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ABSTRACT 

 

Background 

Trichomonas vaginalis, the causative agent of trichomoniasis, is the most common non-viral 

sexually transmitted pathogen.  It causes vaginal discharge in females and urethritis in males. 

Trichomoniasis is treated with metronidazole, an antimicrobial agent which belongs to the 5-

nitroimidazole family. If left untreated, it causes serious clinical complications including 

facilitating HIV transmission. South Africa is one of the regions where HIV is rife and the 

prevalence of T. vaginalis is high. No recent studies have evaluated the minimum inhibitory 

concentrations (MIC) or minimum lethal concentration (MLC) of T. vaginalis to the current 

chemotherapy, metronidazole, or looked for alternatives. In this study we tested the 

susceptibility T. vaginalis isolates to four 5-nitroimidazoles, including metronidazole.  

 

Methodology 

Vaginal specimens were collected from women presenting with vaginal discharge syndrome 

at two different clinics in KwaZulu-Natal, South Africa and cultured in modified Diamonds 

medium. The MIC and MLC of T. vaginalis to four 5-nitroimidazoles was determined in 94 

positive clinical isolates using a micro-broth dilution method. Briefly trichomonads were 

added to Diamonds media containing two-fold dilutions (16 to 0.25 mg/L) of metronidazole, 

tinidazole, ornidazole or secnidazole and incubated anaerobically at 37°C for 72 hours.  The 

lowest concentration which inhibited trichomonad growth was considered the MIC while the 

lowest concentration at which no motile trichomonads were detected was considered the 

MLC. Propionibacterium acnes and Bacteroides fragilis were used as the resistant and 
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sensitive controls respectively. The test was repeated for any isolate with MIC > 2 mg/L to 

confirm results. 

 

Results 

From the 617 specimens collected, 106 (17%) were positive for T. vaginalis, but only 94 

could be cultured and were used in this study.  Ten, 2, and 3 isolates had a MIC of > 2 mg/L 

after 48 hours while 12, 1, and 2 isolates had a MIC > 2 mg/L after 72 hours of incubation for 

metronidazole, tinidazole and secnidazole respectively. No high MIC was detected for 

ornidazole. Eighteen, 3, 3 and 2 isolates had a MLC of > 2mg/L after 48 hours while 16, 2, 3 

and 2 had a MLC > 2mg/L for metronidazole, tinidazole, secnidazole and ornidazole after 72 

hours of incubation. Of the 12 isolates which had a high MIC for metronidazole, 4 also had a 

high MIC for at least 1 other drug tested but no isolates had a MIC > 2mg/L for all drugs 

tested.  Of the 18 isolates which had a high MLC for metronidazole, 7 also had a high MLC 

for at least 1 other drug tested but no isolates had a MIC > 2mg/L for all drugs tested.  MIC 

and MLC was usually the same when read after 48 or 72 hours, but some isolates had a lower 

MIC / MLC after 72 hours, while others had a higher MIC / MLC after 72 hours.  

 

Conclusions 

All four of the 5-nitroimidazoles tested have an inhibitory effect on T. vaginalis isolates from 

KwaZulu-Natal. Metronidazole showed the poorest in vitro activity and ornidazole showed 

the best in vitro activity against T. vaginalis. Isolates which had a MIC or MLC > 2 mg/L for 

metronidazole had a low MIC or MLC to at least one other drug.  Further research is required 

to correlate in vitro findings with clinical outcome. 
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CHAPTER 1 – INTRODUCTION  

 

Trichomoniasis, which is caused by the protozoan Trichomonas vaginalis, is the most 

common, non-viral sexually transmitted infection (STI) [1]. According to the World Health 

Organization (WHO), approximately 276.4 million new cases occur annually worldwide and 

Sub-Saharan Africa accounts for approximately 42.8 million of these cases [2].  

The parasite can infect both the female and the male genital tract [3]. In females it causes 

vaginal discharge, irritation and discomfort and may lead to adverse pregnancy outcome in 

untreated pregnant women [3, 4]. In males it can cause urethral discharge but is often 

asymptomatic [3, 4]. Trichomoniasis is also of great concern because T. vaginalis infection is 

associated with increased risk of acquiring HIV [5]. 

Trichomoniasis is usually treated with metronidazole.  Although there are seven compounds 

in the 5-nitroimidazole family, only metronidazole and tinidazole are approved for the 

treatment of trichomoniasis by the US Food and Drug Administration (FDA) [6]. There are 

no other oral drugs that are known to be effective against T. vaginalis other than the 5-

nitroimidazoles [6] although there are some research groups working on this [7-9].  For this 

reason if T. vaginalis resistance to the 5-nitroimidazoles were to develop, trichomoniasis 

caused by the resistant isolates would be untreatable. 

T. vaginalis resistance to metronidazole has already been reported in several countries [4, 10-

12] and failure of metronidazole to cure trichomoniasis will be cause for concern in a 

resource limited country like South Africa.  The other FDA approved 5-nitroimidazole, 

tinidazole, is more expensive than metronidazole which is the first choice for treatment. 

Refractory cases in South Africa are usually treated with increased metronidazole doses, but 

this leads to more severe side effects [13].  
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In South Africa, sexually transmitted diseases (STD) such as trichomoniasis are managed 

syndromically [14-16]. This means that a cocktail of drugs is administered to any patients 

who present with a particular syndrome without identifying the causative agent or performing 

susceptibility tests [14-16]. For a system such as this to remain effective, surveillance needs 

to take place periodically to identify changes in the organisms that are circulating in the 

population and identify resistance to the drugs used to treat those organisms.  No such 

surveillance has taken place recently in KwaZulu-Natal for T. vaginalis, especially with 

regards to antimicrobial agents. 

In this study, we address this problem by collecting fresh isolates of T. vaginalis from women 

presenting with vaginal discharge at two clinics located in KwaZulu-Natal and determining 

the minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of 

four 5-nitroimidazoles: metronidazole, tinidazole, ornidazole and secnidazole. We used 

metronidazole because it is the first line treatment for trichomoniasis, tinidazole because it is 

the only other antimicrobial approved by the FDA for the treatment of trichomoniasis, and 

ornidazole and secnidazole to assess whether or not trichomonads with a high MIC or MLC 

to metronizole or tinidazole will also have a high MIC or MLC to other 5-nitroimidazoles.   

In order to do this we used a micro-broth dilution test which is the most widely used method 

for in vitro determination of MIC for T. vaginalis.   

 

The aim of this study was to: 

 Compare the antimicrobial activity of four 5- nitroimidazoles on T. vaginalis isolates 

collected from women with vaginal discharge in KwaZulu Natal. 
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The objectives of this study were to 

• Determine the MIC and MLC of metronidazole, tinidazole, secnidazole and 

ornidazole on clinical isolates of T. vaginalis under anaerobic conditions after 48 and 

72 hours of incubation at 37°C 

• Determine whether or not isolates which had a high MIC or MLC to metronidazole 

also had a MIC to other 5-nitroimidazoles 
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CHAPTER 2 – LITERATURE REVIEW 

 

2.1 Trichomonas vaginalis 

 

2.1.1 Global epidemiology of T. vaginalis 

 

Trichomonas vaginalis is a flagellated protozoan which causes human trichomoniasis, the 

most common non-viral sexually transmitted disease (STD) in the world [15, 17-

19].According to the World Health Organisation (WHO), over 248 million people are 

infected with this organism worldwide [20] and it is found in all age, race and socioeconomic 

groups [19]. There is a lack of data describing T. vaginalis incidence and prevalence in the 

general population despite the high prevalence of sexually transmitted infections (STI’s) 

globally [18]. However the WHO has generated regional and global estimates of T. vaginalis. 

Sub-Saharan Africa is one of the regions most affected by trichomoniasis following South 

East Asia. Approximately 32 [2] and 42.8 million people [1] were infected with 

trichomoniasis in Sub-Saharan Africa in the 1990’s and 2008 respectively.  

 

2.1.2 Epidemiology in South Africa 

In South Africa, STD’s are a public health concern due to high prevalence and incidence 

[14]. There are several factors that are believed to have contributed to this epidemic: the 

migrant labour system, poor quality of health services and socio-economic and gender 

inequalities [14, 17]. Currently, there is insufficient data on the epidemiology [18] and 

magnitude of clinical resistance of important sexually transmitted pathogens in South Africa 

[14]. Most surveillance studies are conducted in certain regions with different communities 
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and this may not be representative of the broader population. However, it provides some 

insight regarding the distribution of organisms present in that region [21].  

 

In a study conducted in a primary health care clinic in Johannesburg in the Gauteng province 

of South Africa, the occurrence of T. vaginalis amongst women presenting with vaginal 

discharge syndrome was 31.6% in 2013 and 16.1% in 2014 [22]. In males presenting at the 

same clinic with urethral discharge syndrome, T. vaginalis accounted for 4.5%  and 3.1% in 

2013 and 2014, respectively [22]. In KwaZulu-Natal, T. vaginalis was detected in 37% [23] 

and 20.3% of the high risk HIV negative women with vaginal discharge who presented at 

primary health care clinics located at KwaMsane and Durban respectively [24]. However, 

these data may not represent the true prevalence since it was collected from selected 

population groups that may not be representative of the total population.    

 

In the KZN Provincial Report - Multi-Sectoral Provincial Strategic Plan for HIV and AIDS, 

STIs and TB 2012-2016 for KwaZulu-Natal, the  KwaZulu-Natal Department of Health, 

reports over 440,000 new cases of trichomoniasis in KwaZulu-Natal in 2010/2011 [25]. 

Controlling the burden of sexually transmitted infections (STI’s) in South Africa has become 

a priority for the country due to the remarkably high rates of HIV infection [26] and it is one 

of the tactics for HIV control encouraged by the national Department of Health. 
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2.1.3 Biology of the organism 

 

2.1.3.1 Structure 

 

T. vaginalis is a flagellated, amitochondrial, micro aerotolerant protozoan which is known to 

exist in several forms [26, 27]. As shown in figure 1, the organism changes from one form to 

another in response to different stimuli [28].  The trophozoite and the amoeboid forms are the 

best characterised [27].  

