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Abstract

In longitudinal studies, measurements are taken repeatedly over time on the same ex-

perimental unit. These measurements are thus correlated. The variances in repeated

measures change with respect to time. Therefore, the variations together with the po-

tential correlation patterns produce a complicated variance structure for the measures.

Standard regression and analysis of variance techniques may result into invalid inference

because they entail some mathematical assumptions that do not hold for repeated mea-

sures data.

Coupled with the repeated nature of the measurements, these datasets are often imbal-

anced due to missing data. Methods used should be capable of handling the incomplete

nature of the data, with the ability to capture the reasons for missingness in the analysis.

This thesis seeks to investigate and compare analysis methods for incomplete correlated

data, with primary emphasis on discrete longitudinal data. The thesis adopts the general

taxonomy of longitudinal models, including marginal, random effects, and transitional

models.

Although the objective is to deal with discrete data, the thesis starts with one continu-

ous data case. Chapter 2 presents a comparative analysis on how to handle longitudinal

continuous outcomes with dropouts missing at random. Inverse probability weighted

generalized estimating equations (GEEs) and multiple imputation (MI) are compared.

In Chapter 3, the weighted GEE is compared to GEE after MI (MI-GEE) in the analy-

sis of correlated count outcome data in a simulation study. Chapter 4 deals with MI in

the handling of ordinal longitudinal data with dropouts on the outcome. MI strategies,

namely multivariate normal imputation (MNI) and fully conditional specification (FCS)

are compared both in a simulation study and a real data application. In Chapter 5,

still focussing on ordinal outcomes, the thesis presents a simulation and real data ap-

plication to compare complete case analysis with advanced methods; direct likelihood

analysis, MNI, FCS and ordinal imputation method. Finally, in Chapter 6, cumulative

logit ordinal transition models are utilized to investigate the inuence of dependency of

current incomplete responses on past responses. Transitions from one response state to

another over time are of interest.
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Chapter 1

Overall introduction

1.1 Longitudinal studies

In the medical, epidemiological and social sciences, studies are often designed to in-

vestigate changes in the response of interest observed or measured over time on each

subject. These are called repeated measures or longitudinal studies. Here, the obser-

vations are ordered by time or even position in space. Repeated measures in space are

common in say agriculture and ecological studies. Longitudinal studies are in contrast to

cross-sectional studies in which the response of interest is measured only once at a given

time for each sampled subject. The primary objective of longitudinal studies is often to

examine changes in the responses over time as well as the factors that influence these

changes. Thus, the methods used describe the dependence of the response variables on

time, treatment effects of interest and other possible covariates.

Since the repeated measures are taken from the same subject over time then the data

are typically correlated. This violates the usual independence assumption when dealing

with cross-sectional samples. Therefore, statistical techniques which assume indepen-

dence of observations, like the linear regression analysis and logistic regression cannot

be directly applied. Advanced techniques are developed to account for the correlated

nature of observations from each subject (Diggle, 1988; Diggle, Liang and Zeger, 2002;

Zeger and Liang, 1992). The variability in the data comes in two ways such that: there is

variability between the subjects (between-subject variability) and also variability within

each subject (within-subject variability). Failure to account for this two-way variability

may lead to: (i) incorrect inferences on the regression parameters due to underestimated

standard errors of between-subject effects (like age, sex) and (ii) inefficient estimators

where unnecessary larger standard errors of the within-subject effects (e.g., time) are

obtained (Stokes, Davis and Koch, 2012).
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A number of statistical methods exist for the analysis of longitudinal data. The choice of

which will always depend on the type and nature of the data. (i) Longitudinal data may

either be continuous or categorical. When the response is continuous and assumed to be

Gaussian, there exists a general class of linear models that is suitable for the analyses.

The linear mixed model is widely accepted as the unifying framework for a variety of

correlated settings including longitudinal data (Verbeke and Molenberghs, 2009). How-

ever, when the response variable is categorical, fewer techniques are available. This is

partly due to lack of a discrete analogue to the multivariate normal distribution (Aerts,

et al., 2002); (ii) longitudinal data trajectories may be highly complicated, and there

may be large variations between individuals; (iii) there are often missing data; (iv) some

variables may be measured with error; (v) longitudinal data may be associated with

time-to-event data, and joint modelling may be necessary; and (vi) in some studies the

number of variables may be large while the sample sizes may be small. In longitudinal

data analysis, new statistical methods are required to address one or more of the above

problems since standard methods are not directly applicable.

To this effect, there has been extensive research for the analysis of longitudinal data in

the last few decades. For a comprehensive review of various models and methods for

the analysis of longitudinal data see, for example, Diggle et al. (2002) and Fitzmaurice

et al. (2008), among others. Some of the commonly used models for longitudinal data

include:

• Mixed effects models - these models include random effects to incorporate the

between subject variation and the within-subject correlation in longitudinal data.

• Transitional models - in these models the within-individual correlation is modelled

via Markov structures.

• Nonparametric and semiparametric models - In these models the mean structures

are modelled semiparametrically or nonparametrically leading to partial or fully

distributional free models. These models are more flexible than parametric longi-

tudinal models. An example of the semi-parametric approaches is given by gener-

alized estimating equations (GEE; Liang and Zeger, 1986).

• Bayesian models - Prior information or information from similar studies are in-

corporated for Bayesian inference. The advantage of Markov Chain Monte Carlo

(MCMC) methods has led to rapid developments of these models.

Each of these modelling strategies has its own advantages and short comings and the

choice of one will always depend on the nature of the data and the kind of analysis

required. It is not the aim of this thesis to discuss all those modelling strategies as
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applied in longitudinal studies. However, some of them may feature in later chapters.

In this thesis we seek to investigate the impact of missing data in longitudinal studies and

the remedies to the missing data problem as it applies in longitudinal discrete outcome

data. Methods for incomplete continuous longitudinal data will be briefly addressed as

a precursor to the main focus of the thesis.

1.2 Missing data in longitudinal studies

Often longitudinal study designs are unbalanced due to attrition or failure to obtain all

the required measurements for each subject at all occasions. A missing data value occurs

when it is not observed but could have been observed. If for instance an examiner fails

to record the test score of a student, the score is a missing data value. Missing data can

occur on one or more of the variables of interest. They can occur on the predictors also

known as covariates or on the outcome variable.

Thus preceding the original statistical analysis to be carried out to answer a research

question of interest, there is the missing data problem to be solved. The reasons that

lead to the missing data are varied and it is always necessary to reflect on the nature

of missingness and its impact on inferences. This is especially important because some

methods to handle missing data are specific to the structure of the missing values in the

dataset and the reasons why the data values are missing. Below we briefly discuss these

missing data patterns, the mechanisms and their impact on the missing data methods

of choice.

1.2.1 Missing data patterns and mechanisms

Missing data patterns describe and explain the geography of the dataset, as in where

in the dataset the values are observed and where the values are missing. They provide

important information about the amount and structure of missing data. Understanding

the missing data pattern is key because as will be seen in later chapters, some proce-

dures to deal with missing data can be applied to any missing data pattern whereas

other procedures are restricted to specific missing data patterns, and therefore having

identified the variables that define the pattern, a suitable analysis procedure can be iden-

tified. First consider arranging a dataset in a rectangular or matrix form, where the rows

correspond to observational units (subjects) and the columns correspond to variables.

These variables, say Yij , i = 1, . . . , N ; j = 1, . . . , n (for n measurement occasions) may

be ordered in such a way that if outcome Yij is missing for a unit i, then all subsequent

variables Yik, k > j, are missing for that unit. This is termed a monotone missing data

pattern. In longitudinal studies, monotone patterns (or dropout) may arise, where Yij
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represents variables collected at the jth occasion for unit i. Figure 1.1(a) shows a mono-

tone pattern. In practice, the missingness pattern is rarely monotone, but is often close

to monotone. Otherwise, if a subject misses at a certain scheduled occasion but later

returns into the study, then this is referred to as intermittent (non-monotone) missing

data pattern. This is presented in figure 1.1(b). Figure 1.1(c) represents a special case

called file matching. File matching occurs when variables are never observed together.

Analyses of data with such type of patterns require making of strong assumptions about

these partial associations. When estimating the association between two variables that

are never jointly observed the implication is that some of these parameters will not be

estimable from the data.
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Figure 1.1: Schematic presentation of missing data patterns: (a) monotone pattern, (b) arbitrary pat-

tern and (c) file matching. Rows correspond to observational units and columns correspond to variables.

The data may be missing due to varied reasons, known and unknown. Some of the

reasons may be completely unrelated to the data at hand, while others may be closely

related. These underlying reasons are generally known as missing data mechanisms. Ru-

bin (1976) classified them into three namely: missing completely at random (MCAR),

missing at random (MAR) and missing not at random (MNAR). Without loss of gen-

erality we focus on missing outcomes or responses in the definition of the mechanism.

Data are said to be MCAR when the probability that a response is missing is unrelated

to neither the specific values that in principle, should have been obtained nor the set

of observed responses. This is equivalent to the assumption that the missing portion

of the data happens to be a completely random sub-sample of the ”original complete

data”. For instance when an examiner misplaces all the students’ scripts for a test, then

we say that this data is missing completely at random. The above stated equivalence

implies that, MCAR is a necessary condition for an analysis where incomplete cases of

a data are entirely discarded and only the complete ones are analysed. Secondly, data

are said to be MAR when the probability that responses are missing is related to the

set of observed responses. More precise, MAR means that conditional on observed data,

the probability of the value being missing is unrelated to its actual value. For example,

consider a case where data are missing for students’ test results and missing mostly for
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the individuals performing below average in the dataset. In this case, the probability

of missingness on test results is related to under performance. Under MAR, all the

information about the missing data are contained in the observed data, but it occurs

in a way that complicates statistical analysis. For valid analyses, all the observed data

must be taken into account. MCAR is a special case of MAR, and occurs when the

distribution for missingness does not depend on observed data either. In a practical

sense, we can say that MAR is the most appealing mechanism to deal with the missing

data problem. This is in spite of the fact that an individual’s probabilities of response

may be related only to their own measured information. This information can change

from one individual to another. Hence it becomes worthwhile to make this assumption

for analytic simplifications (Schafer and Graham, 2002). Finally, data are said to be

MNAR when the probability that responses are missing depends on both observed re-

sponses and the specific missing values that, in principle, should have been obtained.

MNAR is a complicated mechanism since the cause of dropout is related to subject’s

post dropout, unmeasured responses, even after allowing for the measured information.

In such a situation, it becomes necessary to model the dropout concurrently with the

response. Under this mechanism, the unobserved value can either be the unknown value

of the missing data itself or other unobserved values (Brand, 1999). An example of an

MNAR situation is when for instance a study is conducted on the efficacy of a teach-

ing technique and individuals are enrolled to be followed up for some period. MNAR

is evident when those obtaining very low points from a number of tests were likely to

be missing at the end. In this case, an individual’s anticipation of a low mark makes

him/her drop out from follow up. These mechanisms will be formally defined in proba-

bility terms later in the thesis.

It is important to have a proper understanding of the missing data mechanisms because

the performance of missing data handling procedures depend greatly on assumptions

about the mechanisms. Although, its not possible to tell with certainty whether missing

data are MAR or MNAR because there is no information about the missing data itself

(Eekhout et al., 2012). In fact, this phenomenon is further discussed in Molenberghs

et al. (2008) where they show that a formal distinction between MAR and MNAR is

not possible. However, in spite of this, the impact on key parameter estimators and

corresponding hypothesis tests can be considerable. Arguably, such a sensitivity analy-

sis should virtually always be conducted. With the sensitivity analysis, the robustness

violation of MAR is investigated to see if the questioned mechanisms lead to conclu-

sions differing to those expected under MAR. Methods exist that can only distinguish

whether data are MCAR or not MCAR by using a statistical model for the missingness

probability where an MCAR model is nested within a MAR model.

5



1.2.2 Ignorability

Consider the assumption that the full data model parameters, say θ, and the missing

data mechanism parameters, say ξ, are disjoint. From a Bayesian view-point, any joint

prior distribution applied to (θ, ξ) can be factored out into independent marginal priors

for θ and ξ. Taking a frequentist approach, it implies that the joint parameter space

(θ, ξ) must be a Cartesian cross product of the individual parameter spaces for θ and

ξ, i.e., Ω(θ, ξ) = Ω(θ) × Ω(ξ). Essentially, under likelihood and Bayesian inferences,

and provided the above stated regularity conditions hold, MCAR and MAR imply that

the missing data mechanism can be ignored. With frequentist methods, the stronger

MCAR is needed to automatically have ignorability. The consequence of ignorability is

that then the missing data mechanism does not need to be modelled explicitly.

In essence, the MAR approach assumes that the missing observations are no longer ran-

dom samples that are generated from the same sampling distribution as the observed

values, hence the missing values must be modelled. Specifically, for data that have only

missing response values, an MAR analysis assumes that the probability of a missing

value can depend on some observed quantities but does not depend on any unobserved

quantities hence you can model the probability of observing a missing outcome yi by

using the covariates xi, but the probability is independent of the unobserved data value

(which would be the actual yi value). When data are missing on the covariate, MAR as-

sumes that missingness is independent of unobserved data, conditional on both observed

and modelled covariate data and on observed response data. This implies that responses

that have similar observed characteristics (covariates xi, for example) are comparable

and that the missing values are independent of any unobserved quantities. This also

implies that the missing data mechanism can be ignored and does not need to be taken

into account as part of the modelling process.

In contrast, since the probability of missing data is related to at least some elements

of the unobserved partition of the data, MNAR is often referred as non-ignorable (in-

formative) missingness. The term non-ignorable refers to the fact that missing data

mechanism cannot be ignored in the analysis, i.e., future unobserved responses cannot

be predicted conditional on past observed responses; instead, we need to incorporate a

model for the missingness mechanism (Nakai and Ke, 2011).

The effect of non-ignorable mechanism is unknown because normally there is not enough

information from the data to allow modelling and investigation of the way data are miss-

ing. Hence, not feasible to conduct a satisfactory analysis Thijs et al. (2002). To as-

sess the deviations from an ignorability mechanism, sensitivity analyses are investigated

where models for the non-ignorable mechanism are investigated.
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1.2.3 Missing data methods

When confronted with missing data, a number of approaches exist. They can be classified

as simple/traditional (or commonly referred to as the ad hoc) approaches and advanced

approaches. The simple approaches include the deletion methods, and single imputation

methods. These approaches are simple and easily applicable in standard statistical

software. They are also quite acceptable if dealing with small fractions of missing data

but are seriously prejudiced when this fraction is large. The advanced ones are the

likelihood based approaches and multiple imputation. Generally, they have an advantage

over the simple traditional methods.

1.2.3.1 Simple methods for missing data

(i) Deletion methods

• Listwise deletion

This method is also known as complete case analysis (or complete subject analysis).

It is by far the most common treatment to missing data. Here, all incomplete cases

are discarded and analysis carried out on what remains. It is very simple and easy

to implement and standard statistical software can be employed for analysis. In

fact, it is the default method in many statistical software packages. Under the

assumption that data are missing completely at random and a small fraction of

incomplete cases, it leads to valid unbiased parameter estimates. However, even

when complete case analysis is valid, it can be very inefficient, such that it produces

estimates with higher variance than would be obtained with other equally valid

methods (Little and Rubin, 2014; Rubin, 1987), especially when we have to rule out

a large number of cases. This consequently leads to the reduction of its statistical

power. When data are not missing completely at random, results are biased. It

is noted that the statistical analysis will be biased when the complete cases are

systematically different from the incomplete ones. In essence, the disadvantages

of listwise deletion outweigh its advantages. Nonetheless, the method is still used

in some fields of research e.g., in medical and epidemiological research (Eekhout

et al., 2012). This is in fact logical because different researches have different

expectations. According to Schafer and Graham (2002), the impact of the missing

data problem is minimal if only a small portion of the data set is missing, because

then listwise deletion can be quite effective. But for all these arguments, leading

researchers in the field are still hesitant in providing a definitive percentage of

missing values below which it is still fine to use the method. It has proven to
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be very difficult to map out a rule of thumb since the viability of using listwise

deletion do not depend only on the missing data rate (Little and Rubin, 2014).

• Available case analysis

With available case analysis or pairwise deletion, all available data are used to

estimate the parameters in the model. Incomplete cases are deleted on an analysis

by analysis basis in a sense that any given case may contribute to some analyses

but not to others. Therefore, the sample size is not maintained from one analysis

to another and so one cannot compare analyses because the sample is different

each time. The method uses all information possible with each analysis and often

an improvement over listwise deletion because it minimizes the number of cases

discarded in any given analysis (Baraldi and Enders, 2010). However, its major

drawback, like listwise deletion, is its reliance on the very strong, and in many cases

unrealistic missing completely at random mechanism to produce unbiased and con-

sistent parameter estimates. Another difficulty is that available case analysis can

produce estimated covariance matrices that are implausible, such as estimating

correlations outside of the range of −1.0 to 1.0. This estimation problem arises

since differing numbers of observations are used to estimate components of the

covariance matrix (Pigott, 2001).

Generally, for the deletion methods, there should be no shock that such substan-

tial loss of information may terribly impact the analysis, consequently reducing the

precision of estimation in terms of larger standard errors, wider confidence inter-

vals, smaller test statistics, or even larger p values. The reduced sample sizes lead

to inefficient use of available data and the resulting analysis may lead to terribly

biased estimates of effects of interest.

(ii) Single imputation methods

These are a collection of common traditional missing data techniques where one

imputes (fills in) the missing data value with a seemingly suitable replacement

value once. The value is usually estimated from the observed data. In effect, the

dataset becomes complete hence complete data methods can be used for analysis.

However, the disadvantage of these methods is that standard errors are underesti-

mated, confidence intervals are unrealistically narrower and p-values in favour of

type I error are obtained (Rubin and Schenker, 1991) indicating a higher precision

and confidence than what can truly be inferred from the data. This is because of

the fact that extra uncertainty due to missing data is not reflected as the filled in

values were assumed and treated as if they were real values that would have been

measured or observed.

A number of single imputation techniques exist. They include: mean imputation,
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regression imputation, indicator method, matching methods (Hot-deck, Last ob-

servation carried forward, Baseline observation carried forward), and stochastic

regression imputation. We will briefly discuss only a few of these since the main

idea is the same for all of them.

• Mean imputation

This method can be classified into two: unconditional and conditional mean im-

putation (Greenland and Finkle, 1995; Schafer and Graham, 2002). Under un-

conditional mean imputation, the missing value is replaced by the overall variable

mean or median from the observed data, or by a value randomly drawn from the

subjects with observed data on that variable. Conditional mean imputation fills

the missing value by the mean that is estimated from the specific subgroup to

which the subject with missing data belongs. For a categorical variable the mode

is used. The sample size is regained, and simple to use. However, the variability

in the data is compromised, thus standard errors and variance estimates are un-

derestimated. The method produces biased estimates regardless of the underlying

missing data mechanism (Enders, 2010).

• Last Observation carried Forward (LOCF)

Whenever a value is missing, the last value measured is substituted. Ordinarily,

it is applied to settings where missingness is due to attrition (dropout). The gist

of the method is that very strong and unfeasible assumptions need to be made

for its validity: (1) for a longitudinal analysis or when the scientific problem is

in terms of the last planned occasion, the analyst has to be convinced that a

subject’s measurement remains the same from the occasion of dropout onwards or

during the period it misses in case of intermittent missingness. This consistency

assumption is hardly possible or attainable. In clinical trials, for instance, one may

believe that the subject’s response profile changes as soon as they go off treatment.

(2) Like other single imputation methods, LOCF has the propensity of treating

the imputed and actually observed values as equal. Also, the general effect of the

method is that both the mean and variance structures are gravely distorted and

prejudiced such that no apparent simplification is possible.

1.2.3.2 Advanced methods for missing data

Because repeated measurements on an individual tend to be correlated, we rec-

ommend procedures that use all the available data for each participant, because

missing information can then be partially recovered. More advanced methods

have been developed, that are statistically justifiable and offer a better potential

for precision and validity than the so-called traditional methods. They include

9



the multiple imputation, maximum likelihood methods, Bayesian methods, and

weighting methods among others. Longitudinal modelling by maximum likelihood

can be a highly efficient way to use the available data. Multiple imputation of

missing responses is also effective if we impute under a longitudinal model that

borrows information from the observed data. In fact, the borrowing of information

from observed data is a strategy that multiple imputation shares with maximum

likelihood. On the other hand, weighting methods are equally valuable in some

cases. Below we briefly discuss these methods.

• Multiple imputation

Multiple imputation (MI) was initially proposed Rubin (1978a), and further elab-

orated in Rubin (1987); Little and Rubin (2014). Although initially proposed for

public-use survey data, it has developed to general missing data problems. For-

mally, MI is described as a tri-step process: First, we estimate the conditional

predictive distribution of the missing data given the observed data, and then (tak-

ing account of the uncertainty in the parameter estimates) we impute from this to

create multiple complete datasets. Each of these complete datasets are then inde-

pendently analysed using appropriate complete-data methods. Finally, the results

are combined into a single inference, in a way that captures uncertainty regarding

the imputation process.

An important part of the imputation process is perhaps the evaluation of the

imputation strategy, since it relies on untestable assumptions concerning the miss-

ingness process that created the partially observed measurements. MI usually

assumes that the data are missing at random. The most important issue then is

identifying variables that make this assumption viable. Ideally, the analysis model

is pre-determined and the imputation method then can be evaluated simply by its

ability to reproduce any complete data analysis. Chambers (2001) terms this phe-

nomenon “preservation of analysis”. He elaborates five performance requirements

for an imputation method: predictive accuracy, ranking accuracy, distributional

accuracy, estimation accuracy and imputation plausibility. These are in fact the

generalization of those described by Allison (2000) and Rubin (1987, 1996). How-

ever, they note that these criteria are easily violated in practice, since the assump-

tions of missing at random are hardly met in practice. Although, it is possible to

formulate and estimate data models that are not missing at random, these models

are complex, untestable, and require specialized software with technical expertise.

Hence, any general-purpose approach will necessarily invoke the missing at ran-

dom assumption (Allison, 2000).

There are various imputation models that can be used depending on the data

and the missing data pattern. When missing data are monotone, predictive mean
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matching and propensity score methods may be used for continuous variables. For

discrete variables, logistic regression and discriminant analysis can be used. In case

of non-monotone missing data patterns Markov Chain Monte Carlo (MCMC) ap-

proaches have been proposed. It is noted that, methods for non-monotone patterns

can be used for monotone patterns but the reverse is not true.

• Maximum Likelihood

Maximum likelihood (ML) methods can be used to obtain the variance-covariance

matrix for the variables in a model based on only available data. Using the obtained

variance-covariance matrix, the regression model can then be estimated (Schafer,

1997). The ML methods are simpler and easy to implement in standard statistical

software, e.g., SAS. The user needs to specify the model of interest and then

proceed to indicate that they want to use ML (Yuan, 2010). There are two main

ML methods:

(a) Direct maximum likelihood

Instead of deleting or imputing observations with missing values, the direct

maximum likelihood (DL) and full-information maximum likelihood (FIML)

methods use all the available information in all observations. Missing values

are handled directly within an analysis model. The model is estimated by

making use of all the available information. The procedure involves direct

maximization of the multivariate normal likelihood function for the assumed

linear model. FIML is oftenly used in structural equation models (SEMs) and

multi-level models or growth models. When properly used, DL produces effi-

cient estimates and correct standard errors. However, it involves specialized

software, implying that it may be challenging and time consuming (Soley-

Bori, 2013). Normally, MI and DL will produce similar results when data are

missing on the outcome and the same information is used for both models

(Collins, Schafer and Kam, 2011). DL will be revisited and used in later

chapters.

(b) Expectation maximization algorithm

The expectation maximization (EM) algorithm (Dempster, Laird and Rubin

1977), is a a general iterative procedure that can be used to find the maxi-

mum likelihood estimates in the presence of missing data. The algorithm is

useful when maximization from the complete data likelihood is straightfor-

ward but maximization based on the observed data is complicated and/or

difficult to justify. Under an ignorable MAR assumption, the algorithm can

be summarized as follows. Each iteration of the algorithm involves two steps:

The expectation (E - step) and the maximization (M - step). The E-step de-

termines the expected value of the log-likelihood conditional on the observed
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data and the current estimate of the missing data. This step is often reduced

to simple sufficient statistics. Given the complete data log-likelihood, the M-

step estimates the parameters that maximize the expected likelihood based

on the E-step.

Known drawbacks of the EM algorithm are its initial inability to produce

estimates of the covariance matrix of the maximum likelihood estimators.

But advancements have lead to development of methods for such estimation

to be incorporated into EM computational procedures. Another concern is

its slowness to converge (depending on the amount of missing data), and

in cases where E-step fails to settle to a closed form solution or the M-step

failing to determine a unique maximum. These challenges have resulted in

the development of modifications and extensions to the algorithm as well as

many simulated based alternatives. One is the Stochastic EM (Celuex and

Diebolt, 1985) among other variations. See also Baker (1992), Louis (1982),

McLachlan and Krishna (2007), and Rubin (1991).

• Weighting methods

Besides imputation, incomplete data may be handled by weighting methods. Weight-

ing methods are based on observed measurements (Robins, Rotnitzky and Zhao,

1994). Under these methods, after ignoring all the missing values in the analysis,

the observed values are weighted depending on how their distributions approxi-

mate the full sample or population. In this way, the predicted probability (weight)

of each response is estimated from the measurements for the particular observed

variable to correct for either the standard errors associated with the estimated

parameters or the population variability. See Kalton and Flores-Cervantes (2003)

for a discussion of the weighting methods. They provide a detailed review of the

methods, and the stages involved in the weighting process.

In the context of survey data, Rubin (1987) discusses a number of approaches for es-

timating and applying weights. When the number of nonrespondents is small, their

responses are assumed relatively similar to those present who would be weighted

to represent the excluded respondents.

Robins, et al. (1995) proposed a weighted regression model that requires an ex-

plicit model for the missingness but relaxes some of the parametric assumptions in

the measurements model. Based on the traditional GEE, they developed so-called

weighted generalized estimating equations (WGEE) to deal with the bias caused

by dropouts. In its original form, GEE relied on the stringiest MCAR mecha-

nism. WGEE was developed to work on MAR as well as MNAR mechanisms, but

requires the specification of a dropout model in terms of the observed responses

and/or covariates. The idea behind the WGEE is to weight each individual by
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the probability of being observed. The weighting method enjoys elegant features

of being less resource intensive. However, proper care must be taken when used

because it can lead to large data loss when the rate of non-response is high (Lago

and Clark, 2015). Generally speaking, weighting methods are a good alternative

under certain circumstances, for instance, for monotone missingness patterns or in

case of univariate analysis. The concept of WGEEs is tackled in later chapters in

the context of continuous and count outcome data.

Since Robins, et al. (1995), a number of revisions and additions have been made

on the original GEE. Birhanu et al. (2011) improved the WGEE to what are now

known as the doubly-robust estimating equations (DREEs). Here, a predictive

model for the unobserved responses conditional on observed ones is incorporated

with the weighting. This made it more efficient and robust towards a broader set

of deviations. However, the DREE method is hard to implement than the original

(Van deer Laan and Robins, 2003). GEE can also be used after MI and hence the

so-called MI-GEE approach Schafer (2003).

1.2.3.3 Selection and pattern mixture models

In terms of non-ignorable missingness, a completely sufficient data analysis that can be

used in the process is not readily viable. Standard statistical models can result into

very biased results. This is because the available observed measurements cannot pro-

vide sufficient information to confirm or refute ignorability. Researchers have proposed

the inclusion of the missingness in the modelling process. They suggested modelling

the missingness process jointly with the measurement process, and then proceed to ap-

ply likelihood-based approaches like the maximum likelihood or consider a Bayesian

inference. Therefore, joint modelling of the measurement and missingness processes

is necessary to account for informative nonresponse. In principle, one would consider

the density of the full data as a joint distribution of the measurement and missingness

processes. Two principal frameworks can be specified from the joint distribution. (1)

Selection models (Little and Rubin, 2014), are based on the self-selection of individuals

into observed and missingness ranks, where the missingness model is the density of the

missingness process conditional on the measurements. In selection models, it is sensible

to assume the ignorable, MAR assumption, but a number of modelling approaches have

been proposed assuming non-ignorability. So far most missing data literature focuses

on this class of modelling. This is because, the selection model seems more innate when

concern is on parameters of the marginal distribution of the outcomes y averaged over

missing data pattern (Little 1993).

(2) Pattern mixture models (Glynn, Laird and Rubin, 1993; Little, 1993) can be viewed
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as a mixture of populations distinguished by the observed and missing data patterns.

This means that inferences about the marginal parameters averaged over the missing

data patters are obtained by conveying them as functions of the full data model param-

eters, say θ, and missing data mechanism parameters, say ξ. By this, it means that indi-

viduals are stratified according to their missing data patterns. Then, a separate model

fit for each pattern and finally combining the results from the different ”sub-models”

to derive an average estimate of the model parameters. Both likelihood and Bayesian

methods can be applied to these functions. However, an issue with this class of models

is that they are under-identified (meaning they present inestimable parameters). Little

(1993; 1994) proposed some approaches to deal with the under-identification. Verbeke

and Molenberghs (2009) and Molenberghs and Kenward (2007) detail the approaches to

circumnavigate the under-identification problem.

Beyond the above two modelling approaches under MNAR, a third framework exists.

The shared parameter model (Wu and Carroll, 1988), relates or links the response model

with the probability of missingness. It is an attractive framework for the joint modelling

of the measurement and missingness process, which makes use of random effects to in-

stigate the interdependence between the two processes. The underlying feature of these

models is that the two processes are assumed independent, conditional on the random

effects, meaning all association is brought about by random effects. Normally, the ran-

dom effects are assumed to follow a normal distribution, and considered an important

element in the design of the missing data process, implying that a misspecification of

their distribution greatly jeopardises inference, thus producing wrong parameter esti-

mates and standard errors (Tsonaka et al., 2009). However, Song et al. (2002), Tsiatis

and Davidian (2004) and Wang and Taylor (2001) argue on the contrary. Their empir-

ical results indicate that misspecification of the distribution of the random effects does

not pose a serious impact on the parameters, save for exceptional cases, e.g., in discrete

distributions. For further details on the shared-parameter framework, we recommend

among others Albert and Follmann (2009), Rizopoulos et al.(2008) and Tsonaka et al.

(2009).

1.3 Research Objectives

The main objective and focus of this thesis is to investigate or research on methods to

handle incomplete longitudinal data, with principal interest falling on the non-Gaussian

setting. Categorical (binary, ordinal) and counts outcomes are very common in real

applied problems but missing data techniques for this type of data are less standard,

because of the lack of a simple analogue to the normal distribution. However, we start
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with the common Gaussian type before embarking on the non-Gaussian case. Specific

objectives include:

• To examine the comparative performance of multiple imputation and inverse prob-

ability weighting techniques when used for incomplete continuous outcome data

subject to MAR dropouts.

• To compare two extensions of the generalized estimating equations, namely the

weighted generalized estimating equations and multiple imputation based gener-

alized estimating equations in the presence of incomplete count outcomes due to

MAR dropouts.

• To investigate different multiple imputation strategies with applications on ordinal

outcome data subject to both monotone and non-monotone missing data patterns.

• To examine the comparative performance of likelihood based methods and multiple

imputation when presented with incomplete discrete data.

• To investigate the influence of dependence of current responses on past responses

(history) in medical research. This approach is necessitated by the fact that the

ordinal outcome categories are driven by an underlying disease or response process

and the data is longitudinal. Thus transitions from one disease state to another

over time are of interest.

1.4 Thesis outline

This thesis is a collection of 5 research papers which have been submitted for publication

in international, accredited journals. Out of the papers, one is published and the rest

are under review. These papers appear in Chapters 2 through 6, with each chapter pre-

sented as a stand alone and not a continuation of the previous one. However, the general

ideas in these chapters are in a way interconnected in order to achieve the overall goal

of the thesis. Chapter 1 served as an introduction and general overview to the thesis.

The rest of the thesis is outlined as follows.

Although previously stated that the objective was to deal with discrete data, the thesis

started with one continuous data case. In Chapter 2, the thesis presents a comparative

analysis on how to handle longitudinal continuous outcomes with random dropout. Here,

incomplete data methods, inverse probability weighted GEE and multiple imputation,

which are valid under the MAR mechanism, are compared.

In Chapter 3, the weighted GEE is used again for discrete data. It is compared to GEE

after multiple imputation (MI-GEE) in the analysis of correlated count outcome data.
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This comparison is carried out using a simulation study.

Chapter 4, now deals with multiple imputation in the handling of ordinal longitudinal

data with dropouts on the outcome. MI strategies, namely multivariate normal imputa-

tion and fully conditional specification are compared both in a simulation study and a

real data application. The real application involves a dataset on patients who were un-

der treatment for arthritis (the Arthritis data). In Chapter 5, still focussing on ordinal

outcomes, the thesis presents a simulation and real data application study to compare

complete case analysis with advanced methods, direct likelihood analysis and multiple

imputation. For multiple imputation, three approaches, namely multivariate normal im-

putation, fully conditional specification and ordinal imputation method are contrasted.

The real application is about nutritional status during recovery from severe malnutrition

in children (RSCM). Then in Chapter 6 the thesis investigates the influence of history

on current incomplete responses. Therefore, a transitional likelihood missing at random

model is built, where we investigate the effects of conditioning on previous responses in

addition to estimating the effects of measured covariates. The model is applied to the

same data used in Chapter 5. This data were also used in Chapter 1.

