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Introduction
Accurate estimates of  HIV-1 incidence (i.e., the number of  new HIV infections in a population in 
a defined period of  time) are critical for planning and evaluating the success of  HIV-1 prevention 
strategies (1, 2). Recent advances in novel preventative measures, including vaccines (3), treatment 
as prevention (4), and preexposure prophylaxis (5), have changed the landscape of  HIV-1 prevention. 
However, currently available cross-sectional HIV-1 incidence assays have limited utility in difficult to 
classify populations (antiretroviral therapy–treated [ART-treated] subjects, elite controllers, and sub-

Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current 
assays are limited by high false recent rates (FRRs) in certain populations and a short mean 
duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed 
to identify biomarkers for improved incidence assays. We conducted retrospective analyses on 
circulating antibodies from known recent and longstanding infections and evaluated binding and 
avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, 
IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1–infected participants (clades A, B, C). 
Discriminant function analysis identified an optimal set of measurements that were subsequently 
evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade 
C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 
immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. 
FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational 
analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design 
of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.
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type D infection; refs. 6–10). This is often due to a high false recent rate (FRR) (i.e., specimens infected 
for more than a recency time cutoff  time “T,” often chosen to be 2 years, that are classified as recently 
infected) (6) and a mean duration of  recent infection (MDRI) of  approximately 4–5 months (6, 11). 
Thus, the number of  persons that must be surveyed in order to generate incidence estimates with a use-
ful level of  precision is unmanageably large in all but a small number of  high incidence countries (12, 
13). Development of  HIV-1 incidence assays using novel biomarkers must meet several key criteria for 
assay performance, including a longer MDRI and decreased FRR. The WHO/UNAIDS Incidence 
Assay Critical Path Working Group (2, 14) recommends an ideal MDRI of  between 6 and 12 months 
after infection with a FRR < 2%. Achievement of  these goals is critical to the accurate assessment of  
HIV-1 treatment and prevention efforts, the design of  HIV-1 vaccine trials, and monitoring the epidem-
ic in pursuit of  an AIDS-free generation.

We, and others, have previously characterized the sequential progression of  HIV-1 antibody respons-
es in acute through chronic infection and found that HIV-1–specific antibody isotypes and subclasses are 
extraordinarily dynamic during the early phase after acquisition and thus may be suitable for discrimi-
nating recent from longstanding infection (15–19). These include early markers of  HIV infection, such 
as IgM, IgG, and IgA antibodies to gp41 and Gag, which are among the earliest antibody specificities 
to arise after infection (15, 16). IgG antibodies to additional specificities within the HIV envelope are 
elicited sequentially, with a delay in anti-gp120 antibodies (16). The earliest epitope-specific responses 
appear first to the immunodominant region (ID) of  gp41 and in the variable loop 3 (V3) region for gp120 
and then later in infection to the CD4-binding site and the membrane proximal external region (15, 16). 
Maturation of  antibody responses includes an increase in antibody avidity for specific HIV-1 antigens 
and elevation of  IgG4 responses and may also include an increase in breadth of  recognition of  multiple 
HIV-1 subtypes during the transition from recent to longstanding infection (16, 20). Notably, in the early 
phase of  infection, some antibody responses exhibit a rapid increase in titer followed by declining kinet-
ics. In particular, IgG3 antibody responses to p55 Gag, gp41 Env, and p66 RT decline in acute infection, 
in contrast to the same antigen-specific IgG1 responses (17, 18). Env IgA also demonstrates a marked 
decline both systemically and in the mucosa during recent infection (15). Thus, we hypothesized that a 
multiparameter approach that includes antibody isotypes and subclasses, presence or absence of  certain 
epitope specificities, antibody avidity, and recognition of  unique HIV-1 envelope antigens would more 
accurately distinguish recent from longstanding infection.

Our approach builds upon this previous work profiling antibody kinetics from acute to chronic infec-
tion using multiplex-binding measurements (15–17, 19, 21). Here, we determined epitope specificities and 
antibody isotypes and subclasses, displaying distinct kinetic profiles through the course of  HIV-1 infection 
for multiple HIV-1 subtypes. Multiparameter measurements were evaluated by machine learning with dis-
criminant function analysis (DFA) to identify combinations of  naturally occurring antibody biomarkers 
for cross-sectional HIV-1 incidence testing, resulting in a promising set of  4 biomarkers for advancement 
toward an improved HIV-1 incidence test.

