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ABSTRACT 

Forage quality nutrient assessments are costly, labour intensive, time consuming, dangerous 

and usually results in spatially invariable data. These assessments are most commonly useful 

to policy makers, rangeland managers and farmers to obtain information relating to the 

concentrations of forage quality nutrients in a grassland ecosystem. Remote sensing offers a 

cost and time-effective alternative for obtaining accurate information relating to the 

concentrations of forage quality nutrients over local to broad scales. Hence, the aim of this 

research was to detect three forage fibre nutrients in KwaZulu-Natal, South Africa, using 

remotely sensed in-field hyperspectral data and satellite multispectral image data, in 

conjunction with the Random forest algorithm (RF).  

The first part of this study examined the effectiveness of known absorption features for 

detecting forage fibre nutrients, neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

Lignin using hyperspectral data. Results indicate successful correlations between the known 

absorption features and forage quality nutrients NDF, ADF and Lignin with coefficients (R2) 

ranging between 0.57 and 0.81 using RF. In comparison, using the entire hyperspectral dataset, 

the study identified additional wavebands which contributes to the accurate detection of the 

forage quality nutrients in a grassland environment. Overall, RF was capable reducing 

problems of dimensionality and multicollinearity within the large contiguous wavebands of the 

hyperspectral dataset, providing an ideal framework to detect forage quality nutrients.   

The second part of this study used high resolution RapidEye-5 multispectral image data 

to detect and map forage quality nutrients. More specifically, this study utilized the advanced 

sensor configurations of the RapidEye-5 image data to detect forage quality nutrients (NDF, 

ADF and Lignin) in conjunction with ancillary data and the Random forest algorithm. Results 

showed that the RF algorithm successfully mapped NDF, ADF and Lignin coefficients (R2) 

ranging between 0.67 and 0.74. In comparison, the study utilized Stochastic Gradient Boosting 

(SGB) algorithm as an alternative modelling technique, which produced very similar results 

ranging between 0.65 and 0.72 (R2). Overall, multispectral remote sensing in conjunction with 

a algorithm and ancillary data can detect and map forage quality nutrients NDF, ADF and 

Lignin in a grassland environment.  

Overall, the results from this study indicate that (i) remote sensing can produce timely 

and accurate models for detecting and mapping forage quality nutrients, (ii) RF is an effective 

method for waveband reduction and the accurate discrimination of high dimensional 

hyperspectral datasets, (iii) the inclusion of ancillary data should always be considered. 
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Chapter One 

Introduction 

1.1 Background 

Accurate determination of forage quality nutrients within grasslands is important to scientific 

research as well as for effective rangeland management practices. Conventionally, the quality 

of forage is assessed and monitored using wet chemistry and Near infrared spectroscopy 

(NIRS). Here, many studies have used wet chemistry and NIRS to determine forage quality 

(Curran, 1989; Curran et al., 2001; Elvidge, 1990; Kokaly & Clark, 1999; Norris et al., 1976; 

Osborne & Fearn, 1986; Starks et al., 2004; Stuth et al., 2003). However, these assessments 

are labour intensive, costly, time consuming, dangerous and usually spatially invariable 

(Pullanagari et al., 2013a). Remote sensing is a time-effective and cost-effective alternative for 

assessing and monitoring forage quality over a large area thereby providing valuable 

information on both local and global scales. More specifically, remote sensing can provide this 

information to policy makers, rangeland managers and farmers at a national level. 

 To date, hyperspectral data has been used in many studies to determine the quality of 

forage. Typically, several studies have used hyperspectral data for forage quality assessments 

(Albayrak, 2008; Kawamura et al., 2008; Kawamura et al., 2010; Knox et al., 2011; Kokaly & 

Clark, 1999; Pullanagari et al., 2013b; Zhao et al., 2007). The use of high resolution spectral 

and spatial sensors contain a large number of contiguous wavebands that make it possible to 

determine discrete biochemical information with high precision (Schellberg et al., 2008). 

Research has shown that hyperspectral remote sensing systems are capable of determining 

forage quality (Knox et al., 2011; Pullanagari et al., 2012; Zhao et al., 2007). However, infield-

hyperspectral studies are still point-based and require a large amount of time for processing a 

large amount of data.  

 A few studies have used multispectral data for the determination of forage quality 

(neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin). Hence, researchers 

acknowledged that multispectral wavebands are too broad and generalized to determine forage 

quality, coupled with low spectral and spatial resolutions. Nonetheless, technological 

advancements have provided more specialized multispectral platforms capable of analyzing 

more detailed vegetation properties. The latest inventions have advanced spatial, spectral, 

radiometric and temporal resolutions capable of detecting more discernable information 
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(Mutanga et al., 2016). New generation multispectral platforms are configured with the new 

Red-edge waveband, capable of potentially improving classification accuracies. Previous 

research suggests that a combination of high resolution and strategically placed wavebands, 

make it possible to accurately detect forage quality (Eitel et al., 2007). Hence, the selection of 

most appropriate multispectral platform for the correct application is imperative to attaining 

accurate results.  

 New generation RapidEye-5 multispectral satellite is configured with a Red-edge 

waveband that has the potential to considerably improve classification accuracies within most 

vegetation applications (Adelabu et al., 2014). RapidEye-5 imagery promises to advance the 

mapping of vegetation over a large area, at high resolution, at faster time (5 days), and with a 

lower cost (RapidEye, 2011). Researchers often use statistical approaches to improve the 

detection and prediction accuracies of forage quality. Hence, there are various statistical 

packages available, some which are popular in forage quality applications such as: partial least 

squares, neural networks, and random forest (Mutanga et al., 2016). Furthermore, including 

ancillary data can improve the prediction accuracy of forage quality nutrients. For example, 

Knox et al., 2011 found phenology, soil type, species, and geology as the best input ancillary 

data variables that are related to variations in nutrient levels in the dry season, hence these 

variables were included in the overall prediction model (Knox et al., 2011). 

 The first paper in this thesis assess the utility of hyperspectral remote sensing in 

determining key forage fibre grassland nutrients in Fort Nottingham Nature Reserve, KwaZulu-

Natal, South Africa. This paper focuses on the effectiveness of using known absorption features 

to detect forage fibre nutrients (neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

Lignin) using hyperspectral data and the random forest algorithm. Hyperspectral data can 

provide detailed information for the detection of forage fibre nutrients, however the technology 

is costly to small scale farmers, and time consuming. Problems of multicollinearity and 

dimensionality associated with hyperspectral data exist, providing a difficult task during 

analysis. Therefore, the second paper focuses on the effectiveness of RapidEye-5 multispectral 

imagery to detect and map forage fibre nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data. The RapidEye-5 multispectral sensor is a 5-waveband system 

including the red-edge waveband that promises to be an effective tool for mapping vegetation 

properties. Finally, the results from the hyperspectral analysis are compared with the results 

obtained from the RapidEye-5 image data. It was interesting to investigate the performance of 

both hyperspectral and multispectral remote sensing technologies in detecting and predicting 

forage fibre nutrients. 
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1.2 Aims and objectives 

The aim of this research was to assess the utility of hyperspectral and multispectral remote 

sensing in predicting key forage quality nutrients. The main objectives were as follows: 

 To assess the capability of hyperspectral remote sensing in detecting three forage fibre 

quality nutrients (NDF, ADF and Lignin) using Random Forest. 

  To evaluate the effectiveness of using known absorption features for selection of the 

most optimal subsets of hyperspectral wavebands.  

 To investigate the capability of high resolution RapidEye-5 multispectral imagery to 

detect and predict forage quality nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data.  

 To test the capability of the Stochastic Gradient Boosting algorithms in identifying the 

most important wavebands for detecting forage quality nutrients NDF, ADF and 

Lignin.  

 To compare the respective capabilities of in-field hyperspectral and multispectral 

remotely sensed data to detect and predict key forage quality nutrients.   

1.3 Outline of thesis 

This thesis consists of four chapters. The main structure of this thesis is within two core 

chapters (Chapter Two and Three), which form publishable papers and will be submitted to 

peer-reviewed journals. Since both these chapters have detailed sections covering the study 

area, literature review and methodology, these sections are not covered with in the introductory 

section of the thesis to avoid repetition. 

 Chapter Two assesses the capability of hyperspectral remote sensing to detect forage 

fibre nutrients NDF, ADF and Lignin using Random forest. This chapter primarily focuses on 

using known absorption features to detect these forage fibre nutrients and for the selection of 

the most optimal hyperspectral wavebands. The Random forest algorithm was used to analyze 

the large amount of hyperspectral contiguous wavebands (n = 1910), for variable selection and 

to produce the final prediction model.  

Chapter Three evaluates the effectiveness of RapidEye-5 multispectral image data (n 

= 5) to detect and predict forage quality nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data. The Stochastic gradient boosting algorithm was tested to identify 
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the most important wavebands used for the detection of NDF, ADF and Lignin. The ancillary 

data (Leaf Area Index, Chlorophyll, species type, species Count) was used in the main dataset.  

Chapter Four provides an overview of the study. Both aims and objectives are 

discussed in depth, and the most important findings are highlighted. A discussion of the most 

appropriate remote sensing approach for detecting and predicting forage quality nutrients is 

presented in this chapter. Lastly, the chapter examines the limitations and presents the 

recommendations for future research within this studies context.  
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Chapter Two 

Remote sensing of key grassland nutrients using hyperspectral techniques 

in KwaZulu-Natal, South Africa 

2.1 Abstract 

The concentration of forage fibre content is critical in explaining the palatability of forage 

quality for livestock grazers in tropical grasslands. Low grass quality negatively impacts on the 

health of livestock, creating a chain of undesirable impacts on animal performance; 

biodiversity; food security and state economies. Traditional methods of determining forage 

fibre content are usually time consuming, costly and require specialized laboratory analysis. 

With the potential of remote sensing technologies and their application across broad spatial 

extents, determination of key fibre attributes can be made more accurately. This study aims to 

determine the effectiveness of known absorption wavelengths for detecting forage fibre 

biochemicals, neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin using 

hyperspectral data. Hyperspectral reflectance spectral measurements (350-2500 nm) of grass 

were collected and implemented within the random forest (RF) ensemble. Results show 

successful correlations between the known absorption features and the biochemicals with 

coefficients (R2) ranging from 0.57 to 0.81. In comparison, using the entire dataset, the study 

identified additional wavelengths which contributes to the accurate determination of forage 

quality in a grassland environment. Overall, the results showed that hyperspectral remote 

sensing in conjunction with the RF ensemble could discriminate each key biochemical 

evaluated. The study was successful in determining the effectiveness of using known 

absorption features for detecting fibre biochemicals NDF, ADF and Lignin using hyperspectral 

data. This study shows the potential to upscale the methodology to a space-borne multispectral 

platform with similar spectral configurations for an accurate and cost effective mapping 

analysis of forage quality. 

