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ABSTRACT 

Manual programming is time consuming and challenging for a complex problem. For 

efficiency of the manual programming process, human programmers adopt the object-

oriented approach to programming. Yet, manual programming is still a tedious task. 

Recently, interest in automatic software production has grown rapidly due to global software 

demands and technological advancements. This study forms part of a larger initiative on 

automatic programming to aid manual programming in order to meet these demands. 

In artificial intelligence, Genetic Programming (GP) is an evolutionary algorithm which 

searches a program space for a solution program. A program generated by GP is executed to 

yield a solution to the problem at hand. Grammatical Evolution (GE) is a variation of genetic 

programming. GE adopts a genotype-phenotype distinction and maps from a genotypic space 

to a phenotypic (program) space to produce a program. Whereas the previous work on object-

oriented programming and GP has involved taking an analogy from object-oriented 

programming to improve the scalability of genetic programming, this dissertation aims at 

evaluating GP and a variation thereof, namely, GE, for automatic object-oriented 

programming. The first objective is to implement and test the abilities of GP to automatically 

generate code for object-oriented programming problems. The second objective is to 

implement and test the abilities of GE to automatically generate code for object-oriented 

programming problems. The third objective is to compare the performance of GP and GE for 

automatic object-oriented programming. 

Object-Oriented Genetic Programming (OOGP), a variation of OOGP, namely, Greedy 

OOGP (GOOGP), and GE approaches to automatic object-oriented programming were 

implemented. The approaches were tested to produce code for three object-oriented 

programming problems. Each of the object-oriented programming problems involves two 

classes, one with the driver program and the Abstract Data Type (ADT) class. The results 

show that both GP and GE can be used for automatic object-oriented programming. 

However, it was found that the ability of each of the approaches to automatically generate 

code for object-oriented programming problems decreases with an increase in the problem 

complexity. The performance of the approaches were compared and statistically tested to 

determine the effectiveness of each approach. The results show that GE performs better than 

GOOGP and OOGP.  
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CHAPTER 1: INTRODUCTION 

1.1 Purpose of the Study 

Manual programming is time consuming and challenging for a complex problem. In recent 

times, interest in automatic software production has grown rapidly due to global software 

demands and technological advancements. Human programmers work tirelessly to meet the 

global market software demands. For the efficiency of the manual programming process, 

programmers adopt the object-oriented approach to programming. Yet, it can take days, if not 

months, for a human programmer to write a program.  

Automatic programming has been proposed to aid the manual programming process. The 

term automatic programming changes over time [1, 2]. In this study, automatic programming 

is a method for producing code that could have been written by a programmer. 

Genetic programming (GP) is an evolutionary algorithm which searches a program space to 

generate a program. A program generated by GP is executed to produce a solution to the 

problem at hand. GP has been applied to many problem domains. It has been primarily used 

to solve optimization problems and has been successful in finding optimal or near optimal 

solutions to the problems. Grammatical Evolution (GE) is a variation of GP which adopts a 

genotype-phenotype distinction.  A grammar is defined for GE and the genotypic space is 

mapped to the production rules of the grammar to produce a program.  

Previous work on automatic programming using genetic programming has focused on the 

procedural programming paradigm [3] and not on the object-oriented paradigm. One of the 

advantages of the object-oriented paradigm is code reuse. Previous work on object-oriented 

genetic programming has involved taking an analogy from object-oriented programming to 

improve the scalability of genetic programming. Despite the successful application of genetic 

programming to many problem domains, automatic object-oriented genetic programming has 

not been fully explored. Also, the use of GE for automatic programming has not been 

previously investigated. This dissertation hypothesizes that both GP and GE can be used for 

automatic object-oriented programming. As such, this study of using GP and GE for 

automatic programming is the first step towards a long term goal of automated software 

production. 



2 

 

1.2 Objectives 

The primary aim of this dissertation is to evaluate the use of genetic programming and a 

variation thereof, namely, grammatical evolution, for automatic object-oriented 

programming. This primary aim does not mean that software will be produced for industrial 

use, instead, it means that genetic programming and grammatical evolution will be 

investigated to determine their abilities in producing code for classes and programs that use 

the classes. To realize the primary aim defined above, this dissertation will conduct a survey 

of the related literature on genetic programming, grammatical evolution and automatic 

object-oriented programing. The objectives of the research presented in this dissertation are 

as follows: 

 Objective 1: Evaluate genetic programming for automatic object-oriented 

programming. 

Genetic programming will be developed and evaluated to produce code for classes 

and programs that use the produced classes. 

 Objective 2: Evaluate grammatical evolution for automatic object-oriented 

programming. 

Grammatical evolution will be developed and evaluated to produce code for classes 

and programs that use the produced classes. 

 Objective 3: Compare the performance of GP and GE for automatic object-oriented 

programming.  

1.3 Contributions  

This dissertation makes the following contributions:  

 This dissertation provides a thorough survey of automatic Object-Oriented Genetic 

Programming (OOGP). It also extends and improves the previous work by 

introducing Greedy Object-Oriented Genetic Programming (GOOGP). It was found 

that GOOGP is able to increase the success rate of OOGP. 

 This is the first study investigating the use of GE for automatic object-oriented 

programming. 
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 The performance of genetic programming and grammatical evolution were compared 

for automatic object-oriented programming. It was found that grammatical evolution 

scales better than genetic programming when evolving code for classes. 

1.4 Dissertation Layout 

The rest of the dissertation is structured as below:  

Chapter 2: Genetic Programming 

The chapter provides a thorough survey of genetic programing. Each step in the GP algorithm 

is described and analyzed. Some advanced features of genetic programming are also 

discussed.    

Chapter 3: Grammatical Evolution 

Chapter 3 provides detailed descriptions of grammatical evolution, and discusses important 

aspects such as the genotype representation and the mapping process.  

Chapter 4: GP and Automatic Object-Oriented Programming 

The concept of automatic programming and the aspects of automatic programming relevant 

to this dissertation are discussed in the chapter. The related studies on object-oriented genetic 

programming and grammatical evolution are also discussed and analyzed.  

Chapter 5: Methodology 

Chapter 5 discusses the methodology, the experimental setup and the test data used to 

evaluate the developed approaches. 

Chapter 6: Genetic Programming Approach for Automatic Object-Oriented 

Programming  

The Object-Oriented Genetic Programming (OOGP) approach for automatic programming is 

presented in the chapter. A greedy OOGP approach, a variation of OOGP which uses a 

greedy method to generate the individuals in the initial population is also presented.  The 

representation used, the methods of initial population generation, and the operators used for 

regeneration are discussed. 
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Chapter 7: Grammatical Evolution Approach for Automatic Object-Oriented 

Programming  

The Object-Oriented Grammatical Evolution (OOGE) approach for automatic programming 

is presented in the chapter. Each process in OOGE is described. 

Chapter 8: Fitness Evaluation and Parameters for the Stack ADT and Problem1 

The chapter presents the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the stack Abstract Data Type (ADT). It also presents 

the functions for fitness evaluation and parameters for a programming problem, namely, 

Problem1 that uses the stack ADT to determine whether or not a word, a phrase or a sentence 

is a palindrome.  

Chapter 9: Fitness Evaluation and Parameters for the Queue ADT and Problem2 

The chapter presents the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the queue Abstract Data Type (ADT). It also 

presents the functions for fitness evaluation and parameters for a programming problem, 

namely, Problem2 that uses the queue ADT to perform a breadth-first traversal of any given 

parse tree.   

Chapter 10: Fitness Evaluation and Parameters for the List ADT and Problem3 

The chapter presents the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the list Abstract Data Type (ADT). It also presents 

the functions for fitness evaluation and parameters for a programming problem, namely, 

Problem3 that populates an empty list with integers and sorts the list.   

Chapter 11: Result and Discussion 

The chapter presents and discusses the results of applying the approaches to generate code for 

classes and programs that use the generated classes. The performance of the OOGP, GOOGP 

and OOGE approaches are compared. 
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Chapter 12: Conclusion and Future work 

Finally, chapter 12 presents the findings and the summary of how each objective was 

achieved. Possible extensions of the work presented in this dissertation are outlined.  
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CHAPTER 2: GENETIC PROGRAMMING 

2.1 Introduction 

This chapter presents a detailed description of genetic programming and an analysis of each 

step in the genetic programming algorithm. 

Section 2.2 provides an introduction to the genetic programming algorithm. Various control 

models that can be used by genetic programming are detailed in section 2.3 while section 2.4 

presents the program representation in genetic programming. A program in genetic 

programming is expressed in terms of the elements of the function and terminal set. Function 

and terminal sets are described in section 2.5 while section 2.6 presents sufficiency and 

closure properties. Section 2.7 describes different ways genetic programming generates the 

individuals in the initial population. Each individual in the population must be evaluated to 

measure how good the individual is at solving the problem at hand; evaluation is described in 

section 2.8. Regeneration is a process of creating new individuals. This requires selecting 

individuals from the current population and applying genetic operators to them. Selection 

methods and genetic operators are described in section 2.9 and 2.10 respectively. The genetic 

programming algorithm is executed until a termination criterion is met; this is discussed in 

section 2.11. There have been advancements in genetic programming that aim at improving 

the performance of the approach; this is discussed in section 2.12. Bloat is discussed in 

section 2.13. Section 2.14 discusses the requirements for setting up a genetic programming 

system while Section 2.15 discusses genetic programming strengths and weaknesses. Section 

2.16 presents the chapter summary.  

2.2 Introduction to Genetic Programming Algorithm 

Genetic programming was introduced by Koza [4] and was initially used to evolve programs 

in Lisp. GP is an Evolutionary Algorithm (EA) [4] because it emulates Darwin’s theory of 

evolution. It is one of the machine learning techniques that has been successfully applied to 

various problem domains. These domains include data classification, image processing, 

natural language processing and electronic circuit design [5, 6]. 

GP generates programs by mimicking the natural evolutionary processes of selection, 

reproduction, mutation and crossover.  Unlike a GA which searches the solution space, GP 

searches a program space. Generally, a GP run starts with the creation of the individuals in 

the initial population [4].  These individuals are randomly created from the function and 
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terminal sets. The process continues with the evaluation of the individuals to determine their 

fitness. The next generation is formed by applying genetic operators to the fitter individuals; 

thus breeding the population of the next generation. These fitter individuals are selected using 

a selection method. During each generation, evaluation is done to check if a solution has been 

found. The GP run terminates if a solution is found. Other termination criteria may include a 

specified runtime limit being exceeded and/or a specified number of generations being 

reached. At the end of a GP run, the best individual is returned as the result of the run. Koza 

[7] presents the  GP algorithm shown in Figure 2.1. 

A control model, as the name implies, specifies how the regeneration process is regulated. 

The two control models widely used by GP are the generational control model and the steady 

state control model. Section 2.3 provides more details about control models. A GP algorithm 

implements one of these control models.  

A GP run involves the processes from the initial population generation to the designation of 

the result as shown in Figure 2.1. GP is stochastic in nature and due to the possibility of 

random noise more than one run is performed. Each run is performed with a different random 

 

Figure 2.1. The standard GP algorithm 
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number generator seed. Seeding each run ensures that a result can be reproduced whenever 

the same seed is used.   

2.3 Control Model 

The three control models that can be implemented by a GP algorithm as described by Bruce 

[8] include the generational [4, 7], the steady state [7, 9, 10]  and varying population size. The 

varying population size control model is scarcely used. The generational and steady state are 

explained in more detail in subsections 2.3.1 and 2.3.2 respectively. 

2.3.1 Generational Control Model 

The generational control model is traditionally used in genetic programming. In a 

generational control model, one generation is distinct from another during the GP run. A 

complete population of individuals is maintained for each generation. The initial population 

generation is randomly created from the function and terminal sets1.  With the exception of 

the initial population generation, the individuals in each generation are created by applying 

genetic operators to the selected individuals in the previous generation. The newly created 

individuals called offspring become the current generation and replace those in the previous 

generation. The population size remains constant throughout the GP run. 

According to Pillay [11], two population arrays are maintained, one for the current population 

and the other for the new population.  The algorithm is presented in Figure 2.2. The major 

advantage of this control model is that it is easy to implement. 

                                                 
1 Section 2.5 explains the function and terminal sets. 

 

 

 

 

 

 

 

 

Figure 2.2. The generational control model algorithm 

 

1. Randomly create 𝑛 individuals. 

2. Repeat 

a. Evaluate the individuals in the current population. 

b. Repeat 

i. Use a selection method to select an individual or individuals 

from the current population. 

ii. Apply a genetic operator to the selected individual(s) to create 

new individuals. 

iii. Add the created individuals to a new population. 

Until 𝑛 individuals have been created 

Until a termination criterion has been met 
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2.3.2 Steady state control Model 

The steady state control model [12] is adopted from GAs by GP researchers [6]. Unlike the 

generational control model, this control model does not have distinct generations. A constant 

population size is maintained throughout the GP run. In the steady state control model, 

parents are selected using one of the selection methods. Genetic operators are applied to the 

parents to create offspring. A number of individuals with poor fitness are selected using an 

inverse selection method. These selected individuals are replaced with the created offspring. 

Once an individual has been introduced into the population, it can be selected for replacement 

or as a parent for the purpose of creating another individual. A single population array is 

therefore maintained throughout the GP run [11]. The algorithm is presented in Figure 2.3. 

Since there is no distinct generation, a generation is modelled as those steps performed from 

one Repeat to another as specified in the algorithm in Figure 2.3. Given that two population 

arrays are maintained for the generational control model while a single population array is 

maintained for the steady state control model, the former uses more memory than the latter.  

2.4 Program Representation 

A parse tree, also known as a syntax tree, is traditionally used to represent an individual in 

GP [4]. This is referred to as tree based genetic programming. In tree based GP, a parse tree, 

as shown in Figure 2.4 is a computer program which can be viewed as a data structure where 

the nodes are hierarchical. The nodes are the elements of the function and terminal sets2. The 

root node is usually an element of a function set. In Figure 2.4, the leaf nodes are at the 

                                                 
2Function and terminal set are discussed in section 2.5 

 

 

 

 

 

 

 

 

Figure 2.3. A steady-state Control Model 

 

1. Randomly create 𝑛 individuals. 

2. Repeat 

a. Evaluate the individuals in the current population. 

b. Use a selection method to select individuals from the current 

population. 

c. Apply genetic operators to the selected individuals to create new 

individuals. 

d. Use an inverse selection method to select individuals (from the 

current population) to replace. 

e. Replace the selected individuals in d. above with the newly 

created individuals. 

Until a termination criterion is met 
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maximum depth. The depth of a node is the number of edges via the longest path between the 

root and the node3. Labels for the root nodes are usually the elements of a terminal set. This 

representation assumes the form of an inverted tree.  The number of child nodes any node 

may have is called the arity of that node.  The arity of a node is the number of arguments of 

the node. For instance, in Figure 2.4, the “+” node has an arity of 2 while the “n” node has an 

arity of 0. 

 

Figure 2.4. A tree based GP representation 

Each parse tree (a program), is evaluated by performing a postfix or prefix traversal of the 

tree. Pillay [11] explained that the prefix traversal has a shorter runtime compared to the 

postfix traversal when executing conditional statements such as the if-then-else. This is an 

advantage of the prefix traversal over the postfix traversal.  

2.5 Function and Terminal Set 

According to Koza [7], one of the preparatory steps in solving a problem using GP is to 

choose the terminals and functions for the problem. Both these terminals and functions are 

the components of the program to be evolved [6].  Each node in a parse tree is an element of 

either the function or terminal set. Thus, each individual consists of nodes from the function 

set   𝐹 = {𝑓1, 𝑓2, 𝑓3, … 𝑓𝑛} and the terminal set 𝑇 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑚} (where 𝑛 and 𝑚 are the 

numbers of functions and terminals respectively). Elements of the function and terminal sets 

are collectively referred to as primitives [11]. They form the internal representation language 

in which programs are expressed. Langdon [6] pointed out that the choice of primitives is a 

decisive factor for the success of the genetic programming algorithm.  

                                                 
3 If the root is assumed as at depth 1, then the depth of a node is calculated as the number of edges via the 

longest path minus 1.  
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2.5.1 Function Set 

The elements included in the function set are problem dependent.  A function set may include 

standard mathematical operators, standard logical operators, and/or programmer defined 

operators. Examples of functions described in [4] and [11] include: 

 Arithmetic functions: +, -, *. 

  Conditional operators: If-then-else. 

  Variable assignment functions: ASSIGN. 

  Loop statements: WHILE...DO; REPEAT...UNTIL, FOR...DO. 

 Programmer defined operators such as prog2 which combines two programming 

statements.  

Any node with an arity greater than zero is considered a function node.  

2.5.2 Terminal Set 

Any element with an arity of zero is regarded as an element of the terminal set. The terminal 

set is the set of elements that form the leaf nodes of a parse tree. They do not take arguments. 

Functions which do not take arguments are included in the terminal set. According to 

Banzhaf et al. [5], a random ephemeral constant, ℜ , may be used as an element of a terminal 

set to represent a range of numbers, say (0.0, 0.5]. If the ephemeral constant is chosen as a 

node when creating a parse tree, it is replaced by a value randomly chosen in the specified 

range. 

2.6 Sufficiency and Closure  

Koza [4] defines the sufficiency property as being satisfied if the required program can be 

expressed in terms of the elements of the function and terminal sets. If the sufficiency 

property is not satisfied, the GP algorithm may converge prematurely. Premature 

convergence occurs when the algorithm converges to a local optimum. A local optimum is a 

candidate solution from which a solution cannot be evolved. On the other hand, extraneous 

functions may increase the search space and prevent the GP algorithm from converging to a 

solution [11].   
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The closure property is satisfied if each function in the function set is able to accept as its 

argument a value that may be returned by any other function in that set as well as a value 

each terminal may take as input [4]. Consider the function set 𝐹1 = {+, −,∗} and the terminal 

set 𝑇1 = {𝑥, 1} for a symbolic regression problem. The closure property is satisfied because 

any program (i.e., a parse) expressed in terms of the elements of 𝐹1 and 𝑇1 is syntactically 

correct. Two examples are shown in Figure 2.5. 

If  𝐹1  and 𝑇1 are replaced with the function set 𝐹2 = {+, −,∗, 𝑂𝑅} and the terminal set 𝑇2 =

{𝑥, 1, 𝑡𝑟𝑢𝑒}  respectively, the closure property is not satisfied. This is because not all the 

parse trees expressed in terms of the elements of  𝐹2  and 𝑇2 are syntactically correct.  Two 

examples are shown in Figure 2.6. These parse trees are syntactically incorrect because 

arithmetic operations cannot be performed on a Boolean value i.e., 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. Also the 

Boolean operator, namely, OR, cannot take an integer value as an argument. However, the 

closure property can be satisfied if the Boolean functions return 1 and 0 instead of 𝑡𝑟𝑢𝑒 or 

𝑓𝑎𝑙𝑠𝑒.   

 

 

 

Figure 2.5. Two trees created when the closure property is satisfied 

 

 

Figure 2.6. Two trees created when the closure property is not satisfied 
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2.7 Initial Population Generation 

The individuals in the initial population are parse trees created using one of the initial 

population generation methods described in [4], namely, the full, grow, or  ramped half-and-

half method. Nodes in an individual are randomly chosen from either the function or terminal 

set. In Koza’s implementation [4], the root node is  randomly chosen from the function set. 

This ensures that a trivial program is not created. A tree size must be specified as one of the 

GP parameters4. The size of a tree is the maximum depth or the number of nodes in that tree 

[11]. Each of the initial population generation methods is explained in the following sections. 

2.7.1 The Full Method 

The full method creates individuals of the same size. The depth of each leaf node must be 

equal to the specified maximum depth. Nodes at a level less than the specified maximum 

depth are chosen from the function set.  Nodes at a level equal to the specified maximum 

depth are chosen from the terminal set. Figure 2.7 shows three trees created using the full 

method. Notice that the number of nodes in each of the trees is not equal to the other but all 

the trees are of the same depth.   

Diversity in the population is usually less when this method is used. This may lead the GP 

algorithm to converge prematurely. Variety is the measure of diversity in the population. It 

calculates the percentage of the number of individuals that are different in structure. High 

variety guarantees a high genetic diversity in the population which helps prevent premature 

convergence.   

 

                                                 
4GP parameters are discussed in Section 2.15 

 

Figure 2.7. Three trees created using the full method 
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2.7.2 The Grow Method 

The grow method creates individuals of various shapes and sizes. As pointed out by Pillay 

[11], the depth of each leaf node must be less or equal to the specified maximum depth. 

Nodes at a level less than the maximum depth are chosen from either the function or terminal 

set, while those at the level equal to the maximum depth are chosen from the terminal set. 

Figure 2.8 shows a tree created using the grow method. 

This method provides more diversity in the population compared to the full method. 

2.7.3 Ramped Half-and-Half 

The ramped half-and-half method creates individuals of different shapes and sizes. It creates 

an equal number of individuals at each depth in the range of 2 to the maximum depth. Half of 

these individuals are created using the grow method while the other half are created using the 

full method. 

For example, assume a population size of 12 with a specified maximum depth of 4. Using 

ramped half-and-half will create 4 individuals at depth 2, 3 and 4 as shown in Figure 2.9. Out 

of the 4 individuals at each depth, 2 individuals will be created using the full method (left) 

while the remaining two will be created using the grow method (right). 

  

 

Figure 2.8. A tree created using the grow method. 
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The major advantage of the ramped half-and-half method over the other methods is that it 

promotes diversity in the initial population. 

2.8 Evaluation 

At each generation of the evolution, each individual in the current population is evaluated and 

assigned a scalar value representing the individual’s fitness. Fitness is the measure of how 

good an individual is at solving the problem at hand. In order to evaluate an individual, 

fitness cases and a fitness function are required.  

2.8.1 Fitness Cases 

A fitness case comprises an input or a set of input variables and their corresponding output 

values describing the target behaviour of the required program [4].  Fitness cases are problem 

dependent. For a symbolic regression problem [4], assume a researcher wants to use GP to 

evolve an unknown mathematical function of the form 𝑦 =  𝑓(𝑥). The fitness cases are the 

values of 𝑥 and the corresponding values of 𝑦. For example, the input values 0, 1, 2 and 3 

 

 Figure 2.9. An initial population (of size 12) created using the ramped half-and-half 

method 
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correspond to the output values 1, 2, 5 and 10 respectively, for the expression 𝑥2 + 1 to be 

evolved. For the artificial ant problem [4], assume a researcher wants to use GP to devise a 

program which navigates an artificial ant to pick up the pieces of food in a 32 X 32 grid. The 

fitness case for this problem is the starting position of the ant, the initial facing direction of 

the ant and the pieces of food in the grid. Potentially, there is more than one configuration for 

the fitness case but only one fitness case is used per run. Table 2.1 illustrates the fitness cases 

for the induction of a Boolean 3-symmetry function. The Boolean 3-symmetry function takes 

a binary string of length 3 and returns a value of true (i.e., 1) if the bits in the string are 

arranged symmetrically, otherwise it returns the value of false (i.e., 0). 

Table 2.1. Fitness case for the Boolean 3-symmetry function 

Input String Target Output 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 

In some domains, fitness cases are divided into training and testing sets. GP attempts to learn 

from the training set after which the evolved program is tested using the testing set [5]. 

Banzhaf et al. [5] and Pillay [11] argued that a small training set is likely to produce 

unreliable solutions that do not generalize. Generalization is considered a very significant 

performance evaluation criterion. Hence the fitness cases must represent a sufficient amount 

of the problem domain and the areas of special interest to the researcher. For example, 

assume GP is being used to evolve a program for calculating the factorial of a positive 

integer. The factorial of both 1 and 0 is 1. This is a special case which needs to be included in 

the fitness cases. Langdon  [6] suggests that the size of the fitness cases be somewhat 

restricted to ensure that GP runtime remains feasible. Thus, a balance is required between GP 

runtime and generalization. 
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2.8.2 Fitness function 

A number of fitness functions that can be implemented by GP are given in Koza [4].  

According to Banzhaf et al. [5], various objectives can be tested by fitness functions. These 

include the correctness of a program, a minimization of the runtime of the programs and a 

minimization of the program size. A fitness function can  be a measure of multiple criteria 

defined for the GP algorithm [6]. As mentioned earlier, each individual in the population is 

assigned a fitness value. A fitness function is used to determine the fitness value that will be 

assigned to an individual. GP uses the fitness values to determine the areas of the program 

space to search for a global optimum. Therefore the fitness function needs to be properly 

defined so that that GP clearly distinguishes solutions from near-solutions.   

The simplest and commonly used fitness measure is the raw fitness. The function for 

calculating the raw fitness is domain dependent. For problems like symbolic regression, 

Equation 2-1 defines the raw fitness [11]. This is defined as the sum of the absolute value of 

the difference between the output produced by the individual and the target value [4, 13] over 

the set of fitness cases. 

Equation 2-1. The raw fitness calculation 

 𝑟(𝑖, 𝑡) =  ∑ 𝑠(𝑖, 𝑗) − 𝑐(𝑗)𝑁𝑒
𝑗=1   

Where: 𝑟(𝑖, 𝑡) = the raw fitness of the 𝑖th individual at generation 𝑡. 

𝑠(𝑖, 𝑗) = the value returned by the 𝑖th individual for the 𝑗th fitness case. 

𝑐(𝑗) = the target value for the 𝑗th fitness case. 

𝑁𝑒 = the number of fitness cases. 

The hits criterion is used to determine whether a solution has been found. A hit is made if the 

output returned by an individual is equal to the target output.  

 In certain domains, a lower fitness means a better fitness. In others, a higher fitness means a 

better fitness. In solving the Boolean symmetry problem, the number of hits is equal to the 

raw fitness. This implies that a high fitness value means a better fitness. In solving the 

artificial ant problem [4], the  fitness function can be defined as the number of pieces of food 

picked up. Again, a higher fitness means a better fitness. 
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Other fitness measures described by Koza [4]  include standardized fitness, adjusted fitness 

and normalized fitness. The standardized fitness denoted by 𝑠(𝑖, 𝑡) redefines the raw fitness 

such that a lower numerical value is an indication of a better fitness [4, 11]. The best 

standardized fitness is zero. The standardized fitness is equal to the raw fitness if a lower 

fitness value indicates a better fitness. If a higher fitness value indicates a better fitness, the 

standardized fitness is calculated by subtracting the raw fitness from the maximum possible 

raw fitness. Assume 𝑟𝑚𝑎𝑥 as the maximum possible raw fitness, the standardized fitness is 

calculated from the raw fitness as defined by Equation 2-2. 

Equation 2-2. The standardized fitness calculation 

𝑠(𝑖, 𝑡) = {
𝑟(𝑖, 𝑡), 𝑖𝑓 𝑎 𝑙𝑜𝑤𝑒𝑟 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑚𝑒𝑎𝑛𝑠 𝑎 𝑏𝑒𝑡𝑡𝑒𝑟 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑟𝑚𝑎𝑥 − 𝑟(𝑖, 𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The adjusted fitness and normalized fitness are calculated if the GP algorithm uses fitness 

proportionate section. In Koza [4] and Pillay [11], the adjusted fitness, denoted by 𝑎(𝑖, 𝑡), is 

described as being adequate for distinguishing a good individual from a very good individual. 

The value of the adjusted fitness is in the range 0 to 1. A higher value is an indication of a 

better fitness. According to Koza [4] and Pillay [11] the adjusted fitness  is calculated from 

the standardized fitness as given by Equation 2-3.  

Equation 2-3. The adjusted fitness calculation 

𝑎(𝑖, 𝑡) =  
1

1 +  𝑠(𝑖, 𝑡)
 

The normalized fitness measure is used when the fitness-proportionate selection method 

(discussed in section 2.9.2) is implemented. The normalized fitness, denoted by 𝑛(𝑖, 𝑡), is 

calculated from the adjusted fitness as given by Equation 2-4. The letter 𝑀 denotes the 

population size. 

Equation 2-4. The normalized fitness calculation 

𝑛(𝑖, 𝑡) =  
𝑎(𝑖, 𝑡)

∑ 𝑎(𝑘, 𝑡)𝑀
𝑘=1
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The normalized fitness lies in the range 0 to 1. Like the adjusted fitness, a higher value is an 

indication of a better fitness. The sum of the normalized fitness values for each individual in 

the population must be equal to 1.   

According to Langdon [6], the fitness of a function should be carefully designed to avoid a 

deceptive fitness function which may drive the GP algorithm towards local optima.  

2.9 Selection Methods 

Parents, which are used to create offspring, are selected using a selection method. The 

selection methods described by Koza [4] include tournament selection, fitness-proportionate 

selection and rank selection. Banzhaf et al. [5] state that the selection method employed by a 

GP algorithm has an effect on the runtime of the algorithm as well as the success of the GP 

algorithm. Bruce [8] explains the effect of selection methods using a concept called selection 

pressure. Selection pressure is the extent to which the selection method is biased towards the 

highly fit individuals in the population being selected [8]. Tournament and fitness 

proportionate selection methods are the most commonly used selection methods. Both 

selection methods are discussed further in section 2.9.1 and 2.9.2 respectively. 

2.9.1 Tournament Selection 

Tournament selection requires that a tournament size be specified. A number of individuals 

equal to the tournament size are randomly chosen. The individual with the best fitness 

becomes the winner of the tournament. The winner is used as a parent to create an offspring 

for the next generation. 

The tournament size is used to increase or decrease the selection pressure. The selection is 

done with replacement. A high tournament size implies   more competition.  Thus, an 

increase in the size of the tournament increases the selection pressure. A small tournament 

size leaves the low fitness individuals with a fair chance of being selected. A small 

tournament size implies less competition. Therefore, a small tournament decreases the 

selection pressure [14]. A high selection pressure may lead to premature convergence while a 

very small tournament size may slow down the convergence rate.  

For a steady state GP algorithm, an inverse selection method is needed to choose the 

individuals to replace. This must be an individual of the population with poor fitness. Inverse 

tournament selection could be used for this purpose. Inverse tournament selection is applied 

as follows: a number of individuals equal to the specified tournament size are randomly 
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chosen; the individual with the worst fitness is replaced in the population by the newly 

created offspring. 

2.9.2 Fitness-Proportionate Selection 

In fitness-proportionate selection, the fitness of a particular individual is calculated 

proportionate to the entire population. This selection method is also known as the roulette-

wheel selection [15]. Fitness-proportionate selection requires more calculations and uses 

more memory compared to tournament selection. This is because the normalized and adjusted 

fitness of each individual in the population need to be calculated. Also, a mating pool needs 

to be created. A mating pool contains the individuals from which a parent must be selected to 

create the next generation.  Each individual occurs in the mating pool a number of times 

determined by the fitness of the individual. The individuals of the population with poor 

fitness have a less chance of being added to the mating pool. Fitness-proportionate selection 

is applied as follows:  

a. Calculate the standardized fitness as given in Equation 2-2. 

b. Calculate the adjusted fitness as given in Equation 2-3. 

c. Calculate the normalized fitness as given in Equation 2-4. 

d. Create a mating pool as follows: for each individual, 

i. Calculate the product of the value obtained in c. and the population 

size. 

ii. Round up the value obtained in i. above to determine the number of 

times the individual will occur in the matting pool. 

iii. Add the individual in the mating pool a number of times specified in ii. 

above. 

