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Abstract

In this research, on the topic of relativistic thermodynamics of radiating stars, the

following three case studies are investigated:

Gravitational collapse in spacially isotropic coordinates – The nature of a dissipa-

tive collapse process of a spherically symmetric star which has been perturbed into a

dynamical state from an initial static configuration is studied. The collapse process

involves dissipation of energy in the form of a radial heat flux. The perturbation in the

density and pressure profiles are such that the star is always close to hydrostatic equi-

librium. The temperature profiles are studied using a causal heat transport equation.

Radiating collapse in the presence of anisotropic stresses – The effect of anisotropic

stresses are investigated for a collapsing fluid sphere dissipating energy in the form of

a radial flux. The collapse process starts from an initial static sphere described by

the Bowers and Liang solution, and then proceeds until the time of formation of the

horizon. We find that the surface redshift increases as the stellar fluid moves away

from isotropy. The evolution of the temperature profiles is analysed by employing a

causal heat transport equation of the Maxwell-Cattaneo form. Both the Eckart and

causal temperatures are enhanced by anisotropy at each interior point of the stellar

configuration.

The influence of an equation of state during radiative collapse – A linear equation

of state is imposed on a static configuration which undergoes radiative gravitational

collapse. Various values of the equation of state parameter allow descriptions of differ-

ent matter content from classical stars to dust and also dark energy stars. The physical

parameters are shown to behave in a meaningful and realistic manner.
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Chapter 1

Introduction

Stars have been a source of fascination and intrigue since ancient times. They have

been both a source of mysticism, even in present times, and also of scientific interest and

value in guiding sailors across vast oceans and travellers across deserts. For most of the

history of mankind, their physical nature had been largely unknown until the arrival

of Galileo in the 16th century. Through the efforts of Galileo Galilei (1564 − 1642),

considered the father of astronomy with his re-invention of the telescope, the stage

had been set for the scientific investigation of celestial bodies. Although forced to

retract statements about the nature of our solar system on the grounds of religious

conformity, his ideas and discoveries nevertheless remained alive to be re-investigated

and confirmed by his successors. Not long thereafter, one of the greatest physicists of

all time, Isaac Newton (1642− 1726), formulated a theory of gravitation which helped

to explain and calculate the motion of bodies within our planetary system. Newton’s

theory worked well and the force between two bodies due to their mutual property

of mass could be calculated using an inverse square law which at the time seemed

to be very accurate, subject only to the inaccuracies in the measurements of mass,

distance and Newton’s gravitational constant. Moreover, gravity and the gravitational

force were taken to be one and the same thing, thus highlighting the fact that the real

underlying physical nature of gravity had been hidden and thus unknown. Then, in
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the early part of the 20th century, Albert Einstein came up with revolutionary ideas

that completely changed mankind’s view on gravity. No longer was gravity seen to be

some mysterious force of attraction between two or more masses, but that it was rather

the mass of an object itself that caused changes in the properties of a so called four-

dimensional ‘spacetime’, thereby altering the preferred paths of motion of the other

bodies. This is the subject of the general theory of relativity which was made known

to the scientific community by Einstein (1916).

The theory very soon proved to be a success after accounting for the anomalous

motion of the planet Mercury which was the first approximate solution of Einstein’s

equations as presented by him in 1915. Mercury is the planet closest to the Sun and

displays an anomalous precession which is not accountable for in Newton’s theory.

This was first recognized in 1859 by Urbain Le Verrier. Although other planets are

also responsible for Mercury’s precession, there was always a disagreement between

observation and Newton’s theory that could not be reconciled. This was finally ac-

counted for by the curvature of spacetime near the Sun according to Einstein’s theory.

A few years later, accurate measurements of the degree of deflection of rays of light

which passed near the Sun were made during a solar eclipse, and Einstein’s calcula-

tions agreed with the results of this experiment. This was a triumph for the theory of

general relativity, however a problem did arise not long thereafter in connection with

the stability of the universe, and for this reason, Einstein introduced a cosmological

constant into his field equations. Later measurements, notably by Hubble, showed the

universe to be expanding thus making the cosmological constant unnecessary. In re-

cent times, this research has led to the theory of dark matter and dark energy. Apart

from the uneasiness as to whether Einstein’s equations should incorporate a cosmolog-

ical constant or not, the theory still enjoys continued success even until very recently

(February 2016) with the detection of gravitational waves, a desired consequence of

the theory of general relativity.

An interesting area to which general relativity is commonly applied is the nature
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of compact objects. By compact, we mean matter densities which are greater than

(1015g/cm3). Such high matter densities belong to objects such as neutron stars,

gravastars, and in the extreme case where the density becomes infinite, to black holes.

These objects have a marked effect on the structure of spacetime, and their study

has produced novel insights into the nature of gravity itself. This research aims to

gain further insight into the gravitational collapse process leading up to such compact

objects through the study of relativistic thermodynamics.

1.1 Stars and general relativity

Stars, in all states, are the most massive objects to be found throughout the cos-

mos. They are the best candidates for studying and testing the general theory of

relativity (GR). The definitive experiment undertaken to test GR involved measur-

ing the deflection of light from stars by the Sun during a solar eclipse. In May 1919,

Arthur Eddington and his co-workers took photographs of the stars whose light passed

near the Sun during a total solar eclipse. The experiment demanded highly accurate

and precise measurements. The measurements made confirmed Einstein’s theory and

thereafter made his theory world famous.

In more recent times, the physics of neutron stars and black holes have been studied

using general relativity (Ghezzi 2005; Goswami and Joshi 2004b). The principal pio-

neers of this research were Karl Schwarzschild, Subrahmanyan Chandrasekhar, David

Finkelstein, Joseph Taylor and Russell Hulse, Roger Penrose and Stephen Hawking.

However, it is interesting to note that the idea of an object being so massive that not

even light can escape from it goes back to 1783 when John Michell wrote to Henry

Cavendish of the Royal Society:

“If the semi-diameter of a sphere of the same density as the Sun were to exceed

that of the Sun in the proportion of 500 to 1, a body falling from an infinite height

towards it would have acquired at its surface greater velocity than that of light, and
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consequently supposing light to be attracted by the same force in proportion to its vis

inertiae, with other bodies, all light emitted from such a body would be made to return

towards it by its own proper gravity.” – John Michell

John Wheeler was one of the first scientists to introduce the term ‘black hole’ in

1967. Initially, the term encountered opposition in strict scientific circles but then

became acceptable, entering into the scientific terminologies of astrophysics and cos-

mology.

1.2 Gravitational collapse

A star, during its lifetime, supports its weight by fusing hydrogen into helium, but

it is inevitable that the hydrogen available will eventually be depleted. As the hydrogen

supply diminishes, the chemical composition within the core of the star changes and

thus the star evolves with time. As fusion proceeds, the number of atomic nuclei

decreases and this causes a reduction in pressure, thereby affecting the gravitational

stability of the star. This results in the core being squeezed more tightly so that the

contraction increases the density and temperature of the core. The rate of nuclear

reactions then increases allowing additional energy to flow outwards causing outer

layers to expand so that the star appears larger and brighter. However, the onset of

helium fusion then causes some contraction of the star up until the helium has been

almost exhausted whereafter the star again expands into a giant. Finally, after all

possible nuclear reactions have reached completion and the star has lost some of its

mass during times of expansion, gravity finally dominates and the star reduces to a

certain type of remnant depending on its mass.

Particularly massive stars do not merely become giants during the final stages

of reaching their end states, but instead display violent and highly luminous events

called supernova explosions. The subsequent gravitational collapse thereafter is much

stronger and can lead to a neutron star or black hole remnant. The material of a
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neutron star is highly dense and has been described by physicists as a fluid of neutrons

or one giant nucleus. Such objects of about 1 solar mass may be typically about 20km

in diameter. If the core of a star is more than 3 solar masses when it collapses, the

gravitational collapse is so powerful that a neutron star end state is no longer sufficient

to support the weight of the star. It effectively collapses to zero spatial dimension

although some physicists argue that quantum mechanics prevents this singularity. The

properties of black holes are ideal for applying and studying the theory of general rel-

ativity since the curvature of spacetime becomes infinite thus exemplifying the direct

relationship between gravity and spacetime curvature. Even under such extreme con-

ditions, the Einstein field equations may be solved in order to discover and study some

of the properties of black holes such as event horizons. The first solution was found by

Karl Schwarzschild and is known as the Schwarzschild black hole.

In 1915, Albert Einstein formulated a theory of gravity which was independent of

an object’s physical properties, and dependent only on the geometry of space and time.

This linked space and time into what is called a four-dimensional spacetime. The the-

ory, known as general relativity, makes use of differential geometry and its connection

with the physical properties of an object, namely its energy and momentum, to yield

a set of nonlinear coupled differential equations which link gravitational acceleration

with the curvature of spacetime. In this way, gravity may be thought of independently

from an object’s mass, and associated only with the curvature of spacetime. This is

further justified by the equivalence principle in which gravitational acceleration and

gravitational effects due to an accelerated body are indistinguishable.

In this chapter, the mathematics needed for working with general relativity will

be firstly considered, leading to the formulation of the Einstein field equations. These

equations are used to describe the gravitational collapse of stars and they predict an

end state for this collapse which may typically be a white dwarf star, a neutron star,

or a black hole in the case of sufficiently massive stars.

The concepts of vectors, covectors (1-forms) and tensors are assumed which are
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part of the mathematical tools required for describing physical quantities in GR. The

four-dimensional geometry of spacetime is introduced and applied to the curvature of

spacetime, leading to the Einstein curvature tensor. A basic overview of the energy

momentum tensor which describes an object’s state of being within the phase space

is given. Then the components of the Einstein tensor for a spherically symmetric

spacetime are derived. A general energy momentum tensor with associated kinematical

quantities is also used for which the Einstein field equations are derived for an isotropic

spherical polar coordinate system. Finally, Vaidya’s solution, which is a solution of the

Einstein field equations for an exterior spacetime filled null radiation, is presented.

1.3 Differential geometry

The general theory of relativity requires the representation of space and time as a

four–dimensional manifold which is continuous and differentiable at all points. This

representation incorporates a branch of mathematics known as differential geometry

and is well documented in standard texts on general relativity (Schutz 2009). Upon the

four–dimensional manifold is imposed a metric which is represented by a symmetric

tensor g with signature (− + ++). Any event or point on this spacetime manifold is

represented by the vector xa = (x0, x1, x2, x3), where x0 is the temporal component

and x1, x2 and x3 are the spatial components. The metric tensor, which is locally

Lorentzian in nature, may be used to measure invariant distances between events as

given in infinitesimal form by

ds2 = gabdx
adxb, (1.3.1)

where ds2 is the square of the infinitesimal distance, not to be confused with an area.

It is commonly known as the line element. The metric connection coefficients Γabc, also

known as the Christoffel symbols, are expressed in terms of the metric tensor and its

derivatives by

Γabc = 1
2
gad(gcd,b + gdb,c − gbc,d), (1.3.2)
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where the commas denote partial differentiation with respect to the variable proceeding

the comma. In terms of a graphical representation, Γabc represents the ath component

of the change in basis vectors ~eb as a consequence of parallel transport of a vector along

the basis vectors ~ec. The connection coefficients preserve inner products under parallel

transport and take into account the variation in the basis vectors from one event to

another in the spacetime. This is one of the fundamental theorems of Riemannian (also

known as elliptic) geometry.

