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Abstract

In this thesis, we discussed the linear and nonlinear effects in multicomponent plasmas. By

multicomponent, we refer to electron-positron-ion and electron-positron-dust type plasmas.

The linear electrostatic waves in magnetized three-component electron-positron-ion plasmas

consisting of cool ions, and hot Boltzmann electrons and positrons have been investigated

in the low-frequency limit. By using the continuity and momentum equations with the

Poisson equation, the dispersion relation is derived. Two stable modes of the waves are

investigated in different cases, viz parallel and perpendicular propagation. The effects of

the density and the temperature ratio on the wave structures are investigated. We also

studied the behavior of the nonlinear electrostatic waves: first, we consider the electrons

and positrons as having Boltzmann density distributions and the ions being governed by the

fluid equations, and second we extend our model by assuming that all species are governed

by the fluid equations. The set of nonlinear differential equations is obtained and this set is

numerically solved for the electric field. The numerical solutions exhibit the range of period

varying from sinusoidal to sawtooth to spiky waveforms. The effects of the driving electric

field, temperature, concentration, drift velocity, Mach number and propagation angle on the

wave structures are investigated. Finally, the study ends by investigating solitary waves

in an electron-positron-dust plasma. The arbitrary amplitude dust acoustic solitary waves

has been studied by using Sagdeev pseudopotential approach in a plasma consisting of hot

electrons and positrons, and cold dust grains. The conditions of the existence of solitons are

found assuming constant dust charge.
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Chapter 1

Introduction

Magnetosphere is defined as the region of space surrounding the Earth where its magnetic

influences control the behavior of the ionized gas (plasma). The shape of the Earth’s mag-

netosphere resulting from the interaction between the solar wind and the geomagnetic field,

and the pressure of the solar wind on Earth’s magnetic field compresses the field on the

dayside of Earth and stretches the field into a long tail on the nightside. This interaction in

the magnetosphere is answerable for many miraculous natural phenomena such as the aurora

and whistler waves.

The dynamics of the terrestrial magnetosphere is controlled by the Earth’s magnetic field

so that the magnetosphere can be categorized into several regions, e.g. Magnetopause, Mag-

netosheath, Magnetotail, Bow Shocks, which are generated by the topology of this magnetic

field. In the interior of the magnetosphere, the plasma is not distributed uniformly but is

grouped into different regions with different temperatures and densities. These plasmas can

be termed as dusty plasmas as almost all space and astrophysical plasmas are now found

to carry massive dust particles [Temerin et al., 1982; Meuris and Verheest, 1996; Pickett

et al., 2004]. The variability of plasmas in the magnetosphere arises from fluctuations in the

solar wind flow, and provides several processes like reconnection, collisionless shocks, particle

acceleration and turbulence.

The study of astrophysical environments revealed the existence of electron-positron (e-p)
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pairs which are assumed to be the most important constituents of the plasma originating

in pulsars and in the inner region of the accretion disks surrounding the central black holes

in active galactive nuclei [Goldreich and Julian, 1969; Michel, 1982; Begelman et al., 1984].

They may be developed in the magnetospheres of pulsars by the pair-production cascade

breeding process [Ruderman and Sutherland, 1975]. On the other hand, the presence of ions

in such plasmas has been confirmed by different authors and their behaviours have been

discussed by Hoshino and Arons [1991] and Jammalamadaka et al. [1996]. They reported

that the presence of ions in e-p plasmas leads to several new linear and nonlinear modes.

Therefore, the study of three component electron-positron-ion (e-p-i) plasmas can furnish

further information in an understanding of the behaviour in both astrophysical and labo-

ratory plasmas, and the magnetosphere may be an admirable natural laboratory where the

different processes occurred in plasmas can be investigated on a variety of spatial scales.

The existence of electron-positron-ion triplets in various astrophysical environments re-

mains a great topic of research due to their potential relevance to space plasmas [Michel,

1982; Miller and Witta, 1987; Kozlovsky et al., 2004; Lee and Ruiz, 2005]. The study of both

linear and nonlinear wave propagation in e-p-i plasmas plays a vital role in understanding

different types of collective processes in space plasmas. Such plasmas are found in the early

universe [Miller and Witta, 1987], in solar atmospheres [Kozlovsky et al., 2004], active galac-

tic nuclei (AGN) [Miller and Witta, 1987], near the polar cusp regions of pulsars, neutron

star atmospheres [Michel, 1982] and in the inner region of the accretion disks surrounding

the central black holes [Lee and Ruiz, 2005]. The ions presented in most of these astro-

physical plasmas originate from some interior source, for example, as a result of evaporation

or seismic processes on the surface of a star in the process of accretion [Zeba et al., 2012].

Moreover, the propagation of intense short laser pulses in matter can be accompanied by

the formation of e-p-i plasma due to photo production during photon scattering by nuclei

[Berezhiani and Mahajan, 1994]. In fact, such three component plasmas have been seen in

laboratory experiments when positrons are used to probe particle transport in tokamaks,

due to their sufficient lifetime, two-component electron-ion (e-i) plasmas evolves to a three-
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component e-p-i plasma [Surko and Murphy, 1990]. In many astrophysical environments

there exists a small number of ions along with the electrons and positrons, therefore, it is

pertinent to study observationally, experimentally and theoretically behavior of linear and

nonlinear wave motions in an e-p-i plasma.

Earliest observations of the plasmas in the dayside polar magnetosphere were obtained

with the earth-satellite Imp 5 during July-August 1969. Frank [1971] revealed the existence

of the bands which have the shape of the geomagnetic cavity formed by the interaction of

the solar wind with the geomagnetic field across the dayside high-latitude magnetopause

(one band in the northern hemisphere and a second in the southern hemisphere). These

two bands/ regions of the magnetopause through which the magnetosheath plasma has

direct access to the magnetosphere, and the corresponding extension of these bands from

magnetopause to auroral altitudes have been identified as the polar cusps.

Gurnett et al. [1976] reported a space observation of a new type of plasma wave emissions

by the IMP-8 satellite in the plasma sheet boundary layer of the Earth’s magnetotail. The

emission was purely electrostatic, and it had a broadband spectrum from ion plasma and

lower hybrid frequencies up to and higher than the electron plasma and cyclotron frequencies.

The emissions were named as broadband electrostatic noise (BEN).

Several linear theories based on electron-acoustic instabilities [Tokar and Gary, 1984; Gary

and Tokar, 1985; Bharuthram, 1991; Dubouloz et al., 1991] have been devoted in order to

explain the higher frequency part of BEN spectrum. However, there is still no satisfactory

explanations for the low-frequency part of BEN: BEN does not consist of continuous waves,

but impulsive ones [Anderson et al., 1982; Nishida et al., 1985].

Tokar and Gary [1984] analyzed the full electromagnetic Vlasov dispersion equation and

studied the stability of the electrostatic and electromagnetic waves for the case of upward

moving electron beams observed in the polar cusp region. Their numerical simulations

showed electron-acoustic waves (EAWs) to be unstable and these results were confirmed by

Schriver and Ashour-Abdalla [1987]. Theoretical studies of electrostatic waves driven by

ion beam instabilities in relation to BEN in three-component plasmas (hot ions, hot elec-
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trons and cold electrons) was successfully conducted by Omidi [1985] after different authors

[Grabbe and Eastman, 1984; Dusenbery and Lyons, 1985] showed that higher angles of wave

propagation (with respect to the background magnetic field) can have much larger growth

rates at lower frequencies. In an extension of the work [Omidi, 1985] by Akimoto and Omidi

[1986], it was revealed that two different instabilities can be excited by an ion beam and the

propagation angle determines which is excited.

Further nonlinear investigations were conducted in theoretical and numerical studies and

laboratory experiments to understand the nature of the BEN emissions. Dubouloz et al.

[1991] showed that the nonlinear effects can play a significant role in the generation of BEN

in the dayside auroral zone. Recent high time-resolution measurements by the fast auroral

snapshot (FAST) satellites have confirmed the presence of coherent nonlinear phenomena

and the BEN found had waveforms of solitary bipolar electric field pulses which are named

Electrostatic Solitary Waves (ESWs)[Matsumoto et al., 1994]. These solitary waves are

electrostatic in most cases, because the polarizations of the bipolar pulses are mostly along

the static magnetic field without any transverse magnetic field components. Mach

The fast solitary waves have been observed not only in the mid-altitude auroral zone [Er-

gun et al., 1998], but also in the high altitude polar magnetosphere, between 2 and 8.5 times

the radius of the Earth [Dombeck et al., 2001] and they evolve in heating and accelerating

charged particles in these environments. The observations from different spacecrafts [Wu

et al., 1996; Pickett et al., 2008] have revealed the nature of the electrostatic solitary waves

(ESWs) in different regions in near-earth plasmas. The results of these observations have

pointed out the existence of super-thermal components of various plasma species. The elec-

tric field structures found are exclusively in regions of BEN and contributing to its spectral

features at high frequencies. Similar fast moving solitary waves have been found in the high

altitude polar cusp region by Cattell et al. [1999].

It is therefore important to theoretically explain certain satellite observations of nonlinear

electrostatic fluctuations in different regions of the Earth’s magnetosphere. By inspection of
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these observations, we model the space plasmas and our theoretical results are compared to

the experimental findings.

This thesis is structured as follows: The background information related to our topic is

presented and the scope of this work is outlined in Chapter One.

In Chapter Two, we discuss the linear electrostatic waves in a magnetized, three-component

e-p-i plasma to model the pulsar magnetosphere, with hot electrons and positrons and cool

ions. The cool ions are governed by the fluid equations while the hot electron and positron

densities are assumed to be Boltzmann distributed. With Poisson’s equation, we examine

the behavior of the electrostatic waves in such plasmas in the low frequency limit, taking

into account the mass of the ions. The effects of the density, temperature ratio and prop-

agation angle on the wave structures are investigated in two limiting cases: parallel and

perpendicular propagation.

In Chapter Three, we study nonlinear electrostatic fluctuations in magnetospheric envi-

ronments. We attempt to provide an explanation of nonlinear low frequency waves observed

by spacecraft missions in the auroral regions by using a theoretical model formed by a mag-

netized, three-component e-p-i plasma including charge separation. By using the continuity

and momentum equations with Poisson’s equation, the three component plasma consisting

of cool ions, and hot Boltzmann electrons and positrons are investigated and the effect of

the electric field, temperature, density, ion drift, Mach number and propagation angle on

the wave structures are discussed.

In Chapter Four, we extend the theoretical model of nonlinear electrostatic waves in

magnetospheric environments discussed in Chapter 3, hereby all species are described by

fluid equations. In this chapter, the additional information on the effect of the electon and

positron density and their corresponding drift velocity are also examined.

Chapter Five describes solitary structures in an unmagnetized three component electron-

positron-dust plasma. We investigate nonlinear electrostatic structures in the magnetosphere

by using the Sagdeev pseudo-potential technique. The study is inspired by results of dif-

ferent spacecraft observations of electrostatic solitary waves (ESW) in the near-earth and
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magnetospheric plasmas, and recent experimental realization of existence of superthermal

electron component in various space plasmas.

Finally, we shall summarize our work in Chapter Six.
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Chapter 2

Linear electrostatic waves in

electron-positron-ion plasmas

2.1 Literature Review

Linear wave propagation in electron-positron (e-p) plasmas is different by comparison with

the ordinary electron-ion (e-i) plasmas. A particularly interesting feature of (e-p) plasmas

by comparison with the usual (e-i) plasmas is that both electron and positron species have

the same mass and equal magnitude of charge. The behavior of the wave motion in e-p-i

plasmas are different from those in two component electron-positron (e-p) and electron-ion

(e-i) plasmas [Popel et al., 1995; Tiwari et al., 2007]. The presence of ions leads to the

existence of several low -frequency waves which otherwise do not propagate in e-p plasmas

[Pakzad, 2009; Tarsem et al., 2007].

Linear electron-positron plasmas have been studied by various researchers [Bulanov, 2004;

Zank and Greaves, 1995; Kluger et al., 1991; Greaves et al., 1994]. It was shown that the

e-p plasma symmetry is broken in the presence of ions, and both fast and slow time scales

can occur in the dynamics of e-p-i plasmas [Zeba et al., 2012].

Linear electrostatic waves have been investigated in an unmagnetized three-component

e-p-i plasma [Popel et al., 1995; Alinejad and Mamun, 2011; Jilani et al., 2013]. Several
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authors have studied theoretically and experimentally linear and nonlinear wave propagation

in magnetized e-p-i plasmas using different models [Nejoh, 1996; Hasegawa et al., 2002; Nejoh,

1997; Kakati and Goswami, 1998, 2000; Haque et al., 2002; Salahuddin et al., 2002]. Tiwari

et al. [2007] and Tiwari [2008] investigated the effects of the density and temperature on ion-

acoustic waves in a three-component plasma and found that the amplitude of the structures

in an e-p-i plasma decreases with increasing positron concentration or temperature ratio.

Recently, theoretical studies on linear waves has been investigated by Lazarus et al. [2012]

to explain the behavior of electrostatic waves in a four component, two-temperature electron-

positron plasma. By assuming that the temperatures of the cool electrons and cool positrons

are equal and that the temperatures of hot electrons and hot positrons are equal and obey

the Boltzmann density distributions, the different modes of wave propagation were analyzed.

At present, several theoretical studies of linear as well as nonlinear wave phenomena in

both unmagnetized and magnetized e-p-i plasmas have been of interest[Popel et al., 1995;

Alinejad and Mamun, 2011; Jilani et al., 2013; Nejoh, 1996; Hasegawa et al., 2002]. Abdel-

salam et al. [2008] and Rasheed et al. [2010] investigated ion-acoustic waves in e-p-i plasmas

by using different forms of distributions for electrons and positrons, such as the Thomas-

Fermi approximation and nonrelativistic electron/positron equation of state and observed

that the ion-acoustic speed in the degenerate pair-ion plasma depends both on the electron

temperature and ion mass as well as the concentration of the positron and ions in the plasma.

Alinejad and Mamun [2011] studied linear and nonlinear propagation of ion-acoustic waves

subjected to an external magnetic field in an e-p-i plasma and found that when the positron

concentration is increased, the frequencies of both the slow and fast modes decreased. They

investigated the effects of obliqueness, magnetic field, densities and the temperature ratio on

such plasmas. For most of these investigations, the general dispersion relation for multicom-

ponent plasmas had been obtained without considering the mass of the ions. It is thus of

interest to investigate the effects of the ion mass on the structure of the waves propagating

in an e-p-i plasma.

8



In this chapter, we pay particular attention to a magnetized, three-component, e-p-i

plasma to model the pulsar magnetosphere with a hot species of electrons, positrons and

cool ions and two different approaches will be adopted. The cool ions are governed by the

fluid equations and the hot electron and positron densities are assumed to be Boltzmann

distributed. Our studies will focus on the behavior of the electrostatic waves in such plasmas

in the low frequency limit, taking into account the mass of the ions. By using the fluid theory

approach, the effects of the density and the temperature ratio on the wave structures will be

investigated at two limiting cases: parallel and perpendicular propagation. It is worth noting

that recombination and annhilation of electron-positron pairs are neglected throughout this

thesis.

2.2 Fluid Theory Approach

2.2.1 The model of fluid equations

We consider a collisionless, magnetized three-component plasma having cold ions (i) and

hot positron (p) and hot electron species (e) in the presence of an external magnetic field

B0. Wave propagation is in the x -direction at an angle θ to the ambient magnetic field B0,

which is assumed to be in the x− z plane.