In Chapter 7, a general conclusion to the thesis is presented. Finally, we present rec-

ommendations and point out areas for further research in this chapter. We give a

consolidated references list at the end of the thesis.
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Chapter 2

Handling longitudinal continuous

outcomes with dropout missing at

random: A comparative analysis

Abstract

Missing data is a prevalent problem in the analysis of data from longitudinal studies.

Subjects may drop out before the end of the study, or be lost to follow-up in the sense

that no further measurements can be obtained after the dropout time. The statistical

methods to be used for handling incomplete data depends on the dropout mechanism

assumed and probably the type of the data. This paper focuses on dropout missing at

random. Two methods valid under a missing at random mechanism, namely multiple

imputation and inverse probability weighting are compared through a simulation study

and then applied to a real data set based on a continuous outcome. Specifically, we

investigate the methods and evaluate their performance under various dropout rates and

sample sizes in the simulation study. The simulation studies reveal that the multiple

imputation approaches have higher efficiency and less bias. The real longitudinal data

is from a study on childhood malnutrition.

2.1 Introduction

Longitudinal studies are designed to collect data on every individual within a sample

at each measurement occasion. However, it is quite common that missing data arises.
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Incompleteness for longitudinal data occurs as dropout (monotone missing data pat-

tern), which is when individuals leave the study prematurely, before the end of follow

up for some reason(s), known or unknown. Alternatively, an individual may miss a mea-

surement occasion but appear at subsequent occasions, resulting in intermittent missing

measurements. With missing data, a number of issues arise in the analysis: (1) the

analysis now becomes more complicated, (2) there is risk of efficiency loss, and (3) there

is an issue of bias, because the observed measurements may not necessarily be the same

as the unobserved ones (Barnard and Meng, 1999).

In clinical trials, it is quite possible that the actual reasons for missingness are not

known. Discarding the incomplete participants of the study and only analysing the

measured cases, namely complete case (CC) analysis, may lead to biased estimates,

hence erroneous and imprecise inferences. Determining the appropriate analysis method

for incomplete datasets is key to valid parameter estimation and reliable study conclu-

sions.

Over time, researchers have been working on developing relevant methods to handle in-

complete data, ranging from simple, easy to use ad hoc ones to more advanced, method-

ologically challenging approaches (Rubin 1976; Ibrahim 1990; Robins, Rotnitzky and

Zhao 1994, 1995; Carpenter, Kenward and White, 2007; Little and Rubin 2014). Two

common, attractive methods amongst the different methods that have been proposed,

which are based on multiple imputations and inverse probability weighting. These two

methods assume that the data are missing at random (Rubin 1976, 1987). The missing

at random assumption implies that the probability of missingness is only related to the

fully observed variables and not on the unobserved or partially observed variables.

Multiple Imputation (MI), initially proposed by Rubin (1978) and later detailed in Ru-

bin (1987) has so far been recognized as an influential and very practical approach in

dealing with incomplete data problems for both discrete and continuous outcomes. MI

replaces missing values with estimated values multiple times and then analysis is carried

out independently on the now “completed” datasets. The technique has captured the

interest of many researchers and concise expositions have been presented. See Rubin

(1996); Schafer (1997, 1999); Horton and Lipsitz (2001); Carpenter and Kenward, 2013;

Little and Rubin (2014). Inverse Probability Weighted (IPW) estimating equations is

another powerful approach. First described by Robins, Rotnitzky and Zhao (1995),

the approach traces its roots from survey analysis, presented by Horvitz and Thomp-

son (1952). It was later improved by a number of researchers (Robins and Rotnitzky,

1995; Scharfstein, Rotnitzky and Robins, 1999). Wider literature exists that describes

the IPW approach (Fitzmaurice, Molenberghs and Lipsitz, 1995; Yi and Cook, 2002a,

2002b; Carpenter, Kenward and Vansteelandt, 2006; Molenberghs and Kenward, 2007;

Seaman and White, 2011).

The main difference between IPW and MI is that IPW needs a model for the missingness
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mechanism, whereas MI needs the analyst to specify which variables are to be used as

regressors in the imputation model. In addition, unless a monotone missing data pat-

tern is used, the missingness model for IPW can only use complete variables. However,

IPW’s good side is that the approach does not require a complete specification of the

joint distribution of the longitudinal responses but rather is based on the specification

of the first two moments. Both methods can be used for all types of outcomes, but

a great deal of work has been devoted to binary response data particularly under the

IPW approach. But, it is not surprising that essentially little has been done in terms of

comparing them for continuous response data because the two methods come from two

different schools of thought. A recent comparison of these methods in a cross-sectional

setting found the performances of these methods to be similar, with MI only slightly

more efficient than IPW (Carpenter, Kenward and Vansteelandt, 2006). In the context

of survey data, Seaman and White (2011) compared the performance of MI with IPW.

In their paper based on a binary outcome data, they illustrated why, despite MI gener-

ally being more efficient, IPW may sometimes be preferred. Using marginal structural

models, a comparison of these approaches found that MI was slightly less biased and

considerably less variable than IPW (Moodie et al., 2008).

In this paper, we compare the performance of MI and IPW in the analysis of incomplete

continuous outcome (longitudinal) data under different dropout rates and sample sizes

while assuming that the data are missing at random.

Because a so-called direct likelihood (DL) or ignorable likelihood analysis is valid un-

der the missing at random mechanism (Mallinckrodt et al., 2003a, 2003b; Verbeke and

Molenberghs, 2009), its results will be presented and used as reference against which

IPW and MI will be contrasted. In the DL method, the observed data are used without

weighting nor imputation. The strength of this method lies in the accurate formulation

of the likelihood of the data as it is and it works for both intermittent and monotone

missingness patterns. For incomplete longitudinal data, a linear mixed model (LMM)

only needs the missing at random assumption to hold. See Verbeke and Molenberghs

(2009) for a detailed discussion of the LMM approach.

The rest of the paper is organised as follows. In Section 2.2, we present the notation

and concepts of possible mechanisms that can lead to missing data. In Section 2.3,

statistical approaches to be compared are considered in detail. Section 2.4 contains the

simulation study. In this section multiple datasets of various sizes are simulated then

droputs caused and missing data methods applied. We present the results of the simu-

lation study and discussion thereof. In Section 2.5, we present a real data application.

We use a clinical study dataset (which is also incomplete) to elucidate the comparative

performance of the competing methods. Section 2.6 provides a discussion and conclusion

to the paper.
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2.2 Dropout mechanisms in longitudinal studies

Suppose that N individuals are to be observed at n occasions. For the ith individual

(i = 1, 2, . . . , N) we can have a series of measurements Yi = (Yi1, . . . , Yin)′, where Yij

is the jth outcome for individual i. Yij can either be continuous or discrete depending

on the study problem. Each individual has a covariate matrix Xi. The covariates may

be time stationary and/or time varying. In longitudinal studies, individuals may not be

observed at all n occasions on account of some stochastic missing data mechanism. For

this reason we can assume that an individual i contributes ni ≤ n repeated observations,

that are not necessarily equal over all individuals. We define an indicator variable Rij

to be 1 if the outcome Yij is observed and equal to 0 if unobserved. The full data

information for the ith subject is given jointly by Yi and Ri, with a joint distribution

that can be expressed as:

f(Yi, Ri|Xi, θ, γ) = fr(Ri|Yi, Xi, γ)fy(Yi|Xi, θ), (2.1)

where θ and γ are vectors that govern the joint distribution, with γ parameterizing

the misssing data mechanism and θ comprising the parameters that relate the outcome

of interest and covariates. In general, the missing data mechanism can depend on the

full vector of responses, Yi and the covariate matrix Xi. Let Y o
i denote the vector of

observed responses and Y m
i denote the vector of unobserved responses for subject i. Fol-

lowing Rubin’s taxonomy Rubin (1976, 1987), first, data are missing completely at ran-

dom (MCAR) if the missingness process does not depend on Yi; f(Ri|Y o
i , Y

m
i , Xi, γ) =

f(Ri|Xi, γ). Second, the missing data are said to be missing at random (MAR) if the

missingness process depends on the observed responses and probably on measured co-

variates but not on the unobserved responses; f(Ri|Y o
i , Y

m
i , Xi, γ) = f(Ri|Y o

i , Xi, γ).

Finally, data are missing not at random (MNAR) when the probability of missingness

is related to the values that should have been observed, in addition to the ones actually

observed; f(Ri|Y o
i , Y

m
i , Xi, γ) = f(Ri|Y o

i , Y
m
i , Xi, γ). Under likelihood and Bayesian

inferences, and provided regularity conditions hold, MCAR and MAR imply that the

missing data mechanism can be ignored. With frequentist methods, this is generally

true only under MCAR. Notice also if missingness depends on (possibly time varying)

Xi, it is not MCAR. If Xi are only baseline covariates it is sometimes called covariate

dependent MAR.

The focus in this paper is on missing data due to subject dropouts. For all components

of Yij that are missing, the corresponding components of Rij will be 0. The dropout
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time for the ith subject can be defined by introducing a discrete integer valued variable:

Di = 1 +
n∑
j=1

Rij . (2.2)

The model for the dropout process can therefore be written:

f(Ri|Yi, Xi, γ) = Pr(Di = di|Ri, Xi, γ) (2.3)

where di is a realization of the variable Di. In (2), it is assumed that all subjects are

observed on the first occasion so that Di takes values between 2 and (n + 1). The

maximum value (n+ 1) corresponds to a complete measurement sequence.

2.3 Statistical methods to be compared

2.3.1 Multiple imputation

Multiple imputation (MI) is a simulation-based approach that fills missing values multi-

ple times to create complete data sets. Standard MI procedures assume that the data are

MAR. Extensions towards MNAR are possible. Because of the fundamental untestable

nature of the assumptions that need to be made, such extensions have their place in so-

called sensitivity analysis. However, this is not the focus of the current study. The MI

process involves three distinct stages. First, the missing values are filled in M ≥ 2 times

to generate M complete data sets. In the filling-in process, a joint distribution for the

complete data set (including observed and unobserved data) and a prior distribution of

parameters are assumed for the data augmentation algorithm to simulate random draws

from a missing data distribution. That is, M independent random values can, given the

observed values, be generated from a stationary conditional distribution of the missing

values as in the Bayesian estimation technique. After the imputation step, M complete

data sets are obtained. Each of the M complete data sets are then analysed using

appropriate standard procedures, depending on the types of response and assumptions

used for the analysis model. Finally, the estimates from the M analyses are pooled to

produce a single set of estimates that incorporates the usual sampling variability as well

as the variability due to the missing data.

The quality of the imputation model will influence the quality of the analysis model

results, so it is important to carefully consider the design of the imputation model. In

some but not all cases, the MI inference assumes that the analysis model is the same

as the imputation model (Meng, 1994), meaning that all variables appearing in the im-

putation model should be included in the analysis model. However, practically, the two
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models need not necessarily be the same. Therefore, to obtain high quality imputations

for a particular variable, Van Buuren, Boshuizen and Knook (1999) recommended the

inclusion of the following covariates in the imputation model: variables that are in the

analysis model, variables associated with missingness of the imputed variable, and vari-

ables correlated with the imputed variable. One can include auxiliary variables which

may or may not have missing values. While it is almost always impossible to test the

MAR assumption, including auxiliary variables in the imputation model can minimise

bias as well as making the MAR assumption more viable.

Now, to formally describe MI, we consider the process as presented in Verbeke and

Molenberghs (2009). Thus under the MAR assumption, MI imputes Y m
i by drawing

from the conditional distribution f(Y m
i |Y o

i , γ). Since γ is unknown, we estimate it from

the data to yield γ̂, and use estimated version of the distribution f(Y m
i |Y o

i , γ̂). Since γ̂

is a random variable, its variability is taken into account when drawing the imputations.

In a Bayesian sense, γ is a random variable whose distribution depends on the data.

First, obtain the posterior distribution of γ from the data, a distribution which is a

function γ̂. After formulating the posterior distribution of γ, the following imputation

algorithm can be used: (1) Draw γ∗ from the posterior distribution of γ, f(γ|Xi, Y
o
i ).

If needed, approximate this posterior distribution by the normal distribution. (2) Draw

Y m
i from f(Y m

i |Xi, Y
o
i , γ

∗). (3) Use the completed data Yi and the model to estimate

the parameter of interest (β∗) and its variance (V (β∗)), called the within imputation

variance. The steps described above are repeated independently M times, resulting in

β∗k, V (β∗), k = 1, . . . ,M . Steps 1 and 2 are referred to as the imputation task, and step

3 is the estimation task. Finally, combine the estimates obtained after M imputations.

The overall estimated parameter vector is the average of all individual estimates:

β∗ =
1

M

M∑
k=1

β∗k. (2.4)

We obtain the variance as a sum of the within-imputation variances and the between-

imputations variability:

V ∗ = W +

(
M + 1

M

)
B, (2.5)

where

W =
1

M

M∑
k=1

V (β∗k), and B =
1

M − 1

M∑
k=1

(β∗k − β∗)(β∗k − β∗)′. (2.6)
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Here, W measures the within-imputation variability while B measures the between-

imputation variability.

2.3.2 Inverse probability weighting

Inverse probability weighting (IPW) is a standard method used for handling dropouts.

This method is valid under the MAR assumption (Robins, Rotnitzky and Zhao, 1995),

but requires specification of a dropout model in terms of observed outcomes and/or co-

variates. IPW is more frequently used in marginal models for discrete outcomes rather

than continuous outcomes. However, in this paper, it is adopted for dealing with contin-

uous outcomes. The primary idea behind IPW is that if individual i has a probability

λij of being observed at occasion j then this individual should be given a weight, ωij

say, so as to minimize the bias caused by dropout in the analysis. The weight ωij for

the ith individual at time j is assigned the inverse of the cumulative product of fitted

probabilities: ω̂ij(α̂) = [λ̂i1(α̂)× λ̂i2(α̂)×· · ·× λ̂ij(α̂)]−1 where α is a vector of unknown

parameters. Note here that you need a monotone dropout model for this where the

vector α is common for each occasion j.

In longitudinal data settings, IPW can be incorporated into Liang and Zeger’s (1986)

conventional generalized estimating equation (GEE) method. The GEE methodology

generalizes the usual univariate likelihood equations by introducing the covariance ma-

trix of the response vector, Yi. The GEE methodology is used to model the marginal

expectation of responses as a function of a set of covariates. We introduce the classical

form of GEE.

LetXi = (xi1, . . . , xini)
′ denote an (ni×p) matrix of covariates where, xij = (xij1, . . . , xijp)

′

is the (p× 1) covariate vector associated with yij . Let yi = (yi1, . . . , yini)
′ be an (ni× 1)

observed response vector, and µij = E(yij), i = 1, . . . , N ; j = 1, . . . , ni. Now, assume

the marginal regression model is given as:

g(µij) = x′ijβ, (2.7)

where β is a (p × 1) vector of the regression parameters of interest and g(.) is a link

function. Let the (ni × ni) covariance matrix for Yi be Vi(ϕ) = φA
1
2
i Ri(ρ)A

1
2
i , where Ai

is a diagonal matrix of variance functions, Ri(ρ) is a working correlation matrix of Yi,

as a function of ρ, the correlation parameter, and φ is a dispersion parameter. Then,

the GEE estimators for the regression parameters are the solutions to the equation

N∑
i=1

∂µi
∂β

Vi(ϕ)−1 (Yi − µi) = 0, (2.8)
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where ∂µi
∂β is the derivative matrix of the mean vector µi with respect to β.

The GEE methodology has traditionally been used for the analysis of marginal models for

discrete responses. In this paper, it is adopted for a continuous response. Consequently,

the following assumptions can be made for the marginal models with the continuous

outcome, Yij .

• The response mean is related to the covariates by an identity link function: µij =

ηij = x′ijβ. The link function g(.) generally relates the expected values, µi of

the response vector, Yi to the covariate matrix Xi. It takes the general form

g(µi) = ηi = Xiβ, where ηi denotes the linear predictor vector whose jth row is

g(µij) = β0 +β1xij1 +β2xij2 + · · ·+βpxijp. The function g(.), should be monotone

and differentiable. When monotonocity holds, the inverse function g(.)−1 can be

defined by the relation g−1(g(µi)) = µi. For a continuous response with normality

assumption, the link function is an identity link: g(µi) = µi and the inverse will

simply be µi = g(µi). Under this identity link, the expected value of the response is

simply a linear function of the covariates multiplied by their regression coefficients.

• The variance of each Yi, conditional on the effects of the covariates, is φ and

does not depend on the mean response. Here, υ(µij) = 1 is a known “variance

function”, thus implying Var(Yi) = φυ(µi) = φ, with φ denoting the variance

of the conditional normal distribution of the response, given the covariates. The

assumption that the variance is constant over time may be unrealistic. To relax

it, a separate scale parameter, φj could be estimated at the jth occasion if the

longitudinal design is balanced on time.

• The within-individual correlation among repeated responses is modelled by assum-

ing, for example, a first-order autoregressive AR(1) covariance structure:

Corr(Yij , Yik) = ρ|k−j|, which indicates the pairwise correlation between observa-

tions, for all j and k and 0 ≤ ρ ≤ 1. The AR(1) structure implies homogeneous

variances. In addition, it specifies that the correlations between observations on

the same subject are not equal, but decrease towards zero with increasing length

of the time interval between observations.

For marginal models with an identity link function, the generalized least square esti-

mator of β can be considered as a special case of the GEE. Therefore, the estimates of

parameters in the marginal model for continuous response with an identity link are

β̂ =

{
N∑
i=1

X ′iV̂
−1
i Xi

}−1 N∑
i=1

(
X ′iV̂

−1
i Yi

)
, (2.9)
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where V̂i is the maximum likelihood estimator that can be used to find the best unbiased

estimates of Vi (Verbeke and Molenberghs, 2009) and

Cov(β̂) =

{
N∑
i=1

X ′iV̂
−1
i Xi

}−1 N∑
i=1

(
X ′iV̂

−1
i V̂ar(Yi)V̂

−1
i Xi

){ N∑
i=1

X ′iV̂
−1
i Xi

}−1

. (2.10)

Here, V̂ar(Yi) is an estimate of Var(Yi) which yields a robust estimator of Cov(β̂) when

substituted in equation (2.10).

With incomplete data that are MAR, the GEE method provides inconsistent estimates

of model parameters (Liang and Zeger, 1986). This is because GEE is based on MCAR

therefore cannot handle incomplete data that are MAR without further modification. In

weighted generalized estimating equations, a subject’s contribution to standard GEE is

weighted by the inverse of the probability of dropout at particular time point, given the

subject did not miss in any of the previous occasions. Therefore, incorporating all the

assumptions herein made, valid parameter estimates in longitudinal studies with MAR

dropout are obtained by solving the weighted estimating equations:

N∑
i=1

(Yi −Xiβ)′ V −1
i Wi(α̂) (Yi −Xiβ) = 0, (2.11)

where Wi(α̂) = diag[Ri1ω̂i1(α̂), . . . , Riniω̂ini(α̂)], is a diagonal matrix containing inverse

probability weights for the ith subject, for j = 2, . . . , ni, and α̂ is a vector of nuisance

parameters handled by the introduction of a working correlation matrix. The difference

between equations (2.11) and (2.8) is that (2.11) have weights while (2.8) do not have.

In (2.11), ω̂i1 = 1, and Vi = A
1
2
i Ri(ρ)A

1
2
i is a ni× ni working covariance matrix for Yi in

which Ri(ρ) is an ni× ni working correlation matrix. Now as stated earlier, ωij is often

unknown and needs to be estimated. It requires modelling the missing data process in

order to obtain the weights ωij .

Let λij(α) = P (Rij = 1|Ri(j−1) = 1, Xi, Yi, α) be the probability of a response being

observed at time point j for the ith subject given that the subject was observed at time

point j − 1. If MAR holds, the model for λij(α) can include the observed history such

that:

λij(α) = P (Rij = 1|Ri,j−1 = 1, Xi, hij , α), hij = Yi1, . . . , Yi,j−1. (2.12)

The missingness mechanism only depends on observed data and may be specified up to a

(q×1) vector of unknown parameters, α. Here, λij can be modelled as a logistic regression

model with Z ′ij , a vector of predictors, which may include missingness indicator variables,
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covariates and previous responses such that

logit[λij(α)] = Z ′ijα. (2.13)

The log partial likelihood for ith subject can then be expressed as:

`(α) =
N∑
i=1

ni∑
j=2

Ri(j−1)ln{λij(α)Rij [1− λij(α)]1−Rij}. (2.14)

Differentiating (2.14) with respect to α gives the estimating equations

Si(α) =


N∑
i=1

ni∑
j=2

Ri(j−1)[Rij − λij(α)]

 . (2.15)

Setting (2.15) equal to zero, yields α̂, and consequently λ̂ij(α̂) can be obtained as an

estimate of λij(α). Consistent parameter estimates can be obtained conditional on two

assumptions (Hogan, Roy and Korkontzelou, 2004):

(1) Non-zero probability of remaining in the study : Given past history, the probability

that individual i is still in the study at time j is bounded away from zero; P [Rij =

1|Ri,j−1 = 1, Xi, hij ] > 0.

(2) Correct specification of dropout model : The probability of dropout at time j must

be correctly specified: νij(α) = P [Rij = 0|Ri,j−1 = 1, Xi, Yi,j−1]. Under monotone

missingness, the probabilities of remaining in the study is therefore:

P [Rij = 1|Ri(j−1) = 1, Xi, hij , α] =

j∏
k=1

{1− νik(α)} =

j∏
k=1

λ̂ik(α̂). (2.16)

Thus, the weight ω̂ij(α̂), the inverse of the unconditional probability of being observed

at time j, can be calculated:

ω̂ij(α̂) =
1

1× (λ̂i1(α̂))× · · · × (λ̂ij(α̂))
, j = 2, . . . , ni, (2.17)

where ω̂ij(α̂) = 1 for j = 1. Therefore, if the above two assumptions hold, and if dropout

follows an MAR mechanism, the estimators of the parameters β̂ in the weighted marginal

model for a continuous response (with an identity link) will be of the form

β̂ = {
N∑
i=1

X ′iV̂
−1
i Wi(α̂)Xi}−1

N∑
i=1

(X ′iV̂
−1
i Wi(α̂)Yi), (2.18)
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and

Cov(β̂) =

{
N∑
i=1

X ′iV
−1
i Wi(α̂)Xi

}−1( N∑
i=1

X ′iV
−1
i Wi(α̂)Wi(α̂)′Xi

){
N∑
i=1

X ′iV
−1
i Wi(α̂)Xi

}−1

,

(2.19)

where β̂ is consistent for β, and α̂ is a consistent estimator of α under a correctly specified

model, λij(α).

2.4 Simulation study

2.4.1 Data generation

In this section, we present a simulation study to illustrate the comparative performance

of IPW-GEE, MI and DL. We generated data to mimic a typical longitudinal study.

In particular, we are interested in modelling a continuous outcome Y as a function

of predictors, X. The outcome of interest was generated at 6 study occasions, j =

1, 2, . . . , 6. The vector of responses Yi for the ith subject is assumed to be normally

distributed. In essence, we performed simulations based on a linear mixed model for Y ,

with a linear predictor of the form

E[Yij |xij ] = β0 + x′ijβ + bi, bi ∼ N(0, σ2). (2.20)

where xij contains xij1 and xij2 denoting binary group effects gender and site of study,

respectively; xij3 is a continuous variable denoting age of the subject and xij4 is a

continuous time variable. The x′s were generated using random number generators

following their respective distributions. The regression coefficients were fixed at β′ =

(β0, β1, β2, β3, β4) = (10, −0.2, −0.2, 0.05, 0.23). The random effects bi account for

the individual to individual variability and assumed to be independent and identically,

normally distributed estimated such that, bi ∼ N(0, 0.762). The choice of these values

for simulation was informed by a preliminary exploratory study carried out on a child

malnutrition dataset. The goal of this simulation was to simulate correlated longitudi-

nal data via the use of random effects. We demonstrate how to handle incomplete data

after simulating dropout from the complete simulated datasets. For simplicity we did

not include interaction terms. Using model (2.20), we performed S = 300 simulation

replications, for each of sample sizes: N = 125, 250, 500. Here, N = 125 corresponds

to a moderately small sample size, N = 250 to a moderate sample size and N = 500

represents a large sample size.

First, from the full datasets generated, we carried out a repeated measures likelihood
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analysis that employs a linear marginal model combined with a variance-covariance

model that incorporates correlations. In particular, we assumed a compound symmetry

structure. We ensured that the number and timing of observations are equal for all

subjects. The data were assumed Gaussian and thus a direct likelihood method was

used to estimate the model parameters. We present these results in Table 2.1.

Note here that the R-side random effect with a compound symmetry (CS) structure

only is analogous to the random effects model when the distribution is Gaussian and

the G-matrix is positive definite. But, note that the CS symmetry only follows when

the random-effects structure consists of a single random intercept as the case used in

the simulation model equation (2.20).

Mixed modelling analysis using SAS procedures like MIXED is computationally in-

tensive, requiring substantial amount of memory and execution time. A number of

recommendations have been presented to circumvent the memory issues and to reduce

execution times. See, for example, Kiernan et al. (2012); Tao et al. (2015). Together

with other efficient coding techniques, the choice of a simpler covariance structure can

be beneficial. However, we caution that as much as one would want to use the simpler

structure, it should be guided by expert knowledge or investigated to see if the structure

is supported by the data.

Table 2.1: Maximum likelihood parameter estimates (Est), standard errors (S.E.) and
p-values for the full datasets simulated at different sample sizes: N = 125, 250, 500 and
S = 300 simulation replications. True values: β0 = 10.0, β1 = −0.2, β2 = −0.2, β3 =
0.05, β4 = 0.23.

N = 125 N = 250 N = 500

Param Est (S.E.) p-value Est (S.E.) p-value Est (S.E.) p-value

β0 9.7770 (0.0110) <.0001 9.7759 (0.0073) <.0001 9.7936 (0.0053) <.0001
β1 -0.2129 (0.0075) <.0001 -0.2067 (0.0054) <.0001 -0.2028 (0.0037) <.0001
β2 -0.1952 (0.0086) <.0001 -0.1893 (0.0060) <.0001 -0.1961 (0.0042) <.0001
β3 0.0509 (0.0003) <.0001 0.0505 (0.0002) <.0001 0.0501 (0.0001) <.0001
β4 0.2300 (0.0000) <.0001 0.2300 (0.0000) <.0001 0.2300 (0.0000) <.0001

Examining Table 2.1, we notice that the parameter estimates obtained get closer to the

true values as the sample size is increased. This is true for all parameters except β2

and β4. For β2, N = 125 produces an estimate closer to the true value than N = 250.

For β4, the true value is reproduced for all three sample sizes. With regard to standard

errors, they get smaller as the sample size increases, but for β4, the same standard error

is produced for all sample sizes. These results indicate the gain in having a larger sample

size for simulation studies. But, note here that this gain may depend on the question

being answered, and may not generally be true in all situations.

Next we created dropouts on the outcome variable y according to a simple mechanism:

Missing at random, dependent on the continuous variable xij3.
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In other words, let drp = xij3, where xij3 is as previously described in equation (2.20).

Then, let den = max xij3, i.e., the largest value amongst xij3 values in the data. Next,

calculate the probability of dropout at the jth occasion: pdrptij = drp/den. Finally,

if the probability of dropout at j is greater than some uniformly distributed random

value (u), then a value of the outcome y drops at occasion j + 1, i.e., if pdrptij >

u, u ∼ unif [0, 1], then yi,j+1 misses. With this approach MAR monotone missingness

patterns were achieved at the following approximate rates: 8%, 19% and 33%. These

rates denote low, moderate and high dropout rates, respectively. We ensured ignorability

by not allowing dropout at occasion j to depend on yij itself. Different dropout rates

were achieved by varying the occasion where dropouts started. These dropout rates

indicated the percentages of data missing by the end of the study follow up.

2.4.2 Parameter estimation

The generated incomplete datasets were subjected to the three analysis methods, namely

IPW-GEE, MI and DL.

MI was carried out using SAS PROC MI, by assuming multivariate normality on the

variables. For valid results, the imputation model and the analysis model should be con-

genial. For congeniality, it means that the imputation model must contain at least all the

variables that are intended to be included in the analysis model. It is recommended that

variables that are predictive of the missingness are included in the imputation procedure.

In this way, MAR can be satisfied. In this simulation study, the imputation and analy-

sis model were the same and the default 25 imputations were used in SAS version 9.4.

However, with advanced computer systems nowadays, higher numbers of imputations do

not pose a big problem in terms of space and time requirements. Suggestions have been

made regarding the choice of number of imputations. See, for example, Schafer (1997);

White, Royston, and Wood (2011). Nonetheless, we concur with Kombo, Mwambi and

Molenberghs (2016) that analyst’s discretion on this matter is highly important, based

on the problem at hand.

To draw the imputations, we used the Markov Chain Monte Carlo (MCMC) approach

with default SAS specifications for iterations, Jeffreys prior and the expectation-maximization

posterior mode.

On the other side, IPW-GEE was implemented using the SAS macros provided by Molen-

berghs and Verbeke (2005). In particular, the macros “DROPOUT” and “DROPWGT”

were used to create the dataset for IPW-GEE analysis. The macro DROPOUT was used

to estimate the probabilities of dropout and the macro DROPWGT passed the weights

(predicted probabilities) to be used in the weighted estimating equations. Unlike MI,

the IPW-GEE method requires specification of a model for the dropout. For dropout
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in longitudinal settings, the dropout model takes the form of a discrete hazard model

such that; at each measurement occasion, the occurrence of a dropout is regressed on

previous and current values of the outcome as well as the covariates. In principle, for

continuous outcomes, the dropout model can be easily generalized by including the full

history (say, Hij = y1j , . . . , yij−1), and/or covariates and also allowing interactions with

time (Molenberghs et al., 2014). Based on our experience in this study, we assumed a

logistic regression model (2.21), in which yi,j−1 is the subject’s previous outcome. The

variables x3 and x4 were also used as covariates for the dropout model:

logit[P (Di = j|Di ≥ j)] = ψ0 + ψ1yi,j−1 + ψ2xij3 + ψ3xij4 + ψ4yi,j−1 ∗ xij4. (2.21)

Here, ψ0, ψ1, ψ2, ψ3, ψ4 are regression parameters to be estimated. The variable x4 (as-

sessment time points) is used as a continuous variable in both the dropout model and

the main analysis model.

Essentially, obtaining the weighted GEE estimates for regression parameters, β, is a two-

step algorithm: (1) Fit a logistic regression to estimate the weights, and (2) estimate β

by specifying the estimated weights in the WEIGHT statement in a SAS procedure, say

GENMOD. See Molenberghs and Verbeke (2005) for details of implementing the IPW

method macros.

In the direct likelihood analysis, data are analysed the way they are without imputation

nor deletion of the incomplete cases. Because we assumed MAR, a direct-likelihood ig-

norable analysis was conducted and parameter estimates obtained by specifying method

= ML, and the GAUSS estimation algorithm used.

In MI and DL analyses, the SAS procedure MIXED was used. We specified a RE-

PEATED statement for the DL approach. Note here that, the repeated statement

indicates how PROC MIXED should order observations for a given subject. Without

the repeated statement, the procedure assumes that the observations for a given subject

are listed in an appropriate order within the data and have no missing values. Then,

different results may be obtained (with and without the repeated effect listed) for certain

covariance structures.

Notice here that parameters from a marginal model (e.g., the GEE) and a hierarchical

model (e.g., the generalized linear mixed model (GLMM)), in case of non-Gaussian out-

comes have to be interpreted differently. This is because the fixed effects in GLMMs

are interpreted conditional on the random effects. In our case, this issue does not arise

since there is no difference in the interpretation of parameter estimates from the two

model formulations in the Gaussian outcome case. But to make the models be in the

same class we fitted marginal models in the DL analysis and the GEE analysis after MI.

In other words, a mixed-effects model was not fitted in either of the cases.

To asses the comparative performance of the DL, MI and IPW-GEE methods, we used
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relative bias and efficiency. We defined relative bias as the difference between the

true value, βT , and the average parameter estimate from the DL, MI and IPW-GEE,

β̂M , (based on the 300 data replications) divided by the true value, i.e., Relative Bias

= (βT − β̂M )/βT . Efficiency is the variability of an estimate around the true population

parameter. We compute it as the average width of the 95% confidence interval – which

is usually approximately four times the magnitude of the standard error.

2.4.3 Simulation results

Here, we present the results of the simulation study. Relative bias and efficiency esti-

mates are presented for incomplete data methods namely; DL, MI and IPW-GEE. We

also present results for the full datasets (FD), i.e., the datasets before creating dropouts.

The results are based on 300 simulated dataset replications. A better method is expected

to produce parameter estimates closer or similar to the true values used to simulate the

complete datasets, hence a small relative bias. Likewise, a small efficiency value denotes

a better or precise method. Results are presented in Tables 2.2, 2.3 and 2.4, for 8%, 19%

and 33% dropout rates respectively. In the three tables, the largest relative bias and

efficiency values are presented in boldface.

Table 2.2: Relative bias and efficiency estimates for MI, DL and IPW-GEE methods:
Dropout rate = 8%. Simulation replications, S = 300. We also present estimates for
the full datasets (FD).