The Riemann curvature tensor, which is essentially a mathematical construct used

to measure the spacetime curvature, is obtained from combinations of the derivatives

and products of connection coefficients (1.3.2) and is given by

Ra
bcd = Γabd,c − Γabc,d + ΓaecΓ

e
bd − ΓaedΓ

e
bc. (1.3.3)

Contraction of the Riemann tensor (1.3.3), with the use of the metric tensor gab, results

in the Ricci tensor Rab and is given by

Rab = geag
cdRe

bcd = Γdab,d − Γdad,b + ΓeabΓ
d
ed − ΓeadΓ

d
eb. (1.3.4)

Further contraction of the Ricci tensor gives the simplest curvature invariant of a

Riemannian manifold, namely the Ricci scalar R, and is given by

R = gabRab = Ra
a. (1.3.5)

The Einstein curvature tensor, which is a rank two symmetric tensor composed of

the Ricci tensor and Ricci scalar, is given by

Gab = Rab − 1
2
Rgab, (1.3.6)

and is in fact a measure of the rate of change of volume of a collection of test particles

initially at rest which fall freely in spacetime. An important property of the Einstein

curvature tensor is that its covariant derivative vanishes, namely

Gab
;b = 0, (1.3.7)
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where the semicolon denotes covariant differentiation. In general relativity, this is com-

monly known as the contracted Bianchi identity and shows that the Einstein tensor is

divergence–free, a requirement for the local conservation of energy and momentum.

Einstein then made the connection between the curvature tensor and the energy

momentum tensor, thereby formulating the Einstein field equations which are the fun-

damental equations of the general theory of relativity. According to Einstein, “Space

acts on matter, telling it how to move. In turn, matter reacts back on space, telling it

how to curve” (Misner et al 1973). This is somewhat reminiscent of Newton’s third

law of motion which states that for every force or action, there is an equal but opposite

force or reaction. The relationship, expressed in geometrized units, is given as

Gab = Tab, (1.3.8)

where Tab is the energy momentum tensor. Geometrised units are made use of in this

research in which certain constants or combinations thereof are scaled to unity for

ease of calculation. These include the speed of light c → 1, and Einstein’s coupling

coefficient κ = 8πG/c4 → 1. It is also noted that equation (1.3.8) is a compact

representation of 16 nonlinear coupled differential equations.

It is also noted that the Einstein field equations may be obtained through variation

of the Einstein-Hilbert action given by

S =

∫
dnx
√
−g
(

1

κ
(R− 2Λ) + Lmatter

)
, (1.3.9)

where Λ is a cosmological constant and Lmatter is the matter field Lagrangian. Such

an action integral equation is the starting point for the extension of general relativity

to higher dimensions (Carloni and Dunsby 2007).
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1.4 Spherically symmetric spacetimes

1.4.1 The energy momentum tensor for an imperfect fluid

The energy momentum tensor determines the amount of mass–energy which is

contained in a unit volume. The mass–energy produces the spacetime curvature which

is quantified by the Einstein tensor Gab. A perfect fluid (an ideal gas model) can be

described as a collection of noninteracting particles travelling through spacetime with

a four–velocity u, having an energy density ρ with pressure p remaining isotropic. The

various contributions to the energy density ρ, which is a total energy, include the rest

mass energy, the kinetic energy, and the various potentials. The perfect fluid model no

longer applies if any of the effects of bulk viscosity, shear stress, heat flow, anisotropic

pressure and free–streaming radiation are involved. The energy momentum tensor for

an imperfect fluid, according to Herrera et al (2009), is given by

Tab = (ρ+ pt + Π)uaub + (pt + Π)gab + (pr− pt)χaχb + qaub + qbua + εlalb + πab, (1.4.1)

where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure,

Π is the bulk viscosity, ua is the comoving timelike fluid four–velocity, χa is a radial

four–vector, qa is the heat flux vector, ε is the null radiation density, la is the null

four–vector and πab is the shear viscosity tensor. These quantities have the following

properties:

uaua = −1, uaqa = 0, laua = −1, lala = 0, (1.4.2a)

χaχa = 1, χaVa = 0, πabV
b = 0, π[ab] = 0, (1.4.2b)

πaa = 0, (1.4.2c)

where [ab] implies anti-symmetrisation with respect to indices a, b. For the comoving

metric where

ds2 = −A2(r, t)dt2 +B2(r, t)dr2 + Y 2
(
dθ2 + sin2 θdφ2

)
, (1.4.3)
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the above nonzero quantities become

ua = (A−1, 0, 0, 0), qa = (0, q1, 0, 0), (1.4.4a)

la = (A−1, B−1, 0, 0), χa = (0, B−1, 0, 0). (1.4.4b)

In cases which are shear–free as is the case in this research, the condition

Ḃ

B
=
Ẏ

Y

is obtained where Y = rB. The shear–free line element is then

ds2 = −A2dt2 +B2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (1.4.5)

where A, B are both functions of t and r. We note that the line element given by

(1.4.5) is isotropic and comoving.

1.4.2 The exterior field: Vaidya’s solution for a null radiation

filled exterior spacetime

Oppenheimer and Snyder (1939) solved the Einstein field equations for a star un-

dergoing gravitational collapse. They used a spherically symmetric dust cloud model

with a void exterior, known as a Schwarzschild exterior spacetime. This work lay

the foundation for the study of gravitational collapse of massive stars and led to the

Vaidya solution (Vaidya 1953) which incorporates radiant energy into a description of

the exterior spacetime. The Vaidya solution is a unique solution of the Einstein field

equations for a spherically symmetric star which radiates energy in the form of null

radiation. The Vaidya metric is given by

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR+R2

(
dθ2 + sin2 θdφ2

)
, (1.4.6)

with coordinates given by (xa) = (v,R, θ, φ). The quantity m(v) is just the Newtonian

mass of the self–gravitating object as measured by an observer, located at infinity. The
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energy momentum tensor for the exterior matter distribution, which is just the null

radiation, is given by

Tab = µlalb, (1.4.7)

where la = (1, 0, 0, 0) is a radial null four–vector as defined for the Vaidya solution

which satisfies the condition lala = 0. The Ricci tensor has only one nonvanishing

component, namely

R00 = − 2

R2

dm

dv
. (1.4.8)

The Ricci scalar (1.3.5) for the line element given by (1.4.3) is R = 0. Thus the only

nonzero component of the Einstein tensor (1.3.6) is

G00 = − 2

R2

dm

dv
. (1.4.9)

It can be shown that the only surviving component of Tab is given by

T00 = µ.

From the Einstein field equations Gab = Tab, it follows that

µ = − 2

R2

dm

dv
. (1.4.10)

The radiation energy density (ε) should be nonnegative, and so it follows that

dm

dv
≤ 0.

It is thus seen that the mass function m(v) decreases with proper time v which is

consistent with a loss in energy in the form of radiation.

1.5 Junction conditions

In solving a system of differential equations, as is the case with Einstein’s field

equations, one obtains solutions which include constants of integration, a natural con-

sequence of the process of integration. In many physical problems, these constants are
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assigned values based on predetermined boundary conditions, having been set according

to physical intuition. In the case of general relativity, these are known as the junction

conditions and their presence is always highlighted in articles on relativity. Junction

conditions arise from the physical nature of a star separating spacetime into two main

regions, namely, spacetime containing the matter medium of a star, and spacetime

extending from the surface of the star outwards which ideally contains only radiation

emanating from the star. Solutions to Einstein’s field equations for the interior of a

star were found by Oppenheimer and Snyder (1939), for the non-adiabatic collapse

of a spherically symmetric matter distribution in the form of a dust cloud having a

Schwarzschild exterior, and by Misner and Sharp (1964) for an interior matter distri-

bution modelled as a perfect fluid with static exterior. The solution to Einstein’s field

equations for an exterior which is void, is the Schwarzschild (1916) solution, whereas

Vaidya’s (1953) solution describes the exterior of a star containing null radiation. The

solutions to Einstein’s field equations for both the interior and the exterior spacetime

must show agreement at the interior–exterior interface in order to make sense of the

collapse process. This is known as the matching of interior and exterior spacetimes of

the star. The criteria for matching involve the continuity of intrinsic and extrinsic cur-

vature over the interior and exterior solutions as given by Darmois (1927), Lichnerowicz

(1955) and O’Brien and Synge (1952). The junction conditions given by Darmois and

O’Brien and Synge are equivalent to those of Bonnor and Vickers (1981).

Initial work (Misner and Sharp 1964) on adiabatic collapse showed that the pressure

vanishes at the boundary of a static star, which was regarded as physically realistic for

some time. A full set of shear–free junction conditions for non-adiabatic, null radiation

producing collapse was then introduced by Santos (1985) through an approach similar

to that of Israel (1966). A consequence thereof is that the pressure at the boundary of a

star is proportional to the flow of heat. Applying these junction conditions to solutions

of Einstein’s equations provides temporal behaviour (Santos 1985, Herrera et al 2008).

Santos shows that the pressure at the boundary is non–vanishing in general and that
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the boundary conditions are due to the “local conservation of momentum” across the

hypersurface.

In leading up to the first junction condition, the following equations arise, namely

A(t, rΣ)ṫ = 1, (1.5.1a)

Y (t, rΣ) = Y(η), (1.5.1b)

RΣ(v) = Y(η), (1.5.1c)

(
1− 2m(v)

R
+ 2

dR
dv

)
Σ

=

(
1

v̇2

)
Σ

. (1.5.1d)

Upon eliminating η from the above equations we are able to obtain the necessary and

sufficient conditions required by the spacetime geometry for the first junction condition

to be satisfied. In summary, the results of the first junction condition can be collectively

written as

A(t, rΣ)dt =

(
1− 2m(v)

RΣ

+ 2
dRΣ

dv

) 1
2

dv, (1.5.2a)

Y (t, rΣ) = RΣ(v). (1.5.2b)

Similarly, a summary of the second juction condition which involves matching the

extrinsic curvatures is now given. The necessary and sufficient conditions required of

the spacetimes in order to satisfy the second junction condition are

m(v) =

[
Y

2

(
1 +

Ẏ 2

A2
− Y

′2

B2

)]
Σ

, (1.5.3a)

(
pr + Π +

2

3
Ω + ε

)
Σ

=
(
q1B + ε

)
Σ
, (1.5.3b)

where the shear viscosity Ω = 3
2
π1

1. It is worthwhile noting that the junction conditions

(1.5.3a) and (1.5.3b) are independent of any particular form for the metric functions
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A,B or Y , but rather has been established as a general result for spherically symmetric,

shearing spacetimes. Since the radiation energy density ε appears on both sides of

equation (1.5.3b), we can rewrite it as

(
pr + Π +

2

3
Ω
)

Σ
=
(
q1B

)
Σ
. (1.5.4)

According to Herrera et al (2009), the left hand side of (1.5.4) can be regarded as an

“effective” radial pressure. If we eliminate the bulk viscosity but not the shear viscosity,

we obtain the result (for shearing spacetime) of Naidu et al (2006), namely
(
pr
)

Σ
=(

q1B
)

Σ
. The most general matching conditions for the spherically symmetric shearing

spacetimes Z+ and Z− are given by equations (1.5.2) and (1.5.3). Equation (1.5.3b)

simply tells us that the effective radial pressure comprising of the radial pressure, the

bulk viscous pressure and the shear stress, is proportional to the magnitude of the heat

flow q1B which is nonvanishing in general as shown by Herrera et al (2009). Thus the

radial pressure
(
pr
)

Σ
on the boundary can only be zero when the heat flow

(
q1B

)
Σ

, the

bulk viscosity Π and the shear viscosity Ω are all zero. When this happens, no heat

is radiated to the exterior spacetime and thus the exterior spacetime is no longer the

Vaidya spacetime but becomes the Schwarzschild exterior spacetime. In disregarding

bulk and shear viscosities, the conditions as obtained by Santos in the shear–free limit

with isotropic pressure are given by

m(v) =

(
r3B

2A2
Bt

2 − r2Br −
r3

2B
Br

2

)
Σ

, (1.5.5a)

pΣ = (q1B)Σ. (1.5.5b)

There is a physical interpretation of the second junction condition which can be

arrived at by taking into account the momentum flux across the boundary in the radial

direction. With the knowledge that (1.5.3a) represents the total energy for a sphere of

radius r lying within the hypersurface Σ we are able to express the mass as a function
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of radial and time coordinates, namely

m(t, r) =

[
Y

2

(
1 +

Ẏ 2

A2
− Y ′2

B2

)]
Σ

. (1.5.6)

Partial differentiation of m(t, r) with respect to t yields(
∂m

∂t

)
Σ

=

[
Ẏ

(
Ÿ Y

A2
+

Ẏ 2

2A2
− Y ′2

2B2
− ȦẎ Y

A3
+

1

2

)

−Y
′Ẏ ′Y

B2
+
ḂY ′2Y

B3

]
Σ

.

