geochemical factors can determine spatial patterns and community composition in a river ecosystem (Lutscher *et al.*, 2007). This spatial variation results in the creation of micro-habitats that enhance

patchy distribution and community variation at a number of different spatial scales (Biggs *et al.*, 1998; Lear *et al.*, 2008). This patchy distribution can occur due to the interaction of factors such as invertebrate grazer density, substratum type and the point of nutrient inflow (Biggs *et al.*, 1998). In unpolluted systems spatial variation is driven by rainfall patterns, shading and grazing together with light intensity, nutrient supply, temperature and hydro-dynamics (Biggs *et al.*, 1998; Peters *et al.*, 2007; Yang *et al.*, 2009). Spatial variations can occur at a micro-scale between biotypes, at a mesoscale occurring within catchments and finally at a broad scale were spatial variation occurs between catchments.

2.6.1 Micro-scale (biotypes)

Micro-scale variations refer to small changes in substratum patterns. For example algae can prefer sand grains of different mineralogy and topography. Stable flows can result in higher algal biomass on stable substrata. Even though most communities can grow on any substrata some communities can only mature when there are long periods of community stability (Biggs, 1996). During flood events abrasion by small particles occur on algae that are colonised on larger stable substrata. To overcome this, some algae colonise on protruding substratum resulting in a higher algal biomass than that of algae that are colonised on less stable smaller particles. These algal colonisations are at early successional stages however, without disturbances they can succeed to a cyanobacterial stage and even to the stage of filamentous green mats making the entire colony more stable (Biggs, 1996). According to Bunn and Arthington (2002) rivers with unstable substratum have low species diversity and exhibit similar signs to communities that are frequently disturbed.

2.6.2 Meso-scale (within catchment patterns)

Algal community composition can vary within pools, runs and riffles. These spatial differences reflect spatial differences in shear-stress, nutrient mass transfer and substratum type (Biggs, 1996). There is greater spatial heterogeneity between rocks within the same river system than between river systems (Lear *et al.*, 2008). The differences in biotypes within a river system is determined by the relationship between the underlying geology and flow regimes (Bunn and Arthington, 2002). In nutrient enriched streams there is a higher biomass in low velocity areas such as runs and pools dominated by green filamentous algae. In streams with high velocity most biomass, consisting of diatoms, are found in the riffles due to movement of nutrients from higher velocity and turbulence (Biggs, 1996). At a meso-scale, over a river continuum, biomass increases from headwaters to mid-waters due to an increase in river width and a decrease in overhead riparian vegetation. At the lower regions, biomass decreases again due to increases in light attenuation, increased water depths and turbidity. However, this can vary due to differences in nutrients and flow conditions together with underlying geology and topography (Biggs, 1996).

2.6.3. Broad scale (inter-catchments patterns)

Broad scale inter-catchment patterns occur due to varying frequencies in flood events. Streams that experience frequent floods have a lower average biomass dominated by low growing shear-resistant taxa while, streams with less frequent disturbances, low velocity and grazing have an average or higher biomass with greater community complexity (Biggs, 1996). Differences in community composition can result due to differences in geology, land uses and associated enrichment. Low nutrient enrichment usually comprise of cyanobacteria, while enriched streams usually contain filamentous algae (Biggs, 1996). Therefore periphyton communities are important biological indicators and environmental management tool as they can be used to determine pressure that is exerted on trophic systems. To overcome the increase in contaminants, in river ecosystems, many benthic communities have managed to adapted to the increase in contaminants and function at these high levels of pollution by having shorter generation times (Montuelle *et al.*, 2010).

2.7 Bio-monitoring

At present there is a shift in the use of bio-monitoring tools from that of water quality indicators to that of indicators of biological integrity which is the capacity of an ecosystems to support and maintain a balanced, integrated biological systems (Karr, 1995) and ecosystem health which is defined as a set of societal goals for ecosystem conditions (Chessman *et al.*, 1999). The short generation time and sessile nature of periphyton makes them suitable for monitoring and detecting flow and nutrient changes (Burns and Ryder, 2001).

Bio-monitoring in South Africa is often an integrated process attempting to strive for the much debated ideal of ecosystem health which refers to the optimal functioning ecosystem with healthy flora and fauna. This is achieved in one of two ways, by the whole effluent toxicity (WET) which is a tool used to evaluate effluent to ensure that it is not too toxic for discharge into rivers while the second approach is bio-monitoring under the South African river health programme (RHP). This programme is used to assess river health in relation to anthropogenic factors. However, it has low sampling frequency and low resolution and only makes use of macro-invertebrates, fish and riparian vegetation as bio-indicators. The use of diatoms have recently been tested throughout South Africa as a biological monitoring indicia (De la Rey *et al.*, 2004; Taylor *et al.*, 2007).

Studies by Taylor *et al.* (2007), aim to include diatoms in the current suite of bio-monitoring tools used in South Africa as chemical monitoring of water quality is expensive and time consuming. Hence the call for a shift towards the use of biological monitoring. Studies along the Crocodile west and Marico management area saw the identification of many cosmopolitan diatoms and many endemic diatoms specific to South Africa indicating a need for a unique South African diatom index. Studies in the Vaal and Wilge Rivers used diatoms and developed indices to determine the correlation with chemical monitoring outcomes over a certain period of time. This suggested that diatom-based

indices are a valuable addition to the suite of bio-monitoring tools (Taylor *et al.*, 2007b). However, the use of periphyton as a bio-monitoring tool is still difficult as the relationship between biotic and abiotic factors, biotic responses to regulatory changes in ecosystems and associated patterns in spatial and temporal dynamics in river ecosystems have to be understood (Stevenson, 1997).

2.8 Climate change

Climate change, due to anthropogenic factors, can influence water quality, increase air temperature and changes in rainfall patterns and may influence flow conditions in rivers while increased water temperature may affect metabolic rates (Whitehead *et al.*, 2009). Increased flow conditions may result in increased sedimentation and in turn affect the morphological characteristics of rivers. Droughts in some cases or alternatively flash floods may occur as a result of climate change. Low flow events and reduced velocity can eventually result in algal blooms (Whitehead *et al.*, 2009). Laboratory experiments in the Netherlands to test the effects of climate change on four toxic and two non-toxic algal species yielded the following results. The two non- toxic species did not increase significantly with an increase in temperature. Two toxic species did not increase in temperature while the other two toxic species increased rapidly with the increase in temperature. This experiment reiterates the uncertainty of algal blooms associated with climate change (Peperzak, 2003)

Eutrophication through the increase of nutrients from pollution in river ecosystems has been linked to harmful algal blooms and the development of cyanobacteria so the monitoring and reduction of pollutant effluent into rivers can significantly decrease harmful algal blooms (Heisler *et al.*, 2008). In South Africa, remote sensing and medium resolution satellite imagery was used in studies by Matthews (2014) to indicate the level at which eutrophication and the development of harmful algal blooms was affecting water resources. Fifty inland waterbodies were sampled and it was found that 62% of these waterbodies were at or near eutrophic levels while 23 showed signs of cyanobacterial presence. Cyanobacterial scum that poses health risks to humans and animals were observed at 26 of the sampled sites (Matthews, 2014). Nutrient levels play a highly influential role on algal blooms. For example at Albert Falls dam in KwaZulu-Natal an algal bloom of dinoflagellate *Ceratium hirundinella* caused major ecological shifts to the system indicating reduced water quality (Hart and Wragg, 2009).

2.9 Conclusion

Periphyton composed of algae, protozoa, bacteria and fungi play a crucial role in river ecosystems as chemical modulators and in their capacity to convert nutrients into food for organisms at higher trophic levels. However, excess nutrients in a river system may lead to eutrophication and an increase in algal blooms. There are a number of factors that influence algal biomass accrual and loss. For example nutrients, light and temperature may lead to algal biomass accrual while disturbances and grazing can lead to biomass loss. Nutrients can result in the increase in algal biomass and taxonomic richness. This algal growth is limited by the nutrient in least supply which can occur at all trophic levels. Aquatic food webs are strongly determined by the nutrient regimes in a particular system. The increase in anthropogenic pollution can influence and result in algal blooms leading to eutrophication and changes in river system composition and functioning.

Flow plays an important role in algal community biomass and composition. These flow events are influenced by seasons, disturbances, floods and droughts. Flow can either be a measure of discharge or velocity. Velocity can influence biomass accrual through nutrient mass transfer or biomass loss through disturbances, sloughing and sheer stress. Grazers provide a top-down control of algal biomass and are specifically physiologically and morphologically adapted to feed on algae. Periphyton patterns are influenced temporally and spatially at a number of scales. It is important to determine trends and patterns in periphyton communities as they have the potential to be an important bio-monitoring tool. These bio-monitoring tools are important as they allow for changes in ecosystems to be detected efficiently. Differences in outcomes, when using these tools. depend on a number of different factors such as the ecosystem conditions. These differences may yield different results making it difficult to create a generalised tool that can be used in all situations.

This research aims to develop an understanding of the temporal patterns of periphyton communities in a summer rainfall region. To date such research has only taken place in a winter rainfall region of South Africa but the idea is to create a generalised bio-monitoring tool using periphyton that is applicable to South Africa as a whole and not limited to specific regions.

CHAPTER THREE

Methods

3.1 Introduction

This chapter describes the sites selected and field sampling and laboratory procedures conducted on a monthly basis from June 2014 to June 2015 to inform the research aim and objectives. The KwaZulu-Natal region boasts a subtropical climate with summer rainfall together with cold, dry winters (Eeley *et al.*, 1999). The favourable atmospheric circulation in KwaZulu-Natal allows for a relatively balanced water budget with a warm coastal current supplying humidity to the area. This results in high rainfall, high soil moisture content and a dense vegetation cover. The mean annual rainfall in the area is 800 mm (Jury, 1998). The average temperatures ranges between 18-28.C in summer to 18- 23.C in winter.

Five sampling sites were selected. These site were situated along three river systems namely; the Msunduzi, the Umgeni and the Hlatikhulu river systems (Figure 3.1). The Msunduzi River flows through the city of Pietermaritzburg with a catchment size of 875 km² and a tributary length of 115 km. The river is heavily polluted by surrounding communities that utilise the river for domestic and recreational activities. The Msunduzi River is one of the main tributaries of the Umgeni River, joining the Umgeni River at the confluence between Nagel and Inanda dams. The Umgeni River has its source in the KwaZulu-Natal Drakensberg region, at an elevation of 1825 m and its mouth in Durban metropolitan (Dickens *et al.*, 2010). Midmar Dam is situated on the Umgeni River, built in 1965 near Howick, to provide drinking water to both the Pietermaritzburg and Durban regions. It is mandatory that 0.7 m³/s of water is released at a constant flow from Midmar dam, is important for the downstream community users (Dickens *et al.*, 2010). The Hlatikhulu River originates in the Kamberg region of the Drakensberg and is relatively unimpacted by anthropogenic pollution apart from agricultural practices.

Figure 3.1: Site map of KwaZulu-Natal indicating sampling sites (a) and the location of the study sites within the KwaZulu-Natal province (b,c)

3.2 Site selection

Site selection involved identifying sites upstream and downstream of points where either natural flow regimes or nutrient statuses were altered to ensure that the research aim was fulfilled. This, together with the availability of flow and water quality data, flow and nutrient alterations and security and safety surrounding the sites, were taken into consideration. These factors led to the identification of the following sites:

Site A:Msunduzi- KwanoShezi- Mcakweni (29°40'5.83"S, 30°13'41.36"E) and Site B:Msunduzi Tannery Site (29°38'34.58"S, 30°20'37.44"E) are comparable as they have similar flow characteristics with differing nutrient loads. Site A is upstream of Henley Dam in the peri-urban surrounds north of Pietermaritzburg CBD. This site has a cobble bed substratum type and a safe, secure, easily accessible sampling habitat. This site was chosen as the nutrient unenriched site as it is not severely altered by anthropogenic pollution, has fairly natural flow conditions and unaltered water chemistry (Plate 3.1a). The gauging weir at Henley dam (U2H011) was used to obtain flow data from the Department of Water Affairs for site A. Changes in water depth and siltation between the seasons of winter (July 2014) and summer (December 2014) are indicated (Plate 3.1a). Site B has unaltered flow conditions but altered nutrients due to runoff from the communities living adjacent to the river system, utilising the river system and thereby increasing nutrient load, resulting in nutrient enrichment. Site accessibility is obtained through a local industry which is situated adjacent to the river. The substratum type at this site is cobble bed and site accessibility is challenging in particular during spring through to autumn when vegetation cover is dense and high. The gauging station at Mason Mill (U2H058) was used for water quality data at this site. Site condition changes in winter (June 2014) and in autumn (April 2015) were observed (Plate 3.1a)

Site C: Umgeni- Petrustroom- Upstream of Midmar Dam $(29^{\circ}29'15.69"S, 30^{\circ}9'21.92"E)$ and Site D Umgeni-Howick- Downstream of Midmar Dam $(29^{\circ}29'16.44"S, 30^{\circ}12'53.39"E)$ are comparable as they have similar nutrient conditions but altered flow characteristics. Site C, Petrustroom, is located outside the town of Howick, upstream of the Midmar dam. The gauging weir (U2H013) at Petrustroom was used to obtain water quality data from the Department of Water Affairs. The site is safe, secure and easily accessible. This is a low impact site with no chemical introductions and no nutrient enrichment. Drastic changes in flow conditions in terms of water depth and velocity over the sampling season in winter (July 2014), spring (September 2015) and autumn (April 2015) are visible (Plate 3.1b). Site D is located downstream of Midmar dam and has altered flow conditions. This site is a low impact site that is suitable for sampling as it is secure and accessible. The site chosen is above the York Street pump station, this ensures that effluent from the pump will not affect the study. The gauging weir at Howick (U2H048) was used to obtain flow data for this site. Changes in flow

conditions, namely water depth in winter (June 2014) and summer (February 2015) are indicated (Plate 3.1b).

Site E: Hlatikhulu River- Broadmoor (29°14'14.81"S, 29°47'5.35"E), is located in the Drakensberg Ukhahlamba Mountains. There is minimal flow modification or nutrient enrichment at this site. It is a safe, secure and easily accessible site that has a cobble bed substratum type. The lack of flow and nutrient modifications together with its close proximity to a gauging weir for flow data and water quality data from Umgeni water, who regularly monitor the site, made it a good reference. However, during the sampling period the land adjacent to the river banks, surrounding the site was planted with maize thereby potentially altering nutrient levels, flow regimes and other physico-chemical elements within the system. A new reference site was not identified due to time constraints and the lack of water quality and flow data at any other site upstream of this site. The gauging weir on the Hlatikhulu River (V2H007) was used to obtain flow data for the site. Changes in water depth over the sampling period in summer (January 2015) and June (2015) are visible. The maize plantations above the river bank can be viewed in the January 2015 photograph (Plate 3.1c).

Plate 3.1a: Site A Msunduzi- KwanoShezi- Mcakweni photographed in winter (July 2014) and summer (December 2014) showing changes in depth and siltation which is comparable to site B Msunduzi Tannery site photographed in winter (June 2014) and autumn (April 2015) showing minimal changes in depth.

Plate 3.1b: Site C Umgeni- Petrustroom photographed during winter (July 2014), during spring (September 2014) and during autumn (April 2015) illustrating changes in water depth and velocity which is comparable to site D Umgeni-Howick photographed during winter (June 2014) and summer (February 2015).

Plate 3.1c: Hlatikhulu River- Broadmoor photographed in summer (January 2015) and winter (June 2015) showing changes in water depth and the maize plantation.

3.3 Data acquisition

Sampling occurred at each site for 13 months from June 2014 - June 2015 except at the reference site were sampling commenced in September 2014 - June 2015. At each of the five sites, five submerged stones were sampled. Each stone were processed on-site for biomass estimation and taxonomic composition of periphyton and macro-invertebrates which would be identified during laboratory analysis. These stones were collected from the run hydraulic biotype identified as least variable between the riffle, pool and run biotype according to a pilot study conducted by Ewart-Smith (2007). The run biotype is characterised by large and small cobbles on the river bed. This surface flow, which is usually unbroken, can either be rippled surface flow (RSF) or barely perceptible flow (BPF) and sometimes with insular standing waves during high flow events. These flow types are associated with the run biotype (King and Schael, 2001; Ewart-Smith, 2007). The five sampled stones were collected from hydrologically independent run biotopes.

3.3.1 Field sampling procedure

Stones with a width of between 100mm to 250mm along the longest axis were sampled to reduce the potential effects of stone size as indicated by the pilot study conducted by Ewart-Smith and King (2012). At each site physico- chemical data were collected using a YSI 556 MPS multiprobe system. These data were pH, water temperature, percentage dissolved oxygen, dissolved oxygen and conductivity. Water clarity was determined using a clarity tube. Further water quality data were obtained from Umgeni Water and flow data from the Department of Water Affairs. Before the removal of each stone, near bed velocity and depth were measured using a global water flow probe.

A invertebrate sampling net with an 80μ m mesh size with an opening of $300 \text{ mm} \times 300 \text{ mm}$ was placed below the selected stone in the current. The sourced stone was then lifted from the river bed.

Any invertebrates disturbed during this process were carried by the current into the net. Once the stone was lifted, it was placed in the current, in the invertebrate net and gently brushed to remove any invertebrates that still adhered to the stone. Once the invertebrate removal process was complete, each of the five selected stones were placed in separate sampling trays, removed from the river system and taken to the river bank for further sampling.

At the river bank chlorophyll *a* was determined for each stone using a *moldaenke bbe* BenthoTourch. This allows for *in-situ* real time determination of benthic algal concentrations. The BenthoTourch can be used to determine green algae, blue-green algae and diatoms. It is portable, reliable and there is no need for sample preparation, laboratory analysis or microscope work. Five readings on different sides of each stone were taken. This was carried out for each of the five stones at each site. After benthotorch chlorophyll *a* readings were taken any invertebrates that were still adhered to the stone were removed using forceps. Invertebrates from each stone, including those collected in the river and those removed using forceps were placed in jars and preserved with 99.9% ethanol.

After the removal of invertebrates, periphyton was scrubbed off the stones using a nail or tooth-brush until there was no change in the colour of the rinsing water. This scrubbed slurry was placed in dark containers to inhibit any further photosynthetic activity. Subsamples of 50ml of the scrubbed slurry was removed and preserved with Lugol's iodine solution for the preservation and later identification of algal species. The scrubbed sample was placed on ice and transported to the laboratory where it was frozen for biomass analysis.

Once the stones were scrubbed, the stone dimensions were measured as the longest axis (x), the longest horizontal axis, perpendicular to the x-axis (y) and the longest vertical axis (z). The area of each stone was calculated using the regression formula developed through a pilot study by Ewart-Smith (2007):

Surface areas of stone $(cm^2) = 0.014(x)+33.819(xy+xz+yz)$

Stone embeddedness that was estimated *in situ* was used to correct for stone area to ensure that stone surfaces on which periphyton could not grow were considered. This sampling procedure was followed for all five stones at all five sites for the duration of the sampling period. The entire sampling procedure is represented pictorially (Figure 3.2).

Temperature loggers were installed in December 2014. The Hobo U22 Water Temp Pro V2 temperature loggers were fixed to the river bed near the point of sampling at all five sites. Unfortunately data loggers at site A (Msunduzi-Kwanoshezi [nutrient unenriched]) and B (Msunduzi-Tannery [nutrient enriched]) were stolen and data could not be retrieved. To obtain missing values a regression, using r^2 values from scatter plots were used.

Figure 3.2: Pictorial representation of sampling procedures

3.3.2 Laboratory procedure

3.3.2.1 Periphyton biomass

Periphyton biomass was quantified using two procedures; the determination of ash free dry mass (AFDM) and chlorophyll *a* (Chl *a*). Frozen periphyton samples of the scrubbed slurry were defrosted overnight in dark cupboards, then processed for AFDM and Chl *a*. Laboratory procedure were adapted from Biggs and Kilroy (2000). AFDM was calculated by drying Whatmann GFF 4 glass fibre filters without algal samples in a furnace at 400°C. The filter paper was removed from the furnace and placed in a Buchner filtration apparatus. A 15ml sample portion was filtered through the Buchner funnel onto filter paper. These samples were then dried in the oven overnight at 105 °C after which they were ashed at 400°C for four hours. Filter paper and crucibles were weighed before and after the samples were placed in the furnace. The difference in dry and ashed weights were used to determine periphyton biomass (Equation) (Biggs and Kilroy, 2000) and represents the organic component of the periphyton.

AFDM (g/sample) =

[{(weight of crucible + filter + sample after drying)-(weight of crucible + filter + sample after ashing)} × sample volume/ [volume of filtered sample] (1)

AFDM (g/sample) =AFDM/ area of stone (m^2) (2)

Chlorophyll *a* was used as a measure of live algal biomass. This is effective as Chl *a* is present in most algae which form part of the periphyton community (Biggs and Kilroy, 2000). The Chl *a* extraction procedure was adapted from Biggs and Kilroy (2000). Algal sub-sample of 15ml from the scrubbed slurry was filtered onto Whatmann GFF 4 glass fibre filters through the Buchner filtration apparatus. The filter paper was boiled in 95% ethanol at 78°C for 10 min to allow chlorophyll to be fixed by destroying the enzymes and to increase extraction efficiency. The filter paper was removed and the ethanol containing the chlorophyll was left to cool overnight at 4° C in a fridge. Cooled samples were centrifuged at 3000rpm for 15min. If samples were concentrated they were diluted with 95% ethanol. Absorbance was measured at a wavelength of 665nm using a spectrophotometer while background absorbance was measured at 750nm. During spectrophotometry the live Chl*a* counts are interfered with by dead chlorophyll cells called phaeopigments. These dead cells occur through the natural degradation of chlorophyll communities as they age. To determine the amount of dead cells, the sample was acidified with 0.3M hydrochloric acid (HC*l*) to correct for phaeopigments. After two minutes absorbance reading were re-read at 655nm and 750nm. Chlorophyll *a* per sample was determined by the following equations adapted from Biggs and Kilroy (2000)

Chlorophyll *a* (mg per sample) =

 $[(absorbance_{665before}- absorbance_{665after}) \times 28.66 \times sample \text{ volume} \times \text{extractant vol.}]/ \text{ filtered subsample}$

Phaeopigments (mg per sample) =

 $[(1.72 \times absorbance_{665after}) - absorbance_{665before}] \times 28.66 \times sample volume \times extractant volume]/ (filtered sub-sample)$

Chl a (mg/m²) = chlorophyll a (mg/sample)/ area of sample (m²)

Where: $absorbance_{665before}$ and $absorbance_{665after}$ are absorbance readings at 665 nm wavelengths before and after acidifications and 28.66 is the absorption coefficient for chlorophyll (Biggs and Kilroy, 2000).

3.3.2.2 Taxonomic identification of algae

A 50ml sub-sample of scrubbed slurry preserved in Lugol's iodine solution was stored in a dark refrigerator for algal taxonomic identification. This analysis and sample preparation was conducted according to steps outlined in Ewart-Smith and King (2012). The 50ml sample was homogenised using a hand-held blender. Sub-sample of 5ml was centrifuged for 10 minutes at 3 000 rpm to concentrate the algal cells. Thereafter, 4.5ml of supernatant was discarded leaving behind 0.5ml of the pellet for identification purposes. (Ewart-Smith and King, 2012). Each sample was initially viewed using a compound microscope with a magnification of 1000 × using a glass slide and cover slip to view the entire sample and gain an impression of the types of algal species present. 0.1ml of sample was placed in the sample chamber of the haemocytometer which was used for algal species identification and abundance estimation. Algal taxon identification was obtained using the haemocytometer under a magnification of $400 \times$ using a compound microscope. The samples were concentrated to ensure approximately 30 to 50 algal cells per field of view and were counted within an area ranging between 1 mm^2 to 9 mm^2 . Algal density per sample per site was determined as the number per m² of stone surface area.

3.3.2.3 Invertebrate grazer biomass

Invertebrates collected in-field and preserved within ethanol were identified to family level using a dissecting microscope. Invertebrates that were identified as grazers were split into five size categories.

Size categories were developed by measuring invertebrate body lengths and ranged from <0mm to >12mm. A sample of invertebrate grazers from each size category was air dried and weighed to an accuracy of \pm 0.0001g. The number of invertebrates weighed per size category was recorded to establish length to weight relationship of invertebrate grazers within each size category to determine invertebrate biomass. These data enabled the conversion of individual number of invertebrates to grazer biomass per taxonomic group (Ewart-Smith and King, 2012).

The invertebrate grazers were split according to functional feeder groups namely; deposit feeders: that prefer to feed on larger algae or detritus, scrapers: that scrape thin films of algae of substratum and brushers: that feed predominately on large algae by brushing algal mats with the large scraping brushes on their bodies. Baetidae and leptophlebiidae are an example of deposit feeders, chironomidae and elmidae are examples of scrapers and heptageniidae are an example of brushers. These functional feeding groups, together with the feeding mode and dominant food type that belong to each of these functional feeding groups, were tabulated in the work by Ewart-Smith and King (2012). This was adapted from the functional feeding group definition by Schael (2005). Each of the functional feeder groups were divided into five size classes ([<0mm-3mm],[3mm-6mm], [6mm-9mm], [9mm-12mm], [>12mm]) used for invertebrate biomass estimation.

3.4 Data analysis

Analysis of physico-chemical factors, algal biomass and species identification and invertebrate identification was conducted to determine driving factors of periphyton dynamics. Physico-chemical factors collected in field are presented using trend graphs to suggest trends of each physico-chemical factors at each site and to indicate the interaction between these factors between each of the sampling sites. Independent sample t-tests were carried out to determine significant differences in physic-chemical factors between comparable sites. Independent sample t-tests between each physico-chemical factor between site A (Nutrient unenriched) and site B (nutrient enriched) and between Site C (unaltered flow) and site D (altered flow) were conducted. Trend graphs of water quality data namely Ammonia, nitrites and soluble reactive phosphorus, obtained from Umgeni Water were developed to illustrate the nutrient differences between sites.

Calculated algal biomass, AFDM and Chl *a* are presented as trend graphs for each site. Chl a values were also compared to benthotorch results. Two-way Analysis of Variance (ANOVA) in STATISTICA was used to indicate the differences in AFDM between comparable sites through the sampling period. Therefore, Two-way ANOVAs between differences in algal biomass at site A (nutrient unenriched) and site B (nutrient enriched) and between site C (unaltered flow) and site D (altered flow). An independent sample t-test to determine if significant differences in algal biomass were evident after the planting of maize at site E (reference) was conducted.

Trend graphs suggest the interaction between calculated AFDM and invertebrate biomass at each site. Trend graphs of invertebrate biomass, density and abundance were constructed between sites. Graphs indicating the specific invertebrate grazer density of each invertebrate family namely Baetidae, chironomidae, heptageniidae, Leptophlebiidae and elmidae-larvae at each site was conducted. Twoway ANOVAs to determine the differences in invertebrate density over the sampling period at comparable sites were calculated. Therefore, comparisons between site A (nutrient unenriched) and site B (nutrient enriched) and between site C (unaltered flow) and site D (altered flow) was conducted. An independent sample t-test to determine if any significant differences in invertebrate density at site E (reference) were conducted.

A Principal Component Analysis (PCA) was conducted to indicate the driving physico-chemical factors at comparable sites namely site A (Nutrient unenriched) and site B (Nutrient enriched) and site C (Unaltered flow) and site D (Altered flow). Another PCA to determine the relationship between algal biomass and invertebrate grazer families were conducted to determine the driving factors at comparable sites, between site A (Nutrient unenriched) and site B (Nutrient Enriched) and site C (Unaltered flow) and site D (Altered flow).

A Shannon Weiner index was conducted to determine the diversity of invertebrate families between comparable sites and trend graphs indicating surface water discharge obtained from the department of water affairs interactive website was used. Finally water temperature recorded hourly by the remaining loggers were downloaded and represented by a line graph. However once the graph was plotted a number of disparities and outliers were observed mainly at points when data loggers were found out of the water. To account for the daily moving averages were calculated together with a 95% confidence interval. All raw data that fell out of this range was removed as they were treated as outliers. The corrected data was then used to model temperature data for the period June 2014 to December 2014 which was the start of the project when the loggers had not been installed. The water temperature for Pietermaritzburg and water temperature for each site. An r^2 value of $R^2=0.3373$, $R^2=0.4979$ and $R^2=0.6062$ was achieved at sites C (unaltered flow), D (altered flow) and E (reference) respectively. The regressions calculated from the scatter plots were used to determine the missing water temperature data from June 2014 to December 2014 as air temperature data was available.

Table 3.1: Summary table of data analyses methods conducted

Data analysis method	Outcome				
Trend graphs	To determine the changes in physico- chemical data at each site and between sites.				
	To indicate changes in water quality variables at each site				
	To indicate changes in algal biomass (AFDM and chlorophyll a) at each site over the sampling period				
	To indicate the interaction between algal biomass and invertebrate biomass at each site over the sampling period.				
	To show changes in invertebrate density and abundance between each site.				
	To indicate density trends of invertebrate grazer density at each site.				
	Indicating surface water discharge				
	Indicating the abundance of identified algal species at each site over the spring and summer season.				
Independent sample t-tests	To determine differences in physico-chemical factors between comparable sites				
	To determine differences in invertebrate density between comparable sites over the sampling period				
	To determine significant differences in invertebrate density before and after planting maize at the reference site				
Two- way ANOVA	To indicate differences in biomass between comparable sites over the sampling period.				
Shannon wiener index	To determine species diversity between comparable sites				
Principal component analysis	To highlight similarities and differences between algal biomass between comparable sites				

CHAPTER FOUR

Results

4.1 Introduction

The chapter presents the data collected from June 2014 to June 2015 at each of the five sampling sites. These sites are site A (Nutrient unenriched: Msunduzi-Kwanoshezi), site B (Nutrient enriched: Msunduzi-Tannery), site C (Unaltered flow: Umgeni- Petrustroom), site D (Altered flow: Umgeni-York road) and site E (Reference: Hlatikhulu). Physico chemical data collected at each site at each sampling occasion were analysed in terms of trends over the sampling period. Algal biomass was determined using AFDM and chlorophyll *a* at each site. Finally relationships between invertebrate grazer abundance, density and biomass, the differences between these indicators at each sites, and the relationship with algal biomass are explored.

4.2 Temporal physico-chemical patterns

Physico-chemical data were collected during monthly sampling events at each site using a YSI for temperature, conductivity, pH, % oxygen and dissolved oxygen and a flow meter for depth and velocity. Depth and velocity at each site were calculated as the average of five readings next to collected stones and clarity was determined using a clarity tube or flow meter. The mean monthly water temperature at each site was greater in summer than winter. Highest temperatures at each site was observed between October 2014 and February 2015, ranging from 19^oC to 24^oC whilst lowest temperatures were observed between June 2014 to October 2015 and March 2015 to May 2015 ranging from 7^oC to 14^oC (Figure 4.1).

Percentage dissolved oxygen levels varied considerably throughout the sampling period at each of the sites. A peak was experienced at site D (altered flow) in February 2015 (124.5%). Lowest % oxygen levels were experienced at site C (Unaltered flow) throughout the sampling period, with lowest % oxygen levels experienced at site C in December 2014 (80.6 %) (Figure 4.2).

A gradual decline in dissolved oxygen levels were experienced from September 2014 to December 2014 with lowest levels at 7.14mg/l experienced at site C (Unaltered flow) in December 2014, and a gradual increase from January 2015 to March 2015 at each of the sampling sites with the exception of site D were a sharp increase in oxygen levels were experienced in January 2015 from 8.24 mg/l in December 2014 to 10.92 mg/l in January 2015. The highest dissolved oxygen levels occurred in winter between May and June and lowest in summer in December at all five sampling sites (Figure 4.3).

Conductivity remained fairly constant at each of the five sites throughout the sampling period. Highest conductivity levels were experienced at site B ranging between 121 μ S to 152 μ S (Nutrient enriched). Lowest conductivity ranging between 30 μ S and 67 μ S occurred at site E 30 μ S to 67 μ S (Reference) (Figure 4.4). pH values varied considerably between the sampling sites. Lowest pH (6.11) was characteristic of site C (unaltered flow) in June 2015 while highest pH (8.06) was experienced at site B (nutrient enriched) in October 2014. A decline in pH was observed from June 2014 at a pH of 7.63 to July 2014 at a pH of 6.7 at site A (Nutrient unenriched) (Figure 4.5). Clarity remained constant at each of the sampling sites from June 2014 to October 2014. In general highest clarity occurred in winter while lowest clarity occurred in summer, which is the rainfall season (Figure 4.6).

A relationship between depth and velocity levels was evident at each of the sites. An increase in depth was followed by an increase in velocity either simultaneously of over a short lag time. Greater depths and velocity are experienced in summer, which is the rainfall season. Depth levels were constant at each site from June 2014 to October 2015. Peaks in depth were experienced in November 2014 and February 2015 at site A (nutrient unenriched). An increase in depth occurred from October 2014 to November 2014 at site B (nutrient enriched). Increases in depths occurred in December 2014 and March 2015 at site C (unaltered flow). Depth remained constant at site D (altered flow). Finally, at site E (reference) peaks in depth occurred in January 2015 and March 2015 (Figure 4.7). Peaks in velocity were experienced in December 2014 at site A (nutrient unenriched) and Site B (nutrient enriched) while peaks in velocity occurred in February at site E (reference) and March 2015 at site C (unaltered flow) (Figure 4.8)

Figure 4.1: Monthly single sample water temperature for the sampling period (June 2014 to June 2015) ---- Site E: Reference

Figure 4.5: Monthly single sample pH data for the sampling period (June 2014- June 2015)

46

4.3 Water chemistry

Slight fluctuations in pH, dissolved oxygen, percentage dissolved oxygen and conductivity occurred at each site. Highest water temperature occurred in summer between November 2014 and February 2015 and lowest in winter between May to July. Clarity decreased in summer after rainfall events. The relationship between velocity and depth was evident were greater depths resulted in higher velocity. Greatest depth was observed in summer, in the rainfall season and lowest occurred in winter (Figure 4.9- 4.18).

Figure 4.18: Monthly depth and velocity changes (September 2014- June 2015) at site E (Reference- Hlatikhulu River)

Velocity (ms-1)

Depth (cm)

4.4 Water quality

Ammonia (NH₃) levels peaked at site A (nutrient unenriched) (0.53mg N/L) in November 2014, at site B (nutrient enriched) (0.32mg N/L) in October 2014 and December 2014 (0.58mg N/L) and at site D (altered flow) (0.5mg N/L) in April 2014. At site C (unaltered flow) the ammonia levels remained low and fairly constant with no peaks. Highest ammonia levels occurred at site B at 0.58 mg N/L. During months that no peaks in ammonia were observed levels remained between 0 and 0.2 mg N/L (Figure 4.19). Ammonia data for site E (reference) was unavailable.

The largest fluctuations in soluble reactive phosphorus (SRP) occurred at site A (Nutrient unenriched) and site B (nutrient enriched). Peaks in SRP at site A occurred in September 2014 (9.44 ug P/L) and December 2014 (8.24 ug P/L). SRP levels between these two peaks were still high. A decrease in levels of SRP at site A occurred in August 2014 (3 ug P/L) and January 2015 (3.53 ug P/L). Peaks in SRP at site B occurred in October 2014 (7.36 ug p/L) and March 2015 (9.41 ug P/L), while lowest SRP levels at site B were observed from December 2014 to January 2015 (3 ug P/L). At site C (unaltered flow) SRP remained constant with a 0.5 ug P/L increase from December 2014 to January 2015 after which levels remained constant. At site D (altered flow) a peak in SRP was observed in August 2014 (6.47 ug P/L) after which levels remained constant throughout the sampling period (Figure 4.20). SRP water quality data was unavailable for site E (reference).

Nitrite (NO₂) levels remained low at site A (nutrient unenriched) with a peak from 0.04mg N/L to 0.53 mg N/L in November 2014 after which levels return to being consistently low. Peaks in nitrate levels at site B (nutrient enriched) occurred in October 2014 and December 2014 peaking to 0.32 mg N/L and 0.58 mg N/L respectively. Nitrite levels at site C (unaltered flow) were overall higher than at site A and B. Levels remained between 0.1 mg N/L and 0.45 mg N/L. highest nitrite levels occurred at site D (altered flow) remaining between 0.37 mg N/L and 0.49 mg N/L from July 2014 to January 2015 after which nitrate levels declined to between 0.21mg N/L and 0.22 mg N/L until the end of the sampling period (Figure 4.21). There was no nitrite data available for site E (reference).

4.5 Driving physico-chemical factors

Independent sample t-tests were conducted between physico-chemical factors at comparable sites, between sites of nutrient changes and sites of flow alteration. An independent sample t-test was conducted to compare field physico-chemical factors; monthly water temperature, % oxygen, oxygen, conductivity, pH, clarity, velocity and depth for sites that were nutrient unenriched (site A) and nutrient enriched (site B). By testing the assumptions of normality of distribution and equality of variances it was determined that non-parametric tests for clarity, pH, velocity at sites that were nutrient unenriched (site A) and nutrient enriched (site A) and nutrient unenriched (site A) and nutrient enriched (site B), (U= 26.5, p= 0.00) and no significant difference in pH (U=85.50, p=0.84), clarity (U=48.50, p=0.06) and depth (U=71.5, p=0.50) at sites that were nutrient unenriched (site A) and nutrient enriched (site B) (Table 4.1).

Independent sample t-tests indicated that conductivity differences were significant between sites that were nutrient unenriched (site A), (M=100.92, SD= 10.25) and sites that were nutrient enriched (site B) (M= 143.00, SD= 16.59), p= 0.00. Independent sample t-test showed no significant difference in temperature at nutrient unenriched (site A), (M=16.28, SD= 4.87) and nutrient enriched (site B), (M= 17.33, SD= 3.80) sites, p= 0.54. Percentage oxygen was not significantly different at nutrient unenriched (site A), (M=101.19, SD= 6.76) and nutrient enriched (site B) sites, (M= 102.37, SD= 8.35) sites, p= 0.70. There were no significant differences in oxygen levels at the nutrient unenriched (M= 10.08, SD= 1.36) and nutrient enriched (site B), (M= 9.79, SD= 1.27) sites, p= 0.58 (Table 4.1)

An independent sample t-test was conducted to compare field physico-chemical factors including monthly temperature, % oxygen, oxygen, conductivity, pH, clarity, velocity and depth for sites of unaltered (site C) and altered flow (site D). By testing the assumptions of the test it was determined that non-parametric tests for the factors temperature, clarity, pH and velocity had to be conducted. The Mann-Whitney U test indicated a significant difference in pH at sites of unaltered (site C) and altered flow (site D), (U=40.00, p= 0.02) and in velocity between sites of unaltered and altered flow (U= 29.00, p= 0.00). The Mann-Whitney U tests for temperature and clarity showed no significant difference between sites of unaltered and altered flow, temperature (U=79.00, p=0.78) and clarity (U=61.00, p=0.23) (Table 4.1)

Independent sample t-tests suggest no significant difference between % oxygen at sites of unaltered (site C), (M=95.39, SD=4.81) and altered (site D), (M=101.59, SD= 10.48) flow, p= 0.10 and between sites of unaltered (M=9.45, SD=1.70) and altered (M=9.72, SD=1.02) flow, p=0.62. No significant differences in conductivity were experienced between sites of unaltered (M=72.65, SD= 10.28) and altered (M= 75.42, SD= 12.25) flow, p= 0.54. Finally depth was not significantly different between sites of unaltered (M= 22.58, SD=8.01) and altered (M= 19.98, SD= 3.96) flow, P= 0.31 (Table 4.1)

Table 4.1: Comparisons between physico-chemical factors between Site A (Nutrient unenriched-Msunduzi- Kwanoshezi) and site B (Nutrient enriched-Msunduzi-Tannery) and between Site C (Unaltered flow- Umgeni Petrustroom) and Site D (Altered flow- Umgeni- York Road)

	Site A: Nutrient unenrich	ned vs	Site C: Unaltered flow vs Site D:		
	Site B: Nutrient enriched		Altered flow		
Physico- chemical	Statistical test	p-value	Statistical test	p-value	
factors					
Temperature	Independent sample t-test	0.54	Mann-Whitney U test	0.78	
% Oxygen	Independent sample t-test	0.7	Independent sample t-test	0.10	
Oxygen	Independent sample t-test	0.58	Independent sample t-test	0.62	
Conductivity	Independent sample t-test	0.00*	Independent sample t-test	0.54	
рН	Mann-Whitney U test	0.84	Mann-Whitney U test	0.02*	
Clarity	Mann-Whitney U test	0.06	Mann-Whitney U test	0.23	
Velocity	Mann-Whitney U test	0.00*	Mann-Whitney U test	0.00*	
Depth	Mann-Whitney U test	0.5	Independent sample t-test	0.31	

*significant difference

4.6 Algal biomass

The trend between Ash Free Dry Mass (AFDM) and chlorophyll *a* as an indicator of biomass is similar at site A (nutrient unenriched) Peaks in biomass were experienced between December 2014 and January 2015 for both AFDM and chlorophyll *a*. A decrease in both biomass indicators was observed in February 2015 and a second peak in both AFDM and chlorophyll *a* was experienced in April 2015 (Figure 4.22 (a)). At site B (nutrient enriched) AFDM and chlorophyll *a* followed a similar trend throughout the sampling period. Peaks in both biomass indicators were obtained between December 2014 to February 2015. From June 2014 to October 2014 AFDM and chlorophyll *a* levels were fairly low. A second peak in both AFDM and chlorophyll *a* was experienced between March 2015 (Figure 4.22 (b)).

Chlorophyll *a* and AFDM measurements peaked in October 2014 after being fairly constant at the beginning of the sampling period at site C (unaltered flow). A second peak occurred in January 2015 for AFDM. Finally another peak in both AFDM and chlorophyll *a* was reached in April 2015 after which a decline in biomass was experienced until the end of the sampling period in June 2015 (Figure 4.22 (c)). At site D (altered flow) peaks in chlorophyll *a* and AFDM were experienced in October 2014. AFDM peaked again in January 2015 while chlorophyll *a* peaked in February 2015. A last peak was experienced in April for AFDM and May for chlorophyll *a* (Figure 4.22 (d)) At site E (reference site) both AFDM and chlorophyll *a* declined in October 2014. Peaks for both indicators were experienced in December 2014 and March 2015 (Figure 4.22 (e)).

Figure 4.22: Algal biomass represented by AFDM and Chlorophyll *a* at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi), (b)- Site B (Nutrient enriched-Msunduzi-tannery), (c)- Site C (Unaltered flow- Umgeni-Petrustroom) and (d)- Site D (Altered flow- Umgeni-York Road) for the sampling period June 2015 to June 2015

Figure 4.22 (e): Algal biomass represented by AFDM and Chlorophyll a at site E (Reference-Hlathikhulu River) for the sampling period September 2014 to June 2015

4.6.1 Algal biomass between sites

A Two-way analysis of variance on the influence of nutrient regimes and seasons on algal biomass was conducted. Nutrient differences included two levels (nutrient unenriched (site A) and nutrient enrichment (site B)) while seasons included four levels (winter, spring, summer, autumn). The effects of seasons on algal biomass at sites of nutrient enriched versus unenriched sites was statistically significant at a .05 significance level. The main effect of seasons, p = 0.00, P<0.05 indicated a significant difference in biomass over seasons at each site, winter (M= 1.22, SD= 0.95), spring (M=6.31, SD= 1.10), summer (M=10.12, SD= 1.10) and autumn (M=4.39, SD= 1.10). The main effect of site, P= 0.584, P>0.05 showed no significant difference in biomass between sites of different levels of nutrient enrichment. The interaction effect between sites of nutrient unenriched and nutrient enriched over seasons, p = 0.67, P>0.05 showed no significant effect (Table 4.2).

Table 4.2: Two-way ANOVA of algal biomass between nutrient unenriched (Site A- Msunduzi Kwanoshezi) and nutrient enriched (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)

	SS	df	MS	F	Р
Site	11.20	1	11.20	0.31	0.58
Season	1415.77	3	471.92	12.95	0.00*
Site×Season	56.69	3	18.90	1.52	0.67
Error	4447.39	122	36.45		

*significant difference

A Two-way analysis of variance on the influence of flow type and seasons on algal biomass was conducted. Flow type included two levels (unaltered flow (site C) and altered flow (site D)) while seasons included four levels (winter, spring, summer, autumn). All effects were statistically significant at a .05 significance. The main effect for sites p= 0.014, P< 0.05, indicating that the effect of flow changes on algal biomass was significant, unaltered flow (M=10.33, SD=1.12) and altered flow (M= 6.41, SD= 1.12). The interaction effect between sites of unaltered and altered flow over seasons, p = 0.038, P<0.05 showed a significant effect. Site C and winter, site C and spring, site C and summer and site C and autumn and between Site D and winter site D and spring, site D and summer and site D and autumn. The main effect of seasons p = 0.025, P<0.05 indicated a significant difference in biomass over seasons at each site, winter (M= 4.89, SD= 1.40), spring (M=8.12, SD= 1.62), summer (M=8.84, SD= 1.62) and autumn (11.64, SD= 1.62). (Table 4.3).

Table 4.3: Two-way ANOVA of algal biomass between sites of altered (Site C- Umgeni Petrustroom) and unaltered (Site D- York Road) flow over the sampling period (June 2014 to June 2015)

	SS	df	MS	F	Р
Site	491.67	1	491.67	6.27	0.014*
Season	802.42	3	267.47	3.40	0.020*
Site×Season	681.50	3	227.16	2.90	0.038*
Error	9579.79	122	78.46		

*Significant difference

An independent sample t-test was conducted to compare algal biomass levels before and after the plantation of maize at site E (reference). The independent sample t-tests showed no significant difference between algal biomass prior the introduction of maize (site E), (M=13.06, SD=7.99) and post planting (site E), (M=15.89, SD= 32.34), p= 0.71. However average biomass values do suggest that there was a greater algal biomass post planting

4.6.3. Algal biomass comparisons

A comparison between laboratory calculated chlorophyll a and in-field benthotourch readings was conducted. The trend graphs show similar trends especially at site C, site D and site E. For example peaks in both chlorophyll a laboratory and benthotourch readings indicated an increase in March 2014 flowed by a dip in April 2014 at site C (unaltered flow) (Figure 4.23 (c)). Dips and peaks in both benthotorch and laboratory calculated chlorophyll a were similar at site D (alerted flow) and site E (reference) (Figure 4.23 (d) - Figure 4.23 (e)). Clear trends were unable to be established at site A (figure 4.23 (a)) and (figure 4.23 (b)).

Figure 4.23: Chlorophyll *a* and BenthoTorch comparisons for the sampling period April 2015 to June 2015 at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi) and (b)- site B (Nutrient enriched- Msunduzi Tannery) and from March 2015 to June 2015 at (c)- site C (Unaltered flow- Umgeni-petrustroom), (d)- site D (Altered flow- Umgeni-York Road) and (e)- site E (Reference- Hlatikhulu River)

4.7 Invertebrate grazer and algal biomass relationships

A clear relationship between invertebrate biomass and algal biomass (AFDM) is observed at all five sampling sites. This relationship suggests that when grazer biomass is high, algal biomass is low as grazers provide a top down control of algal biomass by feeding on these communities. At site A this relationship is clearly evident. For example, between June 2014 to September 2014, invertebrate biomass is greater than algal biomass. From October 2014 to January 2015 the opposite is true where algal biomass is greater than invertebrate biomass. (Figure 4.24 (a)). At site B (nutrient enriched), low invertebrate biomass resulted in high algal biomass between October 2014 to February 2015. From February 2015 to June 2015 invertebrate biomass is greater than algal biomass is greater than algal biomass between October 2014 to February 2015.

At site C (unaltered flow), invertebrate biomass is higher from June 2014 to August 2014 than algal biomass. September 2014 to January 2015 has higher algal biomass due to low inveterate biomass. February 2015 has a peak in invertebrate biomass and a decrease in algal biomass. Lower invertebrate biomass levels from March 2015 to June 2015 was coupled with higher algal biomass (Figure 4.24 (c))

Algal biomass remained greater than invertebrate biomass throughout the sampling period except for June 2014 and June 2015, together with November 2014 and between February 2015 and March 2015 were the opposite is true at site D (altered flow) (Figure 4.24 (d)). At site E (reference site) algal biomass was greater than invertebrate biomass between September 2014 and December 2014 and between February 2015 and May 2015 (Figure 4.24 (e)).

4.8 Invertebrate abundance, density and biomass trends

Invertebrate abundance decreased at all sites from September 2014 to December 2014. Greatest invertebrate abundance was experienced at site B (nutrient enriched) from June 2014 to August 2014 and June 2015 with abundance levels over 500 individuals per site. Lowest invertebrate abundance levels were experienced at site D (altered flow) from December 2014 to April 2015 with number of individuals below twenty. Highest invertebrate abundances were observed in February 2015 and April 2015 at site A (nutrient unenriched) while lowest levels occurred in November 2014. Highest invertebrate abundances at site C (unaltered flow) was observed in June 2014 while lowest abundances occurred in October 2014. Highest invertebrate abundances at site E (reference) occurred from January 2015 to February 2015. At this point highest invertebrate abundances between all the sites was experienced at site E. Lowest abundance of invertebrates were observed in September 2014 (Figure 4.25). The invertebrate density trends at each site followed similar trends as the invertebrate abundance trends (Figure 4.26).

Invertebrate biomass per unit at each of the five sites were low between September 2014 and December 2014 as was similar to results in the invertebrate density graphs (Figure 4.27). Highest invertebrate biomass occurred in February 2015 at site C (unaltered flow) at 66.78mg/m². Biomass at site D (altered flow) remained constant throughout the sampling period with only a difference of 22.59g/m² between the highest biomass in June 2014 and the lowest biomass in December 2014. Highest invertebrate biomass was experienced from February 2015 to April 2015 at site A (nutrient unenriched). Highest invertebrate biomass occurred in January 2015 and February 2015 at site E (reference) (Figure 4.27). The trends between invertebrate density in terms of peaks and decreases was similar to that of invertebrate biomass at each of the five sampling sites.

Figure 4.27: Invertebrate grazer biomass trends for the sampling period (June 2014 - June 2015)

4.9 Invertebrate grazer density

The density of Baetidae remained higher than all other invertebrate grazers except between January 2015 to April 2015 at site A (Nutrient unenriched), when Chironomidae densities were higher. Lowest Chironomidae density occurred in January 2014 when no Chironomidae were observed while highest density occurred in February 2015 when Chironomidae density was 3086.56 no. of individuals/m² (Figure 4.28 (a)).

At site B (Nutrient enriched) variations in Chironomidae and Baetidae density were observed. Heptageniidae and Elmidae larvae remained low with highest density was 229.54 no. of individuals/m² and 103.22 no. of individuals/m² respectively. Baetidae density was higher than the other invertebrate grazers for the entire sampling period except between February 2014 to April 2014 when Chironomidae density was higher. (Figure 4.28 (b)).

Density levels of Leptophlebiidae, Elmidae larvae and Heptageniidae remained low at site C (Unaltered flow). Chironomidae density was higher than Baetidae density from June to July 2014 and between December 2014 and May 2015. The range in density of 4848.65 no. of individuals/m² was observed in the Chironomidae family were highest Chironomidae density was observed in June 2014 (4848.65 no. of individuals/m²) while lowest density was observed in November 2014 (0 no.of individuals/m²). A range in density of 919 no. of individuals/m² was observed in the Baetidae fairly were highest density occurred in June 2015 while lowest density was observed in January 2015 (Figure 4.28 (C)).

Invertebrate density at site D (altered flow) was lower than at the other sampling sites. Heptageniidae, Leptophlebiidae and Elmidae larvae densities were very low. Baetidae densities were higher than Chironomidae levels from September 2014 to January 2015 and at March 2015. Highest Baetidae density was observed at 1217 no. of individuals/m² in November 2014 and lowest Baetidae density occurred at 158 no. of individuals/m² in February 2015. Highest Chironomidae density was observed at 6712 /m² in June 2014 while no Chironomidae were observed in November 2015 and December 2015 (Figure 4.28 (d)).

At site E (reference), increased levels of Leptophlebiidae density were observed from October 2014 to November 2014 and from April 2015 to June 2015. Baetidae density levels had a range of 1078 no. of individuals/m² and were higher than other invertebrate grazer families throughout the sampling period except between December 2014 and March 2015 when Chironomidae levels were higher. Highest Chironomidae density was observed in January 2015 at 5968 no. of individuals/m² and lowest density was observed in September 2014 at 85 no. of individuals/m² (Figure 4.28 (e)).

Figure 4.28: Invertebrate grazer density at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi), (b)- Site B (Nutrient enriched- Msunduzi-tannery), (c)- Site C (Unaltered flow- Umgeni-Petrustroom) and (d)- Site D (Altered flow- Umgeni-York Road) for the sampling period June 2014 to June 2015

4.10 Invertebrate biomass

An independent sample t-test was conducted to compare invertebrate biomass pre- and post- planting of maize at site E (reference). The independent sample t-tests showed a significant difference between invertebrate biomass before the planting of maize (site E), (M=0.0023, SD=0.0038) and after the introduction of maize (site E), (M=1.72, SD= 0.45) p=0.00

A Two-way analysis of variance on the influence of two independent variables (nutrient enrichment and seasons) on invertebrate biomass was conducted. Nutrient alteration included two levels (nutrient unenriched (site A), nutrient enrichment (site B)) while seasons included four levels (winter, spring, summer, autumn) p= 0.02, P<0.05, indicating that the effect of nutrient enrichment on invertebrate biomass was significant, nutrient unenriched sites (M=1.77, SD=0.29) and nutrient enriched sites (M= 2.82, SD= 0.29). The main effect of seasons p = 0.00, P<0.05 indicated a significant difference in invertebrate biomass over seasons at each site, winter (M= 3.07, SD= 0.37), spring (M=1.24, SD= 0.43), summer (M=1.22, SD= 0.43) and autumn (M=3.66, SD= 0.43). The interaction effect between sites of nutrient unenriched and nutrient enriched over seasons, p = 0.00, P<0.05 showed a significant effect (Table 4.4).