Results
Multiplex incidence assay strategy. The humoral response to HIV-1 infection is marked by the dynamic appear-
ance and disappearance of  certain antibody isotypes and subclasses to different viral antigens from acute to 
longstanding infection. To harness this information for an HIV-1 incidence assay, we tested different anti-
body forms (i.e., IgM, IgG, IgG3, IgG4, IgA) in concert with a wide variety of  HIV-1 antigens (i.e., pep-
tides and proteins derived from env, gag, pol genes) to comprehensively cover the epitopes and antigen struc-
tures most likely to be reactive with immune sera from recent to chronic infection, including transmitted/
founder envelope (T/F) proteins (22–26). The analysis includes the presence or absence of  the response 
along with the magnitude and avidity of  the antibody response when present. We evaluated plasma from 
70 recent and 66 longstanding HIV-1 infections (“training panel”) of  multiple subtypes (A, AE, B, C) from 
the Center for HIV/AIDS Vaccine Immunology (CHAVI) 001 cohort (27), the US Military HIV Research 
Program (USMHRP) RV217 cohort (28), and the Consortium for the Development and Performance of  
HIV Incidence Assays (CEPHIA) repository (29), including specimens from 39 patients on antiretroviral 
therapy (Table 1). A recency cutoff  of  9 months (270 days) was used to train the model for this analysis 
based upon initial characterization of  candidate biomarkers using samples from the CEPHIA repository 
and CHAVI 001 acute infection cohorts (data not shown). Estimated date of  seroconversion (EDSC) was 
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not known for all participants with longstanding infection; however, time since sample collection was ≥270 
days since infection based on other parameters as described above.

To determine the antibody measurements that most accurately categorize patient samples as recent 
or longstanding HIV infection, we performed DFA of  all possible combinations of  3–6 biomarkers (Ab/
Ag combinations) from 505 possible measurements, including different antibody types and envelope 
and nonenvelope sequences (Supplemental Tables 1–3; supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.94355DS1). DFA identified a set of  4 antibody biomarkers 
that classified recent versus longstanding infection with a 0% FRR (T = 2 years) and a 4.4% overall mis-
classification rate, including samples on ART (Table 2). As supported by previous observations (16), Env 
binding to IgG3 was more strongly associated with recent than longstanding infection (Figure 1A). Con-
sistent with a delayed elevation of  IgG4 and antibody avidity in HIV-1 infection, Env IgG and IgG4 Env 
binding avidity were associated with longstanding infection (Figure 1A). We found that specific antigens 
were most sensitive for discriminating these responses (i.e., subtype B SC42261 and subtype C CH505 
T/F gp140 for IgG4 avidity and gp41 immunodominant epitope for IgG).

Responses to the 4 individual biomarkers exhibited overlap between recent and longstanding specimens; 
therefore, DFA was used to generate a canonical score based on all 4 measurements for each specimen (Figure 
1B). This set of 4 biomarkers achieved low overall misclassification rates as follows: 3 of 69 (4.5%) longstanding 
specimens were misclassified as recent and 6 of 70 (8.6%) recent specimens were misclassified as longstanding 
using a cutoff of 270 days. Total misclassification rate, including specimens from 39 patients on ART, was 9 of  
136 (6.6%) (data not shown). A FRR of 0% was achieved using a cutoff of T = 2 years, with a total misclassi-
fication rate of 4.4% (Table 2). These 4 measurements were similar in type and epitope specificity to candidate 
biomarkers identified during the development phase, with the exception of including markers that are higher 
during recent infection (i.e., IgM) (Supplemental Figure 1, A–C). This, taken together with the low misclassifi-
cation rate, provided strong rationale for further biomarker validation in a prospective, blinded validation panel.

We next tested the 4 candidate biomarkers in a blinded validation panel. The panel comprised speci-
men sets for MDRI estimation (infected less than 800 days) and FRR estimation (untreated, infected more 
than 2 years) and challenge specimens (treated, infected more than 2 years). All specimens used for MDRI 
and FRR estimation had viral loads available (Table 3).