By using the Einstein field equations for radial pressure and heat flux, the expression

may be rewritten as(
∂m

∂t

)
Σ

=

[
−Y

2

2

(
Ẏ
(
pr + Π + ε+

2

3
Ω
)

+
AY ′

B

(
q1B + ε

))]
Σ

. (1.5.7)

Substitution of (1.5.3b) in (1.5.7) yields(
∂m

∂t

)
Σ

=

[
−AY

2

2

(
Ẏ

A
+
Y ′

B

)(
pr + Π + ε+

2

3
Ω
)]

Σ

. (1.5.8)

The fact that the radial coordinate is comoving with respect to the hypersurface Σ

enables us to write (
∂m

∂t

)
Σ

=

(
dm

dt

)
Σ

=

(
v̇

ṫ

dm

dv

)
Σ

. (1.5.9)

If we consider

A(t, rΣ)ṫ = 1, (1.5.10a)

Y (t, rΣ) = Y(η), (1.5.10b)
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in addition to (1.5.2b), (1.5.8) and (1.5.9) it can be shown that

(
− 2

R2

dm

dv
v̇2

)
Σ

=
(
pr + Π + ε+

2

3
Ω
)

Σ
. (1.5.11)

As a result of the initiative due to Lindquist et al (1965) we know that the energy

density of the radiation detected by an observer situated on the hypersurface Σ (having

a four–velocity va) is expressed as

ε = vavbTab, (1.5.12)

where the four–velocity expressed in component form is

va = (v̇, Ṙ, 0, 0). (1.5.13)

The Einstein tensor for the metric (1.4.6) is given by

Gab = − 2

R2

dm

dv
δ0
aδ

0
b = Tab. (1.5.14)

Employing (1.5.14) and (1.5.13) in equation (1.5.12), we obtain the radiation energy

density that an observer situated on the hypersurface Σ measures, i.e.

ε =

(
− 2

R2

dm

dv
v̇2

)
Σ

. (1.5.15)

If we consider the radial momentum flux in exterior spacetime (Z+) with an energy

density given by (1.5.15), it becomes apparent that equation (1.5.11) implies the local

conservation of momentum which takes into account bulk viscous effects, shear viscosity

and null radiation (Santos 1985).
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1.6 Thermodynamics

In studying the evolution of a system such as a massive star undergoing gravitational

collapse, it is necessary to determine the temperature and luminosity profiles of the

star. The first order Eckart formalism was initially used to study temperatures where

heat conduction is governed by Fourier’s law, namely,

qa = −κhab (T,b + T u̇b) (1.6.1)

where κ is the thermal conductivity, u̇b = ub;cu
c is the four–acceleration and hab =

gab + uaub is the projection tensor. This equation has been used previously in the

study of radiating stars (de Oliveira et al 1985, Govender et al 1998). The temper-

atures calculated in this way provide a reasonable approximation when the fluid is

close to static equilibrium, however at later stages of the collapse process, the fluid

is far from quasi–stationary equilibrium and the Eckart description is no longer ac-

curate. This is largely due to the noncausal nature of the description which allows

for superluminous propagation velocities. Furthermore, in the classical formalism, the

constitutive equations are assumed to be algebraic which is not in accordance with ex-

periments in plasma physics and high frequency currents. The constitutive equations

should contain time-derivative terms to account for relaxational effects. The noncausal

theory also predicts unstable equilibrium states. Experiments on neutron scattering

in liquids and low temperature investigations of phonon propagation in solids indicate

that the theory is unsatisfactory at high frequencies and short wavelengths.

In order to make improvements in the theory of irreversible thermodynamics, second

order effects in the dissipative fluxes have to be included (Maartens 1996). The entropy

flux vector Sa is defined by

Sa = Snua +
Ra

T
, (1.6.2)

where S is the specific entropy, n is the particle number density and Ra represents

the dissipation. In the Eckart theory, Ra is an algebraic function of the particle four–

current na = nua and the energy momentum tensor. At equilibrium, Ra vanishes.
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In order to restore causality and stability, the algebraic form of Ra must at least be

second order in the dissipative fluxes in extended irreversible thermodynamics. This

generates a system of transport equations which govern the behaviour of the dissipative

fluxes and their associated quantities. If it is assumed that there is no viscous–type

heat coupling, then we have the following relationship for the temperature

τhabucqb;c + qa = −κhab (T,b + T u̇b) . (1.6.3)

This is known as the covariant relativistic Maxwell–Cattaneo heat transport equation

(Maartens 1996) and is used in this research as the starting point for then proceeding

to calculate temperature profiles for the models under investigation. It is one of the

transport equations that appears in the truncated Israel–Stewart theory (Israel and

Stewart 1979). In the above equation, τ is the relaxation time and when τ = 0 we

regain the Fourier equation.

Gravitational collapse is a highly dissipative process and any reasonable model

of gravitational collapse has to include dissipation and relaxation time (Herrera and

Santos 1997a). Mart́ınez (1996) clearly highlights the effect of relaxation time especially

for early and late stages of the collapse process. Di Prisco et al (1997, 2007) have shown

that relaxation time has a direct impact on the final mass, compactness and luminosity

profile of a radiating star. Govender and co–workers have shown that relaxational

effects can lead to higher core temperatures and enhanced cooling at the surface of

the collapsing body (Govender et al 1998, 2003, 2010, 2013; Govinder and Govender

2012). In order to explore the contributions due to relaxational effects we employ the

causal heat transport equation of the Maxwell-Cattaneo form. The Maxwell–Cattaneo

form has many desirable features as pointed out by Joseph and Preziosi (1989) since

it satisfies the relativistic causality requirement and rate–type equations like it are

“extensively used in the theory of viscoelastic fluids and in relaxing gas dynamics”.
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1.6.1 General case

The truncated form of the Israel–Stewart causal heat transport equation is the Maxwell–

Cattaneo equation which is expressed as

τrha
bq̇b + qa = −κ

(
ha

b∇bT + T u̇a
)
, (1.6.4)

where hab = gab + uaub is the projection tensor, T (t, r) is the local equilibrium tem-

perature, κ(≥ 0) is the thermal conductivity, and τr(≥ 0) is the relaxation time scale

with which causal, stable behaviour is achieved. The noncausal Eckart heat transport

equation is obtained by setting the relaxation time τr = 0 in (1.6.4). With the aid of

the metric (1.4.3), equation (1.6.4), with τr 6= 0, becomes

τr(qB)˙ + A(qB) = −κ(AT )′

B
. (1.6.5)

The thermodynamic coefficients associated with radiative transfer are well moti-

vated by Govender et al (1998, 1999) and Mart́ınez (1996). Following Mart́ınez, we

take the thermal conductivity to be

κ = γT 3τc, (1.6.6)

where γ = 4
3
b (b = 7

8
a for neutrinos, with a being a radiation constant) and τc is the

mean collision time. Mart́ınez finds the temperature dependance of the collision time,

by assuming that the neutrinos generated as a consequence of thermal emission, to be

τc ∝ T−
3
2 . Based on his findings, we assume a power law relationship of the form

τc =

(
ξ

γ

)
T −ω, (1.6.7)

where ξ and ω are positive constants, with ω = 3
2

for thermally generated neutrinos. It

is easy to see that the case of ω = 0 corresponds to constant collision time, which holds

true for a limited temperature range. Mart́ınez assumes that the speed of the thermal

and viscous signal to be comparable to the speed of sound in the fluid medium, which

implies that it is reasonable to say that the relaxation time is proportional to the mean
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collision time. This is expressed as

τr =

(
ψγ

α

)
τc, (1.6.8)

where ψ (≥ 0) is a constant. Employing the definitions for τr and κ, it can be shown

that equation (1.6.5) takes the form

ψ(qB)˙T −ω + A(qB) = −ξT
3−ω(AT )′

B
, (1.6.9)

where ψ can be considered to be a ‘causality index’, that enables us to quantify the

impact of relaxation effects on the system.

1.6.2 Luminosity and surface redshift

The total luminosity detected or measured by an observer at rest at an infinite

distance away from the surface of a star is given by

L∞(v) = −dm
dv

= lim
R→∞

R2

2
ε

1

v̇2
, (1.6.10)

where the mass m(v) is a function of the retarded time v (Lindquist et al 1965).

Furthermore, it is noted that dm
dv
≤ 0 for the luminosity L∞ to be positive. The

luminosity measured by an observer situated on Σ is given by

LΣ =

(
R2ε

2

)
Σ

=

(
Y 2ε

2

)
Σ

. (1.6.11)

The surface redshift zΣ, which is in actual fact the change in the frequency of the

radiation emitted from the hyper-surface Σ of the star is expressed as

1 + zΣ =
dv

dη
=

(
Ẏ

A
+
Y

′

B

)−1

Σ

. (1.6.12)

Note that as the star undergoes continued gravitational collapse, it will at some

point reach the event horizon which is also referred to as the Schwarzschild radius, i.e.

R = 2m(v). When the star’s radius is less than Schwarzschild radius, signals take an
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infinitely long time to reach an observer on the outside. Thus, we can determine the

time it takes for an event horizon to form. The above expressions allow us to write

L∞ = −dm
dv

=

(
R2

2
ε

1

v̇2

)
Σ

. (1.6.13)

We can rewrite (1.6.13), evaluated on the hypersurface Σ as

L∞ = −dm
dv

=

{
Y 2

2

(
pr + Π + ε+

2

3
Ω
)[Y ′

B
+
Ẏ

A

]2}
Σ

. (1.6.14)

With the aid of (1.6.11), (1.6.12) and (1.5.2b), relation (1.6.13) can be recast in the

form

LΣ

L∞
=
(
1 + zΣ

)2
, (1.6.15)

which expresses the ratio of the luminosity on the hypersurface LΣ to the luminosity

an infinite distance away L∞ in terms of the surface redshift.