 

 

Figure 2.1: Different cellular forms of T. vaginalis [30] 

 

T. vaginalis swim freely in the trophozoite form which is considered the infective form. 

Exposure of trophozoites to cold and other types of stress can induce pseudocyst formation in 

vitro [29, 30] but the importance of this form during infection is unknown [31]. 

Transformation to the amoeboid form is induced upon attachment to epithelial cells of the 

urinary or reproductive tract but when they detach they revert back to trophozoites [28, 32]. 

Tropozoites are able to swarm to produce large cellular aggregates [28]. It is thought that 

these aggregates allow stronger binding and increased cytotoxicity towards host tissues and 

protection of the organism from the host’s immune responses [33]. It is known to adhere to 

the squamous epithelium of the genital tract by means of lectin-like adhesins in order to 
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establish infection [34, 35]. Adherence of the organism to epithelial cells is mediated by 

adhesin proteins [35, 36] but adherence is also time, temperature and pH dependent [37]. 

However, some data shows that T. vaginalis can also bind to several cell lines (HeLa, CHO 

and Vero) from different  species to the same extent, suggesting that the binding is not only 

mediated by a specific receptor on the host cells, but rather to the affinity for other structures 

such as the membrane [34] or surface carbohydrates [38]. T. vaginalis adhesins are most 

abundant on the side opposite the undulating membrane [3, 39]. Each trophozoite contains 

four anterior flagella plus a single flagellum which is integrated into the undulating 

membrane.  The undulating membrane is supported by non-contractile costa [32, 40]. The 

cell body is bisected longitudinally by a thin transparent structure called the axostyle which 

extends at the posterior end [27, 39].  

 

2.1.3.2 Metabolism 

 

T. vaginalis is an obligate parasite and is unable to synthesize many complex essential 

nutrients such as carbohydrates, iron, vitamins, fatty acids, purines, pyrimidines and lipids 

[3]. It therefore acquires these molecules from the vaginal secretions [3, 41]. Since these 

nutrients are essential for T. vaginalis growth, they must be incorporated into the culture 

media for in vitro growth [3]. T. vaginalis does not have mitochondria [42]. Instead they have 

hydrogenosomes [27] which are also capable of metabolising carbohydrates [42]. 

Hydrogenosomes differ from mitochondria in that they lack cytochromes, mitochondrial 

respiratory chain enzymes and a genome [42-45]. Three other proteins, pyruvate: ferredoxin 

oxidoreductase (PFOR) (an enzyme absent in mitochondria) [3], ferredoxin and Fe-

hydrogenase  facilitate the metabolism of pyruvate in T. vaginalis [3, 42, 46]. Metabolism in 

the hydrogenosome resembles that in anaerobic bacteria, however studies on ferredoxin 
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protein in T. vaginalis indicated similarity to the 2Fe-2S ferredoxins present in aerobic 

bacteria and in mitochondria [3, 47].  

  

 

2.1.3.3 Replication 

 

T. vaginalis reproduces in the vagina, prostatic secretions and urine and multiplies either via 

longitudinal binary fission or another form of asexual reproduction in which up to 8 progeny 

are produced [48]. Replication begins with the doubling of selected locomotor organelles. 

Attractophores then develop on the sides of the nucleus leading to the formation of poles for 

division [49]. Chromosomal microtubules are formed from the attractophores and extend 

towards the nucleus and attach to the centromeres of the chromosomes. The paradesmose is 

attached to the attractophores and elongate, resulting in the separation of daughter cells. The 

production of other organelles to complete the cell content occurs in each daughter cell. [49]. 

Trophozoites in the urinary and reproductive tract live until passed to the next host via 

unprotected sexual intercourse [50]. 

 

2.2 Classification of T. vaginalis 

T. vaginalis is sub-divided into two types based on the phylogenic sequencing of the full 

genome, type 1 and type 2 [51, 52]. These types are thought to be associated with the clinical 

relevance of this organism. Type 1 T. vaginalis isolates are usually infected with 

Trichomonas vaginalis virus (TVV), a virus belong to the Totiviriadae family [51, 53] and 

they usually account for about 50% of all isolates. TVV is not known to replicate in the 

human host in the absence of T. vaginalis.  However, the shedding of viral genome, or gene 

products following T. vaginalis lysis by antimicrobial agents can be recognised as foreign by 
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cells of the human immune system [54]. This leads to the activation of a pro-inflammatory 

response and phagocytosis of the virions [54]. T. vaginalis isolates infected with TVV are 

usually susceptible to metronidazole [54].  

Type 2 isolates are associated with higher resistance to metronidazole. A study by Conrad et 

al 2012 [51] indicated a higher mean minimal lethal concentration (MLC) (224 µg/ml) 

among type 2 isolates compared to 76.6 µg/ml with type 1 isolates when incubated under 

aerobic conditions [51].  This study also categorised the global distribution of the two types 

of T. vaginalis isolates in different regions (Eastern USA, Western USA, Mexico, Chile, 

Italy, Southern Africa and Mozambique,  Australia, Paupa New Guinea, and India) [51]. It 

was found that the two types were equally distributed in most regions with an exception of 

Mexico where only type 2 isolates were found and Southern Africa where mostly type 1 

isolates were found [51].  

 

2.3 Clinical Manifestations and Complications of T. vaginalis 

Trichomoniasis has a wide variety of clinical presentations in men and women [3]. Severity 

of infection may be acute, chronic or asymptomatic [3]. In the case of acute infection, the 

signs include off-white or yellow, frothy discharge and erythema of vulva and cervix and the 

symptoms include vaginal discharge, itch and dysuria [12, 55]. In chronic infection, major 

symptoms are usually mild, and vaginal secretions become scanty and mixed with mucus. At 

this stage, the parasite is highly transmittable [3]. Once the infection is established, it persists 

longer in females than it does in males. In women, it causes vaginitis and cervicitis [55]. In 

men it can cause urethritis but is often asymptomatic [56]. These asymptomatic infections are 

usually untreated and thus contribute to the spread of the disease because “many people 

unknowingly harbour the parasite and act as carriers spreading the infection in their 



10 
 

community” [12]. It is unclear why some infections are symptomatic and others are 

asymptomatic, but it has been proposed that it may be due to different virulence properties 

amongst the isolates [3, 57]. 

STI’s such as trichomoniasis also affect reproductive health. Complications include low birth 

weight and preterm delivery [58]. Trichomonaisis is also associated with an increase in HIV-

1 acquisition [5]. This has been reported in areas with the highest prevalence of HIV-1 

especially in developing countries. T. vaginalis damages the epithelial cell layer of the genital 

tract resulting in gaps in the epithelial layer which enables HIV to enter the underlying 

tissues. Since genital tract infections such as T. vaginalis elicit an immune response, when 

HIV passes through the gaps in the epithelial layer it will come into contact with the target 

cells for HIV infection [59]. HIV then binds and enters these target cells to establish an 

infection. Urethral infection with T. vaginalis also results in the increased shedding of HIV-1 

in the semen [60] and the increased numbers of HIV-infected CD4+ lymphocytes in the 

genital tract may also facilitate HIV-1 transmission [61].  

  

2.4 Diagnosis of T. vaginalis infection 

The diagnosis of both ulcerative and non-ulcerative STD’s in South Africa, is made based on 

the signs and symptoms a patient presents with, without further laboratory diagnosis to 

confirm the aetiology of the disease [14, 16]. Using this approach, a number of asymptomatic 

cases are often missed leading to further spread of the disease because these cases remain 

untreated [24]. When laboratory confirmation of T. vaginalis infection is required, specimens 

are obtained from the vagina in females and the urethra in males. Wet mount, culture, 

antibody tests and other nucleic acid amplification tests (NAATs) are the techniques that are 

widely used for the diagnosis of T. vaginalis [62,63,64].  
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2.4.1 Wet Mount 

Wet mount is the cheapest and most simple method of diagnosis. This is achieved by placing 

a drop of sterile saline solution with vaginal fluid on a glass slide, covered with a cover slip 

and visualized using bright field microscopy to identify motile trichomonads [65]. The 

sample must be kept warm for immediate viewing. This test is performed within 10-20 

minutes of sample collection while the trichomonads are still motile. Low sensitivity of this 

test results from loss of motility after the parasite has been removed from body temperature 

[3, 66]. Trichomonads are about the size of peripheral blood mononuclear cells (PBMC’s), 

but they can be distinguished from PBMC’s in fresh specimens because they are motile or by 

the beating of flagella which may be visible even if the organism is not swimming [3]. 

Inappropriate temperature and keeping specimens for too long between collection and 

assessment may lead to loss of motility and difficulty in differentiating between trichomonas, 

PBMC’s and the nuclei of vaginal epithelial cells present in the sample [65].  The limit for 

detection using this method is 10
4
 trichomonads per millilitre [67]. Males often yield low 

trichomonad counts, therefore this technique is not recommended for urethral swab 

specimens collected from males [68]. This test is easy to perform and inexpensive, but has a 

low sensitivity ranging from 60 to 70% [50]. 

 

2.4.2 Culture 

Broth culture is the gold standard for diagnosis of T. vaginalis. Diamond’s medium is widely 

used for cultivation of this organism but is mainly used for research purposes. Horse, sheep 

or bovine serum is essential for T. vaginalis growth and is the source of lipids, fatty acids, 

amino acids and other metals in the culture medium [3]. Incubation for up to 7 days is 

required to confirm the absence of trichomonads, although trichomonads may be detected 
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earlier. Bacterial and fungal contamination can be problematic when culturing T. vaginalis 

from clinical specimens. Antimicrobial agents including antibacterial and antifungal drugs 

are therefore used to supplement the medium [4]. However, this is more expensive and time-

consuming [3]. Commercially available liquid medium in a clear pouch can also be used for 

cultivation of T. vaginalis and it has been found to be as effective as traditional culture [69]. 

This method is effective with both clinician-obtained and self-sampled specimens. Specimens 

collected using swabs can be kept at room temperature for up to 30 minutes before 

inoculating the pouch [66]. In males, T. vaginalis is more difficult to detect by culture than in 

females. In order to yield better culture results in males, a urethral swab is used with the urine 

sediment [68]. In males, PCR is the preferred technique for detection [68]. 