Resulting MDRIs and FRRs were estimated for a range of  binding antibody multiplex assay (BAMA) 
classifications (at varying posterior probability [PP] thresholds) and compared with the performance of  a 
commercially available incidence assay, the Sedia HIV-1 Limiting Antigen–Avidity (LAg-Avidity) enzyme 
immunoassay, which was applied to the same panel at the Blood Systems Research Institute (San Fran-
cisco, California, USA). Both sets of  results were additionally combined with a supplementary viral load 
threshold (11, 30) (i.e., specimens classified as recent by the assay but with viral loads below 100 copies/ml 
reclassified as longstanding). Results are summarized in Table 4.

The BAMA assay had an MDRI of  215 days (95% CI: 167–266) at the standard PP threshold com-
pared with 157 days (95% CI: 117–202) for LAg (at the standard normalized optical density [ODn] 
threshold of  1.5) on the same specimen set. The FRR in untreated specimens was 5.0% (1.8%–10.5%) 
and 3.6% (0.4%–12.3%) in the ART-treated (challenge) subset as compared with 8.3% (4.0%–14.7%) and 
51.8% (38.0%–65.3%), respectively, for LAg. When combined with a viral load threshold, MDRI was 
reduced to 199 days (95% CI: 152–250), but the FRR was reduced to 4.1% (1.4%–9.4%) in untreated 
specimens and to 0.0% (0.0%–6.4%) in treated specimens. LAg (ODn < 1.5) in combination with viral 
load produced an MDRI of  138 days (95% CI: 102–178) and FRRs identical to BAMA. At the alterna-
tive PP cutoff  of  0.40, the MDRI without viral load was 267 days (95% CI: 215–320); when combined 
with viral load, the MDRI was 251 days (95% CI: 199–305).

The MDRI for the BAMA assay (at standard PP cutoff) was significantly longer than that of  LAg 
assay (at standard ODn threshold), both without and with the use of  viral load (59 days, P = 0.060 and 
61 days, P = 0.040, respectively), with very similar FRRs in untreated specimens. Without the use of  
supplemental viral load, the FRRs in treated subjects were substantially lower than the FRRs obtained 
using the LAg assay. Using the alternative PP cutoff  of  0.40, the MDRI for the BAMA assay was sub-
stantially and significantly longer than that of  the LAg assay at the standard ODn threshold (110 days, 
P < 0.001). This demonstrates potential for the combination of  binding and avidity measurements of  
gp41 ID IgG, Env IgG3, and Env IgG4 to improve cross-sectional incidence estimation.
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Discussion
Designing, testing, implementing, and evaluating large-scale investments in HIV prevention and 
treatment efforts requires robust population-level incidence estimation approaches. In this study, we 
evaluated a diverse set of  antibody-antigen combinations to develop a combination of  biomarkers 
for improved HIV-1 incidence estimation.

The complexity of  early pathogenesis, including diversity in antibody responses among individuals and 
HIV subtypes, regional viral genetic diversity, HIV disease state, and ART, use has limited progress in novel 
assay development for incidence estimation (12, 14). In particular, leading candidate assays all appear to 
require explicit viral load testing to reduce otherwise unacceptably high FRRs among treated individuals 
and elite controllers, both of  which are enriched in populations with mature epidemics.

Improvements in HIV-1 incidence estimation can be achieved through combining multiple tests into 
a multiassay algorithm, including antibody measurements, p24 antigen, viral diversity, and/or viral load 
determination (12). Recent infection testing algorithms, including serologic testing algorithm for recent 
HIV seroconversion (31–34), have also been used in combination to refine estimates of  incidence, with 
varying degrees of  success (6, 31). However, utility of  these assays may be limited due to increased costs per 
sample, sample volume required, and complexity of  the assay. To make usefully precise incidence estimates 
available from feasible sample sizes, recent infection tests require a delicate balance between sufficiently 
long MDRI and sufficiently low FRR (6). A recent advance in ELISA-based assays is the LAg-avidity assay 
(35), which utilizes avidity to a multiclade recombinant gp41 ID epitope and achieves a low FRR of  1.3% 
when elite controllers and patients on ART treatment are excluded (6). Results of  an independent analysis 
of  5 standard incidence assays (Bio-Rad avidity [Bio-Rad GS HIV-1/HIV-2 PLUS O EIA], Vitros [Ortho 
Clinical Diagnostics], LS-Vitros [Less-Sensitive Vitros], LAg, and BED [SEDIA BED HIV-1 Incidence 
EIA, Sedia Biosciences]) indicated a high FRR of  12.9%–48.4% in elite controllers and 50.0%–76.1% in 
ART-treated individuals, indicating the need for novel biomarkers of  HIV-1 incidence (6).