1.6.3 Noncausal solutions

The noncausal solutions of (1.6.9) are obtained by setting ψ = 0. These solutions

are due to Govinder and Govender (2001) for shear–free radiating collapse, and are

given by

(AT )4−ω =
ω − 4

α

∫
A4−ωqB2dr + F (t) , ω 6= 4 (1.6.16)

ln(AT ) = −1

ξ

∫
qB2dr + F (t) , ω = 4 (1.6.17)

where F (t) is an arbitrary integration function. The quantity F (t) is obtained by

applying the surface temperature boundary condition(
T 4
)

Σ
=
( 1

r2B2

)
Σ

(L∞
4πδ

)
, (1.6.18)

where L∞ represents the total luminosity (1.6.14) observed at a very far distance and

δ is a positive constant. Causal solutions of (1.6.9) have been obtained by Govinder

and Govender (2001) for constant and non-constant collision times. These are given

below.
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1.6.4 Causal solutions: ω = 0 and ω = 4

The case of ω = 0 in (1.6.7) corresponds to constant mean collision time. Upon

integrating the causal transport equation (1.6.9) with ω = 0, we obtain the following

temperature profile

(
AT
)4

= − 4

α

[
ψ

∫
A3B(qB)˙dr +

∫
A4qB2dr

]
+ F (t). (1.6.19)

Setting ω = 4 in (1.6.7) produces a model that is valid for a specific range of temper-

atures as pointed out by Govinder and Govender (2001). The resulting equation has

the form of a Bernoulli equation in AT and the solution to this equation has the form

(
AT
)4

= −4ψ

α
exp
(
−
∫

4qB2

α
dr
)∫

A3B(qB)˙exp
(∫ 4qB2

α
dr
)

+F (t) exp
(
−
∫

4qB2

ξ
dr
)
. (1.6.20)

Temperature profiles (causal and noncausal) for (1.6.9) have been obtained for vari-

ous models such as shear–free (horizon–free) collapse (Naidu and Govender 2007), radi-

ating anisotropic collapse with shear (Naidu et al 2006), Euclidean star models (Goven-

der et al 2010, 2012), dissipative collapse with cosmological constant (Thirukkanesh

et al 2012a), collapse involving first–order perturbations (Maharaj et al 2011), shear-

ing, radiative collapse with expansion and acceleration (Thirukkanesh et al 2012b),

models highlighting the effect of shear (Govender et al 2014), as well as the role of

anisotropy on the perturbed temperature profiles (Reddy et al 2015).
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Chapter 2

Gravitational collapse in spatially

isotropic coordinates

2.1 Introduction

Looking for exact solutions to Einstein’s field equations which are capable of de-

scribing realistic astrophysical systems has been an area of active research since the

discovery of the Schwarzschild solution in 1916 (Schwarzschild 1916). There are many

solutions to the field equations however many of these are not physically viable (Del-

gaty 1998). For instance, solutions might return negative values for energy density,

heat dissipation and temperature which are unrealistic and thus unacceptable. Thus

various techniques and assumptions based on particle physics, hydrostatic equilibrium

and physical observations have been used to generate physically meaningful models

of stellar objects. Since exact solutions are not easy to come by, various ad hoc ap-

proaches have also been used to simplify the nonlinearity of the field equations so as

to generate solutions which are well behaved and which can be utilized to describe

realistic physical processes. A comprehensive study of exact static solutions of the

Einstein field equations, which are physically reasonable, yields only a small class of

solutions that satisfy all of the conditions for hydrostatic equilibrium and causality.
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Nevertheless, in the absence of any reliable information about the physics of matter at

extremely high densities, a geometrical approach has been found to be a worthwhile

technique in the study of compact stellar objects, which are the best candidates for un-

derstanding particle interactions under extreme conditions. For example, the Tikekar

superdense stellar model which describes the gravitational field of a highly compact

spherically symmetric star, was shown to exhibit a reasonable equation of state for

neutron stars (Karmakar et al 2007; Sarwe and Tikekar 2010). This then prompted

many researchers to look for exact solutions capable of describing a large variety of as-

trophysical systems where relativistic effects cannot be ignored, thereby expanding the

Tikekar model to include charge (Maharaj and Govender 2000), pressure anisotropy

(Sharma and Tikekar 2012a), quark matter (Sharma and Mukherjee 2001), scalar fields

and higher dimensional systems (Patel and Singh 2001). Within a set of realistic mod-

els, the static stellar model proposed by Pant and Sah (1985) is of particular interest.

The Pant and Sah model describes a spherically symmetric compact star in spatially

isotropic coordinates whose solution regains the well known Buchdahl polytrope solu-

tion of index 5. The physical viability of the Pant and Sah model was recently studied

in detail by Deb et al (2012) and it has been shown that this model can be utilized to

describe a wide variety of compact stellar objects including strange stars.

In this research, we have incorporated dynamical effects into the Pant and Sah

model by allowing certain model parameters to evolve with time. This has allowed us

to investigate the non-adiabatic collapse of a star in a spatially isotropic spacetime.

Work on non-adiabatic gravitational collapse was previously done by de Oliveira and

Santos (1988). In our time-dependent model, we have assumed that the star begins

its collapse from an initial static configuration by dissipating energy in the form of a

radial heat flux. The collapse proceeds in such a manner so as to ensure that the mass

loss is small and that the stellar body is in quasi-static equilibrium. This corresponds

to the final stage of a star, just before the formation of the compact object. We regain

the Pant and Sah model as the static limit of the dynamical collapse process.
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Although the issue of gravitational collapse was first taken up by Oppenheimer and

Snyder (1939), the study of a more realistic collapse scenario in the presence of dissipa-

tive processes came about through the incorporation of Vaidya’s metric, corresponding

to the exterior gravitational field of a radiating star. A formal treatment of the junc-

tion conditions required the smooth matching of the collapsing core to the exterior

non-empty spacetime and was set down by Santos (1985). These junction conditions

spurred an interest in studying dissipative collapse, with much of the early work having

been done by Herrera and co-workers (Herrera et al 1997). For a radiating collapsing

star, the pressure at the boundary is proportional to the magnitude of the heat flux

and hence gives rise to a temporal evolution equation for the metric functions. As in

the case of a static model, various solutions for radiating stars have been based on

physics, dynamical stability and ad hoc assumptions. The interior spacetime of these

models has been generalised to include (apart from heat flow) pressure anisotropy, bulk

viscosity, shear–stresses and electromagnetic fields (Thirukkanesh and Govender 2013).

A comprehensive review of various approaches and analyses involving gravitationally

collapsing systems has been done by Joshi and Malafarina (2011). An interesting ap-

proach was adopted by Kramer (1992) in which the interior Schwarzschild solution

was written in isotropic coordinates and the mass parameter was allowed to become

time-dependent. The radiating Schwarzschild-like solution had as its source term, a

perfect fluid with heat flow. Since the interior was radiating energy, the exterior was

non-empty and was described by Vaidya’s outgoing metric. Kramer provided a first in-

tegral of the boundary condition required for the matching of the interior to the Vaidya

solution. Maharaj and Govender (1997) presented the full temporal behaviour of the

Kramer model in terms of Li integrals. The complicated form of the analytical solution

for the temporal behaviour did not warrant a full study of the physics of the model.

The present work takes up the initiative to use the Kramer algorithm to provide a full

descriptive model of dissipative gravitational collapse. As the collapse process begins

in a massive star, after exhausting all of its thermonuclear fuel, prediction of the final
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stage of the collapsing star becomes very much speculative in nature (Chandrasekhar

1934). In fact, one of the the most outstanding challenges in general relativity has been

the prediction of the end state of a gravitationally bounded system. In the context

of the Cosmic Censorship Conjecture, the general relativistic prediction is that such

a collapse must terminate in a black hole; though there are several counter–examples

where it has been shown that a naked singularity is more likely to be formed (Joshi

and Malafarina 2011). The nature of singularities is a topic for continued research

(Sharif and Siddiqa 2010). In our dynamical model, we show that the star begins its

collapse from an initial static configuration with acceptable physical conditions which

are always close to hydrostatic equilibrium.

2.2 Interior and exterior spacetimes

We write the interior spacetime of a spherically symmetric shear–free collapsing star

in spatially isotropic coordinates as

ds2
− = −A2(r, t)dt2 +B2(r, t)[dr2 + r2(dθ2 + sin2 θdφ2)]. (2.2.1)

We assume that the material composition filling the interior of the collapsing object is

an imperfect fluid with dissipation in the form of a radial heat flux and accordingly we

express the energy momentum tensor in the form

Tab = (ρ+ p)uaub + pgab + qaub + qbua, (2.2.2)

where ρ is the energy density, p is the isotropic fluid pressure, ua = (1/A)δa0 is the

timelike four–velocity of the fluid and qa = (0, q, 0, 0) is the heat flux vector which

is orthogonal to the velocity vector so that qaua = 0. The Einstein field equations
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describing the dynamics of the system are then obtained as

ρ = 3
1

A2

Bt
2

B2
− 1

B2

(
2
Brr

B
− Br

2

B2
+

4

r

Br

B

)
, (2.2.3a)

pr =
1

A2

(
−2

Btt

B
− Bt

2

B2
+ 2

At
A

Bt

B

)
+

1

B2

(
Br

2

B2
+ 2

Ar
A

Br

B
+

2

r

Ar
A

+
2

r

Br

B

)
, (2.2.3b)

pt = −2
1

A2

Btt

B
+ 2

At
A3

Bt

B
− 1

A2

Bt
2

B2
+

1

r

Ar
A

1

B2

+
1

r

Br

B3
+
Arr
A

1

B2
− Br

2

B4
+
Brr

B3
, (2.2.3c)

q = − 2

AB

(
−Brt

B
+
BrBt

B2
+
Ar
A

Bt

B

)
. (2.2.3d)

Combining equations (2.2.3b) and (2.2.3c), we obtain

Arr
A

+
Brr

B
−
(

2
Br

B
+

1

r

)(
Ar
A

+
Br

B

)
= 0, (2.2.4)

which is the pressure isotropy equation. We note that this equation does not contain

time derivatives of the metric functions. If we take a static solution (A0(r), B0(r))

of the pressure isotropy equation and allow the constants to become time–dependent,

then this solution will satisfy the metric (2.2.1).

The exterior spacetime, in the presence of an outgoing radiation flux around the

spherically symmetric collapsing matter source, is described by the Vaidya metric

(Vaidya 1953)

ds2
+ = −

(
1− 2m(v)

r

)
dv2 − 2dvdr + r2

(
dθ2 + r2 sin2 θdφ2

)
, (2.2.5)

where the total mass m(v) is a function of the retarded time v. Assuming that Σ

divides the spacetimes into two distinct regions, the junction conditions which join

smoothly the interior spacetime (2.2.1) and the exterior spacetime (2.2.5) across Σ,

forming the boundary of the star, are

pΣ = (qB)Σ, (2.2.6)

mΣ =

[
r3

2

(
BB2

t

A2
− B2

r

B

)
− r2Br

]
Σ

, (2.2.7)
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where mΣ is the total mass within a sphere of radius rΣ. This is according to Santos

(1985).

2.3 Generating dynamical solutions

Note that in the metric (2.2.1), the metric potentials A(r, t) and B(r, t) are yet to

be specified. To generate a viable dynamical model, let us assume that the system

begins its collapse from an initial static configuration (A0(r), B0(r)). For the initial

static configuration, we choose the Pant and Sah solution (Pant and Sah 1985) which

describes the interior spacetime of a static spherically symmetric star in isotropic coor-

dinates. In our construction, we generalize the Pant and Sah solution so as to develop

a model of a collapsing star which satisfies the time dependence of the metric (2.2.1).

We note that (2.2.4) admits a solution

A(r, t) =
a(1− α(r)k(t))

(1 + α(r)k(t))
, (2.3.1)

B(r, t) =
(1 + α(r)k(t))2

(1 + r2/R2)
, (2.3.2)

for an arbitrary k(t), where

α(r) =

√
1 + r2/R2

1 + λr2/R2
. (2.3.3)

Obviously the static limit of the model is obtained by setting k(t) = K, a constant

(i.e., k̇ = 0). For an evolving system, we need to determine k(t) which can be obtained

by solving the junction condition (2.2.6). The resultant ‘surface equation’ in this

construction turns out to be highly nonlinear in nature and extremely difficult to solve.