	SS	df	MS	F	Р	
Site	7.01	1	7.01	6.45	0.02*	
Season	29.60	3	9.87	9.08	0.00*	
Site × Season	19.11	3	6.37	5.87	0.00*	
Error	19.55	18	1.09			

Table 4.4: Two-way ANOVA of invertebrate biomass between nutrient unenriched (Site A- Msunduzi Kwanoshezi) and nutrient enriched (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)

*Significant difference

A Two-way analysis of variance on the influence of two independent variables (flow type, seasons) on invertebrate biomass was conducted. Flow type included two levels (unaltered flow (site C), altered flow (site D)) while seasons included four levels (winter, spring, summer, autumn). All effects were not statistically significant at a .05 significance level except for the main effect of sites. The main effect for sites, p= 0.00, P< 0.05, indicating that the effect of flow alteration had a significant effect on invertebrate biomass, unaltered flow (M=3.31, SD=0.69) and altered flow (M=1.52, SD=0.69). The main effect of seasons, p = 0.08, P>0.05 indicated no significant difference in invertebrate biomass over seasons at each site, winter (M= 3.67, SD=0.87), spring (M=1.13, SD=1.01), summer (M=2.73, SD=1.01) and autumn (M=2.12, SD=1.01). The interaction effect between sites of unaltered and altered flow over seasons, p = 0.47, P>0.05 showed no significant change in invertebrate biomass over the sampling period at both sites (Table 4.5)

Table 4.5: Two-way ANOVA of invertebrate density between unaltered flow (Site A- Msunduzi Kwanoshezi) and altered flow (Site B- Msunduzi tannery) sites over the sampling period (June 2014 to June 2015)

	SS	df	MS	F	Р
Site	88.24	1	88.24	12.27	0.00*
Season	81.69	3	27.23	4.09	0.08
Site × Season	26.94	3	8.91	1.35	0.47
Error	119.71	18	6.65		

*Significant difference

4.11 Species diversity index

A Shannon Weiner index was conducted to determine the diversity of invertebrate families between comparable sites. Site A (Nutrient unenriched) had a higher species diversity than site B (Nutrient enriched), with an index of 2.137 and 1.881 respectively. Site D (Altered flow) had an index of 2.125 which was higher than the species diversity at site C (unaltered flow). There was a higher species diversity at site E (reference) after the maize plantation, 1.712 as compared to the species diversity before the maize plantation, 1.480 (Table 4.6)

	Sampling Site	Shannon Weiner index
Nutrient alteration	Site A- Nutrient unenriched	2.137
	Site B- Nutrient enriched	1.881
Flow alteration	Site C- Unaltered flow	1.806
	Site D- Altered flow	2.125
Maize plantation	Site E- Before Maize	1.480
	Site E- After Maize	1.712

Table 4.6: Shannon Winer diversity index using macro- invertebrate families at comparable sites.

4.12. Temporal patterns summary

Fluctuation in each physico-chemical and biomass factors throughout the sampling period at each sampling site were indicated. An inverse relationships between temperature and dissolved oxygen was identified were higher water temperatures were associated with lower dissolve oxygen levels. Limited data was obtained for water quality indicators. An inverse relationship between algal biomass and invertebrate biomass was identified were periods of higher invertebrate biomass were the same periods of low algal biomass levels. A summary table of the above analysis is indicated below. (+) indicated an increase in the values of a particular factor from the previous sampling month, (-) represents a decrease in the value of the factor from the previous sampling month and (0) indicated no change in the value of a particular factor from the previous sampling month (Table 4.7)

Factor	Site	June	July 2014	Aug-	Sep-	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-	Apr-	May-	Jun-
Tomporatura (°C)	nutriant unanriched	2014	2014	<u>2014</u> General:	4014 trend of 1	2014	2014	$\frac{1204}{1204}$	2015	2015	2015	$\frac{2015}{10000000000000000000000000000000000$	2015	2015
Temperature (C)	nutrient angished			Comoral				s in sum				s in wind		
				General		ingner ter	nperature	s in sum	iner and	lower ter	nperature	s = m winter	er	
	unaltered flow		General trend of higher temperatures in summer and lower temperatures in winter											
	altered flow		General trend of higher temperatures in summer and lower temperatures in winter General trend of higher temperatures in summer and lower temperatures in winter											
	reference													
% Dissolved oxygen	nutrient unenriched	+	+	+	+	+	-	+	_	+	+	+	_	-
	nutrient enriched	+	_	+	+	_	_	+	+	_	+	_	+	+
	unaltered flow	+	_	+	+	_	_	+	+	_	+	+	+	+
	altered flow	_	+	+	+	_	_	+	_	_	+	+	_	_
	reference				_	+	+	+	_	+	+	_	+	+
Dissolved oxygen (mg/L)	nutrient unenriched				General	trend of I	nigher ox	ygen lev	els in wii	nter than	in summe	er		
	nutrient enriched				General	trend of 1	nigher ox	ygen lev	els in wii	nter than	in summe	er		
	unaltered flow				General	trend of I	nigher ox	ygen lev	els in wir	nter than	in summe	er		
	altered flow		Gene	eral trend	of highe	r oxygen	levels in	winter th	nan in sur	nmer exc	ept for a	peak in J	anuary	
	reference				General	trend of 1	nigher ox	ygen lev	els in wir	nter than	in summe	er		
Conductivity (µs/cm)	nutrient unenriched				1	ninimal f	luctuatio	n througl	hout sam	pling per	iod			
	nutrient enriched			mir	imal fluo	ctuation t	hroughou	t sampli	ng period	(Highes	t conducti	ivity)		
	unaltered flow				1	ninimal f	luctuatio	n througl	hout samj	pling per	iod			
	altered flow				1	ninimal f	luctuatio	n througl	hout sam	pling per	iod			
	reference			mir	nimal flu	ctuation t	hroughou	ıt sampli	ng period	l (Lowes	t conducti	vity)		
pH	nutrient unenriched	+	_	+	+	+	+	_	_	_	_	+	_	_
	nutrient enriched	+	+	_	+	+	_	_	+	_	+	_	+	_

Table 4.7: Physico-chemical and biomass fluctuations indicated at each site throughout the sampling period

	unaltered flow	_	+	_	+	+	_	_	+	_	+	+	+	_			
	altered flow	+	_	_	+	+	_	+	_	+	_	+	+	_			
	reference				+	_	+	_	_	_	+	+	_	_			
clarity (cm)	nutrient unenriched	+	_	+	_	_	_	+	_	_	+	+	_	+			
	nutrient enriched	+	_	_	+	+	+	_	_	_	+	+	+	+			
	unaltered flow	+	_	_	_	_	+	_	+	_	_	_	+	+			
	altered flow	+	_	_	+	+	_	+	_	_	_	+	+	+			
	reference				+	+	_	_	_	+	+	+	_	+			
Depth (cm)	nutrient unenriched	_	+	_	_	_	+	_	_	+	_	+	_	+			
	nutrient enriched	+	_	+	_	+	_	+	_	+	_	_	_	_			
	unaltered flow	_	+	+	+	_	+	+	_	_	+	_	_	_			
	altered flow	_	+	_	_	+	_	_	+	_	+	_	_	_			
	reference				+	_	+	+	_	+	_	_	_	+			
Velocity(ms ⁻¹)	nutrient unenriched	_	+	_	_	+	+	+	_	+	_	_	_	_			
	nutrient enriched	_	+	_	+	_	_	+	_	+	_	+	_	+			
	unaltered flow	_	+	_	_	_	+	+	_	+	+	_	_	_			
	altered flow	+	_	+	_	+	+	_	+	_	+	_	_	_			
	reference				+	_	+	+	_	+	_	+	_	+			
Ammonia (mg N/L)	nutrient unenriched	_	0	0	0	0	+	_	0	+	0	0	0	0			
	nutrient enriched	+	_	_	_	+	_	+	_	+	_	_	+	_			
	unaltered flow	_	+	_	0	0	0	0	+	0	0	0	0	0			
	altered flow	_	+	_	0	0	0	+	+	+	+	+	_	_			
	reference						No da	ta availal	ole for thi	is site							
phosphorus (SRP) (ug P/L)	nutrient unenriched	_	_	_	+	_	_	+	_	+	+	_	0	0			
	nutrient enriched	+	_	_	+	+	_	_	0	+	+	_	0	0			
	unaltered flow	+	_	+	+	+	0	+	+	0	0	+	_	0			
	altered flow	_	0	+	_	_	_	+	+	0	+	_	0	0			
	reference						No data available for this site										

Nitrite (mg N/L)	nutrient unenriched	_	+	0	0	0	+	_	0	+	0	0	0	0
	nutrient enriched	+	_	_	+	+	_	+	_	+	0	0	0	0
	unaltered flow	_	+	+	+	_	+	_	_	_	_	0	+	+
	altered flow	_	+	+	_	+	_	_	+	_	+	_	_	_
	reference						No da	ta availał	ole for the	is site				
AFDM (g/m ²)	nutrient unenriched	_	+	+	+	+	+	+	+	_	+	+	_	+
	nutrient enriched	_	+	+	+	+	+	_	+	_	+	_	_	_
	unaltered flow	+	_	+	+	+	+	_	+	_	+	+	_	_
	altered flow	+	_	_	_	+	_	+	+	_	+	+	_	_
	reference				+	_	+	_	+	_	+	_	_	_
Chlorophyll <i>a</i> (g/m ²)	nutrient unenriched	+	_	+	+	_	+	+	—	_	+	—	_	+
	nutrient enriched	+	_	+	+	+	+	_	_	+	+	_	_	+
	unaltered flow	_	+	+	_	+	+	_	_	+	+	_	_	_
	altered flow	+	_	+	_	_	+	+	_	+	_	+	_	_
	reference				+	—	+	+	_	+		_	_	—
Invertebrate grazer biomass (g/m ²)	nutrient unenriched	-	+	_	+	_	_	+	+	+	_	+	_	+
	nutrient enriched	+	_	_	_	_	_	_	_	_	+	+	_	+
	unaltered flow	+	_	_	+	_	+	+	+	+	_	+	+	+
	altered flow	+	_	_	+	_	+	_	+	+	+	+	_	+
	reference				_		_	+	+	+	_	+	+	+
Invertebrate grazer abundance (no. of ind)	nutrient unenriched	-	+	_	+	_	_	+	_	+	_	+	_	+
	nutrient enriched	+	_	+	_	_	_	_	+	+	+	+	_	+
	unaltered flow	+	_	_	+	_	+	_	+	+	_	+	+	+
	altered flow	+	_	_	_	_	+	_	+	_	+	_	+	+
	reference				_	+	_	+	+	+	_	+	_	+

Invertebrate grazer density (g/m ³)	nutrient unenriched	-	+	_	+	_	_	+	-	+	-	+	_	+
	nutrient enriched	+	_	+	_	_	_	_	+	+	+	+	_	+
	unaltered flow	+	_	_	+	_	+	_	+	+	_	+	+	+
	altered flow	+	_	_	_	_	+	_	+	_	+	_	+	+
	Reference				_	+	_	+	+	+	_	+	_	+

+ increase in factor

_ decrease in factor

0 no change in factor

4.13 Principal component analysis

Two principal component analyses (PCA) were conducted. One between the physico-chemical factors at site A (Nutrient unenriched) and site B (Nutrient enriched) and the second between physico-chemical factors at site C (Unaltered flow) and site D (Altered flow). The outcomes indicate the distribution of driving physico-chemical factors over sampled months. The distribution is indicated between comparable sites using different colours and the sampling month and year. Temperature, conductivity and pH are the driving factors at site B (Nutrient enriched), while depth and velocity play a more secondary role (Figure 4.29a and Figure 4.29b). Depth and velocity play a driving role when comparing site C (Unaltered flow) and site D (Altered flow) (Figure 4.30a and Figure 4.30b).

A second set of PCAs was conducted to determine the interaction and driving factors between algal biomass and invertebrate grazer families. Invertebrate grazers played a greater role in winter at site B (Nutrient enriched) (Figure 4.31a and Figure 4.31b) Comparisons between site C (unaltered flow) and site D (altered flow) did not indicate any major driving factors influencing distributions between algal biomass and invertebrate grazer families (Figure 4.32a and Figure 4.32b)

Figure 30a: Physico-chemical factors at Site C (Unaltered flow) and Site D (Altered flow)

Figure 29b Distribution of sampling sites over the sampling period (June 2014- June 2015) in relation to physico-chemical factors

Figure 30b Distribution of sampling sites over the sampling period (June 2014- June 2015) in relation to physico-chemical factors

1

0

-1

-2

-3

-4

-5

-4

-3

-2

Factor 2: 28.06%

Figure 4.32b: Distribution of sampling sites of the sampling period (June 2014- June 2015) in relation to algal biomass and invertebrate grazers)

Factor 1: 33.32%

0

6/14

1/15

-1-1/1

3/15

-1

4/15

11/14 3/15 8/f4

2/15 2/4515

12/14

7/14

1/15 /14

12/14

1

7/14

2

9/14

9/14

3

4

⁵ Site D- Altered Flow

74

Figure 4.32a: Algal biomass and invertebrate grazer families

4.14 Discharge and water temperature

Surface water discharge data for sites A (nutrient unenriched), B (nutrient enriched), C (unaltered flow), site D (altered flow) and E (reference) showed that highest discharge was experienced in summer between January 2015 and April 2015. Peaks in discharge at site B (nutrient enriched) occurred in September 2014 and November 2014. Lowest discharge was observed in winter between June 2014 and November 2014 and between May 2015 and June 2015. Surface water discharge for site D (altered flow) indicated very low flows as these flows are regulated by Midmar dam releases. Slight fluctuations were evident between June and July 2014 (Figure 4.33).

Figure 4.33: Surface water discharge at sites A, B, C, D and E for the period June 2014 to June 2015

Water temperature data collected hourly using a hobo temperature logger was installed at all five sampling sites in December 2014, six months into the project. Unfortunately loggers installed twice at both site A (Nutrient unenriched) and site B (Nutrient enriched) were stolen. Data indicated highest water temperatures in summer while lowest water temperatures in winter at site C (Unaltered flow). A trend could not be established at site D (Altered flow) due to extended periods when the temperature loggers were found out of the water. Site E (reference) saw a trend of higher water temperatures in summer and gradual decreasing from December 2014 to June 2016 (Figure 4.45). Modelled water temperature with outliers removed showed fluctuations in temperature at all sites. However calculated values indicated a water temperature in summer and colder water temperatures in winter (Figure 4.35)

4.15 Algal abundance

Algal density over all five sampling sites indicated that diatoms were the most dominant class division in terms of density at all sites except site D (altered flow) were cyanobacteria was the dominant algal division over the sampling period June 2014 to June 2015. High densities of green algae were present at site C (Unaltered flow), site D (altered flow) and site E (reference) as compared with site A (nutrient unenriched) and site B (nutrient enriched). Highest diatom densities were experienced at site E (reference) while highest cyanobacteria densities at site D (altered flow) (Figure 4.46). Figure 4.47 to Figure 4.51 indicate the algal class divisions in terms of algal cell density at each of the sampling sites individually over the sampling period. At site A (nutrient unenriched) diatoms were dominant with lower peaks in cyanobacteria throughout the sampling period. Green algae was little to none during the sampling period (Figure 4.47). Site B (nutrient enriched) followed similar trends to site A nutrient unenriched (Figure 4.48). Cyanobacteria and green algae densities were very low at site C (unaltered flow) and were dominated by diatoms (Figure 4.49). Cyanobacteria were the dominant algal growth form at site D (altered flor) (Figure 4.50). Highest diatom levels were experienced at site E (reference) were they were the most dominant growth form (Figure 4.51).

Figure 4.37: Algal class divisions at (a)- site A (Nutrient unenriched- Msunduzi-Kwanoshezi), (b)- Site B (Nutrient enriched- Msunduzi-tannery), (c)- Site C (Unaltered flow- Umgeni-Petrustroom) and (d)- Site D (Altered flow- Umgeni-York Road) for the sampling period June 2014 to June 2015

4.16 Conclusion

A summary graph indicating relationships between periphyton, nutrients, invertebrates and flow dynamics show that grazers provide a top down control of algal biomass while nutrients play a bottom up control resulting in the increase in algal biomass. Flow death and velocity play a role in sloughing of algal biomass. The summary graph will be discussed further in Chapter five, section 5.8.

Figure 4.38: Summary graph indicating relationships between periphyton biomass, invertebrates, nutrient levels and flow dynamics within a system

CHAPTER FIVE

Discussion

5.1 Introduction

The research aim was to understand the role of periphyton communities in determining the ecological condition of rivers by taking periphyton community composition, algal biomass and their interaction with environmental variables and invertebrates into consideration. These periphyton patterns were determined under nutrient unenriched and natural flow conditions and to compare these patterns under conditions of nutrient enrichment and altered flow. This was achieved by comparing conditions at site A (nutrient unenriched-Msunduzi-Kwanoshezi) and site B (nutrient enriched- Msunduzi-Tannery) and by comparing site C (unaltered flow-Umgeni- Petrustroom) and site D (altered flow- Umgeni- York road). These four sites were compared to a control site E (reference- Hlatikhulu- Broadmoor).

5.2 Physico-chemical variations

Algal biomass levels were highest when temperatures were higher, therefore, highest algal biomass was observed in summer. However, it was evident (figures 4.22(a) to 4.22 (e)) that in February 2015 a decrease in algal biomass were observed at all five sampling sites. This could be attributed to sloughing as algal mats become too heavy for attachment to the substrate and consequently are removed, in particular if there is an increase in flow. These trends were experienced in studies by Biggs (2000) and Higgens *et al.* (2008) who indicate that seasonal variations in temperature can affect biomass accrual rates and species diversity (Rader *et al.*, 2008). High temperature can result in mid-summer sloughing (Biggs, 2000; Higgens *et al.*, 2008). This research shows that there was higher algal species diversity in summer when temperatures were higher than in spring when temperatures were lower. Water temperature at each site was highest between October 2014 and February 2015. Temperature was lowest in winter, June 2014 and May 2014 and June 2015. Optimum growth temperatures for periphyton communities range between 0°C to 30°C as heat stress can reduce the growth of periphyton communities (DeNicola, 1996; Larned, 2010). Water temperature at each of the sites remained above 0°C and below 30°C.

There were large variations in % oxygen levels within and between sampling sites, with highest levels in winter and lowest levels in summer. Dissolved oxygen levels are usually lower in stagnant water such as in pools (Growns and Growns, 2001), however this relationship was not visible as sampling occurred in the runs biotype. A relationship was observed between temperature and dissolved oxygen levels. When water temperature levels were lower, dissolved oxygen levels were higher and vice versa. Therefore, highest oxygen levels were experienced in winter. Conductivity remained constant throughout the sampling period at each site. Highest conductivity levels were experienced at site B (Nutrient enriched) while lowest conductivity values were experienced at site E (Reference). Conductivity is linked to water temperature (Goodwin *et al.*, 2009), so even though the conductivity levels remained fairly constant, increases in water temperature will increase conductivity levels.

pH varied between the sampling sites with lowest pH characteristic of site C (unaltered flow) and highest pH was experienced at site B (nutrient enriched). However, even with variations, pH did not fluctuate drastically from that of a neutral pH of 7. Decreases in pH could be attributed to an increase in nitrogen levels in the water column (Venter *et al.*, 2003). This trend was evident as pH levels decreased between January 2015 and February 2015 while nitrite levels peaked between October 2014 to December 2014. One of the most evident declines in pH occurred between December 2014 and February 2015 at site E (reference). This decline coincides with the maize plantation on the banks of the river. With the lack of water quality data for this particular site it can be assumed, in accordance with the idea presented by Venter *et al.* (2003), that an increase in nutrients such as nitrogen can result in a decrease in pH levels. Therefore as a result of the maize plantation and the use of fertilizers, with an associated increase in nitrogen levels, a decrease in pH was observed at site E (reference).

Although fluctuations in clarity within each site made it difficult to observe a trend, declines in clarity occurred after the onset of the first rainfall event with increases in both water depth and velocity. Thus, increase rainfall resulting in increased depth and velocity, resulted in a decrease in clarity. This decrease could have resulted from increased run-off of embankment sediments that enter the river when there is a rainfall event.

5.3 Water quality

Ammonia (NH₃) levels peaked between October 2014 and January 2015, coinciding with rainfall. These high levels of ammonia could be as a result on fertilizer runoff into the river system. However, ammonia is most often converted to nitrates by bacteria within the water column. Peaks in ammonia coincided with peaks in nitrites indicating a relationship between the two. According to the South African water quality guidelines it is believed that ammonia levels lower than 0.2mg/L are not contaminated by organic waste. Ammonia levels above 10mg/L are found in raw untreated sewage (DWAF, 1996). Peaks in ammonia levels at sampling sites did not exceed 10mg/L mark. There is also a strong relationship between ammonia and pH levels however as pH levels did not fluctuate around neutral it can be deduced that non-toxic ammonia was present. The South African water quality guidelines suggest that ammonia has fairly low toxicity but ammonia levels above 1.5mg/L may cause a decrease in the quality of taste and odour in a water source. Ammonia levels in this research remained between 0 and 1.0mg/L indicating no associated health or aesthetic effects (DWAF, 1996). The largest fluctuations in soluble reactive phosphorus (SRP) occurred at site A (Nutrient unenriched) and site B (nutrient enriched).

SRP is the phosphorous available to and taken up by plant cells. During times of high algal biomass low levels of SRP were identified. (NO₂) and ammonia followed a similar trend. Nitrites are particularly harmful to infants if they enter the blood stream and attach to haemoglobin cells. In some cases nitrites can be found in food compounds and may have a carcinogenic effect when the food is consumed. However nitrite levels at the sampling sites remained below 6mg/L indicating that there are no adverse health effects (DWAF, 1996). It was observed that even during times when nutrient levels were low there was still biomass accrual, suggesting that factors other than nutrient levels could be necessary for algal biomass accrual.

According to Biggs (2000) flow regimes are more important for biomass accrual than nutrient regimes. However, in areas of consistently low flow such as those areas below dams, nutrient regimes become important (Biggs, 2000). High nutrient levels in spring and summer resulted in high levels of diatoms. This is reiterated by Biggs (2000) who notes that diatom mats increased with an increase in nutrients. According to Rosemond *et al.* (2000) periphyton biomass accrual, due to an increase in nutrients was greatest in seasons when light levels were higher. Therefore the positive effects of the increase in nutrients on algal biomass were experienced across all seasons but the magnitude was greatest in spring and autumn. The relationship between light and nutrients are interdependent and is greatest when there are no other limiting factors (Rosemond *et al.*, 2000; Hill *et al.*, 2010). The ratio between nitrogen and phosphorus are particularly important when determining the role that these nutrients have on blue-green algal blooms (Venter *et al.*, 2003).

Highest levels of blue-green algae were at site B (Nutrient enriched) suggesting that nutrient levels played a role in the onset of blue-green algae. Biomass is higher in nutrient rich environments and there is a decrease in biomass when there are lower nitrogen to phosphorus ratios (Luttenton and Lowe, 2006; Zhang *et al.*, 2013). However, studies have suggested that biomass levels are not influenced only by nutrient levels. Bowes *et al.* (2012) noted that an increase in phosphorus levels had no effect on algal biomass accrual. Therefore, even though nutrients have the potential for high productivity this potential can only be realised when there is sufficient light to reach the river bed. Therefore, high levels of both light and nutrients are required for periphyton to reach high rates of productivity. High nutrient levels do still encourage high rate of primary productivity which in turn affects benthic macro invertebrate assemblages (Hill *et al.*, 2010). Trochine *et al.* (2014) indicated that periphyton responded differently to nutrients depending on nutrient status and temperature regimes which were seasonal and time sensitive.

5.4 The implications of flow regimes on periphyton communities.

Periphyton communities that are attached to substrates usually require high levels of shear-stress to be detached from the substratum and are therefore driven by hydrodynamics (Lutscher *et al.*, 2007 Bouletreau *et al.*, 2008). When velocity and depth were high, algal biomass levels were low followed

by periods of high algal biomass. The decrease in algal biomass could be attributed to sloughing due to high depths and velocity. This was followed by an increase in algal biomass due to the niche and habitable environment created through the process of sloughing (Boulêtreau *et al.*, 2008). Another possible scenario for this occurrence was that higher velocity results in greater macro-invertebrate abundances due to greater surface areas for grazers to feed on contributing to the decline in periphyton biomass (Choudhury *et al.*, 2014).

High velocity can result in greater periphyton biomass due to nutrient mass transfer (Biggs *et al.*, 1998). The age of the periphyton community could play a role in biomass loss that occurs with an increase in flow velocity (Villeneuve *et al.*, 2009). Alternately, in areas of low flow, biofilms can grow on lose assemblages and are not removed by shear stress (Boulêtreau, *et al.*, 2008). At site D (altered flow), the site below the dam, had fairly constant flow velocity and depth conditions however there were fluctuations in algal biomass indicating that in these environments shear-stress does not occur but the low flows do allow for the accumulation of algal biomass (Boulêtreau, *et al.*, 2008).

Surface discharge is an important indicator of flow events and the arrival of propagules (Rader et al., 2008). Discharge data within this research indicated that highest surface discharge was experienced in summer and during this high discharge periods there was high algal and low invertebrate biomass. Rader et al. (2008) recorded that disturbances such as floods do not restore macro-invertebrate diversity, in particular downstream from a deep dam release. High discharge or flood events can results in a decrease in algal biomass. The magnitude of the disturbance will determine the time it takes for the periphyton community to recover. Recovery after a disturbance can occur either from disturbance resistant algae that remain after the disturbance event has occurred or from propagules upstream that were moved by the disturbance event (Robinson et al., 2004). The frequency and duration of a flood or disturbance event can affect periphyton biomass and metabolic rates. Therefore floods are important as they bring about scouring and sloughing which limit sediment accumulation and reset biofilm development (Ryder, 2004). All sites reflected a correlation between AFDM and chlorophyll a. The trend was also observed at site D (altered flow) below Midmar dam which was a site of low disturbance and regulated flow. According to Ryder (2004) there is a high correlation in terms of algal biomass between chlorophyll a and AFDM values in areas of low disturbance and regulated flow.

Periphyton such as *achnanthes* and *fragilaria* occurred predominately in summer at the sampling sites or in much greater abundances in summer than in spring. This could be attributed to the fact that some periphyton species can withstand and survive at higher velocities associated with the summer rainfall period. This idea was reiterated by Hart *et al.* (2013) who found that certain periphyton species are able to withstand higher velocity and increased drag force. Diatoms had the highest density at site E

(reference) site while green algae was present at site C (unaltered flow), site D (altered flow) and site E (reference). Cyanobacteria were predominate at site B (nutrient enriched) and site D (altered flow).

The effect of flow on periphyton communities can be explained through the subsidy-stress response (Biggs and Thomsen, 1995). For example, at site D with consistently low flows, periphyton, especially the filamentous types was allowed to develop. The increase in periphyton as flow increased between December 2014 to April 2015 when velocity increases from near zero levels will result in an increase in periphyton biomass through nutrient mass transfer as iterated by the subsidy- stress model (Biggs and Stokseth, 1996; Biggs *et al.*, 1998; Larned *et al.*, 2004). However once an equilibrium between increasing velocity and algal biomass has occurred, any further increases in velocity will result in a decrease in algal biomass (Biggs and Thomsen, 1995; Borchardt, 1996; Biggs *et al.*, 1998).

5.5 Periphyton-macro invertebrate relationships.

There was an evident relationship between periphyton biomass and macro-invertebrate density. For example, during periods of high invertebrate density there were periods of lower algal biomass (Figure 4.24 (a)-(e)). Invertebrate grazers provide a top-down control of algal biomass resulting in the decrease of algal biomass with an increase in invertebrate grazers (Taylor *et al.*, 2002; Hillebrand, 2009; Peters *et al.*, 2007; Trochine *et al.*, 2014).Grazer effect on algal biomass levels are dependent on grazer foraging mouthparts, foraging ability and spatial variations (Peters *et al.*, 2007). Periphyton is susceptible to invertebrate grazing as they are good quality food that are high in nitrogen and phosphorus. Due to increased grazing pressure, with an increase in grazer biomass, large proportions of algal biomass can be removed. Grazing pressure exerted by invertebrates is fairly constant throughout a range of habitats (Hillebrand, 2009), however, there were significant differences in invertebrate biomass across the sampled sites.

In contrast to this, Villanueva and Modenutti (2004) did not observe a reduction in periphyton biomass with an increase in invertebrate grazers which could have been attributed to fast algal replacement. The effect that invertebrates have on algal communities is dependent on the age and level of succession of the periphyton community (Villanueva and Modenutti, 2004). Invertebrate effects are dependent on specific adaptations of invertebrates to spatial variations and ecosystem changes (Peters *et al.*, 2007).

Flow velocity can affect grazer efficiency (Peters *et al.*, 2007), this effect is predominantly indirect due to velocity effects on periphyton biomass (Hart *et al.*, 2013). During flood events or events of increased flow, there is usually a decline in invertebrate diversity and density in streams that are unregulated (Rader *et al.*, 2008). This was observed in this research. However, in some cases, this trend was not observed as there was an increase in invertebrate grazer density during periods of higher velocity and surface discharge. This could be attributed to the high proportion of Chironomids at each

of the sampling sites. According to Rader *et al.* (2008) Chironomids are usually resistant to disturbances increasing their abundances during this time to make use of the habitat available as a result of the displacement of other sensitive, sometimes dominant invertebrate species.

Families such as Chironomids have specific behavioural traits to combat disturbance events. These traits include entering into the drift during a flood period. Certain taxa are found in regulated rivers however, these taxa show little recovery after a disturbance event and therefore decrease in abundance. Some invertebrate families such as simuliidaes and Chironomids show fast recovery after flood events and Baetidae have a high dispersal range and can resist flood events (Robinson *et al.*, 2004). Even after disturbance events Baetidae and Chironomids had the highest abundance and biomass at each sampled site.

At site D (altered flow) low abundances of Leptophlebiidae was observed from June 2014 to September 2014 and were not observed for the rest of the sampling period while Baetidae abundances were low except for slight peaks in November 2014. According to Growns and Growns (2001), Baetidae and Leptophlebiidae are affected by flow regulation. High abundances of chironomidae at site B (nutrient enriched) and a drastic increase in chironomidae abundances were observed at site E (reference) after the planting of maize. This suggests that chironomidae have a range of responses to pollution (Growns and Growns, 2001) whilst Hansson (1992) showed a reduction in the effect of grazers in nutrient enriched environments. However, this could be attributed to the fact that invertebrates were able to maintain periphyton at low levels and therefore did not have to increase drastically or increase grazer efficiency. This idea is evident in this research were even though levels of nutrients were high, grazer densities were low. This could be attributed to, and resulted in, the increase in algal biomass levels or that grazers were able to maintain the algal biomass at low levels. Therefore, it is important to determine if algae are resource limited or if invertebrates are food limited (Rosemond *et al.*, 2000).

Catastrophic disturbance events can result in the reduction of macro-invertebrates in natural rivers (Robinson *et al.*, 2004). After a disturbance event the recovery of grazers along a temporal gradient is limited by the food source available. Initial colonisation of invertebrates, such as browsers and filter feeders, occur simultaneously with the introduction of bacteria and biofilms in a river ecosystem. This is followed by a late colonisation of leaf feeders occurring with the slower accumulation of leaf litter (Lepori and Malmqvist, 2007). According to Lepori and Malmqvist (2007) all invertebrates, including their spatial variations, are controlled by resource availability. It was observed through this research that there were lower invertebrate abundances and biomass in spring than abundances and biomass in winter and summer (Figure 4.25). These research findings are in contrast to that of Lepori and Malmqvist (2007) who found that due to harsh winters invertebrate abundances were low with a rapid growth rate in spring. In summer food availability is high which is an important factor as it coincides

with the emergence patterns of the invertebrates (Lepori and Malmqvist, 2007). It is important to identify whether grazers have a greater effect than physical factors on algal biomass even when conditions for growth are favourable and to determine whether food limitation had an effect or influenced the results (Yang *et al.*, 2009).

The species diversity index indicated higher invertebrate diversity at site A (Nutrient unenriched) at site D (Altered flow) and at site E (Reference) after the plantation of maize. Species diversity may have been greater at site D (altered flow) as opposed to site C (unaltered flow) as site D experiences infrequent disturbances as compared to site C. This idea was expressed by both Biggs et al. (2005) and Schwendel et al. (2010) who found that large infrequent disturbances resulted in the mosaic distribution of invertebrate species which were mostly found on stable substrata. At sites with high velocities, scouring may remove algal communities and in turn remove an important feeding habitat for invertebrate grazers resulting in the decrease in invertebrate species diversity which may have been the case at site C (unaltered flow). The increase in periphyton biomass at site E (reference) as a result of the increase in nutrients from run-off of fertilizer from the maize planting, may have been the reason for the increase in invertebrate diversity. The higher invertebrate species diversity index experienced at site A as compared to site B (Nutrient enriched) does not follow the trend that one expects were higher invertebrate species will be experienced in the nutrient enriched environment. This could be as a result that site B (nutrient enriched) is highly polluted and therefore only certain invertebrate species can survive in such conditions thereby reducing the species diversity of that particular site. Due to this it is evident that grazing pressure and the effect of grazers plays a more important role on periphyton biomass than resources availability Rosemond et al. (2000).

5.6. Seasonal cycles and periphyton growth.

Seasonal cycles affect algal biomass more significantly than just temperature alone (Lutscher et al., 2007). Yang *et al.* (2009) found that seasonal variations effect algal biomass. From this research the changes in seasons did have significant effects on biomass levels at all sampling sites. Algal blooms occur due to growth conducive environmental factors (Venter *et al.*, 2003) and are restricted by the interaction of grazers and available resources (Rosemond *et al.*, 2000). Algal species composition is usually as a result of past environmental factors (Venter *et al.*, 2003). At the sites that were nutrient enriched there was an increase in algal biomass in spring attributed to increased nutrients and light. Rosemond *et al.*, (2000) suggest that these factors can sometimes be limiting in summer while higher biomass levels in spring compared to summer was evident in studies by Villanueva and Modenutti (2004). In summer at sites of altered flow (site D), there were high biomass values in summer. This was in contrast to the idea expressed by Yang *et al.* (2009) who indicated that higher biomass occurred in winter than in summer due to high mortality from scouring and abrasion in the wet season due to high rainfall. However, the trends from this research could have been as a result of the lack of

rainfall at that particular time. Therefore once a rainfall event did occur a decrease in algal biomass was observed. The differences in algal biomass throughout the seasons could be as a result of water quality factors. For example nitrogen limitation occurs in the warmer seasons while phosphorus limitation occurs in spring and early summer (Trochine *et al.*, 2014). Interactions between factors such as light intensity and flow regimes are important factors in understanding differences in biomass across the seasons (Villeneuve *et al.*, 2009)

5.7 Key findings

The paucity of periphyton research in South Africa has resulted in the need for an understanding of the key temporal factors that drive these communities in order to use of periphyton as biological monitoring tools. The thesis identified those interactions between physico-chemical, water quality, flow data and grazing pressure that affects the periphyton community biomass and composition in the summer rainfall region of KwaZulu-Natal, South Africa.

Key findings suggest that there are constant shifts in periphyton communities in particular in terms of biomass. These shifts are strongly influenced by flow regimes and macro-invertebrate grazing, and to a lesser extent by seasonality. The effect of flow is predominantly greater during the wet season, summer, in KwaZulu-Natal. During periods of low rainfall and therefore low flow, periphyton communities are able to grow and succeed from that of diatoms to that of filamentous algae. Downstream of Midmar dam at site D (altered flow), the flow regimes were regulated this and remained low and constant allowing for biomass accrual.

5.7.1 Nutrient implications

Nutrient levels played a role in periphyton biomass accrual cycles between peaks in flow. For example, peaks in ammonia levels at site B (Nutrient enriched) coincided with peaks in biomass levels. Algal species indicated that at sites with natural unregulated flow, algal taxa remained at a pioneer stage of succession due to flooding events that reset the system. However, in areas of regulated low flow, the algal community was able to succeed into a later stage of succession which was evident through presents of filamentous algal. The end of the wet season usually indicated the start of the periphyton accrual cycle which continued into the dry season which is controlled by nutrient, light and temperature.

5.7.2 The relationship between invertebrate and periphyton

There was a relationship between periphyton biomass and invertebrate density At each site, periods of high invertebrate density witnessed periods of low periphyton biomass suggesting that one of the drivers of periphyton dynamics are invertebrate communities. There were significant differences in invertebrate density across seasons and sites indicating that macro-invertebrates can be indicators of both changing seasonal conditions together with differences in flow and nutrient regimes. The types

of invertebrates found at the sites reflecting site characteristics and relationships between periphyton dynamics. For example, lower invertebrate densities were experienced between November 2014 and January 2014 while increases in invertebrate density occurred during winter (Figure 4.26)

5.7.3 Driving Factors at comparable sites

Principal component analyses were conducted to determine the primary physico-chemical factors at comparable sites. It was determined that pH, conductivity and temperature drove conditions at site B (Nutrient unenriched) particularly in summer. According to Webb et al. (2008) temperature changes can affect water quality, effecting dissolved oxygen and suspended sediment concentrations. This indicates that as a result of different levels of nutrient enrichment between site A (Nutrient unenriched) and site B (Nutrient enriched) temperature is an important physico-chemical driver. Depth and velocity were major driving factors in summer between site C (unaltered flow) and site D (altered flow). This result iterates that the dam plays a major role in altering river systems. Depth and velocity drove changes in summer at site C (Unaltered flow) and according to Olden and Poff (2003) flow regimes are developed through seasonal interactions These flow regimes play an important role in altering community composition and distribution of aquatic flora and fauna (Bunn and Arthington, 2002; Choudhury, 2014). Flow velocity can drive river ecosystems by affecting algal immigration, reproduction and post-disturbance recovery (Peterson and Stevenson, 1992; Matthaei et al., 2003). Temperature was a driving physico-chemical factor in summer which could be attributed to the fact that dams alter base flows, resulting in water quality degradation and water temperature changes (Collier, 2002; Rader et al., 2008).

Together with driving physico-chemical factors, it was identified that algal biomass was a driving factor at site C (Unaltered flow) and site D (Altered flow) regardless of season as compared to invertebrate grazer biomass. This could be attributed to the link between algal biomass and nutrients within the water column (Borchardt, 1996) as nutrient enrichment plays a crucial role in aquatic food web structures (Montuelle *et al.*, 2010).

At site A (Nutrient unenriched) in particular during winter, invertebrate grazers, namely baetidae and leptophlebiidae, are driving factors. This could be attributed to the fact that during winter low rainfall and therefore low flows allow for algal biomass accrual providing a large food source for invertebrate grazers. Both baetidae and leptophlebiidae are deposit feeders and prefer to feed on larger algae (Schael, 2005). Larger algae will be present when no disturbance has occurred, such as in winter when there are no intense rainfall events.

5.8 Comparison between summer and winter rainfall areas.

Similar research was conducted in the winter rainfall region of the Western Cape, South Africa (Ewart-Smith and King, 2012). A number of key findings and trends were indicated in this work (Ewart-Smith and King, 2012). During this present research conducted it was indicated that shifts in periphyton biomass was as a result of influence by both flow regimes and invertebrate grazers. This trend was also observed in the outcome of research conducted in the Western Cape were it was evident that invertebrate grazers provided a top-down control of periphyton biomass (Ewart- Smith and King, 2012). In the summer rainfall region highest invertebrate density was experienced during late summer while in the winter rainfall region highest invertebrate densities were experienced during spring or early summer, during the dry season (Figure 5.1). Algal biomass peaks in the winter rainfall season were experienced in summer and early spring while peaks in periphyton biomass were experienced in summer and early spring of KwaZulu-Natal (Figure 5.1 and Figure 5.2). Figure 5.1 and Figure 5.2 are schematic diagrams of periphyton biomass peaks over a seasonal time scale together with their interaction between invertebrate grazers and nutrients.

This research recognises the complex relationship between periphyton biomass, invertebrate grazers, flow regimes and nutrient levels. Each of these factors plays a different role on periphyton biomass accrual or loss depending on the season. The peaks in periphyton biomass were as a result of in an increase in nutrient levels and low flow velocity. Autogenic sloughing due to increased velocity resulted in the decrease of algal biomass, occurring when periphyton biomass was high resulting in a weak attachment between the substratum and the algal mat. In many instances, even if low flows and high nutrient levels are present, periphyton biomass levels are low usually due to the top down control that invertebrate grazers have on periphyton biomass (Figure 5.2).

Figure 5.1: Schematic diagram of algal biomass loss and accrual and interaction between invertebrate grazers and nutrients in the winter rainfall region of the Western Cape (after Ewart-Smith and King, 2012) 90

Figure 5.2: Schematic diagram of algal biomass accrual and loss and the interaction between invertebrates and nutrients in the summer rainfall region of KwaZulu-Natal.

5.9 Reflections for ongoing research

Once-off sampling fails to establish trends and drivers within these river systems. Monthly sampling allowed for the establishment of depth and velocity trends which influenced flow together with changes in algal biomass and invertebrate density. Monthly sampling played an important role in determining seasonal changes of environmental variables. Even though this thesis was important in establishing these drivers and their links to periphyton communities there is still analysis and sampling that can be done to solidify and improve our understanding.

Future work to develop general models to indicate responses of periphyton to changes in flow and environmental drivers which can be transferred from one river system to the other will be important in the initiation of using periphyton as a bio-monitoring tool. This can be achieved through greater and more rigorous sampling and statistical analysis. However, the field methods utilised through this project are important as it complements other more rigorous methods of empirically evaluating aquatic ecology. Further long term field sampling and observational studies together with studies of an entire river will be an important tool in determining these periphyton dynamics. Overall the project fulfilled its aim and objectives to collect, identify and determine periphyton and invertebrate dynamics together with their relationships with environmental drivers to determine the ecological condition of rivers in KwaZulu-Natal.

5.10 Conclusion

The research provides an account of periphyton community dynamics in terms of biomass in the rivers of the summer rainfall region of KwaZulu-Natal, South Africa. The thesis provides information on temporal periphyton community dynamics together with the environmental factors that drive them. Flow changes due to rainfall patterns are one of the overarching controllers of periphyton community dynamics. Nutrients and temperature influence periphyton community dynamics and invertebrates provide a top down control on periphyton communities and is another major factor that control and drive these periphyton communities.

CHAPTER SIX

Conclusion

6.1 introduction

The aim of this research was to determine the role of periphyton communities as indicators of the ecological condition of rivers by determining periphyton community structure and biomass, taking into consideration their links to environmental variables and relationship with macro-invertebrates.

6.2 Objectives

6.2.1 To measure flow and water quality at selected sites to determine changes in these variables over a seasonal and temporal time scale to allow for patterns and trends in these variables to be observed.

Monthly field sampling was conducted for a period of 13 months from June 2014 to June 2015. During this time physico-chemical data was collected. This data included monthly water temperature data collected during site visits at all five sites using a YSI and hourly water temperature collected using HOBO data loggers at site C, site D and Site E. Dissolved oxygen, conductivity, pH, clarity depth and velocity were measured during each sampling occasion. Water quality data was provided by Umgeni water. Data was used to establish trends in these physico-chemical factors which was used to explain periphyton dynamics in relation to these factors.

6.2.2 To collect, identify and determine biomass of periphyton communities in areas of altered flow and nutrient levels as these altered conditions will provide an indication of periphyton dynamics

To fulfil the second objective, periphyton was collected by scrubbing algae from five rocks at each site for the duration of the 13 month sampling period. The collected algae was used to determine periphyton biomass using two lab procedures namely Ash Free Dry Mass (AFDM) and chlorophyll *a* analysis. In situ algal biomass was determined using a benthotorch. Algal species were identified in most cases to genus level under a compound microscope and counts of these algal cells were conducted using a haemocytometer.
6.2.3 To collect and calculate abundance and biomass of macro-invertebrates to indicate the relationship between grazer density and periphyton biomass.

The last objective was fulfilled by collecting invertebrates on and around each sampled stone in a net at each of the five sites for the duration of the sampling period. The collected invertebrates were identified to family level under a dissecting microscope. Counts of invertebrates within each family identified were recorded in order to calculate abundance. Biomass of invertebrate grazers were determined by weighing the invertebrates to calculate the weights per individual. A relationship was evident between invertebrates and periphyton. The research indicated the clear top-down control of invertebrate on periphyton

6.3Hypotheses

The research fulfilled all the hypotheses set out. The research found that Periphyton biomass is related to the seasonal patterns in selected rivers of KwaZulu-Natal. Biomass levels will change according to seasons. For example periphyton biomass peaks were experienced in summer and autumn. Periphyton community composition did change over annual cycles as was predicted in the hypothesis. The community composition of periphyton also differed between rivers of alter flow and nutrient conditions. For example diatoms were most abundant at the reference site while green algal were observed more in the sites that had flow alterations. The effect that grazing had on periphyton in terms of providing a top down control was more evident during periods when invertebrate abundance was highest. Finally the research indicated that factors such as nutrient regimes and flow conditions do play a role in differences in invertebrate grazer abundance.

6.4 Conclusion

This research fulfilled all the aims and objectives. The hypothesis set out at the start of the project were also accepted. The research indicated complex interactions between physico-chemical factors such as temperature, river flow and velocity and nutrient regimes on periphyton biomass. The relationship becomes further complexed with the interaction between invertebrates and periphyton and the effect that external factors such as nutrients and flow have on invertebrates as well. Understanding these relationships is the key step in the process of using periphyton as a biomonitoring tool and to utilise periphyton as a tool to assist in the setting of ecological reserves. Therefore, the aim to determine the role of periphyton communities as indicators of the ecological condition of rivers by determining periphyton community structure and biomass, taking into consideration their links to environmental variables and relationship with macro-invertebrates was fulfilled.

References

Anderson, E.L. Schimek, G.M., Welch, E.B., Jacoby, J.M. and Horner, R.R. 1999. Periphyton related to phosphorus and grazer biomass level. Freshwater Biology, 41 (1): 633-651.

Bergey, E.A. and Resh, V.H. 2006. Differential response of algae on small streambed substrates to floods. *American Midland Naturalist*, 155 (1): 270-277.

Biggs, B.F.J. and Kilroy, C. 2000. *Stream Periphyton Monitoring Manual*. NIWA, Christchurch, New Zealand.

Biggs, B.J., Nikora, V.I. and Snelder, T.H. 2005. Linking scales of flow variability to lotic ecosystem structure and function. *River Research and Applications*, 21(1): 283-298.

Biggs, B.J.F and Smith, R.A. 2002. Taxonomic richness of stream benthic algae: Effects of flood disturbance and nutrients. *Limnology and Oceanography*, 47(4): 1175-1186.

Biggs, B.J.F. (2000b). *New Zealand Periphyton Guideline: Detecting, Monitoring and Managing Enrichment of Streams*. NIWA, Christchurch.

Biggs, B.J.F. 1995. The contribution of disturbance, catchment geology and landuse to the habitat template of periphyton in stream ecosystems. *Freshwater Biology*, 33:419-438.

Biggs, B.J.F. 1996.Patterns in benthic algae of streams. Pages 31- 51 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

Biggs, B.J.F. 2000. Euthrophication of streams and rivers: Dissolved nutrient-chlorophyll relationships for benthic algae. *Journal of the North American Benthological society*, 19(1): 17-31

Biggs, B.J.F. and Hickey, W.C. 1994. Periphyton responses to hydraulic gradient in a regulated river in New Zealand. *Freshwater Biology* 32:49-59.

Biggs, B.J.F. and Kilroy, C. 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

Biggs, B.J.F. and Stokseth, S. 1996. Hydraulic habitat suitability for periphyton in rivers. *Regulated Rivers: Research and Management*, 12:251-261.

Biggs, B.J.F. and Thomsen, H.A. 1995. Disturbance of stream periphyton by perturbations in shear stress: Time to structural failure and differences in community resistance. *Journal of Phycology*, 31:233-241.

Biggs, B.J.F., Goring, D.G. and Nikora, V.I. 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. *Journal of Phycology*. 34: 598-607.

Biggs, B.J.F., Nikora, V.I. and Snelder, T.H. 2005. Linking scales of flow variability to lotic ecosystem structure and function. *River Research and Application*. 21: 283-298.

Biggs, B.J.F., Smith, R.A. and Duncan, M.J. 1999. Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. *Journal of the North American Benthological Society*, 18:222-241.

Biggs, B.J.F., Goring, D.G. and Nikora, V.I. 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. *Journal of Phycology*, 34:598-607.

Borchardt, M. A. 1996. Nutrients. Pages 341- 366 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

Boulêtreau, S., Izagirre, O., Garabétian, F., Sauvage, S., Elosegi, A. and Sánchez-Pérez, J. 2008. Identification of a minimal adequate model to describe the biomass dynamics of river epithilion. *River Research Application*. 24: 36- 53.

Bowes, M.J., Ings, N.L., McCall, S.J., Warwick, A., Barrett, C., Wickham, H.D., Harman, S.A., Armstrong, L.K., Scarlett, P.M., Roberts, C., Lehmann, K. and Singer, A.C. 2012. Nutrient and light limitation of periphyton in the River Thames: Implications for catchment management. *Science of the Total Environment*. 434, 201-212.

Bunn, S.E. and Arthington, A.H. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. *Environmental Management*. 30 (4): 492- 507.

Burns, A. and Ryder, D. 2001. Potential for biofilms as biological indicators in Australian riverine systems. *Ecological Management and Restoration*, 2:53-63.

Cardinale, B.J. 2011. Biodiversity improves water quality through niche partitioning. *Nature*. 472: 86-91.

Chessman, B.C., Growns, I., Currey, J. and Plunkett-Cole, N. 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. *Freshwater Biology*, 41:317-331.

Choudhury, M.I., Yang, X. and Hansson, L.A. 2014. Stream flow velocity alters submerged macrophytes morphology and cascading interactions among associated invertebrate and periphyton assemblages. *Aquatic botany*, 120, 333- 337.

Collier, K.J. 2002. Effects of flow regulation and sedimentation flushing on instream habitat ad benthic invertebrates in a New Zealand river influenced by a volcanic eruption. *River Research and Applications*. 18, 213-226.

De la Rey, P.A., Taylor, J.C., Laas, A., Van Rensburg, A. and Vosloo. A. 2004. Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. *Water SA*, 30:325-332.

DeNicola, D. M. 1996. Periphyton responses to temperature at different ecological levels. Pages 150-176 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

DeNicola, D.M. 2000. A review of diatoms found in highly acidic environments. *Hydrobiologia* 433: 111-122.

Dickens, C., Breen, C.M., Mander, M. and Booth, A. 2010. Balancing resource protection and development in a highly regulated river: The role of conjunctive use. *Water SA*. 6(3), 371-378.

Dodds, W.K. 1992. A modified fibre-optic light microprobe to measure spherically integrated photosynthetic photon flux density: characterisation of periphyton photosynthesis-irradiance patterns. *Limnology and Oceanography*, 37:871-878.

Dodds, W.K. 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. *Journal of the North American Benthological Society*. 22(2): 171-181.

Dodds, W.K. 2006. Eutrophication and trophic state in rivers and streams. *Limnology and Oceanography*, 51:671-680.

Dodds, W.K. and Welch, E.B. (2000). Establishing nutrient criteria in streams. *Journal of the North American Benthological Society*, 19:186-196.

Dorigo, U., Berard, A., Rimet, F., Bouchez, A. and Montuelle, B. 2010. In situ assessment of periphyton recovery in a river contaminated by pesticides. *Aquatic toxicology*. 98, 396-406.

Downes, B.J. and Street, J.L. 2005. Regrowth or dispersal? Recover of freshwater red algae following disturbance at the patch scale. *Austral Ecology*. 30, 526- 536.

Downes, J.B., Entwisle, J.T. and Reich, P. 2003. Effects of flow regulation on disturbance frequencies and in-channel bryophytes and macro algae in some upland streams. *River Research and Applications*, 19:27-42.

Eeley, H.A.C., Lawes, M.J. and Piper, S.E. 1999. The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. *Journal of Biogeography*. 26, 595- 617.

Ewart- Smith, J.L. and King, J. 2012. The relationship between periphyton, flow and nutrient status in south-western cape Foothill Rivers and the implications for management. Water Research Commission Report No. 1676/1/12. Water Research Commission, Pretoria, South Africa

Ewart-Smith, J.L. 2007. Temporal and spatial patterns in periphyton community structure and biomass of the Berg River. Pilot study for WRC project K5/1676. Water Research Commission, Pretoria, South Africa.

Fairchild, G.W., Lowe, R.L. and Richardson, W.B. 1985. Algal periphyton growth on nutrientdiffusing substrates: An in situ bioassay. *Ecology*. 66(2): 465-472.

Francoeur, N.S. 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. *Journal of the North American Benthological Society*, 20:358-368.

Francoeur, N.S. and Biggs, B.F.J. 2006. Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. *Hydrobiologia*, 561:59-69.

