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Abstract

Fractional partial differential equations are generalisations of classical partial dif-

ferential equations, which relax the requirement that the derivatives are of integer

order. A computational cost inherent to fractional derivatives is their non-local

nature, and so they naturally benefit from the global approximation functions that

characterise spectral methods. Using Jacobi polynomials integrated under Gaus-

sian quadrature, several spectral collocation schemes are developed and tested on

a variety of partial differential equations, fractional in both the time and space

dimensions. The methods are tested on problems of varying degree, dimension,

and linearity, as well as problems with derivative boundary conditions. Numerical

results are compared to those obtained with both similar and dissimilar methods

investigated in prior literature, where it is found that the methods implemented

in this project compare generally favourably, and occasionally present the best

known approximation.
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Chapter 1

Introduction

Fractional calculus generalises the classical integral and differential calculus by

allowing arbitrary orders of integration and differentiation [1]. Fractional partial

differential equations (FPDEs), then, are generalisations of their classical integral

counterparts [2]. By allowing differentials of arbitrary order, FPDEs are frequently

able to better model real phenomena than strictly integer ordered partial differen-

tial equations (PDEs) [1], and so their application to physics [3, 4, 5, 6, 7], finance

[8, 9, 10, 11, 12], and fluid dynamics [13, 14, 15, 16, 17] has been investigated with

ever increasing vigour. Given the non-local nature of fractional differential equa-

tions [18, 19, 20], their numerical solutions are typically computationally complex,

as evidenced by the growing number of bespoke methodologies being developed.

It is convenient then that we are also seeing rapid development in the subdisci-

pline of spectral methods; a class of numerical techniques that involve expansion

of functions as sums of non-local basis functions, weighted by sets of coefficients

that minimize the residual error between the function and its expansion [21]. The

global nature of these methods makes them inherently well suited to the solution

of FPDEs, and the primary aim of this project is to contribute to this growing,

but as yet infantile, area of research.

Almost as old as classical calculus, having first been discussed in a correspondence

between Gottfried Wilhelm Liebniz and Guillaume de L’Hospital in 1695, wherein

Leibniz claimed prophetically that the fractional derivative was “an apparent para-
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dox, from which one day useful consequences will be drawn” [22]. The paradox to

which Leibniz ostensibly refers is that of the alternate definitions of the fractional

derivative itself. In 1832, Joseph Liouville began the first major study of fractional

calculus, that eventually led to the Riemann-Liouville factional integral in 1847

[22], which is still one of the most frequently used definitions. In 1867 and the fol-

lowing year, Anton Karl Grünwald and Aleksey Vasilievich Letnikov respectively

derived what is now known as the Grünwald-Letnikov derivative, which under cer-

tain conditions is equivalent to the Riemann-Liouville definition [22]. Since then,

many alternate definitions have been developed, but perhaps the most important

was in 1967, with the advent of the Caputo derivative, for its ability to admit

conventional boundary conditions [1, 22]. For the numerous subtleties that sepa-

rate these various definitions, what they have in common is that they interpolate

the integer derivatives obtained through classical calculus [1], and in this way are

perhaps less alien than their unfamiliarity might suggest.

Before one can motivate why they may wish to use one definition or another,

however, they should first inform their usage of fractional derivatives by relevant

modelling conditions. Following the development of his own fractional derivative

definition [23], Michele Caputo used derivatives of fractional order to model vis-

coelasticity of geological strata [24, 25]. Further influential work in this realm was

done by Bagley and Torvik, starting in 1983, when they further developed the the-

oretical basis of fractional derivatives in viscoelasticity with an empirical model

that accurately portrayed the mechanical properties of the transition regions of

viscoelastic materials [26]. In 1994, appealing to the fractional Hausdorff dimen-

sionality of fractal spaces, Metzler, Glöckle and Nonnenmacher derived uniquely

determined FPDEs to model anomalous diffusions [27]. Anomalous diffusions, be-

ing diffusions with non-linear relationships between mean squared displacement

and time, have been known for nearly a century [28], with applications to trans-
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port problems in disordered media [5, 29], long-range correlations [30], continuous

time random walks [19] and fractional Brownian motion as explored famously by

Mandlebrot [31]. More recently, however, there have been a number of studies

demontrating the importance of fractional calculus in modelling these phenomena.

In 1997, Compte and Metzler found that the Cattaneo equation, which describes

diffusions with finite propagation velocity, was generalised to a fractional diffu-

sion equation. In 2001, Baeumer, Meerschaert, Benson and Wheatcraft derived a

fractional diffusion model for contaminant flow [14], which contributed to seminal

work by Meerschaert, Tadjeran and their collaborators, where they made early

forays into the numerical solution of FPDEs for anomalous fluid flow problems

[2, 18, 32]. Towards the turn of the millennium, many other applications of FPDEs

to problems in anomalous diffusion were explored, and one can consult the review

by Metzler and Klafter for a summary of these studies [28]. While it was well-

known that path integrals over Brownian trajectories produced the Schrödinger

equation, Laskin found, in the early 2000s, that path integrals over Lévy trajec-

tories produced the generalised fractional Schrödinger equation [33, 34, 35]. More

contemporary models benefitting from FPDEs include Jacob’s generalisation of a

Fitzhugh-Nagumo equation to include fractional orders of time, resulting in a phys-

ically motivated and effective binarization process for images [36], and Angstmann,

Henry and McGann appealed to the underlying stochastic processes to develop a

fractional SIR model [19].

Given the typical complexity associated with fractional calculus, it is unsurprising

that the development of their numerical solution has seen the advent of numerous

related but dissimilar numerical methods. Among the earliest seminal contribu-

tions to numerical solutions in fractional calculus was from Bagley and Torvik,

also in 1983, complementing their aforementioned investigations into fractional

viscoelasticity models [26], where they solved fractional models of stress-strain
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relationships of viscoelastic materials with Finite Element Analysis [37]. Around

the same time, Lubich developed several quadrature schemes for fractional Volterra

and Abel integrals [38, 39], while Baker and Derakhshan investigated Fast Fourier

Transform solutions to the same integrals [40]. In 1994, before the publication of

his profoundly influential book [1], Podlubny used a discretisation of the Grünwald-

Letnikov definition to solve a number of fractional ordinary differential equations

[41, 42, 43]. In 1996, using a polynomial spline collocation method, Blank inves-

tigated a number of differential equations involving the ubiquitous Mittag-Leffler

function as a component of their solutions [20]. Diethelm has made significant con-

tributions to the numerical solution of fractional differential equations; in 1996, he

proposed a method involving Hadamard regularisation of the Riemann-Liouville

integral, allowing the solution of fractional differential equations by quadrature

[44]. He later collaborated with a number of other researchers in this domain,

most notably Ford, exploring such topics as the existence, uniqueness and stabil-

ity properties of numerical solutions for fractional differential equations [45], and

the development of a predictor-corrector method for solving fractional initial value

problems with Caputo derivatives [46].

The development of numerical solutions for fractional partial differential equations

specifically has seen the bulk of its interest in more recent years. One of the ear-

liest contributors to the numerical solution of FPDEs came from Lynch, Carrera,

del-Castillo-Negrete, Ferreira-Mejias and Hicks in 2003, where they used a discreti-

sation method derived by Oldham and Spanier [22] to solve an anomalous diffusion

equation [47]. Investigating FPDEs that are fractional in the spatial dimension,

they take advantage of a second-order finite difference approximation of the frac-

tional derivative. In addition to the usual truncation error associated with any

method involving finite differences, their representation of the second-order dis-

crete derivative requires knowledge of function values beyond the boundaries [47],
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and thus involved assumptions of symmetry that make their method potentially

less useful for other problems.

Meerschaert and Tadjeran’s aforementioned contributions to the numerical solu-

tion of FPDEs are among the most influential. In 2004, they detailed the derivation

and analysis of finite difference methods for one-dimensional fractional diffusion

equations with variable coefficients [18]. Using a truncated Grünwald-Letnikov

derivative, evaluated at shifted grid points, Meerschaert and Tadjeran were able to

derive an unconditionally stable implicit Euler method [18]. This method produces

a super-diagonal coefficient matrix for local grid points, as one might expect with

a finite difference method, but adds to this a lower-triangular matrix for the non-

local fractional derivative [18], which, in this researcher’s view, diminishes much

of the computational advantage conferred by finite difference methods. In 2006,

Meerschaert, Scheffler and Tadjeran then extended this method to work for two-

dimensional FPDEs [32]. Benefitting again from a shifted, truncated Grünwald-

Letnikov derivative, they develop an Alternating Direction Implicit (ADI) method

to treat the two spatial dimensions of their anomalous diffusion equations, which

they prove to be unconditionally stable, consistent and convergent [32]. As func-

tional as this method is, it is this researcher’s contention that it suffers from the

same issues as the aforementioned applications of finite differences, and so other

methods will be attempted in this project, with a demonstration of their superi-

ority, by comparison of a particular numerical example solved by both methods,

presented in Chapter 7. Also in 2006, Meerschaert and Tadjeran made an impor-

tant contribution by extending their method to address two-sided FPDEs [2]; if

one considers the non-local memory effects inherent to FPDEs, they might imag-

ine a one-sided FPDE to have memory of the past, and by analogy, a two-sided

FPDE additionally involves memories of the future. As before, their method in-

volved a shifted, truncated Grünwald-Letnikov derivative, with which they derived
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a consistent, unconditionally stable implicit Euler scheme, and a consistent but

conditionally stable explicit Euler scheme [2].

The history of using spectral methods to solve fractional partial differential equa-

tions is comparatively short, however, interest has grown dramatically in recent

years. Significant contributions to this particular area have been made by Doha,

Bhrawy, Ezz-Eldien and their collaborators. In 2011, Doha, Bhrawy, and Ezz-

Eldien represented Caputo derivatives by shifted Chebyshev polynomials, from

which they were able to derive operational matrices of the fractional derivatives

to be used in a spectral tau method [48]. While this early application was not

on FPDEs specifically, the results were extended by Bhrawy, Zaky and Machado

to solve a two-sided time-fractional telegraph partial differential equation in 2016

[49]. In 2012, Doha, Bhrawy and Ezz-Eldien expanded this approach to the more

general Jacobi polynomials, but were at this point still only considering fractional

differential equations, again solving them with the spectral tau method [50]. In

2013, a slightly different approach was taken by Bhrawy and Baleanu, where they

represented Caputo derivatives as Legendre polynomials, integrated under Gauss-

Lobatto quadrature, to be subsequently evaluated by collocation [51]. Bhrawy then

used a similar approach in 2014 to extend this Legendre-Gauss-Lobatto method

into FPDEs with two spatial dimensions [52]. Given the versatility and power of

these relatively early methods, they will make an ideal starting point for the in-

vestigation of this project, and are thus discussed in more detail in Chapter 4 and

Chapter 5. In 2015, Bhrawy extended the aforementioned Jacobi operational ma-

trix method [50] to two-dimensional time-fractional diffusion equations [53], and

this extension will be a fundamental result upon which significant progress will be

made in this project, presented in Chapter 6 and Chapter 7. A primary departure

point of this project will be to adapt the method to deal with a far wider variety of

equations, of varying dimensionality, degree and linearity, and with varying types
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of boundary conditions, towards the ends of developing a more general tool for the

solution of FPDEs other than the commonly investigated diffusion equations.

A variety of other methods have been investigated for the solution of fractional

partial differential equations, but they are outside the scope of this project. Semi-

analytical methods, such as Adomian decomposition [54, 55], homotopy analysis

[56], homotopy pertubation [57], variational iteration method [58], and generalised

differential transform method [59] have been investigated successfully, but while

they may have exceptional accuracy qualities, their limited applicability makes

them inappropriate for comparison.

This dissertation is structured as follows; in Chapter 2, we introduce some useful

fundamentals of fractional calculus, and discuss some of the technical details that

will be relevant to their numerical solution. In Chapter 3, we will discuss the

orthogonal functions and quadratures, and their role in the spectral collocation

methods that will be used to numerically solve the FPDEs that will be consid-

ered in this thesis. In Chapter 4, we discuss the first class of FPDE of interest -

one-dimensional space-fractional advection diffusion equations - and the bespoke

method developed for their solution - a shifted Legendre-Gauss-Lobatto colloca-

tion solution. In Chapter 5, we extend this method to function in two spatial

dimensions, investigating the solution of two-dimensional space-fractional diffu-

sion equations. In Chapter 6, we consider a more general method, able to solve

one-dimensional space- and time-fractional equations, and investigate a number

of equations that fall under this class. In Chapter 7, we extend this method into

two dimensions, allowing the solution of an even broader class of equations, and

demonstrate its effectiveness with a number of distinct examples. The project is

concluded in Chapter 8, after which the References and Appendices are presented.
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Chapter 2

Fundamentals of Fractional Calculus

With the context and value of fractional calculus discussed previously, this chapter

will consider key theory and results that will feature in the development of the

numerical methods under investigation. For more detailed coverage of the topics

addressed here, the reader is encouraged to consult the extensive works of Podlubny

[1], and Oldham and Spanier [22].

2.1 Unification of Differentiation and Integration

We will begin our discussion of fractional calculus with a requisite treatment of

the unification of the classically separate nth order derivatives and n-fold integrals.

First, we suppose a continuous function y = f(t), and recall the typical backward-

difference definition of the derivative, with h being the change in t:

f ′(t) =
df

dt
= lim

h→0

f(t)− f(t− h)

h
. (2.1)

It can be shown by induction that further application generates the nth order

derivative [1],

f (n)(t) =
d(n)f

dt(n)
= lim

h→0

1

hn

n∑
r=0

(−1)r
(
n

r

)
f(t− rh), (2.2)

where
(
n
r

)
is the usual binomial expansion. Setting aside the limit, we consider

16



p ∈ Z where 0 ≤ p ≤ n and define

f
(p)
h (t) =

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh), (2.3)

where we clearly have

lim
h→0

f
(p)
h (t) = f (p)(t). (2.4)

Now, towards the ends of representing integrals, we consider orders of −p < 0.

Importantly, such values do not work with the usual binomial expansion, so we

rely on the more general definition:(
n

r

)
=

Γ(n+ 1)

Γ(r + 1)Γ(n− r + 1)
=

(n)r
Γ(r + 1)

, (2.5)

where Γ(x) represents the familiar Gamma function of argument x, and

(n)r =
Γ(n+ 1)

Γ(n− r + 1)
, (2.6)

denotes the falling factorial. This generalisation produces the same results for

positive integers, but accepts any complex argument, although for now we consider

only n ∈ Z. We note here the slight divergence in expression (but not meaning)

from Podlubny [1], in anticipation of the usefulness of the Gamma function and

falling factorial in subsequent applications. Considering our generalised binomial

expansion, we observe that (2.3) now holds for all p ≤ n.

Now, in anticipation of creating an operation that performs as integration does,

we require limits. Our upper limit naturally comes from our function argument,

t, so we introduce real constant a as a lower limit. Then, setting

h =
t− a
n

=⇒ n =
t− a
h

, (2.7)

such that n→∞ as h→ 0, we define a new operator [1]:

aD
−p
t f(t) = lim

h→0
f

(−p)
h (t). (2.8)
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As an example, let us consider when p = 1, and appeal to the limit definition of

an integral:

aD
−1
t f(t) = lim

h→0
f

(−1)
h (t) = lim

h→0
h

n∑
r=0

f(t− rh) =

∫ t−a

0

f(t− z)dz =

∫ t

a

f(τ)dτ,

(2.9)

where τ = t − a. Evidently, for p = 1, the operator aD
−1
t f(t) returns the desired

integral. In fact, it can be shown by induction that we have the following relation

in generality [1]:

aD
−p
t f(t) = lim

h→0
hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh) =

1

Γ(p)

∫ t

a

(t− τ)p−1f(τ)dτ, (2.10)

which is shown to be a representation of a p-fold integral [1]. This provides us

with a general expression:

aD
p
tf(t) = lim

h→0

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh), (2.11)

which, by (2.4), respresents a derivative of order p for p ≥ 0, and, by (2.11),

represents a p-fold integral for p < 0.

2.2 Differentiation and Integration of Arbitrary Order

It may be unsurprising, considering the admission of complex numbers for our

particular choice of a generalised binomial expansion, that (2.11) is in fact our

most general expression for fractional integrals and derivatives, should we simpy

allow p to be a real number [1, 22, 60], and this is referred to as the Grünwald-

Letnikov definition, for p ∈ R and f(t) continuous;

GL
aD

p
tf(t) = lim

h→0
h−p

n∑
r=0

(−1)r
(
p

r

)
f(t− rh), (2.12)
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While ignoring the limit and instead setting a sufficiently small h does allow this

definition to often act as a suitable discrete approximation [61, 60], in analyti-

cal applications, however, the limit is not easily obtained, making manipulation

difficult [1, 60].

To allay this complication, we must sacrifice some generality in our assumptions,

by assuming additionally that f(t) must now also have at least derivatives f (k)(t),

for k = 1, 2, ...,m + 1 being continuous in [a, t], where m is an integer such that

m < p ≤ m + 1. While strictly less general, this extra assumption tends to be

satisfied in most applications [1, 22]. After much manipulation, we obtain

GL
aD

p
tf(t) =

m∑
k=0

f (k)(a)(t− a)−p+k

Γ(−p+ k + 1)
+

1

Γ(−p+m+ 1)

∫ t

a

(t− τ)m−pf (m+1)(τ)dτ,

(2.13)

and are hence free from computing the problematic limit. This expression, how-

ever, is also obtained by the repeated integration by parts and differentiation of

another well-known expression [1]:

RL
aD

p
tf(t) =

(
d

dt

)m+1 ∫ t

a

(t− τ)m−pf(τ)dτ, (m < p ≤ m+ 1). (2.14)

This expression is perhaps the most widely known of the fractional derivatives,

and it is the Riemann-Liouville definition. It will be convenient to express this

definition in terms of its integral compoment, for p > 0 [1, 60],

RL
aI
p
tf(t) =

1

Γ(p)

∫ t

a

(t− τ)p−1f(τ)dτ (2.15)

which leads us to

RL
aD

p
tf(t) =

(
d

dt

)k (
RL
aI
k−p
t f(t)

)
=

1

Γ(k − p)

(
d

dt

)k ∫ t

a

(t− τ)k−p−1f(τ)dτ,

(2.16)

for k − 1 ≤ p < k.
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2.3 Alternate Formulations of the Fractional Derivative

One caveat in the use of the Riemann-Liouville fractional derivative is that at the

lower terminals of t = a, we have the initial or boundary conditions producing

equations in terms of the fractional derivatives, which while solvable, provide little

physical meaning [1]. To address this, Caputo [1, 23] developed a fractional integral

that reduces to integral derivatives at the boundaries, and is thus more readily

applicable to physical problems. His definition is thus

C
aD

α
t f(t) =

1

Γ(α− n)

∫ t

a

f (n)(τ)dτ

(t− τ)α+1−n , (n− 1 ≤ α < n), (2.17)

and this definition will serve us in subsequent exercises.

Another note must be made to acknowledge the difference of left and right frac-

tional derivatives. Thus far, we have considered only derivatives with a lower

boundary a ≤ t, however, it is also possible to consider fractional derivatives with

moving lower terminal t, and fixed upper boundary b. The fractional derivative

with a lower terminal a, with which we are familiar, is the left fractional derivative,

given in (2.16), while the fractional derivative with upper terminal b is the right

derivative, and its corresponding Riemann-Liouville definition is [1]

RL
tD

p
bf(t) =

1

Γ(k − p)

(
−d
dt

)k ∫ b

t

(t− τ)k−p−1f(τ)dτ, (2.18)

with similar distinctions being available under the other definitions. If one views

f(t) as a function that evolves with time, they might view that the non-local left

derivative at state t is dependent on the history following state a, while the right

derivative will be at a state t dependent on future events up until time b [1]. It must

be acknowledged that in the spatial dimensions, however, it is reasonable that the

derivatives can be non-local in both directions, and so the use of right- and two-

sided equations is often desirable. While there is clearly value in a treatment of
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both left- and right-fractional derivatives, the relative popularity of left-sided time-

fractional differential equations over space-fractional equations in prior literature,

and the existence of sufficient influential research addressing only left-sided space-

fractional derivatives, we contend to consider only left-sided equations to be within

the scope of this project.

2.4 Fractional Derivative of (t− a)β

The power function (t−a)β is a particular example for which the fractional deriva-

tive will prove useful, given the prominence of polynomials in the spectral methods

to follow. Setting f(t) = (t − a)β in (2.15), for −p < 0 and β > −1, and then

substituting τ = a+ z(t− a), we obtain in the fractional integral [1]

aD
p
t (t− a)β =

1

Γ(−p)

∫ t

a

(t− τ)−p−1(τ − a)βdτ

=
1

Γ(−p)
(t− a)β−p

∫ 1

0

zβ(1− z)−p−1dz

=
1

Γ(−p)
(t− a)β−pB(−p, β + 1)

=
Γ(β + 1)

Γ(β − p+ 1)
(t− a)β−p,

(2.19)

where B(x, y) is the Beta function,

B(x, y) =

∫ 1

0

τx−1(1− τ)y−1dτ =
Γ(x)Γ(y)

Γ(x+ y)
. (2.20)

Now, for fractional derivatives where m < p ≤ m + 1, we set f(t) = (t − a)β in

(2.13), and note that we require β > m for the convergence of the integral [1]. We

thus obtain

aD
p
t (t− a)β =

1

Γ(−p+m+ 1)

∫ t

a

(t− τ)m−p
dm+1(τ − a)β

dτm+1
dτ. (2.21)
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Noting the integer calculus result that

dm+1(τ − a)β

dτm+1
= β(β− 1)...(β−m)(τ − a)β−m−1 =

Γ(β + 1)

β −m
(τ − a)β−m−1, (2.22)

and then substituting τ = a+ z(t− a), we obtain

aD
p
t (t− a)β =

Γ(β + 1)

Γ(β −m)Γ(−p+m+ 1)

∫ t

a

(t− τ)m−p(τ − a)β−m−1dτ

=
Γ(β + 1)B(−p+m+ 1, β −m)

Γ(β −m)Γ(−p+m+ 1)
(τ − a)β−p

=
Γ(β + 1)

Γ(β − p+ 1)
(t− a)β−p,

(2.23)

which is conveniently the same result as (2.19), and thus we have an explicit

formula [1, 22],

aD
p
t (t− a)β =

Γ(β + 1)

Γ(β − p+ 1)
(t− a)β−p, (2.24)

for p < 0 and β > −1 or m < p ≤ m+ 1 and β > m. We note that this expression

holds under both the Rieman-Liouville and Caputo definitions of the fractional

derivative [1, 51]. Now, considering only integer values of β, as are relevant to the

polynomials we will be analysing, we recall from (2.14) that the classical integer

derivative term will result in zero for any β < m+ 1, hence we have

aD
p
t (t− a)β =

0 if β < m+ 1

Γ(β+1)
Γ(β−p+1)

(t− a)β−p, if β ≥ m+ 1

(2.25)

2.5 Concluding Remarks

In conclusion, this chapter has provided us with the requisite definitions and ex-

pressions to represent fractional integrals and derivatives in ways amenable to

numerical approximation. By unifying the notions of nth order derivatives and n-

fold integrals, we have a consistent representation that is extendable to fractional
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orders. We have discussed the Grünwald-Letnikov, Riemann-Liouville and Caputo

definitions, allowing us to treat a variety of fractional differential equations. We

have considered the cannonical example of the fractional derivative of (t− a)β,

which will be directly useful to us in subsequent examples.
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Chapter 3

Spectral Methods

Spectral methods are a class of methods within the broader variations of the

Method of Weighted Residuals (MWR) [21]. MWRs are defined by their trial

and test functions, also commonly referred to as expansion and weight functions,

respectively [21]. The trial functions are the basis functions by which the solution

is represented as a truncated series expansion, and the test functions ensure that

the differential equation is represented as closely as possible by the truncated se-

ries expansion of trial functions, by minimising the residual, being the difference

between the exact and approximate solutions [21].

A key distinction between spectral methods, and other MWRs, such as the Finite

Difference or Finite Element methods, is that the trial functions for spectral meth-

ods are infinitely differentiable global functions [21]. While the Finite Difference

method will define approximations of the derivative terms with respect to a small

neighbourhood of local function values, or the Finite Element method will divide

the domain into small subsections, each with their own trial function, spectral

methods will typically rely on global eigenfunctions of singular Sturm-Liouville

problems [21]. Aside from the ostensible appropriateness of approximating global

fractional derivatives with global functions, other benefits typical of spectral meth-

ods tend to be greater accuracy for a given resolution, or similarly, they require a

lower resolution for a given accuracy [62], with a meaningful difference made by

the absence of phase error, common to other methods [63]. The disadvantages of
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spectral methods are their difficulty in dealing with irregular domains, and their

requirement of some smootheness of the problem data [21, 62].

After a suitable trial function has been chosen, the choice of test function is what

distinguishes between the specfic subtypes of spectral method, with the three most

prominent being the Galerkin, tau and collocation methods [21]. The Galerkin

method employs test functions the same as the trial functions, and approximates

the differential equation by forcing the integral of the product of the residuals and

test functions to be zero [21]. The tau method is similar to the Galerkin method,

however, the test functions are not required to satisfy the boundary conditions, for

which an additional set of equations is used [21]. The Galerkin and tau methods,

however, are outside the scope of this project, and so all further discussion will be

focused on the collocation methods. In the collocation approach, also referred to

as the pseudospectral method [63], the test functions are translated Dirac delta

functions centered at specific collocation points, chosen with respect to the trial

functions, at which the differential equation must be solved exactly [21].