 

Keywords: fibre biochemical, tropical grassland, NDF, ADF, Lignin 
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2.2 Introduction 

Globally, grasslands comprise 26% of the total land cover; of which 80% is used for 

agricultural purposes and 68% are found in developing countries (Boval & Dixon, 2012). In 

South Africa, more than 70% of land surface comprises grassland vegetation which is mainly 

used for pastoral production (Mansour et al., 2013). Here, grasslands provide the primary feed 

base for grazing livestock which in turn provides the majority of low-income people with food, 

goods and services that are essential for sustaining their livelihoods (Boval & Dixon, 2012). 

Forage quality in grasslands is therefore a vital component in the management of grazing lands 

and livestock (Georgiadis & McNaughton, 1990). However, inadequate veld management 

practices, result in grazing pastures being overgrazed and overstocked especially during the 

dry season (Muchenje et al., 2008). It is evident in literature that pasture management is a major 

concern, particularly in tropical pasture systems where improper management can lead to 

unpalatable grasses. Unpalatable grasses have a ripple effect on the intake potential of 

livestock, later affecting livestock production levels and eventually food security in a country.  

Traditionally, the productivity of rangelands has been assessed and monitored using 

field based point assessments which are spatially invariable, expensive, harmful and often time 

consuming (Dabasso et al., 2012; Jančík et al., 2011; Stuth et al., 2003; Zhao et al., 2007). 

These methods usually involve extensive laboratory chemical analysis for determining forage 

quality (Zhao et al., 2007); and require personnel with specialized skills (Mutanga et al., 2004a; 

Zhao et al., 2007). Laboratory personnel are exposed to harmful chemicals and also, the 

hazardous waste produced from laboratory processes must be appropriately disposed of in 

order to reduce risk of environmental pollution (Zhao et al., 2007). Furthermore, supervised 

laboratory experiments require a large amount of time for analysis that hinder immediate 

solutions and are not  practical and logical for broad grassland ecosystems as is in many cases 

of grazing lands in South Africa (Mutanga et al., 2004a; Stuth et al., 2003). Nonetheless, this 

information becomes relevant when rangeland managers make informed decisions on the use 

of expensive dietary supplements to minimize grazing; nutrient deficiencies and when 

maintaining production levels (Mbatha & Ward, 2010). However, using conventional 

approaches over broad tropical grazing grasslands is challenging. To date, remote sensing is an 

efficient technology available for mapping land cover dynamics across broad geographic 

extents (Kuemmerle et al., 2013) and may serve as a viable alternative. 
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Remote sensing offers possibilities to provide accurate information related to forage 

quality in grazing lands, thereby reducing the tedious procedure of rigorous sampling and 

laboratory analysis (Mutanga et al., 2004b). The 1970s inventory of near infrared reflectance 

spectroscopy (NIRS) was used to assess forage quality and provided fairly accurate predictions 

of ADF, NDF and Lignin concentrations contained in dried ground forage (Kawamura et al., 

2008; Mutanga et al., 2004b; Starks et al., 2004; Stuth et al., 2003; Zhao et al., 2007). NIRS 

analysis provided a fairly cost effective and quick estimation of forage nutrient composition 

(Stuth et al., 2003; Zhao et al., 2007). In effect, many laboratories have replaced wet chemistry 

as the standard analytical procedure for assessing and estimating plant biochemicals (Mutanga 

et al., 2004b). A study by Starks et al., (2004) successfully used in-field hyperspectral 

spectrometry for the prediction of nitrogen, NDF and ADF and compared the estimates 

obtained using NIRS and laboratory chemical methods. The study showed that forage 

composition estimates from the radiometer were equivalent to those from the NIRS. However, 

there are many challenges with the use of NIRS analysis. For example, when applying NIRS 

across different vegetation types, in conjunction with a multiple linear regression to predict 

canopy chemistry, it has yielded inconsistent results (Mutanga et al., 2004b; Starks et al., 2004; 

Stuth et al., 2003). According to Mutanga et al., (2004b) problems of overfitting and spectral 

variability exist that are independent of the biochemical concentrations of forage. In addition, 

NIRS requires time for collecting, drying, and grinding vegetation samples. However, the 

advent of in-field hyperspectral remote sensing proved significant in successfully detecting and 

predicting forage quality biochemicals.  

For example, Mutanga et al., (2004b) applied ‘continuum removal on absorption 

features’ to predict macronutrients (N; P; K; Ca and Mg) in tropical rangelands using in-field 

hyperspectral remote sensing. As a result, these absorption features accounted for 69% of the 

wavelengths selected using a stepwise regression and is an important step towards the remote 

sensing and mapping of rangelands (Mutanga et al., 2004b). Similarly, Kawamura et al., (2010) 

successfully predicted pasture biomass and forage fibre quality variables NDF, ADF, Lignin 

in Hokkaido, Japan. Genetic algorithm - partial least squares (GA-PLS) successfully estimated 

pasture mass and quality parameters in a mixed grass pasture. Results of 77%, 76% and 62% 

were obtained for NDF, ADF and Lignin, respectively (Kawamura et al., 2010). Zhao et al., 

(2007) successfully demonstrated the potential of hyperspectral remote sensing to estimate 

forage fibre quality variables; NDF, ADF and crude protein (CP) using canopy reflectance data 

of grass pastures in the wet season. The study produced accuracies of 52% and 20% for NDF 

and ADF, respectively through utilizing the MAXR regression algorithm, and found that forage 
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quality variables can be rapidly and non-destructively predicted using canopy reflectance data 

(Zhao et al., 2007). Furthermore, a study by Pullanagari et al., (2012) successfully mapped 

forage quality variables using the PLS regression algorithm and yielded 75%, 82%, 71% 

accuracies for NDF, ADF and Lignin, respectively. The study stated that the information 

produced from using in-field hyperspectral remote sensing of forage quality could help pastoral 

farmers improve productivity and business resilience by enabling them to make more accurate 

and time effective decisions (Pullanagari et al., 2012). In addition, Knox et al., (2011) 

successfully mapped forage quality variables (N; P and ADF) in the dry season on savanna 

grasslands using hyperspectral Carnegie Airborne Observatory sensor (CAO) in Kruger 

National Park, South Africa. The neural networks algorithm was used to generate forage quality 

maps and produced an R2 of 62% for ADF. The frequency of fire  appeared to impact nutrient 

levels when mapped on a g g−1 basis (Knox et al., 2011). It is evident in literature that most 

studies use all wavebands as input in the model to predict biochemical “fishing expedition” 

and therefore results in selection of wavebands that are independent of the biochemical of 

concern. There are also problems of dimensionality and overfittings using many wavebands. A 

few studies focus on using known absorption features to detect forage quality nutrients. 

In summary, research suggests the need for improved methods to evaluate the current 

status and the potential of grassland systems, to guide management decisions and yield better 

quality grasslands for livestock production (Ash et al., 2011; Boval & Dixon, 2012; Fynn et 

al., 2015; Kuemmerle et al., 2013; Swanepoel et al., 2015). Moreover, a small amount of 

rangeland managers utilizes remote sensing as a tool to inform their decision making. Whilst 

many studies focused on remote sensing of chlorophyll and nitrogen to predict pasture quality 

(Clevers & Gitelson, 2013; Clevers & Kooistra, 2012; Pellissier et al., 2015; Ramoelo et al., 

2012a; Ullah et al., 2012), not many focused on determining fibre content as the key limiting 

intake potential variable to ruminants. Within this context, this research aims to detect NDF, 

ADF and Lignin as some of the key limiting variables of forage quality and to determine their 

most important wavelengths using known absorption features on tropical mixed grass 

vegetation.  
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2.3 Materials and Methods 

2.3.1 The study site 

The study site is located in Fort Nottingham Nature Reserve, KwaZulu-Natal, South Africa 

(latitude 29° 24' 9.62" S and longitude 29° 53' 48.95" E) (Figure 1). The reserve occupies an 

area of 1227 ha and is characterized by an extensive area of the Eastern Mist belt Forest and 

Drakensberg Foothill Moist Grassland of the KwaZulu-Natal midlands. Festuca costata (blue 

fescue), Tristachya leucothrix (hairy trident grass) and Themeda triandra (red oat grass) are 

the dominant grass species occurring in the study area (Mucina & Rutherford, 2006). Festuca 

costata and Tristachya leucothrix are native to Southern Africa while Themeda triandra are 

native to Kenya. The study site consists of eleven cattle grazing camps with an annual spring 

and summer rainfall of approximately 950 mm per annum. The site topography is characterized 

by a diversity of habitat split between a moderately undulating Drakensberg Foothill Moist 

Grassland plateau (at approximately 1750m amsl) leading to densely forested south and east 

facing slopes that merge into lower lying remnant Drakensberg Foothill Moist Grassland flats. 

The most dominant soils found at the study area are: Clovelly; Hutton; Griffin and Oatsdale 

(Mucina & Rutherford, 2006). The study site is prone to wild fires during the late dry season 

that have a detrimental effect on the ecology of the grasslands and contributes to an altered 

vegetation species composition and abundance. Approximately 778.2 ha of the land is mainly 

used for cattle grazing that is currently leased from uMngeni Municipality. The study site was 

preferred due to heterogeneity of grass species and the importance of grazing in the local 

community’s livelihood.
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Figure 1. Location of the study site in Fort Nottingham Nature Reserve, KwaZulu-Natal, South Africa
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2.3.2 Field sampling 

A stratified random sampling method was used to select field sampling points using Hawths 

tool in ArcGIS 10.2. A total of 140 sample points were established across the eleven existing 

leased grazing camps. All sample points were uploaded into a Trimble GeoExplorer 6000 series 

GeoXH GPS with a centimeter-level accuracy of less than 10 cm and was used to locate each 

point. A 1 x 1m quadrant was overlaid at the center of each of the 140 points to declare 

subjectivity over the three existing grass species. Within each quadrant, two measurements 

were taken: a series of non-destructive spectral measurement using a spectrometer device and 

a destructive sample of the grass species present. The destructive sample was taken 

immediately after the spectral measurements were taken. Grass samples were clipped at 1 cm 

above ground, pooled and bagged (brown bag) for drying and later chemical analysis (Knox et 

al., 2011). 

