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ABSTRACT  

Fusarium spp are common contaminants of maize and produce many mycotoxins, including the 

fusariotoxin fusaric acid (FA).  FA is a niacin related compound, chelator of divalent cations, 

and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 

(SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. The 

effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular 

carcinoma (HepG2) cell line were investigated. We determined FA toxicity (24h incubation;     

IC50= 104µg/ml) on mitochondrial output, cellular and mitochondrial stress responses, 

mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, 

qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with 

significant depletion of intracellular ATP (p = 0.0062). FA induced a significant increase in 

lipid peroxidation (p = 0.0002), despite up-regulation of the anti-oxidant transcription factor, 

Nrf2 (p < 0.0014). FA significantly decreased expression of SIRT3 mRNA (p = 0.0007) with a 

concomitant decrease in protein expression (p = 0.0012). Lon protease was also significantly 

down-regulated (p = 0.0044). FA induced aberrant mitochondrial biogenesis as evidenced by 

significantly decreased protein expressions of: PGC-1α (p = 0.0005), p-CREB (p = 0.0008), 

NRF1 (p = 0.0004) and HSP70 (p = 0.0102). Finally, FA activated apoptosis as noted by the 

significantly increased activity of caspases 3/7 (p = 0.0032) and also induced cellular necrosis 

(p<0.0001). This study provides insight into the molecular mechanisms of FA (a neglected 

mycotoxin) induced hepatotoxicity and may aid in understanding and predicting the 

contamination risks of FA. This is of particular importance to developing countries where the 

risk of mycotoxin exposure is high due to consumption of often contaminated agricultural 

produce. 
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INTRODUCTION  

1.1. Background 

Third world countries, particularly those found in Africa are faced with a multitude of socio-

economic struggles making it one of the most food insecure regions. The Food and Agriculture 

Organization (FAO) defines food security as “a situation that exists when all people, at all 

times, have physical, social, and economic access to sufficient, safe, and nutritious food to meet 

their dietary needs and food preferences for an active and healthy life” (Schmidhuber and 

Tubiello, 2007).  But in Africa, the challenge to meeting the above mentioned criteria are 

hampered by an ever increasing population and intense poverty often leading to the 

consumption of contaminated food.  

Maize is an important food source for millions of South Africans (Boutigny et al., 2011). Fungi 

under suitable conditions parasitize agricultural produce including maize. These fungi produce 

secondary metabolites known as mycotoxins that benefit the fungi by being toxic to other 

organisms thereby acting as a survival mechanism (Hussein and Brasel, 2001). Maize is infected 

by a number of fungal pathogens including members of the genera Fusarium. The growing 

interest in Fusarium species stems from their ability to produce fusariotoxins (Nedělník, 2002).  

Acute and chronic effects are implicated in diseased states (Coulombe, 1993) and is dependent 

on the species and susceptibility of the animal to the toxin (Pal et al., 2015).  Acute toxicity 

results in a rapid onset of toxin induced responses while chronic exposure is characterized by 

low levels of toxin over a long time period often resulting in irreversible damage and 

carcinogenesis (Pal et al., 2015). An often neglected fusariotoxin is fusaric acid (FA), a niacin 

(i.e. nicotinamide) related compound (Ogata et al., 2001) and efficient chelator of divalent 

cations (Hirai et al., 2005, Stack et al., 2004).  

Fusaric acid (5-butylpicolinic acid) is a derivative of picolinic acid and is produced mainly by 

Fusarium moniliforme (Nedělník, 2002), it possesses only low to moderate toxicity and has 

several pharmacological properties evident in the cardiovascular, immune and nervous systems 

(Stack et al., 2004, Wang and Ng, 1999). FA enhances the toxicity of other mycotoxins and this 

synergism is considered the major contributor to its mechanism of action (Malovrh and 

Jakovac-Strajn, 2010, Fairchild et al., 2005). These synergistic effects can be attributed to the 

presence of a plethora of Fusarium spp. and strains within the contaminated feed samples or due 

to multiple mycotoxins being produced by the same species (Bacon et al., 1996). Regardless, an 

analysis focusing on a single toxin is likely to show better correlation between its concentration 
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and induced toxicity. Mycotoxins exert a variety of biological effects owing to their diverse 

chemical structures, thus no generalized mechanism of action can be applied to all mycotoxins 

(Kiessling, 1986).  

Several studies on FA showed it to induce oxidative stress by down regulating anti-oxidant 

enzymes and increasing the production of reactive oxygen species (ROS) (Iwahashi et al., 1999, 

Jiao et al., 2014, Singh and Upadhyay, 2014). Excess ROS induces oxidative modifications to 

macromolecules, inhibits protein functions, promotes cell death (Circu and Aw, 2010) and has 

been implicated in disease initiation and progression (Qiu et al., 2010). Although ROS can be 

generated in many cellular compartments, the mitochondria is the major contributor (Balaban et 

al., 2005). ROS formation occurs when unpaired electrons escape the electron transport chain 

(ETC) and react with molecular oxygen (St-Pierre et al., 2006). FA may exert its toxic effects 

through dysregulation of mitochondrial processes (Telles-Pupulin et al., 1998) leading to excess 

ROS generation.   

Sirtuin 3 (SIRT3) is an important regulator of mitochondrial lysine acetylation (Lombard et al., 

2007). SIRT3 deacetylase activity is stimulated by its co-factor, nicotinamide adenine 

dinucleotide (NAD+) and inhibited by its reaction product, nicotinamide (NAM) (Guan et al., 

2014). SIRT3 influences homeostasis by targeting enzymes that regulate key mitochondrial 

processes including the Kreb‟s cycle (Finley et al., 2011) and oxidative phosphorylation 

(OXPHOS) (Ahn et al., 2008). SIRT3 also maintains mitochondrial integrity by regulating the 

stress response protein LON protease (LON) at the post-translational level (Gibellini et al., 

2014a). LON is an ATP dependent protease that catalyzes the degradation of oxidatively 

damaged proteins in the mitochondrial matrix. LON can also act as a chaperone protein, 

independent of its proteolytic activity and promotes the assembly of ETC subunits (Bota et al., 

2005 ).  

The primary defense against oxidative stress are endogenous anti-oxidant enzymes that 

scavenge excess ROS. The transcriptional co-activator, peroxisome proliferator-activated 

receptor gamma co-activator α (PGC-1α) interacts with various transcription factors to regulate 

biological programs (Lin et al., 2005). PGC-1α regulates ROS metabolism by mediating the 

expression of anti-oxidant enzymes catalase and superoxide dismutase (SOD) (St-Pierre et al., 

2006). Oxidative stress increases the expression of both PGC-1α, and SIRT3 expression through 

activation of estrogen-related receptor α (ERR-α) In turn, SIRT3 stimulates PGC-1α expression 

via phosphorylated cAMP response element binding protein (pCREB), thereby forming a 

positive feedback loop and increasing anti-oxidant defences (Kong et al., 2010). SIRT3 is also 
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known to enhance SOD2 activity (the primary mitochondrial superoxide detoxification enzyme) 

by deacetylation (Tao et al., 2010, Qiu et al., 2010).  

The induction of the transcription factor nuclear factor-erythroid 2-related factor (Nrf2) and 

subsequent mediation of phase 2 response is an important cellular reaction to oxidative stress 

and is dependent on the release of Nrf2 from its repressor Kelch-like ECH-associated protein 1 

(Keap1), a zinc thiol protein (Dinkova-Kostova et al., 2005). It has been suggested that Nrf2 is a 

transcriptional regulator of SIRT3 (Flick and Lüscher, 2012) and LON (Ngo et al., 2013 ). 

Mitochondrial biogenesis is a mechanism developed by cells to prevent mitochondrial lesions 

and maintain mitochondrial integrity (Esposti et al., 2012). PGC-1α is the master regulator of 

mitochondrial biogenesis and respiration (St-Pierre et al., 2006) by mediating the activity of 

several transcription factors including the transcription factor nuclear respiratory factor 1 (NRF-

1) (Yoboue and Devin, 2012). Furthermore, SIRT3 was shown to mediate the effects of PGC-1α 

on mitochondrial biogenesis (Kong et al., 2010). 

The liver is constantly being challenged by various stimuli making it a frequent site for damage 

from toxic insults. Toxins reach the liver in concentrated forms since ingested materials are first 

processed by the liver before entering systemic circulation. Furthermore, most detoxification 

reactions are carried out mainly by the liver ameliorating toxicity  (Fenton, 2002). Furthermore, 

the high density of mitochondria within liver cells is key to cell survival, with even mild 

mitochondrial dysfunction resulting in oxidative stress and cell death. The liver derived HepG2 

cell line is widely used as an in vitro toxicity model that reflects xenobiotic metabolism owing 

to inducible expression of detoxification enzymes (Mersch-Sundermann et al., 2004).  

Although a common contaminant of agricultural produce little is known about the underlying 

molecular mechanisms of FA induced oxidative stress and mitochondrial dysfunction. We 

investigated the effects of the niacin related compound, FA, on SIRT3 and its ability to induce 

oxidative and mitochondrial stress in the HepG2 liver cell line.  

1.2.  Problem statement  

Maize is the staple diet of majority population in South Africa and is also used as feed for live-

stock. This puts the public at risk of exposure to mycotoxins in particular those produced by the 

Fusarium spp. (ubiquitous soil fungi).  Many studies have been carried out on various 

fusariotoxins, but to date, little work has been done on FA. Although chelation and induction of 

oxidative stress have been cited as general mechanisms of FA toxicity, molecular pathways 

mediating its mechanisms of action are yet to be elucidated.  
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1.3. Aim 

The aim of this study was to investigate the mechanism of FA cytotoxicity and mitochondrial 

toxicity in the HepG2 liver cell line.  

1.4. Research questions  

This study focused specifically on the cytotoxic and mitochondrial toxic effects of FA in a liver 

cell line. The liver is the main site of xenobiotic metabolism and is densely populated with 

mitochondria making it prone to toxic insult by FA. The following research questions were 

posed:  

 Does FA interfere with liver cell metabolism and mitochondrial output? 

 Does FA induce liver cell mitochondrial stress? 

 Does FA affect liver cell mitochondrial biogenesis? 

1.5. Objectives  

 Determine metabolic activity of liver cells treated with FA 

 Determine molecular mechanisms involved in the dysregulation of mitochondrial stress 

responses in liver cells treated with FA 

1.6. Hypothesis  

It was hypothesised that FA (a weak acid) induced mitochondrial toxicity in HepG2 cells by 

mediating dysregulation of key proteins involved in mitochondrial function and stress 

responses.  

1.7.  Experimental approach  

The human HepG2 hepatocellular carcinoma cell line was used as a model to investigate the 

mitochondrial toxic properties of FA. Cells were treated for 24 hours (h) with a range of FA 

concentrations to determine cell viability and the concentration that yielded a 50% reduction in 

viability (IC50; deduced from the dose-response curve). All assays to determine mitochondrial 

toxicity and cell damage used this IC50 value (Figure 1).  
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Figure 1: A schematic showing the experimental approach followed to investigate the 

effects of  FA in cultured HepG2 liver cells; Adenosine triphosphate (ATP),  Heat shock 

protein 70 (HSP70), Lactate dehydrogenase (LDH), Metyhyl thiazol tetrazolium (MTT),  

Nuclear factor-erythroid 2-related factor 2 (Nrf2),  Nuclear respiratory factor 1(NRF-1), 

Peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1),  

phosphorylated Cyclic AMP response binding element protein (pCREB),  Quantitative 

polymerase chain reaction (qPCR),  Single cell gel electrophoresis (SCGE), Thiobarbituric 

acid reactive substances (TBARS) (prepared by author). 
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CHAPTER 1: LITERATURE REVIEW 

1.1. Mycotoxins  

1.1.1. Characteristics  

Mycotoxins are mould secondary metabolites produced when these fungi contaminate food and 

feed. One species of mould can produce a plethora of mycotoxins and the same mycotoxin can 

be produced by a variety of mould species. The severity of contamination is dependent on 

environmental factors as well as storage methods with humid conditions accelerating the rate of 

contamination (Coulombe, 1993). Ingestion of mycotoxins at various steps of the food chain 

(Zain, 2011) leads to an array of toxicity  in both animals and humans.  

Acute and chronic effects are implicated in diseased states (Coulombe, 1993) and is dependent 

on the species and susceptibility of the animal to the toxin (Pal et al., 2015).  Acute toxicity 

results in a rapid onset of toxin induced responses while chronic exposure is characterized by 

low levels of toxin over a long period of time often resulting in irreversible damage and 

carcinogenesis. Exposure to mycotoxins is mainly through ingestion of contaminated 

agricultural produce or consuming animal products containing mycotoxin metabolites, however, 

inhalation of fungal spores and dermal contact have also been cited as possible exposure routes 

(Zain, 2011, Pal et al., 2015).  

Secondary metabolites are structurally diverse, low molecular weight compounds with obscure 

functions, and unlike primary metabolites, which are universally distributed compounds of 

intermediary metabolism (Zain et al., 2013), secondary metabolites  are not  directly required to 

facilitate growth of the producing organism (Fox and Howlett, 2008). Regulation of secondary 

metabolism in fungi is complex, responding to environmental cues and host stimuli (Fox and 

Howlett, 2008). Most secondary metabolites are synthesized from a few precursors which 

branch from a limited number of primary metabolism reaction points (Zain et al., 2013). 

Secondary metabolites play roles in reproduction and differentiation and are often associated 

with providing the producing organism with a competitive advantage allowing them to survive 

in their ecological niche (Fox and Howlett, 2008) through inhibiting the growth of other 

organisms in the environment (Zain et al., 2013).   
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1.1.2. Biological effects of mycotoxins  

While all mycotoxins are fungal in origin, not all toxic compounds produced are termed 

mycotoxins. The cellular target and concentration of the metabolite are both important (Zain, 

2011). Mycotoxicoses presents with symptoms resulting from the interactions of functional 

molecules and organelles with mycotoxins. Mycotoxins exert a variety of biological effects 

owing to their diverse chemical structures, thus no generalized mechanism of action can be 

applied to all mycotoxins (Kiessling, 1986). 

Mycotoxins exert their biological effects by altering basic cellular processes including 

mitochondrial function, carbohydrate metabolism, lipid and steroid metabolism as well as the 

biosynthesis of protein and DNA (Figure 1.1). A mycotoxin may act primarily on the DNA 

template, or impair and inhibit transcription and translation processes thus interfering with 

protein synthesis. These primary events may then result in secondary effects in which metabolic 

processes are altered due to aberrant enzyme activity and regulation (Kiessling, 1986).   

Many mycotoxins act at the level of DNA and RNA processing with several showing 

carcinogenic potential. Strong correlations can be established between carcinogenicity and the 

extent of covalent DNA binding among mycotoxins such as aflatoxin B1 and its related 

compounds. These covalent bonds often cause mutations leading to cancer. Mycotoxins are able 

to inhibit DNA synthesis and induce both single and double strand breaks. The inhibition of 

RNA polymerase and decrease in RNA content  by mycotoxins (Kiessling, 1986) show that 

these metabolites are able to affect transcriptional processes.  

Inhibitory effects of mycotoxins on transcriptional and translational processes, including those 

of the mitochondria  (Bin-Umer et al., 2011) may result in the inhibition of protein synthesis 

and enzyme activity resulting in modified cellular processes and metabolism. A vast array of 

mycotoxins has been shown to adversely affect mitochondria. This is achieved through the 

inhibition of the Kreb‟s cycle, uncoupling of oxidative phosphorylation and through competitive 

inhibition of mitochondrial transport proteins (Kiessling, 1986). Furthermore mycotoxins were 

shown to increase reactive oxygen species (ROS) generation and decrease mitochondrial 

membrane potential (Bin-Umer et al., 2011).  

Numerous mycotoxins are implicated in the dysregulation of lipid metabolism, aflatoxin B1 is 

able to affect transport of triglycerides but also of phospholipids and cholesterol (Kiessling, 

1986).  
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At the organ level, mycotoxins have been shown to stimulate immune activity but inhibit 

immune cell proliferation resulting in an incompetent immune response. Mycotoxins are also 

known to cause constriction of the small airways. But the most threatening effect of mycotoxin 

exposure is the risk of carcinogenesis and mutagenesis, particularly in metabolizing organs such 

as the liver and kidney (Pal et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Mycotoxins exert a variety of biological activities and inhibit various cellular 
processes (adapted from Kiessling, 1986). 
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1.2. Liver 

1.2.1. Liver functions and structure  

The liver serves a multitude of functions and plays key roles in metabolism, secretion, excretion 

and immune responses. The major metabolic and synthetic functions of the liver include 

carbohydrate, lipid and protein metabolism. Synthesis of proteins, mainly albumin takes place in 

the liver as well as the excretion of exogenous compounds such as xenobiotics and endogenous 

substances like bilirubin. The liver also secretes bile which is needed for the absorption of fat 

and fat soluble vitamins in the small intestine (Mitra and Metcalf, 2009). The immunological 

functions of the liver are executed by hepatic macrophages known as Kupffer cells (Fenton, 

2002).   

The liver is composed of highly metabolic cells. Liver cells are called hepatocytes and are 

organized in rows forming lobules (Campbell, 2006) adjacent to sinusoids. Sinusoids are spaces 

that are supplied by branches of the hepatic artery and portal vein which in turn supply 

hepatocytes with solutes from blood (Figure 1.2). These solutes bathe the hepatocytes which 

absorb many of the dissolved particles (Fenton, 2002) 

.  

  
 

 

 

 

 

 

 

Figure 1.2: Basic structure of the liver (prepared by author). 

Hepatocytes are rich in smooth and rough endoplasmic reticulum which is necessary to carry 

out xenobiotic metabolism and protein synthesis respectively (Campbell, 2006). The liver also 

possesses a high number and density of mitochondria which form an integrative hub of 

carbohydrate, lipid and protein metabolism as well as being essential regulators of hepatocyte 

death and survival. The large number of mitochondria is essential for energy and ROS 
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production the latter being needed for cellular signaling, fine tuning responses to stress and 

global adaptations to metabolism (Esposti et al., 2012).   

The liver is the primary site of xenobiotic metabolism. Most compounds are not intrinsically 

toxic to the liver and require metabolic transformation into a toxic metabolite via a process 

known as bioactivation. Since gastrointestinal absorption is enhanced by lipophilicity of a 

compound the liver is essential to the conversion of these compounds to more water soluble 

metabolites that can be excreted (Sturgill and Lambert, 1997). There are two types of reactions 

involved in xenobiotic metabolism: phase I and phase II reactions. Phase I reactions occur first 

and involve oxidation, hydrolysis or reduction of the xenobiotic and enhance water solubility by 

generating hydroxyl, carboxyl, or epoxide functional groups on the parent compound. These 

functional groups can then facilitate phase II reactions which further enhance water solubility 

through conjugation with glucuronate, sulphate or other glutathione moieties (Sturgill and 

Lambert, 1997). 

1.2.2. Hepatotoxicity  

The severity of xenobiotic toxicity is largely determined by the organisms‟ rate of metabolism 

(Swick, 1984). Toxic chemicals frequently damage the liver as the portal vein carries ingested 

material directly to the liver in a relatively concentrated form. Furthermore toxins are 

concentrated in the liver since most detoxification reactions occur in this organ, included 

amongst these reactions is bioactivation in which the pre-toxin is converted to a toxic form by 

metabolic enzymes (Fenton, 2002). Injury to hepatocytes can be cytotoxic (morphological 

changes to cells), genotoxic (damage to DNA) or metabolic (affecting cell metabolism and 

mitochondria)  (Figure 1.3) (Castell et al., 1997); and is dependent on the toxin as well as the 

degree and frequency of exposure. All of these factors contribute to hepatotoxicity and 

culminate in aberrant cell survival processes leading to necrotic hepatocyte death or 

carcinogenesis (Fenton, 2002). 