Godwin, C.M., Michael, R., Arthur, A. and Carrick, H.J. 2009. Periphyton nutrient status in a temperate stream with mixed land-uses: Implications for watershed nitrogen storage. *Hydrobiologia*. 623: 141-152.

Gross, W. 2000. Ecophysiology of algae living in highly acidic environments. *Hydrobiologia* 433: 31-37.

Growns, I.O. and Growns, J.E. 2001. Ecological effects of flow regulation on macro invertebrate and periphytic diatom assemblages in the Hawkesbury- Nepean River, Australia. *Regulated Rivers: Research and Management* 17: 275-293.

Han, B.P., Virtanen, M., Koponen, J. and Straskraba, M.2000. Effect of photoinhibition on algal photosynthesis: a dynamic model. *Journal of Plankton Research*, 22:865-885.

Hart, D.D., Biggs, J.F., Nikora, V.I. and Flinders, C.A. 2013. Flow effects on periphyton patches and their ecological consequences in a New Zealand river. *Freshwater Biology*. 58(8), 1588-1602

Hart, R.C. and Wragg, P. Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam (KZN): History, causes, spatial features and impacts on a reservoir ecosystem and its zooplankton. 2009. Water SA 35(4): 455- 468.

Heisler, J., Gilbert, P.M., Heil, C.A., Humphries, E., Lewitus, A., Magnien, R., Marshall. H.G., Sellner, K., Stockwell, D.A., Stoecker, D.K. and Suddleson, M. 2008. Eutrophication and harmful algal blooms; A scientific consensus. Harmful Algae 8: 3-13.

Higgins, S.N., Hecky, R.E. and Guildford, S.J. 2008. The collapse of benthic macroalgal blooms in response to self-shading. *Freshwater Biology*. 53: 2557- 2572.

Hill, B.H., Herlihy, A.T., Kaufmann, P.R., Stevenson, R.J., McCormick, F.H. and Johnson, C. B. 2000. Use of periphyton assemblage data as an index of biotic integrity. *Journal of the North American Benthological Society* 19:50-67.

Hill, W. R. 1996. Effects of light. Pages 121- 144 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

Hill, W.R. and Dimick, S M. 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilisation efficiency. *Freshwater Biology* 47:1245-1256.

Hill, W.R., Ryon, M.G., Smith, J.G., Adams, S.M., Boston, H.L. and Stewart, A.J. 2010. The role of periphyton in mediating the effects of pollution in a stream ecosystem. *Environmental Management*. 45, 563-576.

Hillebrand, H. 2009. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. *Journal of Phycology*. 45, 798-806.

Hodoki, Y. 2005. Bacteria biofilm encourages algal immigration onto substrata in lotic systems. *Hydrobiologia*. 539: 27-34.

Hoyle, J., Hicks, M. and Kilroy, C. 2013. Relating river geomorphology to the abundance of periphyton in New Zealand Rivers. *Geophysical Research Abstracts*. 15, 6515.

Hoyle, J., Kilroy, C., and Hicks, M. 2015. Integrating understanding of hydrology, geomorphology and ecology to better predict periphyton abundance in New Zealand Rivers. *Geophysical Research Abstracts*. 17, 1679.

Jury, M.R. 1998. Statistical analysis and prediction of KwaZulu-Natal climate. *Theoretical and applied climatology*. 60, 1-10.

Karr, J.R. 1995. Ecological integrity and ecological health are not the same. *Engineering within ecological constraints*. P. Schulze (ed), pp. 97-109. National Academic Press, Washington, DC.

King, J. and Schael, D. 2001. Assessing the ecological relevance of a spatially-nested geomorphological hierarchy for river management. Water Research Commission Report No. 754/1/10. Water Research Commission, Pretoria, South Africa.

Kleynhans, C.J., C. Thirion and J. Moolman. 2005. *A Level I River Eco-Region Classification System for South Africa, Lesotho and Swaziland.* Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs, Pretoria, South Africa. 117pp.

Larned, S.T. 2010. A prospectus for periphyton: Recent and future ecological research. *Journal of the North America Benthological Society*. 29(1): 182-206.

Larned, S.T., Nikora, V. I. and Biggs, B.J.F. 2004. Mass-transfer-limited nitrogen and phosphorus uptake by stream periphyton: A conceptual model and experimental evidence. *Limnology and Oceanography* 49:1992-2000.

Law, R.J. 2011. A review of the function and uses of, and factors affecting, stream phytobenthos. *Freshwater Reviews* 4: 135-166.

Lear, G., Anderson, M.J., Smith, J.P., Boxen, K. and Lewis, G.D. 2008. Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms. *Federation of European Microbiological Societies Microbiology Ecology*. 65: 463-473.

Lepori, F. and Malmqvist, B. 2007. Predictable changes in trophic community structure along a spatial disturbance gradient in streams. *Freshwater Biology*. 52, 2184- 2195.

Lohman, K., Jones, J.R. and Perkins, B.D. 1992. Effects of nutrient enrichment and flood frequency on periphyton biomass in Northern Ozark Streams. *Canadian Journal of Fisheries and Aquatic Sciences* 49:1198-1205.

Lowe, R.L. and Pan, Y. 1996. Benthic algal communities as biological monitors. Pages 121-148 *in* R.H. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater benthic ecosystems*. Academic Press, San Diego.

Lutscher, F., McCauley, E. and Lewis, M.A. 2007. Spatial patterns and coexistence mechanisms in systems with unidirectional flow. *Theoretical Population Biology*. 71: 267-277.

Luttenton, M.R. and Lowe, R. L. 2008. Response of a lentic periphyton community to nutrient enrichment at low N: P ration. *Journal of Phycology*. 42: 1007-1015.

Maasri, A., Fayolle, S. and Franquet, E. 2010. Algal foraging by rheophilic chironomid (*Eukiefferiella claripennis* Lundbeck) extensively encountered in high nutrient enriched streams. *Fundam. Application. Limnology.* 177(2), 151-159.

Matthaei, C.D., Guggelberger, C. and Huber, H. 2003. Local disturbance history affects patchiness of benthic river algae. *Freshwater Biology*. 48: 1514-1526.

Matthews, M.W. 2014. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sensing of Environment 155: 161-177.

Molinos, J.G. and Donohue, I. 2010. Interactions among temporal patterns determine the effects of multiple stressors. *Ecological Applications*. 20(7): 1794-1800.

Montuelle, B., Dorigo, U., Bérard, A., Volat, B., Bouchez, A., Tlili, A., Gouy, V. and Pesce, S. 2010. The periphyton as a multimetric bio indicator for assessing the impact of land use on rivers: An overview of the Ardières-Morcille experimental watershed (France). *Hydrobiologia*. 657, 123-141.

Mulholland, P.J. and Webster, J. R. 2010. Nutrient dynamics in streams and the role of J-NABS. *Journal of the North American Benthological Society*, 29:100-117.

Murdock, J.N., Shields, F.D. and Lizotte, R.E. 2013. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. *Ecotoxicology*. 22, 215-230.

Nel, W. 2009. Rainfall trends in the KwaZulu-Natal Drakensberg region of South Africa during the twentieth century. *International Journal of Climatology*. 29, 1634-1641.

Olden, J.D. and Poff, N.L. 2003. Redundancy and the choice of hydrologic indices for characterising stream flow regimes. *River Research and Application*. 19: 101-121.

Peperzak, L. 2003. Climate change and harmful algal blooms in the North Sea. Acta Oecologica 24: 130-144.

Peters, L., Hillebrand, H. and Traunspurger, W. 2007. Spatial variation of grazer effects on epilithic meiofauna and algae. *Journal of the North American Benthological Society*. 26(1), 78-91.

Peterson, B.J., Deegan, L., Helefrich, J. Hobbie, J.E., Huller, M., Moller, B.I., Ford, T.E., Hershey, A. Hiltner, A., Kipphut, G., Lock, A. M., Fiebig, D.M., McKinley, V., Miller, M.C., Vestal, J.R., Ventullo, R. and Volk, G. 1993. Biological responses of a tundra river to fertilization. *Ecology*, 74:653-672.

Peterson, C. G. and Stevenson, R.J. 1992. Resistance and recovery of lotic algal communities: Importance of disturbance timing, disturbance history and current. *Ecology*, 73: 1445-1461.

Peterson, C.G. 1996. Response of benthic algal communities to natural physical disturbance. Pages 375-402 *in* R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press Inc.

Peterson, C.G. and Grimm, N.B. 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. *Journal of the North American Benthological Society*, 11:20-36.

Peterson, C.G., Hoegland, K.D. and Stevenson. R.J. 1990. Timing of wave disturbance and the resistance and recovery of a freshwater epilithic microalgal community. *Journal of the North American Benthological Society* 9:54-67.

Poff, N.L. and Ward, J.V. 1995. Herbivory under different flow regimes: a field experiment and test of a model with a benthic stream insect. *Oikos* 71:179-188.

Poff, N.L., Voelz, N.J. and Ward, J.V. 1990. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. *Journal of the North American Benthological Society*, 9:303-318.

Quinn, J.M., Cooper, A. B., Davies-Colley, R.J., Rutherford, J.C. and Williamson, R.B. 1997. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. *New Zealand Journal of Marine and Freshwater Research*, 31:579-597.

Rader, R.B., Voelz, N.J. and Ward, J.V. 2008. Post-flood recovery of a macro-invertebrate community in a regulated river: Resilience of an anthropogenically altered ecosystem. *Restoration Ecology*. 16, 24-33.

Robinson, C.T., Uehlinger, U. and Monaghan, M.T. 2004. Stream ecosystem response to multiple experimental floods from a reservoir. *River Research and Application*. 20, 359-377.

Rosa, J., Ferreira, V., Canhoto, C. and Craça, M.A.S. 2013. Combined effects of water temperature and nutrients concentration on periphyton respiration- Implications of global change. *International Review of Hydrobiology*. 98, 14-23.

Rosemond, A.D., Mulholland, P.J. and Brawley, S.H. 2000. Seasonally shifting limitation of stream periphyton: Response of algal populations and assemblage biomass and productivity to variation in light, nutrients and herbivores. *Canadian Journal of Fisheries and Aquatic Sciences*. 57(1): 66-75.

Rutherford, J.C., Scarsbrook, M.R. and Broekhuizen, N. 2000. Grazer control of stream algae: Modelling temperature and flood effects. *Journal of Environmental Engineering*.

Ryder, D.S. 2004. Response of epixylic biofilm metabolism to water level variability in a regulated floodplain river. *Journal of the North American Benthological Society*. 23(2): 214-223.

Sabater, S. and Sabater, F. 1992. Longitudinal changes of benthic algal biomass in a Mediterranean river during two high production periods. *Archiv fur Hydrobiologie* 124:475-487.

Schael, D. M. 2005. *Distribution of physical habitats and benthic macro invertebrates in Western Cape headwater streams at multiple spatial and temporal scales.* PhD thesis, University of

Schwendel, A.C., Death, R.G. and Fuller, I.C. 2010. The assessment of shear stress and bed stability in stream ecology. *Freshwater Biology*. 55: 261-281.

Stanley, E.H., Powers, S., and Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: concepts, contributions and coming challenges. *Journal of the North American Benthological Society*, 29:67-83.

Steinman, A.D. 1996. Effects of grazers on freshwater benthic algae. Pages 341- 366 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

Stevenson, R. J. 1996. An introduction to algal ecology in freshwater benthic habitats. Pages 3- 26 in R.J. Stevenson, M.L. Bothwell and R.L. Lowe, editors. *Algal Ecology: Freshwater Benthic Ecosystems*. Academic Press, San Diego.

Stevenson, R.J. 1997. Scale-dependent determinants and consequences of benthic algal heterogeneity. *Journal of the North American Benthological Society*, 16:248-262.

Stevenson, R.J., Bothwell, M.L. and Lowe, R.L. editors. (1996). *Algal ecology: Freshwater benthic ecosystems*. Academic Press, San Diego. pp.

Taylor, B.W., McIntosh, A.R. and Peckarsky, B.L. 2002. Reach-scale manipulations show invertebrate grazers depress algal resources in streams. *Limnology and Oceanography*. 47(3): 893-899.

Taylor, J.C., Harding, W.R. and Archibald, C.G.M. 2007. *A Methods Manual for the Collection, Preparation and Analysis of Diatom Samples. Version 1.0.* WRC Report TT 281/07. Water Research Commission, Pretoria. 49pp.

Taylor, J.C., Janse van Vuuren, M.S. and Pieterse, A.J.H. 2007(b). The application and testing of diatom-based indices in the Vaal and Wilge Rivers, South Africa. *Water SA* 33(1): 51-60.

Taylor, J.C., Prygiel, J., Vosloo, A. de la Rey, P.A. and van Rensburg, L. 2007. Can diatom-based pollution indicies be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. *Hydrobiologia* 592: 455- 464.

Tornes, E. and Sabater, S. 2010. Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream. *Marine and Freshwater Research* 61:441-450.

Uehlinger, U. 1991. Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). *Archiv fur Hydrobiologie*, 123:219-237.

Uehlinger, U., Kawecka, B and Robinson, C.T. 2003. Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spol). *Aquatic Sciences* **65**:199-209.

Venter, A., Janse Van Vuuren, S. and Pieterse, A.J.H. 2003. *Oscillatoria simplicissima*: An autecological study. *Water SA*. 29: 105-112.

Villanueva, V.D. and Modenutti, B. 2004. Experimental analysis of grazing by the mayfly *Meridialaris chiloeensis* on different successional stages of stream periphyton. *Internat Rev Hydrobiologia*. 89, 263-277.

Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E. and Nobilis, F. 2008. Recent advances in stream and river temperature research. *Hydrological Processes*. 22: 902-918.

Webb, J.A., Downes, B.J., Lake, P.S. and Glaister, A. 2006. Quantifying abrasion of stable substrata in streams: A new disturbance index for epilithic biota. *Hydrobiologia*. 559: 443-453.

Wepener, V. 2008. Application of active biomonitoring within an integrated water resource management framework in South Africa. *South African Journal of Science* 104: 367-373.

White, P.S. and Pickett, S.T.A. 1985. Natural disturbance and patch dynamics: an introduction. Pages 3-13 *in* S.T.A. Pickett and P.S. White, editors. *The ecology of disturbance and patch dynamics*. Academic Press, Orlando.

Whitehead, P.G., Wilby, R.L., Battarbee, R.W., Kernan, M. and Wade, A.J. 2009. A review of the potential impacts of climate change on surface water quality. Hydrological Sciences 54: 101-123.

Yang, G.Y., Tang, T. and Dudgeon, D. 2009. Spatial and seasonal variations on benthic algal assemblages. *Hydrobiologia* 632: 189- 200.

Department of Water Affairs and Forestry,1996. South African Water Quality Guidelines (Second Edition). Volume 1: Domestic Use.

AFDM calculations for each month at each sampling site

Sample	Tot vol	Filtered	Pre-h	eat bare we	ight(g)	Post heat ba	re weight(g)	Dry weig	ht(g)	Ash we	ight(g)			Total					Total		Realised	AFDM	Inorganic	Total matter
Sample	ml	ml f	oil	Foil+Filter	Filter	Foil+Filter	filter	Foil+Filter Fi	ilter	Foil+Filter	filter	AFDM (g)	Inorganic(g)	Matter (g)	х	у	z	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1JUN14	126	15	1.2761	1.3639	0.0878	1.3679	0.0918	1.375	0.0989	1.3777	0.1016	-0.02268	0.08232	0.05964	115	85	25	14775	0.0240669	0%	0.0240669	dry <ash< td=""><td>3.4204655</td><td>2.478092318</td></ash<>	3.4204655	2.478092318
ED2JUN14	191	15	1.2693	1.3587	0.0894	1.3608	0.0915	1.3663	0.097	1.3652	0.0959	0.0140067	0.05602667	0.0700333	140	110	55	29150	0.0441919	50%	0.022096	0.63390199	2.535608	3.169509948
ED3JUN14	246	15	1.2568	1.3462	0.0894	1.341	0.0842	1.3494	0.0926	1.3473	0.0905	0.03444	0.10332	0.13776	180	100	55	33400	0.0501419	40%	0.0300851	1.144751196	3.4342536	4.579004784
ED4JUN14	347	15	1.2548	1.3439	0.0891	1.3391	0.0843	1.3423	0.0875	1.3403	0.0855	0.0462667	0.02776	0.0740267	110	65	45	15025	0.0244169	40%	0.0146501	3.158104064	1.8948624	5.052966502
ED5JUN14	355	15	1.2437	1.335	0.0913	1.3312	0.0875	1.3373	0.0936	1.3358	0.0921	0.0355	0.10886667	0.1443667	190	95	35	28025	0.0426169	20%	0.0340935	1.041253587	3.1931777	4.234431255
TAN1JUN14	133	15	1.2596	1.3497	0.0901	1.3448	0.0852	1.3514	0.0918	1.3503	0.0907	0.0097533	0.04876667	0.05852	120	85	30	16350	0.0262719	30%	0.0183903	0.530351186	2.6517559	3.182107118
TAN2JUN14	165	15	1.2559	1.3446	0.0887	1.341	0.0851	1.3449	0.089	1.343	0.0871	0.0209	0.022	0.0429	140	130	5	19550	0.0307519	5%	0.0292143	0.715402951	0.7530557	1.468458688
TAN3JUN14	131	15	1.2574	1.3452	0.0878	1.3414	0.084	1.3515	0.0941	1.3492	0.0918	0.0200867	0.06812	0.0882067	190	160	90	61900	0.0900419	50%	0.045021	0.446162657	1.5130734	1.959236015
TAN4JUN14	319	15	1.2699	1.3608	0.0909	1.3565	0.0866	1.3624	0.0925	1.3739	0.104	-0.2445667	0.37004	0.1254733	130	115	10	17400	0.0277419	0%	0.0277419	dry <ash< td=""><td>13.338668</td><td>4.522881754</td></ash<>	13.338668	4.522881754
TAN5JUN14	326	15	1.262	1.3499	0.0879	1.3463	0.0843	1.3554	0.0934	1.351	0.089	0.0956267	0.10214667	0.1977733	165	95	20	20875	0.0326069	20%	0.0260855	3.665890757	3.9158379	7.581728612
PET1JUN14	157	15	1.2685	1.356	0.0875	1.3531	0.0846	1.4422	0.1737	1.419	0.1505	0.2428267	0.68975333	0.93258	135	110	40	24650	0.0378919	0%	0.0378919	6.408405666	18.203187	24.61159245
PET2JUN14	177	15	1.2474	1.3349	0.0875	1.3549	0.1075	1.3907	0.1433	1.3796	0.1322	0.13098	0.29146	0.42244	156	95	550	152870	0.2173999	0%	0.2173999	0.602484178	1.340663	1.943147168
PET3JUN14	309	15	1.2723	1.3593	0.087	1.3329	0.0606	1.3792	0.1069	1.367	0.0947	0.25132	0.70246	0.95378	195	120	60	42300	0.0626019	0%	0.0626019	4.014574638	11.221065	15.23563981
PET4JUN14	207	15	1.2668	1.3544	0.0876	1.3529	0.0861	1.419	0.1522	1.3973	0.1305	0.29946	0.61272	0.91218	185	110	65	39525	0.0587169	0%	0.0587169	5.100064888	10.435156	15.53522069
PET5JUN14	289	15	1.2649	1.353	0.0881	1.3491	0.0842	1.3662	0.1013	1.3606	0.0957	0.1078933	0.22156667	0.32946	170	150	35	36700	0.0547619	10%	0.0492857	2.189140287	4.4955559	6.684696233
YO1JUN14	148	15	1.2597	1.348	0.0883	1.3442	0.0845	1.3722	0.1125	1.37	0.1103	0.0217067	0.25456	0.2762667	140	125	50	30750	0.0464319	5%	0.0441103	0.492099673	5.7709871	6.263086747
YO2JUN14	171	15	1.2424	1.3294	0.087	1.3265	0.0841	1.4028	0.1604	1.3656	0.1232	0.42408	0.44574	0.86982	130	90	50	22700	0.0351619	0%	0.0351619	12.0607817	12.676789	24.73757106
YO3JUN14	292	15	1.2464	1.3354	0.089	1.3316	0.0852	1.3954	0.149	1.3516	0.1052	0.85264	0.38933333	1.2419733	165	110	60	34650	0.0518919	0%	0.0518919	16.43108077	7.5027766	23.93385737
YO4JUN14	284	15	1.2574	1.345	0.0876	1.3436	0.0862	1.3719	0.1145	1.3591	0.1017	0.2423467	0.29346667	0.5358133	125	60	45	15825	0.0255369	5%	0.0242601	9.989534923	12.096702	22.08623737
YO5JUN14	313	15	1.272	1.365	0.093	1.3617	0.0897	1.3787	0.1067	1.3715	0.0995	0.15024	0.20449333	0.3547333	155	80	40	21800	0.0339019	30%	0.0237313	6.330871468	8.6170195	14.94789097

			Pre-h	neat bare we	eight(g)	Post heat ba	are weight(g)	Dry we	ight(g)	Ash we	eight(g)			Total				1	「otal		Realised	AFDM	Inorganic	Total matter
Sample	Tot vol	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	filter	Foil+Filter	filter	Foil+ Filter	filter	AFDM (g)	Inorganic(g	Matter (g)	x	y	z	xy*xz*yz s	tone area	embedded	stone area	g.m2	g.m2	g.m2
ED1JUL14	359	15	1.2674	1.3567	0.0893	1.356	0.0886	1.3772	0.1098	1.3756	0.1082	0.0382933	0.4690933	0.5073867	185	120	32	31960	0.0481259	20%	0.0385007	0.994613434	12.18401457	13.178628
ED2JUL14	295	15	1.268	1.3568	0.0888	1.3555	0.0875	1.366	0.098	1.3652	0.0972	0.0157333	0.1907667	0.2065	185	110	45	33625	0.0504569	70%	0.0151371	1.039390935	12.60261508	13.64200602
ED3JUL14	330	15	1.2473	1.3377	0.0904	1.3364	0.0891	1.3499	0.1026	1.349	0.1017	0.0198	0.2772	0.297	135	115	75	34275	0.0513669	40%	0.0308201	0.642437056	8.994118781	9.636555837
ED4JUL14	379	15	1.2513	1.3429	0.0916	1.342	0.0907	1.3456	0.0943	1.3455	0.0942	0.0025267	0.0884333	0.09096	5 155	114	50	31120	0.0469499	30%	0.0328649	0.07688033	2.690811553	2.767691883
ED5JUL14	368	15	1.2654	1.354	0.0886	1.3529	0.0875	1.3637	0.0983	1.3603	0.0949	0.0834133	0.1815467	0.26496	5 140	110	55	29150	0.0441919	50%	0.022096	3.775050782	8.216286997	11.99133778
TAN1JUL1	. 378	15	1.2446	1.333	0.0884	1.332	0.0874	1.3361	0.0915	1.3352	0.0906	0.02268	0.08064	0.10332	175	120	45	34275	0.0513669	20%	0.0410935	0.551911834	1.962353189	2.514265023
TAN2JUL1	. 384	15	1.2684	1.3574	0.089	1.3561	0.0877	1.3608	0.0924	1.3602	0.0918	0.01536	0.10496	0.12032	150	95	20	19150	0.0301919	10%	0.0271727	0.565273026	3.862699009	4.427972035
TAN3JUL1	. 361	15	1.2662	1.3532	0.087	1.3521	0.0859	1.3656	0.0994	1.3649	0.0987	0.0168467	0.3080533	0.3249	130	85	67	25455	0.0390189	0%	0.0390189	0.431756576	7.894977391	8.326733967
TAN4JUL1	362	15	1.2598	1.3501	0.0903	1.349	0.0892	1.3541	0.0943	1.3534	0.0936	0.0168933	0.1061867	0.12308	3 140	110	30	22900	0.0354419	0%	0.0354419	0.476648637	2.996077148	3.472725785
TAN5JUL1	350	15	1.2635	1.3522	0.0887	1.3508	0.0873	1.3628	0.0993	1.362	0.0985	0.0186667	0.2613333	0.28	150	120	60	34200	0.0512619	30%	0.0358833	0.520204414	7.282861801	7.803066215
PET1JUL1	259	15	1.2746	1.3616	0.087	1.3608	0.0862	1.385	0.1104	1.3779	0.1033	0.1225933	0.29526	0.4178533	130	70	50	19100	0.0301219	10%	0.0271097	4.52211895	10.89130057	15.41341952
PET2JUL1	4 325	15	1.2658	1.3549	0.0891	1.3543	0.0885	1.3851	0.1193	1.3755	0.1097	0.208	0.4593333	0.6673333	215	150	30	43200	0.0638619	40%	0.0383171	5.428380093	11.98767271	17.4160528
PET3JUL1	4 335	15	1.2625	1.3502	0.0877	1.3495	0.087	1.365	0.1025	1.3664	0.1039	-0.0312667	0.3774333	0.3461667	150	90	10	15900	0.0256419	0%	0.0256419	dry <ash< td=""><td>14.71939807</td><td>13.50003965</td></ash<>	14.71939807	13.50003965
PET4JUL1	4 330	15	1.2628	1.3525	0.0897	1.3516	0.0888	1.3627	0.0999	1.3576	0.0948	0.1122	0.132	0.2442	200	140	65	50100	0.0735219	30%	0.0514653	2.180108434	2.564833452	4.744941886
PET5JUL1	4 311	15	1.2475	1.3351	0.0876	1.3335	0.086	1.371	0.1235	1.3622	0.1147	0.1824533	0.5950467	0.7775	210	160	50	52100	0.0763219	80%	0.0152644	11.95288203	38.98269479	50.93557681
YO1JUL14	361	15	1.2462	1.3333	0.0871	1.3325	0.0863	1.3548	0.1086	1.3456	0.0994	0.2214133	0.3152733	0.5366867	110	80	60	20200	0.0316619	0%	0.0316619	6.993052638	9.957498866	16.9505515
YO2JUL14	198	15	1.2612	1.3499	0.0887	1.349	0.0878	1.4022	0.141	1.3877	0.1265	0.1914	0.51084	0.70224	240	115	40	41800	0.0619019	10%	0.0557117	3.435543443	9.169346983	12.60489043
YO3JUL14	317	15	1.2664	1.354	0.0876	1.3531	0.0867	1.3704	0.104	1.3619	0.0955	0.1796333	0.1859733	0.3656067	175	70	100	36750	0.0548319	40%	0.0328991	5.460122463	5.652832668	11.11295513
YO4JUL14	320	15	1.2652	1.3526	0.0874	1.3515	0.0863	1.3931	0.1279	1.3741	0.1089	0.4053333	0.4821333	0.8874667	160	90	50	26900	0.0410419	20%	0.0328335	12.34510748	14.68418048	27.02928796
YO5JUL14	311	15	1.263	1.3523	0.0893	1.3505	0.0875	1.3981	0.1351	1.3826	0.1196	0.3213667	0.66554	0.9869067	210	120	110	61500	0.0894819	50%	0.044741	7.182830643	14.87541056	22.0582412

			Pre-h	neat bare we	ight(g)	ost heat ba	e weight(Dry we	ight(g)	Ash we	ight(g)			Total						Total		Realised	AFDM	In	organic	Total matter
Sample	Volume	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filter	Filter	AFDM (g)	Inorganic(g	Matter (g)	X (m)	y (m)	Z (m)	×y	y*xz*yz	stone area	embedded	Stone area	g.m2	g.m	2	g.m2
ED1EDUG1	325	5 1	5 1.267	5 1.3575	0.0899	1.3555	0.0879	1.3659	0.0983	1.3628	0.0952	0.0671667	0.1581667	0.2253333	170	130)	70	43100	0.0637219	40%	0.038233	1 1.7567	6564 4.1	36899733	5.893665373
ED2EDUG1	515	5 1	5 1.268	4 1.3572	0.0888	1.3564	0.088	1.3625	0.0941	1.3592	0.0908	0.1133	0.0961333	0.2094333	195	130)	60	44850	0.0661719	10%	0.059554	7 1.90245	2384 1.6	14202023	3.516654406
ED3EDUG1	413	1 1	5 1.250	7 1.3411	0.0904	1.3377	0.087	1.346	0.0953	1.3441	0.0934	0.05206	0.17536	0.22742	145	95	5	90	35375	0.0529069	50%	0.026453	5 1.96798	35272 6.6	29003022	8.596988295
ED4EDUG1	395	5 1	5 1.254	5 1.3437	0.0892	1.3393	0.0848	1.3474	0.0929	1.3425	0.088	0.1290333	0.0842667	0.2133	175	115	5	50	34625	0.0518569	50%	0.025928	5 4.97651	5501 3.2	49969307	8.226484807
ED5EDUG1	423	1 1	5 1.269	5 1.3597	0.0902	1.3549	0.0854	1.3585	0.089	1.3561	0.0866	0.06736	0.03368	0.10104	130	80)	45	19850	0.0311719	0%	0.031171	2.16092	20573 1.0	80460286	3.241380859
TAN1AUG	313	3 1	5 1.248	1.3362	0.088	1.3313	0.0831	1.3361	0.0879	1.3342	0.086	0.0396467	0.0605133	0.10016	110	105	5	75	27675	0.0421269	0%	0.042126	0.94112	4713 1.4	36453509	2.377578222
TAN2AUG	312	2 1	5 1.271	9 1.4506	0.1787	1.4451	0.1732	1.4516	0.1797	1.4481	0.1762	0.0728	0.0624	0.1352	145	125	5	35	27575	0.0419869	0%	0.041986	9 1.73387	4137 1.4	86177832	3.220051969
TAN3AUG	474	4 1	5 1.269	1 1.3589	0.0898	1.3543	0.0852	1.3657	0.0966	1.3618	0.0927	0.12324	0.237	0.36024	250	160)	50	60500	0.0880819	10%	0.079273	7 1.55461	3755 2.9	89641837	4.544255592
TAN4AUG	377	7 1	5 1.262	5 1.3524	0.0898	1.3472	0.0846	1.3526	0.09	1.3499	0.0873	0.06786	0.06786	0.13572	180	100)	45	30600	0.0462219	0%	0.046221	9 1.46813	35235 1.4	68135235	2.936270469
TAN5AUG	583	3 1	5 1.266	5 1.3548	0.0883	1.3498	0.0833	1.3529	0.0864	1.352	0.0855	0.03498	0.0855067	0.1204867	110	75	5	20	11950	0.0201119	20%	0.016089	5 2.17408	5989 5.3	14432417	7.488518406
PET1AUG1	509	9 1	5 1.277	5 1.4545	0.1769	1.4489	0.1713	1.4647	0.1871	1.4595	0.1819	0.1764533	0.3596933	0.5361467	165	101	L	55	31295	0.0471949	10%	0.042475	4 4.15424	6736 8.4	68272192	12.62251893
PET2AUG1	44(0 1	5 1.269	3 1.358	0.0887	1.3531	0.0838	1.3742	0.1049	1.3651	0.0958	0.2669333	0.352	0.6189333	160	120)	78	41040	0.0608379	0%	0.060837	4.38761	5834 5.7	85867034	10.17348287
PET3AUG1	473	3 1	5 1.265	1.3536	0.0884	1.3492	0.084	1.3664	0.1012	1.3621	0.0969	0.1355933	0.40678	0.5423733	120	95	5	26	16990	0.0271679	0%	0.027167	9 4.99093	89062 14.	97281718	19.96375625
PET4AUG1	428	8 1	5 1.26	4 1.3508	0.0868	1.3467	0.0827	1.3558	0.0918	1.3518	0.0878	0.1141333	0.14552	0.2596533	130	95	5	50	23600	0.0364219	40%	0.021853	1 5.22274	2971 6.6	58997288	11.88174026
PET5AUG1	386	5 1	5 1.249	5 1.4285	0.179	1.4237	0.1742	1.4376	0.1881	1.4336	0.1841	0.1029333	0.25476	0.3576933	175	85	5	65	31775	0.0478669	0%	0.047866	2.15040	7345 5.3	22258178	7.472665523
YO1AUG14	500	0 1	5 1.24	3 1.4227	0.1747	1.4193	0.1713	1.4288	0.1808	1.4229	0.1749	0.1966667	0.12	0.3166667	205	75	5	55	30775	0.0464669	0%	0.046466	9 4.23240	3424 2.5	82483445	6.814886869
YO2AUG14	559	9 1	5 1.263	5 1.4416	0.1781	1.4364	0.1729	1.4578	0.1943	1.4482	0.1847	0.35776	0.4397467	0.7975067	178	135	5	83	50009	0.0733945	10%	0.066055	1 5.4160	8855 6.	65727551	12.07336406
YO3AUG14	533	1 1	5 1.269	4 1.3576	0.0882	1.3531	0.0837	1.3635	0.0941	1.3589	0.0895	0.16284	0.20532	0.36816	150	135	5	60	37350	0.0556719	0%	0.055671	2.92499	4477 3.6	88036514	6.61303099
YO4AUG14	429	9 1	5 1.267	3 1.3553	0.088	1.3529	0.0856	1.3604	0.0931	1.3551	0.0878	0.15158	0.06292	0.2145	135	93	3	90	33075	0.0496869	0%	0.049686	3.05070	3505 1.2	66329757	4.317033262
YO5AUG14	583	1 1	5 1.261	1.3515	0.0897	1.3473	0.0855	1.37	0.1082	1.3627	0.1009	0.2827533	0.5964933	0.8792467	123	92	2	69	26151	0.0399933	30%	0.027995	3 10.1000	2509 21.	30690224	31.40692733
								1				_														
-	_		Pre-he	at bare wei	ght(g)	ost heat bai	e weight(Dry we	eight(g)	Ash w	eight(g)			Total						Total		Re	alised	AFDM	Inorgan	ic otal matte
Sample	Tot vol	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filte	r Filter	AFDM (g) Inorganic(g) Matter	(g)X (m)	y (m)	Z	(m)	xy*x	z*yz stone	e area em	bedded st	one area	g.m2	g.m2	g.m2
ED1SEP14	466	15	1.2671	1.3556	0.0885	1.3552	0.0881	1.3725	0.1054	1.366	5 0.099	94 0.186	4 0.3510533	333 0.5374	53 2	220	120		65 4	18500 0.07	/12819	10% (.0641537	2.905522	5.4720	6 8.377588
ED2SEP14	466	15	1.2677	1.3562	0.0885	1.3553	0.0876	1.36	0.0923	1.357	4 0.089	97 0.08077	3 0.065	524 0.1460	13 1	170	35		30 1	12100 0.02	203219	20% (.0162575	4.968367	4.0129	12 8.98128
ED3SEP14	414	15	1.2468	1.3357	0.0889	1.3353	0.0885	1.3402	0.0934	1.338	2 0.092	14 0.055	2 0.080	0.135	24 1	145	90		47 2	24095 0.03	371149	0% 0	.0371149	1.487273	3 2.15654	46 3.64382
ED4SEP14	442	15	1.2507	1.3421	0.0914	1.3417	0.091	1.3516	0.1009	1.346	2 0.095	55 0.1591	2 0.13	326 0.291	72 1	190	110		40 3	82900 0.04	494419	40% 0	.0296651	5.363872	4.4698	93 9.833764

ED1SEP14	466	15	1.2671	1.3556	0.0885	1.3552	0.0881	1.3725	0.1054	1.3665	0.0994	0.1864	0.351053333	0.537453	220	120	65	48500	0.0712819	10%	0.0641537	2.905522	5.472066	8.377588
ED2SEP14	466	15	1.2677	1.3562	0.0885	1.3553	0.0876	1.36	0.0923	1.3574	0.0897	0.080773	0.06524	0.146013	170	35	30	12100	0.0203219	20%	0.0162575	4.968367	4.012912	8.98128
ED3SEP14	414	15	1.2468	1.3357	0.0889	1.3353	0.0885	1.3402	0.0934	1.3382	0.0914	0.0552	0.08004	0.13524	145	90	47	24095	0.0371149	0%	0.0371149	1.487273	2.156546	3.64382
ED4SEP14	442	15	1.2507	1.3421	0.0914	1.3417	0.091	1.3516	0.1009	1.3462	0.0955	0.15912	0.1326	0.29172	190	110	40	32900	0.0494419	40%	0.0296651	5.363872	4.469893	9.833764
ED5SEP14	421	15	1.2655	1.3534	0.0879	1.35	0.0845	1.3662	0.1007	1.3624	0.0969	0.106653	0.348026667	0.45468	135	110	75	33225	0.0498969	40%	0.0299381	3.562457	11.62486	15.18732
TAN1SEP1	380	15	1.2444	1.3343	0.0899	1.3338	0.0894	1.3403	0.0959	1.3389	0.0945	0.035467	0.1292	0.164667	140	110	10	17900	0.0284419	10%	0.0255977	1.385541	5.047326	6.432867
TAN2SEP1	381	15	1.2675	1.356	0.0885	1.3561	0.0886	1.3603	0.0928	1.3576	0.0901	0.06858	0.0381	0.10668	110	85	35	16175	0.0260269	20%	0.0208215	3.293708	1.829838	5.123545
TAN3SEP1	378	15	1.2652	1.3545	0.0893	1.3556	0.0904	1.3583	0.0931	1.3561	0.0909	0.05544	0.0126	0.06804	130	55	40	14550	0.0237519	40%	0.0142511	3.890215	0.88414	4.774355
TAN4SEP1	470	15	1.2595	1.3496	0.0901	1.3488	0.0893	1.3536	0.0941	1.3522	0.0927	0.043867	0.106533333	0.1504	160	75	30	19050	0.0300519	30%	0.0210363	2.085281	5.064255	7.149536
TAN5SEP1	373	15	1.2629	1.35	0.0871	1.3346	0.0717	1.3686	0.1057	1.3652	0.1023	0.084547	0.76092	0.845467	130	80	65	24050	0.0370519	20%	0.0296415	2.852305	25.67075	28.52305
PET1SEP14	431	15	1.274	1.3622	0.0882	1.3611	0.0871	1.3738	0.0998	1.3704	0.0964	0.097693	0.26722	0.364913	125	110	50	25500	0.0390819	10%	0.0351737	2.777453	7.597151	10.3746
PET2SEP14	515	15	1.2655	1.3546	0.0891	1.3538	0.0883	1.38	0.1145	1.3736	0.1081	0.219733	0.6798	0.899533	100	75	35	13625	0.0224569	30%	0.0157198	13.9781	43.24474	57.22284
PET3SEP14	425	15	1.2631	1.3526	0.0895	1.3513	0.0882	1.3706	0.1075	1.364	0.1009	0.187	0.359833333	0.546833	155	150	50	38500	0.0572819	20%	0.0458255	4.080696	7.852248	11.93294
PET4SEP14	405	15	1.2628	1.3535	0.0907	1.3528	0.09	1.3759	0.1131	1.37	0.1072	0.1593	0.4644	0.6237	90	75	60	16650	0.0266919	10%	0.0240227	6.631225	19.33171	25.96293
PET5SEP14	445	15	1.2473	1.3353	0.088	1.3527	0.1054	1.364	0.1167	1.354	0.1067	0.296667	0.038566667	0.335233	180	145	70	48850	0.0717719	0%	0.0717719	4.133465	0.537351	4.670816
YO1SEP14	565	15	1.2455	1.3332	0.0877	1.3329	0.0874	1.3479	0.1024	1.342	0.0965	0.222233	0.342766667	0.565	155	150	40	35450	0.0530119	0%	0.0530119	4.192141	6.465844	10.65798
YO2SEP14	475	15	1.26	1.3496	0.0896	1.3492	0.0892	1.3581	0.0981	1.3539	0.0939	0.133	0.148833333	0.281833	205	205	130	95325	0.1368369	10%	0.1231532	1.079956	1.208522	2.288477
YO3SEP14	472	15	1.2661	1.3531	0.087	1.3529	0.0868	1.3624	0.0963	1.3596	0.0935	0.088107	0.210826667	0.298933	310	275	115	152525	0.2169169	40%	0.1301501	0.676962	1.619873	2.296835
YO4SEP14	474	15	1.2647	1.3526	0.0879	1.3515	0.0868	1.3612	0.0965	1.3575	0.0928	0.11692	0.1896	0.30652	225	215	70	79175	0.1142269	10%	0.1028042	1.137308	1.844282	2.98159
YO5SEP14	390	15	1.2621	1.35	0.0879	1.3488	0.0867	1.3657	0.1036	1.3597	0.0976	0.156	0.2834	0.4394	305	110	40	50150	0.0735919	50%	0.036796	4.239597	7.701935	11.94153
DRA1SEP1	415	15	1.269	1.3576	0.0886	1.353	0.084	1.3718	0.1028	1.3654	0.0964	0.177067	0.343066667	0.520133	90	55	20	7850	0.0143719	30%	0.0100603	17.60048	34.10094	51.70142
DRA2SEP1	440	15	1.267	1.3547	0.0877	1.3495	0.0825	1.3647	0.0977	1.3593	0.0923	0.1584	0.287466667	0.445867	70	40	25	5550	0.0111519	10%	0.0100367	15.78206	28.64152	44.42359
DRA3SEP1	493	15	1.2568	1.3446	0.0878	1.3393	0.0825	1.3513	0.0945	1.3476	0.0908	0.121607	0.272793333	0.3944	50	45	20	4150	0.0091919	20%	0.0073535	16.5372	37.09697	53.63418
DRA4SEP1	555	15	1.2565	1.3434	0.0869	1.3392	0.0827	1.353	0.0965	1.3478	0.0913	0.1924	0.3182	0.5106	75	40	20	5300	0.0108019	40%	0.0064811	29.68614	49.0963	78.78244
DRA5SEP1	530	15	1.2561	1.3461	0.09	1.3412	0.0851	1.366	0.1099	1.3598	0.1037	0.219067	0.6572	0.876267	70	65	20	7250	0.0135319	50%	0.006766	32.37781	97.13344	129.5113

			Pre-h	eat bare we	ight(g)	ost heat ba	re weight(Dry we	ight(g)	Ash we	ight(g)	1		Total					Total		Realised	AFDM	Inorganic	Total matter
Sample	Tot vol	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filter	Filter	AFDM (g)	Inorganic(Matter (g)	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED10CT14	253	15	1.267	1.3555	0.0885	1.3517	0.0847	1.3615	0.0945	1.3587	0.0917	0.047227	0.118067	0.165293	130	120	35	24350	0.0374719	10%	0.0337247	1.400357977	3.500895	4.901252919
ED2OCT14	375	15	1.2672	1.3554	0.0882	1.3506	0.0834	1.4409	0.1737	1.4254	0.1582	0.3875	1.87	2.2575	225	130	45	45225	0.0666969	40%	0.0400181	9.68310871	46.72881	56.4119172
ED3OCT14	350	15	1.2544	1.3433	0.0889	1.339	0.0846	1.3619	0.1075	1.3546	0.1002	0.170333	0.364	0.534333	170	110	50	32700	0.0491619	0%	0.0491619	3.464742684	7.404108	10.86885034
ED4OCT14	352	15	1.2571	1.3462	0.0891	1.342	0.0849	1.3908	0.1337	1.3757	0.1186	0.354347	0.790827	1.145173	170	105	75	38475	0.0572469	50%	0.0286235	12.37959319	27.62863	40.0082217
ED5OCT14	359	15	1.2686	1.3567	0.0881	1.3524	0.0838	1.3662	0.0976	1.3614	0.0928	0.11488	0.2154	0.33028	170	110	20	24300	0.0374019	30%	0.0261813	4.387859593	8.227237	12.61509633
TAN10CT1	350	15	1.2662	1.3564	0.0902	1.3516	0.0854	1.3718	0.1056	1.3675	0.1013	0.100333	0.371	0.471333	120	105	25	18225	0.0288969	10%	0.0260072	3.857904532	14.26527	18.12317943
TAN2OCT1	348	15	1.2726	1.3604	0.0878	1.3566	0.084	1.374	0.1014	1.3708	0.0982	0.07424	0.32944	0.40368	160	125	55	35675	0.0533269	30%	0.0373288	1.988811329	8.82535	10.8141616
TAN3OCT1	333	15	1.2585	1.3485	0.09	1.3438	0.0853	1.3659	0.1074	1.3592	0.1007	0.14874	0.34188	0.49062	210	135	25	36975	0.0551469	0%	0.0551469	2.697159768	6.199442	8.896601622
TAN4OCT1	345	15	1.2662	1.3537	0.0875	1.3494	0.0832	1.3784	0.1122	1.3719	0.1057	0.1495	0.5175	0.667	140	85	35	19775	0.0310669	0%	0.0310669	4.812195617	16.6576	21.46979583
TAN5OCT1	320	15	1.2608	1.3489	0.0881	1.3445	0.0837	1.3683	0.1075	1.3639	0.1031	0.093867	0.413867	0.507733	150	110	90	39900	0.0592419	40%	0.0355451	2.640773582	11.64341	14.28418437
PET1OCT14	373	15	1.2758	1.3643	0.0885	1.3608	0.085	1.4496	0.1738	1.438	0.1622	0.288453	1.919707	2.20816	175	75	55	26875	0.0410069	40%	0.0246041	11.72377223	78.02373	89.74749778
PET2OCT14	353	15	1.279	1.3659	0.0869	1.3618	0.0828	1.401	0.122	1.3953	0.1163	0.13414	0.788367	0.922507	180	90	55	31050	0.0468519	50%	0.023426	5.726128503	33.65356	39.37969076
PET3OCT14	491	15	1.2534	1.3415	0.0881	1.3375	0.0841	1.4289	0.1755	1.4118	0.1584	0.55974	2.432087	2.991827	175	75	60	28125	0.0427569	50%	0.0213785	26.18244073	113.7635	139.9459113
PET4OCT14	505	15	1.2603	1.3483	0.088	1.3447	0.0844	1.3772	0.1169	1.3686	0.1083	0.289533	0.804633	1.094167	170	100	55	31850	0.0479719	10%	0.0431747	6.706086349	18.63668	25.34276818
PET5OCT14	482	15	1.2525	1.3414	0.0889	1.3381	0.0856	1.361	0.1085	1.3552	0.1027	0.186373	0.54948	0.735853	160	55	30	15250	0.0247319	50%	0.012366	15.07149336	44.43492	59.50641344
YO10CT14	450	15	1.2582	1.3472	0.089	1.3434	0.0852	1.3527	0.0945	1.3616	0.1034	-0.267	0.546	0.279	170	120	35	30550	0.0461519	0%	0.0461519	dry <ash< td=""><td>11.8305</td><td>6.045254908</td></ash<>	11.8305	6.045254908
YO2OCT14	464	15	1.2572	1.3468	0.0896	1.3484	0.0912	1.366	0.1088	1.357	0.0998	0.2784	0.266027	0.544427	160	75	50	23750	0.0366319	10%	0.0329687	8.444370435	8.069065	16.51343552
YO30CT14	513	15	1.2586	1.3473	0.0887	1.3441	0.0855	1.4158	0.1572	1.3492	0.0906	2.27772	0.17442	2.45214	165	130	90	48000	0.0705819	30%	0.0494073	46.10085184	3.530245	49.63109725
YO40CT14	350	15	1.2684	1.3549	0.0865	1.3538	0.0854	1.3653	0.0969	1.3587	0.0903	0.154	0.114333	0.268333	140	100	70	30800	0.0465019	40%	0.0279011	5.519487734	4.097801	9.617289234
YO50CT14	345	15	1.2666	1.3553	0.0887	1.3518	0.0852	1.3751	0.1085	1.3785	0.1119	-0.0782	0.6141	0.5359	180	85	75	35175	0.0526269	10%	0.0473642	dry <ash< td=""><td>12.96549</td><td>11.3144503</td></ash<>	12.96549	11.3144503
DRA10CT1	370	15	1.265	1.3541	0.0891	1.3536	0.0886	1.354	0.089	1.4082	0.1432	-1.33693	1.3468	0.009867	180	180	35	45000	0.0663819	30%	0.0464673	dry <ash< td=""><td>28.9838</td><td>0.212335563</td></ash<>	28.9838	0.212335563
DRA2OCT1	378	15	1.2622	1.3523	0.0901	1.352	0.0898	1.4335	0.1713	1.422	0.1598	0.2898	1.764	2.0538	135	135	50	31725	0.0477969	40%	0.0286781	10.10525787	61.51027	71.61552318
DRA3OCT1	405	15	1.2527	1.3421	0.0894	1.3415	0.0888	1.4144	0.1617	1.4045	0.1518	0.2673	1.701	1.9683	180	145	45	40725	0.0603969	50%	0.0301985	8.851447674	56.32739	65.17884196
DRA4OCT1	475	15	1.2525	1.3412	0.0887	1.3403	0.0878	1.4149	0.1624	1.4042	0.1517	0.338833	2.0235	2.362333	215	125	50	43875	0.0648069	10%	0.0583262	5.809280825	34.69281	40.50208874
DRA5OCT1	472	15	1.2516	1.3415	0.0899	1.3405	0.0889	1.4363	0.1847	1.4225	0.1709	0.43424	2.580267	3.014507	160	100	60	31600	0.0476219	0%	0.0476219	9.118493802	54.18235	63.30084828

			Pre-he	eat bare wei	ight(g)	ost heat bar	e weight(Dry wei	ght(g)	Ash wei	ght(g)			Total					Total		Realised	AFDM	Inorganic	Total matter
Sample	Tot vol	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filter	Filter	AFDM (g)	Inorganic(Matter (g	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1NOV14	474	15	1.2638	1.3523	0.0885	1.3523	0.0885	1.4018	0.138	1.3921	0.1283	0.30652	1.25768	1.5642	180	110	45	32850	0.0493719	20%	0.0394975	7.760487	31.842	39.60248643
ED2NOV14	201	15	1.2638	1.3515	0.0877	1.3516	0.0878	1.4779	0.2141	1.4426	0.1788	0.47302	1.2194	1.69242	190	85	25	23025	0.0356169	50%	0.0178085	26.56155	68.47311	95.03466051
ED3NOV14	265	15	1.2507	1.3386	0.0879	1.3383	0.0876	1.4323	0.1816	1.4139	0.1632	0.325067	1.3356	1.660667	225	160	80	66800	0.0969019	50%	0.048451	6.709191	27.56602	34.27521373
ED4NOV14	248	15	1.253	1.6424	0.3894	1.3421	0.0891	1.4112	0.1582	1.396	0.143	0.251307	0.891147	1.142453	170	110	45	31300	0.0472019	40%	0.0283211	8.873466	31.46578	40.33924246
ED5NOV14	171	15	1.2643	1.3542	0.0899	1.3539	0.0896	1.3602	0.0959	1.3572	0.0929	0.0342	0.03762	0.07182	275	150	70	71000	0.1027819	0%	0.1027819	0.332743	0.366018	0.698761163
TAN1NOV	300	15	1.2624	1.3523	0.0899	1.352	0.0896	1.3696	0.1072	1.3636	0.1012	0.12	0.232	0.352	165	110	55	33275	0.0499669	0%	0.0499669	2.40159	4.643074	7.044663567
TAN2NOV	283	15	1.2699	1.3576	0.0877	1.3569	0.087	1.378	0.1081	1.3722	0.1023	0.109427	0.28866	0.398087	190	140	110	62900	0.0914419	0%	0.0914419	1.19668	3.156759	4.353438267
TAN3NOV	405	15	1.2545	1.344	0.0895	1.3438	0.0893	1.4127	0.1582	1.3921	0.1376	0.5562	1.3041	1.8603	140	85	65	26525	0.0405169	40%	0.0243101	22.87934	53.64428	76.52362348
TAN4NOV	291	15	1.2621	1.3517	0.0896	1.3555	0.0934	1.4462	0.1841	1.4172	0.1551	0.5626	1.19698	1.75958	185	90	55	31775	0.0478669	30%	0.0335068	16.79061	35.72346	52.51406952
TAN5NOV	341	15	1.2574	1.3447	0.0873	1.345	0.0876	1.6091	0.3517	1.5815	0.3241	0.62744	5.376433	6.003873	135	100	60	27600	0.0420219	10%	0.0378197	16.59029	142.1596	158.7498512
PET1NOV1	466	15	1.2731	1.361	0.0879	1.3603	0.0872	1.4128	0.1397	1.3948	0.1217	0.5592	1.0718	1.631	230	160	65	62150	0.0903919	40%	0.0542351	10.31066	19.7621	30.07275357
PET2NOV1	253	15	1.2749	1.364	0.0891	1.3704	0.0955	1.5581	0.2832	1.5268	0.2519	0.527927	2.637947	3.165873	190	150	110	65900	0.0956419	50%	0.047821	11.03965	55.16299	66.2026441
PET3NOV1	464	15	1.2507	1.3392	0.0885	1.338	0.0873	1.3955	0.1448	1.3855	0.1348	0.309333	1.469333	1.778667	240	150	55	57450	0.0838119	60%	0.0335248	9.227011	43.8283	53.05531394
PET4NOV1	503	15	1.2566	1.3462	0.0896	1.3458	0.0892	1.5663	0.3097	1.5359	0.2793	1.019413	6.374687	7.3941	250	100	85	54750	0.0800319	0%	0.0800319	12.73759	79.65182	92.38940972
PET5NOV1	450	15	1.2487	1.3378	0.0891	1.337	0.0883	1.3645	0.1158	1.3583	0.1096	0.186	0.639	0.825	125	115	25	20375	0.0319069	0%	0.0319069	5.82946	20.02702	25.85647619
YO1NOV14	550	15	1.2633	1.3514	0.0881	1.3418	0.0785	1.3841	0.1208	1.3799	0.1166	0.154	1.397	1.551	138	115	110	43700	0.0645619	70%	0.0193686	7.951026	72.12716	80.07818853
YO2NOV14	402	15	1.2539	1.3438	0.0899	1.3434	0.0895	1.3701	0.1162	1.363	0.1091	0.19028	0.52528	0.71556	200	150	50	47500	0.0698819	10%	0.0628937	3.025422	8.351869	11.37729035
YO3NOV14	385	15	1.2563	1.3428	0.0865	1.3416	0.0853	1.3749	0.1186	1.3655	0.1092	0.241267	0.613433	0.8547	180	100	80	40400	0.0599419	30%	0.0419593	5.750012	14.61971	20.36972468
YO4NOV14	389	15	1.2657	1.3525	0.0868	1.3519	0.0862	1.3787	0.113	1.3714	0.1057	0.189313	0.5057	0.695013	160	120	50	33200	0.0498619	40%	0.0299171	6.327922	16.90335	23.2312759
YO5NOV14	526	15	1.2744	1.3618	0.0874	1.3507	0.0763	1.373	0.0986	1.3683	0.0939	0.164813	0.617173	0.781987	230	120	70	52100	0.0763219	20%	0.0610575	2.699313	10.10806	12.80737683
DRA1NOV	451	15	1.2654	1.3559	0.0905	1.3554	0.09	1.4358	0.1704	1.422	0.1566	0.41492	2.00244	2.41736	150	145	85	46825	0.0689369	50%	0.0344685	12.03768	58.09487	70.1325415
DRA2NOV	471	15	1.2626	1.3494	0.0868	1.349	0.0864	1.3938	0.1312	1.3822	0.1196	0.36424	1.04248	1.40672	145	105	70	32725	0.0491969	30%	0.0344378	10.57674	30.27136	40.84810222
DRA3NOV	455	15	1.254	1.3425	0.0885	1.3408	0.0868	1.3832	0.1292	1.3741	0.1201	0.276033	1.0101	1.286133	140	100	50	26000	0.0397819	0%	0.0397819	6.938666	25 13909 4	32.32961053
DRA4NOV	425	15	1.2544	1.3406	0.0862	1.3415	0.0871	1.4143	0.1599	1.3952	0.1408	0.541167	1.5215	2.062667	175	125	35	32375	0.0487069	10%	0.0438362	12.3452	34.70875	47.05394619
DRA5NOV	450	15	1.2519	1.3412	0.0893	1.3403	0.0884	1.4226	0.1707	1.4027	0.1508	0.597	1.872	2.469	260	80	75	46300	0.0682019	20%	0.0545615	10.94178	34.30989	45.25167187