2.3.3 Chemical analysis 

Samples collected (n = 140) were transported to the Department of Animal Science laboratory 

at the University of KwaZulu-Natal for chemical analysis. All samples were oven dried at 65 

degrees Celsius for 72 hours and then later, grinded to 1 millimeter using a sieve. Milled 

samples were analyzed for chemical composition on a dry matter (DM) basis. A series of three 

tests were performed on each sample and included NDF, ADF and Lignin. These key nutrients 

were then analyzed sequentially according to Van Soest et al., (1991) (Van Soest et al., 1991) 

using an ANKOM 220/200 Fibre Analyzer (Ankom Technology, New York, USA). NDF was 

determined with α-amylase. 

2.3.4 In-situ field spectral measurements 

Spectral reflectance measurements were carried out between the dates of 28th of April to the 

04th of May 2015, using a hand-held field analytical spectral device (ASD) FieldSpec® 3 

spectrometer (350 nm to 2500 nm). ASD reflectance measurements were made on clear days 

between 10:00 and 14:00 hours (CAT) for all 140 randomly selected sample points (Zhao et 

al., 2007). To decrease atmospheric noise, the ASD was positioned to point on the 

representative grass species, one meter above ground at nadir position for each spectral 

measurement, yielding a ground field of view (FOV) of about 18 centimeters. The narrow FOV 

allows focus on a pure target (i.e. an undisturbed patch of grass) whereas  the short distance 
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from the sensor minimizes atmospheric obscurities as well as signal-to-noise problems 

(Mutanga et al., 2015). To derive the representative reflectance spectra for each sample point, 

6 – 10 spectral measurements were made by moving over the 1 x 1m canopy (Adjorlolo et al., 

2012a; Mutanga et al., 2015). Subsequently, spectral measurements at each sample point were 

averaged into a single spectral measurement and converted from radiance to reflectance using 

ViewSpec Pro software (ASD Inc. Boulder, CO, version 6.0.11). A Spectralon (Labsphere, 

Inc., Sutton, NH, USA) reference panel (white reference) was used to calibrate the sensor. 

Calibration was performed before each sample point to offset any change in irradiance of the 

sun and atmospheric condition (ASD, 2008).  
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2.4 Data analysis 

2.4.1 Spectra evaluation and absorption features 

Prior to algorithmic analysis, all sample spectra were visually analyzed for noise (Knox et al., 

2012). Noisy variables were consistently seen in the short-wave infrared (SWIR) spectral 

regions which could be accounted for by the seasonal variation of the grasses. Therefore, 

spectral regions between 1824-2064 nm of the electromagnetic spectrum were excluded from 

analysis due to high levels of noise associated within these regions. It is important to note that 

regression analysis was run on two sets of data (known absorption features dataset (table 1) 

and the entire hyperspectral dataset (350 – 2500 nm)) within this study. Only wavelengths that 

are physically linked to each fibre biochemical were selected as the known absorption features 

dataset. This physical link between biochemical and wavelengths are also known as absorption 

features. The establishment of these specific wavelengths have been extensively studied by 

(Curran, 1989; Curran et al., 2001; Fourty et al., 1996; Knox et al., 2012; Kumar et al., 2002; 

Mutanga & Kumar, 2007) (Table 1). These studies have determined these physically linked 

wavelengths through the association of excitation and reaction of molecular bonds at specific 

wavelengths (Knox et al., 2012). A further regression analysis was run on a combined dataset 

(Known absorption features dataset + Variable selection dataset). The convergence of these 

two datasets were aimed at improving the models discrimination (R2) of each biochemical 

within RF. 

Table 1. Interpretation of known absorption features in reflectance of biochemicals NDF, 

ADF and Lignin from previous research  

 

Wavelength  Absorption Mechanism  Absorption Compounds 

(Nm)   

 

ADF   NDF 

 

430   Electron transition   Chlorophyll a     410–450 

460   Electron transition   Chlorophyll b     455, 460 

700–800  Red edge    Nitrogen, protein     720–745 

930   C-H stretch, 3rd overtone   Oil      935 

970   O-H bend, 1st overtone   Water, starch     960 

990   O-H stretch, 2nd overtone   Starch      995 
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1120   C-H stretch, 2nd overtone   lignin     1115–1120 

1200  O-H bend, 1st overtone   Water, cellulose,   1195 

starch, lignin  

1420  C- H stretch, C--H deformation lignin 

1450  O-- H stretch, 1st overtone, Starch, sugar, lignin 

C-- H stretch, C-- H deformation water 

1580   O-H stretch, 1st overtone   Starch, cellulose  1580 

1670  Stretch OH   lignin, starch protein 

1685   C-H stretch, 1st overtone   lignin      1675–1685 

1690   C-H stretch, 1st overtone   lignin, starch,    1700 

protein, nitrogen 

1760      lignin 

1940  O- H stretch, O- H deformation Water, lignin, protein, 

nitrogen, starch, cellulose 

1950  Stretch OH, deformation OH Water, lignin, protein,  

nitrogen, starch, cellulose 

2050   N-H asymmetric stretch +   Protein      2050 

Amide II  

2060   N = H bend, 2nd overtone/N =  Protein, nitrogen    2060 

H bend/N-H deformation 

2080   O-H stretch/O-H deformation  Sugar, starch    2070 

2100   2 × O-H deformation +   Starch, cellulose     2090  

2 × CO stretch 

2240   C-H stretch    Protein   2245 

2270  Stretch CH, stretch C = C  lignin 

2276   O-H stretch + C-C deformation  Cellulose, lignin  

2280   C-H stretch/CH2 deformation  Starch, cellulose    2285 

2294   N-H stretch + C = O stretch  Protein      2290 

2310   C-H bend, 2nd overtone   Oil    2315  2310–2315 

2320   C-H stretch/CH2 deformation  Starch      2320–2325 

2336   C-H stretch + C-H deformation  Cellulose, starch, lignin    2335 

2340   C-H stretch/O-H deformation/  Cellulose     2340 

C-H deformation/O-H stretch 

2380  Stretch OH, aromatic deformation lignin 

 

Source: (Curran, 1989) (Himmelsbach et al., 1988) (Elvidge, 1990) (Osborne & Fearn, 1986) (Kumar et al., 2002) 

(Kawamura et al., 2008) (Fourty et al., 1996). The known absorption compounds and wavelengths are depicted 

in bold font. 
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2.4.2 Random forest regression analysis  

In this study, the random forest (RF) ensemble (Breiman, 2001) was implemented using the 

“randomForest” package (Venables & Smith, 2005) in R statistical software (Team, 2013). RF 

is a machine learning algorithm developed to enhance the classification and regression trees 

(CART) method. A large ensemble of un-pruned regression trees (ntree) are constructed using 

a systematic approach called bootstrapping. Bootstrap samples are created from many 

regression trees (generally between 500 and 2000 trees) to create a final prediction that is taken 

from an average of all individual tree outputs (Dye et al., 2011; Lawrence et al., 2006; Prasad 

et al., 2006). The resultant trees in the ensemble were used to assign each input spectral 

waveband to a class membership of the response variables (i.e. NDF, ADF and Lignin). When 

bootstrap samples are drawn, approximately one third of the samples are left out. The samples 

that are left out are called out-of-bag (OOB) samples (Breiman, 2001). OOB samples are used 

to calculate an unbiased assessment of the classification accuracy (i.e. OOB error) and to 

determine variable importance (Adjorlolo et al., 2013; Breiman, 2001; Peerbhay et al., 2015). 

Within the training data set (approximately 70%), trees are grown to a maximum length and 

based on the maximum number of votes that a class receives, the ensemble of trees assigns 

each waveband to a class (Adjorlolo et al., 2012a; Breiman, 2001). In each tree, a randomly 

chosen subset of the total number of variables (mtry) is determined by the best split (the random 

selection of variables) at each node (Abdel-Rahman et al., 2013; Breiman, 2001; Peerbhay et 

al., 2015). It is important that the algorithm is well parameterized according to two main 

variables: ntree, number of regression trees grown based on a bootstrap sample of observation; 

mtry, number of predictors tested at each node (Ramoelo et al., 2015b). The mtry function is 

significant as it is a determinant of solving the ‘small n large p’ problem whereby the user is 

given the option to choose a small subset of variables (Dye et al., 2011). Furthermore, studies 

constitute that the mtry default parameter value is confident in consistently yielding accurate 

results (Adjorlolo et al., 2013; Dye et al., 2011; Peerbhay et al., 2015).  

Furthermore, RF offers variable importance measures embedded in its system. Variable 

importance measures provide the researcher with good indicators of the effect of any predictor 

variable against the response variable. The permutation measure of variable importance is used 

to determine the importance of each predictor by measuring the percentage increase in the mean 

square error when the OOB data for each variable is permuted, while the others are unchanged 

(Breiman, 2001). In this study, the percentage increase in mean square error (MSE) was used 

to predict the most important wavelengths to detect NDF, ADF and Lignin. It is the increase in 
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mean square error of predictions (estimated with out-of-bag-CV) as a result of a variable being 

permuted. The higher percentage gives more importance to a specific waveband. High variable 

importance scores suggests high weighting on a particular variable in the model (Ramoelo et 

al., 2015b). The RF algorithm was preferred due its robustness and accurate method for band 

selection, specifically when using high dimensional data (Breiman, 2001; Dye et al., 2011; 

Mutanga et al., 2015; Peerbhay et al., 2015). 

2.4.3 Accuracy assessment (R2) 

The R-square (R2) (Albayrak, 2008; Knox et al., 2011; Pullanagari et al., 2012) was the 

preferred accuracy assessment used to assess the performance of the RF method. The final data 

set was split into training and test (Congalton & Green, 2008). The square of correlation 

between predicted and observed values was calculated, values closer to 1, predict better results. 
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2.5 Results 

The results from chemical analysis performed on the grass samples collected in the field are 

presented in table 2. 