There are many details that define the distinct varieties of collocation methods,

and those that are relevant to the development of the methods of this research will

be detailed throughout this chapter, starting with the orthogonal polynomials at

the center of the approximation.

3.1 Orthogonal Polynomials

Many numerical methods are based upon the expansion of a function in terms of

an infinite sequence of orthogonal polynomials, with the most familiar example

being the approximation of periodic functions by expansions of Fourier series [21].

However, even non-periodic functions, should they be sufficiently smooth, can be
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approximated by finite expansions of eigenfunctions of suitable Sturm-Liouville

eigenvalue problems of the form

−
(
p(x)u′(x)

)
+ q(x)u(x) = λw(x)u(x), −1 ≤ x ≤ 1, (3.1)

where p(x) is continuously differentiable, strictly positive, and continuous at the

end points, q(x) is continuous, bounded and non-negative, weight function w(x) is

continuous, non-negative and integrable over the domain, and u(x) has appropri-

ately defined boundary conditions [21]. Should these conditions provide a singular

Sturm-Liouville problem, the approximation will be of spectral accuracy, and it

can be shown that it is uniquely the classes of Jacobi polynomials that arise as

eigenfunctions to singular Sturm-Liouville problems [21].

Now, considering orthogonal eigenfunctions φn of our Sturm-Liouville problem:∫ 1

−1

φk(x)φm(x)w(x)dx = 0, whenever m 6= k, (3.2)

and some function u(x) which can be represented by a series expansion of these

eigenfunctions, such that

u(x) =
∞∑
n

ûnφn(x), −1 ≤ x ≤ 1, (3.3)

we have that the constant coefficients ûn are found by the normalised inner product

[21]:

ûn =
〈u(x), φn〉
||φn||2

=
1

||φn||2

∫ 1

−1

φ(x)u(x)w(x)dx, (3.4)

where we have L2-norm

||φn||2=

∫ 1

−1

|φn(x)|2w(x)dx. (3.5)

By the Weierstress theorem, this system is complete, so if we consider the truncated

series, for integer N > 0,

uN =
N∑
n

ûnφn(x), (3.6)
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which by (3.2) is the orthogonal projection of u onto PN - the space of all polyno-

mials of degree ≤ N - we have that [21]

lim
N→∞

||u− uN || = 0, (3.7)

so we have that, for sufficiently large N , our expansion of orthogonal polynomi-

als approximates our function when represented as a Sturm-Liouville eigenvalue

problem.

3.2 Gaussian Quadrature

The next significant step in the spectral approximation procedure is to compute the

integral in (3.4). To this end, we rely on one of a number of Gaussian quadratures,

with the three most commonly used quadratures discussed below.

3.2.1 Gauss Integration

If we let x0, ..., xN be the roots of the orthogonal polynomial of degree N + 1,

denoted pN+1, and let quadrature weights, also known as Christoffel numbers,

ω0, ..., ωN be the solution to the linear system

N∑
j=0

(xj)
nωj =

∫ 1

−1

xnw(x)dx, 0 ≤ n ≤ N, (3.8)

then ωj > 0 for j = 0, ..., N , and

N∑
j=0

p(xj)ωj =

∫ 1

−1

p(x)w(x)dx, ∀ p ∈ P2N+1. (3.9)

While Gauss integration benefits from the highest available degree of polynomial

[64], at 2N + 1, it is unsuitable for boundary value problems, as the collocation
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points are all in the interior of the domain (−1, 1), thus neglecting to provide

solutions at these key gridpoints [21, 64].

3.2.2 Gauss-Radau Integration

We begin our discussion of the Gauss-Radau formula by considering the polynomial

[21]

q(x) = pN+1(x) + apN(x), (3.10)

where

a = −pN+1(−1)

pN(−1)
, (3.11)

so that q(−1) = 0. We thus let x0, ..., xN be the N+1 roots of (3.10), with x0 = −1

by (3.11), and let weights ω0, ..., ωN be the solution to the linear system [21]

N∑
j=0

(xj)
nωj =

∫ 1

−1

xnw(x)dx, 0 ≤ n ≤ N, (3.12)

then ωj > 0 for j = 0, ..., N , and

N∑
j=0

p(xj)ωj =

∫ 1

−1

p(x)w(x)dx, ∀ p ∈ P2N . (3.13)

While we have lost a degree in our polynomial space, we now have a collocation

point at the −1, which makes Gauss-Radau integration suitable for problems with

lower boundary or initial conditions [64].

3.2.3 Gauss-Lobatto Integration

We obtain the Gauss-Lobatto formula in a similar fashion, this time considering

polynomial [21]

q(x) = pN+1(x) + apN(x) + bpN−1(x), (3.14)
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where a and b are chosen so that q(−1) = q(1) = 0. We thus let x0, ..., xN be the

N + 1 roots of (3.14), with x0 = −1 and xN = 1, and let weights ω0, ..., ωN be the

solution to the linear system [21]

N∑
j=0

(xj)
nωj =

∫ 1

−1

xnw(x)dx, 0 ≤ n ≤ N, (3.15)

then ωj > 0 for j = 0, ..., N , and

N∑
j=0

p(xj)ωj =

∫ 1

−1

p(x)w(x)dx, ∀ p ∈ P2N−1. (3.16)

We have now lost two degrees in our polynomial space, however, we have col-

location points at both ends of our domain, allowing us to treat fully specified

boundary conditions [64].

3.3 Jacobi Polynomials

While we have discussed at some length how to expand our functions as series of

orthogonal polynomials, and the quadratures we will use to evaluate the expansion

coefficients, we have yet to discuss what type of polynomials we will consider. As

mentioned, it is specifically the class of Jacobi polynomials that arise as eigen-

functions of the Sturm-Liouville eigenvalue problem, and so we will consider the

general Jacobi polynomial, and two of its most commonly used variants.

3.3.1 Generalised Jacobi Polynomial

Jacobi polynomials are solutions of (3.1) with

p(x) = (1− x)1+α(1 + x)1+β, α, β > −1, (3.17)
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where q(x) = 0, and w(x) = (1−x)α(1+x)β. We denote the polynomials P
(α,β)
n (x),

and normalise P
(α,β)
n (1) =

(
n+α
n

)
, which provides [65]

P (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ β

j

)(
x− 1

2

)j (
x+ 1

2

)n−j
. (3.18)

We obtain the Jacobi polynomials by the following recursive relationship:

P
(α,β)
0 (x) = 1, (3.19)

P
(α,β)
1 (x) = (1 + α)x, (3.20)

a1,nP
(α,β)
n+1 (x) = a2,n(x)P (α,β)

n (x)− a3,nP
(α,β)
n−1 (x), (3.21)

where

a1,n = 2(n+ 1)(n+ α + β + 1)(2n+ α + β), (3.22)

a2,n(x) = (2n+ α + β + 1)(α2 − β2) + x
Γ(2n+ α + β + 3)

Γ(2n+ α + β)
, (3.23)

a3,n = 2(n+ α)(n+ β)(2n+ α + β + 2). (3.24)

Thus, for the Jacobi series

u(x) =
∞∑
n=0

ûnP
(α,β)
n (x), (3.25)

we obtain coefficients

ûn =
(2n+ α + β + 1)n! Γ(n+ α + β + 1)

2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

∫ 1

−1

u(x)P (α,β)
n (x)(1− x)α(1 + x)βdx.

(3.26)

As an example, we consider α = β = 1, which provides the polynomials in Fig-

ure 3.1

30



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
n(1

,1
) (x

)

-3

-2

-1

0

1

2

3
P

1
(1,1)

P
2
(1,1)

P
3
(1,1)

P
4
(1,1)

P
5
(1,1)

P
6
(1,1)

Figure 3.1. Jacobi polynomials of degrees 1 through 6 with α = 1 and β = 1

The first derivative of the Jacobi polynomial can be expressed explicitly as [65]

dP
(α,β)
n (x)

dx
=
n+ α + β + 1

2
P

(α+1,β+1)
n−1 (x), (3.27)

and further derivation leads to the general formula

dmP
(α,β)
n (x)

dxm
=

Γ(α + β + n+ 1 +m)

2mΓ(α + β + n+ 1)
P

(α+m,β+m)
n−m (x), (3.28)

We will see further use of Jacobi polynomials in the subsequent solutions of FPDEs.

3.3.2 Legendre Polynomials

Recall again (3.1), only now we make substitutions p(x) = 1 − x2, q(x) = 0 and

w(x) = 1. This means that Legendre polynomials Ln(x) are Jacobi polynomials
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with parameters α = β = 0, that is,

Ln(x) = P (0,0)
n (x). (3.29)

This provides us with the Sturm-Liouville eigenvalue problem(
(1− x2)L′n(x)

)′
+ n(n+ 1)Ln(x) = 0, (3.30)

where Ln(x), n = 0, 1, ... are the obtained eigenfunctions. Then, normalising for

Ln(1) = 1, we obtain

Ln(x) =
1

2n

bn2 c∑
j=0

(−1)j
(
n

j

)(
2n− 2j

n

)
xn−2j, (3.31)

where bxc denotes the floor function of x. This provides the following recursive

relationship:

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x), (3.32)

where L0(x) = 1 and L1(x) = x. This recurrence provides the useful form [66]

Ln(x) =
n∑
j=0

(−1)j
(
n

j

)2(
1 + x

2

)n−j (
1− x

2

)j
. (3.33)

Thus, for the Legendre series

u(x) =
∞∑
n=0

ûnLn(x), (3.34)

we have coefficients

ûn =

(
n+

1

2

)∫ 1

−1

u(x)Ln(x)dx. (3.35)

We observe polynomials of orders 1 through 6 in Figure 3.2:
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Figure 3.2. Legendre polynomials of degrees 1 through 6

We obtain an explicit general expression for Legendre polynomials by substituting

α = β = 0 into (3.28),

dmLn(x)

dxm
=

Γ(n+ 1 +m)

2mΓ(n+ 1)
P

(m,m)
n−m (x). (3.36)

We will rely heavily on Legendre polynomials in subsequent problems, under a

variety of quadratures.

3.3.3 Chebyshev Polynomials

Once again recall (3.1), this time making substitutions p(x) =
√

1− x2, q(x) = 0

and w(x) = 1√
1−x2 . This means that Chebyshev polynomials Tn(x) are related to

Jacobi polynomials by

Tn(x) =
22n(n! )2

(2n)!
P

(− 1
2
,− 1

2
)

n (x). (3.37)
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This obtains a Sturm-Liouville eigenvalue problem of(√
1− x2T ′n(x)

)′
+

n2

√
1− x2

Tn(x) = 0, (3.38)

for which Tn(x), n = 0, 1, ... are the eigenfunctions. Then, normalising for

Tn(1) = 1, we obtain

Tn(x) = cos(nθ), θ = arccos(x). (3.39)

This can be expanded in the power series

Tn(x) =
n

2

bn2 c∑
j=0

(−1)n
(n− j − 1)!

j! (n− 2j)!
(2x)n−2j, (3.40)

and we have the recursive relation

Tn+1(x) = 2xTn(x)− Tn−1(x), (3.41)

with T0(x) = 1 and T1(x) = x. Thus, for the Chebyshev series

u(x) =
∞∑
n=0

ûnTn(x), (3.42)

we obtain coefficients

ûn =
2

πcn

∫ 1

−1

u(x)Tn(x)w(x)dx, (3.43)

where

cn =

2 if n = 0

1 if n ≥ 1

As an example, we present in Figure 3.3 the polynomials of degree 1 through 6,
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Figure 3.3. Chebyshev polynomials of degrees 1 through 6

Chebyshev polynomials are perhaps the most popular variety of Jacobi polynomial,

likely due to their generally superior rate of convergence [67], and so one will benefit

from their consideration in problems to follow.

While Chebyshev polynomials are frequently used, different applications will ben-

efit from different Jacobi polynomials [67], and indeed, there are cases where any

ultraspherical polynomials, these being Jacobi polynomial where α = β [65], will

have identical convergence characteristics. For this research, however, we will de-

fer to the choices made in prior literature, for both convenience and consistent

comparison.
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3.4 Shifted Polynomials

We should not presume that all problems to be solved with spectral methods will

fit conveniently between −1 and 1, and so we will discuss what happens when we

move to the positive half-domain. To change our domain from [−1, 1] to [0, R], we

make the transform

pR,n(x) = pn

(
2x

R
− 1

)
. (3.44)

3.4.1 Shifted Jacobi Polynomials

Recalling (3.18), we obtain the following analytical expression for shifted Jacobi

polynomials:

PR,n(x)(α,β) = P (α,β)
n

(
2x

R
− 1

)
=

n∑
j=0

(
n+ α

n− j

)(
n+ β

j

)( x
R
− 1
)j ( x

R

)n−j
=

n∑
j=0

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(α + j + 1)Γ(n+ β + 1− j)(n− j)! j!

( x
R
− 1
)j ( x

R

)n−j
,

(3.45)

and note that it can be alternately expressed as [65]

PR,n(x)(α,β) =
n∑
j=0

(−1)n+j Γ(n+ α + 1)Γ(n+ j + α + β + 1)

Γ(α + j + 1)Γ(n+ α + β + 1)(n− j)! j!Rj
xj. (3.46)

The shifted weight function is w
(α,β)
R = xα(R−x)β, and we have the orthogonality

of the polynomials by [50]∫ R

0

PR,k(x)(α,β)PR,m(x)(α,β)w
(α,β)
R dx = hm (3.47)

where

hm =


Rα+β+1Γ(m+α+1)Γ(m+β+1)
(2m+α+β+1)m!Γ(m+α+β+1)

if m = k

0 if m 6= k.
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Thus, we obtain the shifted Jacobi series

u(x) =
∞∑
n=0

ûnPR,n(x)(α,β)(x), (3.48)

with coefficients

ûn =
(2n+ α + β + 1)n! Γ(n+ α + β + 1)

Rα+β+1Γ(n+ α + 1)Γ(n+ β + 1)

∫ R

0

u(x)P
(α,β)
R,n (x)xα(R−x)βdx. (3.49)

3.4.2 Shifted Legendre Polynomials

In the case of Legendre polynomials, we recall (3.33), and make the transform

from [−1, 1] to [0, 1] [66],

L1,n(x) = Ln (2x− 1) =
n∑
j=0

(−1)j
(
n

j

)2

(x)n−j (1− x)j

=
n∑
j=0

(−1)n
(
n

j

)(
n+ j

j

)
(−x)j

=
n∑
j=0

(−1)n+j (n+ j)!xj

(n− j)! (j! )2
,

(3.50)

which is then expanded to domain [0, R] [68],

LR,n(x) =
n∑
j=0

(−1)n+j (n+ j)!xj

(n− j)! (j! )2Rj
. (3.51)

The shifted Legendre weight function is still wR = 1, and we have the orthogonality

of the polynomials by [68] ∫ R

0

LR,k(x)LR,m(x)dx = hm, (3.52)

where [69]

hm =


R

2m+1
if m = k

0 if m 6= k.
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We thus obtain the shifted Legendre series

u(x) =
∞∑
n=0

ûnLR,n(x), (3.53)

with coefficients

ûn =
2n+ 1

R

∫ R

0

u(x)LR,n(x)dx. (3.54)

3.5 Concluding Remarks

We have discussed the fundamentals of orthogonal polynomials, how they are ob-

tained as the eigenfunctions of Sturm-Liouville eigenvalue problems, and their

value in approximating functions. We considered three variaties of Gaussian

quadrature, including traditional Gauss integration, Guass-Radau and Gauss-

Lobatto, how these quadratures are obtained, and how they benefit in the numeri-

cal solution of different types of problems. We then discussed Jacobi polynomials,

being the unique class of polynomial arising from a singular Sturm-Liouville prob-

lem, and how Legendre and Chebyshev polynomials are variants of the general

Jacobi polynomial. We went on to discuss shifted polynomials, and how they are

obtained from the standard formulae.

The subsequent chapters will present a number of worked cases of spectral meth-

ods applied to particular FPDEs. Much theory has been covered so far, which

will inform the methods explained henceforth, where techniques specific to the

problems under investigation will be developed and implemented.
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Chapter 4

Space-Fractional Advection Diffusion Equations

This chapter will focus on the development and implementation of our first spec-

tral collocation method for solving a class of FPDEs, and is based on the work of

Bhrawy and Baleanu [51]. We consider space-fractional PDEs with coefficients de-

pendent on both space and time [51]. The spatial derivatives, both integer-ordered

and fractional, will be solved spectrally, by expanding them as a series of shifted

Legendre polynomials, integrated under Gauss-Lobatto quadrature, producing a

system of ordinary differential equations in time, which will be solved using the

explicit Runge-Kutta 4.

For this exercise, we will consider equations of the form

∂u(x, t)

∂t
+ a(x, t)

∂u(x, t)

∂x
− b(x, t)∂

νu(x, t)

∂xν
− c(x, t)u(x, t) = q(x, t), (4.1)

where

0 ≤ x ≤ R, 0 < t ≤ T,

with fractional derivative order ν ∈ (1, 2], and with initial and boundary conditions

u(x, 0) = f(x), 0 ≤ x ≤ R,

u(0, t) = g0(t), 0 < t ≤ T,

u(R, t) = gR(t), 0 < t ≤ T.

(4.2)

The anomalous diffusion, or subdiffusion, is represented by ∂νu(x,t)
∂xν

, which is a

fractional spatial derivative, but noting the presence of initial and boundary con-
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ditions in (4.2), it is defined in the Caputo sense [51], as presented in (2.17), but

with lower terminal 0:

∂νu(x, t)

∂xν
= C

0D
ν
xu(x, t) =

1

Γ(ν − n)

∫ x

0

u(n)(τ, t)dτ

(x− τ, t)ν+1−n , (n− 1 ≤ ν < n),

(4.3)

The coefficient function a(x, t) denotes the drift, or advective velocity, b(x, t) de-

notes the anomalous diffusion, and c(x, t) and q(x, t) are known smooth functions

[51]. Setting c = 0 in (4.1) obtains the space-fractional advection-dispersion equa-

tion, setting a = q = 0 obtains the space-fractional reaction-disperson equation,

and setting q = 0 and ν = 2 obtains the Fokker-Planck equation [51].

4.1 Shifted Legendre-Gauss-Lobatto Collocation

Given our fully specified boundary conditions, we will benefit from the collocation

points at the boundaries inherent to Gauss-Lobatto quadrature, as presented in

§ 3.2.3. For shifted Legendre polynomials, we adjust our N + 1 collocation points

xn by the same transformation used in the polynomials, that is, for the shifted

collocation points xR,0, ..., xR,N we have

xR,n =
R

2
(xn + 1), 0 ≤ n ≤ N, (4.4)

while the weights wR1(x) still equal 1. However, the Legendre-Gauss-Lobatto

quadrature weights ωR,j, are adjusted from ωj which solve (3.16) by the following

transformation; we observe that the ωj solve [65]

ωj =

∫ 1

−1

Ln(x)

L′n(xj)(x− xj)
dx, j = 1, 2, ..., n, (4.5)
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and so we have

ωR,j =

∫ R

0

LR,n(x)

L′R,n(xj)(x− xj)
dx, j = 1, 2, ..., n,

=
R

2

∫ 1

−1

Ln(x)

L′n(xj)(x− xj)
dx

=
R

2
ωj.

(4.6)

and so we have that ωR,j = R
2
ωj. This ensures that for (3.16) we have [70]∫ R

0

LR(x)wR(x)dx =
R

2

∫ 1

−1

LR(xR)w(x)dx, ∀ LR ∈ P2N−1.

=
R

2

N∑
j=0

LR(xR,j)ωj

=
N∑
j=0

LR(xR,j)ωR,j,

(4.7)

and so our shifted Legendre-Gauss-Lobatto quadrature approximates as desired.

Significantly, this allows us to solve N-truncated (3.53) expanded into the time

dimension;

uN(xR,j, t) =
N∑
n=0

ûn(t)LR,n(xR,j), (4.8)

with coefficients

ûn(t) =
2n+ 1

R

∫ R

0

u(x, t)LR,n(x)dx

=
2n+ 1

R

N∑
j=0

u(xR,j, t)LR,n(xR,j)ωR,j.

(4.9)

Substituting back into (4.8) and simplifying [51], we obtain

uN(x, t) =
N∑
j=0

[
N∑
n=0

2n+ 1

R
LR,n(xR,j)LR,n(xR,j)ωR,j

]
u(xR,j, t). (4.10)

For determining the 1st degree spatial derivative ∂u(x,t)
∂x

, henceforth represented as

ux(x, t), we turn to the convenient relation due to the linear independence of the
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Lengendre polynomials [21];

ux(x, t) =
∞∑
n=0

ûn(t)L′n(x), (4.11)

which after N-truncating, and substituting in (4.9) for the coefficients and (3.36)

for the derivative of order m = 1, we obtain at the collocation points

ux,N(xR,k, t) =
N∑
j=0

[
N∑
n=0

2n+ 1

R
LR,n(xR,j)L

′
R,n(xR,k)ωR,j

]
u(xR,j, t)

=
N∑
j=0

[
N∑
n=0

(2n+ 1)(n+ 1)

2R
LR,n(xR,j)P

(1,1)
R,n−1(xR,k)ωR,j

]
u(xR,j, t)

=
N∑
j=0

D1
j,ku(xR,j, t),

(4.12)

where

D1
j,k =

N∑
n=0

(2n+ 1)(n+ 1)

2R
LR,n(xR,j)P

(1,1)
R,n−1(xR,k)ωR,j. (4.13)

For the fractional spatial derivative, ∂νu(x,t)
∂xν

, henceforth represented as Dνu(x, t),

we have

Dνu(x, t) =
∞∑
n=0

ûn(t)DνLR,n(x), (4.14)

where we consider the fractional derivative of the Legendre polynomial represented

by (3.51), to obtain

DνLR,n(x) = Dν

n∑
j=0

(−1)n+j (n+ j)!xj

(n− j)! (j! )2Rj

=
n∑
j=0

(−1)n+j (n+ j)! Dνxj

(n− j)! (j! )2Rj
,

(4.15)

where we have by (2.24)

Dνxj =
Γ(j + 1)

Γ(j − ν + 1)
xj−ν , (4.16)
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and thus we have

DνLR,n(x) =
n∑
j=0

(−1)n+j (n+ j)!xj−ν

Γ(j − ν + 1)(n− j)! j!Rj
, n = dνe, dνe+ 1, ...

(4.17)

where we note that for n < dνe, we have by the Caputo derivative definition (2.17)

that DνLR,n(x, t) = 0, since for xj, j < dνe, we have (xj)
(dνe)

= 0. Next, we can

represent xj−ν in terms of shifted Legendre polynomials, and so using (3.53) we

have

xj−ν =
∞∑
k=0

θ̂j,kLR,k(x), (4.18)

which, by (3.54) has coefficients

θ̂j,k =
2k + 1

R

∫ R

0

xj−νLR,k(x)dx

=
2k + 1

R

∫ R

0

xj−ν
k∑
r=0

(−1)k+r (k + r)!xr

(k − r)! (r! )2Rr
dx

=
2k + 1

R

k∑
r=0

(−1)k+r (k + r)!

(k − r)! (r! )2Rr

∫ R

0

xj+r−νdx

= (2k + 1)Rj−ν
k∑
r=0

(−1)k+r (k + r)!

(k − r)! (r! )2(j + r − ν + 1)
.

(4.19)

Now, we substitute (4.19) into (4.18), which is then substituted into (4.17), to

obtain

DνLR,n(x)

=
n∑
j=0

(−1)n+j (n+ j)!
∑∞

k=0 θ̂j,kLR,k(x)

Γ(j − ν + 1)(n− j)! j!Rj

=
n∑
j=0

(−1)n+j
(n+ j)!

∑∞
k=0(2k + 1)Rj−ν∑k

r=0(−1)k+r (k+r)!
(k−r)!(r!)2(j+r−ν+1)

LR,k(x)

Γ(j − ν + 1)(n− j)! j!Rj

=
n∑
j=0

Πν(n, j)LR,j(x), n = dνe, dνe+ 1, ...

