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Abstract

We present seven modified pseudospectral collocation methods for solving nonlinear evolution

differential equations, and systems of nonlinear partial differential equations. They converge

in a fraction of a second, use few grid points and are accurate. These numerical methods

are implemented using spectral collocation, independently both in space and time. They are

presented in general form, are then used to solve nonlinear evolution differential equations

and systems of nonlinear partial differential equations arising from fluid dynamics. They are

compared with the bivariate pseudospectral methods and are validated to show accuracy.

The bivariate spectral quasilinearization method (BSQLM), for nonlinear evolution equations

is introduced in a general form for pth order nonlinear evolution equation. Applicability, and

accuracy of the method is confirmed by solving one dimensional nonlinear partial differential

equations. The method is extended to a system of non-similar partial differential equations that

model magnetohydrodynamic forced convection flow adjacent to a non-isothermal wedge. The

bivariate spectral relaxation method (BSRM) is presented for systems of four nonlinear partial

differential equations modeling an unsteady three dimensional magnetohydrodynamic flow,

and mass transfer, in a porous media. Compared with previously published results, the BSRM

is computationally efficient and converges quickly with few grid points. The performance

of three bivariate pseudospectral methods is analyzed. The generalized bivariate spectral

quasilinearization method (BSQLM) and bivariate spectral local linearization method (BSLLM)

for systems of n nonlinear partial differential equations are presented for the first time in general

form and are compared with the BSRM. For each method, convergence and residual graphs,

tables of convergence errors and computational time are presented. A modified bivariate spectral

quasilinearization method is then presented, which uses Legendre-Gauss-Lobbatto grid points

instead of the Lagrange-Gauss-Lobbatto grid points. This approach improves the accuracy of



the bivariate spectral quasilinearization method. It is tested on nonlinear partial differential

equations.

The multi-domain bivariate spectral quasilinearization method (MD-BSQLM) for nonlinear

evolution equations is introduced in a general form for solving pth order nonlinear evolution

equations over a large time interval. Its applicability, and reliability is confirmed by solving one

dimensional nonlinear partial differential equations over a large time domain. The pseudospec-

tral method is extended to a system of nonlinear coupled non-similar boundary layer partial

differential equations over a large independent variable interval. It is developed for systems

of n coupled non-similar boundary layer partial differential equations. Lastly, a multi-domain

bivariate spectral local linearization method (MD-BSLLM), is developed for solving system

of n coupled non-similar partial differential equations whose solutions have boundary layers.

As before, the MD-BSLLM is tested for nonlinear coupled non-similar boundary layer partial

differential equations over a large independent variable interval.
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Chapter 1

Introduction

1.1 Literature Review

Naturally occurring phenomena and their respective dynamics can be captured accurately using

nonlinear partial differential equations. Nonlinear evolution equations reveal some notable

features of physical systems. For instance, the Burgers equation has been used as a math-

ematical model of turbulence [1], the KdV-Burgers equation is applicable in quantum field

theory, plasma physics and solid-state physics [2], the Burgers–Huxley equation describes the

interaction between reaction mechanisms, convection effects and diffusion transports [3] while

the FitzHugh-Nagumo equation models the transmission of nerve impulses and has also been

used in population genetics and electrical circuit theory [4]. In fluid mechanics, boundary

layer problems are represented using systems of nonlinear partial differential equations. In as

much as we model these naturally occurring physical systems using complex nonlinear partial

differential equations, it is often difficult or impossible to obtain exact solutions. Some of the

most interesting and important features of naturally occurring systems can only be studied with

methods designed to tackle their nonlinearity. Nevertheless, despite these difficulties, researchers

have developed analytical techniques for finding solutions of such nonlinear complex partial

differential equations. These methods include the homotopy analysis method [5–10], homotopy

perturbation method [11–16] and variational iteration method [17–21]. These methods all use a

series approach, and hence their accuracy is determined by the number of terms used in the series.

For complex systems of partial differential equations, many terms would be required, which
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then leads to complicated expressions which may not be simplified by mathematics software

currently available. Thus, such analytical methods are not ideal for solving nonlinear partial

differential equations.

Numerical methods have, instead, been developed to overcome the challenges encountered

in analytic methods. Finite difference based methods, such as the Keller-box method [22–25]

have been developed for solving boundary layer equations. However, finite difference based

methods require a fine grid to converge to an exact solution. A fine grid implies that many values

must be calculated for the many grid points. Therefore, for accurate results, this numerical

method demands considerable computational time, which becomes worse with large systems

of equations. Furthermore, in some instances, finite difference methods may not converge to

the exact solution, despite a fine grid. In a bid to decrease computational time and hasten

convergence, spectral methods have been combined with finite difference based methods. In

Section 1.2, we discuss the advantages and disadvantages of numerical methods. Solutions

to overcome disadvantages of some of the numerical methods are being discussed. Aims and

Objectives of this project are presented Section 1.3. The outline of this thesis is presented in

Section 1.4.

1.2 Existing Numerical Methods

In this section, we discuss some numerical methods that have been used to solve nonlinear partial

differential equations. We discuss their properties, advantages and disadvantages, together with

some solutions to overcome the disadvantages.

1.2.1 Finite Differences Methods

Finite differences are the simplest of numerical methods and are a popular approach for obtain-

ing numerical solutions of differential equations. They are discretization methods for solving

differential equations by approximating them with difference equations, in which finite differ-

ences approximate the derivatives. However, their conditional stability depends on the physical

problem being modeled. Finite differences are suitable for regular grids. Boundary conditions

are easier to implement for regular grids when using finite differences [26].
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Parabolic partial differential equations may be approximated by explicit or implicit finite

differences [26, 27]. The explicit finite difference method uses forward difference in time and

central difference in space. For this method, one needs to know the values at the current time

interval so as to determine the values at the next time interval, and hence this is termed an

explicit method. In this case, convergence and stability depend on the ratio of the time and space

steps. By contrast, the implicit method solves an equation using both the current state of the

system and a later one. Using this method is tedious and intensive, since it requires solving a

system of equations.

Finite difference methods depend on approximating a function by a local polynomial in-

terpolant. The derivatives of the function are then approximated by differentiating the local

polynomial. By local, we mean the use of finely spaced grid points to approximate the function

or its derivative at a point. Low degree local polynomials require a fine grid in order to accurately

resolve a function. Thus, we need numerical methods that would allow coarser grids and fewer

computational resources. Spectral methods are such methods because they use all available

function values to construct the required approximations. A brief review of spectral methods

follows next.

1.2.2 Spectral Methods

Spectral methods are numerical techniques that can achieve high accuracy results with compara-

tively few grid points because they use all available function values to construct the required

approximations for differential equations. They are thus called global methods [28–30]. The

two main components of spectral methods are the approximating functions and weight functions.

The approximating functions are a linear combination of suitable basis functions, which provide

an approximate representation of the solution. Then the weight functions ensure that boundary

conditions of the differential equations are satisfied.

The most commonly used basis functions are Legendre [31, 32], Lagrange [33, 34], Laguerre

[35, 36] and Chebyshev [29, 30] polynomials. With equi-spaced points approximations can

diverge near the endpoints, which is known as the Runge phenomenon for non-periodic functions.

Therefore, when interpolating smooth functions, Chebyshev based grid points are the preferred
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choice because they provide approximations with nearly uniform accuracy over the closed

interval [−1,1].

In the general form of spectral methods, we seek a solution of the form

f (x)≈
N

∑
i=0

f (xi)φi(x) (1.1)

where φi(x) is an interpolating polynomial, and f (xi) is the value of the function f (x) evaluated

at the grid points xi. There are various types of Chebyshev grid points. For instance, three given

by Hesthaven [28] and Boyd [29] are shown as:

xi = cos
(
(2i+1)π
(2N +2)

)
, Chebyshev-Gauss (1.2)

xi = cos
(

(2iπ)
(2N +1)

)
, Chebyshev-Gauss-Radau (1.3)

xi = cos
(

πi
N

)
, Chebyshev-Gauss-Lobatto (1.4)

In this thesis, we will use Lagrange polynomials with Chebyshev-Gauss-Lobatto and Legendre-

Gauss-Lobatto grid points. The Legendre-Gauss grid points are zeros of the (N +1)th Legendre

polynomial, Legendre-Gauss-Radau grid points are the zeros of the sume of the Nth and

(N +1)th Legendre polynomial. The end points of the Legendre-Gauss-Lobatto grid points are

−1,1 and the interior points are the zeros of the first derivative of the Nth Legendre polynomial.

The characteristic Lagrange cardinal polynomial denoted by Li(x) is given by

Li(x) =
N

∏
i=0
i ̸=k

x− xk

xi − xk
, (1.5)

where

Li(xk) = δik =





0 if i ̸= k

1 if i = k
(1.6)

The first derivative of the Legendre polynomial is given by

P′
Nx
(x) =

N(N +1)
(2N +1)

[
PN−1(x)−PN+1(x)

1− x2

]
. (1.7)
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Partial differential equations have been solved using spectral collocation (in space) and finite

differences (time). The partial differential equation is first expressed as an ordinary differential

equation, which is then solved using the Runge-Kutta method [37–40]. However, because finite

difference methods are known to converge more slowly than spectral methods, combining the

two would compromise the rapid convergence of spectral methods. Accordingly, in this thesis,

we aim to develop spectral methods that can be used to solve nonlinear partial differential

equations in both space and time, yet will still, converge quickly achieve accurate results with

few grid points. In the next subsection, we first review the existing spectral methods.

1.2.3 A Combination of Finite Differences and Spectral Methods

Combined finite differences and spectral methods that are used to approximate solutions of non-

linear differential equations. The methods utilized the spectral method to discretize derivatives

in space and finite differences to discretize in time. These methods include spectral quasilin-

earization method (SQLM), spectral relaxation method (SRM) and spectral local linearisation

method (SLLM).

Applying the spectral method in space improved the accuracy, convergence and computa-

tional time of the finite differences methods. However, the accuracy, convergence and com-

putational time of these methods are compromised. In the next subsection, we introduce new

methods that will overcome these disadvantages.

1.3 Modified Numerical Methods

1.3.1 Bivariate Spectral Methods

In this subsection, we present the spectral methods that are used to approximate solutions of

nonlinear differential equations in both space and time. The solution procedure assumes that the

solution can be approximated by a bivariate Lagrange interpolation polynomial of the form

u(x, t)≈
Nx

∑
i=0

Nt

∑
j=0

u(xi, t j)Li(x)L j(t), (1.8)
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where Nx and Nt are the number of grid points in the x and t directions respectively and Li(x)

is the Lagrange interpolation polynomial given by equation (1.5). Equations (1.8) interpolates

u(x, t) at selected points in both the x and t directions defined by

{xi}=
{

cos
(

πi
Nx

)}Nx

i=0
, {t j}=

{
cos
(

π j
Nt

)}Nt

j=0
. (1.9)

These methods are termed bivariate spectral methods. The values of the time derivatives at the

grid points (xi, t j), are computed as (for j = 0,1,2, . . . ,Nt)

∂u
∂ t

∣∣∣∣
x=xi,t=t j

=
Nx

∑
p=0

Nt

∑
k=0

u(xp, tk)Lp(xi)
dLk(t j)

dt
(1.10)

=
Nt

∑
k=0

u(xi, tk)d jk (1.11)

=
Nt

∑
k=0

d jku(xi, tk) (1.12)

where d jk =
dLk(t j)

dt is the standard first derivative Chebyshev differentiation matrix of size

(Nt +1)× (Nt +1) as defined by Trefethen [41]. The values of the space derivatives at the grid

points (xi, t j) (i = 0,1,2, · · · ,Nx) are computed as

∂u
∂x

∣∣∣∣
x=xi,t=t j

=
Nx

∑
p=0

Nt

∑
k=0

u(xp, tk)
dLp(xi)

dx
Lk(t j) (1.13)

=
Nx

∑
p=0

u(xp, t j)Dip (1.14)

=
Nx

∑
p=0

Dipu(xp, t j), (1.15)

where Dip =
dLp(xi)

dx , is the standard first derivative Chebyshev differentiation matrix of size

(Nx +1)× (Nx +1). Similarly, for an nth order space derivative, we have

∂ nu
∂xn

∣∣∣∣
x=xi,t=t j

=
Nx

∑
p=0

Dn
ipu(xp, t j) = DnU j, i = 0,1,2, . . . ,Nx, (1.16)

6



where the vector U j is defined as

U j = [u j(x0),u j(x1), . . . ,u j(xNx)]
T . (1.17)

and the superscript T denotes matrix transpose. In this thesis, we develop seven new methods;

all of which can be used to solve nonlinear parabolic partial differential equations and systems

of equations. The first new method we develop is termed the bivariate spectral quasilinearization

method (BSQLM), which is suitable, among other applications, for solving equations arising

from fluid mechanics. The method uses Chebyshev spectral collocation, bivariate Lagrange

interpolation polynomials together with quasilinearization techniques. The nonlinear parabolic

equations are first linearized using the quasilinearization method. The Chebyshev spectral

collocation method with Lagrange interpolation polynomials are applied independently in space

and time domains. The BSQLM algorithm is presented for a general setting, where it can be used

to solve any pth order nonlinear evolution equation. The next method introduced in this thesis

is the bivariate spectral quasilinearization method (BSQLM) which is used to solve coupled

system of nonlinear equations. Linearization is done for all the variable per equation using the

quasilinearization technique

The third method, the bivariate spectral relaxation method (BSRM) has been developed

specifically for nonlinear systems of partial differential equations. In this thesis, we seek to

improve the performance of the spectral relaxation method (SRM). We will build on the SRM by

applying the spectral method to discretize the derivatives in both space and time variables. The

proposed approach combines the relaxation scheme of the SRM which uses the Gauss-Seidel

approach, bivariate Lagrange interpolation as well as the Chebyshev spectral collocation method.

Another technique, the bivariate spectral local linearization method (BSLLM) is introduced

in this thesis. This method is developed for solving a system of n coupled non-similar boundary

layer partial differential equations. Linearization is done for one variable per equation using

the quasilinearization technique. The system of equations are then solved iteratively using a

Jacobi-like relaxation approach.

The fifth technique, the Legendre-Gauss-Lobbatto bivariate pseudospectral quasilinearisation

method (LGL-BSQLM) has been developed for nonlinear evolution equations. This method is an

improvement of the first method introduced in this thesis, the bivariate spectral quasilinearization
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method. The main difference between the two methods is that the LGL-BSQLM uses Legendre-

Gauss-Lobatto grid points while the BSQLM uses Chebyshev-Gauss-Lobatto grid points. These

techniques perform well in small domains.

If the domains are large, the accuracy of the methods deteriorates. To further improve the

accuracy of the methods, the domains are decomposed into smaller sub-intervals. The approach

is briefly described in Section 1.2.4.

1.3.2 Multi-domain Bivariate Spectral Methods

Increasing the length of the variables domain decreases the accuracy of the bivariate spectral

methods for solving nonlinear partial differential equations. To achieve accurate results, the

number of grid points should be increased. Increasing the number of grid points increases

computational time and requires more computational resources. The idea is to break down the

domain into small sub-domains and solve the differential equations in each sub-domain with a

very small interval.

In this thesis, we therefore introduce a domain decomposition method that uses multiple

domains, spectral collocation, bivariate Lagrange interpolation polynomials based on Legendre-

Gauss-Lobatto grid points together with quasilinearization. Linearity of the evolution partial

differential equations is achieved by the quasilinearization method. A pseudospectral collocation

method is applied independently both in space and time. The second independent variable’s

domain is divided into smaller non-overlapping sub-intervals, on which the pseudospectral

collocation method is used to solve the partial differential equations. A continuity condition is

used to advance the solution across the sub-intervals. This approach is termed the multi-domain

Legendre-Gauss-Lobatto based bivariate Lagrange spectral quasilinearization method (MD-

LGL-BSQLM). It is applied to evolution nonlinear partial differential equations. The method

is further developed to solve systems of nonlinear partial differential equations arising in fluid

dynamics. The method for solving systems of nonlinear partial differential equations is termed

the multi-domain bivariate spectral quasilinearization method (MD-BSQLM). The BSLLM

is also extended to use the multi-domain approach and the method is termed multi-domain

bivariate spectral local linearization method (MD-BSLLM).
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1.4 Aims and Objectives

Existing numerical methods for nonlinear parabolic partial differential equations and systems of

nonlinear partial differential equations converge very slow, use many grid points, and hence use

more computational resources to handle differential equations over large domains.

In this thesis, we introduce new pseudospectral methods for solving nonlinear evolution

differential equations and systems of nonlinear partial differential equations. Our methods

use spectral collocation independently both in space and time. The algorithms are presented

in a general form suitable for solving any nonlinear evolution partial differential equations

and systems of nonlinear partial differential equations. A number of different algorithms are

presented. Among the methods used to determine and validate the accuracy of the numerical

schemes, we have compared numerical results with exact solutions, where such exist, or we

have used residual error analysis. For comparison, condition numbers of the variable matrices

are used.

The main aim of this thesis is to develop new numerical methods for nonlinear parabolic

partial differential equations and systems of nonlinear partial differential equations. These

numerical methods should converge very fast, use few grid points, use minimal computational

resources and handle differential equations over large time domains.

1.5 Thesis outline

This thesis is organized as follows:

• In Chapter 2, the bivariate spectral quasilinearisation method (BSQLM) for nonlinear

evolution equations is introduced. The method is presented in a general form for pth order

nonlinear evolution equations. The applicability, accuracy and reliability of the BSQLM

is confirmed by solving the Fisher equation, Burgers-Fisher equation, Fitzhugh-Nagumo

equation, Burgers-Huxley equation, modified KdV-Burgers equation and the modified

KdV equation. The results of the BSQLM are compared against exact solutions.

• In Chapter 3, the bivariate spectral quasilinearization method (BSQLM) is applied to a

system of partial differential equations. The objective is to solve a system of non-similar

boundary layer equations that model magnetohydrodynamics forced convection flow
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adjacent to a non-isothermal wedge. This problem had been previously solved numerically

by Yih using the Keller-Box method [42]. We show that the BSQLM is more accurate

than some traditional numerical methods, computationally fast and robust.

• In Chapter 4, the bivariate spectral relaxation method (BSRM) for systems of nonlinear

partial differential equations is presented. The spectral method is applied in both space

and time, where it is shown to offer spectral accuracy in both variables. This accuracy is

achieved with very few grid points compared to the number needed for finite differences;

this improves the efficiency of the method. The BSRM is tested on a system of four partial

differential equations modeling an unsteady three dimensional magnetohydrodynamic

flow and mass transfer in a porous media. Results are compared with previously published

results, the spectral relaxation method, the spectral quasilinearization method and the

Keller-box method.

• In Chapter 5, the general performance of three bivariate pseudospectral methods is an-

alyzed. The main aim is to compare the general performance of three bivariate pseu-

dospectral methods and present the generalized BSQLM and introduce a generalized

bivariate spectral local linearisation method (BSLLM) for a system of n nonlinear system

of partial differential equations. In comparing the accuracy and general performance of

the three pseudospectral methods, graphs and tables are presented. The results show that

the BSLLM is computationally faster than the BSQLM and BSRM.

• In Chapter 6, the a new method termed the Legendre-Gauss-Lobbatto bivariate spectral

quasilinearisation method (LGL-BSQLM) for nonlinear evolution partial differential

equations is introduced. This method is a modification of the BSQLM method introduced

in second chapter of this thesis. The method is presented in a general form for pth

order nonlinear evolution equations. It’s applicability, accuracy and reliability of the

LGL-BSQLM is confirmed by solving the Fisher equation, Burgers-Fisher equation,

Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation

and the modified KdV equation.

• In Chapter 7, the multi-domain bivariate spectral quasilinearization method (MD-LGL-

BSQLM) for nonlinear evolution equations is introduced. The method is presented in a

10



general form for pth order nonlinear evolution equations over a large time interval. The

applicability, accuracy and reliability of the proposed BSQLM is confirmed by solving the

modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher equation,

Burgers-Fisher equation, Burgers-Huxley equation and Fitzhugh-Nagumo equation.

• In Chapter 8, domain decomposition numerical methods for finding solutions of systems

of nonlinear coupled non-similar boundary layer partial differential equations over a

large time interval are presented. The pseudospectral methods termed the multi-domain

bivariate spectral quasilinearization method (MD-BSQLM), and multi-domain bivariate

spectral local linearization method (MD-BSLLM), are developed for solving systems of n

coupled non-similar boundary layer partial differential equations. The domain is divided

into smaller non-overlapping sub-intervals on which the Chebyshev spectral collocation

method is used to solve the equations. A continuity condition is used to advance the

solution across the sub-intervals. The algorithms presented in this chapter are simple and

yet they yield accurate results using few discretization points. The accuracy of the method

is validated against the series solution for limiting cases.

• In chapter 9, we conclude the thesis with a summary and suggestions for future work. The

references follow thereafter.
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Chapter 2

A bivariate Chebyshev spectral collocation

quasilinearization method for nonlinear

evolution parabolic equations

In this chapter, we present a numerical method for solving higher order nonlinear evolution

partial differential equations (NPDEs). The method combines quasilinearization, the Chebyshev

spectral collocation method and bivariate Lagrange interpolation. In this chapter, we use the

method to solve several nonlinear evolution equations; namely the Fisher equation, Burgers-

Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers

equation and the modified KdV equation. The results are compared with known exact analytical

solutions from literature. Convergence of the method is verified through convergence graphs

are and error graphs used to compare the results from this study and the known results from

literature. This chapter reflects work we have already published as indicated by publication

number 1 (see page vii).

2.1 Introduction

Nonlinearity exists everywhere, and in general, nature is nonlinear. Nonlinear evolution partial

differential equations arise in many fields of science, particularly in physics, engineering, chem-

istry, finance and biological systems. They are widely used to describe complex phenomena

in various fields of sciences, such as wave propagation phenomena, fluid mechanics, plasma
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physics, quantum mechanics, non-linear optics, solid state physics, chemical kinematics, phys-

ical chemistry, population dynamics, financial industry and numerous areas of mathematical

modeling. The development of both numerical and analytical methods for solving complicated,

highly nonlinear evolution partial differential equations continues to be an area of interest

to scientists whose research aim is to enrich deep understanding of such alluring nonlinear

problems.

Innumerable number of methods for obtaining analytical and approximate solutions to

nonlinear evolution equations have been proposed. Some of the analytical methods that have been

used to solve evolution nonlinear partial differential equations include Adomian’s decomposition

method [43–45], homotopy analysis method [46–49], tanh-function method [50–52], Haar

wavelet method [53–55] and Exp-function method [56–58]. Several numerical methods have

been used to solve nonlinear evolution partial differential equations. These include the explicit-

implicit method [59], Chebyshev finite difference methods [60], finite difference methods [61],

finite element methods [62] and pseudospectral methods [63, 64].

Some drawbacks of approximate analytic methods include slow convergence, particularly

for large time (t > 1). They may also be cumbersome to use as some involve manual integration

of approximate series solutions and hence it is difficult to find closed solutions sometimes. On

the other hand, some numerical methods may not work in some cases, for example when the

required solution has to be found near a singularity. Certain numerical methods, for example

finite differences require many grid points to achieve good accuracy and hence require a lot of

computer memory and computational time. Conventional first-order finite difference methods

may result in monotonic and stable solutions, but they are strongly dissipative causing the

solution of the strongly convective partial differential equations to become smeared out and

often grossly inaccurate. On the other hand, higher order difference methods are less dissipative

but are prone to numerical instabilities.

Spectral methods have been used successfully in many different fields in the sciences and

engineering because of their ability to give accurate solutions of differential equations. Khater

[37] applied the Chebyshev spectral collocation method to solve Burgers type of equations

in space and finite differences to approximate the time derivative. The Chebyshev spectral

collocation method has been used together with the fourth-order Runge-Kutta method to solve

the nonlinear PDEs in this study. The Chebyshev spectral collocation is first applied to the

13



NPDE and this yields a system of ordinary differential equations, which are solved using the

fourth-order Runge-Kutta method. Olmos [65], Javidi [38, 39], Dehghan [40], Driscoll [66],

solved the Fisher, Burgers-Fisher, Burgers-Huxley, and Fitzhugh-Nagumo equations respectively

using a combination of the Chebyshev spectral collocation method and fourth-order Runge-

Kutta method. Darvishi [67, 68] solved the KdV and the Burgers-Huxley equations using

a combination of the Chebyshev spectral collocation method and Darvishi’s preconditioning.

Jacobs [69] and Tohidi [70] used spectral collocation directly for solving linear partial differential

equations. Accuracy will be compromised if they implement their approach in solving nonlinear

partial differential equations since they use Kronecker multiplication.

Chebyshev spectral methods are defined everywhere in the computational domain. Therefore,

it is easy to get an accurate value of the function under consideration at any point of the domain,

beside the collocation points. This property is often exploited, in particular to get a significant

graphic representation of the solution, making apparent the possible oscillations due to a wrong

approximation of the derivative. Spectral collocation methods are easy to implement and are

adaptable to various problems, including variable coefficient and nonlinear differential equations.

The error associated with the Chebyshev approximation is O(1/Nr) where N refers to the

truncation and r is connected to the number of continuous derivatives of the function. The

interest in using Chebyshev spectral methods in solving nonlinear PDEs stems from the fact

that these methods require less grid points to achieve accurate results. They are computational

efficient compared to traditional methods like finite difference and finite element methods.

Chebyshev spectral collocation method have been used in conjunction with additional methods

which may have their own drawbacks. Here we provide an alternative method that is not

dependent on another method to approximate the solution.

The main objective of this chapter is to introduce a new method that uses Chebyshev spec-

tral collocation, bivariate Lagrange interpolation polynomials together with quasilinearisation

techniques. The nonlinear evolution equations are first linearized using the quasilinearisation

method. The Chebyshev spectral collocation method with Lagrange interpolation polynomials

are applied independently in space and time variables of the linearized evolution partial differ-

ential equation. This new method is termed bivariate interpolated spectral quasilinearisation

method (BSQLM). We present the BSQLM algorithm in a general setting, where it can be used

to solve any rth order nonlinear evolution equations. The applicability, accuracy and reliability
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of the proposed BSQLM is confirmed by solving the Fisher equation, Burgers-Fisher equation,

Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation and the

modified KdV equation. The results of the BSQLM are compared against known exact solutions

that have been reported in the scientific literature. It is observed that the method achieves high

accuracy with relatively fewer spatial grid points. It also converges fast to the exact solution and

approximates the solution of the problem in a computationally efficient manner with simulations

completed in fractions of a second in all cases. Tables are generated to show the order of

accuracy of the method and time taken to compute the solutions. It is observed that as the

number of grid points is increased, the error decreases. Error graphs and graphs showing the

excellent agreement of the exact and analytical solutions for all the nonlinear evolution equations

are also presented.

This chapter is organized as follows. In Section 2, we introduce the BSQLM algorithm for a

general non-linear evolution PDE. In Section 3, we describe the application of the BSQLM to

selected test problems. The numerical simulations and results are presented in Section 4. Finally,

we conclude in Section 5.

2.2 Bivariate Spectral Quasilinearization Method (BSQLM)

In this section we introduce the Bivariate Spectral Quasilinearization Method (BSQLM) for

finding solutions to non-linear evolution PDEs. Without loss of generality, we consider non-

linear PDEs of the form,

∂u
∂τ

= H
(

u,
∂u
∂η

,
∂ 2u
∂η2 , · · · ,

∂ nu
∂ηn

)
,with the physical region τ ∈ [0,T ], η ∈ [a,b] (2.1)

where n is the order of differentiation, u(η ,τ) is the required solution and H is a non-linear

operator which contains all the spatial derivatives of u. The given physical region, τ ∈ [0,T ] is

converted to the region t ∈ [−1,1] using the linear transformation τ = T (t +1)/2 and η ∈ [a,b]

is converted to the region x ∈ [−1,1] using the linear transformation

η =
1
2
(b−a)x+

1
2
(b+a).
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Equation (2.1) can be expressed as

∂u
∂ t

= H
(

u,
∂u
∂x

,
∂ 2u
∂x2 , · · · ,

∂ nu
∂xn

)
, t ∈ [−1,1], x ∈ [−1,1] (2.2)

The solution procedure assumes that the solution can be approximated by a bivariate Lagrange

interpolation polynomial of the form (1.8), which interpolates u(x, t) at selected points in both

the x and t directions defined by equation (1.9). The choice of the Chebyshev-Gauss-Lobatto

grid points (1.9), ensures that there is a simple conversion of the continuous derivatives, in both

space and time, to discrete derivatives at the grid points. Before expressing equation (2.2) in

linear form, it is convenient to split H into its linear and nonlinear components and rewrite the

governing equation in the form,

F [u,u′, · · · ,u(n)]+G[u,u′, · · · ,u(n)]− u̇ = 0, (2.3)

where the dot and primes denote the time and space derivatives, respectively, F is a linear

operator and G is a non-linear operator. Assuming that the difference ur+1 −ur and all it’s space

derivative is small, we first approximate the non-linear operator G using the linear terms of the

Taylor series and hence

G[u,u′, · · · ,u(n)]≈ G[ur,u′r, · · · ,u
(n)
r ]+

n

∑
k=0

∂G
∂u(k)

(
u(k)r+1 −u(k)r

)
(2.4)

where r and r+1 denote previous and current iterations respectively. We remark that this quasi-

linearization method (QLM) approach is a generalisation of the Newton-Raphson method and

was first proposed by Bellman and Kalaba [71] for solving nonlinear boundary value problems.

Equation (2.4) can be expressed as

G[u,u′, · · · ,u(n)]≈ G[ur,u′r, · · · ,u(n)r ]+
n

∑
k=0

φk,r[ur,u′r, · · · ,u(n)r ]u(k)r+1 −
n

∑
k=0

φk,r[ur,u′r, · · · ,u(n)r ]u(k)r (2.5)

where

φk,r[ur,u′r, · · · ,u
(n)
r ] =

∂G
∂u(k)

[ur,u′r, · · · ,u
(n)
r ]. (2.6)
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Substituting equation (2.5) into equation (2.3), we get

F [ur+1,u′r+1, · · · ,u
(n)
r+1]+

n

∑
k=0

φk,ru
(k)
r+1 − u̇r+1 = Rr[ur,u′r, · · · ,u

(n)
r ] (2.7)

where

Rr[ur,u′r, · · · ,u
(n)
r ] =

n

∑
k=0

φk,ru
(k)
r −G[ur,u′r, · · · ,u

(n)
r ].

A crucial step in the implementation of the solution procedure is the evaluation of the time

derivative at the grid points t j ( j = 0,1, . . . ,Nt) and the spatial derivatives at the grid points xi

(i = 0,1, . . . ,Nx). The values of the time derivatives at the Chebyshev-Gauss-Lobatto points

(xi, t j), are computed using equation (1.12) for j = 0,1,2, . . . ,Nt . The values of the space

derivatives at the Chebyshev-Gauss-Lobatto points (xi, t j) for i = 0,1,2, · · · ,Nx are computed

using equation (1.16). Substituting (1.16) into (2.7) we get

F [Ur+1, j,U′
r+1, j, · · · ,U

(n)
r+1, j]+

n

∑
k=0

ΦΦΦk,rU
(k)
r+1, j −

Nt

∑
k=0

d jkUr+1,k = Rr[Ur, j,U′
r, j, · · · ,U

(n)
r, j ] (2.8)

for j = 0,1,2, . . . ,Nt , where

U(n)
r+1, j = DnUr+1, j, ΦΦΦk,r =




φk,r(x0, t j)

φk,r(x1, t j)
. . .

φk,r(xNx , t j)




(2.9)

The initial condition for equation (2.2) corresponds to τNt =−1 and hence we express equation

(2.8) as

F [Ur+1, j,U′
r+1, j, · · · ,U

(n)
r+1, j]+

n

∑
k=0

ΦΦΦk,rU
(k)
r+1, j −

Nt−1

∑
k=0

d jkUr+1,k = R j (2.10)

where

R j = Rr[Ur, j,U′
r, j, · · · ,U

(n)
r, j ]+d jNt UNt , j = 0,1,2, . . . ,Nt −1.
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Equation (2.10) can be expressed as the following Nt(Nx +1)×Nt(Nx +1) matrix system




A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1
...

... . . . ...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1







U0

U1
...

UNt−1



=




R0

R1
...

RNt−1



, (2.11)

where

Ai,i = F [I,D, · · · ,D(n)]+
n

∑
k=0

ΦΦΦk,rD(k)−di,iI (2.12)

Ai, j =−di, jI, when i ̸= j, (2.13)

and I is the identity matrix of size (Nx + 1)× (Nx + 1). Solving equation (2.11) gives an

approximate value of u(x, t).

2.3 Numerical experiments

We apply the proposed algorithm to well-known nonlinear PDEs of the form (2.2) with exact

solutions. In order to determine the level of accuracy of the BSQLM approximate solution, at a

particular time level, in comparison with the exact solution we report maximum error which is

defined by

EN = max
r

{|u(xr, t)− ũ(xr, t)| , : 0 ≤ r ≤ N} , (2.14)

where ũ(xr, t) is the approximate solution and is the u(xr, t) exact solution at the time level t.

Example 1: We consider the generalized Burgers-Fisher equation [72]

∂u
∂ t

+αuδ ∂u
∂x

=
∂ 2u
∂x2 +βu(1−uδ ), (2.15)

with initial condition

u(x,0) =
{

1
2
+

1
2

tanh
( −αδ

2(δ +1)
x
)} 1

δ

, (2.16)
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and exact solution

u(x, t) =
{

1
2
+

1
2

tanh
( −αδ

2(δ +1)

[
x−
(

α

δ +1
+

β (δ +1)
α

)
t
])} 1

δ

, (2.17)

where α , β and δ are parameters. For illustration purposes, these parameters are chosen to be

α = β = δ = 1 in this paper. The linear operator F and nonlinear operator G are chosen as

F(u) = u′′+u , G(u) =−uu′−u2. (2.18)

We first linearize the nonlinear operator G. We approximate G using the equation

G ≈ G[ur,u′r,u
′′
r ]+

2

∑
k=0

φk,ru
(k)
r+1 −

2

∑
k=0

φk,ru
(k)
r . (2.19)

The coefficients are given by

φ0,r =
∂G
∂u

[ur,u′r,u
′′
r ] =−(u′r +2ur), (2.20)

φ1,r =
∂G
∂u′

[ur,u′r,u
′′
r ] =−ur, (2.21)

φ2,r =
∂G
∂u′′

[ur,u′r,u
′′
r ] = 0, (2.22)

and

Rr =
2

∑
k=0

φk,ru
(k)
r −G[ur,u′r,u

′′
r ] =−u2

r −uru′r. (2.23)

Therefore, the linearized equation can be expressed as

u′′r+1 +φ1,ru′r+1 +φ0,rur+1 +ur+1 − u̇ = Rr. (2.24)

Applying the spectral method both in x and t, and initial condition, we get

D2Ur+1,i +ΦΦΦ1,rDUr+1,i +ΦΦΦ0,rUr+1,i +Ur+1,i −2
Nt−1

∑
j=0

di jUr+1, j = Ri. (2.25)
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Equation (2.25) can be expressed as




A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1
...

... . . . ...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1







U0

U1
...

UNt−1



=




R0

R1
...

RNt−1



, (2.26)

where

Ai,i = D2 +ΦΦΦ
(i)
1,rD+ΦΦΦ

(i)
0,r +(1−2di,i)I, (2.27)

Ai, j =−2di, jI, when i ̸= j, (2.28)

Ri = Rr +2diNt Ur,Nt . (2.29)

The boundary conditions are implemented in the first and last row of the matrices Ai j and the

column vectors Ri for i = 0,1, · · · ,Nt −1 and j = 0,1, · · · ,Nt −1. The procedure for finding the

variable coefficients φi and matrices for the remaining examples is similar.

Example 2: We consider the Fisher equation

∂u
∂ t

=
∂ 2u
∂x2 +αu(1−u), (2.30)

subject to the initial condition

u(x,0) =
1

(
1+ e

√
α/6x

)2 , (2.31)

and exact solution [73]

u(x, t) =
1

(
1+ e

√
α/6x−5αt/6

)2 , (2.32)

where α is a constant. The Fisher equation represents a reactive-diffusive system and is

encountered in chemical kinetics and population dynamics applications. For this example, the

appropriate linear operator F and nonlinear operator G are chosen as

F(u) = u′′+αu , G(u) =−αu2. (2.33)
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Example 3: Consider the Fitzhugh-Nagumo equation

∂u
∂ t

=
∂ 2u
∂x2 +u(u−α)(1−u) (2.34)

with initial condition

u(x,0) =
1
2

[
1− coth

(
− x

2
√

2

)]
. (2.35)

This equation has the exact solution [74]

u(x, t) =
1
2

[
1− coth

(
− x

2
√

2
+

2α −1
4

t
)]

, (2.36)

where α is a parameter. In this example the linear operator F and nonlinear operator G are

chosen as

F(u) = u′′−αu , G(u) = (1+α)u2 −u3. (2.37)

Example 4: Consider the Burgers-Huxley equation

∂u
∂ t

+αuδ ux =
∂ 2u
∂x2 +βu(1−uδ )(uδ − γ), (2.38)

where α,β ≥ 0 are constant parameters, δ is a positive integer (set to be δ = 1 in this study)

and γ ∈ (0,1). The exact solution subject to the initial condition

u(x,0) =
1
2
− 1

2
tanh

[
β

r−α
x
]
, (2.39)

is reported in [75, 76] as

u(x, t) =
1
2
− 1

2
tanh

[
β

r−α
(x− ct)

]
, (2.40)

where

r =
√

α2 +8β and c =
(α − r)(2γ −1)+2α

4
(2.41)

21



The general solution (2.40) was reported in [77, 78]. In this example the linear operator F and

nonlinear operator G are chosen as

F(u) = u′′−βγu , G(u) =−αuu′+β (1+ γ)u2 −βu3. (2.42)

Example 5: We consider the modified KdV-Burgers equation

∂u
∂ t

=
∂ 3u
∂x3 − ∂ 2u

∂x2 −6u2 ∂u
∂x

(2.43)

subject to the initial condition

u(x,0) =
1
6
+

1
6

tanh
(x

6

)
(2.44)

and exact solution [79]

u(x, t) =
1
6
+

1
6

tanh
(x

6
− t

27

)
(2.45)

The modified KdV-Burgers equation describes various kinds of phenomena such as a mathemat-

ical model of turbulence and the approximate theory of flow through a shock wave traveling in

viscous fluid [80]. For this example, the linear operator F and nonlinear operator G are chosen

as

F(u) = u′′′−u′′ , G(u) =−6u′u2. (2.46)

Example 6: We consider the high nonlinear modified KdV equation

∂u
∂ t

=
∂ 3u
∂x3 +

(
∂u
∂x

)2

−u2 (2.47)

subject to the initial condition

u(x,0) =
1
2
+

e−x

4
(2.48)

and exact solution

u(x, t) =
1

t +2
+

e−(x+t)

(t +2)2 (2.49)
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For this example, the linear operator F and nonlinear operator G are chosen as

F(u) = u′′′ , G(u) = (u′)2 −u2. (2.50)

2.4 Results and Discussion

In this section we present the numerical solutions obtained using the BSQLM algorithm. The

number of collocation points in the space x variable used to generate the results is Nx = 10 in all

cases. Similarly, the number of collocation points in the time t variable used is Nt = 10 in all

cases. It was found that sufficient accuracy was achieved using these values in all numerical

simulations. The results in Tables 2.1 - 2.12 and Figs. 2.1 - 2.12 were obtained using MATLAB

2013b. Figs. 2.13 - 2.18 were obtained using Mathematica 9 to clearly demonstrate that the

method has converged.

In Tables 2.1 - 2.6 we give the maximum errors between the exact and BSQLM results

for the Fisher equation, Burgers-Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley

equation, the modified KdV-Burgers equation, and the modified KdV equation respectively,

at t ∈ [0.1,1]. The results were computed in the space domain x ∈ [0,1]. To give a sense of

the computational efficiency of the method, the computational time to generate the results is

also given. Tables 2.1 - 2.6 clearly show the accuracy of the method. The accuracy is seen to

improve with an increase in the number of collocation points Nx. It is remarkable to note that

accurate results with errors of order up to 10−14 are obtained using very few collocation points

in both the x and t variables Nt ≤ 10,Nx ≤ 10. This is a clear indication that the BSQLM is

powerful method that is appropriate in solving nonlinear evolution PDEs. We remark, also, that

the BSQLM is computationally fast as accurate results are generated in a fraction of a second in

all the examples considered in this work.
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Table 2.1 Maximum errors EN for the Fisher equation when α = 1 using Nt = 10

t \ Nx 4 6 8 10

0.1 1.986e-008 1.119e-011 7.398e-013 7.171e-013

0.2 3.934e-008 3.121e-011 1.552e-012 1.561e-012

0.3 5.577e-008 4.864e-011 1.004e-012 1.005e-012

0.4 6.997e-008 6.802e-011 7.895e-013 8.124e-013

0.5 8.107e-008 7.971e-011 1.088e-012 1.027e-012

0.6 8.891e-008 8.560e-011 8.805e-013 7.847e-013

0.7 9.344e-008 8.953e-011 6.418e-013 6.463e-013

0.8 9.431e-008 8.759e-011 6.199e-013 6.164e-013

0.9 9.178e-008 8.325e-011 3.978e-013 3.695e-013

1.0 8.787e-008 7.421e-011 7.988e-014 5.596e-014

CPU Time (sec) 0.019942 0.025988 0.027756 0.029436

Table 2.2 Maximum errors EN for the Burgers-Fisher equation when α = γ = δ = 1 using
Nt = 10

t \ Nx 4 6 8 10

0.1 1.142e-007 1.369e-010 5.891e-012 6.143e-012

0.2 1.178e-007 1.373e-010 9.570e-012 1.013e-011

0.3 1.186e-007 1.479e-010 1.489e-011 1.512e-011

0.4 1.069e-007 9.450e-011 1.703e-011 1.702e-011

0.5 9.030e-008 7.944e-011 5.283e-012 5.736e-012

0.6 6.963e-008 6.618e-011 1.639e-011 1.626e-011

0.7 4.638e-008 1.579e-011 1.362e-011 1.364e-011

0.8 2.457e-008 4.030e-011 3.934e-012 3.852e-012

0.9 2.028e-008 6.006e-011 4.466e-012 4.727e-012

1.0 3.147e-008 7.708e-011 7.757e-013 7.261e-013

CPU Time (sec) 0.010152 0.015387 0.018163 0.019564
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Table 2.3 Maximum errors EN for the Fitzhugh-Nagumo equation when α = 1 using Nt = 10

t \ Nx 4 6 8 10

0.1 5.719e-007 1.196e-009 2.367e-012 9.881e-014

0.2 6.193e-007 1.299e-009 2.761e-012 3.952e-014

0.3 6.662e-007 1.463e-009 3.259e-012 8.216e-014

0.4 6.779e-007 1.448e-009 3.341e-012 8.094e-014

0.5 6.920e-007 1.526e-009 3.587e-012 5.063e-014

0.6 7.019e-007 1.573e-009 3.729e-012 3.775e-014

0.7 6.933e-007 1.516e-009 3.660e-012 8.915e-014

0.8 6.828e-007 81.535e-009 3.635e-012 7.594e-014

0.9 6.765e-007 1.528e-009 3.519e-012 3.242e-013

1.0 6.687e-007 1.490e-009 3.405e-012 1.688e-013

CPU Time (sec) 0.024281 0.024901 0.026810 0.032389

Table 2.4 Maximum errors EN for the Burgers-Huxley equation when γ = 0.75, β = 1, Nt = 10

t \ Nx 4 6 8 10

0.1 2.217e-006 8.482e-009 2.166e-011 7.822e-014

0.2 2.596e-006 9.369e-009 2.536e-011 1.184e-013

0.3 2.859e-006 1.073e-008 3.201e-011 1.049e-013

0.4 3.001e-006 1.112e-008 3.652e-011 9.426e-014

0.5 3.137e-006 1.213e-008 4.262e-011 1.510e-013

0.6 3.270e-006 1.311e-008 4.842e-011 2.127e-013

0.7 3.367e-006 1.359e-008 5.289e-011 1.230e-013

0.8 3.467e-006 1.438e-008 5.803e-011 1.549e-013

0.9 3.562e-006 1.504e-008 6.260e-011 3.063e-013

1.0 3.640e-006 1.559e-008 6.674e-011 2.951e-013

CPU Time (sec) 0.023822 0.024901 0.02685 0.032806
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Table 2.5 Maximum errors EN for the modified KdV-Burgers equation, with Nt = 10

t \ Nx 4 6 8 10

0.1 1.803e-007 3.419e-010 4.449e-013 1.572e-013

0.2 2.614e-007 4.347e-010 5.049e-013 5.992e-014

0.3 2.717e-007 4.677e-010 5.532e-013 8.128e-013

0.4 2.009e-007 3.663e-010 4.771e-013 6.158e-013

0.5 2.580e-007 4.410e-010 7.518e-013 2.555e-013

0.6 2.653e-007 4.606e-010 8.738e-013 5.756e-013

0.7 2.248e-007 4.039e-010 6.210e-013 2.393e-013

0.8 2.572e-007 4.476e-010 5.432e-013 6.812e-013

0.9 2.436e-007 4.351e-010 6.111e-013 6.287e-013

1.0 8.275e-008 3.721e-010 7.569e-013 1.087e-013

CPU Time (sec) 0.015646 0.021226 0.030159 0.035675

Table 2.6 Maximum errors EN for the highly nonlinear modified KdV equation, with Nt = 10

t \ Nx 4 6 8 10

0.1 7.788e-005 3.553e-007 7.601e-010 2.080e-010

0.2 1.153e-004 4.000e-007 5.684e-010 1.189e-010

0.3 1.011e-004 3.739e-007 4.471e-010 4.503e-010

0.4 3.926e-005 1.785e-007 6.544e-010 4.987e-010

0.5 6.727e-005 2.342e-007 2.638e-010 1.528e-010

0.6 6.065e-005 2.207e-007 4.565e-010 4.568e-010

0.7 2.511e-005 1.105e-007 4.749e-010 3.748e-010

0.8 4.074e-005 1.427e-007 1.062e-010 1.604e-010

0.9 2.386e-005 1.018e-007 2.343e-010 8.114e-011

1.0 1.440e-006 7.256e-008 1.436e-009 1.513e-011

CPU Time (sec) 0.020609 0.021241 0.030617 0.032816
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In Tables 2.7 - 2.12 we give the maximum errors of the BSQLM results for the Fisher

equation, Burgers-Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, the

modified KdV-Burgers equation, and the modified KdV equation respectively, at selected values

of t = 2 for different collocation points, Nt , in the t-variable. The results in Tables 2.7 - 2.12

were computed on the space domain x ∈ [0,1]. We note that the accuracy does not detoriate

when t > 1 for this method as is often the case with numerical schemes such as finite differences.