An individual is randomly selected from the mating pool. The genetic operator is applied to 

the parent to create an offspring for the next generation. In the example in Table 2.2, the 

fitness-proportionate selection method is applied with a population size P = 5.   
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Table 2.2. Illustrating fitness-proportionate selection method 

    

Individual 

A 

Standardized 

Fitness 

B      

Adjusted 

Fitness 

C   

Normalized 

Fitness 

C x P Number of 

Occurrences in 

Mating Pool 

Individual1 24 0.040 0.061 0.31 0 

Individual2 9 0.100 0.151 0.76 1 

Individual3 15 0.063 0.095 0.48 0 

Individual4 2 0.333 0.504 2.52 3 

Individual5 7 0.125 0.189 0.95 1 

Total  0.661 1.000   

 

The mating pool for Table 2.2 is {Individual2, Individual4, Individual4, Individual4, 

Individual5}. The number of occurrences of Individual1 and Individual2 is 0. Hence both 

these individuals are not added to the mating pool. Individual4 has 60% chance of being 

selected.  

As illustrated in Table 2.2, there is a high chance that an individual with a better fitness will 

be selected several times while those with poor fitness may not be selected at all. Selecting 

the same individual several times could lead to a loss of diversity early in the population. 

Diversity is important to represent more of the program space. Lack of diversity could lead to 

a premature convergence.  

As mentioned in section 2.9.1, if a steady state GP algorithm is implemented, an inverse 

selection method is needed to choose the individual to replace. Inverse fitness-proportionate 

selection could be used to select a weaker individual in the population. To use the inverse 

fitness-proportionate selection method, the normalized fitness is defined as given in Equation 

2-5. 

Equation 2-5. The inverse fitness proportionate selection probability calculation 

𝑛𝑖𝑛𝑣(𝑖, 𝑡) = 1.0 −  
𝑎(𝑖, 𝑡)

∑ 𝑎(𝑖, 𝑡)𝑀
𝑖=1

 

Where 𝑛𝑖𝑛𝑣(𝑖, 𝑡) is the normalized fitness,  𝑎(𝑖, 𝑡) is the adjusted fitness and 𝑀 is the 

population size. Table 2.3 shows the values obtained from Equation 2-5. The value recorded 
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in the first row (for Individual1) is the largest and indicates that Individual1 will be to be 

replaced.  

Table 2.3. Illustrating inverse fitness-proportionate selection 

 Individual Normalized 

Fitness 𝑛𝑖𝑛𝑣(𝑖, 𝑡)                

Individual1 0.94 

Individual2 0.85 

Individual3 0.91 

Individual4 0.50 

Individual5 0.81 

 

2.10 Genetic Operators 

At each generation of the evolutionary process, genetic operators are applied to the selected 

parents to create offspring. The newly created individuals form a new generation. A number 

of genetic operators have been reported in the literature [4]. The three commonly used 

genetic operators are the reproduction, crossover and mutation operators. GP uses a genetic 

operator application rate to determine the number of offspring that will be created using the 

operator. For example, assume a population size of 20 and the reproduction, crossover and 

mutation rates of 20, 50 and 30 respectively. Four offspring will be created by applying the 

reproduction operator, 10 will be created by applying the crossover operator while 6 offspring 

will be created by applying the mutation operator. To understand the effect of these operators 

on the search, the terms neighbourhood, exploitation and exploration are defined. The 

neighbourhood N(s) of a solution s ∈ S, an area of a search space, is the subset of solutions 

which can be obtained by applying genetic operators to s.  Whereas exploitation involves 

refining the search in the neighbourhood of the current solution with the hope of improving 

the current solution, exploration involves searching a larger portion of the search space with 

the hope finding another solution area that could be refined. 

2.10.1 Reproduction 

The reproduction operator is the simplest of the operators. It is applied to one individual as 

follows: a selection method is used to select an individual; the operator copies the selected 

individual into the population of the next generation.  
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The reproduction operator promotes convergence. A high application rate of this operator 

may cause an individual to be repeatedly copied into the next generation. This reduces 

diversity in the population. Diversity is required at the early stage of the GP algorithm.  

2.10.2 Crossover  

The crossover operator mimics the gene recombination process in nature. It is traditionally 

applied to two individuals. Banzhaf et al. [5] and Pillay [11] describe the crossover operator 

as an operator that retains the information passed by the parents to the offspring. The 

crossover operator is applied as follows. Two parents are selected using one of the selection 

methods. A crossover point is randomly chosen in each of the parents. Figure 2.10 labels 

these points as P1 and P2. The sub-trees rooted at the chosen points are swapped to form two 

offspring.  

 

Figure 2.10. The crossover operator 

In order to control the size of the offspring created, a limit is usually placed on the tree size. 

The tree size is measured in terms of the tree depth or number of nodes in the tree. If the 

depth of the offspring created exceeds the specified maximum depth, each of the function 

nodes at the specified maximum depth is replaced by a randomly selected terminal.  Placing a 
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limit on the tree size reduces bloat. Bloat is an excessive increase in the size of the tree 

without a change in the fitness of the individual. 

The crossover is a local search operator. The aim of a local search operator is to explore the 

neighbourhoods of the candidate solutions. The research conducted in [16, 17] suggest that 

the GP algorithm that applies a high rate of the crossover operator is susceptible to premature 

convergence. Crossover has also been criticized for its destructive effects [5, 11]. It breaks up 

good building blocks. The good building blocks could form part of a solution. 

Koza [4] and Banzhaf et al. [5] implemented the crossover operator with a bias towards 

choosing a function node as a crossover point. The choice of the crossover point is biased to 

avoid mere swapping of the terminals.  Beadle and Johnson [18] state that preventing the 

crossover from merely swapping a terminal is likely to cause a bigger jump in the search 

space.  They point out that for certain problems, the disadvantage is that it does not allow 

small refinements in the search space [18]. 

At the early stage of the evolution process, exploration is needed more than exploitation. As 

the generation progresses, there is a need for the algorithm to converge. Hence exploitation 

will be needed more than exploration.  One could apply a measure that prevents the crossover 

operator from swapping terminals at the early stage of the evolution process but allows 

terminals to be swapped at a later stage. By this, small refinements are allowed while 

ensuring a balance between exploration and exploitation.   

2.10.3 Mutation 

The mutation operator is applied to one individual. Banzhaf et al. [5] and Pillay [11] describe 

the mutation operator as an operator that increases the diversity of the population by directing 

the search towards a new area of the search space. Thus, the mutation operator increases the 

diversity in the population. Pillay [11] states that the main purpose of mutation is to maintain 

diversity in the population. The mutation operator performs exploration more than 

exploitation and is a global search operator.  

The mutation operator chooses a parent using a selection method. A mutation point, e.g., P1 

in Figure 2.11 is randomly chosen from the parent. The subtree rooted at the chosen point is 

deleted. A new subtree is created using the method used to create the initial population, e.g. 

grow, and inserted at the mutation point. 
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Figure 2.11. The mutation operator 

Similar to the crossover operator, a limit is usually placed on the size of the offspring created 

by the mutation operator. A high application rate of the mutation operator may slow down the 

algorithm convergence because the operator has the tendency of directing the search to a 

different area of the search space.  

2.11 Termination Criteria 

As specified in Figure 2.1 the GP algorithm stops when a solution has been found or when 

the specified number of generations has been completed. However, in certain problem 

domains, a solution for the problem at hand is not known. In others, a perfect solution to a 

problem is not possible to find. In these cases the GP algorithm can terminate if a certain 

runtime is exceeded or a near-solution is found. Hence the termination criteria is domain 

dependent [19]. 

According to Koza [4] the result of a run is the best individual over all the generations. Pillay 

[11] states that the best individual of the last generation can  be returned as the result of a run.  

In certain problems such as the problem to compute the factorial of a given integer  [11], both 

these have been found to return the same result. 
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2.12 Advancements in Genetic Programming 

This section describes some of the extensions to genetic programming that are relevant to this 

study.  

Montana [20] introduced the use of strongly-typed genetic programming to ensure that 

syntactically correct programs are created and to reduce the search space.  Section 2.12.1 

discusses Strongly-typed GP.  

GP was initially used to evolve functions in Lisp without any need for memory [4]. In order 

for GP to induce algorithms, memory and iteration was introduced. Also, the use of memory 

and iteration improves the GP problem solving ability. Section 2.12.2 and 2.12.3 discuss the 

use of memory and iteration respectively.  

Programmers break a complex program into modules. In GP, Koza [7] introduced a concept 

of modularization called Automatically Defined Functions (ADFs). This has been found to be 

beneficial when applying genetic programming to complex problems. Section 2.12.4 

describes ADFs as a means of modularization in genetic programming. 

2.12.1 Strongly Typed GP 

Strongly-typed GP  [20]  is one of the techniques GP systems have used to ensure that each 

function takes one or more valid arguments and to ensure that the programs generated are 

syntactically correct. Also, instead of allowing all the possible combinations of functions and 

terminals, typing can be used to specify certain combinations thereby reducing the search 

space.   

Typing is done by assigning types to nodes and the arguments of the nodes. This is called 

point typing. For instance, the logical operator, greater than or equal to (>=), checks if the 

first argument is greater than or equal to the second argument. It cannot take a Boolean 

operator such as the OR operator as an argument because the OR operator returns a true or 

false value, which is not a number. However, the >= operator must return a true or false value 

as a result of the comparison made. ADFs introduced by Koza [31] uses branch typing. In this 

typing, each ADF branch as well as the main program branch is assigned a type. Genetic 

operators, e.g. crossover, are allowed between two branches of the same type to avoid 

creating an invalid offspring. According to Pillay [11], strong typing facilitates translation of 

GP generated algorithms into a programming language. 
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2.12.2 The Use of Memory 

The solution to many problems requires that the values computed earlier in the program be 

used later in the program. To facilitate this, memory is required to store these values which 

can be located via variables representing the memory location of the values. In GP, the values 

stored in the memory are represented using variable names and the operators that operate on 

the values are called memory manipulation operators. The type of memory manipulation 

operators a GP system should employ is dependent on the problem domain. This study 

discusses the use of memory under two broad categories, namely, named and indexed 

memory. 

2.12.2.1 Named Memory 

Koza [21] described the use of named memory. A memory location is represented using a 

variable name so that the content of the memory can be accessed via the variable name. The 

SV i.e., settable variable, proposed by Koza [4] is a variable name which is set early in an 

individual and used later in the individual.  

The counter and iteration variables introduced by Pillay [22] function as a local variables. 

The variables were maintained for each instance of the for iterative operator (see 2.12.3).  

2.12.2.2 Indexed Memory 

Most programming languages provide one or more ways of manipulating a vector and a 

multidimensional array. Some of the operators GP uses to manipulate the vectors  are the 

read and write operators [23] and the aread operator [11]. Both the read and the aread 

operators take a single integer argument. The argument is an index of a vector. Both the read 

and the aread operators return the element in the memory location indexed by the integer 

argument. If the integer argument is not a valid index of a memory location, the default value 

of the data type is returned.  This is done to ensure that closure property is satisfied. The write 

operator takes two arguments. The first argument represents a value to be written to a 

memory location indexed by the second argument which must evaluate to an integer value. 

The operator returns the value previously stored in the memory location indexed by its 

second argument as shown in Figure 2.12. If the write operator attempts to write to an invalid 

index, the default value of the data type is returned.  
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Figure 2.12. The operation of write memory manipulation operator 

The operation in Figure 2.12 replaces the memory location indexed by 2 with a value of 3.7 

and returns the value originally in the memory location (i.e. 0.6). 

2.12.3 Iteration 

Iteration is used in high level programming languages such as C, FORTRAN, PASCAL and 

Java to achieve efficiency. The major benefit of iteration is that it reduces code repetition and 

code length by providing mechanisms for repeated execution of a code segment. The solution 

to many problems is facilitated by the use of iteration. Iteration allows GP to enjoy the 

benefit mentioned above. A number of iterative operators have been used in GP.  Examples 

of these operators include the DU (Do Until) operator [4], for operator [22],  while and  

dowhile operators [24, 25],  for_loop1 and  for_loop2 operators [26]. 

The DU operator takes two arguments. The first argument is the code which must be 

evaluated at least once. The second is a condition which specifies when the iteration must 

stop. The second argument returns a value of true or false. The first argument is evaluated 

again if the second argument returns a value of false; otherwise the evaluation of the operator 

stops. The possibility of infinite iteration or an iteration that takes too long has been one of 

the problems associated with using iterative operators in GP. To avoid this problem, there 

must be a preset maximum number of iterations that can be performed by an instance of the 

DU operator. The execution of the operator terminates if the number is exceeded. In the 

Blocks World Problem [4], 25 iterations were allowed for an instance of the DU operator and 

100 iterations for an individual.  
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The for operator takes three arguments. The first and second arguments are integers. The 

third argument is iteratively executed a number of times indicated by the difference between 

its first two arguments plus one. Thus, if the difference between the first and second 

argument is 𝑛, then the third argument will be executed 𝑛 + 1 times. Two variables, namely, 

the counter variable and the iteration variable, are maintained for each instance of the for 

operator as shown in Figure 2.13. The counter variable is instantiated to the value of its first 

argument while the iteration variable is instantiated to the default value of the type of the 

third argument. If the third argument is a “*” or “/” node, the iteration variable is instantiated 

to 1 instead of 0. This is done to prevent division by 0 or multiplication by 0. Both the 

counter and iteration variables are added to the terminal set when creating the parse tree 

representing the third argument of the for operator. The operator returns the value of its last 

iteration i.e., the value held by the iteration variable at the last execution of the third 

argument. The individual in Figure 2.13 is a program that sums all the digits from a given 

number to its square. The counter variable is initialised to the value of the first child N, while 

the iteration variable is initialised to zero. 

Pillay [25] implemented the  while and  dowhile operators similar to that implemented in 

[24]. Both these operators take two arguments each and use the counter and iteration 

variables in the same way as the for operator. The first argument of the while operator is a 

condition which specifies when the execution of the second argument must stop. The 

condition must be checked first. The dowhile operator executes its first argument at least once 

before checking the condition, i.e., the second argument. The counter variable of the while 

       

Figure 2.13. An individual program using the for operator (left) with the iteration and 

counter variables (right) 
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and dowhile operator is added to the terminal set when creating the parse tree representing the 

first argument of the operators. Both the counter and iteration variables are added to the 

terminal set when creating the parse tree representing the second argument. 

The first and the second argument of the for operator are used as bounds that specify the 

number of iterations and avoid infinite iterations. However, the difference between the first 

and second argument may be a large number which may result in an iteration that takes too 

long. The while and dowhile operators could also result in infinite iterations or a time-

consuming iterations. Hence a maximum number of iterations must also be specified when 

using these operators.  To satisfy the closure property when the iteration body is not executed 

at all, the for operator returns the default value of it third argument, the while operator returns 

the default value of its second argument and the dowhile operator returns the default value of 

its first argument. 

Li [26] introduced the use of the for-loop1 and for-loop2 iterative operators. The major 

difference between the for-loop1 and for-loop2 operators is that the former takes two 

arguments while the later takes three arguments. The first argument of the for-loop1 must 

evaluate to an integer and specifies the number of times the second argument will be 

executed. The first and second arguments of the for-loop2 must evaluate to integers. The third 

argument must be evaluated a number of times specified by subtracting the value of the first 

argument from the value of the second argument. The third argument is not executed if the 

first argument is greater than the second argument. Li [26] describes the for-loop1 and for-

loop2 operators into two forms, namely, simple and unrestricted. The operators are in simple 

form if the integer arguments are randomly generated within the range of 1 and the specified 

maximum number of iteration. They are in unrestricted form if the integer arguments are 

expressions that must be evaluated to integer values. 

2.12.4 Modularization 

Modularization as described by Koza [7] and  Banzhaf et al. [5] is a technique used by human 

programmers in problem-solving. Modularization emphasizes separating the functionality of 

a program into a number of functional modules such that each module solves a different task 

and can be reused. The GP algorithm is faced with the challenge of solving complex 

problems. As a result, Automatically Defined Functions (ADFs) [7] was introduced into the 

genetic programming algorithm to increase the problem solving ability of genetic 
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programming. The use of ADFs allows for simultaneous induction of the main program and 

one or more subroutines.    

In Koza’s implementation of ADFs, each individual has one or more branches. One of the 

branches must represent the main program while the others represent functions. The branch 

that represents the main program is referred to as the results producing branch while other 

branches are referred to as the function defining branches. Figure 2.14 illustrates an 

individual consisting of one ADF. The individual has one function defining branch and a 

results producing branch. Each node in the individual as shown by Figure 2.14 is described as 

follows: 

1. The Progn is a connective node that combines the function defining branch and the 

results producing branch. 

2. The defun node mimics a keyword in Lisp programming. It marks the beginning of 

each function in Lisp. 

3. Name of the ADF 

4.  The argument list of the ADF 

5. A place-holder for the result produced by the body of the ADF 

6. The body of the ADF 

7. A place-holder for the result produced by the result producing branch (main 

program), and 

8. The body of the result producing branch 

 

Figure 2.14. An individual consisting of one ADF 
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An individual program with an ADF can be divided into two parts, namely, variant and non-

variant. The non-variants, part above the dotted line (Figure 2.14) is fixed while the variants, 

part below, can change during the GP run. Branch typing is commonly used for ADFs. 

Genetic operators are allowed between two branches if both the branches are of the same 

type.  

Using ADFs requires that the user specify the architecture of the overall program in addition 

to the basic preparatory steps in using GP [5, 7]. The number of function defining branches 

and the number of arguments for each ADF need to be specified.  The function and terminal 

sets for both the results producing branch and function defining branch must be specified. 

Also, function calls between the ADFs must be specified. From the study presented in [7], the 

use of ADF is beneficial when dealing with a complex problem. However, ADFs are not 

effective when applied to a simple problem that can be solved without using ADFs [11].  

Bruce [8] introduced a representation format which allows each ADF to be a separate tree. In 

Bruce’s representation shown in Figure 2.15, each individual consists of n trees stored in a 

fixed size array. One of the n trees is an individual representing the main program while the 

rest represent ADFs. Thus, there are n-1 ADFs and 1 main program in an individual with n 

trees. A number of advantages of Bruce’s representation over Koza’s representation of 

individuals with ADF as specified in [8, 25] include: 

 It simplifies program representation by allowing a clear separation of ADFs from the 

main program. 

 Since the parse trees are clearly separated, genetic operators do not need to be 

restricted to a certain branch of the parse trees. 

 It presents more general means of representation since an individual without ADFs is 

simply a tree stored in a single cell array. 
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Figure 2.15. Alternative ADF representation introduced by Bruce 

The representation introduced by Bruce provides easier implementation and easier 

understanding of GP with ADFs. This is because the ADFs are separated the way human 

programmers separate modules in high level programming languages such as Java. Adding to 

the advantages of Bruce’s representation, Langdon [6] introduced pass-by-reference. If a 

variable passed to the ADF is changed during execution of the ADF, the value changes in the 

calling program. 

2.13 Bloat in GP 

During the GP run, functions and terminals are combined in a way that might not be 

anticipated by a human programmer. Some of these combinations are not necessary because 

the fitness of the program that contains them is not affected if they are removed. Such 

combinations or parts of code are redundant code and are known as introns [19]. Over the 

years, introns have been studied and have been categorized as syntactic and semantic introns 

[27, 28]. Syntactic introns are code that does not contribute to the fitness of the program 

because the code is not executed. For example, (if (2 < 1) X + 2 else X – 3). The conditional 

test will always result in false. Hence X + 2 will never be executed. Semantic introns are code 

that are executed but have no effect on the fitness of the program. Examples of such code are 

(MOVE-LEFT MOVE-RIGHT), (0 AND  0). A program size increases as the GP generations 

progress. This increases the introns in the program and also introduces bloat. Bloat is an 

increase in introns [5, 29]. In Koza [4], the edit operator is used to reduce the amount of 

introns a program contains. Researchers [30, 31] have argued that the presence of bloat is a 

mechanism that GP uses to reduce the destructive effect of the crossover operator. The 

crossover operator is less destructive if it removes an intron from a program but more 

destructive if it removes a building block from the program. Thus, bloat can be considered 
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beneficial. However, as the GP generations progress during a run, the individuals become 

fitter and the variation in the population reduces. If bloat occurs, the fitness of the best 

individuals might be difficult to improve and, as such, the algorithm may converge 

prematurely. Research in the area of bloat in GP is ongoing. 

2.14 Strengths and Weaknesses of GP 

Since GP was proposed by Koza [4], it has gained popularity and has been used in many 

applications. Despite much research in the field and the benefits provided by GP, there are 

number of problems faced by GP researchers. These benefits and problems are highlighted as 

the strengths and weaknesses of GP in the following sections. 

2.14.1 Strengths  

Ease of understanding: The programs generated by GP make use of terminals and functions 

that are well known by a human programmer and thus, are very easy to understand. 

Solution variants: Due to the stochastic nature of GP, a different seed is used for each run. As 

a result, various variants of the required solution can be produced by GP.   

2.14.2 Weakness 

Premature convergence: GP is susceptible to premature convergence which is caused by 

factors such as the lack of diversity in the initial population and the seed used for the run 

[11].   

2.15 Setting up a Genetic Programming System 

Before implementing a genetic programming system, there are certain parameters that must 

be set. A decision must also be made about the process e.g., the control model to be used. In 

[6, 7, 11], the authors list the basic preparatory steps that must be performed before 

implementing a genetic programming system. These steps include the following: 

 Choose the terminal and function sets.  

 Define the fitness function. 

 Choose a selection method. 

 Choose genetic operators. 

 Specify the termination criteria and other control parameters such as the population 

size, the maximum tree size and the application rate for each of the genetic operators. 
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The study conducted by Pillay [11] points out that the genetic programming parameters are 

problem-dependent. Thus, trial runs need to be performed and the parameters that give the 

best result must to be chosen. 

2.16 Chapter Summary  

This chapter described the genetic programming algorithm. Firstly, it provided the 

description of two control models, namely, generational and steady state. The control model 

commonly used by GP is the generational control model. The GP algorithm starts by creating 

the initial population. Each individual in the population is represented as a parse tree. The 

population is evaluated to check how good each individual in the population is at solving the 

problem at hand. If a solution has not been found or the number of generations specified has 

not been reached, a selection method is used to select parents. Genetic operators are applied 

to the selected parents to create offspring that form the next generation.  The chapter 

highlighted what is required to set up a GP system. It described some advancements in GP. 

These include strongly typed GP which facilitates the generation of syntactically correct 

programs, the use of memory, iteration and modularization in GP. Bloat in GP was briefly 

discussed. Finally, the chapter stated some GP strengths and weakness. The next chapter will 

discuss GE, a variation of GP. 
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CHAPTER 3: GRAMMATICAL EVOLUTION 

3.1 Introduction 

The previous chapter introduced genetic programming which searches a program space for a 

program which when executed will produce a solution to a problem at hand. This chapter 

introduces grammatical evolution, a variation of genetic programming. Grammatical 

evolution uses a genotype-phenotype distinction and maps from a genotypic space to a 

phenotypic space to produce a program.  

Section 3.2 introduces grammatical evolution, followed by section 3.3 which describes the 

use of grammars in grammatical evolution. GE represents a chromosome i.e., a genotype as a 

binary string this is discussed in section 3.4. Section 3.5 discusses the initial population 

generation. The genotype needs to be expressed as a program; the mapping process is 

detailed in section 3.6 while wrapping is discussed in section 3.7. Section 3.8 and section 3.9 

describe the evaluation and selection methods respectively while section 3.10 discusses 

genetic operators which are used to produce the offspring. Section 3.11 discusses the 

termination criteria. Bloat is discussed in section 3.12. Section 3.13 discuses modularity, a 

concept used to improve the scalability of GE. Each evolutionary algorithm has its strengths 

and weaknesses, section 3.14 highlights the strengths and weaknesses of grammatical 

evolution. Lastly, section 3.15 presents a summary of the important aspects of grammatical 

evolution. 

3.2 Introduction to Grammatical Evolution 

Genetic Programming (GP) was proposed by Koza [4] and uses a parse (syntax) tree to 

represent a solution. Since the inception of GP, variants of GP have been proposed. GE and 

Gene Expression Programming (GEP) [32] are variations of genetic programming which 

separate a genotypic space from a program space (i.e., phenotypic space). This work 

however, focuses on GE rather than GEP which is not directly applicable to object-oriented 

programs evolution. GE uses a grammar and maps the genotype to the production rules of the 

grammar to produce a program. GE represents a chromosome as a group of binary strings 

called codons, thus the genotype is a binary string. A program is executed by firstly 

converting each codon to a denary value. Each denary value is then mapped to a production 

rule of the grammar to form a program. The program is then executed [1].  

 

Grammatical evolution is known to obtain good results for complex problems. It has been 

successfully applied to solve problems in many domains. These domains include engineering 
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[33, 34], biology [35] and forecasting [36]. Some features are common to both GP and GE. 

Such features include the control models, evaluation, selection methods and termination 

criteria. These features have been explained in chapter 2 and are not explained again in this 

chapter. 

 

3.3 A Grammar in Grammatical Evolution 

Grammars provide a means of building up a complex structure from small building blocks 

[1]. A grammar consists of a set of non-terminals, a set of terminals and a list of production 

rules. One of the non-terminals must be designated as the start symbol.  For example,  𝑆 →

𝑎𝑆𝑏,    𝑆 → 𝜀    is a grammar for the language 𝑎𝑛𝑏𝑛 where 𝑛 is an integer and 𝜀 is an empty 

string. The language defines the combinations of 𝑎’s and 𝑏’s such that (1) the number of 𝑎’s 

is equal to the number of 𝑏’s and (2) no 𝑏 must precede an 𝑎. There is one non-terminal, 

namely, 𝑆. Also, there are two terminals, namely, 𝑎 and 𝑏, and two production rules in the 

example. A production rule is made up of terminals and non-terminals. It allows the non-

terminal at the left hand side to be replaced by the right hand side of the production rule.  

In the context of GE, terminals are the elements that can appear in the program produced by 

GE. Thus GE terminals include the operators and the values they operate on. Examples are, *, 

/, +, 1, 𝑥 and 𝑦. Non-terminals are the elements expressed as a composition of terminals. 

Each non-terminal can be expanded into one or more terminals. GE uses a Context-Free 

Grammar (CFG) and the Backus-Naur Form5 (BNF) notation for the CFG. In the BNF 

notation, the non-terminals are enclosed inside the symbol < > while the production rules that 

have the same non-terminal at the left hand side are separated by the symbol “|”. 

A symbolic regression problem is used to explain how GE represents a program. The 

problem involves evolving a function that fits a given set of points. Let the start symbol be <

𝑒𝑥𝑝𝑟 >. The non-terminals is the set 𝑁 =  {𝑒𝑥𝑝𝑟, 𝑜𝑝, 𝑝𝑟𝑒_𝑜𝑝, 𝑣𝑎𝑟, 𝑑𝑖𝑔𝑖𝑡} and the terminals, 

set 𝑇 =  { X,∗, −, +,/, 1.0, (, ), 𝑐𝑜𝑠}. Then, the production rules P are represented as: 

< 𝑒𝑥𝑝𝑟 > ∷= < 𝑒𝑥𝑝𝑟 >< 𝑜𝑝 >< 𝑒𝑥𝑝𝑟 >   (0) 

                                 |   < 𝑝𝑟𝑒_𝑜𝑝 > (< 𝑒𝑥𝑝𝑟 >)                           (1) 

|  < 𝑣𝑎𝑟 >                (2) 

 

 < 𝑜𝑝 >    ∷=    ∗              (0) 

                                                 
5 Also known as Backus Normal Form 
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| −      (1) 

|  +             (2) 

|  /       (3) 

 

< 𝑝𝑟𝑒_𝑜𝑝 >   ∷ =   𝑐𝑜𝑠        (0) 

 

< 𝑣𝑎𝑟 >       ∷ =   X       (0) 

| < 𝑑𝑖𝑔𝑖𝑡 >     (1) 

 

< 𝑑𝑖𝑔𝑖𝑡 >       ∷=   0              (0) 

| 1      (1) 

| 2             (2) 

The number of production rules, say 𝑝𝑛, for each of the non-terminals is 3, 4, 1, 2 and 3 

respectively. The production rules are numbered from 0 to 𝑝𝑛 − 1. 

Like the closure properties [4] and typing [20] introduced in GP, a grammar is used to ensure 

that the programs generated by GE are syntactically correct. It specifies only the possible 

combinations of the elements of the language [1]. Aside from ensuring that syntactically 

correct programs are generated, GE uses grammar to reduce the search space. By structuring 

the grammar such that certain functions are not allowed to take certain terminals as 

arguments, the grammar can be used to obtain a better solution for the problem at hand.  It 

provides an easy platform to incorporate domain knowledge of the problem. The production 

rules can be structured in a way that facilitates the combinations of terminals in  prefix or 

postfix notation. For example, < 𝑒𝑥𝑝𝑟 > ∷= < 𝑜𝑝 >< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > is structured in 

prefix notation while < 𝑒𝑥𝑝𝑟 > ∷= < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑜𝑝 > is structured in postfix 

notation. Depending on the problem domain, the terminals could be the constants, variables, 

operators and control statements typical of a particular programming language. For 

example, 𝑓𝑜𝑟, {, }, 𝑖𝑛𝑡, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑒𝑙𝑠𝑒, and 𝑖𝑓 have valid meanings in Java and  as such, 

programs generated by GE as a valid combination of these terminals can be compiled using 

Java compiler. 

3.4 Genotype Representation 

As mentioned earlier, the GE represents a genotype as a binary string.  A binary string is 

made up of one or more bits. Examples of binary strings include 001, 101 and 0000101 

having the denary equivalent of 1, 5 and 5 respectively. In GE, a bit is called an allele while 8 
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alleles form a codon. Several codons are grouped to form a chromosome which is the 

genotype. An example of a chromosome is given in Figure 3.1. 

One problem with a binary representation is low locality [37, 38]. Locality is a term used to 

describe how a change in the genotype affects the phenotype. A small change in the genotype 

that results in a small change in the phenotype is known as high locality. High locality 

enables the search to effectively explore the neighbourhood of the current solution. 

Conversely, if a small change in the genotype results in a big change in the phenotype, the 

algorithm is said to have a low locality and, as such, likely to perform a random search. 

An alternative representation is the use of integers rather than a binary string [39]. Unlike the 

binary representation that groups alleles to form a codon, each integer is a codon. Figure 3.2 

illustrates an integer representation of a chromosome. One advantage of the integer 

representation is that it eliminates time spent in converting the codons from binary to integer.  

 

3.5 Initial Population Generation 

The chromosomes in the initial population are randomly created. Parameters which must be 

set before creating the initial population include the initial codon length which specifies the 

number of codons in a chromosome, the allele length which specifies the number of bits in 

each codon and the population size. As with GP, the choice of parameters has an effect on the 

search algorithm. Thus there is a need to perform trial runs and choose the parameters that 

provide the best result. 

 

Figure 3.1. A binary representation of chromosomes 

 

 

 
Figure 3.2. An integer representation of a chromosome 
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3.6 Mapping from the Genotype to the Phenotype 

In the standard GE [1, 40], the mapping process starts by firstly converting the binary strings 

to denary values. Figure 3.3 shows a comparison between the mapping process in GE and a 

mapping process in natural evolution. 

The chromosome is interpreted codon by codon. Each codon is converted to a denary value. 

An example of a chromosome with each codon converted to an integer equivalent is given in 

Figure 3.4. The mapping process starts from the first denary value, counting from the left. 