The hot electrons and hot positrons are assumed to obey the Boltzmann distribution
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with equal temperatures Th. At equilibrium the densities of the electrons and positrons are

different and denoted ne0 and np0 respectively. The basic equations, governing the dynamics

of the positive ions are the equations of continuity and momentum:

∂ni
∂t

+
∂nivix
∂x

= 0, (2.1)

∂vix
∂t

+ vix
∂vix
∂x

+
1

nimi

∂pi
∂x

= −
e

mi

∂ϕ

∂x
+ Ωiviy sin θ, (2.2)

∂viy
∂t

+ vix
∂viy
∂x

= Ωiviz cos θ − Ωivix sin θ, (2.3)

∂viz
∂t

+ vix
∂viz
∂x

= −Ωiviy cos θ, (2.4)

∂pi
∂t

+ vix
∂pi
∂x

+ 3pi
∂vix
∂x

= 0. (2.5)

The electrons and positrons in the electrostatic potential perturbation are assumed to follow

the Boltzmann distributions, respectively, as

ne = ne0 exp

(
eϕ

Th

)
(2.6)

np = np0 exp

(
−
eϕ

Th

)
. (2.7)

Equations (2.1) - (2.7) are closed with the Poisson equation

ε0
∂2ϕ

∂x2
= −e(np − ne + ni) (2.8)

where Ωi = eB0/mi is the ion cyclotron frequency, ni is the ion density, ne(np) is the density

of hot electrons (positrons), vix,viy and viz are the components of the ion velocity along the

x, y and z directions, pi is the ion pressure, ϕ is the electrostatic potential and mi is the ion

mass.

Assuming that the above equations have harmonic solutions, such that all variables are of
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the form exp(i(kx−ωt)), ∂/∂x is replaced with ik and ∂/∂t is replaced with −iω. Linearizing

by neglecting the higher order perturbations, the continuity equation becomes

−niiω + ikvixni0 = 0 (2.9)

for which

ni =
kni0
ω

vix. (2.10)

Linearizing the momentum equations, we obtain the velocity components for the cool ions

as follows

vix =
3k

ω
v2ti

(
ni
ni0

)
+

ke

ωmi
ϕ+ i

Ωi
ω
viy sin θ, (2.11)

viy =
iΩi
ω

(viz cos θ − vix sin θ) , (2.12)

viz = −
iΩi
ω
viy cos θ, (2.13)

where vti = (Ti/mi)
1/2 is the thermal speed for the ions (the Boltzmann constant is omitted

i.e. set to 1).

Substituting for viz from equation (2.13) into equation (2.12) and using equation (2.11),

vix becomes

vix =
(ω2 − Ω2

i cos
2 θ)(3kv2timi(ni/ni0) + keφ)

ωmi(ω2 − Ω2
i )

. (2.14)

Substituting the above equation into equation (2.10), the perturbed density of the ions is

expressed as follows:

ni =
k2ni0eφ

mi

(ω2 − Ω2
i cos

2 θ)

ω2(ω2 − Ω2
i )− 3k2v2ti(ω

2 − Ω2
i cos

2 θ)
. (2.15)

Linearizing equations (2.6) and (2.7), we have dropped the second and higher order terms

in a Taylor series expansion of the exponential and the perturbed densities of hot species
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such that

ne = ne0
eϕ

Th
(2.16)

np = −np0
eϕ

Th
. (2.17)

Substituting equations (2.15), (2.16) and (2.17) into the Poisson equation (2.8), the general

dispersion relation for multicomponent plasma consisting of hot electrons and positrons and

cold ions is

ω4
− ω2

(
Ω2
i + 3k2v2ti

)
+ 3k2v2tiΩ

2
i cos

2 θ = k2v2ia
(ω2 − Ω2

i cos
2 θ)

k2λ2Dh +
np0

ne0
+ 1

. (2.18)

Rearranging terms, the above equation becomes

ω4
− ω2

(
Ω2
i + 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
+ Ω2

i cos
2 θ

(
3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
= 0

(2.19)

where via = (n0im/ne0mi)
1/2vth is the ion acoustic speed, vth = (Th/m)1/2 is electron thermal

speed and λDh = (ε0Th/n0e
2)1/2 is electron Debye length.

The above equation can be rewritten as following

ω4
− ω2Ω2

i − 3k2v2tiω
2
−

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

ω2 +3k2v2tiΩ
2
i cos

2 θ+
k2v2ia

k2λ2Dh +
np0

ne0
+ 1

Ω2
i cos

2 θ = 0,

(2.20)

Rearranging terms of the equation (2.20), we get

ω2(ω2
− Ω2

i )− 3k2v2ti(ω
2
− Ω2

i cos
2 θ)−

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

(ω2
− Ω2

i cos
2 θ) = 0. (2.21)

In the limit ω ≪ Ωi cos θ, i.e for wave frequencies much lower than the gyrofrequency,

equation (2.21) reduces to

ω2Ω2
i − 3k2v2tiΩ

2
i cos

2 θ −
k2v2ia

k2λ2Dh +
np0

ne0
+ 1

Ω2
i cos

2 θ = 0. (2.22)
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Solving equation (2.22), one obtains for the associated acoustic mode

ω2 =

(
3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
cos2 θ. (2.23)

Considering the short wavelength limit where k2λ2Dh ≫ 1, the general dispersion relation

(2.19) reduces to

ω4
− ω2

(
Ω2
i + 3k2v2ti +

v2ia
λ2Dh

)
+ Ω2

i cos
2 θ

(
3k2v2ti +

v2ia
λ2Dh

)
= 0. (2.24)

The above equation can take the following form

ω4
− ω2

(
Ω2
i + 3k2v2ti + ω2

pi

)
+ Ω2

i cos
2 θ
(
3k2v2ti + ω2

pi

)
= 0, (2.25)

where ω2
pi = v2ia/λ

2
Dh is the ion plasma frequency.

Equation (2.25) may be rewritten as

ω4
− ω2(3k2v2ti + ω2

UH) + Ω2
i cos

2 θ(3k2v2ti + ω2
pi) = 0, (2.26)

where

ω2
UH = Ω2

i + ω2
pi. (2.27)

The expression (2.27) is known as the upper hybrid frequency.

In solving equation (2.26), we assume that

(3k2v2ti + ω2
UH)

2
≫ 4Ω2

i cos
2 θ(3k2v2ti + ω2

pi) (2.28)

and we obtain two roots; the positive (+) root

ω2
+ = 3k2v2ti + ω2

UH −
Ω2
i cos

2 θ(3k2v2ti + ω2
pi)

(3k2v2ti + ω2
UH)

(2.29)
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and the negative (−) root

ω2
−
=

Ω2
i cos

2 θ(3k2v2ti + ω2
pi)

(3k2v2ti + ω2
UH)

. (2.30)

The results obtained for an electron-positron-ion plasma have the similar characteristics as

the electron cyclotron and electron acoustic waves investigated by Lazarus et al. [2012] for

four-component, two-temperature electron-positron plasma.

For analyzing equation (2.21), we focus on two extreme limits viz, parallel and perpen-

dicular propagation which will be discussed below.

A) Parallel propagation

Considering parallel propagation(θ = 00), the general dispersion relation (2.21) reduces to

ω2(ω2
− Ω2

i )−

(
3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
(ω2

− Ω2
i ) = 0. (2.31)

Solving equation (2.31), we obtain two solutions,

the first

ω2
+ = Ω2

i , (2.32)

which is a constant frequency, non-propagating ion cyclotron mode

and the second

ω2
−
= 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

(2.33)

is the ion-acoustic mode.The above equation is similar to results found in Lazarus et al.

[2012].

Now: v2ia = v2th
ni0

ne0

m
mi

= Th
m

ni0

ne0

m
mi

= Th
mi

ni0

ne0

In the limit k2λ2Dh ≪ 1, equation (2.33) reduces to

ω2
−
= k2v2ia

(
3
Tine0
Thni0

+ 1/(
np0
ne0

+ 1)

)
. (2.34)

Equation (2.34) is the ion acoustic mode which arises from the motion of the cool ions.

In the limit k2λ2Dh ≫ 1, we obtain the following expression
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ω2
−
= 3k2v2ti + ω2

pi. (2.35)

which corresponds to the dispersion relation for Langmuir waves in an electron-positron

plasma [Zank and Greaves, 1995; Lazarus et al., 2012].

B) Perpendicular propagation

Considering perpendicular propagation(θ = 900), equation (2.21) may be rewritten as

ω4
− ω2

(
Ω2
i + 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
= 0. (2.36)

Solving the above equation, we obtain the normal mode frequencies

ω = 0, (2.37)

which is a non-propagating mode and

ω2 = Ω2
i + 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

, (2.38)

is the ion cyclotron mode which arises from both the cool and hot species.

In the limit k2λ2Dh ≫ 1, i.e in the short wavelength limit, equation (2.38) becomes

ω2 = Ω2
i + 3k2v2ti +

v2ia
λ2Dh

, (2.39)

which may be rewritten in the following form

ω2 = ω2
UH + 3k2v2ti. (2.40)

The expression (2.40) is the upper hybrid mode, which depends on the cooler species (ions)

and is similar to results obtained by Zank and Greaves [1995] and Lazarus et al. [2012].
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By taking k2λ2Dh ≪ 1, i.e the long wavelength limit, the dispersion relation for perpen-

dicular propagation equation (2.38) reduces to

ω2 = Ω2
i + 3k2v2ti +

k2v2ia
(np0

ne0
+ 1)

, (2.41)

and may rewritten as

ω2 = Ω2
i + k2v2ia

(
3
Tine0
Thni0

+ 1/(
np0
ne0

+ 1)

)
. (2.42)

The above expression is the cyclotron mode for electron-positron-ion plasmas with contribu-

tions from the hot and cooler species.

2.3 Numerical results and Discussion

In this section, we focus on the effects of the density and temperature for parallel (θ = 00)

and perpendicular (θ = 900) propagation. Normalizing the temperature with Th, the fluid

speed by the thermal velocity vth = (Th/m)1/2, the spatial length by λD = (ε0Th/ne0e
2)1/2,

the particle density by the total equilibrium plasma density ne0 = ni0 + np0 and time by

ω−1
pi = (ne0e

2/ε0mi)
−1/2 in equation (2.19), we obtain the normalized general dispersion

relation,

ω̃4
− ω̃2

(
1

R2
+ 3k̃2

Ti
Th

m

mi
+

k̃2ñ0c
m
mi

k̃2 + ñ0h + 1

)
+
cos2 θ

R2

(
3k̃2

Ti
Th

m

mi
+

k̃2ñ0c
m
mi

k̃2 + ñ0h + 1

)
= 0(2.43)

where ω̃ = ω/ωp, k̃ = kλD, ñ0c = n0i/ne0, ñ0h = np0/ne0, R = ωpi/Ωi.

This relation is similar to Lazarus et al. [2012] with an additional mass ratio m
mi
.

Equation (2.43) can be solved numerically. The parameter R in equation (2.43) characterizes

the strength of the magnetic field for a fixed total plasma density and R ≪ 1 corresponds
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to a strongly magnetized plasma and R ≫ 1 corresponds to a weakly magnetized plasma.

We choose R = 0.333 for an easy comparison with the findings of [Zank and Greaves, 1995;

Lazarus et al., 2012].

For fixed parameters R = 0.333, and Ti
Th

= 0.01, the variation of the normalized frequency

with normalized wavenumber is plotted. The effects of different values of ni0/ne0 for parallel

propagation (θ = 00 ) are represented in Fig. 2.1. Equation (2.43) shows the electron-to-

ion mass ratio m
mi

which is not present in an e-p plasma. This ratio reduces the frequency

significantly compared to results obtained by Lazarus et al. [2012].

This figure shows that the frequency of the mode increases with an increasing density ratio

and can also be deduced from equation (2.33). The dispersion curves obtained is identified

as ion-acoustic mode.

Figure 2.2 shows the curves representing the variation of the normalized frequency for

different values of Ti
Th

for the following fixed parameters: R = 0.333, ni0/ne0 = 0.11 and

θ = 00 (parallel propagation). The frequency of the wave increases with an increase in Ti
Th
.

The curves representing the different values of the density ratio for the following fixed

parameters R = 0.333, Ti
Th

= 0.01 and θ = 900 (perpendicular propagation) are shown in

Fig. 2.3. The frequency increases with an increase in ni0/ne0. The ion cyclotron mode

(2.38) arises from the cool and hot species. For small proportions of the hot species, the

mode approaches the upper hybrid frequency (2.40). Figure 2.4 represents the different

values of the temperature ratio for the fixed parameters R = 0.333, ni0/ne0 = 0.11 and

θ = 900 (perpendicular propagation). This is the ion-cyclotron mode and the frequency

increases with an increase in Ti/Th.

Figures 2.5 and 2.6 show the ion-acoustic and cyclotron branches for different angles of

propagation, respectively. The ion-acoustic mode decreases with increase in the propagation

angle and disappears at θ = 900. The curves represented in Fig. 2.6 are identified as the

cyclotron mode and the frequency of this mode increases with increase in the propagation

angle.
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Figure 2.1: Normalized real frequency as a function of the normalized wavenumber. The fixed parameters
are θ = 00, Ti/Th = 0.01 and R = 0.333. The curves present different values of the equilibrium density ratio
ni0/ne0 = 0.11 (dashddot=black), 0.25 (dashdot=blue), 0.43 (broken=green), 0.66 (dotted=red).
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Figure 2.2: Normalized real frequency as a function of the normalized wavenumber. The fixed parameters
are θ = 00, ni0/ne0 = 0.11 and R = 0.333. The curves present different values of the equilibrium density
ratio Ti/Th = 0.01 (dashddot=black), 0.02 (dashdot=blue), 0.05 (broken=green), 0.1 (dotted=red).
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Figure 2.3: Normalized real frequency as a function of the normalized wavenumber. The fixed parameters
are θ = 900, Ti/Th = 0.01 and R = 0.333. The curves present different values of the equilibrium density
ratio ni0/ne0 = 0.11 (dashddot=black), 0.25 (dashdot=blue), 0.43 (broken=green), 0.66 (dotted=red).
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Figure 2.4: Normalized real frequency as a function of the normalized wavenumber. The fixed parameters
are θ = 900, ni0/ne0 = 0.11 and R = 0.333. The curves present different values of the equilibrium density
ratio Ti/Th = 0.01 (dashddot=black), 0.05 (dashdot=blue), 0.1 (broken=green), 0.5 (dotted=red).
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Figure 2.5: Normalized real frequency as a function of the normalized wavenumber.The fixed parameters are
Ti/Th = 0.01, ni0/ne0 = 0.11 and R = 0.333. The curves present the ion-acoustic branch for different values
of angles propagation θ = 00 (dashddot=black), 90 (dashdot=blue), 22.50 (broken=green), 450 (dotted=red).
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Figure 2.6: Normalized real frequency as a function of the normalized wavenumber.The fixed parameters are
Ti/Th = 0.01, ni0/ne0 = 0.11 and R = 0.333. The curves present the cyclotron branch for different values of
angles propagation θ = 00 (dashddot=black), 90 (dashdot=blue), 22.50 (broken=green), 450 (dotted=red).
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Chapter 3

Nonlinear waves in electron-positron-

ion plasmas

3.1 Literature Review

Nonlinear propagation of intense electrostatic waves in electron-positron (e-p) plasmas has

received a large amount of theoretical interest mainly because such plasmas are naturally

produced under certain astrophysical conditions. In fact, most astrophysical plasmas usually

consist of ions, in addition to electrons and positrons. The properties of wave motion in the

presence of heavy ions are significantly different from those in electron-positron (e-p) plasmas

[Rizzato, 1988; Popel et al., 1995]. Since electron-positron-ion (e-p-i) plasmas are thought

to have been present in the early Universe, plasma processes are expected to be key in

understanding the evolution of the Universe. The existence of low-frequency waves in such

plasmas are evident [Hamid, 2009].