Sample
Relative bias Efficiency

size Par FD DL MI IPW-GEE FD DL MI IPW-GEE

N = 125

β0 0.0223 0.0223 0.0027 -0.0119 0.0440 0.0438 0.0653 1.1192
β1 -0.0645 -0.0710 -0.0743 -0.7570 0.0302 0.0303 0.0293 0.4508
β2 0.0240 0.0200 0.0221 -0.2015 0.0344 0.0341 0.0322 0.5444
β3 -0.0174 -0.0174 -0.0172 0.0420 0.0011 0.0011 0.0011 0.0160
β4 0.0000 -0.0026 -0.0019 0.0000 0.0000 0.0013 0.0026 0.0112

N = 250

β0 0.0224 0.0224 0.0033 -0.0049 0.0291 0.0291 0.0463 0.8124
β1 -0.0335 -0.0365 -0.0369 -0.2365 0.0216 0.0215 0.0208 0.3668
β2 0.0535 0.0510 0.0496 0.0750 0.0238 0.0238 0.0226 0.4036
β2 -0.0100 -0.0096 -0.0094 0.0700 0.0008 0.0008 0.0008 0.0132
β4 0.0000 -0.0013 -0.0013 0.0000 0.0000 0.0001 0.0020 0.0080

N = 500

β0 0.0206 0.0207 0.0011 0.0157 0.0214 0.0215 0.0327 0.6004
β1 -0.0140 -0.0160 0.0157 0.0590 0.0148 0.0150 0.0147 0.2672
β2 0.0195 0.0175 0.0199 0.2285 0.0168 0.0170 0.0160 0.2896
β3 -0.0028 -0.0026 -0.0028 -0.0140 0.0006 0.0006 0.0005 0.0100
β4 0.0000 -0.0022 -0.0019 0.0000 0.0000 0.0007 0.0014 0.0036

Examining Table 2.2, and considering relative bias, we notice that largest values are

produced by IPW-GEE and DL, where DL produced the largest values for β0 and β4.

IPW-GEE produced largest values for β1, β2 and β3. This was consistent for all sample

sizes. In most cases the relative biases produced by FD, DL and MI are very close,
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and in some cases equal for two methods. Regarding efficiency, all largest values were

produced by IPW-GEE method.

Table 2.3: Relative bias and efficiency estimates for MI, DL and IPW methods: Dropout
rate = 19%. Simulation replications, S = 300. Estimates for the full datasets (FD) are
also provided.

Sample
Relative bias Efficiency

size Par FD DL MI IPW FD DL MI IPW

N = 125

β0 0.0223 0.0220 0.0021 -0.0049 0.0440 0.0449 0.0616 1.0428
β1 -0.0645 -0.0645 -0.0653 -0.5605 0.0302 0.0308 0.0268 0.4436
β2 0.0240 -0.0010 0.0015 -0.0010 0.0344 0.0350 0.0295 0.5224
β3 -0.0174 -0.0180 -0.0180 0.0520 0.0011 0.0011 0.0010 0.0156
β4 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0029 0.0049 0.0048

N = 250

β0 0.0224 0.0223 0.0031 -0.0095 0.0291 0.0294 0.0438 0.7780
β1 -0.0335 -0.0345 -0.0341 -0.0185 0.0216 0.0215 0.0188 0.3640
β2 0.0535 0.0420 0.0414 -0.0315 0.0238 0.0244 0.0209 0.3964
β3 -0.0100 -0.0096 -0.0094 0.0900 0.0008 0.0008 0.0007 0.0128
β4 0.0000 -0.0013 -0.0020 0.0000 0.0000 0.0021 0.0030 0.0080

N = 500

β0 0.0206 0.0205 0.0009 0.0189 0.0214 0.0218 0.0313 0.6056
β1 -0.0140 -0.0145 0.0159 0.0830 0.0148 0.0151 0.0135 0.2760
β2 0.0195 0.0150 0.0165 0.3420 0.0168 0.0170 0.0149 0.2948
β3 -0.0028 -0.0028 -0.0030 -0.0060 0.0006 0.0006 0.0005 0.0100
β4 0.0000 0.0004 0.0006 0.0000 0.0000 0.0015 0.0024 0.0004

Shifting focus to Table 2.3, with a 19% dropout rate, the scenario observed in Table

2.2 is slightly changed. Here, MI produced the largest relative bias values for β4 in all

sample sizes while DL produced one largest value for β1(N = 250). Although slightly

different from its performance in Table 2.2, IPW-GEE also here produced most of the

largest bias values. Looking at efficiency, IPW-GEE produced the largest values for all

cases except for β4 (N = 125, 500) which were produced by MI.

In Table 2.4, the trends are largely similar to what was observed in Table 2.2. IPW-

GEE produced the largest relative bias for β1, β2 and β3 for all sample sizes, while DL

produced largest values for β0(N = 125, 500) and β4(N = 500). Regarding efficiency,

again here largest values were produced by IPW-GEE for all cases except for β4, where

they were produced by MI.

Generally, IPW-GEE produced the most biased estimates relative to the other meth-

ods. Similarly, largest efficiency estimates were also produced by IPW-GEE. This was

probably not strange since the IPW-GEE’s standard errors were notably larger, hence

wider 95% confidence intervals. Overall, we notice that FD, DL and MI are very close

to each other in performance while IPW-GEE performs slightly different from the other

methods.
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Table 2.4: Relative bias and efficiency estimates for MI, DL and IPW methods: Dropout
rate = 33%. Simulation replications, S = 300. We also provide estimates for the full
dataset (FD).

Sample
Relative bias Efficiency

size Par FD DL MI IPW FD DL MI IPW

N = 125

β0 0.0223 0.0226 0.0029 -0.0117 0.0440 0.0462 0.0569 1.0444
β1 -0.0645 -0.0610 -0.0648 -0.9815 0.0302 0.0316 0.0251 0.4580
β2 0.0240 0.0185 0.0201 -0.1170 0.0344 0.0351 0.0262 0.5360
β3 -0.0174 -0.0174 -0.0172 0.0480 0.0011 0.0012 0.0009 0.0160
β4 0.0000 0.0000 -0.0076 0.0000 0.0000 0.0050 0.0055 0.0008

N = 250

β0 0.0224 0.0223 0.0033 -0.0092 0.0291 0.0309 0.0408 0.7828
β1 -0.0335 -0.0300 -0.0031 -0.7430 0.0216 0.0225 0.0173 0.3804
β2 0.0535 0.0520 0.0517 0.0840 0.0238 0.0240 0.0189 0.4144
β3 -0.0100 -0.0082 -0.0080 0.0840 0.0008 0.0008 0.0006 0.0136
β4 0.0000 -0.0035 -0.0039 0.0000 0.0000 0.0036 0.0039 0.0008

N = 500

β0 0.0206 0.0206 0.0010 0.0137 0.0214 0.0222 0.0300 0.6180
β1 -0.0140 -0.0135 -0.0145 -0.5405 0.0148 0.0153 0.0128 0.2892
β2 0.0195 0.0160 0.0196 0.3390 0.0168 0.0173 0.0134 0.3076
β3 -0.0028 -0.0022 -0.0080 0.0100 0.0006 0.0006 0.0005 0.0108
β4 0.0000 -0.0030 -0.0029 0.0000 0.0000 0.0026 0.0028 0.0004

2.5 Application

2.5.1 Data: Recovery from severe childhood malnutrition (RSCM)

This section aims at elucidating on the findings of the simulation study conducted in

Section 2.4 using a real data application. The application involves a longitudinal study

of Kenyan children recovering from severe childhood malnutrition (RSCM). The RSCM

study is a clinical trial, which was conducted by KEMRI/Wellcome Trust Research

Programme, Kilifi, Kenya. The data were collected for 1778 children in total, aged 2 to

59 months in 4 different hospitals in Kenya. All were recruited in hospital where they had

been admitted with severe, acute malnutrition. The children were enrolled shortly prior

to discharge and followed up for one year. Children who died or for other reasons (e.g.,

deformity), full or complete sequence measurements were not possible (meaning one or

more variables will always be missing) were excluded, leaving 1138 children who satisfied

the inclusion criteria for this analysis. Participants were allocated using a computer

generated randomization method in permuted blocks of 20, stratified per hospital and

age (younger or older than 6 months). Treatment was concealed and patients, family

and all trial staff were masked to the treatment assignment. The participants were

given the recommended medical care and feeding, and followed for 12 months. After

the initial visit, subjects were followed for 9 more scheduled visits. The primary end-

point was mortality, assessed each for 6 months, then for every 2 months for the last

6 months. Secondary endpoints were nutritional recovery, readmission to hospital, and
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illness episodes treated as an outpatient. Analysis was via intention to treat (Berkley et

al. 2016). At the initial visit, baseline data on health, anthropometry, and socioeconomic

status of probable prognostic importance were obtained by the study teams at each site.

Children received standard care for severe acute malnutrition (SAM) and other medical

conditions according to WHO guidelines for complicated SAM.

In this study, about 40% of the children had one or more anthropometric data points

missing meaning that not all measurements were taken for every child at each scheduled

visit. The proportion of missing data amongst anthropometric variables was 9.8%. The

variables’ names and descriptions are as follows: sex : [1=Male, 0=Female]; age: age in

months calculated from date of enrolment and date of birth; site [1=rural, 2=urban]: the

four hospitals (Kilifi, Malindi, Mombasa and Mbagathi) where the trial was conducted.

We combined Kilifi and Malindi as rural while Mombasa and Mbagathi (Nairobi) were

combined as urban; muac: mid-upper arm circumference in centimetres; zhc: head

circumference; zwei : weight for age; zlen: length for age; zwfl : weight for length. The

anthropometric variables; zhc, zwei, zlen, and zwfl are continuous, in form of Z scores

calculated using the World Health Organization (WHO) macro for STATA (2006) while

muac are raw values. Further trial details may be accessed at Berkley et al. (2016).

2.5.2 Analysis results

In this application, we consider muac to be the outcome of interest in the longitudinal

data analysis. We model muac as a linear function of predictors, say X, accounting for

the correlations among multiple observations within a subject. The outcome muac is not

fully observed, but unlike the simulation study in Section 2.4 where we imposed mono-

tone missingness patterns, here the patterns are non-monotone. The outcome variable

muac has about 8% intermittent missing values, but the predictors are fully observed.

However, this is not a problem since both DL analysis and MI using MCMC method can

handle non-monotone/arbitrary missing values with no issues. In fact, methods designed

for arbitrary missing data patterns can also handle monotone missing data patterns but

the reverse is not true. Some methods are restricted to monotone patterns only.

For prediction regarding measures of malnutrition, information about zhc, zwei, zlen,

and zwfl may be considered extraneous to the regression model, but may be associated

with the muac as a measure of malnutrition, and consequently make the MAR assump-

tion more viable. We incorporated these auxiliary variables in the imputation model

but not in the analytical model.

On the other side, to avoid complexity in the analysis, for IPW-GEE, we first mono-

tonized the arbitrary patterns. We therefore filled in about half of the missing values
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(using mcmc impute=monotone statement in PROC MI, and the default 25 imputa-

tions), then performed the weighted GEE analysis. The results of the methods are

presented in Table 2.5.

Notice here that one does not have to model the correlation structure of the response

model correctly; one only needs to use a working correlation structure to produce consis-

tent estimates, i.e., the GEE approach will produce consistent estimator of even when

the working correlation structure is far from the true structure. However, one conve-

nient way is to use the independence structure which has been shown to maintain high

efficiency in many cases (Zeger, Liang and Albert, 1988). We used the independence

working correlation structure. We note the poor inference for the sex and site param-

eters with IPW-GEE which could possibly be attributed to a mis-specification of the

weight model, or difficulties of handling interim missigness.

Table 2.5: Parameter estimates (Est), standard errors (Std Err) and p-values from MI, DL
and IPW-GEE methods from the RSCM dataset. Missing data; non-monotone 8% on the
outcome variable. Standard errors are in brackets.

DL MI IPW-GEE

Effect Est (Std Err) P-value Est (Std Err) P-value Est (Std Err) P-value

Intercept 10.4749 (0.0751) <.0001 10.4843 (0.0756) <.0001 10.2772 (0.0615) <.0001
sex (F) -0.0500 (0.1031) 0.6280 -0.0510 (0.1040) 0.6242 -0.2361 (0.0865) 0.0063
site (R) -0.2312 (0.0646) 0.0004 -0.2258 (0.0651) 0.0005 -0.1547 (0.0627) 0.0136
age 0.0400 (0.0053) <.0001 0.0400 (0.0053) <.0001 0.0204 (0.0049) <.0001
month 0.2159 (0.0037) <.0001 0.2116 (0.0036) <.0001 0.2943 (0.0048) <.0001
age*sex (F) -0.0027 (0.0076) 0.7225 -0.0025 (0.0077) 0.7427 0.0482 (0.0068) <.0001

Note: F = female R = rural

From the application results, it is clear that the values of DL and MI are closer to each

other than the IPW-GEE. The performance is consistent for all parameters. Although

the values produced by IPW-GEE appear to be slightly different from the other two

methods, they are not very far. In fact, the difference between IPW-GEE and the other

methods is less than 0.09 except for two cases (Intercept, sex). For sex and age-by-

sex interaction, DL and MI estimates are insignificant, while those of IPW-GEE are

significant. Also, the interaction effect in IPW-GEE is opposite in direction to those

produced by MI and DL. The MI and DL methods give consistent interpretation of effects

across all model terms while the IPW-GEE disagreed on sex and the interaction term.

Therefore, we checked the performance of the methods when a month-by-sex interaction

is included, see Table 2.6. We noticed that concerning parameter estimates and standard

errors, the performance is similar to what was observed in Table 2.5. However, in this

table, the month-by-sex interaction is significant for all the three methods, unlike what

was observed for age-by-sex interaction in Table 2.5, where an insignificant interaction

effect was produced by MI and DL when it was highly significant in IPW-GEE.
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Table 2.6: Parameter estimates (Est), standard errors (Std Err) and p-values from MI, DL and
IPW-GEE methods. The RSCM dataset. Missing data; non-monotone 8% on the outcome
variable. Sex-by-time(month) interaction included.

DL MI IPW-GEE

Effect Est (Std Err) P-value Est (Std Err) P-value Est (Std Err) P-value

Intercept 10.4472 (0.0644) <.0001 10.4555 (0.0649) <.0001 9.9785 (0.0514) <.0001
sex (F) 0.0079 (0.0658) 0.9043 0.0084 (0.0662) 0.8995 0.3755 (0.0508) <.0001
site (R) -0.2334 (0.0644) 0.0003 -0.2268 (0.0650) 0.0005 -0.2045 (0.0631) 0.0012
age 0.0387 (0.0038) <.0001 0.0388 (0.0038) <.0001 0.0450 (0.0034) <.0001
month 0.2240 (0.0051) <.0001 0.2194 (0.0051) <.0001 0.3064 (0.0070) <.0001
month*sex (F) -0.0168 (0.0073) <.0211 -0.0159 (0.0072) 0.0281 -0.0253 (0.0097) 0.0091

Note: F = female R = rural

Further, the inclusion of both age-by-sex and month-by-sex interaction terms in the

model did not yield interpretation contrary to what could generally be inferred from

Tables 2.5 and 2.6, for all cases except for sex by IPW-GEE. Here, the sex effect is

insignificant while it has been significant in Tables 2.5 and 2.6. Results that include the

two interaction terms are presented in Table 2.7.

Table 2.7: Parameter estimates (Est), standard errors (Std Err) and p-values from MI, DL and
IPW-GEE methods. The RSCM dataset. Missing data; non-monotone 8% on the outcome
variable. Sex-by-time(month) and age-by-sex interactions included.

DL MI IPW-GEE

Effect Est (Std Err) P-value Est (Std Err) P-value Est (Std Err) P-value

Intercept 10.4326 (0.0772) <.0001 10.4413 (0.0778) <.0001 10.2429 (0.0624) <.0001
sex (F) 0.0380 (0.1099) 0.7292 0.0376 (0.1109) 0.7345 -0.1620 (0.0898) 0.0712
site (R) -0.2322 (0.0645) 0.0003 -0.2257 (0.0651) 0.0005 -0.1643 (0.0625) 0.0086
age 0.0400 (0.0053) <.0001 0.0400 (0.0053) <.0001 0.0197 (0.0049) <.0001
month 0.2240 (0.0051) <.0001 0.2194 (0.0051) <.0001 0.3090 (0.0070) <.0001
age*sex (F) -0.0026 (0.0076) 0.7321 -0.0025 (0.0077) 0.7423 0.0489 (0.0068) <.0001
month*sex (F) -0.0168 (0.0073) 0.0212 -0.0159 (0.0072) 0.0281 -0.0284 (0.0096) 0.0032

Note: F = female R = rural

Even after varying the assumptions in the analysis model, we note that the performance

in Tables 2.5 – 2.7 was consistent. That is, MI and DL are closer or equal to each other

compared to IPW-GEE with any of the aforementioned methods. Overall, we note that

there is a gain in using MI and DL (and any of the two can be used) compared to

IPW-GEE. For correct inference from IPW-GEE one needs to pay attention in correct

specification of the weight model and the handling of interim missingness if present.

2.6 Discussion and conclusion

We assessed the performance of IPW-GEE and MI in handling incomplete continuous

outcomes. The results of the two methods were also checked against the DL analysis

method, which is valid under the MAR assumption. First, dropouts were created at dif-

ferent rates on simulated datasets of various sample sizes and the three methods applied
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to these incomplete datasets. Then, the same methods were used on the RSCM dataset

as an application to real data. In this paper, the dropout rates were diverse, ranging

from 8% to 33% in order to investigate the performance of the methods when different

amount of data are missing.

Generally, the results showed that all the methods can be satisfactorily used for incom-

plete continuous outcomes with the assumption of a MAR mechanism.

Specifically, when we consider both relative bias and efficiency, a better performance

was observed for MI and DL over IPW-GEE in the simulation study. This performance

was, however, somehow expected since as reported in Schafer and Graham (2002), IPW-

GEE method can be less powerful compared to a Bayesian approach like the MI. Also,

IPW-GEE is more commonly used in marginal models for discrete outcomes than con-

tinuous outcomes data (Fitzmaurice, Molenberghs and Lipsitz, 1995; Robins, Rotnitzky

and Zhao, 1995). The comparative simulation study together with the real application

results tend to agree with this view.

Considering the performance of MI and DL in the simulation study, we noticed that

they performed very close to each other. This scenario can happen because as reported

by Collins, Schafer and Kam (2001), MI and DL analysis can produce similar results

when data are missing on the outcome and the same information is used for both mod-

els. We also observed from the results that the DL and MI estimates were close to the

FD estimates. It has been found by other researchers that DL can produce unbiased

estimates that are comparable to those of the full data analysis (Kadengye et al., 2012;

Molenberghs and Verbeke, 2005). However, there are situations where MI can be more

justified (Molenberghs and Verbeke, 2005). In this simulation study, we did not find

proof to confidently claim that MI was better than the DL method. An important note

is that the use of direct likelihood methods is attractive to analyze incomplete data and

might be presented as the analyst’s ideal option, but, such methods have computational

complexity particularly considering the longitudinal nature of the data. Care has to be

taken in the way DL is implemented.

On the RSCM data application, it was also observed that the MI and DL analysis pro-

duced parameter estimates and corresponding standard errors equal or very close to each

other.

Generally, our results suggested that, although IPW-GEE was traditionally found to

be attractive and specific to longitudinal discrete binary outcomes, it may also be used

for continuous outcomes, subject to MAR dropouts. However, it may be slightly less

efficient compared to DL and MI. An interesting observation is on the standard errors.

IPW-GEE (in the application) produced slightly lower standard errors compared to the

two other methods. This performance opens up IPW-GEE for further investigation un-

der continuous outcome scenario through carefully planned simulation studies combined

with theoretical examination covering wider possible alternatives and assumptions.
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Chapter 3

A Simulation Study Comparing

Weighted Estimating Equations

with Multiple Imputation Based

Estimating Equations in the

Analysis of Correlated Count

Data

Abstract

A frequent statistical problem with the analysis of longitudinal data is that subjects

may drop out of the study before the end of the follow-up period. This is in addition

to the patent feature that multiple observations taken from the same individual are

correlated. If the mechanism leading to dropout or missing data in general is not ignor-

able, one has to be careful for biased estimates of the parameters of interest. However,

if the dropout process is ignorable and maximum likelihood or Bayesian estimation is

chosen, then unbiased estimators follow (Little and Rubin 2014). This paper focuses

on dropouts missing at random for longitudinal count data. Using a simulation study,

semi-parametric methods, namely weighted estimating equations and multiple impu-

tation followed by generalized estimating equations are compared. Over time, several

papers have been written regarding this comparison Clayton et al., 1998; Beunckens,

Sotto and Molenberghs, 2008; Satty, Mwambi and Molenberghs, 2015) but focus was
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mostly on binary data. Results show that multiple imputation based generalized estimat-

ing equations outperforms the weighted generalized estimating equations in estimating

regression coefficients.

3.1 Introduction

Longitudinal data are often encountered in epidemiological, social sciences and medical

problems to address various research questions. However, a challenge may arise in the

analysis if subjects drop out of the study before the end of the follow-up period. A

subject is called a dropout when the response variable is observed through to a certain

visit and is missing for all subsequent visits (Diggle et al., 2002; Fielding, Fayers and

Ramsay, 2009; Carpenter and Kenward 2013). This dropout, and the fact that the ob-

servations themselves are bound to be correlated have to be taken into consideration for

valid inferences. In the presence of dropout, appropriate statistical methods have to be

chosen since some methods are suitable only for certain missing data mechanisms. It

is therefore imperative to consider the mechanism that govern the missingness. Rubin

(1976; 1987) and Little and Rubin (2014) classified these mechanisms into three such

that: data is said to be missing at random (MAR) if conditional on observed outcomes

and probably on the design factors, the distribution of missingness does not depend on

unobserved data. Missing completely at random (MCAR), if the missingness distribu-

tion is independent of both observed and unobserved data and they are missing not at

random (MNAR) for any violation of MAR, so that the it may depend on the unob-

served data and possibly on covariates and/or observed outcomes.

Correlation may arise when an outcome is measured repeatedly over a period of time

on the same subject (e.g., longitudinal studies) or when multiple outcomes taken one or

more times but on the same subject, such as in clinical trials for multiple investigative

endpoints. The key idea in longitudinal data analyses is that a correction structure

is necessary to account for the within-subject correlations (i.e., the correlated errors).

A popular way to deal with correlation is the use of linear mixed models to analyze

continuous longitudinal data (Diggle et al., 2002; Molenberghs and Verbeke, 2005; Ver-

beke and Molenberghs, 2009) and generalized linear mixed models (GLMMs; Zeger and

Karim, 1991; Breslow and Clayton 1993; Wolfinger and O’onnell, 1993; Molenberghs and

Verbeke, 2005) for analysis of discrete longitudinal data. In GLMMs, individual-specific

random effects are incorporated to explicitly acknowledge the correlation induced by

the between-subject variation. GLMMs are useful in the accommodation of nonnor-

mally distributed responses where a nonlinear link is specified between the response

mean and the predictor variables which includes subject specific random effects. Gen-

erally, they rest upon two building blocks: random effects to account for individual to
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individual variability and generalized linear models (GLM; McCullagh and Nelder, 1989)

for nonnormal data using a link function appropriate for the exponential family member

(Bolker et al., 2009).

Initially, advanced methods to deal with dropout were focused mostly on continuous

longitudinal data but over time work on discrete longitudinal data, in particular counts

and multinomial data types is gaining momentum. Discrete binary or Bernoulli data

have also been studied extensively (for example, Preisser, Lohmann and Rathouz, 2002;

Schafer, 2003; Ali and Talukder, 2005; Molenberghs and Verbeke, 2005; Smith and

Smith, 2006; Beunckens, Sotto and Molenberghs, 2008; Yi, He and Liang, 2011a; Yi,

Zeng and Cook, 2011b; Goncalves, Cabral and Azzalin, 2012).

In the analysis of discrete data, the normality assumption in the model is no longer

valid, and one has to look for an alternative route. This may call for specification of a

full joint distribution for the set of measurements Yi = (Yi1, Yi2, ..., Yini) per subject in

the study. Consequently, the need to specify all moments ensues (Verbeke, Molenberghs

and Rizopoulos, 2010). In some cases, when observations are not taken at constant time

points for all subjects or where we have longer sequences, specification of a full likelihood

and inferences on the parameters may be burdensome. In response, Liang and Zeger

(1986) proposed so-called generalized estimating equations (GEEs). They are a common

approach to fit marginal models to longitudinal data, particularly for discrete outcomes

(Preisser, 2013). These models allow for the correlation structure in the data due to

repeated observations on the same subject over time. They require only the correct

specification of a univariate marginal distribution and adoption of an assumed working

correlation structure. However, GEE based inferences are only valid when data are

missing completely at random (Liang and Zeger, 1986). Typically, frequentist methods

require the stronger MCAR assumption to yield valid inferences. Robins, Rotnitzky

and Zhao (1995) proposed a class of weighted estimating equations (hence WGEE) that

make the method valid under the MAR assumption provided that a regression model for

dropout is correctly specified even if the repeated measures model is misspecified. From

the estimated dropout probabilities, weights are formed and applied to GEE to address

the potential bias due to dropout. This approach has so far been studied most for binary

outcomes while count data has received less attention. Alternatively, Schafer (2003)

proposed the use of multiple imputation (MI) for the missing response values from a fully

parametric model then analyzed by a method of choice, whether parametric or not. He

argues that MI does interact well with a variety of semi and nonparametric estimation

procedures like the marginal GEE which then leads to MI-GEE. See Carpenter and

Kenward (2013) for a discussion of nonparametric MI. In this paper, we focus on the

comparison of WGEE with MI-GEE in the analysis of correlated longitudinal count

data.
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In Section 3.2, we introduce the model for correlated longitudinal data and describe

the notation used in the paper. The dropout concept is also described here. Section

3.3 deals with the statistical methods used for analysis in the paper. We describe a

simulation study, analysis procedures involved, and results in Section 3.4. Section 3.5

draws conclusions about the paper and point out possible areas for further research.

3.2 Model formulation and dropout concepts

3.2.1 The model

In this study, we are interested in longitudinal data from a discrete distribution. In par-

ticular, we are dealing with repeated counts from a multivariate Poisson distribution.

Although univariate discrete distributions have been studied extensively, multivariate

counterparts have not received attention to the same scale. This is due to the compu-

tational complexity involved, specifically regarding the calculation of the probabilities.

The Poisson distribution falls in this category. Researchers have thus proposed various

ways to analyse correlated count data. One approach is the generalized linear mixed

model (GLMM). The GLM generalizes the linear regression model where the linear com-

ponent which is expressed in terms of covariates is related to the response variable via

a link function (e.g., the logit link function for binary data and the log link for count

data). For GLMMs random effects have to be included in the linear predictor.

Normally, repeated measures within a subject are by design expected to show correlation

compared to observations between subjects. This correlation can be captured by means

of random effects. Hence, the GLMM is a candidate model. Suppose we have repeated

counts, Yij , j = 1, 2, . . . ni from subject i = 1, 2 . . . N . We can express the GLMM as

ln(λij |bi) = X ′ijβ + Z ′ijbi, (3.1)

whose conditional mean model would therefore be

E[Yij |bi] = λij |bi = exp(X ′ijβ + Z ′ijbi), bi ∼ N(0, G) (3.2)

where Yij ∼ Pois(λij |bi) is the conditional distribution of the jth observation given the

random effects vector bi for a design vector Zij , with a rate parameter λij . The param-

eter β is a vector of regression coefficients of interest, with fixed covariates Xij .

Note that throughout this paper models will be considered conditional on the random

effects vector bi or marginal with respect to random effects vector bi. Also, both condi-

tional and marginal models are conditional on the covariate vector Xij but for simplicity

Xij may be suppressed from notation. Furthermore, we assume that the covariates are
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independent of the random effects. Inference on this model for count data is based

on the marginal likelihood (3.3) obtained by integrating the random effects out of the

conditional likelihood of every subject such that

L(β,Θ; y) =

∫
f(yi|bi)f(bi)dbi, (3.3)

where f(yi|bi) is the conditional distribution of the response measure given the random

effect, f(bi) is a distribution of the random effects and Θ denotes unknown parameters

of variances/covariances. Integrating out random effects induces a marginal correlation

between responses through the same subject (Laird and Ware, 1982). The estimates

are thus obtained by integrating out the random effects and maximizing the marginal

likelihood. These parameter estimates are those that maximise the marginal likelihood

function. Unfortunately, closed forms do not exist for all, but at least for some models

(Schabenberger, 2005). Molenberghs et al. (2010) derived the marginal mean and

variance specific to Poisson data such that

µij = ln(λij) = Xijβ + 0.5Z ′ijDZij

Var(Yi) = Mi +M ′i(e
ZiDZ

′
i −Ki)Mi (3.4)

where Ki is a matrix of 1s and Mi is a diagonal matrix with the elements µij along the

diagonal.

3.2.2 The dropout

In the complete data vector Yi = (Yi1 . . . Yini)
′, i = 1, . . . , N , Yij is the jth response for

a subject i and a complete covariate vector Xij at the observation level. Let Ri be a

(ni × 1) binary random vector where Rij = 1 if the ith subject’s response is observed

at time j and 0 otherwise. With the occurrence of missing values, we will view the

complete data set as Yi = (Y o
i , Y

m
i ), where Y o

i denotes the set of the actually observed

partition and Y m
i is for the missing data partition. An individual’s full data information

is jointly distributed as:

f(yi, ri|Xi, θ, ψ) = fy(yi|Xi, θ)fr(ri|yi, Xi, ψ), (3.5)

where fr(ri|yi, Xi, ψ) is referred to as the missing data model whose parameters are con-

tained in ψ. Note that ri is a vector of the observed value of the missingness indicator

vector Ri for the ni repeated measurement occasions for individual i. The ψ parameters

are generally unknown to the analyst and commonly have no intrinsic scientific value.

The full data model of interest is parameterized by θ.
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The distribution of R may depend on Yi. In probability terms we may define these distri-

butions such that the data is said to be missing at random (MAR) if f(Ri | Y 0
i , Y

m
i , Xi, ψ) =

f(Ri | Y 0
i , Xi, ψ). Missing completely at random (MCAR), if f(Ri | Y 0

i , Y
m
i , Xi, ψ) =

f(Ri | Xi, ψ), and they are missing not at random (MNAR) for any violation of MAR,

so that f(Ri | Y 0
i , Y

m
i , Xi, ψ) = f(Ri | Y 0

i , Y
m
i , Xi, ψ). Parameter separability means

that the parameters θ and ψ are distinct in the sense that the joint parameter space,

Ω(θ, ψ) = Ω(θ) × Ω(ψ). If this holds, we make use of likelihood inference, and the

missing data mechanism is MAR, then so-called ignorability assumption (Rubin, 1976;

Little and Rubin, 2014) holds. The consequence of ignorability is that then the missing

data mechanism does not need to be modelled explicitly. Evidently, because MCAR is

a special case of MAR, it also falls under ignorability. For MNAR mechanisms, or when

the mechanism is MAR but frequentist inference is used, then ignorability cannot be

invoked automatically.

3.3 Statistical methods for handling incomplete correlated

data

3.3.1 Generalized estimating equations

GEEs provide a means to conveniently analyze repeated count data with reasonable

statistical efficiency (Liang and Zeger, 1986; Smith and Smith, 2006). The method esti-

mates model parameters by iteratively solving a system of equations based on extended

quasi-likelihood where the extension to the generalized linear model is towards incor-

porating correlations. It focuses on the correct specification of the mean, thus avoiding

full modelling of the association structure while still obtaining valid inferences. The

marginal expectation E[Yij ] = µij can be modelled in terms of covariates through some

link function, g(µij) = x′ijβ. Here, µij is the mean response of subject i at time j and β

is a vector of regression parameters. On the other hand, the marginal variance depends

on the marginal mean such that Var(Yij) = φν(µij), where φ is a scaling parameter.

Following Liang and Zeger (1986); Molenberghs and Verbeke (2005) and Birhanu et al.

(2011), the generalized estimating equations for the vector β have the form:

S(β) =

N∑
i=1

∂µi
∂β′

V −1
i (yi − µi) = 0, (3.6)

where Vi = A
1
2
i Ci(α)A

1
2
i is a covariance matrix of Yi in which Ai is a diagonal matrix

of the marginal variances and Ci(α) expresses the marginal correlation between the re-

peated measures. Here, α is a vector of nuisance parameters which may be handled
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by the introduction of a working correlation structure. such as independence, autore-

gressive of the first order (AR(1)), exchangeable, or unstructured. In the exchangeable

structure, the correlations between any two measurements are assumed to be the same

regardless of the time from one period to another. In the unstructured case, every

pair of measurements is given its own association parameters. On the other hand, for

AR(1) the correlations decline exponentially with distance between the measures, i.e.,

Corr(Yi,j , Yi,h) = ρ|j−h|. Under independence, the identity matrix serves as the working

correlation matrix.

When the marginal mean, µi is correctly modelled, then under mild regularity conditions

the estimator β̂, solution to (3.6), satisfies:

β̂ ∼ AN(β , Var(β̂)), with Var(β̂) = Ψ−1
0 Ψ1Ψ−1

0 , (3.7)

where,

Ψ0 =

(
n∑
i=i

∂µ′i
∂β

V −1
i

∂µi
∂β′

)
and Ψ1 =

(
n∑
i=i

∂µ′i
∂β

V −1
i Var(yi) V

−1
i

∂µi
∂β′

)
.

(3.8)

3.3.1.1 Weighted generalized estimating equations

When data are incomplete, GEE suffers bias from its frequentist nature and it is gen-

erally valid only under the strong assumption of MCAR (Birhanu et al., 2011). As

a remedial measure, the weighted generalized estimating equations (WGEE; Robins,

Rotnitzky and Zhao, 1994; 1995), effectively remove bias and provides valid statistical

inferences to regression parameter estimates for marginal models in the incomplete lon-

gitudinal data scenario by allowing it to be MAR.