(4.20)
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where, after much simplification [71], we have

Πν(n, j) =
n∑

k=dνe

(−1)n+k(2j + 1)(n+ k)! (k − j − ν + 1)j
Rν(n− k)! k! Γ(k − ν + 1)(k − ν + 1)j+1

, (4.21)

where (x)j denotes the falling factorial as presented in (2.6). With these results,

we are finally able to represent a calculable form of (4.14) under the Legendre-

Gauss-Lobatto quadrature, evaluated at collocation points xR,0, ..., xR,N ;

DνuN(xR,k, t) =
N∑
j=0

[
N∑
n=0

2n+ 1

R
LR,n(xR,j)D

νLR,n(xR,k)ωR,j

]
u(xR,j, t)

=
N∑
j=0

Dνj,ku(xR,j, t),

(4.22)

where

Dνj,k =
N∑
n=0

N∑
i=0

2n+ 1

R
LR,n(xR,j)Πν(n, i)LR,i(xR,k)ωR,j. (4.23)

With suitable expressions for the approximations of our derivatives and functions,

we are finally able to arrange them in such a way as to efficiently and accurately

solve our FPDE. Letting un(t) = u(xR,n, t), and denoting the other functions in

(4.1) and (4.2) in a similar fashion, we substitute (4.10), (4.12) and (4.22) into

(4.1) to obtain

∂un(t)

∂t
= u̇(t, u) = −an(t)

N∑
j=0

D1
n,juj(t)− bn(t)

N∑
j=0

Dνn,juj(t)− cn(t)un(t) + qn(t),

(4.24)

for n = 1, ..., N − 1, with initial condition

un(0) = fn, 0 ≤ n ≤ N, (4.25)

and noting that for n = 0 and n = N , we have boundary conditions

u0(t) = g0(t), 0 < t ≤ T,

uN(t) = gR(t), 0 < t ≤ T.
(4.26)
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Conveniently, (4.24)→ (4.26) represent a system of ordinary differential equations

in time, and since we have an initial condition, the system can be solved explicity,

marching forward through time, from t = 0 to t = T . This system was originally

solved implicitly [51], but this will not be necessary for reasonably accurate results,

and so our approach differs here. The particular method to be used is the explicit

fourth-order Runge-Kutta [72], where we have

un(t+ ∆t) = un(t) +
∆t

6
(K1 + 2K2 + 2K3 +K4), (4.27)

where

K1 = u̇(t, u)

K2 = u̇

(
t+

∆t

2
, u+K1

∆t

2

)
K3 = u̇

(
t+

∆t

2
, u+K2

∆t

2

)
K4 = u̇(t+ ∆t, u+K3∆t)

(4.28)

This method should provide an accurate approximation for any space-fractional

advection diffusion equation that can be represented in the form of (4.1), so we

will consider some particular numerical examples.

4.2 A Numerical Example

In this example, we will consider the equation

∂u(x, t)

∂t
= −t sin(2x)

∂u(x, t)

∂x
+ t3x3∂

νu(x, t)

∂xν
− u(x, t) + q(x, t), (4.29)

for x ∈ [0, 2] and t ∈ (0, T ] where

q(x, t) = sin(2x)te−t
(
8x− 12x2 + 4x3

)
−x3t3e−t

(
24x4−ν

Γ(5− ν)
− 24x3−ν

Γ(4− ν)
+

8x3−ν

Γ(5− ν)

)
,

(4.30)
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with initial and boundary conditions

u(x, 0) = x2(2− x)2, 0 ≤ x ≤ 2,

u(0, t) = 0, 0 < t ≤ T,

u(R, t) = 0, 0 < t ≤ T.

(4.31)

This space-fractional advection-diffusion equation has exact solution

u(x, t) = e−tx2(2− x)2 (4.32)

With fractional degree ν = 1.45, N = 10 collocation points, and setting ∆t = 0.01,

according to the MATLAB® code in Appendix A, we can see in Figure 4.1 that our

approximation matches the exact solution in form, shown in detail in Figure 4.2.
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Figure 4.1. Contour Plots of Approximate and Exact Solution, N = 10
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Figure 4.2. Approximate solution for u(x, t), N = 10

With absolute error defined |u(x, t) − uN(x, t)|, we observe the specific absolute

error surface in Figure 4.3, showing that error increases in time.

Taking the maximum absolute error across both the space and time domain, we see

in Table 4.1 that our maximum error generally diminishes as we increase N , but

ticks up after N = 9, ostensibly due to the well-known ill-conditioned matrixes

associated with spectral methods with larger values of N [73, 74] . We have

demonstrated here an inferiority of explicit Runge-Kutta to its implicit counterpart

[51] for the solution of the ODEs of this particular example, but nevertheless, it is
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clear that the Legendre-Gauss-Lobatto collocation produces viable results.
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Figure 4.3. Absolute Error, N = 10
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Table 4.1. Maximum Error for N = 2, ..., 10

N Maximum Error

2 0.200850292024174

3 0.107872354548346

4 0.129915856434108

5 0.003916531162723

6 0.003795611223056

7 0.003943065660182

8 0.002273506909105

9 0.001610731333610

10 0.001879018065213

4.3 Concluding Remarks

In this chapter, we numerically solved a space-fractional advection diffusion equa-

tion using shifted Legendre polynomials under a Guass-Lobatto quadrature. Using

the Caputo definition of the fractional derivative, and the technique of Legendre-

Gauss-Lobatto collocation, we were able to represent the FPDE as a system of

ODEs in the time variable. This system was then solved using explicit RK4,

where reasonably accurate results were obtained, although not as good as those

possible with an implicit method.
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Chapter 5

Two-dimensional Space-Fractional Sub-Diffusion

Equations

This chapter will build upon the discussion and techniques we have already ex-

plored, by extending the method of the previous chapter into two spatial dimen-

sions, for a similar class of FPDE, and is based on the work of Bhrawy [52].

We consider two-dimensional sub-diffusion equations with fractional derivatives in

both the x and y space. Building off of the technique in Chapter 4, the method

involves Legendre-Gauss-Lobatto collocation of the fractional spatial derivatives,

resulting in a system of ODEs in time, to be solved with explicit RK4.

In this example, we will consider equations of the form

∂u(x, y, t)

∂t
= a(x, y)

∂ν1u(x, y, t)

∂xν1
+ b(x, y)

∂ν2u(x, y, t)

∂yν2
+ q(x, y, t), (5.1)

where

0 ≤ x ≤ R1, 0 ≤ y ≤ R2, 0 < t ≤ T,

with fractional derivative orders ν1,2 ∈ (1, 2], and with initial and boundary con-
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ditions

u(x, y, 0) = f(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

u(0, y, t) = g1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(R1, y, t) = g1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(x, 0, t) = g2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

u(x,R2, t) = g2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T.

(5.2)

We observe the anomalous diffusions ∂ν1u(x,y,t)
∂xν1

and ∂ν2u(x,y,t)
∂yν2

are again defined in

the Caputo sense [52], presented in (2.17), allowing their effective treatment at

the boundaries. We note the lower boundaries of 0, giving, for the fractional x

derivative, the expression

∂ν1u(x, y, t)

∂xν1
= C

0D
ν1
x u(x, y, t) =

1

Γ(ν1 − n)

∫ x

0

u(n)(τ, y, t)dτ

(x− τ, y, t)ν1+1−n , (n−1 ≤ ν1 < n),

(5.3)

with a similar expression available for the fractional y derivative. Diffusion equa-

tions are one of the most fundamental varieties of PDEs, playing important roles in

modelling such phenomena as heat conduction, flows of viscous fluids and through

porous media and many more [22], with fractional diffusions able to better capture

the non-locality that occasionally defines the real world [28].

5.1 Shifted Legendre-Gauss-Lobatto Collocation in Two Dimensions

As in Chapter 4, we have fully specified boundary conditions, so we will again

benefit from the collocation points at the boundaries inherent to Gauss-Lobatto

quadrature, and for our shifted Legendre polynomials, we adjust our N + 1 collo-
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cation points xn, M + 1 collocation points ym and quadrature weights as before:

xR1,n =
R1

2
(xn + 1), 0 ≤ n ≤ N,

yR2,m =
R2

2
(ym + 1), 0 ≤ m ≤M,

ωR1,j =
R1

2
ωj, j = 1, 2, ..., n,

ωR2,j =
R2

2
ωj, j = 1, 2, ...,m.

(5.4)

We appeal again to (3.16), noting that in two dimensions, we now have∫ R1

0

∫ R2

0

LR1(x)wR1(x)LR2(y)wR2(y)dy dx

=
N∑
i=0

M∑
j=0

LR1(xR1,i)ωR1,iLR2(yR2,j)ωR2,j,

(5.5)

and so our shifted Legendre-Gauss-Lobatto quadrature still approximates as de-

sired. Again, we consider equation (3.53) to express our solution as a shifted

Legendre series, but adjust for the two-dimensional case [52]:

u(x, y, t) =
∞∑
n=0

∞∑
m=0

ûn,m(t)LR1,n(x)LR2,m(y), (5.6)

which, after truncating in both dimensions, becomes

uN,M(xR1,i, yR2,j, t) =
N∑
n=0

M∑
m=0

ûn,m(t)LR1,n(xR1,i)LR2,m(yR2,j), (5.7)

with coefficients

ûn,m(t) =
2n+ 1

R1

2m+ 1

R2

∫ R1

0

∫ R2

0

u(x, y, t)LR1(x)wR1(x)LR2(y)wR2(y))dy dx

=
2n+ 1

R1

2m+ 1

R2

N∑
i=0

M∑
j=0

u(xR1,i, yR2,j, t)LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,j.

(5.8)
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Substituting back into (5.7), we obtain

uN,M(xR1,k, yR2,l, t) =
N∑
n=0

M∑
m=0

N∑
i=0

M∑
j=0

[
2n+ 1

R1

2m+ 1

R2

LR1,n(xR1,k)LR2,m(yR2,l)

× u(xR1,i, yR2,j, t)LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,j

]
.

(5.9)

Turning now to the fractional spatial derivatives, we recall the linear independence

of Legendre polynomials, and denote ∂ν1u(x,y,t)
∂xν1

, by Dν1u(x, y, t), giving

Dν1u(x, y, t) =
∞∑
n=0

∞∑
m=0

ûn,m(t)Dν1LR1,n(x)LR2,m(y), (5.10)

which, after substituting in for ûn,m(t) and truncating, gives

Dν1uN,M(xR1,k, yR2,l, t)

=
N∑
i=0

M∑
j=0

N∑
n=0

M∑
m=0

[
2n+ 1

R1

2m+ 1

R2

Dν1LR1,n(xR1,k)LR2,m(yR2,l)

LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,ju(xR1,i, yR2,j, t)

]

=
N∑
i=0

M∑
j=0

k,lD
ν1
i,ju(xR1,i, yR2,j, t)

(5.11)

where

k,lD
ν1
i,j =

N∑
n=0

M∑
m=0

[
2n+ 1

R1

2m+ 1

R2

Dν1LR1,n(xR1,k)LR2,m(yR2,l)

× LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,j

]
.

(5.12)

and where we recall from (4.17) that the fractional derivative of the Legendre

polynomial is

Dν1LR1,n(xR1,k) =
n∑
j=0

(−1)n+j
(n+ j)!xj−ν1R1,k

Γ(j − ν1 + 1)(n− j)! j!Rj
1

, n = dν1e, dν1e+ 1, ...

(5.13)
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Similarly, in the y dimension, denoting ∂ν2u(x,y,t)
∂yν2

, by Dν2u(x, y, t) we have

Dν2u(x, y, t) =
∞∑
n=0

∞∑
m=0

ûn,m(t)LR1,n(x)Dν2LR2,m(y), (5.14)

which gives

Dν2uN,M(xR1,k, yR2,l, t)

=
N∑
i=0

M∑
j=0

N∑
n=0

M∑
m=0

[
2n+ 1

R1

2m+ 1

R2

LR1,n(xR1,k)D
ν2LR2,m(yR2,l)

× LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,ju(xR1,i, yR2,j, t)

]

=
N∑
i=0

M∑
j=0

k,lD
ν2
i,ju(xR1,i, yR2,j, t)

(5.15)

where

k,lD
ν2
i,j =

N∑
n=0

M∑
m=0

[
2n+ 1

R1

2m+ 1

R2

LR1,n(xR1,k)D
ν2LR2,m(yR2,l)

× LR1,n(xR1,i)ωR1,iLR2,m(yR2,j)ωR2,j

]
.

(5.16)

with the fractional derivative of the Legendre polynomial being

Dν2LR2,m(yR1,l) =
m∑
j=0

(−1)m+j
(m+ j)!xj−ν2R2,l

Γ(j − ν2 + 1)(m− j)! j!Rj
2

, m = dν2e, dν2e+1, ...

(5.17)

Having obtained calculable expressions for the fractional derivatives in both dimen-

sions, we are able to express our fractional PDE as a system of ordinary differential

equations evaluated at the collocation points. Letting u(xR1,n, yR2,m, t) = un,m(t),

and denoting the other functions in (5.23) and (7.9) similarly, we substitute (5.11)
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and (5.15) into (5.23):

∂un,m(t)

∂t
= an,m

N∑
i=0

M∑
j=0

n,mD
ν1
i,jun,m(t) + bn,m

N∑
i=0

M∑
j=0

n,mD
ν2
i,jun,m(t) + qn,m(t)

= u̇(t, u),

(5.18)

for n = 1, ..., N − 1, and m = 1, ...,M − 1, with initial condition

un,m(0) = fn,m, 0 ≤ n ≤ N, 0 ≤ m ≤M, (5.19)

and noting that for n = 0, n = N , m = 0, and m = M we have boundary

conditions

u0,m(t) = g1,0,m(t), 0 ≤ m ≤M, 0 < t ≤ T,

uN,m(t) = g1,R1,m(t), 0 ≤ m ≤M, 0 < t ≤ T,

un,0(t) = g2,0,n(t), 0 ≤ n ≤ N, 0 < t ≤ T,

un,M(t) = g2,R2,n(t), 0 ≤ n ≤ N, 0 < t ≤ T.

(5.20)

We now have a system of (N + 1) × (M + 1) ordinary differential equations for

each step in time, which will benefit from explicit RK4, where we have

un,m(t+ ∆t) = un,m(t) +
∆t

6
(K1 + 2K2 + 2K3 +K4), (5.21)

where

K1 = u̇(t, u)

K2 = u̇

(
t+

∆t

2
, u+K1

∆t

2

)
K3 = u̇

(
t+

∆t

2
, u+K2

∆t

2

)
K4 = u̇(t+ ∆t, u+K3∆t)

(5.22)

as before. This scheme will allow us to march through time as we solve an evolving

2D surface. To demonstrate the effectiveness of this method, we will consider a

particular numerical example.
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5.2 A Numerical Example

In this example, we will consider the equation

∂u(x, y, t)

∂t
= a(x, y)

∂ν1u(x, y, t)

∂xν1
+ b(x, y)

∂ν2u(x, t)

∂yν2
+ q(x, y, t), (5.23)

for x ∈ [0, 1], y ∈ [0, 1], and t ∈ (0, T ], where

a(x, y) =
(3− 2x)Γ(3− ν1)

2

b(x, y) =
(4− y)Γ(4− ν2)

6

q(x, y, t) = e−t
(
x2(−y

3
2 + y − 4)y

3
2 +
√
x(2x− 3)y3

)
,

(5.24)

with initial and boundary conditions

u(x, y, 0) = x2y3, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(0, y, t) = 0, 0 ≤ y ≤ 1, 0 < t ≤ T,

u(1, y, t) = e−ty3, 0 ≤ y ≤ 1, 0 < t ≤ T,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, 0 < t ≤ T,

u(x, 1, t) = e−tx2, 0 ≤ x ≤ 1, 0 < t ≤ T.

(5.25)

This two-dimensional space-fractional sub-diffusion equation has exact solution

u(x, y, t) = e−tx2y3. (5.26)

With fractional derivative degrees ν1 = ν2 = 1.5, N = 10 collocation points,

and ∆t = 0.001, implemented in MATLAB as shown in Appendix D, we see in

Figure 5.1 that the approximation matches the exact solution in shape, with the

detailed approximation surface in Figure 5.2.
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Figure 5.1. Contours of Approximate and Exact Solution for u(x, y, 1), N = 10
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Figure 5.2. Approximate solution for u(x, y, 1), N = 10
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Defining absolute error for t = 1 as |u(x, y, 1) − uN,M(x, y, 1)|, we observe the

specific absolute error surface in Figure 5.3, where we note that the error is con-

centrated at the upper boundaries.

Considering the maximum absolute error across all three domains, defined by

max
0≤x≤1,0≤y≤1,0<t≤1

|u(x, y, t)− uN,M(x, y, t)|,

presented in Table 5.1, we observe that there is a significant jump in accuracy

from N = 4, where the scheme in fact has the smallest maximum error at less

than 1.2 × 10−14. Thereafter, accuracy slowly declines, but is still particularly

good up to and beyond N = 10. Notably, these results compare favorably to those

obtained with implicit Runge-Kutta in prior work [52].
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Figure 5.3. Absolute Error, N = 10
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Table 5.1. Maximum Error for N = M = 2, ..., 10

N Maximum Error

2 0.013226556903634

3 0.005283940097415

4 1.193489751472043 ×10−14

5 1.612598943268040 ×10−14

6 2.431388423929093 ×10−14

7 3.064215547965432 ×10−14

8 4.007905118896815 ×10−14

9 4.607425552194400 ×10−14

10 5.428990590417016 ×10−14

5.3 Concluding Remarks

In this chapter, we numerically solved a two-dimensional space-fractional diffu-

sion equation using shifted Legendre polynomials under a Guass-Lobatto quadra-

ture. Using the Caputo definition of the fractional derivative, and the technique

of Legendre-Gauss-Lobatto collocation, we were able to represent the FPDE as a

system of ODEs in the time variable. This system was then solved using explicit

RK4, where particularly accurate results were obtained, comparable to those in

prior literature obtained using the more expensive implicit schemes.
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Chapter 6

One-dimensional Space- and Time- Fractional

Equations

This chapter is based on the work of Doha, Bhrawy and Ezz-Eldien [50, 53],

wherein they investigated ordinary differential equations, and time-fractional dif-

fusion equations, with fractional derivatives of order less than 1. We will adapt

this method to consider a variety of partial differential equations, linear and non-

linear, with a single dimension in space, that have fractional derivatives in either

space or time of order up to 2, and may additionally have derivative boundary

conditions. The solution will involve shifted Jacobi polynomials, integrated under

a Gauss-Lobatto quadrature, for the calculation of both the integer derivatives

and the fracional derivatives. This spectral scheme will provide us with a system

of non-linear equations, which we solve with a Levenberg-Marquardt algorithm.

In this chapter, we will consider time-fractional partial differential equations that

take the following form:

f

(
x, t, u,

∂u

∂x
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂t2
,
∂2u

∂x ∂t
, ...,

∂νu

∂tν
, ...

)
= 0 (6.1)

where the operator f can be linear or non-linear, homogeneous or nonhomoge-

neous. These equations will be well-posed, with appropriate initial and boundary

conditions. We note that the fractional derivative ∂νu
∂tν

is defined in the Caputo

sense, so that it will be amenable to the imposed initial conditions. We set the

lower limit of integration to be 0, giving us, for the fractional time derivative, the
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following expression:

∂νu(x, t)

∂tν
= C

0D
ν
t u(x, t) =

1

Γ(ν − n)

∫ t

0

u(n)(x, τ)dτ

(x, t− τ)ν+1−n , (n− 1 ≤ ν < n),

(6.2)

with corresponding expressions available for the fractional derivatives in the spatial

dimensions.

6.1 Shifted Jacobi-Gauss-Lobatto Collocation Matrices

In this section, we will expound upon the derivation of a Jacobi operational matrix

for the solution of fractional PDEs, first presented in Doha, Bhrawy and Ezz-Eldien

[50], attempting where necessary to fill in detail omitted from the original proof.

Recalling § 3.4.1, we represent a Jacobi polynomial of degree n on domain [0, R]

by

PR,n(x)(α,β) =
n∑
j=0

(−1)n+j Γ(n+ α + 1)Γ(n+ j + α + β + 1)

Γ(α + j + 1)Γ(n+ α + β + 1)(n− j)! j!Rj
xj. (6.3)

The shifted weight function is w
(α,β)
R = xα(R−x)β, and we have the orthogonality

of the polynomials by∫ R

0

PR,k(x)(α,β)PR,m(x)(α,β)w
(α,β)
R dx = hR,m (6.4)

where, if m 6= k, we have hR,m = 0, but if m = k, we have

hR,m =
Rα+β+1Γ(m+ α + 1)Γ(m+ β + 1)

(2m+ α + β + 1)m! Γ(m+ α + β + 1)
(6.5)

This gives shifted Jacobi series

u(x) =
∞∑
n=0

ûnPR,n(x)(α,β)(x), (6.6)
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with coefficients

ûn =
(2n+ α + β + 1)n! Γ(n+ α + β + 1)

Rα+β+1Γ(n+ α + 1)Γ(n+ β + 1)

∫ R

0

u(x)P
(α,β)
R,n (x)xα(R− x)βdx. (6.7)

Now, letting

U = [û0, û1, ..., ûN ], (6.8)

and

PR1(x) = [PR,0(x)(α,β), PR,1(x)(α,β), ..., PR,N(x)(α,β)]′, (6.9)

we have

u(x) = UPR1(x) (6.10)

We seek an operational matrix that will permit derivatives of u(x) of fractional

order, where we denote ∂νu(x,t)
∂xν

by Dνu(x, t). Before we can do this, we must prove

the following lemma:

Lemma 6.1 Let PR,n(x)(α,β) be a shifted Jacobi polynomial. Then,

DνPR,n(x)(α,β) = 0, n = 0, 1, ..., dνe − 1. (6.11)

Proof: We observe from (2.25) that for integers γ andm, if we havem < ν ≤ m+ 1,

we have

Dνxγ =

0 if γ < m+ 1

Γ(γ+1)
Γ(γ−ν+1)

xγ−ν , if γ ≥ m+ 1

(6.12)

Considering additionally the linearity of fractional derivatives [1], we observe from

(6.3) that, for n = 0, 1, ..., dνe − 1,

DνPR,n(x)(α,β) =
n∑
j=0

(−1)n+j Γ(n+ α + 1)Γ(n+ j + α + β + 1)

Γ(α + j + 1)Γ(n+ α + β + 1)(n− j)! j!Rj
Dνxj.

= 0,

(6.13)
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and we have the result, as desired. �

Theorem 6.1 Let PR1(x) be a vector of Jacobi polynomials as defined in (6.9),

and µ > 0. Then,

DνPR1(x) ' DνRPR1(x), (6.14)

where DνR is the (N + 1)× (N + 1) operational matrix of ν-ordered derivatives in

the Caputo sense, defined by

DνR =



0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

∆ν(dνe, 0) ∆ν(dνe, 1) ∆ν(dνe, 2) . . . ∆ν(dνe, N)
...

...
...

. . .
...

∆ν(n, 0) ∆ν(n, 1) ∆ν(n, 2) . . . ∆ν(n,N)
...

...
...

. . .
...

∆ν(N, 0) ∆ν(N, 1) ∆ν(N, 2) . . . ∆ν(N,N)


where

∆ν(n, k)

=
n∑

j=dνe

[
(−1)n−jRα+β−ν+1Γ(j + α + 1)Γ(n+ α + 1)Γ(n+ j + α + β + 1)

hR,jΓ(j + α + β + 1)Γ(j + α + 1)Γ(n+ α + β + 1)Γ(j − ν + 1)(n− j)!

×
k∑
r=0

(−1)k−rΓ(k + r + α + β + 1)Γ(β + 1)Γ(r + k + α− ν + 1)

Γ(r + α + 1)Γ(r + k + α + β − ν + 2)(k − r)! r!

]
(6.15)

Proof: We recall (6.3) and apply the fractional derivative of degree ν, recalling
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additionally the linearity of the fractional derivative and the expression of (6.12):

DνPR,n(x)(α,β)

=
n∑
j=0

(−1)n+j Γ(n+ α + 1)Γ(n+ j + α + β + 1)

Γ(α + j + 1)Γ(n+ α + β + 1)(n− j)! j!Rj
Dνxj.

=
n∑

dνe=0

(−1)n+j Γ(n+ α + 1)Γ(n+ j + α + β + 1)

Γ(α + j + 1)Γ(n+ α + β + 1)(n− j)! Γ(j − ν + 1)Rj
xj−ν

(6.16)

Now, we approximate xj−ν as an expansion of Jacobi polynomials:

xj−ν =
∞∑
k=0

θ̂j,kPR,k(x)(α,β)(x), (6.17)

which, by (6.7) has coefficients

θ̂j,k =
1

hR,k

∫ R

0

xj−νP
(α,β)
R,k (x)xα(R− x)βdx.

=
1

hR,k

∫ R

0

xj−νxα(R− x)β

×
k∑
r=0

(−1)k+r Γ(k + α + 1)Γ(k + r + α + β + 1)

Γ(α + r + 1)Γ(k + α + β + 1)(k − r)! r!Rr
xrdx

=
1

hR,k

k∑
r=0

(−1)k−r
Γ(k + α + 1)Γ(k + r + α + β + 1)

Γ(α + r + 1)Γ(k + α + β + 1)(k − r)! r!Rr

×
∫ R

0

xα+j+r−ν(R− x)βdx

=
1

hR,k

k∑
r=0

[
(−1)k−r

Γ(k + α + 1)Γ(k + r + α + β + 1)

Γ(α + r + 1)Γ(k + α + β + 1)(k − r)! r!Rr

× Γ(β + 1)Γ(j + r + α− ν + 1)

Γ(j + r + α + β − ν + 2)
Rα+β+j+r−ν+1

]

=
Γ(k + α + 1)Rα+β+j−ν+1

Γ(k + α + β + 1)hR,k

×
k∑
r=0

(−1)k−r
Γ(β + 1)Γ(k + r + α + β + 1)Γ(j + r + α− ν + 1)

Γ(α + r + 1)Γ(j + r + α + β − ν + 2)(k − r)! r!