Recently, it has been suggested that the nonlinear study of wave propagation can be

helpful in understanding nonlinear structures similar to broadband electrostatic noise (BEN)

observed by numerous satellites (spacecrafts) in the Earth’s Magnetosphere such as Viking

[Boström et al., 1988], Geotail [Matsumoto et al., 1994], FAST [Ergun et al., 1998], Polar

[Mozer et al., 1997] and Cluster [Pickett et al., 2003]. The waveform observations with
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the high time resolution confirm that one of the common features of these waves is the

burstiness, i.e amplitudes or frequencies rapidly change in the order of a few milliseconds to

a few hundreds of milliseconds [Matsumoto et al., 1994].

Further, the observations show that the electrostatic waves (ESW) identified are the

parallel propagating waves relative to the ambient magnetic field and exhibit large amplitude,

spiky behaviour. It was shown that the nonlinear coupling between the ion cyclotron and ion

acoustic modes lead to the generation of parallel electric fields with the periods of the waves

varying from ion cyclotron range to the ion acoustic range [Temerin et al., 1982; Reddy et al.,

2002]. The investigation of ion-acoustic solitons in e-p-i plasmas under different regimes and

models has been studied by different researchers. Kourakis et al. [2007, 2009] have shown the

existence of envelope structures of solitons and holes in e-p-i plasmas. Dubinov and Sazonkin

[2009] investigated the nonlinear theory of ion-acoustic waves in plasmas with cold ions and

inertialess isothermal electrons and positrons and reported that the propogation velocity of

a solitary wave is always higher than the linear ion sound velocity. Mahmood et al. [2003]

and Mahmood and Akhtar [2008] studied arbitrary amplitude solitons propagating obliquely

with respect to an external magnetic field in a homogeneous magnetized electron-positron-ion

plasma and found that the amplitude of solitary structures increase with increasing presence

of positrons. Nejoh [1996] investigated the effect of ion temperature on the large-amplitude

ion-acoustic waves in e-p-i plasmas and observed that the ion temperature decreased the

amplitude and increased the maximum Mach number of the ion-acoustic waves. On the

other hand, space plasma observations clearly indicate the presence of ion and electron

populations that are far away from their thermodynamic equilibrium [Shukla et al., 1986;

Ghosh and Bharuthram, 2008; Pakzad, 2009].

Using fluid theory, Reddy et al. [2002] and Bharuthram et al. [2002] studied nonlinear

low frequency waves in an e-i plasma and revealed that the nonlinear coupling between

the ion acoustic mode and ion cyclotron oscillations lead to the generation of the spiky

structures of the electric fields. Moolla et al. [2003] studied high-frequency nonlinear waves

in the Earth’s magnetosphere and showed that a nonlinear coupling between large-amplitude
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electron cyclotron and electron acoustic waves can account for the high-frequency component

of the field aligned bipolar electric field pulses observed within the broadband electrostatic

noise in the auroral, polar and magnetotail regions of the Earth’s magnetosphere. The

sawtooth and spiky waveforms found were in agreement with the observations of Ergun

et al. [1998].

Moolla et al. [2010] studied nonlinear low-frequency structures in the auroral plasma in the

presence of an oxygen beam including charge separation. The inclusion of charge separation

effects tends to, in most cases, increase the frequency of oscillation of the nonlinear structures.

It was shown that, for a weakly magnetized plasma, the amplitude of the oscillations are

found to be constant while they are modulated in strongly magnetized plasmas.

Later, Moolla et al. [2012] studied nonlinear low-frequency structures in an electron-

positron-ion plasma. The nonlinear electric field structures found were based on the quasineu-

trality approximation. Bharuthram et al. [2014] studied the evolution of nonlinear waves in

different plasmas and showed that the nonlinear waves evolve in a consistent fashion irre-

spective of the plasma composition.

In this chapter, we focus our studies on nonlinear waves in electron-positron-ion plasmas,

allowing for the charge separation effect. The hot electrons and positions are assumed to have

a Boltzmann density distribution and the cold ions are governed by the fluid equations.Finally

the system of equations is closed with the Poisson equation.

3.2 Basic theory and Model of fluid equations governing the plasma

dynamics

We consider a collisionless, magnetized three-component plasma having warm ions (i) and

hot positron (p) and hot electron species (e). The ions species are drifting along the magnetic

field with speed v0 and the wave propagation is taken to be in the x direction at an angle θ

to the magnetic field B0, which is assumed to be in the x− z plane. The hot electrons and

hot positrons are assumed to obey the Boltzmann distribution with equal temperatures Th,
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and different equilibrium densities ne0 and np0 respectively. The continuity and momentum

equations for the positive ions are expressed as follows:

∂ni
∂t

+
∂nivix
∂x

= 0, (3.1)

∂vix
∂t

+ vix
∂vix
∂x

+
1

nimi

∂pi
∂x

= −
e

mi

∂ϕ

∂x
+ Ωiviy sin θ, (3.2)

∂viy
∂t

+ vix
∂viy
∂x

= Ωiviz cos θ − Ωivix sin θ, (3.3)

∂viz
∂t

+ vix
∂viz
∂x

= −Ωiviy cos θ, (3.4)

∂pi
∂t

+ vix
∂pi
∂x

+ 3pi
∂vix
∂x

= 0. (3.5)

The electrons and positrons are assumed to follow the Boltzmann distribution, and are given

respectively, as

ne = ne0 exp

(
eϕ

Th

)
, (3.6)

np = np0 exp

(
−
eϕ

Th

)
. (3.7)

Equations (3.1) - (3.7)are closed with the Poisson’s equation

ε0
∂2ϕ

∂x2
= −e(nph − neh + ni). (3.8)

In equations (3.1) - (3.8), Ωi = eB0/mi is ion cyclotron frequency, ni is the ion density,vix,viy

and viz are the components of the ion velocity along the x, y and z directions respectively,

pi is the ion pressure, ϕ is the electrostatic potential and mi is the ion mass.

3.2.1 Linear Analysis

Before proceeding with the evolution of nonlinear waves, we discuss the linear modes of

the system.In the limit, the set of equations (3.1)-(3.8) give rise to the following dispersion
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relation.

ω2 =
1

2

(
Ω2
i + 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)

1±


1−

4Ω2
i cos

2θ(3k2v2ti +
k2v2ia

k2λ2
Dh

+
np0

ne0
+1

)

(Ω2
i + 3k2v2ti +

k2v2ia
k2λ2

Dh
+

np0

ne0
+1

)2




1/2



(3.9)

where vti = (Ti/mi)
1/2 is the thermal speed for the ions, via = (ni0m/ne0mi)

1/2vth is the ion

acoustic speed and λDh = (ε0Th/ne0e
2)1/2 is electron Debye length.

In the limit

(
Ω2
i + 3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)2

≫ 4Ω2
i cos

2θ

(
3k2v2ti +

k2v2ia
k2λ2Dh +

np0

ne0
+ 1

)
, (3.10)

we obtain two modes from equation (3.9).

The first mode is the ion cyclotron mode given as

ω2
+ = Ω2

i + 3k2v2ti +
k2v2ia

k2λ2Dh +
np0

ne0
+ 1

−

Ω2
i cos

2θ

(
3k2v2ti +

k2v2ia
k2λ2

Dh
+

np0

ne0
+1

)

Ω2
i + 3k2v2ti +

k2v2ia
k2λ2

Dh
+

np0

ne0
+1

(3.11)

and the second mode is the ion acoustic mode given as

ω2
−
=

Ω2
i cos

2θ

(
3k2v2ti +

k2v2ia
k2λ2

Dh
+

np0

ne0
+1

)

Ω2
i + 3k2v2ti +

k2v2ia
k2λ2

Dh
+

np0

ne0
+1

. (3.12)

The two modes obtained for electron-positron-ion plasmas have similar characteristics as the

electron cyclotron and electron acoustic waves investigated by Lazarus et al. [2012] for a

four-component, two-temperature electron-positron plasma.

The linear dispersion relation (3.9) merely predicts the modes of the system in terms of

the frequency range. In next section, we can thus identify these modes by measuring the

periods of electric field structures.
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3.2.2 Nonlinear Analysis

In the nonlinear regime, we transform equations (3.1)-(3.5) and (3.8) to a stationary frame

s = (x − vt)/(v/Ωi) and normalize velocities with respect to the ion thermal velocity Cs =
√
Ti/mi, densities with respect to the total unperturbed electron density ne0, pressures with

respect to ne0Th and potential with respect to Th/e. We replace ∂
∂t

by −Ωi
∂
∂s

and ∂
∂x

by

(Ωi/v)
∂
∂s

in equations (3.1)-(3.8) and define the normalized electric potential ψ = eϕ/Th

and the electric field E = −
∂ψ
∂s
. We use the following initial conditions: ψ = 0, ∂ψ/∂s =

E0, ∂
2ψ/∂s2 = 0, ni = ni0 and Vx = v0cosθ at s = 0. In addition, we assume point

quasineutrality, that is, ni0 + np0 = ne0 at equilibrium.

After introducing the above definitions, the set of differential equations in the stationary

frame can be expressed as follows

∂ψ

∂s
= −E (3.13)

∂E

∂s
=M2R2ne0

ni0

(
np0
ne0

e−ψ − eψ + ñi

)
(3.14)

∂ñi
∂s

=
ñ3
i [−E −Mviyn sin θ]

( ni0

ne0
)2(M − δi)2 − 3ñiP̃i

(3.15)

∂P̃i
∂s

=
3P̃iñ

2
i [−E −Mṽiy sin θ]

( ni0

ne0
)2(M − δi)2 − 3ñiP̃i

(3.16)

∂ṽiy
∂s

= (
ne0
ni0

)
ñiM

(M − δi)

[
sin θ

(
M − (

ni0
ne0

)
(M − δi)

ñi

)
− ṽiz cos θ

]
(3.17)

∂ṽiz
∂s

=
ñiMṽiy cos θ
ni0

ne0
(M − δi)

(3.18)

where δi = v0/Cs is the ion drift, M = v/Cs is the Mach number and R = ωpi/Ωi represents

the strength of the magnetic field for a plasma with a fixed total density. The additional

superscript ′ ∼′ introduced in equations (3.14) - (3.18) indicates normalized quantities.
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3.2.3 Calculation of Initial Conditions

The initial values for most plasma parameters were prescribed, but ṽiy0 and ṽiz0 are calculated

self consistently as follows:

At equilibrium, we use the quasineutrality condition which is expressed below

ñi = ñe − ñp, (3.19)

where ñi, ñe and ñp are the normalized densities for ions, electrons and positrons respectively.

Differentiating the above equation we get

∂ñi
∂s

=
∂ñe
∂s

−
∂ñp
∂s

. (3.20)

Normalizing equations (3.6) and (3.7), we obtain

ñe = exp(ϕ) (3.21)

ñp =
np0
ne0

exp(−ϕ). (3.22)

Substituting equations (3.15), (3.21) and (3.22) into equation (3.20) , we obtain the initial

value of ṽiy as

ṽiy0 =

E0

[(
(
ni0
ne0

)2(M−δi)2−3ñiP̃i

ñ3

i

)(
1 +

np0

ne0

)
− 1

]

M sin θ
(3.23)

where E = E0 at ψ = 0.

Now, the value of ṽiz is determined by differentiating the quasineutrality condition (3.19)

twice

∂2ñi
∂s2

=
∂2ñe
∂s2

−
∂2ñp
∂s2

. (3.24)

To simplify the calculations, we introduce the following definitions:
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F1 = ñ3
i (3.25)

F2 = (
n0i

n0e

)2(M − δi)
2
− 3ñiP̃i (3.26)

A =
np0
ne0

− 1 (3.27)

Using the above definitions, equation (3.24) reduces to

∂

∂s

[(
F1

F2

)
(−E −Mṽiy sin θ)

]
= −AE2

0 (3.28)

which can be rewritten as

(−E −Mṽiy sin θ)
∂

∂s

(
F1

F2

)
+

(
F1

F2

)(
M sin θ

∂ṽiy
∂s

)
= −AE2

0 . (3.29)

Solving the above equation and using equation (3.27) , we finally get the initial value of ṽiz

as

ṽiz0 =

[
M −

(M − δi)

ñi

(
ni0
np0

)]
sin θ

cos θ
−

[(
F2

F1

)
(M − δi)

M2ñi sin θ cos θ

(
ni0
ne0

)]

[
AE2

0 + (−E −Mṽiy sin θ)
∂

∂s

(
F1

F2

)]
, (3.30)

where

∂

∂s

(
F1

F2

)
=

3ñ5
i (−E −Mṽiy sin θ)

( ni0

ne0
)2(M − δi)2 − 3ñiP̃i)2

+
12ñ6

i P̃i(−E −Mṽiy sin θ)

( ni0

ne0
)2(M − δi)2 − 3ñiP̃i)3

. (3.31)
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3.3 The numerical results and Discussion

Using the Runge-Kutta method, the set of nonlinear differential equations (3.13)-(3.18) is

solved numerically. At t = 0, the following initial conditions at s = 0; ψ = 0, E = E0, ñi =

ni0/ne0, P̃i = ni0Ti/ne0Th are given, but the initial values ṽiy0 and ṽiz0 are calculated self

consistently in Section 3.2. The parameter R in equation (3.14) characterizes the strength

of the magnetic field for fixed total plasma density. The plasma is strongly magnetized for

R ≪ 1 and weakly magnetized for R ≫ 1 . Our model of study showed that the electrostatic

waves were possible for R = 3. The parameter regime considered here is relevant for the

case of magnetospheric plasmas. The results are presented below.

Effect of the driving amplitude, E0 on the driving electric field

Our investigation is an extension of the work of Moolla et al. [2012] by including the Poisson

equation, thereby allowing for the charge separation effect. For fixed parameters M = 2.5,

δi = 0.0, ni0

ne0
= 0.5, Ti

Th
= 0.0, R = 3.0 and θ = 20, we vary the driving electric field. The

results are shown in Figures 3.1-3.4. By increasing the driver strengths E0, the period of

oscillations increases from 1.06τci to 3.44τci, where τci = 2π/Ωi is the ion cyclotron period.

As E0 increases, we observe the transition from ion-cyclotron waves to ion-acoustic waves

and the electric field structure evolves from a sinusoidal waveform to a sawtooth structure.

Bharuthram et al. [2002] and Moolla et al. [2012] found that the driving field strength for

the onset of spikes was 1.1 and 0.3 respectively while in our study this value is 0.01. The

introduction of the Poisson’s equation increases theMach number to generate the waveforms,

but for a slightly lower driving amplitude to obtain spikes.
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Figure 3.1: Numerical solution of normalized parallel electric field for an electon-positron-ion plasma for the
parameters M = 2.5, δi = 0.0, ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, θ = 20 and E0 = 0.01. The period of
the wave is Tw = 1.06τci (frequency fw = 0.94fci).
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Figure 3.2: Numerical solution of normalized parallel electric field for an electon-positron-ion plasma for the
parameters M = 2.5, δi = 0.0, ni0ne0 = 0.5, TiTh = 0.0, R = 3.0, θ = 20 and E0 = 0.1. The period of the
wave is Tw = 1.31τci (frequency fw = 0.76fci).
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Figure 3.3: Numerical solution of normalized parallel electric field for an electon-positron-ion plasma for the
parameters M = 2.5, δi = 0.0, ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, θ = 20 and E0 = 0.2. The period of the
wave is Tw = 2.06τci (frequency fw = 0.48fci).
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Figure 3.4: Numerical solution of normalized parallel electric field for an electon-positron-ion plasma for the
parameters M = 2.5, δi = 0.0, ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, θ = 20 and E0 = 0.3. The period of the
wave is Tw = 3.44τci (frequency fw = 0.29fci).