Table 2.7 Maximum errors EN for Fisher equation when α = 1 using Nt = 10

t \ Nx 4 6 8 10

0.2 1.119e-011 7.398e-013 8.266e-013 3.808e-014

0.4 3.121e-011 1.552e-012 7.378e-013 3.780e-014

0.6 4.864e-011 1.004e-012 3.402e-012 7.283e-014

0.8 6.802e-011 7.895e-013 1.118e-012 3.714e-014

1.0 7.971e-011 1.088e-012 1.473e-012 1.691e-013

1.2 8.560e-011 8.805e-013 2.611e-012 3.119e-013

1.4 8.953e-011 6.418e-013 6.671e-012 1.796e-013

1.6 8.759e-011 6.199e-013 1.118e-011 1.097e-013

1.8 8.325e-011 3.978e-013 7.515e-013 6.273e-014

2.0 7.421e-011 7.988e-014 3.682e-012 2.311e-013

CPU Time (sec) 0.013542 0.022967 0.023792 0.024758
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Table 2.8 Maximum errors EN for the Burgers-Fisher equation when α = γ = δ = 1 using
Nt = 10

t \ Nx 4 6 8 10

0.2 1.223e-007 1.400e-008 1.402e-008 1.094e-012

0.4 1.145e-007 1.919e-008 1.918e-008 3.919e-012

0.6 9.192e-008 2.082e-008 2.085e-008 1.953e-012

0.8 2.293e-008 1.793e-008 1.793e-008 6.340e-013

1.0 2.395e-008 1.337e-008 1.339e-008 2.381e-012

1.2 5.778e-008 1.954e-008 1.930e-008 1.005e-011

1.4 6.045e-008 1.620e-008 1.620e-008 3.535e-012

1.6 5.244e-008 7.218e-009 7.345e-009 5.765e-012

1.8 4.395e-008 6.828e-009 6.784e-009 3.983e-012

2.0 2.944e-008 9.406e-010 8.820e-010 3.812e-012

CPU Time (sec) 0.019942 0.025988 0.027756 0.029436

Table 2.9 Maximum errors EN for the Fitzhugh-Nagumo equation when α = 1 using Nt = 10

t \ Nx 4 6 8 10

0.2 6.326e-007 1.311e-009 2.886e-012 1.131e-012

0.4 6.721e-007 1.467e-009 3.310e-012 1.564e-012

0.6 7.140e-007 1.602e-009 3.617e-012 1.936e-012

0.8 6.730e-007 1.496e-009 4.707e-012 1.196e-012

1.0 6.660e-007 1.487e-009 3.675e-012 1.264e-012

1.2 6.449e-007 1.366e-009 1.897e-012 1.727e-012

1.4 5.690e-007 1.083e-009 2.972e-012 1.200e-012

1.6 4.931e-007 8.010e-010 1.519e-012 8.590e-013

1.8 3.986e-007 4.658e-010 1.068e-012 6.790e-013

2.0 2.904e-007 2.968e-010 1.592e-012 1.770e-013

CPU Time (sec) 0.041048 0.049629 0.055008 0.053863
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Table 2.10 Maximum errors EN for the Burgers-Huxley equation when γ = 0.5, β = 1, Nt = 10

t \ Nx 4 6 8 10

0.2 2.866e-006 1.119e-008 3.670e-011 1.150e-012

0.4 3.401e-006 1.420e-008 5.744e-011 1.638e-012

0.6 3.814e-006 1.687e-008 7.426e-011 1.958e-012

0.8 3.915e-006 1.729e-008 8.171e-011 7.002e-013

1.0 3.938e-006 1.738e-008 8.157e-011 1.267e-012

1.2 3.808e-006 1.624e-008 7.687e-011 1.710e-012

1.4 3.456e-006 1.527e-008 6.965e-011 5.109e-013

1.6 3.230e-006 1.349e-008 5.535e-011 8.203e-013

1.8 2.925e-006 1.078e-008 3.598e-011 8.294e-013

2.0 2.497e-006 7.505e-009 2.265e-011 9.726e-014

CPU Time (sec) 0.023822 0.024901 0.02685 0.032806

Table 2.11 Maximum errors EN for the modified KdV-Burgers equation, with Nt = 10

t \ Nx 4 6 8 10

0.2 2.137e-007 3.820e-010 4.846e-013 9.998e-013

0.4 2.480e-007 4.267e-010 5.596e-013 8.775e-013

0.6 2.691e-007 4.676e-010 6.565e-013 2.054e-012

0.8 2.214e-007 3.979e-010 8.776e-013 1.168e-012

1.0 2.538e-007 4.463e-010 9.650e-013 8.410e-013

1.2 2.650e-007 4.680e-010 7.450e-013 5.113e-013

1.4 2.383e-007 4.296e-010 7.500e-013 1.110e-012

1.6 2.568e-007 4.572e-010 9.704e-013 2.837e-013

1.8 2.520e-007 4.529e-010 7.443e-013 5.353e-013

2.0 2.370e-007 4.438e-010 2.719e-013 8.849e-013

CPU Time (sec) 0.062066 0.081646 0.080718 0.10775
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Table 2.12 Maximum errors EN for the highly nonlinear modified KdV equation, with Nt = 10

t \ Nx 4 6 8 10

0.2 1.986e-008 1.119e-011 7.398e-013 7.171e-013

0.4 8.010e-005 3.577e-007 3.902e-008 1.979e-010

0.6 7.235e-005 2.549e-007 2.016e-008 4.899e-010

0.8 6.284e-005 1.663e-007 1.155e-007 2.679e-010

1.0 1.642e-005 1.620e-007 1.243e-007 2.474e-010

1.2 2.753e-005 1.073e-007 1.073e-007 1.679e-010

1.4 3.738e-006 8.971e-008 8.598e-008 4.788e-011

1.6 1.223e-005 2.153e-008 2.503e-008 2.941e-011

1.8 5.836e-006 2.986e-008 9.127e-009 5.177e-011

2.0 9.310e-006 6.548e-008 7.277e-008 1.453e-009

CPU Time (sec) 0.020609 0.021241 0.030617 0.032816

Figures 2.1 - 2.6 show a comparison of the analytical and approximate solutions of the Fisher

equation, Burgers-Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, the

modified KdV-Burgers equation, and the modified KdV equation. The approximate solutions

are in excellent agreement with the analytical solutions, and this demonstrates the accuracy of

the algorithm presented in this study.
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Fig. 2.1 Approximate and Exact solutions of the Fisher equation.
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Fig. 2.2 Approximate and Exact solutions of the Burgers-Fisher equation.
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Fig. 2.3 Approximate and Exact solutions of the Burgers-Huxley equation.
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Fig. 2.4 Approximate and Exact solutions of the Fitzhugh-Nagumo equation.
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Fig. 2.5 Approximate and Exact solutions of the modified KdV-Burgers equation.
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Fig. 2.6 Approximate and Exact solutions of the modified KdV equation.

In Figs. 2.7 - 2.12 we present error analysis graphs for the Fisher equation, Burgers-Fisher

equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, the modified KdV-Burgers

equation, and the modified KdV equation. The errors presented here are very small and thus

confirming the accuracy of the BSQLM method over the entire domains of the nonlinear

evolution equations.

32



15
10

x

5
00t

×10-11

0

1

-1
50

u
(x
,
t)

Fig. 2.7 Fishers equation error graph
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Fig. 2.8 Burger-Fishers equation error graph
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Fig. 2.9 Fitzhugh-Nagumo equation error graph
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Fig. 2.10 Burgers-Huxley equation error graph
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Fig. 2.11 Modified KdV-Burgers equation error
graph
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Fig. 2.12 Modified KdV equation error graph
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In Figs. 2.13 - 2.18 convergence analysis graphs for the Fisher equation, Burgers-Fisher

equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, the modified KdV-Burgers

equation, and the modified KdV equation, respectively. T The figures present a variation of the

error norm at a fixed values of time (t = 1) with iterations of the BSQLM scheme. It can be seen

that, in almost all the examples considered, the iteration scheme takes about 3 or 4 iterations

to converge fully. Beyond the point where full convergence is reached, error norm levels off

and does not improve with an increase in the number of iterations. This plateau level gives an

estimate of the maximum error that can be achieved when using the proposed method with a

certain number of collocation points. It is worth remarking that the accuracy of the method

depends on the number of collocation points in both the x and t directions. The results from

Figs. 2.13 - 2.18 clearly demonstrate that the BSQLM is second order accurate.
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Fig. 2.13 Fisher equation convergence graph
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Fig. 2.14 Burger-Fisher convergence graph
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Fig. 2.15 Fitzhugh-Nagumo equation conver-
gence graph
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Fig. 2.16 Burgers-Huxley equation convergence
graph
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Fig. 2.17 Modified KdV-Burger equation con-
vergence graph
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Fig. 2.18 Modified KdV equation convergence
graph

2.5 Conclusion

In this chapter, we presented a new Chebyshev collocation spectral method for solving general

nonlinear evolution partial differential equations. The bivariate spectral quasilinearization

method (BSQLM) was developed by combining elements of the quasilinearization method

and Chebyshev spectral collocation with bivariate Lagrange interpolation. The main goal

of this analysis was to assess the accuracy, robustness and effectiveness of the method in

solving nonlinear partial differential equations. Numerical simulations were conducted on the

Fisher equation, Burgers-Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation,

modified KdV-Burgers equation and the modified KdV equation. It is evident from the study

that the BSQLM gives accurate results in a computationally efficient manner. Furthermore

evidence shows that the BSQLM gives solutions that are uniformly accurate and valid over

large intervals in the space and time domains. The apparent success of the method can be

attributed to the use of the Chebyshev spectral collocation method with bivariate Lagrange

interpolation in space and time for differentiating. This modification is superior to previously

used methods in that it converges faster, uses few grid points to achieve accurate results and

uses few computational resources compared to traditional methods like finite differences. This

work thus contributes to the existing body of literature on quasilinearization tools for solving

complex nonlinear partial differential equations. Having shown here that the BSQLM is suitable

for solving single equations, in the next chapter, we develop it for solving system of nonlinear

differential equations.
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Chapter 3

Bivariate spectral collocation based

quasilinearization method for solving

non-similar boundary layer equations

In this chapter, we present an innovative technique for solving nonlinear systems of partial

differential equations, which has quadratic convergence rate. We demonstrate use of the method

by solving a system of nonlinear partial differential equations that belong to a class of non-similar

boundary layer equations. The equations used here model the problem of magnetohydrodynamic

forced convection flow adjacent to a non-isothermal wedge. The results from the method are

validated against published results. Convergence analysis and grid independence tests are also

conducted to establish the accuracy, convergence rate and validity of the proposed method.

Computational order of convergence is proved numerically by tabulated results.

3.1 Introduction

Many physical processes may be described by systems of complex nonlinear differential equa-

tions. Very few of these equations have closed form solutions, so finding their solutions poses

significant challenges. Nevertheless, there exist a wide range of both numerical and analytical

techniques to find approximate solutions for such equations. However, these methods are not

universally applicable; in some cases they may suffer from instabilities or may not be sufficiently

accurate or computationally efficient. Devising new and more efficient algorithms is always a
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challenge and an interesting research objective. The problem considered in this chapter relates

to the flow of a viscous incompressible magnetohydrodyanamic fluid, which finds applications

in many engineering processes.

Various numerical techniques have been developed to solve a class of non-similar boundary

layer equations. The nonlinear equations that describe the fluid flow model in this chapter have

been solved previously by Yih [42] using the Keller-box method. The Keller-box method, or

its variants, have been widely used to solve other non-similar boundary layer equations; for

example, Cebeci and Bradshaw [81], Aydin and Kaya [82], Prasad et al. [83] and Afify and

Bazid [84]. The Keller-box method is an implicit finite difference scheme that is second order

accurate, both in space and time. It permits the step sizes in time and space variables to be

nonuniform. This makes it efficient and appropriate for the solution of non-similar boundary

layer equations. The main disadvantage of the method is the expensive computational effort

per time step. In this regard, higher order derivatives must be replaced at the start by first order

derivatives so that an nth order non-similar boundary layer equation is then expressed as a

system of n first-order equations [85]. The size of the coefficient matrix from discretization

increases due to the introduction of the derivatives as unknowns. This in turn implies that many

grid points are needed to achieve accurate results. All of these steps increase the computational

cost and time.

Other finite difference schemes have been used to solve non-similar boundary layer equations.

Watanabe [86] and Watanabe and Pop [87] used the backward finite differences while Watanabe

and Pop [88] used a Gregory-Newton finite difference method. Ariel [89] used a combination of

finite differences with quasilinearization. Chamkha et al. [90] and Chamkha and Rashad [91]

used an implicit iterative tridiagonal finite difference method.

While explicit methods break down if the time step is too large, as was described in Section

1.2.1, implicit finite difference methods are unconditionally stable. However, the extra accuracy

and efficiency of an implicit method may be counterbalanced by the extensive computing time

required to solve the linear system using an iterative method. Hence the extra accuracy can be

seen as a drawback for the method. The Runge-Kutta-Fehlberg scheme with a shooting technique

has been used to find numerical approximations of non-similar boundary layer equations [92–95].

However, for stiff problems, explicit Runge-Kutta methods are very inefficient.
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Spectral methods give accurate solutions of differential equations and have been used

successfully in many scientific fields. As was described previously in Section 1.2.2, Chebyshev

spectral methods are defined everywhere in the computational domain. Thus, it is easy to get

an accurate value of the function at any point of the domain. Spectral collocation methods are

simple to implement and easily adapted to different problems, including variable coefficient and

nonlinear differential equations. The interest in using Chebyshev spectral methods in solving

nonlinear differential equation stems from these methods requiring few grid points to achieve

accurate results and are computationally efficient when solving problems with smooth solutions.

Spectral methods coupled with finite differences have been used to solve nonlinear partial

differential equations [96] in space and finite differences in time. However, applying finite

differences in time compromises the accuracy and computationally efficiency of spectral methods.

Nevertheless, spectral methods have been applied successfully to solve nonlinear evolution

equations in both space and time, as was described in Chapter 2, and published by Motsa,

Magagula and Sibanda [97]. We called the method the bivariate spectral quasilinearization

method (BSQLM).

The objective of this chapter, is to now extend the use of the bivariate spectral quasilineariza-

tion method (BSQLM) to solve a system of non-similar boundary layer equations that model

magnetohydrodynamics forced convection flow adjacent to a non-isothermal wedge. As already

noted, Yih [42] had previously solved this problem numerically using the Keller-box method. In

our method we will first linearize a system of coupled nonlinear equations, collocate and solve

the resulting matrix iteratively. We will compare results from the method with those from Yih

[42] and evaluate its accuracy, computational efficiency and robustness.

3.2 Bivariate Spectral Quasilinearization Method

In this section we consider non-similar boundary layer equations that model the problem of

magnetohydrodynamics forced convection flow adjacent to a non-isothermal wedge. The
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equations are given in dimensionless form as [42]

∂ 3 f
∂η3 +β f

∂ 2 f
∂η2 +m

[
1−
(

∂ f
∂η

)2
]
+ξ

(
1− ∂ f

∂η
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)
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(
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∂η
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∂ξ
− ∂θ

∂η

∂ f
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)
,

(3.1)

subject to the boundary conditions

f (0,ξ ) = 0,
∂ f
∂η

(0,ξ ) = 0,
∂ f
∂η

(∞,ξ ) = 1, θ(0,ξ ) = 1, θ(∞,ξ ) = 0, (3.2)

where m, Pr, Ec, ξ , η , θ and f are the dimensionless pressure gradient parameter, Prandtl num-

ber, Eckert number, magnetic parameter, pseudo-similarity variable, dimensionless temperature

function, dimensionless stream function respectively and β = (1+m)/2. In the analysis of

boundary layer flow problems, quantities of physical interest are the skin friction, and the local

Nusselt number given in dimensionless form (see Yih [42]) as

C f Re1/2
x = 2

∂ 2 f
∂η2 (ξ ,0), (3.3)

Nux =−Re1/2
x

∂θ

∂η
(ξ ,0), (3.4)

respectively, where Rex is the local Reynolds number, C f is the local friction coefficient and

Nux is the local Nusselt number. We now find the approximate solutions of equations (3.1 -

3.2). We apply the quasilinearization method by assuming that the difference fr+1 − fr, and all

its derivatives, are small. The quasilinearization method is the Taylor series expansion about a

point of the first two linear terms. It was introduced by Bellman and Kalaba [71]. Applying the

quasilinearization method to equation (3.1) gives

f ′′′r+1 +a1,r(η ,ξ ) f ′′r+1 +a2,r(η ,ξ ) f ′r+1 +a3,r(η ,ξ ) fr+1 +a4,r(η ,ξ )
∂ f ′r+1

∂ξ

+a5,r(η ,ξ )
∂ fr+1

∂ξ
= a6,r(η ,ξ ),

θ
′′
r+1 +α1,r(η ,ξ )θ ′

r+1 +α2,r(η ,ξ )θr+1 +α3,r(η ,ξ )
∂θr+1

∂ξ
= α4,r(η ,ξ ),

(3.5)
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where the primes denote differentiation with respect to η and

a1,r(η ,ξ ) = β fr +(1−m)ξ
∂ fr

∂ξ
, a2,r(η ,ξ ) =−2m f ′r −ξ − (1−m)ξ

∂ f ′r
∂ξ

,

a3,r(η ,ξ ) = β f ′′r , a4,r(η ,ξ ) =−(1−m)ξ f ′r, a5,r(η ,ξ ) = (1−m)ξ f ′′r ,

a6,r(η ,ξ ) = β fr f ′′r −m( f ′r)
2 −m−ξ − (1−m)ξ

(
f ′

∂ f ′r
∂ξ

− f ′′
∂ fr

∂ξ

)

α1,r(η ,ξ ) = βPr fr +Pr(1−m)ξ
∂ fr

∂ξ
, α2,r(η ,ξ ) =−2mPr f ′r,

α3,r(η ,ξ ) =−Pr(1−m)ξ f ′r, α4,r(η ,ξ ) =−EcPr
[
( f ′′r )

2 − (m+ξ ) f ′r +ξ ( f ′r)
2]

The solution of the now linear differential equation (3.5) is obtained by approximating the

solution f (η ,ξ ) using a Lagrange polynomial F(η ,ξ ) which interpolates f (η ,ξ ) at selected

collocation points,

0 = ξ0 < ξ1 < ξ2 < · · ·< ξNξ
= Lξ .

Thus, the approximation for f (η ,ξ ) has the form

f (η ,ξ )≈
Nξ

∑
j=0

F(η ,ξ j)L j(ξ ) =

Nξ

∑
j=0

Fj(η)L j(ξ ), (3.6)

where Fj(η)≡ F(η ,ξ j) and L j(ξ ) is the characteristic Lagrange cardinal polynomial defined

by equation (1.5) satisfying the properties in equation (1.6). The solutions Fj(η) are obtained

by substituting (3.6) in (3.5) and requiring the equation to be satisfied exactly at the points

ξi, i = 0,1,2, . . . ,Nξ . For the derivatives of the Lagrange polynomial with respect to ξ to be

computable analytically, it is convenient to transform the interval ξ ∈ [0,Lξ ] to ζ ∈ [−1,1]

then choose Chebyshev-Gauss-Lobatto points (1.9), as collocation points. After using a linear

transformation to transform ξ to the new variable ζ , the derivative of f ′ with respect to ξ at the

collocation points ζ j is computed as

∂ f ′

∂ξ

∣∣∣∣
ξ=ξi

= 2
Nξ

∑
j=0

F ′
j (η)

dL j

dζ
(ζi) =

Nξ

∑
j=0

di, jF ′
j (η), i = 0,1,2, . . . ,Nξ , (3.7)

where

di, j =
dL j

dζ
(ζi), i = 0,1, . . . ,Nξ (3.8)
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are entries of the standard Chebyshev differentiation matrix (see, for example [41, 98]), and d = (2/Lξ )d.

Applying the collocation at ξi in equations (3.5) gives

F ′′′
r+1,i(η)+a(i)1,rF

′′
r+1,i(η)+a(i)2,rF

′
r+1,i(η)+a(i)3,rFr+1,i(η)+a(i)4,r

Nξ

∑
j=0

di, jF ′
r+1, j(η)

+a(i)5,r

Nξ

∑
j=0

di, jFr+1, j(η) = a(i)6,r,

Θ
′′
r+1,i(η)+α

(i)
1,rΘ

′
r+1,i(η)+α

(i)
2,rΘr+1,i(η)+α

(i)
3,r

Nξ

∑
j=0

di, jΘr+1, j = α
(i)
4,r,

(3.9)

where a(i)k,r ≡ ak,r(η ,ξi) (k = 1,2,3,4,5,6) and α
(i)
s,r ≡ αs,r(η ,ξi) (s = 1,2,3,4). Consequently, for each

ξi, equations (3.9) form a linear ordinary equation with variable coefficients. To solve equations (3.9), we

apply the Chebyshev spectral collocation independently in the η direction by choosing Nη +1 Chebyshev-

Gauss-Lobatto points 0 = η0 < η1 < · · · < ηNη
= ηe, where ηe is a finite value that is chosen to be

sufficiently large to approximate the conditions at infinity. Again, before implementing the collocation,

the interval η ∈ [0,ηe] is transformed into τ ∈ [−1,1] using a linear transformation. Thus, the collocation

points are chosen as τ j = cos
(

jπ
Nη

)
. The derivatives with respect to η are defined is terms of the

Chebyshev differentiation matrix as

dpFr+1,i

dη p

∣∣∣∣
η=η j

=

(
2
ηe

)p Nη

∑
k=0

Dp
j,kFr+1,i(τk) = DpFr+1,i, (3.10)

where p is the order of the derivative, D = (2/ηe)[D j,k] ( j,k = 0,1,2, . . . ,Nη ) with [D j,k] being an

(Nη +1)× (Nη +1) Chebyshev derivative matrix, and the vector Fr+1,i is defined as

Fr+1,i = [Fr+1,i(τ0),Fr+1,i(τ1), . . . ,Fr+1,i(τNη
)]T .

Thus applying equation (3.10) in equations (3.9) gives

A(i)Fr+1,i −2ξi(1−ξi)

Nξ

∑
j=0

di, jDFr+1, j = R(i)
1 ,

B(i)
ΘΘΘr+1,i +ααα

(i)
3,r

Nξ

∑
j=0

di, jΘΘΘr+1, j =ΓΓΓ
(i)
1

(3.11)

41



where
A(i) = a(i)0,rD

3 +a(i)1,rD
2 +a(i)2,rD+a(i)3,r,

B(i) =ααα
(i)
0,rD

2 +ααα
(i)
1,rD+ααα

(i)
2,r,

R(i)
1 = a(i)6,r,

ΓΓΓ
(i)
1 =ααα

(i)
4,r.

(3.12)

a(i)k,r (k = 0,1,2,3,4,5), ααα
(i)
s,r (s = 0,1,2,3) are diagonal matrices with vectors [a(i)k,r(τ0), a(i)k,r(τ1), · · · ,

a(i)k,r(τNx)]
T , [α(i)

s,r (τ0),α
(i)
s,r (τ1), · · · ,α(i)

s,r (τNx)]
T placed on the main diagonal, a(i)6,r = [a(i)6,r(τ0),a

(i)
6,r(τ1), · · · ,a(i)6,r(τNx)]

T ,

and ααα
(i)
4,r = [α

(i)
4,r(τ0),α

(i)
4,r(τ1), · · · ,α(i)

4,r(τNx)]
T . After imposing the boundary conditions, for each i =

0,1, . . . ,Nξ equations (3.11) can be written in matrix form as




A0,0 A0,1 · · · A0,Nξ

A1,0 A1,1 · · · A1,Nξ

...
...

. . .
...

ANξ ,0 ANξ ,1 · · · ANξ ,Nξ







Fr+1,0

Fr+1,1
...

Fr+1,Nξ



=




R(0)
1

R(1)
1
...

R(Nξ )

1



, (3.13)




B0,0 B0,1 · · · B0,Nξ

B1,0 B1,1 · · · B1,Nξ

...
...

. . .
...

BNξ ,0 BNξ ,1 · · · BNξ ,Nξ







ΘΘΘr+1,0

ΘΘΘr+1,1
...

ΘΘΘr+1,Nξ



=




ΓΓΓ
(0)
1

ΓΓΓ
(1)
1
...

ΓΓΓ
(Nξ )

1



, (3.14)

where

Ai,i = A(i)+a(i)4,rdi,iD+a(i)5,rdi,i, i = 0,1, . . . ,Nξ , (3.15)

Ai, j = a(i)4,rdi, jD+a(i)5,rdi, j, , when i ̸= j, (3.16)

Bi,i = B(i)+ααα
(i)
3,rdi,i, (3.17)

Bi, j =ααα
(i)
3,rdi,i. (3.18)

Equations (3.13) and (3.14) can be expressed in the form

AF = R, (3.19)

BΘΘΘ =ΓΓΓ. (3.20)
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The solutions are found by multiplying by the inverses of A and B respectively to get

F = A−1R, (3.21)

ΘΘΘ = B−1
ΓΓΓ. (3.22)

3.3 Results and Discussion

In this section we present the numerical solutions obtained using the BSQLM algorithm. The results

presented in this section were generated using MATLAB. The number of collocation points in the space η

variable used to generate the results is Nη = 60 in Table 3.1 through Table 3.4. The number of collocation

points in the magnetic parameter ξ variable used is 10 ≤ Nξ ≤ 30 in all cases. It was found that sufficient

accuracy was achieved using these values in all numerical simulations. In Tables 3.1 through 3.3, we

compare our results with those of Yih [42]. The results are in excellent agreement. The time to compute

the approximate solutions by the Bivariate spectral quasilinearization method is displayed to give an

indication of the computational speed. The time to compute the approximate solutions using the Bivariate

spectral quasilinearization method is less than three seconds for all cases which is remarkable since

traditional numerical methods require more computational time. We remark that in Yih’s article [42], the

stopping criteria and time steps were not provided and hence, we were not able to compare the time to

compute the same results using the Keller-Box method.

Table 3.1 Comparison of the numerical values of the skin friction f ′′(0,0) for various values of
m.

m \ Nξ 10 15 20 25 Yih[42]

-0.05 0.213484 0.213484 0.213484 0.213484 0.213484

0.0 0.332057 0.332057 0.332057 0.332057 0.332057

1/3 0.757448 0.757448 0.757448 0.757448 0.757448

1.0 1.232588 1.232588 1.232588 1.232588 1.232588

Time (sec) 0.181133 0.469017 0.908688 1.532474

Table 3.1 shows the numerical values of the skin friction f ′′(0,0) for various values of m. The

numerical values obtained using the BSQLM method agrees exactly with those obtained by Yih[42] using
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the finite differences based method, the Keller-Box method. We also note that the BSQLM approximates

the skin friction within a fraction of a second.

Table 3.2 Numerical values of the skin friction f ′′(0,ξ ) at different values of ξ when m = 1.

ξ \ Nξ 10 15 20 25 Yih[42]

0 1.232588 1.232588 1.232588 1.232588 1.232588

1 1.585336 1.585329 1.585331 1.585331 1.585331

4 2.346667 2.346663 2.346663 2.346663 2.346663

9 3.240943 3.240950 3.240950 3.240950 3.240950

25 5.147966 5.147966 5.147966 5.147966 5.147964

CPU Time (sec) 0.448792 0.83394 1.410784 2.250584

Table 3.2 shows the numerical values of the skin friction f ′′(0,ξ ) at different values of ξ when m = 1.

The numerical values obtained using the BSQLM method are in agreement with those obtained by Yih

[42] using the Keller-Box method. It should be noted that the BSQLM approximates the skin friction

within a fraction of a second.

Table 3.3 Numerical values of the Nusselt number −θ ′(0,ξ ) at different values of ξ when m = 0,
Pr = Ec = 1.

ξ \ Nξ 10 15 20 25 Yih[42]

0.0 0.166029 0.166029 0.166029 0.166029 0.166029

0.5 0.201426 0.201411 0.201411 0.201411 0.201452

1.0 0.216787 0.216786 0.216786 0.216786 0.216814

1.5 0.226296 0.226302 0.226302 0.226302 0.226323

2.0 0.232981 0.232981 0.232981 0.232981 0.232998

CPU Time (sec) 0.15710 0.350761 0.834859 1.496277

Table 3.3 shows the numerical values of the Nusselt number −θ ′(0,ξ ) at different values of ξ when

m = 0, Pr = Ec = 1. The numerical values obtained using the BSQLM method are in agreement with

those obtained by Yih[42] using the Keller-Box method. The BSQLM approximates the skin friction

within a fraction of a second.
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Table 3.4 Numerical values of the Nusselt number −θ ′(0,ξ ) at different values of ξ when
m = 1/2,and Pr = Ec = 1.

ξ \ Nξ 10 15 20 25 30

0 0.720626 0.720626 0.720626 0.720626 0.720626

0.5 0.759480 0.759480 0.759480 0.759480 0.759480

1 0.786931 0.786931 0.786931 0.786931 0.786931

1.5 0.808036 0.808036 0.808036 0.808036 0.808036

2 0.825096 0.825096 0.825096 0.825096 0.825096

CPU Time(sec) 0.239541 0.468491 0.865754 1.488947 2.17121

Table 3.4 shows the numerical values of the Nusselt number −θ ′(0,ξ ) at different values of ξ when

m = 0.5, Pr = Ec = 1. In this case, we use the grid independence test to show that our method can

generate approximate values of the Nusselt number with any m in the range of the values of m. We also

note that the BSQLM approximates the skin friction within few seconds. We now show the order of

accuracy of the method. We start by defining the order of convergence of a method.

Theorem 3.1 (Order of Convergence). A method is convergent with convergence rate c if

lim
k→∞

||ek+1||∞
||ek||c∞

=V (3.23)

where V is a finite positive constant. The convergence rate c can be calculated from the ratio

ek+2

ek+1
=

(
ek+1

ek

)c

(3.24)

and hence the convergence rate c is given by

c =
ln(ek+2/ek+1)

ln(ek+1/ek)
, (3.25)

where ek+2, ek+1 and ek are the norms computed using three consecutive iterations. The error is

approximated at a given iteration level by the equation

ek = || fk+1 − fk||∞ (3.26)
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Bellman and Kalaba [71] observed that the quasilinearization method converges quadratically, that

is c = 2. The results below confirm that the BSQLM converges quadratically. Table 3.5 shows the

convergence rate values of f (η ,ξ ) at different values of Nη , when Nξ = 8, m = 0, and Pr = Ec = 1.

Table 3.6 shows the convergence rate values of θ(η ,ξ ) at different values of Nη , when Nξ = 8, m = 0,

and Pr = Ec = 1. The values in Table 3.5 and Table 3.6 show that the BSQLM converges quadratically.

Table 3.5 Convergence Rate values of f (η ,ξ ) at different values of Nη when Nξ = 8, m = 0,
and Pr = Ec = 1.

Convergence Rate

Iterations \ Nη 15 30 45 60

3 2.0100 2.0000 2.0000 2.0000

4 2.0000 2.0000 2.0000 2.0000

5 1.9800 2.0000 2.0000 2.0000

6 2.0000 2.0000 2.0000 2.0000

7 2.0000 1.9900 2.0000 2.0000

8 2.0000 2.0000 1.9800 1.9800

Table 3.6 Convergence Rate values of θ(η ,ξ ) at different values of Nη when Nξ = 8, m = 0,
and Pr = Ec = 1.

Convergence Rate

Iterations \ Nη 15 30 45 60

3 1.9500 1.9600 1.9600 1.9600

4 1.9500 1.9900 1.9900 1.9900

5 2.0500 2.0300 2.0300 2.0300

6 2.0300 2.0100 2.0100 2.0100

7 2.0000 2.0000 2.0000 2.0000

8 1.9800 1.9900 1.9900 1.9900

In order to determine the level of accuracy of the BSQLM approximate solution, at a particular time

level,we report maximum error which is defined by
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E f = max
i

{
||Fr+1,i −Fr,i| |∞, : 0 ≤ i ≤ Nξ

}
, (3.27)

Eθ = max
i

{
||ΘΘΘr+1,i −ΘΘΘr,i| |∞, : 0 ≤ i ≤ Nξ

}
, (3.28)

where Fr+1,i and Fr,i are the approximate solutions obtained by equation (3.21) at the current and previous

time steps respectively.
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Figure 3.1 and Figure 3.2 show the convergence graphs of f and θ respectively. The BSQLM method

converges fully after eight iterations. In Figure 3.1, the BSQLM method converges to 10−94 after eight

iterations. We note that it converges quadratically and hence the parabolic shape of the of the curve. This

is in agreement with the the results in Tables 3.5 and 3.6 and the theory that the quasilinearization method

converges quadratically as observed by Bellman and Kalaba [71]. In Figure 3.2, the BSQLM method

converges quadratically to 10−95 after less than eight iterations. This in turn implies that the method

needs few iterations to converge fully and hence taking less computational time. This is in agreement

with the computational times displayed in Tables 3.1, 3.2, 3.3 and 3.4.

3.4 Conclusion

The goal of this chapter was to develop the BSQLM algorithm for solving non-similar boundary layer

equations, and to evaluate its accuracy, robustness and effectiveness. To this end, we presented and

used an innovative BSQLM method to solve a system of nonlinear differential equations that model

magnetohydrodynamic forced convection flow adjacent to a non-isothermal wedge. The results were

validated against published results, and found to be close or identical to those of Yih [42], using the

Keller-box method. Moreover the accuracy of the method is independent of the size of the dependent
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variables in the differential equation. Convergence analysis and grid independence tests were conducted

to establish the convergence and validity of the algorithm. Computational order of convergence was

proved numerically to be two, indicating that the method converges quadratically, which is in agreement

with theory of quasilinearization methods by Bellman and Kalaba [71]. Furthermore, convergence

was observed using few discretization points, which indicates that the BSQLM algorithm minimizes

computation time. Thus the new BSQLM algorithm performs better than the Keller-box method for

a class of non-similar boundary layer equations; its quadratic convergence is rapid and uses few grid

points to achieve accurate results, and thus the method uses minimal computation time. Furthermore,

that the accuracy of the method does not deteriorate for large values of the governing independent

variables. In summary, we have presented an algorithm with rapid convergence to give accurate results in

a computationally efficient manner. The success of the method can be attributed of it using the Chebyshev

spectral collocation method with bivariate Lagrange interpolation both in space and time. This work

contributes to the existing body of literature by providing a new and more efficient tool for solving

systems of nonlinear non-similar boundary layer equations. In the next chapter, we present another new

numerical method that uses Gauss-Seidel approach for solving a system of coupled nonlinear system of

partial differential equations.
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Chapter 4

Bivariate spectral relaxation method for

unsteady three dimensional magneto

hydrodynamic flow and mass transfer in a

porous media

In this chapter, we propose an improved implementation of the spectral relaxation method (SRM) for

solving partial differential equations. Previously, the SRM used a spectral method to discretize derivatives

in space and finite differences to discretize derivatives in time [96]. In this work we apply the spectral

method in both space and time. The new implementation of the SRM is tested on a system of four partial

differential equations, which model an unsteady three dimensional magnetohydrodynamic flow and mass

transfer in a porous media. Results are compared with previously published results of the SRM, spectral

quasilinearization method (SQLM) and the Keller-box method. We have already published the work

presented in this chapter, as indicated by Publication number 2 (see page vii).

4.1 Introduction

This work considers a system of four partial differential equations modeling an unsteady three dimensional

magnetohydrodynamic flow and mass transfer in a porous media. As reported in Hayat et al. [99],

examples of such flow occur in aerodynamic extrusion of plastic sheets, cooling of metallic sheets in

a cooling bath and the manufacturing processes for artificial film and fibers. Due to these important
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applications, many researchers have dedicated time and effort to studying such models in order to find

their solutions. To find approximate solutions for equations a variety of methods are available. This

particular model has been solved before by Hayat et al. [99] using the homotopy analysis method (HAM)

and more recently by Motsa et al. [96] using spectral methods.

The HAM is an analytic method for approximating solutions of differential equations that was

developed by Liao [100], and has since been used extensively by researchers [101–108]. With this

method being analytic, accuracy and convergence are achieved by increasing the number of terms in the

HAM series. Accurate results, particularly with a large embedded physical parameter multiplying the

nonlinear unknown terms, may then depend on having a large number of terms. However, retaining so

many terms in the solution series may be cumbersome, even with the use of symbolic computing software.

The HAM also requires other arbitrarily introduced parameters, such as the convergence controlling

parameter, which must be carefully selected in a separate procedure.

Another popular numerical method used by many researchers to solve unsteady boundary layer flow

problems is the Keller-box method [109–113]. The Keller-box method is a finite difference-based implicit

numerical scheme which was developed by Cebeci and Bradshaw [81].

Spectral based schemes have been used recently by Motsa et al. [96, 114] to solve unsteady boundary

layer problems. The schemes include the spectral quasilinearization method (SQLM) and spectral

relaxation method (SRM) which are accurate, easy to implement and computationally efficient. However,

as observed by Motsa et al. [96], the SQLM has limitations. Firstly, it solves the coupled system directly,

which may result in very large algebraic systems of equations, which in turn may require considerable

computing resources. Also, developing the solution algorithm is a long process because one starts with

a quasilinearization step. This contrasts with the shorter process of the SRM, in which one obtains the

iteration scheme directly by requiring some terms to be evaluated at the current iteration and others at

the previous iteration. The SRM employs the ideas of Gauss-Seidel relaxation to decouple a nonlinear

system of PDEs into a sequence of linear PDEs, which are solved in succession. As a result the SRM is

easy to implement and computationally efficient.

Both the original SRM and SQLM used in Motsa et al. [96] use finite differences to discretize

derivatives in time. However, finite difference schemes converge slower than spectral methods, which is a

disadvantage. This can negate the benefits of rapid convergence from using spectral collocation method to

discretize in space. Furthermore, accuracy of finite difference methods requires fine grids with very small

increments, with consequent increase in computation time each time the grid is refined. The equations

governing this problem have been solved before by Motsa et al. [96] using the spectral relaxation method

(SRM), spectral quasilinearization method (SQLM) and the Keller-box method. Motsa et al. observed
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that the Keller-box method takes a significant amount of computational time; much more than either the

SRM or SQLM. The Keller-box method is based entirely on finite difference schemes, whereas the SRM

and SQLM use finite differences only in the time variable. For the space variable, both the SRM and

SQLM use spectral methods. It is well documented from literature that spectral methods converge very

quickly when the solution is smooth. This brought about the idea of using spectral methods in both space

and time, in order to increase efficiency. The BSRM used here discretize both the space and time domains

using spectral methods.

This chapter provides a different approach to the implementation of the SRM. Here, we use the

spectral method in both space and time. We refer to the improved SRM as the bivariate spectral relaxation

method (BSRM). We test the applicability of this new innovation on the PDE system mentioned above,

and compare our results with those from the traditional SRM, SQLM and Keller-box as reported by

Motsa et al. [96]. We are particularly concerned with comparing the computational times for the previous

methods to reach the same level of accuracy as our new method.

4.2 Governing Equations

We consider the unsteady and three-dimensional flow of a viscous fluid over a stretching surface inves-

tigated by Hayat et al. [99]. The fluid is electrically conducting in the presence of a constant applied

magnetic field B0. The induced magnetic field is neglected under the assumption of a small magnetic

Reynolds number. The flow is governed by the following four dimensionless partial differential equations

f ′′′+(1−ξ )

(
η

2
f ′′−ξ

∂ f ′

∂ξ

)
+ξ

[
( f +g) f ′′− ( f ′)2 −M2 f ′−λ f ′

]
= 0, (4.1)

g′′′+(1−ξ )

(
η

2
g′′−ξ

∂g′

∂ξ

)
+ξ

[
( f +g)g′′− (g′)2 −M2g′−λg′

]
= 0, (4.2)

θ
′′+Pr(1−ξ )

(
η

2
θ
′−ξ

∂θ

∂ξ

)
+Prξ ( f +g)θ ′ = 0, (4.3)

φ
′′+Sc(1−ξ )

(
η

2
φ
′−ξ

∂φ

∂ξ

)
+Scξ ( f +g)φ ′− γScξ φ = 0 (4.4)

with the following boundary conditions

f (ξ ,0) = g(ξ ,0) = 0, f ′(ξ ,0) = θ(ξ ,0) = φ(ξ ,0) = 1, (4.5)

f ′(ξ ,∞) = g′(ξ ,∞) = θ(ξ ,∞) = φ(ξ ,∞) = 0,g′(ξ ,0) = c (4.6)

51



In the above equations prime denotes the derivative with respect to η , c the stretching parameter is a

positive constant. M is the local Hartman number, λ the local porosity parameter, Sc the Schmidt number,

Pr the Prandtl number and γ the chemical reaction parameter. The initial unsteady solution can be found

exactly by setting ξ = 0 in the above equations and solving the resulting equations. The closed form

analytical solutions are given by

f (0,η) = η erfc
(

η

2

)
+

2√
π

[
1− exp

(
−η2

4

)]
, (4.7)

g(0,η) = c
(

η erfc
(

η

2

)
+

2√
π

[
1− exp

(
−η2

4

)])
, (4.8)

θ(0,η) = erfc

(√
Prη

2

)
, (4.9)

φ(0,η) = erfc

(√
Scη

2

)
. (4.10)

Equation (4.1) - (4.4) can be expressed in the following form:

Γ1 [H1,H2,H3,H4] = 0,

Γ2 [H1,H2,H3,H4] = 0,

Γ3 [H1,H2,H3,H4] = 0,

Γ4 [H1,H2,H3,H4] = 0,

(4.11)

where

H1 =

{
f1,

∂ f1

∂η
,
∂ 2 f1

∂η2 ,
∂ 3 f1

∂η3 ,
∂ f1

∂ξ
,

∂

∂ξ

(
∂ f1

∂η

)}
,

H2 =

{
f2,

∂ f2

∂η
,
∂ 2 f2

∂η2 ,
∂ 3 f2

∂η3 ,
∂ f2

∂ξ
,

∂

∂ξ

(
∂ f2

∂η

)}
,

H2 =

{
f3,

∂ f3

∂η
,
∂ 2 f3

∂η2 ,
∂ 3 f3

∂η3 ,
∂ f3

∂ξ
,

∂

∂ξ

(
∂ f3

∂η

)}
,

H4 =

{
f4,

∂ f4

∂η
,
∂ 2 f4

∂η2 ,
∂ 3 f4

∂η3 ,
∂ f4

∂ξ
,

∂

∂ξ

(
∂ f4

∂η

)}
.

(4.12)

4.3 Bivariate Spectral Relaxation Method (BSRM)

In this section we introduce the Bivariate Spectral Relaxation Method (BSRM) for solving the system of

nonlinear partial differential equations (4.1) - (4.4). Applying the relaxation scheme [96] to the system of
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nonlinear partial differential equations gives the following linear partial differential equations;

f ′′′r+1 +α1,r f ′′r+1 +α2,r f ′r+1 +α3,r fr+1 −ξ (1−ξ )
∂ f ′r+1

∂ξ
= R1,r, (4.13)

g′′′r+1 +β1,rg′′r+1 +β2,rg′r+1 +β3,rgr+1 −ξ (1−ξ )
∂g′r+1

∂ξ
= R2,r, (4.14)

θ
′′
r+1 +σ1,rθ

′
r+1 +σ2,rθr+1 −Prξ (1−ξ )

∂θr+1

∂ξ
= R3,r, (4.15)

φ
′′
r+1 +ω1,rφ

′
r+1 +ω2,rφr+1 −Scξ (1−ξ )

∂φr+1

∂ξ
= R4,r, (4.16)

subject to

fr+1(ξ ,0) = gr+1(ξ ,0) = 0, f ′r+1(ξ ,0) = θr+1(ξ ,0) = φr+1(ξ ,0) = 1,

f ′r+1(ξ ,∞) = g′r+1(ξ ,∞) = θr+1(ξ ,∞) = φr+1(ξ ,∞) = 0,g′r+1(ξ ,0) = c (4.17)

where the variable coefficients are given by

α1,r =
1
2

η(1−ξ )+ξ gr, α2,r =−ξ (M2 +λ ), α3,r = 0,

β1,r =
1
2

η(1−ξ )+ξ fr, β2,r =−ξ (M2 +λ ), β3,r = 0,

σ1,r = Pr
(

1
2

η(1−ξ )+ξ ( fr +gr)

)
, σ2,r = 0

ω1,r = Sc
(

1
2

η(1−ξ )+ξ ( fr +gr)

)
, ω2,r =−γ Scξ

R1,r = ξ ( f ′)2
r −ξ fr f ′′r , R2,r = ξ (g′)2

r −ξ grg′′r , R3,r = 0, R4,r = 0

and r and r+1 denote previous and current iterations respectively. The system of linear partial differential

equations (4.13) - (4.16) is discretized using the Chebyshev spectral collocation both in space (η) and

time (ξ ) directions. The Chebyshev collocation method is valid in the domain [−1,1] in space and time.