Hepatocellular carcinoma (HCC) is the primary malignancy of the liver (Zhao et al., 2011) and 

is the fifth most common cancer worldwide. It is a growing malignancy with poor patient 

survival despite the development of new treatments over the past few decades (Bodzin and 

Busuttil, 2015).  

The epidemiology of HCC is complex and involves a host of factors and co-factors. Chronic 

infection with the hepatitis B virus and hepatitis C virus (HBV and HBC respectively) are 

responsible for the majority of cases of HCC cases worldwide. Of concern, particularly in 

Africa is the consumption of agricultural products infected with mould strains that produce the 
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aflatoxin. The synergism between HBV and aflatoxin exposure increases the risk of developing 

HCC. Human immunodeficiency virus (HIV) infection is also thought to increase rates of HCC 

in HBV-infected individuals and this may be of particular relevance in sub-Saharan Africa, 

where 67% of all individuals living with HIV reside (Venook et al., 2010, Kew, 2010 ).  

1.2.3. Use of the HepG2 cell line  

The liver derived HepG2 cell line is widely used as an in vitro toxicity model that reflects 

xenobiotic metabolism owing to inducible expression of phase I and phase II enzymes as well as 

the expression of anti-oxidant systems (Mersch-Sundermann et al., 2004). This suggests that the 

HepG2 cell line can be used as a suitable cell model to determine stress responses.   

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Mechanisms of hepatotoxicity (prepared by author).  

1.3. Picolinic acid  

Picolinic acid (PA) is a six-membered ring structure compound (pyridine ring), containing five 

carbon atoms, a nitrogen and a carboxyl group at position two (Grant et al., 2009) and is a 

niacin related compound (Ogata et al., 2000). Picolinic acid is primarily formed in the liver, 

kidney and brain (Grant et al., 2009) and is synthesized in a side pathway of NAD biosynthesis 

in animals (Ogata et al., 2001). Tryptophan can be metabolized via the kyneurinine pathway 

which oxidatively degrades this amino acid to yield kynurenic acid (KYNA), PA and NAD 

(Figure 1.4) (Grant et al., 2009). Picolinic acid is also produced as a toxin by the mould species 

Magnorpathegrisea and Fusarium spp contributing to their pathogenesis (Zhang et al., 2004).  
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Figure 1.4: In vivo synthesis of PA via the kyneurine pathway (Grant et al., 2009) 

1.3.2. Mechanism of action  

The best characterised physical property of PA is its ability to efficiently chelate divalent metal 

cations including iron, zinc, copper, nickel and lead (Fernandez-Pol et al., 1977). Picolinic acid 

is related to niacin (i.e. nicotinic acid, nicotinamide) (Figure 1.5) which is a water soluble 

vitamin (Ogata et al., 2001) and plays various physiological roles in organisms (Ogata et al., 

2000). It can be converted to NAD in vivo. NAD is an important co-factor required for DNA 

repair, energy production (Ogata et al., 2001) and apoptosis (Ogata et al., 2000).  
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Figure 1.5: Chemical structures of the isomers Picolinic acid (A) and Nicotinic acid (B)                                    

(Grant et al., 2009).  

1.3.3. Pharmacology 

Exploiting its chelatory capabilities, PA-metal complexes are now used as a means to introduce 

bioactive metals into biological systems. Chromium-picolinate supplementation has been 

advocated in type II diabetes. Chromium has effects on lipid and carbohydrate metabolism but 

is poorly assimilated in the body. The PA in complex with chromium allows for better 

absorption of this metal (Grant et al., 2009).  

In experimental systems PA has been shown to elicit a number of effects within the body, 

particularly in immune system functioning. Macrophage effector functions were enhanced by 

PA through the increased gene expression of nitric oxide synthase (NOS) and expression of the 

macrophage inflammatory proteins (MIP) 1α and 1β mediated by interferon γ (IFNγ). Other 

studies have shown PA to possess anti-viral and anti-bacterial potential (Grant et al., 2009).  

 Investigators have also observed the effects of PA on cell cycle progression. Fernandez-Pol et 

al. (1977) showed that PA reversibly inhibits growth of cultured cells. Normal rat kidney cells 

were arrested in the G1 phase whereas transformed cells were arrested at various stages 

depending on the virus used to transform them. These results suggest that PA induces cell cycle 

arrest by interacting with a specific growth control mechanism that may involve NAD+ 

(Fernandez-Pol et al., 1977). Studies have also shown that PA possesses tumouricidal activity. 

Ogata et al. (1998) demonstrated that PA induces apoptosis and DNA fragmentation in the 

human promyelocytic leukaemia (HL-60) cell line (Ogata et al., 1998). In human myelogenous 

leukaemia cells (K562) PA was shown to cause DNA fragmentation and elevate levels of 

intracellular peroxide; however apoptosis was not observed in normal human quiescent 
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lymphocytes. This suggests that PA exerts some degree of tumour specificity                                     

(Ogata et al., 2000).  Most niacin related compounds exist as natural components in organisms, 

possessing unknown functions and warrant investigation as potential therapeutics                                           

(Ogata et al., 2000 ).  

1.4. Fusaric acid  

Fusaric acid (5-butylpicolinic acid) is a PA derivative and niacin related compound (Ogata et 

al., 2001) belonging to a novel class of nicotinic acid derivatives (Stack et al., 2014). The 

structure of FA is similar to that of PA as both contain pyridine rings, however FA has a 

substituted butyl group at position 5 (Figure 1.6) (Ogata et al., 2001). Fusaric acid is a common 

contaminant of maize and maize based food and feeds and is also found in grain where 

Fusarium spp. are isolated. Peculiarly, Bacon et al. (1996) showed that FA is synthesized by all 

strains of  Fusarium spp. surveyed. Thus, this secondary metabolite is different from other 

mycotoxins synthesized by various Fusarium spp., e.g. deoxynivalenol, and zearalenone, which 

are restricted to a few taxonomic groups among a species population. These investigators 

estimated that 11,665 species of plants, hundreds of which are agriculturally significant food 

plants, may serve as hosts of Fusarium spp. that are capable of producing FA. They concluded 

that FA is likely to be one of the most widely distributed mycotoxins produced by strains in the 

genus Fusarium (Bacon et al., 1996).  

 

 

 

 

 

 

 

 

 

Figure 1.6: Structure of PA (A), FA (B) and Niacin (C). All three molecules are pyridine ring 
structures (Green box) however FA has a butyl group at position 5 (Red oval). Adapted from 

(Ogata et al., 2001). 
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1.4.1. Toxic effects and mechanism of action  

Fusaric acid has been classed as a phytotoxin (Smith and MacDonald, 1991) and is known to 

possess low to moderate toxicity in human and animal models. This is of concern since FA 

shows synergism with other fusariotoxins (Wang and Ng, 1999). The enhancement of toxicity 

may be explained by the variety of Fusarium spp. and strains within the contaminated feed 

samples or due to multiple mycotoxins being produced by the same species. Regardless, 

analyses focusing solely on a single toxin is unlikely to show a good correlation between the 

concentration of any single mycotoxin and its induced toxicity (Bacon et al., 1996). 

1.4.1.1. In vitro toxicity  

The effect of FA on the transfer of electrons from iron (ferrous state) to molecular oxygen was 

investigated by measuring oxygen consumption rates. This study showed that FA is capable of 

repressing oxygen consumption. This repression is related to the efficiency of the electron 

transfer from Fe2+–ligand complex to the oxygen molecule (Hirai et al., 2005) suggesting that 

FA is capable of affecting the ETC.  

Experiments by Iwahashi et al (1999) were conducted to clarify the effects of FA on hydroxyl 

radical (OH-) formation, and focussed on the interactions between this mycotoxin and iron ions. 

These investigators found that FA, via Fenton chemistry, enhanced the formation of the 

hydroxyl radical through chelation of iron ion. It is proposed that the oxygen atom in the 

carboxyl group and the nitrogen atom in the pyridine ring are responsible for the chelation of 

Fe2+ (Figure 1.7) (Iwahashi et al., 1999).  

 

 

 

 

 

 

 

 

 

Figure 1.7: Ferrous iron in complex with FA (Hirai et al., 2005). 
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The toxic effects of FA on rat liver mitochondria were studied by Telles-Pupilin and colleagues 

(1998). Their study showed that FA affected mitochondrial energy metabolism in at least three 

ways: (1) Inhibition of succinate-dehydrogenase, (2) inhibition of oxidative phosphorylation, 

and (3) inhibition of α-ketoglutarate-dehydrogenase. The inhibition of oxidative 

phosphorylation may be attributed to direct action of FA on the ATP-synthase complex without 

significantly inhibiting the ATP:ADP exchange (Telles-Pupulin et al., 1998).  

1.4.1.2. Animal toxicity 

Toxicity studies conducted in primiparous sows during the perinatal period showed that FA in 

synergism with other mycotoxins (deoxynivalenol and zearalenone) altered lymphocyte 

proliferation and apoptosis indicating that FA impairs the immune response. Feed intake was 

also decreased in the treated group (Malovrh and Jakovac-Strajn, 2010). The individual and 

combined effects of dietary diacetoxyscirpenol (DAS) and FA on turkey performance was 

determined by Fairchild et al. (2005). Their results showed that individually FA and DAS 

exhibit less toxicity than when administered together. This study also alluded to a protective 

effect of FA in DAS induced mouth lesions (Fairchild et al., 2005).  

An earlier study by Smith and MacDonald (1991) showed that pigs dosed with FA were 

lethargic and displayed brain neurochemical changes. This group also observed vomiting in 

swine treated with FA and concluded that FA induced toxic responses similar to Trichothecenes, 

proposing synergism of these mycotoxins (Smith and MacDonald, 1991). In a recent study, Yin 

et al. (2015) described a mechanism of notochord malformation in zebrafish after treatment with 

FA; an undulated notochord was attributed to chelation of copper by FA leading to aberrant 

lysyl oxidase activity. This enzyme is dependent on copper as a co-factor and cross-links 

collagen and elastin by catalysing allysine formation (Yin et al., 2015). These results implicate 

FA as a possible teratogen. 

1.4.1.3. Plant toxicity  

Toxicity induced by FA is better elucidated in plant models. Fusarium wilt is caused when the 

xylem of host plants is infected with the fungus Fusarium oxysporum, a known producer of FA. 

This mycotoxin accelerated the development of wilt disease by damaging cell membranes of 

leaves and causing non-stomatal water loss (Wang et al., 2015). A study by Wu et al (2008) 

showed that FA inhibited photosynthesis through reduction in chlorophyll mass and caused leaf 

wilting and mass necrosis (Wu et al., 2008). Fusaric acid has been shown to affect the 

development of corn seedlings by inhibiting root growth through interfering with metabolic 

processes, since root hair elongation is an ATP dependent process (Diniz and Oliveira, 2009).   
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Fusaric acid has the ability to change the proton electrochemical gradient across the plasma 

membrane, increase the loss of electrolytes, decrease cellular ATP levels, and inhibit some 

metalloenzymes (e.g., cytochrome oxidase) leading to respiratory impairment. Experiments by 

Singh and Upadhyay (2014) have shown that FA induced cell death is through the associated 

increase in ROS production and lipid peroxidation and the down-regulation of anti-oxidative 

enzymes (Singh and Upadhyay, 2014). Jiao et al (2014) demonstrated that mitochondrial 

dysfunction is a crucial event in the programmed cell death of tobacco suspension cells. Cells 

treated with FA exhibited a decrease in mitochondrial membrane potential, ATP content and 

anti-oxidant activities as well as increased hydrogen peroxide (H2O2)  and lipid peroxidation 

(LPO) (Jiao et al., 2014).  

1.4.2. Pharmacology  

Fusaric acid has also been shown to possess pharmacological activities that are apparent in the 

nervous and cardiovascular systems.  

By partially inhibiting tyrosine hydroxylase and inhibition of dopamine-β-hydroxylase (DBH) 

FA is able to affect neurotransmitter levels in the brain contributing to the toxicity of this 

mycotoxin (Wang and Ng, 1999). Dopamine-β-hydroxylase is required for synthesis of 

norepinephrine in the brain. Smith and MacDonald (1991) observed changes to swine 

neurochemistry after acute doses of FA. Their key findings included elevated levels of brain 

tryptophan, serotonin, and 5-hydroxyindole acetic acid as well as behavioural changes such as 

refusal to feed and lethargy. They attributed lethargy to enhanced action of the serotonergic 

nervous system resulting from elevated blood and brain tryptophan concentrations and the 

subsequent synthesis of serotonin, triggering the onset of sleep (Smith and MacDonald, 1991).  

Fusaric acid induced a reduction in blood pressure. A calcium salt of FA was tested in 

hypertensive patients for long term effects. In the first year both the systolic and diastolic blood 

pressures were lowered and no adverse effects were apparent. There were no consistent changes 

in heart rate or plasma volume. It was concluded that the hypotensive response was attained by 

reduction of the total peripheral vascular resistance index (Wang and Ng, 1999).  

More recently studies have shown FA to possess tumoricidal potential. In vitro studies on the 

HL-60 cell line revealed that FA induced apoptosis and DNA fragmentation. Although both PA 

and FA induced apoptosis in this study, FA was seen to effectively initiate apoptosis at lower 

concentrations compared to its parent compound. Niacin related compounds have low 

permeability through the cell membranes due to their electrical charge and structure, therefore 
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the addition of a fat soluble side chain to the pyridine ring may make the compound more 

effective (Ogata et al., 2001).   

Work by Stack JR et al (2004) elucidated a novel mechanism to treat head and neck squamous 

cell cancer (HNSCC). Fusaric acid can chelate divalent cations, especially zinc, and inactivate 

zinc finger proteins involved in DNA repair and protein synthesis. Their data demonstrated a 

suppressive effect of FA on two HNSCC cell lines. Fusaric acid reduced cell populations and 

arrested cell cycle progression. Although the exact mechanism is unknown FA is thought to 

cause DNA damage and inhibit DNA synthesis and repair. This may be brought on in part by its 

ability to chelate divalent cations from metalloproteins such as metallopanstimulin-1, which is a 

zinc finger protein (Stack et al., 2004). Many metalloproteins are involved in DNA repair and 

promotion of on-going cell growth and proliferation, chelation may be an alternate means of 

inducing cell cycle arrest or apoptosis. 

Ruda et al (2006) demonstrated that oral administration of FA inhibits tumour growth in an 

animal model for HNSCC. Following tumour cell inoculation mice were treated with FA or 

saline. The results of their study showed that FA treated mice had significantly slower tumour 

growth rates as well as decreased tumour mass when compared to control mice. This suggests a 

suppressive effect of FA on HNSCC xenografts (Ruda et al., 2006). The bioavailability of FA 

was determined by Stack et al., (2014) using male Sprague-Dawley rats. These investigators 

showed that 58% of the administered FA was available after oral administration suggesting that 

FA may be a viable oral therapeutic, however their study also revealed non-linear 

pharmacokinetic behaviour after administration of FA intravenously suggesting that metabolic 

enzymes and protein-FA interactions along with cellular transporters become saturated at a dose 

range of 10–75 mg/kg (Stack et al., 2014).  

1.5.  Mitochondria  

Mitochondria are double membrane organelles and are sometimes described as “cellular power 

plants” due to their ability to convert organic material into energy (Kakkar and Singh, 2007). 

These organelles are responsible for the bulk of ATP production through various means 

including the Kreb‟s cycle, β-oxidation of fatty acids and oxidative phosphorylation (OXPHOS) 

(Wang et al., 2013). They also play key roles in NADPH synthesis, DNA repair and metabolic 

pathways as well as playing a major role in cell death  (Kakkar and Singh, 2007). Mitochondria 

are also the major producers of endogenous ROS in human cells, serving as „redox messengers‟ 

regulating intracellular signaling (Wang et al., 2013).  
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Mitochondria contain four separate compartments, an inner membrane, an outer membrane, a 

matrix space enclosed by the inner membrane and an inter-membrane space between the inner 

and outer membranes. The Krebs‟s cycle occurs in the matrix of the mitochondria and the 

production of ATP occurs at the inner membrane (Champe et al., 2005).  

The Krebs‟s cycle participates in several mitochondrial processes. It is the final pathway where 

oxidative metabolism of macromolecules (carbohydrates, protein and fatty acids) converge to 

produce the reducing equivalents NADH and flavin adenine dinucleotide (FADH2), these 

reducing equivalents feed into the ETC (Champe et al., 2005). 

Production of ATP occurs via the ETC. This chain is divided into multi-enzyme complexes that 

are embedded in the inter-mitochondrial membrane. They are complex I: NADH CoQ 

reductase, complex II: succinate-CoQ reductase, complex III: reduced CoQ cytochrome c 

reductase, complex IV: cytochrome c oxidase and complex V: ATP synthase which is made up 

of the F1 and F0 units (Kakkar and Singh, 2007).   

The ETC is used to generate an electrochemical proton gradient across the inner membrane 

which is required for OXPHOS. Complex 1 (NADH hydrogenase) oxidizes NADH to NAD+ 

and initiates the process of electron flow. Electrons flow sequentially through complex III, 

cytochrome c and finally through complex IV where bound oxygen is reduced to water. During 

the process of electron flow from NADH to molecular oxygen, each of the three complexes (I, 

III, and IV) catalyzes the translocation of protons across the mitochondrial inner membrane. 

During OXPHOS the F0 sub-unit transmits energy from the electrochemical proton gradient to 

the F1 unit promoting ATP synthesis. This gradient facilitates the entry of adenosine 

diphosphate (ADP) and inorganic phosphate (Pi) into the matrix space. The ATP synthase 

complex then binds ADP to Pi producing ATP (Figure 1.8). The remaining part of the gradient 

is used to generate NADPH through a transmembrane enzyme called transhydrogenase, which 

is not part of the OXPHOS apparatus (Kakkar and Singh, 2007).  

Iron-sulphur clusters and heme are iron containing prosthetic groups that catalyse the transfer of 

electrons in a variety of electrochemical reactions including those of the ETC. Mitochondrial 

ETC complex I, contains iron-sulphur clusters whereas complex II and III contain both heme 

and iron-sulphur clusters. Heme groups can also be found in cytochrome c and complex IV. 

Heme and iron-sulphur clusters only become biologically active when they are linked to a 

polypeptide backbone, which then adopts correct folding and conformation (Atamna et al., 

2002). Aconitase is a crucial enzyme of the Kreb‟s cycle and is responsible for the inter-

conversion of citrate and isocitrate. This enzyme contains iron-sulphur clusters and is highly 
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susceptible to oxidative inactivation lending itself to play a vital role as a mitochondrial redox 

sensor  (Liu and Kamp, 2011). Thus both heme and iron-sulphur clusters are essential for the 

proper functioning of mitochondria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: The electron transport chain is a sequence of protein complexes through which 

electrons flow in a unidirectional manner from complex I to complex V culminating in the 

synthesis of ATP (prepared by author). 