36



Effect of ion temperature

The effect of the ion-electron temperature ratio Ti/Th on the parallel electric field structures

for the following fixed parameters M = 2.50, E0 = 0.3, δi = 0.0, ni0/ne0 = 0.5, R = 3.0 and

θ = 20 is represented in Figures 3.5 - 3.8. Increasing this ratio from 0.0 to 0.2 results in the

period of the waves increasing from 3.44τci to 3.62τci. This behavior is predicted by equation

(3.12) showing that the frequency decreases with an increase in Ti/Th.

The graphs represented in Figures 3.5 - 3.8 show that the increase in cold ion temperature

does not affect the nonlinearity of the waves [Moolla et al., 2012].
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Figure 3.5: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.0. The period of the wave is Tw = 3.44τci (frequency
fw = 0.290fci).
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Figure 3.6: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.05. The period of the wave is Tw = 3.51τci(frequency
fw = 0.284fci).
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Figure 3.7: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.15. The period of the wave is Tw = 3.56τci (frequency
fw = 0.280fci).
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Figure 3.8: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.2. The period of the wave is Tw = 3.62τci(frequency
fw = 0.273fci).

41



Effect of positron density

We next investigate the effect of the positron density on the electric field structures. The

positron density is calculated from quasineutrality condition (np0/ne0 = 1−ni0/ne0 at s = 0).

It is seen from Figures 3.9 - 3.12 that as the positron density increases from 0.3 to 0.5, the

waveforms become more nonlinear and the period of these waveforms increases from 1.94τci

to 2.83τci. These results are similar to those of Moolla et al. [2012]. Thus, for both a

quasineutral and charge separated plasma of this type, an increase in positron densities

enhances nonlinearity making spiky structures easier to generate.
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Figure 3.9: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, θ = 20, Ti/Th = 0.0 and np0/ne0 = 0.3. The period of the wave is Tw = 1.94τci (frequency
fw = 0.515fci).
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Figure 3.10: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, θ = 20, Ti/Th = 0.0 and np0/ne0 = 0.35. The period of the wave is Tw = 2.20τci (frequency
fw = 0.454fci).
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Figure 3.11: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, θ = 20, Ti/Th = 0.0 and np0/ne0 = 0.4. The period of the wave is Tw = 2.43τci (frequency
fw = 0.411fci).
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Figure 3.12: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, δi = 0.0, θ = 20, Ti/Th = 0.0 and np0/ne0 = 0.5. The period of the wave is Tw = 2.83τci (frequency
fw = 0.353fci).
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Effect of ion drift

We now investigate the effect of the ion drift velocity on the electric field structures as shown

in Figures 3.13 - 3.17 for the fixed the parameters E0 = 0.3, M = 2.5, R = 3.0, θ = 20,

Ti/Th = 0.0 and ni0/ne0 = 0.5. It is seen that for antiparallel ion drift (δi < 0), the periods

of the waves are significantly higher compared to parallel drift (δi > 0). From anti-parallel

to parallel drifts, the period of the spikes decrease from 4.12τci for δi = −0.20 to 2.81τci for

δi = 0.20. However, the nonlinearity is unaffected and all waveforms are spiky in nature.

These results are similar to those of Moolla et al. [2012] confirming satellite observations.

Noting that, these observations show that the period of the spiky structures varies rapidly

[Kojima et al., 1994], and this could be due to the drifting particles being accelerated in

bursts [Moolla et al., 2003].
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Figure 3.13: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, θ = 20, Ti/Th = 0.0, ni0/ne0 = 0.5 and δi = −0.20. The period of the wave is Tw = 4.12τci
(frequency fw = 0.242fci).
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Figure 3.14: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, θ = 20, Ti/Th = 0.0, ni0/ne0 = 0.5 and δi = −0.10. The period of the wave is Tw = 3.83τci
(frequency fw = 0.261fci).
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Figure 3.15: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, θ = 20, Ti/Th = 0.0, ni0/ne0 = 0.5 and δi = 0.0. The period of the wave is Tw = 3.46τci (frequency
fw = 0.289fci).
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Figure 3.16: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, θ = 20, Ti/Th = 0.0, ni0/ne0 = 0.5 and δi = 0.10. The period of the wave is Tw = 3.08τci (frequency
fw = 0.324fci).
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Figure 3.17: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, M = 2.5,
R = 3.0, θ = 20, Ti/Th = 0.0, ni0/ne0 = 0.5 and δi = 0.20. The period of the wave is Tw = 2.81τci (frequency
fw = 0.355fci).
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Effect of Propagation angle θ

Figures 3.18 - 3.21 illustrate the normalized electric field for different values of the angle of

wave propagation θ for fixed parameters M = 2.5, δi = 0.0, ni0/ne0 = 0.5, Ti/Th = 0.0,

R = 3.0 and E0 = 0.3. We vary θ from 20 to 800 and we observe that the period of oscillations

decreases slightly from 3.45τci to 3.34τci i.e there is a slight increase in frequency [Maharaj

et al., 2008; Reddy et al., 2006]. The variation of propagation angle has no effect on the

wave structures. This confirms the assumption of [Reddy et al., 2002; Moolla et al., 2007,

2012], that the angle of wave propagation with the earth’s magnetic field may be set to two

degree (θ = 20) for parallel propagation during investigation of electrostatic waves in Earth’s

magnetosphere.
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Figure 3.18: Numerical solution of normalized parallel electric field for the parameters M = 2.5, δi = 0.0,
ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, E0 = 0.3 and θ = 20.
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Figure 3.19: Numerical solution of normalized parallel electric field for the parameters M = 2.5, δi = 0.0,
ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, E0 = 0.3 and θ = 250.
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Figure 3.20: Numerical solution of normalized parallel electric field for the parameters M = 2.5, δi = 0.0,
ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, E0 = 0.3 and θ = 500.
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Figure 3.21: Numerical solution of normalized parallel electric field for the parameters M = 2.5, δi = 0.0,
ni0/ne0 = 0.5, Ti/Th = 0.0, R = 3.0, E0 = 0.3 and θ = 800.
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Effect of Mach number M

Figures 3.22 -3.25 illustrate the effect of the Mach number on the parallel electric field. We

have varied the Mach number M by keeping E0 = 0.3, R = 3.0, δi = δe = δp = 0.0, θ = 20,

Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 constant. Our investigations show that the value of M

needs to be in a narrow range for the electric field structures to exist. Varying M from 2.2

to 2.5, the period of oscillations decreases slightly from 3.45τci to 3.36τci with no change in

nonlinearity. The findings are in agreement with the results found by Moolla et al. [2007].
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Figure 3.22: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, R = 3.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 2.2.
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Figure 3.23: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, R = 3.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 2.3.
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Figure 3.24: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, R = 3.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 2.4.

61



-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  10  20  30  40  50  60

 Ε
 

 S 
Figure 3.25: Numerical solution of normalized parallel electric field for the parameters E0 = 0.3, R = 3.0 ,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 2.5.
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Chapter 4

Nonlinear waves in electron - positron

- ion plasmas including the full

dynamics for all species

4.1 Literature Review

Observations made by different spacecrafts have established the presence of broadband elec-

trostatic noise (BEN) in various regions of the earth’s magnetosphere. Several theoretical

models have been introduced in order to explain BEN detected in such environments. Dur-

ing these investigations, many authors [Reddy et al., 2002, 2006; Bharuthram et al., 2002;

Moolla et al., 2003, 2007] considered a magnetized plasma consisting of hot and cold species.

The hot species were governed by the Boltzmann density distribution function and the cold

species were governed by the fluid equations. They either used the quasi-neutrality condition

or the Poisson equation to close their system of equations. Their results pointed out that

the nonlinear coupling oscillations generates spiky structures with the period varying from

ion acoustic range to the ion cyclotron [Bharuthram et al., 2002; Reddy et al., 2002].

Moolla et al. [2003] extended the work of Reddy et al. [2002] by including the Poisson

equation. Their model was a three component plasma consisting of cold electrons and cold
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ions, and hot electrons, where all species were governed by the fluid equations. They found

that the nonlinear coupling between the high frequency electron-cyclotron and electron-

acoustic modes could explain the spiky structures in the high frequency region of BEN.

More recently, Moolla et al. [2007] extended their previous high frequency study by con-

sidering finite temperature effects. They investigated the pulse widths and periods of the

waves and concluded that the ratio of the pulse widths to the periods of the electrostatic

waves (ESW) is a constant. They also pointed out that with the inclusion of a finite cool

electron temperature, the waves broadened and the nonlinearity was enhanced.

In this chapter, we explore the extension of Chapter 3, whereby all species are described

by fluid equations.

4.2 Basic theory and Model of fluid equations governing the plasma

dynamics

We consider a collisionless, magnetized three-component plasma consisting of warm ions (i)

and hot positrons (p) and electrons (e) in the presence of an external magnetic field B0

which assumed to be in the x− z plane and making an angle θ with the x- axis. The basic

equations, governing the dynamical system, are the equations of continuity and momentum

which are written as

∂nj
∂t

+
∂njvjx
∂x

= 0, (4.1)

∂vjx
∂t

+ vjx
∂vjx
∂x

+
1

njmj

∂pj
∂x

= −
εje

mi

∂ϕ

∂x
+ εjΩjvjy sin θ, (4.2)

∂vjy
∂t

+ vjx
∂vjy
∂x

= εjΩjvjz cos θ − εjΩjvjx sin θ, (4.3)

∂vjz
∂t

+ vjx
∂vjz
∂x

= −εjΩjvjy cos θ, (4.4)

∂pj
∂t

+ vjx
∂pj
∂x

+ 3pj
∂vjx
∂x

= 0. (4.5)
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Equations (4.1) - (4.5) are closed with the Poisson equation

ε0
∂2ϕ

∂x2
= −e(np − ne + ni). (4.6)

In equations (4.1)-(4.6), εj = −1(1) for j = e(i, p), Ωj = eB0/mj is the ion (electron)

cyclotron frequency for the j = i(e, p), nj is the density of the j th species, vjx,vjy and vjz

are the components of the velocity of the j species along the x, y and z directions.

4.2.1 Nonlinear Analysis

For the nonlinear analysis, the new physical stretch variable depending on s and v are

introduced (see 3.2.2). We transform equations (4.1)-(4.6) to a stationary frame using s =

(x − vt)/(v/Ωi) and normalize velocities with respect to the ion thermal velocity Cs =
√
Ti/mi, densities with respect to the total unperturbed electron density ne0, pressures with

respect to ne0Th and potential with respect to Th/e. We replace ∂
∂t

by −Ωi
∂
∂s

and ∂
∂x

by

(Ωi/v)
∂
∂s

in equations (4.1)-(4.6) and define the normalized electric potential ψ = eϕ/Th

and electric field E = −
∂ψ
∂s
. We use the following initial conditions: ψ = 0, ∂ψ/∂s =

E0, ∂
2ψ/∂s2 = 0, nj = nj0 and Vjx = vj0cosθ at s = 0. In addition, we assume point

quasineutrality, that is, ni0 + np0 = ne0 at equilibrium. The results obtained are expressed

as a set of differential equations given below:

∂ψ

∂s
= −E (4.7)

∂E

∂s
=M2R2ne0

ni0
(ñp + ñi − ñe) (4.8)

∂ñe
∂s

=
ñ3
e[E + mi

m
Mṽey sin θ]

(M − δe)2 − 3ñeP̃e
(4.9)

∂P̃e
∂s

=
3P̃eñ

2
e[E + mi

m
Mṽey sin θ]

(M − δe)2 − 3ñepP̃ e
(4.10)
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∂ṽey
∂s

=
(mi

m

) ñeM

(M − δe)
[ṽez cos θ −M sin θ] +

(mi

m

)
M sin θ (4.11)

∂ṽez
∂s

= −

(mi

m

) nenMṽey cos θ

(M − δe)
(4.12)

∂ñp
∂s

=
ñ3
p[−E −

mi

m
Mṽpy sin θ](

np0

ne0

)2
(M − δp)2 − 3

(
np0

ne0

)
ñpP̃p

(4.13)

∂P̃p
∂s

=
3P̃pñ

2
p[−E −

mi

m
Mṽpy sin θ](

np0

ne0

)2
(M − δp)2 − 3

(
np0

ne0

)
ñpP̃p

(4.14)

∂ṽpy
∂s

=
(mi

m

)(ne0
np0

)
ñpM

(M − δp)
[M sin θ − ṽpz cos θ]−

(mi

m

)
M sin θ (4.15)

∂ṽpz
∂s

=
(mi

m

) ñpMṽey cos θ

(M − δp)
(4.16)

∂ñi
∂s

=
ñ3
i [−E −Mṽiy sin θ](

ni0

ne0

)2
(M − δi)2 − 3ñiP̃i

(4.17)

∂P̃i
∂s

=
3P̃iñ

2
i [−E −Mṽiy sin θ](

ni0

ne0

)2
(M − δi)2 − 3ñiP̃i

(4.18)

∂ṽiy
∂s

=
ñiM(

ni0

ne0

)
(M − δi)

[M − ṽiz cos θ]−M sin θ (4.19)

∂ṽiz
∂s

=
ñiMṽiy cos θ(
ni0

ne0

)
(M − δi)

(4.20)

where m is the mass of the electrons/positrons, δj = vj0/Cs is the normalized flow velocity of

the j th species, M = v/Cs is the Mach number and R = ωpi/Ωi. The additional superscript

′ ∼′ introduced in equations (4.8)-(4.20) indicates normalized quantities.
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4.2.2 Calculation of Initial Conditions

For calculation of the initial plasma parameters, we apply the same technique as in the

previous chapter. The values of ṽiy0 and ṽiz0 are calculated self consistently as follows:

At equilibrium, we recall the quasineutrality condition which is expressed below as

ñi = ñe − ñp. (4.21)

Differentiating the above equation we get

∂ñi
∂s

=
∂ñe
∂s

−
∂ñp
∂s

. (4.22)

For convenience, the following definitions are introduced

F1 = ñ3
i (4.23)

F2 =

(
ni0
ne0

)2

(M − δi)
2
− 3ñiP̃i (4.24)

F3 = ñ3
p

[
− E −

mi

m
Mṽpy sin θ

]
(4.25)

F4 =

(
np0
ne0

)2

(M − δp)
2
− 3

(
np0
ne0

)
ñpP̃p (4.26)

F5 = ñ3
e

[
E +

mi

m
Mṽey sin θ

]
(4.27)

F6 = (M − δe)
2
− 3ñeP̃e. (4.28)

Substituting equations (4.9),(4.13) and (4.17) into equation (4.22) and using the above def-
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initions, we obtain the value of ṽiy0 as

ṽiy0 =
E0 +

(
F3

F4

−
F5

F6

)(
F2

F1

)

M sin θ
. (4.29)

Now, the value of ṽiz0 is determined by twice differentiating the quasineutrality condition

∂2ñi
∂s2

=
∂2ñe
∂s2

−
∂2ñp
∂s2

. (4.30)

Using the above definitions, equation (4.30) reduces to

∂

∂s

(
F1

F2
[−E −Mṽiy sin θ]

)
=

∂

∂s

(
F5

F6

)
−

∂

∂s

(
F3

F4

)
. (4.31)

Solving (4.31) and using equation (4.19), we get the value of ṽiz0

ṽiz0 =

(
ni0

ne0

)
(M − δi)

M2ñi sin θ cos θ

{
∂

∂s

(
F5

F6

)
−

∂

∂s

(
F3

F4

)
− [−E0 −Mṽiy0 sin θ]

∂

∂s

(
F1

F2

)}

−

(
ni0

ne0

)
(M − δi)

ñi
−

sin θ

cos θ
+

M

cos θ
, (4.32)

where

∂

∂s
(F1) =

3n5
in[−E −Mṽiy sin θ](

ni0

ne0

)2
(M − δi)2 − 3ñiP̃i

, (4.33)

∂

∂s
(F2) = −12P̃i

ñ3
i [−E −Mṽiy sin θ](

ni0

ne0

)2
(M − δi)2 − 3ñiP̃i

, (4.34)

∂

∂s
(F3) =

3ñ5
p

(
−E −

mi

m
Mṽpy sin θ

)2
(
np0

ne0

)2
(M − δp)2 − 3

(
np0

ne0

)
ñpP̃p

− ñ3
p

(mi

m

)2
M sin θ

{(
ne0
np0

)
ñpM

(M − δp)
[M sin θ − ṽpz cos θ]−M sin θ

}
(4.35)
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∂

∂s
(F4) = −

12P̃pñ
3
p

(
np0

ne0

)
[−E −

mi

m
Mṽpy sin θ]

(
np0

ne0

)
(M − δp)2 − 3ñpP̃p

, (4.36)

∂

∂s
(F5) =

3ñ5
e

(
E + mi

m
Mṽey sin θ

)2

(M − δe)2 − 3ñeP̃e
+ ñ3

e

(mi

m

)2
M sin θ

{
ñeM

(M − δe)
[ṽez cos θ −M sin θ] +M sin θ

}
(4.37)

and

∂

∂s
(F6) = −

12P̃eñ
3
e

(
E + mi

m
Mṽey sin θ

)2

(M − δe)2 − 3ñeP̃e
. (4.38)
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4.3 Numerical Results and Discussion

The set of nonlinear differential equations (4.7)-(4.20) is solved numerically using the Runge-

Kutta method. The initial values of ṽey, ṽez, ṽpy, ṽpz are given but ṽiy0 and ṽiz0 are calculated

self consistently. We shall investigate the effects of the driving amplitude, temperature,

densities, Mach number, propagation angle and drift velocity of the different species on the

nonlinear wave structures.