Considerations for novel development of HIV-1 incidence biomarkers must include expansion of the range 
of biomarkers to achieve greater separation between recent and longstanding specimens. Current assays are 
limited in Env sequence, clade diversity, and antibody isotypes and rely on nonnative protein sequences for 
assessment of binding antibody responses. A majority of currently available incidence assays measure avidity to 
a limited number of sequences, including varying recombinant forms of gp41 IgG (i.e., LAg and BED); multiple 
fusion proteins comprising varying combinations of gp120/gp41, p24, and p36 (i.e., Vitros and LS-Vitros); and 
gp160 and p24 recombinant proteins derived from HIV-1, gp36 from HIV-2, and a synthetic polypeptide mim-
icking an artificial HIV-1 group O–specific epitope (i.e., Bio-Rad avidity). Some assays have begun to include 
binding and avidity to other Env and non-Env sequences, such as p66 and gp120 (36), which display a range of  
maturation kinetics from recent to longstanding infection. However, addition of novel biomarkers, such as clade 
diversity and maturation kinetics of antibody isotypes and subclasses (e.g., increasing antibody avidity from 
recent to chronic infection), are likely to provide the greatest increase in MDRI and greatest reductions in FRR. 

Table 1. Subtype and recency classification of specimens in the training panel

Classification n Clade ART use (%, n) Time since EDSC (mean 
[range])

Recent 12 A1 0%, 0 100.6 [3–225]
10 B 10%, 1 134.7 [33–265]
16 C 0%, 0 149.5 [19–261]
10 CRF01_AE 10%, 1 199.5 [146–261]
22 ND 23%, 5 185.6 [32–253]

Longstanding 3 A1 0%, 0 407.5 [286–529]
40 B 53%, 21 1581.3 [283–4,673]
4 C 0%, 0 350.8 [335–382]
19 ND 0%, 0 358.0 [358–358]

Recent infection was defined as <270 days from either the estimated date of seroconversion (EDSC) or any first positive 
HIV-1 test (if known) or the maximum time since infected based on Fiebig staging at enrollment (38). Samples were 
characterized as longstanding if >270 days from either the EDSC or from enrollment in an HIV-1 infection cohort. ND, 
not determined; NA, not applicable. Information on subtype was provided by source cohorts where this was available.
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This included binding and avidity to a range of linear epitopes, diverse Env and non-Env proteins (native and 
consensus sequences), and Ig isotypes and subclasses.

The present work expanded the set of  biomarkers by building upon previous observations that IgG 
subclasses and Env specificities display differential kinetics during the course of  recent infection (16, 
17). The panel of  measurements was built to balance potential antibody biomarkers of  recency (gp41 
epitopes, dIgA, IgG3, IgM) with markers of  longstanding infection (gp120 epitopes, IgG4, avidity to 
gp41). We included a diverse set of  linear and conformational epitopes as well as native and conserved 
sequences. The antigen panel was diversified through addition of  globally relevant, circulating strains 
(clades A and C; CD4-binding site epitopes; and linear epitopes from clades A, B, C, and D and group 
M consensus, and T/F Env proteins. Although the vast majority of  the antigens tested were derived 
from Env, we also tested nonenvelope proteins, including p24 Gag, p66 reverse transcriptase, and p31 
integrase. Some of  the non-Env sequences did score highly in the algorithm, including p66 in the 
development panel (Supplemental Figure 1). However, none were part of  the final top solution with 
lowest FRR. This may be due to the limited number of  sequences of  nonenvelope proteins tested here 
that could be further explored in subsequent studies.

The resulting antigen panel confirmed the use of  traditional incidence biomarkers such as gp41 
avidity index to discriminate recent versus longstanding infection, while bypassing the limitations 
of  current assays through the use of  additional recency (IgG3) and longstanding (avidity to IgG4) 
biomarkers. Additionally, the top solution included markers of  subtype and sequence diversity (T/F 
envelope, subtypes B and C gp140 proteins). While the gp41 ID region is a key HIV-1 recency marker 
and may be responsible for some of  the activity to the gp140 proteins, the relative contribution of  the 
gp41 ID epitope to the gp140 proteins is unknown and likely only one of  the drivers of  this activity. 
Other regions in gp140 (i.e., V2 and V3 antigens) also scored highly in the development phase, though 
they were not part of  the final “best” antigen set. Those that did not score well in this analysis include 
proteins designed to expose the conformational CD4-binding site region. It is likely that the gp140 
reactivity is driven by the unique antigenicity of  each protein for exposure to multiple epitope specific-
ities, including gp41 ID, V3, CD4BS, and other conformational epitopes.