			Pre-h	eat bare wei	ght(g)	ost heat ba	re weight(Dry we	ight(g)	Ash wei	ght(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot F	iltered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filter	Filter	AFDM (g)	Inorganic(Matter (g)X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1DEC14	461	15	1.2635	1.3508	0.0873	1.3504	0.0869	1.3878	0.1243	1.3808	0.1173	0.215133	0.934293	1.149427	280	120	105	75600	0.1092219	0%	0.1092219	1.96969	8.554084	10.52377
ED2DEC14	421	15	1.264	1.3525	0.0885	1.3519	0.0879	1.4003	0.1363	1.3916	0.1276	0.24418	1.114247	1.358427	140	100	20	18800	0.0297019	30%	0.0207913	11.74432	53.59189	65.33621
ED3DEC14	501	15	1.2509	1.3395	0.0886	1.3396	0.0887	1.3854	0.1345	1.3784	0.1275	0.2338	1.29592	1.52972	150	70	55	22600	0.0350219	10%	0.0315197	7.417581	41.11459	48.53217
ED4DEC14	415	15	1.2536	1.3431	0.0895	1.3448	0.0912	1.3601	0.1065	1.356	0.1024	0.113433	0.309867	0.4233	205	90	65	37625	0.0560569	50%	0.0280285	4.047078	11.05543	15.10251
ED5DEC14	550	15	1.265	1.3533	0.0883	1.3524	0.0874	1.3833	0.1183	1.3747	0.1097	0.315333	0.817667	1.133	180	125	70	43850	0.0647719	20%	0.0518175	6.085458	15.77973	21.86519
TAN1DEC14	339	15	1.2634	1.4419	0.1785	1.4401	0.1767	1.4735	0.2101	1.4657	0.2023	0.17628	0.57856	0.75484	110	85	40	17150	0.0273919	30%	0.0191743	9.193542	30.17367	39.36722
TAN2DEC14	468	15	1.27	1.358	0.088	1.3571	0.0871	1.4134	0.1434	1.3984	0.1284	0.468	1.28856	1.75656	230	140	85	63650	0.0924919	50%	0.046246	10.11981	27.8632	37.983
TAN3DEC14	477	15	1.255	1.3447	0.0897	1.3437	0.0887	1.3985	0.1435	1.3826	0.1276	0.50562	1.23702	1.74264	270	170	35	61300	0.0892019	60%	0.0356808	14.17066	34.6691	48.83977
TAN4DEC14	161	15	1.2627	1.3516	0.0889	1.3506	0.0879	1.3884	0.1257	1.3816	0.1189	0.072987	0.332733	0.40572	145	5 120	20	22700	0.0351619	10%	0.0316457	2.306368	10.51433	12.8207
TAN5DEC14	365	15	1.258	1.3471	0.0891	1.3478	0.0898	1.4003	0.1423	1.3881	0.1301	0.296867	0.980633	1.2775	100	90	65	21350	0.0332719	0%	0.0332719	8.922444	29.47332	38.39576
PET1DEC14	496	15	1.2728	1.3634	0.0906	1.3622	0.0894	1.3858	0.113	1.38	0.1072	0.191787	0.588587	0.780373	205	5 100	45	34225	0.0512969	0%	0.0512969	3.738757	11.47412	15.21288
PET2DEC14	303	15	1.2762	1.3638	0.0876	1.3626	0.0864	1.3865	0.1103	1.3731	0.0969	0.27068	0.2121	0.48278	110	100	40	19400	0.0305419	10%	0.0274877	9.84731	7.716176	17.56349
PET3DEC14	384	15	1.2511	1.3392	0.0881	1.3525	0.1014	1.4483	0.1972	1.431	0.1799	0.44288	2.0096	2.45248	175	5 155	80	53525	0.0783169	30%	0.0548218	8.078534	36.65693	44.73546
PET4DEC14	403	15	1.2581	1.3464	0.0883	1.3463	0.0882	1.4126	0.1545	1.4004	0.1423	0.327773	1.453487	1.78126	110	65	35	13275	0.0219669	40%	0.0131801	24.86873	110.2785	135.1473
PET5DEC14	340	15	1.2497	1.3373	0.0876	1.3359	0.0862	1.371	0.1213	1.3645	0.1148	0.147333	0.648267	0.7956	120	85	50	20450	0.0320119	20%	0.0256095	5.753069	25.3135	31.06657
YO1DEC14	350	15	1.2568	1.3449	0.0881	1.3415	0.0847	1.3712	0.1144	1.3628	0.106	0.196	0.497	0.693	190	120	100	53800	0.0787019	10%	0.0708317	2.767122	7.016631	9.783754
YO2DEC14	435	15	1.2542	1.3431	0.0889	1.3411	0.0869	1.3607	0.1065	1.3528	0.0986	0.2291	0.3393	0.5684	110	90	65	22900	0.0354419	5%	0.0336698	6.804316	10.07728	16.88159
YO3DEC14	462	15	1.2549	1.3453	0.0904	1.3463	0.0914	1.3609	0.106	1.354	0.0991	0.21252	0.23716	0.44968	130	90	60	24900	0.0382419	30%	0.0267693	7.938936	8.859392	16.79833
YO4DEC14	414	15	1.266	1.3547	0.0887	1.3551	0.0891	1.4	0.134	1.3866	0.1206	0.36984	0.8694	1.23924	160	100	75	35500	0.0530819	0%	0.0530819	6.967347	16.37846	23.34581
YO5DEC14	472	15	1.2655	1.3545	0.089	1.3529	0.0874	1.3981	0.1326	1.3865	0.121	0.365013	1.05728	1.422293	250	180	75	77250	0.1115319	40%	0.0669191	5.454543	15.79937	21.25391
DRA1DEC14	278	15	1.2657	1.3555	0.0898	1.3545	0.0888	1.4053	0.1396	1.3936	0.1279	0.21684	0.724653	0.941493	120	100	25	17500	0.0278819	20%	0.0223055	9.72136	32.48762	42.20898
DRA2DEC14	466	15	1.2629	1.3526	0.0897	1.3495	0.0866	1.4369	0.174	1.4204	0.1575	0.5126	2.202627	2.715227	155	5 145	45	35975	0.0537469	50%	0.0268735	19.07459	81.96293	101.0375
DRA3DEC14	508	15	1.2533	1.341	0.0877	1.3429	0.0896	1.5123	0.259	1.5004	0.2471	0.403013	5.334	5.737013	145	5 125	30	26225	0.0400969	40%	0.0240581	16.75164	221.7129	238.4645
DRA4DEC14	489	15	1.2533	1.3409	0.0876	1.3399	0.0866	1.3799	0.1266	1.3732	0.1199	0.21842	1.08558	1.304	210	170	165	98400	0.1411419	60%	0.0564568	3.868802	19.22852	23.09732
DRA5DEC14	375	15	1.2534	1.3413	0.0879	1.3401	0.0867	1.5275	0.2741	1.4968	0.2434	0.7675	3.9175	4.685	270	180	20	57600	0.0840219	70%	0.0252066	30.44841	155.4158	185.8642

			Pre-he	eat bare wei	ght(g)	ost heat ba	re weight(Dry wei	ght(g)	Ash wei	ght(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filter	Filter	AFDM (g)	Inorganic(Matter (g)	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1JAN15	325	15	1.2633	1.3514	0.0881	1.3519	0.0886	1.4883	0.225	1.4745	0.2112	0.299	2.656333	2.955333	175	120	55	37225	0.0554969	30%	0.0388478	7.696698	68.37791	76.07461
ED2JAN15	445	15	1.2636	1.352	0.0884	1.352	0.0884	1.6949	0.4313	1.6589	0.3953	1.068	9.1047	10.1727	130	110	70	31100	0.0469219	40%	0.0281531	37.93538	323.3991	361.3345
ED3JAN15	420	15	1.2512	1.3403	0.0891	1.3398	0.0886	1.6795	0.4283	1.6442	0.393	0.9884	8.5232	9.5116	140	100	70	30800	0.0465019	10%	0.0418517	23.61672	203.6524	227.2691
ED4JAN15	400	15	1.2544	1.3441	0.0897	1.3428	0.0884	1.417	0.1626	1.4017	0.1473	0.408	1.570667	1.978667	155	110	40	27650	0.0420919	20%	0.0336735	12.11635	46.64397	58.76032
ED5JAN15	300	15	1.2647	1.354	0.0893	1.3534	0.0887	1.4102	0.1455	1.3949	0.1302	0.306	0.83	1.136	125	85	80	27425	0.0417769	30%	0.0292438	10.46375	28.38206	38.8458
TAN1JAN1	275	15	1.2617	1.3508	0.0891	1.3506	0.0889	1.4722	0.2105	1.4523	0.1906	0.364833	1.8645	2.229333	210	105	35	33075	0.0496869	20%	0.0397495	9.178308	46.90623	56.08453
TAN2JAN1	312	15	1.2709	1.3574	0.0865	1.3574	0.0865	1.4372	0.1663	1.4162	0.1453	0.4368	1.22304	1.65984	135	75	40	18525	0.0293169	40%	0.0175901	24.83209	69.52986	94.36196
TAN3JAN1	350	15	1.2577	1.3462	0.0885	1.343	0.0853	1.4536	0.1959	1.433	0.1753	0.480667	2.1	2.580667	150	105	20	20850	0.0325719	10%	0.0293147	16.39677	71.63639	88.03316
TAN4JAN1	300	15	1.2621	1.3515	0.0894	1.3506	0.0885	1.4451	0.183	1.4306	0.1685	0.29	1.6	1.89	205	150	25	39625	0.0588569	20%	0.0470855	6.159006	33.98072	40.13973
TAN5JAN1	453	15	1.2581	1.345	0.0869	1.3445	0.0864	1.5338	0.2757	1.5077	0.2496	0.78822	4.92864	5.71686	145	100	80	34100	0.0511219	30%	0.0357853	22.02634	137.7279	159.7543
PET1JAN15	350	15	1.2735	1.36	0.0865	1.3594	0.0859	1.578	0.3045	1.5516	0.2781	0.616	4.484667	5.100667	120	125	55	28475	0.0432469	40%	0.0259481	23.73966	172.8319	196.5716
PET2JAN15	445	15	1.2752	1.3627	0.0875	1.3631	0.0879	1.7801	0.5049	1.7376	0.4624	1.260833	11.11017	12.371	180	135	110	58950	0.0859119	50%	0.042956	29.35177	258.6409	287.9927
PET3JAN15	375	15	1.2509	1.3387	0.0878	1.3388	0.0879	1.5395	0.2886	1.5112	0.2603	0.7075	4.31	5.0175	155	100	65	32075	0.0482869	0%	0.0482869	14.65201	89.25816	103.9102
PET4JAN15	345	15	1.258	1.3455	0.0875	1.3448	0.0868	1.4593	0.2013	1.4362	0.1782	0.5313	2.1022	2.6335	125	120	95	38275	0.0569669	10%	0.0512702	10.36274	41.00237	51.36511
PET5JAN15	350	15	1.249	1.338	0.089	1.3456	0.0966	1.4398	0.1908	1.4188	0.1698	0.49	1.708	2.198	220	175	60	62200	0.0904619	30%	0.0633233	7.738064	26.97268	34.71075
YO1JAN15	370	15	1.2547	1.3433	0.0886	1.3426	0.0879	1.462	0.2073	1.4311	0.1764	0.7622	2.183	2.9452	160	135	65	40775	0.0604669	10%	0.0544202	14.00583	40.11377	54.1196
YO2JAN15	435	15	1.2538	1.3426	0.0888	1.3423	0.0885	1.42	0.1662	1.4021	0.1483	0.5191	1.7342	2.2533	185	110	65	39525	0.0587169	0%	0.0587169	8.840726	29.53494	38.37566
YO3JAN15	355	15	1.2557	1.3437	0.088	1.3425	0.0868	1.4012	0.1455	1.3841	0.1284	0.4047	0.984533	1.389233	125	95	40	20675	0.0323269	40%	0.0193961	20.86498	50.75924	71.62422
YO4JAN15	361	15	1.2666	1.354	0.0874	1.3519	0.0853	1.4126	0.146	1.3973	0.1307	0.36822	1.092627	1.460847	195	130	45	39975	0.0593469	0%	0.0593469	6.204536	18.41085	24.61538
YO5JAN15	448	15	1.2636	1.3544	0.0908	1.354	0.0904	1.3974	0.1338	1.384	0.1204	0.400213	0.896	1.296213	175	100	60	34000	0.0509819	0%	0.0509819	7.850106	17.57486	25.42497
DRA1JAN1	403	15	1.256	1.3522	0.0962	1.352	0.096	1.5074	0.2514	1.4848	0.2288	0.607187	3.567893	4.17508	185	70	60	28250	0.0429319	0%	0.0429319	14.14302	83.10588	97.2489
DRA2JAN1	430	15	1.2636	1.3496	0.086	1.349	0.0854	1.6701	0.4065	1.6481	0.3845	0.630667	8.5742	9.204867	185	95	60	34375	0.0515069	10%	0.0463562	13.60479	184.9634	198.5681
DRA3JAN1	535	15	1.2531	1.3417	0.0886	1.3411	0.088	1.6015	0.3484	1.5794	0.3263	0.788233	8.499367	9.2876	140	120	55	31100	0.0469219	0%	0.0469219	16.79884	d 81.1386	197.9374
DRA4JAN1	325	15	1.2534	1.3415	0.0881	1.341	0.0876	1.4266	0.1732	1.4125	0.1591	0.3055	1.549167	1.854667	135	110	70	32000	0.0481819	0%	0.0481819	6.340555	32.15246	38.49302
DRA5JAN1	355	15	1.253	1.3411	0.0881	1.3403	0.0873	1.4589	0.2059	1.4274	0.1744	0.7455	2.061367	2.806867	230	145	75	61475	0.0894469	20%	0.0715575	10.41819	28.80713	39.22532