Effect of the driving amplitude, E0 on the driving electric field

For fixed parameters M = 3.5, δe = δp = δi = 0.0, ni0/ne0 = 0.5, Ti/Th = 0.0, R = 5.0

and θ = 20, we vary the driving electric field E0 from 0.35 to 2.5. The results are presented

in Figures (4.1)-(4.4). These figures show that increasing E0, results in the increasing the

period of oscillations from 1.12τci to 2.43τci, where τci = 2π/Ωi is the ion cyclotron period.

We observe the transition from ion-cyclotron waves to ion-acoustic waves as the electric field

structures evolve from a sinusoidal waveform to a sawtooth structure. The present plasma

model can generate spiky structures for a minimum driving field E0 = 0.35, while the plasma

models investigated by Bharuthram et al. [2002] and Moolla et al. [2012] required a driving

field strength 1.1 and 0.3 respectively for the onset of spikes. Comparing these results to

those obtained in the previous Chapter, we observe the increase in the driving field for the

onset of spikes from 0.01 for the Boltzmann density distribution to 0.35 for full dynamical

system, while the value of R increases from 3 to 5.
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Figure 4.1: Numerical solution of normalized parallel electric field for the parameters M = 3.5, R = 5.0,
δi = δe = δp = 0.0, ni0/ne0 = 0.5, np0/ne0 = 0.5, Ti/Th = 0.0, θ = 20 and E0 = 0.35.

.
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Figure 4.2: Numerical solution of normalized parallel electric field for the parameters M = 3.5, R = 5.0,
δi = δe = δp = 0.0, ni0/ne0 = 0.5, np0/ne0 = 0.5, Ti/Th = 0.0, θ = 20 and E0 = 0.5.

.
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Figure 4.3: Numerical solution of normalized parallel electric field for the parameters M = 3.5, R = 5.0,
δi = δe = δp = 0.0, ni0/ne0 = 0.5, np0/ne0 = 0.5, Ti/Th = 0.0, θ = 20 and E0 = 1.5.

.
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Figure 4.4: Numerical solution of normalized parallel electric field for the parameters M = 3.5, R = 5.0,
δi = δe = δp = 0.0, ni0/ne0 = 0.5, np0/ne0 = 0.5, Ti/Th = 0.0, θ = 20 and E0 = 2.5.

.
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Effect of the temperature ratio Ti/Th

Figures 4.5-4.8 show the effect of the ion-electron temperature ratio Ti/Th on the parallel

electric field structures for the following fixed parameters M = 3.50, E0 = 2.5, δe = δp =

δi = 0.0, ni0/ne0 = 0.5, R = 5.0 and θ = 20. The variation of the ion-electron temperature

ratio does not affect the nonlinearity of the waves (see Fig. 4.9) and the wave structures are

spiky in nature [Moolla et al., 2012]. However, increasing this ratio from 0.0 to 0.2 results in

the period of the waves increasing from 2.43τci to 2.57τci. This due to the dispersive effect

results in broadering of the waves.
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Figure 4.5: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.0.

.
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Figure 4.6: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.05.

.

77



-3

-2

-1

 0

 1

 2

 3

 0  10  20  30  40  50  60

 Ε
 

 S 

Figure 4.7: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.15.

.
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Figure 4.8: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, ni0/ne0 = 0.5, θ = 20 and Ti/Th = 0.2.

.
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For simplification we present the figures (4.5) - (4.8) on one system of axes.
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Figure 4.9: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, ni0/ne0 = 0.5 and θ = 20. The curves present the effects of the temperature
for different values of ratio Ti/Th = 0.0 (dashddot=red), 0.05 (dashdot=blue), 0.15 (broken=green), 0.2
(dotted=black).

.
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Effect of the density ratio np0/ne0

Figures 4.10 - 4.13 illustrate the effect of the positron density on the parallel electric field

structures for the following fixed parameters M = 3.5, E0 = 2.5, δe = δp = δi = 0.0, R = 5.0

and θ = 20. It is seen that as np0/ne0 increases from 0.3 to 0.5, the waveforms become more

nonlinear and the period of these waveforms increases from 1.31τci to 2.43τci respectively.

The increase in positron densities enhances nonlinearity, making spiky structures easier to

generate. These results are similar to those of Moolla et al. [2012].
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Figure 4.10: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0 and ni0/ne0 = 0.7.
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Figure 4.11: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0 and ni0/ne0 = 0.65.
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Figure 4.12: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0 and ni0/ne0 = 0.6.
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Figure 4.13: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0 and ni0/ne0 = 0.5.
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Effect of Mach number M

Figures 4.14 - 4.17 illustrate the effect of the Mach number on the parallel electric field

structures for the following fixed parameters E0 = 2.5, δe = δp = δi = 0.0, np0/ne0 =

ni0/ne0 = 0.5, R = 5.0 and θ = 20. It is seen that as the Mach number increases from 3.5

to 4.0, the period of these waveforms decreases from 2.38τci to 2.43τci. Our studies showed

that the value of M needs to be in a narrow range for the electric field structures to exist.

Hence, varying the values of M in this range shows little effect on the waves. These results

are similar to those of Moolla et al. [2007].
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Figure 4.14: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, R = 5.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 3.5.
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Figure 4.15: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, R = 5.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 3.7.
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Figure 4.16: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, R = 5.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 3.8.
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Figure 4.17: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, R = 5.0,
δi = δe = δp = 0.0, θ = 20, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and M = 4.0.
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Effect of the propagation angle θ

Figures 4.18 - 4.21 illustrate the effect of the propagation angle on the parallel electric field

structures for the following fixed parameters: E0 = 2.5, δe = δp = δi = 0.0, np0/ne0 =

ni0/ne0 = 0.5, R = 5.0 and M = 3.5. We vary the propagation angle from θ = 00 to θ = 150.

This results in increasing the period of oscillations from 2.38τci to 3.18τci. It is seen that

there is a decrease in frequency with no effect on nonlinearity. In this study, the maximum

propagation angle is approx θ = 150, beyond this value our model does not present the

waveforms similar to those observed by Matsumoto et al. [1994]. The assumption of Reddy

et al. [2002] and Moolla et al. [2007] showing that the angle of wave propagation with the

earth’s magnetic field may be set to two degree (θ = 20) during investigation of electrostatic

waves in Earth’s magnetosphere remains reasonable.
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Figure 4.18: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and θ = 20.
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Figure 4.19: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and θ = 60.
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Figure 4.20: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and θ = 100.
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Figure 4.21: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = δp = 0.0, Ti/Th = 0.0, np0/ne0 = ni0/ne0 = 0.5 and θ = 150.
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Effect of the electron drift

The effect of the electron drift velocity on the electric field structures for the fixed the

parameters: E0 = 2.5, M = 3.5, R = 5.0 , θ = 20, Ti/Th = 0.0,δi = δp = 0.0 and

np0/ne0 = ni0/ne0 = 0.5 are depicted in Figures 4.22 - 4.24. It is seen that for antiparallel

electron drifts (δe < 0), the periods of the waves are significantly lower compared to parallel

drifts (δe > 0). Consequently, the period of the waves increases from 2.25τci for δe = −0.10

to 2.45τci for δe = 0.10. However, the nonlinearity is unaffected and all waveforms are spiky

in nature. Similar results have been reported by Moolla et al. [2007] during an investigation

of the effect of the cool electron drift.
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Figure 4.22: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δe = −0.10.
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Figure 4.23: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δe = 0.0.
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Figure 4.24: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δe = 0.10.
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Effect of the ion drift

The effect of the ion drift velocity on the electric field structures is presented in Figures

4.25 - 4.27 for the fixed the parameters E0 = 2.5, M = 3.5, R = 5.0, θ = 20, Ti/Th = 0.0,

δe = δp = 0.0 and np0/ne0 = ni0/ne0 = 0.5. It is seen that for antiparallel ion drift (δi < 0),

the periods of the waves are significantly higher compared to parallel drift ( δi > 0). From

anti-parallel to parallel drifts the period of spikes decreases from 2.52τci for δi = −0.10 to

2.19τci for δi = 0.10. However, the nonlinearity is unaffected and all waveforms are spiky in

nature. These results are similar to those of Moolla et al. [2012] and are in agreement with

the satellite observations showing that the period of the spiky structures vary rapidly due

to the drifting particles being accelerated in bursts [Moolla et al., 2003].
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Figure 4.25: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δe = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δi = −0.10.
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Figure 4.26: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δe = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δi = 0.0.

102



-3

-2

-1

 0

 1

 2

 3

 0  10  20  30  40  50  60

 Ε
 

 S 

Figure 4.27: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δe = δp = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δi = 0.1.
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Effect of the positron drift

We investigate the effect of the positron drift velocity on the electric field structures as

shown in Figures 4.28-4.30 for the fixed the parameters: E0 = 2.5, M = 3.5, R = 5.0,

θ = 20, Ti/Th = 0.0, δi = δe = 0.0 and np0/ne0 = ni0/ne0 = 0.5. It is seen that for

antiparallel positron drift (δp < 0), the period of the waves is significantly lower compared

to parallel drift ( δp > 0). From anti-parallel to parallel drift the frequency of electrostatic

waves decreases, i.e the period of spikes increases from 2.25τci for δp = −0.10 to 2.45τci for

δp = 0.10. However, the nonlinearity is unaffected and all waveforms are spiky in nature.

The behavior of the spiky electric field is similar to that of electron drift. We note that the

period of the spiky structures for positrons and electrons drift increases from antiparallel to

parallel drifts, while, for the case of the ion drift velocity δi, the opposite trend occurs.
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Figure 4.28: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δp = −0.10.
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Figure 4.29: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δp = 0.0.
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Figure 4.30: Numerical solution of normalized parallel electric field for the parameters E0 = 2.5, M = 3.5,
R = 5.0, δi = δe = 0.0, θ = 20, Ti/Th = 0.5, np0/ne0 = ni0/ne0 = 0.5 and δp = 0.1.
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Chapter 5

Solitary waves in three-component

electron - positron - dust plasmas

5.1 Literature Review

Dust particles are an extremely massive species compared to ions. These dust particles,

together with electrons-positrons and ions are present in astrophysical environments [Horanyi

and Mendis, 1986; Havnes et al., 1996; Verheest, 1999; Samarian et al., 2001; Shukla and

Mamun, 2002; Mamun and Shukla, 2005]. The dust grains are characterized by their heavy

mass (109 − 1012 proton mass), their sizes vary from nanometers to millimeters and they

may be either negatively or positively charged, depending on the plasma environment, with

charges varying from hundred to ten thousand times the charge on the electron. It is now

well known that the dust particles are ubiquitous in various space plasmas including the

Earth’s magnetosphere [Goertz, 1989].

Dusty plasmas can also be observed in the flame of a humble candle, in the zodiacal light,

in volcanic eruptions and in ball lightning [Abrahamson and Dinniss, 2000; Abrahamson,

2002]. The same dust grains with size distributions have also been detected in fusion plas-

mas [Winter, 1998]. Moreover, the coexistence of positively and negatively charged dust can

be found in laboratory plasmas [Mendis and Rosenberg, 1994; Ma and Liu, 1997].
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The presence of heavy dust particles can significantly modify the parameter regime of electro-

static structures and this plasma modification generates new modes such as dust-ion acoustic

mode, dust cyclotron mode and dust drift mode [Rao et al., 1990; Shukla and Silin, 1992].

The applicability of dusty plasmas is encountered in industries [Selwyn et al., 1989], in

such technologies as microelectronics [Vladimirov and Ostrikov, 2004], in plasma spraying

and in electrostatic painting. Recently, the novel applications of dusty plasmas in micro-

biology has been suggested [Laroussi et al., 2003], as well as in medicine [Stoffels et al.,

2003].

The presence of dust grains in a plasma resulting in two interesting effects, viz the re-

duction of the number of free mobile electrons, as some of them are absorbed on the grains

[Moolla et al., 2005] and the introduction of a new time scale [Mamun and Hassan, 2000].

These two effects are of interest in understanding the behavior of solitary waves in dusty

plasmas. One necessarily is restricted to the study of only one solitary wave, sometimes

called a soliton.

Solitons are a particular type of nonlinear waves (solitary) with finite energy and necessary

conditions for its existence. These waves conserve their shape along their propagation.

They are a fundamental phenomenon in nonlinear dynamics and continue to attract the

attention of researchers from the physical and mathematical sciences, due to their wide

range of applications. Solitons were found in water waves, solid-state physics, plasma physics,

particle physics, biological systems and nonlinear optics.

Several studies on the existence and behaviors of nonlinear low frequency soliton and

double layer structures propagating in different plasmas have been performed experimentally

[Ikezi et al., 1970; Ikezi, 1973], as well as theoretically [Tagare, 1973; Abrol and Tagare, 1980;

Gell and Roth, 1981]. Therefore, understanding soliton dynamics is vital for understanding

the dynamics of different non-solitonic waves.

The study of solitary structures with negative potentials was motivated by the Viking

satellite observations. Many authors developed different theoretical models to investigate

nonlinear ion acoustic waves in multi-component plasmas [Yadav and Sharma, 1990; Reddy
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and Lakhina, 1991; Ghosh et al., 1996; Lakhina, 2004]. Baboolal [1988] studied solitons and

classified them into two categories, namely: small and large amplitude.

In plasmas, the existence of the ion acoustic solitary waves of small but finite amplitudes

was first theoretically predicted by Washimi and Taniuti [1966] and it was shown that the

linear study can mostly be applied to small amplitude solitary waves.

Large amplitude solitary waves can only be studied analytically if they are assumed to

be stationary from the onset, using pseudopotential methods, such as the Sagdeev analysis

[Sagdeev, 1966]. It has been shown that a pair plasma, consisting of electrons and positrons,

is highly symmetric. Particularly interesting in our investigation, is to conduct a study in

such plasmas contaminated with charged dust particles, usually treated as an extremely

heavy, negative ion component. These plasmas can occur in supernovae and pulsar envi-

ronments, as well as in cluster explosions by intense laser beams in laboratory experiments

[Shukla and Marklund, 2004; Saberian et al., 2015] .