The modulus of this value and the number of production rules for the start symbol is taken. 

The result is an integer which corresponds to one of the production rules for the start symbol. 

If the production rule contains at least one non-terminal on the right hand side, the leftmost 

non-terminal is expanded first. The next available denary value is used. Again the modulus of 

the value and the number of production rules for the non-terminal is used to determine the 

production rule which may contain another non-terminal to be expanded. This process 

continues until all the non-terminals have been expanded.  

A derivation tree is used to visualize the mapping process. It shows all the non-terminals that 

have been expanded and the result of their expansion. The GE mapping process corresponds 

 

Figure 3.4 An integer equivalent of a chromosome 

 

 

Figure 3.3 A comparison of the mapping process between the grammatical 

evolution and a biological system. 
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to a depth first expansion.  This implies that the leftmost non-terminal in a derivation tree is 

expanded first. 

To illustrate the mapping process, the chromosome shown in Figure 3.4 is mapped to the 

BNF grammar defined in section 3.4.1 as follows. The first codon value is 234 and the 

number of production rules for the start symbol is 3. The modulus of 234 and 3 is 0. This 

indicates that the right hand side of the first production rule, i.e., < 𝑒𝑥𝑝𝑟 >< 𝑜𝑝 >< 𝑒𝑥𝑝𝑟 > 

will be expanded next.  The next step is to expand the leftmost non-terminal, namely, <

𝑒𝑥𝑝𝑟 >.  

Again, there are 3 production rules for  < 𝑒𝑥𝑝𝑟 > . The next codon value is 98. A production 

rule is therefore chosen using 98 mod 3 which results in 2. This is production rule number 2 

for the non-terminal < 𝑒𝑥𝑝𝑟 >. Thus the expression so far becomes < 𝑣𝑎𝑟 >< 𝑜𝑝 ><

𝑒𝑥𝑝𝑟 >. 

Continuing in the same manner, a production rule is chosen using 2 mod 2 which results in 0. 

This is production rule number 0 for the non-terminal < 𝑣𝑎𝑟 >. The expression is 

transformed to X < 𝑜𝑝 >< 𝑒𝑥𝑝𝑟 > . Next, < 𝑜𝑝 > is expanded to obtain X − < 𝑒𝑥𝑝𝑟 >. 

There is one non-terminal, < 𝑒𝑥𝑝𝑟 >, in the expression. The non-terminal is expanded and 

the expression transformed to X − < 𝑣𝑎𝑟 > . The expression is finally transformed to X – X 

after expanding the non-terminal < 𝑣𝑎𝑟 >. Figure 3.5 illustrates the mapping process 

described above. It shows how the mapping process corresponds to a depth first expansion.  
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As in natural evolution, GE exhibits a many-to-one mapping i.e., more than one genotype can 

map to the same program.  For example, if the first six denary values of the chromosome in 

Figure 3.4 are changed to 57, 140, 90, 33, 197 and 244, the mapping process will still result 

in the same program obtained. Thus the variety in the genotypic space does not map to the 

same variety in the phenotypic space.   

3.7 Wrapping  

There is a possibility that the last codon in the chromosome will be used while there are still 

non-terminals to be expanded. GE uses wrapping to cater for such a problem. Wrapping is the 

reuse of the codons in the chromosome, from the left to the right, during the mapping 

process. A maximum number of wraps must be set. If the maximum number of wraps is 

reached and the mapping process is not completed, the non-terminals will be replaced with 

terminals. The individual is assigned the worst possible fitness  [1]. The worst possible fitness 

is dependent on the problem domain. In the symbolic regression problem, the worst possible 

fitness is the highest integer. 

Each codon could recursively map to the same production rule i.e., recursive mapping.  For 

example, assume that all the codon values of a chromosome are even numbers and the 

production rules for the start symbol are as given below: 

 

Figure 3.5. Derivation trees showing depth first expansion 
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  < 𝑒𝑥𝑝𝑟 > ∷=  < 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑒𝑥𝑝𝑟 >    (0) 

 |    < 𝑣𝑎𝑟 > ,       (1) 

The modulus of any even number and 2 is 0. Thus, each codon in the chromosome maps to 

the production rule number 0. If recursive mapping occurs, the non-terminals will be replaced 

with terminals. Also,  the individual is assigned the worst possible fitness [1]. One of the 

disadvantages of this is that the population might contain many individuals with worst 

possible fitness as a result of incomplete mapping.  

3.8 Evaluation 

As in GP, each individual is evaluated to know how close they are to the required program. 

Evaluation has been explained in chapter 2 section 2.8.   

3.9 Selection 

Selection methods are used to choose individuals that will participate in creating the next 

generation. The selection methods that can be used by GE have been explained in chapter 2, 

section 2.9.  

3.10 Genetic Operators 

As with GP, genetic operators are applied for the purpose of regeneration. These operators 

are applied in the hope that the individuals produced will be fitter than their parents. Whereas 

GP applies genetic operators to the individuals represented as parse trees, GE applies genetic 

operators to the chromosomes represented as binary strings. The crossover and mutation 

operators [1] are the commonly used genetic operators in GE. Unlike GP which uses a 

genetic operator application rate to determine the number of individuals that will be created 

using the operator, GE uses a probability to determine if a genetic operator will be applied to 

the chromosome. For example, assume the crossover probability to be 70. For each 

chromosome in the population, if a randomly generated number in the range 0 and 100 is less 

than 70, the operator is applied. The operators are explained in the following sections. 

3.10.1 Crossover 

A number of crossover operators have been investigated by O’Neill and Ryan [1, 41]. These 

include one-point, two-point and homologous crossover operators. GE uses the one-point 

crossover [1] which is explained first in this section. 
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As with GP, the crossover operator is applied to two parents. One-point crossover operates as 

follows. Two parents are selected using one of the selection methods. Two crossover points, 

one from each of the parents, are randomly selected. These points are denoted as p1 and p2 as 

shown in Figure 3.6. The binary string from the beginning of a chromosome to a crossover 

point is denoted as the head while the rest is denoted as the tail. The tail of parent1 is 

appended to the head of parent2 and the tail of parent2 to the head of parent1 to produce two 

offspring. 

Instead of swapping the binary string located from a selected point to the end of a 

chromosome, the two-point crossover randomly selects two points, say point p1 and p2 as 

shown in Figure 3.7. The binary string located from p1 to p2 is swapped between the two 

selected parents.  

Homologous crossover stores the number of each production rule expanded during the 

mapping process and uses the number to determine the crossover point. To illustrate 

homologous crossover, consider the two parents shown in Figure 3.8, the production rules 

 

Figure 3.6. A one point variable length crossover 

 

 

Figure 3.7. A  Two point crossover 
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chosen during the mapping process are given as H1 and H2 for parent1 and parent2 

respectively. Recall that if the mapping process uses parent1 and the grammar in section 

3.3.1, the start symbol < 𝑒𝑥𝑝𝑟 > is expanded by taking the modulus of 234 and 3. The result 

is 0 which is the number of the production rule stored at the first index of H1. Other values of 

H1 and H2 are obtained in a similar way.  A region of similarity is where the number of rules 

selected is the same in H1 and H2. Where these numbers are different is called a region of 

dissimilarity. The region of similarity is denoted by a dotted line in Figure 3.8. The 

homologous crossover is applied to parent1 and parent2 as follows: Two points, one from 

each parent, are randomly selected from a region of similarity. These points are the same in 

both chromosomes and are denoted in Figure 3.8 as p1,1 and p2,1. Two more points, one 

from each parent, say p1,2 and p2,2 are randomly chosen from a region of dissimilarity. For 

each parent, the codon values between the two points are copied to the other parent. The 

homologous crossover uses more memory and increases the runtime because it requires the 

history of the rules chosen be stored. Also, it is not clear what will happen if there is no 

region of similarity between the two selected chromosomes.  

Generally, a crossover operator aims at searching the neighbourhood of the current solution 

in the hope for a better solution. It is a local search operator which promotes convergence. 

GE researchers have also criticized the crossover operator for its destructive effects [41, 42]. 

In the context of GE, O’Neill and Ryan [41, 42] have defended the one point crossover as 

 

Figure 3.8. A homologous crossover 
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being less destructive and more efficient than the two point and homologous crossover. They 

state that a few crossover points decreases the destructive effect of the crossover operator  

[41, 42].     

3.10.2 Mutation 

Whereas GP uses a selection method to select the individual the mutation operator will be 

applied to, in GE, the mutation operator is applied to the offspring produced by the crossover 

operator. GE uses a bit mutation operator [1]. The operator checks each bit locus and flips the 

bit if a randomly generated probability is less than a preset mutation probability. A bit flip 

implies that the bit is changed to 1 if it is 0 and vice versa. The operator aims at increasing 

the diversity of the population by taking the search to a new area of the search space6. 

The derivation tree structure has been used to examine the level of locality introduced by the 

mutation operator [43, 44]. Byrne et al. [43, 44] categorize the mutation operator as a nodal 

mutation or a structural mutation. Nodal mutation changes a single node in a derivation tree 

while structural mutation changes the structure of the derivation tree. An example of nodal 

mutation is replacing a node with a node of the same arity. An example of structural mutation 

is replacing a node with a node of different arity. Whereas nodal mutation searches more of 

the neighbourhood of the candidate solution, structural mutation searches new areas of the 

search space. Hence nodal mutation is a high locality mutation while structural mutation is a 

low locality mutation. Ensuring a balance between nodal mutation and structural mutation is 

beneficial to the search. This could be achieved by specifying the percentage of the mutation 

operator that must result in nodal or structural mutation. However, this is a time consuming 

process because the offspring needs to be mapped to production rules to determine if the 

mutation is nodal or structural.   

Like the crossover operator, the mutation operator could be destructive to a good building 

block. Castle and Johnson [45] studied the effect of the mutation operator in terms the 

mutation point. In order to determine the effect of mutation, the fitness of each individual was 

calculated before and after the mutation is performed. Also, the mutation points were 

recorded. Castle and Johnson [45]  report  that the mutation operator that occurs  at the 

beginning of a chromosome is more destructive than those that occur at another place in the 

chromosome. The mutation operator performs more exploration if the mutation point is at the 

                                                 
6 This is not always the case as there is no guarantee that the mutated string will be different from the newly 

created string. 
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beginning of the chromosome [45]. Whereas the crossover operator aims at exploiting the 

neighbourhood of the candidate solution, the mutation operator aims at exploring the search 

space. As with GP, a high probability of the mutation operator may slow down convergence. 

Striking a balance between the probabilities of both the mutation and crossover operators will 

balance the exploration and exploitation ability of the search algorithm.  

3.11 Termination Criteria 

As with GP, the GE algorithm terminates when a solution has been found or a specified 

number of generations has been reached. The termination criteria has been explained in 

chapter 2, section 2.11.  

3.12 Bloat in GE 

Whereas in GP, bloat occurs in the parse trees, in GE bloat occurs in the chromosome. Bloat 

is the excessive increase in the size of the chromosome. Like in GP, introns lead to bloat. 

Introns are part of the chromosome that are not used during the mapping process. During this 

process, each gene in the chromosome is converted to a denary value which is mapped to a 

production rule of the grammar. Some genes are not used if all the non-terminals have been 

expanded before the last gene in the chromosome. These genes that are not used are introns.  

Whereas the role of introns in the prevention of the destructive effects of the crossover 

operator has been highly recognised in GP, an intron in GE plays a lesser role in the 

prevention of the destructive effect of the crossover operator. This is because introns can only 

occur at the end of a chromosome.  

Harper and Blair [46] use parsimony pressure to control bloat. Parsimony pressure is the 

penalization of the chromosomes that are large in size. During selection, if the size of a 

chromosome, say chromo-A, exceeds 3000 bits and another chromosome, say chromo-B has 

the same fitness as chromo-A, chromo-B is selected. The study applies this rule to 5% of the 

population and hence controls bloat.  

3.13 Modularization in GE 

As with GP, modularization has been introduced in GE [47]. While the use of ADFs and 

other forms of modularization are becoming popular in GP, they are rarely used in GE. The 

most simple ADF used in GE is presented in Ryan [47]. In the study, there is only one 

production rule from the start symbol. The production rule has two non-terminals. The first 

must be expanded to obtain the main program while the second must be expanded to obtain 

an ADF. The ADF is called from the main program if a terminal representing the ADF is 
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obtained during the expansion of the non-terminal for the main program. For a symbolic 

regression problem, an example of a production rule for the start symbol is  < 𝑒𝑥𝑝𝑟 >   ∷  =

< 𝑐𝑜𝑑𝑒 >< 𝑎𝑑𝑓𝑐𝑜𝑑𝑒 >. The non-terminal < 𝑐𝑜𝑑𝑒 > is expanded to obtain the main 

program while the non-terminal < 𝑎𝑑𝑓𝑐𝑜𝑑𝑒 > is expanded to obtain the ADF. 

Harper and Blair [46] proposed Dynamically Defined Functions (DDFs) as a concept of 

modularity. Whereas the number of ADFs a program must contain is preset in Ryan [47], 

Harper and Blair [46] use production rules to decide the number of DDFs a program must 

contain. A non-terminal is introduced which must firstly be expanded. The result specifies 

whether or not DDFs should be used. If the latter is the case, the expansion terminates 

otherwise the result is further expanded to decide the number of DDFs that must be included 

and the number of parameters each of the DDFs must take. Also, Hemberg et al. [48] 

proposed a concept of modularity called (GE)2. While Harper and Blair [46]  use one 

chromosome during the mapping process to obtain a program that has a main program and 

one or more DDFs,  Hemberg et al. [48] use two separate chromosomes during mapping 

process. The first is used to expand the terminals that determine the number of ADFs a 

program must have and the number of parameters each of the ADFs must take. The second is 

used to generate the following: The main program, the body of the functions and a call to one 

or more functions. DDF and (GE)2 are more difficult to implement compared to ADFs 

implemented by Ryan. (GE)2 uses more memory than DDF because it makes use of  two 

separate chromosomes. Whereas the use of ADFs degrades the GP performance on a simple 

problem [7], Hemberg et al. [48] state that the performance of GE with ADFs is dependent on 

the size and type of problems. Thus the implications of ADFs in GE remain open for more 

research. 

3.14 Benefits of GE 

Programs can be generated in a particular language: GE uses a genotype–phenotype 

distinction that allows for generalized encoding. A grammar defines a particular language 

which allows programs to be generated in that language.  

Maintaining of genetic diversity: In GE which uses 8-bit codon, there is a many-to-one 

mapping. This implies that different genotypes can represent the same phenotype thereby 

maintaining genetic diversity within the population. If one of the genotypes is eliminated 

from the population, the phenotype can still be represented. 
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Generated programs are easy to understand: Because bloat does not occur in the programs 

generated by GE, they are easy to understand.    

The search can be easily biased to obtain a better success rate:  By restricting the syntax of 

the grammar, GE is focused on certain areas of the search space. This can increase the 

success rate of the GE algorithm. 

Challenges posed by typing and closure in GP are avoided: The valid syntactical structures 

are specified in the grammar. Thus, the use of a grammar overcomes the challenges posed by 

typing and closure in GP. 

3.15 Chapter Summary  

This chapter described GE using the generational control model. The variable-length binary 

representation used by GE was described. Each chromosome is composed of 8-bit codons and 

is randomly generated during initial population generation. Each codon in the genotype has to 

be mapped to an integer which is consequently mapped to a grammar defined by production 

rules to obtain a program.  Having reviewed both GP in chapter 2 and GE in this chapter, the 

next chapter will examine how GP and GE have been used for the purpose of automatic 

object-oriented programming.  
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CHAPTER 4: GP AND AUTOMATIC OOP 

4.1 Introduction 

The studies on genetic programming and variations of genetic programming have taken an 

analogy from computer programming to perform optimization. In some instances, the 

scalability of the approach is improved in the process. Scalability in the context of this 

dissertation is the ability to increase the success rate of GP when applied to a complex 

problem.  Automatic programming, also in the context of this dissertation, is automating the 

process of writing code. Programming languages adhere to different programming paradigms, 

namely, functional, declarative, procedural and object-oriented. GP has been used to 

automatically evolve programs that conform to these paradigms. Research evaluating GP for 

automatic object-oriented programming has evolved classes but did not evolve programs that 

use the evolved classes. Also, there has been no work done that investigates GE for automatic 

object-oriented programming. Hence, the aim of this dissertation is to evaluate GP and GE 

for automatic object-oriented programming. This chapter, firstly reviews studies on GP and 

GE which are relevant to automatic object-oriented programing. It then provides an analysis 

of the reviewed studies and justifications for the GP and GE processes that will be used in 

this study. 

Firstly, section 4.2 provides an overview of programming paradigms and how GP has 

benefited from these paradigms. Section 4.3 looks at studies using genetic programming for 

automatic procedural programming. Section 4.4 provides an overview of research using 

genetic programming for automatic object-oriented programming. Research that takes an 

analogy from object-oriented programming to improve GP scalability is presented in section 

4.5. Section 4.6 presents an analysis of the studies reviewed and justifications for what will 

be done in this dissertation. Section 4.7 presents the chapter summary.  

4.2 GP and Programming Paradigm  

Automatic programming commenced as an effort towards aiding the manual programming 

process which is time consuming and challenging for a complex problem. GP has been used 

to automatically evolve programs that conform to different programming paradigms. 

According to Reinfelds [49], programming paradigms include functional, declarative, 

procedural and object-oriented paradigms.  



51 

 

Functional programs consist of functions which are called recursively. A value obtained from 

a function forms an input to another function until the desired value is obtained [50]. As 

specified in section 2.2 of chapter 2, the first implementation of GP evolved functional 

programs in Lisp.  Declarative programming declares knowledge by providing rules for 

program execution [51]. These rules include conditions and stopping criteria. A procedural 

program is a sequence of instructions that are executed from top to bottom. Procedural 

programming determines the data values that will be used, represents the values by 

associating them with storage and specifies the step-by-step sequence of transforming the 

data stored to a desired output. As GP advances, researchers started looking at evolving 

procedural programs. This allows for iteration and the use of memory in GP which have been 

explained in chapter 2, section 2.12. However, procedural programs still have some 

limitations which are mostly the reusability and scalability of programs [52]. These 

limitations were significantly improved with the introduction of object-oriented 

programming, thereby allowing for creation of programs as objects that can be reused. The 

benefits of object-oriented programming lead to two categories of research on GP and object-

oriented programing. The first takes an analogy from object-oriented programming to 

improve GP scalability while the second looks at using GP for automatic object-oriented 

programming.  

4.3 GP for Automatic Procedural Programming 

With the introduction of different programming paradigms, researchers started looking at 

using GP for automatic procedural programming [11]. The study conducted by Pillay [11] 

uses GP to induce solution algorithms to novice procedural programming problems. The GP 

system generates each program, represented as a parse tree, in an internal representation 

language which was defined to facilitate the evolution of language independent programs. 

Also, Igwe and Pillay [3] use GP for automatic generation of solution algorithms for 

problems involving memory, iteration, conditional statements and modularization. The study 

uses the same representation used by Pillay [11].   

Pillay and Chalmers [53] implement a GP system that takes as input a problem specification 

together with an Object-Oriented Design (OOD) generated by a rule-based expert system. 

The rule-based expert system determines the possible classes, subclass, superclass and the 

methods required. The GP algorithm then uses this information to evolve the required 

methods sequentially. The GP algorithm implemented in the study uses a generational control 

model and represents each individual as a parse tree. The grow method was used to generate 
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the individuals in the initial population while crossover and mutation were used for 

regeneration. The evolved methods are added to the function set when evolving subsequent 

methods. This can be seen as a method call from another method.  

The studies presented in this section are an indication that evolutionary algorithms, 

specifically GP, can be used to generate code which includes functions and algorithms. 

However, none of the studies shows how GP can be used to generate and reuse a class. This 

is the main aim of object-oriented programming. 

4.4 Automatic Object-Oriented Genetic Programming  

In order to take advantages of object-oriented paradigm, Bruce investigates the sequential and 

simultaneous induction of methods in OOGP [8, 54]. The studies conducted by Bruce are 

among the first investigation done in this domain. Each individual is a chromosome 

consisting of one or more genes. Each gene is a parse tree representing a method. Whereas 

the structure of the chromosome is the same as that used by Bruce to implement ADFs, the 

functioning of the chromosome differs. The fitness of each method in the chromosome is 

evaluated to obtain a fitness value for the method. This is not so for the ADFs. The fitness of 

the ADFs are evaluated by evaluating the fitness of the main program. Bruce uses tournament 

selection, a steady-state control model and a population size of 1000 throughout the studies. 

The studies [8, 54] tested GP for the induction of methods for the stack, queue and priority 

queue. For each data structure, five methods were evolved. Strongly typed genetic 

programming proposed by Montana [20] was used as a means of enforcing syntactically 

correct programs. Typing has been explained in chapter 2, section 2.12.1.  

The studies conducted by Bruce show that GP can be used to evolve classes but did not 

investigate evolving programs that use the classes. 

4.5 Object-Oriented Genetic Programming for GP Scalability 

In order to demonstrate that object-oriented programming can be used to improve GP 

scalability, Langdon [6] investigates the induction of  methods for three Abstract Data Types 

(ADTs), namely, the stack, queue and list. Langdon uses a similar representation as Bruce. 

Again, each individual is a chromosome consisting of one or more genes. Each gene is a 

parse tree which represents a method. Breaking down the programs into methods increases 

the GP scalability.  Like Bruce’s work, tournament selection and a steady-state control model 

were used. Both Bruce [8, 54] and Langdon [6] evolve five methods each for the stack ADT. 
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Crossover was defined to operate on one method in an individual each time the operator is 

called. A method to be operated on is chosen with a probability of 1/5.    

In the study, the GP success rate is higher for the stack data structure than it is for the queue 

and list data structures. High-level functions and terminals were defined to improve the GP 

success rate for the queue and list data structures. The high-level functions include the 

set_aux which takes a single integer argument and sets a named memory, namely, aux, to the 

value this argument evaluates to. The high-level terminals include the dec_aux and inc_aux. 

Both these terminals are regarded as high-level terminals because they are defined and 

implemented closely to the way a human can understand. They perform functions on another 

terminal which is aux. the dec_aux decrements the value of aux while inc_aux increments the 

value. The study also implemented ADFs with a new concept called pass-by-reference 

explained in chapter 2, section 2.12.  If aux is incremented within the body of an ADF, this 

increment is retained in the main program. 

By using the evolved ADTs to generate solutions to the Dyck language and reverse polish 

notation problems, the study shows that the evolved ADTs can be beneficial to GP.  The 

success rates of GP with and without the use of ADTs were compared. Langdon shows that 

the use of ADTs improves GP scalability. 

4.6 Analysis and Justifications 

GE has a number of features which automatic programming can benefit from. One of these 

features is the ability to generate programs in a particular language defined by the grammar 

[1]. Despite these features, GP has attracted more interest in automatic programming. As 

mentioned earlier, there has been no work done that investigates GE for automatic object-

oriented programming. This is one of the objectives this dissertation addresses. 

With the exception of the studies conducted by Bruce [8, 54] which focused on the object-

oriented programming problems, previous work aimed at using GP for automatic 

programming focused on procedural programming problems. Bruce tested GP for the 

automatic induction of ADTs, namely, the stack, queue and priority queue, but did not show 

how the data structures can be used by another program. This defeats one of the main aims of 

object-oriented programming, to use an evolved class.  Also, the generated programs consist 

of high level functions which can be difficult to understand. It will be beneficial if the 

programs can be converted to a programming language. The study conducted by Langdon [6] 

has focused on GP scalability rather than testing GP with the aim of automatic programming. 
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The study, however, introduced the pass-by-reference which can be beneficial to automatic 

object-oriented programming. 

Like the study conducted by Bruce [8], this dissertation focuses on the object-oriented 

programming paradigm. An object-oriented program is made up of different classes. One or 

more of the classes will have a main method to run the application. In object-oriented 

programming, an instance of a class is an object which can be used by another program. 

Whereas Bruce did not investigate evolving the programs that use the evolved classes, this 

will be investigated in this study. This study will also show that the evolved programs can be 

converted to a programming language.  

The object-oriented programming problem that will be used to test GP and GE involves two 

classes, one with the driver program and the Abstract Data Type (ADT) class.  There are 

three rationales behind the use of ADTs as an application domain. The first is that ADTs have 

been used in computer science as classical programming problems to demonstrate the object-

oriented programming concepts [55]. The second is to allow comparison with other work 

since ADTs have been used as an application domain to evaluate the scalability of GP [6]. 

The third is that ADTs allow for classification of the object-oriented programming problems 

into different categories based on their difficulty level. This study considers three possible 

means of using a produced class. They are: 

i. Represent each individual as a chromosome containing genes. One gene represents 

the driver program and each of the others represents a method of the class to be used 

by the driver program. Run the approach. As the generations progress, add each 

evolved class method in the function or terminal set of the driver program.  

ii. Run the approach for evolving the class and write the solution to a file. Run the 

approach for evolving programs that use the evolved class. During this process, read 

the evolved class methods and assign each as a separate ADF which can be referred 

to by the method’s name. Call the ADFs in the driver program as required. 

iii. Run the approach for evolving the class. If a solution for the class is found, add each 

evolved method to the function set of the driver program if the method takes one or 

more arguments. If the method takes no argument, add it to the terminal set of the 

driver program. Run the approach for evolving the driver program. 

The advantage of (i) is that it reduces coding. The major disadvantage is that there is no 

guarantee that a solution for the class would be evolved for the particular seed provided. 
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Hence the program that uses the class may never be evolved. The advantage of (ii) is a clear 

separation of the program for evolving the class and the driver program. However, reading 

each ADF from a file makes the program more complicated. (iii) has the same advantage as 

(ii). Adding to this advantage, the evolved methods are simply added to the function or 

terminal set of the driver program.  

Considering the advantages and disadvantages of (i), (ii) and (iii), the GP and GE approaches 

will make use of (iii).  

4.6.1 Analysis of GP for Automatic OOP 

4.6.1.1 Program representation 

Intuitively, it is easier to induce methods sequentially than simultaneously [8]. This is 

because it is easier for an algorithm to concentrate on one task at a time rather than trying to 

achieve different tasks at a time. Nevertheless, there are a number of reasons why one would 

want an automatic programming system to simultaneously induce methods of a class. In 

sequential evolution, the behaviour of a method has less influence or benefit to another 

method. In the study conducted by Langdon, function calls are allowed between methods in 

order to aid the evolution of methods requiring the functions provided by another method.  

This study will simultaneously induce methods of a class. Each individual will be represented 

as a chromosome consisting of parse trees. Each parse tree will represent a method.  

4.6.1.2 Control Model 

Unless otherwise stated, GP that will be implemented will make use of the generational 

control model discussed in chapter 2. The generational control model is easy to implement, 

has a distinct generations and generally works well with GP. 

4.6.1.3 Initial Population Generation 

The initial population of a GP algorithm is generated using one of the three methods, namely, 

the full, grow and ramped half-and-half, described in chapter 2, section 2.7. In the study 

conducted by Pillay [11],  the choice of the best initial population generation method is 

problem dependent. Therefore, the three choices for generating the initial population will be 

provided for the GP algorithm.  Trial runs will be performed to determine the choice that 

works best for each problem. For each problem at hand, the best choice will be used for the 

final run of the GP algorithm. 
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The initial population of a GP algorithm is randomly generated. If the search space is large, 

randomly generating the initial population can be ineffective in producing programs that can 

be improved. In order to direct the search in the initial population, a greedy approach, 

namely, Greedy OOGP (GOOGP), will be introduced. This approach will be tested as an 

alternative to randomly generating the initial population. This dissertation hypothesizes that 

OOGP approach to automatic programming can be improved using the GOOGP approach. 

This hypothesis will be tested by comparing the performance of GOOGP and OOGP for each 

problem on which the approaches are tested.    

4.6.1.4 Selection Method 

Tournament selection will be used for the OOGP algorithm. This selection method is easy to 

implement and uses less memory than the fitness proportionate selection. Also, GP runtime is 

reduced when using tournament selection than when using fitness proportionate selection. 

This is because tournament selection requires evaluating only the individuals participating in 

the tournament while fitness proportionate selection requires evaluating the entire population. 

4.6.1.5 Genetic Operators 

Like in Langdon [6], genetic operators will be adapted to the representation that will be used. 

Whereas in Langdon [6], crossover are applied to the two selected parse trees representing 

the methods , in this study, crossover will be applied to the two selected parse trees as well as 

the chromosomes. This will allow methods to be exchanged between two parents. Methods 

exchange between two parents can improve the search. For instance, assume the first parent 

consist of five methods in which three are correctly induced. If the remaining two methods 

are correctly induced in the second parent, exchanging these two methods between the 

parents will result in a solution being found. This study will use a probability for each method 

position to determine whether or not the method will be exchanged.  

4.6.1.6 Advanced features  

Advanced features of GP which include iteration, typing, use of memory and modularization 

will be used.  

The for operator is apt for looping over a given range while the for_loop1 operator is apt for 

looping 𝑛 a number of times (see section 2.12.3 in chapter 2). The while operator is apt for 

testing a condition before entering a loop. Hence, depending on the problem, one of the 

iterative operators, namely, the while, for and for_loop1, will be used. For each instance of 

the for_loop1 operator, counter and iteration variables will be introduced. Both these 



57 

 

variables will be introduced into the terminal set when creating the second argument of the 

for_loop1 operator. 

Like in Langdon [6], the indexed memory operators, namely, the read and write will be used 

for problems requiring indexed memory. 

Given the advantages of the ADFs implemented by Bruce [8], this dissertation will 

implement ADFs as a separate parse tree in the chromosome. Function calls between ADFs 

will be allowed but recursive calls will not be allowed. This will be done to prevent infinite 

recursion. Also, the ADFs will use the concept of pass-by-reference introduced by Langdon 

[6]. This has been shown to be beneficial to OOGP [6].  

4.6.2 Analysis of GE for Automatic OOP 

Since this is the first study using GE for object-oriented programming, the study will draw 

from OOGP and GE. The approach will be referred to as the Object-Oriented Grammatical 

Evolution (OOGE). 

4.6.2.1 Program representation 

As with OOGP, the methods of a class will be simultaneously induced. Each individual in the 

population will be represented as a chromosome consisting of genes. Each gene will be 

binary strings representing a method.  

4.6.2.2 Control Model 

OOGE that will be implemented will make use of the generational control model discussed in 

chapter 2. 

4.6.2.3 Initial Population Generation 

Like in GE, the individuals in the initial population will be randomly generated as discussed 

in section 3.5 of chapter 3.    

4.6.2.4 Selection Method 

The OOGE approach will make use of the tournament selection for the same reason as 

specified in section 4.6.1.4. 
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4.6.2.5 Genetic Operators 

As with OOGP, genetic operators will be adapted to the representation that will be used.  

Crossover will be performed on the genes as well as on the chromosomes.   

4.6.2.6 Advanced features  

As with OOGP, iteration, use of memory and modularization will be used. The memory 

manipulation operators and the iterative operators will be the same as those used for OOGP. 

Depending on the problem domain, one or more of these operators will be added as terminals 

in the grammar.  

OOGE will make use of ADFs introduced by Ryan [47] because it is simple to implement. It 

requires specifying how many ADFs and the number of arguments each ADF will take. This 

study, however, will make use of a separate chromosome for each ADF. This will allow 

genetic operators to change the ADFs without any change in the main program. As with 

OOGP, function calls between ADFs will be allowed but recursive calls will not be allowed. 

