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Objective: The human cytidine deaminase APOBEC3G (A3G) potently restricts HIV-1
but the virus, in turn, expresses a Vif protein which degrades A3G. A natural A3G-
H186R variant, common in African populations, has been associated with a more rapid
AIDS disease progression, but the underlying mechanism remains unknown. We
hypothesized that differences in HIV-1 Vif activity towards A3G wild type and
A3G-H186R contribute to the distinct clinical AIDS manifestation.

Methods: Vif variants were cloned from plasma samples of 26 South African HIV-1
subtype C infected patients, which either express wild type A3G or A3G-H186R. The Vif
alleles were assessed for their ability to counteract A3G variants using western blot and
single-cycle infectivity assays.

Results: We obtained a total of 392 Vif sequences which displayed an amino acid
sequence difference of 6.2–19.2% between patients. The intrapatient Vif diversities from
patient groups A3GWT/WT, A3GWT/H186R and A3GH186R/H186R were similar. Vif variants
obtained from patients expressing A3GWT/WT and A3GH186R/H186R were capable of
counteracting both A3G variants with similar efficiency. However, the antiviral activity
of A3G-H186R was significantly reduced in both the presence and absence of Vif,
indicating that the A3G-H186R variant intrinsically exerts less antiviral activity.

Conclusion: A3G wild type and A3G-H186R are equally susceptible to counteraction
by Vif, regardless of whether the Vif variant was obtained from A3GWT/WT and
A3GH186R/H186R patients. However, the A3G-H186R variant intrinsically displayed
lower antiviral activity, which could explain the higher plasma viral loads and
accelerated disease progression reported for patients expressing A3GH186R/H186R.
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Introduction
Successful HIV-1 replication in the host depends on
its ability to evade a myriad of innate and adaptive
immune defences [1–7]. Among the innate immune
factors that exert pressure on HIV-1 are host restriction
factors such as the apolipoprotein B mRNA-editing
enzyme catalytic polypeptide-like 3G protein (APO-
BEC3G, A3G), which belongs to the family of cytidine
deaminases [8,9]. A3G inhibits HIV-1 replication
by deaminating single stranded viral DNA during
reverse transcription, resulting in guanine-to-adenine
mutations across the proviral genome [8,10,11].
Deaminase-independent mechanisms of A3G restriction
have also been described [12–15]. HIV-1 viral infectivity
factor protein, Vif, promotes the proteasomal
degradation of A3G, allowing productive viral
replication [16–18].

A natural A3G polymorphism H186R is frequent in
African populations with minor allele frequencies ranging
from 30% in South Africans [19] to between 25 and 51%
in other African populations [20]. The polymorphism is
rare in white (2–3%) and Asian (0–10%) populations
[20]. This A3G-H186R variant has been associated with
higher viral loads, decreased CD4þ T-cell counts and a
more rapid progression to AIDS in patients homozygous
for A3G-H186R [19,21–23]. However, other studies
which mainly analysed the effect of the heterozygous
A3GWT/H186R variant found no association with disease
progression [24–27]. Despite the clear correlation of
A3G-H186R in vivo, the mechanism remains unknown
[21,28].

We recently showed that HIV-1 Vif adapts to different
APOBEC3H (A3H) haplotypes in HIV-1-infected
patients [29]. However, it remains unknown whether
A3G haplotypes similarly select for specific Vif variants. If
a given A3G variant is more or less susceptible to HIV-1
Vif mediated degradation, it is conceivable that this
altered viral host interaction could result in an altered
HIV/AIDS disease presentation.

Of note, most Vif–A3G studies have focused on
subtype B Vif variants, which only represent �10% of
all global infections [30]. However, the greatest burden
of infections is in sub-Saharan Africa where HIV-1
subtype C predominates [30]. Only two studies,
including one from our group, functionally analysed
a limited number of subtype C variants. Both studies
concluded that subtype C Vif had similar or enhanced
activity against wild type A3G as compared to subtype
B Vifs. [31,32].

