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ABSTRACT 

 

Fusaric acid (FA), a mycotoxin produced by the Fusarium species, is a common contaminant of 

maize and other agricultural products. FA is known to mediate toxicity in plants and animals; 

however, its mechanism of action is unknown. p53 is a tumour suppressor protein that is 

activated in response to cellular stress. Key functions of p53 include cell growth arrest, 

senescence and apoptosis. The function of p53 is regulated by a variety of post-translational 

modifications such as ubiquitination, phosphorylation and acetylation. p53 is ubiquitinated by 

the protein murine double minute 2 (MDM2) and degraded in the absence of cellular stress. The 

phosphorylation and acetylation of p53 occur during cellular stress and increase p53 stability 

and activity. The acetylation of p53 is regulated by histone acetyltransferases, CBP/p300, and 

histone deacetylases, HDAC1 and Sirt1. This study investigated the effect of FA on DNA 

integrity and the post-translational modifications of p53 in hepatocellular carcinoma (HepG2) 

cells. Methods included: (i) culture and treatment of HepG2 cells (IC50: 104µg/ml FA, 24hrs); 

(ii) comet assay (DNA damage); (iii) western blot (protein expression of p53, phosphorylated-

Ser15-p53 (p-Ser15-p53), acetylated-K382-p53 (a-K382-p53), acetyl-CBP (K1535)/p300 

(K1499) (a-CBP (K1535)/p300 (K1499)), HDAC1, phosphorylated-Ser47-Sirt1 (p-Ser47-Sirt1) 

and MDM2); and (v) Hoechst 33342 assay (cell cycle and apoptosis analysis). FA caused DNA 

damage (89.98 ± 10.36µm vs. 33.99 ± 6.76µm, p<0.0001) in HepG2 cells relative to the control. 

FA significantly increased the protein expression of p-Ser15-p53 (9.76-fold, p=0.0002), a-

K382-p53 (1.75-fold, p=0.0329), p-Ser47-Sirt1 (1.24-fold, p=0.0127) and MDM2 (5.63-fold, 

p=0.0094) in HepG2 cells. The expression of p53 (0.73-fold, p=0.0034), a-CBP (K1535)/p300 

(K1499) (0.58-fold, p=0.0043) and HDAC1 (0.84-fold, p=0.0006) were significantly decreased 

in the FA treated cells. Hoechst analysis of HepG2 cells showed that FA inhibited cell 

proliferation and induced apoptosis as evident by the absence of dividing cells and the presence 

of apoptotic bodies. FA is a genotoxic agent that increased p-Ser15-p53, decreased the 

interaction between MDM2 and p53 and increased the interaction between p53 and a-

CBP/p300. This increased the acetylation of p53 (further achieved by the down-regulation of 

HDAC1 and inactivation of p-Ser47-Sirt1) leading to cell growth arrest and apoptosis of HepG2 

cells.  
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INTRODUCTION 

 

Mycotoxin contamination of foods and feeds is a serious problem occurring worldwide 

(Milićević et al., 2010). Areas most often affected by mycotoxins include developing countries 

and poverty stricken areas where malnutrition is a major concern and the consumption of 

mycotoxin contaminated foods form a staple diet for many people (Bennett and Klich, 2003). 

The application of modern agricultural practices as well as regular government screening helps 

lower the risk of exposure to mycotoxins; however, it does not completely eliminate it. Hence, 

mycotoxin contamination is a recurring problem (Wild and Gong, 2010). 

Mycotoxins are low molecular weight natural compounds produced as secondary metabolites of 

toxigenic moulds (Bennett and Klich, 2003, Milićević et al., 2010). Mycotoxins are common 

contaminants of a wide variety of foods and feeds and the consumption of mycotoxin 

contaminated foods may have a serious impact on human and animal health (Bennett and Klich, 

2003, Milićević et al., 2010, Peraica et al., 1999, Zain, 2011). Several mycotoxins have been 

identified; many of which are carcinogenic, mutagenic, nephrotoxic, hepatotoxic and neurotoxic 

(Milićević et al., 2010, Peraica et al., 1999). Exposure to mycotoxins can occur via ingestion, 

inhalation and dermal routes leading to several diseases known as mycotoxicoses (Bennett and 

Klich, 2003, Milićević et al., 2010, Peraica et al., 1999, Zain, 2011).  

The Fusarium species are a group of diverse and adaptable fungi that colonise plants causing 

diseases on agricultural crops with major economic losses (Bouarab, 2009). Fusaric acid (FA) 

also known as 5-butylpicolinic acid is a secondary metabolite and mycotoxin produced by the 

Fusarium species (Bacon et al., 1996, Fairchild et al., 2005). Fusaric acid is a fusariotoxin 

commonly found in maize and other cereal grains, which form an essential part of human food 

and animal feeds (Milićević et al., 2010). Therefore, the consumption of FA contaminated 

commodities may have adverse effects in humans and animals. 

Fusaric acid is a Picolinic acid derivative and well-known metal chelating agent. The structure 

of FA is similar to that of Picolinic acid in that it contains the well conserved chelating structure 

of Picolinic acid as well as an additional fused aromatic ring structure or 5-butyl side chain 

(Bochner et al., 1980). Fusaric acid binds divalent cations and prevents these ions from 

functioning in biological processes (Swinburne, 2012). 

Fusaric acid is known to affect both plants (D'Alton and Etherton, 1984, Diniz and Oliveira, 

2009, Dong et al., 2012, Li et al., 2013) and animals (Abdul et al., 2016, Hidaka et al., 1969, 
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Terasawa and Kameyama, 1971). However, little is known on the mechanism by which FA 

exerts its toxic effects. Previous studies have shown FA to cause changes in membrane 

permeability (D'Alton and Etherton, 1984), dysfunctions in mitochondrial activity (Abdul et al., 

2016, Diniz and Oliveira, 2009), inhibition of respiration (D'Alton and Etherton, 1984, 

Pavlovkin et al., 2004, Telles-Pupulin et al., 1996) and ultimately cell death (Abdul et al., 2016, 

Stack et al., 2004). Fusaric acid is also known to have anti-hypertensive (Hidaka et al., 1969, 

Terasawa and Kameyama, 1971) and anti-tumour effects (Stack et al., 2004). Synergistic effects 

of FA with other mycotoxins produced by the Fusarium species such as Fumonisin B1, 

deoxynivalenol (DON) and diacetoxyscirpenol (DAS) have also been reported (Bacon et al., 

1995, Bungo et al., 1999, Fairchild et al., 2005, Ogunbo et al., 2007, Voss et al., 1999).  

p53, often referred to as the guardian of the genome, is a tumour suppressor protein and 

transcription factor that is activated in response to cellular stress (Prives and Hall, 1999). 

Several stressors can activate p53 such as DNA damage, excessive oncogene activation, 

hypoxia and oxidative stress (Prives and Hall, 1999). Once activated, p53 mediates a plethora of 

functions including cell growth arrest, DNA repair, senescence and apoptosis (Barlev et al., 

2001, Brooks and Gu, 2003, George, 2011, Reed and Quelle, 2014, Zhang et al., 2015). The 

function of p53 is regulated by a variety of post-translational modifications (van Leeuwen et al., 

2013). These modifications include ubiquitination, phosphorylation and acetylation (Barlev et 

al., 2001, Brooks and Gu, 2003, Reed and Quelle, 2014, van Leeuwen et al., 2013, Zhang et al., 

2015).  

The ubiquitination of p53 occurs in the absence of cellular stress and is mediated by the protein 

murine double minute 2 (MDM2) (Dai and Gu, 2010, Brooks and Gu, 2003). MDM2 is the 

predominant negative regulator of p53 (Brooks and Gu, 2003). It adds ubiquitin chains to the C-

terminal lysine residues targeting p53 for degradation by the 26S proteasome (Brooks and Gu, 

2003, Dai and Gu, 2010, Reed and Quelle, 2014). In this way, MDM2 helps maintain low levels 

of p53 in the absence of cellular stress. 

During DNA damage several protein kinases such as ataxia telangiectasia mutated (ATM), 

ataxia telangiectasia and Rad 3 related (ATR) and DNA-dependent protein kinase (DNA-PK) 

are triggered (Barlev et al., 2001, Brooks and Gu, 2003, Reed and Quelle, 2014). These protein 

kinases phosphorylate p53 on several serine and threonine residues leading to the stabilization 

of p53 (Brooks and Gu, 2003, Dai and Gu, 2010).  

p53 is also regulated by acetylation (Gu and Roeder, 1997). The acetylation of p53 occurs in 

response to DNA damage and increases the transcriptional activity of p53 preventing the 
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propagation of cells with damaged DNA (Dai and Gu, 2010, Brooks and Gu, 2003, Barlev et al., 

2001, Reed and Quelle, 2014, Zhang et al., 2015). CREB-binding protein (CBP) and p300 are 

major histone acetyltransferases (HATs) involved in the acetylation of p53 whereas Sirt1 and 

HDAC1 are major deacetylases involved in the deacetylation of p53 (Zhang et al., 2015, Dai 

and Gu, 2010, Brooks and Gu, 2003). The acetylation of p53 is associated with enhanced p53 

activity (Blattner, 2008) whereas the deacetylation of p53 is associated with the inactivation of 

p53 and cell survival (Lee et al., 2012).  

 

This in vitro study investigated a possible mechanism of FA induced cytotoxicity in the 

hepatocellular carcinoma (HepG2) cell line by determining the effect of FA on DNA integrity 

and the post-translational modifications of p53 over a period of 24 hrs. It was hypothesized that 

FA induced DNA damage and post-translationally modified the p53 protein in HepG2 cells.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1. Mycotoxins 

 

Mycotoxins are secondary metabolites produced by moulds, mostly belonging to the genera 

Aspergillus, Penicillium and Fusarium (Yiannikouris and Jouany, 2002). These toxins are 

produced in cereal grains and animal feeds before, during and after harvests, in various 

environmental conditions (Yiannikouris and Jouany, 2002). Mycotoxins are capable of exerting 

harmful effects in humans, animals and crops and are responsible for causing illnesses and 

major economic losses (Peraica et al., 1999, Zain, 2011). The worldwide contamination of foods 

and feeds with mycotoxins is a significant problem (Zain, 2011). Aflatoxin, Fumonisins, 

Tricothecenes and Ochratoxins are the most common food contaminating mycotoxins. These 

mycotoxins are potent nephrotoxins, hepatotoxins and carcinogens that induce a wide variety of 

health problems in both humans and animals (Bennett and Klich, 2003, Peraica et al., 1999, 

Zain, 2011). 

The interest in mycotoxins was first sparked in 1960 following the outbreak of Turkey X 

disease in which approximately 100 000 turkey poults died as a result of consuming aflatoxin 

(Aspergillus flavus) contaminated peanut meal (Peraica et al., 1999, Bennett and Klich, 2003). 

Since then, a large number of mycotoxins have been discovered and several outbreaks involving 

mycotoxins have occurred and still continue to occur globally (Yiannikouris and Jouany, 2002, 

Peraica et al., 1999).  

Mycotoxins are low molecular weight natural products produced mainly by filamentous fungi 

(Bennett and Klich, 2003). Mycotoxins have no biochemical significance in the growth and 

development of the fungus and are often produced as an adaptive response to a change in the 

availability of nutrients and other environmental conditions (Zain, 2011). Mycotoxins are highly 

toxic compounds usually produced for purposes of self-defence or to dissolve cellular 

membranes as part of their fungal pathogenicity (Stack Jr et al., 2014). The chemical structures 

of mycotoxins vary considerably and account for their differences in biological effects 

(Yiannikouris and Jouany, 2002, Peraica et al., 1999). While all mycotoxins are of fungal 

origin, not all toxic compounds produced by fungi are called mycotoxins. Their target and 
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concentration are both important to elicit a toxic effect (Bennett and Klich, 2003). For example, 

some fungal products such as penicillin are toxic to bacteria and are important prescribed 

antibiotics (Bennett and Klich, 2003). 

Mycotoxins are common contaminants of a wide variety of food sources. Human exposure to 

mycotoxins may result from the consumption of contaminated foods as well as the carry-over of 

mycotoxins and toxic metabolites in animal products such as milk, meat and eggs (Yiannikouris 

and Jouany, 2002, Zain, 2011). However, skin-contact with mould infested substrates and 

inhalation of spore-borne toxins are also important sources of exposure (Bennett and Klich, 

2003).  