However, it is possible to generate an approximate solution of the equation by setting

k(t) = K + εh(t), with 0 < ε << 1. Neglecting terms O(ε2) and noting that pressure

at the boundary of the initial static star vanishes, the surface equation then assumes

a simple form

µḧ+ νḣ+ ηh = 0, (2.3.4)
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where µ, ν and η are constants evaluated at the boundary Σ. They are given by

µ = −
[
α(1 +Kα)5

a2(Kα− 1)2

]
Σ

, (2.3.5a)

ν =

[
α(1 +Kα)2

√
(1− α2)(α2λ− 1)

aR(Kα− 1)2

]
Σ

, (2.3.5b)

η =

[
4α− 6Kα2 + 2λKα6(1 + 2Kα(Kα− 1))

R2(k2α2 − 1)2

]
Σ

. (2.3.5c)

Equation (2.3.4) is easily solvable and the most general solution of the equation can

be written as

h(t) = Ce
t
2µ

(
−ν−
√
ν2−4µη

)
+De

t
2µ

(
−ν+
√
ν2−4µη

)
, (2.3.6)

where C and D are integration constants.

We assume that the collapse begins in the remote past (t → −∞) from an initial

static configuration as the star loses its equilibrium. This implies that we must have

k(t → −∞) = K, where K is a constant as described in the static Pant and Sah

model. For a collapsing (contracting) sphere, without any loss of generality, we set

D = 0 which ensures that k̇, ḣ < 0. In addition to this, for real values of h(t), we need

to fix the model parameters so that the condition ν2 ≥ 4µη is satisfied. Subsequently,

from equations (2.2.3a)–(2.2.3d), the energy density, pressure and heat flux density are

obtained as

ρ = 12

(
1

R2 (1 +Kα)5 +
εα2ḣ2(t)

a2 (1−Kα)2

)
, (2.3.7a)

p =
−4

a2 (1−Kα)3

[((a (1−Kα))2

R2 (1 +Kα)5

)
+ 4α2 + 2α

(
r2 +R2

) (
1−K2α2

−ε
(

α2

r2 +R2

)
Kḣ2(t) + ε2α2 (2K + h(t))h(t)ḧ(t)

)]
, (2.3.7b)

q =
4rεαḣ(t)

aR2 (1−K2α2)2 . (2.3.7c)

We see from equations (2.3.7a) and (2.3.7b) that for the initial static configuration,

ρs(r) =
12

R2 (1 +Kα)5 , (2.3.8)

ps(r) =
−4

R2 (1−Kα) (1 +Kα)5 −
16α2

a2 (1−Kα)3 . (2.3.9)
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From (2.2.7), the total mass m(r, t) within a radius r ≤ rΣ, at any instant t, is

obtained as

m(r, t) = − 2r5R2

(r2 +R2)3 +
2r3R2 (1 + α (K + εh(t)))

(r2 +R2)2 +

2r3 (1 + α (K + εh(t)))6 εḣ2(t)

a2 (1 + r2/R2)2 (1 + λr2/R2) (1− α (K + εh(t)))2 . (2.3.10)

Then the mass of the initial static configuration is

ms(r) = 2r3R2

(
(r2 +R2) (1 +Kα)− r2

(r2 +R2)3

)
. (2.3.11)

Let b be the radial distance where the pressure of the initial static star vanishes,

i.e., ps(r = b) = 0. The physical radius b0 of the initial static star can then be obtained

from the relation (Deb et al 2012)

b0 = b

(
1 +

ms(b0)

2b

)2

. (2.3.12)

At the boundary we match the static interior solution to that of the Schwarzschild

exterior, and obtain

(1 +Kαb)
2

(1 + b2/R2)
=

(
1 +

ms(b)

2b

)2

, (2.3.13a)

K =
1√
λα3

b

, (2.3.13b)
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which yields the condition

[(1 + a)4 +K4(1− a)4 − 8(1 + a)2 + 16

−2K2(1− a2)2 − 8K2(1− a)2]

+[2λ(1 + a)4 − 16λ(1 + a)2

−8(1 + a)2 + 32(1 + λ)− 2K2(1 + λ)(1− a2)2

−8K2(2 + λ)(1− a)2 + 2K4(1− a)4]y2

+[λ2(1 + a)4 − 8λ2(1 + a)2

−8λ(1 + a)2(1 + 4λ+ λ2)

−2λK2(1− a2)2 − 8K2(1− a)2(1 + 2λ)

+K4(1− a)4]y4 − [8λ2(1 + a)2 − 32(1 + λ)

−8λK2(1− a)2]y6 + 16λ2y8 = 0, (2.3.14)

where

y =
b

R
and αb =

√
1 + y2

1 + λy2
. (2.3.15)

Equations (2.3.12)–(2.3.14) can be utilized to fix the model parameters for a specific

choice of mass and radius of the initial static star.

2.4 Physical analysis

In order to analyze the physical behaviour of the collapsing model, let us start with

one of the static models as given by Deb et al (2012) in which the parameters were

set as follows: A = 4, λ = 0.1211 and K = 2.2. These parameters characterise a

star of mass M = 2.44 M� with a radius of r0 = 8.197 km and with R = 1.819 km.

These parameters characterise the X-ray pulsar, 4U 1700-37, as studied by Deb and

co-workers.

In our time-dependent model, we set C = −1 and ε = 0.01. This choice allows us

to obtain physically reasonable temporal behaviour with the value of ε well within our
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perturbative framework. By setting r = 16km, we observe a calculated mass of 2.44 M�

which varies negligibly from past to present times. This is evident in Figure 2.1. The

radiated mass is dissipated to the exterior spacetime via a radial heat flux. Figure 2.2

shows that the energy dissipated throughout the collapse process can be viewed as a

weak heat flux approximation. Such a collapse process was previously investigated by

Lemos (1998) for a Friedmann-like dissipative sphere. In their scenario, the particles

making up the stellar fluid exhibited geodesic motion. It is interesting to note that

we obtain similar results even though the four–acceleration of the particles making

up the stellar fluid in our model is nonzero. The corresponding dynamical nature of

the pressure and energy density are depicted in Figure 2.3 and Figure 2.4 respectively.

In the next section we turn our attention to the thermal behaviour of the collapsing

model.
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Figure 2.1: Evolution of mass m(t).
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Figure 2.2: Evolution of heat flux q(t).
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Figure 2.3: Evolution of energy density ρ(t).
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Figure 2.4: Evolution of pressure p(t).
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2.5 Thermal evolution

We now investigate the thermal evolution of the collapsing system generated in

§2.4. It is well known that the Eckart formalism of thermodynamics has somewhat

unphysical aspects towards it. In particular, this includes super-luminal propagation

velocities for the dissipative fluxes as well as the prediction of unstable equilibrium

states (Anile et al 1998). Gravitational collapse of a stellar object is dissipative in

nature and is usually accompanied by heat generation via neutrino emission or free-

streaming radiation. Various investigations have shown that relaxational effects predict

higher core temperatures and significantly different luminosity profiles when compared

to their noncausal counterparts (Govender et al 1998, 1999, 2013; Naidu et al 2006).

As already outlined in §1.6, in order to study the impact of the relaxational effects

brought about by heat flow, it is necessary to employ a causal heat transport equation

as given by the following truncated form (Thirukkanesh and Maharaj 2009),

τha
bq̇b + qa = −κ(ha

b∇bT + T u̇a), (2.5.1)

where κ is the thermal conductivity, u̇b = ub;au
a is the four–acceleration, hab = gab +

uaub is the projection tensor and τ is the relaxation time. We obtain the Eckart

temperature by setting τ = 0 in (2.5.1). We assume that the neutrinos are thermally

generated within the stellar core with energies of the order of kBT . At neutron star

densities, neutrino trapping takes place via electron–neutrino scattering and nucleon

absorption. The mean collision time for thermally generated neutrinos is given by

τc ∝ T−3/2, (2.5.2)

to good approximation (Mart́ınez 1996). Following (2.5.2), we adopt a power law

dependence for the thermal conductivity and relaxation time:

κ = γT 3τc, τc =

(
α

γ

)
T−σ, (2.5.3)

where α ≥ 0, γ ≥ 0 and σ ≥ 0 are constants. We further assume that the relaxation
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time is directly proportional to the mean collision time

τ =

(
βγ

α

)
τc, (2.5.4)

where β (≥ 0) is a constant. The causal heat transport equation (2.5.1) for the above

assumptions then reduces to

β(qB)˙T−σ + A(qB) = −αT
3−σ(AT )′

B
, (2.5.5)

where the Eckart temperature T0 is obtained by setting β = 0 in (2.5.5). In the case

of constant collision time (σ = 0) we are in a position to write down the solution to

(2.5.5), namely

(AT )4 = − 4

α

[
β

∫
A3B(qB),tdr +

∫
A4qB2dr

]
+ F (t), (2.5.6)

where F (t) is an arbitrary function of integration. The function F (t) can be determined

by making use of the effective surface temperature of a star as given by

(
T 4
)

Σ
=

(
1

r2B2

)
Σ

(
L∞
4πδ

)
, (2.5.7)

where L∞ is the total luminosity at infinity and δ (> 0) is a constant.

Making use of the solution generated in §2.4 and for the particular case considered

in §2.5, we have plotted the temperature within the collapsing stellar core as a function

of time at r = 1km in Figure 2.5. The plots show an increase in temperature with time

which is to be expected from increases in pressure and energy density as already shown.

The plot β = 0 represents the noncausal case. We see that a causal temperature, β > 0,

is always greater than a noncausal temperature calculation. It is clear that relaxational

effects contribute to the enhancement of the temperature for a collapsing star system as

described in our work. It is interesting to note that even though our model is based on

a weak heat flux approximation (0 < ε << 1), relaxational effects lead to very different

outcomes for the temperature. The results confirm earlier findings by Govender and

Govinder (2001).
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Figure 2.5: Temperature profiles at r = 1km
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2.6 Discussion

In this chapter, we have generated a dynamical solution from the static stellar model

given by Pant and Sah (1985) to investigate the nature of dissipative collapse. This

has been achieved by allowing a constant parameter within the static model to evolve

with time, still allowing the model to remain a solution of the Einstein field equations.

The resulting dynamical model is a radiating collapsing star with heat conduction

enveloped by a radiation atmosphere. In our construction, the star begins its collapse

from an initial static configuration as described by the Pant and Sah model. Unlike

many previous models describing collapse from an initial static configuration, the usual

method of assuming metric separability in the variables r and t has not been adopted

in our approach. Secondly, the background spacetime has been couched in spatially

isotropic coordinates. The static model of Pant and Sah, as analyzed by Deb et al

(2012), has the following key features: (1) ρ > 0, p > 0; (2) ρ′ < 0, p′ < 0; (3)

dp/dρ < 1. This implies that the collapse begins from a physically acceptable initial

configuration which includes the fulfillment of (at least) the weak energy condition. The

collapse is found to proceed without formation of an event horizon, with heat generated

mostly due to the collapse process as the mass has been shown to be largely conserved.

We have also studied the thermodynamics of the collapsing star within the framework

of extended irreversible thermodynamics. Our results confirm earlier findings (through

various different approaches) that relaxational effects can significantly alter the physical

characteristics such as the temperature of the collapsing system. It must be pointed

out that the spheroidal parameter k (in the static case) is usually chosen on an ad hoc

basis to fit theoretical data to observed data related to neutron stars and strange stars.

Our approach in allowing the spheroidal parameter to dynamically evolve with time

gives snapshots of the collapse process, particularly during the latter stages just before

the formation of the remnant.
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Chapter 3

Radiating collapse in the presence

of anisotropic stresses

3.1 Introduction

The end state of gravitational collapse processes is still a hotly debated area of re-

search amongst astrophysicists, relativists and physicists who strongly adhere to quan-

tum theory. Oppenheimer and Snyder (1939) determined the final outcome of the

collapse of a spherical dust configuration in the absence of dissipation. The exterior

of the collapsing dust sphere was taken to be the vacuum Schwarzschild solution. Al-

though very idealised, the Oppenheimer–Snyder collapse model sheds new light on the

collapse process, particularly towards the latter stages of the evolution of the collaps-

ing system. Vaidya (1951) provided the unique solution which describes the exterior

gravitational field of a radiating sphere dissipating energy in the form of null radiation.