Therefore, the physical region, ξ ∈ [0,1] is converted to the region t ∈ [−1,1] using a linear transformation

and similarly, η ∈ [0,L∞] is converted to the region x ∈ [−1,1]. The system of linear partial differential

equations (4.13) - (4.16) is decoupled. Therefore, each equation can be solved independently of the

other equations in the system. We assume that the solution to equation (4.13) can be approximated by a

bivariate Lagrange interpolation polynomial of the form
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f (η ,ξ )≈
Nη

∑
p=0

Nξ

∑
j=0

f (ηp,ξ j)Lp(η)L j(ξ ), (4.18)

which interpolates f (η ,ξ ) at selected points in both the η and ξ directions defined by the Chebyshev-

Gauss-Lobatto grid points (1.9) which ensure a simple conversion of the continuous derivatives, in both

space and time, to discrete derivatives at the grid points. Lp(η) is the characteristic Lagrange cardinal

polynomial as defined by equation (1.5). The number of grid points in both η and ξ directions are given

by Nη and Nξ respectively. Substituting equation (4.18) into equation (4.13) and collocating after using

equations (1.12), (1.16), we get

[
D3 +ααα1,rD2 +ααα2,rD+ααα3,r

]
Fr+1,i −ξi(1−ξi)

Nξ

∑
j=0

di jDFr+1, j = R1,r, i = 0,1,2, . . . ,Nξ , (4.19)

where αααv,r (v = 1,2,3) is the diagonal matrix of the vector [αv,r(η0),αv,r(η1), · · · ,αv,r(ηNη
)]T and R1,r =

[R1,r(η0),R1,r(η1), · · · ,R1,r(ηNη
)]T . The boundary equations are given by

fr+1,i(ηNη
) = 0, f ′r+1,i(ηNη

) = 1, f ′r+1,i(η0) = 0, (4.20)

The initial unsteady solution given by equation (4.7) corresponds to ξ = ξNξ
= −1. Therefore, we

evaluate equation (4.19) for i = 0,1, · · · ,Nξ −1. Equation (4.19) can be expressed as

[
D3 +ααα1,rD2 +ααα2,rD+ααα3,r

]
Fr+1,i −ξi(1−ξi)

Nξ−1

∑
j=0

di jDFr+1, j = R1,i, i = 0,1,2, . . . ,Nξ , (4.21)

where

R1,i = R1,r +ξi(1−ξi)diNξ
DFNξ

,

and FNξ
is the known initial unsteady solution given by equation (4.7). Imposing boundary conditions for

i = 0,1, · · · ,Nξ −1, equation (4.21) can be expressed as the following Nξ (Nη +1)×Nξ (Nη +1) matrix

system




A0,0 A0,1 · · · A0,Nξ−1

A1,0 A1,1 · · · A1,Nξ−1
...

...
. . .

...

ANξ−1,0 ANξ−1,1 · · · ANξ−1,Nξ−1







F0

F1
...

FNξ−1



=




R1,0

R1,1
...

R1,Nξ−1



, (4.22)
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where

Ai,i = D3 +ααα1,rD2 +ααα2,rD+ααα3,r −ξi(1−ξi)diiD (4.23)

Ai, j =−ξi(1−ξi)di jD, when i ̸= j, (4.24)

Imposing initial boundary conditions and applying the Chebyshev bivariate collocation as described

above on equations, (4.14), (4.15) and (4.16) we get

[
D3 +βββ 1,rD2 +βββ 2,rD+βββ 3,r

]
Gr+1,i −ξi(1−ξi)

Nξ−1

∑
j=0

di jDGr+1, j = R2,i, (4.25)

[
D2 +σσσ1,rD+σσσ2,r

]
ΘΘΘr+1,i −Prξi(1−ξi)

Nξ−1

∑
j=0

di jΘΘΘr+1, j = R3,i, (4.26)

[
D2 +ωωω1,rD+ωωω2,r

]
ΦΦΦr+1,i −Scξi(1−ξi)

Nξ−1

∑
j=0

di jΦΦΦr+1, j = R4,i, (4.27)

where

R2,i = R2,r +ξi(1−ξi)diNξ
DGNξ

, (4.28)

R3,i = R3,r +Prξi(1−ξi)diNξ
ΘΘΘNξ

, (4.29)

R4,i = R4,r +Scξi(1−ξi)diNξ
ΦΦΦNξ

, (4.30)

and the vectors GNξ
, ΘΘΘNξ

and ΦΦΦNξ
are the known initial unsteady solutions given by equations (4.8), (4.9)

and (4.10) respectively. Imposing boundary conditions for i = 0,1, · · · ,Nξ −1, equations (4.25), (4.26)

and (4.27) can be expressed as the following Nξ (Nη +1)×Nξ (Nη +1) matrix system




B0,0 B0,1 · · · B0,Nξ−1

B1,0 B1,1 · · · B1,Nξ−1
...

...
. . .

...

BNξ−1,0 BNξ−1,1 · · · BNξ−1,Nξ−1







G0

G1
...

GNξ−1



=




R2,0

R2,1
...

R2,Nξ−1



, (4.31)

55






C0,0 C0,1 · · · C0,Nξ−1

C1,0 C1,1 · · · C1,Nξ−1
...

...
. . .

...

CNξ−1,0 CNξ−1,1 · · · CNξ−1,Nξ−1







ΘΘΘ0

ΘΘΘ1
...

ΘΘΘNξ−1



=




R3,0

R3,1
...

R3,Nξ−1



, (4.32)




E0,0 E0,1 · · · E0,Nξ−1

E1,0 E1,1 · · · E1,Nξ−1
...

...
. . .

...

ENξ−1,0 ENξ−1,1 · · · ENξ−1,Nξ−1







ΦΦΦ0

ΦΦΦ1
...

ΦΦΦNξ−1



=




R4,0

R4,1
...

R4,Nξ−1



, (4.33)

where

Bi,i = D3 +βββ 1,rD2 +βββ 2,rD+βββ 3,r −ξi(1−ξi)diiD (4.34)

Bi, j =−ξi(1−ξi)di jD, when i ̸= j, (4.35)

Ci,i = D2 +σσσ1,rD+σσσ2,r −Prξi(1−ξi)diiI (4.36)

Ci, j =−Prξi(1−ξi)di jI, when i ̸= j, (4.37)

Ei,i = D2 +ωωω1,rD+ωωω2,r −Scξi(1−ξi)diiI (4.38)

Ei, j =−Scξi(1−ξi)di jI, when i ̸= j, (4.39)

and I is the standard (Nη +1)× (Nη +1) identity matrix. We obtain the numerical solutions for g(η ,ξ ),

θ(η ,ξ ) and φ(η ,ξ ) by solving matrix equations (4.31), (4.32) and (4.33) iteratively for r = 1,2, · · ·M,

where M is the number of iterations to be used. Equations (4.8), (4.9) and (4.10) are used as initial

guesses.

4.4 Results and Discussion

In this section we present the numerical solutions of the three dimensional unsteady three dimensional

magneto-hydrodynamic flow and mass transfer in a porous media obtained using the BSQLM algorithm.

In our computations the the η domain was truncated to η∞ = 20. This value gave accurate results for all

the quantities of physical interest. To get accurate solutions, Nη = 60 collocation points were used to

discretize the space variable η and only Nξ = 10 collocation points were enough for the time variable

ξ . The results are validated by using the residual error. The residual error after r iterations over all
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i = 0,1,2, . . . ,Nξ is given by

||Res( fk)||∞ = ||Γk

[
H(i)

1 ,H(i)
2 ,H(i)

3 ,H(i)
4

]
||∞ (4.40)

for k = 1,2,3,4.

Table 4.1 Values of f ′′(0,ξ ), g′′(0,ξ ), θ ′(0,ξ ) and φ ′(0,ξ ) when λ = 0.5,M = 2,c = 0.5,Sc =
γ = 1,Pr = 1.5

ξ BSRM SRM SQLM Keller-box
(Nξ = 10) (Nξ = 2000) (Nξ = 2000) (Nξ = 2000)

f ′′(0,ξ )
0.1 -0.851257 -0.851257 -0.851257 -0.851257
0.3 -1.316705 -1.316705 -1.316705 -1.316705
0.5 -1.685306 -1.685306 -1.685306 -1.685306
0.7 -1.992608 -1.992608 -1.992608 -1.992608
0.9 -2.259335 -2.259335 -2.259335 -2.259335

g′′(0,ξ )
0.1 -0.417150 -0.417150 -0.417150 -0.417150
0.3 -0.639602 -0.639602 -0.639602 -0.639602
0.5 -0.817649 -0.817649 -0.817649 -0.817649
0.7 -0.966603 -0.966603 -0.966603 -0.966603
0.9 -1.095983 -1.095983 -1.095983 -1.095983

θ ′(0,ξ )
0.1 -0.710882 -0.710882 -0.710882 -0.710882
0.3 -0.742842 -0.742842 -0.742842 -0.742842
0.5 -0.765244 -0.765244 -0.765244 -0.765244
0.7 -0.777270 -0.777270 -0.777270 -0.777270
0.9 -0.770807 -0.770807 -0.770807 -0.770807

φ ′(0,ξ )
0.1 -0.634443 -0.634443 -0.634443 -0.634443
0.3 -0.766867 -0.766867 -0.766867 -0.766867
0.5 -0.891207 -0.891207 -0.891207 -0.891207
0.7 -1.010045 -1.010045 -1.010045 -1.010045
0.9 -1.125549 -1.125549 -1.125549 -1.125549

CPU time 0.47 18.90 83.24 900.30

As earlier mentioned, this problem has been solved before by Motsa et. al. [96] using the spectral

relaxation method (SRM), spectral quasilinearization method (SQLM) and the Keller-box method. The

results from their paper combined with the present results of the BSRM are shown in Table 4.1. It can be

observed from the table that the Keller-box method takes a significant amount of computational time than

the SRM and SQLM. From the results shown in the table it is evident that the BSRM is by far superior
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than the other methods in terms of computational time taken to reach the same level of accuracy. In Table

4.1, we also show the number of grid points required by each of the methods to discretize in time. All the

finite difference based discretization required 2000 grid points compared to the spectral discretization of

the BSRM which required only 10 grid points to reach the same level of accuracy. We can infer that the

BSRM is better than finite differences coupled SRM in terms of computational speed and accuracy and

the better accuracy could be the result of applying spectral collocation with uniform accuracy level in

both η and ξ directions.

Table 4.2 The residual errors and convergence rates of f when λ = 0.5,M = 2,c = 0.5,Sc =
γ = 1,Pr = 1.5

∥Res(f)∥∞ Convergence Rates
Iter. ξ = 0.25 ξ = 0.75 ξ = 1.00 ξ = 0.25 ξ = 0.75 ξ = 1.00

1 2.14×10−2 2.36×10−1 3.72×10−1 1.14 1.00 0.98
2 6.03×10−4 1.43×10−2 2.24×10−2 0.50 1.01 1.01
3 1.05×10−5 8.58×10−4 1.43×10−3 1.53 1.00 1.00
4 1.36×10−6 5.04×10−5 8.85×10−5 1.06 1.01 1.00
5 5.95×10−8 2.98×10−6 5.52×10−6 0.97 1.02 1.00
6 2.18×10−9 1.70×10−7 3.40×10−7 0.99 1.00 1.00
7 8.84×10−11 9.06×10−9 2.07×10−8 0.95 1.00 1.00
8 3.75×10−12 4.85×10−10 1.27×10−9 0.85 0.99 1.00

In Table 4.2, the residual errors and convergence rates of f when λ = 0.5,M = 2,c = 0.5,Sc =

γ = 1,Pr = 1 are displayed. We observe that the convergence rate is linear and the residual error is

smaller near ξ = 0. We observe that increasing the number of iterations, decreases the residual error and

hence increasing the accuracy of the method. This basically implies that results obtained after couple of

iterations are more accurate than results obtained just after few iterations. Increasing the iterations does

not have a direct impact on the order of convergence of the method as expected. However, we note that

an increase in ξ results in an increase in the residual error. The increase is insignificant as far as accuracy

of the method is concerned. The same results are observed in Table 4.3, where the same parameters were

used to generate the results.
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Table 4.3 The residual errors and convergence rates of g when λ = 0.5,M = 2,c = 0.5,Sc =
γ = 1,Pr = 1.5

∥Res(g)∥∞ Convergence Rates
Iter. ξ = 0.25 ξ = 0.75 ξ = 1.00 ξ = 0.25 ξ = 0.75 ξ = 1.00

1 4.17×10−3 4.93×10−2 7.83×10−2 0.94 1.01 0.99
2 4.96×10−5 1.40×10−3 2.21×10−3 0.75 1.03 1.04
3 7.66×10−7 3.81×10−5 6.39×10−5 1.26 1.13 1.18
4 3.38×10−8 9.21×10−7 1.58×10−6 1.07 0.76 0.56
5 6.56×10−10 1.38×10−8 2.01×10−8 0.83 0.68 0.92
6 9.49×10−12 5.75×10−10 1.78×10−9 1.00 1.27 1.18
7 2.82×10−13 6.58×10−11 1.93×10−10 0.89 1.08 1.04
8 8.39×10−15 4.19×10−12 1.39×10−11 0.95 1.00 1.00

The residual error graphs of equations (4.1) - (4.4) are presented in Fig. 4.1 - Fig. 4.4 respectively.

In Fig. 4.1 and Fig. 4.2, we observe that the residual error is reduced with an increase in the iterations

of the scheme. The rate of reduction of the residual error appears to be linear. The residual error is

minimum at ξ = 0 and is increased sharply near 0 until a certain level is reached after which it is almost

constant. The residual error appears to be nearly uniform in 0 < ξ ≤ 1 or increases only slightly. It is

also observed that the order of magnitude of the residual error can be seen to be small in the 0 ≤ ξ ≤ 1

interval. Lastly, after only two iterations the residual error appears to be less than 0.01 in the entire range

of ξ . The small residual error using only a few iteration points points to the accuracy of the method.

This error can be decreased at a linear rate with an increase in the number of iterations. The decrease

in the error with additional iterations suggests that the iteration scheme converges. It should be noted

that when ξ = 0, governing equations reduce to a linear system that can be solved directly using the

spectral collocation method with discretization only in η without the use of relaxation and iterations.

This explains why the best accuracy is observed at ξ = 0. The near uniformity of the residual error in

0 < ξ ≤ 1 can be attributed to the use of Lagrange polynomial basis functions whose error is known to

be uniformly distributed in the interpolating region. We can therefore conclude that the method gives

accurate results, the rate of convergence of the method is linear and that the method requires only a few

iterations to give very accurate results.
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Fig. 4.1 Residual graph of f (η ,ξ )
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Fig. 4.2 Residual graph of g(η ,ξ )

We observe that the residual error for the first iteration appears to be very small in Fig. 4.3 and Fig.

4.4. The residual error is the same for all iterations greater than one. The residual error increases with an

increase in ξ . We also observe that the residual error is smaller than the one for f and g even when fewer

iterations are used. The observation that the residual error for the momentum and energy is small even

for the 1st iteration is perhaps the most interesting finding of the study. This means that when using the

proposed approach, the best possible results that can be achieved by the method can be obtained after

using just one iteration. Further increase in the number of iterations doesn’t improve the accuracy of

the solution. After one iteration of the momentum equations for f and g the energy and mass transfer

equations reduce to linear homogeneous equations whose solution appears to be marginally influenced by

variations in fr and gr for r > 1. Since with just one iteration we obtain extremely accurate results for θ

and φ , the implication is that in solving for energy and momentum equations for such a problem, it is not

necessary to iterate. It is enough to just use the initial approximation. Is is worth noting that the energy

and mass transfer equations are homogeneous equations in θ and φ respectively. It is possible that the

findings obtained in this study are only applicable in such equations. This has to be investigated further.
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Fig. 4.3 Residual graph of θ(η ,ξ )
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Fig. 4.4 Residual graph of φ(η ,ξ )

The convergence graphs of equations (4.1) - (4.4) are presented in Fig. 4.5 - Fig. 4.6 respectively.

In 4.5 - Fig. 4.6, the residual error decreases linearly with an increase in the number of iterations.
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The residual error is smallest when ξ is near zero and largest when ξ is large. This is seen from the

convergence level which is near 10−20 for ξ = 0.25 and about 10−15 for ξ = 0.75. The slope of the

residual error graphs is the same for all values of ξ . Full convergence is achieved after 13 iterations for

both ξ = 0.75 and ξ = 1. For ξ = 0.25 full convergence is achieved after 16 iterations but at a much

smaller magnitude of residual error. The decrease in the residual error with increase in iterations suggests

that the iteration scheme converges. Small residual error near zero suggests that best accuracy (after

full convergence) is observed near zero. The method converges (fewer iterations needed to attain full

convergence) at or near ξ = 1. However, the convergence efficiency doesn’t translate to better accuracy

because, as can be seen for the case of ξ values near zero, the convergence level is 10−16. The same slope

for all the graphs means that the convergence rates of the method is the same for all values of ξ . The

method is convergent and very accurate in whole time domain ξ ∈ [0,1] which translates to τ ∈ [0,∞).

The method converges with nearly the same convergence rate for all values of ξ . The method gives the

best accuracy near ξ = 0 and less accurate, comparatively, at or near ξ = 1. We note that even at ξ = 1,

the method gives very accurate results with a residual error norm of about 10−15. This is one of the

highlights of this investigation.
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Fig. 4.5 Convergence graph of f (η ,ξ )
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Fig. 4.6 Convergence graph of g(η ,ξ )

4.5 Conclusion

The aim of this chapter was to introduce the bivariate spectral relaxation method (BSRM) for solving

systems of coupled partial differential equations (PDEs). We derived the algorithm for the BSRM by

extending a previous method that used finite differences (SRM) to now incorporate bivariate interpolation.

We used the method to solve the system of equations that model an unsteady three dimensional magne-

tohydrodynamic flow and mass transfer in a porous media. We compared the performance of the new

BSRM in solving these equations with data reported for the original SRM, SQLM and Keller-box method.

The new approach offers spectral accuracy in both variables. Furthermore, this accuracy is achieved
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with many fewer grid points than are needed for finite difference methods and so there is also improved

efficiency and that the residual errors rapidly approach zero. The method has been shown to converge

linearly with a convergence rate of one.

The results for the energy and mass transfer, given approximate solutions for θ and φ , respectively,

are not dependent on the successive approximations for either f or g. It is enough to use a single iteration

of f or g to give the most accurate result for θ . The method also gives accurate results in the complete

time domain ξ ∈ [0,1] (τ ∈ [0,∞)). We also found that the new method performs significantly better than

the previous SRM, SQLM and Keller-box method in terms of computational time, due to the application

of spectral collocation in both directions. The algorithm for the BSRM is straightforward because it

involves using only known formulae for discretization in Chebyshev spectral collocation. The method is

therefore recommended as a viable option for solving unsteady boundary layer flows over an impulsively

stretched sheet because of the demonstrated computational benefits and the effortless derivation of the

BSRM. The method could also be applied to other two dimensional problems or even be extended to

three dimensional coupled non-linear systems, and its performance with these evaluated.

In the next chapter, we introduce another new approach for solving a system of n nonlinear partial

differential equations, which we call the bivariate spectral local linearization method. It will be compared

with the previously published bivariate spectral quasilinearization method and the bivariate spectral

relaxation method from this chapter for solving systems of nonlinear partial differential equations.
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Chapter 5

A comparison of bivariate pseudo spectral

methods for nonlinear systems of partial

differential equations

In this chapter, three pseudospectral methods are analyzed and compared. The methods are the bivariate

spectral quasilinearization method (BSQLM, see Chapters 2 and 3), the bivariate spectral relaxation

method (BSRM, see Chapter 4), and we introduce the bivariate spectral local linearization method

(BSLLM). General overall performance is discussed in detail. A system of three nonlinear coupled

partial differential equations that model an unsteady three-dimensional MHD-boundary-layer flow due

to an impulsive motion of a stretching surface is used to demonstrate the accuracy, computational time

and general performance of the three pseudospectral methods. Results of the comparison are presented

in graphs and tables. In addition, the BSQLM and BSLLM are described for any general system of n

equations. This generalization is done for the first time this thesis.

5.1 Introduction

Pseudospectral methods have been developed to solve ordinary differential equations [115–118] and

partial differential equations [119–122] that model various scientific phenomena. There are different ways

to implement pseudospectral methods, namely through spectral relaxation, spectral local linearization

and spectral quasilinearization. The spectral relaxation method is a first order accurate pseudospectral

method that has been applied to solve ordinary differential equations arising in fluid mechanic [123–126].

It was extended to solve partial differential equations [127–130, 96] by the space and time derivatives
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being discretized using spectral collocation and finite differences respectively. Finite differences require a

fine mesh (hence many grid points) for convergence while spectral methods need only a coarse mesh

(hence few grid points). Thus combining finite differences with spectral methods compromises the

computational efficiency of the spectral method. As shown in the previous chapter, this method can be

extended with spectral methods applied independently on both space and time derivatives to solve systems

of nonlinear partial differential equations [131, 132]. This development, named the bivariate spectral

relaxation method (BSRM), decouples and linearize systems of nonlinear coupled partial differential

equations. The resulting linear decoupled system of equations is then solved using a spectral collocation

method.

Other methods have been developed to solve systems of nonlinear partial differential equations. One

of these, the bivariate spectral local linearization method (BSLLM) has been used to solve systems of

non-linear partial differential equations [133, 134]. It is a first order accurate method that decouples the

system of partial differential equations. Nonlinear partial differential equations are then linearized using

the quasilinearization technique developed by Bellman and Kalaba [71]. The algorithm was generalized

in by Motsa [134] for solving a system of three equations. In this chapter, we extend the generalization of

Motsa’s the method in [137] method to a system of n nonlinear partial differential equations.

Another pseudospectral method, the bivariate spectral quasilinearization method (BSQLM), was first

developed to solve a nonlinear evolution partial differential equation, as described in Chapters 2 and 3

[135]. It has since been extended to other systems of nonlinear partial differential equations [136, 137].

The BSQLM is a second order accurate method, wherein the nonlinear PDEs are linearized using the

quasilinearization technique [71]. The linearized PDEs are then solved using the spectral collocation

approach. In this chapter, the BSQLM is generalized to a system of n nonlinear PDEs.

After generalizing the BSQLM and BSLLM to solve a system of n nonlinear system of PDEs, the main

aim of this chapter is to compare the general overall performance of these two bivariate pseudospectral

methods with the BSRM.

For numerical experiments in this chapter, a system of three nonlinear coupled partial differential

equations that model the flow of an unsteady three-dimensional MHD-boundary-layer due to the impulsive

motion of a stretching surface is solved using the three pseudospectral methods. In comparing the accuracy

and general performance of the three pseudospectral methods, graphs are presented in the results section,

together with tables showing the physical quantities of interest in fluid mechanics and computational

times.
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The rest remainder of the this chapter is arranged as follows. In Section 5.2, the BSQLM and

BSLLM methods are presented in a generalized form. These methods together with the BSRM are then

implemented in Section 5.3. The results are discussed in Section 5.4 with conclusions in Section 5.5.

5.2 Pseudospectral Numerical Methods

In this section, we present the general form of the pseudospectral numerical methods, namely, the bivariate

spectral quasilinearisation method (BSQLM) and bivariate spectral local linearisation method (BSLLM).

We briefly discuss the bivariate spectral relaxation method (BSRM). The methods are discussed in detail

on how to use them to solve systems of n nonlinear partial differential equations.

Bivariate Spectral Quasilinearisation Method

In this section we introduce the Bivariate Spectral Quasilinearization Method (BSQLM) for approxi-

mating solutions of system of nonlinear partial differential equations. We develop the bivariate spectral

quasilinearization method for a general system of n nonlinear partial differential equations. We consider

system of n nonlinear partial differential equations of the form,

Γ1 [H1,H2, . . . ,Hn] = 0,

Γ2 [H1,H2, . . . ,Hn] = 0,

...

Γn [H1,H2, . . . ,Hn] = 0,

(5.1)

where

H1 =

{
f1,

∂ f1

∂η
,
∂ 2 f1

∂η2 , . . . ,
∂ p f1

∂η p ,
∂ f1

∂ζ
,

∂

∂ζ

(
∂ f1

∂η

)}
,

H2 =

{
f2,

∂ f2

∂η
,
∂ 2 f2

∂η2 , . . . ,
∂ p f2

∂η p ,
∂ f2

∂ζ
,

∂

∂ζ

(
∂ f2

∂η

)}
,

...

Hn =

{
fn,

∂ fn

∂η
,
∂ 2 fn

∂η2 , . . . ,
∂ p fn

∂η p ,
∂ fn

∂ζ
,

∂

∂ζ

(
∂ fn

∂η

)}
.

(5.2)

The order of differentiation is denoted by p, the solution by fk(η ,ζ ) for k = 1,2, . . . ,n and Γk for

k = 1,2, . . . ,n are non-linear operators containing all the spatial derivatives and time derivatives of

fk(η ,ζ ). We assume that the solution can be approximated by a bivariate Lagrange interpolation
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polynomial of the form

fk(η ,ζ )≈
Nη

∑
i=0

Nζ

∑
j=0

fk(ηi,ζ j)Li(η)L j(ζ ), (5.3)

for k = 1,2, . . . ,n. The bivariate Lagrange interpolation polynomial interpolates fk(η ,ζ ) at selected grid

points (ηi,ζ j) in both the η and ζ directions, for i = 0,1,2, . . . ,Nη and j = 0,1,2, . . . ,Nζ . These grid

points are given by equation (1.9). The nonlinear operators Γk, for k = 1,2,3, . . . ,n are first linearized

using the quasilinearisation technique as defined by Bellman and Kalaba [71]. The quasilinearisation

method is based on the Taylor series expansion of Γk about some previous iteration. We assume that

the difference between the previous and current solution and all it’s derivatives are small. Applying the

quasilinearisation method yields the following

Γk [H1,H2, . . . ,Hn]≈ (H1,r+1 −H1,r,H2,r+1 −H2,r, . . . ,Hn,r+1 −Hn,r) ·∇Γk [H1,r,H2,r, . . . ,Hn,r]

+Γk [H1,r,H2,r, . . . ,Hn,r] , (5.4)

where r and r+ 1 denote previous and current iterations respectively and ∇ is a vector of the partial

derivatives which is defined as

∇ =
{

∇ f1 ,∇ f2 , . . . ,∇ fn

}
. (5.5)

We define

∇ f1 =





∂

∂ f1
,

∂

∂ f ′1
,

∂

∂ f ′′1
, . . . ,

∂

∂ f (p)
1

,
∂

∂

(
∂ f1
∂ζ

) , ∂

∂

(
∂ f ′1
∂ζ

)



 ,

∇ f2 =





∂

∂ f2
,

∂

∂ f ′2
,

∂

∂ f ′′2
, . . . ,

∂

∂ f (p)
2

,
∂

∂

(
∂ f2
∂ζ

) , ∂

∂

(
∂ f ′2
∂ζ

)



 ,

...

∇ fn =





∂

∂ fn
,

∂

∂ f ′n
,

∂

∂ f ′′n
, . . . ,

∂

∂ f (p)
n

,
∂

∂

(
∂ fn
∂ζ

) , ∂

∂

(
∂ f ′n
∂ζ

)



 ,

(5.6)

where the prime denotes differentiation with respect to η . The linearized equation (5.4) can be expressed

in a compact form as

n

∑
s=1

Hs,r+1 ·∇ fsΓk [H1,r,H2,r, . . . ,Hn,r] =
n

∑
s=1

Hs,r ·∇ fsΓk [H1,r,H2,r, . . . ,Hn,r]

−Γk [H1,r,H2,r, . . . ,Hn,r] (5.7)
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for k = 1,2, . . . ,n. Equation (5.7) forms a system of n coupled linear partial differential equations. They

are solved iteratively for f1(η ,ζ ), f2(η ,ζ ), . . . , fn(η ,ζ ). Equation (5.7) can further be expressed as

follows:

n

∑
v=1

[
p

∑
s=0

α
(1)
v,s,r(η ,ζ ) f (s)v,r+1 +β

(1)
v,r (η ,ζ )

∂ fv,r+1

∂ζ
+ γ

(1)
v,r (η ,ζ )

∂

∂ζ

(
∂ fv,r+1

∂η

)]
= R1(η ,ζ ),

n

∑
v=1

[
p

∑
s=0

α
(2)
v,s,r(η ,ζ ) f (s)v,r+1 +β

(2)
v,r (η ,ζ )

∂ fv,r+1

∂ζ
+ γ

(2)
v,r (η ,ζ )

∂

∂ζ

(
∂ fv,r+1

∂η

)]
= R2(η ,ζ ),

...

n

∑
v=1

[
p

∑
s=0

α
(n)
v,s,r(η ,ζ ) f (s)v,r+1 +β

(n)
v,r (η ,ζ )

∂ fv,r+1

∂ζ
+ γ

(n)
v,r (η ,ζ )

∂

∂ζ

(
∂ fv,r+1

∂η

)]
= Rn(η ,ζ ),

(5.8)

where α
(k)
n,p,r(η ,ζ ), β

(k)
v,r (η ,ζ ) and γ

(k)
v,r (η ,ζ ) are variable coefficients of f (p)

n,r+1, ∂ fv,r+1
∂ζ

, and ∂

∂ζ

(
∂ fv,r+1

∂η

)
,

respectively. These variable coefficients correspond to the kth equation, for k = 1,2, . . . ,n. The constant

p denotes the order of differentiation. Thus, we have

α
(k)
n,p,r(η ,ζ ) =

∂Γk

∂ f (p)
n,r

, β
(k)
v,r (η ,ζ ) =

∂Γk

∂

(
∂ fv,r
∂ζ

) , γ
(k)
v,r (η ,ζ ) =

∂Γk

∂

(
∂

∂ζ

(
∂ fv,r
∂η

)) . (5.9)

The right hand side for the kth equation is given by

Rk(η ,ζ ) =
n

∑
v=1

[
p

∑
s=0

α
(k)
v,s,r(η ,ζ ) f (s)v,r +β

(k)
v,r (η ,ζ )

∂ fv,r

∂ζ
+ γ

(k)
v,r (η ,ζ )

∂

∂ζ

(
∂ fv,r

∂η

)]

−Γk [H1,r,H2,r, . . . ,Hn,r] .

(5.10)

Equation (5.8) is evaluated at the Chebyshev-Gauss-Lobbatto grid points ζ j ( j = 0,1, . . . ,Nζ ) and ηi

(i = 0,1, . . . ,Nη ). The values of the ζ derivatives are computed at the Chebyshev-Gauss-Lobatto grid

points (ηi,ζ j), as (for j = 0,1,2, . . . ,Nζ )

∂ fn

∂ζ

∣∣∣∣
(ηi,ζ j)

=
Nη

∑
ω=0

Nζ

∑
µ=0

fn(ηω ,ζµ)Lω(ηi)
dLµ(ζ j)

dζ

=

Nζ

∑
µ=0

d jµ fn(ηi,ζµ)

(5.11)

where d jµ =
dLµ (ζ j)

dζ
is the jth and µth entry of the standard first derivative Chebyshev differentiation

matrix of size (Nζ + 1)× (Nζ + 1), given by [138, 41]. The values of the space derivatives at the
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Chebyshev-Gauss-Lobatto points (ηi,ζ j) (for i = 0,1,2, . . . ,Nη ) are similarly computed as

∂ fn

∂η

∣∣∣∣
(ηi,ζ j)

=
Nη

∑
ω=0

Nζ

∑
µ=0

fn(ηω ,ζµ)
dLω(ηi)

dη
Lµ(ζ j)

=
Nη

∑
ω=0

Diω fn(ηω ,ζ j),

(5.12)

where Diω = dLω (ηi)
dη

, is the ith and ωth entry of the standard first derivative Chebyshev differentiation

matrix of size (Nη +1)× (Nη +1) as defined in [138, 41]. Higher, pth order derivatives are defined as

∂ p fn

∂η p

∣∣∣∣
(ηi,ζ j)

=
Nη

∑
ω=0

Dp
iω fn(ηω ,ζ j) = DpFn, j, i = 0,1,2, . . . ,Nη , (5.13)

where the vector Fn, j is defined as

Fn, j = [ fn(η0,ζ j), fn(η1,ζ j), . . . , fn(ηNη
,ζ j)]

T . (5.14)

and the superscript T denotes matrix transpose. Substituting equations (5.11), (5.12), (5.13) into equation

(5.8), yields
n

∑
v=1

[
A(i)

1,vFv,i +βββ
(1)
v,r

Nζ

∑
j=0

di, jFv, j +γγγ
(1)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= R1,i,

n

∑
v=1

[
A(i)

2,vFv,i +βββ
(2)
v,r

Nζ

∑
j=0

di, jFv, j +γγγ
(2)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= R2,i,

...

n

∑
v=1

[
A(i)

n,vFv,i +βββ
(n)
v,r

Nζ

∑
j=0

di, jFv, j +γγγ
(n)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= Rn,i,

(5.15)

where

A(i)
1,1 =

p

∑
s=0

ααα
(1)
1,s,rD

(s), A(i)
1,2 =

p

∑
s=0

ααα
(1)
2,s,rD

(s), . . . A(i)
1,n =

p

∑
s=0

ααα
(1)
n,s,rD(s), (5.16)

A(i)
2,1 =

p

∑
s=0

ααα
(2)
1,s,rD

(s), A(i)
2,2 =

p

∑
s=0

ααα
(2)
2,s,rD

(s), . . . A(i)
2,n =

p

∑
s=0

ααα
(2)
n,s,rD(s), (5.17)

...

A(i)
n,1 =

p

∑
s=0

ααα
(n)
1,s,rD

(s), A(i)
n,2 =

p

∑
s=0

ααα
(n)
2,s,rD

(s), . . . A(i)
n,n =

p

∑
s=0

ααα
(n)
n,s,rD(s), (5.18)
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and

ααα
(n)
n,s,r =




α
(n)
n,s,r(η0,ζ j)

α
(n)
n,s,r(η1,ζ j)

. . .

α
(n)
n,s,r(ηNη

,ζ j)



, (5.19)

βββ
(k)
v,r =




β
(k)
v,r (η0,ζ j)

β
(k)
v,r (η1,ζ j)

. . .

β
(k)
v,r (ηNη

,ζ j)



, (5.20)

γγγ
(k)
v,r =




γ
(k)
v,r (η0,ζ j)

γ
(k)
v,r (η1,ζ j)

. . .

γ
(k)
v,r (ηNη

,ζ j)



. (5.21)

Equation (5.15), is expressed as

BrΩr+1 = Rr (5.22)
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where the coefficient matrix Br is defined as




B(0,0)
1,1 B(0,0)

1,2 · · · B(0,0)
1,n B(0,1)

1,1 B(0,1)
1,2 · · · B(0,1)

1,n

. . . B(0,Nη )
1,1 B(0,Nη )

1,2 · · · B(0,Nη )
1,n

B(0,0)
2,1 B(0,0)

2,2 · · · B(0,0)
2,n B(0,1)

2,1 B(0,1)
2,2 · · · B(0,1)

2,n

. . . B(0,Nη )
2,1 B(0,Nη )

2,2 · · · B(0,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(0,0)
n,1 B(0,0)

n,2 · · · B(0,0)
n,n B(0,1)

n,1 B(0,1)
n,2 · · · B(0,1)

n,n
. . . B(0,Nη )

n,1 B(0,Nη )
n,2 · · · B(0,Nη )

n,n

B(1,0)
1,1 B(1,0)

1,2 · · · B(1,0)
1,n B(1,1)

1,1 B(1,1)
1,2 · · · B(1,1)

1,n

. . . B(1,Nη )
1,1 B(1,Nη )

1,2 · · · B(1,Nη )
1,n

B(1,0)
2,1 B(1,0)

2,2 · · · B(1,0)
2,n B(1,1)

2,1 B(1,1)
2,2 · · · B(1,1)

2,n

. . . B(1,Nη )
2,1 B(1,Nη )

2,2 · · · B(1,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(1,0)
n,1 B(1,0)

n,2 · · · B(1,0)
n,n B(1,1)

n,1 B(1,1)
n,2 · · · B(1,1)

n,n
. . . B(1,Nη )

n,1 B(1,Nη )
n,2 · · · B(1,Nη )

n,n

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

B(Nη ,0)
1,1 B(Nη ,0)

1,2 · · · B(Nη ,0)
1,n B(Nη ,1)

1,1 B(Nη ,1)
1,2 · · · B(Nη ,1)

1,n

. . . B(Nη ,Nη )
1,1 B(Nη ,Nη )

1,2 · · · B(Nη ,Nη )
1,n

B(Nη ,0)
2,1 B(Nη ,0)

2,2 · · · B(Nη ,0)
2,n B(Nη ,1)

2,1 B(Nη ,1)
2,2 · · · B(Nη ,1)

2,n

. . . B(Nη ,Nη )
2,1 B(Nη ,Nη )

2,2 · · · B(Nη ,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(Nη ,0)
n,1 B(Nη ,0)

n,2 · · · B(Nη ,0)
n,n B(Nη ,1)

n,1 B(Nη ,1)
n,2 · · · B(Nη ,1)

n,n
. . . B(Nη ,Nη )

n,1 B(Nη ,Nη )
n,2 · · · B(Nη ,Nη )

n,n




and the entries are defined as

B(i,i)
k,k = Ai

v,k+βββ
(1,k)
v,r di,iI+γγγ

(1,k)
v,k di,iD, for v,k = 1,2, . . . ,n, when i = j,

B(i, j)
k,k = βββ

(1,k)
v,r di, jI+γγγ

(1,k)
v,k di, jD, for v,k = 1,2, . . . ,n, when i ̸= j

(5.23)

The vectors Ωr+1 and Rr are defined as

Ωr+1 =
[
F(0)

1,r+1F(0)
2,r+1 · · ·F

(0)
n,r+1

∣∣∣F(1)
1,r+1F(1)

2,r+1 · · ·F
(1)
n,r+1

∣∣∣ · · · · · · · · · · · ·
∣∣∣F(Nζ )

1,r+1F(Nζ )

2,r+1 · · ·F
(Nζ )

n,r+1

]T
(5.24)

Rr =
[
R(0)

1 R(0)
2 R(0)

3 · · ·R(0)
n

∣∣∣R(1)
1 R(1)

2 R(1)
3 · · ·R(1)

n

∣∣∣ · · · · · · · · · · · ·
∣∣∣R(Nζ )

1 R(Nζ )

2 · · · R(Nζ )
n

]T
(5.25)

Bivariate Spectral Local Linearisation Method

In this section we introduce the bivariate spectral local linearisation method (BSLLM) for

approximating solutions of system of nonlinear partial differential equations. We develop
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the bivariate spectral local linearization method for a general system of n nonlinear partial

differential equations. Without loss of generality, consider equations of the form (5.1). The

solution procedure assumes that the solution can be approximated by a bivariate Lagrange

interpolation polynomial of the form

fk(η ,ζ )≈
Nη

∑
i=0

Nζ

∑
j=0

fk(ηi,ζ j)Li(η)L j(ζ ), (5.26)

for k = 1,2, . . . ,n. The grid points are given by equation (1.9) and the function Li(η) is the char-

acteristic Lagrange cardinal polynomial given by equation (1.5). Applying the quasilinearisation

method independently in each equation, we get

H1,r+1 ·∇ f1Γ1 [H1,r,H2,r, . . . ,Hn,r] = H1,r ·∇ f1Γ1 [H1,r,H2,r, . . . ,Hn,r]−Γ1 [H1,r,H2,r, . . . ,Hn,r]

H2,r+1 ·∇ f2Γ2 [H1,r+1,H2,r, . . . ,Hn,r] = H2,r ·∇ f2Γ2 [H1,r+1,H2,r, . . . ,Hn,r]−Γ2 [H1,r+1,H2,r, . . . ,Hn,r]

...

Hn,r+1 ·∇ fnΓn [H1,r+1,H2,r+1, . . . ,Hn−1,r+1,Hn,r] = Hn,r ·∇ fnΓn [H1,r+1,H2,r+1, . . . ,Hn−1,r+1,Hn,r]

−Γn [H1,r+1,H2,r+1, . . . ,Hn−1,r+1,Hn,r] .

(5.27)

Equation (5.27) form a system of n decoupled linear partial differential equations. They are

solved iteratively for f1(η ,ζ ), f2(η ,ζ )), . . . , fn(η ,ζ )). Equation (5.27) can further be expressed

as:

p

∑
s=0

α
(1)
s,r (η ,ζ ) f (s)1,r+1+β

(1)
r (η ,ζ )

∂ f (0)1,r+1

∂ζ
+γ

(1)
r (η ,ζ )

∂ f (1)1,r+1

∂ζ
= R1(η ,ζ ),

p

∑
s=0

α
(2)
s,r (η ,ζ ) f (s)2,r+1+β

(2)
r (η ,ζ )

∂ f (0)2,r+1

∂ζ
+γ

(2)
r (η ,ζ )

∂ f (1)2,r+1

∂ζ
= R2(η ,ζ ),

...

p

∑
s=0

α
(n)
s,r (η ,ζ ) f (s)n,r+1+β

(n)
r (η ,ζ )

∂ f (0)n,r+1

∂ζ
+γ

(n)
r (η ,ζ )

∂ f (1)n,r+1

∂ζ
= Rn(η ,ζ ),

(5.28)

where α
(k)
s,r (η ,ζ ), β

(k)
r (η ,ζ ) and γ

(k)
r (η ,ζ ) are variable coefficients of f (s)k,r+1,

∂ f (0)k,r+1
∂ζ

, and
∂ f (1)k,r+1

∂ζ
,

respectively, for k = 1,2, . . . ,n and s = 0,1,2, . . . , p. These coefficients correspond to the kth
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equation, for k = 1,2, . . . ,n. Since constant p denotes the order of differentiation, then

α
(k)
s,r (η ,ζ ) =

∂Γk

∂ f (s)k,r

, β
(k)
r (η ,ζ ) =

∂Γk

∂

(
∂ f (0)k,r

∂ζ

) , γ
(k)
r (η ,ζ ) =

∂Γk

∂

(
∂ f (1)k,r

∂ζ

) . (5.29)

The kth right hand side is generally given by

Rk(η ,ζ ) =
p

∑
s=0

α
(k)
s,r (η ,ζ ) f (s)k,r +β

(k)
r (η ,ζ )

∂ f (0)k,r

∂ζ
+γ

(k)
r (η ,ζ )

∂ f (1)k,r

∂ζ )
−Γk. (5.30)

Evaluating equation (5.28), at the Chebyshev-Gauss-Lobbatto grid points ζ j ( j = 0,1, . . . ,Nζ )

and ηi (i = 0,1, . . . ,Nη ), yields

A1,1F1,i+βββ
(1)
r

Nζ

∑
j=0

di, jF1, j+γγγ
(1)
r

Nζ

∑
j=0

di, jDF1, j = R1,i,

A2,2F2,i+βββ
(2)
r

Nζ

∑
j=0

di, jF2, j+γγγ
(2)
r

Nζ

∑
j=0

di, jDF2, j = R2,i,

...

An,nFn,i+βββ
(n)
r

Nζ

∑
j=0

di, jFn, j+γγγ
(n)
r

Nζ

∑
j=0

di, jDFn, j = Rn,i,

(5.31)

where

A1,1 =
p

∑
s=0

ααα
(1)
s,r D(s), A2,2 =

p

∑
s=0

ααα
(2)
s,r D(s), . . . , An,n =

p

∑
s=0

ααα
(n)
s,r D(s). (5.32)
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The diagonal matrices of the corresponding variable coefficients at each kth equations are given

by

ααα
(k)
s,r =




α
(k)
s,r (η0,ζ j)

α
(k)
s,r (η1,ζ j)

. . .

α
(k)
s,r (ηNη

,ζ j)



, (5.33)

βββ
(k)
r =




β
(k)
r (η0,ζ j)

β
(k)
r (η1,ζ j)

. . .

β
(k)
r (ηNη

,ζ j)



, (5.34)

γγγ
(k)
r =




γ
(k)
r (η0,ζ j)

γ
(k)
r (η1,ζ j)

. . .

γ
(k)
r (ηNη

,ζ j)



. (5.35)

Imposing boundary conditions for i = 0,1, · · · ,Nζ −1, equation (5.31), can be expressed as the

following Nζ (Nη+1)×Nζ (Nη+1) matrix system




B(k)
0,0 B(k)

0,1 · · · B(k)
0,Nζ−1

B(k)
1,0 B(k)

1,1 · · · B(k)
1,Nζ−1

...
... . . . ...

B(k)
Nζ−1,0 B(k)

Nζ−1,1 · · · B(k)
Nζ−1,Nζ−1







Fk,0

Fk,1
...

Fk,Nζ−1



=




Rk,0

Rk,1
...

Rk,Nζ−1



, (5.36)

where

B(k)
(i,i) =

p

∑
s=0

ααα
(k)
s,r D(s)+βββ

(k)
r di,iI+γγγ

(k)
r di,iD, for k = 1,2, . . . ,n, when i = j,

B(k)
(i, j) = βββ

(k)
r di, jI+γγγ

(k)
r di, jD, for k = 1,2, . . . ,n, when i ̸= j.

(5.37)

The vector Rk,i is defined as

Rk,i = Rk,i−
(

βββ
(k)
r di,Nζ

I+γγγ
(k)
r di,Nζ

D
)

Fk,Nζ
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for i = 0,1, · · · ,Nζ −1 and k = 1,2, . . . ,n. The vector Fk,Nζ
corresponds to the initial boundary

condition which is always prescribed.