Exposure to mycotoxins lead to several, often unrecognized, diseases known as mycotoxicoses 

(Peraica et al., 1999, Zain, 2011). Mycotoxicoses are common in areas where there are poor 

methods of food handling and improper storage of food. It also frequently occurs in countries 

such as South Africa (SA) where malnutrition is a problem and where maize and cereal grains 

form a staple diet for many people (Bennett and Klich, 2003). The severity of mycotoxicoses 

vary among individuals and are dependent on the type of mycotoxin, the dose and length of 

exposure, route of exposure as well as the health and sex of the affected individual (Bennett and 

Klich, 2003, Peraica et al., 1999). The ability of mycotoxins to act synergistically with other 

chemicals to which the individual may have been exposed is also a major determinant of 

toxicity (Peraica et al., 1999). Mycotoxicoses, like all other toxicological syndromes, can be 

categorized as acute or chronic (Bennett and Klich, 2003). Acute or short-term toxicity 

generally have a rapid onset with an obvious toxic response whereas chronic or long-term 

toxicity usually occur at low doses and have irreversible effects (Bennett and Klich, 2003).  

Mycotoxins are natural contaminants of food and therefore, their production is often inevitable. 

Several efforts to address mycotoxin exposure involve the removal of mycotoxin-contaminated 

commodities from the food supply by regular government screening. Despite efforts to control 

fungal contamination, extensive mycotoxin contamination is continuously reported in foods and 

feeds around the world (Pinotti et al., 2016).  
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1.2. Fusaric Acid: A Fusarium Mycotoxin 

 

The genus Fusarium comprises of over 1 000 fungal species that cause diseases on agricultural 

crops with severe economic consequences worldwide (Bouarab, 2009). The Fusarium species 

are remarkably diverse and adaptable fungi found in soils globally (Bouarab, 2009). They are 

major plant pathogens and are capable of producing a wide variety of toxic metabolites. A large 

number of plants are symptomatically and asymptomatically infected by the Fusarium species 

causing immense damage and major economic losses (Bacon et al., 1996). These fungi have 

been identified on cereal crops in Western Europe and North America; wheat, cotton and barley 

in China; and rice in Japan, Taiwan and Thailand (Bouarab, 2009); where they have been 

implicated in causing head blights, ear rot and wilting (Bouarab, 2009). 

Fusaric acid (FA ; 5-butylpicolinic acid or 5-n-butyl-pyridine-2-carboxylic acid) is a secondary 

metabolite and mycotoxin produced by several members of the Fusarium species (Fairchild et 

al., 2005). These include, among others, Fusarium moniliforme, Fusarium oxysporum and 

Fusarium heterosporum (Fairchild et al., 2005, Bacon et al., 1996). Fusaric acid is the most 

widely distributed mycotoxin produced by the Fusarium species and thus may serve as a 

presumptive indicator of Fusarium contamination in foods and feeds (Bacon et al., 1996). 

Fusaric acid is a common contaminant of maize and other cereal grains such as barley, wheat 

millets and sorghum (Figure 1.1) (Bacon et al., 1996, Voss et al., 1999, Ogunbo et al., 2007). 

Fusaric acid is an often neglected mycotoxin and surveys to determine the concentration of FA 

in feeds and other agricultural products are limited (Voss et al., 1999). The concentration of FA 

naturally occurring in foods is approximately 643µg/kg (Streit et al., 2013). However, Bacon et 

al (1996) showed that the Fusarium species are capable of producing high levels of FA, ranging 

from 20 mg/ml to 1 080 mg/ml, in autoclaved maize (Bacon et al., 1996). Another study found 

that corn and swine feeds were contaminated with up to 36 ppm FA (Smith and Sousadias, 

1993) and up to 12.4 ppm was found in toxic poultry and livestock feeds (Voss et al., 1999).   

The prevalence of mycotoxins in foods and feeds is a major focus of several studies (Darwish et 

al., 2014, Hawkins, 2013, Hawkins, 2014). A recent study determined the prevalence of 

mycotoxins in corn and other cereal grains (Hawkins, 2014). In particular, approximately 30% 

of wheat and 79% of corn were contaminated with FA (Figure 1.2) (Hawkins, 2014). This is of 

great concern as maize and cereal grains form an integral part of people’s diets and such a high 

degree of contamination increases the possibility of animal and human exposure to FA, posing a 

major health hazard when consumed. 
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Figure 1.1: Fusarium contaminated maize (A) and wheat (B) (Griessler, 2008, Bergstrom, 

2014) 
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Figure 1.2: Percentage of wheat (A) and corn (B) contaminated with FA (Hawkins, 2014) 
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1.2.1. Structure of Fusaric Acid 

 

Fusaric acid is a product of Fusarium fungal fermentation and a physiologic metabolite of 

tryptophan and Picolinic acid (Stack et al., 2004). Picolinic acid also known as 2-picolinic acid 

and 2-pyridine carboxylic acid is a six membered ring structure and isomer of nicotinic acid that 

consists of the chemical formula, C6H5O2N (Grant et al., 2009). The ability to act as a metal 

chelating agent and induce an anti-proliferative effect is one of the most widely studied 

characteristics of Picolinic acid (Fernandez-Pol et al., 1977, Grant et al., 2009). Picolinic acid is 

a bidentate metal chelating agent known to efficiently chelate copper, iron, zinc and cadmium 

(Fernandez-Pol et al., 1977, Grant et al., 2009). These metal ions are essential for the growth of 

cells and their chelation by Picolinic acid may provide a mechanism by which this compound 

exerts its anti-proliferative effect (Grant et al., 2009). A previous study conducted by 

Fernandez-Pol (1977), showed that Picolinic acid inhibits the growth of normal rat kidney 

(NRK) cells in a dose-dependent manner. This may occur by interfering with the specific metal 

requirements for cell growth and by altering NAD+ metabolism (Fernandez-Pol et al., 1977). 

Picolinic acid is a pyridine derivative that has the capacity to undergo exchange reactions with 

the nicotinamide moiety of NAD+ and thus forms NAD+ analogues (Fernandez-Pol et al., 1977, 

Bochner et al., 1980).  

Fusaric acid is a Picolinic acid derivative and well-known metal chelating agent consisting of 

the chemical formula, C10H13O2N (ŠroBároVá et al., 2009). It contains the well conserved 

chelating structure of Picolinic acid and an additional fused aromatic ring structure or 5-butyl 

side chain (Figure 1.3) (Bochner et al., 1980). The butyl side chain is an important component 

in the structure of FA as it increases the lipophilicity of FA, enabling it to penetrate cell 

membranes which are mostly composed of lipids (Bochner et al., 1980). The structure of FA 

also contains a hydroxyl (OH
-
) group that acts as a proton donor and is responsible for most of 

the weak acid properties of FA. 

Fusaric acid is a pyridine derivative and chelator of divalent cations (Li et al., 2013). Like 

Picolinic acid, it is capable of forming conjugates with zinc, iron, copper and manganese 

thereby, forming chelates that make these ions inaccessible (Li et al., 2013). This occurs via the 

N-atom of the pyridine ring of FA which binds with the carboxyl group of the metal thereby, 

preventing these ions from functioning in various biological processes (Swinburne, 2012). 

 



 

10 
 

 

Figure 1.3: Structural comparison between nicotinic acid (A), Picolinic acid (B) and Fusaric 

acid (C) (May et al., 2000) 

1.2.2. Effects of Fusaric Acid 

 

Fusaric acid is a non-specific fungal toxin known to have numerous effects in both plants and 

animals (ŠroBároVá et al., 2009). However, the exact mechanism of action is yet to be 

elucidated. Fusaric acid is a well-known phytotoxin that causes wilt disease symptoms (necrotic 

spots on leaf blades, shrivelling and drying of leaves and shrinking of the stems and petioles) in 

a variety of plants (Rani et al., 2009, Pirayesh et al., 2015). Other effects of FA on plants 

include alterations in membrane permeability (Pavlovkin et al., 2004, D'Alton and Etherton, 

1984), increased electrolyte leakage (D'Alton and Etherton, 1984) and inhibition of respiration 

(D'Alton and Etherton, 1984, Pavlovkin et al., 2004). 
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Fusaric acid is a cell membrane permeating weak acid and is therefore, potentially toxic as a 

proton conductor (Bochner et al., 1980). It alters the mitochondrial membrane potential of cells 

and decreases ATP production (Diniz and Oliveira, 2009, D'Alton and Etherton, 1984, 

Pavlovkin et al., 2004). This may occur by inhibiting cytochrome c oxidase and the 

ATPase/ATP synthase pump (Telles-Pupulin et al., 1996). Fusaric acid impairs mitochondrial 

function and biogenesis in HepG2 cells; and induces apoptosis by increasing the activity of 

caspases-3/7 (Abdul et al., 2016). Fusaric acid also elevates the oxidative stress biomarker lipid 

peroxidation and increases the activity of anti-oxidant enzymes: superoxide dismutase (SOD), 

catalase (CAT) and ascorbate peroxidase (Sapko et al., 2011). 

 

Fusaric acid is toxic to mice (intra peritoneal LD50 80mg/kg and intravenous LD50 100mg/kg) 

and death caused by the lethal dose has been attributed to its hypotensive effect (Hidaka et al., 

1969, Pirayesh et al., 2015). The ability of FA to cause a significant decrease in blood pressure 

has also been observed in cats, dogs, rabbits and rats as a result of the inhibition of dopamine-β-

hydroxylase (Pirayesh et al., 2015, Hidaka et al., 1969), a key enzyme in the synthesis of the 

neurotransmitter norepinephrine (Fairchild et al., 2005). Fusaric acid is a potent inhibitor of 

dopamine-β-hydroxylase and a decrease in the endogenous levels of norepinephrine has been 

observed in the heart, spleen, brain and adrenal glands of rats (Terasawa and Kameyama, 1971, 

Hidaka et al., 1969).   

The removal of essential metal ions by FA may serve as a mechanism by which this compound 

exerts its toxicity (Stack et al., 2004). Studies on several human cancers (mainly epidermoid 

cancers such as adenocarcinoma and hepatocellular carcinoma) revealed that FA has anti-

tumour activity (Rani et al., 2009, Stack Jr et al., 2014, Stack et al., 2004). Fusaric acid has anti-

tumour activity against head and neck squamous cell carcinoma (HNSCC) by increasing DNA 

damage and preventing its synthesis and repair (Stack et al., 2004, Stack Jr et al., 2014). This 

may occur due to the chelation of divalent cations from catalytic DNA associated 

metalloproteins (Stack et al., 2004) and inactivation of  zinc finger proteins (Rani et al., 2009).  

Two HNSCC cell lines (UMSCC-1 and Cal-27 cells) and a mouse model showed FA to have 

both tumouristatic and tumouricidal effects respectively (Stack et al., 2004). The removal of 

metal ions by FA inhibits metal-containing oxidative enzymes (Rani et al., 2009) and alters the 

conformation of proteins that require metal ions in order to maintain structural stability. Fusaric 

acid also increases cytokine production in Hep-2 (human cervical carcinoma cells) and Hep-

DOC (docetaxel-resistant Hep-2 cells) cells and this may be responsible for the cytostatic and 

cytocidal effects of FA (Ye et al., 2013). Fusaric acid also inhibits the proliferation of WI-38 
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fibroblasts and is a potent inhibitor of DNA synthesis in MDA-MB-468 cells and WI-38 

fibroblasts (Fernandez-Pol et al., 1993). 

Another study showed FA to be toxic to mice by chelating calcium causing a delay in bone 

ossification and affecting the growth of foetuses (Reddy et al., 1996). Fusaric acid was also 

shown to be toxic to zebrafish by chelating copper and inhibiting the enzyme lysyl oxidase 

resulting in notochord malformation (Yin et al., 2015). 

Fusaric acid is known to enhance the toxicity of other mycotoxins in both plants and animals 

(Bacon et al., 1996). Fusaric acid is not the only mycotoxin produced by the Fusarium species. 

Other mycotoxins such as zearalenones, trichothecenes and fumonisins are also produced by the 

Fusarium species (Bennett and Klich, 2003, Peraica et al., 1999). These mycotoxins are 

common contaminants of various food commodities and are often produced in combination with 

FA. Therefore, the toxicity of FA may be ascribed to its ability to act synergistically with other 

mycotoxins (Bacon et al., 1996). 

A study conducted on pigs indicated that FA increased the toxicity of deoxynivalenol (a β-

trichothecene) by competing with tryptophan for binding to blood albumin and therefore, 

increased the concentration of free tryptophan in the blood. This leads to an increased uptake of 

tryptophan in the brain and increased serotonin synthesis (Smith et al., 1997). 

Exposure to FA enhanced vomiting, feed refusal and brain metabolism in pigs given 

trichothecenes (Smith and MacDonald, 1991).  However, Ogunbo et al. (2007), showed no toxic 

synergy between FA and T2-toxin in broiler chicks and young turkey poults. This is in keeping 

with the findings of Fairchild et al. (2005) in which FA had no significant effect on body weight 

and body weight gains in turkey poults when fed up to 300 ppm of FA. Fusaric acid also dose-

dependently increased food intake in chicks (Bungo et al., 1999). 