The Vaidya solution can be thought of as describing the atmosphere enveloping the

collapsing body. The discovery of the Vaidya solution prompted researchers to consider

more realistic effects in gravitational collapse, particularly the influence of dissipative

fluxes when a star leaves hydrostatic equilibrium. A collapsing star which is radiating

energy divides spacetime into two distinct regions: the interior spacetime representing
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the collapsing stellar fluid and the exterior spacetime describing the atmosphere of the

star. As mentioned in the previous chapter, the junction conditions required for the

smooth matching of the interior spacetime to Vaidya’s outgoing solution were provided

by Santos (1985) by taking the interior of the star to be described by a spherically

symmetric, shear–free line element in comoving isotropic coordinates. These junction

conditions led to an abundance of radiating stellar models with the chief investigators

being Herrera and co-workers (Herrera et al 1997, 1998, 2002, 2004). The roles played

by shear and anisotropy during dissipative collapse have revealed exciting phenomena

such as cracking, modification to the adiabatic index, cavity formation and horizon–free

collapse.

The effect of dissipation on the evolution of collapsing spheres has been further

investigated within the framework of causal thermodynamics (Govender et al 1998).

Relaxational effects due to heat dissipation, bulk viscosity and shear were shown to

affect the luminosity and temperature profiles of radiating stars (Govender et al 1999).

At high core densities and temperatures, the relaxation time can be as large as one

second. It has been shown that causal temperature profiles are higher than their

noncausal counterparts throughout the interior of the collapsing star.

In this work, we consider the collapse of a spherical matter configuration within

a model which is initially static. The static model is described by the Bowers and

Liang solution (Bowers and Liang 1974) which is a generalisation of the Schwarzschild

incompressible sphere to include pressure anisotropy. Our aim is to investigate the

effect of pressure anisotropy on the subsequent dynamics of the collapsing system. The

study is organised in the following way. Firstly, we present the Einstein field equations

describing a spherically symmetric matter distribution with radial heat flux. Then we

introduce the Vaidya solution which represents the gravitational field of the radiating

star. In addition, we provide an outline of the junction conditions required for the

smooth matching of the interior spacetime to the Vaidya spacetime. Then the Bowers

and Liang solution representing the static core is introduced. The radiating model and
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the associated physics is then discussed following which a conclusion, highlighting the

main results of the work, is given.

3.2 Shear–free spacetimes

We investigate the gravitational collapse of a shear–free matter distribution with

spherical symmetry, which is a reasonable assumption when modelling a relativistic

radiating star. In this case, there exist coordinates for which the line element may be

expressed in a form that is simultaneously isotropic and comoving. With the coordi-

nates (xa) = (t, r, θ, φ), the line element for the interior spacetime of the stellar model

takes the form

ds2 = −A2
0(r)dt2 + f 2(t)

[
B2

0(r)dr2 + r2(dθ2 + sin2 θdφ2)
]
, (3.2.1)

where the metric functions are yet to be determined.

In this work we consider a model which represents a spherically symmetric, shear–

free fluid configuration with heat conduction. For our model, the energy momentum

tensor for the stellar fluid becomes

Tab = (ρ+ pt)uaub + ptgab + (pr − pt)χaχb + qaub + qbua , (3.2.2)

where ρ is the energy density, pr and pt are the radial and tangential stresses respec-

tively, χa is a unit spacelike four–vector along the radial direction and qa = (0, q, 0, 0)

is the heat flow vector which is assumed to flow in the radial direction because of

spherical symmetry. The fluid four–velocity u is comoving and is given by

ua =
1

A
δa0 . (3.2.3)

The following relations also need to be satisfied, namely

uaua = −1, uaqa = 0, χaχa = 1, χaua = 0.

The fluid collapse rate Θ = ua;a of the stellar model is given by

Θ = 3
Ḃ

AB
, (3.2.4)
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where dots represent differentiation with respect to t.

The nonzero components of the Einstein field equations for the line element (3.2.1)

are

ρ =
1

f 2

[
1

r2
− 1

r2B2
0

+
2B′0
rB3

0

]
+

3ḟ 2

A2
0f

2
, (3.2.5a)

pr =
1

f 2

[
− 1

r2
+

1

B2
0r

2
+

2A′0
rA0B2

0

]
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (3.2.5b)

pt =
1

f 2

[
A′′0
A0B2

0

+
A′0

rA0B2
0

− B0,

rB3
0

− A′0B
′
0

A0B3
0

]
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (3.2.5c)

q = − 2A′0ḟ

A2
0B

2
0f

3
. (3.2.5d)

We rewrite (3.2.5a)–(3.2.5c) in the form

ρ =
ρs
f 2

+
3ḟ 2

A2
0f

2
, (3.2.6a)

pr =
(pr)s
f 2
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (3.2.6b)

pt =
(pt)s
f 2
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (3.2.6c)

where ρs, (pr)s and (pt)s denote the energy density, radial pressure and tangential

pressure respectively of the initial static star. These are clearly given by

ρs =

[
1

r2
− 1

r2B2
0

+
2B′0
rB3

0

]
, (3.2.7a)

(pr)s =

[
− 1

r2
+

1

B2
0r

2
+

2A′0
rA0B2

0

]
, (3.2.7b)

(pt)s =

[
A′′0
A0B2

0

+
A′0

rA0B2
0

− B0,

rB3
0

− A′0B
′
0

A0B3
0

]
. (3.2.7c)

The anisotropy parameter can be obtained from (3.2.5b) and (3.2.5c) according to

a simple difference in pressures, namely

∆(r, t) = (pr − pt) , (3.2.8)

which is in accordance with ‘Equation (7)’ in Sharma and Das (2013). In order to

construct a static model of the initial configuration, Sharma and Das assumed that the
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anisotropy parameter ∆ was separable in r and t, i.e.

∆ (r, t) =
∆s(r)

f 2(t)
. (3.2.9)

Then equation (3.2.8) reduces to

∆s(r) =

[
− A′′0
A0B2

0

+
A′0
rA0

B2
0 +

B′0
rB3

0

+
A′0B

′
0

A0B3
0

+
1

r2B2
0

− 1

r2

]
, (3.2.10)

as given by Sharma and Das, which is clearly independent of t. They further utilised

the Finch and Skea ansatz (Finch and Skea 1998) for B0, i.e.

B0 =

(
1 +

r2

R2

) 1
2

, (3.2.11)

where R is the curvature parameter. The Finch and Skea ansatz has been successfully

used to model compact stars (Hansraj and Maharaj 2006).

In order to solve equation (3.2.10), Sharma and Das assumed a particular profile

for the anisotropy parameter based on physically reasonable behaviour. This equation

reduces to a second order equation in A0 for which there is a general solution. Hence

the initial static configuration can now be fully specified. In this work, we adopt a

completely different approach. We begin with an initial static configuration described

by a Bowers and Liang model which is a generalisation of the Schwarzschild uniform

density sphere to include anisotropic stress. The physical viability of the Bowers and

Liang solution has been extensively investigated in a recent study by Reddy et al (2015).

In their study, Reddy et al considered an initially static matter configuration described

by the Bowers and Liang solution which starts to collapse and dissipate energy in the

form of a radial heat flux. The collapse proceeds in such a manner so as to ensure that

the star is always close to hydrostatic equilibrium. We present the essential features of

the Bowers and Liang static model which we will use as the static core.
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3.3 Junction conditions

Since the interior of the star is radiating energy, the exterior spacetime is appropri-

ately described by Vaidya’s outgoing solution (Vaidya 1951) given by

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR +R2

(
dθ2 + sin2 θdφ2

)
. (3.3.1)

The quantity m(v) represents the Newtonian mass of the gravitating body as measured

by an observer at infinity. The metric (3.3.1) is the unique spherically symmetric so-

lution of the Einstein field equations for radiation in the form of a null fluid.

The Einstein tensor for the line element (3.3.1) is given by

Gab = − 2

R2

dm

dv
δ0
aδ

0
b . (3.3.2)

The energy momentum tensor for null radiation assumes the form

Tab = Φwawb , (3.3.3)

where the null four–vector is given by wa = (1, 0, 0, 0). Thus from (3.3.2) and (3.3.3),

according to Einstein’s theory, we have

Φ = − 2

R2

dm

dv
, (3.3.4)

for the energy density of the null radiation. Since the star is radiating energy to the

exterior spacetime, it is necessary to have
dm

dv
≤ 0.

The necessary conditions for the smooth matching of the interior spacetime to the

exterior spacetime was first presented by Santos (1985) in his seminal paper. The

junction conditions for the line elements (3.2.1) and (3.3.1) are thus given by

pΣ = (qB)Σ, (3.3.5)

m(v) =

{
r3

2

(
Ḃ2B

A2
− B′2

B

)
− r2B′

}
Σ

. (3.3.6)
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3.4 A Bowers–Liang static core

We use a Bowers and Liang model (Bowers and Liang 1974) with constant density

in which the gravitational potentials are given by

A2
0 =

[
3
(
1− 2M/R)h/2 −

(
1− 2m/r

)h/2
2

]2/h

, (3.4.1a)

B2
0 =

(
1− 2m

r

)−1

. (3.4.1b)

Using these potentials in (3.2.7a) – (3.2.7c), the static energy density and pressures are

given by

ρs = 6M/R3 , (3.4.2a)

(pr)s = −ρs

[(
1− 2Mr2

R3

)h/2
−
(

1− 2M

R

)h/2]
×

[(
1− 2Mr2

R3

)h/2
−3
(

1− 2M

R

)h/2]−1

, (3.4.2b)

(pt)s = 2M
(

1− 2Mr2

R3

)h/2(
2Mr2

[(
1− 2Mr2

R3

)h/2
− 3h

(
1− 2M

R

)h/2]

−

[(
1− 2Mr2

R3

)h/2
− 3
(

1− 2M

R

)h/2]
R3

)
×

([(
1− 2Mr2

R3

)h/2
−3
(

1− 2M

R

)h/2]2

R3
(
R3 − 2Mr2

))−1

, (3.4.2c)

respectively. The static anisotropy parameter, ∆s = (pt)s − (pr)s, is then expressed as

∆s = −2M

[
2
(

1− 2Mr2

R3

)h(
2Mr2 −R3

)
− 9
(

1− 2M

R

)h(
R3 − 2Mr2

)
+3
(

1− 2Mr2

R3

)h/2(
1− 2M

R

)h/2(
2
(
h− 4

)
Mr2 + 3R3

)]
×([(

1− 2Mr2

R3

)h/2
− 3
(

1− 2M

R

)h/2]2

R3
(
R3 − 2Mr2

))−1

. (3.4.3)

According to Herrera and Santos (1997b), the anisotropy parameter may also be written

as

∆ =
4

3
πCr2

(
ρo + pro

)(
ρo + 3pro

)(
1− 2m

r

)−1

, (3.4.4)
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where C, the anisotropic factor, measures the degree of anisotropy and is given by

h = 1− 2C. (3.4.5)

From (3.4.5) it is clear that h = 1 corresponds to C = 0 which is the isotropic case,

while h = 2 and h = 4 correspond respectively to C = −1
2

and C = −3
2

which imply

that the radial pressure dominates the tangential pressure. The model has a limiting

case of h = 0 which corresponds to the Florides solution (Florides 1974) which is not

considered in our study.