Table 2. Summary of chemical analysis results obtained from 140 tropical mixed grass 

samples collected in the field 

 

Nutrient    Mean (g/kg)  Range (g/kg)  Std. Dev. (g/kg) 

 

NDF    127.48   116.48 – 193.16 6.623980369 

ADF    91.80   85.06 – 100.86 3.427728864 

Lignin    91.87   85.27 – 100.99 3.428042785 

  

2.5.1 Detecting NDF, ADF & Lignin concentrations using known absorption features 

dataset 

Using the known absorption features (Table 1) for NDF, ADF and Lignin, the random forest 

model (ntree = 500 and mtry = 40) successfully determined NDF, ADF and Lignin biochemicals, 

however the fit of the model as measured by R2 was low, the model still explains 59% of the 

variation in NDF. Lignin was successfully predicted with an R2 of 0.81 and ADF an R2 of 0.79, 

whilst NDF was predicted with an R2 of 0.59 (Figure 2). 
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Figure 2. Regression results of NDF, ADF and Lignin biochemicals using the known 

absorption features 
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Figure 3. Variable importance of NDF, ADF and Lignin biochemicals using known 

absorption features  

2.5.2 Detecting NDF, ADF & Lignin using the entire hyperspectral dataset  

Whilst, the ntree and mtry values remained consistent for each biochemical, the entire 

hyperspectral dataset was used in the final model to predict each biochemical. Using the entire 

hyperspectral dataset, the random forest model (ntree = 500 and mtry = 40) successfully predicted 

the key ADF and Lignin biochemicals used in this study. Again, NDF was unsuccessfully 

predicted. More specifically, NDF was predicted with a low R2 of 0.47, while ADF and Lignin 

were predicted with a high R2’s of 0.88 and 0.87, respectively (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Regression results of NDF, ADF and Lignin using the entire hyperspectral 

dataset 

2.5.3 Variable importance using the entire hyperspectral dataset  

Figure 5 depicts the most effective variables used in the prediction model. For NDF, 

wavelengths in the blue (352, 368, 385, 386), red (696), and shortwave region (1137, 1344, 

1708, 2470, 2495 and 2497) were highly important, while for ADF, wavebands specifically 

along the blue (403, 407, and 420), and shortwave region (1380, 2428, 2470, 2487 and 2497) 

showed the most importance. For Lignin, wavelengths located in the blue (407, 408) and 

shortwave region (2428, 2470 and 2487) showed the most influence (figure 5). Furthermore, 

RF modelling offers three measures of variable importance: (1) based on the number of times 

a candidate variable is selected; (2) the Gini index that was proposed by (Breiman et al., 1984) 

in the original classification and regression trees method; (3) the permutation of a variable as 

an ensemble of variable importance (Strobl et al., 2008). In this study, the permutation of a 

variable as an ensemble of variable importance, measured as a percentage increase in MSE was 

an accurate measure in determining variable importance and is illustrated in figure 5.  
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Figure 5. Variable importance of NDF, ADF and Lignin biochemicals using the entire 

hyperspectral dataset 

 

For comparison purposes, we executed a combination of selected variable importance 

wavebands derived from the entire hyperspectral dataset and known absorption features 
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dataset. Both datasets were combined and implemented in the RF model (combined dataset: 

variable selection wavebands + known absorption feature wavebands for NDF, ADF and 

Lignin (Table 3)). Results reveal a small increase in R2 values of 0.03% for ADF and Lignin 

and a small decrease of 3% for NDF, when compared with the known absorption features 

dataset (Table 3). 

Table 3. R2’s of each biochemical using different datasets 

 

Data sets  No. of wavebands  Biochemicals (%) 

 

NDF  ADF  Lignin 

 

Known absorption features  NDF:  (110)  R2: 59  R2: 79  R2: 81 

    ADF: (4) 

    Lignin:  (14) 

 

Entire hyperspectral            (1910)  R2: 47  R2: 88  R2: 87 

 

Variable selection                          (30)  R2: 40  R2: 84  R2: 85  

  

Combined   NDF:  (140)  R2: 54  R2: 83  R2: 84 

    ADF:  (34) 

    Lignin:  (44) 
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2.6 Discussion 

Forage fibre content is important in understanding the distribution patterns of livestock and the 

quality of their potential intake. Increases in forage fibre content decreases the palatability of 

grasslands. Thus, livestock move to more palatable areas where grasses are easily digested. 

This has negative effects on agricultural production which developing countries rely on, as it 

directly affects economic and socio-economic status of a country. This study aimed to 

determine the effectiveness of known absorption wavelengths for detecting forage fibre 

biochemicals, using hyperspectral data on a mixed tropical grassland in South Africa. Using 

the random forest regression, NDF, ADF and Lignin were successfully detected while 

effectively reducing the large number of wavelengths of the hyperspectral data set. It is 

important to use processing techniques that reduce the number of input wavelengths without 

decreasing the integrity of the model’s accuracy (Dye et al., 2011). 

2.6.1 Determination of NDF, ADF & Lignin using known absorption features 

Using known absorption features, this method effectively detected each biochemical, however 

it has shown to have produced slightly lower R2 results for ADF and Lignin than when using 

the entire hyperspectral data set, which are contrary to most studies (Kawamura et al., 2008; 

Kawamura et al., 2010; Mutanga et al., 2004b; Zhao et al., 2007). Nonetheless, NDF increased 

by 0.12, and ADF and Lignin decreased by 0.09 and 0.06, respectively, still is reliable. The 

results in this study explain the findings of previous studies (Kawamura et al., 2008; 

Pullanagari et al., 2012), which detected biochemicals with similar R2 accuracies. Although 

ADF, Lignin results were highest, NDF produced the lowest result. This could be a result of a 

small range of variation (Zhao et al., 2007). Kawamura et al (2008) recommends linking these 

results to radiative transfer models that could further improve accuracies.  

It is important to note the relationship between fibre dry matter and R2 produced over 

the series of chemical measurements made to derive each biochemical from NDF to ADF to 

Lignin, respectively. The relationship evidently shows that with a decrease in dry matter, there 

is almost a directly proportional increase in R2 (Table 3). 

2.6.2 Determination of NDF, ADF & Lignin using the entire hyperspectral dataset 

The results confirm that forage fibre biochemicals can be detected in a tropical mixed grassland 

using hyperspectral data and with the robustness of the random forest algorithm. Whilst, many 
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remote sensing studies (Kawamura et al., 2008; Kawamura et al., 2010; Knox et al., 2011; 

Pullanagari et al., 2012; Zhao et al., 2007) focused on using PLS, MLR, MAXR, and neural 

network (NN) algorithms, RF proved to be a valuable and accurate measure for detecting forage 

fibre biochemicals in this study. For example, Kawamura et al., (2010) successfully detected 

NDF, ADF and Lignin using GA-PLS and obtained relatively high r2 accuracies. In a 

subsequent study, Pullanagari et al., (2012) obtained similar NDF, ADF and Lignin r2’s through 

using PLS. However, this study achieved even higher accuracies when using the RF algorithm 

(Table 3). This success validates the robustness and effectiveness of the random forest 

ensemble to discriminate each biochemical especially when using highly dimensional data. 

When using the entire hyperspectral data set, once again NDF appeared to still be reasonably 

low due to the small range of variation and also, could be influenced by the difference in the 

solar zenith angle that could have affected the predictive accuracy of the biochemical 

(Kawamura et al., 2008). 

2.6.3 Variable importance using the entire hyperspectral dataset 

The selection of the most important wavelengths was determined when using the entire 

hyperspectral data set. The results are related to the findings of previous studies (Curran, 1989; 

Elvidge, 1990; Himmelsbach et al., 1988; Kawamura et al., 2008) (Table 1), who determined 

the most important wavelengths for detecting NDF, ADF and Lignin. For instance, NDF 

wavebands (425, 437, 1708, 2289 and 2345) are closely linked to those found in previous 

studies. ADF waveband 1443 was the only closely linked waveband and Lignin wavebands 

(1334, 1538, 1567, 2267, 2386, 2341, 2430 2401, and 2451) were closely linked to previous 

studies. All the wavebands described above had a waveband-offset range of 0 to 137 nm of the 

known absorption features found in previous studies. The random forest algorithm could derive 

new detection wavelengths for each biochemical as shown in Figure 5. This is justifiable as 

most of the new wavelengths were found in the blue and shortwave regions, which relate to C-

H, N-H and O-H bonds (Curran, 1989; Norris et al., 1976). This study had the privilege of 

analyzing uncovered areas of the electromagnetic spectrum (i.e. shortwave regions) using 

advanced remote sensing technology, whereas previous studies (Curran, 1989; Elvidge, 1990; 

Himmelsbach et al., 1988; Norris et al., 1976) did not, and only analyzed areas within the 

visible and near infrared regions. Nonetheless, the random forest algorithm successfully 

recognized some of the wavelengths found in previous studies, and the model found new 
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wavelengths that also should be taken into consideration. Hence, these new wavelengths can 

be used and should be taken into consideration in later studies. 

 For example, improving the efficacy of these new wavelengths could result in better 

detection accuracies for future research. This will decrease computational time and increase 

the robustness of modelling especially when dealing with high dimensional data. Hence, the 

configuration of sensor-specific wavelengths to precisely detect NDF, ADF and Lignin, could 

lead to efficient and effective mapping resource for these forage fibre variables. Rapid 

detection of these forage fibre variables offers farmers and rangeland managers a time effective 

way to make informed decisions, especially in South Africa where land systems change is 

widespread. Future research could consider upscaling the results found in this study to regional 

scale mapping that will benefit farmers and rangeland managers on a greater scale. 

Furthermore, this application will benefit precision farming by effectively guiding decision 

making when considering the most important palatability variables prevalent in a management 

zone. More importantly, the results of this study will improve productivity and increase farm 

profits by sustainably improving management regimes of farm inputs (Mulla, 2013). In 

addition, current policy implications suggest that the biodiversity and ecosystems services of 

grasslands are threatened and under immense pressure in South Africa. Hereby, grasslands are 

host to a minimum of 45% of endemic animal species that depend on grasslands for good 

quality forage and for safety (WWF, Undated). As outcome of this research, policy will be 

more informed on the distribution and intake potential rates of these endemic species by 

creating quality and habitual parameter maps. Furthermore, remote sensing has the potential to 

create regional maps to inform policy of the quality of grassland vegetation, including the 

mapping potential fire danger areas. For example, the eThekwini municipality ‘working on 

fire’ programme can be more informed, thus, the programme will be proactively aware of 

potential fire risk areas. For these reasons, this research serves as valuable resource to society, 

the economy and the natural environment. Moreover, future research could focus on creating 

innovative modelling approaches to improve detection accuracies, hence providing assurance 

to rangeland managers and farmers. For example, innovative modelling approaches such as 

using a combination of datasets has the potential to improve prediction accuracies.  

As a final step, this research used a combination of variably selected wavebands and 

known absorption features. This approach produced positive results which to our knowledge 

has never been done before. Increases in R2 for both ADF and Lignin reveal the potential of 

this method to discriminate and predict more accurately. Hence, the models performed better 

with the inclusion of discriminately relevant wavebands (variable selected wavebands) found 
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in the entire hyperspectral dataset. However, a noticeable decrease in R2 of NDF was predicted. 

The decrease in NDF was prone to the model reaching saturation point due to closely correlated 

predictor variables, caused by a multicollinearity problem. Nonetheless, majority of the 

biochemicals predicted with increased R2’s, hence the significance of converging datasets is a 

useful approach. Ultimately, fine tuning this approach could produce more positive findings 

when used across numerous datasets. 
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2.7 Conclusion 

This study effectively determined the known absorption wavelengths for detecting forage fibre 

biochemicals, neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin using 

hyperspectral data. The results showed that the random forest ensemble could discriminate 

each biochemical, demonstrating its robustness and effectiveness for this study. The study 

demonstrated the predictive ability of the RF ensemble and the importance of reducing the 

number of redundant wavelengths which is a necessary step for any hyperspectral application. 