			Pre-he	eat bare we	ight(g)	ost heat bar	e weight(Dry we	eight(g)	Ash wei	ght(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot	Filtered F	oil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filte F	ilter A	AFDM (g)	Inorganic(g)	Matter (g)	X (m)	y (m)	Z (m)	ky*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1FEB15	324	15	1.275	1.3633	0.0883	1.3591	0.0841	1.4456	6 0.1706	1.4373	0.1623	0.17928	1.68912	1.8684	1 240	175	35	56525	0.0825169	30%	0.0577618	3.10378	29.24284	32.34662
ED2FEB15	355	15	1.2547	1.3439	0.0892	1.3394	0.0847	1.5841	0.3294	1.5662	0.3115	0.423633333	5.3676	5.791233333	3 190	110	95	49400	0.0725419	0%	0.0725419	5.839843	73.9931	79.83294
ED3FEB15	250	15	1.2664	1.3535	0.0871	1.3503	0.0839	1.721	1 0.4546	1.7077	0.4413	0.221666667	5.956666667	6.178333333	3 175	105	90	43575	0.0643869	20%	0.0515095	4.303412	115.6421	119.9455
ED4FEB15	250	15	1.2623	1.3514	0.0891	1.347	0.0847	1.3969	0.1346	1.3905	0.1282	0.106666667	0.725	0.831666667	7 135	90	35	20025	0.0314169	0%	0.0314169	3.3952	23.07675	26.47195
ED5FEB15	329	15	1.2677	1.3578	0.0901	1.3529	0.0852	1.4954	1 0.2277	1.4877	0.22	0.168886667	2.956613333	3.1255	5 170	155	90	55600	0.0812219	10%	0.0730997	2.31036	40.44631	42.75667
TAN1FFB1	150	15	1.269	1.3584	0.0894	1.3541	0.0851	1.567	0.2985	1.5607	0.2917	0.068	2.066	2,134	1 155	130	25	27275	0.0415669	40%	0.0249401	2.726528	82,83835	85,56488
TAN2FFB1	200	15	1 274	1 3612	0.0872	1 3578	0.0838	1 4276	0 1536	1 4231	0 1491	0.06	0 870666667	0.930666667	7 150		40	20250	0.0317319	40%	0.0190391	3 151403	45 73036	48 88176
TAN3FFB1	370	15	1 2599	1 3484	0.0885	1 3443	0.0844	1.4270	0.1000	1 4628	0.1451	0 115933333	2 923	3 038933333	155	110	50	30300	0.0317313	60%	0.0183208	6 327976	159 5458	165 8738
	305	15	1 2558	1 3/133	0.0875	1 3386	0.0011	1 3712	0.1154	1 3675	0.1117	0.075233333	0 587633333	0.662866667	7 140	100	10	16400	0.0763/19	80%	0.0052684	1/ 28016	111 5397	125 8198
	303	15	1 2590	1 3/178	0.0873	1 3//2	0.0853	1 /1222	0.1134	1 /2/8	0.1117	0.073233333	1 896786667	2 09446666	7 115	200	25	1/1775	0.0203413	30%	0.0032084	11 73306	112 5001	123.0130
	333	15	1.2505	1.3470	0.0003	1.3442	0.0000	1.4332	7 0.2164	1.4240	0.1000	0.13708	1.030700007	2.034400007	1 155	140	70	42250	0.0240003	30%	0.0100400	2 046212	20.06220	22 0096
	229	15	1.2005	1.557	0.0007	1.5555	0.000	1.4047	0.2104	1.4705	0.206	0.12624	1.0770	2.00002	+ 100	140	70	42550	0.0020/19	1.00/	0.0020/19	2.040212	29.90259	32.0060
PETZFEBI:	348	15	1.2812	1.3084	0.0872	1.304	0.0828	1.0595	0.3783	1.0439	0.3627	0.36192	6.49368	0.8550	240	475	50	20450	0.0320119	10%	0.0288107	12.562	225.3912	237.9532
PET3FEB1	250	15	1.2/83	1.36/1	0.0888	1.3634	0.0851	1.4555	0.1//2	1.4484	0.1701	0.118333333	1.416666667	1.535	240	1/5	45	60675	0.0883269	0%	0.0883269	1.33972	16.0389	17.37862
PET4FEB1	250	15	1.2844	1.3/1	0.0866	1.36/1	0.0827	1.4606	0.1/62	1.4551	0.1/0/	0.091666667	1.466666667	1.558333333	3 125	80	60	22300	0.0346019	0%	0.0346019	2.64918	42.38688	45.03606
PET5FEB1:	300	15	1.28	1.3685	0.0885	1.3648	0.0848	1.8421	0.5621	1.8242	0.5442	0.358	9.188	9.546	5 145	110	55	29975	0.0453469	10%	0.0408122	8.771885	225.1287	233.9006
YO1FEB15	278	15	1.2691	1.3574	0.0883	1.3536	0.0845	1.3898	3 0.1207	1.3972	0.1281	-0.13714667	0.808053333	0.670906667	7 190	80	60	31400	0.0473419	0%	0.0473419	dry <ash< td=""><td>17.06846</td><td>14.17152</td></ash<>	17.06846	14.17152
YO2FEB15	350	15	1.2584	1.3474	0.089	1.3435	0.0851	1.3889	9 0.1305	1.3855	0.1271	0.079333333	0.98	1.059333333	3 205	155	70	56975	0.0831469	40%	0.0498881	1.590224	19.64395	21.23417
YO3FEB15	276	15	1.2663	1.3535	0.0872	1.3494	0.0831	1.4032	0.1369	1.3977	0.1314	0.1012	0.88872	0.98992	2 130	85	60	23950	0.0369119	0%	0.0369119	2.741663	24.07679	26.81845
YO4FEB15	450	15	1.272	1.3606	0.0886	1.357	0.085	1.4582	0.1862	1.453	0.181	0.156	2.88	3.036	5 110	95	80	26850	0.0409719	0%	0.0409719	3.807488	70.29208	74.09957
YO5FEB15	300	15	1.2623	1.3503	0.088	1.3442	0.0819	1.4271	0.1648	1.4184	0.1561	0.174	1.484	1.658	3 135	125	50	29875	0.0452069	0%	0.0452069	3.84897	32.82685	36.67582
DRA1FEB1	248	15	1.2526	1.3407	0.0881	1.335	0.0824	1.4895	0.2369	1.4921	0.2395	-0.04298667	2.597386667	2.5544	1 120	60	45	15300	0.0248019	50%	0.012401	dry <ash< td=""><td>209.4506</td><td>205.9842</td></ash<>	209.4506	205.9842
DRA2FEB1	361	15	1.2677	1.3561	0.0884	1.3533	0.0856	1.5984	4 0.3307	1.5902	0.3225	0.197346667	5.701393333	5.89874	160	130	65	39650	0.0588919	40%	0.0353351	5.584997	161.3519	166.9369
DRA3FEB1	273	15	1.2619	1.3504	0.0885	1.3462	0.0843	1.4441	0.1822	1.4407	0.1788	0.06188	1.7199	1.78178	3 225	85	55	36175	0.0540269	30%	0.0378188	1.636222	45.47735	47.11357
DRA4FEB1	250	15	1.2525	1.3423	0.0898	1.3406	0.0881	2.003	0.7505	1.988	0.7355	0.25	10.79	11.04	1 205	160	165	93025	0.1336169	50%	0.0668085	3.742042	161.5065	165.2486
DRA5FEB1	380	15	1.2662	1.3554	0.0892	1.3519	0.0857	1.5902	0.324	1.5805	0.3143	0.245733333	5 7912	6.036933333	3 165	125	90	46725	0.0687969	60%	0.0275188	8,929666	210,4455	219.3752
				1.000	0.0001	1.0010	0.0007	10000	- 0.02.	1.0000	0.0110	012 107 00000	5.7512	0.0000000000	100				010001505	00/0	0102/0100	0.525000	=1011100	110.07.01
				10001	0.0001	1.0010		1.0000	- 0.021	210000	0.01.0	012 107 00000	5.7512	0.0000000000	100						0.02/0100	0.020000		21510702
			Pre-he	at bare wei	ght(g) ps	st heat bare	weight(Dry weight	t(g) A	sh weight(g)			Total						Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol TOT	Filtered F	Pre-he	at bare wei Foil+Filter	ght(g) ps Filter F	t heat bare	weight(ter Fo	Dry weight il+Filter Filte	t(g) A er Foil+	sh weight(g) Filte Filter	AFDM	(g) Inorga	Total	(g) X (m)	y (m	1)	Z (m)	xy*xz*y	Total /z stone ar	ea embedde	Realised	AFDM g.m2	Inorganic g.m2	otal matte
Sample ED1MAR1!	Vol TOT 287	Filtered F	Pre-he oil 1.2741	at bare wei Foil+Filter	ght(g) ps Filter F 0.0879	t heat bare oil+Filter Fil 1.3405	weight(ter Foi 0.0664	Dry weight il+Filter Filte 1.4301	t(g) A er Foil+ 0.156 1	sh weight(g) Filte Filter	AFDM 406 0.2946	(g) Inorga 553333 1.419	Total nic(g) Matter 693333 1.7143	(g) X (m) 46667	y (m	ו) 100	Z (m)	xy*xz*y 85 344	Total /z stone and 00 00 0.05154	ea embedde 19 50	Realised stone area 0.02577:	AFDM g.m2 0.663155	Inorganic g.m2 3 55.0889	otal matte g.m2 66.52245
Sample ED1MAR1 ED2MEDR	Vol TOT 287 300	Filtered F 15 15	Pre-he oil 1.2741 1.2537	at bare wei Foil+Filter 1.362 1.3411	ght(g) s Filter F 0.0879 0.0874	theat bare ioil+Filter Fil 1.3405 1.339	weight(ter Foi 0.0664 0.0853	Dry weight il+Filter Filt 1.4301 1.5375	t(g) A er Foil+ 0.156 1 0.2838 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total nic(g) Matter 693333 1.7143 3.466	(g) X (m) 46667 : 3.97 :	y (m 140 195	1) 100 75	Z (m)	xy*xz*y 85 344 70 335	Total rz stone an 00 0.05154 25 0.05031	ea embedde 19 50 69 30	Realised stone area 0.025772 0.0352218	AFDM g.m2 0.663159 dry <ash< td=""><td>Inorganic g.m2 9 55.0889 98.40488</td><td>otal matte g.m2 66.52245 112.7142</td></ash<>	Inorganic g.m2 9 55.0889 98.40488	otal matte g.m2 66.52245 112.7142
Sample ED1MAR1 ED2MEDR ED3MAR1	Vol TOT 287 300 356	Filtered F 15 15 15	Pre-he oil 1.2741 1.2537 1.2633	at bare wei Foil+Filter 1 1.362 1.3411 1.3519	ght(g) s Filter F 0.0879 0.0874 0.0886	t heat bare oil+Filter Fil 1.3405 1.339 1.3521	weight(ter Foi 0.0664 0.0853 0.0888	Dry weight il+Filter Filte 1.4301 1.5375 1.5217	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1	sh weight(g) • Filte Filter .4147 0.1 .5123 0.2 .4809 0.2	AFDM 406 0.2946 586 176 0.	(g) Inorga 553333 1.419 0.504 .96832 3.056	Total mic(g) Matter 693333 1.7143 3.466 853333 853333 4.0252	(g) X (m) 46667 : 3.97 : 73333 :	y (m 140 195 175	1) 100 75 160	Z (m)	xy*xz*y 85 344 70 335 50 447	Total z stone and 00 0.05154 25 0.05031 50 0.06603	ea embedde 19 50 69 30 19 50	Realised stone area 0.025772 0.0352218 0.033016	AFDM g.m2 0.663159 dry <ash 5 1.68309</ash 	Inorganic g.m2 3 55.0889 98.40488 92.58717	otal matte g.m2 66.52245 112.7142 121.916
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1	Vol TOT 287 300 356 471	Filtered F 15 15 15 15	Pre-he foil 1.2741 1.2537 1.2633 1.2598	at bare wei Foil+Filter 1 1.362 1.3411 1.3519 1.3484	stress ght(g) ss Filter F 0.0879 0.0874 0.0886 0.0886	it heat bare ioil+Filter Fil 1.3405 1.339 1.3521 1.348	weight(ter Foi 0.0664 0.0853 0.0888 0.0882	Dry weight il+Filter Filta 1.4301 1.5375 1.5217 1.8165	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5	AFDM 406 0.2946 586 176 0. 103 1.	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 13	Total mic(g) Mattee 693333 1.714: 3.466	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 :	y (m 140 195 175 170	100 75 160 100	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278	Total /z stone and 00 0.05154 25 0.05031 50 0.06603 00 0.04230	ea embedde 19 50' 69 30' 19 50' 19 30'	Realised stone area 0.025771 0.0352218 0.033016 0.0296113	AFDM g.m2 0.663159 dry <ash 1.68309 0.72280</ash 	Inorganic g.m2 9 98.40488 7 92.58717 447.5969	otal matte g.m2 66.52245 112.7142 121.916 496.7997
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1	Vol TOT 287 300 356 471 352	Filtered F 15 15 15 15 15	Pre-he coil 1.2741 1.2537 1.2633 1.2598 1.2647	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534	ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0887	t heat bare (coil+Filter Fil 1.3405 1.339 1.3521 1.348 1.3536	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882	Dry weight il+Filter Filte 1.4301 1.5375 1.5217 1.8165 1.44385 0	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1	sh weight(g) Filte Filter .4147 0.1. .5123 0.22 .4809 0.2 .7701 0.5 .4306 0.1	AFDM 406 0.2946 586 176 0. 103 1. 559 0.3109	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 13 33333 1.806	Total mic(g) Matter 693333 1.7143 3.466 853333 853333 4.0253 3.25394 1 933333 2.1176	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 666667 :	y (m 140 195 175 170 185	100 75 160 100 145	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367	Total /z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479	ea embedde 19 500 69 300 19 500 19 300 69 100	Realised i stone area 0.02577: 0.0352218 0.033016 0.0296113 0.0493177	AFDM g.m2 0.663159 dry <ash 1.68309 0.72280 dry<ash< td=""><td>Inorganic g.m2 955.0889 98.40488 792.58717 447.5969 36.639</td><td>otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376</td></ash<></ash 	Inorganic g.m2 955.0889 98.40488 792.58717 447.5969 36.639	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR	Vol TOT 287 300 356 471 352 450	Filtered F 15 15 15 15 15 15 15	Pre-he Foil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549	ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0887	theat bare v ioil+Filter Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 0.0889 0.0872	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1	AFDM 1 406 0.2946 586 176 0.1 103 1. 559 0.3109 792	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 13 33333 1.806 0.87	Total nic(g) Matter 693333 1.714: 3.466	(g) X (m) 46667 : 3.97 : 73333 : 1.7109 : 66667 : 3.63 :	y (m 140 195 175 170 185 175	100 75 160 100 145 80	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229	Total /z stone and 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547	22a embedde 19 50° 69 30° 19 50° 69 30° 19 30° 69 10° 69 10° 69 30°	Realised stone area 6 0.025777 6 0.0352218 6 0.033010 6 0.0296113 6 0.0493177 6 0.0248338	AFDM g.m2 0.663159 dry <ash 1.68309 0.722802 dry<ash 0.257952</ash </ash 	Inorganic g.m2 > 55.0889 98.40488 7 92.58717 L 447.5969 36.639 ! 111.1387	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN2MAR	Vol TOT 287 300 356 471 352 450 376	Filtered F 15 15 15 15 15 15 15 15	Pre-he foil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596	ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0887 0.0869 0.087	theat bare v ioil+Filte Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 0.0889 0.0872 0.0872	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 1.44382	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1	AFDM 406 0.2946 586 176 0. 103 1. 559 0.3109 792 577 0.5464	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 113 333333 1.806 0.87 453333 2.017	Total nic(g) Matter 693333 1.714: 3.466 853333 85,3333 4.025: 3.25394 1 933333 2.1178 2.76 866667	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 :	y (m 140 195 175 170 185 175 135	100 75 160 100 145 80 110	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246	Total /z stone an 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 30' 19 30' 69 10' 69 30' 19 20'	Realised stone area 6 0.025777 6 0.0352218 6 0.033010 6 0.0296113 6 0.0493177 6 0.0248338 6 0.0301133	AFDM g.m2 0.663159 dry <ash 1.68309 0.722809 dry<ash 0.257957 0.615289</ash </ash 	Inorganic g.m2 3 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 66.56656	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR	Vol TOT 287 300 356 471 352 450 376 300	Filtered F 15 15 15 15 15 15 15 15 15	Pre-he oil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.279	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442	ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0887 0.0869 0.0877 0.0863 0.0863	theat bare 1 oil+Filte Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3431	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 2 0.0872 0.0872 0.0872 0.0852	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.4621 1.4095	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1 0.1516 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1	AFDM 406 0.2946 586 176 0. 103 1. 559 0.3109 792 577 0.5464 333	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 13 33333 1.806 0.87 453333 2.017 0.366	Total mic(g) Matter 693333 1.714: 3.466 853333 853333 4.025: 3.25394 1 933333 2.1178 2.76 866667 866667 2 0.962 2	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 666667 : 3.63 : 56432 : 1.328 :	y (n 140 195 175 170 185 175 135 160	100 75 160 100 145 80 110 100	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04340	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 30' 19 30' 69 10' 69 10' 19 20' 19 20'	Realised 1 stone area 6 0.02577 6 0.035218 6 0.033218 6 0.0296113 6 0.0248338 6 0.0248338 6 0.0301135 6 0.0322735	AFDM g.m2 0.663159 dry <ash< td=""> 1.683099 0.722802 dry<ash< td=""> 0.257952 0.615289 1.25364</ash<></ash<>	Inorganic g.m2 9 55.0889 98.40488 7 92.58717 447.5969 36.639 2 111.1387 66.56656 ' 29.80772	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN3MAR	Vol TOT 287 300 356 471 352 450 376 300 322	Filtered F 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2579 1.255	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442 1.3414	stress ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0886 0.0887 0.0887 0.0869 0.087 0.0863	theat bare 1 oil+Filte Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3552 1.3598 1.3431 1.3401	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 2 0.0889 2 0.0872 0.0872 0.0852 0.0852 0.0851 0.0851	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 0 1.4762 1.4621 1.4621 1.4695 1.362	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1 0.1516 1 0.107 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.	AFDM 406 0.2946 586 176 0. 103 1. 559 0.3109 792 577 0.5464 333 103 0.0858	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 11: 333333 1.806 0.87 453333 2.017 0.366 366667 0.384	Total nic(g) Matter 693333 1.7143 3.466 853333 855333 4.0255 3.25394 1 933333 2.1174 2.76 866667 866667 2 0.962 253333	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 3.63 : 56432 : 1.328 :	y (m 140 195 175 170 185 175 135 160 185	100 75 160 100 145 80 110 100 95	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 264 40 264 30 259	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 75 0.03974	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 30' 19 20' 19 20' 19 20' 19 20' 19 20' 69 10'	Realised 1 stone area 6 0.02577 6 0.035218 6 0.03218 6 0.0296113 6 0.0248338 6 0.030113 6 0.0322739 6 0.0327722	AFDM g.m2 0.663159 dry <ash< td=""> 1.68309 0.722800 dry<ash< td=""> 0.257955 0.615286 1.253647 2.557886</ash<></ash<>	Inorganic g.m2 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 96.56656 7 29.80772 310.74167	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN5MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400	Filtered F 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioi 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2559 1.255 1.2576	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442 1.3414 1.3439	stress ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0886 0.0886 0.0887 0.0887 0.0869 0.087 0.0863 0.0864	theat bare 1 oil+Filte Fil 1.3405 1.3521 1.3536 1.3552 1.3552 1.3558 1.3598 1.3431 1.3401 1.3433	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0852 0.0851 0.0851 0.0857	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 0 1.4762 1.4621 1.4621 1.4695 1.362 1.4003	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1 0.1516 1 0.107 0.107	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1	AFDM 406 0.2946 586 - 103 1. 559 0.3109 792 - 677 0.5464 333 - 103 0.0858 304 -	(g) Inorga 553333 1.419 0.504 96832 3.056 4.5696 11: 933333 1.806 0.87 453333 2.017 0.366 366667 0.384 0.328	Total nic(g) Matter 693333 1.7143 3.466 853333 825333 4.0253 3.25394 1 933333 2.1174 2.76 866667 866667 2 0.962 253333 1.192 1	(g) X (m) 46667 :: 3.97 :: 73333 :: 4.7109 :: 666667 :: 3.63 :: 56432 :: 1.328 :: 47012 ::	y (m 140 195 175 170 185 175 135 160 185 150	100 75 160 100 145 80 110 100 95 85	Z (m)	xy*xz*1 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 198	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 75 0.03974 00 0.03110	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 30' 19 20' 19 20' 19 20' 19 20' 19 20' 19 40'	Realised 1 stone area 6 0.02577 6 0.035218 6 0.03218 6 0.0296113 6 0.0248338 6 0.030133 6 0.0322733 6 0.0327722 6 0.0357722 6 0.036611	AFDM g.m2 0.663155 dry <ash< td=""> 1.68309 0.722802 dry<ash< td=""> 0.05155 0.615285 0.722802 0.722802 0.752802 0.752802 0.752802 0.752802 0.05155 0.615285 0.257952 0.615285 1.253642 2.557886 dry<ash< td=""> dry<ash< td=""></ash<></ash<></ash<></ash<>	Inorganic g.m2 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 66.56656 29.80772 3 10.74167 63.87605	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioi 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2557 1.255 1.2576 1.2561	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442 1.3414 1.3439 1.3538	stress ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0886 0.0886 0.0887 0.0886 0.0887 0.0887 0.0863 0.0863 0.0863 0.0863 0.0863 0.0877	theat bare 1 oil+Filte Fil 1.3405 1.3521 1.3536 1.3552 1.3552 1.3558 1.3598 1.3431 1.3401 1.3433 1.3535	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0852 0.0851 0.0857 0.0874	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 0 1.4762 1.4621 1.4095 1.362 1.4003 1.4376	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1 0.1516 1 0.107 0.107 0.1427 0.1715	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4388 0.1	AFDM 406 0.2946 586 - 103 1.1 559 0.3109 772 - 677 0.5464 333 - 103 0.0858 304 -	(g) Inorga 553333 1.419 0.504 96832 3.056 4.5696 113 933333 1.806 0.87 453333 2.017 0.366 366667 0.384 0.328 33333 0.824	Total nic(g) Matter 693333 1.7143 3.466 853333 8.25394 1 933333 2.1174 2.76 866667 866667 2 0.962 253333 7.192 753333	(g) X (m) 46667 :: 3.97 :: 73333 :: 4.7109 :: 666667 :: 3.63 :: 56432 :: 1.328 :: 47012 :: 1.52 ::	y (n 140 195 175 170 185 175 135 160 185 150 160	100 75 160 100 145 80 110 100 95 85 85 85	Z (m)	xy*xz*1 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 198 20 185	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03747 50 0.03789 00 0.04034 75 0.03974 00 0.03110 00 0.02928	a embedde 19 50' 69 30' 19 50' 19 50' 19 50' 19 30' 69 10' 69 30' 19 20' 19 20' 19 20' 19 20' 19 20' 19 30'	Realised 1 stone area 6 0.02577 6 0.035211 6 0.033010 6 0.0296113 6 0.0248338 6 0.030133 6 0.0322733 6 0.03257722 6 0.0357722 6 0.036611 6 0.0204973	AFDM g.m2 0.66315! dry <ash< td=""> 1.68309' 0.72280: dry<ash< td=""> 0.615:4 dry<ash< td=""> 0.615:58:6 dry<ash< td=""> 1.25364: 2.55788 dry<ash< td=""> 3.82546:</ash<></ash<></ash<></ash<></ash<>	Inorganic g.m2 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 66.56656 7 7 29.80772 3 10.74167 63.87605 40.23711	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR PET2MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioi 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2557 1.255 1.2576 1.2661 1.2792	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442 1.3414 1.3439 1.3538 1.3675	stress ght(g) ps Filter F 0.0879 0.0874 0.0886 0.0886 0.0886 0.0886 0.0887 0.0886 0.0887 0.0886 0.0887 0.0863 0.0863 0.0863 0.0863 0.0877 0.0883 0.0877	theat bare 1 oil+Filte Fil 1.3405 1.3521 1.3536 1.3552 1.3558 1.3558 1.3431 1.3401 1.3433 1.3535 1.3665	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0852 0.0851 0.0857 0.0874	Dry weight il+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 0.44385 1.4621 1.4621 1.362 1.4035 1.362 1.4036 1.4424	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 1.17915 1 0.2082 1 0.1895 1 0.1516 1 0.107 0.107 0.1427 0.1715 0.1632 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.11 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0. .4388 0.1 .4176 0.1	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total nic(g) Matter 693333 1.7143 3.466 853333 8.25394 1 933333 2.1170 2.76 866667 866667 2 0.962 253333 753333 1.0820 1.94024 2	(g) X (m) 46667 :: 3.97 :: 73333 :: 4.7109 : 66667 :: 3.63 :: 56432 :: 1.328 :: 47012 :: 1.52 :: 886667 :: 39844 :	y (n 140 195 175 170 185 175 135 160 185 150 160 130	100 75 160 100 145 80 110 100 95 85 85 85 85 75	Z (m)	xy*xz*1 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 198 20 185 40 179	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03789 00 0.04034 75 0.03974 00 0.03110 00 0.02928 50 0.02851	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 30' 19 20' 19 20' 19 20' 19 20' 19 20' 19 30' 19 30' 19 30' 19 30' 19 30'	Realised 1 stone area 6 0.02577 6 0.0350218 6 0.03218 6 0.0296113 6 0.0248338 6 0.030133 6 0.0322733 6 0.03257722 6 0.0357722 6 0.036611 6 0.0204973 6 0.0204973 6 0.0285115	AFDM g.m2 0.66315! dry <ash< td=""> 1.68309' 0.72280: dry<ash< td=""> 0.615: dry<ash< td=""> 0.615: dry<ash< td=""> 0.615: dry<ash< td=""> 0.72280: 0.72280: 0.75755: 0.61528: 1.25364: 2.557880 dry<ash< td=""> 3.82546: 4.33139' </ash<></ash<></ash<></ash<></ash<></ash<>	Inorganic g.m2 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 66.56656 7 29.80772 310.74167 63.87605 40.23711 7 68.05018	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR PET1MAR PET3MAR	Vol TOT 287 300 356 471 352 450 376 370 376 300 322 400 193 474 414	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioi 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2557 1.2556 1.2576 1.2661 1.2792 1.2764	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3549 1.3596 1.3442 1.3414 1.3439 1.3538 1.3675 1.3637	state ght(g) ps 0.0879 0.0874 0.0886 0.0886 0.0886 0.0886 0.0886 0.0887 0.0869 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0877	theat bare 1 is in the set bare 1 is in th	weight(ter Foi 0.0664 0.0853 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0852 0.0851 0.0857 0.0857 0.0874 0.0873	Dry weight il+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 0.44385 1.4621 1.4621 1.362 1.4095 1.4036 1.4036 1.4036 1.4036 1.4036 1.4376 1.4224 1.7066	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 1.7915 1 0.2082 1 0.1516 1 0.107 0.107 0.1427 0.1715 0.1632 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4473 0.1 .4403 0.1 .3912 0.1 1.358 0. .4176 0.1 .4279 0.1 .6791 0.4	AFDM 406 0.2946 586 - 176 0.0 103 1.1 559 0.3109 772 - 677 0.5464 333 - 103 0.0858 304 - 515 0.2573 487 - 027 -	(g) Inorga 553333 1.419 0.504	Total nic(g) Matter 693333 1.7143 3.466 853333 8.55394 1 933333 2.1170 2.76 8866667 8866667 2 0.962 253333 2.53333 0.0 1.192 753333 753333 1.0820 8.7354 2	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 1.52 : 886667 : 39844 : 0.4944 :	y (m 140 195 175 170 185 175 135 160 185 150 160 130 210	100 75 160 100 145 80 110 100 95 85 85 85 75 95	Z (m)	xy*xz*1 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 198 20 185 40 179 40 321	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03789 00 0.04034 75 0.03789 00 0.04034 75 0.03974 00 0.02928 50 0.02851 50 0.04839	a embedde 19 50' 69 30' 19 50' 19 50' 19 30' 69 10' 69 10' 69 10' 69 10' 69 10' 19 20' 19 20' 19 20' 19 20' 19 30' 19 30' 19 0' 19 0' 19 0'	Realised 1 stone area 6 0.02577 6 0.0352218 6 0.0352218 6 0.0352218 6 0.033016 6 0.0296113 6 0.0248338 6 0.030133 6 0.0322733 6 0.0357722 6 0.0357722 6 0.030493133 6 0.0322733 6 0.03204973 6 0.0204973 6 0.0205119 6 0.02035119 6 0.0290355	AFDM g.m2 0.663153 0.663153 dry <ash< td=""> 1.68309 0.722803 0.dry<ash< td=""> 0.615283 0.1257953 0.615283 1.253647 2.557884 dry<ash< td=""> 3.825463 J.4.331397 1.576423</ash<></ash<></ash<>	Inorganic g.m2 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 96.56656 7 29.80772 10.74167 63.87605 140.23711 7 68.05018 300.8561	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED4MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN5MAR PET1MAR PET1MAR PET3MAR PET4MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 450	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2557 1.2556 1.2556 1.2576 1.2611 1.2792 1.2744 1.2556	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3549 1.3549 1.3442 1.3414 1.3414 1.3439 1.3538 1.3675 1.3637 1.3637	stress ght(g) ss Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0869 0.0863 0.0863 0.0864 0.0863 0.0877 0.0883 0.0877 0.0883	theat bare v coll+Filter Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3431 1.3431 1.3433 1.3535 1.3665 1.3665 1.3626 1.3701	weight ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 2 0.0872 0.0872 0.0853 0.0852 0.0851 0.0857 0.0857 0.0873 0.0873 0.0873 0.0874 0.0873	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 0 1.4621 0 1.3622 1.362 1.4003 0 1.4203 0 1.4204 0 1.4095 0 1.4095 0 1.4095 0 1.4095 0 1.4095 0 1.4095 0 1.4095 0 1.4094 0 1.40424 0 1.40424 0 1.4044 0	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 1.17915 1 0.2082 1 0.1516 1 0.1516 1 0.1516 1 0.107 0.1427 0.1715 1 0.1632 1 0.4302 1 0.2128 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .44403 0.1 .3912 0.1 .1358 0.1 .4176 0.11 .4279 0.1 .4279 0.1 .4279 0.1	AFDM 400 0.2946 586	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 11: 33333 1.806 0.87 453333 2.017 0.366 366667 0.384 0.328 33333 0.824 0.4582 2 0.759 0.444	Total nic(g) Matter 693333 1.7143 3.466 853333 8.55394 1 933333 2.1170 2.76 8866667 8866667 2 0.962 253333 2.53333 0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 1.328 : 1.52 : 86667 : 39844 : 3.738 :	y (m 140 195 175 170 185 175 135 160 185 150 130 210 185	100 75 160 100 145 80 110 100 95 85 85 85 75 95 110	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 1988 20 1855 40 179 40 321 75 424	Total z stone an 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03747 50 0.03780 00 0.04034 75 0.03747 00 0.04034 75 0.03747 00 0.04034 75 0.03747 00 0.03110 00 0.02285 50 0.02851 50 0.04839 75 0.06284	a embedde 19 50° 69 30° 19 50° 69 30° 19 50° 69 30° 19 20° 19 20° 19 20° 19 20° 19 20° 19 20° 19 20° 19 20° 19 40° 19 0° 19 40° 69 50°	Realised stone area 0.02577: 0.035218 0.035218 0.035218 0.035218 0.035218 0.029611: 0.029611: 0.029613: 0.0248338 0.0303137 0.0303137 0.0303137 0.0303137 0.0303137 0.0303135 0.0305772: 0.018661: 0.0204973 0.0285119 0.0285119 0.029035: 0.031423:	AFDM g.m2 0.663153 dry <ash< td=""> 1.68309 0.722802 dry<ash< td=""> 0.057953 0.615283 0.257953 0.615283 1.253642 2.55784 3.825462 4.33139 1.576422 2.334544</ash<></ash<>	Inorganic g.m2 9 9 9 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 66.56656 63.87605 1 40.23711 68.05018 300.8561 104.8262	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR PET2MAR PET3MAR PET5MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 414 450 408	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2579 1.2555 1.2561 1.2661 1.2792 1.2764 1.2819 1.2844	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3549 1.3549 1.3549 1.3442 1.3414 1.3414 1.3439 1.3538 1.3675 1.3637 1.3637 1.3712 1.3683	stress ght(g) ss Filter F 0.0879 0.0874 0.0886 0.0886 0.0886 0.0887 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0863 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0877	theat bare v coll+Filter Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3401 1.3401 1.3433 1.3401 1.3433 1.3535 1.3665 1.3665 1.3626 1.3701 1.3667	weight ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0872 0.0872 0.0852 0.0872 0.0853 0.0852 0.0854 0.0857 0.0857 0.0874 0.0873 0.0874 0.0874 0.0873 0.0862 0.0882 0.0862 0.0884	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.44385 0 1.44385 0 1.44385 1.44385 1.46021 1.46021 1.4602 1.4603 1.4403 1.4424 1.7066 1.44947 1.6064	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 1.17915 1 0.2082 1 0.1805 1 0.1516 1 0.107 0.1427 0.1715 1 0.1632 1 0.4302 1 0.3266 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4473 0.1 .3912 0.1 .358 0.1 .4176 0.1 .4279 0.1 .4279 0.1 .4388 0.1 .4279 0.1 .4388 0.3	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 11: 333333 1.806 0.87 453333 2.017 0.366 .366667 0.384 0.328 33333 0.824 0.4582 : 0.759 0.444 .49232 (Total nic(g) Matter 693333 1.714' 3.466	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 1.52 : 86667 : 39844 : 2.4944 : 3.738 :	y (m 140 195 175 170 185 175 135 160 130 150 160 130 210 185 190	100 75 160 100 145 80 110 95 85 85 75 95 110 140	Z (m)	xy*xz*y 85 344 70 3355 50 447 40 278 30 367 33 229 40 246 40 264 30 259 30 198 20 1855 40 179 40 321 75 424 40 398	Total z stone an 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03747 50 0.03780 00 0.04034 75 0.03974 00 0.03110 00 0.02285 50 0.02851 50 0.04839 75 0.06284 00 0.05910	a embedde 19 50° 69 30° 19 50° 69 30° 19 50° 69 30° 19 20° 19 20° 19 20° 19 20° 19 30° 19 20° 19 30° 19 30° 19 30° 19 30° 19 30° 19 30° 19 30° 19 30° 19 30° 19 30° 19 50° 19 50°	Realised stone area 0.02577: 0.035218 0.035218 0.035218 0.035218 0.035218 0.035218 0.035218 0.035218 0.035218 0.035218 0.0296113 0.0296113 0.0249333 0.0303132 0.03057722 0.03057723 0.0204973 0.0204973 0.0204973 0.029055 0.0314235 0.029555	AFDM g.m2 0.663159 dry <ash< td=""> 1.68309 0.72280: dry<ash< td=""> 0.25795: 0.61528 1.25364: 2.55788: dry<ash< td=""> 3.82546: 4.33139: 1.57642: 2.33454: data miss</ash<></ash<></ash<>	Inorganic g.m2 9 9 9 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 9 66.56656 10.74167 63.87605 1 40.23711 7 68.05018 300.8561 104.8262 203.9704	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN3MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR PET2MAR PET3MAR1 PET5MAR YO1MAR1	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 414 450 408 303	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he i 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2776 1.2555 1.2561 1.2661 1.2792 1.2764 1.2819 1.2804 1.2804 1.2671	at bare wei Foil+Filter 1 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3549 1.3442 1.3414 1.3414 1.3439 1.3558 1.3675 1.3637 1.3712 1.3683 1.355	stress ght(g) ss Filter F 0.0879 0.0879 0.0884 0.0886 0.0887 0.0863 0.0863 0.0863 0.0863 0.0877 0.0883 0.0877 0.0883 0.0877	theat bare v oil+Filte Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3401 1.3401 1.3401 1.3403 1.3535 1.3665 1.3626 1.3701 1.3667 1.3545	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0872 0.0852 0.0852 0.0853 0.0857 0.0887 0.0874 0.0873 0.0873 0.0873 0.0873 0.0874 0.0873 0.0882 0.0873 0.0873 0.0874 0.0863 0.0874	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.4003 1.4003 1.4003 1.4376 1.4424 1.7066 1.44947 1.6064 1.4249	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.1616 1 0.1715 1 0.1632 1 0.4302 1 0.3266 1 0.3266 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0.3 .5883 0.33 .4101 0.	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504 .96832 3.056 .45696 11: 333333 1.806 0.87 453333 2.017 0.366 366667 0.384 0.328 33333 0.824 0.4582 2 0.759 0.444 .49232 (1 .29896	Total Total anic(g) Matter 693333 1.714' 3.466	k k 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 1.52 : 386667 : 39844 : 3.738 : 51984 :	y (m 140 195 175 170 185 175 135 160 130 150 160 130 120 185 190 125	100 75 160 100 145 80 110 95 85 75 95 110 145 100 95 85 75 95 110 140 105	Z (m)	xy*xz*y 85 344 70 3355 50 4477 40 2278 30 3677 33 229 40 2464 40 264 30 259 30 198 20 1855 40 179 40 3211 75 424 40 398 35 211	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 75 0.03974 00 0.04034 00 0.03110 00 0.02285 50 0.02885 50 0.04839 75 0.06284 00 0.05910 75 0.03302	a embedde 19 50° 69 30° 19 50° 69 30° 19 50° 69 30° 19 50° 69 10° 69 10° 19 20° 69 10° 19 20° 19 30° 19 0° 19 30° 19 50° 69 50° 19 50° 69 50°	Realised 1 stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.039112 6 0.0296113 6 0.0296113 6 0.0249333 6 0.0303133 6 0.03037723 6 0.03057723 6 0.03057723 6 0.0204973 6 0.0204973 6 0.0204973 6 0.0290353 6 0.0290353 6 0.0314233 6 0.0330269	AFDM g.m2 0.663159 dry <ash< td=""> 1.68309 0.72280 dry<ash< td=""> 0.25795 0.61528 1.25364 2.557880 dry<ash< td=""> 3.82546 4.33139 1.576422 2.33454 data miss 0.603043</ash<></ash<></ash<></ash<></ash<></ash<></ash<>	Inorganic g.m2 9 9 9 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 9 66.56656 10.74167 63.87605 140.23711 7 68.05018 300.8561 104.8262 203.9704 234.00622	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN2MAR TAN3MAR PET1MAR PET1MAR PET2MAR PET3MAR PET5MAR YO1MAR1 YO2MAR1	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 414 450 408 303 400	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2579 1.255 1.2561 1.2661 1.2720 1.2744 1.2819 1.2804 1.2661	at bare wei Foil+Filter 1 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3549 1.3442 1.3414 1.3414 1.3439 1.3538 1.3675 1.3675 1.3675 1.3675 1.3675 1.3637 1.3712 1.3683 1.3555 1.344	stress ght(g) ss Filter F 0.0879 0.0879 0.0884 0.0886 0.0885 0.0887 0.0863 0.0863 0.0863 0.0863 0.0883 0.0877 0.0883 0.0873 0.0883 0.0873 0.0873 0.0873 0.0879 0.0879	theat bare v oil+Filte Fil 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3552 1.3598 1.3431 1.3401 1.3401 1.3433 1.3535 1.3626 1.3626 1.3701 1.3667 1.3545 1.3432	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0872 0.0872 0.0853 0.0852 0.0852 0.0857 0.0857 0.0857 0.0873 0.0874 0.0874 0.0873 0.0875 0.0874 0.0873 0.0874 0.0863 0.0874 0.0863 0.0874 0.0863 0.0874	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.4621 1.4003 1.4621 1.4003 1.4621 1.4003 1.4424 1.7066 1.4424 1.7066 1.4424 1.6064 1.4249 1.3876	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.107 0 0.1427 0 0.1632 1 0.4302 1 0.3266 1 0.326 1 0.326 1 0.131 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4470 0.1 .4388 0.1 .4279 0.1 .6791 0.4 .4799 0.3 .4101 0.	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total Total anic(g) Matter 693333 1.714; 3.466 853333 853333 4.025; 3.25394 1 933333 2.1178 2.76 866667 2 0.962 253333 0 1.192 753333 753333 1.0820 8.7354 2.294 5.02752 6 1.12312 1 333333 .	k k (g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 3.8844 : 3.9844 : 3.738 : 51984 : 42208 :	y (m 140 195 175 170 185 175 135 160 150 160 130 210 185 190 125 170	100 75 160 100 145 80 110 95 85 75 95 110 100 95 85 75 95 110 145 100 100 110 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 335 229 40 264 40 264 40 264 30 198 20 185 40 201 40 321 75 424 40 398 35 211 00 494	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 00 0.03110 00 0.02928 50 0.02851 50 0.04839 75 0.06284 00 0.05910 75 0.03302 00 0.05910	a embedde 19 50° 69 30° 19 50° 69 30° 19 50° 69 30° 19 50° 69 30° 19 20° 69 10° 19 20° 19 30° 19 40° 19 0° 19 40° 19 50° 69 50° 19 50° 69 0° 19 40°	Realised 1 stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.029611: 6 0.029611: 6 0.029611: 6 0.029611: 6 0.029611: 6 0.029611: 6 0.029613: 6 0.030313: 6 0.030313: 6 0.0305772: 6 0.0305772: 6 0.0305772: 6 0.020497: 6 0.029055: 6 0.029055: 6 0.0330269 6 0.0330269 6 0.043525:	AFDM g.m2 0.663153 dry <ash< td=""> 1.683093 0.722803 dry<ash< td=""> 0.61528 0.61528 0.61528 1.255786 dry<ash< td=""> 3.825463 3.825463 4.331393 1.576422 2.334544 data miss 0.603042 1.423353</ash<></ash<></ash<>	Inorganic g.m2 9 9 9 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 9 66.56656 29.80772 510.74167 63.87605 1 40.23711 7 7 300.8561 1 104.8262 2 34.00622 2 24.93578	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR1 PET2MAR1 PET3MAR1 YO1MAR1 YO2MAR1	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 414 450 408 303 400 350	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.2557 1.2556 1.2641 1.2792 1.25576 1.2661 1.2794 1.2804 1.2671 1.2566 1.2664	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3536 1.3442 1.3442 1.3414 1.3439 1.3538 1.3637 1.3637 1.3637 1.3712 1.3683 1.355 1.344 1.3539	stress ght(g) ss Filter F 0.0879 0.0879 0.0874 0.0886 0.0886 0.0887 0.0869 0.0863 0.0863 0.0864 0.0863 0.0883 0.0883 0.0877 0.0883 0.0873 0.0893 0.0873 0.0879 0.0874 0.0879 0.0874	theat bare v is theat bare v is the filter 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3552 1.3598 1.3431 1.3401 1.3401 1.3433 1.3535 1.3626 1.3701 1.3667 1.3545 1.3545 1.3545 1.3545 1.3536	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0851 0.0852 0.0852 0.0857 0.0857 0.0874 0.0862 0.0887 0.0863 0.0862 0.0863 0.0863 0.0864 0.0863 0.0865 0.0863	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.4621 1.4095 1.4621 1.4095 1.4003 1.4003 1.4376 1.4424 1.4249 1.6064 1.4249 1.3876 1.3876 1.3912	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.1955 1 0.1975 1 0.1715 1 0.1632 1 0.4302 1 0.326 1 0.326 1 0.1578 1 0.131 1 0.1268 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0. .5883 0.3 .4101 0. .3389 0.1	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total nic(g) Matter 693333 1.714; 3.466 853333 853333 4.025; 3.25394 1 933333 2.117; 2.76 866667 2 0.962 253333 0.0822 1.192 753333 753333 1.0822 8.7354 3.294 5.02752 6 1.12312 1 333333 6666667	k k (g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 39844 : 3.738 : 51984 : 42208 : 1.184 :	y (m 140 195 175 170 185 175 135 160 185 150 160 130 210 185 190 125 170 170	1) 100 75 160 100 145 80 110 100 95 85 85 75 95 110 140 105 120 140	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 40 264 40 261 30 198 20 185 40 321 75 424 40 321 75 424 40 328 35 211 00 494 75 470	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.03547 25 0.03547 50 0.03740 50 0.03740 00 0.04034 75 0.039710 00 0.02928 50 0.02851 50 0.02851 50 0.04839 75 0.06284 00 0.05910 75 0.03302 00 0.0754 50 0.02845 50 0.02845 50 0.03202 50 0.03202 50 0.03202 50 0.03202 50 0.03202 50 0.03202 50 0.06925	a embedde 19 50° 69 30° 19 50° 19 50° 19 30° 69 10° 69 10° 69 10° 69 10° 19 20° 19 20° 19 30° 19 30° 19 30° 19 50° 69 50° 19 50° 69 0° 19 40° 19 40° 19 40° 19 40° 19 40° 19 40° 19 40° 19 40°	Realised 1 stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.0296113 6 0.0296113 6 0.0296113 6 0.0296113 6 0.0296113 6 0.029313 6 0.0303133 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.02049753 6 0.0295553 6 0.0302663 6 0.03302633 6 0.03302633 6 0.0554013	AFDM g.m2 0.663153 dry <ash< td=""> 1.683093 0.722803 dry<ash< td=""> 0.257953 0.615283 dry<ash< td=""> 3.0257953 0.615283 dry<ash< td=""> 3.3825463 3.3825463 4.331393 1.576422 2.334544 data miss 0.603043 1.423353 1.457293</ash<></ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 29.80772 10.74167 63.87605 140.23711 7 7 8.05018 300.8561 104.8262 i 203.9704 24.93578 10.82401	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN1MAR TAN2MAR TAN2MAR TAN3MAR TAN5MAR PET1MAR1 PET2MAR1 PET5MAR1 YO1MAR1 YO2MAR1	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 414 450 408 303 400 350 403	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2706 1.2557 1.2651 1.2661 1.2704 1.2819 1.2804 1.2671 1.2661 1.2674 1.2644 1.2656 1.2644 1.270	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3596 1.3442 1.3414 1.3439 1.3538 1.3637 1.3637 1.3712 1.3683 1.355 1.344 1.3539 1.3547	stress ght(g) ss Filter F 0.0879 0.0879 0.0874 0.0886 0.0886 0.0887 0.0863 0.0863 0.0864 0.0863 0.0863 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0877 0.0883 0.0873 0.0873 0.0873 0.0887 0.0873 0.0874 0.0874 0.0875 0.0874	theat bare v is the filter filt 1.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3552 1.3598 1.3431 1.3401 1.3401 1.3403 1.3535 1.3626 1.3701 1.3667 1.3545 1.3545 1.3545 1.3545 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3542 1.3545 1.3556	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0851 0.0852 0.0852 0.0887 0.0874 0.0887 0.0887 0.0887 0.0882 0.0882 0.0882 0.0882 0.0883 0.0882 0.0884 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882	Dry weight il+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 1.4762 1.4762 1.4621 1.4095 1.4003 1.4003 1.4376 1.4424 1.4003 1.4424 1.4003 1.4424 1.4003 1.4424 1.4249 1.3876 1.3876 1.3912 1.4298	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.1995 1 0.1715 1 0.1632 1 0.4302 1 0.326 1 0.326 1 0.1578 1 0.131 1 0.132 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4473 0.1 .3912 0.1 1.358 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0. .5883 0.3 .4101 0. .3389 0.1 .3793 0.1	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total Total anic(g) Matter 693333 1.714 3.466 853333 853333 4.025 3.25394 1 933333 2.1174 2.76 866667 2 0.962 253333 0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294 5.02752 6 1.12312 1 33333 1.0877 513333 1.9230	k k (g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 39844 : 3.738 : 51984 : 42208 : 1.184 : 33333 :	y (m 140 195 175 170 185 175 135 160 185 150 160 130 210 185 190 125 170 170 185 190 125 170	1) 100 75 160 100 145 80 110 100 95 5 5 5 5 110 140 105 120 140 95	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 198 20 185 40 321 75 424 40 321 75 424 40 321 75 424 40 321 75 424 40 328 35 211 00 494 75 470 65 349	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.03547 25 0.03547 50 0.03473 50 0.03100 00 0.03110 00 0.03110 00 0.03285 50 0.02851 50 0.02851 50 0.04839 75 0.06284 00 0.05910 75 0.03020 00 0.07254 50 0.04839 75 0.03020 75 0.03020 75 0.03020	a embedde 19 50° 69 30° 19 50° 19 50° 19 30° 69 10° 69 30° 19 20° 19 20° 19 20° 19 30° 19 30° 19 30° 19 30° 19 50° 69 50° 19 40° 19 20° 69 0° 19 40° 19 20° 69 0°	Realised 1 stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.039112 6 0.0296113 6 0.0296113 6 0.0248333 6 0.0303133 6 0.0303133 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0204973 6 0.0209355 6 0.030266 6 0.0330266 6 0.0209384 6 0.0209384	AFDM g.m2 0.66315! dry <ash< td=""> 1.68309' 0.72280: dry<ash< td=""> 0.25795: 0.61528: dry<ash< td=""> 3.25786: dry<ash< td=""> 3.82546: 1.57642: 2.33454 data miss 0.60044 1.42335: 1.457292 9.394983</ash<></ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 29.80772 10.74167 63.87605 140.23711 7 68.05018 300.8561 104.8262 i 203.9704 2 24.93578 10.82401 8 5.31014	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN3MAR PET1MAR2 PET2MAR2 PET3MAR2 PET3MAR1 YO2MAR1 YO2MAR1	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 450 408 303 400 350 400	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.276 1.255 1.2576 1.2661 1.2792 1.2619 1.2804 1.2671 1.2661 1.2702 1.2644 1.2644 1.2644 1.2644 1.2644 1.264 1.264	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3536 1.3442 1.3442 1.3414 1.3439 1.3538 1.3675 1.3637 1.3637 1.3633 1.3555 1.344 1.3559 1.344 1.3539 1.3587 1.349	stress ght(g) ss Filter F 0.0879 0.0874 0.0886 0.0886 0.0887 0.0886 0.0886 0.0887 0.0863 0.0863 0.0864 0.0863 0.0883 0.0877 0.0883 0.0873 0.0873 0.0873 0.0879 0.0879 0.0879 0.0879 0.0874 0.0883 0.0875 0.0874 0.0874 0.0873	theat bare v is the filter i.3405 1.339 1.3521 1.348 1.3536 1.3552 1.3598 1.3598 1.3431 1.3401 1.3401 1.3403 1.3655 1.3626 1.3626 1.3701 1.3667 1.3545 1.3545 1.3545 1.3536 1.3542 1.3536 1.3536 1.3542 1.3536 1.35577 1.3557 1.3557 1.3557 1.3557 1.	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0889 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0851 0.0857 0.0857 0.0873 0.0873 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882	Dry weight il+Filter Filt 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.4621 1.4095 1.4621 1.4095 1.4003 1.4003 1.4003 1.4376 1.4424 1.7066 1.4424 1.7066 1.4424 1.6064 1.4249 1.3876 1.3912 1.4298 1.3889	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.2584 1 0.2082 1 0.1516 1 0.1895 1 0.1895 1 0.1715 1 0.1632 1 0.4302 1 0.326 1 0.326 1 0.1578 1 0.131 1 0.1268 1 0.131 1 0.1268 1 0.1309 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4473 0.1 .3912 0.1 1.358 0. .1.388 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0. .5883 0.3 .4101 0. .3389 0.1 .3793 0.1 .4091 0.1	AFDM 406 0.2946 586	(g) Inorga 553333 1.419 0.504	Total Total anic(g) Matter 693333 1.714: 3.466 853333 853333 4.025: 3.25394 1 933333 2.1174 2.76 866667 2 0.962 253333 1.0820 1.94024 2 8.7354 3.294 5.02752 6 1.12312 1 333333 1.9230 6666667 0.8773 513333 1.9230 6666667 1.1620	k k (g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 1.52 : 39844 : 3.738 : 51984 : 42208 : 1.184 : 33333 :	y (m 140 195 175 170 185 175 135 160 185 150 160 130 210 185 190 125 170 170 185 190 125 170 185 190 125 170 185 170 185 190 125 170 185 190 190 190 190 190 190 190 190	1) 100 75 160 100 145 80 110 100 95 85 75 95 110 140 105 120 140 95 120 140	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 40 264 40 264 30 198 20 1885 40 179 40 321 75 424 338 211 00 494 75 470 65 349 95 369	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.04034 75 0.03740 00 0.04034 75 0.03110 00 0.02928 50 0.04839 75 0.06284 00 0.05910 75 0.03020 00 0.05910 75 0.03242 00 0.05910 75 0.03242 00 0.05910 75 0.03242 90 0.07254 50 0.05234 75 0.05254	a embedde 19 50° 69 30° 19 50° 19 50° 19 30° 69 10° 69 30° 19 20° 19 20° 19 20° 19 20° 19 30° 19 30° 19 30° 19 50° 69 0° 19 40° 19 20° 69 0° 19 20° 69 0° 19 20° 69 0°	Realised I stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.03218 6 0.0296113 6 0.0296133 6 0.0248333 6 0.030133 6 0.030133 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0302733 6 0.0204973 6 0.02049755 6 0.030266 6 0.030266 6 0.030266 6 0.0209383 6 0.0209384 6 0.0209384 6 0.0209384 6 0.0209384 6 0.0209384 6 0.0209384 6 0.0209384	AFDM g.m2 0.663153 dry <ash< td=""> 1.683093 0.722803 dry<ash< td=""> 0.257953 0.615283 dry<ash< td=""> 1.253644 2.557888 dry<ash< td=""> 3.825463 1.576422 2.334544 2.334544 4data miss 0.603044 1.423353 1.457293 9.394983 1.093372</ash<></ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 9.80772 5 10.74167 63.87605 1 40.23711 7 7 300.8561 1 14.8262 i 23.4.00622 1 24.93578 10.82401 3 45.31014 j 12.37906	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN3MAR TAN3MAR PET1MAR PET2MAR PET3MAR PET3MAR PET5MAR PET5MAR YO1MAR1 YO2MAR1 YO2MAR1 DRA1MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 400 193 474 414 450 408 303 400 350 400 350 400 403	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.255 1.2576 1.2661 1.2726 1.2671 1.2661 1.2724 1.2804 1.2671 1.2566 1.2644 1.264 1.276 1.2644 1.264 1.264 1.264 1.264 1.2656 1.2644 1.2671	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3536 1.3442 1.3414 1.3439 1.3538 1.3675 1.3637 1.3683 1.3555 1.3683 1.3555 1.3444 1.3539 1.3587 1.3446	stress ght(g) ss Filter F 0.0879 0.0879 0.0874 0.0886 0.0886 0.0887 0.0869 0.0887 0.0863 0.0864 0.0863 0.0883 0.0883 0.0877 0.0883 0.0873 0.0873 0.0873 0.0879 0.0879 0.0879 0.0874 0.0887 0.0879 0.0887 0.0879 0.0879 0.0879 0.0879 0.0879 0.0887 0.0893 0.0887 0.0893 0.0879 0.0879 0.0887 0.0893 0.0887 0.0893	Iteration st heat bare 1.339 1.3521 1.339 1.3521 1.3521 1.3536 1.3552 1.3598 1.3431 1.3401 1.3433 1.3605 1.3665 1.3665 1.3665 1.3665 1.3666 1.3536 1.3545 1.3545 1.3536 1.3536 1.3536 1.3536 1.3536 1.3536 1.3536 1.3538 1.3432 1.3536 1.3536 1.3536 1.3536 1.3432	weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0851 0.0857 0.0857 0.0862 0.0874 0.0863 0.0863 0.0864 0.0863 0.0874 0.0864 0.0873 0.0874 0.0863 0.0874 0.0862 0.0873 0.0873 0.0874 0.0863 0.0873 0.0873 0.0873 0.0883 0.0873 0.0873	Dry weight il+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 0.14762 1.44385 1.44385 1.4621 1.4621 1.4095 1.4095 1.4036 1.40376 1.40376 1.4376 1.4424 1.6064 1.4249 1.3876 1.3876 1.3876 1.3889 1.4804	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.107 0 0.1427 0 0.1427 0 0.4302 1 0.4302 1 0.1228 1 0.1578 1 0.131 1 0.1268 1 0.131 1 0.1268 1 0.1309 1 0.2233 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0. .6791 0.4 .7883 0.3 .4101 0. .3383 0.1 .3793 0.1 .4091 0.1 .3793 0.1	AFDM 406 0.2946 586	(g) Inorge 553333 1.419 0.504	Total Total anic(g) Matter 693333 1.714 3.466 853333 853333 4.025: 3.25394 1 933333 2.1174 2.76 866667 2 0.962 253333 0.0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294 5.02752 6 1.12312 1 333333 1.9230 6666667 0.8773 513333 1.9230 6666667 1.1620 3.1724 3.8500	k (g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 1.52 : 39844 : 3.738 : 51984 : 42208 : 1.184 : 53333 : 66667 : 266667 :	y (m 140 195 175 177 185 175 135 160 185 150 160 185 190 125 170 185 190 125 170 180 133 140	100 75 160 100 75 160 100 145 80 110 95 75 95 110 145 80 100 95 110 105 120 140 95 105 110	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 259 30 198 20 185 40 321 75 424 40 321 75 424 40 385 211 00 00 494 75 470 65 349 95 369 50 279	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.03547 25 0.03547 50 0.03788 00 0.04034 75 0.03974 00 0.02928 50 0.04839 75 0.06284 00 0.02928 50 0.04839 75 0.03910 75 0.03920 00 0.07254 50 0.03920 00 0.07254 50 0.06283 75 0.05234 75 0.05234 75 0.05514 00 0.04244	a embedde 19 50° 69 30° 19 50° 19 30° 69 10° 69 10° 69 10° 69 30° 19 20° 19 20° 69 10° 19 20° 69 10° 19 0° 19 0° 19 0° 19 20° 69 0° 19 20° 69 0° 19 20° 69 0° 19 20° 69 0° 19 0°	Realised I stone area 6 0.02577: 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.035218 6 0.03218 6 0.0296113 6 0.0296133 6 0.0248338 6 0.0322733 6 0.0303133 6 0.0327732 6 0.0304973 6 0.0204973 6 0.0204973 6 0.02090353 6 0.02090352 6 0.0330266 6 0.0330266 6 0.0330266 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0424419	AFDM g.m2 0.663153 dry <ash< td=""> 1.68309 0.722803 dry<ash< td=""> 0.257953 0.615285 0.615286 1.25364 2.557888 dry<ash< td=""> 3.825463 2.334544 data miss 0.603044 1.423355 1.457629 9.394988 1.093379 0.384075</ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 9.80772 5 10.74167 63.87605 1 40.23711 7 300.8561 104.8262 i 234.00622 1 24.93578 203.9704 2 10.82401 5 5 10.82401 12.37906 3 74.74689	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308 90.73172
Sample ED1MAR1 ED2MEDR ED3MAR1 ED3MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN3MAR TAN3MAR PET1MAR: PET2MAR: PET3MAR: PET3MAR: YO1MAR1 YO2MAR1 YO2MAR1 YO2MAR1 DRA1MAR DRA2MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 400 193 474 414 450 408 303 400 350 400 350 400 350 9403	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioil 1.2741 1.2537 1.2633 1.2598 1.2647 1.268 1.2726 1.255 1.2579 1.255 1.2576 1.2601 1.2702 1.2644 1.2671 1.2664 1.2671 1.2664 1.2644 1.2674 1.2684 1.2671 1.2684 1.2671 1.2684 1.2671 1.2684 1.2571 1.2684 1.2571	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3536 1.3442 1.3414 1.3439 1.3538 1.3675 1.3683 1.3683 1.3683 1.3683 1.3555 1.344 1.3539 1.3547 1.3446 1.3527	stress ght(g) ps Filter F 0.0879 0.0879 0.0874 0.0886 0.0886 0.0887 0.0886 0.0887 0.0863 0.0863 0.0864 0.0863 0.0863 0.0877 0.0883 0.0877 0.0873 0.0873 0.0879 0.0879 0.0879 0.0879 0.08879 0.0879 0.08879 0.0879 0.0879 0.0879 0.0879 0.0879 0.0887 0.0875 0.0887 0.0887	at heat bare st heat bare 1.339 1.3521 1.339 1.3521 1.3521 1.3536 1.3552 1.3598 1.3431 1.3433 1.3535 1.3665 1.3665 1.3626 1.3535 1.3626 1.3535 1.3626 1.3535 1.3545 1.3536 1.3536 1.3536 1.3536 1.3538	weight(weight(ter Foi 0.0664 0.0853 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0872 0.0851 0.0857 0.0857 0.0857 0.0874 0.0862 0.0883 0.0874 0.08863 0.0882 0.08874 0.0882 0.0874 0.0882 0.0873 0.0873 0.0882 0.0874 0.0882 0.0873 0.0882 0.0873 0.0883 0.0873 0.0883 0.0873 0.0883 0.0831 0.0886 0.0886	Dry weight II+Filter 1.4301 1.5375 1.5217 1.5217 1.8165 1.44385 0 1.4762 1.44385 1.4428 1.4095 1.4095 1.4036 1.40376 1.40376 1.40376 1.40376 1.40376 1.4249 1.3876 1.3876 1.3876 1.3889 1.4804 1.66631	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.107 0 0.1427 0 0.1427 1 0.1632 1 0.4302 1 0.1228 1 0.1578 1 0.131 1 0.1268 1 0.131 1 0.1309 1 0.2233 1 0.3979 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 1.358 0.1 .4476 0.1 .4279 0.1 .6791 0.44 .6799 0. .3838 0.3 .4100 0. .3839 0.1 .3793 0.1 .4001 0.1 .3793 0.1 .4091 0.1 .3709 0.1 .4257 0.1 .4244 0.3	AFDM 406 0.2946 586	(g) Inorga 55333 1.419 0.504	Total Total anic(g) Matter 693333 1.714 3.466 853333 853333 4.025: 3.25394 1 933333 2.1174 2.76 866667 2 0.962 253333 0.0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294 5.02752 6 6.12312 1 333333 1.9230 6666667 0.8773 513333 1.9230 6666667 1.1620 3.1724 3.8500 0.79316 10	k (g) X (m) 46667	y (m 140 195 175 177 185 175 135 160 185 150 160 185 130 210 185 170 185 170 185 170 185 170 180 135 140 160	 100 75 160 100 145 80 110 100 95 85 85 75 95 110 140 95 120 140 95 120 140 95 105 110 135 	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 259 30 198 20 185 40 321 75 424 40 321 75 4249 35 211 00 494 75 4700 65 349 95 369 50 279 30 304	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03788 00 0.04034 75 0.03974 00 0.03110 00 0.02928 50 0.04839 75 0.03202 00 0.05910 75 0.03302 00 0.07254 50 0.04839 75 0.03202 00 0.07254 50 0.06281 50 0.05210 75 0.05234 75 0.05214 50 0.0514 50 0.04244 50 0.04601	a embedde 19 50° 69 30° 19 50° 19 30° 69 10° 69 10° 69 10° 69 10° 19 20° 19 20° 19 20° 19 30° 19 30° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0°	Realised I stone area 6 0.025777 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0322118 6 0.0322118 6 0.0290112 6 0.0290112 6 0.02903133 6 0.0322733 6 0.03014231 6 0.0204973 6 0.02090353 6 0.0320265 6 0.0330266 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0209383 6 0.0424419 6 0.0444119 6 0.04461119	AFDM g.m2 0.663153 dry <ash< td=""> 1.68309 0.722803 dry<ash< td=""> 0.257953 0.615285 0.615285 1.253642 2.557888 dry<ash< td=""> 3.825463 2.335444 4.331393 1.576422 2.334544 data miss 0.603042 1.423355 1.457293 9.394988 1.093372 0.384073 0.586285</ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 29.80772 5 10.74167 63.87605 40.23711 7 68.05018 104.8262 i 234.00622 1 24.93578 2 10.82401 3 405.31014 5 3 212.8397	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308 90.73172 228.1058
Sample ED1MAR1 ED2MEDR ED3MAR1 ED3MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN3MAR TAN4MAR TAN5MAR PET1MAR PET1MAR1 PET3MAR1 YO2MAR1 YO2MAR1 YO2MAR1 YO2MAR1 YO2MAR1 DRA1MAR DRA2MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 400 193 400 403 400 350 400 350 400 350 400 350 400	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he ioi 1.2741 1.2537 1.2633 1.2558 1.2647 1.268 1.2726 1.255 1.255 1.2576 1.2661 1.2792 1.2644 1.2566 1.2644 1.2566 1.2644 1.270 1.2664 1.2674 1.2556 1.2656 1.2644 1.271 1.2556 1.2652 1.2551	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3596 1.3442 1.3414 1.3439 1.3538 1.3675 1.3637 1.3683 1.355 1.3683 1.355 1.344 1.3539 1.3587 1.344 1.3539 1.3547 1.3446 1.3527 1.348	stress ght(g) ps Filter F 0.0879 0.0874 0.0874 0.0874 0.0886 0.0887 0.0887 0.0883 0.0863 0.0863 0.0864 0.0863 0.0863 0.0877 0.0863 0.0877 0.0883 0.0873 0.0873 0.0873 0.0879 0.0879 0.0874 0.0893 0.0874 0.0887 0.0874 0.0893 0.0874 0.0893 0.0874 0.0895 0.0887 0.0893 0.0874 0.0895 0.0887 0.0895 0.0887 0.091 0.0875 0.0875 0.0875 0.0873	theat bare is is the bare is the bare is the bare is is the bare is	weight(weight(ter Foi 0.0664 0.0883 0.0883 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0872 0.0851 0.0857 0.0857 0.0874 0.0873 0.0874 0.0874 0.0873 0.0882 0.0882 0.0884 0.0874 0.0866 0.0882 0.0873 0.0864 0.0882 0.0883 0.0884 0.0884 0.0885 0.0884 0.0884 0.0884 0.0885 0.0884 0.0884 0.0883 0.0883 0.0883	Dry weight II+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 0.44385 1.44385 1.44385 1.4422 1.44095 1.4095 1.4036 1.40376 1.4424 1.40376 1.44249 1.4249 1.4249 1.3876 1.3876 1.3889 1.4804 1.6631 1.4804	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1895 1 0.1516 1 0.107 0 0.1427 0 0.1427 1 0.1622 1 0.3266 1 0.3266 1 0.1578 1 0.1268 1 0.131 1 0.1268 1 0.1309 1 0.2233 1 0.3279 1 0.2104 1	sh weight(g) Filte Filter .4147 0.1 .5123 0.2 .4809 0.2 .7701 0.5 .4306 0.1 .4472 0.1 .4403 0.1 .3912 0.1 .1388 0.1 .1388 0.1 .4176 0.1 .4279 0.1 .6791 0.4 .4799 0. .5883 0.3 .3793 0.1 .3793 0.1 .4001 0.1 .3793 0.1 .4091 0.1 .3709 0.1 .4557 0.1* .6424 0.3	AFDM 406 0.2946 586	(g) Inorga 55333 1.419 0.504	Total Total anic(g) Matter 693333 1.714: 3.466 853333 853333 4.025: 3.25394 1 933333 2.1174 2.76 866667 22 0.962 253333 0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294 3.294 1 3.294 1 3.294 1 666667 0.877: 513333 1.923i 666667 1.1620 3.1724 3.8508 0.79316 10 193333 2.2366	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 1.52 : 86667 : 39844 : 3.738 : 51984 : 33333 : 553333 : 66667 : 226667 : 235333 :	y (m 140 195 177 185 175 185 160 185 150 160 131 130 125 170 125 170 185 130 125 130 125 130 125 130 125 130 125 130 125 130 125 130 125 130 131 132 140 180	100 75 160 100 75 160 100 145 80 110 95 85 75 110 100 95 95 110 105 120 140 95 100 120 140 95 105 100 135 105	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 40 264 30 198 20 185 40 321 75 424 40 398 35 211 00 494 75 470 65 349 95 369 50 279 30 304 20 246	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 75 0.03974 00 0.03110 00 0.02928 50 0.04839 75 0.03290 00 0.025910 75 0.03302 00 0.07254 50 0.06281 50 0.06281 50 0.04830 75 0.03302 00 0.07254 50 0.06281 50 0.06282 75 0.05234 75 0.05234 75 0.0524 50 0.04244 50 0.04601 50 0.04601 50 0.04601	a embedde 19 50° 69 30° 19 50° 19 30° 69 10° 69 10° 69 10° 19 20° 19 20° 19 20° 19 20° 19 30° 19 30° 19 30° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0°	Realised I stone area 6 0.025777 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0322118 6 0.0322118 6 0.0290112 6 0.02901313 6 0.0322733 6 0.0301423 6 0.0204973 6 0.0204973 6 0.0204973 6 0.0204973 6 0.0204973 6 0.020493525 6 0.020330266 6 0.020330266 6 0.0203384 6 0.020384 6 0.020384 6 0.020384 6 0.02039384 6 0.02039384 6 0.04244119 6 0.04264753 6 0.0264753	AFDM g.m2 0.663153 dry <ash< td=""> 1.68309 0.72280: dry<ash< td=""> 0.25795: 0.61528: 1.25364: 2.55788: dry<ash< td=""> 3.82546: 4.33139 1.57642: 2.33454: 0.60304: 1.45729: 9.39498: 1.09337: 0.38407: 0.58628: dry<ash< td=""></ash<></ash<></ash<></ash<>	Inorganic g.m2 9 55.0889 98.40488 7 92.58717 1 447.5969 36.639 2 111.1387 9 66.56656 7 29.80772 3 10.74167 63.87605 10.23711 7 68.05018 3 300.8561 1 104.8262 i 203.9704 2 34.00622 1 24.93578 2 10.82401 3 65.31014 5 12.37906 7 74.74689 2 12.8397 71.58337	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308 90.73172 228.1058 84.48066
Sample ED1MAR1 ED2MEDR ED3MAR1 ED4MAR1 ED4MAR1 ED5MAR1 TAN1MAR TAN2MAR TAN3MAR TAN3MAR TAN5MAR PET1MAR PET1MAR PET3MAR PET3MAR PET3MAR PET3MAR1 YO1MAR1 YO2MAR1 YO2MAR1 YO2MAR1 DRA1MAR DRA2MAR DRA3MAR DRA3MAR	Vol TOT 287 300 356 471 352 450 376 300 322 400 193 474 414 450 400 303 400 350 403 400 350 403 400 350 9403	Filtered F 15 15 15 15 15 15 15 15 15 15 15 15 15	Pre-he i 1.2741 1.2537 1.2633 1.2558 1.2647 1.268 1.276 1.255 1.255 1.255 1.255 1.2661 1.2792 1.2819 1.2566 1.2644 1.257 1.2566 1.2586 1.2571 1.258 1.2571 1.2652 1.2607 1.258	at bare wei Foil+Filter 1.362 1.3411 1.3519 1.3484 1.3534 1.3534 1.3536 1.3442 1.3414 1.3439 1.3538 1.3675 1.3637 1.3712 1.3683 1.3553 1.344 1.3539 1.3587 1.344 1.3539 1.3446 1.3527 1.348 1.3392	stress ght(g) ps Filter F 0.0879 0.0874 0.0874 0.0887 0.0886 0.0887 0.0887 0.0883 0.0863 0.0863 0.0863 0.0863 0.0863 0.0883 0.0883 0.0877 0.0883 0.0873 0.0873 0.0873 0.0874 0.0873 0.0874 0.0874 0.0875 0.0887 0.0874 0.0875 0.0875 0.0887 0.0874 0.0895 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875	theat bare is is the bare is the bare is the bare is is the bare is the bare is the bare is the bare is is the bare is the bare i	weight(weight(ter Foi 0.0664 0.0883 0.0888 0.0882 0.0882 0.0882 0.0882 0.0882 0.0872 0.0872 0.0872 0.0872 0.0873 0.0857 0.0874 0.0873 0.0886 0.0886 0.0887 0.0886 0.0886 0.0882 0.08874 0.0886 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.0882 0.08874 0.08831 0.08881 0.08832 0.08831 0.08846 0.08866 0.08866 0.08866	Dry weight II+Filter 1.4301 1.5375 1.5217 1.8165 1.44385 0 1.4762 1.44385 1.4762 1.4621 1.4095 1.362 1.4036 1.4424 1.4036 1.4424 1.4006 1.4947 1.4947 1.3876 1.3876 1.382 1.3889 1.4248 1.3889 1.4804 1.6631 1.4711	t(g) A er Foil+ 0.156 1 0.2838 1 0.2584 1 0.5567 1 .17915 1 0.2082 1 0.1516 1 0.107 0 0.1427 0 0.1427 1 0.1632 1 0.4302 1 0.3266 1 0.1578 1 0.1268 1 0.1598 1 0.1268 1 0.1309 1 0.2233 1 0.3979 1 0.2104 1	sh weight(g) Filte .4147 .5123 .22 .4809 .7701 .5123 .4403 .4172 .4173 .4472 .4173 .4472 .4173 .4472 .1.38 .1.388 .1.388 .1.388 .4176 .1.383 .4779 .5833 .3839 .101 .3793 .1.3379 .4091 .4091 .4103 .3793 .4104 .3793 .4105 .4101 .3793 .4124 .3793 .4125 .4124 .4322 .4333 .4334 .4334 .4334 .4334 .4334 <	AFDM 406 0.2946 586	Image Image 55333 1.419 0.504	Total Total anic(g) Matter 693333 1.714 3.466 853333 853333 4.025: 3.25394 1 933333 2.1178 2.76 866667 22 0.962 253333 0.0 1.192 753333 753333 1.0820 1.94024 2 8.7354 3.294 3.2949 5.02752 666667 0.8777 513333 1.9233 666667 1.1620 3.1724 3.8500 0.79316 10 193333 2.3266	(g) X (m) 46667 : 3.97 : 73333 : 4.7109 : 66667 : 3.63 : 56432 : 1.328 : 47012 : 1.52 : 86667 : 39844 : 3.738 : 51984 : 53333 : 66667 : 266667 : 266667 : 266667 : 266667 : 23333 : 53333 :	y (m 140 195 177 185 175 135 160 185 150 160 130 1210 130 1210 135 140 125 1370 1385 140 160 135 140 160 180 131	100 75 160 100 75 160 110 95 85 75 95 110 100 95 85 75 95 110 105 1100 105 100 105 100 135 100	Z (m)	xy*xz*y 85 344 70 335 50 447 40 278 30 367 35 229 40 246 40 264 30 198 20 185 40 321 75 424 40 3211 00 494 35 211 00 494 75 470 65 349 95 369 50 279 30 304 20 246 45 277	Total z stone ar 00 0.05154 25 0.05031 50 0.06603 00 0.04230 25 0.05479 25 0.03547 50 0.03789 00 0.04034 75 0.03974 00 0.02928 50 0.02851 50 0.04330 75 0.03302 00 0.02541 50 0.04330 75 0.03302 00 0.07254 50 0.06284 50 0.06284 50 0.06294 50 0.06294 50 0.05514 50 0.04244 50 0.04244 50 0.04244 50 0.04244 50 0.04241 50 0.04216	a embedde 19 50° 69 30° 19 50° 19 30° 69 10° 69 10° 19 20° 19 20° 19 20° 19 20° 19 20° 19 20° 19 40° 69 50° 19 40° 69 0° 19 20° 69 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0° 19 0°	Realised I stone area 6 0.025777 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0352118 6 0.0322118 6 0.0290112 6 0.0290112 6 0.0248338 6 0.0301132 6 0.0301313 6 0.0322733 6 0.0302733 6 0.032733 6 0.032733 6 0.032733 6 0.03204973 6 0.0204973 6 0.0204973 6 0.02049355 6 0.020330269 6 0.020330269 6 0.0209388 6 0.0209388 6 0.020554019 6 0.0426419 6 0.0426419 6 0.0264753 6 0.0252975 6 0.0252975 </td <td>AFDM g.m2 0.663153 dry<ash< td=""> 1.68309 0.722803 dry<ash< td=""> 0.257953 0.615283 dry<ash< td=""> 3.0257953 0.615283 dry<ash< td=""> 3.825463 4.33139 1.576423 2.334544 data miss 0.603043 1.423555 1.423555 1.093372 0.384073 0.586283 dry<ash< td=""> 1.1365423</ash<></ash<></ash<></ash<></ash<></td> <td>Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 300.8561 104.8262 10.82401 12.37906 12.37906 12.3397 71.58337 9 212.8397</td> <td>otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308 90.73172 228.1058 84.48066 230.0128</td>	AFDM g.m2 0.663153 dry <ash< td=""> 1.68309 0.722803 dry<ash< td=""> 0.257953 0.615283 dry<ash< td=""> 3.0257953 0.615283 dry<ash< td=""> 3.825463 4.33139 1.576423 2.334544 data miss 0.603043 1.423555 1.423555 1.093372 0.384073 0.586283 dry<ash< td=""> 1.1365423</ash<></ash<></ash<></ash<></ash<>	Inorganic g.m2 9 9 9 9 9 9 9 9 9 9 9 9 1 447.5969 36.639 2 111.1387 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 66.56656 7 9 300.8561 104.8262 10.82401 12.37906 12.37906 12.3397 71.58337 9 212.8397	otal matte g.m2 66.52245 112.7142 121.916 496.7997 42.94376 146.1716 84.59328 41.14829 13.14205 81.45269 52.79159 84.12067 326.9969 118.9557 220.6305 43.05823 27.20267 15.83591 91.87045 21.08308 90.73172 228.1058 84.48066 230.0128

			Pre-he	eat bare wei	ght(g)	ost heat bai	re weight(Dry we	ight(g)	Ash wei	ght(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot F	iltered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filte	Filter	AFDM (g)	Inorganic(g)	Matter (g)	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1APR15	200	15	1.2734	1.3613	0.0879	1.3604	0.087	1.6846	0.4112	1.6507	0.3773	0.452	3.870666667	4.322666667	230	150	75	63000	0.0915819	0%	0.0915819	4.935473	42.26454	47.20001
ED2APR15	425	15	1.252	1.3397	0.0877	1.3391	0.0871	1.7014	0.4494	1.6582	0.4062	1.224	9.041166667	10.26516667	140	120	95	41500	0.0614819	30%	0.0430373	28.44043	210.0773	238.5177
ED3APR15	362	15	1.2649	1.3528	0.0879	1.3526	0.0877	1.4282	0.1633	1.4083	0.1434	0.480253333	1.344226667	1.82448	185	105	85	44075	0.0650869	10%	0.0585782	8.198498	22.94755	31.14605
ED4APR15	305	15	1.2606	1.349	0.0884	1.3486	0.088	1.646	0.3854	1.5887	0.3281	1.1651	4.882033333	6.047133333	180	110	95	47350	0.0696719	30%	0.0487703	23.88952	100.1025	123.9921
ED5APR15	279	15	1.2649	1.353	0.0881	1.3569	0.092	1.3923	0.1274	1.3735	0.1086	0.34968	0.30876	0.65844	110	110	55	24200	0.0372619	10%	0.0335357	10.42709	9.206902	19.634
TAN1APR1	262	15	1.2688	1.3579	0.0891	1.3571	0.0883	1.4209	0.1521	1.4037	0.1349	0.300426667	0.813946667	1.114373333	160	125	85	44225	0.0652969	40%	0.0391781	7.668222	20.77553	28.44375
TAN2APR1	308	15	1.272	1.3608	0.0888	1.3601	0.0881	1.3795	0.1075	1.3739	0.1019	0.114986667	0.28336	0.398346667	200	130	60	45800	0.0675019	10%	0.0607517	1.892731	4.664231	6.556962
TAN3APR1	347	15	1.2578	1.3445	0.0867	1.3434	0.0856	1.4266	0.1688	1.4155	0.1577	0.25678	1.667913333	1.924693333	175	55	35	17675	0.0281269	10%	0.0253142	10.14371	65.88842	76.03213
TAN4APR1	420	15	1.2532	1.3413	0.0881	1.3414	0.0882	1.3938	0.1406	1.3774	0.1242	0.4592	1.008	1.4672	195	175	55	54475	0.0796469	20%	0.0637175	7.206809	15.81982	23.02663
TAN5APR1	369	15	1.2624	1.3505	0.0881	1.3435	0.0811	1.3736	0.1112	1.3673	0.1049	0.15498	0.58548	0.74046	165	60	85	29025	0.0440169	0%	0.0440169	3.52092	13.30125	16.82218
PET1APR15	425	15	1.266	1.355	0.089	1.3538	0.0878	1.696	0.43	1.6555	0.3995	1.1475	8.8315	9.695666667	185	120	45	35925	0.0536769	10%	0.0483092	23.75323	182.8119	200.7002
PET2APR15	503	15	1.279	1.3574	0.0784	1.3673	0.0883	1.5941	0.3151	1.5469	0.2798	1.582773333	6.421633333	7.60536	110	95	35	17625	0.0280569	10%	0.0252512	62.68109	254.3099	301.1879
PET3APR15	376	15	1.302	1.3906	0.0886	1.3664	0.0644	1.5752	0.2732	1.4889	0.1969	2.163253333	3.321333333	5.23392	170	130	55	38600	0.0574219	30%	0.0401953	53.81852	82.62983	130.2121
PET4APR15	450	15	1.2835	1.3709	0.0874	1.3691	0.0856	1.5309	0.2474	1.4998	0.2263	0.933	4.221	4.854	195	100	90	46050	0.0678519	0%	0.0678519	13.75054	62.20902	71.53816
PET5APR15	500	15	1.2804	1.368	0.0876	1.3664	0.086	1.5478	0.2674	1.5173	0.2468	1.016666667	5.36	6.046666667	155	85	65	28775	0.0436669	30%	0.0305668	33.26045	175.3535	197.8179
YO1APR15	357	15	1.2782	1.3653	0.0871	1.3548	0.0766	1.3972	0.119	1.3825	0.1043	0.34986	0.65926	1.00912	170	80	45	24850	0.0381719	20%	0.0305375	11.45673	21.58852	33.04525
YO2APR15	368	15	1.2558	1.3449	0.0891	1.3438	0.088	1.3852	0.1294	1.3722	0.1164	0.318933333	0.696746667	1.01568	195	90	35	27525	0.0419169	30%	0.0293418	10.86958	23.74585	34.61543
YO3APR15	371	15	1.2644	1.353	0.0886	1.3521	0.0877	1.3923	0.1279	1.3806	0.1162	0.28938	0.7049	0.99428	210	160	75	61350	0.0892719	10%	0.0803447	3.601731	8.773446	12.37518
YO4APR15	400	15	1.271	1.3598	0.0888	1.3586	0.0876	1.4429	0.1719	1.4215	0.1505	0.570666667	1.677333333	2.248	150	125	80	40750	0.0604319	15%	0.0513671	11.10957	32.65384	43.76341
YO5APR15	413	15	1.2581	1.3456	0.0875	1.3455	0.0874	1.4895	0.2314	1.4704	0.2123	0.525886667	3.438913333	3.9648	245	125	50	49125	0.0721569	40%	0.0432941	12.14683	79.43138	91.57821
DRA1APR1	411	15	1.2508	1.3384	0.0876	1.3376	0.0868	1.5292	0.2784	1.4929	0.2421	0.99462	4.25522	5.24984	160	140	90	49400	0.0725419	20%	0.0580335	17.13872	73.32349	90.4622
DRA2APR1	424	15	1.2675	1.355	0.0875	1.354	0.0865	1.5804	0.3129	1.5586	0.2911	0.616213333	5.78336	6.399573333	145	120	105	45225	0.0666969	40%	0.0400181	15.39835	144.5185	159.9168
DRA3APR1	368	15	1.2598	1.3474	0.0876	1.3468	0.087	1.5314	0.2716	1.4963	0.2365	0.86112	3.667733333	4.528853333	175	110	65	37775	0.0562669	40%	0.0337601	25.507	108.6409	134.1479
DRA4APR1	422	15	1.2516	1.3393	0.0877	1.3389	0.0873	2.0365	0.7849	2.0444	0.7928	-0.22225333	19.84806667	19.62581333	210	145	70	55300	0.0808019	50%	0.040401	dry <ash< td=""><td>491.2772</td><td>485.776</td></ash<>	491.2772	485.776
DRA5APR1	367	15	1.268	1.356	0.088	1.3548	0.0868	1.4672	0.1992	1.4523	0.1843	0.364553333	2.3855	2.750053333	220	110	90	53900	0.0788419	30%	0.0551893	6.605504	43.22393	49.82944

			Pre-he	at bare we	ight(g)	ost heat bar	e weight(Dry we	ight(g)	Ash we	eight(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot	Filtered	Foil	Foil+Filter	Filter	Foil+Filter	Filter	Foil+Filter	Filter	Foil+ Filte	Filter	AFDM (g)	Inorganic(g)	Matter (g)	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1MAY15	250	15	1.2736	1.3652	0.0916	1.3669	0.0933	1.3937	0.1201	1.3868	0.1132	0.115	0.331666667	0.446666667	200	120	70	46400	0.0683419	20%	0.0546735	2.103395	6.066313	8.169708
ED2MAY15	450	15	1.2531	1.3444	0.0913	1.3434	0.0903	1.3621	0.109	1.3566	0.1035	0.165	0.396	0.561	185	95	85	41375	0.0613069	10%	0.0551762	2.990419	7.177006	10.16743
ED3MAY15	388	15	1.266	1.355	0.089	1.3561	0.0901	1.3728	0.1068	1.3732	0.1072	-0.01034667	0.44232	0.431973333	205	100	90	47950	0.0705119	30%	0.0493583	dry <ash< td=""><td>8.961405</td><td>8.751782</td></ash<>	8.961405	8.751782
ED4MAY15	50											#DIV/0!	#DIV/0!	#DIV/0!	240	95	30	32850	0.0493719	30%	0.0345603	data missi	#DIV/0!	#DIV/0!
ED5MAY15	240	15	1.2654	1.3575	0.0921	1.3571	0.0917	1.3643	0.0989	1.3618	0.0964	0.04	0.0752	0.1152	125	110	85	33725	0.0505969	30%	0.0354178	1.129375	2.123224	3.252599
TAN1MAY	350	15	1.2895	1.3775	0.088	1.3578	0.0683	1.3641	0.0746	1.3627	0.0732	0.032666667	0.114333333	0.147	145	95	50	25775	0.0394669	10%	0.0355202	0.919664	3.218825	4.138489
TAN2MAY	321	15	1.273	1.362	0.089	1.3612	0.0882	1.4255	0.1525	1.4193	0.1463	0.13268	1.24334	1.37602	190	95	35	28025	0.0426169	30%	0.0298318	4.447598	41.6783	46.1259
TAN3MAY	450	15	1.2577	1.35	0.0923	1.3499	0.0922	1.3605	0.1028	1.3581	0.1004	0.072	0.246	0.318	190	125	25	31625	0.0476569	0%	0.0476569	1.510799	5.161897	6.672696
TAN4MAY	373	15	1.2548	1.3464	0.0916	1.3451	0.0903	1.3578	0.103	1.354	0.0992	0.094493333	0.221313333	0.315806667	230	80	45	32350	0.0486719	0%	0.0486719	1.941435	4.547045	6.48848
TAN5MAY	238	15	1.2578	1.3501	0.0923	1.3487	0.0909	1.3808	0.123	1.3731	0.1153	0.122173333	0.387146667	0.50932	220	135	25	38575	0.0573869	20%	0.0459095	2.661176	8.432819	11.094
PET1MAY1	458	15	1.2669	1.3593	0.0924	1.359	0.0921	1.4341	0.1672	1.421	0.1541	0.399986667	1.893066667	2.293053333	140	90	40	21800	0.0339019	10%	0.0305117	13.10928	62.04394	75.15322
PET2MAY1	386	15	1.2805	1.3731	0.0926	1.3725	0.092	1.4466	0.1661	1.4315	0.151	0.388573333	1.518266667	1.90684	185	125	50	38625	0.0574569	0%	0.0574569	6.762866	26.42444	33.18731
PET3MAY1	350	15	1.2778	1.3699	0.0921	1.3694	0.0916	1.5621	0.2843	1.5359	0.2581	0.611333333	3.885	4.496333333	210	105	65	42525	0.0629169	20%	0.0503335	12.14565	77.18514	89.33079
PET4MAY1	364	15	1.2832	1.3734	0.0902	1.3731	0.0899	1.4266	0.1434	1.4142	0.131	0.300906667	0.99736	1.298266667	150	75	70	27000	0.0411819	10%	0.0370637	8.118633	26.90934	35.02797
PET5MAY1	465	15	1.2809	1.3711	0.0902	1.3706	0.0897	1.5504	0.2695	1.5281	0.2472	0.6913	4.8825	5.5738	155	110	80	38250	0.0569319	0%	0.0569319	12.14258	85.76036	97.90293
YO1MAY1	374	15	1.2678	1.3556	0.0878	1.3555	0.0877	1.3881	0.1203	1.3762	0.1084	0.296706667	0.51612	0.812826667	150	105	75	34875	0.0522069	10%	0.0469862	6.314761	10.9845	17.29926
YO2MAY1	396	15	1.2564	1.3479	0.0915	1.3475	0.0911	1.381	0.1246	1.3726	0.1162	0.22176	0.66264	0.8844	170	120	70	40700	0.0603619	40%	0.0362171	6.123068	18.29631	24.41938
YO3MAY1	350	15	1.2653	1.357	0.0917	1.3565	0.0912	1.4537	0.1884	1.4327	0.1674	0.49	1.778	2.268	180	95	55	32225	0.0484969	0%	0.0484969	10.10374	36.66214	46.76588
YO4MAY1	424	15	1.271	1.3615	0.0905	1.3611	0.0901	1.4061	0.1351	1.3907	0.1197	0.435306667	0.836693333	1.272	205	105	80	46325	0.0682369	0%	0.0682369	6.379344	12.2616	18.64094
YO5MAY1	517	15	1.2591	1.3498	0.0907	1.3491	0.09	1.3884	0.1293	1.3782	0.1191	0.35156	1.00298	1.35454	130	130	105	44200	0.0652619	0%	0.0652619	5.38691	15.36854	20.75545
DRA1MAY	408	15	1.2504	1.3423	0.0919	1.3425	0.0921	1.509	0.2586	1.4937	0.2433	0.41616	4.11264	4.5288	165	85	75	32775	0.0492669	10%	0.0443402	9.385612	92.75193	102.1375
DRA2MAY	450	15	1.2686	1.3602	0.0916	1.3605	0.0919	1.7263	0.4577	1.7055	0.4369	0.624	10.35	10.974	175	100	45	29875	0.0452069	30%	0.0316448	19.71886	327.0676	346.7865
DRA3MAY	388	15	1.2607	1.3521	0.0914	1.3516	0.0909	1.434	0.1733	1.4264	0.1657	0.196586667	1.934826667	2.131413333	155	85	65	28775	0.0436669	20%	0.0349335	5.627451	55.38596	61.01341
DRA4MAY	298	15	1.2524	1.3455	0.0931	1.3451	0.0927	1.7258	0.4734	1.706	0.4536	0.39336	7.16988	7.56324	175	130	70	44100	0.0651219	30%	0.0455853	8.629 092	U _{157.2848}	165.9139
DRA5MAY	448	15	1.2683	1.3612	0.0929	1.361	0.0927	1.4439	0.1756	1.4406	0.1723	0.09856	2.377386667	2.475946667	170	145	25	32525	0.0489169	10%	0.0440252	2.238717	54.00058	56.23929