Bivariate Spectral Relaxation Method

The bivariate spectral relaxation method (BSRM) for approximating solutions of system of

nonlinear partial differential equations is developed for a general system of n nonlinear par-

tial differential equations. Similarly, without loss of generality, equations of the form (5.1)

are considered. The solution procedure assumes that the solution can be approximated by a

bivariate Lagrange interpolation polynomial of the form (5.26). The algorithm for the method is

summarized as follows:

1. The iteration scheme is developed by assuming that in the first equation, only the linear

terms are evaluated at the current iteration which is denoted by r+1 and all the other

terms irrespective of their linearity are evaluated at the previous iteration denoted by r.

These terms and all derivatives in terms of the first equation are assumed to be known

from previous iteration.

2. For the second equation, the linear terms are evaluated at the current iteration and the

other terms are evaluated at the previous iteration. This procedure is repeated until the last

equation.

We should remark that the BSRM method uses a similar approach to the BSLLM method except

that the BSRM method does not use the quasilinearisation approach but rather the Gauss-Seidel

approach to decouple the equations and hence resulting in different variable coefficients from

the BSLLM. The BSRM for systems of three equations or more have been applied to various

problems by many researchers including [132, 139]. Rearranging terms in equation (5.27), we
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obtain

p

∑
s=0

α
(1)
s,r (η ,ζ ) f (s)1,r+1+β

(1)
r (η ,ζ )

∂ f (0)1,r+1

∂ζ
+γ

(1)
r (η ,ζ )

∂ f (1)1,r+1

∂ζ
= R1(η ,ζ ),

p

∑
s=0

α
(2)
s,r (η ,ζ ) f (s)2,r+1+β

(2)
r (η ,ζ )

∂ f (0)2,r+1

∂ζ
+γ

(2)
r (η ,ζ )

∂ f (1)2,r+1

∂ζ
= R2(η ,ζ ),

...

p

∑
s=0

α
(n)
s,r (η ,ζ ) f (s)n,r+1+β

(n)
r (η ,ζ )

∂ f (0)n,r+1

∂ζ
+γ

(n)
r (η ,ζ )

∂ f (1)n,r+1

∂ζ
= Rn(η ,ζ ),

(5.38)

where α
(k)
s,r (η ,ζ ), β

(k)
r (η ,ζ ) and γ

(k)
r (η ,ζ ) are variable coefficients of f (s)k,r+1,

∂ f (0)k,r+1
∂ζ

, and
∂ f (1)k,r+1

∂ζ
,

respectively, for k = 1,2, . . . ,n and s = 0,1,2, . . . , p. These coefficients correspond to the kth

equation, for k = 1,2, . . . ,n. The right hand side of the kth equation depends on the number of

linear and nonlinear terms of the kth equation and other equations other than the kth equation.

Evaluating equation (5.38), at the Chebyshev-Gauss-Lobbatto grid points ζ j ( j = 0,1, . . . ,Nζ )

and ηi (i = 0,1, . . . ,Nη ), yields

A1,1F1,i+βββ
(1)
r

Nζ

∑
j=0

di, jF1, j+γγγ
(1)
r

Nζ

∑
j=0

di, jDF1, j = R1,i,

A2,2F2,i+βββ
(2)
r

Nζ

∑
j=0

di, jF2, j+γγγ
(2)
r

Nζ

∑
j=0

di, jDF2, j = R2,i,

...

An,nFn,i+βββ
(n)
r

Nζ

∑
j=0

di, jFn, j+γγγ
(n)
r

Nζ

∑
j=0

di, jDFn, j = Rn,i,

(5.39)

where

A1,1 =
p

∑
s=0

ααα
(1)
s,r D(s), A2,2 =

p

∑
s=0

ααα
(2)
s,r D(s), . . . , An,n =

p

∑
s=0

ααα
(n)
s,r D(s). (5.40)
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The variable coefficients give rise to diagonal matrices. The corresponding diagonal matrices of

each kth equation are given by

ααα
(k)
s,r =




α
(k)
s,r (η0,ζ j)

α
(k)
s,r (η1,ζ j)

. . .

α
(k)
s,r (ηNη

,ζ j)



, (5.41)

βββ
(k)
r =




β
(k)
r (η0,ζ j)

β
(k)
r (η1,ζ j)

. . .

β
(k)
r (ηNη

,ζ j)



, (5.42)

γγγ
(k)
r =




γ
(k)
r (η0,ζ j)

γ
(k)
r (η1,ζ j)

. . .

γ
(k)
r (ηNη

,ζ j)



. (5.43)

Imposing boundary conditions for i = 0,1, · · · ,Nζ −1, equation (5.39), can be expressed as the

following Nζ (Nη+1)×Nζ (Nη+1) matrix system




B(k)
0,0 B(k)

0,1 · · · B(k)
0,Nζ−1

B(k)
1,0 B(k)

1,1 · · · B(k)
1,Nζ−1

...
... . . . ...

B(k)
Nζ−1,0 B(k)

Nζ−1,1 · · · B(k)
Nζ−1,Nζ−1







Fk,0

Fk,1
...

Fk,Nζ−1



=




Rk,0

Rk,1
...

Rk,Nζ−1



, (5.44)

where

B(k)
(i,i) =

p

∑
s=0

ααα
(k)
s,r D(s)+βββ

(k)
r di,iI+γγγ

(k)
r di,iD, for k = 1,2, . . . ,n, when i = j,

B(k)
(i, j) = βββ

(k)
r di, jI+γγγ

(k)
r di, jD, for k = 1,2, . . . ,n, when i ̸= j.

(5.45)

The vector Rk,i is defined as

Rk,i = Rk,i−
(

βββ
(k)
r di,Nζ

I+γγγ
(k)
r di,Nζ

D
)

Fk,Nζ
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for i = 0,1, · · · ,Nζ −1 and k = 1,2, . . . ,n. Similarly, the vector Fk,Nζ
corresponds to the initial

boundary condition which is always prescribed.

5.3 Numerical Experiments

In this subsection, we present a system of three nonlinear coupled partial differential equations

that model an unsteady three-dimensional MHD-boundary-layer flow due to an impulsive motion

of a stretching surface. The equations are given by:

∂ 3 f
∂η3 +

1
2

η(1−ζ )
∂ 2 f
∂η2 +ζ ( f +s)

∂ 2 f
∂η2 −ζ

(
∂ f
∂η

)2

−Mζ
∂ f
∂η

= ζ (1−ζ )
∂

∂ζ

(
∂ f
∂η

)
,

∂ 3s
∂η3 +

1
2

η(1−ζ )
∂ 2s
∂η2 +ζ ( f +s)

∂ 2s
∂η2 −ζ

(
∂ s
∂η

)2

−Mζ
∂ s
∂η

= ζ (1−ζ )
∂

∂ζ

(
∂ s
∂η

)
,

1
Pr

∂ 2g
∂η2 +

1
2

η(1−ζ )
∂g
∂η

+ζ ( f +s)
∂g
∂η

= ζ (1−ζ )
∂g
∂ζ

.

(5.46)

The appropriate boundary conditions are given by

f (ζ ,0) = 0, f ′(ζ ,0) = 1, s(ζ ,0) = 0, g(ζ ,0) = 1, s′(ζ ,0) = c,

f ′(ζ ,∞) = s′(ζ ,∞) = f (ζ ,∞) = 0.
(5.47)

In this model, c is the ratio f the surface velocity gradients along the y and x directions, Pr is the

Prandtl number and M is the magnetic number. This model was formulated and modeled by

Takhar et. al. [140] using finite differences. It has been solved by other numerical methods by

different researchers. We solve the same model using the bivariate spectral quasilinearisation

method (BSQLM), bivariate spectral relaxation method (BSRM) and bivariate spectral local

linearisation method (BSLLM) in the subsequent subsections. The exact solutions for the

equations when ζ = 0 are given by:

f (η) = η erfc
(

η

2

)
+

1√
π

[
1−exp

(
−η2

4

)]
,

s(η) = cη erfc
(

η

2

)
+

1√
π

[
1−exp

(
−η2

4

)]
,

g(η) = erfc

(√
Prη

2

)
.

(5.48)
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We express the governing equation (5.46) in the general form (5.1). Therefore, we have

∂ 3 f1

∂η3 +
1
2

η(1−ζ )
∂ 2 f1

∂η2 +ζ ( f1+ f2)
∂ 2 f1

∂η2 −ζ

(
∂ f1

∂η

)2

−Mζ
∂ f1

∂η
−ζ (1−ζ )

∂

∂ζ

(
∂ f1

∂η

)
= 0,

∂ 3 f2

∂η3 +
1
2

η(1−ζ )
∂ 2 f2

∂η2 +ζ ( f1+ f2)
∂ 2 f2

∂η2 −ζ

(
∂ f2

∂η

)2

−Mζ
∂ f2

∂η
−ζ (1−ζ )

∂

∂ζ

(
∂ f2

∂η

)
= 0,

1
Pr

∂ 2 f3

∂η2 +
1
2

η(1−ζ )
∂ f3

∂η
+ζ ( f1+ f2)

∂ f3

∂η
−ζ (1−ζ )

∂ f3

∂ζ
= 0.

(5.49)

subject to

f1(ζ ,0) = 0, f ′1(ζ ,0) = 1, f2(ζ ,0) = 0, f3(ζ ,0) = 1, f ′2(ζ ,0) = c,

f ′1(ζ ,∞) = f ′2(ζ ,∞) = f3(ζ ,∞) = 0.
(5.50)

We define

Γ1 =
∂ 3 f1

∂η3 +
1
2

η(1−ζ )
∂ 2 f1

∂η2 +ζ ( f1+ f2)
∂ 2 f1

∂η2 −ζ

(
∂ f1

∂η

)2

−Mζ
∂ f1

∂η
−ζ (1−ζ )

∂

∂ζ

(
∂ f1

∂η

)
,

Γ2 =
∂ 3 f2

∂η3 +
1
2

η(1−ζ )
∂ 2 f2

∂η2 +ζ ( f1+ f2)
∂ 2 f2

∂η2 −ζ

(
∂ f2

∂η

)2

−Mζ
∂ f2

∂η
−ζ (1−ζ )

∂

∂ζ

(
∂ f2

∂η

)
,

Γ3 =
1

Pr
∂ 2 f3

∂η2 +
1
2

η(1−ζ )
∂ f3

∂η
+ζ ( f1+ f2)

∂ f3

∂η
−ζ (1−ζ )

∂ f3

∂ζ
.

(5.51)

Bivariate spectral quasilinearisation method (BSQLM)

In this subsection, we demonstrate the application of the BSQLM method on the numerical

experiment. The highest order of differentiation is p = 3 and the number of equations is n = 3.

Applying the BSQLM method to equation (5.49), we get

3

∑
v=1

[
A(i)

1,vFv,i+βββ
(1)
v,r

Nζ

∑
j=0

di, jFv, j+γγγ
(1)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= R1,i,

3

∑
v=1

[
A(i)

2,vFv,i+βββ
(2)
v,r

Nζ

∑
j=0

di, jFv, j+γγγ
(2)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= R2,i,

3

∑
v=1

[
A(i)

3,vFv,i+βββ
(3)
v,r

Nζ

∑
j=0

di, jFv, j+γγγ
(3)
v,r

Nζ

∑
j=0

di, jDFv, j

]
= R3,i,

(5.52)
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where

A(i)
1,1 =

3

∑
s=0

ααα
(1)
1,s,rD

(s), A(i)
1,2 =

3

∑
s=0

ααα
(1)
2,s,rD

(s), A(i)
1,3 =

3

∑
s=0

ααα
(1)
3,s,rD

(s), (5.53)

A(i)
2,1 =

3

∑
s=0

ααα
(2)
1,s,rD

(s), A(i)
2,2 =

3

∑
s=0

ααα
(2)
2,s,rD

(s), A(i)
2,3 =

3

∑
s=0

ααα
(2)
3,s,rD

(s), (5.54)

A(i)
3,1 =

3

∑
s=0

ααα
(3)
1,s,rD

(s), A(i)
3,2 =

3

∑
s=0

ααα
(3)
2,s,rD

(s), A(i)
3,3 =

3

∑
s=0

ααα
(3)
3,s,rD

(s). (5.55)

The coefficients for s = 0,1,2,3 are given by

α
(1)
1,s,r =

∂Γ1

∂ f (s)1,r

, α
(1)
2,s,r =

∂Γ1

∂ f (s)2,r

, α
(1)
3,s,r =

∂Γ1

∂ f (s)3,r

, α
(2)
1,s,r =

∂Γ2

∂ f (s)1,r

, α
(2)
2,s,r =

∂Γ2

∂ f (s)2,r

, α
(2)
3,s,r =

∂Γ2

∂ f (s)3,r

,

α
(3)
1,s,r =

∂Γ3

∂ f (s)1,r

, α
(3)
2,s,r =

∂Γ3

∂ f (s)2,r

, α
(3)
3,s,r =

∂Γ3

∂ f (s)3,r

, β
(1)
s,r =

∂Γ1

∂

(
∂ fs,r
∂ζ

) , β
(2)
s,r =

∂Γ2

∂

(
∂ fs,r
∂ζ

) ,

β
(3)
s,r =

∂Γ3

∂

(
∂ fs,r
∂ζ

) , γ
(1)
s,r =

∂Γ1

∂

(
∂

∂ζ

(
∂ fs,r
∂η

)) , γ
(2)
s,r =

∂Γ2

∂

(
∂

∂ζ

(
∂ fs,r
∂η

)) , γ
(3)
s,r =

∂Γ3

∂

(
∂

∂ζ

(
∂ fs,r
∂η

)) .

These information can be used to construct the elements of the coefficient matrix Br, which are

given by equation (5.23).

Bivariate spectral local linearisation method (BSLLM)

Similarly, in this subsection, we demonstrate the application of the BSLLM method on the

numerical experiment. The highest order of differentiation is p = 3 and n = 3. Applying the

BSLLM method to equations (5.49), we get

A1,1F1,i+βββ
(1)
r

Nζ

∑
j=0

di, jF1, j+γγγ
(1)
r

Nζ

∑
j=0

di, jDF1, j = R1,i,

A2,2F2,i+βββ
(2)
r

Nζ

∑
j=0

di, jF2, j+γγγ
(2)
r

Nζ

∑
j=0

di, jDF2, j = R2,i,

A3,3F3,i+βββ
(3)
r

Nζ

∑
j=0

di, jF3, j+γγγ
(3)
r

Nζ

∑
j=0

di, jDF3, j = R3,i,

(5.56)
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where

A1,1 =
3

∑
s=0

ααα
(1)
s,r D(s), A2,2 =

3

∑
s=0

ααα
(2)
s,r D(s), A3,3 =

3

∑
s=0

ααα
(3)
s,r D(s). (5.57)

The coefficients for s = 0,1,2,3 are given by:

α
(1)
s,r =

∂Γ1

∂ f (s)1,r

, α
(2)
s,r =

∂Γ2

∂ f (s)2,r

, α
(3)
s,r =

∂Γ3

∂ f (s)3,r

, β
(1)
r =

∂Γ1

∂

(
∂ f (0)1,r

∂ζ

) , β
(2)
r =

∂Γ2

∂

(
∂ f (0)2,r

∂ζ

) ,

β
(3)
r =

∂Γ3

∂

(
∂ f (0)3,r

∂ζ

) , γ
(1)
r =

∂Γ1

∂

(
∂ f (1)1,r

∂ζ

) , γ
(2)
r =

∂Γ2

∂

(
∂ f (1)2,r

∂ζ

) , γ
(3)
r =

∂Γ3

∂

(
∂ f (1)3,r

∂ζ

) .

The right hand side for k = 1,2,3 is given by

Rk,i =
3

∑
s=0

α
(k)
s,r (η ,ζ ) f (s)k,r +β

(k)
r (η ,ζ )

∂ f (0)k,r

∂ζ
+γ

(k)
r (η ,ζ )

∂ f (1)k,r

∂ζ
−Γk. (5.58)

Thus the equations can be expressed as a matrix system as equation (5.36) and the entries of

the matrix are given by equations (5.37). The resulting matrix is independently solved for the

desired functions.

Bivariate spectral relaxation method (BSRM)

In this subsection, we demonstrate the application of the BSRM method of the numerical

experiment. The highest order of differentiation is p = 3 in the first two equations and p = 2 in

the third order equation. The constant n = 3. Applying the BSRM method to equations (5.49),

we get

A1,1F1,i+βββ
(1)
r

Nζ

∑
j=0

di, jF1, j+γγγ
(1)
r

Nζ

∑
j=0

di, jDF1, j = R1,i,

A2,2F2,i+βββ
(2)
r

Nζ

∑
j=0

di, jF2, j+γγγ
(2)
r

Nζ

∑
j=0

di, jDF2, j = R2,i,

A3,3F3,i+βββ
(3)
r

Nζ

∑
j=0

di, jF3, j+γγγ
(3)
r

Nζ

∑
j=0

di, jDF3, j = R3,i,

(5.59)
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where

A1,1 =
3

∑
s=0

ααα
(1)
s,r D(s), A2,2 =

3

∑
s=0

ααα
(2)
s,r D(s), A3,3 =

3

∑
s=0

ααα
(3)
s,r D(s). (5.60)

The coefficients for s = 0,1,2,3 are given by:

α
(1)
0,r = 0, α

(1)
1,r =−Mζ , α

(1)
2,r =

1
2

η(1−ζ )+ζ ( f1,r+ f2,r),

α
(1)
3,r = 1, β

(1)
r = 0, γ

(1)
r =−ζ (1−ζ ),

α
(2)
0,r = 0, α

(2)
1,r =−Mζ , α

(2)
2,r =

1
2

η(1−ζ )+ζ ( f1,r+ f2,r),

α
(2)
3,r = 1, β

(2)
r = 0, γ

(2)
r =−ζ (1−ζ ),

α
(3)
0,r = 0, α

(3)
1,r =

1
2

η(1−ζ )+ζ ( f1,r+ f2,r), α
(3)
2,r =

1
Pr

,

α
(3)
3,r = 0, β

(3)
r =−ζ (1−ζ ), γ

(3)
r = 0.

(5.61)

The right hand side for k = 1,2,3 is given by

R1,r = ζ

(
∂ f1

∂η

)2

,

R2,r = ζ

(
∂ f2

∂η

)2

,

R3,r = 0.

(5.62)

Thus the equations can be expressed as a matrix system as equation (5.44) and the entries of

the matrix are given by equations (5.45). The resulting matrix is independently solved for the

desired functions.

5.4 Results and Discussion

In this section we present the numerical solutions of the unsteady three-dimensional MHD-

boundary-layer flow due to an impulsive motion of stretching surface obtained using the bivariate

spectral quasilinearisation method (BSQLM), bivariate spectral relaxation method (BSRM) and

bivariate spectral local linearisation method (BSLLM) algorithms. The η domain was truncated

to η∞ = 10 for all computations. Accurate results for all the quantities of physical interest were

81



obtained using this value of η . Graphs and tables displaying physical quantities of interest are

presented to validate the accuracy, general performance of the three methods. All the results

in this section were obtained using MATLAB 2013, and the constants c = 0.5,Pr = 0.7 and

M = 1. We consider two cases, we have case I, where Nη = 20 and Nζ = 10, Nζ = 20. We also

have case II, where Nη = 80 and Nζ = 30, Nζ = 40.

Case I: Nη = 20 and Nζ = 10, Nζ = 20

Figs. 5.1 - 5.15 were obtained by using the bivariate spectral methods, that is, using the BSQLM,

BSRM, BSLLM. Figs. 5.1 and 5.2 show the second derivatives of f (η ,ζ ), s(η ,ζ ) respectively.

These graphs were obtained using the three methods, BSQLM, BSRM, BSLLM. These values

from the three different methods agree for all value of η . A similar trend is observed for all

the remaining graphs (Figs. 5.3-5.6). This in turn implies that the three methods give accurate

results.

Figs. 5.7 - 5.15 show the values of f (η ,ζ ), s(η ,ζ ) and g(η ,ζ ) in the entire domain, that

is, for all ξ and η . We note that the methods give exactly the same values of f (η ,ζ ), s(η ,ζ )

and g(η ,ζ ). These results prove the accuracy of these methods. However, the main question

is, which method gives accurate solutions with minimal computational time? The results in the

tables answers this question.
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Fig. 5.9 Graph of f (η ,ζ ) using BSRM
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Fig. 5.10 Graph of s(η ,ζ ) using BSQLM
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Fig. 5.11 Graph of s(η ,ζ ) using BSLLM
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Fig. 5.13 Graph of g(η ,ζ ) using BSQLM
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Fig. 5.15 Graph of g(η ,ζ ) using BSRM

In Table 5.1, the skin friction and Nusselt number are displayed. These results were generated

using a fixed Nη = 20 and Nζ = 10, Nζ = 20. Increasing Nη did not improve the accuracy of

the results but increased the computational time. Thus accurate results are obtained using few

grid points and hence decreasing computational time. The BSLLM converged to the solution

faster, followed by the BSRM and lastly, the BSQLM as evidenced by the computational time.

We can conclude that the BSLLM method converges faster and hence achieves accuracy faster

than the BSQLM and BSRM methods.
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Table 5.1 The skin friction and Nusselt number when c = 0.5,Pr = 0.7 and M = 1.

Nζ = 10 Nζ = 20

ζ BSLLM BSRM BSQLM BSLLM BSRM BSQLM

f ′′(0,ζ )

0.2 0.779746 0.779746 0.779746 0.779746 0.779746 0.779746

0.4 0.976713 0.976713 0.976713 0.976713 0.976713 0.976713

0.6 1.157305 1.157305 1.157305 1.157305 1.157305 1.157305

0.8 1.323432 1.323432 1.323432 1.323432 1.323432 1.323432

s′′(0,ζ )

0.2 0.371735 0.371735 0.371735 0.371735 0.371735 0.371735

0.4 0.456101 0.456101 0.456101 0.456101 0.456101 0.456101

0.6 0.53540 0.53540 0.53540 0.53540 0.53540 0.53540

0.8 0.609873 0.609873 0.609873 0.609873 0.609873 0.609873

g′(0,ζ )

0.2 0.493606 0.493606 0.493606 0.493606 0.493606 0.493606

0.4 0.512696 0.512696 0.512696 0.512696 0.512696 0.512696

0.6 0.528264 0.528264 0.528264 0.528264 0.528264 0.528264

0.8 0.537671 0.537671 0.537671 0.537671 0.537671 0.537671

CPU time 0.131244 0.141244 0.940761 0.54191 0.673688 1.363688

Case II: Nη = 80 and Nζ = 30, Nζ = 40

In this section, we consider the case when Nη = 80 and Nζ = 30, Nζ = 40. We want to investigate

about which method gives accurate results with minimal computational time. Table 5.2 shows

the skin friction and Nusselt number. From the table, we can conclude that increasing Nη did

not improve the accuracy of the results but increased the computational time. This implies that

accurate results can be obtained using few grid points and hence decreasing computational time.

The BSLLM converged to the solution faster, followed by the BSRM and lastly, the BSQLM

as evidenced by the computational time. We can conclude that the BSLLM method converges

faster and hence achieves accuracy faster than the BSQLM and BSRM methods. These results

86



are in line with the analysis we did in the previous Chapters of this thesis. It is important to note

that the BSQLM method is second order accurate meanwhile the BSRM and BSLLM methods

are first order accurate methods. The BSQLM method solves a coupled system of equations

simultaneously meanwhile the BSRM and BSLLM methods decouple them first and solve them

iteratively. This is one of the reasons why the BSQLM takes more computational time compared

to the BSLLM and BSRM.

Table 5.2 The skin friction and Nusselt number when c = 0.5,Pr = 0.7 and M = 1.

Nζ = 30 Nζ = 40

ζ BSLLM BSRM BSQLM BSLLM BSRM BSQLM

f ′′(0,ζ )

0.2 0.779746 0.779746 0.779746 0.779746 0.779746 0.779746

0.4 0.976713 0.976713 0.976713 0.976713 0.976713 0.976713

0.6 1.157305 1.157305 1.157305 1.157305 1.157305 1.157305

0.8 1.323432 1.323432 1.323432 1.323432 1.323432 1.323432

s′′(0,ζ )

0.2 0.371735 0.371735 0.371735 0.371735 0.371735 0.371735

0.4 0.456101 0.456101 0.456101 0.456101 0.456101 0.456101

0.6 0.53540 0.53540 0.53540 0.53540 0.53540 0.53540

0.8 0.609873 0.609873 0.609873 0.609873 0.609873 0.609873

g′(0,ζ )

0.2 0.493606 0.493606 0.493606 0.493606 0.493606 0.493606

0.4 0.512696 0.512696 0.512696 0.512696 0.512696 0.512696

0.6 0.528264 0.528264 0.528264 0.528264 0.528264 0.528264

0.8 0.537671 0.537671 0.537671 0.537671 0.537671 0.537671

CPU time 1.533409 1.644579 1.943781 2.093979 2.127654 3.3492391

It is evident from both tables that increasing the number of grid points does not improve the

accuracy of the methods but rather it increases the computational time.
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5.5 Conclusion

In this chapter, we presented a generalized approach for solving systems of n equations using the

bivariate spectral quasilinearization method (BSQLM) and bivariate spectral local linearization

method (BSLLM). These methods, together with the bivariate spectral relaxation method

(BSRM), were then used to solve a system of three nonlinear coupled partial differential

equations that model an unsteady three-dimensional MHD-boundary-layer flow due to an

impulsive motion of a stretching surface. Graphs and certain physical quantities were used

to compare the accuracy and computational time of the methods. The BSLLM converged

fastest, followed by the BSRM and then the BSQLM, as indicated by corresponding order of

computational time. We can therefore conclude that the BSLLM is a better method for solving

system of equations with η ∈ [0,∞) and ζ ∈ [0,1].
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Chapter 6

Legendre-Gauss-Lobbatto based bivariate

pseudospectral quasilinearisation method

for nonlinear evolution equations

This chapter presents a method termed the Legendre-Gauss-Lobbatto bivariate spectral quasi-

linearization method (LGL-BSQLM) for solving nonlinear evolution partial differential equa-

tions. The method employs quasilinearization and pseudospectral collocation with Lagrange

interpolation polynomials and Legendre-Gauss-Lobbatto grid points. An error bound for the

LGL-BSQLM is developed and proved in this chapter. The LGL-BSQLM is then used to

find numerical solutions to the same six nonlinear evolution partial differential equations as

were considered in Chapter 2. Exact analytical solutions from literature are compared with

the numerical solutions to evaluate the accuracy, convergence and general performance of the

LGL-BSQLM. To assess the overall performance of the proposed approach, the results are

compared with the bivariate spectral quasilinearization method (BSQLM), which is based on

Chebyshev-Gauss-Lobbatto grid points, as was introduced in Chapter 2. Performance of the two

methods is compared in terms of accuracy, computational speed, condition number of coefficient

matrices and convergence.
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6.1 Introduction

As outlined earlier in Chapter 2, nonlinear partial differential equations (PDEs) are used to model

many naturally occurring phenomena, but the nature of the equations presents challenges in

finding explicit analytical solutions. Therefore, robust numerical methods that are computational

fast, converge quickly and are accurate should be developed.

In Chapter 2, we made use of pseudospectral methods and showed that they gave accurate

solutions of differential equations, using only a few grid points with minimal computational

time for problems with smooth solutions. To solve nonlinear PDEs, some studies have combined

spectral collocation methods with finite difference techniques. Spectral collocation with La-

grange interpolation approximates the space derivatives and the resulting nonlinear ODE is then

solved using finite difference techniques. For example, Driscoll [66], Olmos [65], Javidi JA-

VIDI2005,JAVIDI2006 and Dehghan [40] solved the Fitzhugh-Nagumo, Fisher, Burgers-Fisher

and Burgers-Huxley equations respectively using a combination of the Chebyshev spectral

collocation method with Lagrange interpolation polynomials and the fourth-order Runge-Kutta

method. To be specific, pseudospectral methods with Lagrange interpolation polynomials have

been used to solve different problems arising from fluid mechanics [96, 141, 142].

In Chapter 2, we showed the development of a more accurate spectral collocation method

with Lagrange interpolation polynomial called the bivariate spectral quasilinearization method

(BSQLM), which was published recently as Motsa et al. [97]. This method uses quasilineariza-

tion techniques developed by Bellman and Kalaba [71] to linearize the nonlinear PDEs; that

is using Chebyshev-Gauss-Lobbatto grid points with bivariate Lagrange interpolation. In that

method, Chebyshev spectral collocation with Lagrange interpolation polynomial is applied inde-

pendently in both space and time variables of the quasilinear partial differential equation. Out of

curiosity, we wanted to experiment if changing the grid points will have an effect in the accuracy

of the method, we decided to use different grid points and examined the accuracy of the method.

In this chapter, we introduce an alternative approach that uses Legendre-Gauss-Lobbatto grid

points with bivariate Lagrange interpolation instead of Chebyshev-Gauss-Lobbatto grid points

with bivariate Lagrange interpolation.

The main objective of this chapter is to introduce the alternative method that uses spectral

collocation, Legendre-Gauss-Lobbatto grid points with bivariate Lagrange interpolation polyno-
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mials together with the quasilinearization method. To this end, nonlinear evolution equations are

first linearized using the quasilinearization method. A pseudospectral collocation method with

Lagrange interpolation polynomials is applied independently both in space and time variables to

the quasilinearized evolution partial differential equation with Legendre-Gauss-Lobbatto grid

points. We term this new approach, the Legendre-Gauss-Lobbatto bivariate spectral quasilin-

earization method (LGL-BSQLM). An error bound for the LGL-BSQLM is developed and

proved in this chapter.

As we did in Chapter 2 with the BSQLM we test the application, accuracy and reliability of

the proposed LGL-BSQLM by solving the Fisher equation, Burgers-Fisher equation, Fitzhugh-

Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation and modified KdV

equation The approximate solutions obtained using the LGL-BSQLM are compared against

known explicit exact solutions from the literature, as well as the BSQLM, to assess its accuracy,

computational speed and general performance. Tables show the maximum errors of the method

for different numbers of spatial grid points, and the time taken to compute the approximate

solutions. Convergence graphs and condition numbers are used to compare the two methods.

The remainder of this chapter is organized as follows. We present the general properties

of Legendre polynomials in Section 6.2. Then in Section 6.3, we introduce the LGL-BSQLM

algorithm for a general nonlinear evolution PDE. We present the error bounds in Section 6.4.

In Section 6.5, we describe the application of the LGL-BSQLM to selected test problems. The

numerical simulations and results are presented in Section 6.6, with our conclusions given in

Section 6.7.

6.2 Legendre Polynomials

In this section, we briefly discuss the important properties of Legendre polynomials. We discuss

their symmetric properties, orthogonality and the recurrence relation. Legendre polynomials

are a special case of Jacobi polynomials [98, 138] P(α,β )
n (x) with α = β = 0. They are mutually

orthogonal [98, 138, 143] with respect to the uniform weight function ω = 1 and thus,

∫ 1

−1
Pn(x)Pk(x)dx =

2δkn

2n+1
, (6.1)
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where

δkn =





0 if k ̸= n

1 if k = n.
(6.2)

The Legendre polynomial has the expansion

Pk(x) =
1
2k

[k/2]

∑
l=0

(−1)l (2k−2l)!
2kl!(k−l)!(k−2l)!

xk−2l (6.3)

where

[k/2] =





k/2 if k is even

(k−1)/2 if k is odd.
(6.4)

Equation (6.3), for k ≥ 0, can be generated using Rodrigue’s formula,

Pk(x) =
1

2kk!
dk

dxk

[
(x2−1)k

]
. (6.5)

Legendre polynomials are odd functions if the degree of the polynomial (k) is odd and even if k

is even. Therefore, we have

Pk(−x) = (−1)kPk(x), Pk(±x) = (±1)k. (6.6)

Equation (6.6) is computed at the exact points x and hence reducing the effects of rounding

errors. For x ∈ [−1,1] and k ≥ 0, Legendre polynomials have a uniform bound |Pk(x)| ≤ 1. The

recursive formula of Legendre polynomials [98, 138, 143] are given by:

(k+1)Pk+1(x) = (2k+1)xPk(x)−kPk−1(x), with P0(x) = 1,P1(x) = x (6.7)

for k = 1,2, · · · ,n.

6.3 Bivariate Legendre Spectral Quasilinearization Method

In this section we introduce the Bivariate Legendre Spectral Quasilinearization Method (LGL-

BSQLM) for approximating solutions of nonlinear evolution PDEs. For comparison purposes

with the bivariate spectral quasilinearisation method based on the Lagrange interpolation poly-
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nomial by Motsa et.al.[97], we consider nonlinear PDEs of the form,

∂u
∂ξ

= H

(
u,

∂u
∂ν

,
∂ 2u
∂ν2 , · · · ,

∂ pu
∂ν p

)
, (6.8)

in the physical region ξ ∈ [0,T ], ν ∈ [a,b]. The order of differentiation is denoted by p, the

required solution by u(ν ,ξ ) and H is the non-linear operator which contains all the spatial

derivatives of u. The Legendre-Gauss-Lobbatto grid points and the corresponding differentiation

matrices are defined in the interval [−1,1]. The time interval ξ ∈ [0,T ] and space region

ν ∈ [a,b], are transformed to t ∈ [−1,1] using the linear transformation ξ = T (t+1)/2 and

x ∈ [−1,1] using the linear transformation

ν =
1
2
(b−a)x+

1
2
(b+a),

respectively. The general governing equation (6.8) can now be expressed as

∂u
∂ t

= H
(

u,
∂u
∂x

,
∂ 2u
∂x2 , · · · ,

∂ nu
∂xn

)
, t ∈ [−1,1], x ∈ [−1,1] (6.9)

The assumption is that the solution can be approximated by a bivariate Lagrange interpolation

polynomial of the form

u(x, t)≈
Nx

∑
i=0

Nt

∑
j=0

u(xi, t j)Li(x)L j(t). (6.10)

The bivariate Lagrange interpolation polynomial interpolates u(x, t) at selected points (xi, t j) in

both the x and t directions, for i = 0,1,2, · · · ,Nx and j = 0,1,2, · · · ,Nt . The grid points in time

are given by the zeros of the polynomial

p(t) = (1−t2)P′
Nt
(t), (6.11)

where

PNt (t) =
1

2Nt

[Nt/2]

∑
k=0

(−1)k(2Nt−2k)!tNt−2k

2Nt k!(Nt−k)!(Nt−2k)!
(6.12)

is the Legendre polynomial. The first derivative of equation (6.12) is given by
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P′
Nt
(t) =

Nt(Nt+1)
(2Nt+1)

[
PNt−1(t)−PNt+1(t)

1−t2

]
. (6.13)

The zeros of P′
Nt
(t) are computed using Newton’s method. Hence given t0

j and for k ≥ 0,(1 ≤
j ≤ Nt−1), we have

tk+1
j = tk

j −
P′

Nt
(tk

j )

P′′
Nt
(tk

j )
. (6.14)

We use the relationship of the Sturm-Liouville problem to avoid evaluating the values of P′′
Nt
(t).

We note that

(1−t2)P′′
Nt
(t)−2tP′

Nt
(t)+t(t+1)PNt (t) = 0, (6.15)

and thus

P′′
Nt
(t) =

2tP′
Nt
(t)−t(t+1)PNt (t)

(1−t2)
. (6.16)

Substituting equation (6.16) into equation (6.14), we get

tk+1
j = tk

j −
(1−(tk

j )
2)P′

Nt
(tk

j )

2tk
j P

′
Nt
(tk

j )−tk
j (t

k
j +1)PNt (t

k
j )
. (6.17)

Similarly, the grid points in space are given by the zeros of the polynomial

p(x) = (1−x2)P′
Nx
(x), (6.18)

and hence the zeros of P′
Nx
(x) can be obtained by using the modified Newton’s method

xk+1
j = xk

j−
(1−(xk

j)
2)P′

Nx
(xk

j)

2xk
jP

′
Nx
(xk

j)−xk
j(x

k
j+1)PNx(x

k
j)
. (6.19)

The zeros of equations (6.11) and (6.18) are called Legendre-Gauss-Lobatto points [144, 138,

145, 146]. The function Li(x) is the characteristic Lagrange cardinal polynomial based on the

Legendre-Gauss-Lobatto points [144, 138, 145, 146]

Li(x) =
Nx

∏
i=0
i̸=k

x−xk

xi−xk
, (6.20)
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where

Li(xk) = δik =





0 if i ̸= k

1 if i = k.
(6.21)

An alternative convenient expression for equation (6.20) is given by

Li(x) =
1

Nx(Nx+1)PNx(xi)

(x2−1)P′
Nx
(x)

(x−xi)
. (6.22)

We conveniently express equation (6.9) in the form:

H[u,u′, · · · ,u(n)]−u̇ = 0. (6.23)

The dot and primes in equation (6.23) denote the time and space derivatives, respectively, and H

is the nonlinear operator. We assume that the difference ul+1−ul and all it’s space derivatives

are small, where l and l+1 denote previous and current iterations respectively. We approximate

the nonlinear operator H using the linear terms of the Taylor series and hence

H[u,u′, · · · ,u(n)]≈ H[ul,u′l, · · · ,u
(n)
l ]+

n

∑
k=0

∂H
∂u(k)

(
u(k)l+1−u(k)l

)
(6.24)

Equation (6.24) can be expressed as

H[u,u′, · · · ,u(n)]≈ H[ul,u′l, · · · ,u
(n)
l ]+

n

∑
k=0

ζk,l[ul,u′l, · · · ,u
(n)
l ]u(k)l+1−

n

∑
k=0

ζk,l[ul,u′l, · · · ,u
(n)
l ]u(k)l (6.25)

where

ζk,l[ul,u′l, · · · ,u
(n)
l ] =

∂H
∂u(k)

[ul,u′l, · · · ,u
(n)
l ]. (6.26)

Substituting equation (6.25) into equation (6.23), we get

n

∑
k=0

ζk,lu
(k)
l+1−u̇l+1 = Ωl[ul,u′l, · · · ,u

(n)
l ] (6.27)
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where

Ωl[ul,u′l, · · · ,u
(n)
l ] =

n

∑
k=0

ζk,lu
(k)
l −H[ul,u′l, · · · ,u

(n)
l ]. (6.28)

Collocation is an important step in the implementation of the solution procedure. Collocation

in our case is the evaluation of the time derivative at the grid points t j ( j = 0,1, . . . ,Nt) and

the space derivatives at the grid points xi (i = 0,1, . . . ,Nx). We compute the values of the time

derivatives at the Legendre-Gauss-Lobatto points (xi, t j), as (for j = 0,1,2, . . . ,Nt)

∂u
∂ t

∣∣∣∣
(xi,t j)

=
Nx

∑
s=0

Nt

∑
k=0

u(xs, tk)Ls(xi)
dLk(t j)

dt
(6.29)

=
Nt

∑
k=0

u(xi, tk)d jk =
Nt

∑
k=0

d jku(xi, tk) (6.30)

where d jk =
dLk(t j)

dt is the standard first derivative Legendre-Gauss-Lobatto based differentiation

matrix of size (Nt+1)×(Nt+1) as defined in [138]. The first derivative matrix with respect to

the Legendre-Gauss-Lobatto points is given by

d jk =





−Nt(Nt+1)
4 if k = j = 0

PNt (t j)
PNt (tk)[t j−tk]

if k ̸= j,0 ≤ j,k ≤ Nt

0 if 1 ≤ j = k ≤ Nt−1

Nt(Nt+1)
4 if k = j = Nt

(6.31)

We compute the values of the space derivatives at the Legendre-Gauss-Lobatto points (xi, t j)

(for i = 0,1,2, · · · ,Nx) as

∂u
∂x

∣∣∣∣
(xi,t j)

=
Nx

∑
s=0

Nt

∑
k=0

u(xs, tk)
dLs(xi)

dx
Lk(t j) (6.32)

=
Nx

∑
s=0

u(xs, t j)Dis =
Nx

∑
s=0

Disu(xs, t j), (6.33)
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where Dis =
dLs(xi)

dx , is the standard first derivative Legendre-Gauss-Lobatto based differentiation

matrix of size (Nx+1)×(Nx+1) as defined in [138]. The space first derivative matrix with

respect to the Legendre-Gauss-Lobatto points is given by

Dis =





−Nt(Nt+1)
4 if s = i = 0

PNt (ti)
PNt (ts)[ti−ts]

if s ̸= i,0 ≤ i,s ≤ Nt

0 if 1 ≤ i = s ≤ Nt−1

Nt(Nt+1)
4 if s = i = Nt

(6.34)

The space second derivative Legendre differentiation matrix with respect to the Legendre-Gauss-

Lobatto points is given by [138]

D2
is =





−2 PNx(xi)
PNx(xs)

1
(xi−xs)2 if 1 ≤ i ≤ Nx−1,0 ≤ s ≤ Nx, i ̸= s

P′′
Nx(xs)

3PNx(xs)
if 1 ≤ i = s ≤ Nx−1

(−1)Nx

PNx(xs)
Nx(Nx+1)(1+xs)−4

2(1+xs)2 if i = 0,1 ≤ s ≤ Nx

1
PNx(xs)

Nx(Nx+1)(1−xs)−4
2(1−xs)2 if i = Nx,0 ≤ s ≤ Nx−1

Nx(Nx+1)(N2
x +Nx−2)

24 if i = s = 0, i = s = Nx

(6.35)

Similarly, the nth order derivative is defined as

∂ nu
∂xn

∣∣∣∣
(xi,t j)

=
Nx

∑
s=0

Dn
isu(xs, t j) = DnU j, i = 0,1,2, . . . ,Nx, (6.36)
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where the vector U j is defined as

U j = [u(x0, t j),u(x1, t j), . . . ,u(xNx , t j)]
T . (6.37)

and the superscript T denotes matrix transpose. Substituting (6.36) into (6.27) we get

n

∑
k=0

ΓΓΓk,lU
(k)
l+1, j−

Nt

∑
k=0

d jkUl+1,k = Ωl[Ul, j,U′
l, j, · · · ,U

(n)
l, j ] (6.38)

for j = 0,1,2, . . . ,Nt , where

U(n)
l+1, j = DnUl+1, j, ΓΓΓk,l =




ζk,l(x0, t j)

ζk,l(x1, t j)
. . .

ζk,l(xNx , t j)



. (6.39)

Since the initial condition for equation (6.38) corresponds to ξNt = −1, we express equation

(6.38) as

n

∑
k=0

ΓΓΓk,lU
(k)
l+1, j−

Nt−1

∑
k=0

d jkUl+1,k =ΩΩΩ j, (6.40)

where

ΩΩΩ j = Ωl[Ul, j,U′
l, j, · · · ,U

(n)
l, j ]+d jNt UNt , j = 0,1,2, . . . ,Nt−1.

Equation (6.40) can be expressed as the following Nt(Nx+1)×Nt(Nx+1) matrix system




A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1
...

... . . . ...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1







U0

U1
...

UNt−1



=




ΩΩΩ0

ΩΩΩ1
...

ΩΩΩNt−1



, (6.41)
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where

Ai,i =
n

∑
k=0

ΓΓΓk,lD(k)−di,iI (6.42)

Ai, j =−di, jI, when i ̸= j, (6.43)

and I is the identity matrix of size (Nx+1)×(Nx+1). Solving equation (6.40) gives u(xi, t j)

which is subsequently used in equation (6.10) to approximate u(x, t).

6.4 Error Bounds

In this section, we present a theorem that can be used to quantify the error bound for the

Legendre-Gauss-Lobbatto bivariate spectral quasilinearisation method for parabolic partial

differential equations. We will first define certain concepts and a theorem and use these concepts

to prove the theorem that will be presented shortly thereafter. Let us define the meaning of best

approximation.

Definition 6.1. Let u(x, t) be a smooth function such that (x, t) ∈ Ω, where Ω = [a,b]×[0,T ].

Let U(x, t) ∈ ΛNx,Nt denote the best approximation of u(x, t), where

ΛNx,Nt = span
{
Li(x),L j(t), i = 0,1, · · · ,Nx, j = 0,1, · · · ,Nt

}
. (6.44)

UNx,Nt (x, t) ∈ ΛNx,Nt being the best approximation of u(x, t) means that there exist vNx,Nt (x, t) ∈
ΛNx,Nt such that for all vNx,Nt (x, t) ∈ ΛNx,Nt , we have

|u(x, t)−UNx,Nt (x, t)| ≤ |u(x, t)−vNx,Nt (x, t)|. (6.45)

Theorem 6.1. Let u(x, t) ∈CNx+Nt+2([a,b]×[0,T ]) be sufficiently smooth such that there exist

at least the (Nx+1) partial derivative with respect to x, (Nt+1) partial derivative with respect to

t, and the (Nx+Nt+2) mixed partial derivatives with respect to x and t, and are all continuous.
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Then there exists some constants ξx,ξ
′
x ∈ (a,b), and ξt ,ξ

′
t ∈ (0,T ), such that

u(x, t)−U(x, t) =
∂ Nx+1u(ξx, t)

∂xNx+1(Nx+1)!

Nx

∏
i=0

(x−xi)+
∂ Nt+1u(x,ξt)

∂ tNt+1(Nt+1)!

Nt

∏
j=0

(t−t j)

− ∂ Nx+Nt+2u(ξ ′
x,ξ

′
t )

∂xNx+1∂ tNt+1(Nx+1)!(Nt+1)!

Nx

∏
i=0

(x−xi)
Nt

∏
j=0

(t−t j),

(6.46)

where U(x, t) is a polynomial interpolate of u(x, t) at (xi)0≤i≤Nx
grid points in x-variable and

(t j)0≤ j≤Nt
grid points in t-variable.

Theorem 6.1 was first proposed by Gasca et.al [147]. Bhrawy et. al. [148] extended the

theorem and used it to determine the error bound for general Jacobi polynomials. Bhrawy et. al.