 

2.4.3 Molecular techniques 

Numerous molecular techniques have been developed and validated for the diagnosis of T. 

vaginalis and they’ve shown to have significantly greater sensitivity than culture and wet 

mount [70]. These include PCR (Real-time PCR and conventional), NAATs, Research 

transcription mediated amplification (TMA) [71-73] and BD T. vaginalis Q
x
 (TVQ) amplified 

DNA assay [74].  Despite their high sensitivity and specificity compared to the traditional 

method, they are not widely used due to cost and some are not FDA approved [64].      

   

2.5. Syndromic management of sexually transmitted diseases (STD) 

In South Africa STDs are poorly managed in both public and private health care facilities 

[17]. Despite efforts to improve the conditions at clinics, and health care system quality, 

some problems still exist, mainly due to limited resources in the public health care setting 
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[17]. These include incorrect treatment, partner notification failure leading to missed 

opportunities for treatment, and incomplete examination mainly as a result from lack of skills 

amongst health care workers which leads to failure in diagnosing STD [17]. Other factors that 

play a role include social stigma, cultural and gender issues (some infected patients feel 

uncomfortable reporting an STD to the health care worker and do not seek treatment), and 

treatment compliance [26, 64].   

The WHO recommends the treatment of STD’s in countries with a high prevalence by 

syndromic management [14]. This approach aims to reduce the load of STD’s by preventing 

transmission because patients are treated on the same day according to the symptoms with 

which they present at their first point of contact with the health care system without having to 

wait for laboratory diagnostic tests [14, 16]. Using this approach, patients benefit by 

receiving immediate treatment.  This approach is especially useful in developing countries 

such as South Africa where there are limited laboratory facilities especially in the rural areas, 

laboratory diagnostic tests are expensive, and those for the detection of trichomonads are not 

very sensitive leading to missed infections which will be left untreated [14, 15]. With the 

syndromic management approach, all patients presenting with a particular syndrome are 

treated for the major causative agents for the particular syndrome.  Although this approach 

over treats; the benefits in a high prevalence setting outweigh the disadvantages   [3]. 

Laboratory tests to identify the causative agent are only performed in the case of treatment 

failure.  However, despite the implementation of syndromic management in South Africa, 

KwaZulu-Natal province reports a high prevalence of STD’s including trichomoniasis [16, 

21].  
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2.6 Treatment of vaginal discharge syndrome, including trichomoniasis 

 

Due to the high prevalence in South Africa, STD’s are treated based on the WHO syndromic 

management guidelines [15, 16]. Genital discharge syndrome in KwaZulu Natal is treated 

with ceftriaxone 250 mg intramuscular injection (IMI), azithromycin 1 g single dose  and a 

2 g single dose of metronidazole [75]. This is the modified approach adopted by the KwaZulu 

Natal Province Department of Health from the WHO syndromic management guidelines in 

1995 [14, 16]. To prevent reinfection, the sexual partner should also be treated irrespective of 

the presence of symptoms. However, this is solely dependent on the willingness of the 

infected person to reveal the infection status to their partners and the willingness of the 

partner to seek medical care. Metronidazole is usually active against T. vaginalis, however 

resistance screening has not been done in our setting recently.  T. vaginalis is one of the 

causative agents of genital discharge syndrome.  

 

2.7 Nitroimidazoles 

The current chemotherapy for trichomonaisis is metronidazole which is a 5-nitroimidazole. 

Metronidazole, tinidazole, secnidazole and ornidazole are some of the antimicrobials in the 

nitroimidazole class which have shown antimicrobial activity against trichomoniasis [76]. 

However, metronidazole and tinidazole are the only antimicrobials that are approved by the 

FDA for the treatment of trichomoniasis because these drugs have consistently demonstrated 

the greatest in vitro activity against T. vaginalis [11, 21]. The antimicrobial activity and 

pharmacokinetic differences amongst the 5-nitroimidazoles result from chemical substitution 

at the side chain (Table 2.7).  

The mechanism of action for all 5-nitroimidazoles is similar. The drug enters the cell via 

passive diffusion and it is reduced into a cytotoxic metabolite(s). These metabolites damage 
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the trichomonad’s DNA, and finally the inactive by-products are excreted in urine or faeces 

of the human host [76].  

Table 2.7: A comparison of the properties of four 5-nitroimidazoles 

 

Name Metronidazole Tinidazole Ornidazole Secnidazole 

Structure 

   
  

Bioavailability* 40 mg/L[77] 40-58 mg/L [76] 14.48 mg/L[78] 37.7-43.6 mg/L 

[76] 

Protein binding <20%  [13] 12% [79] 11-13% [76] 15% [76] 

Half life 8.5-8.8 hours 

[81] 

12-14 hours [79] 11-14 hours [76] 17-28.8 hours 

[76] 

Efficacy against 

T. vaginalis 

85-95% [12] 86-100% [11] 100% [80] 97% [81] 

Relative cost Cheapest [13] Expensive [13] Expensive expensive 

Side effects Nausea, 

vomiting, 

abdominal pain, 

diarrhoea [82] 

Nausea, 

vomiting, 

abdominal pain, 

diarrhoea [82, 

83]  

Nausea, fatigue, 

muscle pain and 

dizziness [81] 

Nausea [80] 

* 2 hours after a single oral dose of 2 g 

2.7.1 Pharmacokinetics of 5-nitroimidazoles in Trichomonas vaginalis 

There are several factors that influence the choice of antimicrobial agent. These include 

safety and tolerability, efficacy, cost and compliance [84]. When considering the efficacy of 

the drug after single dose administration, factors such as half-life, pharmacokinetics and the 
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peak serum level are considered [85]. The properties of the four 5-nitroimidazoles used in 

this study are summarised in (Table 2.7).  Metronidazole, tinidazole and secnidazole reach a 

higher level in serum than ornidazole 2 hours after a single 2 g treatment (Table 2.7).  

Secnidazole has the longest half-life, followed by tinidazole and ornidazole, with 

metronidazole having the shortest half-life.  All four are at least 85% effective against 

T. vaginalis and in a study by Hillstrom et al 1977, ornidazole was 100% effective [86].  A 

reduction in the ornidazole dosage did not affect the cure rate, but patients still reported side 

effects at the reduced dosage.  Metronidazole, the drug of choice for the treatment of 

trichomoniasis is the cheapest.  

 

2.8 Non-nitroimidazole treatment options for trichomoniasis 

There are several non-nitroimidazole drugs which are being tested for their efficacy against 

T. vaginalis. These include intravaginal agents such as acetarsol [87], furazolidone [88], 

paromycin [87] and pentamycin [88]. These have been used mostly in cases where patients 

are hypersensitive to metronidazole with limited success [89].  

 

2.9 Drug resistance in Trichomonas vaginalis 

There are many factors which determine whether an organism is susceptible or resistant to a 

particular antimicrobial agent.  These include the existence of the antimicrobial target in the 

relevant organism, the amount of antimicrobial that reaches the target site, and the 

antimicrobial should not be modified or inactivated by the host [90]. In order to understand 

the antimicrobial resistance mechanisms, one needs to know the target of the particular 

antimicrobial in the relevant organism [91].  
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Several mechanisms for drug resistance to anaerobic bacteria and protozoa have been 

proposed, but they differ among organisms and these are poorly understood [92]. The 

primary mechanisms include reduced drug activation, inability of the drug to reach the target 

site, drug detoxification and altered DNA repair [13]. In protozoa, the parasite can change its 

metabolic pathways and that can affect the activity of the drug by preventing it from reaching 

its target [99]. Detoxification of the drug will also affect the activity of the drug. Import and 

export of the drug by the target organism will affect its efficacy by lowering the effective 

concentration below the threshold required to harm the parasite [46]. 

T. vaginalis drug resistance to metronidazole has been reported since the early 1960’s and is a 

problem due to the limited alternative drugs available. T. vaginalis is considered clinically 

resistant to metronidazole when the infection is not eradicated after the standard 

metronidazole treatment regimen. These cases are treated with tinidazole or increased 

metronidazole dose [13, 61] since there is no effective non-nitroimidazole oral treatment. 

Microorganism susceptibility to nitroimidazoles is dependent on the presence of electron 

generation and transport systems which activate the drug [93]. Metronizadole is the most 

studied nitroimidazole. Metronidazole enters the host cell via passive diffusion in an inactive 

form known as a prodrug, the nitro group becomes reduced, thereby activating the drug and 

rendering it toxic to the parasite [12]. In T. vaginalis resistance is thought to occur by one of 

3 mechanisms: 1) the lack of PFOR activity, 2) down regulation [94] or loss of ferredoxin 

[95] or 3) reduced activity of hydrogenase enzymes. Both clinical isolates and laboratory 

derived strains have demonstrated resistance to nitroimidazoles [4, 11, 61, 81, 86, 94, 96].  

2.9.1 Aerobic Resistance 

Although T. vaginalis is an anaerobic organism, it can survive in environments where small 

amounts of oxygen are present [97]. Low oxygen concentrations (< 0.25 µM) enable T. 
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vaginalis growth while elevated oxygen concentrations (> 60 µM) are toxic [97]. T. vaginalis 

has protective hydrogenosomal and cytosolic enzymes which rapidly detoxify toxic oxygen 

radicals keeping them to low levels [97]. However, if the oxygen concentration rises above 

the detoxification rate it results in cell death [97]. T. vaginalis resistance to metronidazole can 

either be classified as aerobic or anaerobic. Clinical resistance is almost exclusively aerobic. 

Aerobic resistance occurs when oxygen competes with metronidazole for electrons [98]. Free 

electrons preferentially bind to oxygen rather than metronidazole [93] and they are rapidly 

removed from the nitro radical anion resulting in the reformation of the parent compound 

[93]. Metronidazole therefore remains inactive [46]. 

 

2.9.2 Anaerobic Resistance  

T. vaginalis resistance to metronidazole in an anaerobic environment is independent of 

electron scavenging molecules [98]. The mechanism of resistance is poorly understood by is 

thought to result from an alteration in the metabolic pathways which activate metronidazole. 

These include lack of PFOR activity [96], reduced activity or down regulation of ferredoxin 

and lower activities of hydrogenosomal enzymes [46, 98].  