In this chapter, we study the conditions under which electrostatic solitons may exist in a

plasma consisting of electrons, positrons and positive dust grains, and establish the existence

domains for solitons in an appropriate parameter space. Such existence diagrams are fruitful

both in interpretation of electrostatic spikes or other persistent wavelike structures observed

in magnetospheric environments and the findings obtained in laboratory experiments. Our

model is limited to recombination (annhilation) times for the electrons and positrons that

are sufficiently large to work on the dust time scale.

5.2 Basic theory and Model of fluid equations governing the plasma

dynamics

We consider a collisionless, one-dimensional unmagnetized three component electron-positron-

dust (e-p-d) plasma consisting of a hot species of electrons (eh) and positrons (ph), and cool

dust (dc). The cool dust grains carry a positive charge and are governed by the fluid equa-

tions while the hot electron and positron densities are assumed to be Boltzmann distributed.
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At equilibrium the densities and temperatures of the electrons and positron are different.

To describe the processes occurring in e-p-d plasmas, we will employ the continuity and

momentum equations for positive dust particles:

∂nd
∂t

+
∂ndvdx
∂x

= 0 (5.1)

∂vdx
∂t

+ vdx
∂vdx
∂x

+
1

ndmd

∂pd
∂x

= −
qd
md

∂ϕ

∂x
. (5.2)

In this model, the Boltzmann density distribution for hot species is given by

nph = np0 exp

(
−
eϕ

Tp

)
(5.3)

neh = ne0 exp

(
eϕ

Te

)
(5.4)

Equations (5.1) -(5.4) are closed with the Poisson equation

ε0
∂2ϕ

∂x2
= −e(nph − neh + ndZd) (5.5)

where qd = eZd is the dust charge, nd is the dust density, vdx is the dust velocity along

the x direction, pd is the dust pressure, ϕ is the electrostatic potential and md is the dust

mass.

To obtain the linear dispersion relation, we assume that equations (5.1) - (5.5) have

harmonic solutions, i.e. all variables are of the form exp(i(kx − ωt)). We introduce the

following definitions: ∂/∂x −→ ik and ∂/∂t −→ −iω. For linearization, we have neglected

the ’1’ for the first order in the continuity equation and all terms which are second and
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higher order in the momentum equation. The continuity equation becomes:

−ndciω + ikvdxnd0 = 0 (5.6)

for which

ndc =
knd0
ω

vdx. (5.7)

Linearizing equation (5.2), we can express the velocity for cool dust grains as:

vdx =
kqdϕ

ωmd
. (5.8)

Combining equations (5.7) and (5.8), we obtain the expression for the dust density as:

nd =
k2nd0qdϕ

ω2md

. (5.9)

Linearizing equations (5.3) and (5.4), we have dropped the second and higher order

terms in the Taylor series expansion of the exponential so that the perturbed densities of

hot species become:

neh = ne0
eϕ

Te
(5.10)

nph = −np0
eϕ

Tp
(5.11)

Substituting equations (5.9), (5.10) and (5.11) into the Poisson equation (5.5), we get

1 +
e2

ε0k2
np0Te + ne0Tp

TpTe
=
ω2
pd

ω2
. (5.12)

The general dispersion relation for a multicomponent plasma consisting of hot electrons,

positrons and cold dust is obtained to be:

ω2 =
k2λ2Deω

2
pd

k2λ2De + (
np0

ne0
σ + 1)

, (5.13)
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where σ = Te
Tp

and ωpd =
√

nd0Z
2

d
e2

ε0md
.

Introducing the definitions VD = ωpdλD and λD = ε0TpTe/e
2(np0Te + ne0Tp), equation

(5.13) reduces to

ω =
kVD√

k2λ2D + (
np0

ne0
σ + 1)

, (5.14)

where, VD is the dust acoustic speed.

For Te ≪ Tp, equation (5.14) can be rewritten as

ω =
kVD√
k2λ2D + 1

. (5.15)

The above equation is known as the dispersion relation for dust acoustic waves which is

similar to the results obtained by [Moolla et al., 2005; Shukla and Eliasson, 2009].

5.3 Arbitrary Amplitude solitary waves in an electron-positron-

dust plasma

We consider wave propagating in the x direction with a constant speed and transform from

the laboratory frame of reference to a new reference frame related to the wave motion where

all the fluid equations (5.1), (5.2) and (5.5), are assumed to depend on a single variable

s = x−Mt, whereM is the dimensionless normalized solitary wave velocity (Mach number).

With this transformation ∂
∂t

−→ −M ∂
∂s
, ∂
∂x

−→
∂
∂s
, the continuity, momentum and

Poisson equtions become

−M
∂nd
∂s

+
∂ndvdx
∂s

= 0, (5.16)

−M
∂vdx
∂s

+ vdx
∂vdx
∂s

+
1

ndmd

∂pd
∂s

= −
qd
md

∂ϕ

∂s
, (5.17)
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ε0
∂2ϕ

∂s2
= −e(nph − neh + ndZd). (5.18)

Normalizing and integrating equations (5.16) and (5.17) by using the boundary condi-

tions, e.g., densities and pressure tend to their undisturbed values and potential tends to

zero at s −→ ∞: nd −→ α, vd −→ 0, ψ −→ 0, ∂ψ
∂s

−→ 0, we get respectively

nd =
Mα

M − vdx
(5.19)

v2d
2

−Mvd + Zd
m

md
ψ = 0, (5.20)

where ψ = eϕ
Te
.

Substituting (5.19) into (5.20), we obtain the following quadratic equation

(Mα)2 − [M2
− 2Zd(m/md)ψ]n

2
d = 0, (5.21)

where nd is the dust density normalized to ne0.

The above equation can be rewritten as

n2
d =

(Mα)2

M2 − 2Zd(m/md)ψ
(5.22)

or

nd =
Mα√

M2 − 2Zd(m/md)ψ
(5.23)

which satisfies our boundary conditions at ψ = 0. This is the expression for the density of

the positivelly charged dust grains.

Equations similar to (5.23) have been obtained by various authors [Rao et al., 1990;

Mamun, 1999; Moolla et al., 2005] and several methods have been used to obtain the corre-

sponding pseudopotential. However, in order to obtain an integrable form of nd in deriving

the corresponding Sagdeev potential analytically, we have followed the approach of Shukla

and Mamun [2002].
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5.3.1 Sagdeev pseudopotential Approach

The full nonlinear solution for an acoustic soliton are obtained by using Sagdeev pseudopo-

tential method [Sagdeev, 1966]. First, we normalize equations (5.3), (5.4) and (5.18) and

get

nphn =
np0
ne0

exp(−σepψ), (5.24)

nehn = exp(ψ), (5.25)

∂2ψ

∂s2
= nehn − nphn − Zdnd, (5.26)

where σep =
Te
Tp

is the temperature ratio between electrons and positrons.

Substituting equations (5.23), (5.24) and (5.25) into (5.26), one obtains the Poisson

equation in dimensionless form

∂2ψ

∂s2
= eψ −

np0
ne0

e−σepψ −
Mα√

M2 − 2Zd(m/md)ψ
. (5.27)

Multiplying the above equation by dψ/ds, we integrate with respect to s and get an

’energy integral’ for moving particle of unit mass with velocity dψ/ds at the position dψ in

a nonlinear potential V (ψ).

1

2

(
dψ

ds

)2

+ V (ψ,M) = 0, (5.28)

which can be expressed as [Popel et al., 1995]

d2ψ

ds2
= −V ′(ψ), (5.29)

where, the prime denotes the derivative with respect to ψ. Equation (5.28) is known as the

Sagdeev equation.

We recall the boundary conditions at s −→ ∞: nd −→ α, vd −→ 0, ψ −→ 0, ∂ψ
∂s

−→ 0.
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Under these conditions, equation (5.27) can be reduced to equation (5.28) and the Sagdeev

potential V (ψ,M) is given by

V (ψ,M) =

∫ ψ

0

Mα√
M2 − 2Zd(m/md)ψ

−

∫ ψ

0

eψdψ +

∫ ψ

0

np0
ne0

e−σepψdψ. (5.30)

After integration, the Sagdeev potential (5.30) becomes

V (ψ,M) = 1−eψ+
np0
ne0σep

(
1− e−σepψ

)
+

M2α

Zd(m/md)

[
1−

(
1−

2Zd(m/md)ψ

M2

)1/2
]
. (5.31)

Equation (5.31) is similar to the equations obtained by [Rao et al., 1990; Mamun, 1999;

Moolla et al., 2005; Gogoi et al., 2012] and satisfies our boundary conditions for ψ = 0.

We note that in our study, the condition for the Sagdeev potential to be real is M2 >

2Zd(m/md)ψ. This condition reveals the maximum value (ψm) of ψ for which the dust

number density nd is real and expressed as

ψm =
M2

2Zd(m/md)
. (5.32)

where ψm is the amplitude of the solitary wave. The above equation is used to determine

the maximum speed (upper limit) of solitary wave structures.

The solutions of the Sagdeev pseudoenergy conservation law (5.30) can predict the exis-

tence of the solitary structures. These solutions must satisfy the following conditions, which

give the minimum and maximum values of the Mach number for the formation and stability

of solitary structures. The following conditions can easily be verified for the existence of

solitary waves:

(a) There exists a minimum (ψ = 0) and maximum (ψm) at which equation (5.28)

approaches zero (V (0) = V (ψm) = 0).

(b) V ′(ψ = 0) = 0 and V ′′(ψ = 0) < 0, where the primes indicate differentiation with

respect to ψ. This condition satisfies also the existence of double layers.

(c) To have the real soliton solution in (5.28), one requires V (ψ) < 0 for ψ lying between 0
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and ψm.

Using these soliton conditions, we can obtain the values of the Mach number M for which

the existence of solitary waves and double layers can exist.

Solving equation (5.28), we get

S =

∫
dψ√

−2V (ψ,M)
. (5.33)

This equation can yield the solution in the form of solitary pulses. By solving equation

(5.33) numerically, we obtain the arbitrary amplitude solitary wave solutions which will be

discussed below.

5.4 Numerical results and Discussion

Equation (5.33) was numerically solved with the appropriate boundary conditions. The

investigation of solitons in an e-p-d plasma included a parametric study of the effect of Mach

numberM , temperature σep and the density α on the existence of solitary waves by analyzing

the Sagdeev pseudopotential for arbitrary amplitude dust-acoustic waves. The values used

are physically meaningful and correspond to magnetospheric plasma region [Bharuthram and

Shukla, 1992; Moolla et al., 2005; Berbri and Tribeche, 2009; Bret and Dieckmann, 2010;

Chang-Mo and Helen, 2010; Jinhy et al., 2012]. In our study, we have analysed the Sagdeev

potential V (ψ), for the following fixed parameters σep = 0.5 and α = 0.5, and we found that

the solitary waves can exist forM lying between 0.008 (lower limit) and 0.011 (upper limit).

The maximum electrostatic potential ψm = 0.6, the point where V (ψ) crosses the horizontal

axis corresponding to the maximum amplitude of the soliton. The results show that the

present plasma model permits only compressive solitons. The Sagdeev potential curves and

the corresponding solitary wave profiles for different values of M are plotted in Fig.5.1 - 5.6,

respectively. It can be seen from Fig.5.1 that as we increase the value ofM , the depth of the

Sagdeev potential increases on the positive ψ -axis. This is a consequence of the compressive

solitary waves with larger amplitude. Noting that for our model the solitary wave profiles
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exist for a narrow range of M and it is observed in Fig.5.4 that an increase in Mach number

M enhances the amplitude. These results are similar to those found during the investigation

of solitary waves in a three component plasma consisting of Boltzmann electrons and ions,

and negative dust grains, although the wave profiles were rarefactive solitons [Moolla et al.,

2005].

The graphs illustrating the effect of dust density on the characteristics of solitary waves

and the corresponding soliton profiles are represented in Fig.5.2 and Fig.5.5. From Fig.5.2,

we can note the values of α for which the Sagdeev potential can exist. It is obvious that when

the dust concentration incecreases (decrease of positron concentration), both the depth of

the Sagdeev potential curves and the amplitude of soliton profiles slightly decrease [Alinejad,

2010; Saini et al., 2013]. The Fig.5.2 shows the value of dust density (α) for which our model

is satisfied. We have numerically analyzed the dependence of the Sagdeev potential on α

and our investigations show that the value of dust density needs to be in a narrow range for

solitary waves structures to exist.

We have also studied the effect of the elecctron-positron temperature ratio (σ = Te/Tp)

on the characteristics of solitary waves. From Fig.5.3, we observe that an increase in the

electron temperature (i.e an increase of σ) leads to an increase in the potential depth when

the Mach number and the dust density are fixed [Alinejad, 2010]. The corresponding soliton

profiles for different values of σ are depicted in Fig.5.6 and shows that with an increase in

electron temperature, the amplitude of the compressive solitons slightly increases.
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Figure 5.1: Plot of the Sagdeev potential V (ψ) against the potential ψ for the the fixed parameters Zd = 1000,
m/md = 10−7, σep = 0.5 and α = 0.5.
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Figure 5.2: Plot of the Sagdeev potential V (ψ) for the parameters Zd = 1000, m/md = 10−7, σep = 0.5 and
M = 0.01.
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Figure 5.3: Plot of the Sagdeev potential V (ψ) for the parameters Zd = 1000, m/md = 10−7, α = 0.5, and
M = 0.01.
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Figure 5.4: Soliton profile ψ(S) for selected curves from Fig. 5.1 with the dotted(solid) curves corresponding
to M = 0.009 (0.011) for the fixed parameters Zd = 1000, m/md = 10−7, σep = 0.5 and α = 0.5.
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Figure 5.5: Soliton profile ψ(S) for selected curves from Fig.5.2 with the solid (dotted) curves corresponding
to α = 0.45 (0.5) for the fixed parameters M = 0.011, Zd = 1000, m/md = 10−7 and σep = 0.5.
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Figure 5.6: Soliton profile ψ(S) for selected curves from Fig. 5.3, with the dotted (solid) curves corresponding
to σep = 0.2 (0.8) for the fixed parameters M = 0.011, Zd = 1000, m/md = 10−7, Te/Tp = 0.5 and α = 0.5.
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Chapter 6

Summary

In this thesis, studies on linear and nonlinear waves in multicomponent plasmas have been

carried out in an attempt to explain recent observations in space environments. These

investigations revealed the behaviour of electrostatic waves in electron-positron-ion plasmas

and showed the conditions for which solitons can occur in electron-positron-dust plasmas.

In this chapter, we summarize the important results obtained in preceeding chapters.

In chapter 2, we have studied linear electrostatic waves in a three component electron-

positron-ion plasma in the low-frequency regime. Using the continuity and momentum

equations along with Poisson’s equation, the dispersion relation for the electron-positron-

ion plasma consisting of cool ions and hot Boltzmann electrons and positrons was derived.

We also studied the effects of the density and temperature on the electrostatic wave struc-

tures for two interesting limiting cases, viz, parallel and perpendicular propagation. Parallel

wave propagation identified the existence of the ion-acoustic wave mode and the analysis

revealed that the frequency of the ion-acoustic mode increased as the ion density ratio of the

cool and hot species increased. On the other hand, for perpendicular propagation, it showed

the existence of a cyclotron mode due to both cooler and hotter species. The density of the

cool species played a significantly role in the modification of the wave properties. Comparing

our results to those presented in Ref. Lazarus et al. [2012], we note that the introduction of

the ions species to the e-p plasma resulted in a substantial lowering of the frequency range.
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In the absence of a hot species, the cyclotron mode approaches the upper hybrid frequency.