[148] obtained the error bound by taking the absolute value of equation (6.46) and observed

that in general, the following hold:

|u(x, t)−U(x, t)| ≤ max
(x,t)∈Ω

1
(Nx+1)!

∣∣∣∣
∂ Nx+1u(ξx, t)

∂xNx+1

∣∣∣∣

∣∣∣∣∣
Nx

∏
i=0

(x−xi)

∣∣∣∣∣

+ max
(x,t)∈Ω

1
(Nt+1)!

∣∣∣∣
∂ Nt+1u(x,ξt)

∂ tNt+1

∣∣∣∣

∣∣∣∣∣
Nt

∏
j=0

(t−t j)

∣∣∣∣∣

+ max
(x,t)∈Ω

1
(Nx+1)!(Nt+1)!

∣∣∣∣
∂ Nx+Nt+2u(ξ ′

x,ξ
′
t )

∂xNx+1∂ tNt+1

∣∣∣∣

∣∣∣∣∣
Nx

∏
i=0

(x−xi)

∣∣∣∣∣

∣∣∣∣∣
Nt

∏
j=0

(t−t j)

∣∣∣∣∣ .

(6.47)

Using the fact that u(x, t) is smooth on Ω, they concluded that its derivatives are bounded and

hence there exists some constants α1, α2 and α3, such that

max
(x,t)∈Ω

∣∣∣∣
∂ Nx+1u(x, t)

∂xNx+1

∣∣∣∣≤ α1, max
(x,t)∈Ω

∣∣∣∣
∂ Nt+1u(x, t)

∂ tNt+1

∣∣∣∣≤ α2, max
(x,t)∈Ω

∣∣∣∣
∂ Nx+Nt+2u(x, t)
∂xNx+1∂ tNt+1

∣∣∣∣≤ α3.

(6.48)

Equation (6.48) implies that the error norm can be reduced by minimizing the expressions

∣∣∣∣∣
Nx

∏
i=0

(x−xi)

∣∣∣∣∣ ,
∣∣∣∣∣

Nt

∏
j=0

(t−t j)

∣∣∣∣∣ . (6.49)
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A theorem that can be used to measure the error bound for the Legendre-Gauss-Lobbatto Bivari-

ate spectral quasilinearisation method for parabolic partial differential equations is presented

below.

Theorem 6.2. Let u(x, t) ∈CNx+Nt+2([a,b]×[0,T ]) be sufficiently smooth such that there exist

at least the (Nx+1) partial derivative with respect to x, (Nt+1) partial derivative with respect

to t, and the (Nx+Nt+2) mixed partial derivative with respect to x and t, and are all continuous.

Then there exists some constants ξx,ξ
′
x ∈ (a,b), and ξt ,ξ

′
t ∈ (0,T ), such that

u(x, t)−U(x, t) =
∂ Nx+1u(ξx, t)

∂xNx+1(Nx+1)!

Nx

∏
i=0

(x−xi)+
∂ Nt+1u(x,ξt)

∂ tNt+1(Nt+1)!

Nt

∏
j=0

(t−t j)

− ∂ Nx+Nt+2u(ξ ′
x,ξ

′
t )

∂xNx+1∂ tNt+1(Nx+1)!(Nt+1)!

Nx

∏
i=0

(x−xi)
Nt

∏
j=0

(t−t j),

(6.50)

where U(x, t) is a polynomial interpolant of u(x, t) at the Legendre-Gauss-Lobbatto grid points

(xi)0≤i≤Nx
in x-variable and Legendre-Gauss-Lobbatto grid points (t j)0≤ j≤Nt

in t-variable. Then,

the error bound is given by

|u(x, t)−U(x, t)| ≤ α1
(b−a)Nx+1

2Nx+1KNx(Nx+1)!
+α2

(T )Nt+1

2Nt+1KNt (Nt+1)!
+

α3
(b−a)Nx+1(T )Nt+1

(2)(Nx+Nt+2)KNxKNt (Nx+1)!(Nt+1)!
,

(6.51)

where

KNx =

(
Nx

Nx+1

)2[ (2Nx)!
2Nx(Nx!)2

]
, KNt is similarly defined,

and α1, α2 and α3 are constants defined by equation (6.48).

Proof: The Legendre-Gauss-Lobbatto grid points and the corresponding differentiation

matrices are defined in the interval [−1,1]. Therefore, the time interval t ∈ [0,T ] and space

region x ∈ [a,b], are transformed to τ ∈ [−1,1] using the linear transformation

t =
T
2
(τ+1) (6.52)
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and ν ∈ [−1,1] using the linear transformation

x =
1
2
(b−a)ν+

1
2
(b+a), (6.53)

respectively. The Legendre-Gauss-Lobbatto grid points in the τ direction are given by the zeros

of the polynomial

p(τ) = (1−τ
2)P′

Nt
(τ), (6.54)

and similarly, for the ν direction, they are given by the zeros of the polynomial

p(ν) = (1−ν
2)P′

Nt
(ν). (6.55)

The Lagrange polynomial of order Nx+1 can be expressed in the form

LNx+1(ν) = KNx

Nx

∏
i=0

(ν−νi) (6.56)

Equations (6.52) and (6.53) gives

x−xi =
(b−a)

2
(ν−νi), and t−ti =

T
2
(τ−τi) (6.57)

Therefore, to minimize the error bound, we require that

max
a≤x≤b

∣∣∣∣∣
Nx

∏
i=0

(x−xi)

∣∣∣∣∣= max
−1≤ν≤1

∣∣∣∣∣
Nx

∏
i=0

(b−a)
2

(ν−νi)

∣∣∣∣∣ (6.58)

=

(
b−a

2

)Nx+1

max
−1≤ν≤1

∣∣∣∣∣
Nx

∏
i=0

(ν−νi)

∣∣∣∣∣ (6.59)

=

(
b−a

2

)Nx+1

max
−1≤ν≤1

∣∣∣∣
LNx+1(ν)

KNx

∣∣∣∣ (6.60)

≤
(

b−a
2

)Nx+1 1
KNx

since |LNx+1(ν)| ≤ 1 (6.61)
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Similarly, it can be shown that

max
0≤t≤T

∣∣∣∣∣
Nt

∏
j=0

(t−t j)

∣∣∣∣∣=
(

T
2

)Nt+1

max
−1≤τ≤1

∣∣∣∣
LNt+1(τ)

KNt

∣∣∣∣ (6.62)

≤
(

T
2

)Nt+1 1
KNt

. (6.63)

Applying equations (6.48), (6.61), and (6.63) into equation (6.47) yields the desired result. �

6.5 Numerical experiments

We apply the proposed algorithm to well-known nonlinear PDEs of the form (6.9) with exact

solutions. In order to determine the level of accuracy of the LGL-BSQLM approximate solution,

at a particular time level, in comparison with the exact solution we report maximum error which

is defined by

ENx = max
i

{|u(xi, t)−ũ(xi, t)| , : 0 ≤ i ≤ Nx} , (6.64)

where ũ(xi, t) is the approximate solution and u(xi, t) is the exact solution at the time level t. For

the purpose of comparing with the BSQLM, we used the examples that were considered for

numerical experiments by Motsa et. al. [97]. These numerical experiments are also listed in

Chapter 2 of this thesis.

6.6 Results and Discussion

In this section, we discuss and present the results obtained by the new pseudospectral method,

with bivariate Lagrange interpolation polynomial based on the Legendre-Gauss-Lobbatto points

(LGL-BSQLM). We compare the results of this new spectral quasilinearization method with

those obtained by quasilinearization using the bivariate Lagrange interpolation polynomial based

on the Chebyshev-Gauss-Lobbatto points (BSQLM), as reported in Chapter 2. The results were

all generated using MATLAB 2013. To compare the accuracy, computational time, and general

performance of the proposed method, we compare the maximum errors and condition numbers
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of the coefficient matrices obtained using both methods. We also show convergence graphs for

both methods. We discuss the results in the following subsections.

Maximum Errors

In this subsection, we report the maximum errors of the nonlinear PDEs considered in this

study. The maximum error is given by equation (6.64). In Tables 6.1 - 6.6, we used Nt = 10 and

4 ≤ Nx ≤ 6 for comparison purposes.

Table 6.1 Maximum errors EN for Fisher equation when α = 1 using Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 1.986e-008 1.119e-011 7.317e-009 5.763e-012

0.2 3.934e-008 3.121e-011 7.699e-009 6.269e-012

0.3 5.577e-008 4.864e-011 7.632e-009 6.041e-012

0.4 6.997e-008 6.802e-011 6.739e-009 4.776e-012

0.5 8.107e-008 7.971e-011 5.587e-009 3.815e-012

0.6 8.891e-008 8.560e-011 4.181e-009 2.547e-012

0.7 9.344e-008 8.953e-011 2.483e-009 7.282e-013

0.8 9.431e-008 8.759e-011 1.069e-009 1.450e-012

0.9 9.178e-008 8.325e-011 2.010e-009 2.681e-012

1.0 8.787e-008 7.421e-011 2.794e-009 3.480e-012

CPU Time (sec) 0.019942 0.025988 0.013729 0.014018

Table 6.1 compares the maximum errors for the Fisher equation (2.30) for α = 1 obtained

using the BSQLM and LGL-BSQLM. The LGL-BSQLM method converges to a smaller error

compared to the BSQLM method. This implies that the LGL-BSQLM method is slightly accurate

than the BSQLM method. We also note that both methods converge to small errors using very

few grid points. This is reflected in the computational times of both methods. However, the

LGL-BSQLM method converges faster than the BSQLM method as the method takes less time

to converge to the exact solution. For Nx = 4, the BSQLM converges to ENx ≈ a×10−8 while
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the LGL-BSQLM converges to ENx ≈ b×10−9 for a ≥ b > 0 for certain values of t. This implies

that the LGL-BSQLM method is accurate by a factor of ANx ≈ |b−a|×10−1. The same trend is

observed for Nx = 6.

Table 6.2 Maximum errors EN for the Burgers-Fisher equation when α = 1 using Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 1.142e-007 1.369e-010 1.729e-008 2.278e-011

0.2 1.178e-007 1.373e-010 1.726e-008 2.325e-011

0.3 1.186e-007 1.479e-010 1.609e-008 1.702e-011

0.4 1.069e-007 9.450e-011 1.285e-008 1.210e-011

0.5 9.030e-008 7.944e-011 9.064e-009 6.378e-012

0.6 6.963e-008 6.618e-011 4.850e-009 1.159e-011

0.7 4.638e-008 1.579e-011 2.145e-009 1.163e-011

0.8 2.457e-008 4.030e-011 5.150e-009 1.233e-011

0.9 2.028e-008 6.006e-011 7.685e-009 1.488e-011

1.0 3.147e-008 7.708e-011 1.046e-008 1.458e-011

CPU Time (sec) 0.010152 0.015387 0.010061 0.010214

Table 6.2 compares the maximum errors for the Burgers-Fisher equation (2.15) for α = 1

obtained using the BSQLM and LGL-BSQLM. In Table 6.2, the LGL-BSQLM method converges

to a smaller error compared to the BSQLM method. We can therefore conclude that the LGL-

BSQLM method is slightly accurate than the BSQLM method. We also note that both methods

converge to small errors using very few grid points. This is reflected in the computational

times of both methods. However, the LGL-BSQLM method converges faster than the BSQLM

method as the method takes less time to converge to the exact solution. For Nx = 4, the

BSQLM converges to ENx ≈ a×10−7 while the LGL-BSQLM converges to ENx ≈ b×10−8 for

a ≥ b > 0 for certain values of t. This implies that the LGL-BSQLM method is accurate by a

factor of ANx ≈ |b−a|×10−1. For Nx = 6, the LGL-BSQLM method is accurate by a factor of

ANx ≈ |b−a|×10−1.
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Table 6.3 Maximum errors EN for the Fitzhugh-Nagumo equation when α = 1 using Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 5.719e-007 1.196e-009 5.189e-008 1.239e-010

0.2 6.193e-007 1.299e-009 4.944e-008 1.045e-010

0.3 6.662e-007 1.463e-009 4.486e-008 9.320e-011

0.4 6.779e-007 1.448e-009 3.578e-008 7.368e-011

0.5 6.920e-007 1.526e-009 2.811e-008 5.933e-011

0.6 7.019e-007 1.573e-009 2.315e-008 4.363e-011

0.7 6.933e-007 1.516e-009 1.810e-008 2.299e-011

0.8 6.828e-007 1.535e-009 2.389e-008 3.746e-011

0.9 6.765e-007 1.528e-009 2.948e-008 5.536e-011

1.0 6.687e-007 1.490e-009 3.453e-008 7.131e-011

CPU Time (sec) 0.024281 0.024901 0.014825 0.015692

In Table 6.3, the maximum errors for the Fitzhugh-Nagumo equation (2.34) for α = 1

obtained using the BSQLM method is compared with the LGL-BSQLM method. The LGL-

BSQLM method converges to a smaller error compared to the BSQLM method. Therefore, the

LGL-BSQLM method is slightly accurate than the BSQLM method. Both methods achieve

accurate results using very few grid points and hence reducing the computational times of

both methods. However, the LGL-BSQLM method converges faster than the BSQLM method

as the method takes less time to converge to the exact solution. For Nx = 4, the BSQLM

converges to ENx ≈ a×10−7 while the LGL-BSQLM converges to ENx ≈ b×10−8 for a ≥ b > 0

for some values of t. This implies that the LGL-BSQLM method is accurate by a factor of

ANx ≈ |b−a|×10−1. For Nx = 6, the LGL-BSQLM method is also accurate by a factor of

ANx ≈ |b−a|×10−1.
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Table 6.4 Maximum errors EN for the Burgers-Huxley equation when γ = 0.75, β = 1, Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 2.217e-006 8.482e-009 7.481e-007 2.888e-009

0.2 2.596e-006 9.369e-009 8.070e-007 2.895e-009

0.3 2.859e-006 1.073e-008 8.520e-007 3.078e-009

0.4 3.001e-006 1.112e-008 8.430e-007 3.015e-009

0.5 3.137e-006 1.213e-008 8.328e-007 3.007e-009

0.6 3.270e-006 1.311e-008 8.137e-007 2.952e-009

0.7 3.367e-006 1.359e-008 7.722e-007 2.762e-009

0.8 3.467e-006 1.438e-008 7.306e-007 2.590e-009

0.9 3.562e-006 1.504e-008 6.781e-007 2.341e-009

1.0 3.640e-006 1.559e-008 6.178e-007 2.057e-009

CPU Time (sec) 0.023822 0.024901 0.019958 0.022976

Table 6.4 compares the maximum errors for the Burgers-Huxley equation (2.38) for γ = 0.75,

and β = δ = α = 1, obtained using the BSQLM and LGL-BSQLM. In Table 6.4, the LGL-

BSQLM method converges to a smaller error compared to the BSQLM method and thus, the

LGL-BSQLM method is slightly accurate than the BSQLM method. Spectral accuracy is

achieved using few grid points and hence decreasing computational time. The LGL-BSQLM

method converges faster than the BSQLM method as it takes less time to converge to the exact

solution. The BSQLM converges to ENx ≈ a×10−6 while the LGL-BSQLM converges to

ENx ≈ b×10−7 for Nx = 4, a ≥ b > 0 for certain values of t. Hence the LGL-BSQLM method

is accurate by a factor of ANx ≈ |b−a|×10−1. Similarly, for Nx = 6, the LGL-BSQLM method

is accurate by a factor of ANx ≈ |b−a|×10−1.
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Table 6.5 Maximum errors EN for the modified KdV-Burgers equation when Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 1.80e-07 3.42e-10 2.21e-08 4.74e-11

0.2 2.61e-07 4.35e-10 2.35e-08 4.85e-11

0.3 2.72e-07 4.68e-10 2.49e-08 5.21e-11

0.4 2.01e-07 3.66e-10 2.21e-08 4.72e-11

0.5 2.58e-07 4.41e-10 2.42e-08 5.09e-11

0.6 2.65e-07 4.61e-10 2.45e-08 5.18e-11

0.7 2.25e-07 4.04e-10 2.31e-08 4.94e-11

0.8 2.57e-07 4.48e-10 2.46e-08 5.21e-11

0.9 2.44e-07 4.35e-10 2.37e-08 5.09e-11

1 8.28e-08 3.72e-10 1.49e-08 4.63e-11

CPU Time (sec) 0.015646 0.021226 0.013258 0.014976

Table 6.5 compares the maximum errors for the modified KdV-Burgers equation (2.43)

obtained using the BSQLM and LGL-BSQLM. The modified KdV-Burgers equation (2.43)

is a third order nonlinear PDE. In Table 6.5, the accuracy of the method does not deteriorate

drastically with an increase in order and nonlinearity of the PDE. The LGL-BSQLM method

converges to a smaller error compared to the BSQLM method and hence, the LGL-BSQLM

method is slightly accurate than the BSQLM method. Spectral accuracy is achieved using few

grid points and thus decreasing the computational time. The LGL-BSQLM method converges

faster than the BSQLM method as it takes less time to converge to the exact solution. The

BSQLM converges to ENx ≈ a×10−7 while the LGL-BSQLM converges to ENx ≈ b×10−8 for

Nx = 4, a ≥ b > 0 for some values of t. Hence the LGL-BSQLM method is accurate by a factor

of ANx ≈ |b−a|×10−1. Similarly, for Nx = 6, the LGL-BSQLM method is accurate by a factor

of ANx ≈ |b−a|×10−1.
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Table 6.6 Maximum errors EN for the modified KdV equation when Nt = 10

Motsa [97] (BSQLM) Current Results (LGL-BSQLM)

t \ Nx 4 6 4 6

0.1 7.79e-05 3.55e-07 1.07e-05 5.11e-08

0.2 1.15e-04 4.00e-07 9.66e-06 4.30e-08

0.3 1.01e-04 3.74e-07 8.75e-06 3.96e-08

0.4 3.93e-05 1.79e-07 5.58e-06 2.65e-08

0.5 6.73e-05 2.34e-07 5.84e-06 2.59e-08

0.6 6.07e-05 2.21e-07 4.98e-06 2.26e-08

0.7 2.51e-05 1.11e-07 3.31e-06 1.56e-08

0.8 4.07e-05 1.43e-07 3.61e-06 1.60e-08

0.9 2.39e-05 1.02e-07 2.43e-06 1.17e-08

1 1.44e-04 7.26e-08 6.38e-06 4.82e-09

CPU Time (sec) 0.020609 0.021241 0.014958 0.020476

Table 6.6 compares the maximum errors for the modified KdV equation (2.47) obtained using

the BSQLM and LGL-BSQLM. In Table 6.6, the accuracy of the method does not deteriorate

drastically with an increase in order and non-linearity of the PDE. Table 6.6 depicts that the LGL-

BSQLM method is slightly accurate than the BSQLM method. Spectral accuracy is achieved

using few grid points and hence decreasing the computational time. The LGL-BSQLM method

converges faster than the BSQLM method as it takes less time to converge to the exact solution.

The BSQLM converges to ENx ≈ a×10−5 while the LGL-BSQLM converges to ENx ≈ b×10−6

for Nx = 4, a ≥ b > 0 for some values of t. Hence the LGL-BSQLM method is accurate by a

factor of ANx ≈ |b−a|×10−1. Similarly, for Nx = 6, the LGL-BSQLM method is accurate by a

factor of ANx ≈ |b−a|×10−1.

Condition Numbers

The condition number of a matrix plays a crucial role in numerical linear algebra for matrix

computations. If the square matrix of the system A⃗x = b⃗ is non-singular, the condition number
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becomes crucial in analyzing the convergence and accuracy of a method. The condition number

of a square matrix A is defined by the equation

κp(A) = ∥A∥p ·∥A−1∥p. (6.65)

The value of the condition number depends on the choice of the matrix norm and indirectly,

of the vector norm. We can have κ∞(A) or κ2(A) or κ1(A) for l∞, l2 and l1 respectively. Since

Lagrange and Legendre polynomials are both orthogonal polynomials in l2 space, we used κ2(A)

for the results in Tables 6.7 - 6.12. The condition number of the matrix is strongly connected

to the accuracy of the underlying method used. It is always greater or equals to one. The

square matrix A is said to well conditioned if the condition number is very small, otherwise it is

ill-conditioned. If a matrix is ill-conditioned, then it can generate approximate solutions with a

large error. The condition number of a matrix varies with different type of matrices.

In this section, we compare the condition numbers of the coefficient matrices of the BSQLM

and LGL-BSQLM methods. We would expect that the condition number of a matrix will

increase as the size of the matrix increases. However, the nature of the increase depends on

the type of elements in the matrix. For all cases, when calculating the condition numbers, we

used Nt = 10. We varied the size of the matrix by using different values of Nx and the condition

numbers were captured at different iterations.

Table 6.7 Condition numbers κ(A) for the Fisher’s equation with α = 1 and Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 15 5 10 15

2 472.774 6059.973 35153.461 389.702 3833.080 20632.805

4 472.885 6061.612 35163.250 389.789 3834.073 20638.259

6 472.885 6061.612 35163.250 389.789 3834.073 20638.259

8 472.885 6061.612 35163.250 389.789 3834.073 20638.259
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Table 6.8 Condition numbers κ(A) for the Burgers-Fisher equation with α = β = δ = 1 and
Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 15 5 10 15

2 465.036 5942.506 34431.106 382.493 3752.184 20186.369

4 465.232 5945.532 34449.324 382.654 3754.044 20196.591

6 465.232 5945.532 34449.324 382.654 3754.044 20196.591

8 465.232 5945.532 34449.324 382.654 3754.044 20196.591

Table 6.9 Condition numbers κ(A) for the Fitzhugh-Nagumo equation with α = 1 and Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 15 5 10 15

2 472.239 6053.600 35115.865 389.010 3826.584 20597.519

4 472.245 6053.699 35116.456 389.016 3826.643 20597.847

6 472.245 6053.699 35116.456 389.016 3826.643 20597.847

8 472.245 6053.699 35116.456 389.016 3826.643 20597.847

Table 6.10 Condition numbers κ(A) for the Burgers-Huxley equation with γ = 0.75, α = δ =
β = 1 and Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 15 5 10 15

2 476.780 6123.607 35521.310 392.157 3867.183 20824.378

4 476.781 6123.618 35521.377 392.158 3867.190 20824.416

6 476.781 6123.618 35521.377 392.158 3867.190 20824.416

8 476.781 6123.618 35521.377 392.158 3867.190 20824.416
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Table 6.11 Condition numbers κ(A) for the modified KdV-Burgers equation with Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 5 10

2 11766.897 971289.640 10124.969 695001.489

4 11766.897 971289.628 10124.969 695001.481

6 11766.897 971289.628 10124.969 695001.481

8 11766.897 971289.628 10124.969 695001.481

Table 6.12 Condition numbers κ(A) for the modified KdV equation with Nt = 10.

BSQLM LGL-BSQLM

Iterations \ Nx 5 10 5 10

2 11510.721 1114100.772 9985.449 799311.232

4 11497.159 1113689.776 9973.390 799013.536

6 11497.159 1113689.776 9973.390 799013.536

8 11497.159 1113689.776 9973.390 799013.536

The condition numbers of the matrices remain constant after two iterations in Tables 6.7 -

6.12. This is in agreement with the results of the convergent graphs in Figures 6.1 - 6.6. The

condition numbers increase as the size of the matrix increases. In Tables 6.7 - 6.12, the condition

numbers of the BSQLM method are larger than the condition numbers of the LGL-BSQLM

method. This implies that the BSQLM method generate approximate solutions with large errors

and hence less accurate than the LGL-BSQLM method. Matrices with small sizes are matrices

with Nx = 5 and Nt = 10. For matrices with small sizes, both method’s accuracy is comparable.

However, as Nx increases, the condition numbers of the BSQLM method increases faster than

that of the LGL-BSQLM and hence the BSQLM method becomes less accurate, as depicted in

Tables 6.7 - 6.12.
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Tables 6.7 - 6.10 present condition numbers for second order nonlinear parabolic PDEs. We

note that for matrices with small sizes in Tables 6.7 - 6.10, the condition number is approximately

300 < κ2(A)< 500. (6.66)

However, for Tables 6.11 and 6.12, the condition numbers are for third order nonlinear parabolic

PDEs. The condition numbers in Tables 6.11 and 6.12 for matrices with small sizes are

approximately

9000 < κ2(A)< 12000. (6.67)

This implies that a matrix of a higher order nonlinear PDE will have a huge condition number

and hence the method will generate approximate solutions with large errors. Thus the BSQLM

method will generate less accurate results for higher order nonlinear PDEs compared to the

LGL-BSQLM method.

Convergence Graphs

In this subsection, we compare the convergence and accuracy of the BSQLM and LGL-BSQLM

methods graphically. In generating these figures, we used Nx = 20 and Nt = 10 with t ∈ [0,1]

and x ∈ [0,1]. In general, we observe that both methods converge almost after the same number

of iterations. However, the LGL-BSQLM method converge to a smaller error than the BSQLM

method. This implies that the LGL-BSQLM method is slightly accurate than the BSQLM

method.
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Fig. 6.1 Fisher’s equation convergence
graph
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Fig. 6.2 Burgers-Fisher equation conver-
gence graph
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Fig. 6.3 Fitzhugh-Nagumo equation conver-
gence graph
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Fig. 6.4 Burgers-Huxley equation conver-
gence graph
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Fig. 6.5 Modified KdV-Burgers equation
convergence graph
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6.7 Conclusion

In this chapter, a new approach termed the Legendre-Gauss-Lobbatto bivariate spectral quasi-

linearization method (LGL-BSQLM) for solving general nonlinear evolution smooth partial

differential equations has been presented. The method was developed by quasilinearizing non-

linear partial differential equations and applying Lagrange interpolation polynomials in both

space and time. The main goal in this chapter was to compare the accuracy, computational time

and general performance of the LGL-BSQLM with the BSQLM from Chapter 2, in solving the

same six nonlinear partial differential equations.

We carried out numerical simulations on the Fisher equation, Burgers-Fisher equation,

Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation and
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modified KdV equation. We found that the LGL-BSQLM consistently converged to a slightly

more accurate solution than did the BSQLM, as shown by the maximum error analysis, condition

numbers and convergence graphs. The LGL-BSQLM also consistently used less computational

time compared to the BSQLM. We can therefore conclude that the LGL-BSQLM algorithm

gives slightly more accurate results and uses less computational time when compared to the

BSQLM.

The work in this chapter makes a new contribution to the literature on quasilinearization

techniques that can be used for solving nonlinear partial differential equations. Further research

is needed to establish whether the LGL-BSQLM can be used successfully in solving coupled

systems of equations arising from modeling other practical problems.

In the next chapter, we introduce another new approach for nonlinear partial differential

equations over large time domains, which we call the multi-domain Legendre-Gauss-Lobatto

based bivariate spectral quasilinearisation method (MD-LGL-BSQLM). It will be tested by

solving the nonlinear evolution partial differential equations considered in Chapter 2 with large

time domains.
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Chapter 7

On the multi-domain bivariate

quasilinearisation method for nonlinear

evolution equations

This chapter presents a general approach for solving nonlinear evolution partial differential

equations (NPDEs) over large time domains. The new approach combines the concepts of

multi-domain, quasilinearization, spectral collocation and Lagrange interpolation polynomials

with Legendre-Gauss-Lobatto grid points. In this chapter, strategies for implementing various

boundary conditions is included. The new method is used to solve the same six nonlinear

evolution partial differential equations used earlier in Chapters 2 and 6. The results are compared

with results from the LGL-BSQLM technique from Chapter 6, and with known exact analytical

solutions from literature in order to confirm accuracy, convergence and general performance of

the new method.

7.1 Introduction

Evolution nonlinear partial differential equations (NPDEs) are useful tools for modeling naturally

occurring phenomena but it is, however, difficult to obtain their analytical solutions due to their

nonlinearity complexities over large time domains. Pseudospectral methods, such as were used

in Chapters 2 and 6 have been shown to be computationally fast, converge quickly and be

accurate. They use few grid points to achieve accurate solutions to differential equations, and
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so they require minimal computational time. They have been successfully used to solve the

equations in many scientific and engineering models.

As was noted in Chapters 2 and 6, some researchers (Li [149], Shamsi [144], and Ma

[150]) have used spectral methods coupled with finite differences to solve partial differential

equations. Spectral methods require few grid points to converge meanwhile finite difference

methods require a lot of grid points to converge to an accurate solution. Therefore, the potential

advantages of applying pseudospectral methods in space, is offset by the slower and less accurate

finite differences in time.

In Chapter 2 (published as Motsa, Magagula, Sibanda [97]) we applied spectral collocation

independently in both space and time in order to improve the accuracy and computational speed

of pseudospectral methods. We showed that the BSQLM algorithm, which used Chebyshev

spectral collocation method and bivariate Lagrange interpolation with Chebyshev-Gauss-Lobatto

grid points, gives spectral accurate results, but only for small time domains. Then in Chapter

6, our numerical experiments showed that using Legendre-Gauss-Lobatto grid points leads to

slightly more accurate solutions. Nevertheless, the method from Chapter 6 (LGL-BSQLM)

gives spectral accurate results only for small time domains.

The main objective of this chapter is to introduce an alternative method that uses multi-

domain, spectral collocation, bivariate Lagrange interpolation polynomials based on Legendre-

Gauss-Lobatto grid points together with quasilinearization over large time domains. Accordingly,

in this chapter, we now extend our work from Chapter 6 by incorporating the multi-domain

approach in the t variable to increase the accuracy of the method for large values of t. Here

we will use Legendre-Gauss-Lobatto grid points instead of Chebyshev-Gauss-Lobatto grid

points in order to improve the accuracy of the proposed method. The multi-domain approach

requires that the time domain be divided into smaller non-overlapping sub-intervals on which the

pseudospectral collocation method is used to solve the partial differential equations. Continuity

condition is then applied to advance the solution across the sub-intervals. The collocation based

multi-domain approach had been used previously to solve systems of first order chaotic initial

values problems [151–155].

We term this new approach the multi-domain Legendre-Gauss-Lobatto based bivariate

Lagrange spectral quasilinearization method (MD-LGL-BSQLM). We test its applicability,

accuracy and reliability by using it to solve the Fisher equation, Burgers-Fisher equation,
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Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation and

nonlinear modified KdV equation. The results from the MD-LGL-BSQLM are then compared

against known exact solutions that have been previously reported. We also conduct numerical

experiments to evaluate the order of accuracy and convergence of the method and time taken to

compute the solutions, and compare these with results using the LGL-BSQLM introduced in

Chapter 6.

The organization of the chapter is as follows. In Section 7.2, we introduce the MD-LGL-

BSQLM algorithm for a general nth order nonlinear evolution PDE. In Section 7.3 we describe

the application of the MD-LGL-BSQLM using various boundary conditions. The numerical ex-

periments and results are presented in Sections 7.4 and 7.5 respectively. Finally, our conclusions

are given in Section 7.6.

7.2 Multi-domain Bivariate Lagrange Spectral Quasilineariza-

tion Method

In this section, the multi-domain based Legendre-Gauss-Lobbatto bivariate Lagrange spectral

quasilinearization method (MD-LGL-BSQLM) for approximating solutions to nonlinear evolu-

tion partial differential equations is introduced. Without loss of generality, we consider an nth

order nonlinear partial differential equation of the form,

∂u
∂ξ

= H

(
u,

∂u
∂ν

,
∂ 2u
∂ν2 , · · · ,

∂ nu
∂νn

)
, (7.1)

with the physical region ξ ∈ [0,T ], ν ∈ [a,b]. The constant n denotes the order of differentiation,

the required solution is denoted by u(ν ,ξ ) and H is the non-linear operator which contains

u(ν ,ξ ) and all the spatial derivatives of u(ν ,ξ ). The multi-domain technique approach assumes

that the time interval can be decomposed into p non-overlapping sub-intervals. Let ξ ∈ Γ where

Γ = [0,T ] be the time interval where the solution of general nonlinear parabolic PDE exist. The

sub-intervals are defined as

Γl = (ξl−1,ξl), l = 1,2, · · · , p, with, 0 = ξ0 < ξ1 < ξ2 < · · ·< ξp = T. (7.2)
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The main task in the multi-domain approach is determining the solution of equation (7.1)

independently on each sub-interval, one at a time, beginning at the initial condition. The initial

condition is considered to be the left boundary of the time interval. The computed solution

in the first interval is used to compute the solutions in the remaining l−1 sub-intervals. The

computed solution at the right hand boundary of the first interval is used as an initial condition

in the subsequent sub-interval. The process is repeated until the last sub-interval. The process of

matching the solutions in different intervals along their common boundary is called patching.

The patching condition requires that

u(l)(ν ,ξl−1) = u(l−1)(ν ,ξl−1), ν ∈ [a,b], (7.3)

where u(l)(ν ,ξ ) denotes the solution of equation (7.1) at each sub-interval Γl . Since the grid

points and differentiation matrices are defined in the interval [−1,1], then, in each sub-interval

Γl , the time interval, ξ l ∈ [ξl−1,ξl] is transformed to t ∈ [−1,1] using the linear transformation

ξ
l =

1
2
(ξl−ξl−1)t+

1
2
(ξl+ξl−1) (7.4)

Similarly, the space region, ν ∈ [a,b] is transformed using the linear transformation

ν =
1
2
(b−a)x+

1
2
(b+a). (7.5)

to the region x ∈ [−1,1]. Therefore, in the first sub-interval, we are required to solve the

nonlinear parabolic equation

∂u(1)

∂ t
= H

(
u(1),

∂u(1)

∂x
,
∂ 2u(1)

∂x2 , · · · , ∂ nu(1)

∂xn

)
, t ∈ [−1,1], x ∈ [−1,1]. (7.6)

For l ≥ 2, we solve the nonlinear parabolic equation

∂u(l)

∂ t
= H

(
u(l),

∂u(l)

∂x
,
∂ 2u(l)

∂x2 , · · · , ∂ nu(l)

∂xn

)
, t ∈ [−1,1], x ∈ [−1,1]. (7.7)

subject to

u(l)(x, tl−1) = u(l−1)(x, tl−1). (7.8)
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The method solution assumes that the solution at each sub-interval Γl , denoted by u(l)(x, t), can

be approximated by a bivariate Lagrange interpolation polynomial of the form

u(l)(x, t)≈
Mx

∑
i=0

Mt

∑
j=0

u(l)(xi, t j)Li(x)L j(t). (7.9)

The bivariate Lagrange interpolation polynomial interpolates u(l)(x, t) at carefully chosen grid

points in both x and t directions called Legendre-Gauss-Lobatto points [98, 138]. Equation (7.6)

can be expressed in the form:

H
[
u(l)
(x,0),u

(l)
(x,1),u

(l)
(x,2), · · · ,u

(l)
(x,n)

]
−u(l)

(t,1) = 0, (7.10)

where u(l)
(x,n) denotes the nth partial derivative of u(x, t) with respect to x in the lth sub-interval.

Similarly, u(l)
(t,1) denotes the 1st partial derivative of u(x, t) with respect to t in the lth sub-interval

and H is the nonlinear operator. We assume that the difference u(l)
(x,0,s+1)−u(l)

(x,0,s) (note that s and

s+1 denote previous and current iterations respectively.) and all it’s space derivatives are small.

The nonlinear operator H is approximated by using the linear terms of the Taylor series and thus

H
[
u(l)
(x,0),u

(l)
(x,1),u

(l)
(x,2), · · · ,u

(l)
(x,n)

]
≈ H

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]

+
n

∑
k=0

∂H

∂u(l)
(x,k)

(
u(l)
(x,k,s+1)−u(l)

(x,k,s)

)
. (7.11)

Let

∂H

∂u(l)
(x,k)

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
= ω

(l)
k,s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
. (7.12)

Therefore, equation (7.11) can be expressed as

H
[
u(l)
(x,0),u

(l)
(x,1),u

(l)
(x,2), · · · ,u

(l)
(x,n)

]
≈ H

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]

+
n

∑
k=0

ω
(l)
k,s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
u(l)
(x,k,s+1)

−
n

∑
k=0

ω
(l)
k,s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
u(l)
(x,k,s) (7.13)
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Let

R(l)
s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
=

n

∑
k=0

ω
(l)
k,s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
u(l)
(x,k,s)

−H
[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
. (7.14)

Equation (7.13) can be expressed as

H
[
u(l)
(x,0),u

(l)
(x,1),u

(l)
(x,2), · · · ,u

(l)
(x,n)

]
≈

n

∑
k=0

ω
(l)
k,s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
u(l)
(x,k,s+1)

−R(l)
s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
(7.15)

Substituting equation (7.15) into equation (7.10), we get

n

∑
k=0

ω
(l)
k,su(l)

(x,k,s+1)−u(l)
(t,1,s+1) = R(l)

s

[
u(l)
(x,0,s),u

(l)
(x,1,s),u

(l)
(x,2,s), · · · ,u

(l)
(x,n,s)

]
(7.16)

Equation (7.16) is a linearized form of equation (7.6). The next non-trivial important procedure,

termed collocation, is the evaluation of the time derivative at the Legendre-Gauss-Lobatto grid

points t j ( j = 0,1, . . . ,Mt) and the space derivatives at the Legendre-Gauss-Lobatto grid points xi

(i= 0,1, . . . ,Mx). The values of the time derivatives are computed at the Legendre-Gauss-Lobatto

points (xi, t j), as (for j = 0,1,2, . . . ,Mt)

∂u(l)

∂ t

∣∣∣∣∣
(xi,t j)

=
Mt

∑
η=0

d jηu(l)(xi, tη), (7.17)

where for l = 1,2, · · · , p, d jη =
dLη (t j)

dt , are the jth and ηth elements of the standard first

derivative Legendre differentiation matrix of size (Mt+1)×(Mt+1). The nth order derivative is

defined as

∂ nu(l)

∂xn

∣∣∣∣∣
(xi,t j)

=
Mx

∑
ρ=0

Dn
iρu(l)(xρ , t j) = DnU(l)

j , i = 0,1,2, . . . ,Mx, (7.18)

where the vector U(l)
j is defined as

U(l)
j = [u(l)(x0, t j),u(l)(x1, t j), . . . ,u(l)(xMx , t j)]

T . (7.19)
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The superscript T in equation (7.19) denotes matrix transpose. Substituting equations (7.17) and

(7.18) into equation (7.16), we get

n

∑
k=0

ΩΩΩk,sDkU(l)
s+1, j−

Mt

∑
k=0

d jkU(l)
s+1,k = R(l)

s (7.20)

for j = 0,1,2, . . . ,Mt , where ΩΩΩk,r is a diagonal matrix given by:

ΩΩΩk,r =




ωk,s(x0, t j)

ωk,s(x1, t j)
. . .

ωk,s(xMx , t j)



. (7.21)

Since the initial condition for equation (7.20) corresponds to ξMt =−1, we express equation

(7.20) as

n

∑
k=0

ΩΩΩk,sDkU(l)
s+1, j−

Mt−1

∑
k=0

d jkU(l)
s+1,k = R(l)

j , (7.22)

where

R(l)
j = R(l)

s +d jMt U
(l)
Mt
, for j = 0,1,2, . . . ,Mt−1.

For j = 0,1,2, . . . ,Mt−1, equation (7.22) forms an Mt(Mx+1)×Mt(Mx+1) matrix equation




A0,0 A0,1 · · · A0,Mt−1

A1,0 A1,1 · · · A1,Mt−1
...

... . . . ...

AMt−1,0 AMt−1,1 · · · AMt−1,Mt−1







U(l)
0

U(l)
1
...

U(l)
Mt−1



=




R(l)
0

R(l)
1
...

R(l)
Mt−1



, (7.23)

where

Ai,i =
n

∑
k=0

ΩΩΩk,sD(k)−di,iI (7.24)

Ai, j =−di, jI, when i ̸= j, (7.25)

122



and I is the identity matrix of size (Mx+1)×(Mx+1). Solving equation (7.23) gives u(xi, t j)

which is subsequently used in equation (7.9) to approximate u(l)(x, t).

7.3 Boundary Conditions

In this section, different type of boundary conditions are considered. We consider non-

homogeneous Dirichlet boundary conditions, non-homogeneous Neumann boundary conditions

and non-homogeneous mixed boundary boundary conditions.

Non-homogeneous Dirichlet boundary conditions

In this subsection, we consider boundary conditions of the form

u(a, t) = f1(t) (7.26)

u(b, t) = f2(t) (7.27)

in the interval [a,b], where f1(t) and f2(t) are nonzero functions. In implementing non-

homogeneous Dirichlet boundary conditions, we note that for x ∈ [a,b], x = a corresponds

to x = 1, for x ∈ [−1,1] and hence u(a, t) = u(1, t). Similarly, for x ∈ [a,b], x = b corresponds

to x = 1, for x ∈ [−1,1] and hence u(b, t) = u(−1, t). Therefore, when evaluating the boundary

conditions at the Legendre-Gauss-Lobatto grid points in each sub-interval

Γl = (tl−1, tl), l = 1,2, · · · , p, with, 0 = t0 < t1 < t2 < · · ·< tp = T, (7.28)

we obtain

u(l)(a, t j) = u(l)(xMx , t j) = f (l)1 (t j), (7.29)

u(l)(b, t j) = u(l)(x0, t j) = f (l)2 (t j), (7.30)

for j = 0,1, . . . ,Mt .
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Non-homogeneous Neumann boundary conditions

In this subsection, we consider boundary conditions of the form

u′(a, t) = g1(t) (7.31)

u′(b, t) = g2(t) (7.32)

in the interval [a,b], where g1(t) and g2(t) are nonzero functions and the prime denotes differen-

tiation with respect to x. In general, at any grid point (xi, t j), we have

∂u(l)

∂x

∣∣∣∣∣
(xi,t j)

=
Mx

∑
ρ=0

Diρu(l)(xρ , t j). (7.33)

Therefore, the non-homogeneous Neumann boundary conditions can be expressed as

∂u(l)

∂x

∣∣∣∣∣
(a,t j)

=
∂u(l)

∂x

∣∣∣∣∣
(xMx ,t j)

=
Mx

∑
ρ=0

DMxρu(l)(xρ , t j) = g1(t j), (7.34)

∂u(l)

∂x

∣∣∣∣∣
(b,t j)

=
∂u(l)

∂x

∣∣∣∣∣
(x0,t j)

=
Mx

∑
ρ=0

D0ρu(l)(xρ , t j) = g2(t j), (7.35)

for j = 0,1, . . . ,Mt .

Non-homogeneous Mixed boundary conditions

In this subsection, we consider boundary conditions of the form

u(a, t)+u′(a, t) = h1(t) (7.36)

u(b, t)+u′(b, t) = h2(t) (7.37)

in the interval [a,b], where h1(t) and h2(t) are nonzero functions and the prime denotes differen-

tiation with respect to x. Using the ideas from the previous two subsections, equations (7.36)
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and (7.37) can be expressed as

u(l)(xMx , t j)+
Mx

∑
ρ=0

DMxρu(l)(xρ , t j) = h1(t j), (7.38)

u(l)(x0, t j)+
Mx

∑
ρ=0

D0ρu(l)(xρ , t j) = h2(t j), (7.39)

for j = 0,1, . . . ,Mt .

7.4 Numerical Experiments

In this section, we apply the proposed algorithm to the popular nonlinear partial differential

equations of the form (7.6) with exact solutions. For comparison purposes, we considered the

numerical experiments by Motsa et.al. [97]. These numerical experiments have been used

in this thesis in Chapters 2 and 6. In all our calculations, we consider non-homogeneous

Dirichlet boundary conditions. The space and time domains are given by x ∈ [a,b] = [0,5] and

t ∈ [t0,T ] = [0,10] respectively for most of the numerical experiments. We choose a T = 10 to

show the accuracy of the MD-LGL-BSQLM over a large time domain.

7.5 Results and Discussion

In this section, we discuss and present the results of the MD-LGL-BSQLM method. The results

were all generated using MATLAB 2013. To compare the accuracy, computational time, and

general performance of the proposed method, we compare the maximum errors and convergence

of the proposed method. In order to determine the level of accuracy of the MD-LGL-BSQLM

approximate solution, at a particular time level in comparison with the exact solution, we report

maximum error defined by

EMx = max
k

{|ue(xk, t)−ua(xk, t)| , : 0 ≤ k ≤ Mx} , (7.40)

where ua(xk, t) is the approximate solution and ue(xk, t) is the exact solution at the time level t.

We use p = 10 and varying values of Mt and Mx.
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Maximum Error estimates

In this subsection, we analyze the accuracy and computational time of the LGL-BSQLM

and MD-LGL-BSQLM methods. We report the maximum errors obtained when solving the

nonlinear evolution partial differential equations using both methods. We also report on the

central processing unit (CPU) time taken to approximate the solutions of the nonlinear evolution

partial differential equations. In all cases, we used Mt = 10 and varying values of Mx.

Table 7.1 Maximum error estimates EMx for the Fishers equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 1.840e-03 1.842e-03 9.508e-06 7.19e-10

2 2.906e-03 2.960e-03 1.033e-05 6.82e-10

3 1.150e-03 1.163e-03 4.555e-06 2.86e-10

4 7.918e-04 7.918e-04 2.597e-06 5.21e-11

5 5.383e-04 5.389e-04 5.600e-07 3.77e-12

6 3.721e-04 3.721e-04 3.176e-07 2.23e-12

7 2.494e-04 2.494e-04 6.682e-08 1.37e-13

8 1.172e-04 1.206e-04 1.077e-08 5.40e-14

9 1.264e-04 1.268e-04 9.716e-09 1.80e-14

10 2.210e-05 2.483e-05 6.086e-09 4.44e-15

CPU Time 0.015507 0.044061 0.005363 0.009849

In Table 7.1, the maximum error estimates for the Fisher equation are displayed. We observe

that the maximum errors obtained using the LGL-BSQLM method are bigger compared to

those obtained using the MD-LGL-BSQLM method. This suggests that the MD-LGL-BSQLM

method is more accurate than the LGL-BSQLM method. We also observe that using Mx = 5

for the MD-LGL-BSQLM method gives more accurate results than the LGL-BSQLM method

with Mx = 10 and Mx = 20. This in turn reduces computational time and hence the MD-LGL-

BSQLM method uses few grid points to achieve spectral accurate results. On average, for the

same values of Mx and Mt , the difference between maximum error estimates obtained using the
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MD-LGL-BSQLM and LGL-BSQLM method is of order ten. Increasing space grid points for

the LGL-BSQLM method does not improve the accuracy of the method as shown in Table 7.1.