1.5.2. Mitochondrial biogenesis 

Mitochondrial biogenesis is defined as the growth and division of pre-existing mitochondria 

(Jornayvaz and Shulman, 2010 ) since they cannot be generated de novo (Battersby and Richter,  

2013). Mitochondria are tubular in shape and changes to morphology are driven by fission, 

fusion and translocation. These processes allow for the proper organisation of the mitochondrial 

network during biogenesis (Ventura-Clapier et al., 2008). Mitochondrial fission is essential for 

the equal distribution of mitochondria in daughter cells during mitosis (Boland et al., 2013).  

These organelles possess their own genome and can auto-replicate (Jornayvaz and Shulman, 

2010 ). Mitochondrial DNA (mtDNA) is circular and encodes 13 mRNAs, 22 tRNAs and 2 

rRNAs. All 13 mRNAs encode proteins necessary for OXPHOS. The remaining mitochondrial 
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proteins including those involved in mitochondrial biogenesis itself, are encoded by the nuclear 

genome (Yoboue and Devin, 2012). The co-ordinated synthesis and import of proteins encoded 

by the nuclear genome is required for correct mitochondrial biogenesis (Jornayvaz and 

Shulman, 2010 ). Because a major portion of mitochondrial proteins are encoded by nDNA 

(Figure 1.9), a variety of mechanisms exist to target, import, and correctly assemble these 

proteins thereby ensuring proper mitochondrial function and morphology (Ventura-Clapier et 

al., 2008).  

 

 

 

 

Figure 1.9: The number of complex subunits encoded by mitochondrial (mtDNA) and nuclear 
(nDNA) genomes (Yoboue and Devin, 2012). 

1.5.2.1. Transcription factors involved in mitochondrial biogenesis 

The replication and transcription of mtDNA is driven by mitochondrial transcription factor A 

(Tfam) (Wu et al., 1999). This is a nuclear encoded transcription factor that binds to an 

upstream enhancer of the promoter sites of the two mitochondrial DNA strands (Ventura-

Clapier et al., 2008). Tfam helps regulate mtDNA number (Piantadosi and Suliman, 2006) and 

Tfam expression is co-ordinated and regulated by a highly specific set of transcription factors 

mentioned below.  

The nuclear respiratory factors (NRF-1 and NRF-2) are nuclear transcription factors that direct 

respiratory gene expression in cells. Both NRF-1 and NRF-2 are regulators for subunits of 

complex I, complex II, complex III, cytochrome oxidase and ATP synthase. These transcription 

factors also encode proteins involved in mtDNA transcription and replication and genes 

required for mitochondrial protein import (Yoboue and Devin, 2012).  

The peroxisome proliferator-activated receptor gamma co-activator (PGC-1) family of co-

activators (PGC-1α, PGC-1β and PRC) are highly versatile and have the ability to interact with 

a plethora of transcription factors allowing them to mediate a host of biological programs (Lin 

et al., 2005). Indeed, PGC-1α plays a pivotal role in mitochondrial biogenesis by co-regulating 

other transcription factors (Scarpulla et al., 2012). PGC-1α has emerged as the master regulator 

of mitochondrial biogenesis and respiration (St-Pierre et al., 2006). This co-activator mediates 
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the activity of several transcription factors involved in mitochondrial biogenesis by binding to 

transcription factors NRF-1, NRF-2 and estrogen-related receptor α (ERRα) among others 

(Yoboue and Devin, 2012). Initially, the NRF-1 transcription factor was identified as a target for 

PGC-1α induced mitochondrial biogenesis. PGC-1α can trans-activate NRF-1 mediated gene 

expression. PGC-1α also targets ERRα along with NRF-2 in regulating respiratory genes such 

as cytochrome c. Therefore NRF-1 and NRF-2 are thought to act downstream from both PGC-

1α and ERRα in facilitating respiratory gene expression (Scarpulla, 2011).  

The cyclic AMP (cAMP) response binding element protein (CREB) is a transcription factor that 

promotes the transcription of cAMP response element (CRE) regulated genes in response to 

different cellular signals. Phosphorylation of CREB by cAMP-dependent protein kinase (protein 

kinase A; PKA), as well as by Ca2+ -dependent and other protein kinases, is required for 

transcriptional activation of CREB. De Rasmo et al., (2009) showed that CREB is imported into 

the mitochondria by a membrane potential dependent mechanism and this import may be 

facilitated by heat shock protein 70 (HSP70). Once in the mitochondria, phosphorylated CREB 

(p-CREB) promotes protein synthesis of mitochondrial OXPHOS subunits by exerting its 

effects on the mtDNA (Rasmo et al., 2009).  

1.5.2.2. Integration of mitochondrial biogenesis and oxidative stress  

Recent evidence shows a link between mitochondrial biogenesis and oxidative/mitochondrial 

stress responses. Oxidative stress is defined as the presence of ROS in excess of the anti-oxidant 

buffering capacity (Amira, 2010). Oxidative stress damages mitochondria impairing their ability 

to produce ATP ultimately leading to cell death. Many cellular programmes exist to protect 

mitochondrial integrity and to replace dysfunctional mitochondria with better suited organelles 

through replication of highly functional sub-populations (Piantadosi and Suliman, 2012).  

Insight into the underlying mechanism of interactions between ROS signalling and 

mitochondrial biogenesis were elucidated by Piantadosi and Suliman (2006). Their study 

showed that lipid hydroperoxide regulates Tfam expression via AKT activation and its 

phosphorylation of NRF-1. This promotes the translocation of NRF-1 and binding to the Tfam 

promoter (Piantadosi and Suliman, 2006). Furthermore the induction of PGC-1α expression is 

mediated by CREB binding to the PGC-1α promoter during oxidative stress conditions (St-

Pierre et al., 2006) further enhancing mitochondrial biogenesis. These results show that a link 

exists between the ROS producer (mitochondria) and its biogenesis.  
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Mitochondrial biogenesis can be activated by mitochondrial ROS via retrograde signalling from 

damaged mitochondria to the nucleus. These stress cues lead to up-regulation of nuclear 

transcriptional responses and subsequent encoding of mitochondrial and anti-oxidant proteins. 

The eliciting of such responses serve to compensate for mitochondrial dysfunction and dampen 

oxidative stress (Piantadosi and Suliman, 2012).   

1.5.3. Mitochondrial stress responses  

1.5.3.1. Sirtuins  

The sirtuins belong to a conserved family of proteins that depend on NAD+ for their deacetylase 

activity. Although sirtuins are considered as histone deacetylases (HDACS) because of their 

NAD+ dependence, they are functionally different from other HDACS as they carry out 

deacetylation via a two-step reaction that  encompasses the consumption of NAD+ and release of 

nicotinamide (NAM), 1-O-acetyl-ADP-ribose (1-OAADPR), and the deacetylated substrate. 

These deacetylases are involved in a range of biological functions including DNA repair, 

control of metabolic enzymes and apoptosis (Parihar et al., 2015).  

In mammalian cells seven sirtuins exist (SIRT1-SIRT7), with each having distinct flanking C 

and N terminal extensions. These variations allow for sub-cellular localisation of SIRTs as 

described in table 1.  

Table 1: The members of the Sirtuin family are found in different cell compartments allowing 

them to perform specific roles (Parihar et al., 2015) 
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1.5.3.2. Mitochondrial sirtuins  

Mitochondrial sirtuins act as energy sensors due to their dependence on NAD+ as a co-factor. 

The three mitochondrial sirtuins: SIRT3, SIRT4, and SIRT5 are localized mainly in the 

mitochondrial matrix due to the presence of a mitochondrion targeting sequences in their N 

termini. Among these SIRT3 is the major mitochondrial deacetylase that regulates global 

mitochondrial lysine acetylation status (Lombard et al., 2007) and maintains the integrity of this 

organelle (Tao et al., 2015). Initially the full length SIRT3 (44 kDa) is synthesized as an 

enzymatically inactive protein which is activated on its translocation to the mitochondria as a  

28 kDa protein by a mitochondrial peptidase present in mitochondrial matrix. Once in the 

mitochondria SIRT3 regulates many important processes and is thus highly expressed in 

metabolically active organs such as the liver, brain and kidney (Parihar et al., 2015).   

1.5.3.3. Sirtuin structure  

All sirtuins contain a highly conserved catalytic core domain which has a structurally 

homologous and large NAD+/NADH binding Rossmann-fold domain, zinc-binding domain and 

numerous loops that form a distinct and extended cleft. This cleft attaches the two domains 

where the NAD+ and acetyl lysine containing protein substrates enter and bind to the enzyme for 

deacetylation (Figure 1.10) (Nogueiras et al., 2012).   

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Structure of SIRT3 in complex with a substrate (encircled in blue)           

(Nogueiras et al., 2012) 
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1.5.3.4. Regulation of SIRT3 activity 

The expression of SIRT3 is dependent on the oxidative status of the cell, with stress conditions 

leading to the up-regulation of this mitochondrial protein (Weir et al., 2013). Mammalian 

sirtuins are not only regulated by NAD/NADH ratio or cellular stressors, but also by 

endogenous proteins involved in signal transduction and transcription, as well as by a number of 

microRNAs (Nogueiras et al., 2012). 

 The co-factor NAD+ is an absolute requirement for the deacetylase activity of SIRT3. This 

places SIRT3 at the nexus of energy metabolism in the mitochondria (Nogueiras et al., 2012). 

The NAD+ derived within a cell is via two main pathways: de novo synthesis from the amino 

acid tryptophan and via the salvage of NAM back to NAD+ (Grant et al., 2009, Revollo et al., 

2004). In humans, the rate-limiting step of the NAD salvage pathway is catalysed by  

nicotinamide phosphoribosyltransferase (NAMPT), which converts nicotinamide to 

nicotinamide mononucleotide (NMN) (Nogueiras et al., 2012). This reaction is followed by an 

NMN adenylyltransferase (NMNAT) dependent formation of NAD+ (Figure 1.11) (Kleszcz et 

al., 2015). A study by Revollo et al., (2004) showed that NAD biosynthesis mediated by 

NAMPT, regulates the function of  sirtuins and plays an important role in controlling various 

biological events in mammals (Revollo et al., 2004).  

Sirtuins are also regulated by their reaction product, NAM, which inhibits sirtuin reactions 

through a base exchange pathway where rebinding of the reaction product to the enzyme 

accelerates the reverse reaction (Guan et al., 2014). However, through experimental kinetic and 

computational studies Guan et al., (2014) showed that NAM inhibition of SIRT3 involved 

competition between the inhibitor and enzyme co-factor NAD+  (Figure 1.11), conflicting to the 

traditional characterization of base exchange as non-competitive inhibition (Guan et al., 2014). 
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Figure 1.11: SIRT3 reaction and regulation (prepared by author).  

1.5.4. Mitochondrial function is regulated by SIRT3 

The mitochondria are a hub of metabolic activity for carbohydrate, protein and fatty acid 

processing. During metabolic activities most of the mitochondrial proteins undergo post-

translational modifications with lysine acetylation serving as a link between acetyl CoA 

metabolism and cell signalling (Parihar et al., 2015). Indeed a vast majority of mitochondrial 

proteins are found to be acetylated (Gibellini et al., 2014a). Sirtuins, and in particular SIRT3 is 

therefore well positioned to regulate many aspects of mitochondrial function through removal of 

acetyl CoA from lysine residues through its deacetylase activity.  

1.5.4.1. Fatty acid metabolism  

The balance between fatty acid synthesis, lipid oxidation and its storage are the processes 

involved in fatty acid metabolism. Acetyl CoA synthetase is a substrate for SIRT3 (Tao et al., 

2015). Schwer et al (2006) reported that human acetyl-CoA synthetase 2 (AceCS2) is a 

mitochondrial matrix protein that can be reversibly acetylated at Lys-642. The mitochondrial 

SIRT3 interacts with AceCS2 and deacetylates Lys-642 both in vitro and in vivo, thereby SIRT3 

regulates fatty acid synthesis by activating the acetyl-CoA synthetase activity of AceCS2. The 

acetyl-CoA synthetase reaction, results in the formation of acetyl-CoA from acetate, ATP, and 

CoA, proceeds in two steps. In the first step, acetate is activated to acetyl-adenosine 

monophosphate (acetyl- AMP). In the second step, acetyl-AMP is converted to acetyl-CoA by 

the thioester bond-forming activity of ACS, and acetyl-CoA and AMP are released sequentially 

(Schwer et al., 2006).  
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Fatty acid oxidation is enhanced by SIRT3 deacetylation of long-chain acyl-CoA 

dehydrogenase (LCAD) which is generally hyperacetylated at one lysine residue, K42  (Parihar 

et al., 2015) and mitochondrial 3-hydroxy3-methylglutaryl CoA synthase 2 (HMGCS2),which 

catalyses the process of lipid utilization (Shimazu et al., 2010). This deacetylase also prevents 

the accumulation of fatty acids in the mitochondria by acting alongside the adenosine 

monophosphate activated protein kinase (AMPK), which phosphorylates acetyl CoA 

carboxylase (ACC) the rate limiting enzyme in fatty acid synthesis (Shi et al., 2010).    

1.5.4.2. Kreb’s cycle, Electron transport chain and oxidative phosphorylation 

The protein complexes of the ETC and OXPHOS are the most heavily acetylated. Since SIRT3 

is the major mitochondrial deacetylase it interacts with proteins of the ETC, modifying and 

improving their activity (Parihar et al., 2015). The activity of complexes I and II of the ETC was 

significantly decreased in SIRT3 knock-out mouse embryonic fibroblasts (MEFs). This study 

also eluded to a role of SIRT3 in complex III regulation (Kim et al., 2010). Complex V of the 

ETC was shown to be a target of SIRT3 with deacetylation of this complex increasing its 

activity (Finley et al., 2011). The importance of SIRT3 on energy homeostasis was 

demonstrated by Ahn et al (2008). They showed that the knock-out of SIRT3 resulted in a 30% 

decrease to intracellular ATP levels (Ahn et al., 2008).  

A study by Finley et al., (2011) showed that SIRT3 directly interacts with succinate 

dehydrogenase (SDH) sub-units A and B. The SIRT3 mediated deacetylation of this complex 

serves to increase enzyme activity. The SDH complex is a member of both the ETC and Kreb‟s     

cycle (Finley et al., 2011), this shows that SIRT3 is a regulator of FAD/FADH2 metabolism. 

The efficient deacetylation of the Kreb‟s cycle enzyme isocitrate dehydrogenase (ICDH) was 

observed by Schlicker et al., (2008). Their study revealed that SIRT3 interacts with ICDH and 

increased its activity through deacetylation of lysine211 or 212 (Schlicker et al., 2008 ).  

1.5.4.3. Integration of oxidative stress and mitochondrial stress responses 

The primary defence against oxidative stress is the detoxifying enzymes that scavenge excess 

ROS. These include catalase and superoxide dismutase. The role of PGC-1α in ROS metabolism 

was explored by St-Pierre et al., (2006). They reported that the expression of mitochondrial 

ROS-detoxifying enzymes including GPx1 and SOD2 increases with PGC-1α. They showed 

that by increasing PGC-1α levels neural cells in culture were protected from oxidative stressor- 

mediated death. These studies revealed PGC-1α‟s role as a broad and powerful regulator of 

ROS metabolism (St-Pierre et al., 2006).  
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Recent evidence has shown that PGC-1α links mitochondrial stress responses to oxidative 

stress. Oxidative stress increases the expression of PGC-1α, which induces SIRT3 expression 

through activation of ERR-α. In turn, SIRT3 stimulates PGC-1a expression via pCREB, thereby 

forming a positive feedback loop and increasing anti-oxidant defence (Kong et al., 2010).  

In the mitochondria SIRT3 is able to deacetylate and increase the activity of SOD2. Two recent 

studies (Tao et al., 2010, Qiu et al., 2010) indicated that SOD2, the primary mitochondrial 

superoxide detoxification enzyme, contains a lysine residue that can be deacetylated by SIRT3 

overexpression. Deeper analysis by Tao and co-workers (Tao et al., 2010) showed that lysine 

122 is directly deacetylated by SIRT3. When lysine 122 was altered to arginine (to mimic the 

deacetylated state; MnSODK122-R), enzymatic activity was increased, intracellular ROS were 

decreased, and stress-induced genomic instability was prevented. In contrast, when lysine 122 

was altered to a glutamine (to mimic the acetylated state; MnSODK122-Q), SOD2 activity was 

decreased, proposing that acetylation status directs SOD2 enzymatic activity and cellular ROS 

levels (Tao et al., 2010). Increased ROS levels in SIRT3 knock-out mouse embryonic 

fibroblasts were also observed by Kim et al., (2010). Furthermore, SIRT3 was found to 

deacetylate FOXO3a and allows its translocation to the nucleus (Kim et al., 2010). The 

mammalian FOXO transcription factors are targeted by sirtuins under conditions of oxidative 

stress and determine their subcellular localisation, protein stability, and transcriptional activity 

leading to up-regulation of anti-oxidant expression such as catalase (Rajendran et al., 2011). 

Taken together the results of these studies outline a crucial role for SIRT3 in dampening 

oxidative stress. 

Besides its roles as a regulator of ROS scavenging, SIRT3 plays an important role in 

maintaining mitochondrial structure and function through the deacetylation of Lon protease 

(LON). Gibellini et al., (2014) found that LON and SIRT3 co-localise and co-

immunoprecipitate in breast cancer cells and SIRT3 loss increased the acetylation and protein 

expression of LON. Their study suggests that SIRT3 deacetylates LON most likely at lysine 917 

(Gibellini et al., 2014a). LON is also regulated at the transcriptional level by Nrf2  (Ngo et al., 

2013 ). This protease is a human stress protein that removes and degrades oxidatively damaged 

proteins in the mitochondria preventing their cross linking and aggregation. A study by Ngo and 

Davies (2009) showed that loss of  LON leads to increased protein damage and mitochondrial 

dysfunction (Ngo and Davies, 2009 ).  

The catalytic activity of LON is ATP dependent and serves to not only remove damaged 

proteins but regulate mitochondrial pathways by terminating or modulating the activity of 
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protein or protein complexes through selective sub-unit degradation (Venkatesh et al., 2012). 

The steps involved in proteolytic protein degradation by LON are depicted in Figure 1.12.  

LON is a mitochondrial DNA binding protein that interacts with single stranded DNA only in 

mammalian cells. Human LON associates with mtDNA sequences bearing a minimum of 4 

adjoining guanine residues that have a tendency to form G-quadruplexes, which are four-

stranded intra- or inter-molecular structures with a tetrad organization of guanines. The binding 

of mtDNA and LON is a physiological function of this protease and may provide a mechanism 

for recruitment of it to sites in mtDNA where it can degrade or process proteins involved in 

mtDNA and mitochondrial RNA metabolism. Furthermore the binding of mtDNA by LON may 

directly promote or inhibit the processivity or timing of transcription and/or replication 

(Venkatesh et al., 2012). Matsushima et al., (2010) investigated the role LON protease plays in 

regulating mtDNA transcription and maintenance. Their results show that LON modulates 

biogenisis of mtDNA through selective degradation of Tfam. Thus stabilising the Tfam∶mtDNA 

ratio by degradation of excess Tfam (Matsushimaa et al., 2010). Under oxidative stress 

conditions LON binds to fewer mtDNA sites. Decreased  LON binding may occur due to DNA 

repair and replication proteins being recruited to the mitochondrial genome and competing with 

Lon for binding sites. Alternatively, Lon may be recruited away from the genome to degrade 

other proteins that become oxidativelydamaged. These results suggest roles for LON in linking 

protein and mtDNA quality control (Lu et al., 2007).  