The idea of the weighting method is to weight the contributions from subjects with

different missingness patterns to the usual GEE formulation by the inverse of the proba-

bility that a subject drops out at the time they dropped. Consistent with the definition

of the binary indicator variable Rij in Section (3.2.2), such a weight can be written as:

ωij ≡ P (Di = j) =

j−1∏
t=2

[1− P (Rit = 0|Ri2 = . . . = Rit−1 = 1)]

× P (Rij = 0|Ri2 = . . . = Rij−1 = 1)I{j≤ni}, (3.9)
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where j = 2, 3, . . . , ni+1. Here, Di is a dropout indicator for the time at which a subject

drops out, i.e., Di =
∑ni

j=1Rij+1, and whose realization is di. Clearly, ωi2 = P (Ri2 = 0)

because of the assumption that Ri1 = 1 is a sure event since we assume that the all

subjects are observed on the first time point so that 2 ≤ Di ≤ ni + 1. This implies

Di = ni + 1 represents a complete sequence of observations. Thus, in the WGEE

approach, a consistent estimate of β may be obtained from

S(β) =
N∑
i=1

W−1
i

∂µi
∂β′

(A
1
2
i RiA

1
2
i )−1 (yi − µi) = 0, (3.10)

where Wi = diag{Ri1ωi1, . . . , Riniωini}, a diagonal matrix of event specific weights.

The weight is given by ωij when Rij = 1 and 0 otherwise. Equivalently, following

Molenberghs and Verbeke (2005),

S(β) =
N∑
i=1

ni+1∑
d=2

I(Di = d)

ωid

∂µi
∂β′

(d)(A
1
2
i RiA

1
2
i )−1(d) {yi(d)− µi(d)} = 0, (3.11)

where yi(d) and µi(d) are respectively the first d− 1 elements of yi and µi.

The square root of the diagonal matrix of the variance matrix, say S(β̂) yields the

standard errors. GEE provides two versions of the standard errors i.e., model based and

empirical or robust standard errors. Now, although parameter estimates under GEE

are valid even if the structure of the covariance matrix is mis-specified, but in such a

case the standard errors will not be good and some data based (empirical) adjustments

need to be done for more reliable standard errors. In this study, we used the empirical

standard errors.

3.3.1.2 Multiple imputation-generalized estimating equations (MI-GEEs)

Under multiple imputation (Rubin, 1978; 1987), each missing value in the data is re-

placed independently by a vector of m ≥ 2 plausible values drawn from the conditional

distribution of the unobserved values given the observed ones. The variability among the

m imputations reflects the uncertainty with which the missing values can be predicted

from the observed ones and this is captured by the conditional distribution. After MI, m

complete data sets are thus created (imputation stage) each of which can be analyzed by

standard complete data methods (analysis stage). Each analysis will produce regression

coefficients and corresponding standard errors. These results are then combined into a

single inference (pooling stage) using Rubin’s (1987) simple rules, thus combining the

variation within and across the m imputed data sets.

Notice that MI can be highly efficient even for a smaller value of m provided the propor-

tion of missing values is not exceedingly high. According to Schafer and Olsen (1998),
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m = 3 to 5 can suffice for adequate results. However, nowadays larger numbers of im-

putations do not present a problem given the highly efficient computational resources

available. Suggestions have been made regarding the choice of number of imputations.

See, for example, Schafer (1997); White, Royston, and Wood (2011).

Let β̂l denote the estimate of a parameter of interest β from the lth imputed data set,

then the overall estimate from MI is given by

¯̂
β =

1

m

m∑
l=1

β̂l (3.12)

and the variance associated with
¯̂
β is thus

V = W +

(
1 +m

m

)
B, (3.13)

where

W =
1

m

m∑
l=1

Wl and B =
1

m− 1

m∑
l=1

(
β̂l −

¯̂
β
)(

β̂l −
¯̂
β
)′
. (3.14)

Here, W measures the within-imputation variability while B measures the between-

imputation variability.

As Schafer (2003) stated, MI can be used to create the imputations from a fully para-

metric model. Then, one analyzes the imputed datasets by a semi-parametric or non-

parametric estimation procedure to achieve greater robustness. Paik (1997); Beunckens,

Sotto and Molenberghs (2008); Satty, Mwambi and Molenberghs (2015) used MI to fill

in missing values for GEE analysis in data that are MAR but for binary outcomes. So

GEE can be used after multiple imputation, leading to a hybrid method named MI-GEE

(Schafer, 2003). Typically, the missing data mechanism can be further ignored given

that the MAR condition holds.

In a simulation study, Beunckens, Sotto and Molenberghs (2008) showed that MI-GEE

has good robustness properties against model misspecification compared to WGEE for

longitudinal binary data. Satty, Mwambi and Molenberghs (2015) showed that MI-GEE

perfomed better when compared to WGEE and GLMM for longitudinal binary data in

the presence of dropout. In the present study, we consider count data.

3.3.2 Working correlation structure in GEE

Keeping with previous notation of GEE, if Ci(α) is the true correlation matrix of Yi,

then Vi is the true covariance matrix of Yi. Usually, the unknown parameters of the

working correlation matrix are estimated in an iterating procedure using the current
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value of parameter vector β to compute approximate functions of the Pearson residuals:

rij =
yij − µij√
νi(µij)

.

Selecting an appropriate working structure is pertinent. If the structure is correctly

specified, the GEE method yields a best asymptotically normal (BAN) estimator of mean

parameters (Gosho, 2014). We note that consistent estimates of regression coefficients β

and their standard errors are yielded even with misspecification of the structure. This is

because loss of efficiency diminishes as the number of subjects in a study becomes large.

However, Rotnitzky and Jewell (1990); Fitzmaurice (1995); Sutradhar and Das (2000);

Wang and Cary (2003) indicate that relative efficiency of parameter estimates in GEE

is lowered when the correlation structure is misspecified. Because of these reasons for

potential loss of efficiency, researchers have developed interest in statistical techniques for

selecting a suitable working correlation structure. Some of these strategies include: the

quasi-likelihood under the independence model criterion (QIC; Pan, 2001); correlation

information criterion (CIC; Hin and Wang, 2009); the Rotnitzky and Jewell criterion

(RJC; Rotnitzky and Jewell, 1990) and DEW (Gosho, Hamada and Yoshimura, 2011).

Below we briefly describe some of these techniques.

Rotnitzky and Jewell (1990) proposed a selection approach where they define some test

statistics as follows (noting that Ψ0 and Ψ1 are as previously defined in (3.8)):

Φ0 =
1

N
Ψ0, Φ1 =

1

N
Ψ1 and Φ = Φ−1

0 Φ1.

They further checked the adequacy of the working correlation structure and noted that

when a working correlation structure is correctly specified then Φ should be close to

the identity matrix. The idea is that if the working correlation structure is close to

the true structure, the model based estimate Φ̂0 of the covariance matrix of β̂ and the

robust (‘sandwich’) estimate Φ̂1 should be similar, so that, Φ = Φ−1
0 Φ1 should be close

to an identity matrix. Based on the proposal, Hin, Carey and Wang (2007) redefined

the technique:

RJC(C) =

[(
p− tr(Φ)

p

)2

+

(
p− tr(Φ2)

p

)2
] 1

2

, (3.15)

where tr defines the trace of the matrix and p is the rank of the model.

Pan (2001) proposed a selection criterion based on quasi-likelihood as an improvement

to the likelihood reliant Akaike’s information criterion (AIC). Following the model spec-

ification as in previous sections, E(Y ) = µ and Var(Y ) = φν(µ). But for simplicity
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of notation, let us suppose that φ is known and thus ignored in the quasi-likelihood

function. Now, suppose we have a true model M1 and a candidate model M2 and each

model can be indexed by the parameter vector β. The two models can be separated by

using the Kullbeck-Leibler distance (Kullbeck and Leibler, 1951), also known as cross

entropy. Pan managed the separation and subsequently obtained its approximation by

a Taylor series expansion to the second order partial derivative. By circumventing the

first order partial derivative which is difficult, Pan expressed the quasi-likelihood under

independence such that

QIC(C) = −2
N∑
i=1

ni∑
j=1

Q [β; (Yij , Xij)] + 2tr
[
ΩindVar(β̂)

]
. (3.16)

Hin and Wang (2009) proposed a selection criterion that improves the performance

of Pan’s (2001) QIC. They ignore the first part of QIC, (3.16) to compare different

correlation structures. The first part is the sum of quasi-likelihood functions for the

independent observations in the longitudinal data. It does not depend on the specified

correlation matrix. The authors proposed using the second part of (3.16) which denotes

the penalty term in QIC. It can better reflect the efficiency impairment of parameter

estimation. Their selection technique is expressed as

CIC(C) = 2tr{ΩindVar(β̂)}. (3.17)

Gosho, Hamada and Yoshimura (2011) proposed a criterion that measures the discrep-

ancy between the covariance matrix estimator and the specified working correlation

matrix. It evaluates the appropriateness of the working correlation structure. Gosho

(2014) calls this criterion DEW and we will stick to the nomenclature. Gosho’s technique

selects the criterion that minimizes (3.18).

DEW(C) = tr

( 1

N

N∑
i=1

Var(yi)

)(
1

N

N∑
i=1

Vi

)−1

− I

2

, (3.18)

where I is the identity matrix.

It is the very concept of GEE that the working correlation structure can be misspecified,

otherwise we are back to conventional modelling of this structure. Nonetheless, there is

indeed some value in having a reasonably well specified structure, for efficiency reasons,

but the way it is introduced, and used by many people, is almost as if it needs to be

correct, defying the very concept of GEE.
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3.4 Simulation study

3.4.1 Data generation

To investigate the comparative performance of WGEE and MI-GEE, we generated re-

peated correlated counts from a Poisson distribution. Repeated measures within a sub-

ject by design are expected to show strong correlation compared to observations between

subjects. The correlation structure of the longitudinal data can be modelled by means

of random subject effects. The subject-specific effects account for the degree of subject

to subject variation that exists in the population. In this case, the generalized linear

mixed model is a candidate. Note here that we generate the data from a model that

conforms to a random effects formulation, although the final target is a marginal process

(GEE). For the specific case of count data (as will be seen), all parameters except the

intercept will retain their meaning. This intercept can easily be adjusted to have the

intended marginal interpretation.

In the initial simulations, complete longitudinal count data were generated. Then 500

samples of different sizes were randomly drawn. We assumed that the subjects are

equally randomized into two treatment (Ti) arms (coded treatment = 1 and placebo =

0). We also assumed that the subjects were followed up for four time points, timej , j =

1, 2, 3, 4. In essence, we generated longitudinal data following a generalized linear model

with a linear predictor of the form (3.1) and whose conditional mean model would con-

sequently be:

E[Yij |bi] = λij |bi = exp(β0 + β1Ti + β2timej + β3Ti
∗timej + bi), (3.19)

where the outcome Yij ∼ Pois(λij |bi), β = (β0, β1, β2, β3) and bi ∼ N(0, σ2) are i.i.d

random effects to account for variability between subjects. The parameter values used

in the simulations are β0 = 2.3, β1 = 0.1, β2 = −0.3, β3 = 0.2 and bi are drawn as i.i.d

N(0, 0.52). The sample sizes studied were N = 100 and 250.

Then for each of the simulated complete datasets, dropout was introduced assuming an

MAR mechanism. We simulated dropout after the first time point. Threshold values

were set such that a subject dropped if they fulfilled the criteria resulting into four miss-

ingness patterns: dropout at second time point; dropout at third time point; dropout at

fourth time point or no dropout implying a complete observation. This induced approx-

imately 12%, 28% and 45% dropout rates depicting low, medium and high missingness

rates. A monotone missingness pattern was adopted such that if a subject dropped at

time j then Yij′ will be missing for all j′ > j ≥ 2. In the simulation study, we assumed

a dropout model where subjects whose outcome met some dropout criterion would miss

at post baseline time point 2, 3 or 4, that is, for j > 1, dr = yj − y(j−1), j = 1, 2, 3, 4.
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This yielded some negative and positive values. We randomly selected 3 values as our

cut-off points such that: if dr < 1, dr = 0 or dr > 1 then yj misses this consequently

causing the 12%, 28% and 45% dropout rates respectively. The dropout at measure-

ment occasion j, depended on the observed value at j − 1. Ideally, this would mean

the dropout followed a MAR mechanism. However, we did not in any way attempt to

substantiate the mechanism from the data. Hence we cannot be completely certain that

our model was a good fit to the true missingness mechanism.

3.4.2 Analysis procedures

All calculations were carried out in the SAS system for windows, version 9.3. The data

were first analyzed as a generalized linear mixed model. However, to recover marginal-

ized or population averaged parameters, one needs to integrate out the random effects.

SAS procedures NLMIXED and GLIMMIX can be used to directly fit nonlinear GLMMs.

The analysis is valid as long as the missing values are MAR and the mild regularity con-

ditions for ignorability are satisfied. The aforementioned SAS procedures incorporate

random effects in the model and so allow for subject-specific and population-averaged

(marginal) inference. They are largely equivalent but for the purpose of the current pa-

per, procedure GLIMMIX with adaptive quadrature was adequate. PROC GLIMMIX

fits statistical models to correlated data where the response variable is not necessarily

Gaussian, i.e., GLMMs. Like linear mixed models, the GLMMs assume Gaussian ran-

dom effects. In the GLIMMIX procedure one selects the distribution of the response

variable conditional on normally distributed random effects (in the absence of which it

fits generalized linear models).

For all cases, 20 quadrature points are chosen and the Newton-Raphson technique used

for optimization. Here we agree with Molenberghs et al. (2010) who noted that adap-

tive quadrature and Newton-Raphson iteration produce the most reliable results when

contrasted with non-adaptive quadrature and quasi-Newton technique.

Another SAS procedure, GENMOD fits generalized linear models. Additionally, the

procedure fits models to correlated responses by the GEE method. It specifies the re-

sponse distribution in its “DIST” option and a link function in the “LINK” option. It

can be used to fit models with most of the correlation structures as discussed in Liang

and Zeger (1986) for GEEs. In this study, the GEE results are based on the compound

symmetry for the working correlation structure and empirical standard errors.

MI requires coherence between the imputation and analysis models. This means that

the imputation model must contain at least all the variables that are intended to be

included in the analysis model. This may include all transformations and possible in-

teractions to variables that are needed in the intended tests. Alternatively, a bigger
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model can be chosen for the imputation than the analysis model. This may be achieved

by including auxiliary variables, that we feel may predict the missingness or are related

to the missing variable(s). The auxiliary variables are not of interest in the analysis

model but are included in the imputation model to increase the estimation power as

well as try to make the MAR assumption more plausible. In our study, all variables

used in the imputation model were also used in the analysis model. Here, we created

SAS code to generate predictions for observations with missing values using coefficients

from a Poisson model. Then using these estimates as starting values we generated the

imputations. This procedure reduced computing times considerably since the starting

values were closer to the final estimates. After this, we used PROC GENMOD for the

GEE part. While MI-GEE uses imputations to fill in the missing data, in WGEE we

used weights which were generated as the inverse of the probability of dropout (taken

from a dropout model). We adopted the WGEE macros as described in Molenberghs

and Verbeke (2005) In particular, we employed the macro “DROPOUT” to estimate the

probabilities for dropout and the macro “DROPWGT” to pass weights to be used in

WGEE. We refer the reader to Molenberghs and Verbeke (2005) for a detailed review

of WGEE and its application. But recently a new GEE procedure in SAS/STATr13.2,

PROC GEE (Lin and Rodriguez, 2015) implements the weighted GEE method directly.

However, at the time of preparing this manuscript the software was not available to the

authors hence the reason why GEE was implemented using Proc GENMOD in SAS.

Notice that here we used a likelihood based and a quasi-likelihood method i.e., the

GLMM and the GEE. These approaches are based on two different formulations. In

GLMMs the correlation between repeated observations is modelled through the inclu-

sion of random effects, conditionally on which the observations are assumed to be inde-

pendent. On the other hand, this association is modelled through a working correlation

matrix for the GEE method. On this note, the integration of the GLMM was necessary

in order to have a marginal model. Again we note that the relationship between the

parameter estimates βR from a random effects model and βM from a marginal model

(GEE) is not straightforward. These two parameter vectors have completely different

interpretations. The random effects parameter estimates need to be adjusted so as to

have marginal interpretation that can be comparable to their GEE correlatives.

From (3.19) we see that

ln(E[Yij |bi]) = β0 + β1Ti + β2timej + β3Ti
∗timej + bi

= λ(X,β) + bi, (3.20)
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where the random vector bi is independent of X. We find the marginal mean for Y ∼
Poi(λ) such that

E[Yij ] =

∫
eλ(X,β)+bidF (bi). (3.21)

If
∫
ebidF (bi) exists and is finite, the marginal mean equals the conditional mean plus

a constant. The constant depends upon the parameters indexing the distribution of

the random effects and it is captivated into the intercept of the marginal mean model,

provided λ(X,β) is a linear transformation (Ritz and Spiegelman, 2004). Therefore, for

Y ∼ Poi(λ|bi), where bi ∼ N(0, σ2
b ) with CDF Fb(bi), the marginal mean can be defined

by (3.22), i.e., integrating out individual heterogeneities:

E[Yij ] =

∫ ∞
0

eλ+bidF (bi) = eλ+σ2
b/2. (3.22)

Suppose λ(X,β) = β0C + Xβ, then the marginal mean function is β0M + Xβ, where

β0M = β0C + σ2
b/2.

We asses the performance of the GLMM, WGEE and MI-GEE in terms of bias, efficiency

and mean squared error (MSE). We define bias as the absolute difference between true

value and the estimate from incomplete data method; i.e., Bias = β − ¯̂
β, where

¯̂
β is

the average of the estimates from S = 500 simulation replications of the dataset. The

“true” value refers to the coefficient (β) inference from the complete datasets, before

the introduction of dropouts. Efficiency is the variability of an estimate around the true

population parameter. Here, we compute it as the average width of the 95% confidence

interval- which is usually approximately four times the magnitude of the standard error.

Finally, the mean squared error is defined as: MSE = Bias2(
¯̂
β) + Var(

¯̂
β). Smaller values

of these assessment criteria are preferred.

3.4.3 Results

Simulation results of GLMM, WGEE and MI-GEE are presented in Table 3.1. Results

are presented for N = 100 and 250 for S = 500 simulation runs. Under MI-GEE,

m = 20 imputations are used. Note that the primary focus was to compare WGEE

with MI-GEE, but we generated our data from a standard GLMM model setting. To

our advantage we therefore extend the results to include those from a conditional and

marginal route of inference.

Considering bias, smallest values are observed for MI-GEE while WGEE produced the

largest values. This is the same for N = 100 and N = 250. This behaviour is the same
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for all parameters except β0 where largest values are recorded from GLMM. The worst

case for the WGEE was for β1 when N = 100 for 12% dropout rate. The value estimated

was of opposite sign to that of the perceived true value. In fact, under WGEE only β0

(for all cases), β2 (12%, N = 100) and β3 (12%, N = 250) fall below the acceptable 10%

bias.

Turning to efficiency, GLMM gives the smallest values followed by MI-GEE. As we would

expect again the largest cases are for WGEE. This is not strange since the standard errors

were notably larger (hence wider 95% confidence intervals). This is explained by the

fact that additional sources of uncertainty due to missingness are taken into account

coupled with the reality that marginal standard errors would almost always be slightly

larger than their conditional counterpart (note that this does not mean larger bias). In

this case we somehow expected GLMM to perform better in terms of efficiency because

of the way efficiency has been defined. Nonetheless, the differences between the GLMM

and MI-GEE values are not very large. At two decimal places the two values would be

equal in exactly 12 cases. On one point β3, 28%, N = 250 MI-GEE estimate is less

than GLMM.

On the MSE, small values are obtained for MI-GEE. In some cases, WGEE produced

smaller values than GLMM such as, for example, β0 in all cases. This is not surprising

because of the bias-variance trade-off. In a number of places, equal values are obtained

between GLMM and MI-GEE at 4 decimal places. Specifically, for β1, β2, β3 (12%, N =

100) and β2, β3 (12%, N = 250) for GLMM and MI-GEE.

In general, we see from Table 3.1 that MI-GEE is favourable as compared to both GLMM

and WGEE. Its performance is consistent regardless of the dropout rate. On the other

hand, in all other cases except for when the missingness rate was 12% (N = 100),

under WGEE the treatment effect (T) and its interaction with time (T*time) are not

significant at 5% level (results not shown in Table 3.1). This could mainly be due to

notable increases in the standard errors (reflecting the lost information in the partially

observed data that WGEE could not fully capture) in comparison with GLMM and

MI-GEE.

3.5 Conclusion

The method of generalized estimating equations presents a unique way of modelling cor-

related data. The approach is attractively applicable in estimation of models where the

response variable is continuous, dichotomous, or counts, the latter being the focus of this

paper. It has the ability to account for correlations in repeated measures data where

conditional independence across observations is unlikely and the possibility of a better

understanding of the empirical properties of such dependencies. An important point is
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Table 3.1: Bias, Efficiency and Mean Squared Error (MSE) of GLMM, WGEE and MI-
GEE incomplete data methods. Missingness rates of 12%, 28% and 45% on the response
variable under a MAR mechanism. True parameter values: β0 = 2.3, β2 = 0.1, β3 =
−0.3, and β4 = 0.2. Sample sizes: N = 100 and 250 for 500 dataset replications.

Bias Efficiency MSE

Dropout Param GLMM WGEE MI-GEE GLMM WGEE MI-GEE GLMM WGEE MI-GEE

N=100

β0 0.4984 0.1778 0.1220 0.0268 1.0880 0.0340 0.2484 0.1056 0.0150
β1 0.0033 1.0111 0.0018 0.0373 1.5664 0.0436 0.0001 1.1758 0.0001

12% β2 0.0047 0.2325 0.0021 0.0034 0.4060 0.0143 0.0000 0.0644 0.0000
β3 0.0035 0.3575 0.0021 0.0042 0.4444 0.0177 0.0000 0.1401 0.0000

β0 0.5216 0.0845 0.1135 0.0272 2.0316 0.0343 0.2721 0.2651 0.0130
β1 0.0260 0.1608 0.0151 0.0378 2.0408 0.0441 0.0008 0.2862 0.0003

28% β2 0.0401 0.1140 0.0158 0.0039 0.2240 0.0144 0.0016 0.0161 0.0003
β3 0.0238 0.1412 0.0078 0.0060 0.3236 0.0180 0.0006 0.0265 0.0001

β0 0.6753 0.1913 0.1132 0.0276 0.4516 0.0336 0.4561 0.0493 0.0129
β1 0.0462 0.1186 0.0015 0.0383 0.6764 0.0432 0.0022 0.0427 0.0001

45% β2 0.1577 0.1695 0.0036 0.0083 0.2572 0.0143 0.0249 0.0329 0.0000
β3 0.0348 0.1417 0.0008 0.0095 0.2944 0.0177 0.0012 0.0255 0.0000

N=250

β0 0.4956 0.0954 0.1223 0.0168 1.0252 0.0216 0.2456 0.0748 0.0150
β1 0.0012 0.1858 0.0011 0.0236 1.7000 0.0276 0.0000 0.2151 0.0001

12% β2 0.0043 0.0432 0.0019 0.0021 0.3404 0.0090 0.0000 0.0091 0.0000
β3 0.0031 0.0114 0.0017 0.0027 0.5000 0.0112 0.0000 0.0158 0.0000

β0 0.5180 0.1388 0.1134 0.0172 1.4580 0.0216 0.2683 0.1521 0.0129
β1 0.0224 0.2633 0.0149 0.0239 1.4812 0.0279 0.0005 0.2064 0.0003

28% β2 0.0395 0.1193 0.0156 0.0025 0.2068 0.0092 0.0016 0.0169 0.0002
β3 0.0264 0.1453 0.0073 0.0387 0.2196 0.0114 0.0007 0.0241 0.0001

β0 0.6694 0.2142 0.1130 0.0175 0.3424 0.0212 0.4481 0.0532 0.0128
β1 0.0379 0.1294 0.0022 0.0242 0.4464 0.0274 0.0015 0.0292 0.0001

45% β2 0.1562 0.2310 0.0035 0.0052 0.1576 0.0090 0.0244 0.0549 0.0000
β3 0.0324 0.1242 0.0007 0.0060 0.2000 0.0112 0.0011 0.0179 0.0000

Note: Param = parameter, GLMM = generalized linear mixed model, WGEE = weighted general-
ized estimating equations, MI-GEE = multiple imputation based generalized estimating equations.
Largest values for bias, efficiency and mean squared error are presented in bold.

that, as long as the mean structure is correct, the parameter estimates are consistent

as the number of subjects becomes large (Liang and Zeger, 1986). Nonetheless, more

efficient estimates are obtained for specification closer to the true structure. Notice that

the regression coefficients from a GEE analysis correspond to the average of individual

regression lines, and thus these estimates are ‘population averaged’ (Zeger and Liang,

1986). If population averaged estimates are of interest then GEE analysis may probably

provide the most valid results. The main challenge in the analysis is accounting for the

missingness mechanism. The purpose of this paper was to compare the performance of

WGEE and MI-GEE analyses in the presence of incomplete correlated count data.

Great precaution must be taken as the analysis is not straightforward. First, the ana-

lyst must be aware of potential bias in multiple imputation arising from rounding data
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imputed under normal assumptions when the data are truly not normal (e.g., count vari-

ables). Rounding to make imputed values “plausible” can actually cause more bias than

using the original seemingly “implausible” imputation value. Although Schafer (2007)

argues that slight departures from normality will yield robust inferences, this may not be

definitive. Horton, Lipsitz and Parzen (2003) do not recommend the use of the method

for discrete data. We argue that rounding should not be used indiscriminately. Horton,

Lipsitz and Parzen (2003) suggest that the analyst should impute a discrete variable

directly from a discrete distribution. To this effect, for comparison we first imputed the

incomplete count data using a Poisson regression model and then performed the GEE

analysis on the now complete data sets. On the other hand, an important note is that

WGEE works on the concept of weighing contributions by the inverse of the probability

of being observed (weights)-thus inverse probability weighting (IPW). These probabili-

ties must be hemmed away from zero so as to avoid hitches of division by zero (Hogan,

Roy and Korkontzelou, 2004; Satty, Mwambi and Molenberghs, 2015). The method is

ingenious and boasts of good properties, but requires specification of a model for the

weights (a dropout model). If the weights are correctly specified, WGEE provides con-

sistent model parameter estimates given that the MAR mechanism is satisfied (Robins,

Rotnitzky and Zhao, 1995 ).

Previous studies have shown the good performance of MI relative to IPW in different

data types (e.g., Clayton et al., 1998; Beunckens, Sotto and Molenberghs, 2008). In

their works, they used binary data. This paper has contributed to the evidence. Us-

ing simulations, we have demonstrated that MI-GEE is actually stronger than WGEE

when used for correlated count data. We can argue that when subjects drop out, bias

in the marginal model estimates cannot be removed by assigning weights for completers

to compensate for dropouts. In this case, the dropouts should be handled more cau-

tiously, such as multiple imputing those dropouts. Nonetheless, we do not claim to have

performed a perfectly definitive analysis in this paper because the very large standard

errors from the WGEE analysis are a cause for worry. Of course, one should be careful

not to extrapolate our findings too much beyond the simulation settings considered.
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Chapter 4

Multiple imputation for ordinal

longitudinal data with monotone

missing data patterns

Abstract

Missing data often complicate the analysis of scientific data. Multiple imputation is a

general purpose technique for analysis of datasets with missing values. The approach is

applicable to a variety of missing data patterns but often complicated by some restric-

tions like the type of variables to be imputed and the mechanism underlying the missing

data. In this paper, the authors compare the performance of two multiple imputation

methods, namely fully conditional specification and multivariate normal imputation in

the presence of ordinal outcomes with monotone missing data patterns. Through a sim-

ulation study and an empirical example, the authors show that the two methods are

indeed comparable meaning any of the two may be used when faced with scenarios, at

least, as the ones presented here.

1

1Kombo, A. Y., Mwambi, H., and Molenberghs, G. (2016). Multiple imputation for ordinal longitu-
dinal data with monotone missing data patterns. Journal of Applied Statistics, 1-18.
DOI: 10.1080/02664763.2016.1168370
To link to this article: http://dx.doi.org/10.1080/02664763.2016.1168370
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4.1 Introduction

Longitudinal studies are an important source of information in health sciences and other

areas but often have the problem of missing data. Ordinal outcomes are increasingly

becoming common in these studies. However, analysts are challenged if they need to

impute missing values for such outcomes due to their hierarchical nature (Carpenter and

Kenward, 2013; Chen et al., 2005). Missing values in longitudinal studies occur when

not all of the planned measurements of a subject outcome vector are actually observed.

This turns the statistical analysis into a missing data problem. For example, a subject

may terminate early from a scheduled sequence of clinical visits for a number of reasons,

both known and unknown. This type of missing pattern is termed dropout (monotone

missing data pattern). Alternatively, a subject may miss a scheduled visit but appear

at the next occasion. This is referred to as an arbitrarily (intermittent) missing data

pattern. In this study, we focus on the former pattern of missingness. The reasons

that lead to missingness are varied and it is always necessary to reflect on the nature of

missingness and its impact on inferences. In Rubin (1976), these reasons are classified

into three categories. Data are said to be missing completely at random (MCAR) if the

probability of missingness is independent of both the observed and unobserved measure-

ments, missing at random (MAR) if, conditional on the observed data the probability of

missingness is independent of the unobserved measurements and missing not at random

(MNAR) for a violation of the above scenarios. Under the unrealistic MCAR, simple in-

complete data methods such as last observation carried forward (LOCF), complete case

analysis and available case analysis may be employed. However, even under the strong

MCAR assumption it is not guaranteed that LOCF analysis is valid. In fact, LOCF is

not recommended, not even when missingness is MCAR and there is a (potential) treat-

ment effect. Indeed, analysts see it unscientific to use the ad hoc methods when broadly

valid likelihood analyses can be easily implemented with standard software (Beunckens,

Molenberghs and Kenward, 2005). Generally speaking, the MAR assumption represents

the most general condition under which valid inferences can be obtained without refer-

ence to the missing data mechanism, given inferences are likelihood based or Bayesian

(Beunckens, Molenberghs and Kenward, 2005; Kenward and Carpenter, 2007).

Recent advances in computational statistics have produced a new billow of flexible and

formally justifiable procedures with sound statistical basis like multiple imputation (MI).

MI, initially proposed by Rubin (1977) and further detailed in Rubin (1987) and Schafer

(1997), has become one of the most popular approaches in handling missing data. MI

can be used not only with continuous variables but also with binary and categorical

variables. It provides a way of accounting for uncertainty associated with imputations.

This is a major strength against a number of existing single imputation methods. MI

replaces each of the missing values with m ≥ 2 plausible values generated under an
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appropriate imputation model to obtain m complete datasets. This replication captures

the uncertainty about the missing data. The resulting m multiply imputed datasets are

then analysed separately using an appropriate well-known standard method for complete

data. The third stage is to combine the m analysis results into one for inferences, where

the standard errors of estimates take account of the variation within and between the

m imputations (Rubin, 1987).

MI is a viable candidate for handling missing data in multivariate analysis. This is be-

cause it introduces appropriate random error into the imputation process and makes it

possible to produce unbiased estimates of all parameters (Allison, 2000; Rubin, 1987). It

can be used with any kind of data and any kind of analysis without specialized software

(Allison, 2000). However, one key feature of MI is that, for correct and valid inferences,

the imputation model should be correctly specified. It is agreed that the analysis and

the imputation model should be congenial in the sense that the imputation model should

be able to reproduce the major features of the analysis model (Rubin, 1987; Meng, 1994;

Allison, 2001). In this paper, the imputation model includes the same variables that

are in the analysis model. Regarding MI, it is also important to note that standard

MI procedures assume that the data are MAR. While it is almost always impossible to

test this assumption, including auxiliary variables in the imputation model that predict

the missingness, together with variables that are correlated that will be included in the

analysis model, can minimise bias. It also makes the MAR assumption more viable

(Collins, Schafer and Kam, 2001; Schafer, 2003). On the other hand, it is also possible

to use MI procedures to impute data that are MNAR, but this requires making addi-

tional assumptions about the missingness mechanism.

This paper is concerned primarily with the comparison of two MI methods namely fully

conditional specification (FCS) and multivariate normal imputation (MVNI) as applied

to ordinal outcome variables with a monotone missing data pattern. Moreover, for the

purpose of this paper, we focus on one ordinal outcome variable over time but the ideas

presented here are applicable to other ordinal forms and data settings.

The paper is organised as follows. In Section 4.2, we give the key definitions and neces-

sary notation. A description of the imputation methods is given in Section 4.3 followed

by a simulation study and application in Section 4.4.

4.2 Definitions and notation

4.2.1 Missing data model

Suppose that for the ith subject in the study, a sequence of measurements Yij is expected

to be measured at occasions j = 1, . . . , ni. Due to some reasons, some values of Yi =
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(Yi1, . . . , Yini)
′ are not observed. Then Yi, can be partitioned into two subvectors such

that Yi,o contains the observed measurements and Yi,m the unobserved measurements.

Now, if we let Y to be the complete set of observations, then Y can be partitioned such

that Y = (Yo, Ym). We define a random vector Ri = (Ri1, Ri2, . . . , Rini) compatible

with the vector of observations Yi such that Rij = 1 if the outcome Yij is observed and

0 otherwise. Using Heckman (1977), the joint distribution of the full data Y and the

indicator vector variable R can be factorized as

f(Y,R|θ, ψ) = f(Y |θ)P (R|Y, ψ), (4.1)

where ψ denotes a vector of parameters governing the missingness mechanism and θ

denotes the measurement process model parameters. The conditional distribution of

the missing data mechanism can be equivalently expressed as f(R|Yo, Ym, ψ). Diggle

and Kenward (1994) propose modelling the probability of missingness at a particular

measurement occasion as a linear function of the response values at previous occasions.