The critical value of 2M/R which results in infinite central pressure is given by(
2M

R

)
crit

= 1−
(1

3

)2/h

, (3.4.6)

and the associated critical mass by

Mcrit =

(
3

32πρo

)1/2[
1−

(1

3

)2/h
]3/2

. (3.4.7)

The redshift z at the star’s surface is expressed as

z =

(
1− 2M

rΣ

)−1/2

− 1, (3.4.8)

and by considering equation (3.4.6), we obtain a simple expression for the critical value

of the redshift, namely

zcrit = 31/h − 1. (3.4.9)

The Bowers and Liang model is an extension of the interior Schwarzschild solution to

include anisotropic pressures. It has been used extensively to investigate the role played

by local anisotropy in highly dense matter distributions of the order of 1015g.cm−3. The

model augments or diminishes the equilibrium mass and redshift relative to isotropic

values. In particular, the anisotropy allows for arbitrarily large surface redshifts as

observed in quasars.
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3.5 A radiating stellar model

By using equations (3.2.5d) and (3.2.6b) in (3.3.5), with ((pr)s)Σ = 0, we obtain

2ff̈ + ḟ 2 − 2aḟ = 0 , (3.5.1)

where

a =

(
A′0
B0

)
Σ

.

The positivity of a is due to the requirement that the static solution space (A0, B0)

must be matched to the Schwarzschild exterior solution. Since the star is collapsing

we require ḟ < 0. A first integral of (3.5.1) is given by

ḟ =
−2a√
f

(
1−

√
f
)
. (3.5.2)

This has also been obtained by Sharma and Das (2013). Then by using (3.4.6) and the

fact that f must be positive, we have

0 ≤ f(t) ≤ 1. (3.5.3)

Integrating (3.5.2) we obtain

t =
1

a

[
f

2
+
√
f + ln (1−

√
f)

]
, (3.5.4)

where we have used the translation t→ t+ α. Note that f(t) decreases monotonically

from its value of unity at t = −∞ to zero at t = 0 where a physical singularity is

encountered. Physically this implies that the collapse starts at t = −∞ from a static

perfect fluid sphere with its interior solution described by the solution (A0, B0). The

radial and temporal behaviour of our collapsing stellar model have now been fully

specified.

We are in a position to investigate the physical viability of the collapsing sphere.

As already mentioned, the use of extended irreversible thermodynamics has been well

motivated and extensively used to determine the causal temperature profiles of radi-

ating stars. The causal heat transport equation for the line element (3.2.1) is given
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by

τ(qB)·+ AqB = −κ(AT )′

B
, (3.5.5)

where

κ = γT 3τc, τc =

(
α

γ

)
T−σ, τ =

(
βγ

α

)
τc , (3.5.6)

are physically reasonable choices for the thermal conductivity κ, the mean collision time

between massive and massless particles τc, and the relaxation time τ . The quantities

α ≥ 0, β ≥ 0 and σ ≥ 0 are constants. With these assumptions, the causal heat

transport equation (3.5.5) becomes

β(qB)·T−σ + A(qB) = −αT
3−σ(AT )′

B
. (3.5.7)

We are in a position to integrate (3.5.7) for the case σ = 0 which corresponds to

constant collision time. Note that by setting β = 0 in (3.5.7) we obtain the noncausal

heat transport equation. Figure 3.1 shows a comparison of the noncausal (Eckart) ver-

sus the causal temperature profiles at each interior point of the collapsing sphere. It is

clear that the causal temperature is higher than the noncausal temperature throughout

the stellar interior. These results confirm earlier findings by various researchers. An

interesting phenomenon that is highlighted for the first time is the effect of anisotropy

(h) on the temperature profiles. We observe that both causal and noncausal temper-

atures increase with an increase in anisotropy (larger h). Recall that larger h values

correspond to ∆ = pt − pr becoming more negative, i.e. the radial pressure dominates

the tangential pressure. The effect of this is to slow down the collapse which means

that less heat is being driven out into the exterior spacetime. The net effect is to

produce a higher core temperature when the radial pressure dominates the tangential

pressure. Figure 3.2 shows the variation of the surface redshift with the time connected

parameter f . Recall that f → 1 corresponds to early times, i.e. the model is static and

is described by the Bowers and Liang solution. As the collapse proceeds (f → 0) we

note that the anisotropy plays a significant role in the behaviour of the surface redshift.
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The surface redshift increases with an increase in anisotropy. This trend in the surface

redshift has been pointed out in several static models, and we observe the same for

our dynamical model. Figure 3.3 plots the time of formation of the horizon (fbh) as a

function of the anisotropy parameter. Recall that as h increases, the radial pressure

dominates the tangential pressure. Furthermore, larger values of f correspond to ear-

lier times of the collapse process. With this information, Figure 3.3 indicates that the

horizon is reached sooner with an increase in anisotropy (radial pressure dominating

the tangential pressure). This is an interesting feature of our model which directly links

the anisotropy in the pressure to the dynamical nature of the collapse. It was pointed

out by Joshi et al (2003) that shear or anisotropy affects the rate and direction of the

collapse making the motion incoherent. Our model clearly indicates that the inclusion

of pressure anisotropy during dissipative collapse can lead to very different outcomes

when compared to homogeneous, isotropic collapse.
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Figure 3.1: Temperature profiles.
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Figure 3.2: Surface redshift as a function of f .
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Chapter 4

The influence of an equation of

state during radiative collapse

4.1 Introduction

In astrophysics, the gravitational collapse of compact objects remains the key phe-

nomenon for applying the Einstein field equations and investigating physically viable

solutions. The first such study is the well-known gravitational collapse of a spheri-

cal distribution of dust-matter with a Schwarzschild exterior, studied by Oppenheimer

and Snyder (1939). This idealised system was further restricted to being adiabatic and

hence largely unphysical in nature since gravitational collapse is necessarily a dissipa-

tive process. Many improvements towards more realistic models such as the inclusion

of shear, anisotropic stresses, electromagnetic field, extension to higher order gravity

theories amongst others (Govender et al 2014; Govinder et al 1998; Chan 2000; Her-

rera and Santos 1997b; Sharma and Das 2013; Sharif and Abbas 2011a, 2011b; Carloni

and Dunsby 2007), have been made, spurred by the replacement of the Schwarzschild

exterior metric with that of Vaidya’s radiating metric (Vaidya 1953; de Oliveira 1985).

However, the increasing sophistication of the model reduces the possibility of finding

exact solutions due to the highly nonlinear nature of the Einstein field equations. Nev-
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ertheless, careful approximations and calculations often provide reasonable results and

new insight into the collapse process. It is well known that the junction conditions

which ensure the smooth matching of the interior spacetime to the exterior spacetime

in the case of dissipative collapse lead to a temporal evolution equation (Govender

et al 2003; Maharaj et al 2011). Various methods, ranging from Lie analysis (Msomi

et al 2010) through to physically motivated assumptions such as vanishing of the Weyl

stresses (Maharaj and Govender 2005), horizon-free condition and vanishing of shear,

have been adopted to solve this boundary condition. The importance of initial con-

ditions has also been studied (Sharma and Tikekar 2012b; Pinheiro and Chan 2011).

In a recent paper by Naidu and Govender (2016), they showed that the pressure of

the initial static configuration plays a vital role in the subsequent collapse of the star.

In their study, they compared the outcome of dissipative collapse arising from a pres-

sureless core with that of nonzero pressure. Studies on the importance of pressures in

determining the end-state of gravitational collapse have also been done by Goswami

and Joshi (2002).

In this study, we start off with a spherically symmetric static core obeying an equa-

tion of state of the form pr = αρ − η where η = αρs (ρs being the surface density

of the star). Linear equations of state have previously been used in modelling gravi-

tational collapse (Goswami and Joshi 2004a). Hydrostatic equilibrium is lost and the

star undergoes shear–free, dissipative collapse, radiating energy to the exterior Vaidya

spacetime. We solve the junction conditions which ensures the continuity of the mo-

mentum flux across the boundary of the collapsing star. The solution of the boundary

condition determines the temporal behaviour of our model. We show that the equation

of state parameter plays a pivotal role in determining the behaviour of our dynamical

model. Our analyses of various physically motivated models such as dust (α = 0), pure

radiation fluid (α = 1/3), stiff fluid (α = 1) and dark fluid (α = −1/3) reveal that the

associated thermodynamical quantities such as density, radial pressure and tangential

pressure are all well behaved. We further employ a causal heat transport equation
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to determine the role played by relaxational effects during collapse. Our study shows

that the causal temperature is everywhere greater than the noncausal temperature.

We also show for the first time the effect of the equation of state parameter α on the

temperature profiles of our radiating models.

4.2 Radiating interior

The interior spacetime of a spherically symmetric radiating star can be modelled

using the shear–free line element

ds2
− = −A2

0(r)dt2 + f 2(t)
[
B2

0(r)dr2 + r2(dθ2 + sin2 θdφ2)
]
, (4.2.1)

where (A0, B0) represent the initial static configuration potentials. The exterior is gov-

erned by the well known Vaidya metric (Vaidya 1951) for a matter-free, null radiation

filled spacetime, given by

ds2
+ = −

(
1− 2m(v)

R

)
dv2 − 2dvdR+R2

(
dθ2 + sin2 θdφ2

)
, (4.2.2)

where m(v) represents the mass as perceived by an observer located at infinity.

In our model, the energy momentum tensor for the stellar fluid is given by

Tab = (ρ+ pt)uaub + ptgab + (pr − pt)χaχb + qaub + qbua , (4.2.3)

where ρ is the energy density, pr and pt the radial and tangential pressures respectively

and qa is the heat flow vector assumed to flow in the radial direction because of spherical

symmetry. The fluid four–velocity u is comoving and is given by

ua =
1

A
δa0 . (4.2.4)

The Einstein field equations for the line element (4.2.1) and energy momentum
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tensor (4.2.3) are given by

8πρ =
1

f 2

[
1

r2
− 1

r2B2
0

+
2B′0
rB3

0

]
+

3ḟ 2

A2
0f

2
, (4.2.5a)

8πpr =
1

f 2

[
− 1

r2
+

1

r2B2
0

+
2A′0
rA0B2

0

]
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (4.2.5b)

8πpt =
1

f 2

[
A′′0
A0B2

0

+
A′0

rA0B2
0

− B′0
rB3

0

− A′0B
′
0

A0B3
0

]
− 1

A2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (4.2.5c)

8πq1 = − 2A′0ḟ

A2
0B

2
0f

3
, (4.2.5d)

which may be written more concisely as

ρ =
ρs
f 2

+
3ḟ 2

8πA2
0f

2
, (4.2.6a)

pr =
(pr)s
f 2
− 1

8πA2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (4.2.6b)

pt =
(pt)s
f 2
− 1

8πA2
0

[
2
f̈

f
+
ḟ 2

f 2

]
, (4.2.6c)

q1 = − 2A′0ḟ

8πA2
0B

2
0f

3
, (4.2.6d)

where ρs, (pr)s and (pt)s denote energy density, radial pressure and tangential pressure

for the static configuration respectively. These thermodynamical quantities for the

static case are given by

ρs =
1

8π

[
1

r2
− 1

r2B2
0

+
2B′0
rB3

0

]
, (4.2.7a)

(pr)s =
1

8π

[
− 1

r2
+

1

r2B2
0

+
2A′0
rA0B2

0

]
, (4.2.7b)

(pt)s =
1

8π

[
A′′0
A0B2

0

+
A′0

rA0B2
0

− B′0
rB3

0

− A′0B
′
0

A0B3
0

]
. (4.2.7c)

The anisotropy parameter which measures the difference between radial and tan-

gential pressures is defined as

∆(r, t) = (pr − pt) =
1

8πf 2

[
− A′′0
A0B2

0

+
A′0

rA0B2
0

+
B′0
rB3

0

+
A′0B

′
0

A0B3
0

+
1

r2B2
0

− 1

r2

]
,

(4.2.8)

which is also written concisely as

∆(r, t) = (pr − pt) =
1

8πf 2
∆s(r), (4.2.9)
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where ∆s refers to the anisotropy parameter for the static configuration.