(6.18)
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Now, substituting (6.18) into (6.16), we observe that

DνPR,n(x)(α,β) =
N∑
k=0

∆ν(n, k)PR,k(x)(α,β), n = dνe, dνe+ 1, ..., N, (6.19)

which gives, in vector form,

DνPR,n(x)(α,β) ' [∆ν(n, 0),∆ν(n, 1), ...,∆ν(n,N)] PR1(x), n = dνe, dνe+ 1, ..., N.

(6.20)

Additionally, we note that from Lemma 6.1, we have

DνPR,n(x)(α,β) ' [0, 0, ..., 0] PR1(x), n = 0, 1, ..., dνe − 1. (6.21)

Thus, we have from (6.20) and (6.21) that

DνPR1(x) ' DνRPR1(x), (6.22)

and the theorem is proven 1. �

Now, in order to implement a space- or time-fractional derivative, we will have

to expand u(x, t) in both the time and space dimensions as a series of Jacobi

polynomials [53], similar to the process used in (5.6). This provides the following

approximation of u(x, t):

u(x, t) =
∞∑
n=0

∞∑
m=0

ûm,nP
α,β
R,n(x)Pα,β

T,m(t), (6.23)

which, after truncating in both dimensions, becomes

uM,N(xR,i, tT,j) =
N∑
n=0

M∑
m=0

ûm,nP
α,β
R,n(xR,i)P

α,β
T,m(tT,j), (6.24)

with coefficients

ûm,n =
1

hR,n

1

hT,m

∫ R

0

∫ T

0

u(x, t)Pα,β
R,n(x)w

(α,β)
R Pα,β

T,m(t)w
(α,β)
T dt dx. (6.25)

1Consult Appendix H for the MATLAB implementation of ∆ν(n, j)
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Then, defining matrix

U =


û0,0 û0,1 . . . û0,N

û1,0 û1,1 . . . û1,N

...
...

. . .
...

ûM,0 ûM,1 . . . ûM,N


we observe that

uM,N(xR,i, tT,j) = [PT (t)]′UPR1(x). (6.26)

Now, if we apply Theorem 6.1 to (6.26), we observe that the derivatives of (6.1)

can be represented by

∂u(x, t)

∂x
' [PT (t)]′UD1

RPR(x)

∂u(x, t)

∂t
'
[
D1
TPT (t)

]′
UPR(x)

∂2u(x, t)

∂x2
' [PT (t)]′UD2

RPR(x)

∂2u(x, t)

∂t2
'
[
D2
TPT (t)

]′
UPR(x)

∂2u(x, t)

∂x ∂t
'
[
D1
TPT (t)

]′
UD1

RPR(x)

...

∂νu(x, t)

∂tν
' [DνTPT (t)]′UPR(x)

...

(6.27)

Now, by substituting (6.26) and (6.27) into (6.1) and its initial and boundary

conditions, we obtain a system of non-linear equations. A Levenberg-Marquardt

algorithm, taking U as its variable, is used to minimise these equations as a set

of non-linear least squares problems, with the robustness of this approach mak-

ing it more desirable than similar methods, such as Gauss-Newton, considering the
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absence of a sufficiently close initial guess that might be necessary for a less sophis-

ticated algorithm [75]. This U is then used in (6.26) to acquire our approximate

surface of u(x, t). Having discussed the methodology, we will test its veracity by

deriving the schemes for a number of particular space- and time-fractional PDEs,

and then implement these schemes on appropriate numerical examples. We note

here that while consistency of presentation will be prioritised, the error between

exact and approximate solutions will be reported as close to the form used in the

specific prior literature from which each example sourced as possible, for the sake

of fair comparison between our methods and those of previous investigations.

6.2 Non-homogenous Sub-diffusion Equations

In this section, we will consider equations of the form

∂νu(x, y, t)

∂tν
= A

∂2u(x, t)

∂x2
+ q(x, t), (6.28)

where

0 ≤ x ≤ R, 0 < t ≤ T,

with A being the generalised diffusion constant, ν being the fractional differen-

tiation constant in the region (0, 1], and q(x, t) being a non-homogeneous source

function. We have initial and boundary conditions

u(x, 0) = f(x), 0 ≤ x ≤ R,

u(0, t) = g0(t), 0 < t ≤ T,

u(R, t) = gR(t), 0 < t ≤ T.

(6.29)

We begin by recalling (6.27), and observe that the derivatives of (6.28) can be
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represented by

∂1−νu(x, t)

∂t1−ν
'
[
D1−ν
T PT (t)

]′
UPR(x),

∂2u(x, t)

∂x2
' [PT (t)]′UD2

RPR(x).

(6.30)

Now, by substituting (6.26) and (6.30) into (6.28), we obtain

[PT (tT,j)]
′
([
D1−ν
T

]′
U−UAD2

R

)
PR(xR,i)− q (xR,i, tT,j) = 0, (6.31)

for i = 1, 2, ..., N − 1, and j = 1, 2, ...,M . For the initial and boundary conditions,

we have

[PT (0)]′UPR(xR,i)− f(xR,i) = 0, 0 ≤ i ≤ N,

[PT (tT,j)]
′UPR(0)− g0(tT,j) = 0, 0 < j ≤M,

[PT (tT,j)]
′UPR(R)− gR(tT,j) = 0, 0 < j ≤M.

(6.32)

Combining (6.31) and (6.32), we obtain a system of (M + 1)× (N + 1) equations.

We use the Levenberg-Marquardt algorithm, taking U as its variable, to minimise

(6.31) and (6.32). This U is then used in (6.26) to calculate our approximation of

u(x, t).

6.2.1 A Numerical Example

We consider here a time-fractional sub-diffusion implemented by Gao and Sun [76]:

∂νu(x, t)

∂tν
=
∂2u(x, t)

∂x2
+ exΓ(2 + ν)t− t1+ν , (6.33)

where

0 ≤ x ≤ 1, 0 < t ≤ 1,
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with ν being the fractional differentiation constant in the region (0, 1]. We have

initial and boundary conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = t1+ν , 0 < t ≤ 1,

u(1, t) = e1t1+ν , 0 < t ≤ 1.

(6.34)

This non-homogeneous time-fractional sub-diffusion equation has exact solution

u(x, t) = ext1+ν . (6.35)

With fractional time derivative degree ν = 0.75, and N = M = 12 collocation

points, implemented in MATLAB as shown in Appendix I, we see in Figure 6.1

that the approximation matches the exact solution in shape, with the detailed

approximation surface in Figure 6.2.
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Figure 6.1. Contours of Approximate and Exact Solution, N = M = 12

With absolute error given by |u(x, t)−uM,N(x, t)|, we observe the specific absolute

error surface in Figure 6.3, where we note that the error is concentrated in the
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middle for the spatial dimension, and early on in the time dimension, diminishing

as the solution evolves.

Defining the maximum error at the terminal time by max|u(x, 1)− uM,N(x, 1)|, we

observe in Table 6.1 that accuracy generally improves as we increase the number

of collocation points. We note that for our particular implementation, we obtain

significantly lesser error values than those presented in prior research [76], with

far fewer points in the discretization; even with 104 spatial steps, and 160 steps

in time, the compact finite difference method is unable to beat Jacobi spectral

collocation with as little as N = M = 4. It should be noted, however, that the

compact finite difference is capable of far larger grid sizes, with 2 × 105 steps in

time eventually beating the performance of our implementation.
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Figure 6.3. Absolute Error, N = M = 12

Table 6.1. Maximum Error for N = M = 6, ..., 14

N Maximum Error

6 0.502057417623991 ×10−4

7 0.188216226004734 ×10−4

8 0.176507481599586 ×10−4

9 0.112064583490668 ×10−4

10 0.083106997454951 ×10−4

11 0.076117530762865 ×10−4

12 0.048655461668545 ×10−4

13 0.041058070416877 ×10−4

14 0.043124542108419 ×10−4
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6.3 Non-linear Reaction-Diffusion Equations

For this exercise, we will consider equations of the form

∂u(x, t)

∂t
=

∂1−ν

∂t1−ν

[
A
∂2u(x, t)

∂x2
−Bu(x, t)

]
+ q
(
u(x, t), x, t

)
, (6.36)

where

0 ≤ x ≤ R, 0 < t ≤ T,

with A and B being constants, ν being a constant in the region (0, 1], and

q
(
u(x, t), x, t

)
being a non-linear source function. We have initial and boundary

conditions

u(x, 0) = f(x), 0 ≤ x ≤ R,

u(0, t) = g0(t), 0 < t ≤ T,

u(R, t) = gR(t), 0 < t ≤ T.

(6.37)

First, we recall (6.27), and observe that the derivatives of (6.36) can be represented

by

∂u(x, t)

∂t
'
[
D1
TPT (t)

]′
UPR(x),

∂1−νu(x, t)

∂t1−ν
'
[
D1−ν
T PT (t)

]′
UPR(x),

∂1−ν

∂t1−ν

[
∂2u(x, t)

∂x2

]
'
[
D1−ν
T PT (t)

]′
UD2

RPR(x).

(6.38)

Now, by substituting (6.26) and (6.38) into (6.36), we obtain

[PT (tT,j)]
′
([
D1
T

]′
U− A

[
D1−ν
T

]′
UD2

R +B
[
D1−ν
T

]′
U
)

PR(xR,i)

− q
(
[PT (tT,j)]

′UPR(xR,i), xR,i, tT,j
)

= 0,
(6.39)
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for i = 1, 2, ..., N − 1, and j = 1, 2, ...,M . For the initial and boundary conditions,

we have

[PT (0)]′UPR(xR,i)− f(xR,i) = 0, 0 ≤ i ≤ N,

[PT (tT,j)]
′UPR(0)− g0(tT,j) = 0, 0 < j ≤M,

[PT (tT,j)]
′UPR(R)− gR(tT,j) = 0, 0 < j ≤M.

(6.40)

Combining (6.39) and (6.40), we obtain a system of (M + 1)× (N + 1) non-linear

equations. We use the Levenberg-Marquardt algorithm, taking U as its variable,

to minimise (6.39) and (6.40). This U is then used in (6.26) to calculate our

approximation of u(x, t).

6.3.1 A Numerical Example

For this exercise, we will consider the following equation [53]:

∂u(x, y, t)

∂t
=

∂1−ν

∂t1−ν

[
∂2u(x, t)

∂x2
− u(x, t)

]
+ q
(
u(x, t), x, t

)
, (6.41)

where

0 ≤ x ≤ 1, 0 < t ≤ 1,

with ν being a constant in the region (0, 1], and

q
(
u(x, t), x, t

)
= u3(x, t) + cos(πx)

[
2t+ (π2 + 1)

(
2t1+ν

Γ(2 + ν)

)
− t6 cos2(πx)

]
(6.42)

being the non-linear source function. We have initial and boundary conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = t2, 0 < t ≤ 1,

u(1, t) = −t2, 0 < t ≤ 1.

(6.43)
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This non-linear time-fractional reaction sub-diffusion equation has exact solution

u(x, t) = t2 cos(πx). (6.44)

With fractional time derivative degree ν = 0.35, and N = M = 10 collocation

points, implemented in MATLAB as shown in Appendix K, we see in Figure 6.4

that the approximation matches the exact solution in shape, with the detailed

approximation surface in Figure 6.5.
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Figure 6.4. Contours of Approximate and Exact Solution, N = 10

With absolute error given by |u(x, t)−uM,N(x, t)|, we observe the specific absolute

error surface in Figure 6.6, where we note that the error is vaguely symmetrical.

Defining maximum error as

max
0≤x≤1,0<t≤1

|u(x, t)− uM,N(x, t)|,

we observe in Table 6.2 that accuracy generally improves as we increase the num-

ber of collocation points. We note that for our particular implementation, we

obtain lesser error values than those presented in prior research [53], for values of
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N = M ≤ 6, with overall error values being considerably small for all grid sizes

investigated.
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Figure 6.5. Approximate solution for u(x, t), N = M = 10

76



0
0.2

0.4
0.6

t
0.8

11

0.8
x

0.6

0.4

0.2

×10-6

3.5

3

2

1

2.5

0.5

0

1.5

0

E
rr

or

Figure 6.6. Absolute Error, N = M = 10

Table 6.2. Maximum Error for N = M = 3, ..., 10

N Maximum Error

3 0.004631605140797

4 0.007998226534767

5 0.000313778354766

6 0.000058613008892

7 0.000010671829670

8 0.000006659873219

9 0.000005067846941

10 0.000003542928553
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6.4 Hyperbolic Equations with Derivative Boundary Conditions

In this section, we will consider equations of the form

∂2u(x, t)

∂t2
= a(x, t)

∂νu(x, t)

∂xν
+ q(x, t), (6.45)

where

0 ≤ x ≤ R, 0 < t ≤ T,

with ν being the fractional differentiation constant in the region (1, 2], and q(x, t)

being a source function. We have initial and boundary conditions

u(x, 0) = f(x), 0 ≤ x ≤ R,

ut(x, 0) = f̂(x), 0 ≤ x ≤ R,

u(0, t) = g0(t), 0 < t ≤ T,

u(R, t) = gR(t), 0 < t ≤ T.

(6.46)

We observe that we have a derivative boundary condition, and will thus have to

extend the current methodology slightly to accomodate this condition. Recalling

(6.27), and observing the derivatives of (6.45) and (6.46), we note that

∂u(x, t)

∂t
'
[
D1
TPT (t)

]′
UPR(x),

∂2u(x, t)

∂t2
'
[
D2
TPT (t)

]′
UPR(x),

∂2u(x, t)

∂xν
' [PT (t)]′UDνRPR(x).

(6.47)

Now, by substituting (6.26) and (6.47) into (6.45), we obtain

[PT (tT,j)]
′
([
D2
T

]′
U− a(xR,i, tT,j)UDνR

)
PR(xR,i)− q (xR,i, tT,j) = 0, (6.48)
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for i = 1, 2, ..., N − 1, and j = 1, 2, ...,M . For the initial and boundary conditions,

we have

[PT (0)]′UPR(xR,i)− f(xR,i) = 0, 0 ≤ i ≤ N,[
D1
TPT (0)

]′
UPR(xR,i)− f̂(xR,i) = 0, 0 ≤ i ≤ N,

[PT (tT,j)]
′UPR(0)− g0(tT,j) = 0, 0 < j ≤M,

[PT (tT,j)]
′UPR(R)− gR(tT,j) = 0, 0 < j ≤M,

(6.49)

where we note the inclusion of the first time derivative as a second initial condition.

Combining (6.48) and (6.49), we obtain a system with the familiar (M + 1)× (N + 1)

equations, plus an additional N+1 equations to accomodate the derivative bound-

ary condition, giving a total of (M +2)× (N +1) equations. We again take advan-

tage of the Levenberg-Marquardt algorithm, taking U as its variable, to minimise

(6.48) and (6.49). This U is then used in (6.26) to calculate our approximation of

u(x, t).

6.4.1 A Numerical Example

We consider here a space-fractional hyperbolic PDE with a source term and deriva-

tive boundary conditions [59]:

∂2u(x, t)

∂t2
=

√
x

Γ(0.5)

∂νu(x, t)

∂xν
+ 4x2 + 2x3 − 2.546x2t2 + 2.546xt2, (6.50)

where

0 ≤ x ≤ 1, 0 < t ≤ 0.4,
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and ν = 1.5. We have initial and boundary conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,

ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, 0 < t ≤ 0.4,

u(1, t) = −t2, 0 < t ≤ 0.4.

(6.51)

This space-fractional hyperbolic PDE has exact solution

u(x, t) = x2(x− 2)t2. (6.52)

With N = M = 16 collocation points, implemented in MATLAB as shown in

Appendix M, we see in Figure 6.7 that the approximation matches the exact

solution in shape, with the detailed approximation surface in Figure 6.8.
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Figure 6.7. Contours of Approximate and Exact Solution, N = M = 16

With absolute error defined as |u(x, t)− uM,N(x, t)|, observe the specific absolute

error surface in Figure 6.9, where we note that the error tends to increase with

both time and space.
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We define maximum error as

max
0≤x≤1,0<t≤1

|u(x, t)− uM,N(x, t)|,

and considering Table 6.3, we observe that accuracy generally improves as we

increase the number of collocation points. We note that for our particular im-

plementation, we achieve expectedly less accuracy than that of an analytical ap-

proximation [59], but performance is good nonetheless, and so it is evident that

derivative boundary conditions are easily implemented with reasonable accuracy.
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Figure 6.8. Approximate solution for u(x, t), N = M = 16
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Figure 6.9. Absolute Error, N = M = 16

Table 6.3. Maximum Error for N = M = 8, ..., 16

N Maximum Error

8 0.004065125666787

9 0.003119940619825

10 0.002949853822576

11 0.002687998301935

12 0.002194548679129

13 0.001828041330492

14 0.007206587528312

15 0.001570167608101

16 0.001553389994894
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6.5 Concluding Remarks

Using the Caputo definition of the fractional derivative, and the technique of

Jacobi-Gauss-Lobatto collocation, we were able to obtain an operational matrix

representation of partial differential equations with one spatial dimension, and

their various derivatives, in both time and space, and of both integer and frac-

tional order, providing a system of possibly non-linear equations. This system was

then solved using the Levenberg-Marquardt algorithm.

This approach was used to solve a non-homogeneous sub-diffusion equation, where

the method here was able to achieve greater accuracy than prior methods, espe-

cially for the smaller grid sizes. It was observed, however, that increasing the grid

size beyond a certain point stopped yielding benefits, which is not necessarily true

of other methods, that may still slowly improve upon their accuracy with far larger

grid sizes.

Then, the method was used to numerically solve a non-linear time-fractional dif-

fusion equation, where it was found that this particular implementation was again

able to provide more accurate results at smaller grid sizes than those in prior

literature.

Lastly, the method was used to solve a space-fractional hyperbolic equation with

derivative boundary conditions. It was found that the method was easily adapted

to incorporate the derivative boundary condition, and provided reasonably accu-

rate results. While no other numerical method was available for comparison, the

method was expectedly less accurate than an analytical approximation.
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Chapter 7

Two-dimensional Space- and Time-Fractional

Equations

In this chapter, we extend the one dimensional shifted Jacobi polynomial operation

matrix method to solve problems with two dimensions in space, in addition to the

time dimension, in the fashion developed by Bhrawy [53], where he considered

time-fractional diffusion equations of order less than 1. We will consider a variety

of partial differential equations for this chapter, investigating fractional derivatives

in both time and space, of orders less than or equal to 2, and may additionally have

derivative boundary conditions, or be in coupled systems. We maintain use of the

Caputo fractional derivative, with a lower boundary of 0, giving us the following

expression for the fractional time derivative:

∂νu(x, y, t)

∂tν
= C

0D
ν
t u(x, y, t) =

1

Γ(ν − n)

∫ t

0

u(n)(x, y, τ)dτ

(x, y, t− τ)ν+1−n , (n−1 ≤ ν < n),

(7.1)

with corresponding expressions available for the fractional space derivatives.

The solution will again involve shifted Jacobi polynomials, integrated under a

Gauss-Lobatto quadrature, where we accommodate the increased dimensionality.

This spectral scheme will provide us with a system of equations, which we again

solve with a Levenberg-Marquardt algorithm.

In this chapter, we will consider time-fractional partial differential equations that
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take the following form:

f

(
x, y, t, u,

∂u

∂x
,
∂u

∂y
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂t2
,
∂2u

∂x ∂y
, ...,

∂νu

∂tν
, ...

)
= 0 (7.2)

7.1 Two-dimensional Shifted Jacobi Collocation Matrices

Now, we begin this section where § 6.1 left off, only we now consider u(x, y, t) with

two spatial dimensions, expressed as a triple Jacobi polynomial:

u(x, y, t) =
∞∑

n1=0

∞∑
n2=0

∞∑
m=0

ûm,n1,n2P
α,β
R1,n1

(x)Pα,β
R2,n2

(y)Pα,β
T,m(t), (7.3)

which, after truncating in all dimensions, becomes

uM,N1,N2(xR1,i1 , yR2,i2 , tT,j)

=

N1∑
n1=0

N2∑
n2=0

M∑
m=0

ûm,n1,n2P
α,β
R1,n1

(xR,i1)P
α,β
R2,n2

(yR,i2)P
α,β
T,m(tT,j),

(7.4)

with coefficients

ûm,n1,n2

=
1

hR1,n1

1

hR2,n2

1

hT,m

×
∫ R1

0

∫ R2

0

∫ T

0

u(x, y, t)Pα,β
R1,n1

(x)w
(α,β)
R1

Pα,β
R2,n2

(y)w
(α,β)
R2

Pα,β
T,m(t)w

(α,β)
T dt dy dx.

(7.5)

Then, defining matrix

U =


û0,0,0 û0,0,1 . . . û0,0,N2 û0,1,0 û0,1,1 . . . û0,N1,N2

û1,0,0 û0,0,1 . . . û1,0,N2 û1,1,0 û1,1,1 . . . û1,N1,N2

...
...

. . .
...

...
...

. . .
...

ûM,0,0 ûM,0,1 . . . ûM,0,N2 ûM,1,0 ûM,1,1 . . . ûM,N1,N2


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we observe that [53]

uM,N1,N2(xR1,i1 , yR2,i2 , tT,j) = [PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(yR2,i2), (7.6)

where ⊗ represents the Kronecker product, that is, for matrices An×m and Bk×l,

such that

A =


a0,0 a0,1 . . . a0,m

a1,0 a1,1 . . . a1,m

...
...

. . .
...

an,0 an,1 . . . an,m

 B =


b0,0 b0,1 . . . b0,l

b1,0 b1,1 . . . b1,l

...
...

. . .
...

bk,0 bk,1 . . . bk,l


we have

A⊗B =


a0,0B a0,1B . . . a0,mB

a1,0B a1,1B . . . a1,mB
...

...
. . .

...

an,0B an,1B . . . an,mB


where A⊗B is an (k × n)× (l ×m) matrix.

Now, if we apply Theorem 6.1 to (7.6), we observe that the derivatives of (7.2)
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can be represented by

∂u(x, y, t)

∂x
' [PT (t)]′U

[
D1
R1

PR1(x)
]
⊗PR2(y)

∂u(x, y, t)

∂y
' [PT (t)]′UPR1(x)⊗

[
D1
R2

PR2(y)
]

∂u(x, y, t)

∂t
'
[
D1
TPT (t)

]′
UPR1(x)⊗PR2(y)

∂2u(x, y, t)

∂x2
' [PT (t)]′U

[
D2
R1

PR1(x)
]
⊗PR2(y)

∂2u(x, y, t)

∂y2
' [PT (t)]′UPR1(x)⊗

[
D2
R2

PR2(y)
]

∂2u(x, y, t)

∂t2
'
[
D2
TPT (t)

]′
UPR1(x)⊗PR2(y)

∂2u(x, y, t)

∂x ∂y
' [PT (t)]′U

[
D1
R1

PR1(x)
]
⊗
[
D2
R2

PR2(y)
]

...

∂νu(x, t)

∂tν
' [DνTPT (t)]′UPR1(x)⊗PR2(y)

...

(7.7)

Now, by substituting (7.6) and (7.7) into (7.2) and its initial and boundary condi-

tions, we obtain a system of non-linear equations. A Levenberg-Marquardt algo-

rithm, taking U as its variable, is used to minimise these equations as a set of least

squares problems. This U is then used in (7.6) to acquire our approximate surface

of u(x, t). We will test the accuracy of this method by deriving the schemes for a

number of particular space- and time-fractional PDEs, and then implement these

schemes on appropriate numerical examples. We note for this chapter that, con-

veniently, all numerical examples are compared to prior literature examples with

consistent presentations of error. Namely, we define the absolute error at the end

time T as |u(x, y, T )− uM,N1,N2(x, y, T )|, and the maximum error as

max
0≤x≤1,0≤y≤1

|u(x, y, T )− uM,N1,N2(x, y, T )|.
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7.2 Space-Fractional Sub-Diffusion Equations

This section will consider two-dimensional space-fractional sub-diffusion equations,

with fractional derivatives in both the x and y dimensions, as was considered in

Chapter 5. These equations will be of the form

∂u(x, y, t)

∂t
= a(x, y)

∂ν1u(x, y, t)

∂xν1
+ b(x, y)

∂ν2u(x, y, t)

∂yν2
+ q(x, y, t), (7.8)

where

0 ≤ x ≤ R1, 0 ≤ y ≤ R2, 0 < t ≤ T,

with fractional derivative orders ν1,2 ∈ (1, 2], and with initial and boundary con-

ditions

u(x, y, 0) = f(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

u(0, y, t) = g1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(R1, y, t) = g1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(x, 0, t) = g2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

u(x,R2, t) = g2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T.

(7.9)

We begin by recalling (7.7), and observe that the derivatives of (7.8) can be rep-

resented by

∂u(x, t)

∂t
'
[
D1
TPT (t)

]′
UPR1(x)⊗PR2(y)

∂ν1u(x, t)

∂xν1
' [PT (t)]′U

[
Dν1R1

PR1(x)
]
⊗PR2(y),

∂ν2u(x, t)

∂yν2
' [PT (t)]′UPR1(x)⊗

[
Dν2R2

PR2(y)
]
.