Table 7.2 Maximum error estimates EMx for the Burgers-Fisher equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 1.779e-03 1.772e-03 1.006e-05 3.68e-09

2 2.054e-03 2.066e-03 1.570e-05 7.78e-10

3 2.977e-03 2.977e-03 8.765e-06 4.55e-11

4 2.366e-03 2.366e-03 1.343e-06 3.14e-11

5 5.866e-04 5.856e-04 4.678e-07 4.31e-12

6 1.392e-03 1.392e-03 2.175e-07 5.53e-13

7 1.135e-03 1.135e-03 7.135e-08 1.37e-14

8 4.054e-04 4.054e-04 2.135e-08 1.20e-14

9 1.920e-04 1.923e-04 6.240e-09 4.66e-15

10 9.550e-05 1.034e-04 1.803e-09 4.22e-15

CPU Time 0.025428 0.066148 0.011777 0.024576

Table 7.2, shows the maximum error estimates for the Burgers-Fisher equation. The maxi-

mum error estimates obtained using the MD-LGL-BSQLM method are smaller compared to

those obtained using the LGL-BSQLM method. Therefore, we conclude that the MD-LGL-

BSQLM method is more accurate than the LGL-BSQLM method. We also observe that using

Mx = 5 for the MD-LGL-BSQLM method gives more accurate results than the LGL-BSQLM

method with Mx = 10 and Mx = 20. This in turn reduces computational time and hence the

MD-LGL-BSQLM method uses fewer grid points to achieve spectral accurate results. Increasing

Mx = 10 gives an error of approximately 10−12 in the time domain [0,10]. Increasing the number

of space grid points for the LGL-BSQLM method does not improve the accuracy of the method

as shown in Table 7.2. Solutions of the Burgers-Fisher equation were obtained in a fraction of a

second.
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Table 7.3 Maximum error estimates EMx for the Fitzhugh-Nagumo equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 1.770e-04 1.770e-04 6.049e-07 5.978e-11

2 2.383e-04 2.383e-04 6.071e-08 4.030e-13

3 4.189e-04 4.189e-04 1.037e-08 1.664e-14

4 3.305e-04 3.305e-04 2.430e-09 6.710e-15

5 1.480e-05 1.481e-05 7.108e-10 2.942e-15

6 2.413e-04 2.413e-04 2.455e-10 3.842e-15

7 2.198e-04 2.198e-04 9.683e-11 2.179e-15

8 8.642e-05 8.642e-05 4.264e-11 1.188e-15

9 4.103e-05 4.103e-05 2.056e-11 3.201e-16

10 1.595e-05 1.593e-05 1.065e-11 4.352e-16

CPU Time 0.064019 0.076709 0.013449 0.026672

Table 7.3, shows the maximum error estimates for the Fitzhugh-Nagumo equation, obtained

using both the MD-LGL-BSQLM and LGL-BSQLM methods. The maximum errors obtained

using the MD-LGL-BSQLM method are smaller compared to those obtained using the LGL-

BSQLM method. Therefore, the MD-LGL-BSQLM method is more accurate than the LGL-

BSQLM method. We also observe that using Mx = 5 for the MD-LGL-BSQLM method gives

more accurate results than the LGL-BSQLM method with Mx = 10 and Mx = 20. Using Mx = 5

reduces the size of the variable matrix and in turn reducing computational time. Thus the

MD-LGL-BSQLM method uses fewer grid points to achieve more accurate results for large time

domains. Increasing Mx = 10 gives an error of approximately 10−14 in the time domain [0,10].

Increasing the number of space grid points for the LGL-BSQLM method does not improve the

accuracy of the method as shown in Table 7.3. Solutions of the Fitzhugh-Nagumo equation were

obtained using minimal computational time.
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Table 7.4 Maximum error estimates EMx for the Burgers-Huxley equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 8.727e-04 8.705e-04 6.245e-17 1.735e-17

2 1.943e-03 1.950e-03 4.580e-16 9.021e-17

3 1.746e-03 1.773e-03 5.135e-16 4.857e-16

4 1.820e-03 1.820e-03 1.110e-15 9.437e-16

5 8.588e-04 8.507e-04 4.441e-15 4.441e-16

6 1.824e-03 1.824e-03 8.882e-16 3.109e-15

7 1.479e-03 1.479e-03 6.439e-15 1.332e-15

8 4.790e-04 4.790e-04 2.220e-15 4.885e-15

9 2.396e-04 2.556e-04 1.288e-14 3.997e-15

10 1.586e-04 1.599e-04 3.220e-15 6.661e-16

CPU Time 0.040081 0.084866 0.013389 0.019958

Table 7.4 displays the maximum error estimates for the Burgers-Huxley equation which

were obtained using the MD-LGL-BSQLM and LGL-BSQLM methods. It is evident from Table

7.4 that the maximum errors obtained using the LGL-BSQLM method are bigger compared

to those obtained using the MD-LGL-BSQLM method. Thus the MD-LGL-BSQLM method

is more accurate than the LGL-BSQLM method. For Mx = 5, the MD-LGL-BSQLM method

gives more accurate results than the LGL-BSQLM method with Mx = 10 and Mx = 20. This in

turn reduces computational time and hence the MD-LGL-BSQLM method uses few grid points

to achieve more accurate results. On average, for the same values of Mx and Mt , the difference

between maximum errors obtained by the MD-LGL-BSQLM and LGL-BSQLM method is

approximately twelve. Increasing space grid points for the LGL-BSQLM method does not

improve the accuracy of the method as shown in Table 7.4. The solutions of the Burgers-Huxley

equation were also obtained in a fraction of a second.
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Table 7.5 Maximum error estimates EMx for the KdV-Burgers equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 3.190e-04 3.182e-04 9.086e-07 2.114e-10

2 2.913e-04 2.918e-04 4.190e-07 4.539e-11

3 6.550e-04 6.550e-04 2.285e-07 1.660e-11

4 6.249e-04 6.249e-04 1.097e-07 6.400e-12

5 1.319e-04 1.320e-04 5.032e-08 2.561e-12

6 4.568e-04 4.568e-04 2.284e-08 1.174e-12

7 3.446e-04 3.446e-04 1.038e-08 5.967e-13

8 6.861e-05 7.126e-05 4.743e-09 3.062e-13

9 5.261e-05 5.266e-05 2.185e-09 1.230e-13

10 4.016e-05 4.714e-05 1.016e-09 5.757e-14

Table 7.5 shows the maximum error estimates for the KdV-Burgers equation which were

obtained using the MD-LGL-BSQLM and LGL-BSQLM methods. In this table, the maximum

error estimates obtained using the LGL-BSQLM method are bigger compared to those obtained

using the MD-LGL-BSQLM method. Thus the MD-LGL-BSQLM method is more accurate

than the LGL-BSQLM method. We observe that for Mx = 5, the MD-LGL-BSQLM method

gives more accurate results than the LGL-BSQLM method with Mx = 10 and Mx = 20. This in

turn reduces computational time and hence the MD-LGL-BSQLM method uses few grid points

to achieve more accurate results. For the same values of Mx and Mt , the difference between

maximum errors obtained by the MD-LGL-BSQLM and LGL-BSQLM method is approximately

eleven. Increasing space grid points for the LGL-BSQLM method does not improve the accuracy

of the method as shown in Table 7.5. The solutions of the Burgers-Huxley equation were also

obtained in a fraction of a second.
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Table 7.6 Maximum error estimates EMx for the modified KdV equation, with Mt = 10

LGL-BSQLM MD-LGL-BSQLM

t \ Mx 10 20 5 10

1 4.600e-04 4.794e-04 1.278e-06 4.53e-10

2 2.859e-04 2.859e-04 6.520e-07 1.30e-10

3 5.044e-04 5.044e-04 3.413e-07 4.66e-11

4 3.985e-04 3.985e-04 1.641e-07 1.76e-11

5 8.550e-05 8.785e-05 7.270e-08 7.09e-12

6 2.911e-04 2.911e-04 3.223e-08 2.96e-12

7 2.651e-04 2.651e-04 1.490e-08 1.34e-12

8 1.042e-04 1.042e-04 6.970e-09 5.31e-13

9 4.946e-05 4.946e-05 3.183e-09 2.72e-13

10 5.541e-05 5.556e-05 1.455e-09 5.01e-13

CPU Times 0.023869 0.087991 0.006778 0.011656

Table 7.6 shows the maximum error estimates for the modified KdV equation that were

obtained using the MD-LGL-BSQLM and LGL-BSQLM methods. The maximum error esti-

mates obtained using the LGL-BSQLM method are bigger compared to those obtained using the

MD-LGL-BSQLM method. Therefore, the MD-LGL-BSQLM method is more accurate than the

LGL-BSQLM method. We observe that for Mx = 5, the MD-LGL-BSQLM method gives more

accurate results than the LGL-BSQLM method with Mx = 10 and Mx = 20. This in turn reduces

computational time and hence the MD-LGL-BSQLM method uses few grid points to achieve

more accurate results. For the same values of Mx and Mt , the difference between maximum

errors obtained by the MD-LGL-BSQLM and LGL-BSQLM method is approximately twelve.

Increasing space grid points for the LGL-BSQLM method does not improve the accuracy of the

method as shown in Table 7.6. The solutions of the Burgers-Huxley equation were also obtained

in a fraction of a second.

In summary, the proposed method achieves spectrally accurate results with relatively fewer

spatial grid points, converges fast to the exact solution. It also approximates the solution of the
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problem in minimal computational time. Solutions of nonlinear partial differential equations are

obtained in few seconds in all cases.

Comparison of Approximate and Exact solutions

In this subsection, we consider the approximate and analytical solutions of the nonlinear partial

differential equations considered in this work. The graphs show the solutions of the nonlinear

partial differential equations in both space and time domains. Figures 7.1 - 7.6 show the

approximate and exact solutions of Fisher’s equation, Burgers-Fisher equation, Burgers-Huxley

equation, Fitzhugh-Nagumo equation, modified KdV-Burgers equation and modified KdV

equation respectively. These graphs were generated using the MD-LGL-BSQLM method. The

graphs show that the approximate and exact solutions are in excellent agreement in the given

time domain for all the equations considered. This implies that the MD-LGL-BSQLM method

can be used to approximate solutions of nonlinear partial differential equations in large time

domains. These graphs were generated using Mx = 40 and Mt = 10. The time and space intervals

used are t ∈ [0,10] and x ∈ [0,5] for all the equations.
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Fig. 7.1 Approximate and Exact solutions of the Fishers equation.
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Fig. 7.2 Approximate and Exact solutions of the Burgers-Fisher equation.
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Fig. 7.3 Approximate and Exact solutions of the Burgers-Huxley equation.
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Fig. 7.4 Approximate and Exact solutions of the Fitzhugh-Nagumo equation.
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Fig. 7.5 Approximate and Exact solutions of the modified KdV-Burgers equation.
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Fig. 7.6 Approximate and Exact solutions of the modified KdV equation.

Convergence Graphs

In this section, we compare the convergence and accuracy of the LGL-BSQLM and MD-LGL-

BSQLM methods graphically. In generating the results, we used Mx = Mt = 10, t ∈ [0,10],

and x ∈ [0,5]. In general, the MD-LGL-BSQLM method converge approximately after two

iterations, to a smaller error compared to the LGL-BSQLM method. This implies that the

MD-LGL-BSQLM method is more accurate than the LGL-BSQLM method.
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Fig. 7.7 Fisher’s equation convergence
graph
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Fig. 7.8 Burgers-Fisher equation conver-
gence graph

Figure 7.7 compares the convergence of the Fisher’s equation using both the LGL-BSQLM

and MD-LGL-BSQLM methods. The MD-LGL-BSQLM method converges approximately after

two iterations to an error of 10−14, while the LGL-BSQLM method converges to 10−5 after nine

iterations. This implies that the MD-LGL-BSQLM method is a suitable method to approximate

the solution of the Fisher’s equation for large time domains since it gives more accurate results

and converges faster to the exact solution compared to the LGL-BSQLM method.

Figure 7.8 compares the convergence of the Burgers-Fisher equation using both the LGL-

BSQLM and MD-LGL-BSQLM methods. In this case, the MD-LGL-BSQLM method converges

to 10−12 approximately after two iterations, while the LGL-BSQLM method converges to 10−4

after seven iterations. Since the MD-LGL-BSQLM method gives more accurate results and

converges faster to the exact solution than the LGL-BSQLM method, then it is a suitable method

to approximate the solution of the Burgers-Fisher equation for large time domains.
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Fig. 7.9 Fitzhugh-Nagumo equation conver-
gence graph
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Fig. 7.10 Burgers-Huxley equation conver-
gence graph
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Figure 7.9 compares the convergence of the Fitzhugh-Nagumo equation using both the

LGL-BSQLM and MD-LGL-BSQLM methods. We observe that the MD-LGL-BSQLM method

converges to 10−13 after three iterations, while the LGL-BSQLM method converges to 10−1

after two iterations. The LGL-BSQLM method converges to a less accurate solution compared

to the MD-LGL-BSQLM method. This implies that the MD-LGL-BSQLM method is more

accurate than the LGL-BSQLM method and hence suitable for approximating the solution of

the Fitzhugh-Nagumo equation for large time intervals.

In Figure 7.10, the convergence of the LGL-BSQLM and MD-LGL-BSQLM methods for

approximating the solution of the Burgers-Huxley equation is compared. The graph shows that

the MD-LGL-BSQLM method converges to 10−12 after two iterations, while the LGL-BSQLM

method converges to 10−6 after five iterations. Clearly, the LGL-BSQLM method converges

to a less accurate solution compared to the MD-LGL-BSQLM method. Thus the MD-LGL-

BSQLM method is more accurate than the LGL-BSQLM method and hence it is suitable for

approximating the solution of the Fitzhugh-Nagumo equation for large time intervals.
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Fig. 7.11 Modified KdV-Burgers equation
convergence graph
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Fig. 7.12 Modified KdV equation conver-
gence graph

Figure 7.11 compares the convergence of the LGL-BSQLM and MD-LGL-BSQLM methods

for approximating the solution of modified KdV-Burgers equation. The MD-LGL-BSQLM

method converges to 10−11 after four iterations, while the LGL-BSQLM method converges to

10−2 after two iterations. We observe that the LGL-BSQLM method converges to a less accurate

solution compared to the MD-LGL-BSQLM method and hence the MD-LGL-BSQLM method

is more accurate than the LGL-BSQLM method. This implies that the MD-LGL-BSQLM
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method is suitable for approximating solutions of the modified KdV-Burgers equation for large

time intervals.

Lastly, Figure 7.12 compares the convergence of the LGL-BSQLM and MD-LGL-BSQLM

methods for approximating the solution of modified KdV equation. The MD-LGL-BSQLM

method converges to 10−13 after two iterations, while the LGL-BSQLM method converges to

10−4 after four iterations. We observe that the MD-LGL-BSQLM method converges to a more

accurate solution compared to the LGL-BSQLM method and hence the MD-LGL-BSQLM

method is more accurate than the LGL-BSQLM method. Thus the MD-LGL-BSQLM method

is suitable for approximating solutions of the modified KdV equation for large time intervals.

In summary, the convergence graphs show that the MD-LGL-BSQLM method converges

to a more accurate solution than the LGL-BSQLM method. We can conclude that the MD-

LGL-BSQLM method is more accurate than the LGL-BSQLM method for solving nonlinear

evolution partial differential equations in large time domains.

7.6 Conclusion

The main goal of this chapter was to develop a new numerical method for solving nonlinear

partial differential equations over a long period of time. Accordingly, we presented and imple-

mented for the first time a new approach termed the multi-domain Legendre-Gauss-Lobbatto

bivariate spectral quasilinearization method for solving general nonlinear evolution smooth

partial differential equations. The proposed method was developed by quasilinearizing the

evolution equations and independently applying Lagrange interpolation polynomials based on

Legendre-Gauss-Lobatto grid points in both space and time. The time domain was further

divided into small sub-intervals and the linearized evolution equations were solved in each

sub-interval.

Numerical simulations using this new method were carried out on the Fisher equation,

Burgers-Fisher equation, Burgers-Huxley equation, Fitzhugh-Nagumo equation, modified KdV-

Burgers equation and modified KdV equation. The results indicate agreement between the

approximate solutions and the analytical solutions to a high order of accuracy. Furthermore, over

large time domains the MD-LGL-BSQLM converged to a more spectrally accurate solution than

did the LGL-BSQLM. The MD-LGL-BSQLM also converged more quickly and used minimal
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computational time compared to the LGL-BSQLM. We therefore conclude that the multi-domain

Legendre-Gauss-Lobbatto bivariate spectral quasilinearization method performs much better, in

terms of both accuracy and computational speed, than the Legendre-Gauss-Lobbatto bivariate

spectral quasilinearization method.

This study contributes to the literature on new quasilinearization techniques that can be used

for solving nonlinear partial differential equations over large time domains. In the next chapter,

we extend the idea of using the multi-domain domain approach coupled with the bivariate

pseudospectral methods (from Chapters 3, 4 and 5) to solve system of n equations.
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Chapter 8

Multi-domain bivariate spectral

collocation methods for systems of

non-similar boundary layer differential

equations

In this chapter, novel approaches for solving systems of non-similar boundary layer equations

over a large time domain are presented. The methods are a multi-domain bivariate spectral

quasilinearization method (MD-BSQLM) and multi-domain bivariate spectral local linearization

method (MD-BSLLM). These methods make use of Legendre-Gauss-Lobbatto grid points, a

linearization technique, and the spectral collocation method to approximate functions defined by

bivariate Lagrange interpolation. The methods are developed for a general system of n nonlinear

partial differential equations.

We demonstrate the use of the MD-BSQLM and MD-BSLLM techniques by solving a

system of nonlinear partial differential equations that describe a class of non-similar boundary

layer equations. Numerical experiments are conducted to show applicability and accuracy of

the methods. Grid independence tests establish their accuracy, convergence and validity. The

solution for the limiting case is used to validate their accuracy.
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8.1 Introduction

As was outlined in earlier chapters, solutions of nonlinear non-similar boundary layer partial

differential equations have received considerable attention of research scientist in the past few

years. Series solution methods have been used by several researchers. These include asymptotic

methods [156, 157], extended series solutions [157] and homotopy analysis method [158, 159].

However, solving a complex non-similar boundary layer differential equation by series methods

may require many terms which infers extensive computational time.

Numerical methods such as implicit finite difference methods have been used to solve

non-similar boundary layer equations by Hossain and Paul [156] while Hussain et al. [160] and

Yih [42] used the Keller-box method. Finite difference methods require many grid points to

achieve accurate results with consequent demands of extensive computational time. By contrast,

pseudospectral methods converge to the exact solution using few grid points and hence are

computationally faster, and have been used to solve boundary layer equations [161–164].

Some new pseudospectral methods have been recently developed to solve boundary layer

equations. These include the spectral quasilinearization method, spectral local linearization

method, bivariate spectral quasilinearization method, bivariate spectral local linearization

method, and many more. Spectral quasilinearization methods (SQLM) has been used to solve

the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected

Maxwell (UCM) fluid over a porous stretching surface by Motsa et al. [165]. Shateyi and

Marewo [166] used the SQLM to solve the magnetohydrodynamic boundary layer flow equa-

tion with heat and mass transfer of an incompressible upper-convected Maxwell fluid over a

stretching sheet in the presence of viscous dissipation and thermal radiation as well as chemical

reaction. The method obtained second order accurate results within few seconds since it used

few grid points. It converged very fast to the exact solution. However, the SQLM method solves

a system of equations as coupled differential equations. Solving the system of matrices as a

coupled system leads to a big matrix and hence, the more system of equations we solve, the

bigger the matrix. Increasing the size of the matrix may lead to ill-conditioning of the matrix

and hence inaccurate results.

An alternative method was developed by Motsa [167]. This method termed, the spectral local

linearization method (SLLM), was developed based on, decoupling and linearizing systems of
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equations using a combination of a univariate linearization technique, then spectral collocation

discretization. The main feature of the SLLM algorithm is the breaking down of a large coupled

system of equations into sequences of smaller subsystems which are then solved in a sequence

form in a computationally efficient manner. The method has been applied to solve a coupled

systems of equation that model the problem of unsteady free convective heat and mass transfer

and the Blasius equation [167]. The results demonstrated that the method is accurate, convergent,

stable, and very efficient when compared with other existing methods of solving some large

systems of boundary value problems.

The SQLM method was extended for the first time to solve nonlinear partial differential

equation by Motsa et al. [168]. Motsa et al. [168] solved a system of equations modeling

boundary layer flow caused by an impulsively stretching plate and a coupled system of four

nonlinear differential equations that model the problem of unsteady MHD flow and mass transfer

in a porous space. Spectral methods were used in space and finite differences were used in time.

Using finite differences in space increases the computational time and decreases the accuracy

of the spectral method. In an attempt to correct the disadvantages due to the usage of finite

differences in time, Motsa et al. [97] applied spectral method in both space and time to solve

nonlinear evolution equations. The method was termed the bivariate spectral quasilinearization

method (BSQLM). Abbas [169] solved systems of partial differential equations modeling the

heat and mass transfer in an unsteady boundary layer flow of a Casson fluid near a stagnation

point over a stretching/shrinking sheet in the presence of thermal radiation using the BSQLM.

However, this method solves a system of equations as coupled system of equations. This

in turn implies that the method results in a huge matrix which may suffer consequences of

ill-conditioning. In an attempt to solve this problem, Motsa [170] developed the bivariate

spectral local linearization method (BSLLM) to solve a flow model described in terms of a

highly coupled and nonlinear system of partial differential equations that model the problem

of unsteady mixed convection flow over a vertical cone due to impulsive motion. The BSLLM

method has been extended to solve a system of differential equations modeling the behavior

of unsteady non-Darcian magnetohydrodynamic fluid flow past an impulsively started vertical

porous surface [171]. These methods converge fast and are computationally fast.

However, these bivariate pseudospectral methods are suitable for nonlinear partial differential

equations with small time domain. Increasing the time domain reduces the accuracy of the
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method. In some cases, the computed numerical solutions fail to converge even when the number

of grid points are increased. Thus, accurate solutions of systems of differential equations are

usually determined over short time intervals.

The realization that accurate solutions can be obtained in small time intervals have led to

a number of numerical methods that uses the domain decomposition technique. The domain-

decomposition approach together with the spectral collocation technique has been used to

solve equations arising from various scientific fields. Funaro [172] and Harald [173] solved

elliptic differential equations, Kopriva [174] solved hyberbolic systems, Peyret [175] solved

stiff problems in fluid mechanics and recently, it has been used to solve chaotic system of

ordinary differential equations by [176–179]. These methods split large intervals into smaller

sub-intervals so that the equations are solved over a sequence of non-overlapping sub-intervals of

the domain. Continuity conditions are used to advance the solution across the non-overlapping

sub-intervals.

In this chapter, we present multi-domain numerical approaches for solutions of systems of

nonlinear coupled non-similar boundary layer partial differential equations over a large time

interval. The multi-domain bivariate spectral local linearisation method (MD-BSLLM), and

multi-domain bivariate spectral quasilinearisation method (MD-BSQLM), are an extension of the

BSLLM and BSQLM respectively. The proposed approaches are developed for solving system of

n coupled non-similar boundary layer partial differential equations. The multi-domain approach

are only applied in the time domain. The domain is divided into smaller non-overlapping sub-

intervals on which the Chebyshev spectral collocation method is used to solve the equations. A

continuity condition is used to advance the solution across the sub-intervals. The algorithms are

easy to develop and yield accurate results using only a few discretization nodes. The accuracy

of the methods is validated against the series solution for limiting cases.

The main aim of the study is to explore the applicability of the multi-domain bivariate

spectral local linearisation method and the multi-domain bivariate spectral quasilinearisation

method to systems of nonlinear coupled non-similar boundary layer partial differential equations

over large time intervals. The results confirm that these methods are suitable for solving all

types of systems of nonlinear coupled non-similar boundary layer partial differential equations

over a large time interval.

142



The article is organized as follows, in Sections 8.2 and 8.3, the multi-domain bivariate

spectral quasilinearisation method and the multi-domain bivariate spectral local linearisation

method are described for a general system of n partial differential equations respectively. In

Section 8.4, numerical experiments and the series solutions are presented in Section 8.5. In

Section 8.6, the results are discussed and we conclude in Section 8.7.

8.2 Multi-Domain Bivariate Spectral Quasilinearisation Method

In this section we introduce the multi-domain bivariate spectral quasilinearization method for a

general system of n nonlinear partial differential equations. We consider a system of the form,

Φ1 [G1,G2, . . . ,Gn] = 0,

Φ2 [G1,G2, . . . ,Gn] = 0,
...

Φn [G1,G2, . . . ,Gn] = 0,

(8.1)

where the operators Gi for i = 1,2, . . . ,n are of the form

G1 =

{
f1,

∂ f1

∂η
,
∂ 2 f1

∂η2 , . . . ,
∂ p f1

∂η p ,
∂ f1

∂ζ
,

∂

∂ζ

(
∂ f1

∂η

)}
,

G2 =

{
f2,

∂ f2

∂η
,
∂ 2 f2

∂η2 , . . . ,
∂ p f2

∂η p ,
∂ f2

∂ζ
,

∂

∂ζ

(
∂ f2

∂η

)}
,

...

Gn =

{
fn,

∂ fn

∂η
,
∂ 2 fn

∂η2 , . . . ,
∂ p fn

∂η p ,
∂ fn

∂ζ
,

∂

∂ζ

(
∂ fn

∂η

)}
.

(8.2)

The order of differentiation is denoted by p, the required solution by fk(η ,ζ ) and Φk for

k = 1,2, . . . ,n are the non-linear operators containing all the spatial and time derivatives of

fk(η ,ζ ). The Legendre-Gauss-Lobbatto grid points and the corresponding differentiation

matrices are defined in the interval [−1,1]. Therefore, the time interval ζ ∈ [0,T ] and space

region x ∈ [a,b], are transformed to [−1,1] using linear transformations. In order to apply

the multi-domain bivariate spectral quasilinearization method, we first decompose the interval

ζ ∈ [0,T ] into q non-overlapping sub-intervals Ωl = [ζl−1,ζl] for l = 1,2, . . . ,q. Each interval
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Ωl is further divided into s not necessarily equal divisions. The system of non-linear partial

differential equations are solved in each sub-interval [ζl−1,ζl]. The solutions in each sub-

interval [ζl−1,ζl] are denoted by f (l)k (η ,ζ ), for k = 1,2, . . . ,n. In the first interval [ζ0,ζ1], the

solutions f (l)k (η ,ζ ), for k = 1,2, . . . ,n are obtained subject to the initial conditions f (1)k (η ,0),

for k = 1,2, . . . ,n respectively. For each l > 1, at each sub-interval [ζl−1,ζl], the continuity

conditions

f (l)k (η ,ζl−1) = f (l−1)
k (η ,ζl−1), for k = 1,2, . . . ,n and l = 1,2, . . . ,q, (8.3)

are used to implement the MD-BSQLM over the interval [ζl−1,ζl]. This procedure is repeated

to generate a sequence of solutions f (l)k (η ,ζ ), for l = 1,2, . . . , p and k = 1,2, . . . ,n. We assume

that at each sub-interval [ζl−1,ζl], the solution can be approximated by a bivariate Lagrange

interpolation polynomial of the form

f (l)k (η ,ζ )≈
Nη

∑
i=0

Nζ

∑
j=0

f (l)k (ηi,ζ j)Li(η)L j(ζ ), (8.4)

for k = 1,2, . . . ,n and l = 1,2, . . . , p. The bivariate Lagrange interpolation polynomial inter-

polates f (l)k (η ,ζ ) at selected points called Legendre-Gauss-Lobatto points (ηi,ζ j) in both the

η and ζ directions, for i = 0,1,2, . . . ,Nη and j = 0,1,2, . . . ,Nζ . The nonlinear operators Φk,

for k = 1,2,3, . . . ,n are first linearized using the quasilinearisation technique as defined by

Bellman and Kalaba [71]. The quasilinearisation method is a technique based on the Taylor

series expansion of Φk about some previous iteration. We assume that the difference between it’s

previous and current solution and all it’s derivatives are small. Applying the quasilinearisation

method yields the following

Φk [G1,G2, . . . ,Gn]≈ (G1,r+1−G1,r,G2,r+1−G2,r, . . . ,Gn,r+1−Gn,r)·∇Φk [G1,r,G2,r, . . . ,Gn,r]

+Φk [G1,r,G2,r, . . . ,Gn,r] , (8.5)

where r and r+1 denote previous and current iterations respectively and ∇ is a vector of the

partial derivatives which is defined as

∇ =
{

∇ f1,∇ f2, . . . ,∇ fn
}
. (8.6)
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We define

∇ f1 =





∂

∂ f1
,

∂

∂ f ′1
,

∂

∂ f ′′1
, . . . ,

∂

∂ f (p)
1

,
∂

∂

(
∂ f1
∂ζ

) , ∂

∂

(
∂ f ′1
∂ζ

)



 ,

∇ f2 =





∂

∂ f2
,

∂

∂ f ′2
,

∂

∂ f ′′2
, . . . ,

∂

∂ f (p)
2

,
∂

∂

(
∂ f2
∂ζ

) , ∂

∂

(
∂ f ′2
∂ζ

)



 ,

...

∇ fn =





∂

∂ fn
,

∂

∂ f ′n
,

∂

∂ f ′′n
, . . . ,

∂

∂ f (p)
n

,
∂

∂

(
∂ fn
∂ζ

) , ∂

∂

(
∂ f ′n
∂ζ

)



 ,

(8.7)

where the prime denotes differentiation with respect to η . The linearised equation (8.5) can be

expressed in a compact form as

n

∑
s=1

Gs,r+1 ·∇ fsΦk [G1,r,G2,r, . . . ,Gn,r] =
n

∑
s=1

Gs,r ·∇ fsΦk [G1,r,G2,r, . . . ,Gn,r]−Φk [G1,r,G2,r, . . . ,Gn,r]

(8.8)

for k = 1,2, . . . ,n. Equation (8.8) forms a system of n coupled linear partial differential

equations. They are solved iteratively for f (l)1,r+1(η ,ζ ), f (l)2,r+1(η ,ζ ), . . . , f (l)n,r+1(η ,ζ ). Equation

(8.8) can further be expressed as:

n

∑
v=1

[
p

∑
s=0

α
(l,1)
v,s,r (η ,ζ ) f (s,l)v,r+1+β

(l,1)
v,r (η ,ζ )

∂ f (l)v,r+1

∂ζ
+γ

(l,1)
v,r (η ,ζ )

∂

∂ζ

(
∂ f (l)v,r+1

∂η

)]
= R(l)

1 (η ,ζ ),

n

∑
v=1

[
p

∑
s=0

α
(l,2)
v,s,r (η ,ζ ) f (s,l)v,r+1+β

(l,2)
v,r (η ,ζ )

∂ f (l)v,r+1

∂ζ
+γ

(l,2)
v,r (η ,ζ )

∂

∂ζ

(
∂ f (l)v,r+1

∂η

)]
= R(l)

2 (η ,ζ ),

n

∑
v=1

[
p

∑
s=0

α
(l,3)
v,s,r (η ,ζ ) f (s,l)v,r+1+β

(l,3)
v,r (η ,ζ )

∂ f (l)v,r+1

∂ζ
+γ

(l,3)
v,r (η ,ζ )

∂

∂ζ

(
∂ f (l)v,r+1

∂η

)]
= R(l)

3 (η ,ζ ),

...

n

∑
v=1

[
p

∑
s=0

α
(l,n)
v,s,r (η ,ζ ) f (s,l)v,r+1+β

(l,n)
v,r (η ,ζ )

∂ f (l)v,r+1

∂ζ
+γ

(l,n)
v,r (η ,ζ )

∂

∂ζ

(
∂ f (l)v,r+1

∂η

)]
= R(l)

n (η ,ζ ),

(8.9)

where α
(l,k)
n,p,r(η ,ζ ), β

(l,k)
v,r (η ,ζ ) and γ

(l,k)
v,r (η ,ζ ) are variable coefficients of f (p,l)

n,r+1,
∂ f (l)v,r+1

∂ζ
, and

∂

∂ζ

(
∂ f (l)v,r+1

∂η

)
, respectively in the lth sub-interval of the multi-domain approach. These variable

coefficients correspond to the kth equation, for k = 1,2, . . . ,n. The constant p denotes the order
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of differentiation. Thus, we have

α
(l,k)
n,p,r(η ,ζ ) =

∂Φk

∂ f (p,l)
n,r

, β
(l,k)
v,r (η ,ζ ) =

∂Φk

∂

(
∂ f (l)v,r
∂ζ

) , γ
(l,k)
v,r (η ,ζ ) =

∂Φk

∂

(
∂

∂ζ

(
∂ f (l)v,r
∂η

)) . (8.10)

Collocating equation (8.9) yields

n

∑
v=1

[
A(i,l)

1,v F(l)
v,i +βββ

(l,1)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,1)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

1,i,

n

∑
v=1

[
A(i,l)

2,v F(l)
v,i +βββ

(l,2)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,2)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

2,i,

n

∑
v=1

[
A(i,l)

3,v F(l)
v,i +βββ

(l,3)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,3)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

3,i,

...

n

∑
v=1

[
A(i,l)

n,v F(l)
v,i +βββ

(l,n)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,n)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

n,i,

(8.11)

where

A(i,l)
k,v =

p

∑
s=0

ααα
(l,k)
v,s,r D(s), (8.12)
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for k,v = 1,2, . . . ,n, and

ααα
(l,k)
v,s,r =




α
(l,k)
v,s,r (η0,ζ j)

α
(l,k)
v,s,r (η1,ζ j)

. . .

α
(l,k)
v,s,r (ηNη

,ζ j)



, (8.13)

βββ
(l,k)
v,r =




β
(l,k)
v,r (η0,ζ j)

β
(l,k)
v,r (η1,ζ j)

. . .

β
(l,k)
v,r (ηNη

,ζ j)



, (8.14)

γγγ
(l,k)
v,r =




γ
(l,k)
v,r (η0,ζ j)

γ
(l,k)
v,r (η1,ζ j)

. . .

γ
(l,k)
v,r (ηNη

,ζ j)



. (8.15)

Equation (8.11) is expressed in the following matrix form

BrΓr+1 = Rr (8.16)
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where the coefficient matrix Br is defined as




B(0,0)
1,1 B(0,0)

1,2 · · · B(0,0)
1,n B(0,1)

1,1 B(0,1)
1,2 · · · B(0,1)

1,n

. . . B(0,Nη )
1,1 B(0,Nη )

1,2 · · · B(0,Nη )
1,n

B(0,0)
2,1 B(0,0)

2,2 · · · B(0,0)
2,n B(0,1)

2,1 B(0,1)
2,2 · · · B(0,1)

2,n

. . . B(0,Nη )
2,1 B(0,Nη )

2,2 · · · B(0,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(0,0)
n,1 B(0,0)

n,2 · · · B(0,0)
n,n B(0,1)

n,1 B(0,1)
n,2 · · · B(0,1)

n,n
. . . B(0,Nη )

n,1 B(0,Nη )
n,2 · · · B(0,Nη )

n,n

B(1,0)
1,1 B(1,0)

1,2 · · · B(1,0)
1,n B(1,1)

1,1 B(1,1)
1,2 · · · B(1,1)

1,n

. . . B(1,Nη )
1,1 B(1,Nη )

1,2 · · · B(1,Nη )
1,n

B(1,0)
2,1 B(1,0)

2,2 · · · B(1,0)
2,n B(1,1)

2,1 B(1,1)
2,2 · · · B(1,1)

2,n

. . . B(1,Nη )
2,1 B(1,Nη )

2,2 · · · B(1,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(1,0)
n,1 B(1,0)

n,2 · · · B(1,0)
n,n B(1,1)

n,1 B(1,1)
n,2 · · · B(1,1)

n,n
. . . B(1,Nη )

n,1 B(1,Nη )
n,2 · · · B(1,Nη )

n,n

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

. . .
. . . · · · · · · · · · · · ·

. . .

B(Nη ,0)
1,1 B(Nη ,0)

1,2 · · · B(Nη ,0)
1,n B(Nη ,1)

1,1 B(Nη ,1)
1,2 · · · B(Nη ,1)

1,n

. . . B(Nη ,Nη )
1,1 B(Nη ,Nη )

1,2 · · · B(Nη ,Nη )
1,n

B(Nη ,0)
2,1 B(Nη ,0)

2,2 · · · B(Nη ,0)
2,n B(Nη ,1)

2,1 B(Nη ,1)
2,2 · · · B(Nη ,1)

2,n

. . . B(Nη ,Nη )
2,1 B(Nη ,Nη )

2,2 · · · B(Nη ,Nη )
2,n

...
... · · ·

...
...

... · · ·
...

. . .
...

... · · ·
...

B(Nη ,0)
n,1 B(Nη ,0)

n,2 · · · B(Nη ,0)
n,n B(Nη ,1)

n,1 B(Nη ,1)
n,2 · · · B(Nη ,1)

n,n
. . . B(Nη ,Nη )

n,1 B(Nη ,Nη )
n,2 · · · B(Nη ,Nη )

n,n




and the entries are defined as

B(i,i)
k,ℓ = Ai,l

v,k+βββ
(1,k)
v,r di,iI+γγγ

(1,k)
v,k di,iD, for v,k = 1,2, . . . ,n, l = 1,2, . . . , p, when i = j,

B(i, j)
k,ℓ = βββ

(1,k)
v,r di, jI+γγγ

(1,k)
v,k di, jD, for v,k = 1,2, . . . ,n, l = 1,2, . . . , p, when i ̸= j

(8.17)

The vectors Γr+1 and Rr are defined as

Γr+1 =
[
F(0)

1,r+1F(0)
2,r+1 · · ·F

(0)
n,r+1

∣∣∣F(1)
1,r+1F(1)

2,r+1 · · ·F
(1)
n,r+1

∣∣∣ · · · · · · · · · · · ·
∣∣∣F(Nζ )

1,r+1F(Nζ )

2,r+1 · · ·F
(Nζ )

n,r+1

]T
(8.18)

Rr =
[
R(0)

1,r R(0)
2,r R(0)

3,r · · ·R
(0)
n,r

∣∣∣R(1)
1,r R(1)

2,r R(1)
3,r · · ·R

(1)
n,r

∣∣∣ · · · · · · · · · · · ·
∣∣∣R(Nζ )

1,r R(Nζ )

2,r · · · R(Nζ )
n,r

]T
(8.19)

Multiplying equation (8.16) by the inverse of the matrix Br yields the solution to equation (8.1).

8.3 Multi-domain Bivariate Spectral Local Linearisation Method

In this section we introduce the multi-domain bivariate spectral local linearisation method

(MD-BSLLM) for approximating solutions of system of nonlinear partial differential equations
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that model non-similar boundary layer equations. Without loss of generality, we consider system

of n nonlinear partial differential equations of the form (8.1). Applying quasilinearisation

independently on each equation, we get

p

∑
s=0

α
(l,1)
s,r (η ,ζ ) f (s,l)1,r+1+β

(l,1)
r (η ,ζ )

∂ f (0,l)1,r+1

∂ζ
+γ

(l,1)
r (η ,ζ )

∂ f (1,l)1,r+1

∂ζ
= R(l)

1 (η ,ζ ),

p

∑
s=0

α
(l,2)
s,r (η ,ζ ) f (s,l)2,r+1+β

(l,2)
r (η ,ζ )

∂ f (0,l)2,r+1

∂ζ
+γ

(l,2)
r (η ,ζ )

∂ f (1,l)2,r+1

∂ζ
= R(l)

2 (η ,ζ ),

...

p

∑
s=0

α
(l,n)
s,r (η ,ζ ) f (s,l)n,r+1+β

(l,n)
r (η ,ζ )

∂ f (0,l)n,r+1

∂ζ
+γ

(l,n)
r (η ,ζ )

∂ f (1,l)n,r+1

∂ζ
= R(l)

n (η ,ζ ),

(8.20)

where α
(l,k)
s,r (η ,ζ ), β

(l,k)
r (η ,ζ ) and γ

(l,k)
r (η ,ζ ) are variable coefficients of f (s,l)k,r+1,

∂ f (0,l)k,r+1
∂ζ

, and
∂ f (1,l)k,r+1

∂ζ
, respectively in the lth sub-interval of the multi-domain approach, for k = 1,2, . . . ,n and

s = 0,1,2, . . . , p. These variable coefficients correspond to the kth equation, for k = 1,2, . . . ,n.

The constant p denotes the order of differentiation. Thus, we have

α
(l,k)
s,r (η ,ζ ) =

∂Φk

∂ f (s,l)k,r

, β
(l,k)
r (η ,ζ ) =

∂Φk

∂

(
∂ f (0,l)k,r

∂ζ

) , γ
(l,k)
r (η ,ζ ) =

∂Φk

∂

(
∂ f (1,l)k,r

∂ζ

) . (8.21)

In general, the kth right hand side is given by

R(l)
k (η ,ζ ) =

p

∑
s=0

α
(l,k)
s,r (η ,ζ ) f (s,l)k,r +β

(l,k)
r (η ,ζ )

∂ f (0,l)k,r

∂ζ
+γ

(l,k)
r (η ,ζ )

∂ f (1,l)k,r

∂ζ )
−Φk. (8.22)
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Applying collocation on equation (8.20), we obtain

A(l)
1,1F(l)

1,i+βββ
(l,1)
r

Nζ

∑
j=0

di, jF
(l)
1, j+γγγ

(l,1)
r

Nζ

∑
j=0

di, jDF(l)
1, j = R(l)

1,i,

A(l)
2,2F(l)

2,i+βββ
(l,2)
r

Nζ

∑
j=0

di, jF
(l)
2, j+γγγ

(l,2)
r

Nζ

∑
j=0

di, jDF(l)
2, j = R(l)

2,i,

...

A(l)
n,nF(l)

n,i+βββ
(l,n)
r

Nζ

∑
j=0

di, jF
(l)
n, j+γγγ

(l,n)
r

Nζ

∑
j=0

di, jDF(l)
n, j = R(l)

n,i,

(8.23)

where

A(l)
1,1 =

p

∑
s=0

ααα
(l,1)
s,r D(s), A(l)

2,2 =
p

∑
s=0

ααα
(l,2)
s,r D(s), . . . , A(l)

n,n =
p

∑
s=0

ααα
(l,n)
s,r D(s). (8.24)

The diagonal matrices of the corresponding variable coefficients are given by

ααα
(l,k)
s,r =




α
(l,k)
s,r (η0,ζ j)

α
(l,k)
s,r (η1,ζ j)

. . .

α
(l,k)
s,r (ηNη

,ζ j)



, (8.25)

βββ
(l,k)
r =




β
(l,k)
r (η0,ζ j)

β
(l,k)
r (η1,ζ j)

. . .

β
(l,k)
r (ηNη

,ζ j)



, (8.26)

γγγ
(l,k)
r =




γ
(l,k)
r (η0,ζ j)

γ
(l,k)
r (η1,ζ j)

. . .

γ
(l,k)
r (ηNη

,ζ j)



. (8.27)

Imposing boundary conditions for i = 0,1, · · · ,Nζ −1, each equation in (8.23) can be expressed

as the following Nζ (Nη+1)×Nζ (Nη+1) matrix system

150






B(l,k)
0,0 B(l,k)

0,1 · · · B(l,k)
0,Nζ−1

B(l,k)
1,0 B(l,k)

1,1 · · · B(l,k)
1,Nζ−1

...
... . . . ...

B(l,k)
Nζ−1,0 B(l,k)

Nζ−1,1 · · · B(l,k)
Nζ−1,Nζ−1







F(l)
k,0

F(l)
k,1
...

F(l)
k,Nζ−1



=




R
(l)
k,0

R
(l)
k,1
...

R
(l)
k,Nζ−1



, (8.28)

where

B(l,k)
(i,i) =

p

∑
s=0

ααα
(l,k)
s,r D(s)+βββ

(l,k)
r di,iI+γγγ

(l,k)
r di,iD, for k = 1,2, . . . ,n, l = 1,2, . . . ,z, when i = j,

B(l,k)
(i, j) = βββ

(l,k)
r di, jI+γγγ

(l,k)
r di, jD, for k = 1,2, . . . ,n, l = 1,2, . . . ,z, when i ̸= j.

(8.29)

The vector R
(l)
k,i is defined as

R
(l)
k,i = R(l)

k,i−
(

βββ
(l,k)
r di,Nζ

I+γγγ
(l,k)
r di,Nζ

D
)

F(l)
k,Nζ

for i = 0,1, · · · ,Nζ −1 and k = 1,2, . . . ,n. The vector F(l)
k,Nζ

corresponds to the initial boundary

condition which is always prescribed. Equation (8.28), is of the form

B(l,k)F(l)
k = R(l)

k (8.30)

for k = 1,2,3, . . . ,n. Multiplying equation (8.30) by the inverse of B(l,k) yields the solution of

equations (8.1).

8.4 Numerical Experiments

In this section, we present systems of equation for various fluid flow models considered in this

study. The MD-BSLLM and MD-BSQLM algorithms are applied to each system of equations

as a numerical experiment.