 

2.9.3 Drug resistance testing of Trichomonas vaginalis 

Macro-broth and micro-broth dilution assays are widely used for protozoal antimicrobial 

susceptibility testing [99]. Micro-broth dilution assays are preferred since the decreased 

sample volume reduces cost and increases throughput. Unlike most other organisms, there is 

no European Committee on Antimicrobial Susceptibility (EUCAST) or Clinical and 

Laboratory Standards Institute (CLSI) breakpoint for T. vaginalis. For this reason different 
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MIC values have been used to classify T. vaginalis isolates as susceptible, intermediate or 

resistant [4, 10, 11, 61, 100]. Other study assessed the susceptibility of T. vaginalis isolates 

using the anaerobic breakpoint of >15 µg/ml [28]. In 1988 Muller et al investigated the 

correlation between in vitro resistance under aerobic and anaerobic conditions and treatment 

failure [101]. In this study a Minimum Lethal Concentration (MLC) ≥ 3.1 µg/ml was 

associated with treatment failure. However, the Upcroft group [4] have recommended 

metronidazole breakpoints under aerobic and anaerobic conditions based on test results 

obtained from the patients’ response to clinical treatment [4]. However, further research is 

still necessary.  
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CHAPTER 3 – MATERIALS AND METHODS 

 

3.1 Specimen collection and propagation of clinical isolates 

 

3.1.1 Study participants and specimen collection 

Participants were recruited from two public clinics in KwaZulu Natal, South Africa, the 

Umlazi D Clinic located in Durban, and the Boom Street Clinic located in Pietermaritzburg. 

A total of 617 specimens were collected from female patients, 18 years or older presenting 

with vaginal discharge syndrome after obtaining informed consent. Specimens were collected 

from the vagina using a Dacron swab. The swab was streaked onto a glass slide for another 

study, and then the same swab was placed in 5 ml of Diamonds media with antibiotics 

(Appendix A) and transported back to the laboratory at room temperature on the same day.  

This study was approved by management at both clinics and the Biomedical Research Ethics 

Committee of the University of KwaZulu-Natal (REF:BE 220/13). 

 

3.1.2 Propagation of clinical isolates 

As soon as the specimens arrived at the laboratory, the tube containing 5 ml Diamonds 

medium together with the Dacron swab was incubated at 37°C for 48 hours. Each day from 

day two, a wet mount was prepared by placing one drop of media from each tube on a glass 

slide and placing a glass coverslip on top. The wet mount was examined with the dark field 

microscope (Olympus CWHIC, Japan) to look for motile trichomonads. If these were not 

observed within seven days, the sample was considered negative and the culture was 
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discarded. If there was growth, 500 µl of the culture was used to inoculate a tube containing 

fresh Diamond’s medium with antibiotics. If there was growth of contaminating organisms in 

positive samples, it was sub-cultured into Diamonds media containing 100 mg / L 

tazobactam/piperacillin (Tazobax) (Brimpharm, SA) in order to eliminate contaminating 

organisms which were resistant to the other antimicrobial agents already present in the 

Diamonds medium. Positive specimens were sub-cultured every second day until the 

trophozoites reached the log phase of growth as indicated by the presence of 80-90% motile 

trophozoites. Positive specimens were then sub-cultured into two 5 ml tubes of drug free 

Diamonds media. The first tube was used for the susceptibility testing and the other tube for 

storage.  

   

3.1.3 Quantitation of T. vaginalis 

The inoculum was standardised using a Neubauer haemocytometer. A drop of culture 

containing T. vaginalis was placed on the haemocytometer and covered with a glass 

coverslip.  The trichomonads were counted using a dark field microscope.  The number of 

organisms per millilitre was calculated using the formula below. 

Concentration = Number of trichomonads × 10
4 

 
   

Squares counted 

 

The inoculum was then adjusted in another fresh tube so that each well of the 96 well plate 

would be inoculated with 3 × 10
3
 trichomonads per well. 
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3.1.4 Cryopreservation of Trichomonas vaginalis 

 

T. vaginalis isolates grown in drug-free Diamonds media were stored at -85°C. To 5.5 ml 

culture, 2 ml drug-free Diamonds medium, 1.5 ml heat inactivated foetal bovine serum (FBS) 

(15%) and 1 ml dimethyl sulphoxide (DMSO) (10%) was added to achieve a final volume of 

10 ml. Each isolate was stored in triplicate (1 ml per cryovial). The cultures were frozen at -

20°C for one hour in a polystyrene rack, followed by -70°C overnight, then transferred to a -

85°C freezer for long term storage. 

 

3.1.5 Recovery of T vaginalis 

 

Cryovials containing cultures were removed from -85°C and placed at 37°C in a water bath 

until they thawed. The culture was immediately transferred into 5 ml fresh drug-free 

Diamonds media and incubated at 37°C. The viability was assessed after 24 hours. If there 

was sufficient growth, the organism was sub-cultured to remove the excess DMSO.  If the 

trichomonads were evenly dispersed, the tubes were centrifuged at 1500 × g for 5 minutes 

and the pellet was inoculated into fresh media.   

 

3.2 Bacterial controls 

 

Two bacterial controls were used, one susceptible and one resistant to the drugs used in this 

study.  These are Bacteroides fragilis ATCC 25285 and Propionibacterium acnes 

ATCC 11827 respectively. B. fragilis is an obligate anaerobe and it is susceptible to both 

metronidazole and tinidazole at ≤ 4 mg/L [102]. P. acnes is an aerotolerant bacterium which 

is resistant to both metronidazole > 256 mg/L [103] and tinidazole. There were no published 
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MIC values for secnidazole and ornidazole available.  This was determined experimentally 

three times in triplicate before being used as controls.  The MIC for B. fragilis was 4 mg/L, 

while P. acnes was completely resistant to both drugs at the highest dilution tested (16 mg/L). 

Both B. fragilis and P. acnes were cultured on blood agar plates. Plates were incubated in 

anaerobic jars at 37°C for 72 hours. Anaerobic conditions were achieved by placing an 

anaerobic gas pack (Oxoid, England) in a 2.5 L Oxoid anaerobic gas jar together with the 

culture plates. An indicator strip (Oxoid, England) was also placed into the jar. This was used 

to confirm whether or not anaerobiosis had been achieved in the anaerobic gas jar. This strip 

is coated with a redox indicator, resazurin. The colour changes from pink to white under 

anaerobic conditions and the transition to pink occurs when the environment becomes 

anaerobic.  

 

3.3 Susceptibility testing 

 

The Minimal Inhibitory Concentration (MIC) and the Minimum Lethal Concentration (MLC) 

of metronidazole, tinidazole, secnidazole and ornidazole was determined for each clinical 

isolate. Flat-bottomed 96-well plates were used for the assay. Experiments were conducted in 

duplicate and 6 isolates or controls were assessed per plate.  

Drug stocks were prepared as described in Appendix A.  Two hundred microlitres of 

Diamond’s medium containing 32 mg / L drug was added to row A. One hundred microliters 

of drug-free Diamonds medium was added to rows B to H. Serial 2-fold dilutions of the drug 

was carried out down the plate (from row A to G) using a multichannel pipette. The resulting 

drug concentrations from rows A to G was 32, 16, 8, 4, 2, 1, 0.5 and 0.25 mg/L respectively 

(or 100, 50, 25, 12.5, 6.3, 3.2, 1.6, and 0.8 µM). No drug was added to row H which was the 

drug-free (DF) control. One hundred microlitres of drug free Diamond’s medium containing 
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3 × 10
3
 trichomonads was added to all wells except the susceptible and resistant control 

wells. The inoculum for the bacterial controls was standardized to a 0.5 McFarland standard 

(1.5 ×10
8
 cfu / ml). The colonies were suspended in 5 ml sterile distilled water, vortexed and 

examined visually.  The turbidity was adjusted to achieve a 0.5 McFarland standard. The 

bacterial suspensions were then centrifuged at 2000 × g for 10 minutes. The supernatant was 

discarded and the pellet was resuspended in an equal amount of Diamonds medium.  One 

hundred microliters of the resulting suspension was added to the relevant wells.  The addition 

of 100 μl inoculum in each well resulted in a further 2-fold dilution of the drug concentration 

i.e. the 16 to 0.125 mg / L as shown in Figure 3.1. The 96-well plates were placed inside an 

air-tight 2.5 L Oxoid anaerobic jar containing an anaerobic gas pack and an indicator strip.  

This was placed inside a 37°C incubator. After 48 hours the plates were removed from the 

anaerobic container and susceptibility tests were scored visually using an inverted phase 

contrast microscope (Olympus IXZ-SLP, Japan).  The plates were returned to the anaerobic 

jar together with a new anaerobic gas pack and indicator strip and reincubated at 37°C. The 

plates were scored again after a further 24 hours then discarded. 

The validity of the assay was monitored by processing one susceptible and one resistant 

bacterial strain per batch, as well as a drug free control to confirm growth of the organism. 

The experiments were carried out once in duplicate, but when the duplicate wells produced a 

different score, the experiment was repeated.  
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DF, drug free 

The resistant control was Propionibacterium acnes; the susceptible control was Bacteroides 

fragilis 

 

 

Figure 3.1: Plate setup for the micro-broth dilution assay indicating the drug 

concentrations used (mg/L) and the placement of isolates and controls 

 

 

3.3.1 Interpretation of results 

 

Plates were removed from the incubator and anaerobic jar after 48 hours, and again after a 

further 24 hours, and visualised using an inverted phase contrast microscope (1XZ-SLP 

Olympus, Japan.  Each well was examined at 100 × magnification (10 × objective lens and 10 

× eye piece).  A score was assigned to wells which had been inoculated with T. vaginalis 

using the criteria summarised in Table 3.2.  The wells containing bacterial controls were 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 16 16 16 16 16 16 16 16 16 16 16 16 

B 8 8 8 8 8 8 8 8 8 8 8 8 

C 4 4 4 4 4 4 4 4 4 4 4 4 

D 2 2 2 2 2 2 2 2 2 2 2 2 

E 1 1 1 1 1 1 1 1 1 1 1 1 

F 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

G 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

H DF DF DF DF DF DF DF DF DF DF DF DF 

Isolate 1 Isolate 2 Isolate 3 Isolate 4 

Resistant 

control 

Susceptible 

control 
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assessed visually for turbidity. Turbid media indicated “growth”, whereas clear media 

indicated “no growth” of the control organism. 