Also, the ADFs will use the concept of  pass-by-reference introduced by Langdon [6].  

4.7 Chapter Summary 

Rather than evaluating GP with the aim of automatic object-oriented programming, most 

researchers aim at improving scalability of GP. Also, the studies that evaluate GP with the 

aim of automatic programming evolved classes but did not investigate the induction of 

programs using these classes. No work has been done that evaluates GE for automatic object-

oriented programming. From the studies reviewed, more work needs to be done to measure 

the ability of both GP and GE to be used for automatic object-oriented programing. The next 

chapter will discuss the methodology that will be used to achieve this.  
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CHAPTER 5: METHODOLOGY 

5.1 Introduction 

This chapter presents the methodology which will be used to achieve the objectives defined 

in chapter 1.  

Section 5.2 describes four types of research methodologies and identifies the methodology 

that is most appropriate for this study. Section 5.3 restates the objectives and explains how 

the identified methodology will be used to achieve the objectives. The performance 

evaluation and statistical testing are discussed in section 5.4. Section 5.5 describes the 

problem domain used to evaluate genetic programming and grammatical evolution while the 

technical specifications are described in section 5.6. Lastly, section 5.7 summarizes the 

chapter. 

5.2 Research Methodologies 

According to Johnson [56], the four types of research methodologies commonly used in 

computer science are proof by demonstration, empiricism, mathematical proof techniques, 

and hermeneutics and observational studies.  

Proof by demonstration involves developing a system, testing the performance of the system 

and iteratively refining the system until a desired result is obtained or no further improvement 

can be made. At each stage of the refinement, the reason for the failure of the system is 

identified and corrected. Empiricism is used to test the truthfulness of a specific hypothesis. 

A particular method must be devised and followed in order to test the hypothesis. Statistical 

analysis of the result of the test is conducted in order to prove or disprove the hypothesis. A 

mathematical proof involves formal reasoning to validate or disprove a hypothesis. It 

sometimes involves making some abstract mathematical assumptions. In observational 

studies, a prototype system is developed and used by trained personnel while observing and 

evaluating the working system. 

The main aim of this study is to evaluate genetic programming and grammatical evolution for 

automatic object-oriented programming. The process of evaluating GP and GE for automatic 

object-oriented programming involves identifying the GP primitives and parameters as well 

as identifying the GE parameters and a grammar for a particular object-oriented programming 

problem. This is done by implementing a system with initial sets of primitives and 

parameters, and a grammar for the GE approach. The parameters are then tuned in an attempt 
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to obtain a system capable of producing code for a class and a program that uses the produced 

class.  Thus, proof by demonstration is the most suitable methodology for this study. Once 

the initial system is developed, the rest of the proof by demonstration process involves two 

alternating phases, namely, the testing phase and the refinement phase. The testing phase 

involves performing runs. If no solution is found, the possible reason for not finding a 

solution must be identified. The refinement phase involves varying the parameters. The GP 

primitives and the grammar for the GE approach may also be changed.  In addition to the 

primitives and parameters, it may also be necessary to change the features of the GP and GE 

algorithms such as the control model, the fitness function, selection method, and genetic 

operators. The following section describes how the proof by demonstration methodology is 

applied to achieve the objectives formulated for this study.  

5.3 Achieving the Objectives using the Proof by Demonstration Methodology 

The three objectives formulated for this study are as follows. The first is to evaluate genetic 

programming for automatic object-oriented programming while the second is to evaluate 

grammatical evolution for automatic object-oriented programming. As mentioned in section 

4.6 of chapter 4, each object-oriented programming problem that will be used to evaluate GP 

and GE involves two classes, one with the driver program and the Abstract Data Type (ADT) 

class. The third is to compare the performance of GP and GE for automatic object-oriented 

programming. To achieve these objectives, the following will be done: 

1. Develop and implement Object-Oriented Genetic Programming (OOGP) and Greedy 

Object-Oriented Genetic Programming (GOOGP).  

2. Develop and implement Object-Oriented Grammatical Evolution (OOGE). 

3. Test the ability of OOGP, GOOGP and OOGE to produce code for the stack, queue 

and list data structures described in section 5.5.1. 

4. Using different random number generator seeds, perform thirty runs of OOGP, 

GOOGP and OOGE for the stack, queue, and list data structures. This is done because 

of the randomness associated with genetic programming. A solution may not be found 

in one run due to the random choices made.  

5. For each of the OOGP , GOOGP and OOGE approaches, if at least one solution is not 

found for each of the stack, queue and list data structures, make one or more changes 

to the  following: 

o The primitives (i.e., the elements of the internal representation language) 

o Fitness cases 
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o Fitness function 

o The standard features in the algorithm such as genetic operators and selection 

methods. 

o For OOGP and GOOGP: 

 The GP parameters such as the maximum initial tree depth, the 

tournament size, the application rate of the genetic operators and the 

maximum offspring depth.  

o For OOGE: 

 The GE parameters such as the length of the allele and the application 

rate of the genetic operators. The grammar for the problem may as well 

be changed (if necessary). 

6. For each OOGP, GOOGP and OOGE that finds at least one solution for the tested 

data structures, using different random number generator seeds, perform thirty runs to 

evolve the driver program. The programming problems are described in section 5.5.2. 

7. If at least one driver program is not evolved in 6, make one or more changes as 

described in 5. 

8. Compare and report on the performance of OOGP, GOOGP and OOGE.   

5.4 Performance Evaluation and Statistical Testing  

The performance evaluation of the approaches is based on the success rates, the runtimes and 

the average fitness of the approaches. For each approach, 30 runs will be performed. This will 

be done because a normal distribution is required to perform a statistical test and at least 30 

samples are required to obtain a normal distribution. The success rate of an approach is the 

number of solutions found in the 30 runs of the approach. Thus, a 100% success rate means 

that 30 solutions were found in 30 runs, while a 60% success rate means that 18 solutions 

were found in 30 runs. The runtimes are important for two reasons. The first reason is to 

know how long it may take an automatic system to produce the required result. The second 

reason is to compare the amount of search needed by OOGP, GOOGP and OOGE to get to an 

optimum.    

Statistical tests will be used to test whether or not the difference between the mean of the 

success rate, average runtime and average fitness of the approaches is significant. Table 5.1 

shows the level of significance, critical values and decision rules used for the Z-tests. 
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Table 5.1. Z-test table showing level of significance, critical values and decision rules 

P Critical Value Decision Rule 

0.01 2.33 Reject Ho if Z > 2.33 

0.05 1.64 Reject Ho if Z > 1.64 

0.1 1.28 Reject Ho if Z > 1.28 

 

5.5 Description of the Object-Oriented Programming Problems 

This section describes the application domain used for testing the approaches.  The ADTs are 

described in sections 5.5.1 while the programming problems that use the ADTs are described 

in section 5.5.2.  

5.5.1 The Abstract Data Types (ADTs) 

As mentioned in chapter 4, the three ADTs that will be used to evaluate GP and GE are the 

stack, queue and list. Like the study conducted by Bruce, the ADTs are array based. 

The stack is the simplest and is also among the most important ADTs [55]. It is widely used 

in many applications. It is used by applications such as the Java compiler in evaluating 

arithmetic expressions. Other applications of the stack include storing the page-visited history 

in a web browser and keeping text changes such that the undo sequence in a text editor is 

possible [55].   

Objects are inserted and removed from the stack according to the Last-In-First-Out (LIFO) 

principle [55]. Langdon [6]  defines five basic stack operations as MakeNull, Push, Top (i.e. 

Peek), Pop  and Empty. Their formal descriptions are listed in Table 5.2.  

Table 5.2 Methods for the stack ADT 

Methods Function 

makeNull() Sets the pointer to the stack to -1. The return value is ignored.  

push() Push an element onto the stack. The return value is ignored. 

peek() Returns the topmost element on the stack. 

pop() Returns the topmost element on the stack, removes the element from the stack 

and decrements the pointer by 1.  

empty() Returns an integer less than zero if the stack is empty, otherwise it returns an 

integer greater or equal to zero. 
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Like the stack ADT, the queue  is among the simplest and is also among the most important 

ADTs [55]. Also, queues are widely used in many applications. A typical example is to hold 

data that requires to be processed by a service provider [6]. The first element stored is 

processed first while the last element stored is processed last. Queues are useful in many 

applications. For example, an operating system holds a process in a queue. A process is an 

instance of a computer program that will be executed.  Also customers queue for services in a 

bank. 

Elements are inserted and removed from the queue according to the First-In-First-Out (FIFO) 

principle [55]. Langdon [6]  defines five basic queue operations as MakeNull, Enqueue, 

Front, Dequeue, Push and Empty. Their formal descriptions are listed in Table 5.3.  

Table 5.3 Methods for the queue ADT 

Methods Function 

makeNull() Sets the pointer to the queue to -1. The return value is ignored.  

enqueue() Enqueues an element. The return value is ignored. 

front() Returns the element in the front of the queue. 

dequeue() Returns the element in the front of the queue, removes the element 

from the queue and decrements the pointer by 1.  

empty() Returns an integer less than zero if the queue is empty, otherwise 

it returns an integer greater or equal to zero 

 

The last data structure considered in this study is the list. A list represents a collection of 

linearly arranged elements [55]. It provides methods for accessing, inserting, and removing 

arbitrary elements. Arbitrary elements can be inserted at any valid positions in the list. The 

stack and queue can be seen as restricted forms of the list. If access to a list is restricted to 

just one end, it is called a stack. Also, if access to a list is restricted to both ends such that one 

end is used for adding elements and the other for removing elements, it is called a queue. 

Based on the list operation defined in Goodrich and Tamassia [55], the five methods 

considered sufficient for testing the abilities of GP and GE to produce code for the list ADT 

are given in Table 5.4.   



64 

 

Table 5.4 Methods for the list ADT 

Methods Function 

makeNull() Sets the pointer to the list to -1. The return value is ignored.  

insertAt (𝑝, 𝑥) Shifts all the elements at the position indexed by 𝑞 (𝑞 > =  𝑝) one 

position to the right. Inserts an element 𝑥 at the position indexed 

by 𝑝.  Increments the pointer by 1. Return value is ignored. 

getElement(𝑝) Returns the element at the position indexed by 𝑝. 

removeElement(𝑝) Removes the element at the position indexed by 𝑝. Shifts all the 

elements at the position indexed by  𝑞 (𝑞 >   𝑝) one position to 

the left.  Decrements the pointer by 1. Returns the removed 

element. 

empty() Returns an integer less than zero if the list is empty, otherwise it 

returns an integer greater or equal to zero. 

5.5.2 Problems Solved Using the Evolved ADTs 

This application domain comprises three programming problems. Each of the problems can 

be solved using one of the ADTs described in section 5.5.1.  These problems are as follows: 

 Problem1: Write a program that uses the stack ADT to determine if a given word or 

sentence is a palindrome. Inenaga et al. [57] define a palindrome as a symmetric 

string that reads the same from left to right and right to left. If space and special 

characters occur in the string, these are ignored.  

 Problem2: Write a program that uses the queue ADT to perform a breadth-first 

traversal of any given parse tree.  

 Problem3: Write a program to populate a list with integers and sort the list. The 

program, given the list ADT should be able to populate and sort the list. Much work  

[58–61] has been published that uses GP to generate the code that sorts a given list of 

integers. Whereas these studies provide the GP algorithm with one or more list/s of 

integers, this study provides the GP algorithm with an empty list and a set of integers. 

Thus the task is to populate and sort the list as well. 
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5.5.3 The Object-Oriented Programming Problems Classification Based on Difficulty 

Levels 

The ADTs are categorised into 3 levels of difficulty based on their functionalities and the 

number of access points to the data structure. Intuitively, it is easy for a programmer to know 

how to get an element (pop) off a stack if the programmer knows that there is one “entry” 

point which is the same as the “exit” point in a stack. The knowledge of the position of the 

element is not necessary. On the other hand, if a programmer is required to retrieve an 

element from a list, the knowledge of the position of the element in the list would be required 

in order to carry out the task.  Thus, the operation of the list is more difficult than that of the 

stack. This has also been mentioned in Langdon [6] where the operations of the list ADT 

have been implemented. Table 5.5 specifies the levels of difficulties of the problems. These 

levels are easy (level 1), medium (level 2) and hard (level 3). 

Table 5.5 The difficulty levels of the test data 

 Level 1 Level 2 Level 3 

ADT Class Stack Queue List 

Problems Problem 1 Problem 2 Problem 3 

 

5.6 Technical Specifications 

The algorithms, written in Java 1.7 using Netbeans 8.0.2, were developed on an Intel core i7, 

3.1GHz machine with 8192 MB of RAM. Simulations were run on the same. An instance of 

the Java Random class is used to generate a pseudorandom number which modifies the initial 

seed and produces a new random number where necessary.  

5.7 Chapter Summary  

This chapter described the methodology used to achieve the objectives described in chapter 1. 

It described the application domains used to evaluate GP and GE. Finally, the chapter 

provided the technical specifications for the study. The next chapter will discuss the GP 

approach to automatic programming. 
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CHAPTER 6: GENETIC PROGRAMMING APPROACH FOR AUTOMATIC 

OBJECT-ORIENTED PROGRAMMING 

6.1 Introduction 

This chapter presents the genetic programming approach to automatic object oriented 

programming. This is referred to as the Object-Oriented Genetic Programming (OOGP) 

approach. 

Section 6.2 defines the programming problem specification which forms input to OOGP. An 

overview of the OOGP algorithm is presented in section 6.3. Section 6.4 describes the 

program representation while section 6.5 describes the initial population generation. The 

fitness evaluation and selection are described in section 6.6 and section 6.7 respectively. The 

genetic operators are described in section 6.8 while section 6.9 describes the termination 

criteria. A new approach to OOGP, namely, greedy object-oriented genetic programming is 

described in section 6.10. Finally, section 6.11 summarizes the chapter. 

6.2 Programming Problem Specification 

A programming problem specification specifies the appropriate subset of the internal 

representation language, constants and assumptions that should be made in order for OOGP 

to generate a solution to a specific problem. A problem specification contains the following: 

 The number of methods in the class required to be evolved.  

 A function set that is used generally by OOGP to evolve the required methods. This 

must be a subset of the internal representation language described in section 6.5.1 and 

ADFs that have one or more arguments. 

 A terminal set that is used generally by OOGP to evolve the required methods. This 

includes constants and ADFs that have no argument.  

 A set of fitness cases comprising input values and their corresponding target output 

values.  Each input is represented as a variable which is added to the terminal set 

when evolving the method. The type of the variable must be specified.  Examples of 

types are float, Boolean, and string.  

6.3 An Overview of the OOGP Algorithm 

Like the GP algorithm described in section 2.2 of chapter 2, the OOGP approach makes use 

of the generational control model. Whereas GP represents each individual as a parse tree, 

each individual in OOGP is a class represented as a chromosome consisting of genes. Each 
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gene is a parse tree representing a method of the class. The individuals in the initial 

population are created using one of the three initial population methods, namely, the grow, 

full or ramped half-and-half. OOGP uses one or more fitness functions during evaluation. 

Tournament selection is used for selecting parents and two genetic operators, namely, 

crossover and mutation, are used for regeneration. A solution evolved by OOGP is a class 

containing one or more methods (parse tress). The next section describes the program 

representation in more detail.   

6.4 Program Representation 

The study adopts the representation used by Bruce  and Langdon [6]. Each individual in the 

population, i.e. a chromosome, represents a class. Each chromosome consists of 𝑛 parse trees, 

where 𝑛 is the number of methods of the class. Each parse tree, i.e. a gene, represents a 

method. One of the methods must be the main method.  Figure 6.1 is an example of an 

individual with 𝑛 = 3 parse trees. The nodes of each parse tree are generated by combining 

the elements of the function and terminal sets. If the problem uses ADFs, the ADFs will 

correspond to private methods in the class. Eeach individual with ADFs will contain  𝑛 + 𝑚 

parse trees where 𝑚 is the number of ADFs in the class. 

6.5 The Initial Population 

OOGP caters for three initial population methods, namely, grow, full and ramped half-and-

half. These initial population methods have been described in section 2.7 of chapter 2. Each 

parse tree i.e., a gene in an individual is created using one of the three initial population 

methods. The process of creating genes is repeated until 𝑛 genes are created for the 

individual.   

As mentioned in section 6.2, the functions are elements of the internal representation 

language. Typing is imposed on the internal representation language to ensure that programs 

are syntactically correct. It also ensures that the genetic operators produce syntactically 

correct offspring. Typing has been explained in section 2.12.1 of chapter 2. OOGP uses point 

 

Figure 6.1. An example of individual in the population 
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typing. Each node is assigned a type. The arguments of each node are also assigned a type 

referred to as the argument type. A node, say node N1, takes node N2 as an argument if the 

type of N2 is the same as the argument type of N1. The type of the root of a parse tree must 

be the same as the type of the method the parse tree represents. For instance, an arithmetic 

operator such as + cannot be the root of a parse tree representing a method that returns a 

string. The types are given in Table 6.1 while the internal representation language is 

described in the following sections.  

Table 6.1. An overview of the typing for OOGP 

S/N Type Description 

1 MEMORY Used for iteration and counter variables of the for iterative 

operator (see section 6.5.1.6) 

2 FLOAT  Used for all the nodes of type float. Depending on the 

problem, functions such as +, -, and * can be of type float 

or int. 

3 INT Used for all the nodes of type int, e.g. +, -, *. Depending 

on the problem, these functions can be of type float. 

4 BOOLEAN Used for all the nodes of type Boolean, e.g., >=, <. 

5 STRING Used for all the nodes of type string, e.g., append 

6 GENERIC Used to first define a node which will assume a type during 

the initial population generation or later during the run of 

the GP algorithm. Thus they are replaced later with anyone 

of the other types (more explanation in section 6.5.1.6) 

6.5.1 The Internal Representation Language 

6.5.1.1 Arithmetic Operators 

The arithmetic operators catered for by the system and their corresponding arity and types 

are listed in  

Table 6.2. The operators perform the standard arithmetic operations of addition, subtraction, 

multiplication, division, square root of a non-negative number and the absolute value of a 

number. 
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Table 6.2. The arithmetic operators 

Operator Arity Argument Types Type 

+ 2 INT/FLOAT,  INT/FLOAT INT/FLOAT 

- 2 INT/FLOAT,  INT/FLOAT INT/FLOAT 

* 2 INT/FLOAT,  INT/FLOAT INT/FLOAT 

/ 2 INT/FLOAT,  INT/FLOAT INT/FLOAT 

sqrt 1  INT/FLOAT  INT/FLOAT 

abs 1  INT/FLOAT  INT/FLOAT 

 

Each of the operators except the sqrt and abs operators has an arity of 2. The sqrt operator 

and the abs operator, each has an arity of 1. If the type of the / operator is treated as integer, 

divisions such as 2/5 returns 0. The / and sqrt operators are protected. Thus:  

 If an attempt is made to divide a number by zero, a value of 1 is returned. 

 If the argument of the sqrt operator is negative, a value of 1 is returned. 

6.5.1.2 Logical Operators 

The system makes use of arithmetic logical operators and string logical operators. These 

operators are used for conditional checks and are listed in Table 6.3. 

Table 6.3. The logical operators 

Operator Arity Argument Types Type 

== 2 FLOAT,  FLOAT BOOLEAN 

!= 2 FLOAT,  FLOAT BOOLEAN 

<= 2 FLOAT,  FLOAT BOOLEAN 

>= 2 FLOAT,  FLOAT BOOLEAN 

< 2 FLOAT,  FLOAT BOOLEAN 

> 2 FLOAT,  FLOAT BOOLEAN 

strequal 2 STRING, STRING BOOLEAN 

strnoteq 2 STRING,  STRING BOOLEAN 

Not 1 BOOLEAN BOOLEAN 
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Each of the operators has an arity of 2 and is of type Boolean. With the exception of the Not, 

strequal and strnoteq operators, the argument type of each of the operators is float. The 

strqual and the strnoteq operators check if two strings are identical. These two operators are 

not case sensitive. Thus, the word “you” is identical to “You” and also to “YOU”. The 

strqual operator returns a value of true if both its arguments are identical otherwise it returns 

false. The strnoteq operator returns a value of true if its arguments are not identical otherwise 

it returns a value of false. The argument types of both these operators are string. The internal 

representation language includes a single unary operator, namely, Not. The operator functions 

as a logical complement operator. It inverts the value of its argument. Thus, Not true implies 

false. 

6.5.1.3 String Operators 

The append and char_At are string operators. The former takes two string arguments. It 

returns the string formed by appending the second argument to the right of the first argument. 

The latter takes two arguments. The first argument must evaluate to a string while the second 

argument must evaluate to an integer. It returns the character at a position indexed by its 

second argument in its first string argument. 

6.5.1.4 Conditional Operators 

The internal representation language includes the if operator implemented by Pillay [11]. The 

operator functions like the if-then-else statement in a programming language such as Java. It 

takes three arguments. The first argument is of type Boolean and thus its function is to 

determine whether the second or third argument will be executed. The second and the third 

arguments are generic. If the first argument of the if operator evaluates to true, it returns the 

value of executing its second argument, otherwise it returns the value of executing its third 

argument.  

6.5.1.5 Memory Manipulation Operators 

These include the index memory operators and the named memory operators that are used by 

OOGP. These operators are explained below. 

6.5.1.5.1  Indexed memory operators 

The indexed memory manipulation operators that form part of the internal representation 

language are the read  and write operators. These operators are used to access a linear 
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memory structure with each program having its own indexed memory. Each of the operators 

can be generated as a valid node in the program provided there is a linear structure to be 

accessed. The read and write operators have been explained in chapter 2, section 2.12.  

The single argument of the read operator must be an integer. Thus any node that returns an 

integer can be a valid argument of the read operator. The write operator takes two arguments. 

The first argument represents a value to be written to a memory location indexed by the 

second argument which must be an integer. If an argument representing an index of the write 

or read operator evaluates to a value less than zero or greater than the size of the memory 

structure of the program, (a) the operator does nothing and (b) a default value for the type is 

returned. For example, the default value for float is 0.0 while the default value for String is an 

empty string. 

6.5.1.5.2 Named Memory Operators 

The system maintains a single named memory location, aux, which a program can use as a 

temporary memory location.  The set_aux, dec_aux and inc_aux operators defined in [6] are 

used to provide access to this single memory location.  These operators have been explained 

in chapter 4, section 4.4.  

6.5.1.6 Iterative Operators 

The for, the while and the for_loop iterative operators form part of the internal representation 

language. These operators have been explained in chapter 2, section 2.12.3.  

The for operator takes three arguments. The first and second arguments must evaluate to 

integer values. The third argument is generic i.e., it can be of any type which will be the type 

of that instance of the for operator.  The third argument is iteratively executed a number of 

times indicated by the difference between its first two arguments plus one. Thus, if the 

difference between the first and second argument is 𝑛, then the third argument will be 

executed 𝑛 + 1 times. Two variables are maintained for each instance of the for operator.  

First is the counter variable. This is used to track the number of iterations performed by the 

operator. The counter variable is assigned the value of the argument of the for operator. It is 

incremented on each iteration if the first argument of the for operator is less or equal to the 

second argument, otherwise it is decremented on each iteration.  For example, assuming the 

first argument of an instance of the for operator evaluates to an integer 𝑛 and the second 

argument evaluates to another integer m. The counter variable of that instance of the for 

operator is incremented on each iteration if n <= m, otherwise it is decremented on each 
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iteration. Second is the iteration variable which stores the value the third argument of an 

instance of the for operator evaluates to. The iteration variable is initialized to the default 

value for the type of the third argument of the for operator. If the third argument of the for 

operator is of type float and is an arithmetic operators * or /, the iteration variable is 

initialized to 1 instead of the default value which is 0. This prevents multiplication or division 

by zero. Both the counter and iteration variables are added to the terminal set when creating 

the subtree representing the third argument of the for operator.  

The while operator takes two arguments. The first argument is a condition which specifies 

when the execution of the second argument must stop. The condition must be checked first. 

Also, this operator is generic and uses counter and iteration variables like the for operator. 

The counter variable of the while operator is added to the terminal set when creating the 

subtree representing the first argument of the operators. Both the counter and iteration 

variables are added to the terminal set when creating the subtree representing the second 

argument. 

The for_loop operator takes two arguments. The first argument must evaluate to an integer 

and the second argument is executed a number of times specified by the value the first 

argument evaluates to. In this study, the counter and iteration variables are provided for the 

for_loop operator. The counter variable is initialized to 0. The iteration variable is initialized 

to the default value for the type of the second argument of the for-loop operator. Both the 

counter and iteration variables are added to the terminal set when creating the subtree 

representing the second argument of the for-loop operator.  

Each instance of the  for,  the while  and  the for_loop operator  has an integer appended to 

the end of the operator. The integer is used as a unique identify of the counter and iteration 

variables of the operator. For instance, an instance of the for operator, namely, for2 has an 

iteration and counter variable represented as Ivar2 and Cvar2 respectively. The number of 

iterations allowed for each instance of an iterative operator is problem dependent. 

6.5.1.7 Multiple Statements: Blocks 

A program may consist of more than one statement. Such statements are almost always 

executed sequentially in a top down manner. Koza [7] uses progn  in an individual containing 

an ADF to combine two branches that execute from left to right. Pillay [11] uses blockn, 

where n is a positive integer, for the same purpose. The node takes n arguments of any type 

and returns the result of evaluating its last argument. In this study, the internal representation 
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language includes the multiple block statements blockn and Fblock𝑛 where 𝑛 takes a value in 

the range [2, 3]. Both these operators takes 𝑛 arguments. The type and the argument types of 

the operators are generic. Hence they are instantiated during initial population generation. 

The blockn operator returns the result of evaluating its 𝑛th argument while the Fblock𝑛 

operator returns the result of evaluating its 1st argument. However, any side effect caused by 

evaluating the other arguments of the operators is retained by the program.  

6.6 Fitness Evaluation 

The fitness of an individual is the sum of the fitness of the methods in the individual. Because 

different methods are expected to perform unique functions when executed, each method is 

evaluated to check how well it performs the expected function. Each method in the individual 

is assigned a scalar value representing the method’s fitness. These scalar values are then 

summed to obtain a fitness value for the individual. The fitness of a private method, i.e., an 

ADF is not evaluated. A private method can only be accessed by evaluating the method that 

called the private method.  

6.7 Selection 

As discussed in chapter 4 section 4.6.1.4, OOGP uses the tournament selection method to 

select the parents that will be used to create the next generation. Tournament selection has 

been described in chapter 2 section 2.9.1. 

6.8  Genetic Operators 

OOGP uses two genetic operators, namely, crossover and mutation. The reproduction 

operator simply copies an individual to the next generation. Both the crossover and mutation 

operators can produce offspring which is the same as copying an individual to the next 

generation. Thus the reproduction operator is not used. The parents selected for any of the 

operations are firstly duplicated to avoid modifying the current population. As with GP, 

OOGP uses the application rate of a genetic operator to determine the number of individuals 

that will be created using the operator. The crossover and mutation operators are explained 

below. 

6.8.1 The Crossover Operator 

Two phases of crossover are performed. These are named the external and internal crossover. 

This is done to ensure a proper mixing of the genetic materials from the two parents selected 

for the crossover operation, i.e., two parents can exchange  genes as well as subtrees within a 
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gene in one crossover performed. Other than the crossover rate, a probability is introduced for 

both the external and the internal crossover. As mentioned in chapter 4, section 4.6, this is 

done to allow a parent to exchange more than one gene with another parent. The external 

crossover is illustrated in Figure 6.2. Two parents are selected using tournament selection. A 

preset probability called the external crossover probability is used to decide whether or not to 

perform external crossover on the selected parents. For each gene position, the genes are 

swapped between the parents if the randomly generated probability in the range 1 to 100 is 

less than the preset probability 

Assume that the selected parents are 𝐺11𝐺12𝐺13𝐺14 and 𝐺21𝐺22𝐺23𝐺24 as shown is Figure 

6.2. Each chromosome is comprised of four genes with each gene Gij representing a parse 

tree. Given that the preset probability is 40% and the randomly generated probabilities for 

each gene are 64%, 35%, 80%, 45% respectively, the resulting offspring are 𝐺11𝐺22𝐺13𝐺14  

and 𝐺21𝐺12𝐺23𝐺24. 

 

Figure 6.2. An illustration of the external crossover operator 
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Internal crossover is applied once the external crossover is completed. Again, a number is 

randomly generated in the range 1 to 100. If this number is less than the preset internal 

crossover probability, the following is done: An index is randomly chosen, crossover is 

applied to the parse trees at the selected index in both parents. Figure 6.3 illustrates internal 

crossover. The first internal crossover point is randomly chosen from the first parent. The 

second internal crossover point is randomly chosen from the nodes with the same type as the 

first internal crossover point. The subtrees rooted at the nodes are swapped. Thus, the 

operator produces two offspring. 

Whereas the maximum depth limits the size of the tree created in the initial population, a 

maximum offspring depth limits the size of the offspring created during the regeneration. 

Each function node at a depth level equal to the maximum offspring depth is replaced by a 

randomly generated terminal node. This is called pruning. The terminal node must be of the 

same type as the function node which it replaces. Pruning ensures that the preset maximum 

offspring depth is not exceeded.  

The GP algorithm implemented by Koza [4] allowed both the offspring created by the 

crossover operation to be added to the new population. However, the study conducted by 

Pillay [25] has shown that choosing the fitter offspring improves the performance of the GP 

system. Hence, the crossover operator employed in this study returns the fitter of the two 

 

Figure 6.3. An example of internal crossover  
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offspring. The returned offspring is added to the new population. The overall crossover 

algorithm for OOGP is illustrated in Figure 6.4. 

  

 

Note that the crossover produces offspring which is the same as copying an individual to the 

next generation if 𝑝𝑗 ≥  𝑃𝑒𝑥 for all  𝑗 and 𝑝 ≥  𝑃𝑖𝑛. Steps 1 to 3 shows the external crossover  

6.8.2 The Mutation Operator 

A parent is selected using the tournament selection and an index in the parent is randomly 

chosen. A copy of the parse tree at this index is made. A mutation point is randomly chosen 

in the parse tree. The subtree rooted at this point is deleted. The grow method is used to 

create a new subtree that replaces the deleted subtree. During this process, a specified 

Input: External crossover probability 𝑃𝑒𝑥 

Input: Internal crossover probability 𝑃𝑖𝑛 

Output: An offspring 

1. Select the first parent Parent1 = 𝐺11𝐺12 … 𝐺1𝑛 using a selection method 

2. Select the second parent Parent2 = 𝐺21𝐺22 … 𝐺2𝑛 using a selection method 

 (where a gene, 𝐺𝑖𝑗 is a parse tree and 𝑛 is the number of genes in an individual). 

3. For each  j ∈ {1, 2, ... , 𝑛} { 

a. Randomly generate an integer 𝑝𝑗 between 1 and 100 

b. If  𝑝𝑗 <  𝑃𝑒𝑥 , swap 𝐺1𝑗 and 𝐺2𝑗 

} 

4. Randomly generate an integer 𝑝 between 1 and 100 

5. If  𝑝 <  𝑃𝑖𝑛 

a. Randomly select a position  𝑖 in the chromosome 

b. perform crossover between genes  𝐺1𝑖 and 𝐺2𝑖 at position 𝑖 in both parents 

as follows 

i. Randomly choose a crossover point, 𝑝𝑡1, from 𝐺1𝑖  

ii. Randomly choose another  crossover point, 𝑝𝑡2, from 𝐺1𝑖  

iii. Swap the subtree rooted at 𝑝𝑡2 and 𝑝𝑡1 between 𝐺1𝑖 and 𝐺2𝑖 

6. Return the fitter of the two offspring 

 Figure 6.4. The crossover algorithm for OOGP showing both the external (1 to 3) and the 

internal crossover (4 to 6) 
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mutation depth is used as the maximum depth. The root of the new subtree must be of the 

same type as the root of the deleted subtree. This operator produces one offspring. The 

offspring is pruned and added to the new population. 