(7.10)
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Now, by substituting (7.6) and (7.10) into (7.8), we obtain[
D1
TPT (t)

]′
UPR1(x)⊗PR2(y)

− a(xR1,i1 , yR2,i2) [PT (t)]′U
[
Dν1R1

PR1(x)
]
⊗PR2(y)

− b(xR1,i1 , yR2,i2) [PT (t)]′UPR1(x)⊗
[
Dν2R2

PR2(y)
]

− q(xR1,i1 , yR2,i2 , tT,j)

= 0

(7.11)

for i1 = 1, 2, ..., N1− 1, i2 = 1, 2, ..., N2− 1, and j = 1, 2, ...,M . For the initial and

boundary conditions, we have

[PT (0)]′UPR1(xR1,i1)⊗PR2(yR2,i2), = f(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,

[PT (tT,j)]
′UPR1(0)⊗PR2(yR2,i2), = g1,0(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(R1)⊗PR2(yR2,i2), = g1,R1(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(0), = g2,0(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(R2), = g2,R2(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M.

(7.12)

Combining (7.11) and (7.12), we obtain a system of (M+1)×
(

(N1 +1)×(N2 +1)
)

equations. We use the Levenberg-Marquardt algorithm, taking U as its variable,

with an initial guess of all zeros, to minimise (7.11) and (7.12). This U is then

used in (7.6) to calculate our approximation of u(x, y, t).
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7.2.1 A Numerical Example

We will consider the two-dimensional space-fractional sub-diffusion equation in-

vestigated by Meerschaert, Scheffler and Tadjeran [32]:

∂u(x, y, t)

∂t
=

Γ(2.2)x2.8y

6

∂1.8u(x, y, t)

∂x1.8
+

2xy2.6

Γ(4.6)

∂1.6u(x, y, t)

∂y1.6
− (1 + 2xy)e−tx3y3.6,

(7.13)

where

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < t ≤ 1,

with initial and boundary conditions

u(x, y, 0) = x3y3.6, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(0, y, t) = 0, 0 ≤ y ≤ 1, 0 < t ≤ 1,

u(1, y, t) = e−ty3.6, 0 ≤ y ≤ 1, 0 < t ≤ 1,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, 0 < t ≤ 1,

u(x, 1, t) = e−tx3, 0 ≤ x ≤ 1, 0 < t ≤ 1.

(7.14)

This equation has exact solution

u(x, y, t) = e−tx3y3.6. (7.15)

With N1 = N2 = M = 10 collocation points, implemented in MATLAB as shown

in Appendix O, we see in Figure 7.1 that at time T = 1, the approximation matches

the exact solution in shape, with the detailed approximation surface in Figure 7.2.
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Figure 7.1. Contours of Approximate and Exact Solution, N1 = N2 = M = 10
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Figure 7.2. Approximate solution for u(x, t), N1 = N2 = M = 10
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Figure 7.3. Absolute Error, N1 = N2 = M = 10

Observing the absolute error in Figure 7.3, we see that it is concentrated in the

upper boundaries of x and y, however, as evident in Table 7.1, the accuracy is

significant for the greater sample sizes, with error of a few orders of magnitude

less than that of the finite difference method [32], and even slightly better accuracy

than the shifted Legendre collocation method of Chapter 5 [52].
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Table 7.1. Maximum Error for N1 = N2 = M = 2, ..., 10

N Maximum Error

2 0.325449430043631

3 0.027003876786619

4 0.003053434501599

5 1.346416675843468 ×10−5

6 2.466894411592979 ×10−6

7 1.947587520756411 ×10−6

8 7.910122618720594 ×10−7

9 2.863369100505886 ×10−7

10 1.966162568312058 ×10−7

7.3 Time-Fractional Diffusion-Wave Equations

In this example, we will consider two-dimensional time-fractional wave equations,

also referred to as diffusion-wave equations by virtue of the time derivative being

inbetween a diffusion and a wave. These equations take the form

∂νu(x, y, t)

∂tν
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
+ q(x, y, t), (7.16)

where

0 ≤ x ≤ R1, 0 ≤ y ≤ R2, 0 < t ≤ T,
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with fractional derivative order ν ∈ (1, 2], and with initial and boundary conditions

u(x, y, 0) = f(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

u(0, y, t) = g1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(R1, y, t) = g1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(x, 0, t) = g2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

u(x,R2, t) = g2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T.

(7.17)

We begin by recalling (7.7), and observe that the derivatives of (7.16) can be

represented by

∂νu(x, t)

∂tν
' [DνTPT (t)]′UPR1(x)⊗PR2(y)

∂2u(x, t)

∂x2
' [PT (t)]′U

[
D2
R1

P2(x)
]
⊗PR2(y),

∂2u(x, t)

∂y2
' [PT (t)]′UPR1(x)⊗

[
D2
R2

PR2(y)
]
.

(7.18)

Now, by substituting (7.6) and (7.18) into (7.16), we obtain

[DνTPT (t)]′UPR1(x)⊗PR2(y)

− [PT (t)]′U
[
D2
R1

PR1(x)
]
⊗PR2(y)

− [PT (t)]′UPR1(x)⊗
[
D2
R2

PR2(y)
]

− q(xR1,i1 , yR2,i2 , tT,j)

= 0

(7.19)

for i1 = 1, 2, ..., N1− 1, i2 = 1, 2, ..., N2− 1, and j = 1, 2, ...,M . For the initial and

94



boundary conditions, we have

[PT (0)]′UPR1(xR1,i1)⊗PR2(yR2,i2) = f(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,

[PT (tT,j)]
′UPR1(0)⊗PR2(yR2,i2) = g1,0(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(R1)⊗PR2(yR2,i2) = g1,R1(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(0) = g2,0(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(R2) = g2,R2(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M.

(7.20)

Combining (7.19) and (7.20), we obtain a system of (M+1)×
(

(N1 +1)×(N2 +1)
)

equations. We use the Levenberg-Marquardt algorithm, taking U as its variable,

with an initial guess of all zeros, to minimise (7.19) and (7.20). This U is then

used in (7.6) to calculate our approximation of u(x, y, t).

7.3.1 A Numerical Example

We will implement our scheme on a two-dimensional time-fractional diffusion-wave

equation investigated by Dehghan, Abbaszadeh and Mohebbi [77]:

∂νu(x, y, t)

∂tν
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
+

(
2t2−ν

Γ(3− ν)

)
sin(x+ y), (7.21)

where

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < t ≤ 1,
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with fractional derivative order ν ∈ (1, 2], and with initial and boundary conditions

u(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(0, y, t) = t2 sin(y), 0 ≤ y ≤ 1, 0 < t ≤ 1,

u(1, y, t) = t2 sin(1 + y), 0 ≤ y ≤ 1, 0 < t ≤ 1,

u(x, 0, t) = t2 sin(x), 0 ≤ x ≤ 1, 0 < t ≤ 1,

u(x, 1, t) = t2 sin(x+ 1), 0 ≤ x ≤ 1, 0 < t ≤ 1.

(7.22)

The exact solution to this equation is given by

u(x, y, t) = t2 sin(x+ y). (7.23)

With fractional order ν = 1.95, and M = 2 and N1 = N2 = 10 collocation points,

implemented in MATLAB as shown in Appendix Q, we see in Figure 7.4 that

at time T = 1, the approximation matches the exact solution in shape, with the

detailed approximation surface in Figure 7.5.

Approximate

0 0.5 1

y

0

0.5

1

x

Exact

0 0.5 1

y

0

0.5

1

x

Figure 7.4. Contours of Approximate and Exact Solution, M = 2, N1 = N2 = 10
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We observe the absolute error in Figure 7.6, where we note that error is concen-

trated towards the spatial centre. Maximum error values are presented for M = 2

and N1 = N2 = 2, ..., 10, where we observe low error for all sample sizes, with

the best performance occuring for N1 = N2 = 5 at just under 1 × 10−4, and the

worst performance occuring for N1 = N2 = 2 at just under 2× 10−3, which is still

better than the best reported performance for the Finite Element method, even

with as many as as 50 steps in space and 80 in time [77]. We note the value of M

is only 2 for this implementation; while the method solves for higher values of M ,

the theoretical accuracy gained from truncating fewer terms is overwhelmed by

the loss of accuracy due to rounding error in solving a large system of non-linear

equations.

98



Table 7.2. Maximum Error for M = 2, N1 = N2 = 2, ..., 10

N1 = N2 Maximum Error

2 0.163664640782224 ×10−2

3 0.912850678700838 ×10−3

4 0.113469534845367 ×10−3

5 0.096517630236770 ×10−3

6 0.127909247585545 ×10−3

7 0.113257309478088 ×10−3

8 0.127920013087590 ×10−3

9 0.120449697561753 ×10−3

10 0.127919285784039 ×10−3

7.4 Klein-Gordon Equations With Derivative Initial Conditions

For this section, we will consider two-dimensional time-fractional non-linear Klein-

Gordon equations, which take the form

∂νu(x, y, t)

∂tν
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
+Q

(
u(x, y, t)

)
+ q(x, y, t), (7.24)

where

0 ≤ x ≤ R1, 0 ≤ y ≤ R2, 0 < t ≤ T,
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with fractional derivative order ν ∈ (1, 2], and with initial and boundary conditions

u(x, y, 0) = f(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

ut(x, y, 0) = f̂(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

u(0, y, t) = g1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(R1, y, t) = g1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(x, 0, t) = g2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

u(x,R2, t) = g2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

(7.25)

where we notice the inclusion of a condition on the derivative ut(x, y, 0), and so

we will have to adapt the current method in a way similar to that of § 6.4.

To build our approximation scheme, we recall (7.7), observing that the derivatives

of (7.24) and (7.31) can be represented by

∂u(x, y, t)

∂t
'
[
D1
TPT (t)

]′
UPR1(x)⊗PR2(y)

∂νu(x, y, t)

∂tν
' [DνTPT (t)]′UPR1(x)⊗PR2(y)

∂2u(x, y, t)

∂x2
' [PT (t)]′U

[
D2
R1

P2(x)
]
⊗PR2(y),

∂2u(x, y, t)

∂y2
' [PT (t)]′UPR1(x)⊗

[
D2
R2

PR2(y)
]
.

(7.26)

Now, by substituting (7.6) and (7.26) into (7.24), we obtain

[DνTPT (tT,j)]
′UPR1(xR1,i1)⊗PR2(yR2,i2)

− [PT (tT,j)]
′U
[
D2
R1

PR1(xR1,i1)
]
⊗PR2(yR2,i2)

− [PT (tT,j)]
′UPR1(xR1,i1)⊗

[
D2
R2

PR2(yR2,i2)
]

−Q
(

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(yR2,i2)

)
− q(xR1,i1 , yR2,i2 , tT,j)

= 0

(7.27)
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for i1 = 1, 2, ..., N1− 1, i2 = 1, 2, ..., N2− 1, and j = 1, 2, ...,M . For the initial and

boundary conditions, we have

[PT (0)]′UPR(xR1,i1)⊗PR2(yR2,i2) = f(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,[
D1
TPT (0)

]′
UPR1(xR1,i1)⊗PR2(yR2,i2) = f̂(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,

[PT (tT,j)]
′UPR1(0)⊗PR2(yR2,i2) = g1,0(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(R1)⊗PR2(yR2,i2) = g1,R1(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(0) = g2,0(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(R2) = g2,R2(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M.

(7.28)

Combining (7.30) and (7.28), we obtain the usual system of

(M +1)×
(

(N1 + 1)× (N2 + 1)
)

equations, plus an additional (N1 +1)× (N2 +1)

equations to represent the derivative condition, giving a total of

(M + 2) ×
(

(N1 + 1) × (N2 + 1)
)

equations. We use the Levenberg-Marquardt

algorithm, taking U as its variable, with an initial guess of all zeros, to minimise

(7.30) and (7.28). This U is then used in (7.6) to calculate our approximation of

u(x, y, t).
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7.4.1 A Numerical Example

In this example, we will consider a two-dimensional time-fractional non-linear

Klein-Gordon equation with derivative initial condition investigated by Dehghan,

Abbaszadeh and Mohebbi [78]:

∂νu(x, y, t)

∂tν
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
+u2(x, y, t)+u3(x, y, t)+q(x, y, t), (7.29)

where

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < t ≤ 2,

and the forcing function q(x, y, t) is defined by

q(x, y, t) =
2t2−ν

Γ(3− ν)

(
sech2(x+ y − r) + sech2(x+ y + r)

)
− 4t2

(
3sech2(x+ y − r)tanh2(x+ y − r)− sech2(x+ y − r)

+ 3sech2(x+ y + r)tanh2(x+ y + r)− sech2(x+ y + r)
)

− t4
(
sech2(x+ y − r) + sech2(x+ y + r)

)2

− t6
(
sech2(x+ y − r) + sech2(x+ y + r)

)3
.

(7.30)

We have fractional derivative order ν ∈ (1, 2], and with initial and boundary
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conditions

u(x, y, 0) = 0,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

ut(x, y, 0) = 0,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(0, y, t) = t2
(
sech2(y − r) + sech2(y + r)

)
,

0 ≤ y ≤ 1, 0 < t ≤ 1,

u(1, y, t) = t2
(
sech2(1 + y − r) + sech2(1 + y + r)

)
,

0 ≤ y ≤ 1, 0 < t ≤ 1,

u(x, 0, t) = t2
(
sech2(x− r) + sech2(x+ r)

)
,

0 ≤ x ≤ 1, 0 < t ≤ 1,

u(x, 1, t) = t2
(
sech2(x+ 1− r) + sech2(x+ 1 + r)

)
,

0 ≤ x ≤ 1, 0 < t ≤ 1.

(7.31)

The exact solution to this equation is given by

u(x, y, t) = t2
(
sech2(x+ y − r) + sech2(x+ y + r)

)
. (7.32)

With fractional derivative order ν = 1.95, and M = 16, N1 = N2 = 8 colloca-

tion points, implemented in MATLAB as shown in Appendix S, we can see from

Figure 7.7 that the approximation matches the exact solution in form, with the

detailed view of the approximation at t = 2 given in Figure 7.8.

103



Approximate

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1
x

Exact

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

x
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Figure 7.8. Approximate solution for u(x, y, 2), M = 16, N1 = N2 = 8

We observe in Figure 7.9 that the error is concentrated towards the lower spatial

boundary, and from Table 7.3, we see how the error compares for different numbers

of collocation nodes. We note that for this problem, it is beneficial to have more

nodes in time than in space for t = 2, and so we have twice as many nodes in time

than in either spatial direction. Comparing the performance of this method to

the meshless method used in prior literature [78], we see that even with as few as

M = 8 and N1 = N2 = 4 collocation nodes, our method obtains better accuracy

than their best reported result, involving 3200 steps in time. As we increase the

number of nodes, our accuracy generally increases, eventually presenting over an
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order of magnitude less error than the best result in prior literature [78]. We do

note the computational complexity of our method, however, since even relatively

small numbers of collocation points quickly increase the number of equations to

solve.
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Figure 7.9. Absolute Error, M = 16, N1 = N2 = 8
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Table 7.3. Maximum Error for M = 2×N1, N1 = N2 = 4, ..., 8

M Maximum Error

8 0.272408801612141 ×10−1

10 0.184124513932122 ×10−1

12 0.215896560208835 ×10−1

14 0.503778538515487 ×10−2

16 0.379755559526007 ×10−2

7.5 Time-fractional Non-linear Schrödinger Equations

In this section, we will consider two-dimensional time-fractional non-linear Schrödinger

equations that take the form

i
∂νψ(x, y, t)

∂tν
= A

∂2ψ(x, y, t)

∂x2
+B

∂2ψ(x, y, t)

∂y2
+ C |ψ(x, y, t)|2 ψ(x, y, t) + q(x, y, t),

(7.33)

where

0 ≤ x ≤ R1, 0 ≤ y ≤ R2, 0 < t ≤ T,

with fractional derivative order ν ∈ (0, 1], and with initial and boundary conditions

ψ(x, y, 0) = f(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

ψ(0, y, t) = g1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

ψ(R1, y, t) = g1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

ψ(x, 0, t) = g2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

ψ(x,R2, t) = g2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T.

(7.34)
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To begin, we notice that our equation is in the space of complex numbers, and so

we map its constituent functions as combinations of real and imaginary parts:

ψ(x, y, t) = u(x, y, t) + iv(x, y, t),

q(x, y, t) = uq(x, y, t) + i vq(x, y, t),

f(x, y) = uf(x, y) + i vf(x, y),

g1,0(y, t) = ug1,0(y, t) + i vg1,0(y, t),

g1,R1(y, t) = ug1,R1(y, t) + i vg1,R1(y, t),

g2,0(x, t) = ug2,0(x, t) + i vg2,0(x, t),

g2,R2(x, t) = ug2,R2(x, t) + i vg2,R2(x, t),

(7.35)

which when substituted into (7.33) and (7.34), provides the coupled equation

∂νu(x, y, t)

∂tν
= A

∂2v(x, y, t)

∂x2
+B

∂2v(x, y, t)

∂y2

+ C
(
u2(x, y, t) + v2(x, y, t)

)
v(x, y, t) + vq(x, y, t),

∂νv(x, y, t)

∂tν
= −A∂

2u(x, y, t)

∂x2
−B∂

2u(x, y, t)

∂y2

− C
(
u2(x, y, t) + v2(x, y, t)

)
u(x, y, t)− uq(x, y, t),

(7.36)
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with initial and boundary equations

u(x, y, 0) = uf(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

u(0, y, t) = ug1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(R1, y, t) = ug1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

u(x, 0, t) = ug2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

u(x,R2, t) = ug2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

v(x, y, 0) = vf(x, y), 0 ≤ x ≤ R1, 0 ≤ y ≤ R2,

v(0, y, t) = vg1,0(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

v(R1, y, t) = vg1,R1(y, t), 0 ≤ y ≤ R2, 0 < t ≤ T,

v(x, 0, t) = vg2,0(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T,

v(x,R2, t) = vg2,R2(x, t), 0 ≤ x ≤ R1, 0 < t ≤ T.

(7.37)

Since we are now dealing with a pair of coupled equations, we will have to adjust

the method to account for multiple approximations simultaneously. We begin our

coupled approximation scheme by recalling (7.6), where we note that we describe

V in much the same way as we described U. Then, we recall (7.7), observing that

the derivatives of (7.36) and (7.37) can be represented by

∂νu(x, y, t)

∂tν
' [DνTPT (t)]′UPR1(x)⊗PR2(y)

∂2u(x, y, t)

∂x2
' [PT (t)]′U

[
D2
R1

P2(x)
]
⊗PR2(y),

∂2u(x, y, t)

∂y2
' [PT (t)]′UPR1(x)⊗

[
D2
R2

PR2(y)
]
,

∂νv(x, y, t)

∂tν
' [DνTPT (t)]′VPR1(x)⊗PR2(y)

∂2v(x, y, t)

∂x2
' [PT (t)]′V

[
D2
R1

P2(x)
]
⊗PR2(y),

∂2v(x, y, t)

∂y2
' [PT (t)]′VPR1(x)⊗

[
D2
R2

PR2(y)
]
,

(7.38)
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Now, by substituting (7.6) and (7.38) into (7.24), we obtain

[DνTPT (tT,j)]
′UPR1(xR1,i1)⊗PR2(yR2,i2)

− A [PT (tT,j)]
′V
[
D2
R1

PR1(xR1,i1)
]
⊗PR2(yR2,i2)

−B [PT (tT,j)]
′VPR1(xR1,i1)⊗

[
D2
R2

PR2(yR2,i2)
]

− C

[(
[PT (tT,j)]

′UPR1(xR1,i1)⊗PR2(yR2,i2)
)2

+
(

[PT (tT,j)]
′VPR1(xR1,i1)⊗PR2(yR2,i2)

)2
]

× [PT (tT,j)]
′VPR1(xR1,i1)⊗PR2(yR2,i2)

− vq(xR1,i1 , yR2,i2 , tT,j)

= 0,

[DνTPT (tT,j)]
′VPR1(xR1,i1)⊗PR2(yR2,i2)

+ A [PT (tT,j)]
′U
[
D2
R1

PR1(xR1,i1)
]
⊗PR2(yR2,i2)

+B [PT (tT,j)]
′UPR1(xR1,i1)⊗

[
D2
R2

PR2(yR2,i2)
]

+ C

[(
[PT (tT,j)]

′UPR1(xR1,i1)⊗PR2(yR2,i2)
)2

+
(

[PT (tT,j)]
′VPR1(xR1,i1)⊗PR2(yR2,i2)

)2
]

× [PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(yR2,i2)

+ uq(xR1,i1 , yR2,i2 , tT,j)

= 0.

(7.39)

for i1 = 1, 2, ..., N1 − 1, i2 = 1, 2, ..., N2 − 1, and j = 1, 2, ...,M . We observe that

we have two sets of equations here, as opposed to the usual one. For the initial
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and boundary conditions, we have

[PT (0)]′UPR(xR1,i1)⊗PR2(yR2,i2) = uf(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,

[PT (tT,j)]
′UPR1(0)⊗PR2(yR2,i2) = ug1,0(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(R1)⊗PR2(yR2,i2) = ug1,R1(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(0) = ug2,0(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (tT,j)]
′UPR1(xR1,i1)⊗PR2(R2) = ug2,R2(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (0)]′VPR(xR1,i1)⊗PR2(yR2,i2) = vf(xR1,i1 , yR2,i2),

0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2,

[PT (tT,j)]
′VPR1(0)⊗PR2(yR2,i2) = vg1,0(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′VPR1(R1)⊗PR2(yR2,i2) = vg1,R1(yR2,i2 , tT,j),

0 ≤ i2 ≤ N2, 0 < j ≤M,

[PT (tT,j)]
′VPR1(xR1,i1)⊗PR2(0) = vg2,0(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M,

[PT (tT,j)]
′VPR1(xR1,i1)⊗PR2(R2) = vg2,R2(xR1,i1 , tT,j),

0 ≤ i1 ≤ N1, 0 < j ≤M.

(7.40)

If we combine (7.39) and (7.40), we obtain a system of 2×(M+1)×
(

(N1 + 1)× (N2 + 1)
)

equations; this system is double the size of those we have solved previously, to ac-

count for the addition approximation this method must produce. We use the
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Levenberg-Marquardt algorithm, taking in a matrix concatenated from U and V

as its variable, with an initial guess of all zeros, to minimise (7.39) and (7.40).

This matrix of U and V is then used in (7.6) to calculate our approximations of

u(x, y, t) and v(x, y, t).

7.5.1 A Numerical Example

For this example, we consider the following two-dimensional time-fractional at-

tracting non-linear Schrödinger equation, investigated by Bhrawy and Abdelkawy

[79]:

i
∂νψ(x, y, t)

∂tν
= −∂

2ψ(x, y, t)

∂x2
− ∂2ψ(x, y, t)

∂y2
− |ψ(x, y, t)|2 ψ(x, y, t) + q(x, y, t),

(7.41)

where

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < t ≤ 1,

with function

q(x, y, t)

= t2
(

1

2
sin(x) sin(y)

(
t4 cos(2x) cos(2y) + t4 − 4

)
− 2t−ν cos(x) cos(y)

Γ(3− ν)

)
+ it2

(
1

2
cos(x) cos(y)

(
t4 cos(2x) cos(2y) + t4 − 4

)
+

2t−ν sin(x) sin(y)

Γ(3− ν)

)
,

(7.42)
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with fractional derivative order ν ∈ (0, 1], and with initial and boundary conditions

ψ(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

ψ(0, y, t) = it2 cos(y), 0 ≤ y ≤ 1, 0 < t ≤ 1,

ψ(1, y, t) = t2 (sin(1) sin(y) + i cos(1) cos(y)) , 0 ≤ y ≤ 1, 0 < t ≤ 1,

ψ(x, 0, t) = it2 cos(x), 0 ≤ x ≤ 1, 0 < t ≤ 1,

ψ(x, 1, t) = t2 (sin(x) sin(1) + i cos(x) cos(1)) , 0 ≤ x ≤ 1, 0 < t ≤ 1.

(7.43)

This equation has exact solution

ψ(x, y, t) = t2 (sin(x) sin(y) + i cos(x) cos(y)) . (7.44)

With fractional derivative order ν = 0.2, and M = 1, N1 = N2 = 10 colloca-

tion points, implemented in MATLAB as shown in Appendix U, we observe from

Figure 7.10 that the approximations of u(x, y, t) and v(x, y, t) match the exact

solutions in form, with the detailed views of the approximations at t = 1 given in

Figure 7.11.
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Figure 7.10. Contours of Approximate and Exact Solution, M = 1, N1 = N2 = 10
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Table 7.4. Maximum Error for M = 1, N1 = N2 = 2, ..., 10

N1 = N2 Maximum Error in u Maximum Error in v

2 0.243519883068186 ×10−2 0.189281200161284 ×10−2

3 0.119727430592679 ×10−2 0.135777516151370 ×10−2

4 0.218872556866079 ×10−2 0.480877636537258 ×10−3

5 0.192067163749554 ×10−2 0.583329946943656 ×10−3

6 0.217840551528567 ×10−2 0.497694481170097 ×10−3

7 0.209316968936274 ×10−2 0.580975291405439 ×10−3

8 0.217817028138992 ×10−2 0.568097615525565 ×10−3

9 0.215323250699784 ×10−2 0.569189843815598 ×10−3

10 0.217816886228733 ×10−2 0.584184914312447 ×10−3

We see in Figure 7.12 that the error is concentrated towards the spatial centers

for both u(x, y, t) and v(x, y, t), and considering Table 7.4, we observe that the

error is fairly consistent for N1 = N2 ≥ 4. We note that due to the large number

of equations involved in this system, and the limits of available hardware and

software, we incur rounding error for even small numbers of collocation points,

and so while larger resolutions will theoretically be better approximations, it so

happens that the best error achievable for this scheme is with M = 1, with larger

values of M incurring more rounding error than the amount of truncation error

that is removed. This is a known drawback of collocation methods, given the

dense and often ill-conditioned systems associated to large numbers of collocation

points [73, 74]. This implementation is less effective than other spectral schemes

implemented on two-dimensional time-fractional Shrödinger equations [79], but it

is unknown how performance would compare if it were impacted less by rounding
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error.