LON can also act as a chaperone, independent of its proteolytic activity and promote the 

assembly of cytochrome c oxidase subunits (Bota et al., 2005 ) with downregulation of  LON 

resulting in impaired respiratory function. Gibellini and colleagues (2014) showed that 

decreased LON levels impairs mitochondrial function in colorectal cancer cells with 

concomitant decreased expression of mitochondrial proteins of which some were related to 

Kreb‟s cycle and respiration (Gibellini et al., 2014b).  
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Figure 1.12: General mechanism for the recognition and degradation of protein substrates by 

LON. Step 1: recognition and binding of a sequence found in the protein substrate. Step 2: 

unfolding of structured protein substrates by the AAA+ domains of the holoenzyme, this 

requires ATP -binding and -hydrolysis. Unfolded substrates or peptides bypass this step. Step 3: 

translocation of unfolded polypeptides or short peptide sequences into the degradation chamber, 

which also requires ATP -binding and -hydrolysis. Step 4: peptide bond cleavage resulting in 

the generation of small peptide products. Continous substrate unfolding and translocation are 

required to degrade substrates completely (Venkatesh et al., 2012). 

1.6. Cellular responses to oxidative stress  

Cells are able to sense macromolecular damage and respond to stress-induced damage, thereby 

re-establishing homeostasis. Following the initiation of oxidative stress, the basic leucine zipper 

transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2) is activated at the 

posttranscriptional level. Nrf2 is the master transcription factor plays a pivotal role in cell 

defence against oxidative stress by modulating the anti-oxidant response programme (Keum and 

Choi, 2014). This prompts the expression of genes encoding proteins functioning as antio-
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xidants and enzymes involved in phase II detoxification and glutathione biosynthesis (Dinkova-

Kostova et al., 2005).   

Under non-stressed conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-

associated protein 1(Keap1). This complex directs Nrf2 polyubiquitination and degradation by 

functioning as an adaptor of the Cul3 based E3 ligase (Dinkova-Kostova et al., 2005). Upon 

oxidative stress, Nrf2 is liberated from Keap1 and enters the nucleus, to stimulate the expression 

of anti-oxidant response element (ARE) containing genes (Sano and Fukuda, 2008, Keum and 

Choi, 2014). This prevents oxidative damage to cellular components and organelles.  

A study by Dinkova-Kostova et al. (2005) sought to determine how the kinetics and 

stoichiometry of Keap1 govern its susceptibility to inducer mediated modifications. Their 

results revealed that Keap1 contains 0.9 zinc atoms per monomer and established that zinc is 

bound to the reactive cysteine thiols of Keap1and that inducers displace this metal. They also 

revealed that zinc binding is highly dependent on these cysteine residues and that mutation of 

these residues to alanine decreased binding by 2 fold. Thus, regulation of the phase II response 

involves chemical modification of critical cysteine residues of Keap1, whose reactivity is 

modulated by zinc binding. Keap1 is a zinc-thiol protein enabled with a switch controlled by 

both metal-binding and thiol reactivity. Under non-stressed conditions Keap1 binds zinc that is 

coordinated in part by reactive cysteine residues (Cys). In this conformation, Keap1 binds Nrf2 

and marks the transcription factor for degradation. Upon inducer sensing, the zinc is released 

and the reactive cysteine residues are modified by alkylation, oxidation, or thiol-disulfide 

interchange, leading to a conformational change that separates the Kelch domains and releases 

Nrf2 (Figure 1.13) allowing its nuclear translocation and enhanced expression of phase 2 

response genes (Dinkova-Kostova et al., 2005). 
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Figure 1.13: Role of zinc in mediating Nrf2 release (Dinkova-Kostova et al., 2005). 

1.7. Mitochondria in hepatotoxicity  

Damage to hepatocytes can be cytotoxic, genotoxic or metabolic. Cytotoxicity involves 

morphological changes to the hepatocyte often accompanied by the leakage of hepatic enzymes 

to the extracellular environment. Gonotoxins cause DNA damage and often lead to the 

development of hepatocarcinomas. Finally, toxins are also able to alter cellular metabolism of 

hepatocytes and can lead to cell death (Castell et al., 1997).  

Hepatotoxicity often originates from the alteration to metabolic processes within the cell. Some 

toxins directly inhibit enzyme activity or ion transport or compete with cellular metabolites for 

metabolic pathways in hepatocytes. Other toxins can affect the ATP status of the cell by 

increasing ATP consumption or decreasing ATP synthesis (Castell., 1997).   

The mitochondria constitute an important target for hepato-toxins. Even a mild dysfunction of 

mitochondria in the liver can cause hepatic injury.  Dysfunctional mitochondria lead to the 

excessive generation of ROS, this causes damage to cellular components including lipids, 

protein and nucleic acids (Esposti et al., 2012). Mitochondria play a pivotal role in apoptosis. 

This is an energy dependent form of programmed cell death. The mitochondria are the initiators 

of the intrinsic apoptotic programme which relies on stimulators opening the mitochondrial 

permeability transition (MPT) pore leading to the loss of the mitochondrial transmembrane 

potential and release of two main groups of normally sequestered pro-apoptotic proteins from 

the intermembrane space into the cytosol. The first group consists of cytochrome c, second 

mitochondria-derived activator of caspases (Smac)/DIABLO, and the serine protease 



 

28 
 

HtrA2/Omi. These proteins activate the caspase-dependent mitochondrial pathway. Cytochrome 

c binds and activates apoptosis protease activation factor (APAF-1) as well as procaspase-9, 

forming an “apoptosome”. The clustering of procaspase-9 in this manner leads to caspase-9 

activation. Caspase 9 subsequently cleaves pro-caspase 3 leading to caspase 3 activation. 

Smac/DIABLO and HtrA2/Om are reported to promote apoptosis by inhibiting inhibitors of 

apoptosis proteins (IAP) activity (Elmore, 2007).  

The IAP family of proteins shares a conserved module known as the baculovirus inhibitor of 

apoptosis protein repeat (BIR) domain. The BIR is a zinc finger protein characterized by the 

conservation of critical Cystine and Histidine residues that coordinate a zinc atom. A total of six 

major IAPs have been identified in humans, of which four directly inhibit the activity of 

caspases (Riedl et al., 2001).  

Structural analysis of X-linked mammalian inhibitor of apoptosis protein   (XIAP) reveals that 

the segment inhibiting caspase 3/7 is distinct from the segment inhibiting caspase 9 activity with 

the BIR2 and BIR3 domains associated with inhibiting the effector and initiator caspase 

respectively (Riedl et al., 2001).   

The second group of pro-apoptotic proteins, apoptosis inducing factor (AIF) and endonuclease 

G are released from the mitochondria during apoptosis, but this is a late event that occurs after 

the cell has committed to die. AIF translocates to the nucleus and causes DNA fragmentation 

and condensation of peripheral nuclear chromatin. Endonuclease G also translocates to the 

nucleus where it cleaves nuclear chromatin to produce oligonucleosomal DNA fragments. AIF 

and endonuclease G both function in a caspase-independent manner (Elmore, 2007).  

Dysfunction of this critical organelle affects energy balance and is a crucial factor in cell death 

(Castell., 1997). Hepatotoxicity studies most often deal with a form of cell death termed lytic 

necrosis. This form of cell death is characterised by membrane lysis and inflammation. (Castell,. 

1997).   
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Materials  

The HepG2 cell line was purchased from Highveld Biologicals (Johannesburg, South Africa 

(SA). All tissue culture reagents, the Caspase-Glo® 9 and 3/7 Assay and ATP assay (Promega) 

were obtained from Whitehead Scientific (Johannesburg, SA). Western blot reagents were 

purchased from Bio-Rad ((Hercules, CA, USA). Quantitative PCR (qPCR) primers were 

synthesized by Inqaba Biotech. All other reagents were purchased from Merck (Darmstadt, 

Germany).  

2.2. Cell culture and exposure protocol 

2.2.1. Cell culture  

The HepG2 cell line is derived from a liver hepatocellular carcinoma of a 15 year old Caucasian 

male. These cells are adherent, non-tumorigenic and are epithelial in nature. There is no 

evidence of the HBV genome in this cell line  (ATCC, 2014). This cell line is considered a 

model for the investigation of toxicity since it retains the ability to undergo detoxification 

responses as well as retaining many functions often lost by primary hepatocyte cultures(Mersch-

Sundermann et al., 2004). The HepG2 cells were cultured in complete culture media (CCM) 

consisting of Eagle‟s minimum essential medium supplemented with 1% penstrepfungizone, 1% 

L-glutamine and 10% foetal bovine serum. Cultures were maintained at 37°C with 5% CO2.  

2.2.2. Exposure protocol  

For the methyl thiazol tetrazolium (MTT) assay, cells were seeded into a 96-well microtitre 

plate, allowed to attach overnight and treated with FA solution (0-500μg/ml) for 24h. The range 

and time frame utilized is based on previous work (Jiao et al., 2014, Telles-Pupulin et al., 1998, 

Ruda et al., 2006). The chosen time period will provide a suitable measure for acute exposure. 

.For all other assays cells were cultured to 90% confluency in 25cm3 tissue flasks and treated 

with FA at the half maximal inhibitory concentration (IC50) as determined by the cell viability 

assay. The assays were performed at the IC50 of cell viability since lower concentrations might 

result in cytotoxic effects being underestimated, while higher concentrations could result in 

experimental by-products. An IC50 provides a workable concentration. 

2.2.2.1. Use of controls  

For western blot and q-PCR experiments a negative control and positive control was used. The 

negative control contained only CCM whereas the positive control was treated with 10 mM 
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nicotinamide. The significance for using the positive control was to show an expected outcome 

in relation to SIRT3 loss.  

2.3. Metabolic activity  

2.3.1. MTT assay 

2.3.1.1 Introduction  

The colorimetric MTT assay was used to determine cell viability. Methylthiazol tetrazolium is a 

yellow water soluble dye that is reduced by metabolically active cells through the activity of 

dehydrogenase enzymes. This leads to formation of an insoluble intracellular purple formazan 

product which can then solubilized and quantified by spectrophotometry.  

This reaction only occurs in metabolically active cells and is dependent on the production of the 

reducing equivalents nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2) produced in the Krebs‟s cycle (Figure 2.1). This assay is a measure of 

metabolic activity in the cell. The intensity of the formazan product is directly proportional to 

metabolic activity and cell viability (Figure 2.2). 
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Figure 2.1: Production of reducing equivalents by the Kreb‟s cycle to drive the ETC and 

produce ATP (prepared by author). 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic representation of the principle behind the MTT assay                      
(prepared by author).  

Kreb‟s cycle 
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2.3.1.2. Protocol 

Approximately 20,000 cells were seeded per well in triplicate and incubated with a range of FA 

concentrations (0, 25, 50, 100, 250, 350 and 500 µg/ml) for 24 h. Cells were then rinsed twice 

with 0.1M phosphate buffer saline (PBS) and incubated with MTT salt solution (5mg/ml in 

0.1M PBS) and complete culture medium for 4h (37ºC). Subsequently, 100μl of dimethyl 

sulphoxide (DMSO) was added to each well and incubated for 1h (37ºC). The optical density of 

the formazan product was read using a spectrophotometer (Bio-tek μQuant) at 570 nm with a 

reference wavelength of 690 nm. The results were expressed as percentage cell viability vs. 

concentration of FA, from which the IC50 was determined.   

2.3.2. ATP assay 

2.3.2.1. Introduction  

Adenosine triphosphate is the major energy currency molecule of the cell and its production is 

essential to carry out various cellular processes. The mitochondria are the predominant 

producers of ATP through the electron transport chain coupled to oxidative phosphorylation as 

well as through substrate level phosphorylation. Glycolysis also contributes to ATP production 

under certain conditions. These processes ensure optimum production of ATP necessary for cell 

survival.  

To determine ATP concentration, the CellTire Glo™ (Promega) assay was used. This assay 

employs bioluminescence to measure ATP levels in cells and is based on the luciferase reaction 

in which luciferin is mono-oxygenated to oxy-luciferin in the presence of Mg2+, molecular 

oxygen and ATP. This results in the release of energy in the form of luminescence (Figure 2.3). 

This luminescent signal is directly proportional to the ATP concentration in the cells. 
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Figure 2.3: Principle of the CellTire Glo™ assay used to quantify intracellular ATP 
concentration (prepared by author). 

2.3.2.2. Protocol  

Approximately 20,000 cells were aliquoted per well in a microtitre plate (triplicate) to which 50 

µl CellTire Glo™ reagent (Promega, Madison, USA) was added and left in dark (30 mins, RT) 

to allow reaction to occur. The luminescent signal was then read using a Modulus™ microplate 

luminometer (Turner Biosystems, Sunnyvale, USA). The signal is directly proportional to 

intracellular ATP concentration. Results are expressed as mean relative light units (RLU). 

2.4. Oxidative stress – Lipid peroxidation  

2.4.1. Introduction  

Lipid peroxidation is defined as the oxidative deterioration of lipids of which the unsaturated 

variety is most affected due to their double bond between carbon atoms. Many cellular 

organelles incorporate lipids into their membranes, thus damage caused by peroxidation is 

detrimental to cell function and survival (Devasagayam et al., 2003).  

Lipid peroxidation is initiated by oxidizing agents such as free radicals that remove hydrogen 

atoms from poly-unsaturated fatty acids (PUFAs). This brings about a chain reaction 

mechanism of lipid peroxidation which involves an initiation step, a propagation step and 

termination step (Ayala et al., 2014, Devasagayam et al., 2003).                                                                                                       

The thiobarbituric acid reactive substances (TBARS) assay was used to quantify the 

concentration of melandialdehyde (MDA), a by-product of lipid peroxidation and marker of 
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oxidative stress. One molecule of MDA reacts with two molecules of thiobarbituric acid (TBA) 

at high temperature and low pH resulting in formation of a pink chromagen (Figure 2.5). 

During initiation, oxidizing agents remove hydrogen atom forming a lipid radical; this radical 

can be stabilized by a molecular rearrangement to form a conjugated diene (step 1). In the 

propagation phase, lipid radical rapidly reacts with oxygen to form a lipid peroxy radical (step 

2) which removes a hydrogen from another lipid molecule generating a new lipid radical (step 

3). In the termination reaction, anti-oxidants donate a hydrogen atom to the lipid peroxy radical 

species resulting in the formation of nonradical products (step 4, Figure 2.4) (Ayala et al., 

2014). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Chain reaction of lipid peroxidation. Step1 – initiation, step 2 and 3 – Propagation,                         

step 4 – Termination (Ayala et al., 2014).  

2.4.2. Protocol  

The following reagents were added to a set of test tubes: 200μl of 2% H3PO4, 400μl of 7% 

H3PO4, 200μl of TBA/butylated hydroxytoluene (BHT) solution and 200μl of 1M HCL. 

Supernatants of treated cells were recovered and 100μl of cell supernatant was then added to 

each test tube in triplicate. A positive control was prepared by adding 1μl of MDA to a test tube. 

Samples were then boiled (100°C, 15min) and after cooling; butanol (1.5ml) was added to each 
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tube, vortexed for 10 secs and allowed to separate into two distinct phases. The upper butanol 

phase (100μl, triplicate) was then transferred to a 96-well micotitre plate and the absorbance 

read using a spectrophotometer (Bio-tek μQuant) at 532nm. The mean absorbance was divided 

by the extinction co-efficient (156mM-1) and results were expressed as μM concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Scchematic representation of the TBARS assay principle (prepared by author). 
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2.5. Protein expression – western blot  

2.5.1. Introduction  

Western blot is used to detect the presence of a protein of interest from a homogenous mixture 

of proteins extracted from cells. This proceedure relies on the separation of proteins according 

to their size, transfer of these proteins to a solid support, detection of the protein of interest 

using the appropriate anti-body and visualisation using chemiluminescence.  

2.5.1.1. Sample preparation  

Sample preparation involves lysis of cells to release proteins and quantification. This processes 

are carried out on ice to prevent degradation of the protein of interest. The samples must be 

quantified and standardised to ensure that protein concentration is sufficient to carry out the 

assay and to compare protein expression in each sample. The bicinchoninic acid (BCA) assay is 

a commonly used method to quantify total  protein in a sample. The principle of this assay relies 

on the formation of Cu2+- protein complex under alkaline conditions and subsequent reduction 

of  Cu2+ to Cu1+. The protein present is directly proportional to this reduction. BCA forms a 

violet complex with Cu1+ under alkaline conditions therefore provides a basis to monitor the 

reduction of Cu2+ by proteins. The BCA-Cu2+ complex is a relatively stable chromophore that 

absorbs at 562 nm (Figure 2.5) (Sapan et al., 1999).   

Once samples are standardised they are diluted in Laemmli buffer (contains glycerol - samples 

sink easily into the wells of the gel, bromophenol blue - a tracking dye which indicates how far 

the separation has progressed, β-mercaptoethanol – reduce disulphide bridges of proteins 

allowing them to unfold and SDS –neutralizes protein charges) so that they can be 

electrophoresed (Healthcare, 2011)  
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Figure 2.5: Principle of the BCA assay used to quantify protein concentration (prepared by 
author).  

2.5.1.2. Separation of proteins  

Proteins are separated by size using sodium dodecyl sulfate polyacrylamide gel electrophoresis     

(SDS-PAGE). Since samples are denatured by the Laemmli buffer containing SDS the protein is 

uniformly charged (negative charge) and migrates toward the positive electrode through the gel. 

Since both the charge and tertiary structure of the proteins have been removed the proteins 

separate according to size through the polyacrylamide gel (Figure 2.6) (Healthcare, 2011).   

Polyacrylamide gels are inert with a cross-linked structure this enables it to retard the migration 

of larger molecules allowing smaller molecules to pass through the gel at a faster rate. The gel 

consists of two sections – resolving gel and stacking gel. The resolving gel is cast first and has a 

high concentration of acrylamide, this is important for separating proteins by size. The stacking 

gel is cast after the resolving gel has set and serves as a “start line” for protein migration 

(Healthcare, 2011) 
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Figure 2.6: separation of proteins according to size (prepared by author). 

2.5.1.3. Transfer of proteins to solid support  

On completion of the separation of proteins, the next step is to transfer the proteins from the gel 

to a solid support membrane (Figure 2.7), usually made of an inert substance, like nitrocellulose. 

The proteins transferred from the gels are immobilized at their corresponding migratory 

positions at the time point when the electric current on the gel run was stopped (Healthcare, 

2011).  

 

 

 

 
 
 
 
 
 

 

 

Figure 2.7: Transfer of proteins from gel to membrane. The gel is placed in contact with the 

membrane and the proteins migrate toward the positively charged anode in an electric field 

(prepared by author). 
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2.5.1.4. Immuno-blotting  

After transfer the protein of interest is detected using a specific antibody. A non-labelled 

primary anti-body is directed against the protein of interest and a species specific, labelled 

secondary antibody is directed against the primary anti-body. This secondary anti-body serves 

as a carrier of the label and is involved in signal amplification, since in theory many secondary 

anti-bodies can simultaneously bind to a single primary anti-body. The secondary anti-body is 

conjugated with horseradish peroxidase (HRP). In the presence of H2O2, HRP oxidises luminol 

to generate light (Figure 2.8). The intensity of the light emitted is directly proportional to the 

expression of the protein of interest. Detection reagent is used to amplify signals (Healthcare, 

2011). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.8: Signal emission as a result of anti-body antigen interactions.  
 