Steady free convection flow past a non-isothermal vertical porous cone

In this subsection, we consider the problem of steady two-dimensional laminar free convection

flow past a non-isothermal vertical porous cone with variable surface temperature is also
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considered for numerical experimentation. The governing non-similarity system of partial

differential equations are expressed in dimensionless form as (see Hossain et. al. [156] for

derivation)

f ′′′+
n+7

4
f f ′′− n+1

2
f ′2+θ+ζ f ′′ =

1−n
4

ζ

(
f ′

∂ f ′

∂ζ
− f ′′

∂ f
∂ζ

)
, (8.31)

1
Pr

θ
′′+

n+7
4

f θ
′−n f ′θ+ζ θ

′ =
1−n

4
ζ

(
f ′

∂θ

∂ζ
−θ

′ ∂ f
∂ζ

)
, (8.32)

where Pr = ν/α is the Prandtl number, ζ is the dimensionless suction parameter, θ(η ,ζ ) and

f (η ,ζ ) are the dimensionless temperature and stream functions respectively. The appropriate

corresponding boundary conditions are;

f (ζ ,0) = 0, f ′(ζ ,0) = 0, θ(ζ ,0) = 1, f ′(ζ ,∞) = 0, θ(ζ ,∞) = 0. (8.33)

The skin friction coefficient C f x and the Nusselt number Nux describe the shear-stress and heat

flux rate at the surface, respectively, and are defined by [156] as:

C f xGr1/4
x = f ′′(ζ ,0),

Nux

Gr1/4
x

=−θ
′(ζ ,0). (8.34)

In this case, the order of differentiation p = 3 and the number of system of equations n = 2. For

the MD-BSLLM, we have

A(l)
1,1F(l)

1,i+βββ
(l,1)
r

Nζ

∑
j=0

di, jF
(l)
1, j+γγγ

(l,1)
r

Nζ

∑
j=0

di, jDF(l)
1, j = Rl

1,i,

A(l)
2,2F(l)

2,i+βββ
(l,2)
r

Nζ

∑
j=0

di, jF
(l)
2, j+γγγ

(l,2)
r

Nζ

∑
j=0

di, jDF(l)
2, j = Rl

2,i,

(8.35)

where

A(l)
1,1 =

3

∑
s=0

ααα
(l,1)
s,r D(s) =ααα

(l,1)
3,r D(3)+ααα

(l,1)
2,r D(2)+ααα

(l,1)
1,r D(1)+ααα

(l,1)
0,r , (8.36)

A(l)
2,2 =

3

∑
s=0

ααα
(l,2)
s,r D(s) =ααα

(l,2)
3,r D(3)+ααα

(l,2)
2,r D(2)+ααα

(l,2)
1,r D(1)+ααα

(l,2)
0,r . (8.37)
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If we let f (η ,ζ ) = f1(η ,ζ ) and θ(η ,ζ ) = f2(η ,ζ ), then equations (8.31) and (8.32) can be

expressed as

Φ1 = f (3,l)1,r +
n+7

4
f (0,l)1,r f (2,l)1,r − n+1

2

(
f (1,l)1,r

)2
+ f (0,l)2,r +ζ f (2,l)1,r (8.38)

− 1−n
4

ζ

(
f (1,l)1,r

∂ f (1,l)1,r

∂ζ
− f (2,l)1,r

∂ f (0,l)1,r

∂ζ

)
,

Φ2 =
1

Pr
f (2,l)2,r +

n+7
4

f (0,l)1,r f (1,l)2,r −n f (1,l)1,r f (0,l)2,r +ζ f (1,l)2,r − 1−n
4

ζ

(
f (1,l)1,r

∂ f (0,l)2,r

∂ζ
− f (1,l)2,r

∂ f (0,l)1,r

∂ζ

)
. (8.39)

The variable coefficients in (8.36) are given by,

α
(l,1)
3,r (η ,ζ ) =

∂Φ1

∂ f (3,l)1,r

= 1, α
(l,1)
2,r (η ,ζ ) =

∂Φ1

∂ f (2,l)1,r

=
1
4
(n+7) f (1,l)1,r +ζ ,

α
(l,1)
1,r (η ,ζ ) =

∂Φ1

∂ f (1,l)1,r

=−(n+1) f (1,l)1,r , α
(l,1)
0,r (η ,ζ ) =

∂Φ1

∂ f (0,l)1,r

=
1
4
(n+7) f (2,l)1,r ,

β
(l,1)
r (η ,ζ ) =

∂Φ1

∂

(
∂ f (0,l)1,r

∂ζ

) =
1
4
(1−n)ζ f (2,l)1,r , γ

(l,1)
r (η ,ζ ) =

∂Φ1

∂

(
∂ f (1,l)1,r

∂ζ

) =−1
4
(1−n)ζ f (1,l)1,r .

and the variable coefficients for (8.37) are given by,

γ
(l,2)
r (η ,ζ ) =

∂Φ2

∂

(
∂ f (1,l)2,r

∂ζ

) = 0, α
(l,2)
3,r (η ,ζ ) =

∂Φ2

∂ f (3,l)2,r

= 0, α
(l,2)
2,r (η ,ζ ) =

∂Φ2

∂ f (2,l)2,r

=
1

Pr
,

α
(l,2)
1,r (η ,ζ ) =

∂Φ2

∂ f (1,l)2,r

=
1
4
(n+7) f (0,l)1,r +ζ+

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
, α

(l,2)
0,r (η ,ζ ) =

∂Φ2

∂ f (0,l)2,r

=−n f (1,l)1,r ,

β
(l,2)
r (η ,ζ ) =

∂Φ2

∂

(
∂ f (0,l)2,r

∂ζ

) =−1
4
(1−n)ζ f (1,l)1,r .

Equation (8.35) can be expressed as the following Nζ (Nη+1)×Nζ (Nη+1) matrix system
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


B(l,1)
0,0 B(l,1)

0,1 · · · B(l,1)
0,Nζ−1

B(l,1)
1,0 B(l,1)

1,1 · · · B(l,1)
1,Nζ−1

...
... . . . ...

B(l,1)
Nζ−1,0 B(l,1)

Nζ−1,1 · · · B(l,1)
Nζ−1,Nζ−1







F(l)
1,0

F(l)
1,1
...

F(l)
1,Nζ−1



=




R
(l)
1,0

R
(l)
1,1
...

R
(l)
1,Nζ−1



, (8.40)




B(l,2)
0,0 B(l,2)

0,1 · · · B(l,2)
0,Nζ−1

B(l,2)
1,0 B(l,2)

1,1 · · · B(l,2)
1,Nζ−1

...
... . . . ...

B(l,2)
Nζ−1,0 B(l,2)

Nζ−1,1 · · · B(l,2)
Nζ−1,Nζ−1







F(l)
2,0

F(l)
2,1
...

F(l)
2,Nζ−1



=




R
(l)
2,0

R
(l)
2,1
...

R
(l)
2,Nζ−1



, (8.41)

where

B(l,1)
(i,i) =

3

∑
s=0

ααα
(l,1)
s,r D(s)+βββ

(l,1)
r di,iI+γγγ

(l,1)
r di,iD, for l = 1,2, . . . ,z when i = j,

B(l,1)
(i, j) = βββ

(l,1)
r di, jI+γγγ

(l,1)
r di, jD, for, l = 1,2, . . . ,z when i ̸= j,

(8.42)

B(l,2)
(i,i) =

3

∑
s=0

ααα
(l,2)
s,r D(s)+βββ

(l,2)
r di,iI+γγγ

(l,2)
r di,iD, for l = 1,2, . . . ,z when i = j,

B(l,2)
(i, j) = βββ

(l,2)
r di, jI+γγγ

(l,2)
r di, jD, for, l = 1,2, . . . ,z when i ̸= j.

(8.43)

The vectors R
(l)
1,i and R

(l)
2,i are defined as

R
(l)
1,i = Rl

1,i−
(

βββ
(l,1)
r di,Nζ

I+γγγ
(l,1)
r di,Nζ

D
)

F(l)
1,Nζ

,

R
(l)
2,i = Rl

2,i−
(

βββ
(l,2)
r di,Nζ

I+γγγ
(l,2)
r di,Nζ

D
)

F(l)
2,Nζ

.

for i = 0,1, · · · ,Nζ −1. Equations (8.42) and (8.43) are then solved iteratively for F(l)
k,v for

k = 1,2 and v = 0,1,2, . . . ,Nζ −1. For the MD-BSQLM, we have

2

∑
v=1

[
A(i,l)

1,v F(l)
v,i +βββ

(l,1)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,1)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

1,i, (8.44)

2

∑
v=1

[
A(i,l)

2,v F(l)
v,i +βββ

(l,2)
v,r

Nζ

∑
j=0

di, jF
(l)
v, j+γγγ

(l,2)
v,r

Nζ

∑
j=0

di, jDF(l)
v, j

]
= R(l)

2,i (8.45)

154



where

A(i,l)
1,1 =

3

∑
s=0

ααα
(l,1)
1,s,rD(s) =ααα

(l,1)
1,3,rD

(3)+ααα
(l,1)
1,2,rD

(2)+ααα
(l,1)
1,1,rD

(1)+ααα
(l,1)
1,0,rI,

A(i,l)
1,2 =

3

∑
s=0

ααα
(l,1)
2,s,rD(s) =ααα

(l,1)
2,3,rD

(3)+ααα
(l,1)
2,2,rD

(2)+ααα
(l,1)
2,1,rD

(1)+ααα
(l,1)
2,0,rI,

(8.46)

A(i,l)
2,1 =

3

∑
s=0

ααα
(l,2)
1,s,rD(s) =ααα

(l,2)
1,3,rD

(3)+ααα
(l,2)
1,2,rD

(2)+ααα
(l,2)
1,1,rD

(1)+ααα
(l,2)
1,0,rI,

A(i,l)
2,2 =

3

∑
s=0

ααα
(l,2)
2,s,rD(s) =ααα

(l,2)
2,3,rD

(3)+ααα
(l,2)
2,2,rD

(2)+ααα
(l,2)
2,1,rD

(1)+ααα
(l,2)
2,0,rI.

(8.47)

The variable coefficients for equation (8.46) are given by,

α
(l,1)
1,3,r =

∂Φ1

∂ f (3,l)1,r

= 1, α
(l,1)
1,2,r =

∂Φ1

∂ f (2,l)1,r

= ζ+
1
4
(n+7) f (0,l)1,r +

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
,

α
(l,1)
1,1,r =

∂Φ1

∂ f (1,l)1,r

=−(n+1) f (1,l)1,r − 1
4
(1−n)ζ

∂ f (1,l)1,r

∂ζ
, α

(l,1)
1,0,r =

∂Φ1

∂ f (0,l)1,r

=
1
4
(n+7) f (2,l)1,r ,

α
(l,1)
2,3,r =

∂Φ1

∂ f (3,l)2,r

= 0, α
(l,1)
2,2,r =

∂Φ1

∂ f (2,l)2,r

= 0, α
(l,1)
2,1,r =

∂Φ1

∂ f (1,l)2,r

= 0, α
(l,1)
2,0,r =

∂Φ1

∂ f (0,l)2,r

= 1.

The variable coefficients for equation (8.47) are given by,

α
(l,2)
1,3,r =

∂Φ2

∂ f (3,l)1,r

= 0, α
(l,2)
1,2,r =

∂Φ2

∂ f (2,l)1,r

= 0, α
(l,2)
1,1,r =

∂Φ2

∂ f (1,l)1,r

=−n f (0,l)2,r − 1
4
(1−n)ζ

∂ f (0,l)2,r

∂ζ
,

α
(l,2)
1,0,r =

∂Φ2

∂ f (0,l)1,r

=
1
4
(n+7) f (1,l)2,r , α

(l,2)
2,3,r =

∂Φ2

∂ f (3,l)2,r

= 0, α
(l,2)
2,2,r =

∂Φ2

∂ f (2,l)2,r

=
1

Pr
,

α
(l,2)
2,1,r =

∂Φ2

∂ f (1,l)2,r

=
1
4
(n+7) f (0,l)1,r +

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
α
(l,2)
2,0,r =

∂Φ2

∂ f (0,l)2,r

=−n f (1,l)1,r .

These matrices in conjunction with equation (8.16), are used to solve equations (8.31) and

equation (8.32).
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Steady free convective flow of a viscous incompressible fluid along a per-

meable vertical flat plate

A two-dimensional steady free convective flow of a viscous incompressible fluid along a

permeable vertical flat plate in the presence of soluble species is being considered in this

subsection. The problem considered here is that of a natural convection boundary layer flow,

influenced by the combined buoyancy forces from mass and thermal diffusion from a permeable

vertical flat surface with non-uniform surface temperature and non-uniform surface species

concentration, but with a uniform rate of suction of fluid through the permeable surface. The

transformed boundary layer equations are solved numerically near to and far from the leading

edge, using the multi-domain bivariate spectral collocation method. The equations were solved

by Hussain [157] and are;

f ′′′+
1
4
(n+3) f f ′′− 1

2
(n+1) f ′2+ζ f ′′+(1−w)g+wh =

1
4
(1−n)ζ

[
f ′

∂ f ′

∂ζ
− f ′′

∂ f
∂ζ

]
(8.48)

1
Pr

g′′+
1
4
(n+3) f g′+ζ g′ =

1
4
(1−n)ζ

[
f ′

∂g
∂ζ

−g′
∂ f
∂ζ

]
(8.49)

1
Sc

h′′+
1
4
(n+3) f h′+ζ h′ =

1
4
(1−n)ζ

[
f ′

∂h
∂ζ

−h′
∂ f
∂ζ

]
(8.50)

The appropriate boundary conditions are given by

f (ζ ,0) = 0, f ′(ζ ,0) = 0, g(ζ ,0) = h(ζ ,0) = 1, (8.51)

f ′(ζ ,∞) = g(ζ ,∞) = h(ζ ,∞) = 0.

In this case, the order of differentiation p = 3 and the number of system of equations n = 3. For

the MD-BSLLM, we have

A(l)
1,1F(l)

1,i+βββ
(l,1)
r

Nζ

∑
j=0

di, jF
(l)
1, j+γγγ

(l,1)
r

Nζ

∑
j=0

di, jDF(l)
1, j = Rl

1,i, (8.52)

A(l)
2,2F(l)

2,i+βββ
(l,2)
r

Nζ

∑
j=0

di, jF
(l)
2, j+γγγ

(l,2)
r

Nζ

∑
j=0

di, jDF(l)
2, j = Rl

2,i, (8.53)
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A(l)
3,3F(l)

3,i+βββ
(l,3)
r

Nζ

∑
j=0

di, jF
(l)
3, j+γγγ

(l,3)
r

Nζ

∑
j=0

di, jDF(l)
3, j = Rl

3,i, (8.54)

where

A(l)
1,1 =

3

∑
s=0

ααα
(l,1)
s,r D(s) =ααα

(l,1)
3,r D(3)+ααα

(l,1)
2,r D(2)+ααα

(l,1)
1,r D(1)+ααα

(l,1)
0,r , (8.55)

A(l)
2,2 =

3

∑
s=0

ααα
(l,2)
s,r D(s) =ααα

(l,2)
3,r D(3)+ααα

(l,2)
2,r D(2)+ααα

(l,2)
1,r D(1)+ααα

(l,2)
0,r , (8.56)

A(l)
3,3 =

3

∑
s=0

ααα
(l,3)
s,r D(s) =ααα

(l,3)
3,r D(3)+ααα

(l,3)
2,r D(2)+ααα

(l,3)
1,r D(1)+ααα

(l,3)
0,r . (8.57)

The system of equations is in terms of the functions, f (η ,ζ ), g(η ,ζ ) and h(η ,ζ ) and in order to

apply our method, we set f (η ,ζ ) = f1(η ,ζ ), g(η ,ζ ) = f2(η ,ζ ) and h(η ,ζ ) = f3(η ,ζ ). This

leads to

Φ1 = f (3,l)1,r +
1
4
(n+3) f (0,l)1,r f (2,l)1,r − 1

2
(n+1)

(
f (1,l)1,r

)2
+ζ f (2,l)1,r +(1−w) f (0,l)2,r +w f (0,l)3,r

− 1
4
(1−n)ζ

[
f (1,l)1,r

∂ f (1,l)1,r

∂ζ
− f (2,l)1,r

∂ f (0,l)1,r

∂ζ

]
(8.58)

Φ2 =
1

Pr
f (2,l)2,r +

1
4
(n+3) f (0,l)1,r f (1,l)2,r +ζ f (1,l)2,r − 1

4
(1−n)ζ

[
f (1,l)1,r

∂ f (0,l)2,r

∂ζ
− f (1,l)2,r

∂ f (0,l)1,r

∂ζ

]
(8.59)

Φ3 =
1
Sc

f (2,l)3,r +
1
4
(n+3) f (0,l)1,r f (1,l)3,r +ζ f (1,l)3,r − 1

4
(1−n)ζ

[
f (1,l)1,r

∂ f (0,l)3,r

∂ζ
− f (1,l)3,r

∂ f (0,l)1,r

∂ζ

]
(8.60)

The variable coefficients for (8.55) are given by,

α
(l,1)
3,r (η ,ζ ) =

∂Φ1

∂ f (3,l)1,r

= 1, α
(l,1)
2,r (η ,ζ ) =

∂Φ1

∂ f (2,l)1,r

=
1
4
(n+3) f (0,l)1,r +ζ+

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
,

α
(l,1)
1,r (η ,ζ ) =

∂Φ1

∂ f (1,l)1,r

=−(n+1) f (1,l)1,r − 1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
, α

(l,1)
0,r (η ,ζ ) =

∂Φ1

∂ f (0,l)1,r

=
1
4
(n+3) f (2,l)1,r ,

β
(l,1)
r (η ,ζ ) =

∂Φ1

∂

(
∂ f (0,l)1,r

∂ζ

) =
1
4
(1−n)ζ f (2,l)1,r , γ

(l,1)
r (η ,ζ ) =

∂Φ1

∂

(
∂ f (1,l)1,r

∂ζ

) =−1
4
(1−n)ζ f (1,l)1,r .

for (8.56) are given by,
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γ
(l,2)
r (η ,ζ ) =

∂Φ2

∂

(
∂ f (1,l)2,r

∂ζ

) = 0, α
(l,2)
3,r (η ,ζ ) =

∂Φ2

∂ f (3,l)2,r

= 0, α
(l,2)
2,r (η ,ζ ) =

∂Φ2

∂ f (2,l)2,r

=
1

Pr
,

α
(l,2)
1,r (η ,ζ ) =

∂Φ2

∂ f (1,l)2,r

=
1
4
(n+3) f (0,l)1,r +ζ+

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
, α

(l,2)
0,r (η ,ζ ) =

∂Φ2

∂ f (0,l)2,r

= 0,

β
(l,2)
r (η ,ζ ) =

∂Φ2

∂

(
∂ f (0,l)2,r

∂ζ

) =−1
4
(1−n)ζ f (1,l)1,r .

and for equation (8.57) are given by,

γ
(l,3)
r (η ,ζ ) =

∂Φ3

∂

(
∂ f (1,l)3,r

∂ζ

) = 0, α
(l,3)
3,r (η ,ζ ) =

∂Φ3

∂ f (3,l)3,r

= 0, α
(l,3)
2,r (η ,ζ ) =

∂Φ3

∂ f (2,l)3,r

=
1
Sc

,

α
(l,3)
1,r (η ,ζ ) =

∂Φ3

∂ f (1,l)3,r

=
1
4
(n+3) f (0,l)1,r +ζ+

1
4
(1−n)ζ

∂ f (0,l)1,r

∂ζ
, α

(l,3)
0,r (η ,ζ ) =

∂Φ3

∂ f (0,l)3,r

= 0,

β
(l,3)
r (η ,ζ ) =

∂Φ3

∂

(
∂ f (0,l)3,r

∂ζ

) =−1
4
(1−n)ζ f (1,l)1,r .

Equations (8.52), (8.53) and (8.54) can be expressed respectively as the following Nζ (Nη+1)×
Nζ (Nη+1) matrix system




B(l,1)
0,0 B(l,1)

0,1 · · · B(l,1)
0,Nζ−1

B(l,1)
1,0 B(l,1)

1,1 · · · B(l,1)
1,Nζ−1

...
... . . . ...

B(l,1)
Nζ−1,0 B(l,1)

Nζ−1,1 · · · B(l,1)
Nζ−1,Nζ−1







F(l)
1,0

F(l)
1,1
...

F(l)
1,Nζ−1



=




R
(l)
1,0

R
(l)
1,1
...

R
(l)
1,Nζ−1



, (8.61)




B(l,2)
0,0 B(l,2)

0,1 · · · B(l,2)
0,Nζ−1

B(l,2)
1,0 B(l,2)

1,1 · · · B(l,2)
1,Nζ−1

...
... . . . ...

B(l,2)
Nζ−1,0 B(l,2)

Nζ−1,1 · · · B(l,2)
Nζ−1,Nζ−1







F(l)
2,0

F(l)
2,1
...

F(l)
2,Nζ−1



=




R
(l)
2,0

R
(l)
2,1
...

R
(l)
2,Nζ−1



, (8.62)
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


B(l,3)
0,0 B(l,3)

0,1 · · · B(l,3)
0,Nζ−1

B(l,3)
1,0 B(l,3)

1,1 · · · B(l,3)
1,Nζ−1

...
... . . . ...

B(l,3)
Nζ−1,0 B(l,3)

Nζ−1,1 · · · B(l,3)
Nζ−1,Nζ−1







F(l)
3,0

F(l)
3,1
...

F(l)
3,Nζ−1



=




R
(l)
3,0

R
(l)
3,1
...

R
(l)
3,Nζ−1



, (8.63)

where

B(l,1)
(i,i) =

3

∑
s=0

ααα
(l,1)
s,r D(s)+βββ

(l,1)
r di,iI+γγγ

(l,1)
r di,iD, for l = 1,2, . . . ,z when i = j,

B(l,1)
(i, j) = βββ

(l,1)
r di, jI+γγγ

(l,1)
r di, jD, for, l = 1,2, . . . ,z when i ̸= j,

(8.64)

B(l,2)
(i,i) =

3

∑
s=0

ααα
(l,2)
s,r D(s)+βββ

(l,2)
r di,iI+γγγ

(l,2)
r di,iD, for l = 1,2, . . . ,z when i = j,

B(l,2)
(i, j) = βββ

(l,2)
r di, jI+γγγ

(l,2)
r di, jD, for, l = 1,2, . . . ,z when i ̸= j,

(8.65)

B(l,3)
(i,i) =

3

∑
s=0

ααα
(l,3)
s,r D(s)+βββ

(l,3)
r di,iI+γγγ

(l,3)
r di,iD, for l = 1,2, . . . ,z when i = j,

B(l,3)
(i, j) = βββ

(l,3)
r di, jI+γγγ

(l,3)
r di, jD, for, l = 1,2, . . . ,z when i ̸= j.

(8.66)

The vectors R
(l)
1,i , R

(l)
2,i and R

(l)
3,i are defined as

R
(l)
1,i = Rl

1,i−
(

βββ
(l,1)
r di,Nζ

I+γγγ
(l,1)
r di,Nζ

D
)

F(l)
1,Nζ

,

R
(l)
2,i = Rl

2,i−
(

βββ
(l,2)
r di,Nζ

I+γγγ
(l,2)
r di,Nζ

D
)

F(l)
2,Nζ

,

R
(l)
3,i = Rl

3,i−
(

βββ
(l,3)
r di,Nζ

I+γγγ
(l,3)
r di,Nζ

D
)

F(l)
3,Nζ

.

for i = 0,1, · · · ,Nζ −1. For the MD-BSQLM, the procedure is similar to that in the previous

example.
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8.5 Series solution for the limiting case

In this section, we solve the systems of equations presented above using the series solution

approach. These series solutions for the limiting case when ζ is very large are used to validate the

results obtained using the multi-domain bivariate spectral local linearization method. Equations

of the form (8.31 - 8.32) and (8.48 - 8.50) can be decomposed to a sequence of coupled linear

ordinary differential equations when ζ → ∞. The solutions of the resulting systems of equations

can be determined using elementary methods for solving differential equations.

Consider the series solution of equations (8.31) - (8.32). For large values of ζ , the dominant

terms in equations (8.31) are f ′′′ and ζ f ′′. Balancing the orders of magnitude of these terms

gives η = O(ζ−1). Since θ(0) = 1, we may infer that θ(η ,ζ ) is of O(1) as ζ → ∞. Assuming

that f ′′′ has the same order as θ for large ζ , then f = O(ζ−3). Thus for large values of ζ , we

define the following transformations;

η̄ = ζ η , f = ζ
−3F(η̄ ,ζ ), θ = Θ(η̄ ,ζ ). (8.67)

The transformation equations (8.67) reduces equations (8.31) - (8.32) to

F ′′′+F ′′+Θ+(1+n)ζ−4FF ′′−nζ
−4F ′2 =

1−n
4

ζ
−3
[

F ′∂F ′

∂ζ
−F ′′∂F

∂ζ

]
, (8.68)

1
Pr

Θ
′′+Θ

′+(1+n)ζ−4FΘ
′−nζ

−4F ′
Θ =

1−n
4

ζ
−3
[

F ′∂Θ

∂ζ
−Θ

′∂F
∂ζ

]
, (8.69)

where the primes now denote derivatives with respect to η̄ . The corresponding boundary

conditions are given by

F(ζ ,0) = F ′(ζ ,0) = 0, Θ(ζ ,0) = 1, F ′(ζ ,∞) = Θ(ζ ,∞) = 0. (8.70)

Using the fact that ζ is large, we therefore seek solutions to equations (8.68) - (8.69) in series

form as

F(ζ , η̄) =
∞

∑
k=0

ζ
−4kFk(η̄), Θ(ζ , η̄) =

∞

∑
k=0

ζ
−4k

Θk(η̄). (8.71)
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Substituting equations (8.71) into equations (8.68) - (8.70) and then equating the coefficients of

like powers of ζ , we obtain the equations for k = 0 as;

F ′′′
0 +F ′′

0 +Θ0 = 0, (8.72)
1

Pr
Θ
′′
0+Θ

′
0 = 0, (8.73)

subject to the following boundary conditions

F0(0) = F ′
0(0) = 0, Θ0(0) = 1, F ′

0(∞) = Θ0(∞) = 0. (8.74)

The analytical solutions of the zeroth order equations (8.72) - (8.74) are;

F0(η̄) =
e−Prη̄

(Pr−1)Pr2 −
1

(Pr−1)Pr2 −
e−η̄

(Pr−1)Pr
+

1
(Pr−1)Pr

, (8.75)

Θ0(η̄) = e−Prη̄ . (8.76)

The following theorems simplify the multiplication of two infinite series and two power series

together.

Theorem 8.1. (Cauchy product of two infinite series) Consider two infinite series
∞

∑
n=0

an and

∞

∑
n=0

bn. Then whenever both of these infinite series are convergent, we have

(
∞

∑
i=0

ai

)(
∞

∑
j=0

b j

)
=

∞

∑
k=0

(
k

∑
l=0

albk−l

)
. (8.77)

Theorem 8.2. (Cauchy product of two power series) Consider two power series
∞

∑
n=0

anζ
n and

∞

∑
n=0

bnζ
n. Then whenever both of these power series are convergent, we have

(
∞

∑
i=0

aiζ
i

)(
∞

∑
j=0

b jζ
j

)
=

∞

∑
k=0

[(
k

∑
l=0

albk−l

)
ζ

k

]
. (8.78)
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Thus, for k ≥ 1, we sequentially solve the following system of ordinary differential equa-

tions;

F ′′′
k +F ′′

k +Θk = n
k−1

∑
i=0

F ′
k−1−iF

′
i −(1+n)

k−1

∑
i=0

Fk−1−iF ′′
i +(1−n)

[
k−1

∑
i=0

i
(
F ′′

k−1−iFi−F ′
k−1−iF

′
i
)
]
, (8.79)

1
Pr

Θ
′′
k +Θ

′
k = n

k−1

∑
i=0

F ′
k−1−iΘi−(1+n)

k−1

∑
i=0

Fk−1−iΘ
′
i+(1−n)

[
k−1

∑
i=0

i
(
Θ

′
k−1−iFi−F ′

k−1−iΘi
)
]
, (8.80)

subject to the following boundary conditions

Fk(0) = F ′
k(0) = 0, Θk(0) = 0, F ′

k(∞) = Θk(∞) = 0. (8.81)

We now consider the series solution of equations (8.48) - (8.50). For large values of ζ , the

dominant terms in equation (8.48) are f ′′′ and ζ f ′′. Balancing terms in equations (8.48) - (8.50),

for ζ → ∞, we get

η = O(ζ−1), f = O(ζ−3), g = O(1), h = O(1). (8.82)

This leads to the following transformations

f = ζ
−3F(η ,ζ ), η̄ = ζ η , g = G(η ,ζ ), h = H(η ,ζ ). (8.83)

Using the transformations (8.82) - (8.83) in (8.48) - (8.50), we obtain

F ′′′+F ′′+(1−w)G+wH+nζ
−4 (FF ′′−F ′2)= 1−n

4
ζ
−3
[

F ′∂F ′

∂ζ
−F ′′∂F

∂ζ

]
, (8.84)

1
Pr

G′′+G′+nζ
−4FG′ =

1−n
4

ζ
−3
[

F ′∂G
∂ζ

−G′∂F
∂ζ

]
, (8.85)

1
Sc

H ′′+H ′+nζ
−4FH ′ =

1−n
4

ζ
−3
[

F ′∂H
∂ζ

−H ′∂F
∂ζ

]
. (8.86)

The corresponding boundary conditions are given by

F(ζ ,0) = F ′(ζ ,0) = 0, G(ζ ,0) = 1, H(ζ ,0) = 1, F ′(ζ ,∞) = G(ζ ,∞) = H(ζ ,∞) = 0.

(8.87)
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For large ζ , we seek solutions to equations (8.84) - (8.87) in series form as

F(ζ , η̄) =
∞

∑
k=0

ζ
−4kFk(η̄), G(ζ , η̄) =

∞

∑
k=0

ζ
−4kGk(η̄), H(ζ , η̄) =

∞

∑
k=0

ζ
−4kHk(η̄). (8.88)

Substituting equations (8.88) into equations (8.84) - (8.87) and then equating the coefficients of

like powers of ζ , we obtain the equations for k = 0 as

F ′′′
0 +F ′′

0 +(1−w)G0+wH0 = 0, (8.89)

1
Pr

G′′
0+G′

0 = 0, (8.90)

1
Sc

H ′′
0 +H ′

0 = 0, (8.91)

subject to the following boundary conditions

F0(0) = F ′
0(0) = 0, G0(0) = 1, H0(0) = 1, F ′

0(∞) = G0(∞) = H0(∞) = 0. (8.92)

The sequence of equations obtained when k ≥ 1 are given as

F ′′′
k +F ′′

k +(1−w)Gk+wHk = n
k−1

∑
i=0

(
F ′

k−1−iF
′

i −Fk−1−iF ′′
i
)
+(1−n)

[
k−1

∑
i=0

i
(
F ′′

k−1−iFi−F ′
k−1−iF

′
i
)
]
,

1
Pr

G′′
k +G′

k =−n
k−1

∑
i=0

Fk−1−iG′
i+(1−n)

[
k−1

∑
i=0

i
(
G′

k−1−iFi−F ′
k−1−iGi

)
]
,

1
Sc

H ′′
k +H ′

k =−n
k−1

∑
i=0

Fk−1−iH ′
i +(1−n)

[
k−1

∑
i=0

i
(
H ′

k−1−iFi−F ′
k−1−iHi

)
]
,

(8.93)

subject to the following boundary conditions

Fk(0) = F ′
k(0) = 0, Gk(0) = 1, Hk(0) = 1, F ′

k(∞) = Gk(∞) = Hk(∞) = 0. (8.94)

8.6 Results and Discussion

In this section, we present and analyze the results obtained using the multi-domain bivariate

spectral local linearisation method (MD-BSLLM), multi-domain bivariate spectral quasilineari-

sation method (MD-BSQLM) and the series solution. The MD-BSLLM and MD-BSQLM were
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implemented using MATLAB 2013b. The series solutions were obtained using Mathematica’s

NDSolve. The parameters to generate all the solutions are given in captions for the tables

and graphs. In this work, the physical quantities of interest in the field of fluid dynamics, the

skin friction, Sherwood number and Nusselt number are presented. These physical quantities

were obtained using all methods presented here. We present the values of these quantities for

different large values of ζ . The values of these quantities are in excellent agreement for all the

methods presented in this work. This in turn implies that the new approaches (MD-BSLLM,

MD-BSQLM) presented here can be used to solve other non-similar boundary layer partial

differential equations. The effect of number of intervals in the solution is also presented in this

section. Graphs showing the velocity profiles, temperature profiles and concentration profiles

are also presented for various large values of ζ . These profiles are in excellent agreement with

the results presented by Hussain [157].

We first present the solutions of equations (8.31) and (8.32). The physical quantities, skin

friction and the Nusselt number results obtained by solving the governing equations (8.31) -

(8.32) are given in Table 8.1. These results were obtained directly by solving the sequences

of ordinary differential equations, for the large ζ limiting case, using Mathematica’s DSolve

command. The series solutions, MD-BSQLM and the MD-BSLLM solutions are accurate up to

at least eight decimal digits as indicated in Table 8.1. Both solutions are in excellent agreement

and thus validating the accuracy of the MD-BSQLM and MD-BSLLM methods. We observe

that an increase in ζ results in a decrease in both the skin friction and the Nusselt number. It is

remarkable that this numerical methods were able to produce accurate results for large values of

ζ with minimum number of grid points. These results were obtained using Nζ = 5, Nη = 60

and converged after five iterations.
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Table 8.1 Comparison of the MD-BSLLM solution, MD-BSQLM solution, and the series
solution for f ′′(0,ζ ) and θ ′(0,ζ ), with Pr = 0.7, n = 1/2 and q = 40.

Multi-Domain BSLLM Multi-Domain BSQLM Series Solution

ζ f ′′(0,ζ ) θ ′(0,ζ ) f ′′(0,ζ ) θ ′(0,ζ ) f ′′(0,ζ ) θ ′(0,ζ )

5 0.2842719 -3.5066677 0.2842719 -3.5066677 0.2842719 -3.5066677

10 0.1428115 -7.0008399 0.1428115 -7.0008399 0.1428115 -7.0008399

15 0.0952321 -10.5002490 0.0952321 -10.5002490 0.09523208 -10.5002490

20 0.0714271 -14.0001050 0.0714271 -14.0001050 0.07142714 -14.0001050

25 0.0571424 -17.5000538 0.0571424 -17.5000538 0.05714239 -17.5000538

30 0.0476189 -21.0000311 0.0476189 -21.0000311 0.04761886 -21.0000311

35 0.0408162 -24.5000196 0.0408162 -24.5000196 0.04081624 -24.5000196

40 0.0357142 -28.0000131 0.0357142 -28.0000131 0.03571424 -28.0000131
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Fig. 8.1 Velocity profiles at different values of ζ with Pr = 0.7, n = 1/2 and p = 40.

Figure 8.1 shows the velocity profiles for different values of ζ . An increase in ζ leads to

a decrease in the velocity. The velocity profile is parabolic is in excellent agreement with that

obtained by Hussain [157], thus the MD-BSLLM and MD-BSLLM methods can be used as

numerical method for solving large parameter partial differential equations. The MD-BSLLM

and MD-BSLLM methods produce similar results and hence validating the accuracy of each

other.
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Fig. 8.2 Temperature profiles at different values of ζ with Pr = 0.7, n = 1/2 and q = 40.

Figure 8.2 shows the temperature profile for various values of ζ . The results were obtained

using the MD-BSLLM and MD-BSLLM methods. The temperature profile behaves like an

exponential decay curve, that is, an increase in the pseudo-similarity variable η , results in a

decrease in the temperature. Temperature profiles were also obtained for large values of ζ .

Decreasing ζ leads to an increase in the temperature profile. Figures 8.1 and 8.2 were obtained

using Nζ = 5, and Nη = 60.

For the second numerical experiment, the skin friction, Sherwood number and Nusselt

number results obtained by solving the governing equations (8.48) - (8.50) are given in Table 8.2.

Similarly, these results were obtained directly by solving the sequences of ordinary differential

equations, for the large ζ , using Mathematica’s DSolve command. The series solutions and the

MD-BSLLM solutions are accurate up to at least eight decimal digits as indicated in Table 8.2.

The MD-BSLLM and series solutions of equations (8.48) - (8.50) are in excellent agreement and

thus validating the accuracy of the MD-BSLLM method. Increasing the transpiration parameter

ζ results in a decrease of the skin friction, Sherwood number and Nusselt number. These results

were obtained using few grid points, Nζ = 5 and Nη = 60. Similar observation is made for Table

8.3 where the MD-BSQLM method was used to solve Table 8.2.
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Table 8.2 Comparison of the Multi-domain solution and the series solution for f ′′(0,ζ ), −g′(0,ζ )
and −h′(0,ζ ):n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40.

Multi-Domain BSLLM Series Solution

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3088214 3.5018961 3.0018658 0.3088214 3.5018961 3.0018658

10 0.1547399 7.0002370 6.0002332 0.1547399 7.0002370 6.0002332

15 0.1031717 10.5000702 9.0000691 0.1031717 10.5000702 9.0000691

20 0.0773803 14.0000296 12.0000292 0.0773803 14.0000296 12.0000292

25 0.0619045 17.5000152 15.0000149 0.0619045 17.5000152 15.0000149

30 0.0515872 21.0000088 18.0000086 0.0515872 21.0000088 18.0000086

35 0.0442176 24.5000055 21.0000054 0.0442176 24.5000055 21.0000054

40 0.0386905 28.0000037 24.0000036 0.0386905 28.0000037 24.0000036

Table 8.3 Comparison of the Multi-domain solution and the series solution for f ′′(0,ζ ), −g′(0,ζ )
and −h′(0,ζ ):n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40.

Multi-Domain BSQLM Series Solution

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3088214 3.5018961 3.0018658 0.3088214 3.5018961 3.0018658

10 0.1547399 7.0002370 6.0002332 0.1547399 7.0002370 6.0002332

15 0.1031717 10.5000702 9.0000691 0.1031717 10.5000702 9.0000691

20 0.0773803 14.0000296 12.0000292 0.0773803 14.0000296 12.0000292

25 0.0619045 17.5000152 15.0000149 0.0619045 17.5000152 15.0000149

30 0.0515872 21.0000088 18.0000086 0.0515872 21.0000088 18.0000086

35 0.0442176 24.5000055 21.0000054 0.0442176 24.5000055 21.0000054

40 0.0386905 28.0000037 24.0000036 0.0386905 28.0000037 24.0000036

Table 8.4 gives a comparison of the results obtained using the MD-BSLLM and the bivariate

spectral local linearisation method (BSLLM) for large values of ζ . The main purpose of the

results is to confirm that the accuracy of the BSLLM method deteriorates as ζ increases. We

observe that the computed values agree up to an average of three digits. This implies that

decomposing the main interval into subintervals and solving the non-similar partial differential
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equations in each sub-interval improves the accuracy of the BSLLM method. Table 8.4 in

addition displays the computational time of both methods. For Nη = 60, Nζ = 5 and q = 40, the

BSLLM method takes about a fraction of a second to achieve inaccurate results meanwhile the

MD-BSLLM method takes about 18 seconds to achieve accurate results.

Table 8.4 Comparison of the MD-BSLLM and the BSLLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ): Nη = 60, Nζ = 5, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

BSLLM Multi-Domain BSLLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3046603 3.5051984 3.0093278 0.3088214 3.5018961 3.0018658

10 0.1546097 7.0003327 6.0003186 0.1547399 7.0002370 6.0002332

15 0.1030889 10.5001437 9.0001125 0.1031717 10.5000702 9.0000691

20 0.0773803 14.0000294 12.0000289 0.0773803 14.0000296 12.0000292

25 0.0619452 17.4999716 14.9999874 0.0619045 17.5000152 15.0000149

30 0.0516135 20.9999793 17.9999897 0.0515872 21.0000088 18.0000086

CPU Time 0.845 0.845 0.845 17.527 17.527 17.527

Table 8.5 gives a comparison of the results obtained using the MD-BSQLM and the bivariate

spectral quasilinearisation method (BSQLM) for large values of ζ . The main purpose of the

results is to confirm that the accuracy of the BSQLM method deteriorates as ζ increases. We

observe that the computed values agree up to an average of three digits. This implies that

decomposing the main interval into subintervals and solving the non-similar partial differential

equations in each sub-interval improves the accuracy of the BSQLM method. Table 8.5 in

addition displays the computational time of both methods. For Nη = 60, Nζ = 5 and q = 40, the

BSQLM method takes about a fraction of a second to achieve inaccurate results meanwhile the

MD-BSQLM method takes about 13 seconds to achieve accurate results.
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Table 8.5 Comparison of the MD-BSQLM and the BSQLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ): Nη = 60, Nζ = 5, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

BSQLM Multi-Domain BSQLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3046603 3.5051984 3.0093278 0.3088214 3.5018961 3.0018658

10 0.1546097 7.0003327 6.0003186 0.1547399 7.0002370 6.0002332

15 0.1030889 10.5001437 9.0001125 0.1031717 10.5000702 9.0000691

20 0.0773803 14.0000294 12.0000289 0.0773803 14.0000296 12.0000292

25 0.0619452 17.4999716 14.9999874 0.0619045 17.5000152 15.0000149

30 0.0516135 20.9999793 17.9999897 0.0515872 21.0000088 18.0000086

CPU Time 0.545 0.545 0.545 12.527 12.527 12.527

Table 8.6 shows a comparison of the BSLLM method and the MD-BSLLM method with

different grid points. For the MD-BSLLM method, we use Nη = 60, Nζ = 5 and q = 40, while

for the BSLLM method, we use Nη = 40, and Nζ = 80 to achieve comparable accurate results.

Since the BSLLM method requires more grid points to achieve accurate results over a large

domain, then it takes more computational time compared to the MD-BSLLM method over the

same interval. In Table 8.6, the MD-BSLLM method takes about 18 seconds to achieve accurate

results meanwhile the BSLLM method takes about 78 seconds to achieve accurate results. This

implies that the MD-BSLLM method takes less computational time compared to the BSLLM

method to achieve accurate results.
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Table 8.6 Comparison of the MD-BSLLM and the BSLLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ): Nη = 60, Nζ = 5, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

BSLLM Multi-Domain BSLLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3088066 3.5018993 3.0018843 0.3088214 3.5018961 3.0018658

10 0.1547399 7.0002370 6.0002332 0.1547399 7.0002370 6.0002332

15 0.1031717 10.5000702 9.0000691 0.1031717 10.5000702 9.0000691

20 0.0773801 14.0000296 12.0000292 0.0773803 14.0000296 12.0000292

25 0.0619014 17.5000152 15.0000149 0.0619045 17.5000152 15.0000149

30 0.0515660 21.0000087 18.0000086 0.0515872 21.0000088 18.0000086

CPU Time 77.921 77.921 77.921 17.527 17.527 17.527

Table 8.7 shows a comparison of the BSQLM method and the MD-BSQLM method with

different grid points. For the MD-BSQLM method, we use Nη = 60, Nζ = 5 and q = 40, while

for the BSQLM method, we use Nη = 40, and Nζ = 80 to achieve comparable accurate results.