The importance of using known absorption features should always be an integral part for 

improving the performance of regression models. This study showed that additional wavebands 

located within the blue, red and SWIR regions were also important for forage quality 

determination. These results can be used to provide livestock farmers and rangeland managers 

with an efficient tool for identifying pasture areas that contain high or low levels of fibre, hence 

guiding management strategies. Overall, the results are positive, although it is important to 

know that this study was carried out as a snapshot over one location. Future research should 

venture into applying this knowledge to various data sets and to new locations to detect foliar 

fibre biochemicals. Ultimately, future research could potentially upscale the results obtained in 

this study to a multispectral application.  
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Chapter Three 

Multispectral mapping of key grassland nutrients in KwaZulu-Natal, South 

Africa 

3.1 Abstract  

RapidEye multispectral imagery promises to be effective in vegetation assessment. To date, 

the estimation of forage quality has been performed using hyperspectral systems. Even though 

some hyperspectral studies produced accurate results, they are costly, produce large datasets 

and require a large amount of time for data processing. This research intends to investigate the 

utility of using 5 m multispectral RapidEye-5 imagery combined with a specialized algorithm 

to detect and map important forage fibre biochemicals such as neutral detergent fibre (NDF), 

acid detergent fibre (ADF) and Lignin in an African tropical grassland. Analysis was conducted 

on 140 grass samples collected at plot level and then, correlated and mapped using the high-

resolution image and two tree ensemble modelling techniques. Results showed that the random 

forest method successfully mapped NDF, ADF and Lignin with R2 values ranging between 

0.67 and 0.74. In comparison, the study used Stochastic Gradient Boosting (SGB) as an 

alternative method which produced very similar R2 values ranging between 0.65 and 0.72. 

Overall, the results showed that multispectral remote sensing, in conjunction with ancillary 

data (Leaf Area Index, Chlorophyll, species type, species Count) can detect and map key forage 

fibre biochemicals in a grassland environment. 

 

Keywords: RapidEye, multispectral, NDF, ADF, Lignin.   
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3.2 Introduction 

Technological advancements have changed the science of remote sensing by providing more 

specialized platforms to analyze more detailed vegetation properties. Highly sophisticated 

satellite platforms can provide researchers with more detailed and accurate information. The 

latest inventions are equipped with specialized spatial, spectral, radiometric and temporal 

resolutions capable of detecting more discernible information (Mutanga et al., 2016). More 

specifically, the launch of RapidEye-5 multispectral satellite has a combination of high 

resolution, multispectral capabilities, large-area coverage and frequent revisit intervals, 

offering researchers incomparable data resources. The RapidEye-5 platform configurations 

promises to have the potential to map vegetation over a large area, at finer resolution, at faster 

time, and with a lower cost (RapidEye, 2011). To date, not many vegetation applications have 

investigated the capabilities of remote sensing to perform detailed analysis on the quality, 

species and biomass of vegetation properties (Mutanga et al., 2016). Hence, a research gap still 

exists in mapping the nutrient limiting foliar biochemicals, such as non-digestible fibre 

whereby the content of fibre can determine the intake of grazing animals and ultimately 

determine their quality of health.  

In South Africa, more than 70% of land surface comprise grasslands, which are 

predominantly used for pastoral production (Mansour et al., 2013). Grasslands provide the 

primary feed base for grazing livestock which in turn provides the majority of low-income 

people with food, goods and services that are essential for sustaining their livelihoods (Boval 

& Dixon, 2012). Problems exist when the palatability of the grasses are low, effectively the 

grasses become hard for livestock to digest. Hence, the palatability of grass directly affects the 

intake potential of livestock, later influencing livestock production levels and eventually food 

security in a country (Knox et al., 2011). In this regard, fibre biochemicals are significant 

indicators of the palatability of grasses, and therefore knowledge regarding their concentrations 

is vital to rangeland managers and farmers (Mbatha & Ward, 2010). More specifically, accurate 

fibre content indicators can inform farmers and rangeland managers on livestock intake 

potential; stocking and distribution rates; and supplementation, whilst at policy level, 

information regarding the quality of grasslands; fibre content and the impacts it has on livestock 

grazing, can be used to make informed decisions related to ecosystem services and protection 

(Lamarque et al., 2011; Loucougaray et al., 2015). Therefore, improved knowledge of soil-

plant-animal constraints allows for improved management techniques to meet the demands 

faced by farmers; rangelands managers; policy makers; commercial livestock production; and 
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the general economy  (Boval & Dixon, 2012). However, current methods used to obtain this 

vital information is challenging. Hence the need to innovate automated, cost and time effective 

methods is vital. 

In the past, determining or quantifying the fibre content of grasslands has mainly 

depended on two laboratory methods: wet chemistry and near-infrared spectroscopy, which are 

both Association of Agricultural Chemists (AOAC) approved methods (Pullanagari et al., 

2013b). However, both methods involve ground-based periodic surveys and tedious laboratory 

work, which are costly and time consuming. Generally, field hyperspectral remote sensing has 

proven successful when detecting fibre biochemicals by providing a more detailed spectral 

description for quantification, as a result of its high spectral and extremely fine radiometric 

resolutions (Jusoff, 2007). For example, Kawamura et al., (2008) successfully predicted above 

ground biomass (BM), crude protein (CP) and ADF from a mixed sown pasture using field 

hyperspectral systems. Thus, the PLS model produced the highest R2 values of 0.72, 0.65, and 

0.62 for BM, ADF and CP, respectively. Similarly, Pullanagari et al., (2012) successfully 

mapped pasture quality variables from four commercial farms across New Zealand. Thus, the 

PLS regression algorithm yielded R2 accuracies of 0.75, 0.82, and 0.71 for NDF, ADF and 

lignin, respectively. Despite the abilities of laboratory and field hyperspectral techniques to 

effectively produce extremely accurate results, operations were highly expensive; technical; 

time consuming; point-based; dangerous and require optimal operating conditions. 

Furthermore, hyperspectral remote sensing data often represents an oversampled data which 

creates dimensionality and multicollinearity problems. Hence, on a local scale, the technology 

is neither feasible nor financially viable for farmers and rangeland managers (Pullanagari et 

al., 2013b). With the advent of new space-borne multispectral remote sensing technologies, 

there is provision for an indirect, non-destructive, time efficient and cost-benefit alternative for 

determining or quantifying pasture quality over a large scale (Kawamura et al., 2010; Peerbhay 

et al., 2016; Pullanagari et al., 2013b).  

Recently, the latest advancements in space-borne sensor technologies allows 

researchers to investigate the potential of the new generation, high resolution multispectral 

satellites (e.g., RapidEye 1-5, Sentinel-2,WorldView-2, SPOT)(Peerbhay et al., 2016). Most 

new generation satellites are configured with the new red-edge waveband, that has the potential 

to considerably improve classification accuracies within vegetation applications. Hence, 

several studies found strong correlations between the red-edge waveband and plant 

biochemical and biophysical parameters (Abdel-Rahman et al., 2013; Adam et al., 2010; 

Adelabu et al., 2014; Adjorlolo et al., 2012a; Delegido et al., 2011; Laurin et al., 2016; 
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Mutanga & Adam, 2011; Ramoelo et al., 2012b; Schuster et al., 2012; Zengeya et al., 2013). 

Evidently, a combination of high resolution and strategically placed wavebands across the 

electromagnetic spectrum, make it possible to accurately predict chemical properties within the 

grassland ecosystem (Eitel et al., 2007). For example, Zengeya et al., (2013) successfully 

estimated and mapped nitrogen concentrations using WorldView-2 (WV-2) imagery in 

savanna grasslands. A result of (Rcv
2 = 0.66, relative error = 0.13%) was obtained using partial 

least squares regression (PLSR). Similarly, Mutanga et al., (2015) successfully modelled 

nitrogen using the random forest (RF) model and obtained R2’s of 0.74 and 0.65 on an 

independent field spectral test dataset and on the actual WV-2 image, respectively. Here, many 

studies have focused on remote sensing of nitrogen as a limiting nutrient using mainly field 

hyperspectral remote sensing. However, to date, few studies have explored the capability of 

remote sensing to map fibre biochemicals (NDF, ADF, Lignin) as non-digestible and 

unpalatable fibre to grazing ungulates using high resolution space-borne multispectral remote 

sensing technology (Pullanagari et al., 2013b). 

Research suggests the need for more reliable results in the estimation of pasture quality 

(crude protein, fibre etc.); in instrumentation (spectral, spatial and temporal resolutions) and in 

the various challenges associated with the complexity of pastures (invasive weeds, animal 

grazing and trampling, presence of many different species, changing stages of maturity and 

varying proportions of green and dead material). Therefore, the need to establish improved 

methods to accurately map fibre content is vital for the sustainability of land management 

practices (Pullanagari et al., 2012). Recent research recommends the use of high resolution 

sensors to detect plant foliar biochemicals with higher precision within the grassland ecosystem 

(Knox et al., 2011; Schellberg et al., 2008). In a rapidly changing climate with an increasing 

rate of uncertainty, this study aims to detect and map fibre content within a tropical grassland 

of KwaZulu-Natal, South Africa using 5 m RapidEye-5 multispectral imagery combined with 

a specialized algorithm, and ancillary data. 
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3.3 Materials and Methods 

3.3.1 Study area 

The study was conducted in Fort Nottingham Nature Reserve, located in KwaZulu-Natal, South 

Africa (latitude 29°24'9.62"S and longitude 29°53'48.95"E) (Figure 6). The study area resides 

within a reserve occupying an area of 1227 ha and is characterized by an extensive area of the 

Eastern Mistbelt Forest and Drakensberg Foothill Moist Grassland of the KwaZulu-Natal, 

Midlands. Approximately 778.2ha in total land use is currently leased from uMngeni 

Municipality for grazing of cattle to local commercial farmers. The study area is characterized 

by mainly grassland vegetation, that is categorized by Festuca costata (blue fescue), Tristachya 

leucothrix (hairy trident grass) and Themeda triandra (red oat grass) that are the most dominant 

grass species type (Mucina & Rutherford, 2006). Festuca costata and Tristachya leucothrix is 

native to Southern Africa while Themeda triandra is native to Kenya. The study area receives 

an annual spring and summer rainfall of approximately 950 mm/year. The most dominant soils 

found at the study area are: Clovelly; Hutton; Griffin and Oatsdale (Mucina & Rutherford, 

2006). The topography is characterized by a diversity of habitats split between a moderately 

undulating Drakensberg Moist Foothill grassland plateau (at approximately 1750m amsl) 

leading to densely forested south and east facing slopes, (between 1700 and 1400 amsl) that 

merge into lower lying remnant Drakensberg Foothill Moist Grassland flats. This study area 

was preferred due to heterogeneity of grass species and the influence of grazing.
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Figure 6. Location of the study site in the Fort Nottingham Nature Reserve, KwaZulu-Natal, South Africa 
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3.3.2 Field data collection 

Field data collection was carried out between the dates of 28th of April to the 04th of May 2015. 