6.9 Termination Criteria 

The termination criteria for the OOGP approach are the same as the termination criteria for 

the GP algorithm described in chapter 2, section 2.2. An OOGP run stops if (1) a solution has 

been found or (2) the specified number of generations has been reached. The best individual 

in the last generation is returned. 

6.10 The Greedy Object-Oriented Genetic Programming (GOOGP) Approach to 

Automatic programming 

As discussed in chapter 4, section 4.6.1.3, this study introduces a greedy OOGP approach. 

Whereas OOGP randomly creates a tree for each gene in a chromosome, GOOGP creates a 

pool of trees and the fittest tree becomes the gene for the chromosome. The reason for this 

approach has been given in section 4.6.1.3. The GOOGP approach is employed as follows:  

1. Randomly create a population of m parse trees for each gene. 

2. Evaluate the population using the process described in section 6.6 to determine the 

fitness of each tree. 

3. Store the fittest tree in the population as the gene for the chromosome. 

The genetic programming algorithm employing the greedy approach is referred to as 

GOOGP. Other processes in the GOOGP approach are the same as the OOGP approach. The 

greedy population size, i.e., the value of 𝑚 in 1 above, must be included as a parameter for 

any problem that uses the GOOGP approach. 

6.11 Chapter summary 

The chapter presented the OOGP approach for automatic object-oriented programming and a 

variation of OOGP, namely, GOOGP which uses a greedy method for initial population 

generation.   The next chapter will present the GE approach for automatic object-oriented 

programming. 
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CHAPTER 7: GRAMMATICAL EVOLUTION APPROACH FOR 

AUTOMATIC OBJECT-ORIENTED PROGRAMMING 

7.1 Introduction 

This chapter presents the grammatical evolution approach for automatic object oriented 

programming. This is referred to as Object-Oriented Grammatical Evolution (OOGE) 

approach. Section 7.2 defines the format of the programming problem specification which 

forms input to OOGE. The OOGE algorithm is described in section 7.3 while section 7.4 

summarizes the chapter. 

7.2 Programming Problem Specification 

The programming problem specification, discussed in section 6.2  of chapter 6, for OOGP is 

the same for OOGE except for one change, namely, rather than specifying a function and 

terminal set, a grammar is defined for OOGE. Functions in the program generated by OOGE 

are the subset of the internal representation language.  

7.3 The OOGE Algorithm 

The OOGE approach uses the generational control model. It also uses the same fitness 

evaluation, selection and termination criteria described for OOGP.  

Section 7.3.1 describes the grammar. Section 7.3.2 describes the program representation 

while section 7.3.3 describes the initial population generation. The fitness evaluation and 

selection are described in section 7.3.4 and section 7.3.5 respectively. The genetic operators 

are described in section 7.3.6 while section 7.3.7 describes the termination criteria. 

7.3.1 The Grammar 

As described in chapter 3, section 3.3, a grammar consists of a set of non-terminals, a set of 

terminals and production rules. In order not to confuse the terminals with the terminal set in 

GP, this study refers to the terminals of a grammar as GE-terminals and the non-terminals as 

GE-non-terminals. The GE-terminals for the OOGE are the same elements of the internal 

representation language described for OOGP. In OOGP, blockn and Fblockn are used to 

combine two or more program statements. In order to achieve the same in OOGE, the start 

symbol can be replaced with a single statement or more than one statements. The production 

rules for the start symbol are < 𝑆𝑡𝑚𝑡𝑠 > ∷= < 𝑆𝑡𝑚𝑡 >  |  < 𝑆𝑡𝑚𝑡 >; < 𝑆𝑡𝑚𝑡𝑠 >. Other 

production rules that can be included in the grammar are problem specific. 
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7.3.2 Program Representation 

Like the OOGP, each individual in the population is a chromosome consisting of genes. Each 

chromosome represents a class. Whereas in OOGP, each gene in the chromosome is a parse 

tree; each gene is a binary string in OOGE.  Again, each gene in a chromosome corresponds 

to a method of the class and is made up of codons. Each codon is composed of n alleles 

specifying the length of the codon. Figure 7.1 illustrates an example of a chromosome in 

OOGE.  

The chromosome contains four genes each representing one of the four methods for the class. 

Each gene has 3 codons of length 𝑛 = 8, i.e., each codon is made up of 8 alleles. During the 

mapping process, a gene can produce one or more parse tress.  

7.3.3 Initial Population Generation 

Each gene in a chromosome is randomly created. In order to produce and execute a program, 

a binary to denary mapping is performed for each codon in the gene. This implies converting 

each codon to a denary equivalent. Figure 7.2 shows the chromosome in Figure 7.1 after the 

binary to denary mapping. Each denary value is then mapped onto a production rule of the 

grammar. 

 

Figure 7.1. An Example illustration of a chromosome 
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First, the mapping process starts from the first denary value in the first gene. Using the GE 

mapping process described in section 3.6 of chapter 3, the value is mapped to a production 

rule of the grammar. Consider the production rules, < 𝑆𝑡𝑚𝑡𝑠 >  ∷=  < 𝑆𝑡𝑚𝑡 > | < 𝑆𝑡𝑚𝑡 >

; < 𝑆𝑡𝑚𝑡𝑠 >, for the start symbol. The result of 15 mod 2 is 1 which maps to the second 

production rule, namely, < 𝑆𝑡𝑚𝑡 >; < 𝑆𝑡𝑚𝑡𝑠 >, and hence indicates that the method will 

have more than one statement. The mapping of the denary values to production rules 

continues until one or more parse trees representing the method is created.  Again, the 

mapping starts from the first denary value in the second gene and creates one or more parse 

trees representing the method.  The process continues until each method corresponding to a 

gene is created. 

7.3.4 Fitness Evaluation 

Once the mapping process is completed, the fitness of each chromosome is calculated by 

evaluating the methods created. The fitness evaluation for the OOGE is the same as described 

for OOGP and has been described in chapter 6, section 6.6. 

7.3.5 Selection 

Like the OOGP, OOGE uses the tournament selection method. This has been described in 

chapter 2, section 2.9.1. 

7.3.6 Genetic Operators 

As in the case of OOGP, the algorithm implements two genetic operators, namely, the 

crossover and mutation operators. These operators are applied to the binary string in OOGE. 

Whereas in OOGP, both these operators use application rates to determine whether they 

 

Figure 7.2. The chromosome in Figure 7.1 after the binary to denary mapping 
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would occur or not, each of the operators use a probability in OOGE. This is consistent with 

GE. The offspring created by crossover are mutated. The crossover and mutation operators 

are explained below. 

7.3.6.1 The Crossover Operator 

Both the external and internal crossover are applied for OOGE. Again, this is done to ensure 

a proper mixing of the genetic material from the two chromosomes selected for crossover 

operation. Two chromosomes are selected using the tournament selection method. The 

external crossover is applied as follows. For each chromosome index, a random probability is 

generated in the range 1 to 100. If the probability is less than the preset external crossover 

probability, the genes at the index are swapped between the chromosomes. This is illustrated 

in Figure 7.3 and Figure 7.4. Assuming the preset probability is 58% and the probability 

generated for each chromosome index (from top to bottom) are 60, 53, 21, and 97. Only the 

genes at the 2nd and 3rd index are swapped. 

 

 

 

Figure 7.3. Example of two chromosomes before the external crossover operation 
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Once external crossover is done, a random probability is then generated again in the range 1 

to 100. If the probability is less than the preset internal crossover probability, the internal 

crossover is applied as follows: A number is randomly chosen in the range 0 to the number of 

genes minus 1. This ensures that any number chosen is a valid chromosome index. A typical 

two-point crossover [15] explained in chapter 3, section 3.10.1 is then applied to the genes at 

the chosen index. Figure 7.5 illustrates an example where the number 2 is chosen (assume the 

start index as 0).  To be consistent with GP, the fitter of the two offspring is returned as the 

result of the crossover operation which will be mutated. The parameter values are problem 

dependent.  

 

7.3.6.2 The Mutation Operator 

In OOGE, the offspring produced from the crossover operation is mutated. This is typical of 

GE. As with the crossover operator, two preset probabilities are used for the mutation 

operator. These probabilities are the mutation probability and the bit flips probability. A 

 

Figure 7.4. The chromosomes after the external crossover operation 

 

Figure 7.5. The example operation of the internal crossover 
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random probability in the range 1 to 100 is generated. If this probability is less than the 

mutation probability, bit mutation is performed as follows. For each bit in the codon, a 

random number between 1 and 100 is generated. If this generated number is less than the bit 

flip probability the bit is flipped, i.e. if the bit is 1 it becomes 0 and vice versa. 

7.3.7 Termination Criteria 

OOGE uses the same termination criteria as OOGP. Each run stops if (1) a solution has been 

found or (2) the specified number of generations has been reached. The best individual in the 

population is returned. 

7.4 Chapter Summary 

The chapter presented the OOGE approach for automatic object-oriented programming. Each 

individual is a chromosome consisting of genes. The individuals in the population are 

randomly generated. Like in GE, each individual in the OOGE population are mapped to the 

grammar defined for the system to create a program.  The next chapter will provide the 

functions for fitness evaluation and parameters used by OOGP, GOOGP and OOGE to 

evolve solutions for the stack ADT and Problem1 described in chapter 5, section 5.5.2. 
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CHAPTER 8: FITNESS EVALUATION AND PARAMETERS FOR THE 

STACK ADT AND PROBLEM1  

8.1  Introduction 

This chapter provides the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the stack Abstract Data Type (ADT) and Problem1 

described in section 5.5.2 of chapter 5. Whereas GE searches a space of binary strings, GP 

search is performed on parse tress. Thus parameters required are not exactly the same. For 

instance, GE requires the length of the allele to be set as a parameter while GP requires a tree 

depth. Again, GP uses application rates while GE uses application probabilities. Hence GE 

parameters will be set differently from the GP parameters. 

Section 8.2 describes the programming problem specification for the stack ADT while 

section 8.3 presents the OOGP, GOOGP and OOGE parameters for the stack ADT. Section 

8.4 and section 8.5 describe the programming problem specification, and the OOGP, GOOGP 

and OOGE parameters respective for Problem1. Section 8.6 summarizes the chapter. 

8.2 Programming Problem Specification for the Stack ADT 

The stack ADT has been described in chapter 5, section 5.5.1.  Section 8.2.1 describes the 

fitness evaluation and fitness cases used. Section 8.2.2 provides the OOGP and GOOGP 

primitives while section 8.2.3 presents the OOGE grammar.  

8.2.1 Fitness Evaluation 

The fitness is maximized. A fitter individual is one whose fitness value is higher. Fifteen 

cases are randomly generated for each run. Each fitness case is a stack. The length of the 

stack is randomly generated between 1 and 15. The elements of the stack are randomly 

generated integer values in the range 1 to 999. An individual is evaluated by applying each of 

its methods to the 15 fitness cases to check how good the method is at performing the 

required operation on the stack.  A set of problem dependent criteria that must be met by each 

method is defined. The method is scored based on the number of criteria it meets. Table 8.1 

shows the criteria that must be met by the stack ADT methods.     
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Table 8.1 Problem specific criteria for the stack ADT fitness evaluation 

Method Criteria 

makeNull()  Stack pointer must be set to -1. 

peek()  No change in pointer value. 

 Elements on stack should not be altered. 

 The value returned must be the topmost element of the stack. 

 Only one value must be returned. 

push(i)  Pointer must be updated correctly. 

 Elements on the stack should not be altered. 

 The pushed element, 𝑖, must be at the top of the stack. 

 The element must be pushed onto the stack only once. 

pop()  Pointer must be updated correctly. 

 Elements on the stack should not be altered. 

 The correct value must be returned. 

empty()  No change in pointer value. 

 Elements on the stack should not be altered. 

 The correct position of the pointer must be returned. 

 

The stack ADT methods, namely, makeNull(), peek(), push(), pop() and empty() can attain  a 

maximum score of 1, 4, 4, 3 and 3 respectively. Thus, each individual can attain a maximum 

fitness of 15 per fitness case and 225 over all 15 fitness cases.  

8.2.2 OOGP and GOOGP Primitives  

The functions for the stack ADT are a subset of the internal representation language and are 

given in Table 8.2. The constants are 1 and 0.  
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Table 8.2 OOGP functions and terminals (primitives) for the queue ADT 

Stack ADT 

methods 

Primitives 

makeNull() +,  -,  *,  /,  set_aux,  read, write, 0, 1, aux 

peek() +,  -,  *,  /,  set_aux,  read, write, 0, 1, aux 

push(i) +, -, *, /, read, write,  set_aux, block2, i (integer to be push onto the 

stack), 0, 1, aux  

pop() +, -, *, /,  block2, read, write,  set_aux, 0, 1, aux 

empty() +, -, *, /, set_aux, read, write, block2, 0, 1, aux 

8.2.3 OOGE Grammar for the Stack ADT  

The grammar for the stack ADT consists of the GE-terminals and GE-Non-terminals given in 

Table 8.3. The grammar is listed in Appendix A.1. 

Table 8.3 GE-Non-terminals and GE-terminals for the stack ADT 

Start symbol Non-terminals Terminals 

Stmts stmts, stmt, expr, var +, -, *, /, write, read, set_aux, , 0, 1, aux, (, ), ;, i 

(integer to be pushed onto the stack). 

 

8.3 Parameters for the Stack ADT 

The OOGP, GOOGP and OOGE parameters for the stack ADT are given in Table 8.4. The 

parameter values were obtained empirically by performing trial runs. For example, in the trial 

runs for OOGP, population sizes of 50, 100 and 500 were tested. Tournament sizes in the 

range 2 to 5 were also tested. A population size less than 100 is not enough to represent the 

search space while a population size greater than 100 makes no improvement on the success 

rate. Different combinations of genetic operators were tested. Starting from 50% crossover 

and 50% mutation rates; an increase in the crossover rate and decrease in the mutation rate 

produced a better result than an increase in the mutation rate and decrease in the crossover 

rate. Finally, 0% mutation and 100% crossover rates produced the best result. Thus, 0% 

mutation is appropriate for the algorithm and was used for the final run. This corresponds to 

Koza’s work [4, 7] which demonstrated that GP was not performing a simple random search 

and as such, mutation was not always necessary. 
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Table 8.4 Parameters for the stack ADT 

Approach  Parameter Parameter value  

OOGP and 

GOOGP 

Population size  100 

Maximum tree depth  5 

Tournament size  2 

Crossover rate 100% 

Mutation rate 0% 

External crossover probability 50% 

Internal crossover probability 50% 

Maximum offspring depth  10 

Number of generations  100 

GOOGP Greedy  population size 500 

OOGE Population size  500 

Codon length 10 

Allele length 8 

Tournament size  4 

Mutation probability 30% 

 Bit flip probability 70% 

External crossover probability 50% 

Internal crossover probability 70% 

Number of Generations  100 

 

8.4 Programming Problem Specification for Problem1 

Problem1 has been defined in section 5.5.2 of chapter 5 and is listed as one of the problems 

the stack ADT can be used to solve. Section 8.4.1 describes the fitness evaluation and fitness 

cases used. Section 8.4.2 provides the GOOGP primitives while section 8.4.3 presents the 

OOGE grammar.  

8.4.1 Fitness Evaluation 

The fitness is maximized for the problem. Twenty five fitness cases were provided. Twenty 

of the fitness cases are palindromes while 5 of the cases are not palindromes. Each individual 
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in the population is evaluated on each fitness case. Each output value is of type Boolean and 

is written to memory. This value and the expected output are compared. A solution must be 

able to classify 20 fitness cases as palindromes and the others as not. The fitness of an 

individual is incremented for each correctly classified case. An individual is a solution if the 

individual correctly classifies all 25 fitness cases. The possible maximum fitness is 25. The 

fitness cases are shown in Table 8.5.  

Table 8.5. The fitness cases for Problem1 [62] 

Fitness case Expected outcome 

Noel sees Leon TRUE 

Sore was I ere I saw Eros TRUE 

Too hot to hoot TRUE 

push FALSE 

Sex at noon taxes TRUE 

Euston saw I was not Sue TRUE 

Dior Droid TRUE 

back FALSE 

Able was I ere I saw Elba TRUE 

Step on no pets TRUE 

Was it a rat I saw TRUE 

neet net FALSE 

No evil Shahs live on TRUE 

Harass selfless Sarah TRUE 

adda TRUE 

deep FALSE 

degged TRUE 

murdrum TRUE 

eke TRUE 

mill FALSE 

acca TRUE 

gig TRUE 

madam TRUE 

Lepers repel TRUE 

Ten animals I slam in a net TRUE 
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8.4.2 GOOGP Primitives 

The function and terminal sets for Problem1 are a subset of the internal representation 

language given in Table 8.6. The input variable arg represents an input value of the fitness 

case. The variable len is the length of the input value represented by arg.  

Table 8.6 GOOGP functions and terminals for Problem 1 

Primitives 

+, -, block2, strequal, append, char_At,  for_loop, one, zero, len,  Cvar, Ivar, arg, the five 

methods of the stack ADT. 

8.4.3 OOGE Grammar  

The grammar for Problem1 consists of the GE-terminals and GE-Non-terminals given in 

Table 8.7. The grammar is given in Appendix A.2. 

Table 8.7 GE-Non-terminals and GE-terminals for Problem 1 

Start symbol Non-terminals Terminals 

stmts stmts, stmt, expr, var, 

loopStmt, loopExpr, 

loopVar. 

+, -, for_loop, strequal, append, the five 

methods of the stack ADT, arg  , zero, one, 

len ,  Cvar, Ivar, one, zero, }, {, ;, ), ( 

 

8.5 Parameters for Problem1 

The GOOGP and OOGE parameters for Problem1 are given in Table 8.8. Like the parameter 

values for the stack ADT, these values were obtained empirically by trial runs. 
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Table 8.8 Parameters for Problem 1 

Approaches Parameter The Parameter Range 

GOOGP Population size  100 

Maximum depth  5 

Tournament Size  4 

Crossover rate 50% 

External crossover probability 50% 

Internal crossover probability 50% 

Mutation rate 50% 

Mutation Depth 8 

Maximum offspring depth  10 

Number of Generations  100 

GOOGP Greedy Population size  500 

 

 

 

OOGE 

Population size  500 

Codon length 10 

Allele length 8 

Tournament size  4 

Mutation probability 40% 

 Bit flip probability 70% 

External crossover probability 50% 

Internal crossover probability 80% 

Number of Generations  100 

 

8.6 Chapter Summary 

This chapter presents the functions for fitness evaluation and parameters used by the OOGP, 

GOOGP and OOGE approaches to evolve code for the stack ADT and Problem1. The next 

chapter will provide the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE for the queue abstract data type and a programming problem that uses 

the queue.  
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CHAPTER 9: FITNESS EVALUATION AND PARAMETERS FOR THE 

QUEUE ADT AND PROBLEM2  

9.1  Introduction 

This chapter provides the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the queue Abstract Data Type (ADT) and Problem2 

described in section 5.5.2 of chapter 5. Section 9.2 describes the programming problem 

specification for the queue ADT while section 9.3 presents the OOGP, GOOGP and OOGE 

parameters for the queue ADT. Section 9.4 and section 9.5 describe the programming 

problem specification and the GOOGP and OOGE parameters respectively for Problem2. 

Section 9.6 summarizes the chapter. 

9.2 Programming Problem Specification for the Queue ADT 

The queue ADT has been described in chapter 5, section 5.5.1.  Section 9.2.1 describes the 

fitness evaluation and fitness cases used. Section 9.2.2 provides the OOGP and GOOGP 

primitives while section 9.2.3 presents the OOGE grammar.  

9.2.1 Fitness Evaluation 

The fitness is maximized. Again, 15 cases are randomly generated for each run. Each fitness 

case is a queue. The length of the queue is randomly generated between 1 and 15. The 

elements of the queue are randomly generated integer values in the range 1 to 999. An 

individual is evaluated by applying each of its methods to the 15 fitness cases to check how 

good the method is at performing the required operation on the queue.  A set of problem 

dependent criteria that must be met by each method is defined. The method is scored based 

on the number of criteria it met. As with the stack, each individual can attain a maximum 

fitness of 15 per fitness case and 225 over all 15 fitness cases. Table 9.1 shows the criteria 

that must be met by the queue ADT methods.    
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Table 9.1 Problem specific criteria for the queue ADT fitness evaluation 

Method Criteria 

makeNull()  Queue pointer must be set to -1. 

front()  No change in pointer value. 

 Elements in the queue should not be altered. 

 The value returned must be the element in the front of the queue. 

 Only one value must be returned. 

enqueue()  Pointer must be updated correctly. 

 Elements in the queue should not be altered. 

 The enqueued value must be at the back of the queue. 

 The value must be enqueued only once. 

dequeue()  Pointer must be updated correctly 

 The index (position) of each element in the queue should be 

correctly updated. 

 The correct value must be returned. 

empty()  No change in pointer value. 

 Elements in the queue should not be altered. 

 The correct position of the pointer must be returned. 

9.2.2 OOGP and GOOGP Primitives  

The functions and terminals for the queue ADT are given in Table 9.2. The constants are 1 

and 0. The type of the variable is integer. The element to be enqueued is represented by 𝑖. 

Table 9.2 OOGP functions and terminals (primitives) for the queue ADT 

Queue ADT 

methods 

Primitives 

makeNull() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, Ivar 

front() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, Ivar 

enqueue(i) +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, 

Ivar, i  

dequeue() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, Ivar 

empty() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, Ivar 
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9.2.3 OOGE Grammar 

The grammar for the queue ADT consists of GE-terminals and GE-Non-terminals given in 

Table 9.3. The grammar is listed in Appendix A.3. 

Table 9.3 GE-Non-terminals and GE-terminals for the queue ADT 

Start 

symbol 

Non-terminals Terminals 

Stmts stmts, stmt, expr, var, 

loopStmt, loopExpr, loopVar. 

+, -, *, /, for, write, read, set_aux, , 0, 1, aux, 

dec_aux, Cvar, Ivar, (, ), { , }, ;, 𝑖  

 

Table 9.4 Parameters for the queue ADT 

Approach  Parameter Parameter value  

OOGP and 

GOOGP 

Population size  500 

Maximum tree depth  5 

Tournament size  2 

Crossover rate 100% 

Mutation rate 0% 

External crossover probability 50% 

Internal crossover probability 50% 

Maximum offspring depth  10 

Number of generations  100 

GOOGP Greedy  population size 500 

OOGE Population size  500 

Codon length 10 

Allele length 8 

Tournament size  4 

Mutation probability 40% 

 Bit flip probability 70% 

External crossover probability 50% 

Internal crossover probability 80% 

Number of Generations  100 
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9.3 Parameters for the Queue ADT 

The OOGP, GOOGP and OOGE parameters for the queue ADT are given in Table 9.4. These 

values were obtained empirically by trial runs as described for the stack ADT in chapter 9, 

section 8.3. 

9.4 Programming Problem Specification for Problem2 

Problem2 has been defined in section 5.5.2 of chapter 5 and is listed as one of the problems 

the queue ADT can be used to solve. Section 9.4.1 describes the fitness evaluation. Section 

9.4.2 provides the OOGP and GOOGP primitives while section 9.4.3 presents the OOGE 

grammar. 

9.4.1 Fitness Evaluation 

Problem2 is a maximization problem. Five fitness cases are used. Each fitness case is a parse 

tree and the corresponding expected output, i.e., the nodes arranged in a breadth-first order. 

The nodes of each parse tree are numbered and each node has a unique number. Each node is 

represented by its number in the tree as illustrated in Figure 9.1. Figure 9.2  illustrates an 

example of a fitness case in the format used for the system. For each node in the fitness case, 

the child nodes are supplied as a list of nodes. The five fitness cases are given in Appendix 

F. Each fitness case provides the following information: 

i. The number representing the root of the tree. 

ii. The arity of each node 

iii. For each node, a list of the child nodes. If the arity of the node is zero, an empty list is 

provided. 

 

 

 

Figure 9.1. An example of a tree and the random numbering of the 

nodes 
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Each individual is executed on the five fitness cases. For a given case, a solution, when 

executed, is expected to correctly arrange all the nodes in a breadth-first order. When 

executing an individual, the dequeued nodes are stored in an array in the order from the first 

dequeued node to the last dequeued. The fitness of an individual is incremented for each 

dequeued node in its correct position when compared to the expected output.  For each fitness 

case, an individual can attain a maximum fitness equal to the number of nodes in the given 

case plus a bonus score of 2. The bonus score is awarded to an individual that dequeued 

exactly the expected number of nodes as supplied in the fitness case. This bonus score gives 

advantage to an individual that may dequeue all the nodes but not in the expected order. 

9.4.2 OOGP and GOOGP Primitives 

The function and terminal set for Problem2 are given in Table 9.5. Specific to Problem2 is 

the need to access the arity of a node. This is done via a function, namely, getArity. The 

getArity function takes a single argument which must be a node and returns the arity of the 

node. If the single argument of the getArity function evaluates to a value which does not 

represent any valid node, the root of the tree being evaluated is returned. This ensures that the 

closure property described in chapter 2, section 2.6 is met. Since the child nodes (if any) of 

each node are supplied as a list of nodes, there is a need for a function that would get a child 

node from the list. The read operator described section 6.5.1 of chapter 6 is used for this 

purpose.  

 

 

 

 

Figure 9.2. Input and the expected output for the example case in Figure 9.1. 

 

 

𝑖𝑛𝑝𝑢𝑡 𝑐𝑎𝑠𝑒 
3/ 
4 / 
1 / 4 , 2 
5 / 
3 / 5 , 1 
2 / 

 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 
3, 5, 1, 4, 2 
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Table 9.5 GOOGP functions and terminals for Problem 2 

Primitives 

for_loop, block2, block3, getArity, read, while, Not, the five methods of the queue ADT, root  

(the root of the tree),  Cvar, Ivar 

9.4.3 OOGE Grammar  

The grammar for Problem2 consists of the GE-terminals and GE-Non-terminals given in 

Table 9.6. The grammar is given in Appendix 4. 

Table 9.6 GE-Non-terminals and GE-terminals for Problem 1 

Start symbol Non-terminals Terminals 

stmts stmts, stmt, expr, var, loopStmt, loopExpr, 

loopVar, cond. 

for_loop, Arity, while, Not, 

root  (the root of the tree), 

getElement, ADF0, Cvar, 

Ivar, the five methods of the 

queue ADT 

 

9.5 Parameters for Problem2 

The GOOGP and OOGE parameters for Problem2 are given in Table 9.7. These parameters 

were obtained empirically by trial runs. 
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Table 9.7 Parameters for Problem 2 

Approaches Parameter The parameter range 

GOOGP Population size  100 

Maximum depth  5 

Tournament Size  4 

Crossover rate 50% 

External crossover probability 50% 

Internal crossover probability 50% 

Mutation rate 50% 

Mutation Depth 4 

Maximum offspring depth  10 

Number of Generations  100 

GOOGP Greedy Population size  500 

 

 

 

OOGE 

Population size  10 

Codon length 8 

Allele length 4 

Tournament size  40% 

Mutation probability 70% 

 Bit flip probability 50% 

External crossover probability 80% 

Internal crossover probability 100 

Number of Generations  500 

 

9.6 Chapter Summary 

This chapter presents the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to evolve code for the queue ADT and Problem2. The next chapter will 

present the functions for fitness evaluation and parameters for the list abstract data type and a 

programming problem that uses the list. 
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CHAPTER 10: FITNESS EVALUATION AND PARAMETERS FOR THE 

LIST ADT AND PROBLEM3 

10.1  Introduction 

This chapter provides the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to produce code for the list Abstract Data Type (ADT) and Problem3 

described in section 5.5.2 of chapter 5. Section 10.2 describes the programming problem 

specification for the list ADT while section 10.3 presents the OOGP, GOOGP and OOGE 

parameters for the list ADT. Section 10.4 and section 10.5 describe the programming 

problem specification and GOOGP and OOGE parameters respective for Problem1. Section 

10.6 summarizes the chapter.  

10.2 Programming Problem Specification for the List ADT 

The list ADT has been described in chapter 5, section 5.5.1. Section 10.2.2 provides the 

OOGP and GOOGP primitives while section 10.2.3 presents the OOGE grammar. The 

following section describes the fitness cases and fitness evaluation. 

10.2.1 Fitness Evaluation 

The methods to be evolved for the list ADT are makeNull, insertAt, getElement, 

removeElement, and empty. As with the stack and queue, 15 cases are randomly generated for 

each run. Each fitness case is a list. Each individual can attain a maximum fitness of 15 per 

fitness case and 225 over all 15 fitness cases. The fitness cases are generated as described for 

the stack ADT. Table 10.1 shows the criteria that must be met by the list ADT methods. 
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Table 10.1 Problem specific criteria for the list ADT fitness evaluation 

Methods Function 

makeNull()  List pointer must be set to -1. 

getElement(𝑝)  No change in pointer value. 

 Elements in the list should not be altered. 

 The value returned must be the value in the position indexed by 

p in the list. 

 Only one value must be returned. 

insertAt (𝑝, 𝑥)  Pointer must be updated correctly. 

 The position of the elements in the list should be correctly 

updated. 

 The inserted value must be at the position indexed by 𝑝 in the 

list. 

 The value must be inserted only once. 

removeElement(𝑝)  Pointer must be updated correctly. 

 The position of the elements in the list should be correctly 

updated. Thus, the removed element must be that previously at 

the position indexed by 𝑝 in the list before the execution of the 

method. 

 The removed value is returned 

empty()  No change in pointer value. 

 Elements in the list should not be altered. 

 The correct position of the pointer must be returned. 

 

10.2.2 OOGP and GOOGP Primitives  

The functions and terminals for the list ADT are given in Table 10.2. The constants are 1 and 

0. The type of the variable is integer. The integer to be added to the list is represented by 𝑖 

while 𝑝 represents an index in the list. 
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Table 10.2 OOGP and GOOGP functions and terminals for the list ADT 

List ADT 

methods 

Primitives 

makeNull() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, 

Ivar 

insertAt (𝑝, 𝑥) +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, 𝑝, 𝑖, 

Cvar, Ivar  

getElement(𝑝) +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, p, 

Cvar, Ivar 

removeElement(𝑝) +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux , Cvar, 

Ivar 

empty() +, -, block2, for, write, read, inc_aux, dec_aux, set_aux, 0, 1, aux, Cvar, 

Ivar 

10.2.3 OOGE Grammar 

The grammar for the list ADT consists of the GE-terminals and GE-Non-terminals given in 

Table 10.3. The grammar is listed in Appendix A.5.i. 