2.5.1.5. Determining densitometry for analysis 

Detection of signals using a camera based imager results in one or more visible protein bands on 

the membrane image. The molecular weight of the protein can be determined by comparing it to 

the molecular weight marker and the quantity of protein can be determined as this is related to 

band intensity (Healthcare, 2011).  

To quantitate protein levels of the protein of interest normalisation to an internal reference such 

as housekeeping protein must be done. These housekeeping are constitutively expressed 
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proteins that maintain cell viability. The use of these proteins minimises protein loading errors 

and varying protein concentrations between each well from affecting overall results (Healthcare, 

2011). The protein of interest is then quantified in relation to the housekeeping protein to 

determine relative band density. 

2.5.2. Protocol  

Western blot was run to determine protein expression of SIRT3, LON, Nrf2, PGC-1α, p-CREB, 

NRF1 and HSP70. Crude protein of control, FA and NAM treated cells was isolated using 

CytobusterTM (Novagen, San Diego, CA, USA) supplemented with phosphatase and protease 

inhibitors (Roche, Mannheim, Germany, 05892791001and 04906837001, respectively). 

Cytobuster (200µl) was added to flasks and incubated on ice for 10 minutes before being 

mechanically lysed. Cell lysates were decanted into 1.5 ml tubes and centrifuged (12,000xg, 10 

minutes) to obtain crude protein. The BCA assay was used to quantify protein which was 

standardized to 1.5 mg/ml.  

Samples were prepared in Laemmli buffer (dH2O, 0.5M Tris-HCl (pH 6.8), glycerol, 10% SDS, 

β-mercaptoethanol, 1% bromophenol blue])and electrophoresed (150V, 1 hour) in sodium-

dodecyl-sulfate polyacrylamide gels (4% stacking, 10% resolving) using BioRad compact 

power supply. Protein was then transferred onto nitrocellulose membranes using the Trans-

Blot® Turbo Transfer system (BioRad) (400mA, 45 minutes). Membranes were then blocked 

with 5% non-fat dry milk (NFDM) made up in Tris-buffer saline (TTBS) [0.5% Tween20, 

dH2O, KCL, Tris, NaCl, pH 7.4] for one hour at RT. Membranes were then immune probed 

with primary antibody (1:1000 dilution in 5% NFDM) against Nrf2 (ab31163, Abcam), PGC-1α 

(ab72230, Abcam), SIRT3 (ab86671, Abcam),phospho- CREB (9191, Cell Signaling 

Technology), HSP70 (4876, Cell Signaling Technology), NRF1 (12381, Cell Signaling 

Technology) and LONP1 (HPA002192, Sigma- Aldrich, St Louis, MO) for 1 hour at RT on a 

shaker then overnight at 4oC. Membranes were washed with TTBS (5 times, 10 minutes) and 

then incubated with secondary antibody conjugated to HRP [goat anti-mouse (31800); goat anti-

rabbit (ab6112) 1:10 000 in 1% BSA] for 1 h at RT on shaker. Membranes were then washed 

with TTBS (5 times, 10 minutes). Protein bands were visualized using Clarity Western ECL 

Substrate (BioRad) detection reagent. Images were captured using gel documentation system 

Alliance 2.7 (UViTech, Cambridge, UK). UViTech Alliance Analysis software was used to 

analyse protein expression.  

Membranes were stripped with 5% hydrogen peroxide, incubated in blocking solution (5% 

NFDM; 1 h; RT), rinsed thrice in TTBS and probed with HRP-conjugated antibody for the 
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house-keeping protein, β-actin (Sigma). The relative band intensity was normalised against β-

Actin. Results were expressed as Relative band density (RBD).  

2.6. Gene expression – Quantitative polymerase chain reaction  

2.6.1. Introduction 

Polymerase chain reaction (PCR) is a powerful and simple tool used to amplify a specific DNA 

sequence in vitro from a template strand. Two oligonucleotide primers complementary to the 

sites flanking the target region are chemically synthesised. These primers attach to each of the 

DNA template strand at the 3‟ ends. The enzyme DNA polymerase then incorporates 

deoxynucleotide triphosphates (dNTPs) to the 3‟ ends of the primers in a stepwise manner. 

The PCR is performed in a thermocycler where it undergoes repetitive cycling of three 

incubation steps at different temperatures (Figure 2.9). The three steps include: 

1. Denaturation: Double stranded (ds) DNA is denatured by heat (900C) to form single 

stranded (ss) DNA. 

2. Annealing: Complementary primers to the target sequence are annealed to the template 

DNA at a low temperature (55OC).  

3. Extension: The annealed primers are extended by a DNA polymerase                                        

(Taq DNA polymerase, 720C). The target copy is amplified upon each cycle. This 

results in exponential amplification of the original DNA fragment.  
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Figure 2.9: Steps of the PCR cycle leading up to DNA amplification (prepared by author). 
 

 

Conventional PCR allows for the successful amplification of DNA, however accurate 

quantification is a limitation of this technique. Quantitative PCR, a variation of the original PCR 

process is used to determine the amount of product produced (i.e. the expression of target gene 

in a sample).  

RNA is isolated from cells and reverse transcribed to ss complementary (c) DNA. This cDNA is 

used as the starting material for q-PCR. The q-PCR undergoes the same cycling steps as the 

conventional PCR. Quantification of DNA is made possible by adding a DNA-binding dye 

called SYBR Green to the reaction that can be detected after excitation. This dye binds to 

dsDNA amplicons and fluoresces in proportion to the ds DNA present (Figure 2.10). Along 
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with the gene of interest, samples are analysed for expression of a house keeping gene, and the 

amount of target DNA is reported relative to the amount of the house keeping gene for each 

sample.  

 

 

 

 

 

 

 

 

 

Figure 2.10: Fluorescence increases dramatically when dye molecules bind to dsDNA 

(prepared by author) 

2.6.2. Protocol  

RNA was isolated from control, FA and NAM treated flasks with Qiazol reagent (Qiagen, 

Hilden, Germany). Briefly, 500 µl Trizol was added to 500 µl cells (2.5 X 106 in 0.1 M 

PBS) and incubated for 1h at -800C. Chloroform (100 µl) was then added and centrifuged 

(12,000Xg, 15 min, 40C) followed by the addition of isopropanol (250 µl, 1 h, -800C) before 

centrifugation (12,000Xg, 20 min, 40C). Samples were then washed with 500 µl ethanol 

(75%) and centrifuged (7,400Xg, 15 min, 40C). Following removal of ethanol, RNA pellets 

were re-suspended in 15 µl of nuclease-free water, quantified (Nanodrop2000) and 

standardised (1,000 ng/ml). A 20 µl reaction volume containing 1 µl RNA template, 4 µl 5X 

iScript™ reaction mix, 1 µl iScript reverse transcriptase and nuclease free water was used to 

synthesize cDNA (iScript™ cDNA Synthesis kit, BioRad; catalog no 107-8890). 

Thermocycler conditions were 250C for 5 min, 420C for 30 min, 85 0C for 5 min and a final 

hold at 40C.  

PCR 

Unbound SYBR 
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Bound SYBR 
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Gene expression of SIRT3 was assessed (Sense 5‟-CGGCTCTACACGCAGAACATC-3; 

Anti-sense 3-CAGCGGCTCCCCAAAGAACAC-5‟) using the iQ™ SYBR® Green PCR kit 

(Bio-Rad; 170-880) and carried out using CFX Touch™Real Time PCR Detection System 

(Bio-Rad, Hercules, CA, USA). The PCR was initiated with the following thermocycler 

profile: An initial denaturation for 8min at 950C followed by 39 cycles of   950C, 

denaturation for 15 sec, annealing for 1min at 500C, and extension of 720C for 30 sec. A 

final extension at 700C was performed for 30 sec. Each measurement was done in triplicate 

and normalized against β-actin which was run under the same conditions and used as the 

housekeeping gene. Data was analysed using the method described by Livak and 

Schmittgen (2001) (Livak and Schmittgen, 2001) and represented as fold change relative to 

the housekeeping gene, β-actin (Sense5‟-TGACGGGTCACCCACACTGTGCCCAT-3‟, 

Anti-sense5‟CTAGAAGCATTTGCGGTGGACGATGGAGGG-3‟).  Experiments were run 

in triplicate.  

2.7. Assessment of caspase activity 

2.7.1. Introduction  

The Caspase Glo® 9 Assay and Caspase Glo® 3/7 Assay are homogenous luminescent assays 

that measure caspase 9 and caspase 3/7 activity respectively. Caspase 9 is an initiator caspase 

and plays a pivotal role in the intrinsic apoptotic pathway. Caspase 3/7 play key effector roles in 

the apoptotic programme and are responsible for the many biochemical characteristics 

associated with this process. These assays provide a luminogenic caspase 9 and 3/7 substrate in 

a buffer system that has been optimized for cell lysis, caspase and luciferase activity. The above 

mentioned caspases cleave the substrate and generate a luminescent signal as a result of the 

luciferase reaction (Figure 2.11). Caspase activity is proportional to the luminescent signal.  

2.7.2 Protocol 

The Caspase Glo® 9 Assay and Caspase Glo® 3/7 Assay kits (Promega, Madison, USA) were 

used to detect caspase activity. For both assays the same procedure was followed: FA treated 

and untreated cells were seeded into an opaque 96-well polystyrene plate in triplicate (20,000 

cells/well in triplicate).  The Caspase Glo® 9 and Caspase Glo® 3/7 reagents were prepared 

according to the manufacturer‟s instructions and 50µl of the reagent was added to the samples. 

The samples were then incubated in the dark at room temperature (30 mins). Following 

incubation period luminescence was detected and quantified using a Modulus™ microplate 

luminometer (Turner Biosystems, Sunnyvale, USA). The data was expressed as mean relative 

light units (RLU).  
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Figure 2.11: Schematic of the caspase activity assay (prepared by author).  

 

2.8. Cytotoxicity – lactate dehydrogenase assay (LDH) assay  

2.8.1. Introduction  

Cell death can be evaluated by assays assessing cell membrane damage. Such assays are often 

based on the activity of cytoplasmic enzymes released by damaged cells. The amount of enzyme 

activity detected correlates to the extent of membrane damage. LDH is a stable cytoplasmic 

enzyme present in all cells and is rapidly released into culture supernatant upon loss of 

membrane integrity.  

The LDH activity is measured by an enzymatic test. In the first step NAD+ is reduced to 

NADH/H+ by the conversion of lactate to pyruvate catalysed by LDH. In the second step 

diaphorase (catalyst) transfers H/H+ from NADH/H+ to the tetrazolium salt INT which is 

reduced to formazan (Figure 2.12).  The release of enzyme and its activity is proportional to cell 

membrane integrity.  
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2.8.2 Protocol 

The LDH cytotoxicity detection kit (Roche, Mannheim, Germany) was used to measure cell 

death/membrane damage. To measure LDH activity, supernatant (100μl) was transferred into a 

96-well microtitre plate in triplicate. Thereafter, substrate mixture (100μl) containing catalyst 

(diaphorase/NAD+) and dye solution (INT/sodium lactate) was added to the supernatant and 

allowed to react at RT for 25min. Optical density was measured spectrophotometrically at 

500nm (Bio-Tek uQuant). Results are presented as mean optical density. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2.12: Reactions of the LDH cytotoxicity assay (prepared by author). 

 

2.9 DNA damage – Single Cell Gel Electrophoresis (SCGE)  

2.9.1 Introduction  

The SCGE is a rapid and sensitive method for determining the extent of DNA damage in 

individual cells. For this assay cells are embedded in an agarose gel and lysed in a high salt 

detergent solution. This results in release of DNA that when subjected to electrophoresis under 

alkali conditions migrates toward the anode. A stain is used to visualise the extent of DNA 

strand breaks.  
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The images produced by this assay appear as “comets” with a head and a tail that can be 

measured. The head contains intact DNA while the tail contains migrating fragments of 

damaged DNA. These DNA fragments are smaller in size therefore migrate further through the 

gel than intact DNA (Figure 2.13).  

2.9.2 Protocol 

The SCGE assay was used to determine DNA fragmentation in the FA treated cells. Three slides 

per sample were prepared. A volume of 700µl of 2% low melting point agarose (LMPA) was 

pipetted toward the frosted end of a 76x26mm microscope slide. A 60x20mm coverslip was 

then placed over the molten agarose. It is paramount that the formation of air bubbles be 

avoided during this step. This first layer is needed to provide anchorage for subsequent layers of 

gel.  

The cover slip was removed carefully using a needle point. A volume of 25µl cell suspension 

with approximately 20 000 cells from relevant treatments were transferred into a 1.5ml 

microcentrifuge tube along with 175µlof 1% LMPA at 370C and 1µl GR red (staining solution). 

The resulting solution was stirred and immediately pipetted onto the first solid layer. The slides 

were then covered with cover slips and maintained at 40C for ten mins. This second layer 

provides a meshwork in which the cells remain encapsulated and immobile.  

The cover slip was once again removed and a third layer of gel was laid down. 200µl of 1% 

LMPA at 370C was pipetted onto the second layer. Cover slips were placed on each of the slides 

and the final layer was allowed to solidify at 40C for ten mins.  

Once the gel had solidified the cover slips were removed and submerged in freshly prepared 

cold lysing solution. Slides were then incubated at 40C for one hour and protected from light. 

The lysing solution (2.5M NaCl, 100mM EDTA, 1% Triton X-100, 10mM Tris (pH 10) and 

10% DMSO) must be chilled so as to maintain the stability of the agarose gel layers. The lysis 

step is required to remove cell membranes, nucleoplasm and cytoplasm as well as dissolving 

nucleosomes since the solution is a hypertonic detergent. 

After the elapsed incubation time the slides were removed from the lysing solution. Slides were 

then placed side-by-side into the electrophoresis tank with the frosted end closest to the cathode. 

The tank was filled with the prepared electrophoresis buffer (300mM NaOH, 1mM Na2EDTA, 

pH 13) to a level approximately 20mm above the slides. The cells were then allowed to 

equilibrate for 20 minutes in the alkaline electrophoretic solution. This equilibration step is 

needed to unwind the DNA supercoils exposing alkali labile sites which appear as breaks. 
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Furthermore the high alkali concentration improves the resolving power of the assay without 

affecting sensitivity.  

Following incubation the tank was sealed and a current of 300mA (25V) was applied 35min at 

RT using a Bio-Rad compact power supplier. This step is required to cause fragments of DNA 

to migrate toward the anode if there are breaks in the DNA. The DNA fragments are localized at 

the tail portion whilst the intact DNA is located at the head.  

After electrophoresis the buffer was removed and the slides were washed three times with 

neutralization buffer (0.4M Tris, pH 7.4) for 5 min each to remove detergents and neutralize 

excess alkali. The slides were viewed using a fluorescent microscope (Olympus IXSI inverted 

microscope) using filter 4 (510-560 nm excitation and 590 nm emission filters).  Images of 50 

cells were taken per treatment, these were analysed Soft imaging system (Life Science – 

Olympus Soft Imaging Solutions v5) and expressed in µm.  

 

 

 

 

  

 
 
 
 
 
 

Figure 2.13: Principle of the SCGE assay (prepared by author) 
 

2.10. Statistical analyses  

Data was analysed using GraphPad prism V5.0 software (GraphPad Software Inc., La Jolla, 

USA.) Data was considered to be statistically significant with a p value < 0.05. Unpaired t-test 

with Welch correction (data reported as mean ± standard deviation) or the one-way analysis of 

variance (ANOVA) followed by a Bonferroni test for multiple group comparison (data is 

presented as 95% CI) was used to determine statistical significance.  
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The unpaired t-test is employed to compare two groups of data (control vs. treatment) when 

observations are not equal and the data is continuous yet randomly distributed (Barile, 2013). 

Welch‟s correction assumes that both data sets are sampled from Gaussian populations but does 

not assume that these data sets have an equal standard deviation (Prism, 2016). 

The ANOVA test compares the total variation present in more than two groups of data sets 

(Barile, 2013).  The Bonferonni test compares every pair of means but are selected baed on 

experimental design. When comparing multiple pairs of grouped data at once the individual p 

value can not be determined in the normal way, instead a significance level is set and 

comparisons are statistically significant based on this threshold.  
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CHAPTER 3: RESULTS 

3.1. Mitochondrial Output  

To determine the effect of FA on mitochondrial output, cell viability and intracellular ATP 

levels were assessed.  

3.1.1. Cell viability  

 A dose response curve was obtained using serially diluted concentrations of FA (0-500µg/ml) 

in HepG2 cells over 24h. The curve showed that FA decreased metabolic activity in a dose 

dependent manner; 104µg/ml FA caused a 50% inhibition (IC50) of metabolic activity and this 

concentration was used in all subsequent assays (Figure 3.1).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: A dose dependent decline in metabolic activity following treatment with varying 
concentrations (0, 25, 50, 100, 250, 350, 500 µg/ml) of FA. 

 

3.1.2. Intracellular ATP levels 

Intracellular ATP level was measured using a luminometric assay. Figure 3.2 shows that FA 

caused a significant (p = 0.0062) decrease in ATP levels (0.815 ± 0.0682 × 106 RLU) when 

compared to the control (2.044 ± 0.1582 × 106 RLU).  
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Figure 3.2: Intracellular ATP levels were significantly depleted (**p=0.0062) in FA treated 

cells. Results are presented as mean ± standard deviation. 

 

3.2. Oxidative stress and detoxification  

3.2.1. Oxidative stress 

Lipid peroxidation was used as a measure of oxidative stress. MDA levels were significantly 

increased in FA treated cells when compared to control cells (P = 0.0002; 95% CI, -14.02×103 

to -6.644 ×10-3). Higher MDA levels were also observed in FA treated cells relative to NAM 

treated cells (p = 0.0002; 95% CI: 5.978 × 10-3 to 13.36 × 10-3). NAM treatment did not exhibit 

significant changes to ROS levels when compared to control cells (Figure 3.3). 
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Figure 3.3: FA induced oxidative stress as indicated by elevated MDA levels (***p = 0.0002) 

when compared to NAM and the untreated control. Results are expressed as mean ± standard 

deviation. 

3.2.2. Phase 2 detoxification 

Increased oxidative stress by FA may interfere with cellular anti-oxidant systems such as Nrf2 

expression. FA significantly increased Nrf2 expression (western blots) when compared to both 

untreated controls (p < 0.0014; untreated vs. FA, 95% CI, 3.058 ×10-2 RBD to -0.367 × 10-2 

RBD; FA vs. NAM, 95% CI 1.493 × 10-2 RBD to 3.9× 10 -2 RBD) but no significant changes 

were observed between untreated cells and NAM treated cells (Figure 3.4). 
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Figure 3.4: The regulator phase II detoxification responses (nrf-2) was found to be significantly 

elevated (*/**p < 0.0014) in FA treated cells when compared to NAM and the untreated cells. 

3.3. Mitochondrial stress 

3.3.1. Sirtuin 3 

Sirtuin 3 is a key regulator of mitochondrial function and stress responses. Changes to protein 

and gene expression of SIRT3 in FA and NAM (positive control) treated cells relative to 

untreated cells were examined. Since NAM is a known inhibitor of SIRT3 activity, the activity 

of SIRT3 in response to FA can be better understood.  

Following exposure to FA, a significant decrease in SIRT3 protein expression in comparison to 

both sets of control cells (p = 0.0012; untreated vs. FA, 95% CI, 0.2884 × 10 -3   RBD to    

0.7275 × 10 -3  RBD; FA vs. NAM, 95% CI -0.5893 X 10 -3  RBD to -0. 1502 × 10 -3  RBD) was 

observed (Figure 3.5A).  