A stratified random sampling method was used to select field sampling points using the Hawths 

tool in ArcGIS 10.2. A total of 140 sample points were established across the eleven existing 

leased grazing camps. All sample points were uploaded into a Trimble GeoExplorer 6000 series 

GeoXH GPS with a centimeter-level accuracy of less than 10cm and was used to locate each 

sample point. To declare subjectivity over the three dominant grass species, a 1m x 1m quadrant 

was overlaid at the center of each of the 140 sample points (Adjorlolo et al., 2012a). Within 

each quadrant, two non-destructive measurements were taken: a series of leaf area index (LAI) 

measurements, and chlorophyll (CHL) measurements; and one destructive sample of the grass 

species present. The destructive sample was taken immediately after LAI and CHL 

measurements were taken. Grass samples were clipped using a scissors at 1 cm above ground, 

pooled and bagged (brown bag) for drying and later chemical analysis (Knox et al., 2011). 

3.3.3 Ancillary data 

Within each quadrant LAI and CHL measurements were taken. LAI measurements were taken 

using the LI-COR (LAI-2200) plant canopy analyzer under cloudless sky conditions using a 

270o view cap for use in short canopies and to hide the operator from being potentially in the 

field-of-view (FOV). One above canopy reading (A reading) was taken for four or more below 

(B reading) canopy readings in each quadrant, B readings were taken within the grass leaf 

structure. To reduce uncertainty, more B readings were taken (approx. 8) as recommended in 

the LI-COR instruction manual (LI-COR, 2009). Furthermore, a series of chlorophyll 

measurements were taken using a Konica-Minolta SPAD-502 Plus chlorophyll meter. Nine 

SPAD measurements were taken at the four corner points and center point of the 1m x 1m 

quadrant. The nine readings were then averaged to produce a single SPAD measurement of the 

amount of chlorophyll content present in the leaves at each sample point (Friedman et al., 2016; 

Teoh et al., 2015). In addition, grass species type, and species count (SC) were visually 

identified and recorded within each sample point and used as input variables in modelling. In 

this study, the following ancillary data were used as input variables in the model: LAI; CHL; 

species type; and SC Previous research recommends the incorporation of ancillary data with 

multispectral imagery as it improves classification accuracy (Lawrence & Wright, 2001). 
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3.3.4 Laboratory analysis 

All samples collected (n = 140) were analyzed at the University of KwaZulu-Natal laboratory. 

Samples were oven dried at 65 o C for 72 hours. Samples were then grinded to 1 millimeter 

using a sieve. The milled samples were analyzed for chemical composition on a dry matter 

(DM) basis. The following foliar fibre biochemicals: NDF, ADF and Lignin, were derived from 

the samples. These three foliar fibre biochemicals (NDF, ADF and Lignin) were then analyzed 

sequentially using an ANKOM 220/200 Fibre Analyzer (Ankom Technology, New York, 

USA). 

3.3.5 Image acquisition and pre-processing 

A RapidEye-5 (level 3A) multispectral image of the study area was acquired on 27 May 2015 

under cloudless (0%) conditions. The RapidEye-5 sensor comprise five wavebands namely: 

blue (440-510 nm), green (520-590 nm), red (630-685 nm), red-edge (690-730 nm) and, near-

infrared (NIR) (760-850 nm) which sense in the 440 nm to 850 nm spectral range with a spatial 

resolution of 5 meters. The image was orthorectified as individual 25 by 25 kilometer tiles and 

was projected to Universal Transverse Mercator (UTM) using the WGS-84 Geodetic System 

by the supplier. The image was processed to remove distortions caused by terrain and it was 

geometrically, sensor, radio-metrically corrected and aligned to a cartographic map projection 

by the supplier. In addition, the image was atmospherically corrected to surface reflectance 

using the dark object subtraction method (DOS) using ENVI 4.7 (ENVI, 2009). The RapidEye-

5 image was produced using Global Reference 2.0 GCPs and the World30 DEM that has a 

locational accuracy of 10 m RMSE. 

3.4 Statistical analysis 

3.4.1 Random forest 

Random forest is an accurate data mining technique that is designed to enhance the 

classification and regression trees (CART) method (Breiman, 2001). Simply, RF combines 

many regression trees to produce more accurate predictions (Cutler et al., 2007). These 

classifications are made using regression trees, hence the more trees built, classifications can 

be made more accurately. Bootstrap samples are created from many un-pruned trees (generally 

between 500 and 2000 trees) to create a final prediction that is taken from an average of all 
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individual tree outputs (Dye et al., 2011; Lawrence et al., 2006; Prasad et al., 2006). Trees are 

grown to a maximum length and based on the maximum number of votes that a class receives, 

the ensemble of trees assigns each waveband to a class (Adjorlolo et al., 2012a; Breiman, 

2001). The addition of ancillary data (LAI; CHL; species type; SC) were used as additional 

input variables within the RF model. In this study, The RF algorithm was preferred due its 

robustness and accurate method for waveband selection specifically when using highly 

dimensional data as it does not over fit the data (Breiman, 2001; Dye et al., 2011; Mutanga et 

al., 2015; Peerbhay et al., 2015). Furthermore, RF is the most competitive and most reliable 

available algorithm compared to others in common use, specifically for ecological applications 

(Cutler et al., 2007). A more detailed description of the RF algorithm is provided in Chapter 2 

of this thesis.  

3.4.2 Stochastic gradient boosting algorithm and variable importance 

Recently, remote sensing classification procedures are increasingly becoming useful. Hence, 

the ability to accurately detect features is achieved by producing better results. Classification 

trees are generally produced from two methods: (i) ‘boosting methods’ that are based on the 

results obtained from previous classification trees and (ii) ‘bagging methods’ that are based on 

the subsets of the training data (Lawrence et al., 2004). Stochastic gradient boosting (SGB) is 

a relatively new method that is a hybrid of ‘bagging’ and ‘boosting’ approaches developed to 

improve classification accuracy (Dube et al., 2015; Friedman et al., 2000; Lawrence et al., 

2004; Ye et al., 2009). SGB is a procedural based algorithm: Firstly, at each step of the boosting 

process, a random sample of the data is selected. Secondly, the random sample is separated by 

a steepest gradient algorithm, with gradient defined by deviance (twice the binomial negative 

log-likelihood) as a replacement for misclassification rates. This produces relatively small trees 

(6 terminal nodes are a common size) at each iteration instead of developing full classification 

trees at each stage. Lastly, all the small trees are stacked together as a weighted sum of terms 

(often 100-200 trees), and each observation is classified according to the most common 

classification among the trees (Dube et al., 2015; Friedman, 2002; Lawrence et al., 2004; 

Moisen, 2008). SGB has a greater accuracy in classifying data compared to other conventional 

classification techniques (Lawrence et al., 2004; Moisen, 2008). It has been established that 

with each iteration, the model gets progressively stronger, hence in this study the model was 

run 100 times.  (Elith et al., 2008; Friedman et al., 2000; Friedman, 2002; Moisen, 2008). 

Hence, as small classification trees are formed at each iteration of the boosting process, the 
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algorithm introduces an element of stochasticity that reduces overfitting, which improves the 

model accuracy, (Dube & Mutanga, 2015; Lawrence et al., 2004). Furthermore, it is important 

that the algorithm is well parameterized according to the complexity of data used in the model.  

 There are three important user-defined parameters that govern the output of the SGB 

model: (i) The learning rate (r1), (ii) tree complexity (ct), (iii) the number of regression trees 

(ntree)(Dube et al., 2015; Friedman, 2002; Hastie et al., 2001). The most important parameters 

are r1 and ct, as r1 determines the contribution of each tree has to the growing model, whereas 

ct is the number of samples used in the final node (Dube et al., 2015; Hastie et al., 2001). The 

SGB algorithm was implemented (Venables & Smith, 2005) in R statistical software (Team, 

2013). In this study, r1 was set between 0.0001 and 0.1, whereas ct was set between 1 and 5. 

Furthermore, during analysis a bagging fraction needs to be determined which was set to 0.3 

in this study. The subsequent model settings where summarized in literature (De'Ath, 2007; 

Elith et al., 2008; Friedman, 2002; Hastie et al., 2001), hence formed suitable guidelines used 

in this study. In this study, SGB was the most preferred algorithm to be compared with RF in 

the prediction of fibre biochemicals NDF, ADF and Lignin, as it assumes to have a better 

predictive accuracy when using high resolution multispectral imagery. The addition of 

ancillary data (LAI; CHL; species type; SC) were used as additional input variables within the 

SGB model. More importantly, SGB provides information on the relative importance of the 

variables in predicting each class. 

3.4.2 Variable importance 

Stochastic gradient boosting variable importance utilizes variable selection by successively 

removing redundant predictor variables that do not improve the accuracies of the model 

parameterization (Dube et al., 2015). As a result, individual predictor variables can be 

determined by measuring the proportion of variability accounted for by the splits (redundant 

and important variables) associated with each predictor variable (Moisen, 2008). The model 

then scales (i.e. so that the sum totals 100) the relative contribution of individual variables, the 

higher number indicate a strong influence on the response variable and vice versa (Dube et al., 

2015). In this study, variable relative importance was calculated as a percentage.  

3.4.3 Accuracy assessment (R2) 

The R-square (R2) (Albayrak, 2008; Dube et al., 2015; Knox et al., 2011; Pullanagari et al., 

2012) was the preferred accuracy assessment used to assess the performance of both the RF 



39 | P a g e  

 

and SGB method. The final dataset was split into 70% training and 30% test (Congalton & 

Green, 2008). In this study, the square of correlation between predicted versus observed values 

was calculated whereby values closer to 1, predict better results. 
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3.5 Results 

Table 4, Table 5 and Table 6 displays summary statistical information related to the distribution 

of the chemical analysis and ancillary datasets. The results from the chemical analysis 

performed on grass samples collected in the field are presented in Table 4. Biochemical 

concentrations were compared with LAI measurements to ensure that predictions were related 

to only biochemical concentrations and not standing biomass (Knox et al., 2011). Here, the 

quantity of biochemical concentration was measured as a percentage DM (Van Soest et al., 

1991). Table 5 shows LAI and CHL ancillary data collected in the field. Table 6 shows the 

three types of dominant grass species type and, the diversity (count) of species within the 140 

samples collected in the field. 