Table 10.3 GE-Non-terminals and GE-terminals for the list ADT 

Start 

symbol 

Non-terminals Terminals 

Stmts stmts, stmt, expr, var, 

loopStmt, loopExpr, 

loopVar 

+, -, write, read, set_aux,  𝑖, 0, 1, aux, 

dec_aux, inc_aux, Cvar, Ivar, ), (, ;, }, { 

 

10.3 Parameters for the List ADT 

The OOGP, GOOGP and OOGE parameters for the list ADT are given in Table 10.4. Like 

the parameters for the stack and queue, these parameters were obtained by trial runs. 
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Table 10.4 Parameters for the list ADT 

Approach  Parameter Parameter value  

OOGP and 

GOOGP 

Population size  100 

Maximum tree depth  5 

Tournament size  2 

Crossover rate 100% 

Mutation rate 0% 

External crossover probability 50% 

Internal crossover probability 50% 

Maximum offspring depth  10 

Number of generations  100 

GOOGP Greedy  population size 500 

OOGE Population size  1000 

Codon length 10 

Allele length 8 

Tournament size  4 

Mutation probability 40% 

 Bit flip probability 70% 

External crossover probability 50% 

Internal crossover probability 80% 

Number of Generations  100 

 

10.4 Programming Problem Specification for Problem3 

Problem3 has been defined in section 5.5.2 of chapter 5 and is listed as one of the problems 

the list ADT can be used to solve. Section 10.2.1 describes the fitness evaluation. Section 

10.2.2 provides the GOOGP primitives while section 10.2.3 presents the OOGE grammar. 

10.4.1 Fitness Evaluation 

An error function is used to determine the fitness of an individual in solving Problem3. The 

fitness is proportional to how small the error is. The set of fitness cases for this problem 

comprises of 10 integer arrays given in Table 10.5. The length of each case is between 4 and 
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10. The elements of each array are randomly chosen in the range 1 to 100.  When executed, a 

solution is expected to adequately read the integer values for a given case; populate an empty 

list and sort the list. Each individual is executed on each of the 10 cases. The fitness of an 

individual in the population is calculated as follows:   

1. For each fitness case, the number of inversions in the list is added to the fitness of the 

individual. The number of inversions in a list is a measure of the disorder in the list. If 

an array is sorted, the number of inversions is 0.   

2. The fitness of an individual is increased by 2 for every integer in the given case that is 

not added to the list.  

3. The fitness of the individual is increased by 2 if the number of elements in the list 

exceeds the number of elements in the given case. 

The values obtained from 1 to 3 above are summed over all the fitness cases to obtain a 

fitness value. An individual with a fitness of zero is a solution. 

Table 10.5. Fitness cases for Problem3 

Fitness case  

2, 3, 5, 8, 1, 89, 6, 40 

9, 3, 5, 87, 2 

20, 100, 68, 50, 9, 84 

26, 4, 7, 21, 6, 8, 5, 1, 3, 12 

100, 200, 71, 93 

2, 3, 5, 4, 1, 89, 6, 40 

9, 3, 1,0, 2, 87, 2 

20, 1, 62, 50, 9, 84 

5, 6, 8, 90, 1, 4, 3, 9 

10, 20, 71, 93 

10.4.2 OOGP and GOOGP Primitives 

The function and terminal set for Problem 3 are given in Table 10.6. 

.  
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Table 10.6 GOOGP functions and terminals for Problem 3 

Primitives 

+, -, for_loop, block2, read, order, one, len, Cvar, Ivar, the five methods of the list ADT 

10.4.3 OOGE Grammar  

The grammar for Problem3 consists of the GE-terminals and GE-Non-terminals given in 

Table 10.7. The grammar is listed in Appendix A.6. 

Table 10.7 GE-Non-terminals and GE-terminals for Problem3 

Start symbol Non-terminals Terminals 

stmts stmts, stmt, expr, var, 

loopStmt, loopExpr, 

loopVar, cond, listMethods 

+, -, for, block2, read, order, the five 

methods of the list ADT, len (the number 

of integers to be sorted), ADF0, one, len, 

Cvar, Ivar,}, {, ;, ), ( 

 

10.5 Parameters for Problem3 

The GOOGP and OOGE parameters for Problem3 are given in Table 10.8. These parameters 

were obtained empirically by trial runs. 
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Table 10.8 Parameters for Problem2 

Approaches Parameter The Parameter Range 

GOOGP Population size  100 

Maximum depth  5 

Tournament Size  4 

Crossover rate 50% 

External crossover probability 50% 

Internal crossover probability 50% 

Mutation rate 50% 

Mutation Depth 4 

Maximum offspring depth  10 

Number of Generations  100 

GOOGP Greedy Population size  500 

 

 

 

OOGE 

Population size  500 

Codon length 10 

Allele length 8 

Tournament size  4 

Mutation probability 45% 

 Bit flip probability 30% 

External crossover probability 75% 

Internal crossover probability 30% 

Number of Generations  100 

 

10.6 Chapter Summary 

This chapter presented the functions for fitness evaluation and parameters used by OOGP, 

GOOGP and OOGE to evolve code for the list ADT and Problem3. The next chapter will 

present the results of applying OOGP, GOOGP and OOGE to produce code for the object-

oriented programming problems tested. 
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CHAPTER 11: RESULTS AND DISCUSSION  

11.1 Introduction 

This chapter reports on the results of applying OOGP, GOOGP and OOGE to produce code 

for three ADTs and the problems that use the ADTs. The ADTs are the stack, queue and list 

while the problems that use the ADTs are Problem1, Problem2 and Problem3 described in 

chapter 5, section 5.5.2. Whereas OOGP failed to produce at least one solution for the ADTs, 

GOOGP and OOGE were able to produce code for the classes and the programs that use the 

classes. The produced code are represented in tree format. Were the code could not be easily 

read in tree format these are presented in pseudo code. 

Section 11.2 discusses the results obtained when applying OOGP, GOOGP and OOGE to 

produce code for the stack ADT and Problem1. Section 11.3 discusses the results obtained 

when applying OOGP, GOOGP and OOGE to produce code for the queue ADT and 

Problem2. The results of applying the approaches to produce code for the list ADT and 

Problem3 is discussed in section 11.4.  Section 11.5 discusses the conversion of solution from 

an internal representation language to a programming language while section 11.6 compares 

OOGP, GOOGP and OOGE performances with other studies. The chapter summary is 

presented in section 11.7.  

11.2 The Stack Abstract Data Types (ADT) and Problem1 

This section reports on the results obtained when applying OOGP, GOOGP and OOGE to 

produce code for the stack ADT and Problem1 which uses the stack ADT. Section 11.2.1 

presents and compares the performance of OOGP, GOOGP and OOGE when applied to 

produce code for the stack ADT. Section 11.2.2 reports on the results obtained for Problem1. 

11.2.1 Comparison of OOGP, GOOGP and OOGE Performance for the Stack ADT  

Each of the OOGP, GOOGP and OOGE approaches was tested for producing code for the 

stack ADT. Thirty runs were performed for each approach. The parameters have been listed 

in chapter 8, section 8.3. These parameters for OOGP and GOOGP are the same except that 

GOOGP uses an additional parameter, namely, the greedy population size. OOGE uses 

different parameters listed in chapter 8, section 8.3.  

In the 30 runs of OOGP, no solution was found. The best individual was evolved in run 30. 

The fitness of the individual is 198. The individual did not correctly implement the push() 
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and the pop() methods of the stack ADT but satisfies all the specified criteria for the 

makenull(), peak(), and empty() methods.  

In the 30 runs of GOOGP, 18 solutions were found. A solution was found in the initial 

generation of run 26. The solutions were found by GOOGP between the initial generation and 

generation 5. GOOGP found solutions early in the generations because the initial population 

is informed i.e., it uses the greedy method.  

Fifteen solutions were found in the 30 runs of OOGE. The solutions were found between 

generation 12 and 97.  

Table 11.1 shows the success rates, average fitness and average runtimes over 30 runs of the 

OOGP, GOOGP and OOGE. The results show that GOOGP performed competitively with 

OOGE. Based on the success rate, both GOOGP and OOGE outperform OOGP. From Table 

11.1, GOOGP found three more solutions than OOGE. One cannot conclude that GOOGP 

outperforms OOGE or that OOGE outperforms GOOGP.  

Table 11.1. Performance comparison of the approaches 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

OOGP 0 185.40 2146.23 

GOOGP 60% 218.03 14998.4 

OOGE 50% 217.96 15412.67 

 

Figure 11.1 shows the average fitness of each generation for one run of each approach. The 

runs were chosen because the aim is to study the convergence over the entire run. Therefore 

all the runs that found solutions could not be examined. Hence, in the 30 runs of each 

approach, the run that produced the best individual in the last generation is examined. OOGP 

started with an initial population of individuals with a low fitness but converged prematurely 

at generation 5. The initial population of GOOGP started with a highly fit individual because 

the initial population was informed. It also converged prematurely at generation 5 but with a 

higher fitness than OOGP. OOGE started with an initial population of individuals with a low 

fitness. The fitness of the population improves as the generations progress. The slow 
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convergence is as a result of diversity maintained in the population. This has been described 

as one of the strengths of GE. 

 

 

 

 

 

Figure 11.1 Convergence graph of the OOGP, GOOGP and OOGE 

approach showing the average fitness of each generation  
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 𝑴𝒂𝒌𝒆𝒏𝒖𝒍𝒍() 
𝑠𝑒𝑡_𝑎𝑢𝑥 −  𝑧𝑒𝑟𝑜 𝑜𝑛𝑒  

 
𝑷𝒖𝒔𝒉() 
𝑏𝑙𝑜𝑐𝑘2 +  𝑠𝑒𝑡_𝑎𝑢𝑥 +  𝑎𝑢𝑥 𝑜𝑛𝑒 𝑤𝑟𝑖𝑡𝑒 𝑖 𝑎𝑢𝑥 +  𝑎𝑢𝑥 𝑜𝑛𝑒  

 
𝑷𝒆𝒆𝒌() 
𝑟𝑒𝑎𝑑 𝑎𝑢𝑥  

 
𝑷𝒐𝒑() 
− 𝑟𝑒𝑎𝑑 𝑎𝑢𝑥 𝑏𝑙𝑜𝑐𝑘2 𝑏𝑙𝑜𝑐𝑘2 𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑠𝑒𝑡_𝑎𝑢𝑥 −  𝑎𝑢𝑥 𝑜𝑛𝑒  

 
𝑬𝒎𝒑𝒕𝒚() 
+ 𝑎𝑢𝑥 𝑧𝑒𝑟𝑜 

 

Figure 11.2 A stack ADT generated by GOOGP 
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Figure 11.2 and Figure 11.3 show the solutions generated by GOOGP and OOGE 

respectively. The GOOGP solution was generated in the 3rd generation of run 5 while the 

OOGE solution was generated in the 87th generation of run 5. These solutions were chosen 

because they contain less redundant code and are easy to understand compared to other 

solutions generated. The makenull() method sets the pointer (aux) to -1 such that when an 

element is pushed onto the stack, it will be at the first position (i.e., index 0). Whereas the 

push() method generated by GOOGP increments the pointer before it pushes the value 𝑖 onto 

the stack, the  push() method generated by OOGE pushes a value onto the stack before it 

increments the pointer. Both the GOOGP and OOGE generated the same type of methods for 

the peek(), pop() and empty() methods. The peek() method reads the value of the pointer 

while the pop() method reads this value and consequently decrements the pointer. The 

empty() method returns an integer which if positive indicates that the stack is not empty. It 

indicates that the stack is empty if the value is negative. In both Figure 11.2 and Figure 11.3, 

the empty() method returns the pointer. This indicates whether or not the stack is empty 

provided that other methods work correctly.  

11.2.2 Comparison of GOOGP and OOGE Performance for Problem1 

From section 11.2.1, OOGP was not able to produce code for the stack ADT and hence is not 

evaluated for Problem1.  

 𝒎𝒂𝒌𝒆𝑵𝒖𝒍𝒍() 
𝑠𝑒𝑡_𝑎𝑢𝑥 ( − 𝑧𝑒𝑟𝑜 𝑜𝑛𝑒 ) ;  

 
𝒑𝒖𝒔𝒉() 
𝑤𝑟𝑖𝑡𝑒 ( 𝑖 , + 𝑜𝑛𝑒 +  𝑧𝑒𝑟𝑜 𝑎𝑢𝑥 ) ;  
𝑠𝑒𝑡_𝑎𝑢𝑥 ( + 𝑜𝑛𝑒 +  𝑧𝑒𝑟𝑜 𝑎𝑢𝑥 ) ;  

 
𝒑𝒆𝒆𝒌() 
𝑟𝑒𝑎𝑑 ( 𝑎𝑢𝑥 ) ;  

 
𝒑𝒐𝒑() 
𝑟𝑒𝑎𝑑 ( 𝑎𝑢𝑥 ) ;  
𝑠𝑒𝑡_𝑎𝑢𝑥 ( +  −  +  +  − +  𝑎𝑢𝑥 +  𝑜𝑛𝑒 𝑧𝑒𝑟𝑜 𝑜𝑛𝑒 𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑜𝑛𝑒 𝑧𝑒𝑟𝑜 ) ;  

 
𝒆𝒎𝒑𝒕𝒚() 
𝑎𝑢𝑥 ; 

 
Figure 11.3 A stack ADT generated by OOGE 
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In 30 runs of GOOGP, no solution was found that correctly classifies all the 25 fitness cases 

provided. In run 2, a brittle solution was generated. A brittle solution does not generalize.  

Figure 11.4 shows the brittle solution. The brittle solution compares the first and last 

characters of the given case and returns the value of true if they are the same but false if they 

are not. The first character in a palindrome is the same as the last character in the palindrome. 

However, the first character in a string that is not a palindrome is not always different to the 

last character in the string. For example, the word “deepened” is not a palindrome but it has 

‘d’ as the first and last character. Thus the solution does not generalize because the fitness 

cases provided do not represent a sufficient amount of the problem domain. 

In Figure 11.4, the subtree that forms the first argument of the strequal node returns the last 

character in a given string represented by arg. This is done as follows. The second argument 

of the  for_loop1 operator executes a number of times determined by its first argument. In 

this case it executes a number of times equal to the length of arg, i.e. len + 1 + 0 – 1 times. At 

the beginning of the first iteration, the counter variable of the for_loop1 is set to 0, the default 

value.  At each of the iterations, the Char_At operator returns the character in arg specified 

by Cvar1, i.e., the counter. This character is stored in the iteration variable of the for_loop1 

operator. At the end of the last iteration, the operator returns the value of the iteration variable 

which in this case is the last character in arg. 

 

Figure 11.4 A brittle solution to the palindrome problem 

The for_loop2 operates just as the for_loop1 but iterates only once.  Thus it returns the first 

character in arg. The strequal operator compares the character returned by executing its first 

and second arguments and returns the value of true if they are the same but false if they are 

not.  
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It can be observed from Figure 11.4 that the individual did not make use of any stack method. 

This defeats the main aim of this implementation which is to use the stack ADT for solving 

the palindrome problem. In order to avoid generating brittle solutions, the changes specified 

in the next section were made.  

11.2.2.1 Improvements and Changes 

Two major changes were made to the programing problem specification. The first is that the 

set of fitness case was changed to contain 10 cases. Five of the cases are palindromes while 5 

are strings that are not palindromes. Also, the given strings that are not palindromes were 

changed such that each string starts and stops with the same character. The fitness cases are 

given in Appendix F. The second is that the fitness evaluation is adjusted to reward the 

individuals that make use of the stack methods. With the changes, the possible maximum 

fitness is 7 multiplied by the number of fitness cases. Thus the new possible maximum fitness 

is 7*10 which is 70 and is obtained as follows: 

 For each case, the fitness of an individual is increased by 1 if the number of elements 

pushed onto the stack is equal to the length of the given string. Also, the fitness of the 

individual is increased by 1 if each element pushed onto the stack is a character in the 

given case. (2 points) 

 For each case, the fitness of an individual is increased by 3 if the pop() method is 

called a number of times equal to the length of the given string. (3 points) 

 For each case, the fitness of an individual is increased by 2 if the individual correctly 

classifies the case. (2 points) 

In 30 runs of GOOGP, no solution was found. The best individual of the 30 runs was 

generated in run 14. It has a fitness of 62 out of 70. The individual makes use of the stack 

methods.  Figure 11.5 shows the fitness convergence of the individual. 
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Figure 11.5 The fitness convergence of the best individual generated in run 14 for Problem1 

The algorithm converged faster between generations 1 to 25. It took about 120 more 

generations before a better fitness of 62 was found at generation 135. The fitness remained 

the same up until generation 500. 

Since GOOGP failed to find a solution, it is anticipated that the problem is complex. As 

specified in chapter 2, section 2.12.4, the aim of ADFs is to reduce the complexity of solving 

a problem by breaking it down into sub-problems. Langdon [6] used ADFs in solving 

difficult problems.  Koza [7] also stated that ADFs help when used for complex problems. 

For these reasons, the programing problem specification is changed to include ADFs. This 

study uses two ADFs, namely, ADF1 and ADF2, for Problem1. ADF1 returns no value while 

ADF2 returns a string. This gives GOOGP more choice to decompose and solve the problem. 

To avoid recursive calls, only the main program is allowed to call the ADFs. Table 11.2 

shows the primitives for the new changes made to the programming problem specification for 

the GOOGP approach. This is the final change. Hence OOGE uses two ADFs to allow a fair 

comparison of the two approaches. The modified grammar for the OOGE is given in 

Appendix B.1. 

Table 11.2 The final primitives for the GOOGP approach 

 Primitives Stack Methods 

Main 

program 

+, -, block2, strequal, append, char_At, for, 

ADF1, ADF2, one, arg,  zero, len, Cvar, Ivar, arg 

All the five evolved methods  

ADF1 +, -, block2, char_At,  for_loop, arg, one, zero, 

len, Cvar, Ivar,  

All the five evolved methods 

ADF2 +, -, block2, append, char_At, for_loop, one, 

zero, len, Cvar, Ivar 

All the five evolved methods 
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11.2.2.2 Performance comparison of GOOGP and OOGE 

GOOGP found 4 solutions in the 30 runs performed. A solution was found early in generation 

5. The 4 solutions were found between generation 5 and 18. OOGE found 3 solutions in 30 

runs. These solutions were found in generations 29, 13 and 18. Table 11.3 shows the 

performance comparison of GOOGP and OOGE with ADFs. The average fitness of GOOGP 

is higher than the average fitness of OOGE. The GOOGP average fitness is 59.33 and the 

highest obtainable fitness is 70. The OOGE average fitness is 55.33. The average runtime of 

the GOOGP approach is less than the average runtime of the OOGE approach. On inspection 

of the solutions, it was found that the solutions generated by OOGE use a lot more iterations 

than those generated by GOOGP. Thus the lower average runtime is as a result of GOOGP 

not making much use of the iterative operator in the main program but relies on the ADFs to 

perform iterations. Iteration increases the OOGE runtime.  

Statistical testing was conducted to determine the significance of the results. The hypothesis 

tested is that the runtime of GOOGP with ADFs is better than the runtime of the OOGE with 

ADFs. The hypothesis was found to be significant at 1% level of significance.    

Table 11.3. Performance comparison of the GOOGP and OOGE (each uses two ADFs) 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

GOOGP 13.33% 59.33 34349.43 

OOGE 10% 55.33 102065.63 

 

One of the solutions generated by GOOGP is shown in Figure 11.6. The solution correctly 

classifies all the given strings. It also can be used to check whether or not a string it has not 

seen before is a palindrome. When executed, the ADF1 correctly pushes all the characters in 

a given case onto a stack.  The ADF2 pops and appends each character to the previously 

popped character. This forms a string which is returned to the main program at the end of the 

last iteration. The string returned by ADF2 is compared with the arg (the string supplied in 

the fitness case). The result of this comparison is a value of true or false which correctly 

classifies the given cases and any string that may be given to the solution. 
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Figure 11.6 A solution generated by GOOGP with a main program and 

two ADFs, namely ADF1 and ADF2 
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11.3 The Queue Abstract Data Types (ADT) and Problem2 

This section reports on the results obtained when applying OOGP, GOOGP and OOGE to 

produce code for the queue ADT and Problem2 which uses the queue ADT. Section 11.3.1 

presents and compares the performance of OOGP, GOOGP and OOGE when applied to 

produce code for the queue ADT. Section 11.3.2 reports on the results obtained for Problem2. 

11.3.1 Comparison of OOGP, GOOGP and OOGE Performances for the Queue ADT  

Each of the OOGP, GOOGP and OOGE approaches was tested for producing code for the 

queue ADT. Thirty runs were performed for each approach using the parameters listed in 

chapter 9, section 9.3. In the 30 runs of OOGP, no solution was found. The best individual 

meets the criteria for all methods except the dequeue() method.  

In the 30 runs of GOOGP, 2 solutions were found. Both the solutions were generated in the 

2nd generations of run 1 and 21. As mentioned earlier, GOOGP found solutions early in the 

generations because the initial population is informed. The performance of the GOOGP 

approach deteriorated compared to its performance when tested for producing code for the 

stack ADT. 

 In the 30 runs of OOGE, 10 solutions were found. These solutions were found between 

generation 15 and 93. This is an indication that OOGE converges slower than GOOGP which 

found solutions early in the runs.  

Table 11.4. Performance comparison of the approaches 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

OOGP 0% 198.4 - 

GOOGP 6.67% 212.33 198698.5 

OOGE 33.33% 215.77 78783.5 

 

Table 11.4 shows the success rates, average fitness and average runtimes of OOGP, GOOGP 

and OOGE. OOGP has 0% success rate which means that no solution was found. As 

indicated by the success rate column, the performance of GOOGP deteriorated by 53.33% 

from its performance when tested for producing code for the stack ADT and the performance 

of the OOGE approach deteriorated by 16.67%.  Both the success rate and the average fitness 
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of OOGE are high. The average runtime of the OOGE approach is less compared to that of 

GOOGP.  

Statistical testing was conducted to determine the significance of the results. The hypotheses 

tested are: 

 Hypothesis 1: OOGE performs better than GOOGP.  

 Hypothesis 2: The runtimes of OOGE are better than GOOGP. 

Table 11.5 Z-values for hypotheses tests 

Hypothesis  Z-Value 

Hypothesis 1 2.74 

Hypothesis 2 2.09 

 

Table 11.5 lists the Z-values. Hypothesis 1 was found to be significant at 1% level of 

significance while hypothesis 2 was found to be significant at 5%  level but not at 1% level.    

Figure 11.7 shows a solution generated by GOOGP. The makeNull() method contains introns. 

For example, the subtree rooted by the for8 operator returns 0 given any value of aux. The 

set_aux node sets the pointer to this value, i.e 0. The second argument of fblock2 decrements 

the pointer by 1. Hence the pointer becomes -1. The enqueue() method increments the pointer 

aux. It then writes the value i to the memory indexd by the pointer. In the front() method, the 

subtree, set_aux (aux), is an intron. It returns 0. Hence, the front() method reads the value 

stored in the 0th index of the queue, i.e the front of the queue. The empty() method returns the 

value of the pointer. Figure 11.8 shows the dequeue() method. The method uses the for 

operator to move each element to a new position in the queue. The dequeue() method is 

explained in details in Figure 11.9 which also highlights the importance of the for operator in 

moving the elements in the queue. The dequeue() method shown in Figure 11.8 is labelled 

with alphabets a, b, c, d and e which are referred to in the illustration presented in Figure 

11.9. 
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𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙() 

               

                     𝐸𝑛𝑞𝑢𝑒𝑢𝑒()                                       𝑓𝑟𝑜𝑛𝑡()                    𝑒𝑚𝑝𝑡𝑦() 

 

𝑑𝑒𝑞𝑢𝑒𝑢𝑒() 

Figure 11.7: An example Queue solution generated by GOOGP 
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Figure 11.8: A  dequeue() method generated by GOOGP 
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Assume the initial state of the queue as:   

20 5 12 6     

  

The pointer i.e., 𝑎𝑢𝑥 is  3. The dequeue() method is execute as shown below: 

Code Explanation 

𝑎 =  𝑟𝑒𝑎𝑑 (0)     =  20  Reads and  returns the element at position 0, i.e., 20. 

𝑏 = 𝑓𝑜𝑟147( 𝑎𝑢𝑥, 𝑐, 𝑤𝑟𝑖𝑡𝑒 (𝐼𝑣𝑎𝑟147, 𝐶𝑣𝑎𝑟147)) 

     = 𝑓𝑜𝑟147( 3, 𝑐, 𝑤𝑟𝑖𝑡𝑒 (𝐼𝑣𝑎𝑟147, 𝐶𝑣𝑎𝑟147)) 
 aux = 3. 

 From the cell below, c = 0. 

But: 

𝑐 =  𝑓𝑏𝑙𝑜𝑐𝑘2 (𝑑𝑒𝑐_𝑎𝑢𝑥, 𝑑𝑒𝑐_𝑎𝑢𝑥) 
       =   𝑓𝑏𝑙𝑜𝑐𝑘2(0,0)   =  0 

 fblock2:  executes its two arguments and returns the 

value of the first argument. 

 The first dec_aux decrements the pointer by 1. 

Again, the second decrements it by 1. 

 New value of aux = 1, i.e 3 – 1 – 1 = 1. 

Hence: 𝑏 =
𝑓𝑜𝑟147( 3, 0, 𝑤𝑟𝑖𝑡𝑒 (𝐼𝑣𝑎𝑟147, 𝐶𝑣𝑎𝑟147)) 

 

Pseudocode equivalent of 𝑏 : 

  𝑓𝑜𝑟147 (𝑗 = 3, 𝑗 >=  0;  𝑗 − −) 
          { 

              𝑊𝑟𝑖𝑡𝑒 (𝐼𝑣𝑎𝑟147, 𝐶𝑣𝑎𝑟 147) 
           } 

 Hence   

𝑏 =  20 =  𝐼𝑣𝑎𝑟147 
 

 

 Write(i, j): writes i to jth position and returns the 
element previously at jth position. 

 Ivar147: holds the value returned by the 
for147 operator after each iteration. 

 Cvar147: the counter for the for147. 
 Initial value of  Ivar147 is 0. 
 Initial value of cvar147 is 3. 

The values of the variables after each iteration are: 

Action Queue 

index 

Value in 

the 

queue 

index 

Ivar147 Cvar147 

Write(0,3) 3 0 6 2 

Write(6,2) 2 6 12 1 

Write(12,1) 1 12 5 0 

Write(5,0) 0 5 20 -1 
 

𝑑 =  𝑟𝑒𝑎𝑑 (𝑖𝑛𝑐_𝑎𝑢𝑥) = read(0) =  5  The 𝑎𝑢𝑥 increments by 1. Hence aux = 2. 

𝑒  =  𝑓𝑏𝑙𝑜𝑐𝑘2 (𝑓𝑏𝑙𝑜𝑐𝑘2 (𝑎, 𝑏), 𝑑) 

     = 𝑓𝑏𝑙𝑜𝑐𝑘2 (𝑎, 𝑑) 

      = 𝑎= 20  

A value returned by the dequeue() method is 20. 

The final state of the queue is:  

5 12 6 0     
 

Figure 11.9: An illustration of the dequeue()  method generated by GOOGP 

0       1       2       3    

0       1       2       3    
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Figure 11.10 shows a solution generated by OOGE. The solution is represented in prefix 

notation. As with the solution found by GOOGP, the for operator is used to update the queue 

elements.  Rather than using the set_aux operator to set the pointer to -1, the makeNull() 

method uses the for operator to iteratively decrement the value of aux until it becomes -1. 

The first program statement of the enqueue() method is an intron.  In the method, the 

statement 𝑤𝑟𝑖𝑡𝑒 ( 𝑖 , − 𝑖𝑛𝑐_𝑎𝑢𝑥 −  𝑧𝑒𝑟𝑜 𝑎𝑢𝑥 ) increments the pointer, i.e., 𝑎𝑢𝑥 and writes 

the element represented by i to the position indexed by the pointer. The first program 

statement of the front() method increments the pointer which is decremented by  dec_aux in 

the second program statement. Thus the pointer remains the same. The dec_aux returns the 

default value of the pointer, i.e 0. The front() method, therefore, returns the first element, i.e.,  

element indexed by this value, in the queue. As with the dequeue() method generated by 

GOOGP, the dequeue() method generated by OOGE uses an iterative operator to move the 

elements in the queue. The method returns and removes the first element in the queue while 

the empty() method returns the value of 𝑎𝑢𝑥 which if negative indicates that the queue is 

empty. 

11.3.2 Comparison of GOOGP and OOGE Performances for Problem2  

OOGP was not able to produce code for the queue ADT and hence is not evaluated for 

Problem2. 

In the 30 runs of the GOOGP, no solution was found. On inspection of the best individual in 

the last generation of each run, most of the individuals make use of the for_loop operator in 

 

 

𝒎𝒂𝒌𝒆𝑵𝒖𝒍𝒍() 
𝒇𝒐𝒓𝟑𝟐𝟗𝟑𝟑 { 𝒛𝒆𝒓𝒐 , 𝒂𝒖𝒙 , 𝒘𝒓𝒊𝒕𝒆 ( 𝑰𝒗𝒂𝒓𝟑𝟐𝟗𝟑𝟑 , 𝒅𝒆𝒄_𝒂𝒖𝒙 ) } ; 
 
𝒆𝒏𝒒𝒖𝒆𝒖𝒆() 
𝒔𝒆𝒕_𝒂𝒖𝒙 ( 𝒂𝒖𝒙 ) ;  
 𝒘𝒓𝒊𝒕𝒆 ( 𝒊 , − 𝒊𝒏𝒄_𝒂𝒖𝒙 −  𝒛𝒆𝒓𝒐 𝒂𝒖𝒙 )  

 
𝒇𝒓𝒐𝒏𝒕() 
𝒓𝒆𝒂𝒅 ( −  +  +  −  𝒂𝒖𝒙 −  𝒛𝒆𝒓𝒐 𝒊𝒏𝒄_𝒂𝒖𝒙 𝒐𝒏𝒆 𝒐𝒏𝒆 𝒐𝒏𝒆 ) ;  
𝒓𝒆𝒂𝒅 ( 𝒅𝒆𝒄_𝒂𝒖𝒙 )  

 
𝒅𝒆𝒒𝒖𝒆𝒖𝒆() 
𝒐𝒏𝒆 ;  
𝒇𝒐𝒓𝟑𝟐𝟗𝟑𝟒 { 𝒂𝒖𝒙 , 𝒅𝒆𝒄_𝒂𝒖𝒙 , 𝒘𝒓𝒊𝒕𝒆 ( 𝑰𝒗𝒂𝒓𝟑𝟐𝟗𝟑𝟒 , 𝒄𝒗𝒂𝒓𝟑𝟐𝟗𝟑𝟒 ) }  

 
𝒆𝒎𝒑𝒕𝒚() 
𝒂𝒖𝒙 ; 

 
Figure 11.10: An example Queue solution generated by OOGE 
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more than two places. Also, each of the individuals with a high fitness make use of one 

instance of the while operator. Conversely, the worst individuals of the runs do not make use 

of the for_loop operator. It therefore looks like GOOGP cannot solve Problem2 using a single 

algorithm and requires the problem to be broken down. 

11.3.2.1 Improvement and changes 

As indicated in Koza [7] and Banzhaf et al. [5], ADFs reduce code repetition and promote 

code reusability. Also, as stated in section 11.2.2.1, Langdon [6] used ADFs in solving 

difficult problems. For these reasons, the programming problem specification is changed to 

include an ADF. It is anticipated that a return value will not be needed because the program 

only needs to manipulate a memory. Hence, an ADF which returns a value is not used. The 

ADF included in the programming problem specification has no argument. The value 

returned is ignored. The new function and terminal sets for the GOOGP is shown in Table 

11.6. OOGE also uses one ADF to allow a fair comparison of the two approaches. The 

modified grammar for OOGE is presented in Appendix B.2. 