To validate the reduced expression of SIRT3 at the protein level SIRT3 gene expression was 

investigated with qPCR. These results show gene expression to be significantly down-regulated 

in response to FA but not NAM when compared to untreated cells (Figure 3.5B) (p = 0.0007; 

untreated vs. FA, 95% CI, 0.7160 to 1.473; FA vs. NAM, 95% CI -1.164 to -0.4069).  
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Figure 3.5: FA significantly decreased both SIRT3 protein (A, **: p = 0.0012) and mRNA                                                    

(B, ***/**p = 0.0007) expression levels 

3.3.2. Lon Protease  

The down-regulation of SIRT3 has implications for mitochondrial stress responses. Protein 

expression of LON, a key mitochondrial stress response protein was measured. FA significantly 

decreased expression of LON in the untreated control (p = 0.0044; untreated vs. FA, 95% CI, 

0.1997 RBD to 1.287 RBD; untreated vs. NAM, 95% CI 0.4179 RBD to 1.411 RBD). The 

difference in LON expression induced by FA as compared to NAM was not significant                  

(Figure 3.6). 
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Figure 3.6: LON protein expression was significantly down-regulated (**: p = 0.0044) in cells 

treated with FA and NAM.  

3.4. Mitochondrial biogenesis  

Since both SIRT3 and LON are involved in mitochondrial biogenesis, the effects of FA in this 

process were further investigated.  

3.4.1. Peroxisome proliferator-activated receptor γ co-activator α (PGC-1α) 

The effect of FA on PGC-1α protein expression, the master regulator of mitochondrial 

biogenesis (Ventura-Clapier et al., 2008) was determined and is shown in figure 3.7. 

Significantly lower levels of PGC1-α protein expression was observed in FA and NAM treated 

cells when compared to the untreated control (p = 0.0005; untreated vs. FA, 95% CI, 0.09168 

RBD to 0.2127 RBD; untreated vs. NAM, 95% CI 0.09206 RBD to 0.2274 RBD). However no 

statistical significance was found between NAM and FA treated cells.   
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Figure 3.7: FA significantly decreased the expression of PGC-1α (***: p = 0.0005). 

 
 

3.4.2. Phosphorylated cAMP response element binding protein (p-CREB).   

The expression of the mitochondrial biogenesis regulatory protein p-CREB was examined and 

found to be significantly decreased in response to FA and NAM stimulation (p = 0.0008; 

untreated vs. FA, 95% CI, 0.361 ×10 -3 RBD to 1.362 10 × -3  RBD; untreated vs. NAM, 95% CI   

0.6213 ×10 -3  RBD to 1.622 × 10 -3  RBD, Figure 3.8).  
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Figure 3.8: The expression of p-CREB was significantly down-regulated in response to both 

FA and NAM treatment (***/**: p = 0.0008) 

 

3.4.3. Nuclear respiratory factor 1 (NRF-1) 

Mitochondrial biogenesis is regulated at the transcriptional level by NRF1. As seen in figure 3.9 

both FA and NAM induced significant decreases in NRF1 expression in comparison to 

untreated cells (p = 0.0004; untreated vs. FA, 95% CI, 0.1124 RBD to 0.2121 RBD; untreated 

vs. NAM, 95% CI 0.1177 RBD to 0.2270 RBD) but no significant changes were noted between 

FA and NAM treated cells. 
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Figure 3.9: Both the FA and NAM stimulated cells exhibited significantly decreased protein 

expression of NRF-1 when compared to untreated cells (***: p = 0.0004)   

 

3.4.4. Heat shock protein 70 (HSP70) 

The chaperone protein HSP70 expression was determined. FA was seen to significantly 

decrease protein expression of HSP70 when compared to untreated and NAM stimulated cells 

(P = 0.0102; untreated vs. FA, 95% CI, 0.5672 RBD to 3.234 RBD; FA vs. NAM, 95% CI 

3.142 RBD to -0.4758 RBD, Figure 3.10) 
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Figure 3.10: The expression of HSP70 was significantly decreased in response to FA 

stimulation when compared to both NAM and the untreated control cells (*p = 0.0102). 

3.5. Cell damage and death 

Since both mitochondrial and oxidative stresses culminate in cell damage/death the effect of FA 

on cell membrane integrity/cytotoxicity and caspase activity were investigated.  

3.5.1. Membrane integrity and cytotoxicity 

Seeing that MDA (by-product of lipid peroxidation) levels were increased we investigated the 

effect of FA on cell membrane integrity. FA induced significant cell membrane damage when 

compared to control cells as measured by increased LDH activity in FA treated cells (p<0.0001, 

2.902 ± 0.1385 vs. 0.8328 ± 0.06286) as shown in figure 3.11. The elevated LDH level is also 

an indicator of cytotoxicity/necrosis. 
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Figure 3.11: FA caused significant membrane damage and is cytoxic to the HepG2 cell line as 

indicated by the LDH assay (***p<0.0001).  

3.5.2. Caspase activity 

The activities of caspase 9, the intrinsic apoptotic initiator and the executioner caspases 3 and 7 

were measured. These results, presented in table 3, show FA significantly increased (p= 0.0032) 

the activity of caspases 3 and 7 when compared to control cells (7.482 ± 0.4973  vs. 24.040 ± 

1.551). However no significant difference was observed in caspase 9 activity. 

Table 2 Caspase activity in FA treated cells.  

Caspase Mean ± SD (RLU X 103) p-value 

Control FA 
    

9 175.6 ± 9.423 166.30 ± 14.710 0.3340 

3/7 7.482 ± 0.4973 24.040 ± 1.551 0.0032** 

    

Results are presented as mean ± Standard deviation (SD) and in relative light units (RLU) 
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CHAPTER 4: DISCUSSION 

FA is produced by Fusarium spp, a ubiquitous soil fungus, and contaminates many agricultural 

products (Bacon et al., 1996), to date the belief was that it possessed low to mild toxicity . The 

liver is susceptible to toxic insult (Fenton, 2002, Wang and Ng, 1999). Hepatocytes are densely 

populated with mitochondria which serve as integrators for several metabolic pathways and 

regulators of hepatocyte survival. Hepatocyte damage is strongly associated with mitochondrial 

dysfunction coupled with increased ROS production (Esposti et al., 2012).  

Previous studies have implicated ROS generation as a  major contributor to FA induced toxicity 

(Hirai et al., 2005, Iwahashi et al., 1999, Jiao et al., 2014) whilst other studies showed FA 

chelation as a toxic mechanism (Ruda et al., 2006, Stack et al., 2004). The molecular 

mechanisms of FA toxicity, however, are not fully elucidated. SIRT3 regulates many aspects of 

mitochondrial function including ATP generation and stress responses (Chen et al., 2014). 

SIRT3 ideally functions as a mitochondrial fidelity protein and a loss of its function can result in 

cellular damage and eventual death. 

The results show that FA decreased cell viability in a dose dependent manner, with a drastic 

decrease at higher concentrations (Figure 3.1). The MTT assay measures cell viability based on 

the generation of reducing equivalents by metabolically active cells (Nikzad et al., 2014). 

Telles-Pupilin et al. (1998) showed that FA impedes oxidative reactions of the Kreb‟s cycle by 

inhibiting α-ketoglutarate dehydrogenase and succinate dehydrogenase (Telles-Pupulin et al., 

1998); α-ketoglutarate dehydrogenase regulates metabolic flux via the Kreb‟s cycle and 

catalyzes the conversion of α-ketoglutarate to succinyl-CoA producing NADH and directly 

provides electrons for the respiratory chain. Succinate dehydrogenase oxidizes succinate to 

fumarate producing FADH2 and transfers electrons from succinate to ubiquinone thus playing a 

role in the Kreb‟s cycle and ETC (Champe et al., 2005). These results seem to be in agreement 

with studies that show FA interferes with reducing equivalent metabolism.  

SIRT3 down-regulation at both the protein and gene levels (Figure 3.5A and 3.5B) shows that 

FA may selectively target the mitochondrion. Also, FA is a weak acid and this may also explain 

its mitochondrial toxicity (weak acids disrupt the hydrogen gradient across the mitochondrial 

membrane and decreases ATP production). The decreased SIRT3 protein expression can be 

attributed to its decreased gene transcript levels. It is also possible that FA, an efficient chelator 

of zinc (Stack et al., 2004), directly down regulated SIRT3 protein expression. SIRT3 contains a 

conserved enzymatic core with two domains, including a large Rossmann fold domain that 

binds NAD+ and a small domain formed by two insertions of the large domain binding to a zinc 
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atom (Nogueiras et al., 2012). FA may have caused loss of functional stability of SIRT3 through 

removal of the zinc ion.  

FA severely depleted intracellular ATP levels (Figure 3.2). Ahn et al (2008) showed decreased 

respiration and ATP levels in SIRT3 double knock-out mice livers (Ahn et al., 2008), and is in 

agreement with the human in vitro model data in Figure 3.2. SIRT3 targets NADH 

dehydrogenase and succinate dehydrogenase and stimulates their activity (Finley et al., 2011, 

Chen et al., 2014). FA is structurally similar to NAM and may inhibit SIRT3 activity through 

competitive binding at the NAD+ site. Furthermore, these complexes contain iron-sulphur 

clusters (Champe et al., 2005, Atamna et al., 2002); FA can chelate iron in vitro (Hirai et al., 

2005), and this would prevent the transfer of electrons in the ETC.    

Furthermore, it was shown that FA directly suppressed the ETC by inhibiting ATP synthase 

activity (Telles-Pupulin et al., 1998). Thus FA may directly or indirectly inhibit mitochondrial 

enzymes as well as reducing equivalent metabolism and decrease ATP synthesis.  

FA significantly elevated levels of MDA, a byproduct of lipid peroxidation and marker of 

oxidative stress (Figure 3.3). This is in agreement with Jiao et al (2014) (Jiao et al, 2014). 

Although ROS is damaging to a variety of cellular macro-molecules, membrane lipids are 

especially sensitive to free radicals due to the presence of PUFAs (Tretter and Adam-Vizi, 

2005). The inhibition of the ETC by FA is a likely cause of the highly oxidative environment. It 

was shown that inhibition of the ETC, particularly at complex I and II leads to the increased 

generation of ROS (Chen et al., 2007). FA itself is thought to induce oxidative stress through 

chelation of iron and enhancement of the Fenton reaction (Hirai et al., 2005, Iwahashi et al., 

1999). The nitrogen atom in the pyridine ring and the oxygen atom in the carboxyl group, may 

act as a chelator and enhance the Fenton reaction leading to formation of the hydroxyl radical 

(Iwahashi et al., 1999).  

Induction of the phase 2 response is an important cellular defense to oxidative stress and is 

dependent on the release of Nrf2 from its repressor KEAP-1, a zinc thiol protein. Zinc is bound 

to reactive cysteine thiols of Keap1 and is displaced by electrophiles. Release of zinc alters the 

conformation of Keap1 thereby allowing translocation of Nrf2 to the nucleus (Dinkova-Kostova 

et al., 2005). FA significantly increased in Nrf2 expression (Figure 3.4). However, given that 

KEAP-1 is a zinc thiol protein it may be possible that FA chelates this ion and enhances the 

release of Nrf2. Despite elevated Nrf2 levels, the increased oxidative stress in the HepG2 cells 

still persisted. This may be due to the chelation of zinc, a critical ion involved in the activation 

and transcriptional function of Nrf2 (Ngo et al., 2013 ).  
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SIRT3 acts to dampen oxidative stress through enhanced expression and activity of SOD2 (Tao 

et al., 2010, Qiu et al., 2010). SIRT3 expression is normally up-regulated by oxidative stress 

(Flick and Lüscher, 2012); however our results show that FA decreased its expression at the 

gene level (Figure 3.5B).  Kong et al. (2010) showed that PGC-1α stimulated SIRT3 expression 

at the gene and protein levels (Kong et al., 2010) via CREB phosphorylation (Flick and Lüscher, 

2012) and SIRT3 in turn up-regulated PGC-1α expression –these proteins are regulated by a 

positive feedback loop (Chen et al., 2014). The results support this as FA is shown to disrupt 

this feedback loop by down regulating SIRT3, PGC-1α and p-CREB (Figure 3.5A, 3.5B, 3.7, 

3.8).  Although no direct regulation of PGC-1α by SIRT3 has been reported, a study showed 

that SIRT3 expression is required for the induction of oxidative responses by PGC-1α (Kong et 

al., 2010). Interestingly inhibition of SIRT3 by NAM resulted in similar reductions to PGC-1α 

and p-CREB protein expression when compared to FA treated cells, thus supporting the 

hypothesis that FA can dysregulate SIRT3 activity through competitive inhibition.  

Despite FA and NAM inhibiting SIRT3 and resulting in similar reductions to PGC-1α protein 

expression, no significant elevation in MDA levels was observed in NAM treated cells as 

compared to untreated controls. There was also no difference in the expression of Nrf2 by 

NAM. These results are supported by a study in SIRT3 knock-out mouse embryonic fibroblasts 

that showed oxidative stress to only be significantly elevated upon induction of cellular stress 

(Kim et al., 2010).  

The removal of oxidatively damaged proteins via proteolytic degradation is an important cell 

defense to high oxidative stress. Oxidized mitochondrial proteins must be removed rapidly to 

prevent their aggregation, cross linking and toxicity. LON, an ATP dependent protease, 

catalyzes the degradation of oxidatively damaged proteins in the mitochondrial matrix (Bota et 

al., 2005 ). LON expression was decreased after treatment with both FA and NAM (Figure 3.6). 

Given that Nrf2 expression was up-regulated and SIRT3 expression down regulated by FA, it is 

likely that FA induced LON disruption at the post-translational level. This is supported by 

inhibition of SIRT3 with NAM showing similar reductions in LON expression.  Furthermore 

the depletion of ATP by FA will prevent catalytic activity of LON inhibiting proteolytic 

degradation of oxidized proteins. FA induced mitochondrial stress in HepG2 cells is further 

aggravated by loss of LON function.  

Since FA induced both oxidative and mitochondrial stress, we then determined its effect on 

mitochondrial biogenesis. Increased mitochondrial biogenesis aids cells to prevent 

mitochondrial lesions and maintain mitochondrial integrity (Esposti et al., 2012). PGC-1α is 

known to enhance NRF1 dependent gene expression by acting as a co-activator. NRF1 (a 
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transcription factor) activates the expression of oxidative phosphorylation components and the 

expression of Tfam resulting in increased expression of nuclear mitochondrial genes and 

mitochondrial DNA replication (Piantadosi and Suliman, 2006). A decrease in NRF1 expression 

by FA was noted (Figure 3.9). Kong et al (2010) found that inhibition of SIRT3 expression 

diminished the PGC-1α induction of mitochondrial biogenesis. They proposed that NRF1 is a 

substrate of SIRT3 however further studies are required to determine the molecular mechanism 

by which SIRT3 controls mitochondrial biogenesis (Kong et al., 2010).  

Most genes encoding mitochondrial proteins are located in the nucleus rather than in the 

mitochondrial genome, these proteins must be imported into the mitochondria. This involves 

complex folding and assembly processes to ensure proper enzyme activity (Voos, 2013).  

HSP70 is involved in mitochondrial protein homeostasis and  by mediating translocation and 

folding reactions (Voos, 2013). The results show decreased expression of HSP70 by FA                  

(Figure 3.10). HSP70 co-ordinates two calcium ions one of which contributes to protein stability 

while the other is needed to carry out ATP hydrolysis (Sriram et al., 1997), thus FA may affect 

both stability and activity of HSP70 through chelation of calcium. Additionally FA mediated 

depletion of ATP will impede folding reactions of HSP70 since ATP hydrolysis is coupled with 

its molecular chaperone function (Voos, 2013). LON can also act as a chaperone, independent 

of its proteolytic activity and promote the assembly of cytochrome c oxidase subunits. Thus 

down regulation of LON results in impaired respiratory function (Bota et al., 2005 ). Gibellini 

and colleagues (2014) showed that decreased LON levels impairs mitochondrial function 

(Gibellini et al., 2014b).  

Further, this group also showed activation of executioner caspase 3 and apoptotic cell death as a 

result of LON down-regulation (Gibellini et al., 2014b). Our results are in agreement as we also 

show increased activity of caspase 3 (Table 2), a marker of apoptosis, involved in the execution 

of this process. Apoptosis may be a result of proteolytic defects of LON resulting in 

accumulation of oxidized proteins while loss of chaperone function impairs mitochondrial 

respiration.  

Given that mitochondrial stress was induced by FA it seemed logical to assume that the 

enhanced activity of caspase 3/7 would be attributed to the intrinsic apoptotic pathway. 

However, the data presented in table 2 suggest that caspase 9 is not a good candidate for the up-

stream activation of caspase 3/7 since this initiator caspase is slightly decreased in FA treated 

cells when compared to control cells. In the cytoplasm, cytochrome c binds to the APAf-1 and 

forms the apoptosome to induce the activation of pro-caspase 9 and initiate an enzymatic 
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reaction cascade leading to the execution of apoptosis via caspase 3 activity (Dai et al., 2014). 

Seeing that cytochrome c is an iron metalloprotein and absolute requirement for caspase 9 

activity, the loss of iron from cytochrome c by FA mediated chelation can prevent the proper 

formation of the apoptosome leading to decreased activity of caspase 9. Furthermore, results 

have emerged providing evidence that Apaf-1 transforms ATP into ADP and is an ATPase and 

that ATP is essential for Apaf-1 binding to cytochrome c (Hu et al., 1999 , Chiarugi, 2005). 

Thus FA may prevent activation of caspase 9 by depletion of intracellular ATP.  

The IAP family of proteins selectively binds and inhibits caspases to prevent apoptosis. All 

IAPs contain 1–3 BIR domains, which are cysteine and histidine rich and can fold into 

functionally independent structures that bind zinc (Zuo et al., 2012 ). The XIAP is the most 

potent member of this family (Makhov et al., 2008). The BIR2 domain of XIAP can bind to the 

amino terminal end of the small subunit of caspase-7 causing its inhibition, while the linker 

region accounts entirely for the inhibition of caspase-3. The BIR3 domain directly binds to, and 

inhibits caspase-9 through an amino-terminal end created by caspase-9 self-cleavage. The BIR1 

domain displays no inhibitory activity. Essentially, the E3 ligase activity of the really interesting 

new gene (RING) finger domain allows XIAP to trigger ubiquitination of caspases 3 and 7, a 

process that represents one of the potential anti-apoptotic mechanisms of XIAP                                

(Zuo et al., 2012 ). Studies conducted on the effects of zinc chelators and the expression of 

XIAP reveal XIAP depletion by destabilization of this metalloprotein and subsequent activation 

of caspases upon zinc removal (Zuo et al., 2012 , Makhov et al., 2008). The loss of function of 

the RING finger domain may also lead to enhanced caspase activity since ubiquitination is no 

longer possible. Thus, FA being an efficient chelator of zinc can interfere with XIAP stability 

and ubitination function, allowing apoptosis to proceed uninhibited by this IAP family member 

enhancing cell death.   

Furthermore LON deficient cells switch to necrosis as a result of ATP depletion caused by 

mitochondrial defects.  LDH release was increased - an indication of increased necrotic cell 

death (Figure 3.11). Thus, while apoptosis may be initiated after FA treatment the switch to 

necrotic cell death may be as a result of depleted ATP.   