For simplicity, we assume that this dropout depends only on the observed response just

before the time it fails to be recorded and the unobserved response at the missing point.

However, this model can be extended to include measured or observed covariates. If we

denote by Yij , the response at measurement occasion j, the missing data model can be

written as

logit[Pj(Rij = 0|yi1, yi2, . . . , yi(j−1), yij)] = ψ0 + ψ1yi(j−1) + ψ2yij , (4.2)

where Pj(Rij = 0|yi1, yi2, . . . , yi(j−1), yij) is the conditional probability of missingness at

occasion j, given the history of responses, yi1, yi2, . . . , yi(j−1), yij , the response subject

to missingness, yij and ψ0, ψ1 and ψ2 are the model parameters to be estimated. The

model reduces to a MAR model if ψ2 = 0. MCAR if ψ1 = ψ2 = 0. If ψ2 6= 0, then we

cannot rule out MNAR but note that the test for ψ2 = 0 versus ψ2 6= 0 (MAR versus

MNAR) relies on untestable assumptions such as the distributional form (Kenward,

1998; Molenberghs and Kenward, 2007; Newson, Jones and Hofer, 2012; Rhoads, 2012).

In fact, Molenberghs et al. (2008) show that a formal distinction between MAR and

MNAR is not possible because for any MNAR model there exists a MAR counterpart

that fits the data equally well.

4.2.2 Ordinal responses

There are cases where the outcome variable can be polytomous. While the typical logis-

tic regression analysis models a binary response, logistic regression can also be applied

to multilevel cases. If the response variable takes on values that have no inherent order
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(e.g. voting party A, B, C, or D), then the response is nominal. If it takes on intrinsic

values like the levels of agreement (e.g. strongly agree to strongly disagree), then the

response is ordinal. Then, for ordered categorical variables, the binary logistic regression

extends to polytomous logistic regression. A number of logistic regression models have

been studied for ordinal response variables (Agresti, 1989; Armstrong and Sloan, 1989;

Cox, 1995; Liu and Agresti, 2005; McCullagh, 1980). When there is need to consider

several factors, special multivariate analysis for ordinal data is the natural alternative

(Das and Rahman, 2011), although other methods, like mixed models may be used.

However, ordinal logistic regression models have been most useful (McCullagh, 1980;

Ananth and Kleinbaum, 1997). Several ordinal logistic regression models exist, namely

the proportional odds model, partial proportional odds model (PPOM), continuous ra-

tio model and the stereotype regression model. The most common among the ordinal

logistic regression models is the proportional odds model (Bender and Grouven, 1998).

The proportional odds model (a specific form of cumulative odds model), is a logit model

that allows ordered data to be modelled by analysing it as a number of dichotomies. A

binary logistic regression model compares one dichotomy (yes/no) whereas the propor-

tional odds model compares a number of dichotomies by arranging the ordered categories

into a series of binary comparisons. Here, the assumption is made that the effect of each

explanatory variable is the same for each binary comparison (logit). This is the propor-

tional odds assumption, also referred to as the parallel lines assumption (or equal slopes

assumption). It leads to parsimony of the model, because it means that the effect of a

predictor variable on the ordinal response is explained by one parameter. However, it

may pose a restriction on the flexibility of the model, which may or may not be ade-

quate for the data. Then before any model statistics are interpreted, it is important to

test the assumption, a violation of which may lead to incorrect interpretation of results

(Ananth and Kleinbaum, 1997). The assumption is commonly used with the cumulative

logit link. On the other hand, mixed effects models have also been found very useful

for longitudinal categorical (nominal or ordinal response) data. The main reason why

random effects are used is to take account of correlated data due to clustering as a result

of repeated measures from the same individual.

In medical and clinical research, it is not easy to get a continuous outcome for that kind

of information you need. More often, the variable of interest has a natural ordering, say

no disease, mild and severe. In this case using an ordinal outcome for the disease model

may make sense other than ‘no disease’ and ‘diseased’, that is, collapsing the ordinal

levels to binary ones. If this is done, one has to find an appropriate correlation struc-

ture of the dichotomized data, and then inflate the correlations intentionally in order

to make them what they should have been. This means that one follows the ordinal -

binary - Gaussian - ordinal - binary conversion scheme. This scheme is applicable when

presented with correlated ordinal outcomes data. The ordinal levels are collapsed to
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binary ones, and then converting the correlated binary outcomes to multivariate nor-

mal outcomes in such a way that re-conversion to binary and then back to the original

ordinal scale after performing multiple imputation, yields the desired original marginal

distributions and correlations. The conversion strategy ensures that the correlations

are transformed reasonably which enables the user to take advantage of well-established

imputation strategies for Gaussian outcomes. A key methodological focus then turns

out to be conducting multiple imputation under multivariate normality assumption with

re-conversion to the original ordinal scale while preserving key distributional assump-

tions. This strategy, however, may not be applicable in every scenario (Demirtas and

Hedeker, 2008). The polytomous logistic regression model may be employed for the

ordered categorical variable, but fails to make proper use of the information about the

ordering. One way of taking advantage of the ordering is the use of ‘cumulative odds’,

‘cumulative probabilities’ and ‘cumulative logits’.

Now, suppose that our data comprise of a set of i = 1, . . . , N independent clusters (sub-

jects in our longitudinal data context) where the ith subject consists of ni observations.

As before, let Yij denote the jth (j = 1 . . . , ni) response in subject i. This response may

fall in any of c = 1, . . . , C distinct ordered categories for C ≥ 2. Further, let xij denote

a vector of predictor variables for the jth observation in the ith subject. Then Yij will

have a multinomial distribution with parameter vector π. In this case, πjc is the prob-

ability of the jth measurement falling into category c so that we have our cumulative

probabilities given as

P (Yij ≤ c) = P (Yij ≤ c|xij) = πi1 + · · ·+ πic. (4.3)

Now using a logit link, we will have a cumulative logit model defined as

logit(P (Yij ≤ c)) = log

[
P (Yij ≤ c)

1− P (Yij ≤ c)

]
= αc − x′ijβ, (4.4)

where P (Yij ≤ c) is the probability of being at or below category c, given a set of

predictors. Here, c = 1, . . . , C − 1 for the C categories of the ordinal outcome, αc

gives the threshold parameters (intercept terms that depend on the categories). These

parameters, however, are seldom of practical importance except for computing response

probabilities. The regression parameters, β, reflect the association between the predictor

variables and the outcome variable. Notice that, while the regression coefficients do not

vary (i.e. β has the same effect for each of the C−1 cumulative logits, implying that x′ijβ

is independent of c), a different intercept exists for each level of the cumulative model.

Given that the regression parameters (β) are subtracted (model (4.4)), this means that

a unit increase in the predictor variable will increase the log-odds of being in category

greater than c. In other words, it means that the higher the value of X ′ijβ, the higher
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the probability of response falling in a category at the upper end of the response scale.

But note that β itself can be estimated as negative which will give an increasing effect

of the odds in categories less than or equal to c. The model describes the cumulative

logits across c−1 response categories. One can transform the cumulative logits to obtain

estimated cumulative odds and also the cumulative probabilities of being at or below

category c.

4.3 Imputation methods

When the dataset has a monotone missingness pattern, variables with missing values

are imputed sequentially with covariates obtained from their corresponding sets of pre-

ceding variables. To impute continuous variables, a regression method, a predictive

mean matching method or a propensity score method may be used. A logistic regres-

sion method may be used for a binary or ordinal variable. Alternatively, a discriminant

function for nominal or binary variables can be used. For real and simulated incomplete

ordinal datasets, we contrast two multiple imputation procedures the fully conditional

specification (FCS) via chained equations (Van Buuren, 2007; Van Buuren, Boshuizen

and Knook, 1999). and the multivariate normal imputation (MVNI; Schafer, 1997).

These approaches are based on different theoretical assumptions and involve very differ-

ent computational methods (Lee and Carlin, 2010).

4.3.1 Multivariate normal imputation

Approaches to imputing multivariate data have been developed. For example, Rubin

and Schafer (1990) provided procedures for generating multivariate multiple imputation.

This Bayesian simulation algorithm draws imputations from the posterior predictive dis-

tribution of the unobserved data given the observed data. The method assumes that the

data are multivariate normally distributed and missing at random. Schafer (1997) used

this underlying approach and derived imputation algorithms for multivariate numerical,

categorical and mixed data. The methodology describes the data by encompassing a

multivariate model and derive a posterior distribution and then draw imputations from

these by Gibbs sampling (here after referred to as data augmentation rather than Gibbs

sampling). It uses the Markov chain Monte Carlo (MCMC) approach to draw imputed

values from the estimated multivariate normal distribution.

Given our ordinal response variable Y ∼ MVN(µ,Σ), data augmentation (Tanner and

Wong, 1987) in Bayesian inference with missing data is based on iterating between an

imputation step (I-step) and a Posterior step (P-step).

• The imputation step− With some estimated initial values for the mean vector µ and
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covariance matrix Σ, the I-step simulates a value for missing data Ym by randomly draw-

ing it from the conditional predictive distribution of Ym, that is, from a current estimate

(rth iteration) θ(r), of the parameter, a value Y r+1
m of the missing data is drawn from

the conditional distribution of Ym given Yo:

Y (r+1)
m ∼ P (Ym|Yo, θr), θ = (µ,Σ). (4.5)

• The posterior step− This step draws a value of the parameter θ from a complete-data

posterior distribution:

θ(r+1) ∼ P (θ|Yo, Y (r+1)
m ). (4.6)

The updated estimates are then used in the imputation step.

Iterating equations (4.5) and (4.6) from initial value θ(0) will yield a stochastic sequence

{(θ(r), Y
(r)
m ); r = 1, 2, . . . }. The two steps are iterated sufficiently long until the dis-

tribution of the estimates becomes stationary (Schafer, 1997). Each step depends on

the previous one, meaning that there is dependency across the steps. This approach is

theoretically sound but based on distributional assumptions that may not always be re-

alistic (e.g., assuming normality for binary, ordinal variables). For categorical variables,

the MVNI method draws imputations under the MVN model and so we need to round

off the imputations to the nearest integer to accommodate the categorical nature of the

data. Allison (2005), however, cautions about rounding (he cites the binary case) be-

cause the rounded imputed values may lead to biased parameter estimates. Nonetheless,

Schafer (1997) had already argued that inference from MVNI may be reasonable even if

multivariate normality does not hold, for example, in the cases of binary and categorical

variables. We refer the reader to Schafer (1997) for a detailed account of this procedure.

4.3.2 Fully conditional specification

An alternative option, applicable to multivariate data, is the fully conditional specifi-

cation (FCS) approach. FCS is a flexible method that specifies the multivariate model

by a series of conditional models for each of the incomplete variables. Unlike MVNI, it

does not necessarily rely on the multivariate normality assumption and thus univariate

regression models can be appropriately tailored to be used for ordered logistic regression

for ordinal variables. Using a Bayesian approach, imputations are done stepwise starting

with the variable with the least amount of missing values and progressing like that until

the variable with the most missing data is finally handled. It involves two phases in each

imputation: the filled-in stage and the imputation stage. During every stage, draws are

randomly done from both the posterior distribution of the parameters and posterior
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distribution of the missing values. At the filled-in stage, the missing values are filled in

sequentially over the variables, one after the other with preceding variables serving as

covariates. The filled-in values are then used as starting values for the imputation stage.

At the imputation stage, the filled-in values are replaced with imputed values for each

variable sequentially at each iteration.

Let the ordinal response variable Y be characterized by a vector of unknown parameters

θ = (µ,Σ); µ is a mean vector while Σ is a covariance matrix. As before, Y = (Yo, Ym).

Following Van Buuren et al. (2006) and also in Van Buuren and Groothuis-Oudshoorn

(2011), multiple imputation via FCS proceeds as follows:

• calculate the posterior distribution of θ given the observed data, that is, P (θ|yo);
• draw a value θ∗ from P (θ|yo);
• draw a value y∗ from the conditional posterior distribution of ym given θ = θ∗:

y∗ ∼ P (ym|yo, θ = θ∗). (4.7)

Repeat the second and third steps depending on the number of imputations. The steps

are repeated long enough for the results to reliably simulate an approximately indepen-

dent draw of the missing values for an imputed dataset.

4.3.3 Software considerations

When we assume MAR, valid inferences can be obtained through likelihood-based anal-

ysis without modelling the dropout process. Consequently, the generalized linear mixed

model - as the analysis model - is used. This approach may be implemented by using

SAS procedures NLMIXED and GLIMMIX. If we need to impute missing values, both

the description of missing data patterns and multiple imputation is performed using

the procedure PROC MI. It may be used for all types of variables. The procedure of-

fers several methods for imputation depending on whether the variable is continuous or

categorical. Here we are interested in comparing MVNI and FCS as implemented in

PROC MI. For MVNI, it uses the Markov Chain Monte Carlo (MCMC) approach to

draw imputed values from the estimated multivariate normal distribution. To use it,

the user calls it by specifying the mcmc statement in the MI procedure. To run FCS,

the fcs statement is specified in PROC MI. In PROC MI, the imputation model to be

used and the number of imputed datasets to be created are specified. After imputation,

statistical procedures run the analytic model of interest separately for each imputation

using Imputation as a BY variable, and the results are stored in an output file. Fi-

nally, a procedure call, PROC MIANALYZE combines the estimates obtained from the

analyses for multiply imputed data to produce valid statistical inferences. However, for

some complete data analyses, like those for categorical data, additional manipulations
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are needed before PROC MIANALYZE is used (Ratitch, Lipkovich and O’kelly, 2013).

This is because Rubin (1987) rules for combining results assume that the statistics esti-

mated are normally distributed. Such estimates, like regression coefficients and means,

are approximately normally distributed, while others like the odds ratios, correlation

coefficients and relative risks are nonnormal. If interest is on the latter group of esti-

mates, they can first be normalized before applying Rubin’s combination rules to the

transformed estimates. In Van Buuren (2012) some transformations to various types of

estimated statistics are suggested.

By default, the SAS procedure LOGISTIC fits the proportional odds model combined

with the cumulative logit link. When the assumption of the common slopes is valid for

some variables but not for others, PROC GENMOD may be used to fit the PPOM.

Alternatively, PROC LOGISTIC may also be used but with a specification of the UN-

EQUALSLOPES option in the model. PROC CATMOD can be used in case of a

nonproportional odds model.

4.4 Simulation study

4.4.1 Data generation, simulation designs and analysis of the simulated

data

We conducted a simulation study to examine the performance of FCS and MVNI. The

datasets were generated using a scenario that mimics common longitudinal studies.

The simulated datasets are based on an ordinal outcome with C categories which are

generated at four study occasions, j = 1, . . . , 4. The setting was repeated for three

different settings where C = 3, 4, 5. For each of the different scenarios, we simulated 1000

datasets based on a generalised linear mixed model scheme of the form (4.8) for sample

sizes N = 100, 250, 500. Consequently, longitudinal ordinal variables were generated

following a model with a linear predictor:

logit[P (Y ∗ij ≤ c)] = αc + x′β + bi, bi ∼ N(0, d). (4.8)

An ordinal regression model was motivated by assuming an underlying latent variable

(y∗) which is related to the actual response through the ‘threshold concept’. The re-

sponse is defined based on some underlying unobserved continuous endpoint that follows

a linear regression model incorporating random effects and a prespecified set of cut-off

values (threshold values) αc. The data were generated by assuming a vector of predictor

variables x′ = (x1, x2, x3, x4), which is a combination of both continuous and binary
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variables. Here, x1 and x3 are binary group effects (i.e. x = 0, 1) representing a treat-

ment group indicator and gender respectively, x2 is a continuous variable representing

exposure period and x4 is a four-point assessment time. For the simulations we used the

parameters, β1 = 0.9, β2 = 0.2, β3 = 0.5 and β4 = 0.8. For simplicity of the simulations

in this paper, we did not assume any interaction of terms. In this case, our simulation

model is explicitly written as

logit[P (Y ∗ij ≤ c)] = αc + 0.9x1 + 0.2x2 + 0.5x3 + 0.8x4 + bi. bi ∼ N(0, 1.82)

(4.9)

By inverting the logit link function, it leads to the conditional ordinal logistic regression

model, noting that equation (4.8) can be equivalently written as

P (Y ∗ij ≤ c) =
exp(αc + x′β + bi)

1 + exp(αc + x′β + bi)
. (4.10)

Let φijc = P (Y ∗ij ≤ c), we obtain the ordinal response Yij (e.g. for C = 4) by setting an

observation rule defined as

Y =



1 if φij ≤ τ1,

2 if τ1 < φij ≤ τ2,

3 if τ2 < φij ≤ τ3,

4 if φij > τ3.

(4.11)

First from the full datasets without imposing any missing values, parameters and stan-

dard errors were estimated by a likelihood based approach. Each estimate is an average

of 1000 estimates from the different simulated datasets. Then, we assumed a rather

simple MAR model of missingness, where subjects whose outcome was greater than

some cut-off probability would miss at post baseline time points 3 and 4, that is, let

drp = yij − yij−1, j = 2, 3, 4, yielding values between −2 and 2; −3 and 3; and −4

and 4 for the different choices of the categories of the ordinal outcome, that is, for

C = 3, 4 and 5 categories respectively. Then we normalized these values by defining

ndrp = (drp + (C − 1))/2C in order to confine them to the range [0, 1]. Finally, if

ndrp > γ + 0.6u (where u ∼ [0, 1] is a uniformly distributed random number) then

yi(j+1) misses. We held (for the C = 3, 4, 5 categories, respectively) γ = 0.4 so as to

ensure that about 30% of the response data were missing by the end of the study. The

probability of a value dropping depended merely on the immediate history.

Then, the missing entries were imputed using FCS and MVNI as carried out in PROC

MI. We used the expectation-maximization (EM) algorithm (Dempster, Laird and Ru-

bin, 1977) to obtain the starting values for our imputations. MVNI was performed using
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the SAS PROC MI with a specification of the MCMC statement. The ordinal values

were imputed on the continuous scale and rounded off to the required categories. Max-

imum and minimum values were specified based on the scale of the response options of

the dataset. These specifications were necessary so as to ensure that imputations were

not created outside the range of the response values. FCS was carried out using fcs

statement in PROC MI. The ordinal response was imputed using the ordinal logistic re-

gression model as incorporated in the FCS procedure. For all cases in the study, default

values for MCMC and FCS specifications were used in the simulations. We realized that

the algorithms still converged to the correct posterior distributions and were confident

that the imputed values in the different datasets were statistically independent. All

the other predictor variables were used to ensure that our imputation model was rich

enough to try and satisfy the congeniality requirement under the MAR assumption. For

simplicity, throughout the analyses in this paper the categorical time was treated as

continuous.

For comparison of methods, a larger number of imputations are necessary (Wood et al.,

2005). We performed m = 20 imputations. This relatively high value was chosen to

account for the relatively large fraction of missing data and to limit the loss of power

for testing any associations of interest. Nonetheless, researchers argue that m can be

set to 3 ≤ m ≤ 5 and still get sufficient accuracy. However, Schafer (1997) cautions that

pegging on this range might be risky. On the other hand, Molenberghs and Verbeke

(2005) showed that efficiency increments diminish rapidly after the first m = 2 imputa-

tions for a small fraction of missing information and after the first m = 5 imputations

for larger fractions of missing information. However, a rule of thumb for choosing m

is suggested (see White, Royston and Wood, 2011). They suggest that m should be at

least equal to the percentage of incomplete cases. Nevertheless, we caution the reader

that still discretion is necessary, based on the problem at hand.

To compare the performance, we used bias and mean squared error (MSE) of the param-

eter estimates. We defined bias as the absolute difference between the average parameter

estimate from the analysis procedures (based on the 1000 data replications) and the true

value (i.e., Bias = | ¯̂β − β|).

4.4.2 Simulation results

Results of the simulation study (based on 1000 simulated datasets and 20 imputations)

are presented. We present three tables, where Table 4.1 represents results when the

ordinal outcome variable has three categories/levels, Table 4.2, the variable has four

levels and Table 4.3 when the variable has five levels. The results are presented for

MVNI, FCS, direct likelihood (DL) and full data analysis (FDA). In this paper, full
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data refer to the simulated dataset that has no missing values. Although the original

idea of the paper was to contrast the performance MVNI and FCS, DL is presented as

an additional approach because of its known ability to handle incomplete data. Rather

than imputing missing measurements, Mallinckrodt et al. (2003), suggested the use of a

direct likelihood approach to deal with incomplete correlated data under the ignorable

assumption. Here, the observed cases are analysed without any analyst’s adjustments,

that is, without imputation nor deletion, by the use of models that provide a framework

where clustered data can be analysed by including both fixed and random effects in the

model (in case of GLMMs for non-Gaussian data) (Kadengye et al., 2012). The au-

thors in Kadengye et al. (2012) further showed that DL analysis of incomplete datasets

produced unbiased parameter estimates that were comparable to those from a full data

analysis. These arguments were echoed by Molenberghs and Verbeke (2005), who also

pointed out cases where MI is justified.

For clarity, results are presented here for regression coefficients only and not the inter-

cepts. In all tables, larger values depicting worst cases are in bold.

In Table 4.1, considering bias, we notice that the largest values are obtained for MVNI.

These are followed by FDA in all cases except β4 where FCS produces larger values than

FDA. The trend is the same for all sample sizes. The FCS and DL values are very close

to each other with one case (β3, N = 500) where they are the same. Looking at MSE,

we observe a similar situation as for bias, that is, bigger values for MVNI followed by

FDA except β4 where FCS produces larger values than FDA. Comparing DL and FCS,

we see equal values for all cases save for β1, β3, β4 for N = 100, and β4 in N = 250.

However, these values are very close such that in 3−decimal places, they are equal.

Looking at standard errors, largest values are observed for DL consistently except β4.

MVNI produces the smallest values in all the other cases except β4, for N = 100, 250.

Now shifting focus to Table 4.2, the scenario we observed in Table 4.1 changes. We

notice that largest bias are recorded for FDA for all β’s except β4 where MVNI gives

the largest bias. Exactly, the same trend is produced under MSE. Looking at standard

errors, here the same scenario as in Table 4.1 is reproduced. Again, DL and FCS produce

the same or very close values.

In Table 4.3, the previous trends observed for standard errors are replicated here. For

bias and MSE the trends change slightly. Now, the largest biases are recorded for MVNI

in all cases except β2 for all sample sizes, and β3 for N = 250. The same set-up is

produced under MSE. Like before very close or equal values are observed for FCS and

DL.

In terms of bias MVNI seems to be more biased than FCS. If one is interested in smaller

standard errors then MVNI has mostly smaller values than FCS or at times they are
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equal. Generally, FCS may seem slightly better than MVNI, but both methods seem

to perform equally well. DL is another favourable alternative in case one is not well

conversant with the imputation methods. Faster and easily implemented in standard

statistical software.

4.4.3 Example: arthritis data

4.4.3.1 Data

The dataset used are from a homoeopathic clinic in Dublin, made available in Pawitan

(2001). The data are on 60 patients (12 males and 48 females) between the ages of 18

and 88 who were under treatment for arthritis. The patients were followed up for a

month (in 12 visits) and their pain scores assessed. Only two patients had all the scores

for the 12 visits. The score was graded from 1 to 6, with high indicating worse. Only

those with a baseline score greater than 3 and a minimum of six visits are reported.

About 36% of the pain score data were missing. Of the 60 patients 27 had RA-type

arthritis where 5 were males and 22 were females, while 33 had type OA. Seven of these

were males. Some descriptive statistics of the dataset are summarized in Table 4.4 and

Figure 4.1.

Table 4.4: Descriptive statistics of the incomplete arthritis data.

Arthritis data:
Variable Description Range % miss Mean Mode Std Dev.

Baseline variables
Sex 1= Male, 0=Female 1/0 0
Age Age of the patient 18 - 88 0 59.5 57 12.6
Time Number of patient visits 1 - 12 0
Type Arthritis type (RA =1, OA = 0) 1/0 0
Years Number of years with symptom 0 - 57 0 10.7 1 12.2

Response variable
pain scores Scores on the arthritis pain 1 - 6 35.56% 4

Note: Data missing on the dependent variable. a Arthritis type (RA =rheumathoid arthritis,
OA = ostheo-arthritis). b Std Dev = standard deviation.

Looking at Figure 4.1, it is apparent that many patients missed their visits towards the

end of the follow up. After the sixth visit the missing data were more than 30% on every

visit.
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Figure 4.1: The proportion of missing data per scheduled visit to the clinic.

4.4.3.2 The proportional odds assumption

Before the model statistics can be interpreted, it is very important to test the propor-

tional odds assumption. The assumption was examined using the Brant test in STATA.

A non-significant omnibus test provides informal evidence that the assumption is not

violated. Table 4.5 gives part of the assumption results. The assumption was upheld for

age, type and years. The same cannot be said for sex and time.

In case the proportional odds assumption is not satisfied for some variables but satisfied

for others, then a partial proportional odds model (PPOM) can be fit. However, the

PPOM is just an extension of the proportional odds model (POM). Both PPOM and

POM can be adequate for data analysis. The most important aspect with regards to

interpretation of analysis results involving ordinal data is that the interpretation should

take the odds proportionality into account, i.e., the odds of being in high or lower cate-

gory depending on the case. Using the PPOM or for simplicity using the POM, would

not change the overall final inference. For simplicity, our results did not consider the

PPOM.

Table 4.5: Brant test of proportional odds assumption.

Variable chi2 p>chi2 df

All 73.87 0.000 20

Sex 34.88 0.000 4
Age 7.59 0.108 4
Time 30.55 0.000 4
Type 8.35 0.079 4
Years 6.00 0.199 4

A model of interest for the study was the main effects model. Only the dependent

variable had missing values. At first, the data were analysed without any alterations

or attempts to impute the missing values. This was under the direct likelihood (DL)

approach. We chose the DL parameter estimates as reference for the real application
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dataset against which we can check the relative performance of MVNI versus FCS when

considering MI. Because direct likelihood is valid under the same properties as multiple

imputation, we expect the two approaches to produce similar parameter estimates or

somehow close to each other. After the direct likelihood analysis we conducted the

multiple imputations under FCS and MVNI where upon imputation, a similar marginal

model as the direct likelihood analysis was fitted in the analysis task. Finally, the SAS

procedure MIANALYZE was employed to pool the results from multiple datasets.

4.4.3.3 Results

Table 4.6 shows the parameter estimates, standard errors and 95% confidence limits of

fixed effect estimates by the imputation methods and direct likelihood analysis. These

analysis results showed similar trends to those from the simulated data for most cases.

The results indicate that the parameter estimates by MVNI were comparable to those

of direct likelihood in more cases than FCS. In three cases, MVNI values were closer to

those from the direct likelihood method compared to two FCS cases. Moreover, MVNI

resulted in smaller standard errors than the FCS method for age, time and type. Equal

values are observed for years. MVNI gives a larger standard error than FCS for sex. This

may be attributed to the fact that both sex and years were highly insignificant predictors

by both MVNI and FCS, as is evidenced in the confidence limits. Both methods seem

to perform fairly well in general. Looking at the direct likelihood method, it gives

smaller standard errors than the imputation methods for all parameters except time.

It is equally a favourable alternative method when faced with incomplete ordinal data

and may be used whenever one is not sure about what imputation method to use or not

having necessary know how on imputation methods.

4.5 Discussion

The idea behind MI is to draw valid and efficient inferences by fitting analysis models

to multiply imputed data. We ensured that the imputed values bear the structure of

the data, and uncertainty about the structure and included any knowledge about the

process that led to the missing data (van Buuren, 2007). The method of choice to cre-

ate the imputed datasets depends on the missing data pattern. For monotone missing

patterns a parametric regression method that assumes multivariate normality or a non-

parametric method that employs propensity scores may be be used (Molenberghs and

Verbeke, 2005). Alternatively, one may generate imputations by performing a series of

univariate regressions, rather than just a single large model (making it somewhat easier

to estimate), and without assuming normality of the variables.
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When faced with a discrete variable (e.g. ordinal), an appealing approach at first sight

may be to treat ordinal variables as continuous for the purpose of imputation, and

then round the imputed data values to the nearest valid discrete value before continu-

ing to fit the substantive model (Carpenter and Kenward, 2013). However, researchers

caution the analyst from analysing ordinal outcome as a continuous or dichotomized

variable for a number of reasons. First, comparing an ordinal to a continuous outcome

or dichotomizing it to run a binary logistic regression may lead to efficiency loss due

to information loss, reduced statistical power and decreased generality of the analytic

conclusions (Gameroff, 2005). Logically, continuous models can yield predicted values

outside the range of the ordinal variable and finally, a continuous model may produce

correlated residuals and regressors when used for ordinal outcomes and does not account

for the ceiling and floor effects of the ordinal outcome. This may lead to biased estimates

of the regression coefficients (Bauer and Sterba, 2011). This issue has created a lot of

debate among researchers. Schafer (1997) argues that methods assuming multivariate

normality may be used in cases where the normality assumption does not hold. Fur-

thermore, these methods have also been successfully used by the authors in Choi et al.

(2008); Demirtas, Frees and Yucel (2008); Seitzman et al. (2008). This is therefore still

an active area of further research. However, apart from imputing the ordinal variable

directly as a continuous variable, another option is to use a set of indicators. The values

are imputed as continuous, and then assign imputed values into categories based on the

mean indicators imputed in a separate round of imputation. In Lee et al. (2012), this

strategy of comparing methods for imputing ordinal data using methods that assume

multivariate normality is discussed.

More often analysts are faced with datasets with both dropouts and nonmonotone miss-

ingness, like the arthritis data where the amount of dropout was considerable, while

that of nonmonotone missingness is much smaller. It is heedful to include all in the

analyses as noted by Molenberghs and Verbeke (2005). One can undisputedly opt for

direct likelihood analysis or standard generalized estimating equation (GEE; Diggle et

al., 2002; Liang and Zeger, 1986; Molenberghs and Verbeke, 2005). Weighted general-

ized estimating equation (WGEE; Robins, Rotnitzky and Zhao, 1995) is possible but

one has to find appropriate weights. Alternatively, one may make the missing patterns

monotone by multiple imputation and go ahead to do the WGEE.

The primary goal for this study was to investigate the performance of MVNI and FCS

as MI methods. These two approaches follow different theoretical assumptions and thus

involve different computational methods. Each of the methods comes with its own spec-

ifications. MVNI is appealing because of its ease of specification of the imputation

model. Conversely, FCS requires an added effort in model specification, and separate

regression models must be fitted for each variable in the imputation model (van Buuren
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2007). But in our problem these conditional regressions were automatically specified

because of our small number of variables and only one variable had missing values. On

the other hand, an added advantage of FCS again is the natural handling of ordinal

variables. For MVNI we had to handle the ordinal variables under a continuous scale

in order to take advantage of the well-established imputation procedures for Gaussian

outcomes, and then rounded to the required categories post-estimation. Basically, this

assumption has been the major stumbling block in the working of MVNI and a number

of researchers have reported FCS being better than MVNI, for example, Van Buuren

(2007); Yu, Burton and Riviero-Arias (2007). In this study, we did not find a strong

reason to support this. Specifically speaking, the MVNI approach is equally appropriate

as is FCS when faced with missingness in ordinal variables, at least of the type pre-

sented. Similarly, Lee and Carlin (2010) are in support of the findings. We notice that

the conclusions for comparing the two methods differed among researchers. This was

probably due to differences between their simulation studies, and the way they rounded

off the continuous values e.g., Lee and Carlin (2010) who used adaptive rounding with

MVN. However, without doubt, further comparisons on these two methods, where more

settings will be considered is incumbent.

In this paper, we focussed on MAR mechanisms for monotone missing data patterns.

The methods of FCS and MVNI can be extended to non-monotone missing data patterns

(UCLA, 2015). Although the authors doubt the suitability of the MAR assumption for

non-monotone missing data, Robins and Gill (1997) present a new strategy of ignor-

able non-monotone missing data models, called the randomised monotone missingness

(RMM), which is a subset of MAR. They argue that the RMM is the only plausible

non-monotone MAR mechanism that is not MCAR, but they caution the user not to

analyse non-monotone missing data assuming that the missingness is ignorable if a sta-

tistical test has rejected the hypothesis that the missingness process can be represented

as RMM. We recommend interested readers to Robins and Gill (1997) for further details

on RMM and Daniel and Kenward (2012) who reiterate the RMM idea and extend it

to a Markov randomised monotone missingness (MRMM). MRMM is a specific subset

of RMM. The authors present a clear theoretical framework and applicability in non-

monotone missingness patterns. We therefore state that the methods employed in our

paper can further be extended to non-monotone cases. These methods are valid un-

der MAR. When faced with non-monotone missingness, one may take the Daniel and

Kenward (2012); Robins and Gill (1997) routes as one of the options that exist in the

literature. If under any circumstances, it happens that the MAR is not a sensible as-

sumption for non-monotone missing cases, as an outset, sensitivity analyses are advised.

However, a shift from MAR to possibly MNAR is not a worry, because as pointed out

by Molenberghs et al. (2008) the price to pay is minimal as no formal distinction exists

between MAR and MNAR. This is because for any MNAR model there exists an MAR
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counterpart that fits the data very well.