Table 11.6. The Revised GOOGP functions and terminals for Problem 2 

 Function Set Queue methods 

Main 

program 

for_loop, block2, block3, getArity, 

while, Not, root  (the root of the 

tree),  Cvar, Ivar, ADF, getElement 

All the five methods 

evolved 

ADF for_loop, block2, block3, getArity, 

root  (the root of the tree),Cvar, Ivar, 

getElement 

All the five methods 

evolved (except the empty) 

 

11.3.2.2 Performance comparison of GOOGP and OOGE 

GOOGP found 9 solutions in 30 runs while OOGE found 29 solutions in 30 runs. Table 11.7 

shows the success rates, average fitness and average runtimes of the GOOGP and OOGE 

approaches. OOGE has a success rate which is 66.67% better than the success rate of the 

GOOGP approach. Also, OOGE has a better average fitness of 57.87 while GOOGP has an 

average fitness of 33.17. The average runtime of the OOGE approach is slightly higher than 

the average runtime of the GOOGP approach. The average runtimes are 54965.17 and 

50287.27 for the OOGE and GOOGP approaches respectively. This is expected as OOGE 

converges slower than the GOOGP which converges faster because the initial population is 

informed.  
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Table 11.7. Performance comparison of GOOGP and GE (each uses an ADF) 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

GOOGP 30% 33.17 50287.27 

OOGE 96.67% 57.87 54965.17 

 

Statistical testing was conducted to test the significance of the results. Two hypotheses were 

tested. The hypotheses are: 

 Hypothesis 1: OOGE performs better than GOOGP. 

 Hypothesis 2: The runtimes of GOOGP are better than OOGE. 

Hypothesis 1 was found to be significant at 1% level. As shown in Table 11.8, the Z-value is 

7.42. Hypothesis 2 has a Z-value of 0.10 and hence not significant at any level of 

significance.  

Table 11.8. Z-values for hypothesis tests 

Hypothesis  Z-Value 

Hypothesis 1 7.42 

Hypothesis 2 0.10 

 

Figure 11.11 is among the 9 solutions found in 30 runs. It is also one of the simplest solutions 

found. The two read nodes generated as part of the subtree that forms the first argument of 

the Block2 node are introns. The subtree that forms the first argument of the Block2 node 

enqueues the root of the tree provided in the fitness case.  The first argument of the while 

operator checks whether or not the queue is empty. If the queue is not empty, the second 

argument of the while node is executed. At the first check, the queue is not empty because an 

element has been enqueued. The second argument of the while operator calls the ADF. The 

getArity node is an intron. 
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When the ADF is executed, the subtree that forms the first argument of the for_loop13 

operator dequeues an element. This element is, at first, the root of the tree provided in the 

fitness case. The arity of that root is returned by the getArity node. The second argument 

executes a number of times specified by the arity of the latest dequeued element. The counter 

variable, namely, Cvar13  keeps track of the number of iterations of the for_loop13 operator. 

It is initially set to 0. The read  operator reads a child node of the latest dequeued node at the 

position indexed by the Cvar13. The child node is then enqueued. After the last iteration, the 

execution of the ADF ends. The main program continues by checking if the queue is empty. 

When the solution is executed, the queue can only be empty when the last node i.e., the right-

most leaf node, of a tree provided in the fitness case has been dequeued.  Figure 11.12 shows 

the pseudocode of the generated solution. 

 

 

Figure 11.11: A  GOOGP  solution algorithm  for the BFS problem 
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11.4 The List Abstract Data Types (ADT) and Problem3 

This section reports on the results obtained when applying OOGP, GOOGP and OOGE to 

produce code for the list ADT and Problem3 which uses the list. Section 11.4.1 presents and 

compares the performance of OOGP, GOOGP and OOGE to produce code for the list ADT 

while section 11.4.2 presents the results obtained for Problem3. 

11.4.1 Comparison of OOGP, GOOGP and OOGE Performances for the List ADT  

Each of the OOGP, GOOGP and OOGE approaches was tested for producing code for the list 

ADT. Thirty runs were performed for each approach using the parameters listed in chapter 

10, section 10.3.  

In the 30 runs of OOGP, no solution was found. Also, no solution was found in the 30 runs of 

GOOGP.  Thus none of the GP approaches was able to produce code for the list ADT. On 

inspection of the best individuals generated by OOGP and GOOGP, it was found that the 

 
Main() 

𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑟𝑜𝑜𝑡); 

𝑊ℎ𝑖𝑙𝑒 (! 𝑞𝑢𝑒𝑢𝑒. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()){ 

 ADF(); 

} 

ADF() 

           𝑖𝑛𝑡 𝑐𝑣𝑎𝑟13; 

            𝑁𝑜𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 =  𝑑𝑒𝑞𝑢𝑒𝑢𝑒; 

            𝑖𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑟𝑟𝑖𝑡𝑦 = 𝑔𝑒𝑡𝐴𝑟𝑖𝑡𝑦( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒); 

             𝐹𝑜𝑟 (𝑐𝑣𝑎𝑟13 =  0;  𝑐𝑣𝑎𝑟13 <  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑟𝑟𝑖𝑡𝑦;  𝑐𝑣𝑎𝑟13 + +){ 

                         𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡. 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑐𝑣𝑎𝑟13)) 

              } 

Figure 11.12 The generated solution algorithm in Figure 11.11 
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insertAt() and removeElement() methods were not correctly induced. Both these methods are 

more complex because they require moving the elements in the list. 

OOGE found 3 solutions in the 30 runs of the approach. These solutions were generated at 

generation 76, 74, and 94. This shows that OOGE takes long to find a solution and is 

reflected in the runtime given in Table 11.9. The table also shows the success rates and 

average fitness of the OOGP, GOOGP, and OOGE approaches. OOGP has the least average 

fitness. The average fitness of GOOGP is higher than the average fitness of OOGE without a 

corresponding higher success rate. 

Table 11.9. Performance comparison of the approaches 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

OOGP 0% 176.73 62163.17 

GOOGP 0% 208.57 47858.53 

OOGE 10% 207.80 371369.97 

 

Producing code for the list ADT is more difficult than producing code for the stack and queue 

ADTs. None of the GP approaches were able to produce code for the list ADT because the 

insertAt() and removeEelement() methods are complex to induce. Koza [7] stated that ADFs 

improve GP success rate when used for a complex problem. Langdon [6] used an ADF in 

producing code for the list ADT. Hence, the programing problem specification is changed to 

include an ADF. The ADF takes two arguments and returns a value. It can use none, one or 

both the arguments. This is done to allow GP decide how to use the ADF.  The elements of 

the function and terminal sets for the ADF are {+, −, *, /, block2, for, write, Cvar, Ivar, zero, 

one, arg1, arg2}. OOGE also uses an ADF to allow (1) a comparison of OOGE with and 

without an ADF, and (2) a fair comparison of the OOGP, GOOGP and OOGE approaches. 

The modified grammar for OOGE is presented in Appendix A.5.ii. 

Again, 30 runs were performed for each of OOGP, GOOGP and OOGE. In the 30 runs of 

OOGP, no solution was found. In the 30 runs of GOOGP, 4 solutions were found. OOGE 

found 2 solutions. Whereas the 4 solutions found by GOOGP use an ADF, only one of the 

two solutions found by GE uses an ADF. There is no notable improvement in the success rate 
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of OOGE with an ADF compared to OOGE without an ADF. Table 11.10 shows the success 

rates, average fitness and average runtimes of the approaches. 

Table 11.10. Performance comparison of the approaches 

                    

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

OOGP 0% 195.96 20846.07 

GOOGP 13.33% 211.83 50673.77 

OOGE 6.67% 207.53 586688.37 

 

A solution generated by OOGE without ADFs is shown in Figure 11.13. Introns have been 

partially removed to aid understanding of the solution.  The makeNull() method sets aux to -

1. The insertAt() method uses the for operator to adequately update the position of each 

element before it writes the element, say 𝑖,  to a position specified by 𝑝. The removeElement() 

decrements the pointer by 1 when the second argument of the for operator is evaluated. The 

for operator then correctly updates each element and returns the element at position  𝑝. 

11.4.2 Comparison of GOOGP and OOGE Performances for Problem3  

OOGP was not able to produce code for the list ADT and hence is not evaluated for 

Problem3.  

 
𝒎𝒂𝒌𝒆𝑵𝒖𝒍𝒍( ) 
𝒔𝒆𝒕_𝒂𝒖𝒙 (+  −  − 𝒂𝒖𝒙 +  + 𝒊𝒏𝒄_𝒂𝒖𝒙 𝒂𝒖𝒙 𝒛𝒆𝒓𝒐 𝒛𝒆𝒓𝒐 𝒛𝒆𝒓𝒐);  

 
𝒊𝒏𝒔𝒆𝒓𝑨𝒕(𝒑, 𝒊 ) 
𝒇𝒐𝒓𝟏{+ −  𝒛𝒆𝒓𝒐 𝒊𝒏𝒄_𝒂𝒖𝒙 𝒑, 𝒂𝒖𝒙, 𝒘𝒓𝒊𝒕𝒆 ( 𝑰𝒗𝒂𝒓𝟏 , 𝑪𝒗𝒂𝒓𝟏 ) } ;  
𝒘𝒓𝒊𝒕𝒆 ( 𝒊 , 𝒑 ) ;  

 
𝒈𝒆𝒕𝑬𝒍𝒆𝒎𝒆𝒏𝒕(𝒑 ) 
𝒓𝒆𝒂𝒅 ( 𝒑 );  

 
𝒓𝒆𝒎𝒐𝒗𝒆𝑬𝒍𝒆𝒎𝒆𝒏𝒕( ) 
𝒇𝒐𝒓𝟏𝟖{𝒂𝒖𝒙, + 𝒅𝒆𝒄_𝒂𝒖𝒙 𝒑, 𝒘𝒓𝒊𝒕𝒆 ( 𝑰𝒗𝒂𝒓𝟏𝟖 , 𝑪𝒗𝒂𝒓𝟏𝟖 ) } ;  

 
𝒆𝒎𝒑𝒕𝒚( ) 
𝒂𝒖𝒙 ; 

 
Figure 11.13: A solution generated by GE without ADFs 
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In the 30 runs of GOOGP, no solution was found. Figure 11.14 is the best individual and was 

obtained from the last generation of run 8. The fitness of the individual is 207. On inspection 

of the individual, it was found that the individual adds elements to the list but could not sort 

the list. It was anticipated that the individual failed to sort the list because of one or both of 

the following reasons. (1) The functions are not sufficient for GP to be used to sort the list. 

(2) Populating and sorting a list is a complex problem which GP cannot solve using a single 

algorithm. The problem therefore is required to be broken down. For these reasons, the 

programming problem specification was changed as specified in the next section. 

 

11.4.2.1  Improvements and changes 

In the study conducted by Kinnear [63], GP using different high order operators were 

investigated for evolving a sort algorithm. GP using the swap and order operators were 

compared. The study shows that GP using the order operator evolves a simple solution early 

in a run. Hence an order operator was included in the programing problem specification. The 

order operator takes two integer arguments. Each of the arguments is a memory index. The 

operator functions as follows: If the value, say 𝑥, stored in the memory indexed by the first 

argument is greater than the value, say 𝑦, stored in the memory indexed by the second 

argument, these values are swapped. The operator does nothing if 𝑥 is less than or equal to 𝑦. 

If an argument of the order operator evaluates to a value less than zero or greater than the 

size of the memory structure of the program, (a) the operator does nothing and (b) a default 

value for the type of the operator is returned. Despite the inclusion of the order operator in 

the programing problem specification, no solution was found in the 30 runs of GOOGP.  

Whereas previous studies [58–61] give GP a list in the memory to sort, GP implemented in 

this study constructs the list while sorting it. Hence the problem is more challenging. As a 

result, an ADF was included in the programming problem specification. ADFs improve GP 

 
𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟑𝟒𝟎𝟔𝟒𝟖  𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒍𝒆𝒏 𝒍𝒆𝒏 𝒃𝒍𝒐𝒄𝒌𝟐 𝒍𝒆𝒏 𝒍𝒆𝒏 𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒍𝒆𝒏  

𝒍𝒆𝒏 𝒍𝒆𝒏 𝒊𝒏𝒔𝒆𝒓𝒕𝒂𝒕 𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒆𝒎𝒑𝒕𝒚 𝒛𝒆𝒓𝒐 𝒄𝒗𝒂𝒓𝟑𝟒𝟎𝟔𝟒𝟖 𝒓𝒆𝒂𝒅 𝒄𝒗𝒂𝒓𝟑𝟒𝟎𝟔𝟒𝟖 𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟑𝟒𝟎𝟔𝟒𝟗  

𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒃𝒍𝒐𝒄𝒌𝟐 𝒍𝒆𝒏 𝒛𝒆𝒓𝒐 𝒍𝒆𝒏 𝒍𝒆𝒏 𝒓𝒆𝒎𝒐𝒗𝒆𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝒗𝒂𝒓𝟑𝟒𝟎𝟔𝟒𝟗 𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟑𝟒𝟎𝟔𝟒𝟗 𝒃𝒍𝒐𝒄𝒌𝟐 

 𝒍𝒆𝒏 𝒃𝒍𝒐𝒄𝒌𝟐 𝒍𝒆𝒏 𝒍𝒆𝒏 𝒓𝒆𝒎𝒐𝒗𝒆𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒄𝒗𝒂𝒓𝟑𝟒𝟎𝟔𝟒𝟗 

 
Figure 11.14 Best individual generated by the trial run of GOOGP for Problem3 
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success rate when used for a complex problem [7]. As with Problem2, it is anticipated that a 

return value will not be needed because the program only needs to manipulate memory. Thus, 

the value returned is ignored. Also the ADF has no arguments. The new primitives for the 

GOOGP approach are given in Table 11.11. The grammar for the OOGE approach was 

changed to include an ADF and the order operator. This is done to allow a fair comparison of 

the two approaches. The grammar is given in Appendix B.3.  

 

Table 11.11 The Revised GOOGP functions and terminals for Problem 3 

 Functions and Terminals 

Main 

program 

+, -, for_loop, block2, read, order, one, len, Cvar, Ivar, ADF, the five methods of 

the list 

ADF +, -, for_loop, block2, read, one, order, len, Cvar, Ivar, the five methods of the list 

 

11.4.2.2 Performance comparison of GOOGP and OOGE 

In the 30 runs of GOOGP, one solution was found. The solution was generated in generation 

3. OOGE found 4 solutions in 30 runs. The solution generated by GOOGP and the 4 solutions 

generated by OOGE use an ADF and the order operator. Table 11.12 shows the performance 

comparison of the two approaches. OOGE has a better success rate than GOOGP. Both the 

average fitness and runtime of the GOOGP approach are better than the OOGE’s. The better 

average fitness of the GOOGP approach is as a result of the greedy approach used in the 

initial population.   

Table 11.12 Performance comparison of GOOGP and OOGE for problem 3 

                   

Approach 

Success Rate  Average Fitness Average Runtime (ms)  

GOOGP 3.33% 56.77 381160.3667 

OOGE 13.33% 363.8 94790.86667 

Statistical tests were conducted to test the statistical significance of the results. The two 

hypotheses tested are as below: 

 Hypothesis 1: OOGE performs better than GOOGP. 

 Hypothesis 2: The runtimes of GOOGP are better than OOGE. 
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Hypothesis 1 was found to be significant at 10% level but not at the other levels of 

significance. As shown in Table 11.13, the Z-value is 1.42. Hypothesis 2 has a Z-value of 

7.34 which is significant at 1% level of significance.  

Table 11.13 Z-values for hypothesis tests 

Hypothesis  Z-Value 

Hypothesis 1 1.42 

Hypothesis 2 7.34 

 

The solution generated by GOOGP is given in Figure 11.15.  Introns have been removed to 

aid understanding of the solution.  

 

 

 

 

 

 The variable len specifies the number of integers in the fitness case provided. For example, 

given a fitness case A = [3, 20, 7, 6], the value of len is 4. The ADF in Figure 11.15 contains 

a for_loop operator which iterates a number of times equal to len. Using the fitness case A 

and an empty list L = { }, Table 11.14 shows a trace for the ADF. On each iteration, a value 

is read from A. The value is read from a position indexed by the counter variable, i.e., 

Cvar190955, and is inserted at a similar index in the list. The insertion is carried out by the 

insertAt() method of the list ADT. Note that the initial value of the counter variable for the 

for_loop operator is 0. Hence the first value in A, i.e. 3, is inserted at a position in the list 

indexed by 0.The counter variable is incremented by 1 on each iteration. Thus the next index 

is 1 and the value to be inserted at the index is 20. This process continues until the for_loop 

operator iterates a number of times equal to len at which the list is populated. At the 

beginning of the main method, the ADF is invoked which causes the list to be populated. A 

nested loop and the order operator are then used to sort the list. Table 11.15 shows the trace 

for the main program.The outer loop in the main program uses the for_loop251109 which 

 

 

 

 

 

 

𝑨𝑫𝑭() 

𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟏𝟗𝟎𝟗𝟓𝟓 𝒍𝒆𝒏 𝒊𝒏𝒔𝒆𝒓𝒕𝑨𝒕 𝒄𝒗𝒂𝒓𝟏𝟗𝟎𝟗𝟓𝟓 𝒓𝒆𝒂𝒅 𝒄𝒗𝒂𝒓𝟏𝟗𝟎𝟗𝟓𝟓  

 

𝑴𝒂𝒊𝒏() 

𝒃𝒍𝒐𝒄𝒌𝟐 𝑨𝑫𝑭 𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟐𝟓𝟏𝟏𝟎𝟗 𝒍𝒆𝒏 𝒇𝒐𝒓_𝒍𝒐𝒐𝒑𝟐𝟓𝟏𝟏𝟏𝟎 −  𝒍𝒆𝒏 𝒐𝒏𝒆 𝒐𝒓𝒅𝒆𝒓 

𝒄𝒗𝒂𝒓𝟐𝟓𝟏𝟏𝟎𝟗 𝒄𝒗𝒂𝒓𝟐𝟓𝟏𝟏𝟏𝟎 

 

Figure 11.15 A solution generated by the GOOGP approach 
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iterates a number of times specified by len. The inner loop uses the for_loop251110 which 

iterates len –  1 times. Note that the initial values of Cvar251109 and Cvar251109 are the 

same. This value is 0. On each iteration of the inner loop, the 𝑖 in the order function is 

replaced with Cvar251109 while the 𝑗 is replaced with Cvar251110 as shown in Table 11.15. 

The order operator then swaps the values stored at 𝑖 and 𝑗 if the value stored at 𝑖 is greater 

than the value stored at  𝑗. The operator does nothing if the value stored at 𝑖 is less than or 

equal to the value stored at 𝑗. In lines number 4, 8, and 12 of Table 11.15, the value stored at 𝑖 

in the list L is greater than that stored at 𝑗. Hence these values were swapped.  Any given 

populated list will be sorted at the end of the outer loop.   

Table 11.14. A trace for the ADF generated by GOOGP 

S/N Values of CVAR190955 L 

1 0 {3} 

2 1 {3, 20} 

3 2 {3, 20, 7} 

4 3 {3, 20, 7, 6} 

 

Table 11.15. A trace for the main program generated by GOOGP 

S/N Values of 

CVAR251109 

(𝑖) 

Values of 

CVAR251110 

(𝑗) 

L (before 

executing the 

order function) 

Oder(𝒊, 𝒋) L (after 

executing the 

order function) 

1 0 0 {3, 20, 7, 6} Order(0,0) {3, 20, 7, 6} 

2 0 1 {3, 20, 7, 6} Order(0,1) {3, 20, 7, 6} 

3 0 2 {3, 20, 7, 6} Order(0,2) {3, 20, 7, 6} 

4 1 0 {3, 20, 7, 6} Order(1,0) {20, 3, 7, 6} 

5 1 1 {20, 3, 7, 6} Order(1,1) {20, 3, 7, 6} 

6 1 2 {20, 3, 7, 6} Order(1,2) {20, 3, 7, 6} 

7 2 0 {20, 3, 7, 6} Order(2,0) {20, 3, 7, 6} 

8 2 1 {20, 3, 7, 6} Order(2,1) {20, 7, 3, 6} 

9 2 2 {20, 7, 3, 6} Order(2,2) {20, 7, 3, 6} 

10 3 0 {20, 7, 3, 6} Order(3,0) {20, 7, 3, 6} 

11 3 1 {20, 7, 3, 6} Order(3,1) {20, 7, 3, 6} 

12 3 2 {20, 7, 3, 6} Order(3,2) {20, 7, 6, 3} 
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11.5 Conversion of the Solutions to a Programming Language 

In this study, GP and GE produce code in an internal representation language. This facilitates 

the evolution of language independent programs. However, it is important that the code be 

compiled and run to achieve automatic programming. As mentioned in chapter 4, section 4.6, 

this study illustrates that the generated solutions can be converted to a programming 

language. Programming languages that support object-oriented programming include Ruby, 

Visual Basic, C++, Python and Java. Java has been chosen for this illustration because (1) it 

is widely used to teach object-oriented concepts and, (2) it is platform independent, .i.e., Java 

code need not to be recompiled to run on another machine.  Thus, the code produced for the 

list ADT and Problem3 is converted to Java. This object-oriented programming problem is 

used for the illustration because it is of a hard difficulty level. Since OOGP found no solution 

for the list ADT, the solutions found by GOOGP are used for the illustration. Thus, the 

program implemented to generate code using GOOGP provides the option to convert the 

code for the list ADT and Problem 3 to Java. This can be seen in the user manual given in 

Appendix E. 

A solution for the list ADT converted to Java is provided in Appendix C. It was generated in 

run 3 of GOOGP. As expected, there is redundancy in the Java code. This is as a result of 

introns in the solution. Also, the code generated by GP is not necessarily the same as that 

written by humans. This is in consistent with the study conducted by Koza [4] which revealed 

that GP can produce a solution which is not expected by humans. The solution generated by 

GOOGP for Problem3 is converted to Java and given in Appendix D. There is also some 

redundancy in the code. However, both the code presented in Appendix C and Appendix D 

prove that automatic programming is possible. Although this is illustrated for one run, other 

runs that found a solution can be tested. The GOOGP runs that found a solution for the list 

ADT and the seeds used for the runs are provided the Appendix C.  

11.6 Performance Comparison with Other Studies 

This section compares this study with other related work. The studies conducted by Bruce [8] 

and Langdon [6] are used for the comparison for the following reasons. First, both these 

studies implemented OOGP for producing code for ADTs. Second, this study uses the same 

representation used by both Bruce and Langdon. However, Langdon [6] aimed at improving 

GP scalability not automatic object-oriented programing while Bruce [8] aimed at automatic 
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object-oriented programming but did not examine producing code that uses the generated 

ADTs. The computer specifications are not the same in all the studies. Hence the runtimes 

cannot be compared. Only the success rates of the OOGP, GOOGP and OOGE approaches 

are compared with the success rate of the OOGP implemented by Langdon for the stack, 

queue and list ADTs. The success rates of OOGP, GOOGP and OOGE are also compared 

with the success rate of OOGP implemented by Bruce for the simultaneous induction of 

methods for the stack and queue ADTs.  

Table 11.16 Comparison of OOGP, GOOGP and OOGE success rates with the success rates 

obtained from the related studies. 

 Bruce [8] Langdon [6] This study 

 OOGP GOOGP OOGE 

Stack ADT 5% (*) 6.67% 0% 60% 50% 

Queue ADT 0% (*) 5.26% (*) 0% 6.67% 33.33% 

List ADT - 3.57% (*) 0% 13.33% (*) 10% 

 

In Table 11.16, the cells marked with (*) means that an ADF was used. The success rates 

presented in the second column were obtained from an experiment termed Experiment 4 

conducted by Bruce [8]. In the experiment, Bruce investigated simultaneous induction of 

methods and used typing to reduce the search space.  Only one solution was found in 20 runs 

for the stack ADT. No solution was found for the queue ADT. Langdon [6] found 4 solutions 

in 60 runs for the stack ADT, 3 in 57 runs for the queue ADT and 2 in 56 runs for the list 

ADT. These give 6.67%, 5.26% and 3.57% success rates respectively as indicated in Table 

11.16. OOGP implemented in this study has the lowest success rate for each of the three 

ADTs. This is expected as other implementations presented, with the exception of OOGE, 

used either an ADF or demes i.e., a population divided into subpopulations that exchange 

genetic material, or both to improve the success rate. For example, in Bruce [8], an ADF was 

used for each ADT. Langdon [6] used an ADF for the queue and list ADTs. The study also 

used demes i.e., the population was divided into subpopulations that exchange genetic 

materials. This has been reported to slow down convergence thereby helping the algorithm to 

escape local optima [6]. GOOGP uses a greedy method to direct the search during the initial 

population. Generally, OOGE performs better than other implementations. As specified in 

O’Neill [1], GE maintains diversity in the population. This contributes to the high success 

rate of OOGE for all the ADTs. It should, however, be noted that the number of methods 
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induced by Langdon for the list ADT is 10 while this study considers five as discussed in 

chapter 5, section 5.5.1. Producing code for 10 methods is more difficult compared to 

producing code for 5 methods. This may account for the low success rate in Langdon’s 

implementation for the list ADT.  

11.7 Chapter Summary 

The chapter discussed the results obtained when applying OOGP, OOGP and OOGE to 

produce code for the stack, queue and list ADTs and problems, namely, Problem1, Problem2 

and Problem3 that use the ADTs respectively. The chapter also discussed how the code 

produced by GOOGP is converted to Java. It then compared the performance of OOGP, 

GOOGP and OOGE with the performance of OOGP implemented in literature. 
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CHAPTER 12: CONCLUSION AND FUTURE WORK 

12.1 Introduction  

This chapter provides the summary of the findings of this dissertation and a conclusion to 

each of the objectives outlined in chapter 1. Section 12.2 presents the objectives outlined in 

chapter 1, the summary and conclusion while section 12.3 presents future work. The chapter 

summary is given in section 12.4. 

12.2 Objectives and Conclusion 

The objectives and the conclusion to each objective are provided below.  

12.2.1 Objective 1: Evaluate Genetic Programming for Automatic Object-Oriented 

Programming. 

The Object-Oriented Genetic Programming (OOGP) approach found in the literature was 

analysed. Based on the analysis, OOGP was developed with some changes made that 

distinguish some of its process from that found in the literature. For example, the genetic 

operators were changed to allow a proper mixture of genetic material between two parents. A 

variation of OOGP called Greedy OOGP (GOOGP) was also developed. GOOGP uses a 

greedy approach to generate the individuals in the initial population. Both the GP approaches, 

namely, OOGP and GOOGP were evaluated to produce code for classes. An internal 

representation language was defined to facilitate the translation of the generated code to a 

programming language. The function sets are subsets of the internal representation language. 

Both the approaches used a generational control model and represent each individual as a 

chromosome containing genes.  Each gene is a parse tree representing a method of the class.  

Three object-oriented programming problems were used to test each approach. Usually, an 

object-oriented program involves one or more classes. Each object-oriented programming 

problem used to test both the approaches involves two classes, one with the driver program 

and the Abstract Data Type (ADT) class.  Thus, each approach was tested to produce code for 

the stack, queue and list ADTs, and the code that (1) uses the stack to determine whether or 

not a word, a phrase or a sentence is a palindrome, (2) uses the queue to perform a breadth-

first traversal of any given parse tree, and (3) populates a list with integers and sorts the list. It 

was found that OOGP was not able to automatically produce complete code for the ADTs. 

For each of the stack, queue and list ADTs, it was also found that GOOGP was able to 
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produce code for both the classes and the driver programs when ADFs were implemented. 

Also, it was illustrated that the produced code can be converted to a programming language.    

12.2.2 Conclusion to Objective 1 

This study shows that GP can be used for automatic object-oriented programming. However, 

it requires (1) a mechanism, such as an ADF, to break down a complex problem into sub-

problems and/or (2) a mechanism, such as the greediness in the initial population, to direct 

the search. GOOGP is successful at automatic programming because it uses ADFs and the 

initial population is informed.  

12.2.3 Objective 2: Evaluate Grammatical Evolution for Automatic Object-Oriented 

Programming 

The study investigated, for the first time, grammatical evolution for automatic object-oriented 

programming. Firstly, a thorough study of GE was conducted to determine the GE processes 

required to be adapted to the form needed to represent a class. Based on the study, Object-

Oriented Grammatical Evolution (OOGE) was developed and evaluated to produce code for 

classes. OOGE uses a generational control model and represents each individual as a 

chromosome containing genes.  Each gene is a binary string representing a method of the 

class. Again, genetic operators were changed to allow a proper mixture of genetic materials 

between two chromosomes. Like OOGP and GOOGP, each object-oriented programming 

problem used to test the approach involves two classes, one with the driver program and the 

Abstract Data Type (ADT) class.  Thus, the approach was tested to produce code for the 

stack, queue and list ADTs, and code for programming problem that uses the ADTs. These 

programming problems are the same as those used to test OOGP and GOOGP.  It was found 

that OOGE successfully produced code for the object-oriented programming problems tested. 

Code for the stack, queue and list ADTs was produced without requiring an ADF.  

12.2.4 Conclusion to Objective 2 

This study shows that GE can be used for automatic object-oriented programming. However, 

it requires both the chromosome representation and genetic operators to be adapted to a form 

suitable to represent a class. For complex problems, ADFs may be required for OOGE to 

produce code for the object-oriented programming problem. 
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12.2.5 Objective 3: Compare the Performance of Genetic Programming and Grammatical 

Evolution for Automatic Object-Oriented Programming 

The OOGP, GOOGP and OOGE approaches were compared based on three criteria, namely, 

success rate, average fitness and average runtime. These criteria were used to compare the 

approaches at each level of difficulty as specified in chapter 5. The stack, queue and list 

represent a problem of easy, medium and hard difficulty levels respectively.  

It was found that, for most of the problems, OOGE obtained a higher success rate compared 

to the OOGP and GOOGP success rates. This is because in OOGE, the search space and the 

program space are separated. Like in GE [1], this leads to the maintenance of diversity in the 

population and slows down convergence of the algorithm thereby allowing the algorithm to 

escape local optima. For the list ADT, the GOOGP success rate is slightly higher than the 

OOGE success rate when both the approaches use an ADF. OOGP obtained a 0% success 

rate at all the difficulty levels while GOOGP in most cases obtained a success rate 

competitive to that obtained by OOGE.  

It was found that the average fitness of GOOGP is always better than the OOGE’s average 

fitness. This is because the initial population of the GOOGP approach is informed. OOGP has 

the least average fitness at all the difficulty levels. 

Several factors can increase or decrease the runtime of each approach. For example (1) how 

early in a run the approach finds a solution, (2) the process, such as conversion from binary to 

integer, involved in the OOGE approach. It was found that GOOGP finds solutions early in 

the runs. This reduces the average runtime of the approach. However, the initial generation of 

GOOGP is time consuming. OOGE converges slowly and in most cases finds solutions late 

in a run. This makes the runtime high. Also, as mentioned, the process of converting binary to 

integer increases OOGE runtime, thus making the runtime higher than GOOGP runtime. 

OOGP has the least runtime because it converges early to a local optimum.  