To our knowledge, the current study is the first to
investigate the antiA3G phenotype of subtype C Vif
alleles obtained from patients with distinct A3G
haplotypes.
 Copyright © 2016 Wolters Kluwer H
Materials and methods

Study participants
We selected 26 women from the ‘Centre for the AIDS
Programme of Research in South Africa’ acute infection
study (CAPRISA 002) in Durban, South Africa [33]
based on the A3G genotype information that was
previously determined [19]. Plasma viremia and CD4þ

T-cell counts are regularly documented, and samples are
stored for future research. Participants provided written
informed consent, and ethical approval was obtained
from the Biomedical Research Ethics Committee of the
University of KwaZulu-Natal.

We obtained plasma samples from 11 A3GWT/WT, 10
A3GWT/H186R and 5 A3GH186R/H186R chronically
infected, antiretroviral therapy-naı̈ve study participants.
The plasma viremia and absolute CD4þ T-cell counts
were obtained approximately 36 months postinfection
and were comparable between patients with different
A3G haplotypes.

HIV-1 Vif amplification and cloning
Viral RNA was extracted from plasma using QIAamp
Viral RNA Mini Kit (Qiagen, Hilden, Germany) and
cDNA synthesized using Thermoscript RT PCR System
(Invitrogen, ThermoFisher Scientific, Waltham, Massa-
chusetts, USA). The HIV-1 Vif coding region was
amplified by nested PCR with the Expand High Fidelity
PCR System (Roche, Penzberg, Germany) using the
primers Vif1-forward 50AAAATTAGCAGGAAGAT
GGCCAGT30 and Vif1-reverse 50CTCCGCTTCTTC
CTGCCATAGGAGAT30, and Vif2-forward 50TACTC
TGGAAAGGTGAAGG30 and Vif2-reverse 50 CTTCC
TGCCATAGGAGATGCCTAA30. Five separate PCR
reactions were performed per patient and gel-purified
amplicons were cloned into the pCR2.1 TOPO cloning
vector (Invitrogen). Two to four clones of each PCR were
sequenced resulting in 10–20 sequences for each patient.
The GenBank accession numbers for the vif sequences
generated in this study are KT881902–KT882293.

Vif and A3G expression plasmids
One representative HIV-1 Vif variant from each of the
11 A3GWT/WT and 5 A3GH186R/H186R donors was
selected for functional characterization. The Vif ORF
was carboxy-terminal FLAG tagged and cloned into the
mammalian expression plasmid pCRV1, as previously
described [34,35]. Carboxy-terminal haemagglutinin-
tagged wild type A3G and A3G-H186R were cloned into
the mammalian expression plasmid PTR600, as pre-
viously described [36].

Cell culture
TZM-bl cells were provided by J.C. Kappes and X. Wu
through the AIDS Research and Reference Reagent
Program, Division of AIDS, NIAID, National Institutes
of Health, NIH Reagent Program. HEK-293T and
ealth, Inc. All rights reserved.
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TZM-bl were maintained at 37 8C in a humidified
atmosphere of 5% CO2 in Dulbecco’s high-glucose
modified Eagle’s medium (CellGro, Corning, New York,
USA), supplemented with 10% foetal bovine serum and
penicillin/streptomycin.

A3G degradation and single-cycle viral
infectivity assays
HEK-293T cells were co-transfected with 500 ng of HIV
pNL4-3Dvif, 50 ng of each Vif expression plasmid and
20 ng of wild type or A3G-H186R with 4 mg/ml of
polyethylenimine, as previously described [36]. The
replication-competent molecular clone NL4-3DVif was
provided by the AIDS Research and Reference Reagent
Program, Division of AIDS, NIAID, National Institutes
of Health. After 48 h, viral supernatants were collected
and the cells were lysed and analysed by western blot, as
previously described [36]. Viral supernatants were used to
infect TZM-bl cells, and b-galactosidase activity was
measured 48 h postinfection, as previously described [29].