In this paper, missingness was only on the outcome variable. This does not limit the

applicability of FCS and MVNI to that case only. The methods can be extended to

situations where data are missing for outcomes and covariates. A lot of work has been

done on this. In the papers, (Royston, 2004; Van Buuren, Boshuizen and Knook, 1999),

MICE alias FCS was used to fill missing values in incomplete covariates. The assumption

of multivariate normality has been used to impute in covariates and responses. We cite

Schafer (1997); Schafer and Yucel (2002); Seaman, Bartlett and White (2012) among

many works in the literature.
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Chapter 5

Comparison of methods for the

analysis of incomplete

longitudinal ordinal outcomes:

Application to a clinical study on

childhood malnutrition

Abstract

Ordinal responses are often encountered in longitudinal studies, especially in clinical

trials. Apart from failing to meet the usual normality assumption for analysis and infer-

ence, these data are prone to missingness. Thus, using ordinary least squares regression

for such type of data could produce biased and inefficient estimates. In addition, failure

to deal with incomplete information jeopardizes the validity of inferences, while some

of the available methods for dealing with incomplete data may not meet the distribu-

tional assumptions of the data. This paper presents likelihood estimation methods for

longitudinal ordinal data, focussing on the cumulative logit model, and also compares

three methods for incomplete ordinal data subject to both monotone (dropout) and

non-monotone missingness. In particular, complete case analysis and direct maximum

likelihood analysis of the incomplete data are contrasted with multiple imputation strate-

gies, namely: the full conditional specification, multivariate normal imputation and the

ordinal imputation method. Applications are based on the analysis of longitudinal nu-

tritional data from a clinical study conducted in four study sites in Kenya. The findings
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showed that for incomplete ordinal outcome variables, direct maximum likelihood anal-

ysis and multiple imputation strategies produced comparable results. Complete case

analysis generally gave poor results.

1

5.1 Introduction

Longitudinal studies, including clinical trials, are designed to record observations re-

peatedly over time. Missing response data is very common in these studies due to study

dropout, mistimed measurements, or generally loss to follow up. Subjects may drop

out of the study prematurely resulting in a monotone missingness pattern, also termed

dropout, or they may miss one follow up time and then be measured at the next fol-

low up time. The latter results in an intermittent (non-monotone) missingness pattern.

When data are incomplete, the validity of any analysis approach will require that certain

assumptions about the reasons for missingness are tenable. Rubin (1987) and Little and

Rubin (2014) classified the mechanisms in three categories. A) Data are missing com-

pletely at random (MCAR) if the probability of missingness is independent of responses

observed or unobserved, or any other variables in the analysis; here, any analysis valid

for the whole dataset is valid for the observed data. B) Data are missing at random

(MAR) when the probability of missingness is dependent only on observed responses.

C) Data are missing not at random (MNAR) when the probability of missingness is

dependent on unobserved responses and potentially on observed information.

When data are missing only on the response variable, an MAR analysis assumes that

the probability of a value missing may depend on observed measurements and covariates

but, given these, is independent of any unobserved measurements. For missing covari-

ates, MAR assumes that missingness is independent of missing outcomes and covariates,

given observed outcomes and covariates. In other words, MAR assumes that responses

that have similar observed characteristics are comparable and that the missing values

are independent of any unobserved measurements. Conventionally, there are a number

of methods to handle the missing data problem. Under the the stringent MCAR assump-

tion, one can opt for the complete case analysis (CCA) by discarding cases with missing

observations and proceed with the analysis using only the observed data. If MCAR does

not hold, CCA will be severely biased. But, even if the MCAR holds, a CCA analysis

is less efficient compared to analyses that use all available data because in the latter

all the information is available to draw inferences. Little and Rubin (2014) state that,

likelihood-based inference is valid whenever the mechanism is MAR and provided the

1A. Kombo et al. (under review for submission). Comparison of methods for the analysis of incom-
plete longitudinal ordinal outcomes: Application to a clinical study on childhood malnutrition.
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technical condition holds that the parameters describing the missingness mechanism are

distinct from the measurement model parameters. The expectation-maximization (EM)

algorithm (Dempster, Laird and Rubin, 1977), is a general iterative procedure that can

be used to find the maximum likelihood estimates in missing data problems. The mul-

tiple imputation (MI) procedure (Rubin, 1978b;1987) replaces each of the missing value

with a set of M ≥ 2 plausible values, i.e., values drawn from the distribution of the

missing data given the observed data, that account for the uncertainty about the right

value to impute. The imputed data sets are then analyzed by using standard procedures

for complete data and combining the results from these analyses. Correct imputation

leads to valid large sample inferences and produces estimators with good large sample

properties (Little and Rubin, 2014). Work on semiparametric approaches for all types

of missingness based on weighted estimating equations (WEE) include Lipsitz, Ibrahim

and Zhao (1999); Robins, Rotnitzky and Zhao (1994, 1995a). Alternatively, Schafer

(2003) proposed the use of multiple imputation for the missing response values from a

fully parametric model, then followed by GEE, leading to a hybrid method indicated

by MI-GEE. The approaches are computationally efficient and can produce robust esti-

mates that are consistent in more relaxed settings.

So far most methodological work has been carried out on continuous and binary out-

comes. For discrete data, comparisons are mostly on binary response data. Comparisons

of analysis methods are needed in other categorical types of outcomes.

In clinical trials, it is common for analysts to encounter response measures that are cat-

egorical in nature with more than two categories. The responses represent categories of

outcome information rather than the usual interval scale. If the response variable takes

on values that cannot be ordered inherently then the response is nominal. If the response

takes values that can be ordered naturally (e.g., nutritional status: severe, moderate,

at risk, and well nourished), then the response is ordinal. Health related outcomes are

often ordinal, but fail to satisfy the preconditions usually needed to perform an ordi-

nary least squares (OLS) regression. When the outcomes are highly non-Gaussian, as

is the case when most of the respondents’ score is skewed at the very top or bottom of

the scale, ordinal regression can be more justified, and perhaps more informative than

the ordinary least squares regression. In fact, when the response is categorical, OLS

cannot produce the best linear unbiased estimator (BLUE), i.e., it is biased and inef-

ficient. Ordinal regression analysis provides sensible ways of estimating parameters for

ordinal response data, regardless of whether accompanying predictor variables are also

categorical or continuous. Ordinal regression takes advantage of the ordering by use

of the “cumulative odds”,“cumulative probabilities”, and “cumulative logits” concept.

The situation is more complicated when some of the respondents are not measured on

some follow up occasions and hence lead to missing data.

This paper presents a comparison of different analysis methods for longitudinal ordinal
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response data with missing values. In particular, we compare the traditional complete

case analysis method with advanced methods like the direct maximum likelihood (DL)

analysis (Beunckens, Molenberghs and Molenberghs, 2005) and multiple imputation in

its different imputation paradigms, namely: a full conditional specification (FCS; Van

Buuren et al. 2006; Van Buuren, 20017), multivariate normal imputation (MNI; Schafer,

1997) and the ordinal imputation method (OIM; Donneau, Mauer and Molenberghs,

2015).

The analysis here only deals with approaches under MAR, while MNAR is beyond the

scope of the paper. However, we note that the MAR assumption cannot be fully sub-

stantiated from the data, and that MAR and MNAR cannot be distinguished on formal

statistical grounds. One only suspects that the data are not MAR but nothing from

the data will indicate whether or not that is true (Allison, 2014). Note that standard

multiple imputation implementations almost all assume MAR to hold. An exception is

SAS procedure MI, which allows for MNAR missingness as of version 9.4. The proce-

dure offers a variety of options to conduct sensitivity analysis and examine how MNAR

mechanisms could jeopardize the MAR results. This is important because Molenberghs

et al. (2008) have shown that MAR and MNAR cannot be formally separated. However,

in spite of this, the impact on key parameter estimators and corresponding hypothesis

tests can be considerable. Arguably, such a sensitivity analysis should virtually always

be conducted.

This paper is structured as follows. In Section 5.2, we introduce the data setting and

a brief description of the extended formulation of binary logistic regression to ordinal

response variables. We also describe incompleteness in this section and give a model for

dropout. In Section 5.3, statistical methods for incomplete longitudinal data are dis-

cussed. A motivating example dataset (RSCM data) is presented in Section 5.4, where

data analyses are also carried out. First we carry out a comparative analysis using a

subset of the dataset to compare methods for the incomplete longitudinal ordinal out-

come data. Next, we conduct a simulation study by generating datasets that mimic the

RSCM data and repeat the comparative analysis of the methods of interest. We describe

the findings of the analyses and discussions thereof. In Section 5.5, we apply the same

methods to the whole original incomplete RSCM dataset. We conclude and point out

areas for further research in Section 5.6.

5.2 Data setting and modelling framework

For each individual i = 1, . . . , N in a study, we consider a series of measurements Yi =

(Yi1, . . . , Yini)
′, along with fixed covariate matrix Xi = (xi1, . . . , xini) which may include

measurement occasions (ti1, . . . , tini), where xij , j = 1, 2, . . . , ni is a p-dimensional vector

82



of covariates at time tij .

If the response variable Yij takes on two values, say ‘event = 1’ or ‘nonevent = 0’, then

the conditions for linear regression are not met. It implies that the errors are binary

and not normally distributed. Then, binary logistic regression may be used. If we let

the probability of an event be πij = Pr(Yij = 1), then the logistic model can be written

as:

logit(πij) ≡ log

(
πij

1− πij

)
= α+ x′ijβ = α+ xij1β1 + xij2β2 + · · ·+ xijpβp, (5.1)

where α is the intercept parameter and β is the vector of slope parameters. The linear

predictor α+x′ijβ models the log odds of the event of interest as a function of covariates.

It is key to note here that in equation (5.1), it is necessary to account for the fact that

observations from the same subject are correlated.

In many studies, the response can have more than two levels. Logistic regression can

be extended to more than two response levels i.e., to the so-called polytomous logistic

regression. Specifically, in ordinal response variables (where the responses possess an

intrinsic ordering) it extends to the ordinal response model; the proportional odds model

(McCullagh, 1980) which is combined with a cumulative logit link. The proportional

odds model, also known as the cumulative logit model is likely the most common ordinal

logistic regression model (Bender and Grouven, 1998).

Suppose the ordinal response variable Y has C, (c = 1, 2, . . . , C) levels. We use a multi-

nomial distribution and a cumulative logit link to address the nature of the response,

and C − 1 separate linear predictors to model the probabilities. In the context of longi-

tudinal ordinal observations, we write πijc = Pr(Yij = c), the probability of observation

Yij taking level c. If we let the cumulative probability be φijc = Pr(Yij ≤ c|xij), the

probability of being at or below category c, given a set of predictors, we define the

general cumulative logit link model as:

logit(φijc) = log

(
φijc

1− φijc

)
= log

[
πij1 + · · ·+ πijc

πij,c+1 + · · ·+ πijC

]
= αc + x′ijβc, c = 1, 2, . . . C − 1, (5.2)

where αc gives the threshold parameters (intercept terms that depend on the ordinal

levels), and c indexes the C − 1 logits. The regression parameters, βc, reflect the as-

sociation between the predictor variables and the outcome variable specific to a given

response function.

A key simplifying assumption in equation (5.2) is to impose a restriction on the linear

predictors by assuming the same slope parameters for each of the response logits (this

is referred to as the proportional odds assumption) and by restricting αc to monotocity
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(i.e., α1 < α2 < α3 < · · · < αC−1 ), so that;

logit(φijc) = αc + x′ijβ, c = 1, 2, . . . C − 1. (5.3)

This model has been studied by many researchers. Aitchison and Silvey (1957) used

a normit scale to obtain a maximum likelihood analysis. Cox and Snell (1989) on the

other hand employed the log-odds scale. For the log-odds scale, the cumulative logit

model is often referred to as the proportional odds model. The proportional odds model

has C − 1 + p parameters to be estimated. Otherwise, the most general model (5.2)

will require (C − 1)(1 + p) parameters, allowing different slope coefficients for the C − 1

response logits.

The cumulative logits in (5.3), can be exponentiated to obtain cumulative odds:

φijc
1− φijc

= exp(αc + x′ijβ), (5.4)

from which cumulative probabilities can be solved such that

φijc =
exp(x′ijβ)

1 + exp(x′ijβ)
. (5.5)

However, it should be noted that the proportional odds model is the result of the some-

how stringent assumption of proportionality of odds, which may not be automatically

valid for all ordinal response variables. If proportionality is valid for one set of coefficients

and does not hold for some, model (5.3) may be rewritten as:

logit(φijc) = αc + x′ijβ + z′ijγc, (5.6)

where xij represents the predictor variables with equal slopes, zij represents the predictor

variables with unequal slopes, β represents the regression parameters for xij and γc

represents the regression parameters for zij for a given c. For further and wider details

on ordinal variables modelling, we recommend among others; Agresti (1989, 2007, 2010);

Armstrong and Sloan (1989); Greenland (1994); Lee (1992); Molenberghs and Verbeke

(2005); Stokes, Davis and Koch (2012).

In case Yi is not completely observed we write Yi = (Yi,o, Yi,m), where Yi,o and Yi,m

denotes the observed and missing components of Yi respectively. We define a vector of

missingness indicators Rini = (Ri1, . . . Rini)
′, where Rij = 1, if Yij is observed and 0

otherwise (j = 1, . . . ni). In our case, we consider dropout only on the outcome variable.

Covariates xi are thus assumed fully observed. Certainly, the approaches we take in this

paper can also be employed to non-monotone and incomplete covariate data settings.

Therefore, we can define the full data as a combination of the processes generating
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Yi (measurement process) and Ri (missingness process). The full data density can be

represented by:

f(yi, ri|xi, θ, ψ), (5.7)

where the parameters θ and ψ represent the measurement and missingness processes

respectively. The full data density (5.7) can be factorized as

f(yi, ri|xi, θ, ψ) = f(yi|xi, θ)f(ri|yi, ψ). (5.8)

The conditional distribution of the missing data mechanism can be equivalently ex-

pressed as f(ri|yio, yim, ψ). Since in this part of the paper we confine the analysis to

dropout, we prefer to use a scalar variable Di rather than Ri. We define Di to be the

occasion at which a dropout occurs, and denote it: Di = 1 +
∑ni

j=1Rij . The model for

the dropout process is based on a logistic regression for the probability of dropout at

occasion j, given that the subject was in the study up to occasion j− 1. We denote this

probability by P (hij , yij), and express the outcome history as hij = (yi1, yi2, . . . , yi,j−1).

For simplicity, we assumed that the dropout depends only on the current observed

measurement (yij) and the immediately preceding measurement (yi,j−1). We therefore

assume the dropout model to be

logit[P (hij , yij)] = logit[Pr(Di = j|Di ≥ j, hij , yij)]

= ψ0 + ψ1yi,j−1 + ψ2yij , (5.9)

where ψ0 denotes the intercept of the regression, and the coefficients ψ1 and ψ2 are

the effects of yi,j−1 and yij respectively. The model reduces to a MAR model if ψ2 =

0, i.e., the missingness process is related to the observed outcome prior to dropout.

MCAR applies if ψ1 = ψ2 = 0, implying the missingness is independent of the previous

and current measurement. If ψ2 6= 0, then the missingness depends on the missing

data at the dropout occasion. Hence, we cannot rule out MNAR and the missingness

process cannot be ignored. Notice here that the test for ψ2 = 0 versus ψ2 6= 0 (MAR

versus MNAR) relies on untestable assumptions such as the distributional form (See, for

example, Kenward, 1998; Molenberghs and Kenward, 2007; Newsom, Jones and Hofer,

2012; Rhoads, 2012). In fact, Molenberghs et al. (2008) show that a formal distinction

between MAR and MNAR is not possible.
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5.3 Statistical approaches to incomplete data

5.3.1 Traditionally used approach

A complete case analysis (CCA) discards all incomplete cases and analysis is carried out

on what remains. Its apparent advantage is that it is very simple and easy to implement

in standard statistical software without extra toil. In fact, it is the default method in

many statistical software packages. Under the most stringent MCAR assumption, it

leads to valid unbiased parameter estimates. However, even when it is valid, the method

suffers from major drawbacks. In fact, it can be very inefficient, such that it produces

estimates with higher variance than would be obtained with other equally valid methods,

especially when we have to rule out a large number of cases (Rubin, 1987; Little and

Rubin, 2014). This consequently impairs its statistical power and precision. When

the missingness process is MAR but not MCAR and a CCA analysis used, results are

severely biased. Also, the statistical analysis may be biased when the complete cases

are systematically different from the incomplete ones. However, complete case analysis

can have an auxiliary analysis role, particularly if it relates to a scientific question

(Beunckens, Molenberghs and Kenward, 2005). Thus in this paper the CCA method is

not of primary interest.

5.3.2 Direct maximum likelihood analysis

It is important to consider approaches for handling missing data based on methods

that are valid under the less restrictive MAR assumption. The likelihood-based MAR

analysis (also termed likelihood-based ignorable analysis), or direct maximum likelihood

(DL) analysis, is one where the observed data are used without deletion nor imputation.

Because of this, appropriate and automatic adjustments, i.e., validity under MAR, are

made to parameters at times when data are incomplete, due to the within-subject corre-

lation. DL uses information on all subjects, including information from early dropouts

(Beunckens, Molenberghs and Kenward, 2005).

From the full data likelihood contribution for the ith subject, f(yi, ri|θ, ψ), we view the

observed data likelihood L contribution for the sequence yi as:

L(θ, ψ|yi, ri) ∝ f(yoi , ri|θ, ψ),
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where

f(yoi , ri|θ, ψ) =

∫
f(yi, ri|θ, ψ)dymi

=

∫
f(yoi , y

m
i |θ)f(ri|yoi , ymi , ψ)dymi , (5.10)

with all parameters and variables as described in Section 5.2. Here, we make the key

assumption that the response distribution and the missing data mechanism model are

correctly specified. Then, under the MAR assumption, (5.10) simplifies to:

f(yoi , ri|θ, ψ) =

∫
f(yoi , y

m
i |θ)f(ri|yoi , ymi , ψ)dymi

= f(yoi |θ)f(ri|yoi , ψ). (5.11)

Moreover, if parameter separability holds, meaning the parameters θ and ψ are distinct

in the sense that the joint parameter space is: Ω(θ, ψ) = Ω(θ) × Ω(ψ), we make use of

likelihood inference for the parameter of interest θ, which is thus based on the marginal

density of the observed data only. In this case, the missing data mechanism is termed

ignorable (Little and Rubin, 2014; Rubin, 1976). The consequence of this is that the

missing data mechanism does not need to be modelled explicitly.

5.3.3 Multiple Imputation

The idea is to fill the missing values by randomly drawing plausible values from the

conditional distribution of the missing observations given the observed ones. Multiple

imputation involves three steps.

Imputation step: Instead of filling in a single value, the conditional distribution of the

missing data is used to generate multiple (i.e., M ≥ 2) values that reflect the uncertainty

around the actual value. The missing data are filled in with the estimated values and a

complete dataset created. In this way, M complete datasets are obtained.

Analysis step: Each of the M complete datasets from the first step is then analyzed

using an appropriate analysis model.

Pooling step: Finally, the parameter estimates obtained from the M complete data

analyses are combined for inference.

When imputing one or many variables, the analyst has to consider a number of decisions.

The imputation procedure chosen will depend on the missing data pattern as well as the

type of variables with missing values or type of distribution under which the variables

are imputed. However, most of the imputation software packages (like the norm module

in R, and SAS PROC MI) assume a fully parametric multivariate normal distribution

on the partially observed variables. When normality does not hold, like in categorical
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variables (binary and ordinal) analysts still choose to use methods assuming multivariate

normality as an approximation and to round the imputed values to the nearest observed

integer. Thus, there is ongoing debate on the appropriateness of this rounding operation.

In this paper, we focus on three imputation strategies. The first is to treat the ordinal

missing data as normally distributed and use models that assume normality to impute

the missing values. Second, we will impute based on models designed for categorical

data (e.g., linear discriminant analysis, or logistic regression models). Specifically, the

proportional odds logistic regression model will be used. The binary and proportional

odds logistic regression models for imputation are available in SAS PROC MI, IVEware

and MICE in R. Finally, we use the ordinal imputation method.

Notice that the standard applicability of MI approaches assumes the MAR assumption,

but this does not limit its applicability strictly to this mechanism. The MI approaches

can be extended to MNAR provided the user is willing to make some additional assump-

tions about the mechanism. Also, MI can be used for both monotone and non-monotone

missing data patterns, and in situations where missingness is in both the outcome as

well as covariates. Allison (2012) has handled cases where missingness is in both the

dependent variable as well as the predictor variables using maximum likelihood and

multiple imputation. But note that, for users of SAS, there is no procedure that does

maximum likelihood analysis for logistic regression with missing data on the predictors!

Below the three statistical formulation of the three methods are briefly presented.

5.3.3.1 Multivariate normal multiple imputation

Multivariate normal imputation assumes that the data are sampled from a multivariate

normal distribution. The idea is to generate plausible imputations that account for

between-imputation variability. Such imputations are based on the data augmentation

algorithm (Tanner and Wong, 1987), and are obtained by iteratively alternating between

two steps: an imputation step (I-step) and a posterior step (P-step). For our ordinal

response variable, each (Xij , Yij), i = 1 . . . , N ; j = 1, . . . ni is assumed to have been

randomly sampled from a multivariate normal distribution with mean vector µ and

covariance matrix Σ. Let θ = (µ,Σ). The covariates are suppressed from notation.

Missingness is also assumed only on the response variable Y . Ideally, the ordinal data

is not normally distributed, the normality assumption is just one way of tackling the

problem and this approach should be considered an approximation.

The I-step: Given starting values for θ, a value for missing data Y m is randomly drawn

from the conditional multivariate normal distribution of Y m|Y o; f(Y m|Y o, θ). Denote

the mean vector of the variable in the observed and in the missing parts of the dataset

as µ = (µo, µm). But, note here that this partitioning is not at the level of the dataset,
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but rather at the level of the subject. However, we suppress the index i for simplicity

of notation. Similarly, the covariance matrix is partitioned such that

Σ =

(
Σo Σo,m

Σ′o,m Σm

)
,

where (due to symmetry) Σo,m = Σ′o,m denotes the covariance matrix between Y o and

Y m, Σo and Σm represent the variance matrix for Y o and Y m, respectively. The condi-

tional mean µm|o, and the conditional covariance matrix Σm|o, must be derived. Follow-

ing Donneau et al. (2015) and Schafer (1997), it is assumed that f(Y m|Y o, θ) follows a

normal distribution with conditional mean µm|o and conditional covariance matrix Σm|o,

i.e.,

Y m|Y o, θ ∼ N(µm|o,Σm|o),

where,

Σm|o = Σm − Σ′o,mΣ−1
o Σo,m and µm|o = µm + Σ′o,mΣ−1

o (Y o − µo). (5.12)

The P-step: After the first iteration, new values for θ∗ = (µ∗,Σ∗) are drawn from its

posterior distribution (typically from a normal-Wishart family, given a normal-inverse-

Wishart prior distributions). Assuming an objective prior distribution for θ∗, its poste-

rior at the rth iteration will therefore be expressed as

µ
(r)
|Σ ∼ N

(
Ȳ ,

1

N
Σ(r)

)
, Σ(r) ∼ U−1(N − 1, (N − 1)S), (5.13)

where

Ȳ =
1

N

N∑
i=1

yij , j = 1, . . . , ni, S =
1

N − 1

N∑
i=1

(yi − Ȳ )(yi − Ȳ )′ and U =
1

M

M∑
l=1

Ul,

with U measuring the within-imputation variability, Ul being the corresponding variance-

covariance matrix for the lth imputed dataset, l = 1, . . . ,M .

Note here that Ȳ and S are governed by the observed data and the missing data imputed

at the last imputation step. The two steps are repeated sequentially thus creating a

Markov chain of pairs (Y m
(1), θ(1)), (Y

m
(2), θ(2)), . . .. Each step depends on the previous one,

creating dependency across the steps. The two steps are iterated long enough until

convergence.

The imputed values obtained in this fashion are not discrete and they need to be rounded

off to the nearest integer value. We have to first impute at the continuous variable scale

using the normal data assumption and then discretize based on estimated thresholds.
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Importantly, minimum and maximum values must be provided to capture the scope of

the ordinal variable imputed. Yucel and Zaslavsky (2004) provide practical suggestions

on rounding in multiple imputation.

5.3.3.2 Full conditional specification

For the categorical models, imputation can also be done using the MCMC algorithm

with chained equation imputation. Full conditional specification also known as multiple

imputation via chained equations (Brand, 1999; Van Buuren and Groothuis-Oudshoorn,

2011), or partially incompatible MCMC (Rubin, 2003) is a practical method to gener-

ating multiple imputations, one for each partially recorded variable in the dataset. It

can handle different variable types (continuous, binary, nominal and ordinal) since each

variable is imputed using its own imputation model. The variables with missing values

are imputed sequentially one after the other. The first variable, say y1, with missing

data is regressed on all other variables y2, y3, . . . , yn, limited to subjects with the ob-

served y1. Then the process is repeated for the next variable with missing values, but

this variable also uses the imputed values of y1. It continues until all variables with

missing values are exhausted. This result is called a cycle. To stabilize the results, the

procedure is iterated for a number of cycles to produce a single imputed dataset. The

entire procedure is repeated M times to produce M complete datasets.

Being specific to the incomplete ordinal response variable, Y with C > 2 categories, and

using the cumulative proportional odds model (5.3), β and α are estimated by maximum

likelihood. Values β∗ and α∗ are drawn from a normal approximation to their poste-

rior distribution. Let the estimated probability that an observation falls in category

c = 1, . . . C be given by

pijc = Pr(yij ≤ c|xij ;β∗, α∗)− Pr(yij ≤ c− 1|xij ;β∗, α∗).

For each missing observation Y m
ij , let p∗ijc = Pr(yij = c|xij ;β∗) be the drawn category

membership probabilities, and φijc =
∑c

c′=1 p
∗
ijc′ . Then each imputed observation y∗ij is

obtained by

Y ∗ij = 1 +
C−1∑
c=1

I(uij > φijc),

where uij is a random draw from a uniform distribution, uij ∼ u(0, 1) for I = 1 if

uij > φijc and 0 otherwise.

FCS can be used with arbitrary missing data patterns, with the advantage that it does

not require as many iterations as MCMC.
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5.3.3.3 Ordinal imputation method

Sometimes it is important to impute incomplete ordinal data by a model that is con-

sistent with the data type. The ordinal imputation model (OIM) serves as a congenial

alternative to the ordinal type of data. Here, we briefly describe the OIM algorithm as

presented by Donneau et al. (2015).

The OIM is applicable to monotone missingness patterns. For incomplete longitudinal

data with these patterns, multiple imputation generally considers completely measured

assessment occasions as covariates to sequentially apply approaches designed for uni-

variate data. The OIM strategy employed in SAS PROC MI considers estimating the

probability for each category using a cumulative logistic regression model, and then

imputes each category for missing values based on the estimated probabilities. The

model links the ordinal outcome to a set of q covariates. Considering a longitudinal

set-up, these covariates may comprise of the covariates of the substantive model, say

Xij , (i = 1, . . . , N ; j = 1, . . . , ni), possible auxiliary covariates (Aij) and the vector of

previous outcomes hij = (Yi1, Yi2, . . . , Yi,j−1)′. Let X∗i = (Xij , Aij , hij). We define a

proportional odds model:

logit[Pr(Yij ≤ c)|x∗ij ] = λ0c + x′∗ijλ, (5.14)

where Λ̂ = (λ′0, λ
′)′ are regression coefficient estimates, with λ0 = (λ01, . . . , λ0,C−1), and

the corresponding covariance matrix V = V (Λ̂). These estimates are obtained by fitting

(5.14) to the observed data. Starting from these estimates, the OIM algorithm proceeds

(in summary) as follows:

1. Draw new values for Λ, say Λ∗, by assuming a large-sample normal approximation,

N(Λ̂, V (Λ̂)) of its posterior distribution from a noninformative prior Pr(Λ) ∝ k, k
is a constant. In essence,

Λ∗ = Λ̂ +∇′Z,

where ∇′ is the upper triangle matrix of the Cholesky decomposition, where

V = ∇′∇ and Z is a (C − 1) + q vector of independent random normal variates.

2. For an observation with missing values Y m
ij and corresponding covariates X∗ij , by

using (5.14) calculate the expected probabilities, Pc = Pr[Yij = c|x∗ij ], c = 1, . . . C.

3. Then, for an observation with missing values Y m
ij , draw a random variate from a

multinomial distribution with vector of probabilities (P1, . . . , PC) derived in step

2.
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4. Steps 1 to 3 are repeated M times to obtain a sequence of imputed values

(Y
(1)
ij , Y

(2)
ij , . . . , Y

(M)
ij ), for (i = 1, . . . , N ; j = 1, . . . , ni).

5.4 Brief description of the data and simulation studies

5.4.1 The data: Recovery from Severe Childhood Malnutrition (RSCM)

This paper uses data from a clinical trial on nutritional status during recovery from

severe malnutrition in children. This longitudinal study was conducted by the KEM-

RI/Wellcome Trust Research Programme, Kilifi, Kenya. The data were collected for

1778 children in total aged 2 to 59 months in 4 different hospitals in Kenya. All were

recruited in hospital and had been admitted with severe, acute malnutrition. The chil-

dren were enrolled shortly prior to discharge and followed up for one year. Follow up

was for 10 scheduled occasions; at 0, 1, 2, 3, 4, 5, 6, 8, 10 and 12 months. Children who

died, withdrew before the end of the study, or for other reasons (e.g., deformity), full or

complete sequence measurements were not possible (meaning one or more variables will

always be missing) were excluded from this analysis, leaving 1138 children who satisfied

the inclusion criteria for this analysis.

Overall, about 60% of participants had 100% complete data and 40% had one or more

anthropometric data points missing. The proportion of missing data amongst anthropo-

metric variables was 9.8%. The missing values were due to follow up visits being missed

completely, or anthropometric measurement data were incomplete if conducted at a

home visit without all the anthropometry equipment. In this instance the missingness

may depend on unobserved responses of interest and thus assumed to be nonrandom.

However, extreme care has to be taken when interpreting evidence for or against MNAR

using only the data under study. Trial details may be accessed at Berkley et al. (2016).

5.4.2 Preliminary simulation study I

For the applications presented in this section, we extracted the RSCM participants with

no missing data and hence had 729 subjects with complete information from the whole

dataset (of 1138 children). The variables’ names and descriptions are as follows: sex:

sex of the subject (Female or Male); age: this is the age in months calculated from date

of enrolment and date of birth; site: the 4 hospitals where the trial was conducted in

Kilifi, Malindi, Mbagathi (Nairobi) and Mombasa. In the analysis, the variable site is

dichotomized such that Mombasa and Mbagathi are put together as urban, while Kilifi

and Malindi are grouped as rural. muac: mid-upper arm circumference in centimetres;

zhc: head circumference; zwei: weight for age; zlen: length for age; zwfl: weight for
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length.

The anthropometric variables are continuous, as Z scores calculated from the World

Health Organization (WHO) reference population (2006) (WHO and Unicef, 2009), ex-

cept muac which are raw values. zhc, zwei, zlen, and zwfl are the Z scores.

In this study we use muac as the response variable. We use it because it is the best

predictor of mortality as it combines the other anthropometric measures and age. Al-

ternatively, one may opt to consider all the measures of malnutrition in a multivariate

analysis model, hence, investigate their dependence noting that they share the same

covariates. Here, one has to consider correlations among the response variables and

between subjects as well.

First, we carry out exploratory analyses on the data based on the continuous outcome

muac. The exploratory analysis shows that muac in its original continuous form is nor-

mally distributed. Figure 5.1 displays the QQ-plot for the continuous outcome variable

muac.

 

Figure 5.1: A QQ plot for the continuous outcome variable muac

On further exploration, we noted that there is evidence of variability within and between

subjects. This is supported by the spaghetti plots or the subject specific profile plots over

time. There was a shift, as expected from a lower status to a better status of malnutrition

during recovery and the muac increases over follow up time implying treatment was

generally effective. This is evident from Figure 5.2.

Next we carried out a repeated measures likelihood analysis that employs a linear model

combined with a variance-covariance model that incorporates correlations for all the

observations arising from the same subject. In essence we assume that the observations

are ordered similarly for each subject, meaning all subjects were measured at the same

intervals. Based on AIC values, a model with an unstructured correlation matrix pro-

vided the better fit for the data. The data is assumed to be Gaussian and therefore
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Figure 5.2: “Spaghetti plots” of response curves for subjects

the likelihood maximized to estimate the model parameters. Table 5.1 presents the

parameter estimates.

Table 5.1: Parameter estimates, standard
errors (SE) and P-values using the contin-
uous outcome for malnutrition.

Effect Estimate SE Pr> |t|

Intercept 10.2473 0.0807 <.001
sex(female) 0.1188 0.1237 0.337
site: rural -0.1359 0.0605 0.025
age 0.0449 0.0053 <.001

month† 0.1808 0.0036 <.001
sex*age (female) -0.0143 0.0092 0.120

†Month of follow up.

Larger values of muac imply better status of nutrition. From Table 5.1 it can be seen

that a unit increase in the age of a child increases muac by 0.0448 units. It is also clear

that the recovery rate is different for rural and urban children. The mean muac for rural

children is 0.1359 lower compared to that of their urban counterparts. The results also

show that there is no significant difference in mean muac for males and females. There

is also a significant time effect showing that for a 1 month increase, muac increases by

0.1808 units.

5.4.2.1 The ordinal outcome and methods

The primary aim of this paper is to analyse an ordinal outcome from a longitudinal (fol-

low up) study and ultimately compare and contrast the previously discussed methods

for incomplete ordinal data. In particular, we fitted an ordinal logistic regression model.