7.6 Concluding Remarks

In this chapter, we extended the method of Chapter 6 to solve fractional PDEs that

have two dimensions in space, following the design of prior literature [53], wherein

a method was developed for time-fractional diffusion equations. We adapted the

method to deal with space-fractional derivatives, fractional derivatives of order

ν ∈ (1, 2], derivative boundary conditions, and coupled equations, testing these

adaptations on a number of relevant examples.

Our first test was a space-fractional diffusion equation, where it was found that the

Jacobi collocation method tested here provided better accuracy than that of prior

literature [52], and was significantly more accurate than the alternating-direction

finite difference method [32].

We then considered time-fractional diffusion wave equations, where the accuracy of

the method investigated here was better than that of the Finite Element method,

even when comparing small collocation node numbers to high-resolution imple-

mentations of the Finite Element method [77].

Our third test was a time-fractional non-linear Klein-Gordon equation with a

derivative initial condition, for which the results of the method tested here ex-

pressed less error than that of the meshless method used in prior literature, with

the best reported accuracy of that method being less than this Jacobi collocation

method with even small grid sizes.

Finally, we adapted the method to solve a time-fractional non-linear Shrödinger

equation, represented as coupled equations in the real and imaginary spaces. Our
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method was able to solve the coupled equations with reasonable accuracy, but the

approximations were not as accurate as other spectral methods in prior literature

[79].

We observed that in solving fractional PDEs with two dimensions in space, the

complexity of the system naturally increases as we increase the resolution of any

of the three dimensions. This means that we have rather large systems to solve

for even seemingly small numbers of collocation nodes, and so rounding error

becomes an issue. Nevertheless, accurate solutions were obtained for all problems

investigated in this chapter, and considering the extensions made to the method

to deal with the larger variety of equations, the method has demonstrated its

robustness and versatility.
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Chapter 8

Conclusions

The aim of this project was to contribute to the burgeoning discussion of nu-

merical solutions of fractional partial differential equations. The global nature of

spectral methods makes them inherently well suited to the solution of FPDEs,

the derivatives of which are themselves non-local. Focusing on spectal collocation

methods, several schemes were investigated, with generally favourable accuracy

characteristics.

In Chapter 2, we discussed the definitions and expressions necessary to represent

fractional integrals and derivatives in ways that would permit numerical approx-

imation. By unifying the notions of derivatives and integrals, we formed a con-

sistent representation that was extendable to fractional orders. We discussed the

historically significant fractional derivative definitions, and presented the Caputo

definition, allowing us to treat a considerable variety of fractional differential equa-

tions. We investigated the important fractional derivative of (t− a)β, which came

to be useful in our subsequent methodologies.

In Chapter 3, we introduced the core concepts of spectral methods, including their

defining global trial functions, and the test functions that distinguish between the

three prominent varieties of spectral method, being the Galerkin, tau and colloca-

tion methods. We discussed at length the fundamentals of orthogonal polynomials,

how they are obtained, and their value in approximating functions. We considered
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various Gaussian quadratures, how these quadratures are obtained, and how they

benefit in the numerical solution of different types of problems. We then discussed

Jacobi polynomials, being the unique class of polynomial arising from a singular

Sturm-Liouville problem, and how Legendre and Chebyshev polynomials are vari-

ants of the general Jacobi polynomial. We went on to discuss shifted polynomials,

and how they are obtained from the standard formulae.

In Chapter 4 and Chapter 5, we replicated key results from the work of Bhrawy

and Baleanu, investigating both one- and two-dimensional FPDEs. We numeri-

cally solved a one-dimensional space-fractional advection diffusion equation using

shifted Legendre polynomials under a Guass-Lobatto quadrature. Using the Ca-

puto definition of the fractional derivative, and the technique of Legendre-Gauss-

Lobatto collocation, we were able to represent the FPDE as a system of ODEs in

the time variable. This system was then solved using explicit RK4, where reason-

ably accurate results were obtained, although not as good as those possible with

an implicit method. We then applied a similar methodology for a two-dimensional

space-fractional diffusion equation, for which we obtained accuracy results that

compared favourably with prior research, especially for smaller grid sizes.

In Chapter 6, extending the work of Doha, Bhrawy and Ezz-Eldien, we were able

to obtain an operational matrix representation of partial differential equations

with one spatial dimension, and their various derivatives of arbitrary orders, using

the Caputo definition of the fractional derivative, and the technique of Jacobi-

Gauss-Lobatto collocation. This provided us with a system of equations that was

then solved using the Levenberg-Marquardt algorithm. This approach was used

to solve a non-homogeneous sub-diffusion equation, where the method here was

able to achieve greater accuracy than prior methods, especially for the smaller grid

sizes. The method was then used to numerically solve a non-linear time-fractional
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diffusion equation, where it was found that this particular implementation was

again able to provide more accurate results at smaller grid sizes than those in

prior literature. Lastly, the method was used to solve a space-fractional hyperbolic

equation with derivative boundary conditions, where it was found that the method

was easily adapted to incorporate the derivative boundary condition, and provided

reasonably accurate results.

In Chapter 7, we benefitted from the work of Bhrawy to extend the previous

method to solve fractional PDEs that have two dimensions in space. We adapted

the method to deal with space-fractional derivatives, fractional derivatives of higher

order, derivative boundary conditions, and coupled equations, testing these adap-

tations on a number of relevant examples. We first tested a space-fractional dif-

fusion equation, where it was found that our Jacobi collocation method provided

better accuracy than that of prior literature, and was significantly more accurate

than Meerschaert’s influential alternating-direction finite difference method. Our

second test considered time-fractional diffusion wave equations, where the accu-

racy of the method investigated here was better than that of the Finite Element

method. We then tested a time-fractional non-linear Klein-Gordon equation with

a derivative initial condition, for which the results of our method expressed consid-

erably less error than that of the meshless method used in prior literature. Finally,

we adapted the method to solve a time-fractional non-linear Shrödinger equation,

represented as coupled equations in the real and imaginary spaces. Our method

was able to solve the coupled equations with reasonable accuracy, although with

less accuracy than some prior spectral methods. We noted the known issue of

spectral matrices being ill-conditioned and dense is exacerbated by the addition of

extra dimensions to this method, but for small grid sizes, high accuracy was still

achievable.
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We acknowledge that there are limitations to the research presented in this project.

Ideally, one would be able to provide rigorous analytical investigations into the

stablity, consistency and convergence characteristics of the proposed schemes, but

given such analysis is absent even for the initial schemes presented by the methods’

originators, this researcher is unaware how to begin such an endeavour, and as such,

it is outside the scope of this project, with the accuracy characteristics instead

tested only for examples with known exact solutions, as is the current practice.

Additionally, the differential equations for which schemes were developed in this

project all possessed only left fractional derivatives, given the more natural physical

interpretation of left derivatives, and their concomittant relative abundance. A

more complete treatment would include two-sided, or even right-only derivatives,

but this was not the focus of this project, and so resources were not spent on the

development of methods for such equations. Lastly, the ill-conditioned systems

that limited the accuracy of the collocation methods presented here are worth

investigating, especially considering that this problem has been acknowledged by

prior literature, and is thus of interest to other researchers and practitioners of

such methods. All of these omittances serve as valuable areas of further research.

This project aimed to bring together two mathematical topics that are both gain-

ing relevance in the ongoing discourse, yet are not currently overly familiar to

most mathematicians and practitioners. It was the researcher’s belief that both

fractional calculus and spectral methods are novel topics, and the convenient ap-

propriateness of the non-local functions inherent to spectral methods in solving

fractional partial differential equations made the aim of this project both original

and meaningful. Given the relative unfamiliarity of the material, care was given

into arranging the theory such that limited knowledge of the underlying princi-

ples would be required to understand, derive, and apply the methods presented to

FPDEs that one might reasonably encounter, even outside of abstract sciences. To
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this end, many example equations were considered for the development of numeri-

cal schemes, distinct to those investigated with similar methods in prior literature,

demonstrating the power of spectral collocation for the solution of various FPDEs.

In conjunction with the abundant code presented in the Appendices, it is the re-

searcher’s hope that this document will serve additionally as a pedagogical resource

for anyone interested in solving fractional partial differential equations, with the

versatile and effective methods investigated herein.
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[24] M. Caputo. Elasticità e dissipazione. Zanichelli, 1969.

[25] M. Caputo. Vibrations of an infinite plate with a frequency independent Q.

The Journal of the Acoustical Society of America, 60(3):634–639, 1976.

[26] R.L Bagley and P.J. Torvik. A theoretical basis for the application of

fractional calculus to viscoelasticity. Journal of Rheology (1978-present),

27(3):201–210, 1983.

127
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Appendix A

Chapter 4 Example MATLAB Code

1 % Chapter 4 Example 1: u_t = -t*sin(2x)*u_x + t^3*x^3*u_(x^nu) + u + q

% q = sin(2*x)*t*exp(-t)*(8*x - 12*x^2 + 4*x^3) -...

% t^3*x^3* exp(-t)*((24*x^(4-nu))/gamma(5-nu) - ...

% (24*x^(3-nu))/gamma(4-nu) + (8*x^(2-nu))/gamma(3-nu) )

5 %

% IC: u(x,0) = x^2(2-x)^2

% DnuC: u(0,t) = 0; u(1,t) = 0;

%

% exact solution: exp(-t)*(x^2)*(2-x)^2;

10

% set up workspace

clear all

clc

set(0,'DefaultFigureWindowStyle ', 'docked ')

15 format long

% initialize vector of maximum errors for table

max_error = zeros (9,1);

20 %% Loop through varying numbers of collocation points

for N=2:10

% set constants

nu = 1.45;

25 L = 2;

T = 1;

dt = 0.01; time_frac = 2; dt_frac = dt/time_frac;

t = 0: dt_frac:T;
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30 %% other calculated values

h_Lj = L. /(2*(0:N)+1);

% obtain x nodes and Christoffel numbers

[X,CHRIS] = LegGauLob(N);

35

% shift from [-1,1] to [0,L];

x = (L/2)*( double(X) + 1); Chris = (L/2)*double(CHRIS);

%% Polynomials and matrices

40 % shifted Legendre polynomials

P_Lj = zeros(N+1,N-1);

PJ = P_Lj;

for j = 0:N

syms y

45 P_L = legendreP(j,y);

y = X(2:end-1);

P_Lj(j+1,:) = subs(P_L);

end

50 % shifted Jacobi polynomials

for j = 1:N

syms y

PJacobi = jacobiP(j-1,1,1,y);

y = X(2:end-1);

55 PJ(j+1,:) = subs(PJacobi);

end

% Dnu matrix

Dnu = zeros( N-1 );

60 for n = 1:N-1

for i = 1:N-1

for j = 0:N

for l = 0:N

Pi_nu = Pinu(j,l,nu,L);

65 Dnu(n,i) = Dnu(n,i)+(1/ h_Lj(j+1))*P_Lj(j+1,i)*Pi_nu*...

P_Lj(l+1,n)*Chris(i+1);

end

end

70 end
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end

% D1 matrix

D1 = zeros( N-1 );

75 for n = 1:N-1

for i = 1:N-1

for j = 0:N

D1(n,i) = D1(n,i)+((j+1) /(2* h_Lj(j+1)))*P_Lj(j+1,i)*...

PJ(j+1,n)*Chris(i+1);

80 end

end

end

%% Other component functions

85 [tt ,xx] = meshgrid(t,x);

a_n = -tt.*sin (2*xx);

b_n = (tt. ^3).*xx. ^3;

90

q_n = sin (2*xx).*tt.*exp(-tt).*(8.*xx - 12.*xx.^2 + 4.*xx.^3) -...

tt.^3.*xx.^3.*exp(-tt).*((24.*xx.^(4-nu))/gamma(5-nu) - ...

(24.*xx.^(3-nu))/gamma(4-nu) + (8.*xx.^(2-nu))/gamma(3-nu) );

95 % initial conditions

f = (x.^2).*(2-x).^2;

u = zeros(N+1,length(t));

u(:,1) = f;

100 %% explicit RK4: u_dot = a*D1*u + b*Dnu*u - u + q

for time = 1: time_frac:length(t)-1

k_1 = dt*(a_n(2:end-1,time).*sum(D1.*repmat(u(2:end-1,time) ,1,N-1) ',2)...

+ b_n(2:end-1,time).*sum(Dnu.*repmat(u(2:end-1,time) ,1,N-1) ',2)...

105 - u(2:end-1,time) + q_n(2:end-1,time));

k_2 = dt*(a_n(2:end-1,time +1).*sum(D1.*repmat(u(2:end-1,time)+...

(k_1/2) ,1,N-1) ',2) + b_n(2:end-1,time +1).*sum(Dnu.*...

repmat(u(2:end-1,time)+(k_1/2) ,1,N-1) ',2) -...

110 (u(2:end-1,time)+(k_1/2)) + q_n(2:end-1,time +1));
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k_3 = dt*(a_n(2:end-1,time +1).*sum(D1.*repmat(u(2:end-1,time)+...

(k_2/2) ,1,N-1) ',2) + b_n(2:end-1,time +1).*sum(Dnu.*...

repmat(u(2:end-1,time)+(k_2/2) ,1,N-1) ',2) -...

115 (u(2:end-1,time)+(k_2/2)) + q_n(2:end-1,time +1));

k_4 = dt*(a_n(2:end-1,time +2).*sum(D1.*repmat(u(2:end-1,time)+...

(k_3),1,N-1) ',2) + b_n(2:end-1,time +2).*...

sum(Dnu.*repmat(u(2:end-1,time)+(k_3),1,N-1) ',2) -...

120 (u(2:end-1,time)+(k_3)) + q_n(2:end-1,time +2));

u(2:end-1,time+time_frac) = u(2:end-1,time) +...

(1/6)*(k_1 + 2*k_2 + 2*k_3 + k_4);

end

125

u(:,time_frac:time_frac:length(t))=[];

%% Exact solution and error

u_exact = exp(-tt).*(xx. ^2).*(2-xx).^2;

130 u_exact(:,time_frac:time_frac:length(t))=[];

tt(:,time_frac:time_frac:length(t))=[];

xx(:,time_frac:time_frac:length(t))=[];

error = abs(u-u_exact);

max_error(N-1) = max(max(error));

135

%% Plots

if N == 10

% Contour Plot of the approximate and exact solution (side by side)

140 figure (1);

subplot (2,2,1)

contourf(tt,xx ,u,10), xlabel('t'), ylabel('x'),title('Approximate ');

subplot (2,2,2)

contourf(tt,xx ,u_exact ,10), xlabel('t'), ylabel('x'), title('Exact ');

145 % print('C4_Ex1_contour ','-depsc2 ','-r600 ');

% Surface plot of the solution u(x,t)

figure (2)

surf(tt ,xx,u), colormap winter;

150 xlabel('t'),ylabel('x'),zlabel('u(x,t)')

print('C4_Ex1_surface ','-depsc2 ','-r600');
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% Surface plot of error

figure (3);

155 surf(tt ,xx,error), colormap hot;

xlabel('t'), ylabel('x'), zlabel('Error ');

print('C4_Ex1_error ','-depsc2 ','-r600');

display(max_error)

160

end

end
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Appendix B

Legendre-Gauss-Lobatto Nodes and Weights Func-

tion

1 function [x,Chris] = LegGauLob(N)

syms x

L = legendreP(N,x);

5 L_1 = diff(L,x,1);

x = vpasolve(L_1 == 0);

x = [-1;x;1];

Chris = 2./(N*(N+1)*(subs(L)).^2);

10

end
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Appendix C

Πν Function

1 function [ result ] = Pinu( i,l, nu, L )

k = ceil(nu):i;

5 result = sum( ( (-1).^(i+k)*(2*l + 1).*factorial(i+k).*(gamma(k-nu+1)./...

gamma(k-l-nu+1)) ) ./ ( (L^nu).*factorial(i-k).*factorial(k).*...

gamma(k - nu + 1).*( gamma(k-nu+2+l)./gamma(k-nu+1)) ));

end

142



Appendix D

Chapter 5 Example MATLAB Code

1 % Chapter 5 Example 1: u_t = g1*u_(x^nu1) + g2*u_(y^nu2) + f

% f = exp(-t).*(x.^2.*(-y. ^(3/2)+y-4).*y^(3/2) + sqrt(x).*(2x-3).*y.^3)

% g1 = ((3 -2*x).*gamma(3-nu1))./2

% g2 = ((4-y).*gamma(4-nu2))./6

5 %

% IC: u(x,y,0) = x^2 .* y.^3

%

% Boundary Conditions:

% u(0,y) = 0, u(1,y) = exp(-t).*y.^3

10 % u(x,0) = 0, u(x,1) = exp(-t).*x.^2

%

% exact solution: exp(-t).*(x.^2).*(2-x).^2;

% set up workspace

15 clear all

clc

set(0,'DefaultFigureWindowStyle ', 'docked ')

format long

20 % initialize vector of maximum errors for table

max_error = zeros (9,1);

%% Loop through varying numbers of collocation points

for N=2:10

25

% set constants

M = N; % for simplicity

nu1 = 1.5;

nu2 = nu1; % for simplicity
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30 R1 = 1;

R2 = R1; % for simplicity

T = 1;

dt = 0.001; time_frac = 2; dt_frac = dt/time_frac;

t = 0: dt_frac:T;

35

%% other calculated values

h_L1j = R1. /(2*(0:N)+1);

h_L2j = R1. /(2*(0:M)+1);

40 % obtain x and y nodes and Christoffel numbers

[X,CHRISX] = LegGauLob(N);

% [Y,CHRISY] = LegGauLob(M); % not needed if M = N

% shift from [-1,1] to [0,L];

x = (R1/2)*( double(X) + 1); Chrisx = (R1/2)*double(CHRISX);

45 y = x; Chrisy = Chrisx;

%% polynomials and matrices

% shifted Legendre polynomials

P_Lj = zeros(N+1,N+1);

50 for j = 0:N

syms z

P_L = legendreP(j,z);

z = X;

P_Lj(j+1,:) = subs(P_L);

55 end

Dnu1 = zeros(N+1);

for i = 0:N

for n = 0:N

60 Dnu1(i+1,n+1) = Dnu(i,x(n+1),nu1 ,R1);

end

end

Dnu2 = Dnu1;

65

d_nu1 = zeros(N+1,N+1,N+1,N+1);

d_nu2 = d_nu1;

for n = 0:N

70 for m = 0:M

144



for l = 0:N

for k = 0:M

d_nu1(l+1,k+1,n+1,m+1) =...

dnu1fun( N,n,m,l,k,h_L1j ,P_Lj ,Chrisx ,Dnu1 );

75 d_nu2(l+1,k+1,n+1,m+1) =...

dnu2fun( N,n,m,l,k,h_L1j ,P_Lj ,Chrisx ,Dnu2 );

end

end

end

80 end

%% other component functions

[yy ,xx] = meshgrid(y,x);

85 a_nm = ((3-2*xx).*gamma(3-nu1))./2;

b_nm = ((4-yy).*gamma(4-nu2))./6;

q_nm = zeros(N+1,M+1,length(t));

90

u = zeros(N+1,M+1,length(t));

% Initial condition

u(:,:,1) = xx.^2 .* yy. ^3;

95

% boundary conditions and function f

for i = 1: length(t)

u(end ,:,i) = exp(-t(i)).*y.^3;

u(:,end,i) = exp(-t(i)).*x.^2;

100 q_nm(:,:,i) = exp(-t(i)).*(xx.^2.*(-(yy. ^(3/2))+yy -4).*yy. ^(3/2) +...

(xx.^0.5).*(2*xx -3).*yy. ^3);

end

%% explicit RK: v_dot = g1 sum sum rho1 v + g2 sum sum rho2 v + f

105

for time = 1: time_frac:length(t)-1

k_1 = zeros(N+1);

k_2 = zeros(N+1);

110 k_3 = zeros(N+1);

k_4 = zeros(N+1);
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for n = 1:N+1

for m = 1:N+1

115 k_1(n,m) = dt*( a_nm(n,m)*sum(sum(d_nu1(:,:,n,m).*u(:,:,time)))...

+ b_nm(n,m)*sum(sum(d_nu2(:,:,n,m).*u(:,:,time))) +...

q_nm(n,m,time) );

end

end

120 for n = 1:N+1

for m = 1:N+1

k_2(n,m) = dt*( a_nm(n,m)*sum(sum(d_nu1(:,:,n,m).*(u(:,:,time)...

+ k_1/2))) + b_nm(n,m)*sum(sum(d_nu2(:,:,n,m).*(u(:,:,time)...

+ k_1/2) )) + q_nm(n,m,time +1) );

125 end

end

for n = 1:N+1

for m = 1:N+1

k_3(n,m) = dt*( a_nm(n,m)*sum(sum(d_nu1(:,:,n,m).*(u(:,:,time)...

130 + k_2/2))) + b_nm(n,m)*sum(sum(d_nu2(:,:,n,m).*(u(:,:,time)...

+ k_2/2) )) + q_nm(n,m,time +1) );

end

end

for n = 1:N+1

135 for m = 1:N+1

k_4(n,m) = dt*( a_nm(n,m)*sum(sum(d_nu1(:,:,n,m).*(u(:,:,time)...

+ k_3))) + b_nm(n,m)*sum(sum(d_nu2(:,:,n,m).*(u(:,:,time)...

+ k_3) )) + q_nm(n,m,time +2) );

end

140 end

u(2:end-1,2:end-1,time+time_frac) = u(2:end-1,2:end-1,time) +...

(1/6)*(k_1(2:end-1,2:end-1) + 2*k_2(2:end-1,2:end-1) +...

2*k_3(2:end-1,2:end-1) + k_4(2:end-1,2:end-1));

145

end

u(:,:, time_frac:time_frac:length(t))=[];

150 %% Exact solution and error

u_exact = zeros(N+1,M+1,length(t));
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for i = 1: length(t)

u_exact(:,:,i) = exp(-t(i)).*xx.^2.*yy. ^3;

155 end

u_exact(:,:, time_frac:time_frac:length(t))=[];

t(time_frac:time_frac:length(t))=[];

% error = abs(u(:,:,end) - u_exact (:,:,end));

error = abs(u(:,:,:) - u_exact (:,:,:));

160 max_error(N-1) = max(max(max(error)));

%% Plots

if N == 10

165 % Contour Plot of the solution (side by side)

figure (1);

subplot (2,2,1)

contourf(xx,yy ,u(:,:,end) ',10), xlabel('x'), ylabel('y'),title('Approximate ');

subplot (2,2,2)

170 contourf(xx,yy ,u_exact (:,:,end) ',10), xlabel('x'), ylabel('y'), title('Exact ');

print('C5_Ex1_contour ','-depsc2 ','-r600');

% Surface plot of the solution u(x,y,t)

figure (2)

175 surf(yy ,xx,u(:,:,end)), colormap cool;

xlabel('y')

ylabel('x')

zlabel('u(x,y,1)')

print('C5_Ex1_surface ','-depsc2 ','-r600');

180

% Surface plot of error

figure (3)

surf(yy ,xx,error(:,:,end)), colormap hot;

xlabel('y')

185 ylabel('x')

zlabel('Error ')

print('C5_Ex1_error ','-depsc2 ','-r600');

display(max_error)

190

end

end
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Appendix E

DνLR,i(x) Function

1 function [ result ] = Dnu( i,x, nu, R )

if x == 0

result = 0;

5 return

end

k = 0:i;

10 result = sum( ( (-1).^(i+k).*factorial(i+k).*(x.^(k-nu) ) )./...

( (R.^k).*factorial(i-k).*( factorial(k)).*gamma(k - nu + 1) ));

end
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Appendix F

n,mD
ν1
k,l Function

1 function [ result ] = dnu1fun( N,n,m,l,k,h,P_L ,Chris ,Dmat )

Chris_k = Chris(k+1);

Chris_l = Chris(l+1);

5 P_Ljk = P_L(:,k+1);

P_Lil = P_L(:,l+1);

P_Ljm = P_L(:,m+1);

D = Dmat(:,n+1);

10 result = 0;

for i = 0:N

result = result + sum( (P_Ljk*Chris_k*P_Lil(i+1)*Chris_l*...