Length of  time on ART is an important consideration for antibody-based biomarker testing. Our 
specimen panels were limited in that the majority of  the subtype C samples in the CEPHIA panels and 
in the CHAVI 001 cohort were collected prior to the widespread use and availability of  ART treatment 
in subtype C endemic areas. Additionally, the subtype B and C specimens were collected prior to the 
recommendation for initiating ART treatment at the time of  diagnosis. Thus, most, if  not all of  the par-
ticipants in these cohorts were treated late in infection, allowing for maturation of  the antibody response. 
The 6 samples misclassified in Table 2 were from participants infected for <270 days (recent) that were 
classified in this algorithm as longstanding. This result is not unexpected, given the inherent variability 
surrounding EDSC and biologic variability in the kinetics of  the antibody response after infection. Only 
1 of  6 misclassified samples was from a participant on ART at the time of  sample collection.

Short of  constructing detailed hypothetical surveillance scenarios, criteria for significant improvements 
in incidence testing include a significantly longer MDRI or significantly lower FRR (or both) when com-

Table 2. Classification of samples from cohorts containing clade A, AE, B, and C infection yields a false 
recent rate of 0%

Assigned group
Longstanding Recent Total

Group Longstanding 66 0 66
Recent 6 64 70

Total 72 64 136
Total misclassification 4.4% (6/136)
Samples were tested via binding antibody multiplex assay (BAMA) and the magnitude of the response for each of the 
4 best antibody-antigen combinations was analyzed using discriminant function analysis. Group classification is based 
on days from estimated date of seroconversion less than or greater than T = 2 years. Assigned group classification was 
predicted by canonical values obtained via BAMA.
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pared with currently available assays. By this assessment, our reported BAMA platform produced at least 
one model of  recent infection that was statistically superior to the Sedia LAg assay, which was constructed 
on a well-characterized unblinded “training panel” (clades B and C infection) using a time-based definition 
of  recent infection as a gold standard. In particular, an advantage of  the newly developed biomarker algo-
rithm is the strongly improved FRR achieved on specimens from participants on ART, without the need for 
a supplemental viral load analysis. Data generated in the optimization, training, and model development 
phases are also well suited for additional in silico optimization to further improve MDRI and FRR as 
required for product development. While 2 gp140 envelope proteins derived from early acute infection or 
a T/F virus (i.e., subtype B SC42261 gp140 and subtype C BF1266) scored in the “best” set of  4 antigens 
in this panel, related envelope sequences scored highly in early training panels. Thus, future development 
of  this assay may explore additional gp140 antigens to provide the broadest cross-clade coverage. These 
improvements may include alternate epitope specificities that consistently scored highly in the optimization 
phase (i.e., linear V3 epitopes, alternate gp140 sequences) but were not part of  the “best 4” antigen panel. 
Additionally, these data will provide key insight for future development of  the assay to include testing sam-
ples from subtype D infection and samples from participants treated early with ART.

Use of HIV-1 incidence tests with an MDRI between 240 and 280 days will enable applications, such as 
national surveillance, determination of intervention effectiveness, and estimation of incidence in key popula-

Figure 1. Envelope binding and avidity to multiple IgG subclasses accurately classifies recent versus longstanding infection. A panel of 505 antigen-an-
tibody combinations was analyzed using discriminant function analysis, as described in the Methods. (A) The top 4 antibody-antigen (Ab-Ag) combina-
tions are presented (from top left to right: subtype C T/F BF1266 gp140 IgG3, subtype C CH505 T/F IgG4 avidity, subtype B SC42261 gp140 IgG4 avidity, and 
gp41 ID IgG avidity). Y-axis values for the gp41 ID epitope avidity score represent the net difference of MFI (CIT) – MFI (PBS). (B) The canonical score (i.e., 
latent variable representing the combination of measurements in A) for the solution with the top 4 Ab-Ag combinations. CIT, Na-citrate, pH 4.0.
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tions, that are currently not feasible due to large sample size requirements. Use of improved assays with longer 
MDRI are estimated to result in a cost savings of between $5 and $23 million USD per year due to the reduction 
in sample size (13). Thus, the biomarkers of HIV-1 recency reported here are excellent candidates to advance 
further development of a novel HIV-1 incidence algorithm.