But note that, initially, the outcome variable was continuous. We categorized the mal-

nutrition variable, according to WHO guidelines as follows: Children whose muac is less

than 11.5 cm are categorized in the severe level; those with muac greater than or equal
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to 11.5 but less than 12.5 cm fall in moderate; those with muac greater than or equal to

12.5 but less than 13.5 cm are at risk; and finally muac 13.5 cm or more are categorized

in the high level, well nourished.

After categorization, the distribution of the outcomes is now negatively skewed thus vio-

lating the normality assumption. Table 5.2 displays the distribution of the malnutrition

status among the children per site.

Table 5.2: Distribution of the malnu-
trition status by sex and site.

Level of outcome?

Sex Site 1 2 3 4

Female Rural 235 255 182 88
Urban 906 737 771 516

Male Rural 392 325 286 277
Urban 846 656 741 707

Note: ? 1 = severe; 2 = moderate; 3 = at
risk; and 4 = well nourished.

The first step to comparing the methods was deciding the model to use for the data.

The 4−level malnutrition measure was modelled using four predictor variables: sex of

subjects, site of follow up, age of the subjects and the follow up period. We also include

an interaction between the age and sex. Essentially, based on the cumulative logit model

(5.3) in Section 5.2, the working model is explicitly written as:

logit[Pr(malnut ≤ c)] = αc + β1sex + β2site + β3age + β4month

+ β5sex*age, c = 1, 2, . . . C − 1, (5.15)

We fitted a standard cumulative odds model in SAS version 9.3. It should be noted

here that for the multinomial distribution, when one wants to fit a GEE e.g., in SAS

PROC GENMOD, a restrictive fact is that only an independence working assumption

is allowed. But, this is not a disturbing hindrance since valid parameter estimates and

empirically corrected standard errors can be obtained regardless of the working structure

used. However, this is true when analyzing full data (and possibly complete imputed

datasets). When the data are incomplete and MAR, consistency and robustness to the

choice of correlation are usually lost. But in this paper, we present maximum likelihood

estimates.

After the model was fitted, the parameter estimates were recorded as the “true” pa-

rameter values. Afterwards, a percentage of responses were dropped randomly at the

following approximate rates: 15%, 28% and 38%. First we performed a complete case

analysis. Next DL and MI were performed. After imputing, the same model previously
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used was fitted. The new parameter estimates from DL and MI were recorded and com-

pared to the “true” parameter values. Following, we discuss the dropout and models

involved in MI.

5.4.2.2 The dropout

It is logical to assume that the probability of a subject i in a clinical trial to drop out at

measurement occasion j depends on the history hij , hij = (Yi,1, Yi,2, . . . , Yi,j−1)′, imply-

ing that the MAR assumption holds. Therefore, we constructed a dropout mechanism

such that the probability of dropping out at any given time occasion j was a function of

the malnutrition response recorded the previous time occasion.In particular, the proba-

bility that a subject dropped in the time occasion j given that he or she responded in

time occasion (j − 1) was determined by

Pj =
1

1 + exp(−13.5−muacj−1)
, (5.16)

where muacj−1 is the observed response at occasion j − 1. This strategy means that

those who recorded an improvement in the malnutrition status were likely to drop out.

This dropout mechanism satisfies the missing at random assumption. The number of

cases still present in each of the 10 time points of follow up simulated at three different

dropout rates are presented in Table 5.3.

Table 5.3: Number of cases still present under different simulated dropout rates using a
missing at random strategy.

Freq Miss∗ = 1174 (15%)
Month N

0 792
1 792
2 792
3 792
4 792
5 792
6 792
8 792
10 237
12 173

Freq Miss = 2182 (28%)
Month N

0 792
1 792
2 792
3 792
4 792
5 792
6 349
8 277
10 202
12 158

Freq Miss = 3945 (38%)
Month N

0 792
1 792
2 792
3 792
4 460
5 364
6 298
8 246
10 190
12 149

Note: Month refers to month of follow up.
∗Freq Miss refers to the frequency of missing values by the end of the study.

5.4.2.3 The imputation and analysis models

To perform MI, one must choose an imputation model for the imputation stage imple-

mented in PROC MI. Then the imputed data sets are subjected to a common analysis
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model at the analysis stage. However, for the results to be correct, the imputation and

the analysis model should be congenial. For congeniality or coherence, it means that the

imputation model must contain at least all the variables that are intended to be included

in the analysis model. This may include all transformations and possible interactions

to variables that are needed in the intended tests. Alternatively, a bigger model can be

chosen for the imputation than the analysis model. This may be achieved by including

auxiliary variables, that we feel may predict the missingness or are related to the missing

variable(s). The auxiliary variables are not of interest in the analysis model but are in-

cluded in the imputation model to increase the estimation power as well as try to make

the MAR assumption more plausible. We estimated the bivariate correlations among

the covariates and to the outcome variable to be imputed. In our setting, variables

zwfl and zwei are included in the imputation model but are removed from the analysis

model. A recommended auxiliary variable is when the coefficient of correlation, r > .4.

However, this is still an area of active research currently. Allison (2012) believes that

including these types of terms introduces unnecessary error into the imputation model.

On the other hand, other researchers do not see any harm on the practice, e.g., Enders

(2010). Therefore, researcher discretion is advised. A good auxiliary variable can have

missing information or not and be just as effective in reducing bias (Enders, 2010). At

times, values are missing on a covariate. In such a situation the dependent variable is

also used in the imputation model. If it is ignored from the imputation model, there is

a possibility of reducing the strength of the correlation between the predictors and the

dependent variable, meaning the imputed values and the observed values will not have

the same correlation towards the dependent variable.

On the other hand, DL does not create any possibility of a conflict between the impu-

tation and analysis model. Everything is done under the same model. Every variable in

the analysis model will be used in dealing with the missing data. In case of interactions

or nonlinearities, they will automatically be integrated into the method for handling the

missing data (Allison, 2012).

5.4.2.4 Results

In this section we present the analysis results of the ordinal outcome datasets. First we

present the results for our reference dataset (herein referred to as full dataset). This is

the dataset before introducing dropouts. Table 5.4 gives the standard cumulative logit

regression results.

Probabilities are cumulated over the lower ordered values. From Table 5.4, we notice

that there is evidence that age at enrolment affects malnutrition status differently for

males and females. This is depicted by the significant (at α = 0.05) p-value = 0.0105, for
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Table 5.4: Maximum likelihood parameter estimates (Estimates,
Std Error, 95% Confidence Limits and P-Values) for the reference
dataset

Par Est Std Err Wald 95% C. L. Pr >ChiSq.

Intercept1 1.2299 0.0553 1.1214 1.3383 <.001
Intercept2 2.6290 0.0613 2.5090 2.7491 <.001
Intercept3 4.1761 0.0714 4.0362 4.3160 <.001

sex Female 0.0651 0.0419 -0.0171 0.1472 0.1205
site rural 0.1469 0.0246 0.0987 0.1952 <.001
age -0.0548 0.0031 -0.0609 -0.0487 <.001

month† -0.3233 0.0066 -0.3363 -0.3104 <.001
age*sex Female 0.0079 0.0031 0.0018 0.0139 0.0105

† month of follow up.

the age-by-sex interaction. We further infer that the decrease with age in the estimated

cumulative odds of malnutrition status below any level c of the ordinal outcome is

stronger for males than for females i.e., for male children, the estimated cumulative

odds decrease by a factor of exp(−0.0548) = 0.9447 for every unit increase in age,

compared to a decrease of exp(−0.0548 + 0.0079) = 0.9542 for the female children. In

particular, with a significant coefficient for the interaction term (estimate = 0.0076,

SE= 0.0031) and likelihood ratio test statistic = 6.55 (not shown in the table), 1 df :

p-value = 0.0105, the decrease in estimated odds can be regarded as different between

female and male children. Generally, we notice from the results that younger and female

children are identified as more malnourished than male children. Similar results were

reported in Berkley et a. (2005) where the authors noted that muac as a measure of

malnutrition tends to identify younger and female subjects malnourished more frequently

than with Z score approaches. Further, in line with what was observed in Table 5.1, the

nutritional status of rural children is lower compared to urban children. In particular,

the cumulative odds of severe malnutrition for rural children is exp(0.1469) = 1.1582

times that of their urban counterparts.

Next, we present results obtained after applying complete case analysis (CCA), di-

rect maximum likelihood (DL), full conditional specification (FCS), multivariate nor-

mal imputation (MNI) and ordinal multiple imputation (OIM). We provide three dif-

ferent tables; for 15%, 28% and 38% dropout rates respectively. Maximum likelihood

parameter estimates were obtained. In this paper, to implement the MNI, expectation-

maximization algorithm for maximum likelihood estimates was used. Notice that, for

the current PROC MI in SAS, maximum likelihood estimation in MNI and OIM is not

possible for categorical data. Dummy variables must be created to include such variables

in the estimation. Under the MI strategies, 20 imputations were conducted with default

SAS specifications (for number of iterations) for the various methods.

For comparison, we define our own measure, RAD(β̂) = |β̂F − β̂M |/S.E.(β̂F ). The
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measure RAD(β̂) is an absolute difference between β̂F and β̂M divided by the standard

error of β̂F . Here β̂F is an estimate from the created full dataset and β̂M is the estimate

from the other model in the presence of missing data, namely CCA, DL, FCS, MNI and

OIM. The smaller the value of AD(β̂), the better the method. Smallest values are in

bold in all three tables. Therefore, CCA, DL and MI approaches were considered to

perform effectively if obtained parameter estimates are close or similar to those of full

dataset analysis. The tables are presented as: Table 5.5 for 15% dropout, Table 5.6 for

28% dropout and finally Table 5.7 for 38% dropout.

Table 5.5: RAD(β̂) measures for CCA, DL, FCS, MNI, and
OIM. Dropout rate: 15%.

Parameter CCA DL FCS MNI OIM

Intercept1 27.7396 1.8535 0.1790 4.5805 2.5009
Intercept2 52.3230 1.8401 0.3638 3.8760 2.0767
Intercept3 76.1513 2.9104 1.0070 3.0896 3.1653

sex Female 16.7327 1.0286 0.1575 0.2005 0.2554
site rural 12.9228 0.9431 0.2358 4.8171 5.2520
age 5.6129 0.3871 0.3548 0.2903 0.2581

month† 4.6970 6.6212 0.5455 5.0152 0.8485
age*sex Female 6.7097 1.1290 0.5161 0.3226 0.5484

† month of follow up

Examining Table 5.5, we notice that smallest values were produced by FCS in all vari-

ables except age and age by sex interaction. OIM produced the smallest value for age

while MNI had the smallest value for the interaction effect. Throughout, we find that

CCA produced largest values as expected.

Table 5.6: RAD(β̂) measures for CCA, DL, FCS, MNI, and
OIM. Dropout rate: 28%.

Parameter CCA DL FCS MNI OIM

Intercept1 31.1863 4.6166 0.5118 5.6944 3.2315
Intercept2 60.1615 2.9625 0.6558 3.1746 1.8956
Intercept3 85.5588 2.6401 0.8473 0.4678 3.1106

sex Female 17.1146 1.9570 0.1193 0.1050 0.1623
site rural 14.3699 1.9146 0.1098 4.8130 5.8130
age 2.8387 0.1290 0.2258 0.6452 0.0323

month† 0.6970 19.9848 4.0606 0.8636 3.8788
age*sex Female 7.5484 1.1613 0.2581 0.1613 0.2258

† month of follow up.

From 28% dropout, Table 5.6, FCS is now challenged by MNI. FCS produced the smallest

values for Intercept1, Intercept2 and site. MNI had the smallest value for Intercept3,

sex and age by sex interaction. Like in Table 5.5 OIM produced the smallest value for

age. Unusually, CCA produced the smallest value for month. But even with this, in all

the other remaining parameters, CCA recorded the largest values.
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For 38% dropout rate, Table 5.7, the challenge is between FCS and OIM. Each of the

two produced smallest values for 3 parameters. MNI had the smallest value for sex.

Like in Table 5.6, CCA here also produced smallest value for month, but as in the other

dropout rates, it had largest values for all other remaining variables.

Table 5.7: RAD(β̂) measures for CCA, DL, FCS, MNI, and
OIM. Dropout rate: 38%.

Parameter CCA DL FCS MNI OIM

Intercept1 34.5226 2.9277 0.1917 5.0452 2.7450
Intercept2 67.7047 2.3328 3.2300 1.0375 0.5938
Intercept3 85.9090 6.4580 2.6162 8.0840 0.1485

sex Female 17.5107 2.9475 0.2578 0.0167 0.0382
site rural 15.9878 3.1585 0.3902 5.5691 6.6060
age 3.4194 1.1935 0.0000 0.8065 0.0645

month† 1.3939 24.3788 5.0152 9.7879 5.1212
age*sex Female 9.4839 1.1613 0.4516 0.6129 0.3226

† month of follow up.

Generally, the largest values were recorded for CCA for all variables except for month

where DL gave the largest value. This was consistent for all three dropout rates. Al-

though DL did not record the smallest value for all dropout rates, but it is ranked

second from smallest for site in all the droupout rates. It also gave second smallest val-

ues for Intercept1, Intercept2 and Intercept3 under 15% and Intercept3 for 28% dropout

rates. Overall, FCS produced the highest number of smallest values under the different

dropout rates. It is also clear that CCA is a poor method in all the dropout rates. But,

to get a precise picture of how the methods are ranked in performance, we applied the

Mahalanobis distance (MD) statistic, defined such that:

MD = (βF − βM )′ ∗ V arCov(βF )−1 ∗ (βF − βM ).

VarCov is the variance-covariance matrix of the full dataset parameter estimates. Table

5.8 presents the Mahalanobis distance estimates for each method under the three dropout

rates.

Table 5.8: Mahalanobis distance measures for CCA,
DL, FCS, MNI, and OIM. Dropout rates: 15%, 28%
and 38%.

Drop
Method

Rate CCA DL FCS MNI OIM

15% 31274 67.69523 9.981807 92.48802 131.246

28% 45524.25 1071.064 62.73536 254.8666 92.95468

38% 47409.17 3769.034 289.815 1195.495 154.9534
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Examining Table 5.8, we notice that the smallest MD is produced by FCS for 15% and

28% dropout rates, and OIM for 38% while CCA has the largest value throughout.

Although we have found our results to be likely favourable, but we used a subset of the

data and performed a limited simulation study. This, therefore, does not necessarily

reflect an accurate and comprehensive comparison because the conclusion drawn is only

based on a single replication. The fact is that virtually all simulation studies borrow

their strength and conclusive power from replication, where the same data generating

and corresponding analysis mechanism is repeated a number of times. In the next

section, replication-based simulations are conducted.

5.4.3 Simulation study II

After seeing the performance of the methods on the limited simulation study in Sec-

tion 5.4.2 (only one dataset), we repeated the comparisons but now utilizing the power

of replication (and law of large numbers). We generated S=500 samples, each of size

N=1000 subjects. An ordinal regression model was motivated by assuming an under-

lying latent variable, say y∗, which is related to the actual ordinal response through

the threshold concept. The response was therefore based on some underlying con-

tinuous endpoint that follows a linear regression model incorporating random effects

and a specified set of threshold values αc. This data generation mimics the 60% full

data subset of the RSCM dataset (as in Subsection 5.4.2) and so the choices made

here are in line with the study protocol. We assumed a vector of predictor vari-

ables x′ = (x1, x2, x3, x4) which is a combination of both binary and continuous vari-

ables. Here, x1 and x2 represent binary group effects sex and site respectively while

x3 and x4 are continuous variables representing age and a 10-point observation time,

respectively. We used as starting values for this simulation study, the direct maxi-

mum likelihood analysis results for the 60% RSCM dataset (see Table 5.4), such that

β1 = 0.0651, β2 = 0.1469, β3 = −0.0548, β4 = −0.3233, and β5 = 0.0079). We therefore

defined the simulation model explicitly as

logit[P (y∗ij ≤ c|x)] = αc + 0.0651x1 + 0.1469x2 − 0.0548x3 − 0.3233x4

+ 0.0079x1x3 + bi, bi ∼ N(0, 0.75642). (5.17)
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By letting φij = P (y∗ij ≤ c|x), we obtained the corresponding ordinal response Yij (with

C = 4 levels) by using an observation rule defined as

Yij =



1 if 0 ≤ φij < τ1,

2 if τ1 ≤ φij < τ2,

3 if τ2 ≤ φij < τ3,

4 if τ3 ≤ φij ≤ 1.

(5.18)

From the full datasets, before imposing any dropouts, parameters and standard errors

were estimated using a likelihood-based analysis. Each estimate is an average of 500

estimates from the different simulated datasets. We use these parameter estimates as

our “true values”. Then, assuming a dropout mechanism similar to (5.16), we generated

dropouts at approximate rates of 21% and 40%. Dropout is only on the outcome vari-

able. To ensure ignorability, we did not allow dropout on y to depend on y itself. These

incomplete datasets were subjected to the methods under investigation, with specifica-

tion for each method as used in previous sections. In this study we used 20 imputations.

To compare the performances of the methods, relative biases and mean squared errors

(MSE) are presented in Table 5.9. For convenience we present only estimates for regres-

sion parameters, intercepts are not included. Smallest relative bias and MSE values are

presented in boldface.

Considering 21% dropout rate, most smallest relative bias values are produced by OIM.

We notice that in most cases the values are equal for two or more methods, or very

close. Strangely, for 40% dropout rate, CCA produces 3 smallest relative bias values.

This may be attributed to the amount of data that was available for analysis. Even

after deleting the incomplete cases, there was enough data to reproduce the full data

results. This should not be regarded as a proof for validity of CCA in this case. It has

previously been found to perform poorly in the RSCM subset, and the weakest method

for 21% dropout above.

Regarding MSE, DL, FCS and OIM seem to perform close to each other. In many cases

very close or equal values are obtained between DL and one or more of MI strategies

or amongst the MI strategies. Generally, when MSE values are considered, it can be

observed that DL and MI strategies are equally viable for the scenarios, at least, as

discussed in this study, with only a slight gain of FCS and OIM over MNI.

Overall, the findings in these simulations are in agreement with the RSCM subset where

the DL and MI strategies performed closely and preferable while CCA performed poorly.

If in some cases CCA was found to perform well, this was perhaps due to chance. The

method has severely been discouraged by leading researchers like Rubin (1987); Little
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and Rubin (2014); Molenberghs and Verbeke (2005) among others, and we do not intend

to uphold it because of perhaps a few fair cases in this study.

5.5 Application: The original dataset

After examining the performance of our methods in the simulation studies, we now use

the same methods on the whole, original RSCM dataset. The dataset has 8% missing

values on the ordinal dependent variable (malnut). Note that, malnut is the ordinal

form of the original muac. The distribution of the missing data is arbitrary, i.e., a

mixture of monotone and non-monotone patterns. When the pattern of missingness is

arbitrary, one can create MI datasets by imputation via the multivariate normal model

(MNI) or using the chained equations approach (FCS). DL can also be used to handle

arbitrary missingness. To use OIM, the missing values have to be filled in sequentially,

by first making the pattern of missingness monotone, then proceed to implement the

OIM. Notice that methods capable of handling arbitrary pattern of missingness can also

handle monotone missingness. However, the opposite is not true. There are methods

whose strength lies in handling monotone patterns and not arbitrary patterns. We

present in Table 5.10 the results of CCA, DL and MI strategies on the original childhood

malnutrition dataset.

Table 5.10: Parameter estimates, Standard errors and P-values from the original dataset,
100% Recovery from severe childhood malnutrition (RSCM) dataset: Arbitrary miss-
ingness rate: 8%. Standard errors are presented in parenthesis.

Parameter

Method Intercept1 Intercept2 Intercept3 sex(F) site(R) age month† age*sex(F)

CCA
1.5117 3.0066 4.5671 -0.0420 0.2766 -0.0731 -0.3408 0.0133

(0.0943) (0.1064) (0.1252) (0.0707) (0.0442) (0.0051) (0.0115) (0.0051)
<.0001 <.0001 <.0001 0.5523 <.0001 <.0001 <.0001 0.0086

DL
1.2837 2.7149 4.2745 0.0700 0.1730 -0.0547 -0.3316 0.0045

(0.0489) (0.0543) (0.0634) (0.0369) (0.0225) (0.0028) (0.0058) (0.0028)
<.0001 <.0001 <.0001 0.0581 <.0001 <.0001 <.0001 0.0996

FCS
1.2959 2.7150 4.2605 0.0715 0.1740 -0.0550 -0.3303 0.0044

(0.0498) (0.0551) (0.0648) (0.0372) (0.0230) (0.0028) (0.0061) (0.0028)
<.0001 <.0001 <.0001 0.0548 <.0001 <.0001 <.0001 0.1122

MNI
1.0624 2.5280 4.1284 0.0718 0.3352 -0.0540 -0.3270 0.0043

(0.0462) (0.0521) (0.0608) (0.0364) (0.0449) (0.0028) (0.0057) (0.0027)
<.0001 <.0001 <.0001 0.0483 <.0001 <.0001 <.0001 0.1118

OIM
1.1086 2.5410 4.0990 0.0703 0.3421 -0.0547 -0.3305 0.0045

(0.0470) (0.0521) (0.0620) (0.0381) (0.0453) (0.0028) (0.0061) (0.0028)
<.0001 <.0001 <.0001 0.0654 <.0001 <.0001 <.0001 0.1086

† month of follow up, F = female R = rural

104



Investigating the results in Table 5.10, we notice that the DL and MI methods are

performing very close to each other. Generally, considering the P-values, we observe

that the results are consistent across the DL and MI methods in terms of the final

conclusions and inference.

Examining standard errors, we notice that all methods produce the same or very similar

values, with the exception of CCA (whose errors are generally larger than the other

methods). In fact, in most cases the values (for DL and MI methods) were equal to three

decimal places. From this table of results we conclude that the DL and MI methods

perform more or less equally. Overall, we realize here that these results are in line with

the general inference in the simulation studies. We also noticed that the results in Table

5.10 are consistent with those from the extracted full dataset (60% study completers of

RSCM dataset) before we introduced dropouts in Section 5.4.2.2, see results in Table 5.4.

But we somehow expected this consistency because as it has been reported by Kadengye

et al. (2012); Molenberghs and Verbeke (2005), DL can produce unbiased estimates that

are comparable to those of the full data analysis , and that MI and DL can produce

similar results when data are missing on the outcome and the same information is used

for both models (Collins, Schafer and Karim, 2001).

5.6 Conclusion

In longitudinal studies, outcomes are often measured on an ordinal scale. Analysing

such data as equally spaced points on a continuum (as the case of ordinary least squares

regression) may lead to erroneous inferences. One may be tempted to dichotomize the

ordinal outcome and run a binary logistic regression, but much information is lost and

the statistical power jeopardized. Furthermore, the resulting odds ratios may depend

on arbitrarily chosen cut-off points used to dichotomize the ordinal outcome. The ordi-

nal logistic regression is an appropriate and user-oriented model for ordered categorical

outcomes. However, it was not the purpose of this paper to spell out the working and

implementation of the proportional odds model. Neither, was it the purpose to compare

it to the ordinary least squares regression or with alternative ordinal logistic regression

models such as the continuation-ratio model, or the adjacent categories model. These

other models may be more appropriate than the proportional odds model in certain situ-

ations. In this paper, we were concerned with demonstrating different types of methods

applicable when the ordinal outcome is incomplete. We compared the performance of

CCA, and DL analyses and different forms of MI; namely FCS, OIM and MNI.
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Generally, we favour the methods that use full information by multiply imputing the

missing observations or just use the available information by direct maximum likeli-

hood. This is in contrast with the method that deletes incomplete cases to force a

complete dataset. From our findings, we conclude that multiple imputation methods

slightly outperformed direct maximum likelihood (DL) estimation for the 15%, 28% and

38% dropout rate that we imposed on a portion of the dataset. This should not be

regarded as unusual. Although DL is a powerful and easy to implement method that

takes advantage of the more relaxed MAR assumption, there are cases where MI would

be preferred instead of DL. An obvious example where missingness is in both covari-

ates and outcomes. In the medical field where this data comes from, every observation

is important and removing individuals with incomplete information from the study is

potentially misleading. The analyst might be removing important contributors of the

study. Multiple imputation provides methods that fill the empty spaces in the data

while capturing uncertainty between and within the number of imputations. It takes

care of the probability of filling in with the correct information by observing the be-

haviour of the measured individuals. Specifically, as demonstrated in this paper (for a

subset of the RSCM data), FCS and OIM should be given upper hand when dealing

with incomplete ordinal outcomes. This should in a way be expected because the two

methods are sensitive to the distribution of the outcomes. However, when we took the

whole dataset, we had 8% non-monotone missingness patterns and found that DL, FCS,

MNI and OIM perform very similar. This similarity was also observed in the replicated

simulation study, where the missingness was monotone at 21% and 40% on the response

variable. As a result, it becomes very difficult to decide which one is better than the

other for the variety of missing data rates and patterns.

In this study, we assumed and worked under the assumption of a MAR mechanism. At

the same time, we cannot totally rule out a reflection on MNAR approaches. In realistic

settings, the reasons for dropout are diverse and this makes it difficult to entirely justify

on priori grounds the assumption of MAR. Nonetheless, both maximum likelihood and

multiple imputation can be done when data are MNAR, but to do this, a missingness

model must be specified; that is, a model explaining how missingness depends on both

observed and unobserved values. This brings about three issues (Allison, 2014), which

include: (1) For any dataset, there are an infinite number of MNAR models, (2) Infer-

ences will rely on the selected model, and (3) it is not possible to tell from the data which

of the models is better than the other. Because of these issues, it becomes important

to perform a sensitivity analysis. In this case, the sensitivity of inferences to departures

from the MAR assumption are investigated where the missing values are imputed as-

suming a feasible MNAR scheme and the results examined (National Research Council,

2010; Rodriguez and Stokes, 2014). It is beneficial that the SAS procedure MI (Version

9.4, SAS/STAT 13.1) has a number of options for carrying out sensitivity analyses based

106



on multiple imputation; a subset of these make use of pattern-mixture models.

Also, here we assumed missingness only on the outcome. Missing data can also occur on

the covariates or both outcome and covariates at the same time. Investigations of such

settings are incumbent. However, we note that, although the methods here discussed

can be applied to non-monotone missingness, OIM is a monotone (dropout) pattern

method. In case of non-monotone missingness, the missing values need to be imputed

sequentially, i.e., impute the non-monotone cases to make it monotone and then proceed

to carry out the OIM method. In essence, we view this as a double effort and more

research on OIM is recommended to avoid the monotization step in its implementation.
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Chapter 6

Fitting a transition model to

incomplete longitudinal ordinal

response data: Application to

childhood malnutrition data

Abstract

Ordinal responses are frequently encountered in longitudinal studies, especially in clini-

cal trials. In an ordinal response, the levels may represent stages (or states) of a disease.

The transitions from one state to another are often important. A number of methods

exist that deal with the ordinal responses in longitudinal studies. In the analysis of such

data, the dependence between responses coming from the same individual has to be

taken into account. Furthermore, in addition to the ordinal nature of the responses, the

problem of incomplete data may arise. In this paper, a transitional likelihood missing

at random model is built, and we investigate the effects of conditioning on previous re-

sponses in addition to estimating the effects of measured covariates. The model is applied

to the analysis of incomplete childhood malnutrition data recorded from a longitudinal

study carried out by Kemri-Wellcome Trust Research Programme, Kenya. Our analysis

found that dependence on past responses had some effect on current response, and that

the influence diminished with distance from the current response. In this dataset from a

clinical trial, the odds of current severe malnutrition was negatively related to better nu-

tritional status at previous occasions. Urban children showed better improvement than

rural children over time. Age was negatively related to severe malnutrition and female

children had lower nutritional status than male children. To account for the incomplete
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nature of the data, direct likelihood and multiple imputation analyses produced similar

results.

6.1 Introduction

In medical research, data may be collected repeatedly over time. These data may be

presented to have an intrinsic order, hence ordinal in nature (e.g., disease status: se-

vere, mild, well). For such ordered categorical responses, researchers may be interested

in how the phenomenon of interest (the ordinal response) is transiting from one status

to another between two time points. Researchers may also consider investigating how

the ordinal responses obtained from the same individual are correlated or if there is

dependence between the current subject’s response and previous responses (and covari-

ates). In such longitudinal studies, various approaches may be followed to account for

the outcome’s dependence on previous outcomes. One way is to implement a marginal

model to investigate population averaged state transition over the study period. Here,

the marginal mean of the response variable at a given time is modelled directly as a

function of the predictor variables, similar to cross-sectional analysis. Generalized es-

timating equations (GEEs; Liang and Zeger, 1986) are usually used in the context of

marginal modelling, where a working correlation is used, together with the sandwich

estimator, to capture the dependence. Moreover, when this route is followed, correction

is needed for incomplete data, such as weighted GEE and multiple imputation based

GEE (MI-GEE). Alternatively, a conditional (random-effects) model may be adopted to

deduce the subject’s behaviour. Conditional random effects models are used to infer on

the presence of variability between subjects. But, if the key interest of the study is to

investigate how transitions from one state of the response to another occur over time,

then transition models become more appropriate (Ganjali, 2010). When this route is

taken, fitting is possible using ordinary (ordinal) logistic regression, therefore no need

for GEE. In transition models, the conditional distribution of the response for a subject

at a follow-up occasion is a function of the subject’s covariates and response history

(previous responses) or perhaps a subset of the most recent responses (Diggle et al.,

2002). In essence, lagged responses, too, are used as covariates. Since the probability of

the response is conditioned on history, the transition model is alternatively referred to

as an autoregressive model. The order of a transition model is the length of the history,

i.e., the number of past responses upon which the current response is conditioned or

perceived to depend on. Special members of this class of models include the Markov

models (Feller, 1968).
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In longitudinal studies subjects may withdraw before the end of the follow-up period,

leading to missing data. This type of missingness is termed dropout (or monotone

missingness). Alternatively, some subjects may miss intermittently, i.e., be missing in

some occasions and resurface later leading to a non-monotone or intermittent type of

missingness. The reasons for missingness are varied, and may be known or unknown

to the researcher. Rubin (1987) and Little and Rubin (2014) make important distinc-

tions between the reasons (also referred to as missingness mechanisms/processes): A

missingness process is termed missing completely at random (MCAR) if the process is

independent of responses observed or unobserved, or any other variables in the analysis.

When faced with such a mechanism, any analysis valid for the whole dataset is valid

for the observed complete cases. A missingness mechanism is called missing at random

(MAR) when the probability of an outcome being missing is independent of any unob-

served responses given observed data. Finally, a missingness process that is dependent

on unobserved responses and probably on observed information is termed missing not

at random (MNAR).

An important issue is that missingness causes the data to be unbalanced. If care is

not taken in the way the data are handled, the missing data may lead to biased infer-

ences. For example, in clinical trials, subjects who improve may tend to miss scheduled

visits more than those who do not. In such a case, the group with more improved sub-

jects will have more missing data. Analysis of complete data will therefore be biased

against the arm with more improved cases. However, there are situations where valid

inference can still be obtained, even in the presence of missing data (Tipa et al., 1996).

Specifically, this is true in situations where parameter separability is possible. That is,

the measurement process parameters, say θ, and the missing data process parameters,

say ξ, are distinct in the sense that the joint parameter space, Ω(θ, ξ) is such that:

Ω(θ, ξ) = Ω(θ) × Ω(ξ). Here, we can make use of likelihood-based inference of the pa-

rameters of interest θ, based on the marginal density of the observed data only. From a

Bayesian view-point, any joint prior distribution applied to (θ, ξ) can be factored out into

independent marginal priors for θ and ξ. In such cases, Rubin (1976) terms the missing

data process as ignorable. Essentially, when using likelihood and Bayesian inference,

a MAR process leads to ignorability; for frequentist inferences, the stronger MCAR is

needed to automatically have ignorability. The consequence of ignorabilty is that the

missing data process does not need to be modelled explicitly (Rubin, 1976; Little and

Rubin, 2014). In contrast, for non-ignorability, the missing data process cannot be ig-

nored in the analysis, i.e., future unobserved responses cannot be predicted conditional

only on past responses; instead, we need to incorporate a model for the missing data

process (Nakai and Ke, 2011). It should be emphasized here that, in the application

to missing data classifications, ignorability does not imply that the analyst can ignore

missing values. It refers to the fact that aspects that cause missingness are unrelated or
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weakly related with the estimated effects of interest. In a restricted sense, ignorability

refers to whether the missing data process must be modelled as part of the analysis

process or not (Allison, 2001).

In this paper, we assume ignorable dropout in a cumulative logit transition model.

Nonetheless, we note that data in longitudinal studies may be intermittently missing.

For such a situation, the estimation assumptions and SAS code adopted for the analysis

in this paper can be generalized to cover the intermittent missingness case. Uranga

and Molenberghs (2014) describe this generalization and provide a set of SAS macros

that can be used to fit a conditional model for Gaussian data. In particular, they use a

matrix-oriented programming language, namely the Interactive Matrix Language (IML)

in SAS. The macros can be adapted and tailored for non-Gaussian data and other as-

sumptions as the case may demand.

The rest of the paper is structured as follows. In Section 6.2, a motivating example

dataset is briefly described and prepared for use. In Section 6.3, the transition model

of interest is discussed in the context of cumulative logits for longitudinal data. This

model will be applied in Section 6.4, where exploratory analyses on the dataset are

conducted. Then the appropriate transition model will be fitted and results thereof

discussed. Section 6.5 provides the discussion and conclusion to the paper.