			Pre-he	at bare we	ight(g)	ost heat ba	re weight(Dry we	ight(g)	Ash we	ight(g)			Total					Total		Realised	AFDM	Inorganic	otal matte
Sample	Vol Tot	Filtered	Foil	Foil+Filter	Filter	Foil+Filte	Filter	Foil+Filter	Filter	Foil+ Filte	Filter	AFDM (g)	Inorganic(g)	Matter (g)	X (m)	y (m)	Z (m)	xy*xz*yz	stone area	embedded	stone area	g.m2	g.m2	g.m2
ED1JUN15	370	15	1.274	1.3656	0.0916	1.3637	0.0897	1.3769	0.1029	1.3754	0.1014	0.037	0.2886	0.3256	210) 9	5 90	47400	0.0697419	20%	0.0557935	0.663159	5.172644	5.835803
ED2JUN15	426	15	1.253	1.3429	0.0899	1.3406	0.0876	1.3463	0.0933	1.3465	0.0833	-0.00568	-0.12212	0.16188	170) 7	0 60	26300	0.0402019	0%	0.0402019	dry <ash< td=""><td>-3.03767</td><td>4.026675</td></ash<>	-3.03767	4.026675
ED3JUN15	450	15	1.2739	1.3626	0.0887	1.3531	0.0792	1.3662	0.0923	1.3637	0.0898	0.075	0.318	0.393	155	5 11	0 60	32950	0.0495119	10%	0.0445607	1.683097	7.136332	8.819429
ED4JUN15	250	15	1.2614	1.34	0.0786	1.3492	0.0878	1.363	0.1016	1.3612	0.0998	0.03	0.2	0.23	165	5 11	0 45	30525	0.0461169	10%	0.0415052	0.722801	4.818672	5.541473
ED5JUN15	378	15	1.2644	1.3566	0.0922	1.3555	0.0911	1.3637	0.0993	1.3648	0.0972	-0.02772	0.15372	0.20664	125	5 10	0 45	22625	0.0350569	0%	0.0350569	dry <ash< td=""><td>4.384871</td><td>5.894417</td></ash<>	4.384871	5.894417
TAN1JUN1	300	15	1.27	1.3627	0.0927	1.3805	0.1105	1.3804	0.1104	1.3799	0.1099	0.01	-0.012	-0.002	165	5 8	5 45	25275	0.0387669	0%	0.0387669	0.257952	-0.30954	-0.05159
TAN2JUN1	350	15	1.2711	1.3642	0.0931	1.3663	0.0952	1.3856	0.1145	1.385	0.1139	0.014	0.436333333	0.450333333	120) 7	0 50	17900	0.0284419	20%	0.0227535	0.615289	19.17652	19.79181
TAN3JUN1	400	15	1.2573	1.3464	0.0891	1.3445	0.0872	1.3613	0.104	1.3598	0.1025	0.04	0.408	0.448	150) 9	5 25	20375	0.0319069	0%	0.0319069	1.253647	12.7872	14.04085
TAN4JUN1	400	15	1.254	1.3395	0.0855	1.3436	0.0896	1.4131	0.1591	1.4094	0.1554	0.098666667	1.754666667	1.853333333	185	5 8	0 65	32025	0.0482169	20%	0.0385735	2.557886	45.48889	48.04678
TAN5JUN1	358	15	1.2567	1.345	0.0883	1.3473	0.0906	1.3867	0.13	1.4502	0.1279	-1.51553333	0.890226667	0.940346667	155	8	5 80	32375	0.0487069	30%	0.0340948	dry <ash< td=""><td>26.11031</td><td>27.58033</td></ash<>	26.11031	27.58033
PET1JUN1	450	15	1.2711	1.3641	0.093	1.36	0.0889	1.4991	0.228	1.4923	0.2212	0.204	3.969	4.173	170) 14	5 35	35675	0.0533269	0%	0.0533269	3.825461	74.42773	78.25319
PET2JUN1	455	15	1.2816	1.3685	0.0869	1.3679	0.0863	1.5132	0.2316	1.5076	0.226	0.169866667	4.237566667	4.407433333	230) 7	0 55	32600	0.0490219	20%	0.0392175	4.331397	108.0529	112.3843
PET3JUN1	350	15	1.2776	1.3695	0.0919	1.3686	0.091	1.4685	0.1909	1.4652	0.1876	0.077	2.254	2.331	. 170) 12	0 55	36350	0.0542719	10%	0.0488447	1.576425	46.14625	47.72267
PET4JUN1	360	15	1.2832	1.3745	0.0913	1.373	0.0898	1.5245	0.2413	1.5195	0.2363	0.12	3.516	3.636	175	5 9	0 70	34300	0.0514019	0%	0.0514019	2.334544	68.40214	70.73668
PET5JUN1	50	15	1.2873	1.3812	0.0939	1.3734	0.0861		-1.2873		-1.2873	0	-4.578	-4.578	160) 9	5 80	35600	0.0532219	0%	0.0532219	data missi	-86.0172	-86.0172
YO1JUN15	407	15	1.2652	1.3559	0.0907	1.3562	0.091	1.3743	0.1091	1.3732	0.108	0.029846667	0.461266667	0.491113333	195	5 9	0 85	41775	0.0618669	20%	0.0494935	0.603042	9.319739	9.92278
YO2JUN15	400	15	1.2559	1.3438	0.0879	1.3431	0.0872	1.3555	0.0996	1.3539	0.098	0.042666667	0.288	0.330666667	135	5 8	5 45	21375	0.0333069	10%	0.0299762	1.423351	9.607619	11.03097
YO3JUN15	450	15	1.2666	1.3549	0.0883	1.3526	0.086	1.3844	0.1178	1.3819	0.1153	0.075	0.879	0.954	200) 14	0 65	50100	0.0735219	30%	0.0514653	1.457292	17.07946	18.53675
YO4JUN15	450	15	1.2709	1.3593	0.0884	1.3585	0.0876	1.3912	0.1203	1.3881	0.1172	0.093	0.888	0.981	. 14	8	5 35	4655	0.0098989	0%	0.0098989	9.394983	89.70694	99.10192
YO5JUN15	478	15	1.2582	1.3491	0.0909	1.3483	0.0901	1.3701	0.1119	1.3684	0.1102	0.054173333	0.64052	0.694693333	145	5 9	5 80	32975	0.0495469	0%	0.0495469	1.093375	12.92755	14.02092
DRA1JUN1	200	15	1.2501	1.3414	0.0913	1.3414	0.0913	1.4936	0.2435	1.4922	0.2421	0.018666667	2.010666667	2.029333333	130) 11	0 75	32300	0.0486019	0%	0.0486019	0.384073	41.37012	41.7542
DRA2JUN1	324	15	1.2686	1.3597	0.0911	1.3589	0.0903	1.4027	0.1341	1.4017	0.1331	0.0216	0.92448	0.94608	130) 11	0 40	23900	0.0368419	0%	0.0368419	0.586289	25.09317	25.67946
DRA3JUN1	469	15	1.2619	1.3536	0.0917	1.352	0.0901	1.2915	0.0296	1.4886	0.0267	-6.16266	-1.98230667	-1.89163333	140) 9	5 80	32100	0.0483219	0%	0.0483219	dry <ash< td=""><td>-41.0229</td><td>-39.1465</td></ash<>	-41.0229	-39.1465
DRA4JUN1	400	15	1.2541	1.346	0.0919	1.344	0.0899	1.4826	0.2285	1.48	0.2259	0.069333333	3.626666667	3.696	220	10	0 75	46000	0.0677819	10%	0.0610037	1.136543	59.44994	60.58648
DRA5JUN1	350	15	1.2679	1.3599	0.092	1.3588	0.0909	1.634	0.3661	1.4727	0.3448	3.763666667	5.924333333	6.421333333	100	10	0 50	20000	0.0313819	10%	0.0282437	133.2568	209.7576	227.3545

Chlorophyll a calculations for each month at each sampling site

		Filtered												
	Tot	volume		Abs							stone area		Realised	
Sample	vol	(ml)	Abs (665)	(665a)	extrant	Chl a (mg/sample)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	(m⁻²)	embedded	stone area	chl a (mg/m2)
A1JUN14	126	15	0.185	0.131	0.04	0.52000704	115	85	25	14775	0.0240669	0%	0.0240669	21.60673124
A2JUN14	191	15	0.706	1.239	0.04	0	140	110	55	29150	0.0441919	50%	0.022096	phaeopigment
B1JUN14	133	15	0.102	0.188	0.04	0	120	85	30	16350	0.0262719	30%	0.0183903	phaeopigment
B5JUN14	326	15	0.017	0.082	0.04	0	165	95	20	20875	0.0326069	20%	0.0260855	phaeopigment
C2JUN14	177	15	0.89	0.597	0.04	3.96356336	156	95	550	152870	0.2173999	0%	0.2173999	18.23167058
C3JUN14	309	15	0.516	0.347	0.04	3.99107696	195	120	60	42300	0.0626019	0%	0.0626019	63.753288
D4JUN14	284	15	0.54	0.366	0.04	3.77670016	125	60	45	15825	0.0255369	5%	0.0242601	155.6756636
D5JUN14	313	15	0.345	0.281	0.04	1.530978987	155	80	40	21800	0.0339019	30%	0.0237313	64.51298712

		Filtered				Chl a								
		volume	Abs			(mg/sam							Realised stone	chl a
Sample	Tot vol	(L)	(665b)	Abs (665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	xy+xz+yz	stone area (m2)	embedded	area	(mg/m2)
A1JUL14	359	15	0.977	0.954	0.01	0.157764	185	120	32	31960	0.0481259	20%	0.03850072	4.097683
A2JUL14	295	15	0.47	0.461	0.01	0.050728	185	110	45	33625	0.0504569	70%	0.01513707	3.351256
A3JUL14	330	15	0.024	0.12	0.04	0	135	115	75	34275	0.0513669	40%	0.03082014	phaeopigr
B1JUL14	378	15	0.027	0.017	0.04	0.288893	175	120	45	34275	0.0513669	20%	0.04109352	7.03013
B2JUL14	384	15	0.454	0.439	0.01	0.110054	150	95	20	19150	0.0301919	10%	0.02717271	4.050181
B3JUL14	361	15	0.778	0.764	0.02	0.19313	130	85	67	25455	0.0390189	0%	0.0390189	4.949657
C2JUL14	325	15	0.029	0.134	0.04	0	215	150	30	43200	0.0638619	40%	0.03831714	phaeopigr
C3JUL14	335	15	0.088	0.539	0.02	0	150	90	10	15900	0.0256419	0%	0.0256419	phaeopigr
C5JUL14	311	15	0.702	0.695	0.02	0.08319	210	160	50	52100	0.0763219	80%	0.01526438	5.449971
D2JUL14	198	15	0.84	0.013	0.01	3.12864	240	115	40	41800	0.0619019	10%	0.05571171	56.15768
D4JUL14	320	15	0.649	0.65	0.02	0	160	90	50	26900	0.0410419	20%	0.03283352	phatebpigr
D5JUL14	311	15	0.777	0.779	0.02	0	210	120	110	61500	0.0894819	50%	0.04474095	phaeopigr

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area	embedded	stone area	(mg/m2)
A1AUG14	325	15	0.16	0.1	0.04	1.49032	170	130	70	43100	0.063722	40%	0.03823314	38.9798
A4AUG14	395	15	0.29	0.186	0.04	3.139607	175	115	50	34625	0.051857	50%	0.02592845	121.0874
A5AUG14	421	15	0.032	0.023	0.04	0.289581	130	80	45	19850	0.031172	0%	0.0311719	9.289798
B3AUG14	474	15	0.352	0.266	0.04	3.115457	250	160	50	60500	0.088082	10%	0.07927371	39.3
B4AUG14	377	15	0.062	0.04	0.04	0.633883	180	100	45	30600	0.046222	0%	0.0462219	13.71391
B5AUG14	583	15	0.036	0.018	0.04	0.802021	110	75	20	11950	0.020112	20%	0.01608952	49.84744
C1AUG14	509	15	0.24	0.163	0.04	2.99539	165	101	55	31295	0.047195	10%	0.04247541	70.52058
C4AUG14	428	15	0.244	0.171	0.04	2.387875	130	95	50	23600	0.036422	40%	0.02185314	109.2692
C5AUG14	386	15	0.67	0.507	0.04	4.808613	175	85	65	31775	0.047867	0%	0.0478669	100.458
D1AUG14	500	15	1.583	1.075	0.04	19.41237	205	75	55	30775	0.046467	0%	0.0464669	417.7678
D3AUG14	531	15	0.359	0.29	0.04	2.800197	150	135	60	37350	0.055672	0%	0.0556719	50.29821
D4AUG14	429	15	0.663	0.462	0.04	6.590195	135	93	90	33075	0.049687	0%	0.0496869	132.6345

		Filtered				Chl a					stone		Realised	
		volume	Abs	Abs		(mg/sam					surface		stone	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xz+xz+yz)	area(m2)	embedded	area	(mg/m2)
A3SEP14	414	15	0.184	0.12	0.02	1.0125	145	90	47	24095	0.037115	0%	0.037115	27.28016
A4SEP14	442	15	0.191	0.127	0.02	1.080979	190	110	40	32900	0.049442	40%	0.029665	36.43936
A5SEP14	421	15	0.466	0.323	0.02	2.300557	135	110	75	33225	0.049897	40%	0.029938	76.8437
B2SEP14	381	15	0.442	0.305	0.02	1.994621	110	85	35	16175	0.026027	20%	0.020822	95.79615
B3SEP14	378	15	0.153	0.105	0.02	0.693343	130	55	40	14550	0.023752	40%	0.014251	48.65174
B4SEP14	470	15	0.73	0.474	0.02	4.597828	160	75	30	19050	0.030052	30%	0.021036	218.5661
C1SEP14	431	15	1.469	0.982	0.02	8.020864	125	110	50	25500	0.039082	10%	0.035174	228.0358
C2SEP14	515	15	0.499	0.331	0.02	3.306218	100	75	35	13625	0.022457	30%	0.01572	210.3215
C3SEP14	425	15	0.496	0.345	0.02	2.452341	155	150	50	38500	0.057282	20%	0.045826	53.51474
D1SEP14	565	15	0.726	0.5	0.02	4.879461	155	150	40	35450	0.053012	0%	0.053012	92.04463
D2SEP14	475	15	0.295	0.197	0.02	1.778831	205	205	130	95325	0.136837	10%	0.123153	14.44405
D3SEP14	472	15	0.499	0.352	0.02	2.651394	310	275	115	152525	0.216917	40%	0.13015	20.37181
E1SEP14	415	15	0.213	0.143	0.02	1.110097	90	55	20	7850	0.014372	30%	0.01006	110.344
E2SEP14	440	15	1.022	0.693	0.02	5.531762	70	40	25	5550	0.011152	10%	0.010037	\$\$.1529
E5SEP14	530	15	0.355	0.238	0.02	2.369609	70	65	20	7250	0.013532	50%	0.006766	350.2256

		Filtered				Chl a								
		volume	Abs	Abs		(mg/sam					stone surface		Realised stone	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area(m2)	embedded	area	(mg/m2)
A2OCT14	253	15	0.117	0.076	0.04	0.792774	130	120	35	24350	0.0374719	40%	0.02248314	35.26081
A4OCT14	352	15	0.052	0.035	0.04	0.457337	170	105	75	38475	0.0572469	50%	0.02862345	15.97771
A5OCT14	359	15	0.234	0.094	0.04	3.841204	170	110	20	24300	0.0374019	30%	0.02618133	146.7154
B1OCT14	350	15	0.013	0.153	0.04	0	120	105	25	18225	0.0288969	10%	0.02600721	phaeopigr
B2OCT14	348	15	0.108	0.069	0.04	1.037263	160	125	55	35675	0.0533269	30%	0.03732883	27.78717
B5OCT14	320	15	0.636	0.311	0.04	7.948373	150	110	90	39900	0.0592419	40%	0.03554514	223.6135
C10CT14	373	15	1.807	1.216	0.04	16.84772	175	75	55	26875	0.0410069	40%	0.02460414	684.7516
C2OCT14	353	15	0.418	0.288	0.04	3.50722	180	90	55	31050	0.0468519	50%	0.02342595	149.7152
C50CT14	482	15	0.373	0.272	0.04	3.720603	160	55	30	15250	0.0247319	50%	0.01236595	300.8748
D1OCT14	450	15	0.354	0.148	0.04	7.084752	170	120	35	30550	0.0461519	0%	0.0461519	153.5094
D3OCT14	513	15	0.818	0.222	0.04	23.3673	165	130	90	48000	0.0705819	30%	0.04940733	472.9521
D4OCT14	350	15	0.608	0.165	0.04	11.84995	140	100	70	30800	0.0465019	40%	0.02790114	424.7122
E1OCT14	370	15	0.313	0.15	0.04	4.609292	180	180	35	45000	0.0663819	30%	0.04646733	99.19426
E2OCT14	378	15	0.829	0.166	0.04	19.15359	135	135	50	31725	0.0477969	40%	0.02867814	667.8813
E4OCT14	472	15	0.459	0.235	0.04	8.080439	215	125	50	43875	0.0648069	10%	0.05832621	138.5387

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area(m2)	embedded	stone area	(mg/m2)
A1NOV14	474	15	0.201	0.133	0.04	2.463384	180	110	45	32850	0.049372	20%	0.03949752	62.36808
A2NOV14	201	15	1.0772	0.7176	0.04	5.524089	190	85	25	23025	0.035617	50%	0.01780845	310.1948
A3NOV14	265	15	0.7346	0.4741	0.04	5.275924	225	160	80	66800	0.096902	50%	0.04845095	108.8921
B3NOV14	405	15	1.004	0.641	0.04	11.23587	140	85	65	26525	0.040517	40%	0.02431014	462.1885
B4NOV14	291	15	2.418	1.8801	0.04	11.96298	185	90	55	31775	0.047867	30%	0.03350683	357.0312
B5NOV14	341	15	1.5291	1.0367	0.04	12.83268	135	100	60	27600	0.042022	10%	0.03781971	339.3119
C3NOV14	464	15	0.7025	0.4736	0.04	8.117246	240	150	55	57450	0.083812	60%	0.03352476	242.1269
C4NOV14	503	15	0.961	0.68	0.04	10.80237	250	100	85	54750	0.080032	0%	0.0800319	134.9759
C5NOV14	450	15	0.6317	0.4219	0.04	7.215442	125	115	25	20375	0.031907	0%	0.0319069	226.1405
D1NOV14	550	15	0.891	0.5655	0.04	13.68228	138	115	110	43700	0.064562	70%	0.01936857	706.4168
D2NOV14	402	15	0.546	0.351	0.04	5.991086	200	150	50	47500	0.069882	10%	0.06289371	95.25732
D5NOV14	526	15	0.1716	0.1093	0.04	2.504487	230	120	70	52100	0.076322	20%	0.06105752	41.01848
E1NOV14	451	15	1.0996	0.8035	0.04	10.2061	150	145	85	46825	0.068937	50%	0.03446845	296.0998
E3NOV14	455	15	1.184	0.786	0.04	13.84011	140	100	50	26000	0.039782	0%	0.0397819	347.8995
E4NOV14	425	15	0.539	0.4591	0.04	2.595259	175	125	35	32375	0.048707	10%	0.04383621	59.20353

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xz+yz+xz)	area(m2)	embedded	stone area	(mg/m2)
A3DEC14	501	15	0.3113	0.1935	0.04	4.510534	150	70	55	22600	0.035022	10%	0.03151971	143.102
A4DEC14	415	15	0.5598	0.3726	0.04	5.937435	205	90	65	37625	0.056057	50%	0.02802845	211.836
A5DEC14	550	15	1.081	0.707	0.04	15.72097	180	125	70	43850	0.064772	20%	0.05181752	303.3909
B1DEC14	339	15	1.166	0.791	0.04	9.71574	110	85	40	17150	0.027392	30%	0.01917433	506.7056
B2DEC14	468	15	1.2777	0.8512	0.04	15.25492	230	140	85	63650	0.092492	50%	0.04624595	329.8649
B4DEC14	161	15	0.9358	0.6294	0.04	3.770158	100	90	65	21350	0.033272	10%	0.02994471	125.904
C2DEC14	303	15	0.7473	0.594	0.04	3.550011	110	100	40	19400	0.030542	10%	0.02748771	129.149
C3DEC14	384	15	1.01	0.662	0.04	10.21305	175	155	80	53525	0.078317	30%	0.05482183	186.2953
C4DEC14	403	15	0.1637	0.1091	0.04	1.681677	110	65	35	13275	0.021967	40%	0.01318014	127.5917
D1DEC14	350	15	2.122	1.432	0.04	18.45704	190	120	100	53800	0.078702	10%	0.07083171	260.5759
D3DEC14	462	15	0.6551	0.4325	0.04	7.85981	130	90	60	24900	0.038242	30%	0.02676933	293.6125
D4DEC14	414	15	0.7424	0.4991	0.04	7.698168	160	100	75	35500	0.053082	0%	0.0530819	145.0243
E1DEC14	278	15	1.3887	0.9158	0.04	10.04752	120	100	25	17500	0.027882	20%	0.02230552	450.4501
E2DEC14	466	15	2.507	1.797	0.04	25.28653	155	145	45	35975	0.053747	50%	0.02687345	940.9483
E5DEC14	375	15	0.3275	0.221	0.04	3.05229	270	180	20	57600	0.084022	70%	0.02520657	121.091

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot Vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy + xz +yz)	area	embedded	stone area	(mg/m2)
A2JAN15	445	15	0.109	0.094	0.02	0.255074	130	110	70	31100	0.046922	40%	0.02815314	9.060233
A3JAN15	420	15	0.286	0.21	0.02	1.21977	140	100	70	30800	0.046502	10%	0.04185171	29.14504
A4JAN15	400	15	0.085	0.061	0.02	0.366848	155	110	40	27650	0.042092	20%	0.03367352	10.89426
B1JAN15	275	15	0.228	0.182	0.02	0.483399	210	105	35	33075	0.049687	20%	0.03974952	12.16112
B2JAN15	312	15	0.194	0.137	0.02	0.679586	135	75	40	18525	0.029317	40%	0.01759014	38.63448
B4JAN15	300	15	0.042	0.036	0.02	0.068784	205	150	25	39625	0.058857	20%	0.04708552	1.460831
C1JAN15	350	15	1.454	0.88	0.02	7.677059	120	125	55	28475	0.043247	40%	0.02594814	295.8616
C2JAN15	445	15	0.665	0.458	0.02	3.520021	180	135	110	58950	0.085912	50%	0.04295595	81.9449
C3JAN15	375	15	0.717	0.544	0.02	2.47909	155	100	65	32075	0.048287	0%	0.0482869	51.34084
D1JAN15	370	15	0.347	0.247	0.02	1.413893	160	135	65	40775	0.060467	10%	0.05442021	25.98103
D2JAN15	435	15	0.109	0.099	0.02	0.166228	185	110	65	39525	0.058717	0%	0.0587169	2.831008
D3JAN15	355	15	0.368	0.275	0.02	1.261613	125	95	40	20675	0.032327	40%	0.01939614	65.04455
E1JAN15	403	15	1.263	0.905	0.02	5.51319	185	70	60	28250	0.042932	0%	0.0429319	128.4171
E2JAN15	430	15	0.653	0.547	0.02	1.741764	185	95	60	34375	0.051507	10%	0.04635621	₂ 37.57347
E4JAN15	325	15	0.308	0.232	0.02	0.943869	135	110	70	32000	0.048182	0%	0.0481819	19.58971

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot Vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+yz+xz)	area	embedded	stone area	(mg/m2)
A3FEB15	250	15	0.131	0.105	0.04	0.496773	175	105	90	43575	0.064387	20%	0.05150952	9.644301
A4FEB15	250	15	0.166	0.113	0.04	1.012653	135	90	35	20025	0.031417	0%	0.0314169	32.23276
A5FEB15	329	15	0.056	0.068	0.04	0	170	155	90	55600	0.081222	10%	0.07309971	phaeopigr
B1FEB15	150	15	0.095	0.066	0.04	0.332456	155	130	25	27275	0.041567	40%	0.02494014	13.33016
B4FEB15	305	15	0.358	0.259	0.04	2.307703	140	100	10	16400	0.026342	80%	0.00526838	438.029
B5FEB15	353	15	0.713	0.539	0.04	4.694279	115	85	25	14775	0.024067	30%	0.01684683	278.6446
C1FEB15	229	15	1.087	0.856	0.04	4.042894	155	140	70	42350	0.062672	0%	0.0626719	64.50888
C2FEB15	348	15	1.134	0.798	0.04	8.936417	120	85	50	20450	0.032012	10%	0.02881071	310.1769
C4FEB15	250	15	0.195	0.142	0.04	1.012653	125	80	60	22300	0.034602	0%	0.0346019	29.26583
D1FEB15	278	15	0.774	0.558	0.04	4.589268	190	80	60	31400	0.047342	0%	0.0473419	96.93883
D3FEB15	276	15	1.211	0.862	0.04	7.361722	110	95	80	26850	0.040972	0%	0.0409719	179.6773
D4FEB15	450	15	0.507	0.358	0.04	5.124408	135	125	50	29875	0.045207	0%	0.0452069	113.3546
E2FEB15	361	15	0.08	0.056	0.04	0.662161	160	130	65	39650	0.058892	40%	0.03533514	18.73944
E3FEB15	273	15	0.739	0.625	0.04	2.378551	225	85	55	36175	0.054027	30%	0.03781883	62.89329
E5FEB15	380	15	0.933	0.637	0.04	8.596471	165	125	90	46725	0.068797	60%	0.02751876	312.3859

		Filtered				Chl a					stone		Realised	
		volume	Abs	Abs		(mg/sam					surface		stone	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area	embedded	area	(mg/m2)
A1MAR15	287	15	0.708	0.767	0.04	0	140	100	85	34400	0.051542	50%	0.025771	phaeopigr
A2MAR15	300	15	0.536	0.483	0.04	1.215184	195	75	70	33525	0.050317	30%	0.035222	34.50088
A5MAR15	352	15	1.28	0.847	0.04	11.64865	185	145	30	36725	0.054797	10%	0.049317	236.1984
B1MAR15	450	15	1.91	1.428	0.04	16.57694	175	80	35	22925	0.035477	30%	0.024834	667.5146
B3MAR15	300	15	0.623	0.423	0.04	4.5856	160	100	40	26400	0.040342	20%	0.032274	142.0855
B5MAR15	400	15	0.499	0.395	0.04	3.179349	150	85	30	19800	0.031102	40%	0.018661	170.3727
C3MAR15	414	15	0.238	0.176	0.04	1.96172	210	95	40	32150	0.048392	40%	0.029035	67.56364
C4MAR15	450	15	0.655	0.443	0.04	7.291104	185	110	75	42475	0.062847	50%	0.031423	232.0275
C5MAR15	408	15	0.62	0.557	0.04	1.964471	190	140	40	39800	0.059102	50%	0.029551	66.47742
D2MAR15	400	15	0.203	0.134	0.04	2.109376	170	120	100	49400	0.072542	40%	0.043525	48.46339
D3MAR15	350	15	0.15	0.101	0.04	1.310717	170	140	75	47050	0.069252	20%	0.055402	23.65851
D4MAR15	403	15	0.197	0.127	0.04	2.155996	180	95	65	34975	0.052347	60%	0.020939	102.9668
E2MAR15	509	15	1.353	0.981	0.04	14.47124	160	135	30	30450	0.046012	0%	0.046012	314.5107
E3MAR15	271	15	0.009	0.006	0.04	0.062135	180	105	20	24600	0.037822	30%	0.026475	1@.346897
E5MAR15	279	15	0.346	0.24	0.04	2.260242	190	110	40	32900	0.049442	40%	0.029665	76.19186

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area	embedded	stone area	(mg/m2)
A2APR15	425	15	0.058	0.04	0.04	0.584664	140	120	95	41500	0.061482	30%	0.0430373	13.58504
A4APR15	305	15	0.47	0.311	0.04	3.706311	180	110	95	47350	0.069672	30%	0.0487703	75.9952
A5APR15	279	15	1.321	0.881	0.04	9.382138	110	110	55	24200	0.037262	10%	0.0335357	279.7656
B1APR15	262	15	0.202	0.132	0.04	1.401665	160	125	85	44225	0.065297	40%	0.0391781	35.77671
B2APR15	308	15	0.649	0.443	0.04	4.849119	200	130	60	45800	0.067502	10%	0.0607517	79.81864
B3APR15	347	15	0.016	0.008	0.04	0.21216	175	55	35	17675	0.028127	10%	0.0253142	8.38108
C1APR15	425	15	0.736	0.48	0.04	8.315221	185	120	45	35925	0.053677	10%	0.0483092	172.125
C2APR15	503	15	0.527	0.408	0.04	4.574671	110	95	35	17625	0.028057	10%	0.0252512	181.1664
C3APR15	376	15	0.416	0.356	0.04	1.724186	170	130	55	38600	0.057422	30%	0.0401953	42.89517
D1APR15	357	15	0.101	0.065	0.04	0.982236	170	80	45	24850	0.038172	20%	0.0305375	32.16488
D3APR15	371	15	0.602	0.452	0.04	4.253144	210	160	75	61350	0.089272	10%	0.0803447	52.9362
D5APR15	413	15	0.132	0.093	0.04	1.231004	245	125	50	49125	0.072157	40%	0.0432941	28.43351
E1APR15	411	15	0.347	0.288	0.04	1.85327	160	140	90	49400	0.072542	20%	0.0580335	31.93448
E3APR15	368	15	0.255	0.21	0.04	1.265626	175	110	65	37775	0.056267	40%	0.0337601	37.48875
E5APR15	367	15	0.051	0.038	0.04	0.364632	220	110	90	53900	0.078842	30%	0.0551893	6.606923

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area	embedded	stone area	(mg/m2)
A1MAY15	250	15	0.175	0.0112	0.02	1.564836	200	120	70	46400	0.068342	20%	0.05467352	28.62146
A2MAY15	450	15	0.057	0.037	0.02	0.34392	185	95	85	41375	0.061307	10%	0.05517621	6.233121
A3MAY15	388	15	0.193	0.123	0.02	1.037874	205	100	90	47950	0.070512	30%	0.04935833	21.02733
B1MAY15	350	15	0.007	0.004	0.02	0.040124	145	95	50	25775	0.039467	10%	0.03552021	1.12961
B3MAY15	450	15	0.089	0.06	0.02	0.498684	190	125	25	31625	0.047657	0%	0.0476569	10.46405
B5MAY15	238	15	0.046	0.03	0.02	0.145516	220	135	25	38575	0.057387	20%	0.04590952	3.169634
C2MAY15	386	15	0.27	0.176	0.02	1.386533	185	125	50	38625	0.057457	0%	0.0574569	24.1317
C3MAY15	350	15	0.66	0.421	0.02	3.196545	210	105	65	42525	0.062917	20%	0.05033352	63.50729
C4MAY15	364	15	0.391	0.269	0.02	1.696978	150	75	70	27000	0.041182	10%	0.03706371	45.78542
D1MAY15	374	15	0.809	0.573	0.02	3.372862	150	105	75	34875	0.052207	10%	0.04698621	71.78408
D3MAY15	350	15	0.879	0.577	0.02	4.039149	180	95	55	32225	0.048497	0%	0.0484969	83.28675
D5MAY15	517	15	0.424	0.282	0.02	2.805394	130	130	105	44200	0.065262	0%	0.0652619	42.9867
E1MAY15	408	15	0.286	0.19	0.02	1.49674	165	85	75	32775	0.049267	10%	0.04434021	33.75581
E2MAY15	450	15	0.41	0.268	0.02	2.441832	175	100	45	29875	0.045207	30%	0.03164483	77.16369
E3MAY15	388	15	0.266	0.18	0.02	1.275103	155	85	65	28775	0.043667	20%	0.03493352	36.50083

		Filtered				Chl a					stone			
		volume	Abs	Abs		(mg/sam					surface		Realised	chl a
Sample	Tot vol	(L)	(665b)	(665a)	extrant	ple)	x(mm)	y(mm)	z(mm)	(xy+xz+yz)	area	embedded	stone area	(mg/m2)
A1JUN15	370	15	0.159	0.115	0.02	0.622113	210	95	90	47400	0.069742	20%	0.0557935	11.15027
A2JUN15	426	15	0.049	0.036	0.02	0.211625	170	70	60	26300	0.040202	0%	0.0402019	5.264066
A3JUN15	450	15	0.044	0.029	0.02	0.25794	155	110	60	32950	0.049512	10%	0.0445607	5.788507
B2JUN15	350	15	0.471	0.463	0.02	0.106997	120	70	50	17900	0.028442	20%	0.0227535	4.702452
B3JUN15	400	15	0.289	0.261	0.02	0.427989	150	95	25	20375	0.031907	0%	0.0319069	13.41369
B4JUN15	400	15	0.191	0.13	0.02	0.932405	185	80	65	32025	0.048217	20%	0.0385735	24.17216
C1JUN15	450	15	0.995	0.159	0.02	14.37586	170	145	35	35675	0.053327	0%	0.0533269	269.5798
C4JUN15	350	15	0.707	0.527	0.02	2.40744	175	90	70	34300	0.051402	0%	0.0514019	46.83562
C5JUN15	360	15	0.778	0.558	0.02	3.026496	160	95	80	35600	0.053222	0%	0.0532219	56.86561
D2JUN15	400	15	0.304	0.192	0.02	1.711957	135	85	45	21375	0.033307	10%	0.0299762	57.11053
D3JUN15	450	15	0.3	0.193	0.02	1.839972	200	140	65	50100	0.073522	30%	0.0514653	35.75168
D4JUN15	450	15	0.19	0.12	0.02	1.20372	14	85	35	4655	0.009899	0%	0.0098989	121.6014
E2JUN15	324	15	0.146	0.1	0.02	0.569532	130	110	40	23900	0.036842	0%	0.0368419	15.4588
E3JUN15	469	15	0.135	0.086	0.02	0.878181	140	95	80	32100	0.048322	0%	0.0483219	18.17355
E4JUN15	400	15	0.168	0.113	0.02	0.840693	220	100	75	46000	0.067782	10%	0.0610037	13.78102

Benthotorch calculations from March 2015 at each sampling site

	Si	te C: Petrusti	room				Site D: York F	Road				Sit	e E: Refere	nce		
Stone	Side	Green	Diatoms	Cyanobate	ria	Stone Side	Green	Diatoms	Cyanobate	eria	Stone	Side	Green	Diatoms	Cyanobate	ria
	1 a	0	0.63	0.76		1 a	(2.04	1 2.5			1 a	C	0.08	0.19	
	b	0	0.57	0.69		b	(1.28	3 1.45			b	0	0.43	1.07	
	с	0.22	0.42	1.37		с	1.94	4 0.88	3 0.65			с	0.21	0.24	0.57	
	d	0	0.61	1.51		d	(0.14	1.13			d	0.11	0.24	0.5	
	e	0.13	0.77	1.56		e	(0.88	3 1.24			e	C	0.13	0.26	
		0.07	0.6	1.178	1.848	1 #DIV/	0! 0.388	3 1.044	1.394	2.826		1 #DIV/0!	0.064	0.224	0.518	0.806
	2 a	0	1.26	2.05		2 a	(0.94	1.91			2 a	0.02	0.11	0.43	
	b	0	1.77	2.95		b	(0.74	1.49			b	C	1.09	1.07	
	с	0	0	0.01		с	(1.18	3 1.91			с	0.35	0.27	0.74	
	d	0.01	0	0.03		d	(0.47	2.47			d	0.06	0.12	0.48	
	e	0.01	0	0.02		e	(4.75	3.55			e	C	0.33	0.42	
		0.004	0.606	1.012	1.622	2 #DIV/	0! (1.616	5 2.266	3.882		2 #DIV/0!	0.086	0.384	0.628	1.098
	3 а	0.09	0.08	0.37		3 a	(1.49	1.32			3 a	0.02	0.08	0.15	
	b	0	0.2	0.74		b	(0.83	3 1.15			b	C	0.03	0.05	
	с	0.26	0.13	0.49		с	(0.52	0.97			с	C	0.57	0.65	
	d	0	0	0.01		d	0.5	5 0.44	1 0.87			d	0.04	. 0	0	
	e	0.01	0	0.02		e	0.48	3 0.6	5 0.8			e	0	0.01	0.14	
		0.072	0.082	0.326	0.48	3 #DIV/	0! 0.196	5 0.776	5 1.022	1.994		3 #DIV/0!	0.012	0.138	0.198	0.348
	4 a	0.17	0.62	0.81		4 a	0.2	2 0.54	1.03			4 a	0	0.38	0.4	
	b	0	1.49	1.49		b		0.88	3 1.84			b	0.16	0.16	0.31	
	с	0	0.75	1.3		с	0	0.47	7 1.19			с	0.05	0.42	0.91	
	d	0.02	0.16	0.13		d	0.37	7 0.53	3 1.12			d	0.04	0	0.1	
	е	0	0.13	0.19		e	(0.09	0.3	_		е	0.1	0.03	0.42	
		0.038	0.63	0.784	1.452	4 #DIV/	0! 0.114	4 0.502	2 1.096	1.712		4 #DIV/0!	0.07	0.198	0.428	0.696
	5 a	0	0.54	0.49		5 a	0.36	5 0.84	0.98			5 a	C	0.51	0.66	
	b	0	0.53	0.8		b	(1.14	1 0.98			b	0.07	0.04	0.26	
	с	0	0.48	0.49		с	0.03	з с	0.12			с	0	0.16	0.6	
	d	0	0	0		d	0.56	5 1.01	l 1.5			d	0	0.17	0.56	
	e	0	0.17	0.15		e	0.32	2 1.12	1.34			е	0	1.01	1.26	
		0	0.344	0.386	0.73	5 #DIV/	0! 0.254	4 0.822	2 0.984	2.06		5 #DIV/0!	0.014	0.378	0.668	1.06

	Site A:	: Edend	ale				Si	ite A: Tanne	ry				Site	e C: Petrustro	oom				Site	e D: York Ro	ad			S	ite E: Refere	nce		
Stone Sid	e Gre	een	Diatoms	Cyanobate	ria	Stone	Side	Green	Diatoms	Cyanobate	ria	Stone	Side	Green [Diatoms	Cyanobateri	а	Stone	Side	Green I	Diatoms	Cyanobateria	a	Stone Side	Green	Diatoms	Cyanobateri	а
1 a		0.07	0.34	0.41		:	1 a	0.02	Ö	0.05			1 a	0	0.53	1.16		1	1 a	0	0.8	0.95		1 a	0	0.23	1.08	
b		0	0.42	0.79			b	0	2.5	2.17			b	0.06	1.12	2.31			b	0	1.06	0.61		b	0	0.14	0.61	
с		0	0.73	0.62			с	0	3.41	2.91			с	0	1.69	3.19			с	0	2.71	2.46		с	0	0.24	1.02	
d		0	0.29	0.51			d	0	2.44	3.25			d	0.05	0.4	1.53			d	0	0.42	1.03		d	0.03	0.04	0.61	
e							e	0.74	2.45	2.21			e	0	0.21	0.97			e	0	0.39	1.12		e	0.01	0	0.24	
		0.0175	0.445	0.5825	1.045	i :	1 #DIV/0!	0.152	2.16	2.118	4.43	5	1 #DIV/0!	0.022	0.79	1.832	2.644	1	1 #DIV/0!	0	1.076	1.234	2.31	1 #DIV/0	! 0.008	0.13	0.712	0.85
2 a		0.03	0.64	0.45		1	2 a	0	0.03	0.04			2 a	0.62	0.59	1.1		2	2 a	1.37	0.29	0.77		2 a	0.37	0.08	0.54	
b		0.16	0.21	1.22			b	0	0.37	0.73			b	0.23	1.03	1.91			b	0	0.48	0.62		b	0	0.29	0.91	
с		0.09	0.93	1.29			с	0	0.57	0.89			с	0	1.52	1.52			с	0	1.28	0.91		с	0.37	0.1	0.79	
d		0	0.27	0.77			d	0.7	0.33	0.46			d	0.42	0.55	1.67			d	0	0.71	0.94		d	0.1	0.28	0.96	
e		0	0	0.78			e	0	0.3	0.45			e	0.09	0.07	1.87			e	0	0.93	1.22		e	0	0.38	1.61	
		0.056	0.41	0.902	1.368	3 3	2 #DIV/0!	0.14	0.32	0.514	0.974	L .	2 #DIV/0!	0.272	0.752	1.614	2.638	2	2 #DIV/0!	0.274	0.738	0.892	1.904	2 #DIV/0	! 0.168	0.226	0.962	1.356
3 a		0.37	0.33	0.12		3	3 a	0	0	0.14			3 a	0.11	0.34	0.58		3	3 a	0	0.67	0.62		3 a	0.5	0.04	0.87	
b		0	0.41	0.44			b	0.01	0	0.04			b	0	0.31	0.35			b	0	0.52	0.92		b	0.33	0.08	0.78	
с		0	0.9	1.58			с	0	0.52	1.02			с	0	0.87	0.95			с	0	1.08	0.96		с	0.07	0	0.18	
d		0	0.03	0.39			d	0.07	0.17	0.46			d	0.06	0.85	0.3			d	0	0.32	0.72		d	0	0.02	0.26	
e		0	0.6	2.49			e	0	0	0.1			e	0.01	0.05	0.55			e	0.13	0.36	0.95		e	0	0.12	0.87	
		0.074	0.454	1.004	1.532	1 1	3 #DIV/0!	0.016	0.138	0.352	0.506	5	3 #DIV/0!	0.036	0.484	0.546	1.066	3	3 #DIV/0!	0.026	0.59	0.834	1.45	3 #DIV/0	! 0.18	0.052	0.592	0.824
4 a		0	0.15	0.79		4	4 a	0.1	0.08	1			4 a	0.87	0.25	1.35		4	4 a	0	3.97	2.91		4 a	0.19	0.03	0.27	
b		0.09	0.23	1.01			b	0	0.92	1.8			b	0	0.86	1.29			b	0	3.52	3.59		b	0.09	0.21	1.16	
c		0.07	0.64	0.61			с	0	1.56	1.75			с	0.21	0.4	1.09			с	0.03	0	0.13		с	0	0	0.29	
d		0.41	0.8	0.87			d	0.01	0	0.03			d	0	0.04	0.12			d	0.03	0	0.08		d	0.06	0	0.36	
e		0.02	0.4	0.4			e	0	0.21	0.48			e	0	0.12	0.31			e	0	2.69	2.28		e	0.45	0.08	1.26	
		0.118	0.444	0.736	1.298	3 4	4 #DIV/0!	0.022	0.554	1.012	1.588	3	4 #DIV/0!	0.216	0.334	0.832	1.382	4	4 #DIV/0!	0.012	2.036	1.798	3.846	4 #DIV/0	! 0.158	0.064	0.668	0.89
5 a		0	0.31	1.24			5 a	0	0.25	0.3			5 a	0.81	0.53	1.3		5	5 a	0	1.83	2.67		5 a	0	0.31	1.14	
b		0	0.59	1.48			b	0.06	0.41	0.51			b	0.03	0.96	0.84			b	0	1.83	5.05		b	0.35	0.08	0.81	
c		0	0.48	1.75			С	0	1.61	2.01			С	0	1.09	1			с	0	1.9	2.24		с	0	0.37	1.73	
d		0	0.93	0.85			d	0.13	0.76	0.66			d	0	0.36	0.81			d	0	5.02	4.01		d	0	0.49	1.75	
e		0	0	0.01			e	0	0.32	0.47			e	0.02	0	0.05			e	0	0.12	0.22		e	0.2	0	0.33	
		0	0.462	1.066	1.528	3 !	5 #DIV/0!	0.038	0.67	0.79	1.498	3	5 #DIV/0!	0.172	0.588	0.8	1.56	5	5 #DIV/0!	0	2.14	2.838	4.978	5 #DIV/0	! 0.11	0.25	1.152	1.512

Si	te A: Edend	ale				S	ite B: Tann	ery				Site	C: Petrustr	room				Sit	e D: York Ro	ad				Site	e E: Referer	nce		
Stone Side	Green	Diatoms	Cyanobater	ria	Stone	Side	Green	Diatoms	Cyanobat	eria	Stone	Side	Green	Diatoms C	Cyanobateri	a S	Stone	Side	Green	Diatoms	Cyanobateri	a S	Stone	Side	Green	Diatoms (Jyanobateri	а
1 a	0.13	0.15	0.32		1	а	0	0.04	0.13			1 a	0	0.12	1.1			1 a	0	1.03	1.42		1	l a	0.16	0	0.48	
b	0.56	0.35	0.52			b	0.04	0.1	0.27			b	0	0.24	0.15			b	0	5	2.99			b	0.1	0.24	0.49	
с	0	3.32	2.45			с	0	0.5	0.21			с	0	0.3	0.68			с	0	0	0			с	0.36	0.36	0.54	
d	0	0.24	0.62			d	0	0.13	0.3			d	0	1.43	1.28			d	0	1.83	1.15			d	0.13	0.13	0.22	
e	0	1.45	1.46			e	0	0.07	0.11			e	0.03	0.22	0.13			e	0	2.11	0.38			e	0.08	0.08	0.99	
	0.138	1.102	1.074	2.314	l 1	#DIV/0!	0.008	0.168	0.204	0.38	3	1 #DIV/0!	0.006	0.462	0.668	1.136		1 #DIV/0!	0	1.994	1.188	3.182	1	1 #DIV/0!	0.166	0.162	0.544	0.872
2 a	0	1.2	2.25		2	а	0.08	0.35	0.26			2 a	0	0.46	0.86			2 a	0.02	0	0.3		2	2 a	0.45	0	0.49	
b	0.26	0.05	0.33			b	C	0.52	0.25			b	0	0.22	0.35			b	0	1.6	1.21			b	0.11	0.03	0.21	
с	2	0.58	1.59			с	0	0.11	0.38			с	0	0.14	0.13			с	0	1.81	1.51			с	0	0.19	0.54	
d	0	3.69	2.82			d	0	0.13	0.3			d	0	0.15	1.17			d	0.83	0.89	0.91			d	0.1	0.12	0.24	
e	0	1.49	2.25			e	C	0.22	0.5			e	0	0.71	1.04			e	0	0.55	0.77			e	0.06	0.12	0.34	
	0.452	1.402	1.848	3.702	2 2	#DIV/0!	0.016	0.266	0.338	0.62	2	2 #DIV/0!	0	0.336	0.71	1.046		2 #DIV/0!	0.17	0.97	0.94	2.08	2	2 #DIV/0!	0.144	0.092	0.364	0.6
3 a	2.81	0.58	1.15		3	а	C	0.09	0.16			3 a	0.2	0.41	0.52			3 a	0	0.53	1.32		Э	3 a	0.06	0.07	0.53	
b	0	0.22	0.38			b	C	0.19	0.24			b	0.36	0.54	0.87			b	0	1.36	2.48			b	0.04	0.33	0.87	
с	0.09	0.09	0.16			с	C	0.01	0.02			С	0	0.01	0.16			с	0	2.05	2.82			с	0	0.28	0.47	
d	0	1.73	7.55			d	C	0	0			d	0	0	0.16			d	0	0.87	1.51			d	0	0.09	0.43	
e	0	1.18	2.82			e	C	0.02	0.12			e	0.13	0.53	0.13			e	0	0.4	0.65			e	0	0.23	0.34	
	0.58	0.76	2.412	3.752	2 3	#DIV/0!	C	0.062	0.108	0.17	,	3 #DIV/0!	0.138	0.298	0.368	0.804		3 #DIV/0!	0	1.042	1.756	2.798	3	3 #DIV/0!	0.02	0.2	0.528	0.748
4 a	0	2.5	2.16		4	а	0	0.54	0.45			4 a	0	0.36	0.65			4 a	0	1.25	1.3		4	1 a	0.03	0.27	1.33	
b	0	2.43	1.36			b	C	0.45	0.32			b	0	0.22	0.42			b	0	3.33	2.91			b	0.17	0.31	0.56	
с	0	2.25	7.33			с	C	0.43	0.7			с	0.1	0.75	1.09			с	0	2.62	3.78			с	0.29	0.23	0.52	
d	0	2.57	2.3			d	C	0.4	0.37			d	0	0.72	0.8			d	0	2.62	2.53			d	0	0.31	0.77	
e	0.03	0.66	1.47			e	0.04	0	0.1			e	0.03	0.09	0.4			e	0	2.12	1.81			e	0.11	0.28	0.88	
	0.006	2.082	2.924	5.012	2 4	#DIV/0!	0.008	0.364	0.388	0.76	5	4 #DIV/0!	0.026	0.428	0.672	1.126		4 #DIV/0!	0	2.388	2.466	4.854	4	1 #DIV/0!	0.12	0.28	0.812	1.212
5 a	0.04	0.18	0.49		5	а	C	0.01	0.24			5 a	0	0.27	0.63			5 a	0.49	0.21	0.26		5	5 a	0.35	0.19	0.8	
b	0.16	0.58	0.51			b	C	0.01	0.2			b	0.1	0.34	1.18			b	0.19	1.46	0.48			b	0	120	0.01	
с	0.04	0	0.1			с	C	0.2	0.2			с	0	1.04	0.97			с	0.42	0.93	1.28			с	0.17	0.19	0.6	
d	0	1.74	3.01			d	C	0.14	0.26			d	0	0	0.02			d	0	1.9	1.31			d	0.49	0.41	0.69	
e	0	0.32	0.61			e	C	0.16	0.26			e	0.06	0.72	0.89			e	0	0.7	0.82			e	0.09	0.1	0.47	
	0.048	0.564	0.944	1.556	5 5	#DIV/0!	C	0.104	0.232	0.336	5	5 #DIV/0!	0.032	0.474	0.738	1.244		5 #DIV/0!	0.22	1.04	0.83	2.09	5	5 #DIV/0!	0.22	0.178	0.514	0.912