Table 4. Chemical analysis results obtained from 140 tropical mixed grass samples 

collected in the field 

 

Nutrient    Mean (g/kg)  Range (g/kg)  Std. Dev. (g/kg) 

 

NDF    127.48   116.48 – 193.16 6.623980369 

ADF    91.80   85.06 – 100.86 3.427728864 

Lignin    91.87   85.27 – 100.99 3.428042785  

Table 5. Ancillary data obtained from 140 tropical mixed grass samples collected in the 

field 

 

Variable  Abbr.   Unit  Mean  Std. Dev. Min. Max. 

 

Leaf Area Index LAI  m2 m−2  1.52  0.93  0 3.68 

Chlorophyll  CHL  SPAD  19.65  11.99  0.7 49.3 
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Table 6. Species type and species count out of the total number of samples obtained in the 

field  

Species Type Tristachya leucothrix   Festuca costata Themeda triandra  

   (TL)    (FC)   (TT) 

 

Species Count 79 of 140           58 of 140  2 of 140   

         3.5.1 Predicting fibre biochemicals using RF 

Results show, the RapidEye-5 multispectral sensor has the capability to successfully detect 

forage fibre biochemicals. More specifically, NDF was the highest predicted by RF with an R2 

of 0.74, whilst ADF produced an R2 of 0.68 and Lignin produced the lowest R2 of 0.67 (Figure 

7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Random forest prediction of (a) NDF, (b) ADF, and (c) Lignin using RapidEye-

5 waveband imagery and ancillary data 
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3.5.2 Predicting fibre biochemicals using SGB 

Results show that the SGB model performed successfully when predicting the fibre 

biochemicals collected in field. More specifically, NDF was the highest predicted by SGB with 

an R2 of 0.72, followed by ADF with an R2 of 0.69 while lignin being the lowest predicted at 

0.65 (Figure 8).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Stochastic gradient boosting prediction of (a) NDF, (b) ADF, and (c) Lignin 

using RapidEye-5 waveband imagery and ancillary data 

 

  



43 | P a g e  

 

Table 7. Main results achieved using RF and SGB modelling 

        NDF  ADF  Lignin 

Input data set   Statistical methods  R2   R2  R2 

 

All wavebands  RF    0.74  0.68  0.67 

(with ancillary) 

 

All wavebands  SGB    0.72  0.69  0.65 

(with ancillary) 

 

All wavebands  RF    0.70  0.58  0.58 

(without ancillary)      

  

Table 7 indicates the performance of each statistical model when using the RapidEye-5 

wavebands to predict and map all fibre biochemicals. More specifically, the performance of 

each model was calculated with and without using ancillary data for comparing whether the 

inclusion of ancillary data improves model performance. By comparing using RF shows that 

model performance does improve significantly when including ancillary data (Table 7). The 

model performance improved for all fibre biochemicals, ADF improved by 0.10 and Lignin 

improved by 0.09, whilst NDF improved by 0.04. Hence, there is a relationship with the fibre 

biochemicals and ancillary data used within this study. 

3.5.3 Variable importance 

Since the RF model combined with ancillary data produced the best accuracies for predicting 

NDF, ADF and Lignin (Table 7), this section only focuses on the most important variables 

selected within the RF model. In comparison, this section also assesses the variables selected 

within the SGB model. Figure 9 depicts the most effective and ineffective variables for 

detecting and predicting forage fibre biochemicals using the RapidEye-5 wavebands. Using 

RF, the Red, NIR, and Red-edge variables best predicted NDF (1a), ADF (1b) and Lignin (1c), 

hence produced correlations ranging between 40% and 80%, whilst CHL and LAI variables 

had weak correlations with all three fibre biochemicals ranging between -10% and -35%. Using 

SGB, species type, NIR and CHL variables best predicted ADF (2b) and Lignin (2c) ranging 

between 9% and 23%, whilst LAI, SC and NIR were better predictors for NDF (2a) ranging 
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between 7% and 27%. In contrast, the Blue and Green variables had weak correlations with 

ADF (2b) and Lignin (2c) ranging between 3% and 4.5%, whilst Red-edge, CHL and species 

type variables had weak correlations with NDF (2a) of 4% using SGB (Figure 9). Overall, 

when predicting ADF and Lignin similarities were found between the most important and 

unimportant variables, however when predicting NDF irregularities were found for both 

models (RF and SGB). 
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Figure 9. The relative importance of response variables using RapidEye-5 waveband 

imagery and ancillary data set (n = 9). The variables are ranked based on their 

contribution to the random forest and stochastic gradient boosting models. (1a), (1b), and 

(1c) represent the relative importance of the variables when predicting NDF, ADF, and 

Lignin, respectively using random forest. (2a), (2b), and (2c) represent the relative 
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importance of the variables when predicting NDF, ADF, and Lignin, respectively using 

stochastic gradient boosting 

 

Figure 10 depicts prediction maps of the three key fibre biochemicals (NDF, ADF and 

Lignin) used in this study and that are primary determinants of grassland palatability. The maps 

show: low, intermediate and high levels of biochemical concentrations of all three biochemicals 

whereby green depicts low levels, yellow depicting intermediate levels and red depicting higher 

levels of biochemical concentration. Figure 10 (a) shows a clustered distribution of very high 

and very low levels of NDF concentration, whereas (b) ADF and (c) Lignin show a well 

distributed spread of high and low biochemical concentrations. 
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Figure 10. Prediction map of biochemical concentrations using RapidEye-5 in Fort Nottingham Nature Reserve, KwaZulu-Natal, South 

Africa
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3.6 Discussion 

Grasslands have a greater diversity than other ecosystems, offering complex challenges relating 

to species diversity, morphology, interactions between the grazing ungulates and including 

climatic factors (e.g. temperature, humidity, altitude, and rainfall) coupled with different 

management intensities (Adjorlolo et al., 2012b; Darvishzadeh et al., 2011; Pullanagari et al., 

2012). Understanding these challenges and then, to develop new models aimed at resolving 

some of these challenges is key for producing more plausible and reliable results (Schellberg 

et al., 2008). Using a satellite sensor and a strategic modelling approach, this study assesses 

the capability of the RapidEye-5 multispectral sensor to effectively detect and map the content 

of important fibre biochemicals within a grassland ecosystem in KwaZulu-Natal, South Africa. 

Additionally, the utility of adding ancillary data collected in the field improves results and 

therefore, should always be considered an essential step for producing more effective and 

accurate predictions when mapping fibre biochemicals.  

3.6.1 Prediction of fibre biochemicals using RF and SGB 

In comparison to the RF model, the SGB model performed considerably well with a 0.01 

increase in R2 for ADF, however a 0.02 decrease in R2 for NDF and Lignin effectively refutes 

the SGB model the best algorithm for application in this study. These results justify previous 

research recommendations of combining multispectral wavebands, ancillary data, and a 

algorithm to provide an ideal framework for mapping forage fibre biochemicals (Knox et al., 

2011; Ramoelo et al., 2015a). It is important to note that selection of these two modelling 

algorithms was based on previous research recommendations. RF and SGB algorithms perform 

better than conventional regression models, such as linear, multiple-linear and stepwise 

regression models as they have elements of stochasticity that improve model accuracy and to 

reduce overfitting (Dube & Mutanga, 2015).   

3.6.2 Combining ancillary data with multispectral imagery and specialized algorithms 

RF and SGB successfully predicted NDF, ADF and Lignin with the inclusion of ancillary data. 

When examining the performance of the RapidEye-5 image with the inclusion of ancillary data: 

LAI, CHL, species count and species type, results indicate an improvement in final prediction. 

The combination of ancillary data with the multispectral imagery yielded better results 

compared to when executed separately (Table 7). Here, a 0.04 – 0.10% R2 range of 
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improvement in accuracy was achieved when using ancillary data, deeming its contribution to 

the overall results substantially worthwhile. Knox et al., 2011 included ancillary data: 

phenology, soil type, species, and geology to map nitrogen, phosphorous and fibre in their 

study and found that it improved model predictions, however their study does not express and 

compare the actual increase in prediction accuracy. Similarly, Ramoelo et al., 2012 found a 

0.27 R2 increase in prediction accuracy when applying environmental ancillary data (mean 

annual temperature; precipitation; altitude; distance to rivers; slope and aspect) to their model 

to map biomass. Both studies have shown improvements in prediction accuracy when including 

ancillary data, hence the ancillary variables: LAI, CHL, species count and species type did well 

in predicting NDF, ADF and Lignin in this study. 

3.6.3 Variable importance 

Since the RF model produced the highest accuracies compared to SGB, the selection of the 

most important variables was determined using RF. The Red, Red-edge and NIR variables were 

the most effective contributors to the models performance and is confirmed by previous studies 

relating to forage quality biochemicals (Mutanga et al., 2015; Pullanagari et al., 2013b). In 

contrast, ancillary data variables: LAI and CHL were the lowest contributing variables to the 

overall model. To date, very few studies have successfully mapped forage fibre biochemicals 

NDF, ADF, and Lignin using high resolution multispectral imagery (Figure 10). Therefore, not 

many differences and similarities could be compared with the results found in this study. At 

this point, the most important wavebands discovered in this study should be taken into 

consideration when mapping forage fibre biochemicals in future studies. The remote sensing 

of these forage fibre biochemicals can contribute to understanding the impact of climatic 

change, as changes in fibre biochemical concentrations are influenced by climate change 

(Adjorlolo et al., 2012b). Hence, this study shows the potential for retrieving information 

related to grassland quality in a timely and cost effective manner. This information could enable 

rangeland managers to influence policy and make current decisions regarding the health and 

conservation of grassland systems (Mansour et al., 2016). 

 Future studies may also consider the possibilities of creating a remote sensing 

framework, that can be implemented as a toolkit for performing rapid spectroscopy on 

grasslands. This framework must be tested using other wavebands in other portions of the 

electromagnetic spectrum and in other locations and heterogeneous environments. 

Furthermore, freely available imagery such as Sentinel and Landsat can be used for mapping 
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at broader scales, however pixel resolution suffers due to increasing radiometric resolution and 

swath width with multispectral sensors. Very high resolution satellites such as IKONOS, 

QuickBird etc. supply under 10 cm pixel resolution imagery, capable of enhancing information 

at farm level for detailed analysis. 
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3.7 Conclusion 

In this study, our main findings were: 

 The results show that multispectral imagery is successful when mapping grassland 

biochemicals such as NDF, ADF and Lignin. 