Synergism between 4, 15-diacetoxyscirpenol (DAS) (a type A trichothecene) and FA has been 

demonstrated in insects (Dowd, 1988). Fusaric acid enhanced the toxicity of DAS in insects as it 

increased mortality from 5% with DAS alone to over 20% with DAS and FA combined (Dowd, 

1988). However, FA antagonized the negative effects caused by DAS alone (Dowd, 1988). 

Similar results were obtained by Fairchild et al. (2005) in which turkey poults fed a combination 

of DAS and FA showed a recovery in body weight and body weight gains as opposed to a diet 

with FA and DAS alone. 

Fumonisin B1 is another mycotoxin produced by the Fusarium species (Bennett and Klich, 

2003, Milićević et al., 2010, Peraica et al., 1999, Zain, 2011). A study into the effect of FA and 
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Fumonisin B1 on chicken embryos revealed that the treatment of chicken embryos with FA and 

Fumonisin B1 alone did not cause a toxic response. However, when combined a toxic response 

was observed (Bacon et al., 1995). This suggests that FA may have a synergistic effect with 

Fumonisin B1 (Bacon et al., 1995).  Although, no synergistic effects were observed with FA and 

Fumonisin B1 in rats (Voss et al., 1999). 

1.3. Apoptosis: Programmed Cell Death 

 

Apoptosis (programmed cell death) is responsible for the deletion of cells in normal tissues as 

well as in some pathological states (Kerr et al., 1994). It is a sequential process involving cell 

shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and the formation 

of apoptotic bodies. The apoptotic bodies are phagocytosed and digested by nearby resident 

cells (macrophages and other phagocytes), preventing the spillage of intracellular contents and 

avoiding inflammatory changes (Kerr et al., 1994). Apoptotic bodies not subjected to 

phagocytosis are released into the adjacent lumen where they display progressive dilation and 

degradation of cytoplasmic organelles in a process known as necrosis. Necrosis differs from 

apoptosis in which the cell swells and the plasma membrane ruptures releasing cytosolic 

contents into the extracellular space where they produce an inflammatory response (Woodle and 

Kulkarni, 1998).  

1.3.1. Caspases 

 

Caspases also known as death proteases are a group of cysteine proteases responsible for the 

initiation and execution of apoptosis (Hengartner, 2000). Caspases consist of an active-site 

cysteine and are known to cleave substrates after aspartic acid residues (Asp-Xxx) (Hengartner, 

2000). In order to control the apoptotic process, caspases are initially synthesized as inactive 

zymogens. These zymogens consist of three domains – an N-terminal pro-domain, a p20 

domain and a p10 domain. Proteolytic cleavage of these zymogens between the p20 and p10 

domains as well as between the pro-domain and p20 domain leads to the activation of caspases 

(Hengartner, 2000). Caspases act by inactivating or activating apoptotic-regulatory proteins and 

are responsible for most of the morphological changes observed during apoptosis (Hengartner, 

2000). 



 

14 
 

Initiator caspases such as caspase-2, -8 and -9 are the apical caspases in apoptosis and their 

activation is required for the cleavage and activation of the downstream executioner caspases-3, 

-6 and -7. The activation of executioner caspases usually ensures that apoptosis occurs 

(Hengartner, 2000, Hongmei, 2012). 

1.3.2.  Pathways of Apoptosis 

 

Apoptosis is triggered by a variety of physiological death signals as well as pathological cellular 

insults (Hongmei, 2012). It occurs via several pathways of which the two most common 

pathways involve caspase activation and are termed the intrinsic/mitochondrial pathway and the 

extrinsic/death receptor pathway. 

1.3.2.1. The Intrinsic/Mitochondrial Apoptotic Pathway 

 

The intrinsic apoptotic pathway is initiated in response to radiation, viral infection, irreparable 

DNA damage and oxidative stress (Hongmei, 2012). The mitochondria are central components 

of the intrinsic apoptotic pathway as it is the site where most of the pro- and anti-apoptotic 

molecules are located (Gross et al., 1999). Anti-apoptotic molecules such as BCL-2 are found 

on mitochondrial membranes whereas pro-apoptotic molecules such as BAX and cytochrome c 

are found in the cytosol and within the mitochondria respectively (Gross et al., 1999).  

 

BAX translocates from the cytosol to the mitochondria, following a death signal, where it 

undergoes a conformational change causing it to become an integral membrane protein (Gross 

et al., 1999). BAX interacts with members of the permeability transition pore (PTP; adenine 

nucleotide translocator (ANT), voltage-dependent anion channel (VDAC) and peripheral 

benzodiazepine receptor (PBR)) on the mitochondrial membrane resulting in the opening of the 

PTP and the release of cytochrome c and apoptosis inducing factor (AIF) from the mitochondria 

(Gross et al., 1999, Hongmei, 2012). The release of cytochrome c enables binding with the 

apoptotic protease activating factor-1 (Apaf-1), pro-caspase-9 and ATP to form an apoptosome. 

Apoptosome formation activates caspase-9, consequently activating executioner caspases-3/7 

resulting in apoptotic cell death (Figure 1.4) (Hengartner, 2000, Fulda, 2010). 

BCL-2 is an anti-apoptotic molecule that plays an important role in maintaining the integrity of 

the mitochondrial membrane. BCL-2 inhibits cellular free radical formation, cytochrome c 
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release and the activation of caspases thus preventing apoptosis (Rego et al., 2001). Following 

apoptotic stimuli, the BH3-domain-only molecule (BIM) translocates to the mitochondria where 

it interacts with BCL-2 to antagonize its anti-apoptotic activity and promote apoptosis (Gross et 

al., 1999). 

1.3.2.2. The Extrinsic/Death Receptor Pathway 

 

The binding of death inducing ligands or soluble factors to death receptors on cell membranes 

leads to the activation of the extrinsic apoptotic pathway. In this pathway, death ligands such as 

tumour necrosis factor alpha (TNF-α), tumour necrosis factor related apoptosis inducing ligand 

(TRAIL) and Fas ligand (FasL) bind to their death receptors on the cells surface, type 1 TNF 

receptor (TNFR1), death receptor 4/5 (DR4/5) and Fas respectively (Okada and Mak, 2004, 

Hongmei, 2012). These death receptors have an intracellular death domain that recruits adaptor 

proteins such as TNF-receptor associated death domain (TRADD), Fas associated death domain 

(FADD) and cysteine proteases such as caspase-8. The binding of an adaptor protein to the 

death ligand-death receptor complex results in the formation of a death inducing signalling 

complex (DISC). DISC is responsible for the assembly and activation of pro-caspase-8 to 

caspase-8. Caspase-8 activates caspase-3/7 which leads to apoptosis (Figure 1.4) (Gross et al., 

1999, Hongmei, 2012, Fulda, 2010).  

The activation of the extrinsic apoptotic pathway can lead to the activation of the intrinsic 

apoptotic pathway via the BH3-domain-only molecule, Bid (Gross et al., 1999). The activation 

of caspase-8 (via the extrinsic apoptotic pathway) results in the cleavage of cytosolic p22 Bid at 

the amino terminus leading to the generation of a p15 carboxy-terminal fragment of Bid, 

truncated p15 Bid (tBid). tBid translocates to the mitochondria and directly activates pro-

apoptotic proteins to induce mitochondrial outer membrane permeabilization (Chipuk and 

Green, 2006). This leads to the release of cytochrome c and activation of the intrinsic apoptotic 

cascade (Figure 1.4) (Gross et al., 1999).  
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Figure 1.4: Extrinsic and Intrinsic Pathways of Apoptosis (Favaloro et al., 2012) 

1.4. DNA Damage  

 

Irreparable DNA damage is the major initiating event in apoptosis. DNA damage is caused by 

several endogenous (oxidative stress, replication errors) and exogenous (UV radiation, 

chemicals, toxins) agents. Common types of DNA damage include covalent modifications of 

bases (oxidation, hydrolysis, alkylation), breaks in the DNA backbone occurring in one (single-

strand) or both (double-strand) DNA strands and crosslinks between bases on the same or 

opposite DNA strands and between DNA and protein molecules (Figure 1.5) (Sancar et al., 

2004). Cells have evolved numerous mechanisms of halting cell division and repairing DNA 

damage (Sancar et al., 2004). However, sometimes DNA damage is so extensive it cannot be 

repaired and the affected cell is removed via apoptosis (Hongmei, 2012). In the event that 

apoptosis does not occur, normal functioning of the cell is disrupted and base lesions 

accumulate increasing the possibility of mutations and cancer development. 
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Figure 1.5: Common types of DNA damage (Prepared by author) 

1.5. The p53 Tumour Suppressor Protein 

 

DNA damage is the most common cause of p53 activation. p53 is a tumour suppressor protein 

and transcription factor involved in regulating the expression of genes critical for cell cycle 

arrest and apoptosis (Brooks and Gu, 2003, George, 2011, Reed and Quelle, 2014). It is encoded 

by one of the most frequently mutated genes in human cancers and more than 50% of cancers 

have been reported to contain mutated or inactive p53 (Barlev et al., 2001, George, 2011, 

O’Brate and Giannakakou, 2003, Zhang et al., 2015). 

p53 plays a major role in several cell signalling pathways and is activated in response to DNA 

damage, hypoxia, excessive oncogene activation and other stressors (Figure 1.6) (Prives and 

Hall, 1999). Once activated, p53 acts as a critical regulator of cell proliferation by functioning 

as a checkpoint protein to monitor DNA damage, arrest the cell cycle and initiate DNA repair 

prior to cell division (Barlev et al., 2001). p53 also mediates apoptosis in cells with irreparable 

DNA damage. In this way, p53 functions to maintain genomic stability and is often referred to 

as the “guardian of the genome” (Brooks and Gu, 2003, George, 2011, Reed and Quelle, 2014). 
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p53 also activates the transcription of certain genes such as MDM2, p21 and BAX which are 

involved in regulating cell proliferation and apoptosis. It serves as a negative transcription factor  

to down-regulate the gene expression of BCL-2 (Kang et al., 2015) and can bind directly to anti-

apoptotic BCL-2 proteins and activate pro-apoptotic BCL-2 proteins (eg. BAX). This enables 

p53 to regulate mitochondrial outer membrane potential and apoptosis (Chipuk and Green, 

2006). 

 

Figure 1.6: Activation and function of p53 (Prepared by author) 

1.5.1. The Structure of p53 

 

The p53 gene, TP53, is located on the short arm of human chromosome 17 (17p13.1) and 

encodes a 53kDa nuclear phosphoprotein upon translation (George, 2011). The p53 protein 

consists of 393 amino acids and is made up of three main regions – an acidic N-terminal region, 

a central core region and a basic C-terminal region (Figure 1.7). The N-terminal region includes 

a transactivation domain and a proline rich domain. The transactivation domain consists of 

amino acids 1 to 42 and is involved in the activation of transcription factors (George, 2011, 

Lambert et al., 1998). It interacts with several proteins such as MDM2, TATA-binding protein 

(TBP) and protein kinases that regulate the stability and activity of p53 (Chao et al., 2003, 

Lambert et al., 1998, Thakur et al., 2012). The proline rich domain consists of amino acids 63 to 

97 and is required for p53-mediated apoptosis.  
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The central core region comprises of a DNA-binding domain (amino acids 98 to 292) that 

interacts with DNA in a sequence-specific manner. The DNA binding domain consists of two 

copies of the 10bp consensus sequence, 5'-PuPuPuC(A/T)(A/T)GPyPyPy-3' (Pu=A/G, Py=T/C), 

separated by approximately 0 to 13bp (Benchimol, 2001) and it is the site where the majority of 

cancer associated mutations are detected (Prives and Hall, 1999). These mutations are usually 

missense mutations that alter the conformation of the DNA-binding domain and prevent the 

binding of p53 to DNA (Dai and Gu, 2010, Prives and Hall, 1999). This domain is stabilized by 

the tetrahedral coordination of a zinc ion with cysteine 176, histidine 179, cysteine 238 and 

cysteine 242 (Joerger and Fersht, 2010).  

 

The C-terminal region comprises of a tetramerization domain and a regulatory domain. The 

tetramerization domain (amino acids 324 to 355) is involved in the oligomerization and 

activation of p53. The regulatory domain (amino acids 363 to 393) functions as a transcriptional 

regulator and is involved in recognizing DNA damage. The C-terminal region also contains 

three nuclear localization signals (NLS) and two nuclear export signals (NES) that are 

responsible for the import and export of p53 to and from the nucleus (O’Brate and 

Giannakakou, 2003).  