These findings have been published in Physics of Plasmas [Mugemana et al., 2014]. The

present investigation yields an improved understanding of nonlinear waves propagating in a

magnetized e-p-i plasma.

In chapter 3, we have studied nonlinear low frequency waves in an e-p-i plasma including

charge separation. Using the fluid equations along with Poisson’s equation, nonlinear elec-

trostatic waves have been investigated in a plasma consisting of Boltzmann electrons and

positrons and cool ions. We discussed the existence of nonlinear electric field structures in

the form of solitary waves in different regions of the Earth’s magnetosphere. The effects

of driving electric field, ion temperature, positron density, Mach number, propagation an-

gle and ion drift velocity were studied. The increase of the driving electric field (E0), the

nonlinear structures progressed from a sinusoidal, through a sawtooth, to spiky waveform.

It was found that the period of oscillations depended on the electric field. An increase in

ion-electron temperature (Ti/Th) resulted in an increase in the period of waves. We also

discussed the effect of the density ratio (np0/ne0) on the parallel electric field structures and

it has been shown that the increase in positron densities enhanced nonlinearity of wave struc-

tures. The electric fields of the nonlinear waves were investigated and we have shown that

for high positron density, the spiky structures are easier to generate. Our model showed that

the Mach number and the angle of propagation do not affect the nonlinearity of wave struc-

tures. This study has been conducted in a magnetized plasma in order to explain in detail

the nonlinear electrostatic waves observed in the Broadband Electrostatic Noise (BEN).

In chapter 4, we have extended the problem discussed in the previous chapter, in the sense

that the plasma model is treated using full dynamics for all three species. The effects of driv-

ing electric field, ion temperature, positron density, Mach number, propagation angle and

drift velocity for each component were studied. Comparing these results to those obtained

in chapter 3, where the hot species was described by the Boltzmann density distribution, we

can highlight the following:

• The driving electric fields (E0) for the onset of spiky structures for chapter 3 and chapter
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4 were found to be 0.01 and 0.35, respectively. Hence it is easier to generate spikes when the

hot species follows a Boltzmann distribution.

• The Mach number to support the electrostatic waves of chapter 3 and chapter 4 were found

to be 2.5 and 3.5, respectively.

• The electrostatic waves were possible for R values of 3 and 5, respectively.

We note that the electric field structures found for both models varied from sinusoidal

to sawtooth to spiky waveforms, confirming the results of Bharuthram et al. [2014] who

showed that the nonlinear waves evolve in a consistent fashion irrespective of the plasma

composition. The results of our analysis can be applied to similar environments generally

found around other solar and extra-solar planetary bodies.

In chapter 5, electrostatic dust acoustic solitary structures were investigated in a collision-

less unmagnetized plasma consisting of hot electrons and positrons, and positive dust grains

of constant charge. The electrons and positrons were assumed to be Boltzmann distributed,

while the dust grains were described by the fluid equations. An expression for the Sagdeev

potential was derived without any approximations and assuming constant dust charge. The

large amplitude dust ion acoustic solitons was studied for different plasma parameters M ,

α and σ. The analytical studies revealed that the plasma model could support only solitary

waves of positive potential and the corresponding soliton profiles were compressive in na-

ture. The minimum and maximum Mach numbers between which the solitary waves existed

were computed. The results obtained showed that the Sagdeev pseudopotential V (ψ) and

the characteristics of the solitons depended on the positron concentration, dust concentra-

tion, electron temperature and Mach number. These results could play a pivotal role in

understanding nonlinear wave structures in astrophysical environments.
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Appendix A

CODES

! ROOTFINDER PROGRAM

! LINEAR ELECTROSTATIC WAVES IN A THREE COMPONENT E-P-I PLASMA

! FORVARIOUS PARAMETERS - ANGLES,DENSITIES, TEMPERATURE RATIO THTC,

! MASS RATIO MEMI. R=W/WP, KLAMDA=K*LAMDA, TCTH=TC/TH,Z=ME/MI

! N0C=N0C/N0, N0H=N0H/N0 (N0=N0C+N0H UNNORMALIZED DENSITY)

! W NORMALIZED BY : LAMDAD2 = Th/4PIN0E2

PROGRAM ROOTFINDER

IMPLICIT NONE

INTEGER I

REAL*8 A,B,C,P1,P2,ROOT1,ROOT2,N0I,N0H,TITH,Z

REAL*8 R,R2,THETA,KLAMDA,KLAMDA2

REAL*8 NUM,DEN,PI

!******************************************************************

! INITIAL VALUES

!******************************************************************

PI=3.1415927D0

N0I=0.1D0

N0H=1.0D0-N0I
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TITH=0.01d0

R=0.3333D0

Z=1.0d0/1836.0d0 THETA=(0.0d0/180.0d0)*PI

R2=R**2

KLAMDA=0.0D0

OPEN(25,FILE=’root1.dat’)

OPEN(26,FILE=’root2.dat’)

!*******************************************************************

DO I=1,201

KLAMDA2=KLAMDA*KLAMDA

NUM=Z*KLAMDA2*N0I/N0H

DEN=2.0D0+KLAMDA2/N0H

A=1.0D0

B=-(1.0D0/R2+3.0D0*Z*KLAMDA2*TITH+NUM/DEN)

C=((COS(THETA)**2)/R2)*(3.0D0*Z*KLAMDA2*TITH+NUM/DEN)

P1=(-B+SQRT(B**2-4.0D0*A*C))/(2.0D0*A)

P2=(-B-SQRT(B**2-4.0D0*A*C))/(2.0D0*A)

ROOT1=SQRT(P1)

ROOT2=SQRT(P2)

write(6,*) KLAMDA,ROOT2

write(25,*) KLAMDA,ROOT1

write(26,*) KLAMDA,ROOT2

KLAMDA=KLAMDA+0.1D0 ENDDO

END
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! PROGRAM EPI

! Nonlinear waves in electron-positron-ion plasmas

! Cool ions and Hot Boltzmann electrons and positrons. d(psi)/d(s)=-E.

IMPLICIT NONE

external derivs

external rk4

INTEGER i,n,NMAX

REAL*8 h,x,dydx(6),y(6),yout(6),M,M2,theta,E0,TITH

REAL*8 deltaI,deltaH,MST,MCT,R,NONI

REAL*8 pi,ST,CT,MMDI,NONI2

REAL*8 NINO2,MMDI2,MMDH2,NIN

REAL*8 NONI3,NONI4,INVMMDI,INVMMDH,F22,F23

REAL*8 INVMMDI2,INVMMDH2,TERMZ1,TERMZ2,TERMZ21,TERMZ22,TERMZ23

REAL*8 DF1F2,DF3F4,DF5F6,DF7F8,DF1,DF2,DF3,DF4,DF5,DF6

REAL*8 DF7,DF8,DF11,DF121,DF122, DF71,DF721,DF722,DF51

REAL*8 DF521,DF522,nphno,nehno,nino,npcno

REAL*8 F1,F2,F3,F4,F5,F6,F7,F8

common /pl/M,theta,R,deltaI,deltaH,nino,npcno,nehno,nphno,TITH

pi=3.1415927d0

h=0.2d0

n=6

x=0.0d0

! **********PARAMETERS**********

M=2.50d0

deltaI=0.0d0

TITH=0.0d0

theta=(2.0d0/180.0d0)*pi

E0=0.3d0
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R=3.0d0

nphno=0.5d0

nehno=1.0d0

nino=nehno-nphno

! ******************************

! psi=y(1)

! E=-y(2)

! nin=y(3)

! pin=y(4)

! viyn=y(5)

! vizn=y(6)

!***************************************************

MMDI=(M-deltaI)

MMDI2=MMDI**2

INVMMDI=1.0d0/MMDI

INVMMDI2=1.0d0/MMDI2

NONI=1.0d0/NINO

NONI2=NONI**2

NONI3=NONI*NONI2

NONI4=NONI2*NONI2

NINO2=NINO**2

M2=M*M

ST=dsin(theta)

CT=dcos(theta)

MST=M*ST

MCT=M*CT

!

y(1)=0.0d0
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y(2)=E0

y(3)=nino

y(4)=nino*TITH

!

F1=y(3)**3

F2=NINO2*MMDI2-3.0d0*y(3)*y(4)

F3=F2*(NPHNO+NEHNO)/F1

!

y(5)=(-y(2)+(F3*y(2)))/MST

! y(5)=0.01d0

! F22=F2*F2

! F23=F2**3

TERMZ1=(M-(MMDI*NINO)/y(3))*(ST/CT)

TERMZ21=((F2)*MMDI*NINO)/(F1*M2*ST*CT*y(3))

TERMZ22=(-y(2)-MST*y(5))

DF1=3.0d0*(y(3)**5)*(TERMZ22)/F2

DF2=(-12.0d0*y(4)*F1*(TERMZ22 ))/F2

DF1F2=(F2*DF1-F1*DF2)/(F2**2)

! DF1F2=DF1+DF2

y(6)=TERMZ1-TERMZ21*((nphno-nehno)*(y(2)**2)+TERMZ22*DF1F2)

! y(6)=0.01d0

! Let’s loop here

open(25,file=”good4.dat”,status=”unknown”)

! open(25,file=”epi.dat”,status=”unknown”)

write(25,*) x,-y(2)

write(6,*) x,-y(2),y(5),y(6)

do i=1,800

call derivs(x,y,dydx)
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call rk4(y,dydx,n,x,h,yout,derivs)

y(1)=yout(1)

y(2)=yout(2)

y(3)=yout(3)

y(4)=yout(4)

y(5)=yout(5)

y(6)=yout(6)

x=x+h write(25,*) x,-yout(2)

write(6,*) x,-y(2)

enddo

endfile(25)

close(25)

end

!*******************************************************************************

SUBROUTINE derivs(x,y,dydx)

! Subroutine expressing the differential equations for Model 2 with -E

IMPLICIT NONE

REAL*8 x,dydx(6),y(6),theta,M,R,R2,M2,A1,A2

REAL*8 ST,CT,MST,MCT,NONI,NONPC,NONEH,NONPH

REAL*8 NONI2,NONPC2,NINO2,NPCNO2,NEHNO2,NPHNO2

REAL*8 NONEH2,NONPH2,MMDI,MMDH,MMDI2,MMDH2

REAL*8 INVMMDI,INVMMDH,INVMMDI2,INVMMDH2

REAL*8 TERM1,TERM2,TERM3,TERM4

REAL*8 deltaI,deltaH,nin3,npcn3,nphno,nehno,nino,npcno

REAL*8 N1,N2,N3,N4,N5,N6,N7,N8,F1,F2,F3,F4,F5,F6,F7,F8,TITH

common /pl/M,theta,R,deltaI,deltaH,nino,npcno,nehno,nphno,TITH

! x=x

!*******************************************************************************
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! psi=y(1)

! E=y(2)

! nin=y(3)

! pin=y(4)

! viyn=y(5)

! vizn=y(6)

!********************************************************************************

A1=nphno*(cosh(y(1))-sinh(y(1)))

A2=nehno*(cosh(y(1))+sinh(y(1)))

R2=R**2

M2=M**2

ST=dsin(theta)

CT=dcos(theta)

MST=M*ST

MCT=M*CT

MMDI=M-deltaI

MMDI2=MMDI**2

NONI=1.0d0/NINO

NONI2=NONI**2

NINO2=NINO**2

INVMMDI=(1.0d0/MMDI)

INVMMDI2=INVMMDI**2

TERM1=M-((MMDI*NINO)/(y(3)))

N1=INVMMDI*M*NONI*y(3)

N2=INVMMDI*MCT*NONI

N3=NINO2*MMDI2-3.0d0*y(3)*y(4)

! ******************** Runge-Kutte form *******************

dydx(1)=-1.0d0*y(2)
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dydx(2)=-1.0d0*R2*M2*NONI*(y(3)+A1-A2)

! Cold Ions (nin,viyn,vizn,pin)

dydx(3)=(y(3)**3)*(-y(2)-MST*y(5))/N3

dydx(4)=(3.0d0*y(4)*(y(3)**2))*(-y(2)-MST*y(5))/N3

dydx(5)=N1*(MST-CT*y(6))-MST

dydx(6)=y(3)*N2*y(5)

END

!*********************************************************************************

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

IMPLICIT NONE

INTEGER n,NMAX

REAL*8 h,x,dydx(n),y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAX=50)

INTEGER i

REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX)

hh=h*0.5d0

h6=h/6.0d0

xh=x+hh

do i=1,n

yt(i)=y(i)+hh*dydx(i)

enddo

call derivs(xh,yt,dyt)

do i=1,n

yt(i)=y(i)+hh*dyt(i)

enddo

call derivs(xh,yt,dym)

do i=1,n
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yt(i)=y(i)+h*dym(i)

dym(i)=dyt(i)+dym(i)

enddo

call derivs(x+h,yt,dyt)

do i=1,n

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i))

enddo

return

END
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! PROGRAM EPI3COMP

! Cool ions, warm electrons and warm positrons - All Fluid. d(psi)/d(s)=-E.

IMPLICIT NONE

external derivs

external rk4

INTEGER i,n,NMAX

REAL*8 h,x,dydx(14),y(14),yout(14),M,M2,theta,E0,TITE

REAL*8 deltaE,deltaP,deltaI,MST,MCT,R,NPONEO,NIONEO

REAL*8 pi,ST,CT,MMDE,MMDP,MMDI,MIME,NEONIO,NE0NPO

REAL*8

NPONEO2,NIONEO2,MMDE2,MMDP2,MMDI2,NEONPO,INVNIONEO,AARON6

REAL*8 NPO-

NEO3,NIONEO3,INVMMDE2,INVMMDP2,INVMMDI2,INVNPONEO2,INVNIONEO2

REAL*8 NPO-

NEO5,NIONEO4,AARON1,AARON2,AARON3,AARON4,AARON5,INVMMDP,INVMMDI

REAL*8 DF1,DF2,DF3 ,DF4,DF5,DF6,DF12,DF34,DF56,INVMMDE,F42,F43

REAL*8 F1,F2,F3,F4,F5,F6,T1,A1,A2,A3,A4,F22,F23,F32,F33,F62,F63

common /pl/M,theta,R,deltaE,deltaP,deltaI,nponeo,nioneo

pi=3.1415927d0

h=0.2d0

n=14

x=0.0d0

! **********PARAMETERS*********

M=3.50d0

deltaE=0.0d0

deltaP=0.0d0

deltaI=0.0d0

TITE=0.0d0
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theta=(2.0d0/180.0d0)*pi

E0=2.5d0

R=5.0d0

nioneo=0.5d0

nponeo=1.0d0-nioneo

MIME=2.0d0

! ******************************

! psi=y(1)

! E=-y(2)

! WARM ELECTRONS

! nen=y(3)

! pecn=y(4)

! veyn=y(5)

! vezn=y(6)

! WARM POSITRONS

! npn=y(7)

! ppn=y(8)

! vpyn=y(9)

! vpzn=y(10)

! COOL IONS

! nin=y(11)

! pin=y(12)

! viyn=y(13)

! vizn=y(14)

!**************************************************

MMDE=(M-deltaE)

MMDP=(M-deltaP)

MMDI=(M-deltaI)
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MMDE2=MMDE**2

MMDP2=MMDP**2

MMDI2=MMDI**2

INVMMDE=1.0d0/MMDE

INVMMDP=1.0d0/MMDP

INVMMDI=1.0d0/MMDI

INVMMDI2=1.0d0/MMDI2

NEONPO=1.0d0/NPONEO

NEONIO=1.0d0/NIONEO

NPONEO2=NPONEO**2

NIONEO2=NIONEO**2

NPONEO3=NPONEO*NPONEO**2

NIONEO3=NIONEO*NIONEO**2

NIONEO4=NIONEO**2*NIONEO**2

NPONEO5=NPONEO3*NPONEO**2

M2=M*M

ST=dsin(theta)

CT=dcos(theta)

MST=M*ST

MCT=M*CT

!

y(1)=0.0d0

y(2)=E0

y(3)=1.0d0

y(4)=1.0d0

y(5)=0.001d0

y(6)=0.001d0

y(7)=nponeo

139



y(8)=nponeo

y(9)=0.001d0

y(10)=0.001d0

y(11)=1.0d0-nponeo

y(12)=nioneo*TITE

!