 The inclusion of ancillary data used in this study improves regression accuracy. 

 The implementation of a data mining algorithms (RF or SGB) can detect NDF, ADF 

and Lignin and, avoids problems of multicollinearity and overfitting. 

Overall this study provided an alternative framework to hyperspectral remote sensing for 

mapping important biochemicals across a grassland study site. Future studies should also 

investigate techniques for improving the prediction of vital biochemicals in grassland 

environments. 
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Chapter Four 

Conclusion 

4.1 Introduction  

The mapping of forage quality nutrients is important for effective rangeland management 

practices, hence the information obtained is used to inform policy, rangeland managers and 

farmers (Skidmore et al., 2010). Traditional methods commonly use wet chemistry and NIRS, 

however these methods are time consuming, costly and spatially invariable (Pullanagari et al., 

2013a). Remote sensing is a time effective and cost efficient method of gathering this 

information of a both local and broad scales, hence proposing an alternative for mapping forage 

quality nutrients. The aim of this research was to assess the utility of hyperspectral and 

multispectral remote sensing in predicting key forage quality nutrients (NDF, ADF and Lignin) 

using RF. The main objectives were: (i) to assess the capability of hyperspectral remote sensing 

in detecting three forage fibre quality nutrients (ii) to evaluate the effectiveness of using known 

absorption features for selection of the most optimal subsets of hyperspectral wavebands, (iii) 

to investigate the capability of high resolution RapidEye-5 multispectral imagery to detect and 

predict forage quality nutrients using a specialized algorithm and ancillary data, (iv) to test the 

capability of the SGB in identifying the most important wavebands for detecting forage quality 

nutrients, (v) to compare the respective capabilities of hyperspectral and multispectral remotely 

sensed data to detect and predict key forage quality nutrients. Each of these objectives will be 

discussed in the section below.  

4.2 Assessing the capability of hyperspectral remote sensing in detecting forage fibre 

quality nutrients using RF. 

Results from the study showed that the RF model that utilized all hyperspectral wavebands (n 

= 1910) successfully detected forage quality nutrients. More specifically, the detection of ADF 

and Lignin were successfully predicted, hence produced high R2’s of 88% and 87%, 

respectively, while NDF predicted a low R2 of 47%. Here, majority of the RF model performed 

exceptionally well despite NDF predicting a slightly low result. This could be a result of a 

small range of variation (Zhao et al., 2007). Overall, the results show that hyperspectral remote 

sensing in conjunction with a statistical approach (RF) can detect most of the forage quality 

nutrients present in this study by overcoming problems of dimensionality and multicollinearity. 
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4.3 Evaluating the effectiveness of using known absorption features for selection of the 

most optimal subsets of hyperspectral wavebands.  

The study compared the use of known absorption features and using the entire hyperspectral 

dataset in detecting the most accurate results. When using the known absorption features 

dataset, this study produced slightly lower results than when using the entire hyperspectral 

dataset. Hence, the selection of the most optimal subsets of wavebands was taken from the 

variable importance of the entire hyperspectral dataset. It was found the detection of NDF was 

related to the blue, red and shortwave regions, and for ADF and Lignin wavebands only were 

related to the blue and shortwave regions of the electromagnetic spectrum. These findings are 

related to the findings of previous studies (Curran, 1989; Elvidge, 1990; Himmelsbach et al., 

1988; Kawamura et al., 2008).  

A final step was executing a combination of selected variable importance wavebands 

from using the entire dataset and known absorption features. Results showed an increase in R2 

of 0.03% for ADF and Lignin, however a decrease of 0.03% for NDF was predicted. In this 

study, it is shown that stronger predictions can be made using the known absorption features 

in combination with the most important wavebands derived from the original entire 

hyperspectral dataset. Hence, it can be concluded that the effectiveness of using known 

absorption features, when used in conjunction with the most important variables from the entire 

hyperspectral dataset and RF, improves overall results. This provides an ideal framework for 

reducing the number of wavebands in a hyperspectral dataset and can be used to determine the 

optimal subset of wavebands used to produce the highest prediction accuracies.  

4.4 Investigating the capability of high resolution multispectral imagery to detect and 

predict forage quality nutrients using a specialized algorithm and ancillary data.  

The results from this study confirm the effectiveness of RapidEye-5 multispectral data to 

accurately detect forage quality nutrients. Results show that the RapidEye-5 imagery produced 

R2 predictions within the range of 0.67 and 0.74 using RF. Hence, these results confirm the 

effectiveness of the RapidEye-5 multispectral image sensor to detect and predict forage quality 

nutrients whilst dealing with the complexity of a grassland ecosystem. More specifically, 

results show the potential of the RapidEye-5 multispectral data to accurately detect forage 

quality nutrients (NDF, ADF and Lignin) in KwaZulu-Natal, South Africa. 
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4.5 Testing the capability of the SGB in identifying the most important wavebands for 

detecting forage quality nutrients. 

This study compared the capability of both RF and SGB in detecting and predicting forage 

quality nutrients. It was envisaged that the SGB algorithm would produce better predictions 

than the RF algorithm, as SGB promises to yield better results when used ideally with high 

resolution data. However, the confidence of the RF algorithm is still prevalent as results show 

better predictions than when using the SGB algorithm. Hence, the predictions made using the 

RF algorithm was used to select the most important wavebands for detecting and predicting 

forage quality nutrients. Using RF wavebands in the Red, Red-edge and NIR regions most 

effectively contributed to the models performance, hence they were the most important 

wavebands used to predict forage quality nutrients (NDF, ADF and Lignin) and is confirmed 

by previous studies relating to forage quality biochemicals (Mutanga et al., 2015; Pullanagari 

et al., 2013b). 

 Furthermore, this study used ancillary data within the final prediction models to predict 

forage quality nutrients. Results indicate that the inclusion of ancillary data increases the 

performance of the overall model, hence a 0.04 to 0.10 range of increased R2’s was predicted 

for the forage quality nutrients in this study. Out of the four different types of ancillary data 

(LAI; CHL; species type; and SC) input into the final prediction model, species type predicted 

highest. More specifically, species type (Festuca costata, Tristachya leucothrix, and Themeda 

triandra) was the most important predictor ancillary data variable used to predict forage quality 

variables (NDF, ADF and Lignin) in this study. It can be concluded that the RF algorithm when 

used in conjunction with ancillary data, provides an ideal detection and prediction framework 

for successfully overcoming grassland complexities, which is a primary impediment in forage 

quality nutrient mapping. 

4.6 A comparison between the respective capabilities of in-field hyperspectral and 

multispectral remotely sensed data to detect and predict key forage quality nutrients.  

Overall, in-field hyperspectral remote sensing resulted in the best detection accuracies (ranging 

from 0.57 to 0.81 in R2), outperforming the multispectral dataset image data (0.67 and 0.74 in 

R2). However, it is important to understand the differences in the methodological approaches 

used for both in-field hyperspectral and multispectral remote sensing. The capabilities of 

satellite multispectral remote sensing used in this study, did exceptionally well to detect and 

map forage quality nutrients (NDF, ADF and Lignin). In literature, it is envisaged that in-field 
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hyperspectral remote sensing will produce more accurate results due to the proximity of the 

sensor to the grass leaf in the field. However, this is still a time consuming, expensive and 

laboring method.  

It is important to note the complexity of the task when dealing with the large number 

of contiguous wavebands using in-field hyperspectral data that records between 350-2500 

wavelengths, whilst satellite multispectral data only uses few wavelengths. Hence, 

computational time is reduced as well as problems of multicollinearity and dimensionality 

when using satellite multispectral data. A trade-off exists between the use of in-field 

hyperspectral and satellite multispectral data. In-field hyperspectral is more labour intensive 

and time consuming, however it produces more accurate results, whilst satellite multispectral 

remote sensing is inversely proportional. The differences in accuracy are not too far apart and 

predict successfully for both. Considering the two different methodological approaches, it was 

interesting to study the difference in detection accuracies and hence, it was important 

comparing the use of multispectral remote sensing using the RapidEye-5 image data, to in-field 

hyperspectral remote sensing.  

4.7 Recommendations for future research 

Several recommendations for future research are suggested below: 

 

 Duplication of the same methodological approach over numerous locations and 

seasons, overall producing a synoptic scale map of forage quality nutrients in KwaZulu-

Natal, South Africa, where land systems change is widespread. It will be interesting to 

see the change in biochemical concentrations over the different seasons. Hence, 

improving the efficacy of remote sensing in detecting and predicting forage quality 

nutrients and, the importance of informing policy, rangeland managers and farmers.  

 Future research should improve prediction accuracies using very high resolution 

imagery with spatial resolutions below 5m such as IKONOS and QuickBird. Also, the 

use of freely available imagery such as Landsat and SPOT imagery in detecting forage 

quality nutrients, that will be inexpensive and useful to small scale farmers. 

 Creating an easy to use operational framework for detecting and predicting forage 

quality nutrients using remote sensing for small and commercial farmers, conservation 

and policy makers. The production of forage quality nutrient maps will assist and 

inform these stakeholders to make better decisions regarding the effect of climate 
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change on forage quality, the effect of changing nutrient thresholds on grazing 

ungulates, and how these effects affect the policy and the economy.   

4.8 Conclusion 

The aim of this thesis was to assess the utility of remote sensing technologies to detect and 

predict forage quality nutrients. The research undertaken in this study showed that it is possible 

to detect and predict forage quality nutrients using both in-field hyperspectral and multispectral 

satellite imagery. The conclusion was based on the following observations as made in this 

dissertation: 

 

1. In-field hyperspectral remote sensing is capable of accurately detecting forage quality 

nutrients. Results show that the random forest algorithm could discriminate each forage 

quality nutrient (NDF, ADF and Lignin). It is important to note the predictive ability of 

the RF algorithm and its ability to effectively reduce the number of redundant 

wavebands, which is necessary step when dealing with large amounts of data. 

Additional wavebands (blue, red and SWIR) were reported as effective regions for 

detection of forage quality nutrients in this study. 

2. Multispectral remote sensing using a spatial resolution of 5m is capable of detecting 

and mapping forage quality nutrients. The RapidEye-5 image data successfully 

predicted and mapped NDF, ADF and Lignin with using RF and SGB algorithms. Both 

RF and SGB can discriminate the most important wavebands for the detection of forage 

quality nutrients. The inclusion of ancillary data should always be a vital step to 

yielding more accurate results.  

3. The most important variables for the detection of forage fibre quality nutrients using 

multispectral satellite image data (NDF, ADF and Lignin) are prevalent in the red, red-

edge and NIR regions of the electromagnetic spectrum. 
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