 

Table 3.1: Criteria for scoring T. vaginalis growth in the micro-broth dilution assay 

 

 

 

 

 

The MIC was defined as the lowest drug concentration which produced a score of 1+.  When 

plates were scored immediately after inoculation of T. vaginalis into the wells (Time 0) 

before the organism had a chance to replicate, a score of 1+ was produced. Therefore a score 

of 1+ indicates that no replication had taken place i.e. this is the concentration of the drug 

which inhibits growth.   The MLC was reported as the lowest concentration of the drug at 

which no motile trichomonads were detected i.e. a score of “0” (Table 3.1) 

To facilitate comparison of the effect of the different drugs on different isolates, isolates with 

an MIC or MLC of less than 2 mg/L were classified as has having a low MIC or MLC 

respectively.  Isolates with an MIC or MLC more than 2 mg/L were classified as having a 

high MIC or MLC respectively. 

 

  

Score Interpretation 

0 No motile parasites 

1+ Dead or significantly few parasites (1-10) 

2+ Several hundred motile parasites 

3+ Almost confluent 

4+ Confluent 
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CHAPTER 4 – RESULTS 

4.1 Minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) 

test results 

A total of 617 vaginal specimens were collected.  From these 106 (17%) were positive for 

Trichomonas vaginalis but only 94 (15%) could be cultured.  Eight isolates could not be 

cultured due to overgrowth of drug resistant commensal flora and 4 isolates could not be 

revived from storage (4). Three hundred and sixty two specimens were collected from Boom 

Street Clinic while 255 were collected from Umlazi D Clinic. Of the 106 T. vaginalis positive 

specimens, 72 (68%) were from Boom Street Clinic and 34 (32%) were from Umlazi D 

Clinic. The MIC of all 94 isolates was determined for four 5-nitroimidazoles. These were 

metronidazole, tinidazole, secnidazole and ornidazole. The lowest drug concentration which 

produced a score of 1+ was taken as the MIC.  The MLC was defined as the lowest 

concentration at which no motile trichomonads were observed (0).  

The MICs of the controls Bacteroides fragilis and Propionibacterium acnes were ≤ 4 mg/L 

and ≥ 16 mg/L respectively for all experiments which is in keeping with the published values.  

The MLC was not determined for the bacteria.   

In general the MIC (Table 4.1.) and MLC (Table 4.3) was higher for metronidazole than any 

of the other 5-nitroimidazoles tested. The MIC for metronidazole ranged from 0.25 – 8 mg/L 

while the MLC ranged from 0.25 – 16 mg/L. For both tinidazole and secnidazole, the MIC 

and MLC ranged from 0.25 – 4 mg/L and 0.5 – 4 mg/L respectively.  The MICs (0.5 – 2 

mg/L) and MLCs (0.5 – 4 mg/L) for ornidazole were lower than for any of the other 

antimicrobials tested.  
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Tables 4.2 and 4.4 show the cumulative MICs and MLCs after 48 and 72 hours of incubation. 

The MIC90 was 4 mg/L for metronidazole and 2 mg/L for tinidazole, ornidazole and 

secnidazole after both 48 and 72 hours of incubation. The MLC50 for metronidazole was 2 

mg/L and 1 mg/L for tinidazole, ornidazole and secnidazole.  

Because the range of MIC and MLC from isolates collected at both clinics are similar.  The 

results are analysed together. 
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Table 4.1: Minimum inhibitory concentrations (MIC) of 94 T. vaginalis isolates from 

KwaZulu Natal 

Antimicrobial 
Time 

point 

 

No. of isolates with MIC (mg/L) 

0.25 0.5 1 2 4 8 16 

Metronidazole 48 h 7 18 32 27 9 1 0 

  72 h 10 8 37 27 11 1 0 

Tinidazole 48 h 3 27 45 17 2 0 0 

  72 h 5 17 46 25 1 0 0 

Secnidazole 48 h 3 20 48 22 1 0 0 

  72 h 0 17 47 28 2 0 0 

Ornidazole 48 h 2 28 54 10 0 0 0 

  72 h 3 13 58 20 0 0 0 

* MIC was defined as a score of 1+ 

 

 

 

 

Table 4.2: Cumulative percentage of T. vaginalis isolates (n = 94) with each minimum 

inhibitory concentration (MIC) 

Antimicrobial 
Time 

point 

 

Cumulative % MIC (mg/L) 

0.25 0.5 1 2 4 8 16 

Metronidazole 48 h 7 27 61 89 99 100 

   72 h 11 19 59 87 99 100 

 Tinidazole 48 h 3 32 80 98 100 

    72 h 5 23 72 99 100 

  Secnidazole 48 h 3 24 76 99 100 

    72 h 0 18 68 98 100 

  Ornidazole 48 h 2 32 89 100 

     72 h 3 17 79 100 

   * MIC was defined as a score of 1+ 
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Table 4.3: Minimum lethal concentrations (MLC)  of 94 T. vaginalis isolates from 

KwaZulu Natal 

Antimicrobial 
Time 

point 

No. of isolations with MLC (mg/L) 

0.25 0.5 1 2 4 8 16 

Metronidazole 48 h 0 5 40 31 13 3 2 

  72 h 3 10 29 35 13 2 2 

Tinidazole 48 h 0 8 47 36 3 0 0 

  72 h 0 15 44 33 2 0 0 

Secnidazole 48 h 0 8 45 37 3 1 0 

  72 h 0 6 50 34 3 1 0 

Ornidazole 48 h 0 9 56 27 2 0 0 

  72 h 0 8 48 36 2 0 0 

* MLC was defined as the drug concentration at which no motile parasites were seen 

 

 

 

 

Table 4.4: Cumulative percentage of T. vaginalis isolates (n = 94) with each minimum 

lethal concentration (MLC)  

Antimicrobial  

Time 

point  Cumulative % MLC* (mg/L) 

    0.25 0.5 1 2 4 8 16 

Metronidazole 48 h 0 5 48 81 95 98 100 

  72 h 3 14 45 82 96 98 100 

Tinidazole 48 h 0 9 59 97 100 

    72 h 0 16 63 98 100 

  Secnidazole 48 h 0 9 56 96 99 100 

   72 h 0 6 60 96 99 100 

 Ornidazole 48 h 0 10 69 98 100 

    72 h 0 9 60 98 100 

  * MLC was defined as the drug concentration at which no motile parasites were seen 
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4.2 High minimum inhibitory concentration (MIC) and minimum lethal concentration 

(MLC) (> 2 mg/L)   

The MIC and MLC values for any isolate which had MIC or MLC > 2 mg/L for any of the 5-

nitroimidazoles tested are summarised in Tables 4.5 and 4.6 respectively. 

For metronidazole 10 and 12 isolates had a MIC > 2 mg/L after 48 and 72 hours respectively, 

while 18 and 16 isolates had a MLC > 2 mg/L after 48 and 72 hours respectively.  For 

tinidazole 2 and 1 isolates had a MIC > 2 mg/L after 48 and 72 hours respectively, while 3 

and 2 isolates had a MLC > 2 mg/L after 48 and 72 hours respectively.  For secnidazole 1 and 

2 isolates had a MIC > 2 mg/L after 48 and 72 hours respectively, while 3 isolates had a 

MLC > 2 mg/L after both 48 and 72 hours.  For ornidazole no isolates had a MIC > 2 mg/L 

after either 48 or 72 hours, while 2 isolates had a MLC > 2 mg/L after both 48 and 72 hours. 

Overall there were more isolates with MIC or MLC > 2 mg/L for metronidazole than for any 

of the other 5-nitroimidazoles tested while ornidazole had the smallest number of isolates 

with an MIC or MLC > 2 mg/L.  None of the isolates had MIC or MLC > 2 mg/L for all four 

5-nitroimidazoles tested. 
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Table 4.5: Minimum inhibitory concentrations (MIC) of all isolates which had an MIC 

> 2 mg/L for any 5-nitroimidazole tested after either 48 or 72 hours incubation 

Isolate 

number 

Metronidazole Tinidazole Secnidazole Ornidazole 

48 h 72 h 48 h 72 h 48 h 72 h 48 h 72 h 

063 4 4 2 2 2 2 2 1 

094 8 8 4 4 1 1 1 1 

095 4 4 2 2 1 1 1 1 

318 4 2 1 2 2 2 1 2 

339 4 4 2 2 2 4 2 2 

352 4 4 4 2 2 2 1 2 

424 4 4 2 2 1 1 1 1 

542 4 4 1 2 2 2 1 1 

543 2 4 2 2 2 1 0.5 0.5 

698 2 2 2 2 4 4 2 2 

768 4 4 2 2 2 2 2 1 

813 2 4 2 2 2 2 2 2 

816 4 4 2 2 2 2 1 2 

843 1 4 2 2 2 2 1 1 

 

 

 

 

 

 

 

 

 

 

 

 MIC < 2 mg/L 

 MIC = 2 mg/L 

 MIC > 2 mg/L 
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Table 4.6: Minimum lethal concentrations (MLC) of all isolates which had an MLC > 2 

mg/L for any 5-nitroimidazole tested after either 48 or 72 hours incubation 

Isolate 

number 

Metronidazole Tinidazole Secnidazole Ornidazole 

48 h 72 h 48 h 72 h 48 h 72 h 48 h 72 h 

062 4 4 2 2 2 2 2 1 

063 8 8 2 2 4 4 2 2 

094 16 16 4 4 2 2 2 2 

095 8 8 2 2 1 1 1 1 

312 4 1 2 2 2 2 2 2 

318 4 4 2 2 2 2 2 2 

339 4 4 2 2 4 4 4 4 

347 4 2 2 2 1 1 1 1 

352 4 4 4 2 2 2 2 2 

542 16 16 2 2 2 2 2 2 

543 4 4 2 2 2 1 1 1 

655 4 2 1 1 2 2 1 1 

698 4 4 2 2 8 8 4 4 

768 4 4 2 2 2 2 2 2 

802 4 4 2 4 1 2 1 2 

813 4 4 2 2 2 2 2 2 

816 8 4 4 2 2 2 2 2 

843 2 4 2 2 2 2 2 2 

870 4 4 2 2 1 1 1 1 

 

 MLC < 2 mg/L 

 MLC = 2 mg/L 

 MLC > 2 mg/L 
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4.3. Change in minimum inhibitory concentration (MIC) or minimum lethal 

concentration (MLC) from 48 to 72 hours 

 

For some isolates there was a shift in MIC or MLC between 48 and 72 hours incubation 

(Table 4.7). There were more isolates which had a decrease in MIC from 48 to 72 hours for 

metronidazole, tinidazole and secnidazole (19, 13 and 7 respectively) compared to those 

which had an increase (10, 3 and 4 respectively).  With ornidazole more isolates had an 

increase (12) in MIC from 48 to 72 hours compared to those which had a decrease (3). 