Following Sharma and Das (2013), we again adopt the Finch and Skea ansatz (Finch

and Skea 1998) for the metric potential B0 :

B2
0(r) =

(
1 +

r2

R2

)
. (4.2.10)

This ansatz also has been used by other researchers (Hansraj and Maharaj 2006) in

modelling compact objects in general relativity.

Our approach is different from that of Sharma in which a form for the anisotropy

parameter ∆ is chosen in order to obtain A0. Here we impose an equation of state of

the form

pr = αρ− η, (4.2.11)

as previously used by Govender and Thirukkanesh (2015). We assume that the static

configuration obeys an equation of state of the form

(pr)s = αρs − ηs, (4.2.12)

where ηs = α(ρs)Σ. Then, substituting our expressions for density and radial pressure

given by (4.2.7a) and (4.2.7b) respectively, we obtain

− 1

r2
+

1

r2B2
0

+
2

r

A′0
A0B2

0

= α

[
1

r2
− 1

r2B2
0

+
2

r

B′0
B3

0

]
− ηs, (4.2.13)

which is easily rewritten as

A′0
A0

=
rB2

0

2

[
α

(
1

r2
− 1

r2B2
0

+
2

r

B′0
B3

0

)
+

1

r2
− 1

r2B2
0

− ηs
]
. (4.2.14)

Using the expression for B0 in (4.2.10), we obtain

A′0
A0

=
r

2

[
α

(
1

R2
+

2

R2 + r2

)
+

1

R2
− ηs

(
1 +

r2

R2

)]
, (4.2.15)

which integrates to

ln(A0) =
r2

4R2
(1 + α) +

α

2
ln(R2 + r2)− ηsr

2

4

(
1 +

r2

2R2

)
+ d, (4.2.16)
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where d is a constant of integration obtained by matching the interior spacetime to the

exterior Schwarzschild solution in isotropic coordinates.

From the Einstein field equations (4.2.5a)–(4.2.5d), the initial static core is now

completely specified in terms of (A0, B0).

4.3 Physical analysis

In order to obtain f(t), we invoke the junction conditions due to Santos (1985).

Conservation of momentum flux across the hypersurface Σ requires nonvanishing of

the radial pressure at the surface, i.e.

pΣ = (qB)Σ. (4.3.1)

For our model, this leads to a temporal evolution equation, namely

2f̈f + ḟ 2 − 2nḟ = 0, (4.3.2)

where

n =

(
A′0
B0

)
Σ

. (4.3.3)

This equation easily integrates to

t =
1

n

[
f

2
+
√
f + log (1−

√
f)

]
, (4.3.4)

and has been used by various researchers to study dissipative gravitational collapse

(Sharma and Das 2013). By making use of our expressions for A0 and B0, we now

rewrite the solutions to the Einstein field equations as

ρ =
(ρ)s
f 2

+
3n2(1−

√
f)2

2πA2
0f

3
, (4.3.5a)

pr =
(pr)s
f 2

+
n2(1−

√
f)

2πA2
0

√
f 5

, (4.3.5b)

pt =
(pt)s
f 2

+
n2(1−

√
f)

2πA2
0

√
f 5

, (4.3.5c)

q =
nA′0(1−

√
f)

2πA2
0B

2
0

√
f 7
, (4.3.5d)
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where the static quantities are given by

8π(ρ)s =
R2

R2 + r2

(
2

R2 + r2
− 1

r2

)
+

1

r2
, (4.3.6a)

8π(pr)s =
1

R2 + r2

(
X +

R2

r2

)
− 1

r2
, (4.3.6b)

8π(pt)s =
X

2 (R2 + r2)

(
Xr2

2R2
+
R2 − r2

R2 + r2

)
+

1 + α− η (R2 + 3r2)

2 (R2 + r2)
+

(α− 1)R2

(R2 + r2)2 −
2αR2r2

(R2 + r2)3 , (4.3.6c)

where

X = 1 + α− η
(
R2 + r2

)
+

2αR2

R2 + r2
. (4.3.7)

If we require that our dynamical model also obeys a linear equation of state of the

form given in equation (4.2.11), then the Einstein field equations (4.2.6a) and (4.2.6b)

lead to

(pr)s
f 2
− 1

8πA2
0

[
2f̈

f
+
ḟ 2

f 2

]
=
αρs
f 2

+
3αḟ 2

8πA2
0f

2
− η. (4.3.8)

By making use of equations (4.2.12) and (4.3.2), this leads to

ḟ = −2n

3α
. (4.3.9)

Then substituting back into the boundary condition (4.3.2), we arrive at α = −1/3. In

order to proceed further in our attempt to model a realistic collapsing star, we require

that the static core should obey an equation of state. This leads us to investigate

different values of α which re-assumes a variable form in equations (4.3.6b) and (4.3.6c).

It is clear that α is a key parameter in these static thermodynamical quantities as well

as the dynamical quantities given by equations (4.2.6a)–(4.2.6d).

4.4 Thermodynamics

As previously emphasised, the use of extended irreversible thermodynamics has been

well motivated and extensively used to determine the causal temperature profiles of
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radiating stars (Govender et al 1998). The causal heat transport equation for the line

element (4.2.1) is again given by

τ(qB)·+ AqB = −κ(AT )′

B
, (4.4.1)

where

κ = γT 3τc, τc =

(
ψ

γ

)
T−σ, τ =

(
βγ

ψ

)
τc , (4.4.2)

are physically reasonable choices for the thermal conductivity κ, the mean collision time

between massive and massless particles τc, and the relaxation time τ . The quantities

ψ ≥ 0, β ≥ 0 and σ ≥ 0 are constants. With these assumptions the causal heat

transport equation (4.4.1) becomes

β(qB)·T−σ + A(qB) = −ψT
3−σ(AT )′

B
. (4.4.3)

The integration of (4.4.3) for constant and variable collision times has been provided

by Govender and Govinder (2001). The resulting equation for constant mean collision

times as given in §1.6.4 is

(
AT
)4

= − 4

α

[
ψ

∫
A3B(qB)˙dr +

∫
A4qB2dr

]
+ F (t). (4.4.4)

As already shown in §2.5 in more detail, the constant of integration F (t) is obtained

by equating the expression for luminosity with the fourth power of the temperature,

in accordance with the well known Stefan–Boltzmann law for radiative heat.
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Figure 4.1: Evolution of central energy density ρ(f)
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Figure 4.2: Evolution of surface energy density ρ(f)

64



��� ��� ��� ��� ��� ���

����

����

��	�

��	�

����

�

�
�
�
��
�
�
��
�
�
�
�
�	
�
�


��
�
�
�
��

α = �

α = �/�

α = �

α = -�/�

Figure 4.3: Evolution of tangential pressure pt(f)
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Figure 4.4: Non-causal temperature (β = 0) profiles for various α
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Figure 4.5: Causal temperature (β = 1) profiles for various α
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4.5 Discussion

Figure 4.1 shows the evolution of the central density as a function of time f(t).

Recalling that smaller values of f correspond to later times, Figure 4.1 shows that

the central density increases as the collapse proceeds as expected. It is also clear that

α influences the density gradient and profile. Figure 4.2 illustrates that the surface

density is always less than the central density as the collapse proceeds. We also note

that there is a sharper drop-off in the surface density as compared to the central

density. Figure 4.3 shows the behaviour of central pressure which increases rapidly as

the collapse proceeds. We note a negative pressure for α < 0 which is not abnormal

within the regime of dark star models (Lobo 2006) and is clearly a possible outcome

of the equation of state used. Figure 4.4 and Figure 4.5 both show that the noncausal

and causal temperatures are well behaved at each interior point of the star. Our

analyses clearly show that an increase in α leads to higher temperatures within the

collapsing core. This can be understood in terms of the behaviour of the density and

pressure. We have seen from Figure 4.1 and Figure 4.2 that an increase in α results

in an increase in density and in effect, an increase in pressure (pr = αρ − η). A more

compact and dense core would imply a greater generation of heat, thus leading to

higher temperatures. Our results clearly display the effect of the relaxation time as the

star loses hydrostatic equilibrium. In addition, they confirm earlier findings that the

causal temperature is higher everywhere as compared to its noncausal counterpart. We

are also in a position to show that relaxational effects (Govender et al 1999) cannot

be ignored even when we make the transition from baryonic matter (α > 0) to the

phantom regime (−1 < α < −1/3).
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Chapter 5

Conclusion

The research project undertaken was based primarily on the subject of Einstein’s

general theory of relativity. Gravitational collapse and the final state of stars which

include white dwarfs, neutron stars, black holes (Shapiro and Teukolosky 1983) and

more recently, dark energy stars (Lobo 2006), are suitable testing grounds for the

theory of general relativity. In this research, the emphasis was primarily on very

massive objects that would ultimately collapse to a black hole singularity or a gravastar.

The theory was introduced in concise form through the mathematics of differential

geometry which is the most natural way of describing spacetime and the motion of

objects therein. As is the case with differential equations which describe physical

systems, boundary conditions, known as junction conditions in general relativity, were

reviewed as prescribed by Santos (1985). This provided us with the mathematical tools

required for studying and analysing our astrophysical systems. In addition, the theory

of causal thermodynamics with regard to heat transport was also incorporated in order

to enhance our understanding of the physical processes taking place in our models of

collapsing stars.

In the first study on gravitational collapse in spatially isotropic coordinates, a dy-

namic model was generated from an initially static configuration. The gravitational

potentials were extended to being time dependent by allowing a parameter to vary.
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This time dependence was introduced as a linear perturbation in much the same way

as the Hamiltonian of an isolated hydrogen atom might be perturbed by an electric or

magnetic field except that we have perturbed an already nonexact solution. Although

the value in further approximating a system might be applicable in limited regions, our

results reveal that it was still worthwhile and added insight into the collapse process.

A detailed examination revealed reasonable behaviours in energy density, pressures,

heat and temperature profiles with respect to time.

A second study was undertaken of a system undergoing radiative collapse in the

presence of anisotropic stresses. A suitable interior metric in which a time-dependent

function f(t) assumes the position of the gravitational potential for the spatially vary-

ing part was used. The Vaidya metric was again used for the external spacetime. Then

by using a Bowers–Liang static core model which is suitable for investigating systems

with anisotropy, a radiating model was obtained by introducing the static potentials

into the time-dependent field equations. Application of causal and noncasual ther-

modynamics then provided comparisons of both causal versus noncausal situations as

well as the degree of anisotropy. It was found that anisotropy assisted in elevating the

temperatures in both scenarios. The time of formation of the horizon was also inves-

tigated and found to decrease with anisotropy. From this study, it is thus concluded

that pressure anisotropy provides an additional mechanism for the collapse process to

proceed more rapidly towards the end state.

Lastly, a system undergoing radiative collapse subject to a linear equation of state

was investigated. By substituting the solutions of the Einstein field equations into

the equation of state, the intitial static configuration could be specified in terms of

the static gravitational potentials. Then by substituting these static potentials back

into the field equations containing the time-dependent parameter f(t), a new radiating

model was obtained. During this process, the importance of the equation of state

parameter α was highlighed which was then identified as a parameter for investigation.

Physically viable results were shown for both positive and negative values of α thus
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proving the usefulness of this model in describing the radiative collapse of both regular

and dark energy stars.

Finally, it is worth noting the recent experimental confirmation of gravitational

waves (GW150914) which were also a prediction of general relativity. Gravitational

wave physics opens up a new detection method for discovering and ultimately studying

objects such as black holes and the so-called dark energy stars which do not emit

electromagnetic or particle-like radiation.
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