Statistical analysis
GraphPad Prism version 5.01 was used for statistical
analyses (paired and unpaired t tests). P values less than
0.05 were considered significant. Average relative
infectivity values and their SDs were calculated from
representative triplicate transfections.
 Copyright © 2016 Wolters Kluwe

7

1

8

9

10 5

5

8

0.05

3 10 4

6

2

6

2

7

A3G
WT/WT

A3G
WT/186R

A3G
WT/WT

A3G
WT/186R

A3G
186R/186R

A3G
186R/186R9

5
3

4

11
1

(a) (b)

2

4

A3GWT/WT

A3GWT/186R

A3G186R/186R

Consensus C Vif

Clones tested
functionally

Fig. 1. Sequence analysis of patient-derived HIV-1 Vif sequence
HIV-1 vif clonal sequences shows HIV-1 vif clonal sequences fro
patient’s A3G genotype from which Vif clones were derived are rep
were functionally tested are represented by open symbols and arrow
later figures. (b) Alignment of Vif amino acid consensus sequences o
subtype C reference sequence [obtained from the Los Alamos N
Protein domains putatively involved in interactions that lead to pro
N22, E45 and N48, YRHHY (40–44), amino acids 52–72, inclu
important for binding to A3G. �Indicates tryptophan residues im
important for binding to Cullin 5 and green shows SLQYLA moti
containing Elongin B and C, cullin-5 and Rbx.
Results

Phylogenetic analysis of Vif sequences
Despite the availability of HIV-1 subtype C vif sequences
[37–39], functional data regarding their antiA3G activity
remains very limited [31,32]. We therefore cloned,
sequenced and analysed HIV-1 subtype C vif alleles from
patients homozygous for wild type A3G, homozygous for
A3G-H186R and from heterozygous patients [19]. We
generated 392 full length HIV-1 subtype C vif clonal
sequences. Phylogenetic analysis confirmed that all
sequences were subtype C (data not shown) and vif
clonal sequences from each patient clustered indepen-
dently (Fig. 1a). Intrapatient sequences differed between
0.1 and 4.9% and interpatient diversity ranged from 6.2 to
19.2% at the protein level. We observed no significant
correlations between intrapatient sequence diversity and
viral loads or CD4þ cell counts (data not shown).

An alignment of each patient’s consensus sequences is
shown in Fig. 1b. Putative sites of interaction with A3G
or Cullin 5 and the E3 ubiquitin ligase complex are
indicated by different colours (Fig. 1b). The sites of
potential interaction with A3G include amino acids
at position 9, 22, 45 and 48 [34,40]; the YRHHY motif
(40–44) [41]; the VHIPLx4-5Lx2YWGL motif
(positions 55–59, 64, 69–72) [42]; tryptophans at
r Health, Inc. All rights reserved.
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positions 5, 21, 38 and 89 [43], were not different
between sequences. Similarly, the HCCH and SLQYLA
motifs, which are binding sites of Cullin 5 [44,45] and
Elongin C (144–149) were conserved [16,46,47].

Phenotypic characterization of HIV subtype C
Vif variants
There is evidence that natural Vif variants differ in their
ability to neutralize A3G [31,32,34], and we speculate
that Vif diversity may emerge as it adapts to an individual’s
A3G repertoire. We functionally characterized the
patient-derived subtype C Vif panel for A3G degradation
and counteraction in single-cycle infectivity assays. We
co-transfected HIVDVif with individual Vif expression
plasmids, wild type A3G or A3G-H186R. HIV-1
infectivity was subsequently analysed by infecting
TZM-bl reporter cells with viral supernatants, collected
2 days posttransfection. Infectivity values were plotted
relative to HIV-1 in the absence of A3G, which was set to
100%.