However, given that this leakage is a consequence of loss of cell membrane integrity, most 

likely caused by elevated oxidative stress, the role of the mitochondria in lipid synthesis cannot 

be dispelled. Indeed, experiments conducted by Schwer et al. (2006) clearly described a 

relationship between SIRT3 expression and the activity of acetyl CoA synthetase (Schwer et al., 

2006).  
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McGuirik et al (2013) showed that glutamine metabolism can be dysregulated by the decreased 

expression of PGC-1α. Their experiments revealed PGC-1α and ERRα regulate both the 

canonical citric acid cycle (forward) and the reductive carboxylation (reverse) fluxes by 

modulating glutamine flux through the Kreb‟s cycle; the latter can be used to support de novo 

lipogenesis reactions (McGuirk et al., 2013). Given that FA was shown to down-regulate SIRT3 

and PGC-1α expression suggests that FA not only affects mitochondrial output but can also 

contribute to the dysregulation of other mitochondrial processes such as fatty acid metabolism.   

The importance of fungi parasitizing agricultural produce is of concern due to their ability to 

produce mycotoxins. These toxins are often associated with disease states including 

tumorigenesis.  Mycotoxins found to be contaminating maize are a health risk since maize 

forms part of a staple diet for many South Africans. High risk groups include subsistence 

farmers and poor rural communities as these groups have low socio-economic status and food 

security is often compromised.   

An understanding of toxic mechanisms provides a basis between exposure and adverse health 

outcomes. Although some mycotoxins have been extensively studied and the pathways that give 

rise to their pathologies have been described, little is known about the effects of FA, particularly 

in human models. The results presented in this study describe the toxic mechanism of FA in a 

liver derived human cell line, providing evidence for hepatotoxicity that may aid in 

understanding and predicting the risks of FA exposure on the health of people and animals. 

Thus, these results will be important in food safety and may help raise awareness of FA toxicity 

as well as encourage good agricultural practises, both pre and post harvest , to limit the presence 

of this commonly neglected mycotoxin in maize. 

Previous studies have implicated mitochondrial dysfunction and excessive production of ROS 

as possible mechanisms of FA induced toxicity (Jiao et al., 2014, Telles-Pupulin et al., 1998). 

The data of this study points to FA mediated loss of SIRT3 leading to the aberrant regulation of 

the mitochondrial acetylome regulatory network and shows that mitochondrial function and 

biogenesis is seriously impaired by FA and oxidative stress is increased. This provides an 

underlying cause for the observations made by previous researchers.  
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CHAPTER 5: CONCLUSIONS 

5.1. Limitations of study  

In vitro studies entail subjecting cells to doses of a toxin. The objective of in vitro studies is to 

determine the potential influences of such toxins, and to isolate them from other types of 

influences. However, a major disadvantage is that cells are removed from their natural 

environment, thereby eliminating the interaction and protection mechanisms otherwise available 

from the donor organism. In order to improve this study the use of a primary hepatocyte cell 

model and an in vivo mouse model will go a long way in establishing a holistic response to FA.  

This study only made use of a 24 hour exposure period. Many proteins and stress pathways 

respond differently to toxins under acute and chronic conditions, therefore it would be 

interesting to determine the effects of FA in the HepG2 cell line after 6 hour and 48 hour 

exposure times to simulate acute and chronic exposures respectively.  

This study did not assess the morphological changes to mitochondria in response to FA. 

5.2. Conclusion 

Taken together data of this study show that mitochondrial function and biogenesis is seriously 

impaired by FA. The results discussed above suggest that loss of SIRT3 leads to the aberrant 

regulation of the mitochondrial acetylome regulatory network and results in cellular damage and 

death. Our results point to loss of SIRT3 in response to this mycotoxin as a possible mechanism 

for cytotoxicity in the HepG2 cell line.  

Oxidative stress responses such as mitochondrial protein quality control systems and proper 

regulation of biosynthetic processing in the mitochondria are essential for maintaining 

metabolic homeostasis and adaptation in cancer cells. Examination of cellular responses to 

mitochondrial stress and dysfunction after FA treatment provides useful information to unravel 

the molecular basis of this mycotoxins mechanism of action 

The poverty problem in South Africa is largely rural, with subsistence farming playing a huge 

role in supplementing impoverished communities (Machethe, 28-29 October 2004). Maize can 

be infected with a host of toxigenic fungi including species of Fusarium which produce 

Fusariotoxins. Given that maize is an important agricultural commodity, particularly in rural 

South Africa, this study has provided some answers to the mechanism of FA toxicity and its 

implications for health.  
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5.3. Future studies  

While the current in vitro study provided some answers to the molecular mechanisms involved 

in the mitochondrial dysfuntion in liver cells after treatment with FA it cannot provide a holistic 

response. Therefore, the use of a primary cell line along with an in vivo mouse model will 

enhance the findings of this study and add to the body of knowledge surrounding the toxic 

potential of this mycotoxin. It will also be worthwhile to look at different exposure time periods 

to determine the toxicity of FA under acute and chronic scenarios.   

Given that the liver is a key detoxifying organ it will be worth investigating the bio-

transformation of FA and its effects on the cytochrome system. The processing of FA in the 

liver will provide the information necessary to determine if any toxic metabolites are produced.  

This study also alluded to fatty acid/lipogenesis dysregulation by FA. Seeing as the liver is 

central to lipid homeostasis.. This is of importance since perturbations to SIRT3 result in fatty 

liver. Experiments involving an in vivo mouse model to determine if FA affects acetylation 

status of key proteins involved in hepatic fuel metabolism are warranted. Such experiments 

could include looking at the expression profiles of these proteins before and after treatment with 

FA as well as looking at the morphology of the liver to determine pathogenicity.   

Finally, seeing as FA affected mitochondrial function through SIRT3 it would be interesting to 

observe the effects of FA on the microRNA environment and how changes here can further 

manipulate SIRT3 regulation. Indeed, the microRNA miR-34a and miR-199a have been shown 

to regulate SIRT1 expression; however no studies have evaluated their implications on SIRT3. 

 

 

 

 

 

 

 

 

 



 

69 
 

REFERENCES 
AHN, B.-H., KIM, H.-S., SONG, S., LEE, I. H., LIU, J., VASSILOPOULOS, A., DENG, C.-X. & FINKEL, T. 

2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. 
Proceedings of the National Academy of Sciences, 105, 14447-14452. 

AMIRA, A. M. A. 2010. Oxidative Stress and Disease: An Updated Review. Research journal of 
immunology 3, 129-145. 

ATAMNA, H., WALTER, P. B. & AMES, B. N. 2002. The Role of Heme and Iron-Sulfur Clusters in 
Mitochondrial Biogenesis, Maintenance, and Decay with Age. Archives of Biochemistry 
and Biophysics, 397, 345-53. 

ATCC. 2014. Hep G2 [HEPG2] (ATCC® HB-8065™) [Online]. Available: http://www.lgcstandards-
atcc.org/products/all/HB-8065.aspx?geo_country=za#characteristics 2015]. 

AYALA, A., F.MUÑOZ, M. & ARGÜELLES, S. 2014. Lipid Peroxidation: Production, Metabolism, 
and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative 
Medicine and Cellular Longevity, 2014, 31. 

BACON, C. W., PORTER, J. K., NORRED, W. P. & LESLIE, J. F. 1996. Production of Fusaric Acid by 
Fusarium Species. Applied And Environmental Microbiology, 62, 4039-4043. 

BALABAN, R. S., NEMOTO, S. & FINKEL, T. 2005. Mitochondria, Oxidants, and Aging. Cell 
Metabolism, 120, 483-495. 

BARILE, F. A. 2013. Principles of Toxicology Testing, New York CRC Press. 
BATTERSBY, B. J. & RICHTER, U.  2013. Why translation counts for mitochondria – retrograde 

signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell 
proliferation. Journal of Cell Science, 126, 4331-4338. 

BIN-UMER, M. A., MCLAUGHLIN, J. E., BASU, D., MCCORMICK, S. & TUMER, N. E. 2011. 
Trichothecene Mycotoxins Inhibit Mitochondrial Translation—Implication for the 
Mechanism of Toxicity. Toxins, 3, 1484-1501. 

BODZIN, A. S. & BUSUTTIL, R. W. 2015. Hepatocellular carcinoma: Advances in diagnosis, 
management, and long term outcome. World Journal of  Hepatology 7, 1157-1167. 

BOLAND, M. L., CHOURASIA, A. H. & MACLEOD, K. F. 2013. Mitochondrial dysfunction in 
cancer. Frontiers in Oncology 3, 1-28. 

BOTA, D. A., NGO, J. K. & DAVIES, K. J. A. 2005 Downregulation of the human Lon protease 
impairs mitochondrial structure and function and causes cell death. Free Radical 
Biology & Medicine  38, 665- 677. 

BOUTIGNY, A.-L., BEUKES, I., SMALL, I., ZUHLKE, S., SPITELLER, M., RENSBURG, B. J. V., FLETT, B. 
& VILJOEN, A. 2011. Quantitative detection of Fusarium pathogens and their 
mycotoxins in South African maize. Plant Pathology, 61, 522-531. 

CAMPBELL, I. 2006. Liver: functional anatomy and blood supply. ANAESTHESIA AND INTENSIVE 
CARE MEDICINE 7, 49-51. 

CASTELL, J. V., LUCHON, M.-J. G., PONSODA, X. & BORT, R. 1997. In vitro investigation of the 
molecular mechanisms of hepatotoxicity. Archives of Toxicology 19, 313-321. 

CHAMPE, P. C., HARVEY, R. A. & FERRIER, D. R. 2005. Biochemistry, United States of America, 
Lippincott Williams and Wilkins  

CHEN, Y., FU, L., WEN, X., WANG, X., LIU, J., CHENG, Y. & HUANG, J. 2014. Sirtuin-3 (SIRT3), a 
therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell 
Death and Disease, 5, e1047. 

CHEN, Y., MCMILLAN-WARD, E., KONG, J., ISRAELS, S. J. & GIBSON, S. B. 2007. Mitochondrial 
electron-transport-chain inhibitors of complexes I and II induce autophagic cell death 
mediated by reactive oxygen species. Journal of Cell Science  120, 4155-4166. 

CHIARUGI, A. 2005. “Simple but not simpler”: toward a unified picture of energy requirements 
in cell death. The FASEB Journal 19 1783-1788  

http://www.lgcstandards-atcc.org/products/all/HB-8065.aspx?geo_country=za#characteristics
http://www.lgcstandards-atcc.org/products/all/HB-8065.aspx?geo_country=za#characteristics


 

70 
 

CIRCU, M. L. & AW, T. Y. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. 
Free Radical Biology & Medicine  

COULOMBE, R. A. 1993. Biological Action of Mycotoxins. Journal of Dairy Science, 76, 880-891. 
DAI, S.-H., CHEN, T., WANG, Y.-H., ZHU, J., LUO, P., RAO, W., YANG, Y.-F., FEI, Z. & JIANG, X.-F. 

2014. Sirt3 Protects Cortical Neurons against Oxidative Stress via Regulating 
Mitochondrial Ca2+ and Mitochondrial Biogenesis. International Journal of Molecular 
Sciences, 15, 14591-14609. 

DEVASAGAYAM, T. P. A., BOLOOR, K. K. & RAMASARMA, T. 2003. Methods for estimating lipid 
peroxidation: an analysis of merits and demerits. Indian Journal of Biochemistry and 
Biophysics, 40, 300-308. 

DINIZ, S. & OLIVEIRA, R. 2009. Effects of fusaric acid on Zea mays L. seedlings. International 
Journal Of Experimental Botany, 78, 155-160. 

DINKOVA-KOSTOVA, A. T., HOLTZCLAW, W. D. & WAKABAYASHI, N. 2005. Keap1, the Sensor 
for Electrophiles and Oxidants that Regulates the Phase 2 Response, Is a Zinc 
Metalloprotein. Biochemistry 44, 6889-6899. 

ELMORE, S. 2007. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 
495-516. 

ESPOSTI, D. D., HAMELIN, J., BOSSELUT, N., SAFFROY, R., SEBAGH, M. E., POMMIER, A., 
MARTEL, C. E. & LEMOINE, A. 2012. Mitochondrial Roles and Cytoprotection in Chronic 
Liver Injury. Biochemistry Research International, 2012. 

FAIRCHILD, A. S., GRIMES, J. L., PORTER, J. K., W.J. CROOM, J., DANIEL, L. R. & W.M. HAGLER, J. 
2005. Effects of Diacetoxyscirpenol and Fusaric Acid on Poults: Individual and 
Combined Effects of Dietary Diacetoxyscirpenol and Fusaric Acid on Turkey Poult 
Performance. International Journal of Poultry Science, 4 350-355. 

FENTON, J. J. 2002. Toxicology A Case-Oriented Approach, New York CRC Press LLC. 
FERNANDEZ-POL, J. A., BONO, V. H. & JOHNSON, G. S. 1977. Control of growth by picolinic 

acid: Differential response of normal and transformed cells. Proceedings of the 
National Academy of Sciences, 74, 2889-2893. 

FINLEY, L. W. S., HAAS, W., DESQUIRET-DUMAS, V. R., WALLACE, D. C., PROCACCIO, V., GYGI, S. 
P. & HAIGIS, M. C. 2011. Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 
Deacetylase Activity. PLoS ONE, 6  e23295. 

FLICK, F. & LÜSCHER, B. 2012. Regulation of sirtuin function by posttranslational modifications. 
Frontiers in pharmacology, 3, 29. 

FOX, E. M. & HOWLETT, B. J. 2008. Secondary metabolism: regulation and role in fungal 
biology. Current Opinion in Microbiology 11, 481-487. 

GIBELLINI, L., PINTI, M., BERETTI, F., PIERRI, C. L., ONOFRIO, A., RICCIO, M., CARNEVALE, G., 
BIASI, S. D., NASI, M., TORELLI, F., BORALDI, F., POL, A. D. & COSSARIZZA, A. 2014a. 
Sirtuin 3 interacts with Lon protease and regulates its acetylation status. 
Mitochondrion 18, 76-81. 

GIBELLINI, L., PINTI, M., BORALDI, F., GIORGIO, V., BERNARDI, P., BARTOLOMEO, R., NASI, M., 
BIASI, S. D., MISSIROLI, S., CARNEVALE, G., LOSI, L., TESEI, A., PINTON, P., QUAGLINO, 
D. & COSSARIZZA, A. 2014b. Silencing of mitochondrial Lon protease deeply impairs 
mitochondrial proteome and function in colon cancer cells. the FASEB journaal. 

GRANT, R. S., COGGAN, S. E. & SMYTHE, G. A. 2009. The Physiological Action of Picolinic Acid in 
the Human Brain. International journal of tryptophan research, 2, 71-79. 

GUAN, X., LIN, P., KNOLL, E. & CHAKRABARTI, R. 2014. Mechanism of Inhibition of the Human 
Sirtuin Enzyme SIRT3 by Nicotinamide: Computational and Experimental Studies. PLOS 
ONE, 9, e107729. 

HEALTHCARE, G. 2011. Western Blotting: Principles and Methods. In: HEALTHCARE, G. (ed.) 
Handbooks from GE Healthcare. Sweden: Imagination at work. 



 

71 
 

HIRAI, T., FUKUSHIMA, K., KUMAMOTO, K. & IWAHASHI, H. 2005. Effects of Some Naturally 
Occurring Iron Ion Chelators on In Vitro Superoxide Radical Formation. Biological Trace 
Element Research, 108, 77-85. 

HU, Y., BENEDICT, M. A., DING, L. & NÚÑEZ, G. 1999 Role of cytochrome c and dATP/ATP 
hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. The EMBO Journal, 
18, 3586-3595. 

HUSSEIN, H. S. & BRASEL, J. M. 2001. Toxicity, metabolism, and impact of mycotoxins on 
humans and animals. Toxicology, 167, 101-134. 

IWAHASHI, H., KAWAMORI, H. & FUKUSHIMA, K. 1999. Quinolinic acid, a-picolinic acid, fusaric 
acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate 
buffer. Chemico-Biological Interactions, 118, 201-215. 

JIAO, J., SUN, L., ZHOU, B., GAO, Z., HAO, Y., ZHU, X. & LIANG, Y. 2014. Hydrogen peroxide 
production and mitochondrial dysfunction contribute to the fusaric acid-induced 
programmed cell death in tobacco cells. Journal of Plant Physiology, 171 1197-1203. 

JORNAYVAZ, F. R. & SHULMAN, G. I. 2010 Regulation of mitochondrial biogenesis. Essays 
Biochemistry, 47, 69-84. 

KAKKAR, P. & SINGH, B. K. 2007. Mitochondria: a hub of redox activities and cellular distress 
control. Molecular and Cellular Biochemistry, 305, 235-253. 

KEUM, Y.-S. & CHOI, B. Y. 2014. Molecular and Chemical Regulation of the Keap1-Nrf2 
Signaling Pathway. Molecules, 19, 10074-10089. 

KEW, M. C. 2010 Hepatocellular carcinoma in African Blacks: Recent progress in etiology and 
pathogenesis. World Journal of Hepatology 2, 65-73. 

KIESSLING, K.-H. 1986. Biochemical mechanism of action of mycotoxins. Pure and applied 
chemistry, 58, 327-388. 

KIM, H.-S., PATEL, K., MULDOON-JACOBS, K., BISHT, K. S., AYKIN-BURNS, N., PENNINGTON, J. 
D., MEER, R. V. D., NGUYEN, H., SAVAGE, J., OWENS, K. M., VASSILOPOULOS, A., 
OZDEN, O., PARK, S.-H., SINGH, K. K., ABDULKADIR, S. A., SPITZ, D. R., DENG, C.-X. & 
DAVID GIUS2, * 2010. SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required 
for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 
17, 41-52. 

KLESZCZ, R., PALUSZCZAK, J. & BAER-DUBOWSKA, W. 2015. Targeting aberrant cancer 
metabolism – The role of sirtuins. Pharmacological Reports, 67, 1068-1080. 

KONG, X., WANG, R., XUE, Y., LIU, X., ZHANG, H., CHEN, Y., FANG, F. & CHANG, Y. 2010. Sirtuin 
3, a New Target of PGC-1a, Plays an Important Role in the Suppression of ROS and 
Mitochondrial Biogenesis. PLoS ONE, 5 e11707. 

LIN, J., HANDSCHIN, C. & SPIEGELMAN, B. M. 2005. Metabolic control through the PGC-1 family 
of transcription coactivators. Cell Metabolism, 1, 361-370. 

LIU, G. & KAMP, D. W. 2011. Mitochondrial DNA damage: Role of OGG1 and aconitase 
[Online]. InTech. Available: http://www.intechopen.com/books/dna-
repair/mitochondrial-dna-damage-role-ofogg1-and-aconitase 2015]. 