 

 

Figure 1.7: Structure of p53 (Prepared by author) 

1.5.2. Post-translational Modifications of p53 

 

p53 is synthesised in the cytoplasm where it remains latent in the absence of cellular stress 

(George, 2011, O’Brate and Giannakakou, 2003). Exposure to stress such as DNA damage, 

hypoxia and excessive oncogene activation causes p53 to translocate to the nucleus where it 
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exerts its transcriptional effects (O’Brate and Giannakakou, 2003). p53 can also function in a 

transcription-independent manner in the cytoplasm to regulate processes such as autophagy and 

apoptosis (Dai and Gu, 2010, Green and Kroemer, 2009).  

The tight regulation of p53 function is essential for maintaining normal cell growth and 

preventing tumourigenesis (Brooks and Gu, 2003). p53 is subjected to a variety of post-

translational modifications that regulate its function as a tumour suppressor protein (van 

Leeuwen et al., 2013). These modifications occur mainly in the N- and C-terminal regions of 

the protein and include ubiquitination, phosphorylation and acetylation (Barlev et al., 2001, 

Reed and Quelle, 2014, van Leeuwen et al., 2013). Other post-translational modifications of p53 

include neddylation, sumoylation and methylation (Dai and Gu, 2010). 

1.5.2.1. Ubiquitination of p53 

 

In normal healthy cells, p53 is a short-lived protein (half-life of approximately 10 min) that is 

maintained at very low levels due to the continuous ubiquitination by the protein MDM2 

(Thakur et al., 2012). MDM2 is synthesised in the cytoplasm and must translocate to the 

nucleus where it functions to ubiquitinate p53. The phosphorylation of MDM2 on Serine 166 

and 168 by phosphoinositol 3 kinase (PI3K) and protein kinase B (PKB) result in the 

translocation of MDM2 from the cytoplasm to the nucleus (O’Brate and Giannakakou, 2003).  

Ubiquitination refers to the covalent conjugation of one or more ubiquitin molecules to a protein 

substrate. This process plays a key role in regulating p53 stability and localization. MDM2 is a 

major E3 ubiquitin ligase and negative regulator of p53 (Dai and Gu, 2010, Brooks and Gu, 

2003). It ubiquitinates p53 at lysine (K) residues (K370, K372, K373, K381, K382 and K386) 

within the C-terminal regulatory domain (Dai and Gu, 2010). p53 can be mono-ubiquitinated or 

poly-ubiquitinated depending on the level of MDM2. High levels of MDM2 poly-ubiquitinates 

p53 whereas low levels of MDM2 mono-ubiquitinates p53 (Dai and Gu, 2010). 

The ubiquitination of p53 occurs in the nucleus and depending on the level of ubiquitination; 

p53 can undergo one of two fates. Poly-ubiquitinated p53 is generally degraded in the nucleus 

by the 26S proteasome whereas mono-ubiquitinated p53 inhibits DNA binding and is exported 

from the nucleus to the cytoplasm (Dai and Gu, 2010, Green and Kroemer, 2009, Reed and 

Quelle, 2014). In the cytoplasm, mono-ubiquitinated p53 can become further ubiquitinated by 

ARF-BP1 and Pirh2 and then degraded by the 26S proteasome (Dai and Gu, 2010, Green and 

Kroemer, 2009). Mono-ubiquitinated p53 in the cytoplasm was also shown to travel to the 
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mitochondria where it becomes de-ubiquitinated by the mitochondrial enzyme, Herpesvirus-

Associated Ubiquitin-Specific Protease (HAUSP). This leads to the generation of the 

apoptotically active non-ubiquitinated p53 which induces mitochondrial outer membrane 

permeabilization thus, triggering the release of pro-apoptotic factors and causing apoptosis in a 

transcription-independent manner (Figure 1.8) (Green and Kroemer, 2009). HAUSP is a direct 

antagonist of MDM2 activity and functions by specifically removing ubiquitin molecules from 

p53 when stimulated by DNA damage. Therefore, HAUSP protects p53 from MDM2-mediated 

degradation and allows the rapid accumulation of p53 upon DNA damage (Brooks and Gu, 

2003). 

MDM2 can also inhibit p53 transcriptional activity by binding directly to the N-terminal region 

of p53 and blocking the access of transcription factors to the transactivation domain of p53 

(George, 2011, Brooks and Gu, 2003). The MDM2 gene is an important transcriptional target of 

p53 and the stress-induced increase in p53 levels can induce the expression of MDM2, which in 

turn downregulates p53, creating a negative feedback loop (Dai and Gu, 2010, Gu et al., 2008). 

However, during apoptosis MDM2 is cleaved by caspase-3 generating a 60kDa fragment 

(molecular weight of MDM2 is normally 90kDa) that is capable of binding to p53 but lacks the 

characteristic E3 ubiquitin ligase activity (Pochampally et al., 1998). In this way, p53 is not 

targeted for degradation and hence it accumulates within cells. 

MDM2 has been established as an oncogene as its overexpression has been observed in several 

human cancers such as breast cancer, oesophageal cancer and ovarian cancer (Momand et al., 

1998). Overexpression of MDM2 conveys tumourigenic potential by diminishing the ability of 

p53 to induce cell cycle arrest and apoptosis in response to cellular stress (Pochampally et al., 

1998). The importance of MDM2 in regulating p53 activity was further determined by the 

observation that MDM2 null mice die as a result of p53-dependent apoptosis (Pochampally et 

al., 1998). 

1.5.2.2. Phosphorylation of p53 

 

p53 stabilization and transcriptional activation are crucial early events in a cell’s battle against 

genotoxic stress (Brooks and Gu, 2003). The p53 protein harbors an array of serine and 

threonine residues in the N-terminal transactivation domain and the C-terminal regulatory 

domain that are phosphorylated or dephosphorylated in response to genotoxic stress (Brooks 

and Gu, 2003, Dai and Gu, 2010).  
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Following DNA damage, p53 is imported from the cytoplasm to the nucleus where it becomes 

phosphorylated by several protein kinases such as ataxia telangiectasia mutated (ATM), ataxia 

telangiectasia and Rad 3 related (ATR), DNA-dependent protein kinase (DNA-PK), checkpoint 

kinases 1 and 2 (chk1 and chk2) and cyclin-dependent kinase activating kinase (CAK) (Figure 

1.8) (Barlev et al., 2001, Brooks and Gu, 2003, Dai and Gu, 2010, Reed and Quelle, 2014). 

These kinases are activated by various forms of DNA damage and directly phosphorylate p53 

on serine (Ser-15, Ser-20, Ser-33, Ser-37 and Ser-46) and threonine (Thr-18) residues (Reed and 

Quelle, 2014). Chk1 and chk2 can also phosphorylate C-terminal residues (Ser-313, Ser-314, 

Ser-315, Thr-377 and Ser-378) in response to DNA damage (George, 2011, Reed and Quelle, 

2014). The de-phosphorylation of p53 at Ser-15 and Ser-37 negatively regulates p53-dependent 

cell death and promotes cell survival (Li et al., 2006). Several studies show that DNA damage 

induced phosphorylation on Ser-15 and Ser-37 of p53 alleviates its inhibition by MDM2 and is 

essential for the stabilization of p53 during cellular stress (Shieh et al., 1997). However, others 

argue that the phosphorylation of p53 is necessary for its acetylation by increasing its 

interaction with transcriptional coactivators and histone acetyltransferases (Barlev et al., 2001, 

Kang et al., 2015, Lambert et al., 1998, Tang et al., 2008). 

1.5.2.3. Acetylation of p53 

 

The role of histone acetylation and its involvement in the regulation of transcription has long 

been a topic of interest. Histone acetylation, catalysed by histone acetyltransferases (HATs), 

refers to the covalent linkage of an acetyl group from acetyl coenzyme A to the epsilon (ε) 

amino group of lysine residues (Delcuve et al., 2012, Tang et al., 2008). Histone deacetylation is 

catalysed by histone deacetylases (HDACs) and involves the removal of acetyl groups from the 

lysine residues of histones (Delcuve et al., 2012). There are four classes of histone deacetylases 

– class I (HDACs 1, 2, 3 and 8), class II (HDACs 4, 5, 6, 7, 9 and 10), class III (Sirtuins 1-7) 

and class IV (HDAC 11). Histone acetylation and deacetylation modify chromatin structure and 

are known to affect many DNA based events such as replication and transcription (Delcuve et 

al., 2012).  

p53 was the first non-histone protein shown to be regulated by acetylation and deacetylation 

(Gu and Roeder, 1997). Several studies have shown that p53 acetylation is a crucial event that 

occurs in response to genotoxic stress and is essential for increasing p53 stability and 

stimulating its transcriptional activity (Barlev et al., 2001, Zhang et al., 2015, Solomon et al., 

2006, Kang et al., 2015). Acetylation of p53 was also shown to promote its ability to bind to 
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DNA in a sequence-specific manner (Sakaguchi et al., 1998, Luo et al., 2004, Gu and Roeder, 

1997) and recruit transcriptional co-activators to specific p53 response elements (Barlev et al., 

2001).  

Histone acetyltransferases such as CREB-binding protein (CBP)/p300 and p300/CBP-associated 

factor (PCAF) mediates acetylation of the C-terminal lysine residues of p53 through interaction 

with its N-terminal region. Eight acetylation sites (K120, K320, K370, K372, K373, K381, 

K382 and K386) have been identified for p53, six of which were found to occur in the C-

terminal regulatory domain of p53 (K370, K372, K373, K381, K382 and K386) (Barlev et al., 

2001, Dai and Gu, 2010, Reed and Quelle, 2014). K382 is the major lysine residue acetylated in 

response to DNA damage and an increase in the acetylation of K382 has been shown to 

correlate with an increase in p53 phosphorylation (Reed and Quelle, 2014). K320 in the 

tetramerization domain of p53 is acetylated by PCAF, which favours cell survival by promoting 

p53 mediated activation of cell cycle arrest target genes (Dai and Gu, 2010). The acetylation of 

K120 in the DNA-binding domain of p53 was shown to be essential for p53-dependent 

apoptosis but has no effect on the induction of p21 and cell growth arrest (Tang et al., 2008). 

Recently it was observed that another lysine residue, K164, in the DNA-binding domain of p53 

is acetylated by CBP/p300 in response to DNA damage (Tang et al., 2008) and the acetylation 

of this lysine residue is involved in regulating a vast amount of p53 targets (Dai and Gu, 2010).  

Histone deacetylation plays a major role in inhibiting p53-dependent transcriptional activity, 

cell growth arrest and apoptosis (Reed and Quelle, 2014, Zhang et al., 2015). The major 

deacetylases involved in deacetylating p53 are HDAC1 and sirtuin (Sirt) 1 (Brooks and Gu, 

2003). HDAC1 is a zinc-dependent enzyme closely related to the yeast counterpart, RPD3 

(Delcuve et al., 2012). HDAC1 is found mainly in the nucleus and is responsible for 

deacetylating p53 at C-terminal lysine residues (K320, K373 and K382) thereby, inhibiting p53-

dependent transcription (Dai and Gu, 2010, Reed and Quelle, 2014, Zhang et al., 2015).  

Sirt1 is a class III NAD
+
-dependent deacetylase closely related to the yeast counterpart, Sir2 

(silent mating type information regulation 2). Sirt1 is predominantly localized in the nucleus 

where it catalyses the deacetylation of acetyl-lysine residues in a reaction that cleaves NAD
+
 

and generates O-acetyl ADP-ribose (Solomon et al., 2006). Sirt1 has been shown to deacetylate 

p53 specifically on K382, which is important for inducing cellular senescence in cells with 

minimal DNA damage (Wang et al., 2008). In addition, Sirt1 causes p53 hypo-acetylation and 

inhibits p53-mediated apoptosis. This is in accordance with a study by Cheng et al. (2003) in 

which p53 hyper-acetylation and apoptosis were observed in Sirt1-deficient mice. The 
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deacetylation of p53 by Sirt1 has also been shown to promote p53 nuclear export resulting in its 

accumulation within the cytoplasm. Increased cytoplasmic p53 may enhance its passage to the 

mitochondria where it induces apoptosis. Hence, Sirt1 may have a role in inducing apoptosis in 

a transcription-independent manner (Yi and Luo, 2010). Deacetylation of p53 by Sirt1 can also 

promote its ubiquitination and subsequent degradation (Barlev et al., 2001, Tang et al., 2008).  

Recently, it has been shown that p53 can be deacetylated in the cytoplasm and the deacetylase 

responsible for catalysing this reaction is the cytoplasmic Sirt2 (van Leeuwen et al., 2013). Sirt7 

was also found to interact with and deacetylate p53 in vitro (Vakhrusheva et al., 2008). This is 

in accordance with a study in which Sirt7-deficient cells were found to contain hyper-acetylated 

p53 (Vakhrusheva et al., 2008). 