For all of the 5-nitroimidazoles tested, more isolates had an increase in MLC from 48 to 72 

hours than those which had a decrease. 

 

Table 4.7: Number of T. vaginalis isolates with changes in minimum inhibitory 

concentration (MIC) or minimum lethal concentration (MLC) from 48 to 72 hours of 

incubation  

  

MIC MLC 

Increase Decrease Increase Decrease 

Metronidazole 10 19 14 6 

Tinidazole  3 13 16 6 

Secnidazole 4 7 20 5 

Ornidazole 12 3 26 3 
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CHAPTER 5 – DISCUSSION 

A micro-broth dilution assay was used to obtain the minimal inhibitory concentrations (MIC) 

and minimal lethal concentrations (MLC) of 94 Trichomonas vaginalis isolates collected 

from women presenting with vaginal discharge syndrome at one of two clinics in KwaZulu 

Natal.  These clinics were located at Boom Street in Pietermaritzburg, and Umlazi D in 

Durban.  Specimen collection took place at the Boom Street Clinic from September 2013 to 

October 2014, and at the Umlazi D Clinic from October 2014 to December 2014. These two 

clinics were chosen because they are both located within major cities in the province of 

KwaZulu Natal. We wanted to investigate the MIC and MLC of T. vaginalis isolates 

collected from patients in KwaZulu Natal in order to determine whether or not the isolates 

collected in our setting are susceptible to the current drug of choice, metronidazole. We also 

tested three other 5-nitroimidazole compounds in as possible better alternatives for 

metronidazole. Although T. vaginalis does also infect males, specimens were only collected 

from female patients.  T. vaginalis accounts for less than 5% of cases of male urethritis [66] 

and in males T. vaginalis infection is frequently asymptomatic.  In a heterosexual population 

we assume that the susceptibility profiles of T. vaginalis isolates collected from females are 

representative of those present in males. 

There are several 5-nitroimidazoles. These include metronidazole, tinidazole, secnidazole, 

ornidazole, benznidazole, carnidazole, and nimorazole. These 5-nitroimidazoles have been 

reported to have antitrichomonal activities [4, 7, 11, 13, 27, 61, 77, 80, 86, 94, 96, 101, 104, 

105] with an exception of benznidazole.  We could not find any reports which investigated 

the activity of benznidazole on T. vaginalis.  We chose to use metronidazole, tinidazole, 

secnidazole and ornidazole for this study. Metronidazole was chosen because it is approved 

by the US Food and Drug Administration (FDA) for the treatment of trichomoniasis and it is 
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the drug used to treat trichomoniasis in South Africa.  For this reason it is included in the 

syndromic management regimen for the treatment of vaginal discharge syndrome [14, 16]. 

Tinidazole was chosen because it is the only other drug approved by the FDA for the 

treatment of trichomoniasis [6] although it is not used in South Africa. Secnidazole and 

ornidazole were chosen based on their anti-protozoal activity against T. vaginalis [80, 86].  

Benznidazole, carnidazole, and nimorazole were not available for purchase from a local 

supplier at the time of conducting the study and were therefore not included. 

Currently, there are no FDA approved non-5-nitroimidazole drugs with recognised activity 

against T. vaginalis.  The limited chemotherapy options are a cause for concern since 

resistance has been reported to the currently available 5-nitroimidazoles [4, 11, 12, 27, 61, 94, 

96, 98, 101]. Treatment outcome studies have associated clinical failure to 5-nitroimidazoles 

with resistant T. vaginalis isolates [101] or a low bioavailability of the antimicrobial drug at 

the target site [76].  The absorption of 5-nitroimidazoles differs in different people and this 

can explain variances in cure rate [76]. In the case of metronidazole, the mean maximal 

concentration that can be detected in the vagina has been reported as 11.1 µg /ml [106] 

compared to 40 µg/ml in the serum or plasma 2 hours after oral administration of 2 g [107]. 

Understanding the pharmacokinetic mechanisms with respect to drug absorption and recovery 

of the 5-nitroimidazoles will provide additional insights. The difference in aerobic and 

anaerobic resistance of T. vaginalis to 5-nitroimidazoles is thought to result from the 

interference of oxygen with the mechanism of action of 5-nitroimidazoles [61]. It is therefore, 

essential that a standardised and reproducible method for resistance testing is available. The 

micro-broth dilution assay is widely used for the determination of susceptibility testing of T. 

vaginalis. Unlike most other organisms, there is no currently available European Committee 

on Antimicrobial Susceptibility Testing (EUCAST) or Clinical and Laboratory Standard 

Institute (CLSI) breakpoints for T. vaginalis resistance to 5-nitroimidazoles. Therefore 
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different researchers use different methods to measure MICs and MLCs [4, 11, 27, 96, 101, 

108]. The breakpoint in susceptibility testing is defined as the critical drug concentration that 

classifies isolates as susceptible, resistant or intermediate [109]. Susceptible isolates are those 

that are expected to respond to the given antimicrobial dose, while resistant isolates are those 

that do not respond [109]. Intermediate isolates are those that may or may not respond at the 

standard dose however they may respond to an increased or longer duration of treatment 

[109]. Several studies have used different breakpoints to report the susceptibility profile of T. 

vaginalis and correlate high MIC / MLC with isolates from patients with treatment failure 

using a micro-broth dilution assay [11, 21, 27, 61, 101]. However, these studies focus mainly 

on metronidazole, the method is not standardised since incubation times varied from 24 to 72 

hours, and some expressed drug concentrations as mg/L. These breakpoints are summarized 

in table 5.1. 
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Table 5.1: Summary of the published breakpoints of 5-nitroimidazoles against 

T. vaginalis as determined in anaerobic micro-broth dilution assays  

Classification 

Breakpoint 
Incubation 

time 
Reference MTZ 

(mg/L) 

TZN 

(mg/L) 

SNZ 

(mg/L) 

ORN 

(mg/L) 

Susceptible ≤1.6 - - - 

48 h [101] 
Resistant ≥3.1 - - - 

Susceptible 1-9.8 - - 2 
24 and 48 

h 
[61] 

Resistant  39 - - 8.4 

Susceptible  ≤1.1 - - - 

48 and 72 

h 
[4] Intermediate  2.1 - - - 

Resistant  ≥4.3 - - - 

Susceptible 0.51-1.02 - - - 

48 h [27] 
Resistant 4.25 - - - 

Susceptible  ≤1.1 - - - 

72 h [21] Intermediate  2.1 - - - 

Resistant  ≥4.3 - - - 

MTZ, metronidazole; TZN, tinidazole; SNZ, secnidazole; ORN, ornidazole 

 

In our study, we determined the MIC of T. vaginalis isolates anaerobically against 

metronidazole, tinidazole, secnidazole and ornidazole. We chose to determine the MIC and 

MLC under anaerobic conditions since the vagina is an anaerobic environment [105]. We 

believe that this would provide a more representative estimate of the MIC and MLC than if 

aerobic conditions were used. The scoring criteria proposed by Upcroft were used to interpret 

the results [4]. MIC was defined as the lowest drug concentration with a score of 1+. We 

applied this 1+ as inhibition because it equals the inoculum and therefore correlated with no 

multiplication of the organism. The MLC was defined as the lowest concentration without 

any motile parasites. We used the breakpoint used by Upcroft and Upcroft 2001 to classify 

isolates as high (> 2 mg/L), intermediate (= 2 mg/L) or low (<2 mg/L) MIC [4]. They used 
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this value (> 2 mg/L) because patients who had failed treatment were infected with isolates 

with MICs above 2 mg/L [4]. However, this is complicated by the observation that not all 

patients whose isolates had such a high MIC did fail treatment. The breakpoints reported by 

Müller et al 1988 and Dunn et al 2003 [27, 101] are similar to those reported by the Upcroft 

group (Table 5.1). The breakpoints reported by Meri et al (2000) [61] are much higher than 

the other groups (Table 5.1).  This group suggests that a MIC > 39 mg/L indicates resistance 

compared to 3.1- 4.3 mg/L for the other groups (Table 5.1). We do not classify the isolates as 

resistant, susceptible or intermediate in this study due to the absence of an agreed upon 

breakpoint, and since in vitro resistance does not always correlate with treatment failure and 

vice versa. We did not use the standardised rules for bacterial MIC because we were not 

investigating bacterial MIC.  Instead we used the bacteria to confirm that our T. vaginalis 

susceptibility tests were reproducible and there were no calculation or dilution errors. The 

MLC, referred to in bacteriology as the Minimum Bactericidal Concentration (MBC), was 

not determined for the bacterial controls (B. fragilis and P. acnes). This would have required 

an additional subculture procedure.  

For trichomonads we used motility as a proxy for viability. This seems not to be correct since 

some MLC values increased with prolonged incubation. This means that there were still 

viable organisms in the well that contained the MLC concentration at 48 hours. Since we 

applied the same assessment with all four drugs, the comparisons are still valid.  

Metronidazole had the poorest in vitro efficacy with the highest number of MIC > 2 mg/L 

(10) and MLC > 2 mg/L (18), and the lowest number of MIC < 2 mg/L (57) and MLC < 2 

mg/L (45) after 48 hours compared to the other three 5-nitroimidazoles (Table 4.1) However, 

it is uncertain whether these high MICs indicate in vivo resistance. A previous study by 

Müller et al (1988) demonstrated that treatment failure is strongly associated with a high MIC 
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obtained aerobically, but our work was done anaerobically [101]. Shwebke et al [113]  

indicated that there was no correlation between clinical response and in vitro aerobic and 

anaerobic resistance. Only one isolate which was resistant both aerobically and anaerobically 

according to the Upcroft and Upcroft 2001 [4] criteria did not respond to treatment.  