6.2 The data: Recovery from severe childhood malnutri-

tion (RSCM)

The motivating example in this paper involves a longitudinal study to asses the nu-

tritional status of Kenyan children who were recovering from a severe childhood mal-

nutrition. The study was conducted by Wellcome-Trust Research Programme, Kilifi,

Kenya. We refer to the data from this study henceforth as the RSCM data. These

data were collected for 1778 children aged 2 to 59 months in 4 different hospitals in

Kenya. All participants were recruited in hospital where they had been admitted with

severe, acute malnutrition. The children were enrolled shortly prior to discharge and

followed up for one year. At the initial visit (time point 0), baseline covariate informa-

tion were recorded - such as age at enrolment (calculated from date of birth and date

of enrolment), sex (Female/Male), site (Mombasa, Malindi, Mbagathi and Kilifi). In

this analysis, the variable site is dichotomized such that Mombasa and Mbagathi are

combined as urban, while Kilifi and Malindi are grouped as rural. Initial malnutrition

status was recorded for each individual. Other variables included muac: mid-upper arm

circumference in centimetres; zhc: head circumference; zwei : weight for age; zlen: length

for age; zwfl : weight for length. The anthropometric variables zhc, zwei, zlen, and zwfl

are continuous, in terms of Z scores calculated using the World Health Organisation
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(WHO) macro for STATA (2006) (WHO and Unicef, 2009) while muac are raw values.

After enrolment, individuals were followed-up for another nine occasions scheduled for

months 1, 2, 3, 4, 5, 6, 8, 10 and 12. In this paper, the measure of interest is the child’s

malnutrition status. We use the continuous variable muac to create the four levels of

the ordinal response or outcome.

The proposed transition model is basically an extension of the classical cumulative logit

model (Ananth and Kleinbaum, 1997). These models are generally referred to as latent

variable models. This is because, they are usually applied in cases where a set of ordinal

variables are used as indicators or representatives of an underlying latent variable, where

the latent variable is the main variable of interest. Because the latent variable cannot be

measured directly or for a clear clinical interpretation of effects (e.g., a treatment effect),

it is appropriate to transform it to an ordinal variable. Therefore, to implement the cu-

mulative logit transition model, muac was categorized based on WHO recommended

categories of malnutrition as an ordinal scale: severe [1] = ‘less than 11.5cm’; moderate

[2] = ‘more than or equal to 11.5 cm but less than 12.5cm’; at risk [3] = ‘more than or

equal to 12.5 cm but less than 13.5cm’; and well nourished [4] = ‘more than or equal to

13.5cm’.

Children who died, withdrew before the end of the study, or for other reasons (e.g.,

deformity), full or complete sequence measurements were not possible (meaning one or

more variables will always be missing) were excluded from this analysis, leaving 1138

children who satisfied the inclusion criteria for this analysis. About 8% of the data were

missing intermittently on the outcome variable. More details of the trial from which we

extracted the RSCM dataset may be accessed at Berkley et al. (2016).

6.3 The cumulative logits transition model

For each individual i = 1, . . . , N in a study, we consider a series of measurements Yi =

(Yi1, . . . , Yini)
′, along with a matrix of covariates Xi = (xi1, . . . , xini)

′ which may include

measurement occasions (ti1, . . . , tini) and other possible predictor information.

In the context of longitudinal ordinal responses, the cumulative logit regression model

(McCullagh, 1980) is perhaps the most popular ordinal logistic regression model. Now,

suppose the response variable has K ordered categories (c = 1, 2, . . . ,K), then the

cumulative logit model estimates the effects of explanatory variables on the log odds

of selecting lower, rather than higher response categories. Let φijc = Pr(Yij ≤ c|xij)
denote the probability of being at or below category c, given a set of predictors. We
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define the general cumulative logit model as:

log

(
φijc

1− φijc

)
= αc + x′ijβ, c = 1, 2, . . .K − 1, (6.1)

where αc gives the intercept terms that depend on the ordinal categories, c indexes

the K − 1 logits, and xij is a vector of covariates at occasion j, (j = 1, 2, . . . , ni) for

the ith individual. The regression coefficients, β, reflect the association between the

predictor variables and the response variable. The cumulative odds model assumes the

same slope parameters for each of the response logits, i.e., the effects of the different

predictor variables is identical across the K − 1 logits. When this model fits well, it

estimates a single vector of parameters rather than K−1 different vectors of parameters

to describe the effect of the predictor variables. This property is called the proportional

odds assumption of model (6.1) or equivalently the equal slopes assumption.

In the context of transition models, a response Yij in a longitudinal sequence is a function

of covariates xij (if there are any available), and its history, hij = (Yi1, . . . , Yi,j−1)′.

Assuming a general transition model for an ordered response variable with K categories

over the time points and monotone missing data patterns, we present and discuss two

model types namely a purely marginal model and a model that includes the history of

the observed outcomes given by:

log

[
Pr(Yi1 ≤ c|xij)
Pr(Yi1 > c|xij)

]
= αc1 + x′i1β, c = 1, 2, . . .K − 1, (6.2)

log

[
Pr(Yij ≤ c|hij , xij)
Pr(Yij > c|hij , xij)

]
= αcj + βx′ij + λ′hij , c = 1, 2, . . .K − 1, j = 2, . . . , ni.

(6.3)

Here, Yi1 represents the response at the initial time point where there is no history, and

Yij is the response for the next ni − 1 follow-up times, j = 2, . . . , ni. The parameters

αc and β are as earlier on defined and λ is a vector of the autoregressive parameters.

Under the transition model, we assume that the cumulative response logit function (6.3)

is a linear function of both the history and covariates (hij , Xij), where the parameters

α, β and λ can take any values on the real line [−∞,∞]. For convenience of notation,

we assume that the time points (read measurement occasions) are equally spaced. If

they are not, then robust assumptions need to be made about the distributional form

of the time dependence. Otherwise, the transition model (6.3) is a well paused one and

the effects on Yij , given hij extend the class of generalized linear model formulation

(Molenberghs and Verbeke, 2005). Relying on the law of total probability and assuming

random dropout, the joint probability, f(yi1, . . . , yini) of the responses Yij , j = 1, . . . , ni,
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of the ith subject can be expressed as:

f(yi1, . . . , yini) = f(yi1) · f(yi2|yi1) · f(yi3|yi2, yi1) · . . . · f(yini |yi1, . . . , yini−1),

where f(·|·) denotes the transition probability capturing the conditional dependence of

the current outcome on previous ones. The joint distribution can then be equivalently

simplified such that

f(yi1, . . . , yini) = f(yi1) ·
ni∏
j=2

f(yij |hij), (6.4)

where generally, f(yij |hij) = f(yij |yi,j−1, yi,j−2, . . . , yi,j−q) implies a q−order transition

model, which is of order one if q = 1, in which case the term f(yi1) is replaced with

f(yi1, yi2, . . . , yiq) and the product starts from j = q + 1 to ni. Such a model implies

the observations made after the first q are independent conditionally on the past q

observations. Equation (6.4) simply states that the joint likelihood contribution for an

individual i is the marginal probability density function (pdf) of the initial outcome Yi1

times the product of all subsequent conditional pdfs of an outcome given its history. If

the dependence on covariates is also included in the formulation, the joint likelihood for

a single subject becomes

f(yi1, . . . , yini |Xi; θ) = f(yi1|Xi; θ) ·
ni∏
j=2

f(yij |hij , Xi; θ),

implying that the full likelihood function for all subjects will subsequently be:

L(θ; y,X) =

N∏
i=1

{f(yi1|Xi; θ)

ni∏
j=2

f(yij |hij , Xi; θ)}.

Here, θ denotes the parameters of interest which include the regression coefficients for

measured covariates β and λ which capture the outcome history dependence in the

transition model. The maximization of the above likelihood can be carried out in any

standard statistical software package to obtain the parameters of interest. Note here

that, because yi1, i = 1, . . . , N is almost always observed for all subjects, then f(yi1) may

or may not be of major importance but rather the focus is more on later contributions

f(yij |hij) for j ≥ 2. Thus, the partial likelihood contribution from individual i given by∏ni
j=2 f(yij |hij) can suffice or for a general q-order transition model the partial likelihood

is
∏ni
j=q+1 f(yij |hij). However, the baseline response can have a significant effect to future

outcomes in some situations. We refer interested readers to Agresti (2010); Diggle et

al. (2002); Ghahroodi et al. (2009); Lee (1992); McCullagh (1980); Molenbeghs and

Verbeke (2005); Noorian and Ganjali (2012) and references therein, as well as Stokes et
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al. (2012) for a detailed exposition of the idea of transition modelling and other forms

of longitudinal ordinal response data models.

6.3.1 Estimation of the cumulative logits transition model

Both marginal and random-effects models can be used to analyze the RSCM dataset.

But, these methods would require that assumptions on the covariance structure about

the repeated measures on the outcome variable be made. Considering our outcome is

ordinal (taken at specific fixed time points) and that the measurement times were not

even, specifying a working correlation structure would not be easy. Also, because of the

multi-state nature of the outcome variable, realizing that subjects’ current state may be

influenced by past experience, we opted to analyze the outcome via the transition model

reflecting on the influence of explanatory variables (covariates and previous outcomes)

on the current outcomes. The cumulative logits transition model is simply an exten-

sion of the polytomous (ordinal) logistic regression model. Accordingly, the parameter

estimates can be obtained directly by maximizing the ordinal likelihood function, that

is, estimating parameters using maximum likelihood by treating past outcomes as addi-

tional explanatory variables.

In the case of incomplete outcomes (both monotone and non-monotone), a direct likeli-

hood approach may be taken. Here, the incomplete data are analyzed directly without

deletion or need to impute the missed values. We find this rather straightforward, so we

relied on this approach for our results. Alternatively, one may opt to multiply impute

the incomplete cases then proceed with the fitting of a transition model. We will take

this route as well and compare its results with the aforementioned approach. It should

be noted here that it is not the aim of this paper to compare the strength of direct like-

lihood and multiple imputation, but rather to make sure we deal with the incomplete

data problem adequately and to counter check our results in the context of transition

modelling. These methods are valid under the less stringent missing at random mecha-

nism. We will assume this mechanism and try as much to adhere to the conditions for

its validity as discussed by Rubin (1987; 1996). Nonetheless, these conditions are often

violated in practice, and most of the time the mechanism is merely assumed to hold but

may not. Unfortunately, very little can be done to definitively establish the missing data

mechanism’s nature since it is not possible to differentiate between data that are missing

at random from that which are missing not at random using the observed data only.

Therefore, several authors have argued in favor of sensitivity analysis, where the impact

of varying missing data assumptions on the target inferences is examined (for example,

Carpenter and Kenward, 2013; Carpenter, Kenward and White, 2007; Molenberghs et

al., 2003; Molenberghs and Verbeke, 2005; National Research Council, 2010; Rodriguez
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and Stokes, 2014; Satty and Mwambi, 2013). This is outside the scope of this paper.

While models for data that are not missing at random can be formulated and estimated,

theses models are normally complex and untestable, and require specialized software

and expertise (Allison, 2000). Consequently, any general purpose method will resort to

the missing at random mechanism and results would be satisfactory. In our dataset, the

percentage of missing values is about 8% thus we expect a minimal impact on parameter

estimates from both routes.

6.4 Application to the RSCM data

6.4.1 Exploratory data analysis

First, we use muac as the outcome of interest in its original continuous form. A plot

of mean profiles per sex grouping over follow up time is presented in Figure 6.1. It is

observed that male children started with low muac values. But, at the second obser-

vational timepoint, the profiles switch and the profile for male children remains above

that for female children until the end of follow up. The switch shows that male children

responded better to treatment over time than the female children because larger values

of muac imply better status of nutrition. However, this kind of trend was expected

because as reported in Berkley et al. (2005), muac as a measure of malnutrition tends

to identify female subjects as malnourished more frequently unlike with other measures

like the Z score approaches, thus implying that transformation to Z scores helps to have

a better informative measure. We however, use muac because it is the best predictor of

mortality as it correlates better with the the other anthropometric measures and age.

Note that repeated longitudinal measurements from the same subject are correlated.

That is, within-subject measurements are not independent. Correlation coefficients and

regression models can be used to investigate the relationship among variables that have

ordinal, interval or ratio level scales. On examining the correlation coefficients, we

noticed a decaying structure with time lag. That is, observations closer in time tended

to be more correlated than observations far apart in time. Figures 6.2 (a) and (b) show

scatter plot matrices of ordinary least squares (OLS) means. The plots confirm the

suggestion of decaying correlations with time lags. This consequently supports the use

of an autoregressive structure dependence.
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Figure 6.1: Mean muac by sex grouping at every measurement occasion

(a) A scatter plot matrix for the first 5 time
points

(b) A scatter plot matrix for the last 5 time
points

Figure 6.2: OLS means for the outcome variable muac

6.4.2 Model fitting

The exploratory analysis in Section 6.4.1 suggests the use of an autoregressive transition

model. To fit such models, successive measurements conditioned on their past outcomes

(history) are assumed independent of each other. For this reason standard generalized

linear models statistical software can be used (Molenberghs and Verbeke, 2005). In par-

ticular, the autoregressive transition model can be easily fit using logistic regression and
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parameters estimated by maximum likelihood by treating history as additional explana-

tory variables. In this study, we used the SAS procedure GENMOD and employed the

functionality of the %dropout macro to create lags to ensure that the history is captured

as part of the explanatory variables in the analysis model. However, we note that the

macro here stated is valid under the monotone missing data patterns. To implement

it for non-monotone missingness patterns, it is appropriate to make the missingness

pattern monotone, and then proceed with the macro (Uranga and Molenberghs, 2014).

Our outcome variable had 8% values missing arbitrarily. Using SAS PROC MI, and

a specification of the MCMC method, we monotonised the missingness patterns and

thus remained with approximately 4% missing cases. But, before exploring the transi-

tion model, we first fitted a marginal cumulative logit model (non-transitional model)

initially, without an interaction term (here called Model 1- eq (6.5)) then, including a

sex-by-age interaction term, Model 2 - eq (6.6):

logit[Pr(Yij ≤ c|xij)] = αc + β1sex+ β2site+ β3age+ β4month, (6.5)

logit[Pr(Yij ≤ c|xij)] = αc + β1sex+ β2site+ β3age+ β4month+ β5sex ∗ age, (6.6)

where αc, c = 1, . . . ,K − 1 are as defined in Section 6.3. Table 6.1 presents the results

of the two competing models.

Examining the model fit criteria, we realize that the AIC value for Model 1 is 25625.0699

and for Model 2 is 25624.0694. From the AIC values, Model 2 provided a slightly lower

value than Model 1 although the interaction term itself is statistically insignificant at 5%

level. Also, the introduction of the interaction makes the sex main effect insignificant

while it is highly significant in Model 1. Ideally, marginally a model with significant

main effects would probably be preferable. But, with our competing models the gain

from Model 1 to Model 2 is very minimal. The AIC values show a difference of only 1

unit, indicating that Model 2 is not necessarily better than Model 1. For this reason,

Model 1 is used for further analysis in this paper.
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Table 6.1: Parameter estimates, standard errors (StdErr) and P-values
obtained from fitting Model 1 and Model 2.

Model 1 Model 2

Parameter Estimate StdErr Pr> |Z| Estimate StdErr Pr> |Z|

Intercept1 1.0945 0.0457 <.0001 1.0912 0.0457 <.0001

Intercept2 2.5175 0.0507 <.0001 2.5144 0.0507 <.0001

Intercept3 4.0806 0.0595 <.0001 4.0779 0.0595 <.0001

sex(Female) 0.1146 0.0182 <.0001 0.0601 0.0363 0.0975

site: rural 0.3702 0.0443 <.0001 0.3667 0.0443 <.0001

age -0.0552 0.0027 <.0001 -0.0549 0.0028 <.0001

month† -0.3294 0.0057 <.0001 -0.3294 0.0057 <.0001

sex*age (Female) 0.0047 0.0027 0.0832

AIC? 25625.0699 25624.0694

† Month of follow up: Indicator variable for the 10 follow-up time points.
? AIC: Akaike Information Criterion for model fit. Model with smaller statistic is pre-

ferred.

Probabilities are accumulated over the lower ordered values. From Table 6.1 (and con-

sidering Model 1), we observe that females have an approximately 12% (odds ratio =

1.1214) increase in the odds of higher malnutrition compared to males. On the other

hand, with each unit increase in age, the odds of higher malnutrition decreases by about

5% (odds ratio = 0.9463), whereas with each month of follow up, the odds of higher

malnutrition decreases by 28% (odds ratio = 0.7194). All these changes are significant.

Further, we observe that the nutritional status of rural children is lower compared to

their urban counterparts. In particular the cumulative odds of higher malnutrition for

rural children is 1.4480 times that of the urban children. With these results, it becomes

interesting to investigate whether the current malnutrition status of a child depends on

the previous statuses or the history of malnutrition.

Now following the findings from the exploratory analysis, we fit a transition model based

on the assumptions of Model 1. However, as it was not very clear to determine the or-

der of the transition model, a saturated transition model was first fitted. This model

included all the covariates together with nine lagged responses. Lags that appeared

to have little or no relationship with the current malnutrition status were dropped at

the 5% significance level. Preferably, variables that are related to the dependent vari-

able are of interest, and the size and strength of the correlation are investigated. On

investigation, a strong dependence was observed of the current outcome of interest on

previous malnutrition values particularly at lags 1, 2, and 5, i.e., yi,j−1, yi,j−2, and yi,j−5.

These will henceforth be referred to as lag 1, lag 2 and lag 5 effects, respectively. When

119



higher lags were tried, like lag 9, it was realized that some parameters could not be

estimated. This was probably because of too many parameters to estimate with limited

data available. Therefore, the saturated model was reduced to model (6.7) below, with

β signifying effects for the predictor variables, and λ for history parameters:

logit[Pr(Yij ≤ c|xij , hij)] = αc + β1sex+ β2site+ β3age+ β4month

+ λ1yi,j−1 + λ2yi,j−2 + λ5yi,j−5, (6.7)

Here, λ = (λ1, λ2, λ5), thus indicating a transition model of order 5. Table ?? shows

results of fitting model, equation (6.7).

Examining Table ??, it is observed that when lag 1 is introduced the behaviour is as

it was observed for Model 1 (model with no lagged responses), i.e., all variables are

significant. When lag 2 is introduced, the month which was previously significant now

becomes highly insignificant. When dependence is extended to lag 5, month becomes

significant again but age and sex, which were initially significant now become insignifi-

cant.

Regarding the influence of conditioning on history on the outcome of interest, we can

generally infer that individuals are improving with time. The negative estimate of the

history parameters justify this. The negative coefficients tell us that the cumulative

odds of malnutrition against better nutrition decrease for a child with a healthier his-

tory. That is, the better the nutrition history, the lower the odds of current malnutrition.

This trend was also depicted in Figure 6.2 which shows positive correlations between

time points. Looking at the AIC values we note that with the introduction of lags, the

model fit became better. In fact, the model with longer history, namely lag 5, fits the

data better than the first two shorter history models.

For the results in Table ??, the missing data in RSCM were properly accommodated by

the direct likelihood method. However, we also corrected the missing values by multiple

imputation. We used 20 imputations to impute the original continuous variable muac

by assuming multivariate normal imputation model, before categorizing it to the ordinal

outcome. However, we noticed that the two approaches produced similar results. But

this was in a way expected, probably because of two reasons. First, generally, mul-

tiple imputation and direct likelihood analyses will produce similar results when data

are missing on the outcome and the same information is used for both models (Collins,

Schafer and Kam, 2011). Secondly, the percentage of missing values was relatively small

(8%) hence a minimal impact was expected on the parameter estimates. Results after

multiple imputation are displayed in Table ??. The overall inference from Tables ?? and

?? is the same. Both direct likelihood and multiple imputation can be used on equal

footing as a way of correcting incompleteness.
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After seeing the performance of Model (6.7), it was noted that the evolution over time

may be gender dependent. Hence, a sex-by-month interaction was also explored, and was

found to be significant. The interaction investigated whether the malnutrition status

improved differently over time for male and female children. We corrected the incom-

pleteness by the direct likelihood approach. These results are displayed in Table ??.

Examining the table, it is observed that there is a significant difference in malnutri-

tion improvement over time between male and female children. This is evidenced by a

significant sex-by-month interaction, where the decrease in cumulative odds of higher

malnutrition is stronger for male children compared to female children. That is, for

male children, the cumulative odds decreases by a factor of exp(−0.3294) = 0.7194 com-

pared to a decrease of exp(0.0115 − 0.3293) = 0.7277 for female children. But with

this interaction term, sex effect is insignificant. When the first lag is introduced, the

interaction becomes insignificant, but sex effect becomes significant. When dependence

of the current response is extended to lag 2, the interaction becomes significant again,

but it makes month insignificant, although it was initially significant. When dependence

now goes to lag 5, the interaction remains significant, month becomes significant again

but age is rendered insignificant.

Generally, the dependence of the current outcomes was evident with significant effects on

lags 1, 2, and 5. The dependence on lags 1 and 2 are intuitively clear but the significance

of lag 5 is not immediately clear and may require further research and subject matter

input.

6.5 Discussion and conclusion

The exploratory analysis of the RSCM dataset suggested the use of an autoregressive

transition model. After investigation, cumulative logit models of order 1, 2 and 5 were

fitted using a SAS procedure GENMOD. In this way, the parameters were obtained by

maximizing the ordinal likelihood function. To account for the incomplete nature of

the outcome variable, direct likelihood and multiple imputation approaches were used.

The direct likelihood approach is simple and straightforward for it does not require any

extra analyst’s adjustments on the missing values, i.e., neither deletion of the incomplete

cases nor imputation. Both direct likelihood and multiple imputation are valid for an

ignorable, missing at random missing data process. These two methods will in most

cases produce similar results provided that data are missing on the outcome and the

same information is used for both models. In this paper, similar results were obtained

from the two methods.
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The focus of the paper was to investigate the influence of history on the current re-

sponse. For the RSCM dataset, it was found that dependence on past responses had

an effect on the current outcome, and that the influence diminished with time from the

current response. Another important observation of the study was that the cumulative

odds of malnutrition against better nutrition levels decreased for a child with a healthier

history. This observation showed that the intervention that was in place was working

and children were improving with time.

Although as per the scope of this paper, we endeavoured to achieve precision by the inclu-

sion of the previous responses as part of the predictor variables, an advanced transition

model that includes random effects can be considered for future work. This random

effects structure will then capture the variation in the transition probabilities across

subjects. In fact, as reported by Uranga and Molenberghs (2014), including random

effects corrects for a bias that would have been introduced by the classical transition

model. The random effects add precision to the profile estimates. Nonetheless, it should

be noted that when there is a component of serial correlation, analyst should be care-

ful in including random effects other than the random intercepts. This is because of a

competition between the two sources of variation. Also, this transition-random effects

model is recommended when there are long sequences of longitudinal data (Aitkin and

Alf, 2003). Ghahroodi et al. (2009) present a transition model that can be used for a

long sequence of longitudinal data. Further, one may also consider investigating the ef-

fects of interactions between past outcomes and other explanatory variables. We believe

the work done in this paper will contribute to the knowledge about the methodology

and application of transition models for longitudinal discrete outcomes where incomplete

outcome sequences are present.
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Chapter 7

Conclusion and Further Research

This research aimed at analyzing longitudinal data, with key emphasis on incomplete

discrete longitudinal data. It entailed both simulation and real data applications. Real

data applications involved two datasets; the Arthritis dataset – a secondary ordinal out-

come dataset made available in Pawitan (2001), and the recovery from severe childhood

malnutrition (RSCM) dataset – a clinical trial dataset provided by KEMRI/Wellcome

Trust Research Programme, Kilifi, Kenya. These datasets contained missing values,

both monotone and non-monotone. The longitudinal nature of the datasets in this

thesis (both simulated and real) influenced the use of each one of three modelling frame-

works: the marginal, random effects and transition models.

Analyzing incomplete longitudinal data, both of a Gaussian as well as non-Gaussian

nature can be done under the somewhat less strict missing at random (MAR) assump-

tion using standard statistical software. Likelihood based methods like the linear mixed

models and generalized linear mixed models can be used for Gaussian and non-Gaussian

data respectively. Alternatively, weighted generalized estimating equations can be used.

Weighting makes these valid under MAR. Further, other methods can be used that do

not need an explicit model for the missing data process to be used jointly with the

substantive analysis model, like the expectation-maximization algorithm and multiple

imputation (MI) and its extension, MI-GEE. These methods can be carried out in SAS

and other statistical packages. In SAS, the GLIMMIX macro and GLIMMIX procedure

together with the GENMOD and GEE procedures are suitable for the generalized es-

timating equations. GLIMMIX in addition to the NLMIXED procedure can be used

for generalized linear mixed modelling. The MIXED procedure is suitable for linear

mixed models. With all these powerful tools and sensible strategies, it then leaves al-

most no reason to still use the highly restrictive ad hoc methods, such as the complete

case analysis, last observation carried forward, baseline observation carried forward, and
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single imputation techniques – although simple and easy to implement. This thesis in-

vestigated and compared analysis methods for incomplete correlated data, with primary

emphasis on discrete longitudinal data.

Although the main focus of this research was to deal with incomplete discrete outcome

data, this thesis started, in Chapter 2, with a continuous outcome data case. Using a

simulation study and a real data application, the thesis compared multiple imputation

(MI), direct likelihood (DL) analysis and inverse probability weighted generalized esti-

mating equations (IPW-GEE) method. In correcting the incomplete nature of the data,

MI and DL approaches were found to perform similar. Although the IPW-GEE method

could be used for continuous outcome data, it was observed to be rather different with

DL and MI, in some cases giving estimates of opposite sign than expected.

In Chapter 3, using a simulation study, the thesis compared the performance of weighted

generalized estimating equations (WGEE) and generalized estimating equations after

multiple imputations (MI-GEE). We provided theoretical considerations, as well as a

simulated illustration of the two extensions of generalized estimating equations. We

simulated count outcome data, first complete then afterwards caused dropouts. The

research found that, under different dropout rates and sample sizes, MI-GEE was prefer-

able compared to WGEE. Since the generalized linear mixed model (GLMM) analysis

is valid under MAR, it was used as a basis against which the GEE methods were con-

trasted. The study found that in most cases the GLMM analysis performed similar

to MI-GEE. However, it should be noted here that this comparison (between GLMM

and GEE extensions) was done after some adjustments to make the two comparable. A

difference exists with respect to the interpretation of the fixed effects, β. In random-

effects models, the difference between the conditional mean and the marginal mean of

an individual is the random effect. The fixed effects under the random-effects model,

say βR, and the marginal model, say βM , are therefore different from each other in

the sense that when the random effects model is considered, the marginal mean profile

can be derived, but parameters should be interpreted conditional upon the individuals’

heterogeneities. Care should be taken in the interpretation of the fixed effects under

these two model families. But it should be noted that for the Poisson model this just

applies to the intercept. For more on the relationships between the two model families,

see for example, Lee and Nelder (2004); Ritz and Spiegelman (2004); Molenberghs and

Verbeke (2005); Mitchell et al. (2013).

In Chapter 4, the thesis evaluated the performance of multiple imputation strategies,

namely, fully conditional specification and multivariate normal imputation. The latter

relies on the assumption of normally distributed variables whereas the former does not.

When applied to ordinal outcome data, we found that the two methods were equally

appropriate when faced with missingness in ordinal variables. These methods were as-

sessed via a simulation study and a real data application. In the simulation study,
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datasets of different sample sizes (N = 100, 200, 500) were generated with different lev-

els (C = 3, 4, and 5) of the ordinal outcome. The real application involved the Arthritis

dataset. Similar results to those found in this chapter were reported by Lee and Carlin

(2010).

Chapter 5 assessed the comparative performance of the direct maximum likelihood anal-

ysis, complete case analysis and three multiple imputation strategies, namely fully condi-

tional specification, multivariate normal imputation and the ordinal imputation method

(OIM). The methods were applied to ordinal outcome variables. Investigation involved

both a simulation study and a real data application. The Kilifi malnutrition dataset was

used. Under different dropout rates, the research found that the complete case analysis

was generally a poor method. It was also observed that multiple imputation strategies

slightly outperformed the direct maximum likelihood method in the simulation study.

But, with an 8% non-monotone missing data patterns on the real application dataset,

direct maximum likelihood and multiple imputation were found to perform very simi-

larly. This therefore made it difficult to decide which of the two approaches is stronger

when the missingness is fairly limited, at least with the settings of the dataset in that

chapter. But, generally both approaches were presented as plausible methods that can

be satisfactorily used for ordinal longitudinal outcome data.

In Chapter 6, the thesis dealt with the issue of transition modelling. A transitional like-

lihood missing at random model was built and the effects of conditioning on response

history investigated, in addition to estimating the effects of measured covariates. By

following this route, we in effect dealt with the dependence which under GEE would

be handled using the so-called working correlation matrix together with the sandwich

estimator under a marginal likelihood based model. When the latter route is used, there

is a correction needed for incomplete data: weighted GEE or MI-GEE.

The research used the Kilifi malnutrition dataset and observed that dependence on

history (past responses) had an effect on the current response, and that the influence

diminished with distance from the current response. It was also observed that the cumu-

lative odds of higher malnutrition levels against lower malnutrition levels decreased for

a child with a healthier history. The missing data was handled by the direct (ignorable)

likelihood analysis and multiple imputation. The research found that both methods can

be used on equal footing as a way of correcting incompleteness. Similar results were

obtained from the two methods.

Overall, the research gave an insight into the methods that may be considered when faced

with missing data in longitudinal studies. Although, one may argue that much of what

has been discussed in this thesis is well known in literature, these ideas are not always

put into proper practice. We demonstrated the mastery of these ideas. For example, the
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cumulative logistic transition model (discussed in 6), is not commonly used in longitudi-

nal data - especially in the medical field. Also, the relatively poor performance of IPW

as demonstrated in the simulation studies of incomplete continuous and categorical data

has not been widely reported elsewhere. These areas beyond the scope of this thesis can

be further examined. However, as a general note, researchers must plan their studies

very well from data collection. Proper data collection procedures must be followed so

as to minimize missing data; although there is no agreed upon amount of missing data

that can be acceptable. In case of missing data, knowing the reasons leading to the

incompleteness plays a crucial role in determining the appropriate statistical procedure

to analyze the available data. In fact, there exists no universal procedure for handling

all missing data situations. However, proper design of the study and understanding the

missing data process can help to a considerable extent.

In this research, we dealt mainly with missingness on the outcome variable, when in

actual sense it is most probably that data may miss on the outcome when a covariate

misses. These assumptions must be investigated so as to see if they replicate what has

been observed in this thesis. However, it should be realized that these replications may

depend on the type of study. For example, we may expect DL to be preferable or per-

form similar to MI when data are missing on the response but the results may not be

replicated when data are missing for both covariates and responses.

The research also noted that, to use the OIM method for non-monotone missing data,

the missing cases have to be monotonozed first before proceeding to carry out the OIM

method. We view this as a double effort and more research on OIM is recommended to

avoid the monotization step in its implementation.

Regarding missingness mechanisms, we assumed the MAR process. It is quite agreeable

that in practical sense, MAR is the most likely mechanism that is expected to occur.

This is due to the fact that an individual’s probabilities of response may be related only

to their own set of measured items. This set can change from one individual to another.

But it is beneficial to make this assumption for analytic simplifications (Schafer and

Graham, 2002). MAR also forms the general condition under which valid inferences can

be obtained without having to model the missingness process explicitly, given that in-

ferences are likelihood based or Bayesian (Beunckens, Molenberghs and Kenward, 2005;

Kenward and Carpenter, 2007), and given the technical separable parameters assump-

tion holds; meaning the parameters governing the missing data process are distinct from

the measurement model parameters. However, the MAR process can only be fully sub-

stantiated in preplanned missingness designs e.g., in simulation studies. Otherwise, in

real life situations, like clinical trials, the MAR assumption cannot be fully substantiated

from the data, and that MAR and MNAR cannot be distinguished on formal statistical

grounds. One only suspects that the data are not MAR but nothing from the data

will indicate whether or not that is true. Arguably, for such, beyond the scope of this
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thesis, we recommend enhancing the common ignorable analyses with an appropriate

class of sensitivity analyses and examine how MNAR mechanisms could jeopardize the

MAR results. In this case, different sensitivity analysis models could be investigated.

We acknowledge that, in terms of non-ignorable missingness, a completely sufficient data

analysis that can be used in the process is not readily viable. Standard statistical models

can result into very biased results. This is because the available observed measurements

cannot provide sufficient information to confirm or refute ignorability. Researchers have

proposed inclusion of the missingness in the modelling process. They suggested mod-

elling the missingness process jointly with the measurement process, and then proceed to

apply likelihood-based approaches like the maximum likelihood or consider a Bayesian

inference. Two principal modelling frameworks that can be specified from the joint dis-

tribution of the measurement and missingness processes have been proposed; selection

modelling and pattern mixture modelling. In this thesis we were mainly dealing with the

ignorable missingness type, while at the same time acknowledging that it is possible to

have the non-ignorable cases in real life applications. But, because of the constrains of

time we would not cover everything in the scope of missing data problem, we therefore

suggested the area of selection and pattern mixture modelling as an area for further

research outside the scope of this thesis.

Finally, we acknowledge that we did not cover every aspect of how to deal with miss-

ingness in longitudinal studies. Apart from lack of handling the MNAR mechanism and

non-ignorable missingness, these were some other more limitations of the study. For

instance, proper inclusion of correlation structures for ordinal outcomes was one of the

limitations in the study that need further investigation. The random effects model for

ordinal outcomes was not handled in the current research and could also be an area

of further research. Also, in this study, the number of samples simulated was chosen

arbitrarily, some of which may be deemed small (e.g., for 300 datasets, especially when

N is small). We recommend further investigations with sufficiently larger samples.
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