1.5.3. The Role of MDM2 in Regulating p53 Acetylation  

 

The role of MDM2 in regulating the acetylation of p53 has received much interest over recent 

years. Some studies show that MDM2 can decrease the acetylation of p53 by ubiquitinating 

CBP/p300 and mediating its export from the nucleus to the cytoplasm, where it acts as an E4 

ubiquitin ligase to further ubiquitinate p53 and enable its degradation (Dai and Gu, 2010, Reed 

and Quelle, 2014, Zhang et al., 2015). Another study showed that p53 is ubiquitinated and 

acetylated on the same C-terminal lysine residues and hence, MDM2 and CBP/p300 may 

compete for the same binding sites (Brooks and Gu, 2003, Reed and Quelle, 2014, Zhang et al., 

2015). Acetylation of p53 inhibits MDM2-mediated ubiquitination by blocking the recruitment 

of MDM2 to p53 responsive promoters and vice versa (Zhang et al., 2015). MDM2 also 

promotes p53 deacetylation by recruiting HDAC1 to acetylated p53 complexes (Ito et al., 2002). 

The unmodified lysine residues then become substrates for MDM2-mediated ubiquitination 

resulting in p53 degradation (Ito et al., 2002). 
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Figure 1.8: Regulation of p53 (Prepared by author) 
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1.6. Problem Statement, Aims and Objectives 

 

Problem Statement 

Mycotoxin contamination of foods and feeds is a serious problem occurring worldwide 

(Milićević et al., 2010). South Africa is the major producer of maize and other cereal grains 

such as barley, wheat millets and sorghum. It is responsible for producing large quantities of 

agricultural crops each year. However, the lack of proper food storage methods accompanied 

with the hot and humid weather of SA provide ideal conditions for the growth of pathogenic 

fungi and the production of mycotoxins. Fusaric acid is an often neglected mycotoxin that 

contaminates a wide variety of food sources especially, maize which forms part of the staple 

diet. Several studies have reported FA to be a toxic agent in both plants (D'Alton and Etherton, 

1984, Diniz and Oliveira, 2009, Dong et al., 2012, Li et al., 2013, Sapko et al., 2011, Telles-

Pupulin et al., 1996) and animals (Terasawa and Kameyama, 1971, Smith and Sousadias, 1993, 

Ogunbo et al., 2007, Hidaka et al., 1969, Dowd, 1988, Bungo et al., 1999, Fairchild et al., 2005, 

Voss et al., 1999). However, the exact mechanism by which this mycotoxin exerts its toxicity is 

still unknown. p53 is a major stress response protein that regulates a variety of cellular 

processes and therefore, its activation may provide a possible mechanism by which FA induces 

its toxicity. The ability of FA to induce DNA damage and activate p53 has not been previously 

reported. 

 

Aim 

To determine the effect of FA on DNA integrity and the post-translational modifications 

(phosphorylation and acetylation) of p53 in hepatocellular carcinoma (HepG2) cells. 

 

Null Hypothesis  

Fusaric acid does not cause DNA damage and post-translationally modify p53 in HepG2 cells. 

 

Objectives 

 

 To determine the effect of FA on DNA integrity in HepG2 cells at 24 hrs using the 

single cell gel electrophoresis (SCGE)/comet assay.  
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 To determine the effect of FA on the protein expression of p53, phosphorylated-Ser15- 

p53, acetylated-K382-p53, MDM2, acetylated-CBP (K1535)/p300 (K1499), HDAC1 

and phosphorylated-Ser47-Sirt1 in HepG2 cells at 24 hrs using western blot.  

 To determine the effect of FA on the cell cycle and apoptosis in HepG2 cells at 24 hrs 

using the Hoechst 33342 assay. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1. Materials 

 

Fusaric acid (FA), isolated from the fungus Gibberella fujikuroi (F6513), was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The human hepatocellular carcinoma (HepG2) cell line 

was purchased from Highveld Biologicals (Johannesburg, SA). Cell culture equipment (cell 

culture flasks etc.) and reagents (Eagle’s Minimum Essentials Medium (EMEM), trypsin, trypan 

blue etc.) were purchased from Lonza Biotechnology (Basel, Switzerland). Western Blot 

equipment and reagents were purchased from Bio-Rad (Hercules, CA, USA). All other reagents 

were purchased from Merck (Darmstadt, Germany) unless otherwise stated. 

2.2. Cell Culture 

2.2.1. Introduction 

 

The HepG2 cell line, epithelial in morphology and consisting of 55 chromosome pairs, was 

derived from the liver tissue of a 15-year old Caucasian male possessing a well differentiated 

hepatocellular carcinoma. They are adherent cells that grow as monolayers or small aggregates 

in cell culture. Although often referred to as a liver cancer cell line, the HepG2 cells are a 

common and reliable model for liver toxicity testing. These cells contain many liver-specific 

genes, which produce plasma proteins, retain cell surface receptors, and can synthesise, 

assemble and secrete many low and high density lipoproteins similar to those of normal human 

hepatocytes (Dehn et al., 2004). HepG2 cells are also rich in Phase I (cytochrome P450 mono-

oxygenases) and Phase II (glucuronic and sulphate conjugation) biotransformation enzymes that 

play a vital role in normal biotransformation reactions and are essential for the detoxification of 

various compounds (Dehn et al., 2004, Soldatow et al., 2013, Wilkening et al., 2003). 
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2.2.2. Cell Culture Conditions 

 

HepG2 cells were allowed to grow (37°C, 5% CO2) in 25cm
3
 sterile cell culture flasks 

containing complete culture media (CCM; Eagle’s Minimum Essentials Medium (EMEM) 

supplemented with 10% foetal calf serum, 1% penicillin-streptomycin-fungizone and 1% L-

glutamine). Cells were rinsed every two days in 0.1M phosphate buffered saline (PBS) and 

reconstituted with CCM (5ml). Once approximately 90% confluent, the cells were rinsed in 

0.1M PBS and incubated (37°C, 5% CO2) with the relevant treatment for 24 hrs. Thereafter, the 

cells were detached by incubation in 1ml trypsin (37°C, 5% CO2, 5 min) and used for the 

relevant assays. Cells were counted using the trypan blue cell exclusion method. 

2.3. Preparation of Fusaric Acid Treatment  

 

A 1mg/ml FA stock solution was prepared by dissolving 1mg of FA in 1ml 0.1M PBS. An 

inhibitory concentration of 50%  (IC50: 104µg/ml) was obtained from literature (Abdul et al., 

2016) (Appendix A) and used in all subsequent assays. Treatment of HepG2 cells were 

conducted over 24 hrs (37°C, 5% CO2) with 5ml of 104µg/ml FA (treatment). An untreated 

control (CCM only) was also prepared. 

2.4. Comet Assay 

2.4.1.  Introduction 

 

The comet assay also known as the single cell gel electrophoresis (SCGE) is a simple and rapid 

technique used to detect DNA strand breaks in individual cells (Collins, 2004, Fairbairn et al., 

1995, Tice et al., 2000). It was first introduced by Ostling and Johansen in 1984 and was later 

modified by Singh et al. (1988) to improve sensitivity.  

Cells are embedded in agarose gel on a microscope slide. The cells are lysed with detergents 

and high molarity sodium chloride to remove cellular proteins and the DNA is allowed to 

unwind in an alkaline medium. The cells are then electrophoresed at high pH resulting in 

structures that resemble comets, with a distinct head comprising of intact, undamaged DNA and 

a tail consisting of fragmented, damaged DNA, when viewed using fluorescent microscopy 
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(Collins, 2004, Tice et al., 2000). The length of the comet tail is directly proportional to the 

amount of DNA damage. 

The comet assay is based on the principle that the structure of DNA is a highly organised 

supercoil tightly packed with matrix proteins and chromatin in the nucleus. However, when 

DNA becomes damaged this highly organised structure is disrupted causing the individual DNA 

strands to relax. During electrophoresis, the applied electric field causes the negatively charged 

DNA (due to the phosphate backbone) to migrate towards the positively charged anode. 

Undamaged DNA is too large and does not migrate and hence do not produce comet-like 

images. However, the small fragments of damaged DNA migrates faster producing comet-like 

images when viewed using fluorescent microscopy (Collins, 2004, Fairbairn et al., 1995, Tice et 

al., 2000).  

2.4.2. Protocol 

 

The comet assay was used to determine the degree of DNA damage in HepG2 cells. Following 

incubation of HepG2 cells with FA for 24 hrs, the supernatants were removed, the cells were 

rinsed three times in 0.1M PBS and trypsinised. Thereafter, the cells were prepared in 0.1M 

PBS (20 000 cells in 25µl 0.1M PBS). 

Three frosted slides per sample (control and FA) were prepared by adding three layers of low 

melting point agarose gel (LMPA, 37°C) with each layer being allowed to solidify (4°C, 10 

min). The first layer consisted of 700µl 2% LMPA. The second layer consisted of 25µl cell 

suspension (20 000 cells in 0.1M PBS), 0.5µl Gel Red (catalogue no. 41003, Biotium Inc., 

Hayward, CA) and 175µl 1% LMPA and the third layer consisted of 200µl 1% LMPA. 

Thereafter, all slides were immersed in freshly prepared cold lysing solution [2.5M NaCl, 

100mM EDTA, 1% Triton X-100, 10mM Tris (pH 10) and 10% DMSO] and incubated (1 hr, 

4°C) to remove all cellular proteins. Following incubation, the slides were placed in 

electrophoresis buffer [300mM NaOH, 1mM Na2EDTA; pH 13] for 20 min at RT to allow DNA 

unwinding. The slides were then electrophoresed (25V (300mA), 35 min, RT) using the Bio-

Rad compact power supply. Following electrophoresis, the slides were washed three times with 

neutralisation buffer [0.4M Tris; pH 7.4] for 5 min each in order to remove excess detergents 

and alkali. Slides were viewed using the Olympus IX51 inverted fluorescent microscope with 

510-560nm excitation and 590nm emission filters (Figure 2.1). Images of at least 50 cells and 

comets were captured per sample at 20x magnification and the comet tail lengths were measured 
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using the Soft Imaging System (Life Science – Olympus Soft Imaging Solutions version 5) and 

reported as µm. 

 

Figure 2.1: Overview of the comet assay (Prepared by author) 

2.5. Hoechst 33342 Assay 

2.5.1.  Introduction 

 

Hoechst 33342 (2’-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2, 5’-bi-1H-benzimidazole 

trihydrochloride trihydrate) is a cell permeable fluorescent dye that binds specifically to the 

adenine-thymine (A-T) rich regions in the minor groove of DNA and emits an intense blue 

fluorescence at 350-490nm (Chazotte, 2011). 
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The Hoechst 33342 assay is a simple and rapid technique that allows easy visualization of the 

nucleus in interphase cells and chromosomes in mitotic cells (Chazotte, 2011). This allows one 

to observe cells at different phases of the cell cycle as well as those undergoing apoptosis.  

2.5.2. Protocol  

 

The Hoechst 33342 assay was used to determine the effect of FA on the cell cycle and apoptosis 

in HepG2 cells. HepG2 cells (500 000 cells/well) were seeded into a 6-well plate and allowed to 

adhere overnight. Thereafter, the CCM was removed; cells were rinsed three times using 0.1M 

PBS and treated with FA for 24 hrs. Three technical replicates were prepared. Following 

treatment, the cells were rinsed thrice in 0.1M PBS and fixed using 10% paraformaldehyde 

(500µl/well, 5 min, RT) to preserve the morphology and viability of the cells. Once fixed, the 

paraformaldehyde was removed and the cells were rinsed thrice in 0.1M PBS to remove excess 

paraformaldehyde. The Hoechst 33342 working solution (catalogue no. B2261, Sigma-Aldrich; 

500µl/well, 5µg/ml) was added and the plate was incubated (15 min, 37°C). Thereafter, the cells 

were rinsed thrice in 0.1M PBS to remove any unbound stain and viewed using the Olympus 

IX51 inverted fluorescent microscope with 350nm excitation and 450nm emission filters. Three 

images per sample replicate were captured at 20x magnification (Figure 2.2).   
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Figure 2.2: Overview of the Hoechst 33342 Assay (Prepared by author) 

2.6. Western Blot 

 

Western Blot is an analytical technique that utilises the principle of antigen-antibody binding to 

detect and quantify specific proteins in a given sample (Eslami and Lujan, 2010, Mahmood and 

Yang, 2012). First, proteins are separated according to their molecular weights in a process 

known as sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). In SDS-

PAGE, a voltage is applied causing the negatively charged proteins to migrate towards the 

positively charged electrode through a gel matrix. This migration separates proteins according 

to their size with the higher molecular weight proteins migrating slower through the matrix and 

the lower molecular weight proteins migrating faster (Mahmood and Yang, 2012). Once 

electrophoresis is complete, the proteins are electro-transferred to a nitrocellulose membrane 

and incubated in blocking buffer to prevent the non-specific binding of proteins. The 

membranes are then immunoblotted with a specific primary and enzyme-conjugated secondary 

antibody to yield bands that are representative of protein expression. This enables target 
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proteins to be detected and quantified from a sample containing several different proteins 

(Mahmood and Yang, 2012).  