Methods
Optimization of  incidence assay performance is defined by a trade-off  between MDRI and FRR to mini-
mize the variance in incidence estimates. In order to access robust learning algorithms, models for recent-in-
fection case definitions were built by minimizing classification error of  a recency status assignment in a 
“training panel” of  specimens, with recent infection defined as less than 9 months after EDSC. Resulting 
classification models, or threshold-based modifications, were then validated by estimating MDRI and FRR 
from blinded testing of  a nonoverlapping “biomarker validation panel.” Laboratory processes and training 
analyses were completely blinded to the clinical background data on validation panel specimens.

Specimen panels
The training specimen panel comprised plasma or serum from 66 recent (9 months or less from EDSC to 
specimen collection) and 70 longstanding (more than 9 months since EDSC) HIV-1 infections of  multiple 
subtypes (A, AE, B, C) (Table 1). Sources included HIV-1 acute and chronic cohorts from CHAVI (CHAVI 
001, CHAVI 008) (27, 37), the US Military HIV Research Program (RV217) (28), and from the specimen 
repository created and maintained by CEPHIA, which has been previously described (6, 12). EDSC was 
determined as described previously (6). In some cases where an EDSC could not be calculated, a duration 
of  infection was estimated based upon the Fiebig stage documented at cohort enrollment, using the maxi-
mum cumulative duration of  infection as described by Cohen et al. (38).

Biomarker validation was performed by testing and classifying 324 specimens from the CEPHIA proof-
of-concept biomarker validation panel and estimating MDRI and FRR.

A total of  365 samples were received for testing, and the final data set for analysis (n = 324) excluded 
41 tested specimens that were either reproducibility controls (i.e., 15 total: 5 each of  3 specimens) or were 
ART-positive samples (i.e., 26 specimens) excluded from the MDRI estimation panel. The composition of  
the final panel is summarized in Table 3 and includes 132 well-characterized untreated specimens drawn 
within 800 days of  EDSC (120 unique subjects) for MDRI estimation and 134 specimens (121 subjects) 
from untreated and 58 specimens (56 subjects) from treated longstanding infection for FRR estimation. 
Specimens were largely from subjects infected with subtypes B (56%) and C (43%).

BAMA
We profiled HIV-1–specific binding antibody responses in participant serum or plasma as described previously 
(15–17). We evaluated antibody binding to a unique and broad set of HIV-1 antigens that included gp120, gp140, 
and V1-V2 antigens of multiple subtypes (i.e., A, CRF01-AE, B, C, CRF07-BC) from both sexes. Envelope 
sequences represent infections from multiple transmission routes (i.e., heterosexual transmission, homosexual 
transmission, breastfeeding, and i.v. drug use), multiple regions (China, India, Kenya, Malawi, Russian Federa-
tion, South Africa, Thailand, Trinidad and Tobago, Uganda, US, and Zambia) and Fiebig stage of infection (i.e., 

Table 3. Composition and distribution of specimens in the validation panel

Subset Timing ART treated n specimens VL 
≤ 100

n specimens 
VL>100

n specimens n subjects

MDRI <800 days after 
infection

No 7 125 132 120

FRR >2 years after 
infection

No 14 120 134 121

Challenge 
(ART)