D(i+1).*P_Ljm) ./( h(i+1)*h' ) );

end

15

end
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Appendix G

n,mD
ν2
k,l Function

1 function [ result ] = dnu2fun( N,n,m,l,k,h,P_L ,Chris ,Dmat )

Chris_k = Chris(k+1);

Chris_l = Chris(l+1);

5 P_Ljk = P_L(:,k+1);

P_Lil = P_L(:,l+1);

P_Lin = P_L(:,n+1);

D = Dmat(:,m+1);

10 result = 0;

for j = 0:N

result = result + sum( (P_Ljk(j+1)*Chris_k*P_Lil*Chris_l*...

D(j+1).*P_Lin) ./( h(j+1)*h' ) );

end

15

end
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Appendix H

Chapter 6 ∆ν(n, j) function

1 function [ result ] = Deltafun( n,j, alp , beta , nu, T, h )

l = 0:j;

5 result = 0;

for k = ceil(nu):n

result = result + (( (-1).^(n-k)*T^(1-nu+alp+beta)*gamma(n + beta + 1)*gamma(j +

beta + 1)*gamma(n+k+alp+beta +1) )./...

( h*factorial(n-k)*gamma(j+alp+beta +1)*gamma(n+alp+beta +1)*gamma(k+beta +1)

*gamma(k-nu+1) ))*...

10 sum( ( (-1).^(j-l).*gamma(j+l+alp+beta +1).*gamma (1+ alp).*gamma(l+k+beta -nu

+1))./...

(factorial(l).*factorial(j-l).*gamma(l+beta +1).*gamma(l+k+alp+beta -nu+2) )

);

end

end
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Appendix I

Chapter 6 Example 1 MATLAB Code

1 % Chapter 6 Example 1: u_(t^nu) = u_xx + exp(x)*( gamma (2+nu)*t - t^(1+nu))

% 0 <= x <= 1, 0 < t <= 1

%

% IC: u(x,0) = 0

5 %

% Boundary Conditions:

% u(0,t) = t^(1+nu), u(1,t) = exp(1)*t^(1+nu)

%

% exact solution: exp(x)*t^(1+nu)

10

clear all

clc

% initialize global variables

15 global N M P_LN P_TM D_tnu D_x2 u f

set(0,'DefaultFigureWindowStyle ', 'docked ') % figures docked

format long

% initialize vector of maximum errors for table

20 Max_N = 14;

max_error = zeros(Max_N -5,1);

%% Loop through varying numbers of collocation points

25 for N = 6:Max_N

% set constants

M = N;

nu = 0.75;
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30 T = 1;

L = 1;

alp = 0;

beta = 0;

35 %% Jacobi polynomials

% in x

syms x

j=N-1;

40 k=0:j;

P_LNmin1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*L.^k

) );

x = double(vpasolve(P_LNmin1 == 0));

x = [0;x;L];

45 P_LN = zeros(N+1,N+1);

for j=0:N

syms z

k=0:j;

50 P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*L.^k

) );

z = x;

P_LN(j+1,:) = subs(P_LNx);

end

55

% in t

syms t

j=M+1;

k=0:j;

60 P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

t = double(vpasolve(P_TMpls1 == 0));

P_TM = zeros(M+1,M+1);
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65 for j=0:M

syms z

k=0:j;

P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

70 z = t;

P_TM(j+1,:) = subs(P_TMt);

end

%% Differentiation Matrixes

75

% h terms

i=0:N;%

h_abLi = ((L)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

80

i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

85 % initialize matrixes

D_tnu = zeros(M+1,M+1);

D_x1 = zeros(N+1,N+1);

D_x2 = zeros(N+1,N+1);

90 % matrixes for time derivatives

for i = 0:M

for j = 0:M

D_tnu(i+1,j+1) = Deltafun( i,j, alp , beta , nu, T, h_abTi(j+1) );

end

95 end

% matrixes for space derivatives

for i = 0:N

for j = 0:N

100 D_x2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, L, h_abLi(j+1) );

end

end
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105 %% Set Up Data Structures

[xx ,tt] = meshgrid(x,t);

u_exact = exp(xx).*tt. ^(1+nu);

110

% define initial and boundary conditions

u = u_exact; u(2:end,2:end-1) = 0;

% define forcing function

115 f = exp(xx).*(gamma (2+nu).*tt - tt. ^(1+nu));

%% Solve Equations

% initial guess of zeros

120 U0 = zeros(M+1,N+1);

% solver options

opts = optimoptions(@fsolve ,'TolFun ',1e-14,'TolX',1e-14,'Algorithm ',...

'levenberg -marquardt ','Display ','iter -detailed ');

125

% solve the system

U = fsolve(@equations ,U0 ,opts);

% assign solved values to u(x,t)

130 for m = 2:M+1

for n = 2:N

u(m,n) = P_TM(:,m) '*U*P_LN(:,n);

end

end

135

% calculate error

error = abs(u-u_exact);

% max_error(N-1) = max(max(error));

max_error(N-1) = max(error(end ,:));

140

%% Plots

if N == Max_N
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145 % Contour Plot of the approximate and exact solution (side by side)

figure (1);

subplot (2,2,1)

contourf(tt,xx ,u,10), xlabel('t'), ylabel('x'),title('Approximate ');

subplot (2,2,2)

150 contourf(tt,xx ,u_exact ,10), xlabel('t'), ylabel('x'), title('Exact ');

print('C6_Ex1_contour ','-depsc2 ','-r600');

% Surface plot of the solution u(x,t)

figure (2)

155 surf(tt ,xx,u), colormap pink;

xlabel('t'), ylabel('x'), zlabel('u(x,t)')

print('C6_Ex1_surface ','-depsc2 ','-r600');

% Surface plot of error

160 figure (3);

surf(tt ,xx,error), colormap hot;

xlabel('t'), ylabel('x'), zlabel('Error ');

view (142.5 ,30)

print('C6_Ex1_error ','-depsc2 ','-r600');

165

display(max_error);

end

end
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Appendix J

Chapter 6 Example 1 Equation Function

1 function [ F ] = equations( U )

global N M P_LN P_TM D_tnu D_x2 u f

5 F = zeros(M+1,N+1);

for m = 2:M+1

for n = 2:N

F(m,n) = P_TM(:,m) '*D_tnu '*U*P_LN(:,n)...

10 - (P_TM(:,m) '*U*D_x2*P_LN(:,n))...

- f(m,n);

end

end

15 % initial condition

for n = 2:N

F(1,n) = P_TM (:,1) '*U*P_LN(:,n) - u(1,n);

end

20 % boundary conditions

for m = 1:M+1

F(m,1) = P_TM(:,m) '*U*P_LN (:,1) - u(m,1);

F(m,N+1) = P_TM(:,m)'*U*P_LN(:,N+1) - u(m,N+1);

end

25

end
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Appendix K

Chapter 6 Example 2 MATLAB Code

1 % Chapter 6 Example 2: u_t = d^(1-nu)/dt^(1-nu)( u_xx - u) + q

% 0 <= x <= 1, 0 < t <= 1

% q = u^3 + cos(pi*x)*(2*t + (pi^2+1) *(2*t^(1+nu))/gamma (2+nu)

% - t^6*cos(pi*x)^2 );

5 %

% IC: u(x,0) = 0

%

% Boundary Conditions:

% u(0,t) = t^2, u(1,t) = -t^2

10 %

% exact solution: t^2*cos(pi*x);

clear all

clc

15

% initialize global variables

global N M P_LN P_TM D_tnu D_x2 D_t1 f u

set(0,'DefaultFigureWindowStyle ', 'docked ') % figures docked

format long

20

% initialize vector of maximum errors for table

Max_N = 10;

max_error = zeros(Max_N -1,1);

25 %% Loop through varying numbers of collocation points

for N = 2:Max_N

% set constants
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30 M = N;

nu = 0.35;

T = 1;

L = 1;

alp = 0.1;

35 beta = 0.1;

%% Jacobi polynomials

% in x

40 syms x

j=N-1;

k=0:j;

P_LNmin1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*L.^k

) );

45 x = double(vpasolve(P_LNmin1 == 0));

x = [0;x;L];

P_LN = zeros(N+1,N+1);

for j=0:N

50 syms z

k=0:j;

P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*L.^k

) );

z = x;

55 P_LN(j+1,:) = subs(P_LNx);

end

% in t

syms t

60 j=M+1;

k=0:j;

P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

t = double(vpasolve(P_TMpls1 == 0));
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65

P_TM = zeros(M+1,M+1);

for j=0:M

syms z

k=0:j;

70 P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

z = t;

P_TM(j+1,:) = subs(P_TMt);

end

75

%% Differentiation matrices

% h terms

i=0:N;%

80 h_abLi = ((L)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

85 ( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

% initialize matrices

D_tnu = zeros(M+1,M+1);

D_t1 = D_tnu;

90 D_x2 = zeros(N+1,N+1);

% matrices for time derivatives

for i = 0:M

for j = 0:M

95 D_tnu(i+1,j+1) = Deltafun( i,j, alp , beta , 1-nu , T, h_abTi(j+1) );

D_t1(i+1,j+1) = Deltafun( i,j, alp , beta , 1, T, h_abTi(j+1) );

end

end

100 % matrices for space derivatives

for i = 0:N

for j = 0:N

D_x2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, L, h_abLi(j+1) );
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end

105 end

%% set up data structures

110 [xx ,tt] = meshgrid(x,t);

u_exact = tt.^2.*cos(pi.*xx);

% define initial and boundary conditions

115 u = u_exact; u(2:end,2:end-1) = 0;

% define forcing function

f = cos(pi.*xx).*(2*tt + (pi ^2+1).*(2.*tt. ^(1+nu))/gamma (2+nu) -...

tt.^6.*cos(pi.*xx).^2 );

120

%% Solve Equations

% initial guess of zeros

U0 = zeros(M+1,N+1);

125

% solver options

opts = optimoptions(@fsolve ,'TolFun ',1e-14,'TolX',1e-14,'Algorithm ',...

'levenberg -marquardt ','Display ','iter -detailed ');

130 % solve the system

U = fsolve(@equations ,U0 ,opts);

% assign solved values to u(x,t)

for m = 2:M+1

135 for n = 2:N

u(m,n) = P_TM(:,m) '*U*P_LN(:,n);

end

end

140 % calculate error

error = abs(u-u_exact);

max_error(N-1) = max(max(error));

%% Plots
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145

if N == Max_N

% contour plot of the approximate and exact solution (side by side)

figure (1);

150 subplot (2,2,1)

contour(tt,xx,u,10), xlabel('t'), ylabel('x'),title('Approximate ');

subplot (2,2,2)

contour(tt,xx,u_exact ,10), xlabel('t'), ylabel('x'), title('Exact ');

print('C6_Ex2_contour ','-depsc2 ','-r600');

155

% surface plot of the solution u(x,t)

figure (2)

surf(tt ,xx,u), colormap spring;

xlabel('Time (t) \rightarrow ')

160 ylabel('{\ leftarrow} Spatial co-ordinate (x)')

zlabel('Solution profile (u(x,t)) \rightarrow ')

view (142.5 ,30)

print('C6_Ex2_surface ','-depsc2 ','-r600');

165 % surface plot of error

figure (3);

surf(tt ,xx,error), colormap hot;

xlabel('t'), ylabel('x'), zlabel('Error ');

view (142.5 ,30)

170 print('C6_Ex2_error ','-depsc2 ','-r600');

end

end
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Appendix L

Chapter 6 Example 2 Equation Function

1 function [ F ] = equations( U )

global N M P_LN P_TM D_tnu D_x2 D_t1 f u

5 F = zeros(M+1,N+1);

for m = 2:M+1

for n = 2:N

F(m,n) = P_TM(:,m) '*(D_t1 '*U - D_tnu '*U*D_x2 + D_tnu '*U)*P_LN(:,n)...

10 - 0*P_TM (:,1) '*U*P_LN(:,n) + 0*u(1,n)...

- (P_TM(:,m)'*U*P_LN(:,n))^3 - f(m,n);

end

end

15

% initial condition

for n = 2:N

F(1,n) = P_TM (:,1) '*U*P_LN(:,n) - u(1,n);

end

20

% boundary conditions

for m = 1:M+1

F(m,1) = P_TM(:,m) '*U*P_LN (:,1) - u(m,1);

F(m,N+1) = P_TM(:,m)'*U*P_LN(:,N+1) - u(m,N+1);

25 end

end
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Appendix M

Chapter 6 Example 3 MATLAB Code

1 % Jaradat 2013:

% 0 <= x <= 1, 0 < t <= 1

%

% IC:

5 %

% Boundary Conditions:

%

%

% exact solution:

10

clear all

clc

% initialize global variables

15 global N M xx P_RN P_TM D_xnu D_t1 D_t2 q u

set(0,'DefaultFigureWindowStyle ', 'docked ') % figures docked

format long

% initialize vector of maximum errors for table

20 Max_N = 16;

max_error = zeros(Max_N -1,1);

%% Loop through varying numbers of collocation points

25 for N = Max_N:Max_N

% set constants

M = N;

nu = 1.5;

164



30 T = 0.4;

R = 1;

alp = 0;

beta = 0;

35 %% Jacobi polynomials

% in x

syms x

j=N-1;

40 k=0:j;

P_RNmin1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R.^k

) );

x = double(vpasolve(P_RNmin1 == 0));

x = [0;x;R];

45

P_RN = zeros(N+1,N+1);

for j=0:N

syms z

k=0:j;

50 P_RNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R.^k

) );

z = x;

P_RN(j+1,:) = subs(P_RNx);

end

55

% in t

syms t

j=M+1;

k=0:j;

60 P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

t = double(vpasolve(P_TMpls1 == 0));

P_TM = zeros(M+1,M+1);
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65 for j=0:M

syms z

k=0:j;

P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

70 z = t;

P_TM(j+1,:) = subs(P_TMt);

end

%% differentiation matrices

75

% h terms

i=0:N;%

h_abLi = ((R)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

80

i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

85 % initialize matrices

D_tnu = zeros(M+1,M+1);

D_x1 = zeros(N+1,N+1);

D_x2 = zeros(N+1,N+1);

90 % matrices for time derivatives

for i = 0:M

for j = 0:M

D_t1(i+1,j+1) = Deltafun( i,j, alp , beta , 1, T, h_abTi(j+1) );

D_t2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, T, h_abTi(j+1) );

95 end

end

% matrices for space derivatives

for i = 0:N

100 for j = 0:N

D_xnu(i+1,j+1) = Deltafun( i,j, alp , beta , nu, R, h_abLi(j+1) );

end

end
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105

%% set up data structures

[xx ,tt] = meshgrid(x,t);

110 u_exact = xx.^2.*(xx -2).*tt.^2;

% define initial and boundary conditions

u = u_exact; u(2:end,2:end-1) = 0;

115 q = -4*xx.^2 + 2*xx.^3 - 2.546*xx.^2.*tt.^2 + 2.546*xx.*tt. ^2;

%% solve equations

% initial guess of zeros

120 U0 = zeros(M+1,N+1);

% solver options

opts = optimoptions(@fsolve ,'TolFun ',1e-16,'TolX',1e-16,'Algorithm ',...

'levenberg -marquardt ','Display ','iter -detailed ',...

125 'MaxFunEvals ' ,100000,'MaxIter ' ,4000);

% solve the system

U = fsolve(@equations ,U0 ,opts);

130 % assign solved values to u(x,t)

for m = 2:M+1

for n = 2:N

u(m,n) = P_TM(:,m) '*U*P_RN(:,n);

end

135 end

% calculate error

error = abs(u-u_exact);

max_error(N-1) = max(max(error));

140

%% Plots

if N == Max_N
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145 % contour plot of the approximate and exact solution (side by side)

figure (1);

subplot (2,2,1)

contour(tt,xx,u,10), xlabel('t'), ylabel('x'),title('Approximate ');

subplot (2,2,2)

150 contour(tt,xx,u_exact ,10), xlabel('t'), ylabel('x'), title('Exact ');

print('C6_Ex3_contour ','-depsc2 ','-r600');

% surface plot of the solution u(x,t)

figure (2)

155 surf(tt ,xx,u), colormap summer;

xlabel('t')

ylabel('x')

zlabel('u(x,t)')

view (142.5 ,30)

160 print('C6_Ex3_surface ','-depsc2 ','-r600');

% Surface plot of error

figure (3);

surf(tt ,xx,error), colormap hot;

165 xlabel('t'), ylabel('x'), zlabel('Error ');

print('C6_Ex3_error ','-depsc2 ','-r600');

display(max_error);

end

170

end
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Appendix N

Chapter 6 Example 2 Equation Function

1 function [ F ] = equations( U )

global N M xx P_RN P_TM D_xnu D_t1 D_t2 q u

5 F = zeros(M+2,N+1);

for m = 2:M+1

for n = 2:N

F(m,n) = P_TM(:,m) '*D_t2 '*U*P_RN(:,n)...

10 - 1/gamma(0.5)*xx(m,n)^0.5*(P_TM(:,m) '*U*D_xnu*P_RN(:,n)) ...

- q(m,n);

end

end

15 % boundary conditions in t

for n = 1:N+1

% Dirichlet

F(1,n) = P_TM (:,1) '*U*P_RN(:,n) - u(1,n);

% Derivative

20 F(m+2,n) = P_TM (:,1) '*D_t1 '*U*P_RN(:,n);

end

% boundary conditions in x

for m = 1:M+1

25 F(m,1) = P_TM(:,m) '*U*P_RN (:,1) - u(m,1);

F(m,N+1) = P_TM(:,m)'*U*P_RN(:,N+1) - u(m,N+1);

end

end
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Appendix O

Chapter 7 Example 1 MATLAB Code

1 % Chapter 7 Example 1: u_t = d(x,y)u_x^1.6 + e(x,y)*u_y^1.8 + q(x,y,t)

% 0 <= x <= 1, 0 <= y <= 1, 0 < t <= 1

% q = -(1+2*x*y)*exp(-t)*x^3*y^3.6;

% d = (gamma(2.2)*x^(2.8)*y)/6;

5 % e = (2*x*y^(2.6))/( gamma(4.6));

%

% exact solution: u(x,y,t) = e^(-t)* x^(3)* y^(3.6)

clear all

10 clc

% initialize global variables

global N1 N2 M P_RN1 P_RN2 P_TM D_xnu1 D_ynu2 D_t1 q d e u

set(0,'DefaultFigureWindowStyle ', 'docked ')

15 format long

% initialize vector of maximum errors for table

Max_N = 10;

max_error = zeros(Max_N -5,1);

20

%% Loop through varying numbers of collocation points

for N1 = 2:Max_N

25 % set constants

N2 = N1;

M = N1;

nu1 = 1.8;

nu2 = 1.6;
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30 T = 1;

R1 = 2;

R2 = R1;

alp = 0;

beta = 0;

35

%% Jacobi polynomials

% in x

syms x

40 j=N1 -1;

k=0:j;

P_RN1min1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

x = double(vpasolve(P_RN1min1 == 0));

45 x = [0;x;R1];

y = x;

P_RN1 = zeros(N1+1,N1+1);

for j=0:N1

syms z

50 k=0:j;

P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

z = x;

P_RN1(j+1,:) = subs(P_LNx);

55 end

P_RN2 = P_RN1;

% in t

syms t

60 j=M+1;

k=0:j;

P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

t = double(vpasolve(P_TMpls1 == 0));
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65

P_TM = zeros(M+1,M+1);

for j=0:M

syms z

k=0:j;

70 P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

z = t;

P_TM(j+1,:) = subs(P_TMt);

end

75

%% Differentiation matrices

% h terms

i=0:N1;

80 h_abR1i = ((R1)^(alp+beta +1).*gamma(i+alp+1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

85 ( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

% initialize matrices

D_t1 = zeros(M+1,M+1);

D_xnu1 = zeros(N1+1,N1+1);

90 D_ynu2 = zeros(N2+1,N2+1);

% matrices for time derivatives

for i = 0:M

for j = 0:M

95 D_t1(i+1,j+1) = Deltafun( i,j, alp , beta , 1, T, h_abTi(j+1) );

end

end

% matrices for space derivatives

100 for i = 0:N1

for j = 0:N1

D_xnu1(i+1,j+1) = Deltafun( i,j, alp , beta , nu1 , R1, h_abR1i(j+1) );

D_ynu2(i+1,j+1) = Deltafun( i,j, alp , beta , nu2 , R1, h_abR1i(j+1) );
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end

105 end

%% Set up data structures

[xx ,yy,tt] = meshgrid(x,y,t);

110 u_exact = exp(-tt).*xx.^3.*yy.^3.6;

% define initial and boundary conditions

u = u_exact; u(2:end-1,2:end-1,2:end) = 0;

115 % define forcing function

q = -(1+2*xx.*yy).*exp(-tt).*xx.^3.*yy.^3.6;

% define other functions

d = (gamma(2.2)*xx(:,:,1).^(2.8).*yy(:,:,1))./6;

120 e = (2*xx(:,:,1).*yy(:,:,1).^(2.6))./(gamma(4.6));

%% Solve equations

% initial guess of zeros

125 U0 = zeros(M+1,(N1+1)*(N2+1));

% solver options

opts = optimoptions(@fsolve ,'TolFun ',1e-14,'TolX',1e-14,'Algorithm ','levenberg -

marquardt ','Display ','iter -detailed ');

130 % solve the system

U = fsolve(@equations ,U0 ,opts);

% assign solved values to u(x,y,t)

for m = 2:M+1

135 for n1 = 2:N1

for n2 = 2:N2

u(n2,n1 ,m) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN1(:,n2));

end

end

140 end

% calculate error

error = abs(u(:,:,end)-u_exact (:,:,end));
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max_error(N1 -1) = max(max(error));

145

%% Plots

if N1 == Max_N

% contour plot of the approximate and exact solution (side by side)

150 figure (1);

subplot (2,2,1)

contourf(yy(:,:,end),xx(:,:,end),u(:,:,end) ,12), xlabel('y'), ylabel('x'),title('

Approximate ');

subplot (2,2,2)

subplot (2,2,2)

155 contourf(yy(:,:,end),xx(:,:,end),u_exact (:,:,end) ,12), xlabel('y'), ylabel('x'),

title('Exact ');

print('C7_Ex1_contour ','-depsc2 ','-r600');

% surface plot of the solution u(x,t)

figure (2)

160 surf(yy(:,:,end),xx(:,:,end),u(:,:,end)), colormap bone;

xlabel('y')

ylabel('x')

zlabel('u(x,y,1)')

print('C7_Ex1_surface ','-depsc2 ','-r600');

165

% surface plot of error

figure (3);

surf(yy(:,:,end),xx(:,:,end),error(:,:,end)), colormap hot;

xlabel('y')

170 ylabel('x')

zlabel('Error ')

print('C7_Ex1_error ','-depsc2 ','-r600');

display(max_error);

175

end

end
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Appendix P

Chapter 7 Example 1 Equation Function

1 function [ F ] = equations( U )

global N1 N2 M P_RN1 P_RN2 P_TM D_xnu1 D_ynu2 D_t1 q d e u

5 F = zeros(M+1,(N1+1)*(N2+1));

for m = 2:M+1

for n1 = 1:N1+1

for n2 = 1:N2+1

10 F(m,(N2+1)*(n1 -1)+(n2)) = P_TM(:,m) '*(D_t1 '*U)*kron(P_RN1(:,n1),P_RN2(:,n2

))...

- d(n2,n1)*P_TM(:,m)'*U*kron(D_xnu1*P_RN1(:,n1),P_RN2(:,n2))...

- e(n2,n1)*P_TM(:,m)'*U*kron(P_RN1(:,n1),D_ynu2*P_RN2(:,n2))...

- q(n2,n1 ,m);

end

15 end

end

% initial condition

for n1 = 2:N1

20 for n2 = 2:N2

F(1,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*U*kron(P_RN1(:,n1),P_RN2(:,n2)) - u(

n2,n1 ,1);

end

end

25 % boundary conditions

for m = 1:M+1

for n2 = 1:N2+1
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F(m,n2) = P_TM(:,m) '*U*kron(P_RN1 (:,1),P_RN2(:,n2)) - u(n2 ,1,m);

F(m,(N1+1)*N2+n2) = P_TM(:,m)'*U*kron(P_RN1(:,end),P_RN2(:,n2)) - u(n2,end

,m);

30 end

for n1=2:N1

F(m,(N1+1)*(n1 -1)+1) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2 (:,1)) - u(1,n1,

m);

F(m,(N1+1)*(n1)) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2(:,end)) - u(end ,n1,

m);

end

35 end

end
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Appendix Q

Chapter 7 Example 2 MATLAB Code

1 % Chapter 7 Example 2: u_(t^nu) = u_xx + exp(x)*( gamma (2+nu)*t - t^(1+nu))

% 0 <= x <= 1, 0 < t <= 1

% f = sin(x)*sin(y)*( t^2* gamma(nu+3)/2 + 2*t^(nu+2) );

%

5 % IC: u(x,0) = 0

%

% Boundary Conditions:

% u(0,t) = 0, u(1,t) = exp(1)*t^(1+nu)

%

10 % exact solution: sin(x)*sin(y)*t^(nu+2);

clear all

clc

15 % initialize global variables

global N1 N2 M P_RN1 P_RN2 P_TM D_tnu D_x2 D_y2 f u

set(0,'DefaultFigureWindowStyle ', 'docked ')

format long

20 % initialize vector of maximum errors for table

Max_N = 10;

max_error = zeros(Max_N -5,1);

%% Loop through varying numbers of collocation points

25

for N1 = 2:Max_N

% set constants

N2 = N1;
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30 M = 2;

nu = 1.95;

T = 1;

R1 = 1;

R2 = R1;

35 alp = 0;

beta = 0;

%% Jacobi polynomials

40 % in x

syms x

j=N1 -1;

k=0:j;

P_RN1min1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

45 ( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

x = double(vpasolve(P_RN1min1 == 0));

x = [0;x;R1];

y = x;

P_RN1 = zeros(N1+1,N1+1);

50 for j=0:N1

syms z

k=0:j;

P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

55 z = x;

P_RN1(j+1,:) = subs(P_LNx);

end

P_RN2 = P_RN1;

60 % in t

T_adj = 1.127*T; % adjust so end node is at T

syms t

j=M+1;

k=0:j;

65 P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...
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( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*

T_adj.^k ) );

t = double(vpasolve(P_TMpls1 == 0));

t(1) = 0;

70 P_TM = zeros(M+1,M+1);

for j=0:M

syms z

k=0:j;

P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

75 ( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*

T_adj.^k ) );

z = t;

P_TM(j+1,:) = subs(P_TMt);

end

80 %% Differentiation matrices

% h terms

i=0:N1;

h_abR1i = ((R1)^(alp+beta +1).*gamma(i+alp+1).*gamma(i+beta +1) )./...