F1=y(11)**3

F2=NIONEO2*MMDI2-3.0d0*y(11)*y(12)

F3=(y(7)**3)*(-y(2)-MIME*y(9)*MST)

5 F4=NPONEO2*MMDP2-3.0d0*NPONEO*y(7)*y(8)

F5=(y(3)**3)*(y(2)+MIME*y(5)*MST)

F6=MMDE2-3.0d0*y(3)*y(4)

A1=-y(2)/MST

A2=F3/F4

A3=F5/F6

A4=F2/F1

!

y(13)=(-y(2)+(A2-A3)*A4)/MST

F22=(3.0d0*(y(7)**5)*(-y(2)-MIME*y(9)*MST)**2)/F4

F23=(y(7)**4)*MIME**2*M2*ST*NEONPO*INVMMDP

F32=(M-MMDP*(NPONEO/y(7)))*ST

F33=3.0d0*((y(3)**5)*(y(2)+MIME*y(5)*MST)**2)/F6

F42=(y(3)**4)*(MIME**2)*M2*ST*INVMMDE

F43=(M-(INVMMDE/y(3)))*ST

F62=F6*F6

F63=F6**3

!

DF1=3.0d0*(y(11)**5)*(-y(2)-MST*y(13))/F2
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DF2=-12.0d0*y(12)*(y(11)**3)*(-y(2)-y(13)*MST)/F2

DF3= F22-F23*(F32-y(10)*MCT

DF4=-12.0d0*y(8)*(y(7)**3)*NPONEO*(-y(2)-MIME*y(9)*MST)/F4

DF5=F33+F42*(y(6)*CT-F43)

DF6=-12.0d0*y(4)*(F5/F6)

DF12=(F2*DF1-F1*DF2)/(F2**2)

DF34=(F4*DF3-F3*DF4)/(F4**2)

DF56=(F6*DF5-F5*DF6)/(F6**2)

T1=MST*MCT*F1*y(11)

AARON1=NIONEO*MMDI*(F2/T1)

AARON2=DF56-DF34

AARON3=(-y(2)-y(13)*MST)*DF12

AARON4=(M-(MMDI*NIONEO/y(11)))*ST/CT

! AARON5=NEONIO*INVMMDI*M2*y(11)

y(14)=AARON1*(AARON2-AARON3)+AARON4

! Let’s loop here

open(25,file=”good1.dat”,status=”unknown”)

! open(25,file=”C:/IAN/GRAPHS/E/E1.5.dat”,status=”unknown”)

write(25,*) x,-y(2)

write(6,*) x,-y(2)

do i=1,400

call derivs(x,y,dydx)

call rk4(y,dydx,n,x,h,yout,derivs)

y(1)=yout(1)

y(2)=yout(2)

y(3)=yout(3)

y(4)=yout(4)

y(5)=yout(5)
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y(6)=yout(6)

y(7)=yout(7)

y(8)=yout(8)

y(9)=yout(9)

y(10)=yout(10)

y(11)=yout(11)

y(12)=yout(12)

y(13)=yout(13)

y(14)=yout(14)

x=x+h

write(25,*) x,-yout(2)

write(6,*) x,-y(2)

enddo

endfile(25)

close(25)

end

!*******************************************************************************

SUBROUTINE derivs(x,y,dydx)

! Subroutine expressing the differential equations for Model 2 with +E

IMPLICIT NONE

REAL*8 x,dydx(14),y(14),theta,M,R,R2,M2

REAL*8 ST,CT,MST,MCT,NIONEO

REAL*8 NPONEO2,NIONEO2,MIME,NEONIO,NPONEO

REAL*8 MMDE,MMDP,MMDI,MMDE2,MMDP2,MMDI2

REAL*8 INVMMDE,INVMMDP,INVMMDI,INVMMDE2,INVMMDP2,INVMMDI2

REAL*8 TERM1,TERM2,TERM3,NEONPO

REAL*8 deltaE,deltaP,necn3,nIn3,nphno,nehno,necno,nIno

REAL*8 N1,N2,N3,F1,F2,F3,F4,F5,F6,deltai,G1,G2,G3,G4,G5,G6
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common /pl/M,theta,R,deltaE,deltaP,deltaI,nponeo,nioneo

! x=x

!*******************************************************************************

! psi=y(1)

! E=y(2)

! WARM ELECTRONS

! nen=y(3)

! pecn=y(4)

! veyn=y(5)

! vezn=y(6)

! WARM POSITRONS

! npn=y(7)

! ppn=y(8)

! vpyn=y(9)

! vpzn=y(10)

! COOL IONS

! nin=y(11)

! pin=y(12)

! viyn=y(13)

! vizn=y(14)

!********************************************************************************

R2=R**2

M2=M**2

ST=dsin(theta)

CT=dcos(theta)

MST=M*ST

MCT=M*CT

MMDE=M-deltaE
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MMDP=M-deltaP

MMDI=M-deltaI

MMDE2=MMDE**2

MMDP2=MMDP**2

MMDI2=MMDI**2

NEONPO=1.0d0/NPONEO

NEONIO=1.0d0/NIONEO

NPONEO2=NPONEO**2

NIONEO2=NIONEO**2

INVMMDE=(1.0d0/MMDE)

INVMMDE2=INVMMDE**2

INVMMDP=(1.0d0/MMDP)

INVMMDI=(1.0d0/MMDI)

INVMMDP2=INVMMDP*INVMMDP

INVMMDI2=INVMMDI**2

TERM1=MIME*INVMMDE*y(3)*M

TERM2=MIME*NEONPO*INVMMDP*M*y(7)

TERM3=INVMMDI*M*y(11)*NEONIO

F1=y(11)**3

F2=NIONEO2*MMDI2-3.0d0*y(11)*y(12)

F3=(y(7)**3)*(-y(2)-MIME*y(9)*MST)

F4=NPONEO2*MMDP2-3.0d0*NPONEO*y(7)*y(8)

F5=(y(3)**3)*(y(2)+MIME*y(5)*MST)

F6=MMDE2-3.0d0*y(3)*y(4)

! G1=y(11)**3

! G2=NIONEO2*MMDI2-3.0d0*y(11)*y(12)

! G3=(y(7)**3)*(-y(2)-MIME*y(9)*MST)

! G4=NPONEO2*MMDP2-3.0d0*NPONEO*y(7)*y(8)
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! G5=(y(3)**3)*(y(2)+MIME*y(5)*MST)

! G6=MMDE2-3.0d0*y(3)*y(4)

N1=-y(2)-MIME*y(9)*MST

! N2= -y(2)-y(13)*MST

! ******************** Runge-Kutte form *******************

dydx(1)=-y(2)

dx(2)=1.0d0*R2*M2*NEONIO*(y(7)+y(11)-y(3))

! Warm Electrons (necn,pecn,vecyn,veczn)

dydx(3)=(F5/F6)

dydx(4)=3.0d0*y(4)*(y(3)**2)*(y(2)+MIME*y(5)*MST)/F6

dydx(5)=TERM1*(y(6)*CT-(M-(MMDE/y(3)))*ST)

dydx(6)=(-MIME*INVMMDE*y(3)*y(5)*MCT )

! Warm Positrons (npn,ppn,vpyn,vpzn)

dydx(7)=(F3/F4)

dydx(8)=(3.0d0*(y(7)**2)*y(8)*N1)/F4

dydx(9)=TERM2*((M-NPONEO*(INVMMDP/y(7)))*ST-y(10)*CT)

dydx(10)=NEONPO*MIME*INVMMDP*y(7)*y(9)*MCT

! Cold Ions (nin, pin,viyn,vizn)

dydx(11)=(y(11)**3)*(-y(2)-y(13)*MST)/F2

dydx(12)=3.0d0*y(12)*(y(11)**2)*(-y(2)-y(13)*MST)/F2

dydx(13)= TERM3*(M-CT*y(14))-MST

dydx(14)=TERM3*y(13)*CT

END

!*********************************************************************************

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

IMPLICIT NONE

INTEGER n,NMAX

REAL*8 h,x,dydx(n),y(n),yout(n)
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EXTERNAL derivs

PARAMETER (NMAX=50)

INTEGER i

REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX)

hh=h*0.5d0

h6=h/6.0d0

xh=x+hh

do i=1,n

yt(i)=y(i)+hh*dydx(i)

enddo

call derivs(xh,yt,dyt)

do i=1,n

yt(i)=y(i)+hh*dyt(i)

enddo

call derivs(xh,yt,dym)

do i=1,n

yt(i)=y(i)+h*dym(i)

dym(i)=dyt(i)+dym(i)

enddo

call derivs(x+h,yt,dyt)

do i=1,n

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i))

enddo

return

END
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SAGDEEV POTENTIAL

Clear@M2, Α2, Μ2, Σ2, ∆2D;

M2 = 0.01;

Α2 = 0.5;

Μ2 = 0.0000001;

Σ2 = 0.5;

∆2 = 0.5;

Zd2 = 1000;

x1 = HHHM2^2L * Α2L � HZd2 * Μ2LL;

x2 = HSqrt@1 - H2 * Zd2 * Μ2 * YL � M2^2DL;

x3 = H1 - E^YL;

x4 = HH∆2 * H1 - E^-HΣ2 * YLLL � Σ2L;

x5 = Hx1 * H1 - x2LL;

b = x3 + x4 + x5;

Clear@M3, Α3, Μ3, Σ3, ∆3D;

M3 = 0.01;

Α3 = 0.5;

Μ3 = 0.0000001;

Σ3 = 0.5;

∆3 = 0.5;

Zd3 = 1000;

h1 = HHHM3^2L * Α3L � HZd3 * Μ3LL;

h2 = HSqrt@1 - H2 * Zd3 * Μ3 * YL � M3^2DL;

h3 = H1 - E^YL;

h4 = HH∆3 * H1 - E^-HΣ3 * YLLL � Σ3L;

h5 = Hh1 * H1 - h2LL;

c = h3 + h4 + h5;

Clear@M4, Α4, Μ4, Σ4, ∆4D;

M4 = 0.01;

Α4 = 0.5;

Μ4 = 0.0000001;

Σ4 = 0.5;

∆4 = 0.5;

Zd4 = 1000;

g1 = HHHM4^2L * Α4L � HZd4 * Μ4LL;

g2 = HSqrt@1 - H2 * Zd4 * Μ4 * YL � M4^2DL;

g3 = H1 - E^YL;

g4 = HH∆4 * H1 - E^-HΣ4 * YLLL � Σ4L;

g5 = Hg1 * H1 - g2LL;

d = g3 + g4 + g5;

Plot@8b, c, d<, 8Y, -1.0, 1.0<,

PlotStyle ® 88Dashed, Thickness@0.005D<, 8Dotted, Thickness@0.005D<,

8Red, Thickness@0.003D<, 8Blue, Thickness@0.003D<<, AxesLabel ® 8Y, V@Y, H"M"LD<D
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! PROGRAM TEST

! DETERMINE SOLITON PROFILE IN ELECTRON-POSITRON-DUST

IMPLICIT NONE

external derivs

INTEGER i,n,NMAX

REAL*8 h,x,dydx(1),y(1),yout(1)

REAL*8 M,NPONEO,TETP,ALPHA,Zd,MEMD,M2

! common /plasma /M,NPONEO,TETP,ALPHA,Zd,MEMD,M2

h=0.005d0

n=1

x=0.0d0

! **********PARAMETERS*********

M=0.010d0

MEMD=0.0000001d0

NPONEO=0.50d0

Zd=1000.0d0

TETP=0.35d0

ALPHA=(1.0d0-NPONEO)/Zd

! *************************

! psi=y(1)

M2=M*M

!NEHN=dexp(PSI)

!NPHN=NPONEO*dexp(-TETP*PSI)

!NDN= (M*A)/(SQRT(M2-2.0*ZD*MEMD*PSI))

y(1)=0.45d0

!F1=1.0d0-dEXP(PSI)

!F6=(-TETP*PSI)

!F5=1.0d0-dEXP(F6)
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!F2= NPONEO*F5/TETP

!F3= M2*A/(ZD*MEMD)

! F4=2.0d0*ZD*MEMD*PSI/M2

!V=F1+F2+F3*(1.0d0-SQRT(1.0d0-F4))

! Let’s loop here

open(25,file=”good1.dat”)

open(26,file=”good2.dat”)

write(6,*) x, y(1)

write(25,*) x, y(1)

write(26,*) -1.0d0*x, y(1)

do i=1,280

call derivs(x,y,dydx)

call rk4(y,dydx,n,x,h,yout,derivs)

y(1)=yout(1)

x=x+h

write(6,*) x, yout(1)

write(25,*) x, yout(1)

write(26,*) -1.0d0*x, yout(1)

enddo

endfile(25)

endfile(26)

close(25)

close(26)

end

!********************************************************************

SUBROUTINE derivs(x,y,dydx)

IMPLICIT NONE

REAL*8 x,dydx(1),y(1)
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REAL*8 M, NPONEO,TETP,ALPHA,Zd,MEMD,AARON

REAL*8 TERM1,TERM2,TERM3,TERM4,TERM5,TERM6,M2

! common /plasma / M,NPONEO,TETP,ALPHA,Zd,MEMD,M2

M=0.010d0

MEMD=0.0000001d0

NPONEO=0.75d0

Zd=1000.0d0

TETP=0.35d0

ALPHA=(1.0d0-NPONEO)/Zd

!

M2=M*M

TERM1=(M2*ALPHA)/(MEMD*Zd)

TERM2=1.0d0-(2.0d0*MEMD*Zd*y(1)/M2)

TERM5=dsqrt(TERM2)

TERM3=dexp(y(1))

TERM4=dexp(-1.0d0*TETP*y(1))

TERM6=NPONEO*(1.0d0-TERM4)/TETP

write(6,*) TERM2

! psi=y(1)

! ******************** Runge-Kutte form *******************

AARON=2.0d0*(TERM3-1.0d0)-2.0d0*TERM6-2.0d0*TERM1*(1.0d0-TERM5)

! AARON=2.0d0*TERM1*(TERM5-1.0d0)+2.0d0*delta*(TERM3-1.0d0)+TERM6

! write(6,*) AARON

dydx(1)=-dsqrt(AARON)

END

!*********************************************************************************

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

IMPLICIT NONE
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INTEGER n,NMAX

REAL*8 h,x,dydx(n),y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAX=50)

INTEGER i

REAL*8 h6,hh,xh,dym(NMAX),yt(NMAX),dyt(NMAX)

hh=h*0.5d0

h6=h/6.0d0

xh=x+hh

do i=1,n

yt(i)=y(i)+hh*dydx(i)

enddo

call derivs(xh,yt,dyt)

do i=1,n

yt(i)=y(i)+hh*dyt(i)

enddo

call derivs(xh,yt,dym)

do i=1,n

yt(i)=y(i)+h*dym(i)

dym(i)=dyt(i)+dym(i)

enddo

call derivs(x+h,yt,dyt)

do i=1,n

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.0d0*dym(i))

enddo

return

END
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