2.6.1.  Protein Isolation 

2.6.1.1. Introduction 

 

Total protein was isolated from HepG2 cells using the Cytobuster™ Protein Extraction Reagent 

(catalogue no. 71009-4, Novagen, Bloemfontein, SA). Cytobuster is a gentle non-ionic reagent 

that consists of a variety of detergents that when combined with the mechanical scraping of cells 

disrupts cell membranes allowing for the efficient extraction of soluble proteins that are 

functionally active and expressed within cells. Loss of cell compartmentalization during protein 

isolation results in the release of several tightly regulated proteases and phosphatases that 

degrade and damage cellular proteins. In order to prevent the degrading properties of these 

enzymes, the lysis reagent is supplemented with protease and phosphatase inhibitors that 

inactivate endogenous proteolytic and phospholytic enzymes. This enables proteins to maintain 

their integrity and avoid becoming denatured.  

2.6.1.2. Protocol 

 

HepG2 cells were treated with FA for 24 hrs. The supernatants were removed from the flask and 

the cells were rinsed three times in 0.1M PBS. Thereafter, Cytobuster reagent (200µl) 

(Novagen, catalogue no. 71009) supplemented with a cocktail of protease inhibitors (Roche, 

catalogue no. 05892791001) and phosphatase inhibitors (Roche, catalogue no. 04906837001) 

was added to the flask and the cells were kept on ice for 30 min. The protein from the untreated 

and treated cells was further extracted using a cell scraper. The lysed cells were transferred to 

1.5ml micro-centrifuge tubes and centrifuged (10 000xg, 10 min, 4°C). The supernatants 

containing the crude protein extract was aspirated into fresh 1.5ml micro-centrifuge tubes and 

kept on ice until further quantification and standardisation (Figure 2.4). The pellet was 

discarded. 
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2.6.2. Quantification and Standardisation of Proteins 

2.6.2.1. Introduction 

 

The total crude protein was quantified using the Bicinchoninic Acid (BCA) Assay. The BCA 

assay was first invented by Paul K. Smith in 1985. It is a colorimetric assay based on the biuret 

reaction in which cupric (Cu
2+

) ions are converted to cuprous (Cu
+
) ions in an alkaline medium 

(Walker, 1996). First, the Cu
2+

 ions react with the peptide bonds in proteins and are reduced to 

form Cu
+
 ions. The Cu

+
 ions then react with two molecules of BCA to form a BCA-Cu

+
 

complex that has an intense purple colour and maximally absorbs light at a wavelength of 

562nm (Figure 2.3 and Figure 2.4). The intensity of the purple colour produced is directly 

proportional to the number of peptide bonds participating in the reaction and is an indication of 

the amount of protein present in the sample (Walker, 1996). 

 

Figure 2.3: Principle of the BCA assay (Prepared by author) 
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2.6.2.2. Protocol  

 

Bovine serum albumin (BSA) standards [0, 0.2, 0.4, 0.6, 0.8 and 1mg/ml] were prepared in 

distilled water. Thereafter, 25µl of each standard (triplicate) and protein sample (duplicate) was 

pipetted into a 96-well microtiter plate. A working solution (200µl) consisting of 198µl BCA 

and 4µl CuSO4 was added to each well and the plate was incubated at 37°C for 30 min. The 

absorbance at 562nm was measured using a spectrophotometer (Bio-tek µQuant Plate Reader). 

The absorbances of the BSA standards were used to construct a standard curve from which the 

concentration of protein present in each sample was determined (Appendix B). 

The proteins were subsequently standardised to a concentration of 1.5mg/ml in Cytobuster 

reagent and the standardised samples were prepared in laemmli buffer [dH2O, 0.5M Tris-HCl 

(pH 6.8), glycerol, 10% SDS, 5% β-mercaptoethanol and 1% bromophenol blue] by boiling for 

5 min. Each component of the laemmli buffer has a specific function. Tris-HCl serves as the 

buffer and maintains pH. Glycerol adds weight to the samples allowing the samples to sink 

easily into the wells of the gel in SDS-PAGE (Mahmood and Yang, 2012). Bromophenol blue 

allows visualization of the samples as they migrate through the gel. SDS denatures proteins and 

imparts an overall negative charge enabling the proteins to be separated solely based on their 

size rather than charge and shape (Mahmood and Yang, 2012). The β-mercaptoethanol acts as a 

reducing agent to break disulphide bonds and denature the proteins. Following protein 

preparation, the samples were allowed to cool to RT before storing at -20°C until assayed. 
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Figure 2.4: Overview of the isolation, quantification and standardisation of proteins (Prepared 

by author) 

2.6.3.  Preparation of Gels for SDS-PAGE  

2.6.3.1. Introduction 

 

Polyacrylamide gels are a 3D polymer network composed of acrylamide and a cross-linker 

known as N, N’-methylene bis-acrylamide under the catalyzation of ammonium persulfate 

(APS). SDS-PAGE utilises two types of agarose gels to separate proteins according to their 

molecular weights. The higher gel is known as the stacking gel and is slightly acidic (pH 6.8) 

with a low polyacrylamide content causing the gel to have large pores that poorly separate 

proteins (Mahmood and Yang, 2012). However, the stacking gel is important as it enables the 

protein to form thin sharply defined bands so that they can be separated by the lower resolving 

gel. The resolving gel is basic (pH 8.8) and has a high polyacrylamide content causing the gel to 
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have narrower pores which function to separate proteins according to their size (Mahmood and 

Yang, 2012).  

2.6.3.2. Protocol 

 

Gels for SDS-PAGE were prepared using the Mini-PROTEAN Tetra Cell casting stand (Figure 

2.5) (Bio-Rad). A 10% resolving gel [dH2O, 1.5M Tris (pH 8.8), 10% SDS, bis-acrylamide, 

10% APS and TEMED] was prepared and allowed to polymerize for 1 hr. Thereafter, a 4% 

stacking gel [dH2O, 0.5M Tris (pH 6.8), 10% SDS, bis-acrylamide, 10% APS and TEMED] was 

prepared and added on top of the resolving gel. A 1cm plastic comb was placed between the 

glass plates to enable the formation of wells for sample loading (Figure 2.5 and Figure 2.6) and 

the gel was allowed to set for approximately 40 min.  

 

Figure 2.5: Equipment used to prepare SDS-PAGE gels (Prepared by author) 
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Figure 2.6: A typical example of an SDS-PAGE gel (Prepared by author) 
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2.6.4.  SDS-PAGE 

 

The gel cassettes were placed into the electrode assembly and the electrode tank (Mini-

PROTEAN Tetra Cell System, Bio-Rad). The protein samples (25µl) along with a molecular 

weight marker (5µl) (Precision Plus Protein All Blue Standards, catalogue no. #161-0373, Bio-

Rad) was loaded into the wells. The tank was filled with running buffer [25mM Tris, 192mM 

glycine and 0.1% SDS] and the samples were electrophoresed at 150V for 1 hr using the Bio-

Rad compact power supply (Figure 2.7). 

 

Figure 2.7: Process of SDS-PAGE (Prepared by author) 
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2.6.5.  Protein Transfer 

 

Once electrophoresis was complete, the separated proteins were transferred to a nitrocellulose 

membrane. The electrophoresed gels were gently removed from the glass plates and the stacking 

gel was removed. The electrophoresed gels, nitrocellulose membranes and two fibre pads were 

equilibrated in transfer buffer [25mM Tris, 192mM glycine and 20% methanol, pH 8.3] for 10 

min. Thereafter, a gel sandwich consisting of a fibre pad, nitrocellulose membrane, gel and fibre 

pad (Figure 2.8) was assembled between the two electrodes in the transfer apparatus and the 

separated proteins were electro-transferred to the nitrocellulose membrane using the Bio-Rad 

Trans-Blot Turbo Transfer System (30 min, 20V). 

The application of the voltage generates an electric current perpendicular to the surface of the 

gel. This causes the negatively charged proteins to migrate out of the gel and onto the 

nitrocellulose membrane.  

 

Figure 2.8: Transfer of proteins to the nitrocellulose membrane (Prepared by author) 
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2.6.6.  Blocking and Antibody Incubation 

 

After transfer, the membranes were blocked in 5ml blocking buffer consisting of either 5% BSA 

or 5% non-fat dry milk (NFDM) in Tris buffered saline with 0.05% Tween 20 [TTBS; 150mM 

NaCl, 3mM KCl, 25mM Tris, 0.05% Tween 20, dH2O, pH 7.5] for 1 hr at RT with gentle 

shaking to prevent the non-specific binding of proteins. The membranes were then 

immunoblotted with the specific primary antibody (Table 1) for 1 hr on the shaker at RT and 

then overnight at 4°C. The primary antibody is specific to the target protein and hence will bind 

only to the target protein. Following the overnight incubation, the membranes were equilibrated 

to RT and washed five times with TTBS (10 min each, RT) to remove unbound primary 

antibody. The membranes were then incubated with the respective horse-radish peroxidase 

(HRP)-conjugated secondary antibody [1:10 000 dilution in 5% BSA (goat anti-rabbit, sc-2004) 

and 1:10 000 dilution in 5% NFDM (goat anti-mouse, sc-2005)] for 2 hrs at RT with gentle 

shaking. The secondary antibody is specific to the primary antibody and hence will bind only to 

the bound primary antibody. Following incubation, the membranes were washed five times with 

TTBS (10 min each, RT) to remove any unbound secondary antibody.  
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Table 1: Antibody Dilutions 

 

ANTIBODY DILUTION CATALOGUE NUMBER 

Anti-MDM2 1:1 000 in 5% NFDM M4308 (Sigma-Aldrich), 

mouse monoclonal 

Anti-p53 1:1 000 in 5% BSA Sc-6243 (Santa Cruz), rabbit 

polyclonal 

Anti-a-K382-p53 1:500 in 5% BSA #2525 (Cell Signalling 

Technology), rabbit 

polyclonal 

Anti-p-Ser15-p53 1:1 000 in 5% BSA #9284 (Cell Signalling 

Technology), rabbit 

polyclonal 

Anti-HDAC1 1:1 000 in 5% BSA Ab19845 (Abcam), rabbit 

polyclonal 

Anti-a-CBP (K1535)/p300 

(K1499) 

1:1 000 in 5% BSA #4771S (Cell Signalling 

Technology), rabbit 

polyclonal 

Anti-p-Ser47-Sirt1 1:500 in 5% BSA #2314L (Cell Signalling 

Technology), rabbit 

polyclonal 
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2.6.7. Imaging 

 

The Clarity™ Western ECL Substrate Kit (catalogue no. #170-5060, Bio-Rad) consisting of a 

hydrogen peroxide substrate and an enhanced luminol solution was used for the antigen-

antibody complex and the signal was detected using the ChemiDoc™ XRS+ Molecular Imaging 

System (Bio-Rad). The HRP conjugated to the secondary antibody reacts with the hydrogen 

peroxide (H2O2) substrate to yield oxygen radicals. The oxygen radical reacts with luminol 

causing the luminol to break down into aminophtalic acid which in turn reacts with enhancer 

molecules causing it to luminesce enabling the visualization of protein bands (Figure 2.9). 

 

Figure 2.9: Principle of antigen-antibody binding and detection of proteins using the Clarity™ 

Western ECL Substrate Kit (Prepared by author) 
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2.6.8.  Quenching and Normalisation 

 

After detection, the membranes were quenched using 5ml H2O2 (30 min, 37°C), washed once 

with TTBS (10 min, RT), blocked in 5% BSA in TTBS (1 hr, RT) and probed with the 

housekeeping protein, anti-β-actin (catalogue no. A3854, Sigma-Aldrich, 1:5 000 dilution in 5% 

BSA, 30 min, RT) in order to normalise protein expression and correct for loading error.  

Protein expression was analysed using the Image Lab Software version 5.0 (Bio-Rad) and the 

results were expressed as relative band density (RBD) and fold-change. Protein expression was 

normalised by dividing the RBD of the protein of interest by the RBD of β-actin. The 

normalised protein expression of the treatment was then divided by the normalised protein 

expression of the control to determine a fold-change relative to the control.  