Although the isolates which had a high MIC for metronidazole generally also had a high MIC 

for tinidazole, secnidazole or ornidazole, there was always at least one drug to which 

T. vaginalis had an MIC < 2 mg/L (Table 4.3). 

Ornidazole had the best in vitro efficacy with more isolates having an MIC < 2 mg/L after 48 

hours (89) and more isolates having an MLC < 2 mg/L (65) than the other three 5-

nitroimidazoles (Tables 4.1 and 4.2). These results support the findings of a clinical study 

[93] which demonstrated that ornidazole had a greater cure rate than tinidazole.  A single 

dose treatment with ornidazole resulted in 100% trichomonad eradication after one week 

compared to 95% for the same dose of tinidazole.  

A significant proportion of isolates (68 %) showed a shift in MIC or MLC with prolonged 

incubation from 48 to 72 hours.  As metronidazole is stable at 37°C [112] it is unlikely that 

for this compound the observed changes were the result of inactivation of the drug.  There are 

no available data on the stability of the other 5-nitroimidazoles (tinidazole, secnidazole and 

ornidazole) at 37°C.  

Slow killing of trichomonads by drugs could explain the decrease in MIC from 48 to 72 hours 

of incubation which was observed for 19, 13 and 7 isolates when treated with metronidazole, 

tinidazole or secnidazole respectively (Table 4.7).  However, there were 10, 3 and 4 isolates 

which demonstrated an increase in MIC for these same 3 drugs under the same conditions.  

For ornidazole 12 isolates had an increase in MIC from 48 to 72 hours, compared to only 3 

which had a decrease. This needs further investigation.  
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The observation that the MIC or MLC of T. vaginalis isolates for a particular antimicrobial 

agent could either increase or decrease from 48 to 72 hours of incubation although the 

conditions were the same, suggests that there is strain diversity amongst the isolates 

circulating in the population. 

There was a large number of isolates with an MIC of 2 mg/L (approximately 20-30%) and 

MLC of 2 mg/L (approximately 30-40%).  These MICs could not be classified as high or low 

using the Upcroft criteria. A difference of one 2-fold dilution falls within the acceptable 

variation of MIC determination. However, these values were repeatedly the same and 

therefore should be seen as the true MIC for these isolates. This highlights the need for 

frequent surveillance to ensure that we continue to treat trichomoniasis with an effective anti-

trichomonas drug.  

Clinical resistance of T. vaginalis to metronidazole treatment has been reported [96]. When 

this occurs patients are usually treated with longer or higher doses of metronidazole or with 

tinidazole [61, 108]. In many patients, higher doses result in side effects such as vomiting and 

dizziness [11, 76]. Clinical trials which correlate treatment outcome, the MIC or MLC of 

T. vaginalis isolates, and the concentration of the drug achieved in the vagina will be useful 

in determining threshold values for resistance [61].  Reinfection from asymptomatic partners 

is likely to be common and should be excluded in such studies. This should be done by means 

of a highly discriminative typing method. 

As part of the syndromic management regimen for the treatment of vaginal discharge 

syndrome, metronidazole is used in combination with other antimicrobials including 

ceftriaxone and azithromycin [75]. The effect of ceftriaxone, azithromycin and doxycycline 

on T. vaginalis isolates has been tested [111]. Ceftriaxone showed no effect on T. vaginalis 

while doxycycline and azithromycin showed some activity at higher concentrations [111]. 
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The effect of the combination of these antimicrobial agents with metronidazole remains 

unknown.  

Although tinidazole, secnidazole and ornidazole are effective against many isolates with a 

high MIC or MLC to metronidazole, these drugs are unlikely to offer an immediate solution.  

These drugs are currently not in use in South Africa.  In addition, they have a similar 

mechanism of action to metronidazole and are therefore likely to share resistance 

mechanisms.  Most organisms with a high MIC or MLC for metronidazole also had a high 

MIC for one or more (but not all) of the other 5-nitroimidazoles.  Since all 5-nitroimidazoles 

share a similar structure, patients with an allergy to metronidazole may also have an allergy 

to the other 5-nitroimidazoles [88].  There is a need for a non-5-nitroimidazole alternative for 

the treatment of trichomoniasis. 

The limitations of our study were as follows.  Of the 106 positive isolates that were 

identified, only 94 grew in vitro. Drug resistant bacterial and fungal commensal flora from 

the clinical specimens prevented successful growth of some T. vaginalis isolates. However, 

we were able to optimize the culture media by performing susceptibility tests on the 

contaminating organisms and incorporating suitable drugs in the culture media. The other 

limitation of this study was the use of bacteria as the  sensitive and resistant controls, but this 

limitation was minimized by subjecting the bacterial controls to the same conditionsas the T. 

vaginalis isolates, including growth in Diamonds medium.This study was also limited by the 

fact that inoculated plates for the micro-broth dilution assay which had been incubated 

anaerobically were removed from the anaerobic jar to be visualised using an inverted phase 

contrast microscope after 48 hours.  Plates were then returned to the anaerobic jar with a 

fresh anaerobic gas pack and incubated for a further 24 hours.  During the time outside the 

jar, the culture media would have been exposed to oxygen since the plates were not sealed. 
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CHAPTER 6 – CONCLUSIONS  

Our study indicated that Trichomonas vaginalis isolates obtained from patients presenting 

with vaginal discharge syndrome at one of two clinics in KwaZulu Natal have a broad range 

of minimum inhibitory concentrations (MIC) and minimum lethal concentrations (MLC) to 

the four 5-nitroimidazoles tested.  Metronidazole, which is the current drug of choice in 

South Africa for the treatment of trichomoniasis had the highest MIC and MLC.  Although 

some isolates which had a high MIC or MLC for metronidazole, also had a high MIC or 

MLC for other nitroimidazoles, there were no isolates with high MIC or MLC for all four 

drugs tested. The MIC and MLC of tinidazole, secnidazole and ornidazole were lower, but 

these drugs are not widely available in South Africa. The high MICs and MLCs are a cause 

for concern since there is no alternative non-nitroimidazole chemotherapy available for the 

treatment of trichomoniasis.  It is also unknown whether one should use MIC or MLC to 

measure the efficacy of these drugs. Further research is required to determine which MIC or 

MLC in vitro correlates with clinical failure. 
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APPENDICES 

 

APPENDIX A – Antimicrobial Agents 

1. Antimicrobial Agents stock preparation 

Drug stocks for susceptibility testing experiments (metronidazole, tinidazole, secnidazole and 

ornidazole) and media supplementation were prepared as per table 1. The powder for each 

drug was weighed after calculating the percentage purity (HPLC) and dissolved in a required 

solvent. The stocks were stored as required. 

 

Table A1: Drug stock preparation and storage 

 

2. Working solution preparation for susceptibility testing 

The working solution was prepared from 10 mg/ml stock of each drug (metronidazole, 

tinidazole, secnidazole and ornidazole). Briefly, 16 µl of stock (10 mg/ml) was diluted to 5 

ml Diamonds media to achieve the required working concentration of 32 mg/L (3.2 mg/L per 

1ml medium) final concentration. All antimicrobial agents were manufactured by Sigma-

Aldrich, USA. 

Drug Solvent  
HPLC 

(%) 

Amount 

(g) 

Volume   

(ml) 

Conc. 

(mg/L) 

Storage 

Temp (°C) 

Amikacin Water  100 0.1 10 10 -20 

Amphotericin B DMSO 80 0.0625 10 5 -20 

Ciprofloxacin Acetic acid 98 0.02 10 2 -20 

Chloramphenicol  Ethanol  98 1.02 10 100 -20 

Metronidazole  Acetic acid 100 0.010 10 32 -20 

Ornidazole  Ethanol  98 0.051 5 32 -20 

Secnidazole  Water  99.8 0.01 0.998 32 -20 

Tazobax Water  100 4.5 20 100 -4 

Tinidazole Acetic acid 99.7 0.01 0.997 32 -20 

Vancomycin Water  100 0.02 10 2 -20 
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APPENDIX B – Media Preparation 

Diamond’s medium was prepared as follows: 

20 g BBL
TM 

trypticase peptone (Sigma Aldrich, USA) 

10 g yeast extract (Oxoid Ltd, England) 

5 g maltose (ACE, SA) 

1g L-cysteine hydrochloride (Sigma Aldrich, USA) 

0.2 g L-ascobic acid (Sigma Aldrich, USA) 

0.8g dipotassium hydrogen phosphate (ACE, SA) 

0.5 g potassium dihydrogen phosphate (ACE, SA) 

0.5 g agar (Sigma Aldrich, USA) 

Dissolve the components in 900 ml sterile deionised water and autoclaved at 121°C for 15 

minutes. Allow media to cool to 50°C in the waterbath before the addition of 100 mL heat 

inactivated horse serum (Biowest) to bring the final volume to 1L. 