>2 years after 
infection

Yes 56 2 58 56

The panel comprised specimen sets for mean duration of recent infection (MDRI) estimation (infected less than 800 
days) and false recent rate (FRR) estimation (untreated, infected more than 2 years) and challenge specimens (treated, 
infected more than 2 years). All specimens used for MDRI and FRR estimation had viral loads available. VL, viral load.
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I, I/II, II, III, IV, V, and VI) (39). Additional antigens included multiple clade-specific and consensus linear pep-
tides for the gp41 ID; V1, V2, V3, C1, and C5 epitopes; gp41 (ImmunoDx); p31 integrase (Jena Bioscience); p66 
RT (Protein Sciences); and p24 Gag (BD Biosciences). Serum and plasma were diluted in BAMA assay diluent 
(1% milk-blotto, 5% normal goat serum, 0.05% Tween-20) and incubated with antigen-coupled microspheres. 
Samples were incubated with either anti-human IgG-PE (Southern Biotech, catalog 9040-09, reactive with all 
IgG subclasses) or anti-human IgA (Jackson Immunoresearch, catalog 109-065-011), anti-human IgG3 (Cal-
biochem, catalog 411483), anti-human IgG4 (BD Pharmingen, catalog 555879 ), or anti-human IgM (Southern 
Biotech, 2020-08) followed by Streptavidin-PE (BD Biosciences) and detection on either a Bioplex 200 (Bio-
Rad) or Luminex FM3D machine (Luminex Corp.). All samples were depleted of IgG using a MultiTrap sys-
tem (GE Biosciences) per manufacturer’s instruction, prior to assessment of IgA- or IgM-specific antibodies. 
Dimeric IgA was detected using a recombinant polymeric-Ig receptor (pIgR, ref. 40) (provided by D. Anderson 
and N. Barnes, Burnet Institute). Samples were incubated with pIgR overnight in assay diluent (1% BSA, 0.05% 
Tween-20), followed by incubation with microsphere beads covalently coupled to the antigen of interest. pIgR 
was detected using anti-human pIgR (secretory component [SC]) detection (41) (provided by HXL and BFH) 
followed by anti-mouse IgG-PE (Southern Biotech, catalog 1030-09). Controls for IgG assays included titrated 
HIVIG (NIH AIDS Reagent Program), 7B2 IgG (42), CH58 IgG (43), and CH22 IgG mAb (44). IgA-specific 
controls included titrated 7B2 monomeric IgA (provided by BFH). Controls for the pIgR assay included 7B2 
monomeric IgA, 7B2 SIgA, 7B2 dIgA (41), and purified SC-coupled beads. Controls for IgM assays included 
titrated 2F5 (45) and CLL246 (gp41 specific) IgM (46) (provided by Kwan Ki-Hwang, Duke Human Vaccine 
Institute). Controls for IgG3 and IgG4 assays included a titrated purified human IgG3 or IgG4 standard curve 
and purified IgG3 or IgG4 coupled beads. Negative controls in each assay included normal human serum (Sig-
ma-Aldrich) and blank beads. Each experiment was performed using good clinical laboratory practice–compli-
ant conditions, including tracking of positive controls by Levey-Jennings charts.

Antibody avidity. Assessment of  antibody avidity was determined by BAMA with the following modi-
fications: After formation of  antigen/antibody immune complexes, a 15-minute dissociation step (Na-Ci-
trate, pH 3.0, Teknova) (35) at room temperature (20°C–23°C) was included prior to addition of  secondary 
detection antibody. Retained binding magnitude (mean fluorescence intensity [MFI]) in the presence of  
dissociation buffer was used as a measurement of  antibody avidity in the statistical models.

Statistics
DFA. Six ranking criteria were used to downselect from the 505 antigen/antibody measurements: (a) rank 
ordered by Wald χ2 values for the coefficients of  each measurement (loge MFI as a continuous predictor) 
in a logistic regression model with HIV status (recent vs. longstanding) as the dependent variable; (b) 
rank ordered by Wald χ2 values for the coefficients of  each measurement using MFI as a categorical vari-
able (100 MFI or above was scored as 1 [positive], below 100 MFI was scored as 0 [negative]) in a logistic 
regression model with HIV status (recent vs. longstanding) as the dependent variable; (c) rank ordered by 
absolute values of  Pearson correlation coefficients for each measurement with time since EDSC; (d) rank 
ordered by the mean difference between HIV status groups for each measurement; (e) rank ordered by 

Table 4. Mean duration of recent infection and false recent rate from blinded validation panel