2.7. Statistical Analyses  

 

Microsoft Excel 2010 and GraphPad Prism version 5.0 (GraphPad Software Inc., California) 

was used to perform all statistical analyses. The unpaired t-test with Welch’s Correction was 

used for all assays. All results were represented as the mean ± standard deviation unless 

otherwise stated. A value of p<0.05 was considered statistically significant. 
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CHAPTER 3 

RESULTS 

3.1. Comet Assay 

 

The comet assay was used to assess DNA integrity in the FA treated and untreated control 

HepG2 cells at 24 hrs (Figure 3.1 A). The length of the comet tails were measured (µm) and are 

an indication of the amount of damaged DNA present within the cell (Figure 3.1 B). 

 

Figure 3.1: Comet tails of the FA treated and control HepG2 cells (20x magnification) (A) 

Fusaric acid increased comet tail lengths in HepG2 cells at 24 hrs (***p<0.0001) (B). 
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Fusaric acid induced DNA damage in HepG2 cells at 24 hrs. This is shown by the significant 

increase in comet tail lengths in the FA treatment [89.98 ± 10.36µm vs. 33.99 ± 6.76µm, 

p<0.0001] compared to the control (Figure 3.1). 

3.2. Western Blot  

 

Western blot was used to determine the effect of FA on the post-translational modifications, 

phosphorylation and acetylation, of p53. The protein expression of p53, phosphorylated-Serine 

15-p53 (p-Ser15-p53), acetylated-Lysine 382-p53 (a-K382-p53), acetylated-CBP (Lysine 

1535)/p300 (Lysine 1499) (a-CBP (K1535)/p300 (K1499)), HDAC1, phosphorylated-Serine 47-

Sirt1 (p-Ser47-Sirt1) and MDM2 in the FA treated and control HepG2 cells at 24 hrs was 

assessed. The expression of the target proteins was normalised against the housekeeping 

protein, β-actin. Results are expressed as fold-change relative to the control (control = 1-fold).    

3.2.1. p53  

 

The tumour suppressor protein, p53 is activated in response to DNA damage. Fusaric acid 

significantly decreased the protein expression of p53 in HepG2 cells (0.73 ± 0.03-fold vs. 1.02 ± 

0.01-fold, p=0.0034) compared to the control (Figure 3.2).  
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Figure 3.2: Western blot images (A) and relative fold-change (B) of p53 expression in the FA 

treated and control HepG2 cells at 24 hrs (**p<0.005). 

3.2.2. Phosphorylated-Ser15-p53 and acetylated-K382-p53 

 

The phosphorylation and acetylation of p53 are the most common post-translational 

modifications that occur during DNA damage. Fusaric acid significantly increased the 

phosphorylation of p53 on the Ser-15 residue in HepG2 cells (9.76 ± 0.20-fold vs. 1.02 ± 0.01-

fold, p=0.0002) compared to the control (Figure 3.3). Acetylated p53 on the K382 residue was 

significantly increased in the FA treatment compared to the control (1.75 ± 0.23-fold vs. 1.02 ± 

0.01-fold, p=0.0329; Figure 3.4). These results indicate that FA not only alters the protein 

expression of p53, but also the phosphorylation and acetylation status of p53 in HepG2 cells. 
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Figure 3.3: Western blot images (A) and relative fold-change (B) of p-Ser15-p53 expression in 

the FA treated and control HepG2 cells at 24 hrs (***p<0.0005). 

 

 

Figure 3.4: Western blot images (A) and relative fold-change (B) of a-K382-p53 expression in 

the FA treated and control HepG2 cells at 24 hrs (*p<0.05). 
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3.2.3. Acetylated-CBP (K1535)/p300 (K1499) 

 

CREB-binding protein and p300 regulate the acetylation of p53 on the K382 residue. Fusaric 

acid significantly decreased the expression of a-CBP (K1535)/p300 (K1499) in HepG2 cells 

compared to the control (0.58 ± 0.05-fold vs. 1.02 ± 0.01-fold, p=0.0043; Figure 3.5). 

 

Figure 3.5: Western blot images (A) and relative fold-change (B) of a-CBP (K1535)/p300 

(K1499) expression in the FA treated and control HepG2 cells at 24 hrs (**p<0.005). 

3.2.4. HDAC1 and p-Ser47-Sirt1 

 

The deacetylases, HDAC1 and Sirt1, are known to deacetylate p53 on K382.  The expression of 

HDAC1 was significantly reduced in the FA treated HepG2 cells compared to the control (0.84 

± 0.02-fold vs. 1.02 ± 0.01-fold, p=0.0006; Figure 3.6). However, the protein expression of p-

Ser47-Sirt1 was higher in the FA treatment compared to the control (1.24 ± 0.04-fold vs. 1.02 ± 

0.01-fold, p=0.0127; Figure 3.7). 
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Figure 3.6: Western blot images (A) and relative fold-change (B) of HDAC1 expression in the 

FA treated and control HepG2 cells at 24 hrs (**p<0.005). 

 

 

Figure 3.7: Western Blot images (A) and relative fold-change (B) of p-Ser47-Sirt1 expression 

in HepG2 cells at 24 hrs (*p<0.05). 
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3.2.5. Murine Double Minute 2 (MDM2) 

 

The E3 ubiquitin ligase, MDM2, negatively regulates p53 expression by adding ubiquitin 

molecules to the C-terminal lysine residues of p53 targeting it for degradation by the 26S 

proteasome. The ubiquitination of p53, mediated by MDM2, is an important post-translational 

modification that occurs in the absence of cellular stress. The expression of MDM2 was 

significantly elevated in the FA treated HepG2 cells compared to the control (5.63 ± 0.78-fold 

vs. 1.02 ± 0.01-fold, p=0.0094; Figure 3.8). 

 

Figure 3.8: Western blot images (A) and relative fold-change (B) of MDM2 expression in FA 

treated and control HepG2 cells at 24 hrs (*p<0.05). 
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3.3.  Hoechst 33342 Assay 

 

The Hoechst 33342 stain is a cell permeable fluorescent stain that binds specifically to the A-T 

rich regions of DNA enabling visualization of the different stages of cell division as well as 

gradations of nuclear damage. The Hoechst 33342 assay was used to determine the effect of FA 

on cell proliferation, cell cycle arrest and apoptosis in HepG2 cells at 24 hrs (Figure 3.9). 

Hoechst analysis of FA treated HepG2 cells at 24 hrs (Figure 3.9 B) displayed fewer cells with 

the absence of dividing cells and the presence of several apoptotic bodies compared to the 

control cells (Figure 3.9 A). Therefore, FA inhibited cell proliferation, caused cell cycle arrest 

and induced apoptosis in HepG2 cells. 

 

Figure 3.9: Hoechst 33342 staining of the control (A) and FA treated (B) HepG2 cells at 24 hrs 

(20x magnification). 
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CHAPTER 4 

DISCUSSION 

 

Fusaric acid is a common mycotoxin produced by the Fusarium species and a natural 

contaminant of several food commodities, especially maize (Bacon et al., 1996). These foods 

form an integral part of local diets and the consumption of FA contaminated foods may be 

harmful to humans and animals.  

Fusaric acid is toxic to plants (D'Alton and Etherton, 1984, Diniz and Oliveira, 2009, Pavlovkin 

et al., 2004, Pirayesh et al., 2015, Rani et al., 2009) and animals (Bacon et al., 1995, Bungo et 

al., 1999, Dowd, 1988, Fairchild et al., 2005, Hidaka et al., 1969, Pirayesh et al., 2015, Rani et 

al., 2009, Terasawa and Kameyama, 1971, Voss et al., 1999). However, the mechanism by 

which this mycotoxin exerts its toxicity is currently unknown. Numerous studies have shown 

FA to exert its toxicity by elevating oxidative stress (Abdul et al., 2016, D'Alton and Etherton, 

1984, Diniz and Oliveira, 2009, Sapko et al., 2011). However, others show that FA is a potent 

chelator of divalent cations and thus may exert its toxicity by removing essential metal ions 

(Fernandez-Pol et al., 1993, Rani et al., 2009, Stack et al., 2004). 

This study aimed to determine a possible mechanism of FA induced toxicity in HepG2 cells at 

24 hrs. The ability of FA to cause DNA damage, post-translationally modify the tumour 

suppressor protein, p53, and induce cell death was determined.  

Due to its continuous replication, DNA is highly susceptible to damage by both endogenous and 

exogenous agents (Sancar et al., 2004). Damage to cellular DNA disrupts normal functioning of 

the cell and can lead to death of the cell or malignant transformation. The longer comet tail 

lengths observed in the FA treated cells compared to the control (Figure 3.1 A) indicate that FA 

increased DNA damage in HepG2 cells (Figure 3.1 B). The increase in DNA damage may be a 

result of an increase in oxidative stress as studies show that FA elevates oxidative stress (Abdul 

et al., 2016, Sapko et al., 2011). Oxidative stress refers to an increase in reactive oxygen species 

and a decrease in antioxidants (Södergren, 2000). Reactive oxygen species are highly reactive 

molecules that contain oxygen including superoxide radical (O2
.
), hydroxyl radical (HO

.
) and 

hydrogen peroxide (H2O2); that are capable of causing damage to cellular macromolecules 

(Södergren, 2000). Reactive oxygen species damage cellular DNA by oxidising DNA bases, 

causing breaks in the DNA molecule (single- and double-strand breaks) and by forming highly 

toxic and mutagenic DNA lesions (Salmon et al., 2004). 
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p53 is a major stress response protein that is activated in response to DNA damage (Brooks and 

Gu, 2003). Extensive DNA damage increases the steady-state level and activity of p53 leading 

to cell cycle arrest, inhibition of cell proliferation and apoptosis (Blattner, 2008). Fusaric acid 

significantly decreased the protein expression of p53 in HepG2 cells (Figures 3.2). p53 is a 

metalloprotein that requires a zinc atom in order to maintain structural stability. The zinc ion is 

coordinated by a histidine (His179) and three cysteine side chains (Cys176, Cys238 and 

Cys242) (Joerger and Fersht, 2007) and is essential for maintaining the wild-type conformation 

and stability of the p53 protein (Ostrakhovitch et al., 2006). The removal of the zinc ion by a 

metal chelating agent such as FA substantially destabilizes the p53 protein resulting in local 

structural perturbations and loss of sequence-specific DNA binding (Joerger and Fersht, 2007).  

p53 is subjected to a variety of post-translational modifications that enhance its stability and 

activity as a transcription factor (Brooks and Gu, 2003). During DNA damage, the kinases 

ATM, ATR and DNA-PK are activated to phosphorylate p53 on Ser-15 (Barlev et al., 2001, 

Blattner, 2008, Brooks and Gu, 2003, Dai and Gu, 2010, Reed and Quelle, 2014). Fusaric acid 

significantly increased the expression of p-Ser15-p53 in HepG2 cells (Figure 3.3). 

The phosphorylation of p53 on Ser-15 primes p53 for acetylation. This occurs by increasing the 

interaction between p53 and histone acetyltransferases and decreasing the interaction with 

MDM2 (Barlev et al., 2001, Kang et al., 2015, Lambert et al., 1998, Tang et al., 2008, Zhang et 

al., 2015). The histone acetyltransferases, CBP and p300 acetylate p53 on K382 (Barlev et al., 

2001, Dai and Gu, 2010, Das et al., 2014, Zhang et al., 2015). Fusaric acid significantly 

increased the expression of a-K382-p53 in HepG2 cells (Figure 3.4) despite the significant 

decrease in the expression of a-CBP (K1535)/p300 (K1499) (Figure 3.5). The acetylation of 

CBP on K1535 and p300 on K1499 is known to enhance the histone acetyltransferase activity of 

CBP and p300 (Das et al., 2014, Thompson et al., 2004).  These transcriptional co-activators 

function by directly binding to a variety of transcriptional regulators where they recruit 

additional CBP/p300 molecules to acetylate histones and non-histone proteins thereby, 

activating their transcriptional activity (Nyborg and Peersen, 2004). The structure of CBP/p300 

plays a major role in its HAT function (Das et al., 2014, Park et al., 2013). CBP/p300 contain 

several well conserved domains, three of which bind zinc and are required for the formation of a 

stable folded structure (Park et al., 2013, Nyborg and Peersen, 2004). The decrease in the 

expression of a-CBP/p300 observed in the FA treatment may be attributed to the removal of the 

zinc ions from the CBP/p300 protein leading to structural destabilization. Similar results were 

obtained by Nyborg et al. (2004) in which the zinc-chelating agent, EDTA, caused unfolding 

and disruption of the CBP/p300 protein structure. CBP/p300 are auto-acetylated in the presence 
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of acetyl-CoA (Black et al., 2008) and a decrease in CBP/p300 will ultimately lead to a decrease 

in a-CBP (K1535)/p300 (K1499).  

The decrease in a-CBP (K1535)/p300 (K1499) did not affect the acetylation of p53 as the 

phosphorylation of p53 on Ser-15 enables a-CBP/p300 to bind to p53 with a high affinity 

leading to C-terminal acetylation and enhanced transcriptional activity of p53 (Blattner, 2008).  