If the media was to be used for isolation of T. vaginalis from clinical specimens the following 

antimicrobial agents were added to prevent the growth of commensal flora: amphotericin B 

(5 mg/L), amikacin (4 mg/L), vancomycin (2 mg/L), chloramphenicol (1 mg/L) and 

ciprofloxacin (2 mg/L). If the media was to be used for susceptibility testing no antimicrobial 

agent other that the one to be tested was added. Quality control (QC) of the medium was 

achieved by incubating 5 ml of the media after preparation at 37°C for 24-72 hours. If visible 

turbidity was visualised in the QC aliquot, all the media in that batch would be discarded; if 

no turbidity was visualised, the media would be used for culture. 
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Media was aliquoted in 5 ml aliquots in 15 ml polystyrene tubes (Nest, SA), stored at 4°C 

and used within 2 weeks.  
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APPENDIX C – Raw data 

Table C1: Minimal Inhibitory Concentrations (MIC) of metronidazole, tinidazole, 

secnidazole and ornidazole 

Isolate 

number 

Metronidazole Tinidazole Secnidazole Ornidazole 

 

48 h 72 h 48 h 72 h 48 h 72 h 48 h 72 h 

062 2 2 1 2 1 2 1 1 

063 4 4 2 2 2 2 2 2 

094 8 8 4 4 1 1 1 1 

095 4 4 2 2 1 1 1 1 

097 0.5 1 1 0.5 1 1 1 1 

099 0.5 0.5 0.5 0.5 1 1 1 1 

129 0.25 0.5 0.5 0.5 0.5 1 0.5 1 

139 0.5 1 0.5 1 0.5 0.5 0.5 1 

164 1 1 1 1 1 1 0.5 1 

170 2 2 1 1 0.5 0.5 0.5 0.5 

176 1 1 0.5 1 0.5 0.5 0.5 0.25 

185 1 1 1 1 1 1 1 1 

197 2 1 1 1 0.5 0.5 0.5 0.5 

210 0.5 0.5 0.5 0.5 0.25 0.5 0.25 0.25 

228 1 1 1 1 1 1 0.5 1 

231 2 2 1 1 1 1 1 2 

246 1 2 2 2 2 1 1 2 

253 1 1 1 1 1 1 1 1 

264 2 2 0.5 1 2 2 2 2 

291 1 1 1 1 2 2 2 2 

296 1 1 0.5 0.5 1 1 1 1 

298 1 1 1 2 0.5 0.5 0.5 0.5 

304 0.5 1 0.5 0.5 1 1 1 1 

312 2 1 2 2 2 2 1 1 

318 4 2 1 2 2 2 1 2 

326 0.5 0.25 2 2 2 2 1 2 

339 4 4 2 2 2 4 2 2 

347 1 1 1 1 0.5 0.5 0.5 0.5 
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349 2 2 1 1 1 2 1 2 

352 4 4 4 2 2 2 1 2 

357 2 2 0.5 1 1 1 1 1 

364 0.25 0.25 0.5 0.5 1 2 1 2 

368 0.25 0.25 0.25 0.25 1 2 0.5 1 

371 0.25 0.25 0.5 0.5 0.5 1 0.5 0.5 

378 0.5 0.5 0.5 0.5 1 1 0.5 1 

394 0.25 0.25 0.5 0.25 1 1 1 1 

401 0.5 1 0.5 1 2 2 1 2 

406 0.25 0.25 0.25 0.5 1 1 1 1 

411 0.25 0.25 0.5 0.5 2 2 1 1 

413 2 2 1 1 0.5 1 1 1 

424 4 4 2 2 1 1 1 1 

443 2 2 2 2 1 1 0.5 1 

449 0.5 0.5 0.5 0.5 1 2 1 1 

457 2 2 0.5 1 0.5 0.5 0.5 0.5 

481 0.5 0.25 0.5 0.25 1 1 0.5 1 

485 0.5 0.25 0.5 0.25 0.5 1 1 1 

486 1 1 1 1 1 1 0.5 1 

493 0.5 0.25 0.25 0.25 1 1 1 1 

527 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 

532 1 1 1 1 2 2 1 2 

542 4 4 1 2 2 2 1 1 

543 2 4 2 2 2 1 0.5 0.5 

545 1 1 1 0.5 1 2 1 2 

559 1 1 1 1 1 1 0.5 1 

578 2 2 1 1 0.25 1 0.5 1 

579 2 2 1 1 2 2 2 2 

586 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 

597 1 1 1 1 1 1 0.5 1 

614 1 1 1 1 1 1 1 1 

615 0.5 1 1 1 0.25 0.5 0.25 0.25 

637 2 2 0.5 0.5 0.5 1 1 1 

642 1 1 1 1 1 1 0.5 1 

643 2 2 1 1 1 1 1 1 

647 1 1 1 1 1 2 1 1 

651 1 1 1 1 2 2 2 2 

652 1 1 1 1 1 1 1 1 

655 2 2 0.5 1 1 1 1 1 

663 2 2 1 1 1 1 1 1 
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664 1 1 1 1 1 2 1 1 

671 1 1 1 1 0.5 0.5 0.5 0.5 

687 1 1 1 1 0.5 1 1 1 

688 1 0.5 1 1 1 1 1 1 

696 1 1 1 1 1 1 1 1 

698 2 2 2 2 4 4 2 2 

702 2 2 1 2 1 1 1 1 

703 1 1 0.5 1 0.5 0.5 0.5 0.5 

716 2 2 1 1 0.5 1 1 1 

727 2 2 1 1 2 2 1 1 

743 1 1 1 1 0.5 0.5 1 1 

748 2 2 1 1 1 1 1 1 

768 4 4 2 2 2 2 2 1 

774 1 1 1 1 1 1 1 1 

777 1 1 1 1 1 1 0.5 0.5 

802 2 2 1 2 1 2 1 1 

813 2 4 2 2 2 2 2 2 

816 4 4 2 2 2 2 1 2 

843 1 4 2 2 2 2 1 1 

845 2 2 2 2 0.5 0.5 0.5 1 

851 1 2 2 2 2 2 2 2 

870 2 2 2 2 1 1 1 1 

906 0.5 1 1 1 1 0.5 1 1 

933 1 2 0.5 2 1 1 1 1 

955 0.5 0.5 0.5 1 0.5 0.5 1 0.5 

961 0.5 1 0.5 0.5 1 1 0.5 1 
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Table C2: Minimal Lethal Concentrations (MLC) of metronidazole, tinidazole, 

secnidazole and ornidazole 

Isolate 

number 

Metronidazole Tinidazole Secnidazole Ornidazole 

 

48 h 72 h 48 h 72 h 48 h 72 h 48 h 72 h 

062 4 4 2 2 2 2 2 1 

063 8 8 2 2 4 4 2 2 

094 16 16 4 4 2 2 2 2 

095 8 8 2 2 1 1 1 1 

097 1 1 0.5 0.5 1 1 1 1 

099 1 1 1 0.5 1 1 1 1 

129 0.5 0.5 0.5 0.5 1 1 1 1 

139 1 2 1 0.5 1 1 1 2 

164 1 1 1 1 1 1 1 1 

170 2 2 2 2 0.5 0.5 0.5 0.5 

176 1 1 1 1 1 1 1 1 

185 1 2 1 1 1 1 1 1 

197 2 2 1 1 0.5 0.5 0.5 0.5 

210 0.5 1 0.5 0.5 0.5 1 0.5 0.5 

228 1 1 1 1 1 1 1 1 

231 2 2 2 2 2 1 1 2 

246 2 2 2 2 2 1 1 2 

253 2 2 1 1 1 1 1 2 

264 2 2 1 1 2 2 2 2 

291 2 2 1 1 2 2 2 2 

296 1 1 1 1 2 1 1 2 

298 2 2 2 2 1 0.5 0.5 0.5 

304 1 2 1 1 2 2 1 1 

312 4 1 2 2 2 2 2 2 

318 4 4 2 2 2 2 2 2 

326 1 0.5 2 2 2 2 2 2 

339 4 4 2 2 4 4 4 4 

347 4 2 2 2 1 1 1 1 

349 2 2 1 1 2 2 2 2 

352 4 4 4 2 2 2 2 2 

357 2 2 0.5 1 1 1 1 1 

364 1 0.5 2 0.5 2 2 2 2 

368 1 0.25 1 0.5 2 2 1 2 

371 0.5 0.5 1 0.5 1 1 1 1 

378 1 1 0.5 1 1 1 1 1 
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394 0.5 0.25 1 1 1 1 1 1 

401 1 2 1 1 2 2 2 2 

406 0.5 0.25 0.5 0.5 1 1 1 1 

411 1 0.5 2 1 2 2 2 2 

413 2 2 1 1 1 1 1 1 

424 1 1 1 1 2 2 2 2 

443 2 2 2 2 1 1 1 1 

449 2 0.5 1 0.5 2 2 1 1 

457 2 2 1 1 1 1 1 1 

481 1 0.5 1 0.5 1 1 1 1 

485 1 0.5 1 0.5 1 1 1 1 

486 1 1 1 1 1 1 1 1 

493 1 0.5 0.5 0.5 2 1 2 2 

527 1 0.5 0.5 0.5 0.5 1 0.5 1 

532 1 1 1 1 2 2 2 2 

542 16 16 2 2 2 2 2 2 

543 4 4 2 2 2 1 1 1 

545 1 2 2 0.5 2 2 2 2 

559 2 2 2 2 2 2 1 2 

578 2 2 2 1 1 1 1 1 

579 2 2 2 2 2 2 2 2 

586 1 1 1 1 0.5 0.5 0.5 0.5 

597 1 1 2 2 2 2 1 2 

614 1 1 1 1 1 1 1 1 

615 1 1 1 1 1 1 0.5 0.5 

637 2 2 1 1 1 1 1 1 

642 1 1 1 1 1 1 1 2 

643 2 2 1 1 1 1 1 1 

647 1 1 1 1 2 2 2 2 

651 2 1 1 1 4 4 2 2 

652 1 1 1 1 1 1 1 1 

655 4 2 1 1 2 2 1 1 

663 2 2 1 1 1 1 2 1 

664 2 2 2 2 2 2 1 1 

671 1 1 1 1 0.5 0.5 0.5 0.5 

687 2 1 1 1 1 1 1 1 

688 1 1 1 1 1 1 1 1 

696 1 1 1 1 2 2 1 1 

698 4 4 2 2 8 8 4 4 

702 2 2 2 2 1 1 1 2 

703 1 1 1 1 0.5 1 1 1 

716 2 2 2 2 1 1 1 1 

727 2 2 1 1 2 2 1 1 

743 1 1 1 1 1 1 1 1 
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748 2 2 2 2 1 1 1 1 

768 4 4 2 2 2 2 2 2 

774 1 1 1 1 1 1 1 1 

777 2 2 1 1 1 1 1 1 

802 4 4 2 4 1 2 1 2 

813 4 4 2 2 2 2 2 2 

816 8 4 4 2 2 2 2 2 

843 2 4 2 2 2 2 2 2 

845 2 4 2 2 0.5 0.5 1 1 

851 1 2 2 2 2 2 2 2 

870 4 4 2 2 1 1 1 1 

906 1 2 2 2 1 1 0.5 1 

933 2 2 2 2 1 1 1 1 

955 1 1 1 1 1 1 1 0.5 

961 1 1 1 1 1 2 1 1 