	5	Site A: Edenc	lale				S	te B: Tanne	ery				Site	e C: Petrustr	room			Site	e D: York Ro	ad				Site	E: Refere	nce		
Stone	Side	Green	Diatoms	Cyanobater	ia	Stone	Side	Green	Diatoms	Cyanobat	eria	Stone	Side	Green	Diatoms 0	Cyanobater	ia	Stone Side	Green	Diatoms	Cyanobate	ria	Stone Sie	de	Green	Diatoms	Cyanobateria	J.
	1 a	C	0.32	2 0.56			1 a	0.04	0.12	0.13			1 a	0.11	0.38	0.71		1 a	0	1.08	1.04		1 a		0	0.92	0.34	
	b	C	0.18	3 0.24			b	0.51	1.25	0.86	i		b	0.3	0.2	0.15		b	0	1.26	0.9		b		0.29	0.22	0.31	
	с	C	0.3	3 0.28			с	0	0.33	0.35			с	0.04	0.33	0.68		с	0	3.49	2.62		c		0.2	0.01	0.28	
	d	C	0.5	5 0.73			d	0	0.75	0.59			d	0.16	0.45	0.4		d	0.11	0.39	0.81		d		0.19	0	0.22	
	e	C	0.19	0.32			e	0	0.62	0.82			e	0	0.84	1.36		e	0	0.8	1.18		e		0.61	1	0.28	
		C	0.298	3 0.426	0.724	1	1 #DIV/0!	0.11	0.614	0.55	1.274	1	1 #DIV/0!	0.122	0.44	0.66	1.222	1 #DIV/0!	0.022	1.404	1.31	2.736	1 #	DIV/0!	0.258	0.43	0.286	0.974
	2 a	0	0.25	3 0 33			2 a	0.77	0.74	0.69			2 a	0.01	0.44	0.78		2 a	0.07	0.58	0.74		2 a		0 19	0.26	0.46	
	h	(0.2	3 0.55			h	0.77	0.74	0.85			h	0.01	0.62	0.94		h	0.07	2.63	1 74		b		0.08	1 38	0.47	
	c	0	0.32	0.03			C C	0	0.22	0.03			c	0.17	0.77	0.83		c c	1 07	0.77	0.62		с С		0.00	0.07	0.44	
	d	0	0.31	0.12			d	0	0.67	0.20			d	2 53	1.64	1 3		d	0	1 29	0.93		d		0.15	0.11	0.35	
	e	0	0.3	3 0.35			e	0.01	0.07	0.15			e	0	2.6	2.25		e	0.01	0.5	0.69		e		0.15	2.82	0.71	
		C	0.278	3 0.404	0.682	2	2 #DIV/0!	0.156	0.474	0.516	1.146	5	2 #DIV/0!	0.542	1.214	1.22	2.976	2 #DIV/0!	0.23	1.154	0.944	2.328	2 #	DIV/0!	0.132	0.928	0.486	1.546
													_															
	3 a	0.48	0.97	7 0.46			3 a	0	0.05	0.03			3 a	0	0.15	0.23		3 a	0	0.01	0.15		3 a		0.08	0.15	0.28	
	b	0.13	0.42	2 1.04			b	0.01	0.04	0.14			b	0	0.91	0.94		b	0.24	0.32	0.21		b		0.42	0.25	0.62	
	с	0.01	. (0.07			с	0.02	0	0.13			С	0.01	0	0.03		С	0	1.46	0.84		С		0	0	0	
	d	0.11	. 0.03	3 0.53			d	0	0.06	0.11			d	0	0.31	0.89		d	0	0	0.15		d		0.4	0.07	0.86	
	e	0.03	0.81	1 1.03			e	0	0.6	0.97			e	0	0.15	0.48		e	0	0	0.31		e		0	2.82	0.92	
		0.152	0.446	5 0.626	1.224	1	3 #DIV/0!	0.006	0.15	0.276	0.432	2	3 #DIV/0!	0.002	0.304	0.514	0.82	3 #DIV/0!	0.048	0.358	0.332	0.738	3 #	DIV/0!	0.18	0.658	0.536	1.374
	4 a	2.1	1.74	1 1.17			4 a	0	0	0.02			4 a	0	0	0.03		4 a	0	0.87	0.96		4 a		0.25	0.18	0.51	
	b	0.11	0.39	0.82			b	0	0.54	0.72			b	0.01	0.45	0.85		b	0	2.17	1.64		b		0.01	0	0.04	
	c	0.02	2 (0.31			c	0.08	0.11	0.34			c	0	0.01	0.01		c	0	3.2	2.52		c		0	0.03	0.09	
	d	C	1.04	1 1.09			d	0	0.22	0.48			d	0.55	0.93	0.39		d	0	4.54	2.92		d		0	0.2	0.35	
	e	0.04	0.39	0.94			e	0	0.53	0.05			e	0	3	2.94		e	0	6.67	3.94		e		0.01	0	0.04	
		0.454	0.712	2 0.866	2.032	2	4 #DIV/0!	0.016	0.28	0.322	0.618	3	4 #DIV/0!	0.112	0.878	0.844	1.834	4 #DIV/0!	0	3.49	2.396	5.886	4 #	DIV/0!	0.054	0.082	0.206	0.342
	_					-	-						_	-	0.65	0.00		-	0.00						0.40		0.45	
	5 a	(5.04	1 2.54			5 a	0	0.49	0.51			5 a	0	0.65	0.26		5 a	0.28	0.94	1.18		5 a		0.19	0.14	0.46	
	a	0	0.16	0.33			D	0.42	0.42	0.65			a	0.08	0.18	0.04		d	0	1.45	1.54		b		0.38	0.71	0.77	
	c	0.07	0.01	L 0.26			C	0.08	0.03	0.21			C	0.51	0.99	0.68		C	0	5.67	3.53		C		0.21	0.47	0.68	
	a	0.07	0.54	+ 0.51			a	0	0.65	0.53			α	1.51	1.68	1.6		a	0.06	1.3	1.55		d		0	0.33	0.94	
	e	0	0.7:	s 0.49		-	e	0	1.01	1.16			e	0	0.27	0.31		e	0	9.68	4.35		e	0000	1.73	0.21	0.78	
		0.014	1.296	0.826	2.136	0	5 #DIV/0!	0.1	0.52	0.612	1.232	2	5 #DIV/0!	0.42	0.754	0.578	1.752	5 #DIV/0!	0.068	3.808	2.43	6.306	5 #	DIV/0!	0.502	0.372	0.726	1.6

Algal species counts for each month at each sampling site

	UNIT							Jun-1	14							
			Site A			Site B			Site C			Site D			Site E	
Sample		3	1	4	5	1	4	1	2	3	1	5	4			
Gride Counted	190	1	- 1	1	1	- 1	1	-	1	1	1	1	1			
Courses counted	109 squares			-	-	-	-	64	-	1	-		1			
Aguares counted	1 square			0	0	0	0	04	0	0		0	0			
Area counted	mm	g	9	9	9	9	9	4	9	9	9	9	9			
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm	0.9	0.9	0.9	0.9	0.9	0.9	0.4	0.9	0.9	0.9	0.9	0.9	0	0	0
Volume sampled	ml	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0004	0.0009	0.0009	0.0009	0.0009	0.0009	0	0	0
Tot ball jar volume	ml	196	76	297	276	83	269	107	127	157	98	263	234			
Stone area m2	m²	0.0501419	0.0240669	0.0244169	0.0326069	0.0262719	0.0277419	0.0378919	0.2174	0.062602	0.0464319	0.0339019	0.0255369			
TOT CELL COUNT (n)	n	42	24	22	4	7	23	206	220	203	840	386	889	0	0	0
TOT CELL CONCENTRATION (cells.ml -1)	cells.ml 11	4666.666667	2666.666667	2444.444444	444.4444444	777.777778	2555.555556	51500	24444.44	22555.56	93333.33333	42888.88889	98777.77778	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²	18241563.78	8420970.988	29733504.25	3761984.938	2457209.245	24780005.86	145426859	14279880	56567328	196991005.5	332718159.7	905121608.3	0	0	0
Sample	mi	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor	•	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
bildton ideoi		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Coll counts																
Cell counts		1						1								
Achnanthes oblongella																
Achnanthes sp.																
Achnanthidium exiguum									4							
Achnanthidium oblongella																
Achnanthidium sp.		7	4		2	1	1	66	73	110	352	192	35			
Adalfia ap.																
Anabaena sp?																
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp																
Capartogram sp.																
Chamber of the second										2						
Chamaesiphon sp.										3	88		32			
Closterium																
Cocconeis sp.			1			2	3	6	3	4			2			
Coelastrum sp.																
Cosmarium sp.																
Crucigenia sp.																
Cymbella sp.		1						2	4			4				
Cymbopluera sp.																
Desmococcus sp																
Dichothrix co																
Discotella sp												2				
Englemente en												2				
Encyonema sp.																
Encyonopsis leei var. sinensis																
Encyonopsis leei.		1	6	3	1			6			32	26	14			
Encyonopsis sp.			2			1		10	1	1		4				
Euastrum																
Eunotia sp									5			6				
Fragilaria sp		1		3	1		1	30	50	10		4	2			
Frustulia sp.								10								
Gimenella																
Gleocapsa sp.																
Gomphonema sp.			6	4		1	3	12	3	6	108		176			
Gyrosigma sp												64				
Hantzschia sp																
Heteroleibleinia		20									120	10	560			
lumbua en		50									120	40	500			
Lynuyd Sp.											40					
ivierostra sp.																
iviicrasterias sp.																
Mougeotia sp.																
Navicula sp.		2	2	1		2	3	64	61	37	16	10				
Netrium																
Nitzschia																
Nitzschia Sigma			1													
Oedogonium sp.				5								10	16			
Oocystis sp.																
other										22						
Pediastrum sp.																
Phormidium							12						12			
Pinpularia							12						12			
Plinuaria																
Placoneis																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp.																
Selenastrum sp																
Sellophora sp.																
Staurastrum sp.																
Stauroneis																
Stigeoclonium sp			2	6					16	10	84	24	40			
Surirella sp.			2	0					10	10		24	0			
Tabellaria sn																
Tabanadaan an																
letraedron sp.																
Iribonella																

	UNIT								Jul-14							
			Site A		_	Site B			Site C			Site D			Site E	
Sample Cride Counted	100	4	5	1	5	2	1	1	5	3	2	5	4			
Grids Counted	189 squares	1	1	1	1	1	1	1	16	no algae	27	64	27			
Area counted	r square mm ²	n	n	0	0	0	0	n	10	0	32 2	04 1	52 2			
chamber deanth	mm	0.1	0.1	01	01	0 1	0 1	0.1	0 1	01	0.1	0 1	0.1	0.1	0.1	0.1
Volume sampled	mm ³	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.1	0.1	0.2	0.4	0.2	0	0	0.1
Volume sampled	ml	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0001	0	0.0002	0.0004	0.0002	0	0	0
Tot ball jar volume	ml	329	318	309	300	334	328	209	261	285	148	261	270			
Stone area m2	m²	0.04695	0.044192	0.048126	0.051262	0.030192	0.051367	0.030122	0.076322	0.025642	0.061902	0.089482	0.041042			
TOT CELL COUNT (n)	n	0	20	64	0	64	76	109	EGG	0	109	976	272	0	0	0
		0	29	04	0	04	20	190	500	0	408	870	572	0	0	0
(cells ml ⁻¹)	cells.ml ⁻¹															
		0	0	0	0	0	0	0	0	0	0	0			0	0
		U	0	U	U	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Achnanthes oblongella																
Achnanthes sp.																
Achnanthidium exiguum																
Achnanthidium oblongella				19												
Acnnanthidium sp.					3	14	2	76	250		298	566	97			
Audifia ap.																
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.																
Closterium																
Cocconeis sp.			6		1	4	4	4	2							
Coelastrum sp.																
Cosmarium sp.																
Crucigenia sp.				1		1		1					2			
Cymbonluera sp.				1		1		4					2			
Desmococcus sp.																
Dichothrix sp.																
Discotella sp.											2					
Encyonema sp.																
Encyonopsis leei var. sinensis																
Encyonopsis leei.			1	5		1		3	2		22	112	2			
Encyonopsis sp.			2					1								
Funotia sp																
Fragilaria sp			2		3	1		4								
Frustulia sp.																
Gimenella																
Gleocapsa sp.																
Gomphonema sp.			4	2		3	16	5	2		66	108	185			
Gyrosigma sp.																
nantzschia sp. Heteroleibleinia																
Lynbya sp.																
Melosira sp.						38		9								
Micrasterias sp.																
Mougeotia sp.																
Navicula sp.			14	5	1	2	4	88	12		8	58				
Netrium																
Nitzschia Nitzschia Sigma																
Oedogonium sp								A					50			
Oocystis sp.								4					39			
other																
Pediastrum sp.																
Phormidium																
Pinnularia																
Placoneis																
Planothidium sp.																
Scenedesmus sp.																
Selenastrum sn																
Sellophora sp.																
Staurastrum sp.																
Stauroneis																
Stigeoclonium sp				32					298		12	32	27			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Iribonella																

	UNIT								Aug-14							
<u></u>			Site A			Site B	-	2	Site C		-	Site D			Site E	
Sample Cride Counted	100	1	3	4	4	3	5	3	4	1	2	4	1			
Squares counted	189 squares	1	1	1	1	1	1	1	64	1	1	1	1			
Area counted	1 square	0	0	0	0	0	0	0	04	0	0	0	0			
chamber deapth		9	9	9	9	9	9	9	4	9	9	9	9	0.1	0.1	0.1
Volume sampled	mm ³	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	ml	0.0	0.000	0.000	0.0	0.0	0.0	0.0009	0.0004	0.0	0.0	0.0	0.0	0	0	0
Tot ball iar volume	ml	375	361	345	262	474	533	423	378	459	209	379	450	0	0	0
Stone area m2	m ²	0.063722	0.052907	0.051857	0.046222	0.088082	0.020112	0.027168	0.036422	0.047195	0.073395	0.049687	0.046467			
		0.000722	0.052507	0.051057	0.0 IOLLL	0.000002	0.020112	0.027200	0.050 122	0.017100	0.075555	0.015007	0.010107			
TOT CELL COUNT (h)	n	44	6	10	19	29	17	87	459	294	148	118	222	0	0	0
TOT CELL CONCENTRATION	u 1-1															
(cells.ml ⁻¹)	cells.ml *															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-											-	-	-
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Achpapthos ablancelle																
Actimationes obiorigella																
Achnanthidium eviguum																
Achnanthidium oblongella																
Achnanthidium sp.		16	А	2	2			36	269	150	109	87	8			
Adalfia ap.		10	4		2			50	205	150	105	02				
Anabaena sp?																
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.																
Closterium																
Cocconeis sp.		8		2	8	5	2		2							
Coelastrum sp.																
Cosmarium sp.										2						
Crucigenia sp.																
Cymbella sp.									1	4						
Cymbopluera sp.																
Desmococcus sp.																
Dichothrix sp.																
Discotella sp.																
Encyonema sp.																
Encychopsis leel var. sinensis		0		1		2		2	67	F0		c				
Encyonopsis reel.		0	1	1		2		5	07	50		0				
Eustrum			-			-										
Functia sp																
Fragilaria sp				1	3		2	4	2		4					
Frustulia sp.																
Gimenella																
Gleocapsa sp.																
Gomphonema sp.		4	1	3				2		36	34	20	68			
Gyrosigma sp.					1											
Hantzschia sp.																
Heteroleibleinia																
Lynbya sp.																
Melosira sp.																
Mougootia																
iviougeotia sp. Navicula sp.		0		-				20	114			10				
Netrium		8		1	4			39	114	4	1	10				
Nitzschia								2								
Nitzschia Sigma								5								
Oedogonium sp.										20			86			
Oocystis sp.										0						
other																
Pediastrum sp.																
Phormidium																
Pinnularia																
Placoneis																
Planothidium sp.					1											
Pleurotaenium sp.																
Scenedesmus sp.							4		4							
Selenastrum sp																
Sellophora sp.																
Staurastrum sp.																
Stauroneis																
Stigeoclonium sp						21	9			20			60			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Iribonella															124	
															1/4	

	UNIT							1	Sep-14					1		
			Site A			Site B			Site C			Site D			Site E	
Sample		5	1	2	3	4	5	5	2	1	3	4	2	1	3	2
Grids Counted	189 squares	1		1	1	1	1	1	1	1	1	1	1			
Squares counted	1 square		64											64	64	32
Area counted	mm²	9	4	9	9	9	9	9	9	9	9	9	9	4	4	2
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm³	0.9	0.4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.4	0.4	0.2
Volume sampled	ml	0.0009	0.0004	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0004	0.0004	0.0002
Tot ball jar volume	ml	371	416	416	328	420	323	395	465	381	422	424	425	365	443	390
Stone area m2	m²	0.049897	0.071282	0.020322	0.023752	0.030052	0.037052	0.071772	0.022457	0.039082	0.216917	0.114227	0.136837	0.014372	0.009192	0.011152
TOT CELL COUNT (n)	n	12	252	109	E4	41	101	724	503	202	214	742	65	500	752	277
		12	2.52	190		41	101	734	302	505	214	/42	03	350	732	527
TOT CELL CONCENTRATION	cells.ml ⁻¹															
(cells.ml ⁻⁺)																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²				_							_				
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Acnnanthes oblongella																
Acnnanthes sp.																
Acnnanthidium exiguum																
Acnnanthidium oblongella					-	~										
Acrinantnidium sp.		3	130	2	6	6	20	81	222	172	148	460		86	382	133
Auditia ap.					~											
Anapaena Sp?					8				-					-		
Aukistrodesmus							-	8	8					21	12	
Aulacoseira sp.							/									
Batrachospermum sp.																
Capartogram sp.												45.4				
Chamaesiphon sp.			22							23		154				
Closterium			2		40				0							
Cocconeis sp.		3	3	4	12	14	16	11	8							
Coelastrum sp.									8					8		
Cosmarium sp.								426								
Crucigenia sp.								126	32							
Cymbella sp.			4	1		1	11		2					44		
Cymbopidera sp.																
Dishothriv sp.																25
Discotolla sp.																25
Engrangen and								1						110		
Encyonopsis leei var sinensis								4						110		
Encyonopsis leei			17	6	1		2	13	24	9	13	10	3			
Encyonopsis sp			10	0	-		-	15	24		15	20	5		40	20
Fuastrum			10						-			-			+0	55
Functia sp																
Eragilaria sp			6	4	7	7	16		8			2		75	90	20
Frustulia sp.								15	2							
Gimenella																
Gleocapsa sp.																
Gomphonema sp.		2	22	6	6	1	11	13	12	8	48	76	4	161	144	98
Gyrosigma sp.		1		3	3	-	1	1								20
Hantzschia sp.																
Heteroleibleinia				50				250								
Lynbya sp.				120									24			
Melosira sp.								6								
Micrasterias sp.																
Mougeotia sp.														3	4	
Navicula sp.		3	30	4	6	11	17	92	88	15			2	45	78	
Netrium																
Nitzschia				1		1										
Nitzschia Sigma																
Oedogonium sp.											5	18	3			
Oocystis sp.								4	36							
other																
Pediastrum sp.			8											12		
Phormidium																
Pinnularia																
Placonels																
Planothidium sp.																
Pleurotaenium sp.									-							
Scenedesmus sp.								52	64	12				16		12
Selenastrum sp																
Seilophora sp.																
Staurastrum sp.								1							2	
Stauroneis									-	-			-			
Stigeoclonium sp					8			57	66	64		20	29			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.														1		
Tribonella																

	UNIT								Oct-14							
			Site A			Site B			Site C			Site D			Site E	
Sample		3	4	5	2	4	1	2	5	3	4	5	1	1	2	4
Grids Counted	189 squares	1	1	1	1						1	1	1			
Squares counted	1 square					64	64	16	64	64				32	64	64
Area counted	mm²	9	9	9	9	4	4	1	4	4	9	9	9	2	4	4
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm³	0.9	0.9	0.9	0.9	0.4	0.4	0.1	0.4	0.4	0.9	0.9	0.9	0.2	0.4	0.4
Volume sampled	ml	0.0009	0.0009	0.0009	0.0009	0.0004	0.0004	0.0001	0.0004	0.0004	0.0009	0.0009	0.0009	0.0002	0.0004	0.0004
Tot ball jar volume	ml	300	302	309	298	295	300	303	432	441	300	295	400	320	328	425
Stone area m2	m²	0.049162	0.057247	0.037402	0.053327	0.031067	0.028897	0.046852	0.024732	0.042757	0.046502	0.052627	0.046152	0.066382	0.047797	0.064807
TOT CELL COUNT (n)	n	12	10	27	247	420	106	176	220	796	702	059	150	202	101	E10
		15	10	52	247	450	400	470	220	/60	795	930	120	295	404	519
TOT CELL CONCENTRATION	cells.ml ⁻¹															
(cells.ml ⁻¹)																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	•	0.5	0.5	0.5	0.5	0.5	0.5	0.3	0.3	0.5	0.5	0.5	0.5	0.5	0.3	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
	1															
Achnanthes oblongella	-															
Achnanthes sp.																
Achnanthidium exiguum																
Achnanthidium oblongella																
Achnanthidium sp.		3		3	5	78	80	76	46	154	24	10	40	43	224	66
Adalfia ap.																
Anabaena sp?																
Ankistrodesmus																
Aulacoseira sp.									2							
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.												224	56			
Closterium																
Cocconeis sp.		3	2	5	7	4	29	10	11	8						
Coelastrum sp.																
Cosmarium sp.														2		
Crucigenia sp.																
Cymbella sp.				2	6	16	3	10	4							
Cymbopluera sp.																
Desmococcus sp.																
Dichothrix sp.																
Discotella sp.																
Encyonema sp.						4								42	26	
Encyonopsis leei var. sinensis																
Encyonopsis leei.				3	7	8	6	93	38	122	2		8			8
Encyonopsis sp.				5	5			60		8						36
Euastrum																
Eunotia sp											1					
Fragilaria sp			3		141	262	211	90	20	90	1				10	
Frustulia sp.																
Gimenella																
Gleocapsa sp.														24		
Gomphonema sp.		3	5	4	11	24	24	58	60	170	53	152	30	134	182	342
Gyrosigma sp.									2							
Hantzschia sp.																
Heteroleibleinia					40						640	440				
Lynbya sp.											30			40		
Melosira sp.																
Micrasterias sp.																
Mougeotia sp.																
Navicula sp.		4		6	21	34	53	55	33	224					42	66
Netrium																
Nitzschia										2						
Nitzschia Sigma																
Oedogonium sp.											12	36				
Oocystis sp.																
other									6							
Pediastrum sp.														8		
Phormidium																
Pinnularia																
Placoneis																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp				4				24		R		8				
Selenastrum sp								24	5	0		3				
Sellophora sp.									J							
Staurastrum sp.																
Stauroneis																
Stigeoclonium sn					Л						30	88	24			
Surirella sp					4						50	00	24			
Tabellaria sp									1							
Tetraedron sp									1							
Tribonella																
	1															

	UNIT								Nov-14							
			Site A			Site B		. 1	Site C		ļ,	Site D			Site E	
Sample		2	5	1	4	3	1	5	2	1	1	3	2	4	2	1
Grids Counted	189 squares		1				~ ~		<u></u>			1	1			
squares counted	1 square	16	-	64	16	32	64	32	64	48	48			16	16	16
Area counted	mm ⁻	1	9	4	1	2	4	2	4	3	3	9	9	1	1	1
chamber deapth	mm 3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm	0.1	0.9	0.4	0.1	0.2	0.4	0.2	0.4	0.3	0.3	0.9	0.9	0.1	0.1	0.1
Volume sampled	ml	0.0001	0.0009	0.0004	0.0001	0.0002	0.0004	0.0002	0.0004	0.0003	0.0003	0.0009	0.0009	0.0001	0.0001	0.0001
fot ball jar volume	2	0.025617	0 102792	424	241	355	250	400	203	416	0.064563	335	352	3/5	421	401
Stone area m2	m	0.035617	0.102782	0.049372	0.047867	0.040517	0.049967	0.031907	0.095642	0.090392	0.064562	0.059942	0.069882	0.048707	0.049197	0.068937
TOT CELL COUNT (n)	n	323	18	216	1146	380	211	310	263	183	352	146	331	313	300	480
TOT CELL CONCENTRATION																
(cells ml ⁻¹)	cells.ml ⁻¹															
(cens.m)																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻)	cells.m -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
· · · · · · ·			5		3	5		3	5			5				
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor																
		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Achnanthes oblongella																
Achnanthes sp.								4								
Achnanthidium exiguum																
Achnanthidium oblongella																
Achnanthidium sp.		12	1	5	159	20	7	114	105	28	12		4	21	46	38
Adalfia ap.																
Anabaena sp?																
Ankistrodesmus																
Aulacoseira sp.			2						7							
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.												10				
Closterium																
Cocconeis sp.			3	5	17	7	3			2						
Coelastrum sp.																
Cosmarium sp.																
Crucigenia sp.																
Cymbella sp.		5	1	5	17	20		1	13							4
Cymbopluera sp.																
Desmococcus sp.																
Dichothrix sp.													40			
Discotella sp.																
Encyonema sp.				4	15	12	6	20	16		4			89	45	58
Encyonopsis leei var. sinensis																
Encyonopsis leei.		11	2	39	27	20	11	19	10	5		14	5			2
Encyonopsis sp.										2			1			
Euastrum																
Eunotia sp Erogilaria co							4.45	40	~	-			_	-		_
Frugilaria sp			2		674	204	145	13	9	6			3	2	35	2
Gimenella								1								
Gleocansa sp																
Gomphonema sp		104	-	00	45	17	0	24	16	50	E.4	74	70	107	170	244
Gyrosigma so		104	/	69	43	1/	0	24	10	00	4ر	/4	70	201	1/3	244
Hantzschia sp														2		
Heteroleibleinia		130		60	115	30					170		110			80
Lynbya sp.		54			115	12		11			70	15	110			
Melosira sp.		54		4	2			20				10				
Micrasterias sp.					_			0								2
Mougeotia sp.																
Navicula sp.		7		1	25	36	10	76	86	12		4	7	17		34
Netrium																
Nitzschia									1							
Nitzschia Sigma																
Oedogonium sp.											18					
Oocystis sp.																
other																
Pediastrum sp.																
Phormidium							20			68			70			
Pinnularia																
Placoneis																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp.				4		2										16
Selenastrum sp																
Sellophora sp.																
Staurastrum sp.							1								1	
Stauroneis																
Stigeoclonium sp					50			7			24	29	15			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Tribonella																

	UNIT								Dec-14							
			Site A			Site B			Site C			Site D			Site E	
Sample		3	1	4	4	1	3	1	5	3	5	2	3	2	1	3
Grids Counted	189 squares			1				1	1	1		1	1			
Squares counted	1 square	64	64		16	32	32				32			16	64	64
Area counted	mm ²	4	1	0				0	0	0	2	0	0		1	4
chamber deanth		4	4	9	0.1	2	0.1	9	9	9	0.1	9	9	0.1	4	4
	3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm	0.4	0.4	0.9	0.1	0.2	0.2	0.9	0.9	0.9	0.2	0.9	0.9	0.1	0.4	0.4
Volume sampled	ml	0.0004	0.0004	0.0009	0.0001	0.0002	0.0002	0.0009	0.0009	0.0009	0.0002	0.0009	0.0009	0.0001	0.0004	0.0004
Tot ball jar volume	ml	451	411	365	111	289	427	446	353	334	422	385	412	416	228	458
Stone area m2	m²	0.034972	0.109172	0.056007	0.035112	0.027342	0.092442	0.051247	0.031962	0.078267	0.111482	0.035392	0.038192	0.053697	0.027832	0.040047
TOT CELL COUNT (n)	n															
		156	194	204	275	218	438	272	42	490	440	718	658	362	319	662
TOT CELL CONCENTRATION																
(cells.ml ⁻¹)	cells.ml *															
			0		0	0		0	0			0		0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ²	0	0		0	0	0	0	0		0	0	0	0	0	0
Samala		- г			0 F											
Sample		5	5	5	5	5	2	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Achnanthes oblongella																
Achnanthes sp.					43			44								
Achnanthidium exiguum					.5				1							
Achnanthidium oblongella									1							
Achnanthidium sn		-	1 -	-	F	0	66	10	-	00	24			2 /	11	
Adalfia an		/	12	3	5	٥	00	10	5	30	24			50	11	
Australia ap.														12		
Anabaena sp ?														12		
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.												25				
Closterium																
Cocconeis sp.		1	8		7	2		8	2	10						
Coelastrum sp.																
Cosmarium sp																
Crucigenia sp																
Crucigenia sp.		10	22	2	10	10	CO	2							2	0
Cymbella sp.		10	32	3	12	13	60	2						1	2	8
Cymbopluera sp.																
Desmococcus sp.																
Dichothrix sp.				133									88			
Discotella sp.																
Encyonema sp.				6	4	10		1	2						4	32
Encyonopsis leei var. sinensis																
Encyonopsis leei.		94	108	7	28	56	40	5	3		17			18		54
Encyonopsis sp.														12		
Euastrum																
Funotia sp								2								
Fragilaria sp		2			139	99	138	2	3					7	7	10
Frustulia sn									1							
Gimenella									-							
Gleocansa sp																
Georghonoma ca			20				100	~		250		22	070	202	205	
Gomphonema sp.		37	26	27	22	8	106	6	8	358	93	33	2/8	202	295	552
Gyrosigma sp.				1												
Hantzschla sp.																
Heteroleibleinia												593	232			
Lynbya sp.						10					218	50		43		
Melosira sp.				4												
Micrasterias sp.																
Mougeotia sp.																6
Navicula sp.		3	5		15	12	28	22	17	24	8	4		31		
Netrium																
Nitzschia																
Nitzschia Sigma				1												
Oedogonium sp.		2									52	13	60			
Oocystis sp																
other																
Pediastrum sp																
Phormidium																
r normiurum Dispularia				5												
Placonels																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp.								4								
Selenastrum sp																
Sellophora sp.																
Staurastrum sp.																
Stauroneis																
Stigeoclonium sn				1/				160			28					
Surirella sn				14				100			20					
Tabellaria so																
Tabellaria sp																
Tetraeoron sp.																
Tribonella																

	UNIT								Jan-15								
		Site A			Site B				Site C		Site D			Site E			
Sample		2	1	5	4	1	3	2	5	3	4	1	5	5	2	3	
Grids Counted	189 squares			1								1					
Squares counted	1 square	64	64		16	32	16	64	32	64	64		16	64	64	64	
Area counted	mm'	4	4	9	1	2	1	4	2	4	4	9	1	4	4	4	
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Volume sampled	mm³	0.4	0.4	0.9	0.1	0.2	0.1	0.4	0.2	0.4	0.4	0.9	0.1	0.4	0.4	0.4	
Volume sampled	ml	0.0004	0.0004	0.0009	0.0001	0.0002	0.0001	0.0004	0.0002	0.0004	0.0004	0.0009	0.0001	0.0004	0.0004	0.0004	
Tot ball jar volume	ml	395	275	250	250	225	300	395	300	325	311	320	398	305	380	485	
Stone area m2	m²	0.046922	0.055497	0.041777	0.058857	0.0496869	0.0293169	0.0859119	0.0904619	0.0569669	0.0593469	0.0604669	0.0509819	0.0894469	0.0515069	0.0469219	
TOT CELL COUNT (n)	n				120		4000	224	500		202			207		24.2	
		311	482	320	438	474	1008	331	582	428	283	802	824	287	550	312	
TOT CELL CONCENTRATION	colle ml ⁻¹																
(cells.ml ⁻¹)	cens.m																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		-															
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²																
	_	0	0	0	0	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Pellet Volume	ml																
_	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
		0.1	0.1	0.1	0.1	011	0.11	0.1	0.1	0.11	0.1	0.1	0.1	0.1	0.1	0.1	
Cell counts																	
Achnanthes oblongella								3									
Achnanthes sp.											3						
Achnanthidium exiguum																	
Achnanthidium oblongella																	
Achnanthidium so			50	n					10	27	177	174		10	24	10	
Adalfia an			52	2					48	52	1/2	120		19	24	18	
Anahaana m2																	
Andudend Sp?																	
Ankistrodesmus																	
Aulacoseira sp.																	
Batrachospermum sp.																	
Capartogram sp.																	
Chamaesiphon sp.																	
Closterium		1						2		2							
Cocconeis sp.			10	1	5				4	8		2					
Coelastrum sp.															2		
Cosmarium sp.		1						11		2				1	14	2	
Crucigenia sp																	
Cymbellasp		33	164	5		6	22		4	6	4	12		4		2	
Cymbonluera sn		33	104	3		0		1		0						-	
Cymbopidera sp.								1									
Desinococcus sp.				C7								100					
Dichothrix sp.				67								196					
Discotella sp.																	
Encyonema sp.					10			12		30	6			20		10	
Encyonopsis leei var. sinensis																	
Encyonopsis leei.		71	102	18		4	42	4	16	8	9	4			20	22	
Encyonopsis sp.									20				2		36		
Euastrum															2		
Eunotia sp									2								
Fragilaria sp		5		33	404	422	286	63	130	118	7	6		36	70	60	
Frustulia sp.														2			
Gimenella																	
Gleocapsa sp.																	
Gomphonema sp.		48	94	46	9	26	2	16	32	32	68	130	58	154	310	150	
Gyrosigma sp.			51	.5	5	20		10	52	32		100	50	104	510	100	
Hantzschia sp																	
Heteroleibleinia				140			404					280	720				
Lynhya sn		C1		140			404	าา				200	720				
Melosira sp		10	20					22 10	27	20							
Microstorias co		42	38					48	22	20							
Mourgootia																	
iviougeotia sp.																	
Navicula sp.		28	22	3	10	10	12	149	12	98		10	2	38	70	28	
Netrium																	
Nitzschia				1													
Nitzschia Sigma																	
Oedogonium sp.		30									14	36	42				
Oocystis sp.																	
other																	
Pediastrum sp.																12	
Phormidium							240		192	24							
Pinnularia						6									2		
Placoneis															_		
Planothidium sp																	
Pleurotaenium sn																	
Scenedesmus cn				,					0	22				10		0	
Solonastrum en				4					8	32				12		8	
Sellenhern																	
Senopriora Sp.																	
Staurastrum sp.														1			
Stauroneis																	
Stigeoclonium sp									92	16							
Surirella sp.																	
Tabellaria sp																	
Tetraedron sp.																	
Tribonella		1															
L		. -															
	UNIT				Feb-15												
---	------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	
			Site A			Site B			Site C			Site D			Site E		
Sample		4	5	3	3	1	4	1	4	5	2	5	3	2	5	1	
Grids Counted	189 squares	1	1	1	1	1	1				1	1	1			1	
Squares counted	1 square							32	64	64				32	16		
Area counted	mm²	9	9	9	9	9	9	2	4	4	9	9	9	2	1	9	
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Volume sampled	mm ³	0.9	0.9	0.9	0.9	0.9	0.9	0.2	0.4	0.4	0.9	0.9	0.9	0.2	0.1	0.9	
Volume sampled	ml	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0002	0.0004	0.0004	0.0009	0.0009	0.0009	0.0002	0.0001	0.0009	
Tot ball jar volume	ml	200	279	200	320	100	255	179	200	250	300	250	226	311	330	198	
Stone area m2	m²	0.0314169	0.0812219	0.0725419	0.0458019	0.0415669	0.0263419	0.0626719	0.0346019	0.0453469	0.0831469	0.0452069	0.0409719	0.0588919	0.0687969	0.0248019	
TOT CELL COUNT (n)	n	20	210	225	115	270	112	70	450	503	170	272	24	210	200	250	
		30	219	325	115	370	112	/2	450	592	1/0	372	34	210	288	258	
TOT CELL CONCENTRATION	cells.ml ⁻¹																
(cells.ml ⁻¹)	censiiii																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²																
		0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Cell counts																	
Ashanatha 11 11																	
Acnnanthes oblongella																	
Acnnanthes sp.		2						4									
Acrinantnidium exiguum								-									
Acrinanthidium oblongella								2							-		
Acrinantnidium sp.		1		17	10	128	13	19	72	162	21	18	4	37	8	14	
Auditia ap.															2		
Anabaena sp?																	
Ankistrodesmus																	
Aulacoseira sp.									130								
Batrachospermum sp.																	
Capartogram sp.																	
Chamaesiphon sp.																	
Closterium																	
Cocconeis sp.		1	11			12	5	2									
Coelastrum sp.																	
Cosmarium sp.									2		2			2		2	
Crucigenia sp.																	
Cymbella sp.			4	27	2	6		1			1			1		2	
Cymbopluera sp.																	
Desmococcus sp.																	
Dichothrix sp.																68	
Discotella sp.											-						
Encyonema sp.											6			4			
Encyonopsis leei var. sinensis			10	101				0	24	14	2	0	2	1		6	
Encyonopsis leel.		4	12	101	4	44	1	8	24	14		8	2			D	
Encyonopsis sp.				6		2				8						4	
Euastrum							1	2		0							
Eragilaria co		1	4	2	22	24	1	3		6	27		2	22	1.40	10	
Fructulia cp		1	4	5	22	54	1		0	0	27		2		140	10	
Cimenella			1						0	4							
Gleocansa sn																	
Gomphonema sp.		10	00	104	77	170	50	0		27	70	EO	10	102	C 4	60	
Gyrosigma en		13	69	154	2/	128	69	8		22	/0	50	18	102	04	00	
Hantzschia sp.																	
Heteroleibleinia					50							280					
Lynbya sp.					50						л	200					
Melosira sp.										16	4						
Micrasterias sp.										10							
Mougeotia sp.											А			2			
Navicula sp.		3	6	23				25	144	226	8			28	8	32	
Netrium		5	0						1.7	220				20	0	32	
Nitzschia																2	
Nitzschia Sigma										6						2	
Oedogonium sp.										0	А	Д			R		
Oocystis sp.											4				0		
other																	
Pediastrum sp.		5															
Phormidium		5	92	14			22			120					40	36	
Pinnularia			52												10	50	
Placoneis																2	
Planothidium sp.																2	
Pleurotaenium sp.											1				2	4	
Scenedesmus sp.						16					4				8	4	
Selenastrum sp						10					4				0	0	
Sellophora sp.																	
Staurastrum sn.																	
Stauroneis																	
Stigeoclonium sn									70		16	17	Q				
Surirella sp									70		10	12	0				
Tabellaria sp																	
Tetraedron sp.																	
Trihonella																	

	UNIT	T Mar-15				Site F										
-		-	Site A	_	-	Site B			Site C	-		Site D			Site E	
Sample		4	2	5	4	3	5	5	3	2	1	5	3	4	3	1
Grids Counted	189 squares		1		1			1	1	1	1		1	1	1	1
Squares counted	1 square	32		64		48	16					32				
Area counted	mm*	2	9	4	. 9	3	1	9	9	9	9	2	9	9	9	9
chamber deapth	mm3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm	0.2	0.9	0.4	0.9	0.3	0.1	0.9	0.9	0.9	0.9	0.2	0.9	0.9	0.9	0.9
Volume sampled	ml	0.0002	0.0009	0.0004	0.0009	0.0003	0.0001	0.0009	0.0009	0.0009	0.0009	0.0002	0.0009	0.0009	0.0009	0.0009
Tot ball jar volume	ml	421	250	302	272	250	350	358	364	424	253	350	300	350	221	362
Stone area m2	m	0.0423019	0.0503169	0.0547969	0.0397469	0.0403419	0.0311019	0.0591019	0.0483919	0.0285119	0.0330269	0.0551469	0.0692519	0.0421619	0.0378219	0.0424419
TOT CELL COUNT (n)	n	494	218	195	116	304	569	468	194	164	360	1028	822	124	433	428
(colle ml ⁻¹)	cells.ml ⁻¹															
(cens.nn)																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ²)	cells.m	0.0000000	0.000000	0.0000000	0.000000	0.0000000	0.000000	0.000000	0.0000000	0.000000	0.000000	0.0000000	0 000000	0.000000	0 000000	0.000000
Sample	ml	5	5	0.0000000	5	5.0000000	5	0.0000000	5	5	5	5	5	0.0000000	5	0.0000000
· · · · · · · · · · · · · · · · · · ·	•	5			J	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	mi	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor																
		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts																
Achnanthes oblongella																
Achnanthes sn																
Achnanthidium eviguum																
Achnanthidium sn		76	20	n	0	c	67		10	74		127	300		14	۵u
Adalfia ap.		20	20	2	•	5	02		10	20		152	370		44	
Anahaena sn?																
Ankistrodesmus																
Aulacoseira sn						1										
Batrachosnermum sn						-										
Capartogram sp																
Chamaesinhon sn											24					
Closterium											24					
Cocconeis sp		6	3		16	1	1/			2						
Coelastrum sn		0			10	1	14			2						
Cosmarium sp.											4					
Crucigenia sp																
Cymbella sp.		26	29	11		1	56		4					12		
Cymbonluera sp		20	25			-	50							14		
Desmococcus sp																
Dichothrix sp				40						8		80	60		40	
Discotella sp.															10	
Encyonema sp										1						
Encyonopsis leei var sinensis										-						
Encyonopsis leei.		242	86	40		2	10	8	4	4	94	12	46		26	46
Encyonopsis sp.			1	4					2						1	
Euastrum																
Funotia sp																
Fragilaria sp		8	18	9	77	93	312	22	22	19	66	2	48	30	18	12
Frustulia sp.								6	8		2					
Gimenella																
Gleocapsa sp.																
Gomphonema sp.		30	31	31	7	4	105	32	38	15	64	68	204	38	240	176
Gyrosigma sp.																
Hantzschia sp.																
Heteroleibleinia						190		140				660				
Lynbya sp.																
Melosira sp.																
Micrasterias sp.																
Mougeotia sp.																
Navicula sp.		22	30	6	8	5	10	232	104	23	42	2	4	14	16	14
Netrium						1										
Nitzschia									2							
Nitzschia Sigma																
Oedogonium sp.											26	18	58			
Oocystis sp.																
other																
Pediastrum sp.																
Phormidium		134		52						18				30	40	100
Pinnularia																
Placoneis																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp.															8	
Selenastrum sp																
Sellophora sp.						1										
Staurastrum sp.																
Stauroneis																
Stigeoclonium sp								28		47	38	54	4			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Tribonella										1						

	UNIT								Apr-15		Site D			Site F		
Canada		1	Site A	2	2	Site B	-	-	Site C		2	Site D		2	Site E	2
Sample Gride Counted	190	1	5	2	3	2	5	5	2	4	3	4	1	3	1	2
Squares counted	189 squares	64	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Area counted	nm ²	1	0	٥	٥	٥	٥	0	0	0	٥	٥	٥	٥	0	0
chamber deapth	 mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm ³	0.4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Volume sampled	ml	0.0004	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009
Tot ball jar volume	ml	150	229	375	297	258	319	450	453	400	321	350	307	318	361	374
Stone area m2	m²	0.0915819	0.0372619	0.0614819	0.0281269	0.0675019	0.0440169	0.0436669	0.0280569	0.0678519	0.0892719	0.0604319	0.0381719	0.0562669	0.0725419	0.0666969
TOT CELL COUNT (n)	n	272	56	106	122	48	72	146	390	808	740	714	330	300	358	297
TOT CELL CONCENTRATION																
(cells.ml ⁻¹)	cells.ml ⁻¹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²	0.000000	0.000000	0.0000000	0.0000000	0.000000	0 0000000	0 000000	0.000000	0.0000000	0.000000	0.000000	0.0000000	0 0000000	0.000000	0.0000000
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	mi	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Cell counts	l			1	l											
Achnanthes oblongella																
Achnanthes sp.																
Achnanthidium exiguum																
Achnanthidium oblongella																
Achnanthidium sp.		27		10	14	2	4	6	76	56	64	45		40	20	73
Adalfia ap.																
Anabaena sp?															26	
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp.											54		42			
Capartogram sp.																
Chamaesiphon sp.													4			
Closterium				2	10	10	22			0						
Coclostrum cn					10	10	33		4	0						
Coenastrum sp.														2	6	11
Crucigenia sp.														-	0	
Cymbella sp.		17	6	12	4	2								2		2
Cymbopluera sp.														-		
Desmococcus sp.																3
Dichothrix sp.			20									30	20			
Discotella sp.																
Encyonema sp.			3		8									2		2
Encyonopsis leei var. sinensis																
Encyonopsis leei.		98	15	46				6	80	8	8	39		8	8	14
Encyonopsis sp.		14				1	2	6		12						
Euastrum																
Eunotia sp															2	
Fragilaria sp		22	1	14	32	18	22			24	4			14		
Frustulia sp.								2	4					2		
Gimenella																
Gleocapsa sp.				6	10				12	12	102	450	10	224	200	170
Gomphonema sp.		14	6	6	10	4	4		12	12	102	453	10	224	296	1/6
Hantzschia sp.																
Heteroleibleinia											220		160			
Lynbya sp.											24		50			
Melosira sp.				8					6	18			50			
Micrasterias sp.				J						10						
Mougeotia sp.																
Navicula sp.		80	5	8	14	5	7	116	208	384				6		10
Netrium																
Nitzschia								4								
Nitzschia Sigma																
Oedogonium sp.								6				36	8			
Oocystis sp.																
other											14					
Pediastrum sp.																
Phormidium					18					124						
Pinnularia																
Placonels																
Planotniaium sp.																
Fieurotaenium sp.																-
Selenastrum cn											8					6
Sellonhora so																
Staurastrum sn																
Stauroneis					Л											
Stigeoclonium sp										162	142	111	36			
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Tribonella																

	UNIT	May-15														
			Site A			Site B			Site C			Site D			Site E	
Sample		4	5	3	5	4	2	2	5	3	3	1	5	1	3	4
Grids Counted	189 squares		1	1	1	1		1	1	1				1		
Squares counted	1 square	48					64				48	32	32		32	32
Area counted	mm²	3	9	9	9	9	4	9	9	9	3	2	2	9	2	2
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm³	0.3	0.9	0.9	0.9	0.9	0.4	0.9	0.9	0.9	0.3	0.2	0.2	0.9	0.2	0.2
Volume sampled	ml	0.0003	0.0009	0.0009	0.0009	0.0009	0.0004	0.0009	0.0009	0.0009	0.0003	0.0002	0.0002	0.0009	0.0002	0.0002
Tot ball jar volume	ml	400	190	338	188	323	271	336	415	300	300	324	467	358	338	248
Stone area m2	m ²	0.0493719	0.0505969	0.0705119	0.0573869	0.0486719	0.0426169	0.0574569	0.0569319	0.0411819	0.0484969	0.0522069	0.0652619	0.0492669	0.0436669	0.0651219
TOT CELL COUNT (n)	n															
	"	297	55	181	26	38	235	314	200	628	802	633	1171	186	558	336
TOT CELL CONCENTRATION																
(cells.ml ⁻¹)	cells.ml ⁻¹															
,,																
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m [~]	0.0000000	0 000000	0 000000	0.000000	0 000000	0 000000	0.0000000	0 0000000	0 0000000	0.000000	0 0000000	0 0000000	0 0000000	0.000000	0 000000
Comple	and a	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	0.0000000
sample		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
C-11	·			·				·								
Cell counts																
Achnanthes oblongella																
Achnanthes sp.																
Achnanthidium exiguum																
Achnanthidium oblongella							13									
Achnanthidium sn			Л	33		1	52	44	2/	56	17	22	QA	50	206	15/
Adalfia an			4			1		-++	J4	50	12	22	50	50	200	1.04
Anahaana sh2																
Ankistra do smus															10	
Ankistrodesinus															10	
Aulacoseira sp.																
Batrachospermum sp.													16			
Capartogram sp.																2
Chamaesiphon sp.											6		12			
Closterium																
Cocconeis sp.		2	2	3	6	12	56		4	28						
Coelastrum sp.																
Cosmarium sp.											2				4	14
Crucigenia sp.																
Cymbella sp.		2	1			2	4	4	4	12				2	6	
Cymbonluera sp																
Dishothrix sp		254	20	00												
Dissetelle se		2.34	20	50					1							
Discolena sp.								-	1							
Encyonema sp.				2	2	2	2	6						4		
Encyonopsis leei var. sinensis																
Encyonopsis leei.		13	4	14	1		5	16	46	28	40	8		5	44	
Encyonopsis sp.									2	8					14	20
Euastrum																
Eunotia sp																
Fragilaria sp				3	2	15		22		8	18			14	44	
Frustulia sp.					1		24		9					1		
Gimenella																
Gleocapsa sp.																
Gomphonema sp.		22	4	30	2		16	22	33	44	12	54	152	58	192	76
Gyrosigma sp.																
Hantzschia sp.													2			
Heteroleibleinia											240	450	680			
Lynbya sp.											20	60				
Melosira sp.								12			20	50				
Micrasterias so								14								
Mougeotia sp.	1															
Navicula sp.		-			0	<i>c</i>	62	100	<i>cr</i>	20.4	10		-	47	10	20
Navicula sp.		2		4	9	0	02	100	00	264	40		/	47	10	28
Netrium																
Nitzschia					1			2								
Nitzschia Sigma																
Oedogonium sp.		2	2	2								15	14			
Oocystis sp.																
other			18													
Pediastrum sp.															16	
Phormidium										160	216		192			
Pinnularia																
Placoneis																
Planothidium sp.																
Pleurotaenium sn																
Scenedesmus sn														л		16
Selenastrum en														4		74
Sellenhora co	-													1		24
Senupriora Sp.	-				1											2
staurastrum sp.																
Stauroneis									1							
Stigeoclonium sp	-										190	24				
Surirella sp.					1											
Tabellaria sp																
Tetraedron sp.																
Tribonella																

	UNIT								Jun-15							
			Site A			Site B			Site C			Site D			Site E	
Sample		2	4	5	4	3	2	4	3	2	4	1	5	4	3	5
Grids Counted	189 squares	1	1	1	1	1	1		1			1	1	1		
Squares counted	1 square							32		64	32				64	16
Area counted	mm²	9	9	9	9	9	9	2	9	4	2	9	9	9	4	1
chamber deapth	mm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Volume sampled	mm ³	0.9	0.9	0.9	0.9	0.9	0.9	0.2	0.9	0.4	0.2	0.9	0.9	0.9	0.4	0.1
Volume sampled	ml	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0002	0.0009	0.0004	0.0002	0.0009	0.0009	0.0009	0.0004	0.0001
Tot ball jar volume	ml	376	200	328	350	350	300	310	300	405	400	357	428	350	419	300
Stone area m2	m²	0.0402019	0.0461169	0.0350569	0.0482169	0.0319069	0.0284419	0.0514019	0.0533269	0.0542719	0.0098989	0.0618669	0.0495469	0.0677819	0.0483219	0.0313819
TOT CELL COUNT (n)	n											400				
		44	58	/0	52	11	156	400	114	534	365	189	184	188	390	434
TOT CELL CONCENTRATION	cells ml ⁻¹															
(cells.ml ⁻¹)	cens.im															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOT CELL DENSITY (cells.m ⁻²)	cells.m ⁻²															
		0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Sample	ml	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pellet Volume	ml	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	•	0.5	0.5	0.5	0.5	0.5	0.3	0.5	0.5	0.3	0.3	0.5	0.3	0.5	0.5	0.5
Dilution factor		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Coll counts																
Cen counts																
Achnanthes oblongella																
Achnanthes sp.																
Achnanthidium exiguum																
Achnanthidium oblongella																
Achnanthidium sp.			4	7	2		4	140	24	50	18	3	54	58	125	160
Adalfia ap.														1		
Anabaena sp?																
Ankistrodesmus																
Aulacoseira sp.																
Batrachospermum sp.																
Capartogram sp.																
Chamaesiphon sp.																
Closterium																
Cocconeis sp.		2	3	1	15	3	15	8						2		
Coelastrum sp.																
Cosmarium sp.							2	2								6
Crucigenia sp.																
Cymbella sp.				1	1		7						2	14	4	40
Cymbopluera sp.																
Desmococcus sp.																
Dichothrix sp.		22	28	30							30					
Discotella sp.																
Encyonema sp.		1		6				6		8					15	4
Encyonopsis leei var. sinensis																
Encyonopsis leei.			2	6		2	2	52	6	68	1	1	4		3	
Encyonopsis sp.					1				4							
Euastrum														1		
Eunotia sp																
Fragilaria sp							66	24		46			4	19	39	56
Frustulia sp.								8	26	2					1	
Gimenella												10				
Gleocapsa sp.																
Gomphonema sp.		7	16	10	4		5	22	4		52	15	40	85	175	164
Gyrosigma sp.					2											
Hantzschia sp.																
Heteroleibleinia											170	160	60			
Lynbya sp.																
Melosira sp.									6							
Micrasterias sp.																
Mougeotia sp.																
Navicula sp.			3	9	15	2	55	134	42	214					16	4
Netrium																
Nitzschia					12	3		4								
Nitzschia Sigma																
Oedogonium sp.													20			
Oocystis sp.																
other														8		
Pediastrum sp.																
Phormidium		12								110	80					
Pinnularia																
Placoneis																
Planothidium sp.																
Pleurotaenium sp.																
Scenedesmus sp.			2								4				12	
Selenastrum sp																
Sellophora sp.																
Staurastrum sp.																
Stauroneis						1										
Stigeoclonium sp									2	36	10					
Surirella sp.																
Tabellaria sp																
Tetraedron sp.																
Tribonella																

Algal growth form divisions at each site during the sampling period

Site A														
		June	July	August	September	October	November	December	January	February	March	April	May	June
Cyanoba	cteria	4343229.5	0	0	139587806	0	302965778	33309388	81656160.2	13134131	264520399	4552361	247410078	26670814.8
Diatom		9265950.3	15338588	13570620	132498983	13459586	305997626	238913634	383140085	53808698	684557401	68813306	54795142.5	21822488.1
Green		5189499.9	7609670	0	3890655.7	1223942.6	2862627	5528557.9	23335193.9	1178889	0	451804.2	2433630.47	321244.811
Std Dev														
Cyanoba	cteria	7522694.1	0	0	214576588	0	418182243	57693552	72321285.1	19155255	354104429	7884921	380302451	11599626.2
Diatom		5009833.8	13284811	13240329	167921981	10705231	294000468	234550616	275358731	39067959	958622165	43420524	52623710.1	17183334.8
Green		8388088	13180335	0	6738813.4	2119930.7	4958215.4	5130985.5	38137625.7	2041896	0	782547.7	2572564.21	556412.334
Site B														
		June	July	August	September	October	November	December	January	February	March	April	May	June
Cyanoba	cteria	4309566.2	0	0	4091680.5	8278776.4	262671737	17616430	2196685188	20825896	130826207	7039524	0	0
Diatom		6023500.4	34105340	9341273	73267940	733523860	2.216E+09	993405115	2219493031	80629791	2241589944	66793589	137024633	78610689.8
Green		0	0	16504079	4091680.5	827877.64	87250775	0	0	1425636	688558.987	0	0	781319.892
std dev			-	-	-	_	_	-	-		-	-	-	-
Cyanoba	cteria	7464387.7	0	0	7086998.4	14339261	285249083	30512552	3804770355	19562183	226597638	12192814	0	0
Diatom		5089018.4	39155753	4385197	21439383	526350810	2.438E+09	116024325	1361772331	26151474	3604744432	51387230	205081638	89371690.2
Green		0	0	19677171	7086998.4	1433926.1	142501100	0	0	2469274	1192619.15	0	0	1353285.75
Site C										- •				
		June	July	August	September	October	November	December	January	February	March	April	May	June
Cyanoba	cteria	278656.79	0	0	59263263	0	57755578	0	125961337	55130560	45728609.6	27074217	43168911	68405565.3
Diatom		68494181	3.55E+08	5.34E+08	403981980	1.959E+09	715432170	129438335	441047870	4.33E+08	171470832	4.01E+08	248273164	664671296
Green		1275034.9	3.41E+08	18588210	242108889	65891629	14625886	52862457	84974724.1	34680177	32168207.8	37661218	0	24814294.7
std dev														
Cyanoba	cteria	482647.72	0	0	82022683	0	53051487	0	166687375	95488931	47173550.2	46893919	74770747.2	118481915
Diatom		68707818	4.92E+08	5.63E+08	385280644	988626537	965701506	92956250	87948812.9	2.91E+08	27011751.3	2.74E+08	114983296	567390647
Green		1408257.3	5.87E+08	23780859	219470585	77356483	25332777	91560461	76015072.6	60067828	40507810.5	59380823	0	36751858.1
Site D														
		June	July	August	September	October	November	December	January	February	March	April	May	June
Cyanoba	cteria	235863693	0	0	23932425	315918841	252737705	534523007	1966904795	57884018	799193765	1.22E+08	1913094505	1939122863
Diatom		20/0/2/60	6.77E+08	76204909	91/0/4/1	/8025131	9/18//5/	215566807	335651668	38918330	416828841	1.42E+08	481369241	515501672
Green		35340472	1.07E+08	52367025	9265489.4	45144119	44942125	/9681/2/	122463663	9054078	105400716	8431/2/6	208085609	102822501
sta dev		22054 46 42	0	0	24520674	220220004	222204576	204706202	2467475420	00070500	4244540000	05042770	4424622452	2200040002
Cyanoba	cteria	328514643	0	0	34528671	229328894	322201576	304706392	316/4/5138	98872563	1341548998	95843779	1121633453	2296840903
Green		19376097	2.4E+08 1.53E+08	90702349	7456510.5	32293350	55185835	59497876	157415889	3822098	238904623 107508179	9201293	162797207	111701385
Site E														
		June	July	August	September	October	November	December	January	February	March	April	May	June
Cyanoba	cteria	0	0	0	145715080	51419639	155117699	142031787	0	94706702	58126843.1	4792122	0	0
Diatom		0	0	0	5.758E+09	735818392	2.397E+09	1.636E+09	654444393	5.9E+08	207179024	1.8E+08	901116400	307369915
Green		0	0	0	271335452	8034318.6	37753966	5718295.3	33994559	36440409	1731311.26	5678186	82062340.1	8862261.86
			-	-	252205055	00000	200074707	246006077	-	05050105	22074705	0202467	-	
		0	0	0	252385922	89061427	268671737	246006271	0	95958125	339/4722.3	8300199	0	0
		0	0	0	2.806E+09	180349747	168682551	887191149	383177959	4.91E+08	113013017	7277077	988700538	446403815
		0	0	0	100490809	13915848	58138479	9904378	22468220.2	43225236	2998719.07	5963870	69993727.1	14855788.2