The acetylation of p53 promotes p53 mediated gene activation which ultimately determines the 

cells response to stress in the form of senescence, cell growth arrest and apoptosis (Barlev et al., 

2001, Blattner, 2008). Hoechst analysis of HepG2 cells showed that FA inhibited cell growth 

and possibly induced apoptosis, as shown by the absence of dividing cells and the presence of 

apoptotic bodies (Figure 3.9). This is in accordance with the study by Abdul et al. (2016) in 

which FA induced apoptosis in HepG2 cells by elevating the activity of the executioner 

caspases-3/7. Another study conducted by Ogata et al. (2001) showed that FA also effectively 

induced apoptosis in HL-60 (human promyelocytic leukaemia cells) cells.  

The deacetylases, Sirt1 and HDAC1 deacetylate and inactivate p53 (Brooks and Gu, 2003). 

HDAC1 is known to deacetylate p53 on several lysine residues (K320, K373 and K382). 

Fusaric acid significantly decreased the protein expression of HDAC1 and increased the 

expression of p-Ser47-Sirt1 in HepG2 cells (Figure 3.6 and 3.7 respectively). Sirt1 is an NAD+-

dependent deacetylase that is responsible for deacetylating p53 specifically on K382 (Wang et 

al., 2008). Sirt1 catalyses the deacetylation of lysine residues in a unique reaction that utilises 

NAD+ and generates nicotinamide and O-acetyl ADP-ribose (Avalos et al., 2005). 

Nicotinamide is a non-competitive inhibitor of Sirt1 activity (Avalos et al., 2005) and the 

inhibition of Sirt1 activity has been reported to suppress cell growth as well as induce cell cycle 

arrest and apoptosis in vitro (Wang et al., 2013). The function of Sirt1 is regulated by 

phosphorylation. Several protein kinases have been shown to phosphorylate Sirt1; however, 

whether or not Sirt1 is activated by phosphorylation is largely dependent on the protein kinase 

that phosphorylates it (Sasaki et al., 2008). For example, the phosphorylation of Sirt1 on Ser-47 

by JNK1 (c-Jun kinase) promotes its nuclear localization and enzymatic activity (Conrad et al., 

2016, Nasrin et al., 2009) whereas the phosphorylation of Sirt1 on Ser-47 by mTOR 

(mammalian target of rapamycin) was found to inhibit Sirt1 deacetylase activity (Back et al., 

2011).  

Sirt1 also contains a multifunctional domain known as the C-pocket that is capable of directly 

binding NAD+ and is involved in mediating NAD+ cleavage, base-exchange activity and 

nicotinamide regulation (Avalos et al., 2005). Pyridine derivatives are able to undergo exchange 
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reactions with the nicotinamide moiety of NAD+ thereby, forming NAD+ analogues (Bochner 

et al., 1980, Fernandez-Pol et al., 1977). Fusaric acid is a pyridine derivative and nicotinic acid 

related compound that may bind to the C-pocket of Sirt1 and inhibit its activity by preventing 

NAD+ from binding to the C-pocket and catalysing the deacetylation reaction. Fusaric acid may 

also mimic the structure of nicotinamide, bind to the C-pocket of Sirt1 and inhibit Sirt1 activity. 

Therefore, although FA elevated the expression of p-Ser47-Sirt1, it may not necessarily be 

active as an increase in a-K382-p53 was also observed. 

MDM2 plays the most central role in the regulation of p53. MDM2 binds and ubiquitinates p53 

targeting it for degradation by the 26S proteasome (Brooks and Gu, 2003). This enables p53 to 

be maintained at low levels in the absence of cellular stress. However, excessive p53 activation 

can increase the expression of MDM2 in a negative feedback loop to decrease p53 expression 

and activation (Brooks and Gu, 2003). Fusaric acid significantly increased the expression of 

MDM2 in HepG2 cells (Figure 3.8). The acetylation of p53 on K382 indicates an increase in p53 

stability and activity (Barlev et al., 2001, Brooks and Gu, 2003, Shieh et al., 1997, Sakaguchi et 

al., 1998). Therefore, the increase in MDM2 expression may occur in response to the increase in 

a-K382-p53 (increase in p53 activity) observed in the FA treated HepG2 cells. The decrease in 

p53 protein levels may not be attributed to the increase in MDM2 expression as the 

phosphorylation of p53 on Ser-15 prevents the interaction between p53 and MDM2 thereby, 

inhibiting its ubiquitination and degradation in the presence of DNA damage (Brooks and Gu, 

2003, Shieh et al., 1997).  

In response to DNA damage, ATM and DNA-PK are capable of phosphorylating both p53 and 

MDM2 (Shi and Gu, 2012). DNA-PK and ATM phosphorylate MDM2 on Ser-17 and Ser-395 

respectively. The phosphorylation of MDM2 on Ser-17 prevents MDM2 from binding and 

ubiquitinating p53 (Mayo et al., 1997) whereas the phosphorylation of MDM2 on Ser-395 

inhibits the export of p53 from the nucleus to the cytoplasm (Maya et al., 2001). This prevents 

p53 degradation and may provide a possible explanation for how p53 trans-activates the MDM2 

gene but is not initially inhibited by the resulting increase in MDM2 protein (Mayo et al., 1997, 

Maya et al., 2001). 

A summary of the effect of FA on DNA integrity and the post-translational modifications of p53 

in HepG2 cells is represented in Figure 4.1.  
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Figure 4.1: Mechanism of FA induced toxicity in the HepG2 cell line. FA induces DNA 

damage in HepG2 cells. The protein kinases ATM, ATR and DNA-PK are activated in response 

to DNA damage. These protein kinases phosphorylate p53 on Ser-15. The phosphorylation of 

p53 alleviates the interaction between p53 and MDM2 and increases the interaction between 

p53 and a-CBP/p300. This leads to the acetylation of p53. The acetylation of p53 stabilises and 

activates p53 leading to cell growth arrest and apoptosis (Prepared by author). 
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CHAPTER 5 

CONCLUSION 

 

The contamination of foods and feeds with mycotoxins is a serious problem that results in major 

economic losses and a huge impact on human and animal health (Milićević et al., 2010, Bennett 

and Klich, 2003, Zain, 2011, Yiannikouris and Jouany, 2002). The application of modern 

agricultural practices and the presence of legislatively regulated food processing help curb the 

extent of mycotoxin contamination; however, it does not totally eradicate it. Of major concern is 

the often neglected Fusarium produced mycotoxin, FA. It is well established that FA is a 

common contaminant of several food commodities and several studies have shown FA to be 

toxic (Abdul et al., 2016, Bacon et al., 1995, Bungo et al., 1999, Dowd, 1988, Fairchild et al., 

2005, Ogunbo et al., 2007, Pavlovkin et al., 2004, Smith and MacDonald, 1991, Smith et al., 

1997, Terasawa and Kameyama, 1971, Voss et al., 1999). However, limited scientific data is 

available on the mechanism by which FA exerts its toxic effects.  

Studies evaluating the mechanism of FA induced toxicity are important in understanding the 

risks of FA contamination to human and animal health. This is particularly relevant in 

developing countries and poverty stricken areas where exposure to mycotoxins is high due to 

the continuous consumption of contaminated agricultural commodities. 

This study, for the first time, provides a possible mechanism of FA induced toxicity in the 

human liver using the HepG2 cell line. The activation of p53 occurs in response to various 

cellular stressors such as DNA damage and may provide the most likely mechanism of FA 

induced toxicity. The results indicate that FA is genotoxic and post-translationally modified 

(increased the phosphorylation and acetylation) p53 leading to cell growth arrest and apoptosis 

of HepG2 cells. These findings correspond with the hypothesis which stated that FA induced 

DNA damage and post-translationally modified p53 in HepG2 cells. Interestingly, the results 

also indicate a control for p53 acetylation and highlight the importance of the regulation 

between p53 and MDM2 for cell development, proper protection from DNA damage, cell cycle 

control and growth. Furthermore, the results indicate that Ser-15 phosphorylation is required for 

p53 function and this may suggest a possible universal role in promoting p53-transcriptional 

activity and determining cell fate. Nevertheless, future studies are required to validate the 

mechanism of FA induced toxicity using an in vivo model. It would also be interesting to 

determine possible synergistic effects of FA with other Fusarium produced mycotoxins. 
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APPENDIX A 

Methyl Thiazol Tetrazolium (MTT) Assay 

 

The MTT assay is a colorimetric assay used to measure cell viability by determining 

mitochondrial activity. Mitochondrial activity is a common indicator of cell viability and is 

significantly reduced in dead and dying cells. The principle of the MTT assay is based on the 

reaction in which live metabolically active cells reduce the yellow tetrazolium salt (MTT; 3-[4, 

5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) to a purple insoluble formazan 

product ((E, Z)-5-(4, 5-dimethylthiazol-2-yl)-1, 3-dimethylformazan) with the action of 

dehydrogenase enzymes. These enzymes utilise reducing equivalents such as NADH and 

FADH2 produced in the citric acid cycle to cleave the tetrazolium ring of MTT and produce the 

formazan product which can be solubilised and quantified using spectrophotometry (Mosmann, 

1983). The intensity of the formazan produced is proportional to the number of viable cells.  

Fusaric acid dose-dependently decreased the viability of HepG2 cells at 24 hrs (Figure 5). This 

indicates that FA is cytotoxic to HepG2 cells. The concentration of FA causing death of 50% of 

HepG2 cells (IC50) was determined to be 104µg/ml. This concentration was used as the 

treatment concentration for all subsequent assays. 

 

Figure 5: IC50 graph displaying the dose-dependent decline in HepG2 cell viability (%) at 24 hrs 

(IC50 = 104µg/ml) 
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APPENDIX B 

Bicinchoninic Acid (BCA) Assay 

 

 

Figure 6: Standard curve displaying known concentrations of bovine serum albumin (BSA) 

used to determine the concentration of protein present in each sample 

 

Table 2: Standardisation of proteins (Final volume = 400µl; Concentration = 1.5mg/ml) 

 

Sample Mean 

Absorbance 

Protein 

Concentration 

(mg/ml) 

Volume of 

Protein 

Stock (µl) 

Volume of 

Cytobuster 

(µl) 

Volume of 

Laemmli 

Buffer (µl) 

Control 

 

3.596 2.926 205 195 100 

FA 

Treatment 

2.523 2.015 298 102 100 
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APPENDIX C 

Western Blot 

Expression of p-ser15-p53 and a-K382-p53 relative to the total p53 expressed 

 

The expression of p-Ser15-p53 and a-K382-p53 were divided by the expression of total p53 in 

order to determine the ratio of p53 acetylated and phosphorylated relative to the total p53 

expressed within the cell. 

p-Ser15-p53/p53 

 

The ratio of p-Ser15-p53 to total p53 was significantly higher in the FA treated HepG2 cells 

compared to the control [13.42±0.32-fold vs. 1.02±0.01-fold, p=0.0002; Figure 7.1]. 

 

Figure 7.1: Fold-change of the expression of p-Ser15-p53 relative to total p53 (***p<0.0005). 
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 a-K382-p53/p53 

 

The ratio of a-K382-p53 to total p53 was significantly higher in the FA treated HepG2 cells 

compared to the control [2.41±0.33-fold vs. 1.02±0.01-fold, p=0.0181; Figure 7.2]. 

 

Figure 7.2: Fold-change of the expression of a-K382-p53 relative to total p53 (*p<0.05). 
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APPENDIX D 

Comet Assay 

 

Table 3: Raw data/tail lengths (µm) obtained from the comet assay  

 

Control  Fusaric Acid Treatment 

45.59 76.11 

44.86 76.88 

43.87 77.12 

43.88 77.34 

43.78 77.40 

42.57 77.66 

42.57 78.65 

41.28 78.69 

42.50 78.69 

41.28 78.76 

38.62 79.87 

39.99 79.98 

39.99 81.27 

40.78 81.27 

38.70 81.56 

38.70 81.69 

37.41 82.09 

34.54 82.56 

37.41 83.67 

35.12 83.85 

36.19 84.78 

34.43 85.14 

37.12 85.14 

35.83 87.72 

34.83 89.01 

33.54 90.30 

32.25 90.97 

34.34 91.59 

32.25 91.78 

33.56 92.88 

32.25 94.17 

30.96 95.46 

32.24 95.46 

29.67 96.74 
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29.67 96.75 

28.35 98.04 

28.45 98.05 

27.12 98.19 

28.09 98.24 

27.08 98.46 

25.80 99.33 

25.80 99.76 

25.74 100.62 

25.95 100.62 

27.80 101.43 

24.51 104.49 

24.59 104.89 

25.51 105.78 

20.58 108.36 

21.64 119.97 

 

 

 

 

 