12.2.6 Conclusion to Objective 3 

Since the main aim is to produce code that correctly implements classes for the object-

oriented programming problem at hand, the success rate is the most important criteria 

compared to the average runtime and average fitness. Hence GOOGE outperforms both 

GOOGP and OOGP while GOOGP outperforms OOGP.  
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12.3 Future Work 

Based on the research presented in this dissertation, extension of the study will either be 

producing code that can be used by programmer or a black-box approach to automatic object-

oriented programming. If the former is considered, a mechanism will be incorporated to 

remove the introns from the produced code before converting the code to a programming 

language. This will increase the efficiency of the program. In a black-box approach, the user 

will neither see how the code was evolved nor be able to see the evolved code for the 

methods. Only the output will be seen. Thus, introns need not be removed before converting 

the produced code to a programming language. Adding to the extension above, future work 

will also include an investigation into informed OOGE for automatic object-oriented 

programming. Thus, the initial population of OOGE will be informed to determine its effect 

on the OOGE success rate. 

12.4 Chapter Summary 

This chapter summarized the findings of this dissertation. It described how each objective 

was achieved and the conclusion to the objective. The objectives are to (1) evaluate GP for 

automatic object-oriented programming, (2) evaluate GE for automatic object-oriented 

programming and (3) compare the performance of GP and GE for automatic-object oriented 

programming.  The initial aim was to investigate how good GP and GE are at automatic 

object-oriented programming. This study made the following contributions. Firstly, it 

provides a thorough survey of automatic Object-Oriented Genetic Programming (OOGP). It 

also extends and improves the previous work by introducing Greedy Object-Oriented Genetic 

Programming (GOOGP). It was found that GOOGP is able to increase the success rate of 

OOGP. Secondly, it is the first study investigating the use of GE for automatic object-

oriented programming. Finally, the performance of genetic programming and grammatical 

evolution were compared for automatic object-oriented programming. It was found that 

grammatical evolution scales better than genetic programming when evolving code for 

classes. The field of automatic software development, specifically the field of automatic 

programming using evolutionary algorithms, is still in its infancy and has not seen many 

applications. This study forms part of an initial attempt in automating the process of writing 

code. This study has focused on automatically producing code for ADTs and programs that 

use the ADTs to solve problems. Hence, it is not yet widely applicable. However, this study 

has shown that GP and GE can be used for automatic object-oriented programming. This 

shows that both GP and GE have the potential to be used for a large scale production of code. 

This will be the focus in future work.  
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APPENDIX  A:  THE OOGE GRAMMARS 

A.1 Grammar for the Stack ADT 

< 𝑠𝑡𝑚𝑡𝑠 > ∷ =  < 𝑠𝑡𝑚𝑡 >;  | < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ∷= < 𝑠𝑒𝑡−𝑎𝑢𝑥 (< 𝑒𝑥𝑝𝑟 >) | 𝑤𝑟𝑖𝑡𝑒 (< 𝑒𝑥𝑝𝑟 > < 𝑒𝑥𝑝𝑟 >)| 𝑟𝑒𝑎𝑑 (<  𝑒𝑥𝑝𝑟 >)   

                                | 𝑤𝑟𝑖𝑡𝑒 (< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 > < 𝑒𝑥𝑝𝑟 >)  |< 𝑒𝑥𝑝𝑟 >  

< 𝑒𝑥𝑝𝑟 > ∷ =   < 𝑣𝑎𝑟 >   | + < 𝑣𝑎𝑟 > < 𝑣𝑎𝑟 >   | − < 𝑣𝑎𝑟 >< 𝑣𝑎𝑟 > 

< 𝑣𝑎𝑟 >   ∶=    𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜| 𝑎𝑢𝑥 

< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >   ∶=    𝑖 

 

A.2. Grammar for Problem1 

 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑠𝑡𝑟𝑒𝑞𝑢𝑎𝑙(< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 >) |  < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > 

                   | 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑎𝑝𝑝𝑒𝑛𝑑 (< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                              | < 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 >   

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑐ℎ𝑎𝑟_𝐴𝑡 (< 𝑠𝑡𝑟𝑉𝑎𝑟 >< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 >) 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿|𝑎𝑟𝑔| 𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑟𝑉𝑎𝑟 > ::=  𝑎𝑟𝑔 

< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > ::=   𝑠𝑡𝑟𝑒𝑞𝑢𝑎𝑙(< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 >)| < 𝑠𝑡𝑟𝑉𝑎𝑟 > 

< 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑝𝑢𝑠ℎ(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑝𝑜𝑝  | 𝑝𝑒𝑒𝑘 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 

< 𝑣𝑎𝑟 > ::=  𝑜𝑛𝑒 | 𝑙𝑒𝑛 |𝑧𝑒𝑟𝑜 
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A.3 Grammar for the Queue ADT 

< 𝑠𝑡𝑚𝑡𝑠 > ∷ =  < 𝑠𝑡𝑚𝑡 >;  | < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 >  ∷=  < 𝑠𝑒𝑡−𝑎𝑢𝑥 (< 𝑒𝑥𝑝𝑟 >) | 𝑤𝑟𝑖𝑡𝑒 (< 𝑒𝑥𝑝𝑟 > < 𝑒𝑥𝑝𝑟 >) | 𝑟𝑒𝑎𝑑 ( <  𝑒𝑥𝑝𝑟 )    

                       | 𝑤𝑟𝑖𝑡𝑒 (< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 > < 𝑒𝑥𝑝𝑟 >)  | < 𝑒𝑥𝑝𝑟 >  |𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑒𝑥𝑝𝑟 > <

𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ∷ =   < 𝑣𝑎𝑟 >   | + < 𝑒𝑥𝑝𝑟 > < 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >   ∷=     𝑖 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 >∶≔  𝑤𝑟𝑖𝑡𝑒 (< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)| 𝑟𝑒𝑎𝑑 ( <  𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ) 

                        | 𝑓𝑜𝑟𝒾(< 𝑒𝑥𝑝𝑟 > < 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >) | 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟    

< 𝑣𝑎𝑟 >   ∶=    𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜| 𝑎𝑢𝑥 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ∶≔ < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | + < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > |− < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 >   ∶=    𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜| 𝑎𝑢𝑥 | 𝐶𝑣𝑎𝑟𝒿 

< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 > ∶=     𝑖 | 𝐼𝑣𝑎𝑟𝒿       

 

A.4. Grammar for Problem 2 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)| 𝑤ℎ𝑖𝑙𝑒(< 𝑐𝑜𝑛𝑑 > < 𝑠𝑡𝑚𝑡 >)  

                                        |         < 𝑞𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > 

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | 𝑔𝑒𝑡𝐴𝑟𝑖𝑡𝑦 < 𝑣𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: =< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿|𝐼𝑣𝑎𝑟𝒿| 

< 𝑣𝑎𝑟 > ::=  𝑠𝑡𝑎𝑟𝑡 | 𝑜𝑛𝑒 |𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

< 𝑐𝑜𝑛𝑑 > ::= 𝑒𝑚𝑝𝑡𝑦 |𝑛𝑜𝑡 (𝑐𝑜𝑛𝑑) 

< 𝑞𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑒𝑛𝑞𝑢𝑒𝑢𝑒(< 𝑒𝑥𝑝𝑟 >)|  𝑓𝑟𝑜𝑛𝑡  | 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 

< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > ::= 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)| 𝑓𝑟𝑜𝑛𝑡| 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 

            | 𝑒𝑚𝑝𝑡𝑦 
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A.5.i Grammar for the List ADT (without an ADF) 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= < 𝑠𝑒𝑡_𝑎𝑢𝑥(< 𝑒𝑥𝑝𝑟 >) | 𝑤𝑟𝑖𝑡𝑒(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >)  

                   | 𝑟𝑒𝑎𝑑 (< 𝑒𝑥𝑝𝑟 > ) | 𝑤𝑟𝑖𝑡𝑒(< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >< 𝑒𝑥𝑝𝑟 >) |  < 𝑒𝑥𝑝𝑟 > 

                   | 𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)   

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 > :: = 𝑖 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑤𝑟𝑖𝑡𝑒 (< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                            | 𝑟𝑒𝑎𝑑(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)   

< 𝑣𝑎𝑟 >∶: =  𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜|𝑎𝑢𝑥|𝑑𝑒𝑐_𝑎𝑢𝑥  |𝑖𝑛𝑐_𝑎𝑢𝑥  |𝑝 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | + < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                            | − < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜| 𝑎𝑢𝑥 |𝑑𝑒𝑐_𝑎𝑢𝑥  |𝑖𝑛𝑐_𝑎𝑢𝑥 |𝑝| 𝐶𝑣𝑎𝑟𝒿 

 

A.5.ii Grammar for the List ADT (with an ADF) 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= < 𝑠𝑒𝑡_𝑎𝑢𝑥(< 𝑒𝑥𝑝𝑟 >) | 𝑤𝑟𝑖𝑡𝑒(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >)  

                   | 𝑟𝑒𝑎𝑑 (< 𝑒𝑥𝑝𝑟 > ) | 𝑤𝑟𝑖𝑡𝑒(< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >< 𝑒𝑥𝑝𝑟 >) |  < 𝑒𝑥𝑝𝑟 > 

                   | 𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >) | 𝐴𝐷𝐹0 (< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >)   

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 > :: = 𝑖 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑤𝑟𝑖𝑡𝑒 (< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                            | 𝑟𝑒𝑎𝑑(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)   

< 𝑣𝑎𝑟 >∶: =  𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜|𝑎𝑢𝑥|𝑑𝑒𝑐_𝑎𝑢𝑥  |𝑖𝑛𝑐_𝑎𝑢𝑥  |𝑝 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | + < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                            | − < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 
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< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝑜𝑛𝑒 |𝑧𝑒𝑟𝑜| 𝑎𝑢𝑥 |𝑑𝑒𝑐_𝑎𝑢𝑥  |𝑖𝑛𝑐_𝑎𝑢𝑥 |𝑝| 𝐶𝑣𝑎𝑟𝒿 

 

ADF() 

< 𝑠𝑡𝑚𝑡𝑠 >∶: =  < 𝑠𝑡𝑚𝑡 >; | < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 >: : =  𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)| < 𝑒𝑥𝑝𝑟 > |𝑤𝑟𝑖𝑡𝑒(< 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >) 

< 𝑒𝑥𝑝𝑟 >∶: = < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >  | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑣𝑎𝑟 >∶: =  𝑎𝑟𝑔1 |𝑎𝑟𝑔2|𝑧𝑒𝑟𝑜|𝑜𝑛𝑒 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 >∶: =  𝑤𝑟𝑖𝑡𝑒(< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >) 

                           |𝑓𝑜𝑟𝒿(< 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)|  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝐸𝑙𝑒𝑚𝑒𝑛𝑡 >∶: =  𝐼𝑣𝑎𝑟𝒿 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >∶: =  𝐶𝑣𝑎𝑟𝒿|𝑧𝑒𝑟𝑜|𝑜𝑛𝑒 

A.6. Grammar for Problem 3 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >) 

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  | < 𝑙𝑖𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠 >  

      | < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >    | 𝑜𝑟𝑑𝑒𝑟(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >) 

 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑟𝑒𝑎𝑑 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿 | 𝐼𝑣𝑎𝑟𝒿 

< 𝑣𝑎𝑟 > ::=  𝑧𝑒𝑟𝑜 | 𝑜𝑛𝑒 |𝑙𝑒𝑛  

< 𝑙𝑖𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑡(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙  |𝑒𝑚𝑝𝑡𝑦 

| 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > | 𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟) 
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APPENDIX  B:  THE MODIFIED OOGE GRAMMARS FOR THE FINAL 

RUNS 

B.1. Grammar for Problem1 

 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑠𝑡𝑟𝑒𝑞𝑢𝑎𝑙(< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 >) |  < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > 

                   | 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑎𝑝𝑝𝑒𝑛𝑑 (< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                              | < 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 >   

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑐ℎ𝑎𝑟_𝐴𝑡 (< 𝑠𝑡𝑟𝑉𝑎𝑟 >< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 >) 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿|𝑎𝑟𝑔| 𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑟𝑉𝑎𝑟 > ::=  𝑎𝑟𝑔 

< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > ::=   𝐴𝐷𝐹1| 𝐴𝐷𝐹2 |𝑠𝑡𝑟𝑒𝑞𝑢𝑎𝑙(< 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 > < 𝑠𝑡𝑟𝐸𝑥𝑝𝑟 >)| < 𝑠𝑡𝑟𝑉𝑎𝑟 > 

< 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑝𝑢𝑠ℎ(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑝𝑜𝑝  | 𝑝𝑒𝑒𝑘 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 

< 𝑣𝑎𝑟 > ::=  𝑜𝑛𝑒 | 𝑙𝑒𝑛 |𝑧𝑒𝑟𝑜 

ADF1() 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::=  𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑎𝑝𝑝𝑒𝑛𝑑 (< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                              | < 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 >   

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑐ℎ𝑎𝑟_𝐴𝑡 (< 𝑠𝑡𝑟𝑉𝑎𝑟 >< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 >) 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿|𝑎𝑟𝑔| 𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑟𝑉𝑎𝑟 > ::=  𝑎𝑟𝑔|  𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑝𝑢𝑠ℎ(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑝𝑜𝑝  | 𝑝𝑒𝑒𝑘 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 
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< 𝑣𝑎𝑟 > ::=  𝑜𝑛𝑒 | 𝑙𝑒𝑛 |𝑧𝑒𝑟𝑜 

ADF2() 

< 𝑠𝑡𝑚𝑡 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::=  𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑎𝑝𝑝𝑒𝑛𝑑 (< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

                              | < 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 >   

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑐ℎ𝑎𝑟_𝐴𝑡 (< 𝑠𝑡𝑟𝑉𝑎𝑟 >< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 >) 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= < 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 > |𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑟𝑉𝑎𝑟 > ::= 𝐼𝑣𝑎𝑟𝒿 

< 𝑠𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑝𝑢𝑠ℎ(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑝𝑜𝑝  | 𝑝𝑒𝑒𝑘 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 

< 𝑣𝑎𝑟 > ::=  𝑜𝑛𝑒 | 𝑙𝑒𝑛 |𝑧𝑒𝑟𝑜 

(where  𝒿 is a positive integer). 

 

B.2. Grammar for Problem 2 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)| 𝑤ℎ𝑖𝑙𝑒(< 𝑐𝑜𝑛𝑑 > < 𝑠𝑡𝑚𝑡 >)  

                   |< 𝑞𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 >|ADF 

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | 𝑔𝑒𝑡𝐴𝑟𝑖𝑡𝑦 < 𝑣𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: =< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿|𝐼𝑣𝑎𝑟𝒿|𝐴𝐷𝐹 

< 𝑣𝑎𝑟 > ::=  𝑠𝑡𝑎𝑟𝑡 | 𝑜𝑛𝑒 |𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

< 𝑐𝑜𝑛𝑑 > ::= 𝑒𝑚𝑝𝑡𝑦 |𝑛𝑜𝑡 (𝑐𝑜𝑛𝑑) 

< 𝑞𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑒𝑛𝑞𝑢𝑒𝑢𝑒(< 𝑒𝑥𝑝𝑟 >)|  𝑓𝑟𝑜𝑛𝑡  | 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 |𝑒𝑚𝑝𝑡𝑦 

< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > ::= 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)| 𝑓𝑟𝑜𝑛𝑡| 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 
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            | 𝑒𝑚𝑝𝑡𝑦 

 

ADF() 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | 𝑔𝑒𝑡𝐴𝑟𝑖𝑡𝑦 < 𝑣𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: =< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 >  |  < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿 | 𝐼𝑣𝑎𝑟𝒿 

< 𝑣𝑎𝑟 > ::=  𝑧𝑒𝑟𝑜 | 𝑜𝑛𝑒 |𝑑𝑒𝑞𝑢𝑒𝑢𝑒 

< 𝑙𝑜𝑜𝑝𝑄𝑢𝑒𝑢𝑒𝑀𝑒𝑡ℎ𝑜𝑑 > ::= 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)| 𝑓𝑟𝑜𝑛𝑡| 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 | 𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙 

            | 𝑒𝑚𝑝𝑡𝑦 
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B.3. Grammar for Problem 3 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >) 

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  | < 𝑙𝑖𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠 >  

      | < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >    | 𝑜𝑟𝑑𝑒𝑟(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >) 

 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑟𝑒𝑎𝑑 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿 | 𝐼𝑣𝑎𝑟𝒿 

< 𝑣𝑎𝑟 > ::=  𝑧𝑒𝑟𝑜 | 𝑜𝑛𝑒 |𝑙𝑒𝑛 | 𝐴𝐷𝐹0 

< 𝑙𝑖𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑡(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙  |𝑒𝑚𝑝𝑡𝑦 

| 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > | 𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟) 

 

ADF0() 

< 𝑠𝑡𝑚𝑡𝑠 > ::= < 𝑠𝑡𝑚𝑡 >; |  < 𝑠𝑡𝑚𝑡 >; < 𝑠𝑡𝑚𝑡𝑠 > 

< 𝑠𝑡𝑚𝑡 > ::= 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >) 

< 𝑒𝑥𝑝𝑟 > ::= < 𝑣𝑎𝑟 >  | + < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 >   | − < 𝑒𝑥𝑝𝑟 >< 𝑒𝑥𝑝𝑟 > 

< 𝑙𝑜𝑜𝑝𝑆𝑡𝑚𝑡 > :: = 𝑓𝑜𝑟_𝑙𝑜𝑜𝑝𝒿(< 𝑒𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝑠𝑡𝑚𝑡 >)  |  

      | < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >    | 𝑜𝑟𝑑𝑒𝑟(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >) 

< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > ::=  𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > |  < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > | 𝑟𝑒𝑎𝑑 < 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > 

< 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 > ::= 𝐶𝑣𝑎𝑟𝒿 | 𝐼𝑣𝑎𝑟𝒿 

< 𝑣𝑎𝑟 > ::=  𝑧𝑒𝑟𝑜 | 𝑜𝑛𝑒 |𝑙𝑒𝑛  

< 𝑙𝑖𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑 > ::=   𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑡(< 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 >)|  𝑚𝑎𝑘𝑒𝑁𝑢𝑙𝑙  |𝑒𝑚𝑝𝑡𝑦 

| 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 > | 𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟) 

 



151 

 

APPENDIX C: THE GOOGP RUNS THAT PRODUCED CODE FOR THE 

LIST ADT AND A SOLUTION FOR THE LIST ADT CONVERTED TO JAVA. 

Table C.1 Run numbers and seeds for the GOOGP runs that found a solution for the list ADT 

S/N Run Number Seed 

1 3 48885500493 

2 11 -2600735935262183310 

3 13 6009182497704641848 

4 27 1788569723501689014l 

 

The Java code provided below was converted from a solution generated in run 3 of GOOGP 

using the seed provided in the first row of Table C.1. The code was firstly generated in an 

internal representation language. Most of the functions in the internal representation language 

have an equivalent instruction in a particular programming language and can be converted. 

Some of the functions, for example, the read, write and order, have no equivalent. The code 

for such functions would be generated and are represented as private methods.  

 

public class List{ 

public final int CAPACITY = 100; 

private int capacity; 

private int aux = -1; 

private int size = aux + 1; 

int[] L; 

 

public List(){ 

capacity = CAPACITY; 

L = new int[capacity]; 

} 

 

public List(int cap){ 

capacity = cap; 

L = new int[capacity]; 
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} 

 

private int ADF(int arg1, int arg2){ 

  int Ivar484 = 0; 

 if(arg2 <= arg2 ){ 

  for(int Cvar484 = arg2; Cvar484 <= arg2; Cvar484++){ 

  Ivar484 = arg1; 

 }  

 }else{ 

  for(int Cvar484 = arg2; Cvar484 >= arg2; Cvar484--){ 

  Ivar484 = arg1; 

 }  

 } 

  int Ivar485 = 0; 

 if(arg1 <= arg2 ){ 

  for(int Cvar485 = arg1; Cvar485 <= arg2; Cvar485++){ 

  Ivar485 = Cvar485; 

 }  

 }else{ 

  for(int Cvar485 = arg1; Cvar485 >= arg2; Cvar485--){ 

  Ivar485 = Cvar485; 

 }  

 } 

  int Ivar483 = 0; 

 if(Ivar484 <= Ivar485 ){ 

  for(int Cvar483 = Ivar484; Cvar483 <= Ivar485; Cvar483++){ 

  int V2 = write(Ivar483 , Cvar483); 

  Ivar483 = V2; 

 }  

 }else{ 

  for(int Cvar483 = Ivar484; Cvar483 >= Ivar485; Cvar483--){ 

  int V2 = write(Ivar483 , Cvar483); 

  Ivar483 = V2; 

 }  
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 } 

  return Ivar483; 

} 

 

public void makeNull(){ 

  int V0 = set_aux(inc_aux()); 

  int V1 = aux - dec_aux() ; 

  int V2 = write(V0 , V1); 

} 

 

public void insertAt(int pos, int N){ 

inc_aux(); 

  int V0 = aux; 

  int V1 = ADF (pos , V0) ; 

  int V2 = write(N , pos); 

  int V3 = V2; 

} 

 

public int getElement(int pos){ 

  int V0 = read(pos); 

  return V0; 

} 

 

public int removeElement(int pos){ 

  int V0 = aux - dec_aux() ; 

  int Ivar159 = 0; 

 if(0 <= 1 ){ 

  for(int Cvar159 = 0; Cvar159 <= 1; Cvar159++){ 

  Ivar159 = pos; 

 }  

 }else{ 

  for(int Cvar159 = 0; Cvar159 >= 1; Cvar159--){ 

  Ivar159 = pos; 

 }  
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 } 

  int V2 = ADF (V0 , Ivar159) ; 

  return V2; 

} 

 

public boolean empty(){ 

  int Ivar10 = 0; 

 if(aux <= aux ){ 

  for(int Cvar10 = aux; Cvar10 <= aux; Cvar10++){ 

  Ivar10 = aux; 

 }  

 }else{ 

  for(int Cvar10 = aux; Cvar10 >= aux; Cvar10--){ 

  Ivar10 = aux; 

 }  

 } 

  return (Ivar10 < 0); 

} 

 

private int write(int val, int index){ 

    if (index < 0 || index >= capacity) { 

        return 0; 

    }else { 

        int returnvalue = (index > aux)? 0: L[index]; 

        L[index] = val; 

        return returnvalue; 

    } 

} 

 

private int set_aux(int index){ 

    aux = index; 

    return 0; 

} 
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private int inc_aux(){ 

    aux = aux + 1; 

    return 0; 

} 

 

private int dec_aux(){ 

    aux = aux - 1; 

    return 0; 

} 

 

private int read(int index){ 

    if(index >= 0 && index < capacity){ 

        return (index > aux)? 0: L[index]; 

    } else { 

        return 0; 

    } 

} 

}   
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APPENDIX D: A SOLUTION FOR PROBLEM3 CONVERTED TO JAVA 

 

public class IntegerSort{ 

private int len; 

private int[] intArray; 

private List list; 

 

public IntegerSort(int[] arr){ 

len = arr.length; 

list = new List(len); 

intArray = new int[len]; 

System.arraycopy(arr, 0, intArray, 0, len); 

} 

 

private int ADF1(){ 

  int V0 = len; 

  int Ivar295768 = 0; 

  for(int Cvar295768 = 0; Cvar295768 <= V0; Cvar295768++){ 

  int V1 = Cvar295768; 

  int V2 = read(Cvar295768); 

  list.insertAt(V1 , V2) ; 

int V3  = 0; 

  Ivar295768 = V3; 

  } 

  return Ivar295768; 

} 

 

public int[] sort(){ 

ADF1(); 

  int V1 = 1; 

  int V2 = len; 
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  int V3 = V2; 

  int Ivar251109 = 0; 

  for(int Cvar251109 = 0; Cvar251109 <= V3; Cvar251109++){ 

  int V4 = len; 

  int V5 = V4 - 1 ; 

  int Ivar251110 = 0; 

  for(int Cvar251110 = 0; Cvar251110 <= V5; Cvar251110++){ 

  int V6 = order (Cvar251109 , Cvar251110) ; 

  Ivar251110 = V6; 

  } 

  Ivar251109 = Ivar251110; 

  } 

  int V9 = Ivar251109; 

  return list.L; 

} 

 

private int read(int index){ 

    if(index >= 0 && index < len){ 

        return intArray[index]; 

    } else { 

        return 0; 

    } 

} 

private int order(int index1, int index2){ 

  if(index1 >= 0 && index1 < len && index2 >= 0 && index2 < len){ 

   if(list.getElement(index1) > list.getElement(index2)) {  

    int temp = list.getElement(index1); 

    list.L[index1]= list.getElement(index2); 

    list.L[index2] = temp; 

   } 

  } 

  return 0; 

} 

} 
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APPENDIX E: THE USER MANUAL 

E.1. Program Requirements 

In order to run the automatic object-oriented program, Java must be installed. If Java is 

already installed, please ensure that it is updated. An update version can be obtained from 

http://java.com/en/download/  

E.2. How to Run the Program 

GUI is created to make the program easy to run. GP parameters can be entered and changed 

easily. Problems definitions can be seen before starting any run. The text files containing the 

fitness cases used by the program and the executable Java file (i.e., the .exe file) must be in 

the same folder.  The following steps should be followed to run the algorithm. 

E.2.1 Step 1 –  Executable jar (.jar)  file 

The user starts by double clicking the Java icon . This causes Figure E.1 to display. 

Once GP is selected by clicking on “GP”, Figure E.2 is displayed. Similar interface is 

displayed if GE is selected. However, the GP interface is used for illustrations. 

 

Figure E.1 GUI interface for selecting GP or GE 

 

Figure E.2. The GUI interface for GP 

http://java.com/en/download/
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E.2.2. Step 2 – Selecting a problem 

OOGP, GOOGP and OOGE are applied to produce code for 3 object-oriented programming 

problems each involving 2 classes. Hence there are 6 different classes to be evolved. Figure 

E.3 shows how to select a problem while Figure E.4 shows how to view the problem 

definition by clicking on “view Problem Definition” button. 

 

Figure E.3 The GUI interface for Problem selection 

   

 

Figure E.4. GUI interface for viewing the problem definition 
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E.2.3. Step 3 –Selecting and applying an approach to produce code for a selected problem 

Figure E.5 shows an example of an interface that allows the user to edit the GP parameters. 

The interface is displayed when the “run” button in Figure E.4 is clicked. GOOGP is selected 

for run if the check box labelled “Use Greedy OOGP” is checked. OOGP is selected by 

default. The run button is clicked to execute the selected approach. 

 

 
Figure E.5. The GUI Interface that allows editing of the GP parameters 

E.3 Input Parameters and Editing 

The interface shown in Figure E.5 contains fields and buttons. Each text field has a default 

value which can be edited. A field is disabled if is not available for editing or use for a 

particular approach. Below is the explanation of each filed and button. 

E.3.1 Text fields  

Population Size: It contains an integer value that specifies the number of individuals that 

must be created during the initial population generation. 

Maximum Tree Depth: This contains an integer value that specifies the maximum level of 

nodes (depth) that can be reached when creating the individuals in the initial population 

generation.  
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Tournament Size: It specifies the number of individuals that must compete for fitness. It 

must be an integer. 

Maximum Offspring depth:  This specifies the maximum level of nodes the offspring 

created by genetic operators are allowed to have.  

Crossover: it specifies the percentage of the offspring that must be created by applying 

crossover operator. For instance, if the population size is 500, an input value 80 will allow 

(80*500)/100 = 400 offspring to be created using crossover operator. It must be an integer 

value. 

Mutation: This specifies the percentage of the offspring that must be created by applying 

mutation operator. It must be an integer value.  

Ext_Crossover: This specifies the probability that external crossover will be applied to an 

individual in the population. It must be an integer value. A value of 80 implies 0.8 

probabilities.  

Int_Crossover: This specifies the probability that internal crossover will be applied to an 

individual in the population. It must be an integer value. A value of 50 implies 0.5 

probabilities.  

Bit_flip: This field is used when GE in Figure E.1 is selected. It specifies the probability that 

a bit in a GE chromosome will be flipped. It must be an integer value. 

Enter Depth: It is recommended that this field is always used. Otherwise the value will be 

randomly generated. Mutation creates new individual using the grow method of the initial 

population generation. The individual replaces the subtree that must be deleted from the 

parent. Instead of using the value specified in the “Maximum Tree Depth” field. The value 

specified in the “Enter Depth” is used. 

Enter Seed: This filed allows the user to specify a seed to be used. Once this field is selected, 

the default seed will not be used. This field must contain an Integer or Long (data type) 

numbers. It should be noted that the same solution may not be generated if the seed or any 

other parameters changes. 
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E.3.2. Check Buttons 

This is used to allow the user make a decision whether or not to use a particular operation. 

The “Use Mutation Depth” enables or disables the “Enter depth” field while the “Use seed” 

enables or disables the “Enter Seed” field. 

E.3.3. Combo Box 

The combo box labelled “Test seeds” is useful for selecting one of the default seeds used for 

testing the approaches. The system can only make use of the selected seed if the “Enter Seed” 

field is disabled. The grow method of initial population generation was used for the final runs 

of each approach. Hence, both the ramped half-and-half and full methods were disabled.   

E.4 Indicators 

The system displays a message to indicate whether or not a solution has been found. Figure 

E.6 shows this message. If a solution is found, it is writing to a text file named using the 

format problemApprochSolution.txt. For example, a solution for the list ADT produced by 

GOOGP will be written to a file named ListGOOGPsolution.txt. The file will be written to 

the same folder containing the .jar file. As shown in Figure E.7, the system provides the 

option to convert the generated solution to Java, if the selected approach is GOOGP and the 

selected problem is the list ADT or Problem3. The option displays when a solution has been 

found and the user clicked “OK”. Choosing “Yes” in Figure E.7 will write Java code to a file 

named using the format problemClass.java, where problem is either List or Problem3. For 

example, a file named ListClass.java is produced when  problem  is List. 

 

 
Figure E.6.  Solution status indicators 

 

 

Figure E.7 The option to convert a solution to Java  
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APPENDIX F: FITNESS CASES FOR THE FINAL RUNS 

 

Table F. 1. The fitness cases used for the final runs for Problem1 

Fitness case Expected outcome 

Noel sees Leon TRUE 

Pen tip  FALSE 

Sore was I ere I saw Eros TRUE 

deepened FALSE 

Euston saw I was not Sue TRUE 

going FALSE 

No evil Shahs live on TRUE 

On the go FALSE 

murdrum TRUE 

Pump FALSE 
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Table F. 2. The fitness cases used for the final runs for Problem2 

Input case Target arrangement 
0/3 1 

1/2 4 6 7 

2/8 9 

3/ 

4/5 

5/ 

6/ 

7/ 

8/ 

9/ 

0 3 1 2 4 6 7 8 9 5 

13/4 6 12 

4/1 2 3 

6/5 

12/8 9 10 11 

1/ 

2/ 

3/ 

5/ 

8/7 

9/ 

10/ 

11/ 

7/ 

13 4 6 12 1 2 3 5 8 9 10 11 7 

8/2 7 

1/ 

2/1 

3/ 

4/3 

5/ 

6/ 

7/4 5 6 

8 2 7 1 4 5 6 3 

1/2 3 

2/4 5 

3/6 7 8 

4/ 

5/9 10 

6/ 

7/ 

8/ 

9/ 

10/ 

1 2 3 4 5 6 7 8 9 10 

4/2 6 

2/1 3 

6/5 7 

1/ 

3/ 

5/ 

7/ 

4 2 6 1 3 5 7 

 