Site A June July August Septembe October Novembe December January February March April May June 109 Baetidae 77 133 71 94 60 98 82 84 55 143 60 75 Chironom 24 24 34 10 0 205 140 123 17 24 1 1 Heptagen 0 4 7 1 4 4 10 2 4 6 4 з 8 Leptophle 21 11 24 0 4 24 14 33 29 Elmidae-15 11 0 4 10 6 0 1 6 2 1 1 0.037087 0.048218 0.053166 0.045612 0.049596 0.066375 0.058905 0.046558 0.052998 0.065017 stone surf 0.066417 0.060026 0.048126 180 125 162 122 81 122 112 306 209 80 285 113 136 3733.023 2351.131 3551.736 2459.881 1220.341 2071.135 2405.607 4607.261 3943.552 4383.476 2825.921 density 2157 1882 .521 April August Septembe October Novembe December January February March lune Julv May lune Baetidae 2076.205 2758.289 1335.442 2060.884 2197.762 903.9562 1663.699 1761.248 1264.738 1037.777 2199.428 999.5685 1558.412 Chironom 26.9637 497.7363 451.4172 745.426 141.1407 15.06594 169.7652 0 3086.564 2641.614 1891.816 283.2111 498.692 61.52247 49.97843 0 20.73901 75.23619 87.69718 80.65183 120.5275 169.7652 42.95726 60.22564 113.212 145.4518 Heptagen Leptophle 26.9637 435.5193 206.8995 526.1831 0 15.06594 67.90607 515.4872 45.16923 37.73734 215.3286 549.7627 602.5861 40.32591 165.7253 Elmidae- I 26.9637 20.73901 282.1357 131.5458 0 85.91453 150.5641 113.212 15.38062 0 20.77883 Site B Septembe October Novembe December January July August February March April May June 287 Baetidae 504 353 449 110 80 61 8 32 19 29 199 151 Chironom 101 37 32 0 177 237 67 183 5 1 36 0 Heptagen 2 2 0 0 o 0 0 0 4 9 Leptophle 1 53 26 31 10 0 2 2 1 0 6 15 32 Elmidae-0 0 2 з 3 0 2 2 0 0 3 0 0 0.041483 0.041456 0.047706 0.029065 0.045536 0.054363 0.055454 0.044311 0.033902 0.036912 0.056918 0.04716 0.039208 stone surf 512 508 516 176 94 62 13 36 56 206 452 237 511 12342.44 12253.87 10816.27 6055.414 2064.305 1140.484 234.429 812.4412 1651.825 5580.856 7941.263 5025,456 13033.09 density June July August Septembe October Novembe December January February March April May June 12149.58 8514.99 9411.834 3784.634 1756.856 1122.089 144.264 722.1699 560,4406 785.6545 3496.264 3201.873 7319.953 Baetidae 120.5316 2436.3 775.5854 1100.984 21.96069 18.3949 18.033 0 1061.887 4795.202 4163.892 1420.699 4667.427 Chironom Heptageni 48.21264 24,12179 41,92354 0 0 0 0 0 0 0 122.9842 84.81782 229.5456 Leptophle 545.006 1066.579 219.6069 36.06599 45.13562 24.10632 1278.455 29.49687 105.415 318.0668 0 0 816.162 Elmidae-0 0 41.92354 103.2173 65.88208 0 36.06599 45.13562 0 0 52.7075 0 0 Site C Novembe December January Septembe October February March June July August April May June Baetidae 70 101 64 21 37 74 147 149 63 36 82 74 29 Chironom 400 179 36 37 з 0 1 225 255 136 153 128 157 Heptagen 0 1 0 З 0 n 0 0 1 0 0 0 1 Leptophle 0 20 6 0 2 2 0 0 0 0 2 Elmidae-0 0 0 0 0 0 0 0 1 stone surf 0.086275 0.053894 0.043898 0.043457 0.040664 0.076357 0.042777 0.064975 0.052592 0.045627 0.050135 0.050478 0.052249 470 301 106 113 41 82 78 248 286 174 227 275 309 5447.728 2414.694 2600.278 1008.265 1073.904 1823.414 3816.859 5438.1 3813.54 4527.784 5447.929 density 5585.048 5914 April June July August Septembe October Novembe December January February March May June Baetidae 811 3637 1874 053 1457 929 1449 712 885 3061 1073 904 1729 906 323 2017 551 4157 810 9251 1476 018 2912 166 2851 735 820.0848 851.4183 4848.655 Chironom 4636.364 3321.341 73.77551 0 23.3771 3462.876 2980.698 3051.766 2535.763 3004.848 Heptagen 0 18.55498 0 69.03392 0 0 0 0 19.01433 0 0 0 19.13916 Leptophle 0 371.0995 136.6808 161.0791 24 59184 0 46.75421 30.78112 0 38.27832 0 n 0 21.9169 Elmidae-0 0 0 69.03392 24.59184 0 23.3771 0 19.01433 0 0 0 Site D Septembe October Novembe December January June July August February March April May June Baetidae 60 12 47 46 58 32 78 12 8 20 Chironom 0 58 259 82 59 34 2 0 14 11 9 5 64 Heptagen 0 0 0 0 0 0 1 3 0 3 2 2 1 Leptophle 0 0 o 0 o 0 0 0 0 0 8 Elmidae-0 0.038585 0.055784 0.053043 0.118917 0.050499 0.064114 0.06335 0.052368 0.050716 0.056463 0.06039 0.058913 0.045628 stone surf 319 136 115 105 34 78 16 31 19 34 19 81 84 2168.065 882,9695 673.282 602.1653 1374.911 1840.963 density 8267.483 2437.979 1216.585 252,5655 591.9657 374.636 314.6221 February May June July August Septembe October Novembe Decembe January March April June 1555.012 Baetidae 842 537 867.2258 487.7356 633.6772 1216.585 189.4241 267.3393 157.7415 442.7686 198.7087 373.4326 438.3245 Chironom 6712.47 1469.958 1112.311 285.9139 39.60482 0 0 267.3393 216.8945 159.3967 82.7953 984.5042 1402.638 Heptagen 0 18.85274 25.2277 0 0 47.35603 38.19133 0 0 33.11812 16.97421 0 0 0 Leptophle 125.4842 150.8219 67.27387 0 0 0 0 0 0 0 Elmidae-0 0 18.85274 16.81847 0 0 15.78534 19.09567 0 0 0 0 0 Site E Julv August Septembe October Novembe December January June February March April Mav June Baetidae 14 27 24 105 71 105 19 60 47 84 Chironomidae 18 6 333 294 14 57 27 31 Heptageniidae 0 0 10 6 10 22 17 3 3 Leptophlebiidae 13 48 20 1 4 3 21 33 Elmidae- Larvae 0 0 0 0 0 0 0 0.068027 stone surface area 0.01181 0.057401 0.054965 0.069328 0.055798 0.043576 0.07103 0.050436 0.046586 19 61 50 111 408 417 46 148 131 180 1601.087 7312.103 1608.82 1062.701 909.6714 6129.928 density 1055.629 2083.63 2597.356 Septembe October Novembe December January 136 February March April May June Baetidae 1185.446 470.3759 436.6423 1514.542 1272.449 1543.507 436.0208 844.7147 931.8759 1803.121 Chironomidae 84.67472 313.5839 109.1606 28.84841 5967.967 4321.82 321.2785 802.479 535.333 665.4374 Heptageniidae 84.67472 52.26399 0 43.27262 0 147.0007 137.6908 140.7858 436.1972 364.9173 Leptophlebiidae 14.42421 71.68729 44.1002 160.6393 295.6501 654.2958 84.67472 226.4773 363.8686 1030.355

Elmidae-Larvae

169.3494

0

0

0

0 73.50034

0

0 39.65429

0

Invertebrate grazer family abundance at density at each site over the sampling period

Total grazer invertebrate abundance and density at each site over the sampling period.

Adundanc	e				
	Site A: Nu	Site B: Nu	Site C: Una	Site D: Alt	Site E: Ref
June	80	512	470	319	
July	180	508	301	136	
August	125	516	106	115	
Septembe	162	176	113	105	19
October	122	94	41	34	61
Novembe	81	62	82	78	50
December	122	13	78	16	111
January	112	36	248	31	408
February	306	56	286	19	417
March	209	206	174	34	46
April	285	452	227	19	148
May	113	237	275	81	131
June	136	511	309	84	180
Density					
	Site A: Nu	Site B: Nu	Site C: Una	Site D: Alt	Site E: Ref
June	2157.096	12342.44	5447.728	8267.483	
July	3733.023	12253.87	5585.048	2437.979	
August	2351.131	10816.27	2414.694	2168.065	
Septembe	3551.736	6055.414	2600.278	882.9695	1608.82
October	2459.881	2064.305	1008.265	673.282	1062.701
Novembe	1220.341	1140.484	1073.904	1216.585	909.6714
December	2071.135	234.429	1823.414	252.5655	1601.087
January	2405.607	812.4412	3816.859	591.9657	7312.103
February	4607.261	1651.825	5438.1	374.636	6129.928
March	3943.552	5580.856	3813.54	602.1653	1055.629
April	4383.476	7941.263	4527.784	314.6221	2083.63
May	1882.521	5025.456	5447.929	1374.911	2597.356
June	2825.921	13033.09	5914	1840.963	3863.83

Actual and modelled water temperature at each site over the sampling period.

			Site C	Si	te D	Sit	te F
		v = 0.8	911x - 1 8802	y = 0.724	1x + 27958	v = 1.1969	9x - 6 1708
	AirTomp	Water Temp		y = 0.72=	Modellod W/T	y = 1.190.	Modelled W/T
201 4 /05 /01 01 00	Air temp	water remp		water remp		water remp	
2014/06/01 01:00	18.40322		14.51890897		16.11973098		15.85601352
2014/06/02 01:00	16.83598		13.12234215		14.98504982		13.98018496
2014/06/03 01:00	15.24018		11.70032819		13.8296934		12.07017653
2014/06/04 01:00	20.29766		16.20704665		17.49130732		18.1234717
2014/06/05 01:00	14.09784		10.6823853		13.00263622		10.7029048
2014/06/06 01:00	9.94837		6.984792321		9.998419729		5.736403804
2014/06/07 01:00	9.639443		6.709507954		9.774756973		5.366649726
2014/06/08 01:00	14.59952		11.12943298		13.36585305		11.30336644
2014/06/09 01:00	17.17696		13.42618872		15.23191877		14.38830298
2014/06/10 01:00	10,701		7,655464479		10.54332675		6.637231438
2014/06/11 01:00	10 92112		7 851613374		10 7026936		6 900693016
2014/06/12 01:00	10.90094		7 833626075		10 68807929		6 876532991
2014/06/12 01:00	11 64522		9 406041272		11 22700902		7 76747907
2014/00/13 01:00	11.04552		0.490941275		11.22700695		10 2000 471
2014/06/14 01:00	13.72834		10.35312151		12.73511632		10.2606471
2014/06/15 01:00	16.62428		12.93369327		14.83177658		13.72679719
2014/06/16 01:00	12.78919		9.516243422		12.05517048		9.136576424
2014/06/17 01:00	14.25279		10.82045913		13.1148183		10.88836161
2014/06/18 01:00	15.43125		11.87058591		13.96802422		12.29886183
2014/06/19 01:00	12.14392		8.941251233		11.58800143		8.364263384
2014/06/20 01:00	11.02708		7.946027201		10.77940284		7.027506965
2014/06/21 01:00	11.17315		8.076194188		10.88516078		7.202343534
2014/06/22 01:00	13.15624		9.843321974		12.32091492		9.575898968
2014/06/23 01:00	15.02922		11.51233349		13.67695166		11.81766743
2014/06/24 01:00	13.43463		10.09140006		12.52247315		9.909110343
2014/06/25 01:00	13,87342		10.48240412		12,84015572		10,4342958
2014/06/26 01:00	16 288		12 63404085		14 58831529		13 32431264
2014/06/27 01:00	12 75974		9 490003571		12 03385116		9 101331809
2014/06/28 01:00	14 20222		10 04568624		12 21656278		11 05656221
2014/00/28 01:00	14.39332		11 00000700		14 0720797		12 47252546
2014/00/29 01.00	16 2224		11.99900700		14.0750787		12.47255540
2014/06/30 01:00	16.2324		12.58449454		14.54805995		13.25776345
2014/07/01 01:00	18.4825		14.58955241		16.1//12/29		15.95089976
2014/07/02 01:00	16.22998		12.58233611		14.54630627		13.25486431
2014/07/03 01:00	16.05059		12.4224819		14.4164281		13.04015272
2014/07/04 01:00	15.70284		12.11260169		14.16465694		12.62393049
2014/07/05 01:00	16.67181		12.97605138		14.86619165		13.78369138
2014/07/06 01:00	9.684759		6.749888968		9.807565697		5.420888346
2014/07/07 01:00	8.854987		6.010478582		9.206810317		4.427733491
2014/07/08 01:00	8.177081		5.406396545		8.716006373		3.6163478
2014/07/09 01:00	8.434766		5.636020168		8.902570735		3.924771675
2014/07/10 01:00	9.143563		6.267629323		9.415739884		4.773131004
2014/07/11 01:00	11.02926		7.947970653		10.78098186		7.030117354
2014/07/12 01:00	13.07589		9.771725133		12.262744		9.479732143
2014/07/13 01:00	11.3546		8.237883206		11.01652971		7.419519593
2014/07/14 01:00	11.51874		8.384144981		11.13536432		7.615974221
2014/07/15 01:00	11.41803		8.294407721		11.06245469		7.495441703
2014/07/16 01:00	15.56039		11.98565937		14.06151898		12.45342521
2014/07/17 01:00	19.14256		15.17773388		16.65501235		16.74092827
2014/07/18 01:00	14.72707		11.24308844		13.45819572		11.4560252
2014/07/19 01:00	13.44986		10.10497199		12.53350006		9.927339778
2014/07/20 01:00	13.22946		9,90857292		12.37392995		9.66354217
2014/07/21 01:00	14,70993		11,22782055		13,44579089		11,43551781
2014/07/22 01:00	14.01058		10.60462565		12,93945814		10.59846026
2014/07/23 01:00	13.6758		10,30630245		12,69707682		10.19776108
2014/07/24 01:00	14 02383		10 616/13265		12 9/905109		10 61/31909
2014/07/24 01.00	17.02303		12 21520750		15 1/101202		1/ 2202/272
2014/07/25 01:00	12 02201		13.31320/38		12.14101392		14.233343/3
2014/07/2001:00	12.02328		9.040020088		11 50600447		9.1//3048/9
2014/07/27 01:00	12.15509		0.951199845		11.59008447		0.3//0200/4
2014/07/28 01:00	12.00224		8.81499198		11.48541844		8.1946/55/
2014/07/29 01:00	13.32/32		9.995776189		12.44478077		9.7806/1103
2014/07/30 01:00	15.04688		11.52807521		13.68974148		11.83881127
2014/07/31 01:00	16.081		12.44958177		14.43844617		13.07655249

2014/08/01 01:00 14	1.72087	11.23756377	13.45370704	11.44860462
2014/08/02 01:00 17	7.04698	13.31036176	15.1378118	14.23272752
2014/08/03 01:00 19	9.12696	15.16383591	16.64372055	16.72226092
2014/08/04 01:00 19	9.07983	15.12183911	16.60959903	16.66585202
2014/08/05 01:00 16	5.87768	13.15950213	15.01524153	14.03009719
2014/08/06 01:00 16	5.65718	12.96301718	14.85560164	13.76618423
2014/08/07 01:00 17	7.72735	13.91663936	15.63039959	15.04706222
2014/08/08 01:00 18	3.16776	14.30908648	15.94925462	15.57418596
2014/08/09 01:00 17	7.76227	13.94775508	15.65568046	15.08885598
2014/08/10 01:00 16	5.87324	13.15554045	15.01202274	14.02477597
2014/08/11 01:00 1	17 6804	13 87480258	15 59640809	14 99086827
2014/08/12 01:00 18	3 28693	14 41527924	16 035534	15 71682103
2014/08/13 01:00 19	64807	15 62819295	17 02100087	17 34597199
2014/08/14 01:00 16	5 878/13	13.16016675	15 01578151	1/ 03098987
2014/08/15 01:00 14	1 277/2	10 03151636	13.015/0191	11 02752051
2014/08/15 01:00 14	15 026	11 E1927E90	12 69196009	11.03733031
2014/08/10 01.00	15.050	11.5165/569	13.08180098	11.02370341
2014/08/17 01:00 1	10.2025	12.01131412	14.3098303	15.29376075
2014/08/18 01:00 18	3.76363	14.8400/106	16.38066842	16.28/38925
2014/08/19 01:00 22	2.56402	18.22659822	19.13215048	20.83607554
2014/08/20 01:00 20	0.36019	16.26276382	17.53657635	18.19830942
2014/08/21 01:00 17	7.44129	13.66173241	15.42329306	14.7046785
2014/08/22 01:00 13	3.81443	10.42983939	12.79744798	10.36369236
2014/08/23 01:00 12	2.55887	9.31100876	11.88842164	8.860911104
2014/08/24 01:00 13	3.09191	9.786004231	12.27434546	9.498911418
2014/08/25 01:00 13	3.04761	9.746523712	12.24226837	9.445882314
2014/08/26 01:00 15	5.50455	11.93590317	14.02109311	12.3865941
2014/08/27 01:00 19	9.64166	15.6224836	17.01636214	17.33830335
2014/08/28 01:00 16	5.52463	12.8448946	14.75962953	13.60752536
2014/08/29 01:00 12	2.30032	9.080619422	11.70123515	8.551458743
2014/08/30 01:00 13	3.57239	10.21415387	12.62220804	10.07398975
2014/08/31 01:00 14	4.21624	10.78789581	13.08836129	10.84462349
2014/09/01 01:00 14	4.68735	11.20769536	13.42943959	11.40848622
2014/09/02 01:00 13	3.90928	10.51435677	12.86611658	10.47721369
2014/09/03 01:00 16	5.02831	12.40262808	14.40029728	13.01348564
2014/09/04 01:00 17	7.43139	13.65291434	15.41612856	14.69283433
2014/09/05 01:00 1	17.1302	13.3845256	15.19806836	14.33234226
2014/09/06 01:00 20).18094	16.10303352	17.40679884	17.98376424
2014/09/07 01:00 18	3.96965	15.02365846	16.52982932	16.53397857
2014/09/08 01:00 18	3 81434	14 88525503	16 41737945	16 34807906
2014/09/09 01:00 20) 26174	16 17504023	17 46530278	18 08048159
2014/09/10 01:00 17	7 85092	14 02675333	15 71986487	15 19496415
2014/09/11 01:00 1	17 9015	14.02075555	15.756/8932	15.15450415
2014/00/12 01:00 19	2 40070	14.07105075	16 19212126	15.25551084
2014/09/12 01:00 10	0,49079	14.39094223	17,21000147	13.30082333
2014/09/13 01.00 19	1.92279	17.87500005	17.21990147	17.07478984
2014/09/14 01:00 22	2.18083	17.89048101	18.85906281	20.38461334
2014/09/15 01:00 26	0.52904	21.75982754	22.00282496	25.58180/98
2014/09/16 01:00 21	1.68059	17.43937598	18.49254897	19.77870116
2014/09/1/01:00 21	L.85436	17.59422391	18.61835966	19.98668847
2014/09/18 01:00 24	1.41175	19.87311005	20.4699067	23.04762308
2014/09/19 01:00 14	4.45831	11.00360041	13.26361674	11.13435174
2014/09/20 01:00 13	3.52757	10.17421488	12.58975845	10.02034484
2014/09/21 01:00 1	16.1844	12.54171884	14.5133056	13.20030836
2014/09/22 01:00 18	3.69993	14.78330465	16.33454691	16.21114223
2014/09/23 01:00 22	2.16724	17.87302831	18.84488236	20.36117055
2014/09/24 01:00 22	2.42644	18.10400254	19.03254407	20.67140853
2014/09/25 01:00 20).26693	16.17966207	17.46905792	18.08668951
2014/09/26 01:00 21	L.20895	17.01909943	18.15108312	19.21419774
2014/09/27 01:00 17	7.30553	13.5407563	15.32500251	14.54218686
2014/09/28 01:00 12	2.79707	9.523265364	12.06087566	9.146008096
2014/09/29 01:00 18	3.24452	14.37748843	16.00482977	15.6660615
2014/09/30 01:00 1	18.2584	14.38985875	16.01488039	15.68267697
		· · · · · · · · · · · · · · · · · · ·		

2014/10/01 01:00	15 62046	12 04900945	14 11224042	12 52720150
2014/10/01 01:00	15.63046	12.04809845	14.11224942	12.53729159
2014/10/02 01:00	12.24/74	9.033757401	11.66316074	8.488515019
2014/10/03 01:00	13.68803	10.31/20242	12.70593282	10.21240161
2014/10/04 01:00	15.58014	12.00326216	14.07582088	12.47706877
2014/10/05 01:00	16.39881	12.73277922	14.66853814	13.45693519
2014/10/06 01:00	20.55812	16.43914073	17.67987888	18.43521383
2014/10/07 01:00	25.05406	20.4454699	20.93493703	23.81640042
2014/10/08 01:00	18.30805	14.43410224	16.0508273	15.74210355
2014/10/09 01:00	13.64209	10.27626491	12.67267195	10.15741553
2014/10/10 01:00	12.35114	9.125901597	11.73802596	8.612280463
2014/10/11 01:00	19.95759	15.90401253	17.24509848	17.71644496
2014/10/12 01:00	21.36528	17.15839767	18.26426001	19.40129914
2014/10/13 01:00	17.92849	14.09588004	15.77602887	15.28781317
2014/10/14 01:00	16.5492	12.86679286	14.7774214	13.63693848
2014/10/15 01:00	16.71131	13.01124945	14.89478935	13.83096844
2014/10/16 01:00	14.9923	11.47944187	13.65022792	11.77348836
2014/10/17 01:00	14.51824	11.05700626	13,30700787	11,20608495
2014/10/18 01:00	15 21837	11 68088654	13 81389747	12 04406306
2014/10/19 01:00	15.49356	11 92611299	14 0131388	12.01100500
2014/10/20 01:00	15 01025	11.02011200	12 66220180	11 70508542
2014/10/20 01:00	15.01055	11.49552105	13.00329189	11.75506542
2014/10/21 01.00	15.14425	11.01462201	14.45204050	12 10051422
2014/10/22 01:00	16.10102	12.46/42152	14.45294059	13.10051433
2014/10/23 01:00	18.6/141	14.75789642	16.31390325	16.1//01462
2014/10/24 01:00	19.81194	15.77422011	17.13964486	17.54211148
2014/10/25 01:00	18.00897	14.16759688	15.8342973	15.38414118
2014/10/26 01:00	14.40003	10.95166339	13.22141901	11.06459142
2014/10/27 01:00	18.72301	14.80387718	16.35126165	16.23877466
2014/10/28 01:00	21.41172	17.19978406	18.29788558	19.45688817
2014/10/29 01:00	23.99935	19.50561781	20.17132699	22.55401803
2014/10/30 01:00	23.29476	18.87776101	19.66120654	21.71069874
2014/10/31 01:00	15.94495	12.32834383	14.3399429	12.91370916
2014/11/01 01:00	14.71946	11.23630895	13.45268753	11.44691918
2014/11/02 01:00	19.75365	15.722279	17.09744381	17.47234568
2014/11/03 01:00 2	20.17629	16.09889165	17.40343366	17.978201
2014/11/04 01:00	22.75258	18.39462255	19.26866671	21.06176101
2014/11/05 01:00	18.09463	14.24392071	15.8963088	15.48665716
2014/11/06 01:00	15.49818	11.93022708	14.01648142	12.37897015
2014/11/07 01:00	14.86302	11.36423341	13.55662346	11.61874365
2014/11/08 01:00	18,79746	14.87021586	16,40516044	16.32787888
2014/11/09 01:00	24 59717	20.03834079	20 60415319	23 26955626
2014/11/10 01:00	18 // 2831	14 5412689	16 13789795	15 8860/673
2014/11/10 01:00	16 78526	13 0771/63	14 94832915	13 010/7010
2014/11/11 01:00	21 70146	17 52016052	14.54652515	10.01120648
2014/11/12 01:00 2	21.79140	17.35010032	18.37281383	19.91139048
2014/11/13 01:00	21.5849	17.3541029	18.42320039	19.00410482
2014/11/14 01:00	20.47397	16.36415541	17.61895488	18.33449569
2014/11/15 01:00	17.91852	14.0869902	15.76880607	15.2/58/26
2014/11/16 01:00	13.87193	10.48108091	12.83908064	10.4325185
2014/11/17 01:00	15.19073	11.65625987	13.79388882	12.01098524
2014/11/18 01:00	16.17071	12.52952302	14.50339676	13.18392729
2014/11/19 01:00	17.03849	13.30280252	15.13167008	14.22257417
2014/11/20 01:00	18.57218	14.66946774	16.24205681	16.05823975
2014/11/21 01:00	16.37175	12.70867014	14.64895002	13.42455256
2014/11/22 01:00	21.1479	16.96469518	18.10688081	19.1411235
2014/11/23 01:00	21.17516	16.98898062	18.12661222	19.17374302
2014/11/24 01:00	20.42606	16.32145835	17.58426442	18.27714623
2014/11/25 01:00	18.06741	14.21967276	15.87660786	15.45408802
2014/11/26 01:00	18.0294	14.18579983	15.84908681	15.40859085
2014/11/27 01:00	22.17636	17.88115105	18.85148193	20.3720808
2014/11/28 01:00	18.48945	14.59575038	16.18216301	15,9592247
2014/11/29 01:00	17.10516	13,36221179	15 17993886	14 30237099
2014/11/20 01:00	16 42651	12 757/6677	1/ 62250626	12 /00/00/01
-01-7/11/30/01.00	10. 12001	12.75740077	14.00033020	13.43003401

2014/12/01 01:00	19.38791		15.39636549		16.83264594		17.03458798
2014/12/02 01:00	20.78538		16.64165323		17.84441603		18.70722282
2014/12/03 01:00	19.3391		15.35287609		16.79731172		16.97617428
2014/12/04 01:00	21.37812		17.16984125		18.27355767		19.41666983
2014/12/05 01:00	17.96752		14.13065856		15.80428569		15.33452668
2014/12/06 01:00	17.17494		13.42439015		15.23045747		14.38588718
2014/12/07 01:00	19.83845		15,79784242		17.1588375		17.57384031
2014/12/08 01:00	18.50066		14.60573367		16.19027422		15.97263397
2014/12/09 01:00	20 19713		16 11746217		17 41852182		18 0031444
2014/12/10 01:00	19 89001		15 84378605		17 19616573		17 63555048
2014/12/11 01:00	21 76716		17 51651628		18 55522384		19 8823138
2014/12/12 01:00	23 561		19 11500636		19 8539634		22 0293599
2014/12/13 01:00	17 34581		13.57665166		15 35416674		14 59040049
2014/12/14 01:00	23 86726		19.37003100		20.07569745		22 305025/0
2014/12/15 01:00	20 16925		16.09261793		17 3983364		17 96977/33
2014/12/16 01:00	17 /6228		12 680/200/		15 /28/0252		1/. 72080502
2014/12/17 01:00	10 12505		15 1710//01		16 6/057771		16 7210/28/
2014/12/17 01:00	22 5670		10 12115/2		10.04937771		22 02761752
2014/12/10 01:00	23.3079		17.75649902		19.03093039		22.03/01/32
2014/12/19 01.00	22.05040		17.75046602		18.75019565		20.20403098
2014/12/20 01:00	20.25649		10.1/0350/5		17.46149755		18.07419089
2014/12/21 01:00	22.82668	22 42600222	18.46065269		19.32231481	20 5 4204 667	21.1504508
2014/12/22 01:00	20.59503	23.12608333	16.4/203123	24.45025	17.70660172	20.54291667	18.47939141
2014/12/23 01:00	24.77518	24.52858333	20.19695844	21.45025	20.7330267	22.66/45833	23.48260696
2014/12/24 01:00	20.28708	24.949375	16.19761996	21.6685	17.48364833	23.30266667	18.11081004
2014/12/25 01:00	27.70464	25.10058333	22.80740359	21.53054167	22.85395846	23.568375	26.98888212
2014/12/26 01:00	20.94661	24.9865	16.78532417	21.40308333	17.96114564	21.29408333	18.90019751
2014/12/27 01:00	20.56249	23.60654167	16.44303187	19.59520833	17.68304035	20.10808333	18.44044029
2014/12/28 01:00	22.89919	21.06008333	18.52526524	18.831125	19.37481115	21.221	21.23723652
2014/12/29 01:00	21.49323	19.81320833	17.27241837	19.03625	18.35689943	22.32520833	19.55444848
2014/12/30 01:00	19.38743	21.87675	15.39594036	20.90554167	16.83230053	20.43716667	17.03401696
2014/12/31 01:00	18.12518	22.13158333	14.27115124	19.85308333	15.91843304	18.23258333	15.52323243
2015/01/01 01:00	21.67169	19.62191667	17.43144593	18.06116667	18.48610597	20.0285	19.76804975
2015/01/02 01:00	24.06706	18.95470833	19.56595494	18.99379167	20.22034963	22.17525	22.63506112
2015/01/03 01:00	23.38475	20.07195833	18.95794887	20.05504167	19.72635749	21.63904167	21.81840478
2015/01/04 01:00	22.69099	21.458625	18.33974008	21.22483333	19.22407586	22.97058333	20.98804443
2015/01/05 01:00	22.26351	22.26191667	17.95881302	20.620375	18.91458064	24.17104167	20.47639412
2015/01/06 01:00	20.89485	22.66370833	16.73920381	20.789125	17.92367381	23.18754167	18.83824995
2015/01/07 01:00	19.60237	22.67583333	15.58747154	21.173125	16.98791558	21.34141667	17.29127615
2015/01/08 01:00	23.78052	24.14383333	19.31062397	21.93779167	20.01289859	21.898625	22.29210788
2015/01/09 01:00	21.47403	25.07541667	17.25530479	22.3355	18.34299501	21.80270833	19.53146202
2015/01/10 01:00	22.02795	25.63741667	17.74890253	22.07125	18.74403278	22.60508333	20.19444837
2015/01/11 01:00	23.06238	24.63558333	18.67068348	21.18275	19.49296041	22.85204167	21.43255813
2015/01/12 01:00	26.39078	24.95245833	21.63662443	21.56816667	21.90272502	23.222375	25.41632508
2015/01/13 01:00	23.30592	25.29516667	18.88770643	21.46775	19.66928699	21.18879167	21.72405714
2015/01/14 01:00	22.04097	23.778	17.76050837	19.57433333	18.75346228	21.506125	20.21003699
2015/01/15 01:00	23.31438	21.2805	18.89524105	18.48920833	19.67540871	21.96766667	21.73417743
2015/01/16 01:00	24.6413	19.7895	20.07765797	18.53783333	20.63609758	20.11008333	23.32236599
2015/01/17 01:00	18.84458	19.857875	14,91220709	18.83741667	16.43927743	20.560875	16.3842803
2015/01/18 01:00	19 60306	21 28041667	15 58808677	20 65845833	16 98841544	20 62395833	17 29210251
2015/01/19 01:00	20 02558	22.00020833	15.96459285	20.03049033	17 29431871	20.61633333	17 79781471
2015/01/20 01:00	16 95364	24 13295833	13 22719157	20.03020033	15 07023777	21 591375	14 12101571
2015/01/20 01:00	20 /6919	24.13233033	16 35989855	19 03816667	17 615/0628	21.551375	18 378778
2015/01/21 01:00	20.40313	20.394123	17 09526760	19.03810007	10 20/0/2//	22.30223	10 20207205
2015/01/22 01:00	21.20321	20.44204107	10 225/09	10./0000000	10.20464344	24.012	20 02455047
2015/01/23 01:00	22.302/5	19.6/1/910/	10.225408/5	20.05/83333	19.15123281	24.770025	20.0545584/
2015/01/24 01:00	24.0/585	10.09829107	20.10844808	20.2725	20.00111389	24.3/820833	25.303/223/
2015/01/25 01:00	20.19292	19.030/5	21.46030953	20.27208333	21.75947287	24.45/58333	25.1/950395
2015/01/26 01:00	20.39865	20.61183333	21.64363999	21.30383333	21.90842501	22.543	25.425/4817
2015/01/2/01:00	22.55641	21.14320833	18.21982029	19.74779167	19.12664356	19.23/66667	20.8269/162
2015/01/28 01:00	19.2812	20.78066667	15.30127992	19.92741667	16.75539091	19.58329167	16.90687177
2015/01/29 01:00	18.28645	20.49283333	14.41485745	19.19570833	16.03519131	21.80145833	15.7162545
2015/01/30 01:00	21.08989	20.56220833	16.91300061	18.735125	18.06488006	21.55141667	19.07168884
2015/01/31 01:00	22.63991	20.40329167	18.29422677	19.996375	19.18709725	18.66545833	20.92691227

2015/02/01 01:00	17.51392	20.908625	13.72645226	20.56979167	15.47587657	18.33070833	14.79160835
2015/02/02 01:00	16.35977	21.067625	12.69798882	20.489125	14.64027167	20.52145833	13.41020572
2015/02/03 01:00	19.76606	19.71904167	15,73333718	20.19308333	17.10642835	22.22195833	17.48719871
2015/02/04 01:00	22 59781	20 59970833	18 25670626	20 109125	19 15661263	22.68	20 8765158
2015/02/05 01:00	22 80994	18 66183333	18 44574162	20 50341667	19 31019988	22 681375	21 13042267
2015/02/06 01:00	20 51873	21 02316667	16 40403622	21 1095	17 6513572	22 84591667	18 38806245
2015/02/07 01:00	20.51075	21.02310007	17 22156/02	21.1055	18 /0/05/02	22.04331007	10.50000245
2013/02/07 01.00	21.33901	21.09191007	10 22202060	20.9313	10.40493402	 23.91379107	19.05569122
2015/02/08 01:00	23.79433	21.433375	19.32292969	19.620875	20.02289673	24.24966667	22.30803057
2015/02/09 01:00	23.91825	20.56304167	19.43335332	20.11433333	20.1126136	 24.49645833	22.45695442
2015/02/10 01:00	26.38095	20.28233333	21.62786492	20.5735	21.8956081	24.65004167	25.40455955
2015/02/11 01:00	24.27547	20.75175	19.75167095	20.34145833	20.37123998	 24.989375	22.88450954
2015/02/12 01:00	24.80814	19.86520833	20.22633021	20.82804167	20.75689065	 24.679125	23.52205828
2015/02/13 01:00	24.75969	20.10966667	20.18315939	20.56854167	20.72181526	 23.16916667	23.46407246
2015/02/14 01:00	21.22262	18.86266667	17.03127483	19.61020833	18.16097537	 19.162375	19.23055138
2015/02/15 01:00	17.15399	19.933	13.40571975	20.63133333	15.21528816	 17.523875	14.36080963
2015/02/16 01:00	17.07702	19.66033333	13.33713512	20.44841667	15.15956459	18.60758333	14.26868873
2015/02/17 01:00	17.01409	20.20445833	13.28105968	21.44408333	15.11400448	21.58633333	14.19336981
2015/02/18 01:00	19.89289	18.84095833	15.84635688	21.290125	17.19825447	22.72375	17.63900353
2015/02/19 01:00	24.10829	18.11870833	19.60269611	20.6955	20.25020106	22.40804167	22.6844108
2015/02/20 01:00	21.52736	17.30116667	17.30282604	20.16829167	18.38160502	19.90095833	19.5952912
2015/02/21 01:00	23.05823	17.199	18.6669843	20.24879167	19.4899549	19.09616667	21.4275895
2015/02/22 01:00	16.55486	17.85608333	12.87183909	20.81741667	14.78152136	20.33804167	13.64371642
2015/02/23 01:00	19.68835	17.89779167	15.66408869	20.25979167	17.0501654	20.027	17.39418612
2015/02/24 01:00	20.63479	17.875875	16,50746285	20.22608333	17,73538917	20,88291667	18,52698215
2015/02/25 01:00	19 89877	17 9195	15 85159061	19 38429167	17 20250677	22 04608333	17 64603332
2015/02/26 01:00	23 58344	17 83020833	19 13500116	20 58720833	19 87020875	20 /8870833	22.05621634
2015/02/27 01:00	21.0624	17 89275	16 8885039	19 917375	18 04/977	19 067	19 03878556
2015/02/27 01:00	21.0024	17.05275	16 10226445	10 99001667	17 47020700	19 62005922	19 10261667
2015/02/28 01.00	10 70106	17.27129107	10.19220445	19.88991007	17.47929709	10.02093033	17 50610072
2015/05/01 01.00	19.70100	17.00705555	12 09490404	20.03991007	14.05462402	10 542625	12 02080574
2015/03/02 01:00	10.79390	17.8/39100/	13.08489404	20.78854167	14.95462402	 19.543625	13.92988574
2015/03/03 01:00	18.07483	18.046375	14.22627656	20.359875	15.8819733	 20.03566667	15.46295804
2015/03/04 01:00	20.10/35	18.3/22916/	16.0374607	20.30233333	17.35352231	 19.38066667	17.89568871
2015/03/05 01:00	22.0027	18.23054167	17.72640931	19.20466667	18./25/5/52	19.05895833	20.16423612
2015/03/06 01:00	20.51646	17.5965	16.40201305	19.09558333	17.64971342	 19.29083333	18.38534499
2015/03/07 01:00	21.85958	16.83595833	17.59887434	18.752625	18.62213803	 19.15020833	19.99293479
2015/03/08 01:00	22.23662	16.29220833	17.93485542	19.231375	18.8951156	 20.05845833	20.44421497
2015/03/09 01:00	22.26657	15.97720833	17.96153978	19.75875	18.91679608	 20.48904167	20.48005664
2015/03/10 01:00	25.6542	15.55466667	20.98026059	19.333625	21.36944321	 18.52591667	24.53471597
2015/03/11 01:00	21.57819	15.55091667	17.34812437	19.680625	18.41840896	18.935	19.65613461
2015/03/12 01:00	23.01168	15.28825	18.62550656	19.90370833	19.45625511	20.54566667	21.3718778
2015/03/13 01:00	23.10854	15.2235	18.71182408	19.73220833	19.52638628	19.48920833	21.48781701
2015/03/14 01:00	22.35789	15.26325	18.04291949	20.01166667	18.98291538	19.75875	20.58936353
2015/03/15 01:00	26.46814	14.91754167	21.7055603	18.53270833	21.95873396	19.69225	25.50891776
2015/03/16 01:00	22.95787	14.58679167	18.5775535	18.31479167	19.41729426	18.48033333	21.30746862
2015/03/17 01:00	18.62412	14.94570833	14.7157537	18.28908333	16.27966318	19.313625	16.12040973
2015/03/18 01:00	22.05023	15.17379167	17.76876181	18.87366667	18.76016803	19.35220833	20.22112278
2015/03/19 01:00	23.80377	15.187625	19.33133573	18.44170833	20.02972646	19.82991667	22.31992733
2015/03/20 01:00	21.66942	15.17591667	17.42942425	18.4615	18.4844634	19.95108333	19.76533428
2015/03/21 01:00	25.14568	14.67954167	20.52711879	18.91220833	21.00127504	19.92225	23.92606888
2015/03/22 01:00	22.53556	15.19266667	18.20124049	19,23445833	19,11154785	18.68445833	20,80201575
2015/03/23 01:00	20.55562	15 335	16,4369115	18.632875	17.67806767	18.35933333	18.43221958
2015/03/24 01:00	22 68842	15 27425	18 3374/958	19 118375	19 22221497	18 66754167	20 9849679
2015/03/25 01:00	24 316	14 91558333	19 78778389	19 074875	20 40052092	18 23554167	22 933015/1
2015/03/25 01:00	27 67764	1/ 6775	10 2200112	10 2057	10 17/1000000	18 82805022	20.0001041
2015/05/20 01.00	10 2602		15 20077052	10 22041667	16 74604700	17 61020167	16 001 43 430
2015/05/2/01:00	13.2003	14.3/0125	13.28977953	10 29604667	15.74004709	10 140125	10.091424/8
2015/03/28 01:00	17.32288	14.2065	13.55621466	19.28691667	15.33/5621	19.146125	14.56295008
2015/03/29 01:00	18.77683	14.1365	14.85183507	19.089625	16.39022643	19.34/45833	16.30319032
2015/03/30 01:00	18.42329	13.86154167	14.53679261	18.27325	16.13426106	19.60033333	15.8800343
2015/03/31 01:00	18.64078	13.677375	14.73059609	18.04529167	16.29172231	19.968625	16.14034559

2015/04/01 01:00	20.78771	13.43295833	16.64372764	14.357875	17.84610144	20.15975	18.7100091
2015/04/02 01:00	21.6192	13.53029167	17.38466801	12.246375	18.4480999	19.42783333	19.70521898
2015/04/03 01:00	20.94639	13.65916667	16.78513147	18.14645833	17.96098908	19.557625	18.89993868
2015/04/04 01:00	20.64736	13.367625	16.51866398	19.21929167	17.74448985	18.567625	18.54202718
2015/04/05 01:00	18.06061	13.21720833	14.21361068	17.71441667	15.87168255	17.22333333	15.44594561
2015/04/06 01:00	16.58283	13.20483333	12.89676167	17.90070833	14.80177043	16.47045833	13.67719172
2015/04/07 01:00	15.15062	13.863875	11.62051451	17.77375	13.76484647	16.30783333	11.96297309
2015/04/08 01:00	16.66506	14.15558333	12.97003311	17.77770833	14.86130193	16.45158333	13.77560782
2015/04/09 01:00	17.87959	13.79329167	14.05230488	17.174	15.74062497	16.34045833	15.22928426
2015/04/10 01:00	16.91534	12.298	13.19305799	17.75008333	15.04250495	16.45441667	14.07516845
2015/04/11 01:00	18.55103	10.76425	14.65062655	16.64966667	16.22674874	16.54883333	16.03293279
2015/04/12 01:00	20.13428	10.4585	16.06145654	16.45875	17.37301842	16.72491667	17,92791923
2015/04/13 01:00	20 6717	10 271625	16 54035336	15 86291667	17 76211201	17 23841667	18 57115972
2015/04/14 01:00	20 21362	9 81725	16 13215493	16 16054167	17 43045937	15 78529167	18 02287928
2015/04/15 01:00	15 67448	9 424458333	12 08733098	15 86120833	14 14412503	15 03554167	12 58998761
2015/04/16 01:00	13 73544	9 397583333	10 3594517	15 84870833	12 74025947	14 12616667	10 26914963
2015/04/17 01:00	14 36435	9 5930/1667	10.9394917	15 6335/167	13 19558759	15 092/1667	11 02188752
2015/04/17 01:00	15 20433	0.002701667	11 668/200	15.03334107	12 2027604	15 56082222	12 02721058
2015/04/18 01:00	15.20438	3.332731007 10.1	12.0004203	15.42254107	14 1270057	15.30983333	12 57931938
2015/04/19 01.00	16.4401	0.965541667	12.0765065	15.00300007	14.1570057	15.2133	12.37821809
2015/04/2001.00	15.4491	9.805541007	12.77759104	15.1555	14.7049408	15.000125	13.51/12515
2015/04/2101.00	21 56005	9.701341007	12.00137704	14.02901667	19,40503630	16.0425	10.62540956
2015/04/22 01.00	21.50095	9.510956555	17.55270009	14.92891007	16.40592029	10.0425	19.03549650
2015/04/23 01:00	18.54612	9.10/3/5	14.04024079	14 20225	16.22319028	10.77210007	14.22201620
2015/04/24 01:00	17.04797	8.8//833333	13.31124681	14.38325	15.13853088	16.63475	14.23391629
2015/04/25 01:00	20.49909	8.936958333	16.38653576	15.79208333	17.63713845	16.4725	18.36455633
2015/04/26 01:00	18.81924	8.926541667	14.88962402	16.3/1125	16.42092916	16.61/2916/	16.35394736
2015/04/27/01:00	17.92393	8.930416667	14.09181736	15.20629167	15.77272804	16.40495833	15.28235631
2015/04/28 01:00	18.77997	8.840708333	14.85463275	14.29408333	16.39249949	16.201625	16.30694809
2015/04/29 01:00	19.82473	8.698958333	15.78561802	12.19295833	17.14890543	15.388875	17.55742083
2015/04/30 01:00	18.07519	8.525166667	14.22660144	11.02225	15.88223726	14.624/916/	15.46339441
2015/05/01 01:00	15.85474	8.8185	12.24/96026	12.55883333	14.2/463294	13.65158333	12.80574025
2015/05/02 01:00	16.68773	9.1/65	12.9902401	12.044	14.8///1969	13.411125	13.80274927
2015/05/03 01:00	16.4442	9.561041667	12.77322721	11.88516667	14.70140128	13.315	13.51126378
2015/05/04 01:00	16.63121	9.528958333	12.93986689	11.73166667	14.83679251	13.6385	13.73508941
2015/05/05 01:00	19.75604	9.91425	15.72440316	12.62729167	17.09916964	13.95441667	17.47519879
2015/05/06 01:00	17.10506	10.19658333	13.36212194	14.00520833	15.17986585	13.74779167	14.3022503
2015/05/07 01:00	15.10137	10.20954167	11.57663426	13.28629167	13.72919469	13.83175	11.90403439
2015/05/08 01:00	16.69924	9.884833333	13.00048939	13.00525	14.88604701	13.11066667	13.81651582
2015/05/09 01:00	19.79808	9.651833333	15.76187169	12.76845833	17.12961203	12.197	17.52552544
2015/05/10 01:00	17.2657	9.731166667	13.50526193	12.41520833	15.29616409	12.69925	14.49451184
2015/05/11 01:00	16.63401	10.03791667	12.94236557	12.59983333	14.83882264	13.5655	13.73844557
2015/05/12 01:00	16.1365	10.761375	12.49903441	11.93245833	14.4786254	13.41116667	13.14297585
2015/05/13 01:00	16.89732	11.21425	13.1769974	11.89008333	15.02945606	13.58975	14.05359632
2015/05/14 01:00	17.32485	11.86054167	13.55797395	12.22891667	15.33899149	13.15691667	14.56531311
2015/05/15 01:00	17.11847	12.24004167	13.37407159	12.20358333	15.18957469	14.03029167	14.31830073
2015/05/16 01:00	16.68244	12.58554167	12.98552377	11.91995833	14.87388777	13.68020833	13.79641443
2015/05/17 01:00	16.31624	12.68520833	12.65920332	11.858625	14.60875927	13.22704167	13.35811015
2015/05/18 01:00	19.13222	12.84216667	15.1685179	11.58891667	16.64752457	12.79154167	16.72854963
2015/05/19 01:00	19.75237	12.083	15.72113802	11.41041667	17.09651679	12.36158333	17.47081315
2015/05/20 01:00	16.81461	11.568125	13.10329452	13.05308333	14.96957402	12.03770833	13.95460072
2015/05/21 01:00	19.71924	11.752875	15.69161328	12.26570833	17.07252855	12.01533333	17.43115636
2015/05/22 01:00	16.92855	12.24516667	13.20482979	11.992375	15.0520693	11.73166667	14.09098
2015/05/23 01:00	18.80209	11.73175	14.8743398	11.582625	16.40851105	11.23691667	16.33341803
2015/05/24 01:00	17.53531	11.04220833	13.74551582	12.48233333	15.49136531	11.14808333	14.81721399
2015/05/25 01:00	18.22836	10.67729167	14.36308736	12.35704167	15.9931292	11.18320833	15.6467184
2015/05/26 01:00	16.53165	11.12204167	12.85115291	11.445	14.76471427	11.677	13.61593134
2015/05/27 01:00	16.35893	11.65254167	12.69724245	11.455	14.63966526	11.6245	13.40920322
2015/05/28 01:00	18.98609	11.77075	15.0383048	11.63883333	16.54172916	11.1335	16.55365112
2015/05/29 01:00	15.76683	11.77070833	12.16961954	12.06391667	14.21098275	10.759625	12.70051524
2015/05/30 01:00	18.38567	11.38925	14.50327262	12.362375	16.10702677	11.024	15.83501122
2015/05/31 01:00	16.48578	10.8275	12.8102767	13.443125	14.73150321	12.385625	13.56102759

2015/06/01 01:00	18.06115	10.50025	14.21408965	12.66820833	15.8720717	11.9605	15.44658894
2015/06/02 01:00	18.68367	10.046	14.76882019	13.43608333	16.32277859	10.26895833	16.19168712
2015/06/03 01:00	20.00603	9.84325	15.94717185	13.47604167	17.28016451	8.447041667	17.77441531
2015/06/04 01:00	15.1886	9.790875	11.65436079	13.15675	13.79234586	7.0125	12.00843444
2015/06/05 01:00	11.72828	10.28808333	8.570867449	13.029125	11.2870724	7.434375	7.866774492
2015/06/06 01:00	10.11587	10.22066667	7.13404797	13.475	10.1196868	6.366666667	5.936879716
2015/06/07 01:00	12.54756	9.601041667	9.300926261	12.12425	11.88022982	6.630833333	8.84736858
2015/06/08 01:00	12.03495	9.588458333	8.844141717	12.39466667	11.50910199	6.485208333	8.233828663
2015/06/09 01:00	11.70805		8.552842984	13.05091667	11.2724279	6.781083333	7.842564546
2015/06/10 01:00	12.33386		9.110501384	13.08229167	11.72551361	7.851208333	8.591595338
2015/06/11 01:00	14.79058		11.29968472	12.16166667	13.50417902	5.674833333	11.53204371
2015/06/12 01:00	15.47463		11.90924179	12.194625	13.99943131	3.9675	12.3507833
2015/06/13 01:00	13.91517		10.51960918	10.3275	12.87038405	4.169416667	10.48426857
2015/06/14 01:00	14.35608		10.91250604	14.212875	13.18960448	3.469833333	11.01199639
2015/06/15 01:00	14.85491		11.35701004	12.63533333	13.55075463	4.057291667	11.60904143
2015/06/16 01:00	13.46091		10.11481872	13.24970833	12.54150032	2.93475	9.940565623
2015/06/17 01:00	14.00281		10.59770321	12.914625	12.93383381	2.861	10.58916224
2015/06/18 01:00	13.19931		9.881703619	13.484125	12.3520992	4.30075	9.627452094
2015/06/19 01:00	12.99441		9.69911708	13.41679167	12.20375148	3.835958333	9.382207085
2015/06/20 01:00	13.157		9.844000101	13.061625	12.32146589	3.603458333	9.576809809
2015/06/21 01:00	13.91624		10.52056521	13.24454167	12.87116081		10.48555269
2015/06/22 01:00	13.82839		10.44228011	12.84866667	12.80755581		10.38040238
2015/06/23 01:00	13.89478		10.50144202	12.09904167	12.85562362		10.45986697
2015/06/24 01:00	14.31401		10.87501765	12.902875	13.15914596		10.96164306
2015/06/25 01:00	13.01353		9.716158588	13.11720833	12.21759735		9.40509675
2015/06/26 01:00	13.3524		10.01812594	12.69554167	12.46293947		9.810690652
2015/06/27 01:00	12.97978		9.68608025	10.17145833	12.19315933		9.364696388
2015/06/28 01:00	13.13787		9.826960264	8.556541667	12.30762138		9.553922388
2015/06/29 01:00	12.07444		8.879331368	14.30833333	11.53769284		8.281094393