Assay/model VL threshold MDRI days (CI) % FRR untreated (CI) % FRR ART treated (CI)
BAMA (PP ≥ 0.5) 0A 215 (167–266) 5.0% (1.8%–10.5%) 3.6% (0.4%–12.3%)
BAMA (PP ≥ 0.4) 0A 267 (215–320) 5.8% (2.4%–11.6%) 10.7% (4.0%–21.9%)
LAg (ODn < 1.5) 0A 157 (117–202) 8.3% (4.0%–14.7%) 51.8% (38.0%–65.3%)
LAg (ODn < 2.0) 0A 210 (163–261) 9.9% (5.2%–16.7%) 57.1% (43.2%–70.3%)
BAMA (PP ≥ 0.5) 100 199 (152–250) 4.1% (1.4%–9.4%) 0.0% (0.0%–6.4%)
BAMA (PP ≥ 0.4) 100 251 (199–305) 5.0% (1.8%–10.5%) 0.0% (0.0%–6.4%)
LAg (ODn < 1.5) 100 138 (102–178) 4.1% (1.4%–9.4%) 0.0% (0.0%–6.4%)
LAg (ODn < 2.0) 100 187 (143–235) 5.0% (1.8%–10.5%) 0.0% (0.0%–6.4%)
ANo viral load threshold, but analysis was restricted to specimens for which viral load is available. Results for mean duration of recent infection (MDRI) and 
false recent rate (FRR) for binding antibody multiplex assay (BAMA) and limiting antigen (LAg) assay using the blinded CEPHIA proof-of-concept panel are 
shown. PP, posterior probability; ODn, normalized optical density; VL, viral load; CI, 95% CI.
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the difference in the positive response rate (100 MFI or above was scored as 1 [positive], below 100 MFI 
was scored as 0 [negative]) for each measurement between HIV status (recent vs. longstanding); and (f) 
rank ordered by Wald χ2 values for the coefficients of  each measurement (continuous predictor based on 
the pairwise difference between all pairs of  measures for each patient) in a logistic regression model with 
HIV status (recent vs. longstanding) as the dependent variable. The top 20 measurements for each of  the 
6 criterion were then selected. Twenty was the number selected to make the final sample space manage-
able while minimizing the risk of  excluding a measurement with good discriminatory power. Among the 
120 candidate measurements collected from the 6 ranking criterion, 12 were represented more than once, 
leaving 108 unique measurements.

To determine a set of  measurements that had the optimum predictive power, we applied a DFA 
model (47) to all possible combinations of  3, 4, 5, and 6 measurements from the 108 measurement 
downselected list. We recorded the misclassification error rate (recent patients categorized as long-
standing and longstanding patients categorized as recent) for each possible unique combination. With 
sets of  4 measurements, a total error rate of  6.6% was reached that was not further reduced by includ-
ing additional measurements.

Using DFA, classification coefficients for each measure can be extracted and new measures are fed 
through the classification equation (E). For a 4-measurement (X) set the equation is as follows:

Ej = E0j + Ej1X1 + Ej2X2 + EJ3X3 + Ej4X4

where there is an intercept and a coefficient for each measurement for each group j, here recent and 
longstanding. If  Erecent > Elongstanding, then the new subject was classified as recent, and if  Erecent < Elongstanding, 
then the new subject was classified as longstanding. Additionally, the PP criteria used for assigning 
group membership can improve the accuracy of  the classification in use cases where the desired defi-
nition of  recent is >9 months. While usually a value of  PP(recent) ≥ 0.5 is used as the criterion for 
assigning a categorization of  recent to an observed case, other thresholds can be entertained, yielding 
variations on the model that offer different trade-offs between MDRI and FRR — previously noted to 
be the ultimate determinants of  test performance.

Estimation of  MDRI and FRR. MDRI was estimated by binomial regression of  probability of  obtain-
ing an assay-recent result as a function of  time since seroconversion and integrating this probability from 
seroconversion to the recency cut-off  time T, using approaches described previously (6), which have been 
implemented in the R package inctools (48, 49). The model for PR(t) was fit using all specimens drawn ≤ 
800 days after EDSC, but to obtain MDRI, the integral is only evaluated from 0 to T. MDRI = ∫0

TPR(t), T 
= 2 years. The model is available from https://cran.r-project.org/web/packages/inctools/ (inctools: Inci-
dence Estimation Tools for estimating incidence from biomarker data in cross-sectional surveys and for cal-
ibrating tests for recent infection). CIs were obtained by resampling subjects in 10,000 bootstrap iterations.

To evaluate MDRI differences between recency tests, the variances of  difference estimates were approx-
imated using 10,000 subject-level bootstrapping iterations. P values for differences were obtained from a 
2-tailed Z test, with values less than 0.05 considered significant.

The FRR estimates were obtained by simply estimating the binomial proportion of  patients testing 
recent at times more than T after seroconversion.

Study approvals
Samples from participants in all research cohorts were collected following informed consent. Retrospective 
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