We first looked at whether Vifs obtained from A3GWT/

WT or A3GH186R/H186R patients would differ in their
ability to counteract A3G. All patient-derived Vif variants
counteracted wild type A3G and A3G-H186R to similar
levels, irrespective of the patient’s A3G variant (Fig. 2,
compare within a and b, NS, unpaired t test). This
indicates that HIV-1 Vif does not adapt to the different
A3G variants in vivo. Western blot analysis showed that the
level of A3G degradation (compare with the no Vif
control) was similar among Vifs (compare between Fig. 2a
and b), which is in agreement with the infectivity data.
Additionally, we observed that the expression levels of the
individual Vif variants was highly variable, but was
 Copyright © 2016 Wolters Kluwer H
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independent of both the patient’s A3G genotype from
which they were derived as well as of their activity to
degrade and counteract A3G (Fig. 2a and b).

Intrinsic antiviral activity of wild type A3G and
A3G-H186R
To determine whether the A3G variants differ in the
restriction activity, we compared viral infectivity in
the presence of wild type A3G or A3G-H186H (compare
between Fig. 2a and b). The infectivity values in the
presence of A3G-H186R were always significantly higher
compared with wild type A3G (P< 0.0001, paired t test),
indicating that A3G-H186R restricts HIV less efficiently
than wild type A3G (Fig. 2c). This difference is likely
attributable to the lower basal antiviral activity of A3G-
H186R, because the same result is also apparent in the
absence of Vif (Fig. 2d, 4.32� 0.21 for wild type A3G
versus 6.9� 0.28 for A3G-H186R, P¼ 0.0007, unpaired
t test). This small but significant difference suggests that
A3G-H186R intrinsically has reduced antiviral activity.

Taken together, we observed no evidence for functional
adaptation of Vif to the different A3G variants in vivo.
Importantly, our data show that the wild type A3G was
more efficient at restricting HIV compared with A3G-
H186R variant, which may explain the accelerated HIV-
1 disease progression in A3GH186R/H186R patients.
Discussion

Several studies showed that A3GH186R/H186R patients
experience accelerated AIDS disease progression com-
pared with individuals expressing A3GWT/WT or
ealth, Inc. All rights reserved.
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A3GWT/H186R [19,21–23]. We observed that A3G-
H186R restricts HIV-1 less potently than wild type A3G,
both in the presence as well as in the absence of Vif. This
novel finding indicates that A3G-H186R intrinsically has
less antiviral activity, which is in agreement with a
previous study which used cell-free biochemical
approaches which shows that A3G-H186R has reduced
deaminase activity [48]. It is also possible that the H186R
substitution may affect its packaging into virions, RNA
binding or protein oligomerization, and further mechan-
istic studies are required to elucidate the reduced antiviral
activity of A3G-H186R. We speculate that A3G is not
always fully counteracted by Vif in vivo, and that the
reduced restriction of A3G-H186R leads to higher viral
loads and a more rapid disease progression in patients
expressing A3GH186R/H186R.

Studies show that SIV Vif adapts to polymorphisms
in A3G [4,49,50]. We, therefore, anticipated that Vif
would reduce its activity to degrade A3G-H186R
because it poses less of a threat than A3G wild type.
However, Vif variants from A3GWT/WT or A3GH186R/

H186R showed no differences in activity, indicating that
Vif does not adapt to A3G-H186R. It is conceivable that
the difference in anti-HIV activity of the A3G variants is
too small to create sufficient selective pressure for Vif
adaptation, given that A3G-H186R has less antiviral
activity than the wild type counterpart.

Together, polymorphisms in multiple APOBEC3
proteins such as A3G and A3H in combination with a
HIV strain encoding a specific Vif variant could have
profound effects on HIV replication and HIV-disease
progression in patients [19,21–23,28,29,51]. Indeed, the
time to progression to AIDS varies widely in patients,
of which only a small percentage could be attributed to
natural polymorphisms in genes, commonly associated
with differential outcome such as CCR5 or HLA
[52–58].
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