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of Relative Gene Expression Data Using Real- 

Time Quantitative PCR and the 2-cT Method. METHODS, 25, 402-408. 
LOMBARD, D. B., ALT, F. W., CHENG, H.-L., BUNKENBORG, J., STREEPER, R. S., MOSTOSLAVSKY, 

R., KIM, J., YANCOPOULOS, G., VALENZUELA, D., MURPHY, A., YANG, Y., CHEN, Y., 
HIRSCHEY, M. D., BRONSON, R. T., HAIGIS, M., GUARENTE, L. P., ROBERT V. FARESE, J., 
WEISSMAN, S., VERDIN, E. & SCHWER, B. 2007. Mammalian Sir2 Homolog SIRT3 
Regulates Global Mitochondrial Lysine Acetylation. Molecular And Cellular Biology, 27, 
8807-8814. 

http://www.intechopen.com/books/dna-repair/mitochondrial-dna-damage-role-ofogg1-and-aconitase
http://www.intechopen.com/books/dna-repair/mitochondrial-dna-damage-role-ofogg1-and-aconitase


 

72 
 

LU, B., YADAV, S., SHAH, P. G., LIU, T., TIAN, B., PUKSZTA, S., VILLALUNA, N., KUTEJOVA, E., 
NEWLON, C. S., SANTOS, J. H. & SUZUKI, C. K. 2007. Roles for the Human ATP-
dependent Lon Protease in Mitochondrial DNA Maintenance. The Journal Of Biological 
Chemistry, 282, 17363-17374. 

MACHETHE, C. L. 28-29 October 2004. Agriculture And Poverty In South Africa: Can Agriculture 
Reduce Poverty? Overcoming Underdevelopment Conference held in  Pretoria,. 

MAKHOV, P., GOLOVINE, K., UZZO, R. G., ROTHMAN, J., CRISPEN, P. L., SHAW, T., SCOLL, B. J. & 
KOLENKO, V. M. 2008. Zinc chelation induces rapid depletion of the X-linked inhibitor 
of apoptosis (XIAP) and sensitizes prostate cancer cells to TRAILmediated apoptosis. 
Cell death and Differentiation, 15, 1745-1751. 

MALOVRH, T. & JAKOVAC-STRAJN, B. 2010. Feed contaminated with Fusarium toxins alter 
lymphocyte proliferation and apoptosis in primiparous sows during the perinatal 
period. Food and Chemical Toxicology 48, 2907-2912. 

MATSUSHIMAA, Y., GOTOB, Y.-I. & KAGUNI, L. S. 2010. Mitochondrial Lon protease regulates 
mitochondrial DNA copy number and transcription by selective degradation of 
mitochondrial transcription factor A (TFAM). Proceedings of the National Academy of 
Sciences, 107 18410-18415. 

MCGUIRK, S., GRAVEL, S.-P., DEBLOIS, G., PAPADOPOLI, D. J., FAUBERT, B., WEGNER, A., 
HILLER, K., AVIZONIS, D., AKAVIA, U. D., JONES, R. G., GIGUÈRE, V. & ST-PIERRE, A. J. 
2013. PGC-1α supports glutamine metabolism in breast cancer. Cancer & Metabolism, 
1, 1-22. 

MERSCH-SUNDERMANN, V., KNASMÜLLER, S., WU, X.-J., DARROUDI, F. & KASSIE, F. 2004. Use 
of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and 
cogenotoxic agents. Toxicology, 198 329-340. 

MITRA, V. & METCALF, J. 2009. Metabolic functions of the liver Anaesteshia and intensive care 
medicine, 10, 334-335. 

NEDĚLNÍK, J. 2002. Damage to Corn by Fungi of the Genus Fusarium and the Presence of 
Fusariotoxins. Plant Protection Science, 38, 46-54  

NGO, J. K. & DAVIES, K. J. A. 2009 Mitochondrial Lon protease is a human stress protein. Free 
Radical Biology & Medicine, 46, 1042-1048. 

NGO, J. K., POMATTO, L. C. D. & DAVIES, K. J. A. 2013 Upregulation of the mitochondrial Lon 
Protease allows adaptation to acute oxidative stress but dysregulation is associated 
with chronic stress, disease, and aging. Redox Biology, 1, 258-264. 

NIKZAD, S., BARADARAN-GHAHFAROKHI, M. & NASRI, P. 2014. Dose-response modeling using 
MTT assay: a short review. Life Science Journal, 11, 432-437. 

NOGUEIRAS, R., HABEGGER, K. M., CHAUDHARY, N., FINAN, B., ALEXANDER S. BANKS, 
DIETRICH, M. O., HORVATH, T. L., SINCLAIR, D. A., PFLUGER, P. T. & TSCHÖP, M. H. 
2012. Sirtuin 1 And Sirtuin 3: Physiological Modulators Of Metabolism. Physiology 
Reviews, 92, 1479-1514. 

OGATA, S., INOUE, K., IWATA, K., OKUMURA, K. & TAGUCHI, H. 2001. Apoptosis induced by 
Picolinic Acid-related Compounds in HL-60 Cells. Bioscience, Biotechnology, and 
Biochemistry, 65, 2337-2339. 

OGATA, S., TAKEUCHI, M., FUJITA, H., SHIBATA, K., OKUMURA, K. & TAGUCHI, H. 2000. 
Apoptosis induced by niacin related compounds in K562 cells but not in normal human 
lymphocytes. Bioscience, Biotechnology, and Biochemistry, 64, 1142-1146. 

OGATA, S., TAKEUCHI, M., FUJITA, H., SHIBATA, K., OKUMURA, K. & TAGUCHI, H. 2000 
Apoptosis induced by nicotinamide-related compounds and quinolinic acid in HL-60 
cells. Bioscience, Biotechnology, and Biochemistry, 64, 327-332. 



 

73 
 

OGATA, S., TAKEUCHI, M., OKAMURA, K. & TAGUCHI, H. 1998. Apoptosis induced by niacin 
related compounds in HL-60 cells. Bioscience, Biotechnology, and Biochemistry, 62, 
2351-2356. 

PAL, M., GIZAW, F., ABERA, F., SHUKLA, P. K. & R.A.HAZARIKA 2015. Mycotoxins: A Growing 
Concern to Human and Animal Health. Beverage & Food World, 42 42-50. 

PARIHAR, P., SOLANKI, I., MANSURI, M. L. & PARIHAR, M. S. 2015. Mitochondrial sirtuins: 
Emerging roles in metabolic regulations, energy homeostasis and diseases. 
Experimental Gerontology, 61, 130-141. 

PIANTADOSI, C. A. & SULIMAN, H. B. 2006. Mitochondrial Transcription Factor A Induction by 
Redox Activation of Nuclear Respiratory Factor 1. The Journal Of Biological Chemistry 
281, 324-333. 

PIANTADOSI, C. A. & SULIMAN, H. B. 2012. Redox Regulation of Mitochondrial Biogenesis. Free 
Radical Biology and Medicine 53, 2043-2053. 

PRISM, G. 2016. The unequal variance (Welch) t test [Online]. Available: 
http://graphpad.com/support/faqid/1568/ 2016]. 

QIU, X., BROWN, K., HIRSCHEY, M. D., VERDIN, E. & CHEN, D. 2010. Calorie Restriction Reduces 
Oxidative Stress by SIRT3-Mediated SOD2 Activation. Cell Metabolism 12, 662-667. 

RAJENDRAN, R., GARVA, R., KRSTIC-DEMONACOS, M. & DEMONACOS, C. 2011. 
Sirtuins:Molecular Traffic Lights in the Crossroad of Oxidative Stress, Chromatin 
Remodeling, and Transcription. Journal of Biomedicine and Biotechnology, 2011, DOI: 
10.1155/2011/368276. 

RASMO, D. D., SIGNORILE, A., ROCA, E. & PAPA, S. 2009. cAMP response element-binding 
protein (CREB) is imported into mitochondria and promotes protein synthesis. 
Federation of European Biochemical Societies 276 4325-4333. 

REVOLLO, J. R., GRIMM, A. A. & IMAI, S.-I. 2004. The NAD Biosynthesis Pathway Mediated by 
Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells*. 
The Journal Of Biological Chemistry, 279, 50754-50763. 

RIEDL, S. J., RENATUS, M., SCHWARZENBACHER, R., ZHOU, Q., SUN, C., FESIK, S. W., 
LIDDINGTON, R. C. & SALVESEN, G. S. 2001. Structural Basis for the Inhibition of 
Caspase-3 by XIAP. Cell, 104, 791-800. 

RUDA, J. M., BEUS, K. S., HOLLENBEAK, C. S., ·, R. P. W. & JR, B. C. S. 2006. The effect of single 
agent oral fusaric acid (FA) on the growth of subcutaneously xenografted SCC-1 cells in 
a nude mouse model. Investigational New Drugs, 24, 377-381. 

SANO, M. & FUKUDA, K. 2008. Activation of Mitochondrial Biogenesis by Hormesis. Circulation 
Research, 103, 1191-1193. 

SAPAN, C. V., LUNDBLAD, R. L. & PRICE, N. C. 1999. Colorimetric protein assay techniques. 
Biotechnology and Applied Biochemistry, 29, 99-108. 

SCARPULLA, R. C. 2011. Metabolic control of mitochondrial biogenesis through the PGC-1 
family regulatory network. Biochimica et Biophysica Acta, 1813 1269-1278. 

SCARPULLA, R. C., VEGA, R. B. & KELLY, D. P. 2012. Transcriptional integration of mitochondrial 
biogenesis. Trends in Endocrinology and Metabolism 23. 

SCHLICKER, C., GERTZ, M., PAPATHEODOROU, P., KACHHOLZ, B., BECKER, C. F. W. & 
STEEGBORN, C. 2008 Substrates and Regulation Mechanisms for the Human 
Mitochondrial Sirtuins Sirt3 and Sirt5. Journal Of Molecular Biology 382, 790-801. 

SCHMIDHUBER, J. & TUBIELLO, F. N. 2007. Global food security under climate change. 
Proceedings of the National Academy of Sciences, 104, 19703-19708. 

SCHWER, B., BUNKENBORG, J., VERDIN, R. O., ANDERSEN, J. S. & VERDIN, E. 2006. Reversible 
lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA 
synthetase 2. Proceedings of the National Academy of Sciences, 103, 10224-10229. 

http://graphpad.com/support/faqid/1568/


 

74 
 

SHI, T., FAN, G. Q. & XIAO, S. D. 2010. SIRT3 reduces lipid accumulation via AMPK activation in 
human hepatic cells. Journal of Digestive Diseases  ; , 11, 55-62. 

SHIMAZU, T., HIRSCHEY, M. D., HUA, L., DITTENHAFER-REED, K. E., SCHWER, B., LOMBARD, D. 
B., LI, Y., BUNKENBORG, J., ALT, F. W., DENU, J. M., JACOBSON, M. P. & VERDIN, E. 
2010. SIRT3 Deacetylates Mitochondrial 3-Hydroxy-3-Methylglutaryl CoA Synthase 2 
and Regulates Ketone Body Production. Cell Metabolism, 12, 654-661. 

SINGH, V. K. & UPADHYAY, R. S. 2014. Fusaric acid induced cell death and changes in oxidative 
metabolism of Solanum lycopersicum L. Botanical Studies , , 55, 66-77. 

SMITH, T. K. & MACDONALD, E. J. 1991. Effect Of Fusaric Acid On Brain Regional 
Neurochemistry And Vomiting Behavior In Swine. Journal of Animal Science, 69, 2044-
2049. 

SRIRAM, M., OSIPIUK, J., FREEMAN, B., MORIMOTO, R. & JOACHIMIAK, A. 1997. Human Hsp70 
molecular chaperone binds two calcium ions within the ATPase domain. Structure, 
403-414. 

ST-PIERRE, J., DRORI, S., ULDRY, M., SILVAGGI, J. M., RHEE, J., JA¨GER, S., HANDSCHIN, C., 
ZHENG, K., JIANDIE LIN, YANG, W., SIMON, D. K., BACHOO, R. & SPIEGELMAN, B. M. 
2006. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 
Transcriptional Coactivators. Cell Research, 127, 397-408. 

STACK, B. C., HANSEN, J. P., RUDA, J. M., JAGLOWSKI, J., SHVIDLER, J. & HOLLENBEAK, C. S. 
2004. Fusaric acid: A novel agent and mechanism to treat HNSCC. Otolaryngology -
Head and Neck Surgery, 131, 54-60. 

STACK, B. C., YE, J., WILLIS, R., HUBBARD, M. & HENDRICKSON, H. P. 2014. Determination of 
Oral Bioavailability of Fusaric Acid in Male Sprague-Dawley Rats. Drugs in Research and 
Development 14, 139-145. 

STURGILL, M. G. & LAMBERT, G. H. 1997. Xenobiotic-induced hepatotoxicity: mechanisms of 
liver injury and methods of monitoring hepatic function. Clinical chemistry 43, 1512-
1526. 

SWICK, R. A. 1984. HEPATIC METABOLISM AND BIOACTIVATION OF MYCOTOXINS AND PLANT 
TOXINS. JOURNAL OF ANIMAL SCIENCE, 58, 1017-1028. 

TAO, R., COLEMAN, M. C., PENNINGTON, J. D., OZDEN, O., PARK, S.-H., JIANG, H., KIM, H.-S., 
FLYNN, C. R., HILL, S., MCDONALD, W. H., OLIVIER, A. K., SPITZ, D. R. & GIUS, D. 2010. 
Sirt3-Mediated Deacetylation of Evolutionarily Conserved Lysine 122 Regulates 
MnSOD Activity in Response to Stress. Molecular Cell, 40, 893-904. 

TAO, R., LECLERC, J., YILDIZ, K., PARK, S.-H., JUNG, B., GIUS, D. & ÖZDEN, Ö. 2015. Changes in 
gene expression in SIRT3 knockout liver cells. Turkish Journal of Biology, 39, 1-8. 

TELLES-PUPULIN, A. R., SALGUEIRO-PAGADIGORRIA, C. L., BRACHT, A. & ISHII-IWAMOTO, E. L. 
1998. Effects of fusaric acid on rat liver mitochondria. Comparative Biochemistry and 
Physiology Part C, 120, 43-51. 

TRETTER, L. & ADAM-VIZI, V. 2005. Alpha-ketoglutarate dehydrogenase: a target and generator 
of oxidative stress. Philosophical transactions of the royal society, 360, 2335-2345. 

VENKATESH, S., LEE, J., SINGH, K., LEE, I. & SUZUKI, C. K. 2012. Multitasking in the 
mitochondrion by the ATP-dependent Lon protease. Biochimica et Biophysica Acta, 
1823, 56-66. 

VENOOK, A. P., PAPANDREOU, C., FURUSE, J. & GUEVARA, L. L. D. 2010. The Incidence and 
Epidemiology of Hepatocellular Carcinoma: A Global and Regional Perspective. The 
Oncologist 15, 5-13. 

VENTURA-CLAPIER, R. E., GARNIER, A. & VEKSLER, V. 2008. Transcriptional control of 
mitochondrial biogenesis: the central role of PGC-1a. Cardiovascular Research, 79, 
208-217. 



 

75 
 

VOOS, W. 2013. Chaperone–protease networks in mitochondrial protein homeostasis. 
Biochimica et Biophysica Acta, 1833, 388-399. 

WANG, C.-H., WU, S.-B., WU, Y.-T. & WEI, Y.-H. 2013. Oxidative stress response elicited by 
mitochondrial dysfunction: Implication in the pathophysiology of aging Experimental 
Biology and Medicine, 238, 450-460. 

WANG, H. & NG, T. B. 1999. PHARMACOLOGICAL ACTIVITIES OF FUSARIC ACID (5-
BUTYLPICOLINIC ACID). life Sciences, 65, 849-856. 

WANG, M., SUN, Y., SUN, G., LIU, X., ZHAI, L., SHEN, Q. & GUO, S. 2015. Water balance altered 
in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Scientific 
Reports 5, doi: 10.1038/srep07722. 

WEIR, H. J. M., LANE, J. D. & BALTHASAR, N. 2013. SIRT3: A Central Regulator of Mitochondrial 
Adaptation in Health and Disease. Genes & Cancer, 4, 118-124. 

WU, H.-S., BAO, W., LIU, D.-Y., LING, N., YING, R.-R., RAZA, W. & SHEN, Q.-R. 2008. Effect of 
fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. 
CARYOLOGIA, 61, 258-268. 

WU, Z., PUIGSERVER, P., ANDERSSON, U., ZHANG, C., ADELMANT, G., MOOTHA, V., TROY, A., 
CINTI, S., LOWELL, B., SCARPULLA, R. C. & SPIEGELMAN, B. M. 1999. Mechanisms 
Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic 
Coactivator PGC-1. Cell Death and Disease, 98, 115-124. 

YIN, E. S., RAKHMANKULOVA, M., KUCERA, K., FILHO, J. G. D. S., PORTERO, C. E., NARVA´EZ-
TRUJILLO, A., HOLLEY, S. A. & STROBEL, S. A. 2015. Fusaric acid induces a notochord 
malformation in zebrafish via copper chelation. Biometals, 28, 783-789. 

YOBOUE, E. D. & DEVIN, A. 2012. Reactive Oxygen Species-Mediated Control of Mitochondrial 
Biogenesis. International Journal of Cell Biology, 2012, doi: 10.1155/2012/403870. 

ZAIN, M. E. 2011. Impact of mycotoxins on humans and animals. Journal of Saudi Chemical 
Society Impact of mycotoxins on humans and animals, 15, 129-144. 

ZAIN, M. E., AWAAD, A. S., AL‑OTHMAN, M. R., ALAFEEFY, A. M. & EL‑MELIGY1, R. M. 2013. 
Biological activity of fungal secondary metabolites. International Journal of Chemical 
and Applied Biological Sciences  1, 14-22. 

ZHANG, H. K., ZHANG, X., MAO, B. Z., LI, Q. & HE, Z. H. 2004. Alpha-picolinic acid, a fungal toxin 
and mammal apoptosis-inducing agent, elicits hypersensitive-like response and 
enhances disease resistance in rice. Cell Research, 14, 27-33. 

ZHAO, R., WANG, T.-Z., DAN KONG, L. Z., MENG, H.-X., JIANG, Y., WU, Y.-Q., YU, Z.-X. & JIN, X.-
M. 2011. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features 
compared with parental HepG2. World Journal of Gastroenterology 17, 1152-1159. 

ZUO, J., SCHMITT, S. M., ZHANG, Z., JAI PRAKASHB, Y. F., BI, C., KODANKO, J. J. & DOU, Q. P. 
2012 Novel polypyridyl chelators deplete cellular zinc and destabilize the X-linked 
inhibitor of apoptosis protein (XIAP) prior to induction of apoptosis in human prostate 
and breast cancer cells. Journal Of Biochemistry 113, 2567-2575. 

 

 

 
 

 
 



 

76 
 

 Appendix 1: Raw data for MTT 
 

Table 1: Raw data used to determine the IC50 value using the cell viability (MTT) assay. 

FA concentration 

(µg/ml) 
Log FA concentration Average absorbance Cell viability (%) 

0 0.00 0.9201 100.00 

25 1.40 0.8216 89.30 

50 1.70 0.8619 93.67 

100 2.00 0.4108 44.65 

250 2.40 0.1402 15.24 

350 2.54 0.1104 12.00 

500 2.70 0.0346 3.76 
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Appendix 2:Caspase activity graphs 
2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Caspase-3/-7 activity was significantly higher in cells stimulated with FA compared 

to untreated cells (p=0.0032). 

 

2.2.  

 

 

 

 

 

 

 

 

Figure 2: No significant decrease in caspase 9 activity was observed in treated cells. 
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Appendix 3: Standard curve for protein isolation 
 

1.  

 

 

 

 

 

 

 

 

Figure 1: Standard curve using known concentrations of bovine serum albumin for the 

determination of protein concentration in samples using the bicinchoninic acid assay. 
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Appendix 4: SCGE results 
1. Images for comet assay  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: DNA fragmentation was markedly higher in cells exposed to FA (B) than untreated 
control cells (A) (p<0.0001). 

 