85 ( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

i=0:M;

h_abTi = ((T_adj)^(alp+beta +1).*gamma(i+alp+1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

90

% initialize matrices

D_tnu = zeros(M+1,M+1);

D_t1 = D_tnu;

D_x2 = zeros(N1+1,N1+1);

95

% matrices for time derivatives

for i = 0:M

for j = 0:M

D_tnu(i+1,j+1) = Deltafun( i,j, alp , beta , nu, T_adj , h_abTi(j+1) );

100 end

end

% matrices for space derivatives
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for i = 0:N1

105 for j = 0:N1

D_x2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, R1, h_abR1i(j+1) );

end

end

D_y2 = D_x2;

110

%% Set Up Data Structures

[xx ,yy,tt] = meshgrid(x,y,t);

115 u_exact = tt. ^(2).*sin(xx+yy);

% define initial and boundary conditions

u = u_exact; u(2:end-1,2:end-1,2:end) = 0;

120 % define forcing function

f = (2* tt.^(2-nu)/gamma(3-nu) +2* tt.^2 ).*sin(xx+yy);

%% Solve Equations

125 % initial guess of zeros

U0 = zeros(M+1,(N1+1)*(N2+1));

% solver options

opts = optimoptions(@fsolve ,'TolFun ',1e-14,'TolX',1e-14,'Algorithm ',...

130 'levenberg -marquardt ','Display ','iter -detailed ');

% solve the system

U = fsolve(@equations ,U0 ,opts);

135 % assign solved values to u(x,y,t)

for m = 2:M+1

for n1 = 2:N1

for n2 = 2:N2

u(n2,n1 ,m) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN1(:,n2));

140 end

end

end

% calculate error
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145 error = abs(u(:,:,end)-u_exact (:,:,end));

max_error(N1 -1) = max(max(error));

%% Plots

150 if N1 == Max_N

% contour plot of the approximate and exact solution (side by side)

figure (1);

subplot (2,2,1)

155 contourf(yy(:,:,end),xx(:,:,end),u(:,:,end) ,20), xlabel('y'), ylabel('x'),title('

Approximate ');

subplot (2,2,2)

contourf(yy(:,:,end),xx(:,:,end),u_exact (:,:,end) ,20), xlabel('y'), ylabel('x'),

title('Exact ');

print('C7_Ex2_contour ','-depsc2 ','-r600');

160 % surface plot of the solution u(x,t)

figure (2)

surf(yy(:,:,end),xx(:,:,end),u(:,:,end)), colormap bone;

xlabel('y')

ylabel('x')

165 zlabel('u(x,y,1)')

print('C7_Ex2_surface ','-depsc2 ','-r600');

% surface plot of error

figure (3);

170 surf(yy(:,:,end),xx(:,:,end),error(:,:,end)), colormap hot;

xlabel('y')

ylabel('x')

zlabel('Error ')

print('C7_Ex2_error ','-depsc2 ','-r600');

175

display(max_error);

end

180 end
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Appendix R

Chapter 7 Example 2 Equation Function

1 function [ F ] = equations( U )

global N1 N2 M P_RN1 P_RN2 P_TM D_tnu D_x2 D_y2 f u

5 F = zeros(M+1,(N1+1)*(N2+1));

for m = 2:M+1

for n1 = 1:N1+1

for n2 = 1:N2+1

10 F(m,(N2+1)*(n1 -1)+(n2)) = P_TM(:,m) '*(D_tnu '*U)*kron(P_RN1(:,n1),P_RN2(:,

n2))...

- P_TM(:,m) '*(U)*kron(D_x2*P_RN1(:,n1),P_RN2(:,n2))...

- P_TM(:,m) '*(U)*kron(P_RN1(:,n1),D_y2*P_RN2(:,n2))...

- f(n2,n1 ,m);

end

15 end

end

% initial condition

for n1 = 2:N1

20 for n2 = 2:N2

F(1,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*U*kron(P_RN1(:,n1),P_RN2(:,n2)) - u(

n2,n1 ,1);

end

end

25 % boundary conditions

for m = 1:M+1

for n2 = 1:N2+1
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F(m,n2) = P_TM(:,m) '*U*kron(P_RN1 (:,1),P_RN2(:,n2)) - u(n2 ,1,m);

F(m,(N1+1)*N2+n2) = P_TM(:,m)'*U*kron(P_RN1(:,end),P_RN2(:,n2)) - u(n2,end

,m);

30 end

for n1=2:N1

F(m,(N1+1)*(n1 -1)+1) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2 (:,1)) - u(1,n1,

m);

F(m,(N1+1)*(n1)) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2(:,end)) - u(end ,n1,

m);

end

35 end

end
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Appendix S

Chapter 7 Example 3 MATLAB Code

1 % Chapter 7 Example 3: u_(t^nu) = u_xx + u_yy + u^2 + u^3 + q

% 0 <= x,y <= 1, 0 < t <= 2

% q = (2*t^(2-nu)/gamma(3-nu))*(sech(x+y-r)^2 + sech(x+y+r)^2 )...

% -4*t^2*(3* sech(x+y-r)^2* tanh(x+y-r)^2 - sech(x+y-r)^2 ...

5 % + 3*sech(x+y+r)^2* tanh(x+y+r)^2 - sech(x+y+r)^2) ...

% - t^4*( sech(x+y-r)^2 + sech(x+y+r)^2 )^2 ...

% - t^6*( sech(x+y-r)^2 + sech(x+y+r)^2 )^3;

%

% exact solution: t^2*( sech(x+y-r)^2 + sech(x+y+r)^2 );

10

clear all

clc

% initialize global variables

15 global N1 N2 M P_RN1 P_RN2 P_TM D_tnu D_x2 D_y2 D_t1 q u

set(0,'DefaultFigureWindowStyle ', 'docked ') % figures docked

format long

% initialize vector of maximum errors for table

20 Max_N = 8;

max_error = zeros(Max_N -1,1);

%% Loop through varying numbers of collocation points

25 for N1 = 7:Max_N

% set constants

N2 = N1;

M = 2*N1;
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30 nu = 1.95;

T = 2;

R1 = 1;

R2 = R1;

alp = 0;

35 beta = 0;

r = 0;

%% Jacobi polynomials

40 % in x

syms x

j=N1 -1;

k=0:j;

P_RN1min1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

45 ( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

x = double(vpasolve(P_RN1min1 == 0));

x = [0;x;R1];

y = x;

P_RN1 = zeros(N1+1,N1+1);

50 for j=0:N1

syms z

k=0:j;

P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

55 z = x;

P_RN1(j+1,:) = subs(P_LNx);

end

P_RN2 = P_RN1;

60 % in t

syms t

j=M+1;

k=0:j;

P_TMpls1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*t.^k ) ./

...

65 ( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k
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) );

t = double(vpasolve(P_TMpls1 == 0));

P_TM = zeros(M+1,M+1);

for j=0:M

70 syms z

k=0:j;

P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

z = t;

75 P_TM(j+1,:) = subs(P_TMt);

end

%% Differentiation matrices

80 % h terms

i=0:N1;%

h_abR1i = ((R1)^(alp+beta +1).*gamma(i+alp+1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

85 i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

% initialize matrices

90 D_tnu = zeros(M+1,M+1);

D_t1 = D_tnu;

D_x2 = zeros(N1+1,N1+1);

% matrices for time derivatives

95 for i = 0:M

for j = 0:M

D_t1(i+1,j+1) = Deltafun( i,j, alp , beta , 1, T, h_abTi(j+1) );

D_tnu(i+1,j+1) = Deltafun( i,j, alp , beta , nu, T, h_abTi(j+1) );

end

100 end

% matrices for space derivatives

for i = 0:N1

186



for j = 0:N1

105 D_x2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, R1, h_abR1i(j+1) );

end

end

D_y2 = D_x2;

110 %% Set up data structures

[xx ,yy,tt] = meshgrid(x,y,t);

u_exact = tt.^2.*(sech(xx+yy -r).^2 + sech(xx+yy+r).^2 );

115 % define initial and boundary conditions

u = u_exact; u(2:end-1,2:end-1,2:end) = 0;

% define forcing function

q = (2* tt.^(2-nu)/gamma(3-nu)).*(sech(xx+yy -r).^2 + sech(xx+yy+r).^2 )...

120 -4*tt.^2.*(3* sech(xx+yy -r).^2.*tanh(xx+yy-r).^2 - sech(xx+yy-r).^2 ...

+ 3*sech(xx+yy+r).^2.*tanh(xx+yy+r).^2 - sech(xx+yy+r).^2)...

- tt.^4.*(sech(xx+yy-r).^2 + sech(xx+yy+r).^2 ).^2 ...

- tt.^6.*(sech(xx+yy-r).^2 + sech(xx+yy+r).^2 ).^3;

125 %% Solve equations

U0 = zeros(M+1,(N1+1)*(N2+1));

% solver options

130 opts = optimoptions(@fsolve ,'TolFun ',1e-16,'TolX',1e-16,'Algorithm ','levenberg -

marquardt ','Display ','iter -detailed ',...

'MaxFunEvals ' ,1000000 ,'MaxIter ' ,20000);

% solve the system

U = fsolve(@equations ,U0 ,opts);

135 % assign solved values to u(x,y,t)

for m = 2:M+1

for n1 = 2:N1

for n2 = 2:N2

u(n2,n1 ,m) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN1(:,n2));

140 end

end

end
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% calculate error

145 error = abs(u(:,:,end)-u_exact (:,:,end));

max_error(N1 -1) = max(max(error));

%% Plots

150 if N1 == Max_N

% contour plot of the approximate and exact solution (side by side)

figure (1);

subplot (2,2,1)

155 contourf(yy(:,:,end),xx(:,:,end),u(:,:,end) ,20), xlabel('y'), ylabel('x'),title('

Approximate ');

subplot (2,2,2)

contourf(yy(:,:,end),xx(:,:,end),u_exact (:,:,end) ,20), xlabel('y'), ylabel('x'),

title('Exact ');

print('C7_Ex3_contour ','-depsc2 ','-r600');

160 % surface plot of the solution u(x,t)

figure (2)

surf(yy(:,:,end),xx(:,:,end),u(:,:,end)), colormap bone;

xlabel('y')

ylabel('x')

165 zlabel('u(x,y,1)')

view ([-37.5 ,50])

print('C7_Ex3_surface ','-depsc2 ','-r600');

% surface plot of error

170 figure (3);

surf(yy(:,:,end),xx(:,:,end),error(:,:,end)), colormap hot;

xlabel('y')

ylabel('x')

zlabel('Error ')

175 view ([142.5 ,30])

print('C7_Ex3_error ','-depsc2 ','-r600');

display(max_error);

180 end

end
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Appendix T

Chapter 7 Example 3 Equation Function

1 function [ F ] = equations( U )

global N1 N2 M P_RN1 P_RN2 P_TM D_tnu D_x2 D_y2 D_t1 q u

5 F = zeros(M+2,(N1+1)*(N2+1));

for m = 2:M+1

for n1 = 1:N1+1

for n2 = 1:N2+1

10 F(m,(N2+1)*(n1 -1)+(n2)) = P_TM(:,m) '*(D_tnu '*U)*kron(P_RN1(:,n1),P_RN2(:,

n2))...

- P_TM(:,m) '*(U)*kron(D_x2*P_RN1(:,n1),P_RN2(:,n2))...

- P_TM(:,m) '*(U)*kron(P_RN1(:,n1),D_y2*P_RN2(:,n2))...

- (P_TM(:,m) '*(U)*kron(P_RN1(:,n1),P_RN2(:,n2)))^2 ...

- (P_TM(:,m) '*(U)*kron(P_RN1(:,n1),P_RN2(:,n2)))^3 ...

15 - q(n2,n1 ,m);

end

end

end

20 % initial condition

for n1 = 1:N1+1

for n2 = 1:N2+1

F(1,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*U*kron(P_RN1(:,n1),P_RN2(:,n2)) - u(

n2,n1 ,1);

F(M+2,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*D_t1 '*U*kron(P_RN1(:,n1),P_RN2(:,n2

));

25 end

end
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% boundary conditions

for m = 1:M+1

30 for n2 = 1:N2+1

F(m,n2) = P_TM(:,m) '*U*kron(P_RN1 (:,1),P_RN2(:,n2)) - u(n2 ,1,m);

F(m,(N1+1)*N2+n2) = P_TM(:,m)'*U*kron(P_RN1(:,end),P_RN2(:,n2)) - u(n2,end

,m);

end

for n1=2:N1

35 F(m,(N1+1)*(n1 -1)+1) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2 (:,1)) - u(1,n1,

m);

F(m,(N1+1)*(n1)) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2(:,end)) - u(end ,n1,

m);

end

end

40 end
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Appendix U

Chapter 7 Example 4 MATLAB Code

1 %% Fractional sub diffusion , example 3

clear all

clc

5

% initialize global variables

global N1 N2 M nu P_RN1 P_RN2 alp beta P_TM D_tnu D_x2 D_y2 D_t1 fu fv u v

set(0,'DefaultFigureWindowStyle ', 'docked ')

format long

10

% initialize vector of maximum errors for table

Max_N = 10;

max_error = zeros(Max_N -1,2);

15 %% Loop through varying numbers of collocation points

for N1 = 2:Max_N

% set constants

20 N2 = N1;

M = 1;

nu = 0.2;

T = 1;

R1 = 1;

25 R2 = R1;

alp = 0;

beta = 0;

%% Jacobi polynomials
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30

% in x

syms x

j=N1 -1;

k=0:j;

35 P_RN1min1 = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*x.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

x = double(vpasolve(P_RN1min1 == 0));

x = [0;x;R1];

y = x;

40 P_RN1 = zeros(N1+1,N1+1); %\Phi_{L,N}(x)

for j=0:N1

syms z

k=0:j;

P_LNx = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

45 ( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*R1.^

k ) );

z = x;

P_RN1(j+1,:) = subs(P_LNx);

end

P_RN2 = P_RN1;

50

% in t

t = [0;T];

P_TM = zeros(M+1,M+1); %\Phi_{T,M}(t)

55 for j=0:M

syms z

k=0:j;

P_TMt = sum( ( (-1).^(j-k).*gamma(j+beta +1).*gamma(j+k+beta+alp+1).*z.^k ) ./

...

( gamma(k+beta +1).*gamma(j+alp+beta +1).*factorial(j-k).*factorial(k).*T.^k

) );

60 z = t;

P_TM(j+1,:) = subs(P_TMt);

end

%% differentiation matrices
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65

% h thing

i=0:N1;%

h_abR1i = ((R1)^(alp+beta +1).*gamma(i+alp+1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

70 % h_abR2i = h_abR1i;

i=0:M;

h_abTi = ((T)^(alp+beta +1).*gamma(i+alp +1).*gamma(i+beta +1) )./...

( (2*i+alp+beta +1).*factorial(i).*gamma(i+alp+beta +1) ) ;%

75

D_tnu = zeros(M+1,M+1);

D_t1 = D_tnu;

D_x2 = zeros(N1+1,N1+1);

% D_y2 = zeros(N2+1,N2+1);

80

for i = 0:M

for j = 0:M

D_tnu(i+1,j+1) = Deltafun( i,j, alp , beta , 1-nu , T, h_abTi(j+1) );

D_t1(i+1,j+1) = Deltafun( i,j, alp , beta , 1, T, h_abTi(j+1) );

85 end

end

for i = 0:N1

for j = 0:N1

90 D_x2(i+1,j+1) = Deltafun( i,j, alp , beta , 2, R1, h_abR1i(j+1) );

end

end

D_y2 = D_x2;

95 %% set up data structures

[xx ,yy,tt] = meshgrid(x,y,t);

u_exact = tt.^2.*sin(xx).*sin(yy);

v_exact = tt.^2.*cos(xx).*cos(yy);

100

u = u_exact; u(2:end-1,2:end-1,2:end) = 0;

v = v_exact; v(2:end-1,2:end-1,2:end) = 0;

fu = (tt.^2).*( (1/2)*sin(xx).*sin(yy).*(( tt.^4).*cos(2*xx).*cos(2*yy) + (tt. ^4) -

4)...
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105 -( (2*tt.^(-nu)).*cos(xx).*cos(yy) )./(gamma(3-nu)) );

fv = (tt.^2).*( (1/2)*cos(xx).*cos(yy).*(( tt.^4).*cos(2*xx).*cos(2*yy) + (tt. ^4) -

4)...

+( (2*tt.^(-nu)).*sin(xx).*sin(yy) )./( gamma(3-nu)) );

%% solve equations

110

A0 = zeros ((M+1)*2,(N1+1)*(N2+1));

% options

opts = optimoptions(@fsolve ,'TolFun ',1e-14,'TolX',1e-14,'Algorithm ','levenberg -

marquardt ','Display ','iter -detailed ');

115 % solve

A = fsolve(@equations ,A0 ,opts);

U = A(1:M+1,:);

V = A(M+2:end,:);

120 for m = 2:M+1

for n1 = 2:N1

for n2 = 2:N2

u(n2,n1 ,m) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN1(:,n2));

v(n2,n1 ,m) = P_TM(:,m) '*V*kron(P_RN1(:,n1),P_RN1(:,n2));

125 end

end

end

% for m=1:M+1

130 % subplot (1,2,1)

% surf(u(:,:,m))

% axis([-inf inf -inf inf min(min(min(min(u_exact))) ,-0.01) max(max(max(

u_exact)))*1.1])

% subplot (1,2,2)

% surf(v(:,:,m))

135 % axis([-inf inf -inf inf min(min(min(min(v_exact))) ,0) max(max(max(v_exact)))

*1.1])

% pause (0.2)

% end

140 error_u = abs(u-u_exact);

error_v = abs(v-v_exact);
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max_error(N1 -1,:) = [max(max(error_u (:,:,end))) max(max(error_v (:,:,end)))];

%% Plots

145

if N1 == Max_N

% contour plot of the approximate and exact solution (side by side)

figure (1);

150 subplot (2,2,1)

contourf(yy(:,:,end),xx(:,:,end),u(:,:,end) ,20), xlabel('y'), ylabel('x'),title('U

Approximate ');

subplot (2,2,2)

contourf(yy(:,:,end),xx(:,:,end),u_exact (:,:,end) ,20), xlabel('y'), ylabel('x'),

title('U Exact ');

subplot (2,2,3)

155 contourf(yy(:,:,end),xx(:,:,end),v(:,:,end) ,20), xlabel('y'), ylabel('x'),title('V

Approximate ');

subplot (2,2,4)

contourf(yy(:,:,end),xx(:,:,end),v_exact (:,:,end) ,20), xlabel('y'), ylabel('x'),

title('V Exact ');

print('C7_Ex4_contour ','-depsc2 ','-r600');

160 % surface plot of the solution u(x,t)

figure (2)

subplot (1,2,1)

surf(yy(:,:,end),xx(:,:,end),u(:,:,end)), colormap cool;

xlabel('y')

165 ylabel('x')

zlabel('u(x,y,1)')

subplot (1,2,2)

surf(yy(:,:,end),xx(:,:,end),v(:,:,end));

xlabel('y')

170 ylabel('x')

zlabel('v(x,y,1)')

view ([142.5 ,30])

print('C7_Ex4_surface ','-depsc2 ','-r600');

175 % surface plot of error

figure (3);

subplot (1,2,1)

surf(yy(:,:,end),xx(:,:,end),error_u (:,:,end)), colormap hot;
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xlabel('y')

180 ylabel('x')

zlabel('U Error ')

subplot (1,2,2)

surf(yy(:,:,end),xx(:,:,end),error_v (:,:,end));

xlabel('y')

185 ylabel('x')

zlabel('V Error ')

print('C7_Ex4_error ','-depsc2 ','-r600');

display(max_error);

190

end

end
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Appendix V

Chapter 7 Example 4 Equation Function

1 function [ F ] = equations( A )

global N1 N2 M nu T P_RN1 P_RN2 alp beta P_TM D_tnu D_x2 D_y2 D_t1 fu fv u v

5 U = A(1:M+1,:);

V = A(M+2:end,:);

F = zeros((M+1)*2,(N1+1)*(N2+1));

10 % for u

for m = 2:M+1

for n1 = 1:N1+1

for n2 = 1:N2+1

F(m,(N2+1)*(n1 -1)+(n2)) = P_TM(:,m) '*(D_tnu '*U)*kron(P_RN1(:,n1),P_RN2(:,

n2))...

15 + P_TM(:,m) '*(V)*kron(D_x2*P_RN1(:,n1),P_RN2(:,n2))...

+ P_TM(:,m) '*(V)*kron(P_RN1(:,n1),D_y2*P_RN2(:,n2))...

+ ( (P_TM(:,m) '*(U)*kron(P_RN1(:,n1),P_RN2(:,n2)))^2 ...

+ (P_TM(:,m) '*(V)*kron(P_RN1(:,n1),P_RN2(:,n2)))^2)...

*(P_TM(:,m) '*(V)*kron(P_RN1(:,n1),P_RN2(:,n2)))...

20 - fv(n2,n1 ,m);

end

end

end

25 % initial condition

for n1 = 2:N1

for n2 = 2:N2

F(1,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*U*kron(P_RN1(:,n1),P_RN2(:,n2)) - u(
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n2,n1 ,1);

end

30 end

% boundary conditions

for m = 1:M+1

for n2 = 1:N2+1

35 F(m,n2) = P_TM(:,m) '*U*kron(P_RN1 (:,1),P_RN2(:,n2)) - u(n2 ,1,m);

F(m,(N1+1)*N2+n2) = P_TM(:,m)'*U*kron(P_RN1(:,end),P_RN2(:,n2)) - u(n2,end

,m);

end

for n1=2:N1

F(m,(N1+1)*(n1 -1)+1) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2 (:,1)) - u(1,n1,

m);

40 F(m,(N1+1)*(n1)) = P_TM(:,m) '*U*kron(P_RN1(:,n1),P_RN2(:,end)) - u(end ,n1,

m);

end

end

% for v

45 for m = 2:M+1

for n1 = 1:N1+1

for n2 = 1:N2+1

F(m+M+1,(N2+1)*(n1 -1)+(n2)) = P_TM(:,m) '*(D_tnu '*V)*kron(P_RN1(:,n1),P_RN2

(:,n2))...

- P_TM(:,m) '*(U)*kron(D_x2*P_RN1(:,n1),P_RN2(:,n2))...

50 - P_TM(:,m) '*(U)*kron(P_RN1(:,n1),D_y2*P_RN2(:,n2))...

- ( (P_TM(:,m) '*(U)*kron(P_RN1(:,n1),P_RN2(:,n2)))^2 ...

+ (P_TM(:,m) '*(V)*kron(P_RN1(:,n1),P_RN2(:,n2)))^2)...

*(P_TM(:,m) '*(U)*kron(P_RN1(:,n1),P_RN2(:,n2)))...

+ fu(n2 ,n1,m);

55 end

end

end

% initial condition

60 for n1 = 2:N1

for n2 = 2:N2

F(M+2,(N2+1)*(n1 -1)+(n2)) = P_TM (:,1) '*V*kron(P_RN1(:,n1),P_RN2(:,n2)) - v

(n2 ,n1 ,1);

end
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end

65

% boundary conditions

for m = 1:M+1

for n2 = 1:N2+1

F(m+M+1,n2) = P_TM(:,m) '*V*kron(P_RN1 (:,1),P_RN2(:,n2)) - v(n2 ,1,m);

70 F(m+M+1,(N1+1)*N2+n2) = P_TM(:,m) '*V*kron(P_RN1 (:,end),P_RN2(:,n2)) - v(n2

,end,m);

end

for n1=2:N1

F(m+M+1,(N1+1)*(n1 -1)+1) = P_TM(:,m) '*V*kron(P_RN1(:,n1),P_RN2 (:,1)) - v

(1,n1,m);

F(m+M+1,(N1+1)*(n1)) = P_TM(:,m) '*V*kron(P_RN1(:,n1),P_RN2(:,end)) - v(end

,n1 ,m);

75 end

end

80 end
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