Since the BSQLM method requires more grid points to achieve accurate results over a large

domain, then it takes more computational time compared to the MD-BSQLM method over the

same interval. In Table 8.7, the MD-BSQLM method takes about 13 seconds to achieve accurate

results meanwhile the BSQLM method takes about 72 seconds to achieve accurate results. This

implies that the MD-BSQLM method takes less computational time compared to the BSQLM

method to achieve accurate results.
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Table 8.7 Comparison of the MD-BSQLM and the BSQLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ): Nη = 60, Nζ = 5, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

BSQLM Multi-Domain BSQLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

5 0.3088066 3.5018993 3.0018843 0.3088214 3.5018961 3.0018658

10 0.1547399 7.0002370 6.0002332 0.1547399 7.0002370 6.0002332

15 0.1031717 10.5000702 9.0000691 0.1031717 10.5000702 9.0000691

20 0.0773801 14.0000296 12.0000292 0.0773803 14.0000296 12.0000292

25 0.0619014 17.5000152 15.0000149 0.0619045 17.5000152 15.0000149

30 0.0515660 21.0000087 18.0000086 0.0515872 21.0000088 18.0000086

CPU Time 71.921 71.921 71.921 12.527 12.527 12.527

In Table 8.8, we observe that for small values of ζ , the results from both methods (BSLLM

and MD-BSLLM) are in good agreement. The BSLLM method takes about 3 seconds while

the MD-BSLLM method takes about 22 seconds to achieve accurate results. Therefore, we can

conclude that it is not necessary to use the MD-BSLLM method to solve the partial differential

equations in small subdomains of ζ . The multi-domain approach is suitable for solving equations

with large values of ζ . The results in Table 8.8 were obtained with Nη = 60, and Nζ = 15 for

the BSLLM method meanwhile Nη = 60, Nζ = 5, and z = 40 was used for the MD-BSLLM

method for ζ = 2.
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Table 8.8 Comparison of the MD-BSLLM and the BSLLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ):n = w = 1

2 , Pr = 0.7, Sc = 0.6

BSLLM Multi-Domain BSLLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

0.25 0.6346269 0.6230281 0.6046615 0.6346269 0.6230281 0.6046615

0.50 0.6393410 0.7247205 0.6899358 0.6393410 0.7247205 0.6899358

0.75 0.6379544 0.8353765 0.7818927 0.6379544 0.8353765 0.7818927

1.00 0.6307080 0.9546061 0.8803437 0.6307080 0.9546061 0.8803437

1.25 0.6181647 1.0818907 0.9850250 0.6181647 1.0818907 0.9850250

1.50 0.6011394 1.2166019 1.0955986 0.6011394 1.2166019 1.0955986

1.75 0.5806016 1.3580272 1.2116586 0.5806016 1.3580272 1.2116586

2.00 0.5575697 1.5054016 1.3327435 0.5575697 1.5054016 1.3327435

CPU Time 3.088 3.088 3.088 22.436 22.436 22.436

In Table 8.9, we observe that for small values of ζ , the results from both methods (BSQLM

and MD-BSQLM) are in good agreement. The BSQLM method takes about a second while the

MD-BSQLM method takes about 17 seconds to achieve accurate results. Therefore, we can

conclude that it is not necessary to use the MD-BSQLM method to solve the partial differential

equations in small subdomains of ζ . The multi-domain approach is suitable for solving equations

with large values of ζ . The results in Table 8.9 were obtained with Nη = 60, and Nζ = 15 for

the BSQLM method meanwhile Nη = 60, Nζ = 5, and q = 40 was used for the MD-BSQLM

method for ζ = 2.
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Table 8.9 Comparison of the MD-BSQLM and the BSQLM solution for f ′′(0,ζ ), −g′(0,ζ ) and
−h′(0,ζ ):n = w = 1

2 , Pr = 0.7, Sc = 0.6

BSQLM Multi-Domain BSQLM

ζ f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

0.25 0.6346269 0.6230281 0.6046615 0.6346269 0.6230281 0.6046615

0.50 0.6393410 0.7247205 0.6899358 0.6393410 0.7247205 0.6899358

0.75 0.6379544 0.8353765 0.7818927 0.6379544 0.8353765 0.7818927

1.00 0.6307080 0.9546061 0.8803437 0.6307080 0.9546061 0.8803437

1.25 0.6181647 1.0818907 0.9850250 0.6181647 1.0818907 0.9850250

1.50 0.6011394 1.2166019 1.0955986 0.6011394 1.2166019 1.0955986

1.75 0.5806016 1.3580272 1.2116586 0.5806016 1.3580272 1.2116586

2.00 0.5575697 1.5054016 1.3327435 0.5575697 1.5054016 1.3327435

CPU Time 1.088 1.088 1.088 17.416 17.416 17.416

Table 8.10 shows the effect of the number of sub-intervals q. Table 8.10 shows that increasing

the number of sub-intervals yields more accurate results. We note that when z = 1, that is we

have one domain, then the MD-BSLLM is behaves exactly as the BSLLM method. For z = 1,

the results do not match because the MD-BSLLM is exactly the BSLLM method. However, for

ζ = 40, only ten subintervals ensure accuracy of the MD-BSLLM method as depicted in Table

8.10. These results confirm that decomposing the main domain into subintervals improves the

accuracy of the BSLLM method.

Table 8.10 Comparison of the Multi-domain solution and the series solution for f ′′(0,ζ ),
−g′(0,ζ ) and −h′(0,ζ ): Nη = 60, Nζ = 5, η∞, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

Multi-Domain BSLLM Series Solution

q f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

1 0.0967112 11.2002848 9.6003085 0.0967241 11.2000579 9.6000569

5 0.0967241 11.2000577 9.6000568 0.0967241 11.2000579 9.6000569

10 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569

15 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569

20 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569
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Table 8.11 shows the effect of the number of sub-intervals q. Table 8.11 shows that increasing

the number of sub-intervals yields more accurate results. We note that when q = 1, that is we

have one domain, then the MD-BSQLM is behaves exactly as the BSQLM method. For q = 1,

the results do not match because the MD-BSQLM is exactly the BSQLM method. However, for

ζ = 40, only ten subintervals ensure accuracy of the MD-BSQLM method as depicted in Table

8.11. These results confirm that decomposing the main domain into subintervals improves the

accuracy of the BSQLM method.

Table 8.11 Comparison of the Multi-domain solution and the series solution for f ′′(0,ζ ),
−g′(0,ζ ) and −h′(0,ζ ): Nη = 60, Nζ = 5, η∞, n = w = 1

2 , Pr = 0.7, Sc = 0.6, q = 40

Multi-Domain BSQLM Series Solution

q f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ ) f ′′(0,ζ ) −g′(0,ζ ) −h′(0,ζ )

1 0.0967112 11.2002848 9.6003085 0.0967241 11.2000579 9.6000569

5 0.0967241 11.2000577 9.6000568 0.0967241 11.2000579 9.6000569

10 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569

15 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569

20 0.0967241 11.2000579 9.6000569 0.0967241 11.2000579 9.6000569

Figures 8.3, 8.4 and 8.5 show the velocity, temperature and concentration profiles for various

values of ζ , respectively. It is observed that an increase in ζ leads to a decrease in the velocity,

temperature and concentration. The temperature and concentration profiles decay exponentially.

The velocity, temperature and concentration profiles are in excellent agreement with the results

by Hossain [156]. This implies that the MD-BSLLM and MD-BSQLM methods can be used

as numerical methods for solving large parameter non-similar, nonlinear partial differential

equations.
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Fig. 8.3 Velocity profiles at different values of ζ , Nη = 60, Nζ = 5, n = w = 1
2 , Pr = 0.7,

Sc = 0.6, q = 40.
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Fig. 8.4 Temperature profiles at different values of ζ , Nη = 60, Nζ = 5, n = w = 1
2 , Pr = 0.7,

Sc = 0.6, q = 40.
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Fig. 8.5 Concentration profiles at different values of ζ , Nη = 60, Nζ = 5, n = w = 1
2 , Pr = 0.7,

Sc = 0.6, q = 40.

8.7 Conclusion

In this work, new numerical approaches for solving systems of n non-similar nonlinear partial

differential equations over large domains are presented and implemented. The methods are

generalized for pth order systems of n partial differential equations. The methods were tested

by two different numerical experiments. The results were validated by comparison with the

series solutions of the numerical experiments. The results of both numerical methods and the

series solution were all in excellent agreement which validates the accuracy of the two numerical

methods over large domains. The idea of decomposing the main domain into sub-intervals

increases the accuracy of the method. The more sub-intervals we have, the more accurate is the

method. However, for small domains, it is recommended to use the BSLLM and BSQLM rather

than MD-BSLLM and MD-BSQLM respectively because the BSLLM and BSQLM achieve

accurate results within a few seconds as opposed to the longer times needed for the multi-domain

approach. The proposed numerical methods performs better than some existing numerical

methods for solving a class of non-similar boundary layer equations over large time domains

with faster convergence and fewer grid points to achieve accurate results. The proposed method

uses minimal computation time and its accuracy does not rapidly deteriorate with an increase in
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the time domain. This work has added to literature in showing two novel approaches for solving

non-similar nonlinear systems of partial differential equations over large domains.
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Chapter 9

Conclusion

9.1 Summary of the main findings

In this thesis, for solving nonlinear evolution differential equations and systems of nonlinear

partial differential equations, we introduced several new pseudospectral methods that use spec-

tral collocation independently in space and time. These techniques were presented in general

form and used to solve a variety of evolution equations, and systems of differential equations

that describe physical phenomena. The specific techniques introduced are the bivariate spectral

quasilinearization method (BSQLM), bivariate spectral relaxation method (BSRM), bivariate

spectral local linearization method (BSLLM), Legendre-Gauss-Lobbatto bivariate spectral quasi-

linearization method (LGL-BSQLM), multi-domain Legendre-Gauss-Lobbatto bivariate spectral

quasilinearization method (MD-LGL-BSQLM), multi-domain bivariate spectral quasilineariza-

tion method (MD-BSQLM), and multi-domain bivariate spectral local linearization method

(MD-BSLLM). The use of these methods has been demonstrated, and their accuracy validated.

In Chapter 2, the bivariate spectral quasilinearization for nonlinear evolution equations was

introduced. The method was presented in a general form for pth order nonlinear evolution

equations. The accuracy and reliability of the BSQLM was confirmed by solving the Fisher equa-

tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified

KdV-Burgers equation and the modified KdV equation.

In Chapter 3, the bivariate spectral quasilinearization method was then applied to a system

of nonlinear partial differential equations. The objective was to solve a system of non-similar
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boundary layer equations that model magnetohydrodyanamic forced convection flow adjacent to

a non-isothermal wedge. It was shown that the method is more accurate than some traditional

numerical methods, computationally efficient and robust.

In Chapter 4, the bivariate spectral relaxation method for systems of nonlinear partial

differential equations was presented. The spectral method was applied in both space and time.

The method was tested on a system of four partial differential equations modeling an unsteady

three dimensional magnetohydrodynamic flow and mass transfer in a porous media. Results

were compared with previously published results of the SRM, SQLM and the Keller-box method.

They showed that the new approach was computationally efficient and converged faster than the

other methods, requiring fewer grid points. We conclude that the BSRM offers spectral accuracy

in both space and time variables. This accuracy was achieved with many fewer grid points than

are needed when using finite differences.

In Chapter 5, the general performance of three bivariate pseudospectral methods (BSQLM,

BSLLM and BSRM) was analyzed. We presented, for the first time, generalized algorithms

for the BSQLM and BSLLM applicable to systems of n nonlinear system of partial differential

equations. We also compared results from the three methods. From the tables showing computa-

tional time, we showed that the BSLLM is computationally faster than either of the BSQLM or

BSRM.

In Chapter 6, the Legendre-Gauss-Lobbatto bivariate spectral quasilinearization (LGL-

BSQLM) for nonlinear evolution equations was introduced. The method was presented in a

general form for pth order nonlinear evolution equations. The accuracy and reliability of the

LGL-BSQLM was confirmed by solving the Fisher equation, Burgers-Fisher equation, Fitzhugh-

Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equation and the modified

KdV equation. Error bounds were developed for the first time in this Chapter.

In Chapter 7, the multi-domain Legendre-Gauss-Lobbatto bivariate spectral quasilineariza-

tion method (MD-LGL-BSQLM) for nonlinear evolution equations was introduced for the first

time. The method was presented in a general form suitable for solving pth order nonlinear

evolution equations over a large time interval. The applicability, accuracy and reliability of

the proposed MD-LGL-BSQLM was confirmed by solving the Fisher equation, Burgers-Fisher

equation, Fitzhugh-Nagumo equation, Burgers-Huxley equation, modified KdV-Burgers equa-

tion, and modified KdV equation. The results of the MD-LGL-BSQLM were compared with
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known exact solutions that had been reported in the literature, and they agreed to a high degree

of accuracy.

In Chapter 8, two new multi-domain decomposition numerical methods for finding solutions

of systems of nonlinear coupled non-similar boundary layer partial differential equations over

a large time interval were presented. The pseudo-spectral methods, termed the multi-domain

bivariate spectral quasilinearization method (MD-BSQLM) and multi-domain bivariate spectral

local linearization method (MD-BSLLM), were developed for solving systems of n coupled

non-similar boundary layer partial differential equations. The domain was divided into smaller

non-overlapping sub-intervals on which the Chebyshev spectral collocation method was used

to solve the equations. A continuity condition was used to advance the solution across the

sub-intervals. The techniques presented in the chapter were easy to develop and yielded accurate

results using few discretization points.

9.2 Future work

Here, we have opened up many new ideas, look at the potential. They have been used to solve

various nonlinear differential equations. These ideas can be expanded and applied to different

models. The methods described above have been mainly used to model differential equations

arising from fluid dynamics, and parabolic nonlinear evolution equations. These methods could

also be applied to solve differential equations arising from other fields. New algorithms for

hyperbolic and elliptic differential equations could be developed and presented in general forms.

Furthermore, only one dimensional nonlinear partial differential equations have been considered

in this work. New algorithms could be developed for higher order nonlinear partial differential

equations.

On another note, the methods developed in this thesis have been used only for non-periodic

boundary conditions. These methods need to be modified to be used easily to solve differential

equations with periodic boundary conditions.
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Appendix A

BSQLM

This article is about the bivariate Chebyshev spectral collocation quasilinearization method for

nonlinear evolution parabolic equation. It has been described in detaial in Chapter 2 in this

thesis. Part of the results from Chapter 2 were published in this paper.
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This paper presents a newmethod for solving higher order nonlinear evolution partial differential equations (NPDEs).Themethod
combines quasilinearisation, the Chebyshev spectral collocationmethod, and bivariate Lagrange interpolation. In this paper, we use
the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified
KdV equation, Fisher’s equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The
results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness
of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were
generated to present the order of accuracy of themethod; convergence graphs to verify convergence of themethod and error graphs
are presented to show the excellent agreement between the results from this study and the known results from literature.

1. Introduction

Nonlinearity exists everywhere and, in general, nature is non-
linear. Nonlinear evolution partial differential equations arise
inmany fields of science, particularly in physics, engineering,
chemistry, finance, and biological systems. They are widely
used to describe complex phenomena in various fields of sci-
ences, such as wave propagation phenomena, fluid mechan-
ics, plasma physics, quantum mechanics, nonlinear optics,
solid state physics, chemical kinematics, physical chemistry,
population dynamics, financial industry, and numerous areas
of mathematical modeling. The development of both numer-
ical and analytical methods for solving complicated, highly
nonlinear evolution partial differential equations continues
to be an area of interest to scientists whose research aim
is to enrich deep understanding of such alluring nonlinear
problems.

Innumerable number of methods for obtaining analytical
and approximate solutions to nonlinear evolution equations
have been proposed. Someof the analyticalmethods that have
been used to solve evolution nonlinear partial differential
equations include Adomian’s decomposition method [1–3],

homotopy analysis method [4–7], tanh-function method [8–
10], Haar wavelet method [11–13], and Exp-function method
[14–16]. Several numerical methods have been used to
solve nonlinear evolution partial differential equations.These
include the explicit-implicit method [17], Chebyshev finite
difference methods [18], finite difference methods [19], finite
element methods [20], and pseudospectral methods [21, 22].

Some drawbacks of approximate analytical methods
include slow convergence, particularly for large time (𝑡 > 1).
Theymay also be cumbersome to use as some involvemanual
integration of approximate series solutions and, hence, it is
difficult to find closed solutions sometimes. On the other
hand, some numerical methods may not work in some cases,
for example, when the required solution has to be found
near a singularity. Certain numerical methods, for example,
finite differences require many grid points to achieve good
accuracy and, hence, require a lot of computer memory and
computational time. Conventional first-order finite differ-
ence methods may result in monotonic and stable solutions,
but they are strongly dissipative causing the solution of the
strongly convective partial differential equations to become
smeared out and often grossly inaccurate. On the other hand,
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higher order difference methods are less dissipative but are
prone to numerical instabilities.

Spectral methods have been used successfully in many
different fields in sciences and engineering because of their
ability to give accurate solutions of differential equations.
Khater et al. [23] applied the Chebyshev spectral collocation
method to solve Burgers type of equations in space and finite
differences to approximate the time derivative. The Cheby-
shev spectral collocationmethod has been used together with
the fourth-order Runge-Kutta method to solve the nonlinear
PDEs in this study.TheChebyshev spectral collocation is first
applied to the NPDE and this yields a system of ordinary
differential equations, which are solved using the fourth-
order Runge-Kutta method. Olmos and Shizgal [24], Javidi
[25, 26], Dehghan and Fakhar-Izadi [27], Driscoll [28], and
Driscoll [28] solved the Fisher, Burgers-Fisher, Burgers-
Huxley, Fitzhugh-Nagumo, and KdV equations, respectively,
using a combination of the Chebyshev spectral collocation
method and fourth-order Runge-Kutta method. Darvishi et
al. [29, 30] solved the KdV and the Burgers-Huxley equations
using a combination of the Chebyshev spectral collocation
method and Darvishi’s preconditioning. Jacobs and Harley
[31] and Tohidi and Kilicman [32] used spectral collocation
directly for solving linear partial differential equations. Accu-
racy will be compromised if they implement their approach
in solving nonlinear partial differential equations since they
use Kronecker multiplication.

Chebyshev spectral methods are defined everywhere in
the computational domain. Therefore, it is easy to get an
accurate value of the function under consideration at any
point of the domain, beside the collocation points. This
property is often exploited, in particular to get a significant
graphic representation of the solution, making the possible
oscillations due to a wrong approximation of the derivative
apparent. Spectral collocationmethods are easy to implement
and are adaptable to various problems, including variable
coefficient and nonlinear differential equations. The error
associated with the Chebyshev approximation is O(1/𝑁

𝑟

)

where 𝑁 refers to the truncation and 𝑟 is connected to
the number of continuous derivatives of the function. The
interest in using Chebyshev spectral methods in solving
nonlinear PDEs stems from the fact that these methods
require less grid points to achieve accurate results. They
are computational and efficient compared to traditional
methods like finite difference and finite element methods.
Chebyshev spectral collocation method has been used in
conjunction with additional methods which may have their
own drawbacks. Here, we provide an alternative method that
is not dependent on another method to approximate the
solution.

The main objective of this work is to introduce a new
method that uses Chebyshev spectral collocation, bivariate
Lagrange interpolation polynomials together with quasilin-
earisation techniques. The nonlinear evolution equations
are first linearized using the quasilinearisation method. The
Chebyshev spectral collocation method with Lagrange inter-
polation polynomials are applied independently in space and
time variables of the linearized evolution partial differential
equation. This new method is termed bivariate interpolated

spectral quasilinearisation method (BI-SQLM). We present
the BI-SQLM algorithm in a general setting, where it can be
used to solve any 𝑟th order nonlinear evolution equations.
The applicability, accuracy, and reliability of the proposed
BI-SQLM are confirmed by solving the modified KdV-
Burger equation, highly nonlinear modified KdV equation,
the Cahn-Hillard equation,the fourth-order KdV equation,
Fisher’s, Burgers-Fisher, Burger-Huxley, and the Fitzhugh-
Nagumo equations.The results of the BI-SQLMare compared
against known exact solutions that have been reported in the
scientific literature. It is observed that the method achieves
high accuracy with relatively fewer spatial grid points. It also
converges fast to the exact solution and approximates the
solution of the problem in a computationally efficientmanner
with simulations completed in fractions of a second in all
cases. Tables are generated to show the order of accuracy
of the method and time taken to compute the solutions. It
is observed that, as the number of grid points is increased,
the error decreases. Error graphs and graphs showing the
excellent agreement of the exact and analytical solutions for
all the nonlinear evolution equations are also presented.

The paper is organized as follows. In Section 2, we
introduce the BI-SQLM algorithm for a general nonlinear
evolution PDE. In Section 3, we describe the application
of the BI-SQLM to selected test problems. The numerical
simulations and results are presented in Section 4. Finally, we
conclude in Section 5.

2. Bivariate Interpolated Spectral
Quasilinearization Method (BI-SQLM)

In this section, we introduce the Bivariate Interpolated
Spectral Quasilinearization Method (BI-SQLM) for finding
solutions to nonlinear evolution PDEs. Without loss of
generality, we consider nonlinear PDEs of the form

𝜕𝑢

𝜕𝜏
= 𝐻(𝑢,

𝜕𝑢

𝜕𝜂
,
𝜕
2

𝑢

𝜕𝜂
2
, . . . ,

𝜕
𝑛

𝑢

𝜕𝜂
𝑛
) ,

with the physical region 𝜏 ∈ [0, 𝑇] , 𝜂 ∈ [𝑎, 𝑏] ,

(1)

where 𝑛 is the order of differentiation, 𝑢(𝜂, 𝜏) is the required
solution, and 𝐻 is a nonlinear operator which contains all
the spatial derivatives of 𝑢. The given physical region, 𝜏 ∈

[0, 𝑇], is converted to the region 𝑡 ∈ [−1, 1] using the linear
transformation 𝜏 = 𝑇(𝑡 + 1)/2 and 𝜂 ∈ [𝑎, 𝑏] is converted to
the region 𝑥 ∈ [−1, 1] using the linear transformation

𝜂 =
1

2
(𝑏 − 𝑎) 𝑥 +

1

2
(𝑏 + 𝑎) . (2)

Equation (1) can be expressed as

𝜕𝑢

𝜕𝑡
= 𝐻(𝑢,
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, . . . ,
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𝑛
) , 𝑡 ∈ [−1, 1] , 𝑥 ∈ [−1, 1] .

(3)
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The solution procedure assumes that the solution can be
approximated by a bivariate Lagrange interpolation polyno-
mial of the form

𝑢 (𝑥, 𝑡) ≈

𝑁
𝑥

∑

𝑖=0

𝑁
𝑡

∑

𝑗=0

𝑢 (𝑥
𝑖
, 𝑡
𝑗
) 𝐿
𝑖
(𝑥) 𝐿
𝑗
(𝑡) , (4)

which interpolates 𝑢(𝑥, 𝑡) at selected points in both the 𝑥 and
𝑡 directions defined by

{𝑥
𝑖
} = {cos( 𝜋𝑖

𝑁
𝑥

)}

𝑁
𝑥

𝑖=0

, {𝑡
𝑗
} = {cos(

𝜋𝑗

𝑁
𝑡

)}

𝑁
𝑡

𝑗=0

. (5)

The choice of the Chebyshev-Gauss-Lobatto grid points (5)
ensures that there is a simple conversion of the continuous
derivatives, in both space and time, to discrete derivatives
at the grid points. The functions 𝐿

𝑖
(𝑥) are the characteristic

Lagrange cardinal polynomials

𝐿
𝑖
(𝑥) =

𝑁
𝑥

∏

𝑖=0

𝑖 ̸=𝑘

𝑥 − 𝑥
𝑘

𝑥
𝑖
− 𝑥
𝑘

, (6)

where

𝐿
𝑖
(𝑥
𝑘
) = 𝛿
𝑖𝑘

= {
0 if 𝑖 ̸= 𝑘

1 if 𝑖 = 𝑘.
(7)

The function 𝐿
𝑗
(𝑡) is defined in a similar manner. Before

linearizing (3), it is convenient to split 𝐻 into its linear and
nonlinear components and rewrite the governing equation in
the form

𝐹 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] + 𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] − �̇� = 0, (8)

where the dot and primes denote the time and space deriva-
tives, respectively, 𝐹 is a linear operator, and 𝐺 is a nonlinear
operator. Assuming that the difference 𝑢

𝑟+1
− 𝑢
𝑟
and all it’s

space derivative is small, we first approximate the nonlinear
operator 𝐺 using the linear terms of the Taylor series and,
hence,

𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] ≈ 𝐺 [𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛

∑

𝑘=0

𝜕𝐺

𝜕𝑢
(𝑘)

(𝑢
(𝑘)

𝑟+1
− 𝑢
(𝑘)

𝑟
) ,

(9)

where 𝑟 and 𝑟 + 1 denote previous and current iterations,
respectively. We remark that this quasilinearization method
(QLM) approach is a generalisation of the Newton-Raphson
method and was first proposed by Bellman and Kalaba [33]
for solving nonlinear boundary value problems.

Equation (9) can be expressed as

𝐺 [𝑢, 𝑢
󸀠

, . . . , 𝑢
(𝑛)

] ≈ 𝐺 [𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
]

+

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] 𝑢
(𝑘)

𝑟+1

−

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] 𝑢
(𝑘)

𝑟
,

(10)

where

𝜙
𝑘,𝑟

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝜕𝐺

𝜕𝑢
(𝑘)

[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (11)

Substituting (10) into (8), we get

𝐹 [𝑢
𝑟+1

, 𝑢
󸀠

𝑟+1
, . . . , 𝑢

(𝑛)

𝑟+1
] +

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
− �̇�
𝑟+1

= 𝑅
𝑟
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] ,

(12)

where

𝑅
𝑟
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] =

𝑛

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢
󸀠

𝑟
, . . . , 𝑢

(𝑛)

𝑟
] . (13)

A crucial step in the implementation of the solution proce-
dure is the evaluation of the time derivative at the grid points
𝑡
𝑗
(𝑗 = 0, 1, . . . , 𝑁

𝑡
) and the spatial derivatives at the grid

points 𝑥
𝑖
(𝑖 = 0, 1, . . . , 𝑁

𝑥
). The values of the time derivatives

at the Chebyshev-Gauss-Lobatto points (𝑥
𝑖
, 𝑡
𝑗
) are computed

as (for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
)

𝜕𝑢

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑖
,𝑡=𝑡
𝑗

=

𝑁
𝑥

∑

𝑝=0

𝑁
𝑡

∑

𝑘=0

𝑢 (𝑥
𝑝
, 𝑡
𝑘
) 𝐿
𝑝
(𝑥
𝑖
)

𝑑𝐿
𝑘
(𝑡
𝑗
)

𝑑𝑡

=

𝑁
𝑡

∑

𝑘=0

𝑢 (𝑥
𝑖
, 𝑡
𝑘
) 𝑑
𝑗𝑘

=

𝑁
𝑡

∑

𝑘=0

𝑑
𝑗𝑘
𝑢 (𝑥
𝑖
, 𝑡
𝑘
) ,

(14)

where 𝑑
𝑗𝑘

= 𝑑𝐿
𝑘
(𝑡
𝑗
)/𝑑𝑡 is the standard first derivative Che-

byshev differentiation matrix of size (𝑁
𝑡
+ 1) × (𝑁

𝑡
+ 1) as

defined in [34]. The values of the space derivatives at the
Chebyshev-Gauss-Lobatto points (𝑥

𝑖
, 𝑡
𝑗
) (𝑖 = 0, 1, 2, . . . , 𝑁

𝑥
)

are computed as

𝜕𝑢

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑖
,𝑡=𝑡
𝑗

=

𝑁
𝑥

∑

𝑝=0

𝑁
𝑡

∑

𝑘=0

𝑢 (𝑥
𝑝
, 𝑡
𝑘
)

𝑑𝐿
𝑝
(𝑥
𝑖
)

𝑑𝑥
𝐿
𝑘
(𝑡
𝑗
)

=

𝑁
𝑥

∑

𝑝=0

𝑢 (𝑥
𝑝
, 𝑡
𝑗
)𝐷
𝑖𝑝

=

𝑁
𝑥

∑

𝑝=0

𝐷
𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) ,

(15)

where 𝐷
𝑖𝑝

= 𝑑𝐿
𝑝
(𝑥
𝑖
)/𝑑𝑥 is the standard first derivative

Chebyshev differentiation matrix of size (𝑁
𝑥
+ 1) × (𝑁

𝑥
+ 1).

Similarly, for an 𝑛th order derivative, we have

𝜕
𝑛

𝑢

𝜕𝑥
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
𝑖
,𝑡=𝑡
𝑗

=

𝑁
𝑥

∑

𝑝=0

𝐷
𝑛

𝑖𝑝
𝑢 (𝑥
𝑝
, 𝑡
𝑗
) = D𝑛U

𝑗
,

𝑖 = 0, 1, 2, . . . , 𝑁
𝑥
,

(16)

where the vector U
𝑗
is defined as

U
𝑗
= [𝑢
𝑗
(𝑥
0
) , 𝑢
𝑗
(𝑥
1
) , . . . , 𝑢

𝑗
(𝑥
𝑁
𝑥

)]
𝑇 (17)
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and the superscript 𝑇 denotes matrix transpose. Substituting
(16) into (12) we get

𝐹 [U
𝑟+1,𝑗

,U󸀠
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

] +

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁
𝑡

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= 𝑅
𝑟
[U
𝑟,𝑗
,U󸀠
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
]

(18)

for 𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
, where

U(𝑛)
𝑟+1,𝑗

= D𝑛U
𝑟+1,𝑗

,

Φ
𝑘,𝑟

=

[
[
[
[

[

𝜙
𝑘,𝑟

(𝑥
0
, 𝑡
𝑗
)

𝜙
𝑘,𝑟

(𝑥
1
, 𝑡
𝑗
)

d
𝜙
𝑘,𝑟

(𝑥
𝑁
𝑥

, 𝑡
𝑗
)

]
]
]
]

]

.

(19)

The initial condition for (3) corresponds to 𝜏
𝑁
𝑡

= −1 and,
hence, we express (18) as

𝐹 [U
𝑟+1,𝑗

,U󸀠
𝑟+1,𝑗

, . . . ,U(𝑛)
𝑟+1,𝑗

]

+

𝑛

∑

𝑘=0

Φ
𝑘,𝑟
U(𝑘)
𝑟+1,𝑗

−

𝑁
𝑡
−1

∑

𝑘=0

𝑑
𝑗𝑘
U
𝑟+1,𝑘

= R
𝑗
,

(20)

where

R
𝑗
= 𝑅
𝑟
[U
𝑟,𝑗
,U󸀠
𝑟,𝑗
, . . . ,U(𝑛)

𝑟,𝑗
] + 𝑑
𝑗𝑁
𝑡

U
𝑁
𝑡

,

𝑗 = 0, 1, 2, . . . , 𝑁
𝑡
− 1.

(21)

Equation (20) can be expressed as the following𝑁
𝑡
(𝑁
𝑥
+1) ×

𝑁
𝑡
(𝑁
𝑥
+ 1)matrix system

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁
𝑡
−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁
𝑡
−1

...
... d

...
𝐴
𝑁
𝑡
−1,0

𝐴
𝑁
𝑡
−1,1

⋅ ⋅ ⋅ 𝐴
𝑁
𝑡
−1,𝑁
𝑡
−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁
𝑡
−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁
𝑡
−1

]
]
]
]

]

,

(22)

where

𝐴
𝑖,𝑖

= 𝐹 [I,D, . . . ,D(𝑛)] +
𝑛

∑

𝑘=0

Φ
𝑘,𝑟
D(𝑘) − 𝑑

𝑖,𝑖
I,

𝐴
𝑖,𝑗

= −𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

(23)

and I is the identity matrix of size (𝑁
𝑥
+1)× (𝑁

𝑥
+1). Solving

(19) gives 𝑢(𝑥
𝑖
, 𝑡
𝑗
) and, hence, we use (4) to approximate

𝑢(𝑥, 𝑡).

3. Numerical Experiments

We apply the proposed algorithm to well-known nonlinear
PDEs of the form (3) with exact solutions. In order to
determine the level of accuracy of the BI-SQLM approximate
solution, at a particular time level, in comparison with the
exact solution, we report maximum error which is defined by

𝐸
𝑁

= max
𝑟

{
󵄨󵄨󵄨󵄨
𝑢 (𝑥
𝑟
, 𝑡) − �̃� (𝑥

𝑟
, 𝑡)

󵄨󵄨󵄨󵄨
, : 0 ≤ 𝑟 ≤ 𝑁} , (24)

where �̃�(𝑥
𝑟
, 𝑡) is the approximate solution and is the 𝑢(𝑥

𝑟
, 𝑡)

exact solution at the time level 𝑡.

Example 1. Weconsider the generalizedBurgers-Fisher equa-
tion [35]:

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿
𝜕𝑢

𝜕𝑥
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛽𝑢 (1 − 𝑢

𝛿

) , (25)

with initial condition

𝑢 (𝑥, 0) = {
1

2
+

1

2
tanh(

−𝛼𝛿

2(𝛿 + 1)
𝑥)}

1/𝛿

(26)

and exact solution

𝑢 (𝑥, 𝑡)

= {
1

2
+

1

2
tanh(

−𝛼𝛿

2 (𝛿 + 1)

× [𝑥 − (
𝛼

𝛿 + 1
+

𝛽 (𝛿 + 1)

𝛼
) 𝑡])}

1/𝛿

,

(27)

where 𝛼, 𝛽, and 𝛿 are parameters. For illustration purposes,
these parameters are chosen to be𝛼 = 𝛽 = 𝛿 = 1 in this paper.
The linear operator 𝐹 and nonlinear operator𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

+ 𝑢, 𝐺 (𝑢) = −𝑢𝑢
󸀠

− 𝑢
2

. (28)

We first linearize the nonlinear operator 𝐺. We approximate
𝐺 using the equation

𝐺 ≈ 𝐺 [𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] +

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟+1
−

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
. (29)

The coefficients are given by

𝜙
0,𝑟

=
𝜕𝐺

𝜕𝑢
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = − (𝑢

󸀠

𝑟
+ 2𝑢
𝑟
) ,

𝜙
1,𝑟

=
𝜕𝐺

𝜕𝑢
󸀠
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = −𝑢

𝑟
,

𝜙
2,𝑟

=
𝜕𝐺

𝜕𝑢
󸀠󸀠
[𝑢
𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = 0,

𝑅
𝑟
=

2

∑

𝑘=0

𝜙
𝑘,𝑟
𝑢
(𝑘)

𝑟
− 𝐺 [𝑢

𝑟
, 𝑢
󸀠

𝑟
, 𝑢
󸀠󸀠

𝑟
] = −𝑢

2

𝑟
− 𝑢
𝑟
𝑢
󸀠

𝑟
.

(30)
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Therefore, the linearized equation can be expressed as

𝑢
󸀠󸀠

𝑟+1
+ 𝜙
1,𝑟
𝑢
󸀠

𝑟+1
+ 𝜙
0,𝑟
𝑢
𝑟+1

+ 𝑢
𝑟+1

− �̇� = 𝑅
𝑟
. (31)

Applying the spectral method both in 𝑥 and 𝑡 and initial
condition, we get

D2U
𝑟+1,𝑖

+Φ
1,𝑟
DU
𝑟+1,𝑖

+Φ
0,𝑟
U
𝑟+1,𝑖

+ U
𝑟+1,𝑖

− 2

𝑁
𝑡
−1

∑

𝑗=0

𝑑
𝑖𝑗
U
𝑟+1,𝑗

= R
𝑖
.

(32)

Equation (32) can be expressed as

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑁
𝑡
−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑁
𝑡
−1

...
... d

...
𝐴
𝑁
𝑡
−1,0

𝐴
𝑁
𝑡
−1,1

⋅ ⋅ ⋅ 𝐴
𝑁
𝑡
−1,𝑁
𝑡
−1

]
]
]
]

]

[
[
[
[

[

U
0

U
1

...
U
𝑁
𝑡
−1

]
]
]
]

]

=

[
[
[
[

[

R
0

R
1

...
R
𝑁
𝑡
−1

]
]
]
]

]

,

(33)

where

𝐴
𝑖,𝑖

= D2 +Φ(𝑖)
1,𝑟
D +Φ

(𝑖)

0,𝑟
+ (1 − 2𝑑

𝑖,𝑖
) I,

𝐴
𝑖,𝑗

= − 2𝑑
𝑖,𝑗
I, when 𝑖 ̸= 𝑗,

R
𝑖
= 𝑅
𝑟
+ 2𝑑
𝑖𝑁
𝑡

U
𝑟,𝑁
𝑡

.

(34)

The boundary conditions are implemented in the first and
last row of the matrices 𝐴

𝑖𝑗
and the column vectors R

𝑖
for

𝑖 = 0, 1, . . . , 𝑁
𝑡
− 1 and 𝑗 = 0, 1, . . . , 𝑁

𝑡
− 1. The procedure

for finding the variable coefficients 𝜙
𝑖
and matrices for the

remaining examples is similar.

Example 2. We consider Fisher’s equation

𝜕𝑢

𝜕𝑡
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛼𝑢 (1 − 𝑢) , (35)

subject to the initial condition

𝑢 (𝑥, 0) =
1

(1 + 𝑒
√𝛼/6𝑥

)
2 (36)

and exact solution [36]

𝑢 (𝑥, 𝑡) =
1

(1 + 𝑒
√𝛼/6𝑥−5𝛼𝑡/6

)
2
, (37)

where 𝛼 is a constant. The Fisher equation represents a
reactive-diffusive system and is encountered in chemical
kinetics and population dynamics applications. For this
example, the appropriate linear operator 𝐹 and nonlinear
operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

+ 𝛼𝑢, 𝐺 (𝑢) = −𝛼𝑢
2

. (38)

Table 1: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.2 3.934𝑒 − 008 3.121𝑒 − 011 1.552𝑒 − 012 1.561𝑒 − 012

0.3 5.577𝑒 − 008 4.864𝑒 − 011 1.004𝑒 − 012 1.005𝑒 − 012

0.4 6.997𝑒 − 008 6.802𝑒 − 011 7.895𝑒 − 013 8.124𝑒 − 013

0.5 8.107𝑒 − 008 7.971𝑒 − 011 1.088𝑒 − 012 1.027𝑒 − 012

0.6 8.891𝑒 − 008 8.560𝑒 − 011 8.805𝑒 − 013 7.847𝑒 − 013

0.7 9.344𝑒 − 008 8.953𝑒 − 011 6.418𝑒 − 013 6.463𝑒 − 013

0.8 9.431𝑒 − 008 8.759𝑒 − 011 6.199𝑒 − 013 6.164𝑒 − 013

0.9 9.178𝑒 − 008 8.325𝑒 − 011 3.978𝑒 − 013 3.695𝑒 − 013

1.0 8.787𝑒 − 008 7.421𝑒 − 011 7.988𝑒 − 014 5.596𝑒 − 014

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

Table 2:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 𝛾 = 𝛿 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.142𝑒 − 007 1.369𝑒 − 010 5.891𝑒 − 012 6.143𝑒 − 012

0.2 1.178𝑒 − 007 1.373𝑒 − 010 9.570𝑒 − 012 1.013𝑒 − 011

0.3 1.186𝑒 − 007 1.479𝑒 − 010 1.489𝑒 − 011 1.512𝑒 − 011

0.4 1.069𝑒 − 007 9.450𝑒 − 011 1.703𝑒 − 011 1.702𝑒 − 011

0.5 9.030𝑒 − 008 7.944𝑒 − 011 5.283𝑒 − 012 5.736𝑒 − 012

0.6 6.963𝑒 − 008 6.618𝑒 − 011 1.639𝑒 − 011 1.626𝑒 − 011

0.7 4.638𝑒 − 008 1.579𝑒 − 011 1.362𝑒 − 011 1.364𝑒 − 011

0.8 2.457𝑒 − 008 4.030𝑒 − 011 3.934𝑒 − 012 3.852𝑒 − 012

0.9 2.028𝑒 − 008 6.006𝑒 − 011 4.466𝑒 − 012 4.727𝑒 − 012

1.0 3.147𝑒 − 008 7.708𝑒 − 011 7.757𝑒 − 013 7.261𝑒 − 013

CPU
Time
(sec)

0.010152 0.015387 0.019163 0.021564

Example 3. Consider the Fitzhugh-Nagumo equation

𝜕𝑢

𝜕𝑡
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝑢 (𝑢 − 𝛼) (1 − 𝑢) (39)

with initial condition

𝑢 (𝑥, 0) =
1

2
[1 − coth(−

𝑥

2√2

)] . (40)

This equation has the exact solution [37]

𝑢 (𝑥, 𝑡) =
1

2
[1 − coth(−

𝑥

2√2

+
2𝛼 − 1

4
𝑡)] , (41)

where 𝛼 is a parameter. In this example, the linear operator 𝐹
and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

− 𝛼𝑢, 𝐺 (𝑢) = (1 + 𝛼) 𝑢
2

− 𝑢
3

. (42)
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Table 3: Maximum errors 𝐸
𝑁
for the Fitzhug-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 5.719𝑒 − 007 1.196𝑒 − 009 2.367𝑒 − 012 9.881𝑒 − 014

0.2 6.193𝑒 − 007 1.299𝑒 − 009 2.761𝑒 − 012 3.952𝑒 − 014

0.3 6.662𝑒 − 007 1.463𝑒 − 009 3.259𝑒 − 012 8.216𝑒 − 014

0.4 6.779𝑒 − 007 1.448𝑒 − 009 3.341𝑒 − 012 8.094𝑒 − 014

0.5 6.920𝑒 − 007 1.526𝑒 − 009 3.587𝑒 − 012 5.063𝑒 − 014

0.6 7.019𝑒 − 007 1.573𝑒 − 009 3.729𝑒 − 012 3.775𝑒 − 014

0.7 6.933𝑒 − 007 1.516𝑒 − 009 3.660𝑒 − 012 8.915𝑒 − 014

0.8 6.828𝑒 − 007 81.535𝑒 − 009 3.635𝑒 − 012 7.594𝑒 − 014

0.9 6.765𝑒 − 007 1.528𝑒 − 009 3.519𝑒 − 012 3.242𝑒 − 013

1.0 6.687𝑒 − 007 1.490𝑒 − 009 3.405𝑒 − 012 1.688𝑒 − 013

CPU
time
(sec)

0.024281 0.024901 0.026810 0.032389

Table 4:Maximum errors𝐸
𝑁
for the Burger-Huxley equation when

𝛾 = 0.75, 𝛽 = 1, and𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 2.217𝑒 − 006 8.482𝑒 − 009 2.166𝑒 − 011 7.822𝑒 − 014

0.2 2.596𝑒 − 006 9.369𝑒 − 009 2.536𝑒 − 011 1.184𝑒 − 013

0.3 2.859𝑒 − 006 1.073𝑒 − 008 3.201𝑒 − 011 1.049𝑒 − 013

0.4 3.001𝑒 − 006 1.112𝑒 − 008 3.652𝑒 − 011 9.426𝑒 − 014

0.5 3.137𝑒 − 006 1.213𝑒 − 008 4.262𝑒 − 011 1.510𝑒 − 013

0.6 3.270𝑒 − 006 1.311𝑒 − 008 4.842𝑒 − 011 2.127𝑒 − 013

0.7 3.367𝑒 − 006 1.359𝑒 − 008 5.289𝑒 − 011 1.230𝑒 − 013

0.8 3.467𝑒 − 006 1.438𝑒 − 008 5.803𝑒 − 011 1.549𝑒 − 013

0.9 3.562𝑒 − 006 1.504𝑒 − 008 6.260𝑒 − 011 3.063𝑒 − 013

1.0 3.640𝑒 − 006 1.559𝑒 − 008 6.674𝑒 − 011 2.951𝑒 − 013

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

Example 4. Consider the Burgers-Huxley equation

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢
𝛿

𝑢
𝑥
=

𝜕
2

𝑢

𝜕𝑥
2
+ 𝛽𝑢 (1 − 𝑢

𝛿

) (𝑢
𝛿

− 𝛾) , (43)

where 𝛼, 𝛽 ≥ 0 are constant parameters, 𝛿 is a positive integer
(set to be 𝛿 = 1 in this study), and 𝛾 ∈ (0, 1). The exact
solution subject to the initial condition

𝑢 (𝑥, 0) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
𝑥] , (44)

is reported in [38, 39] as

𝑢 (𝑥, 𝑡) =
1

2
−

1

2
tanh [

𝛽

𝑟 − 𝛼
(𝑥 − 𝑐𝑡)] , (45)

where

𝑟 = √𝛼
2
+ 8𝛽, 𝑐 =

(𝛼 − 𝑟) (2𝛾 − 1) + 2𝛼

4

(46)

Table 5: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 1.803𝑒 − 007 3.419𝑒 − 010 4.449𝑒 − 013 1.572𝑒 − 013

0.2 2.614𝑒 − 007 4.347𝑒 − 010 5.049𝑒 − 013 5.992𝑒 − 014

0.3 2.717𝑒 − 007 4.677𝑒 − 010 5.532𝑒 − 013 8.128𝑒 − 013

0.4 2.009𝑒 − 007 3.663𝑒 − 010 4.771𝑒 − 013 6.158𝑒 − 013

0.5 2.580𝑒 − 007 4.410𝑒 − 010 7.518𝑒 − 013 2.555𝑒 − 013

0.6 2.653𝑒 − 007 4.606𝑒 − 010 8.738𝑒 − 013 5.756𝑒 − 013

0.7 2.248𝑒 − 007 4.039𝑒 − 010 6.210𝑒 − 013 2.393𝑒 − 013

0.8 2.572𝑒 − 007 4.476𝑒 − 010 5.432𝑒 − 013 6.812𝑒 − 013

0.9 2.436𝑒 − 007 4.351𝑒 − 010 6.111𝑒 − 013 6.287𝑒 − 013

1.0 8.275𝑒 − 008 3.721𝑒 − 010 7.569𝑒 − 013 1.087𝑒 − 007

CPU
time
(sec)

0.015646 0.021226 0.030159 0.035675

Table 6: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.1 7.788𝑒 − 005 3.553𝑒 − 007 7.601𝑒 − 010 2.080𝑒 − 010

0.2 1.153𝑒 − 004 4.000𝑒 − 007 5.684𝑒 − 010 1.189𝑒 − 010

0.3 1.011𝑒 − 004 3.739𝑒 − 007 4.471𝑒 − 010 4.503𝑒 − 010

0.4 3.926𝑒 − 005 1.785𝑒 − 007 6.544𝑒 − 010 4.987𝑒 − 010

0.5 6.727𝑒 − 005 2.342𝑒 − 007 2.638𝑒 − 010 1.528𝑒 − 010

0.6 6.065𝑒 − 005 2.207𝑒 − 007 4.565𝑒 − 010 4.568𝑒 − 010

0.7 2.511𝑒 − 005 1.105𝑒 − 007 4.749𝑒 − 010 3.748𝑒 − 010

0.8 4.074𝑒 − 005 1.427𝑒 − 007 1.062𝑒 − 010 1.604𝑒 − 010

0.9 2.386𝑒 − 005 1.018𝑒 − 007 2.343𝑒 − 010 8.114𝑒 − 011

1.0 1.440𝑒 − 006 7.256𝑒 − 008 1.436𝑒 − 009 1.513𝑒 − 011

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

The general solution (45) was reported in [40, 41]. In this
example, the linear operator 𝐹 and nonlinear operator 𝐺 are
chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠

− 𝛽𝛾𝑢,

𝐺 (𝑢) = −𝛼𝑢𝑢
󸀠

+ 𝛽 (1 + 𝛾) 𝑢
2

− 𝛽𝑢
3

.

(47)

Example 5. We consider the modified KdV-Burgers equation

𝜕𝑢

𝜕𝑡
=

𝜕
3

𝑢

𝜕𝑥
3
−

𝜕
2

𝑢

𝜕𝑥
2
− 6𝑢
2
𝜕𝑢

𝜕𝑥

(48)

subject to the initial condition

𝑢 (𝑥, 0) =
1

6
+

1

6
tanh(

𝑥

6
) (49)

and exact solution [42]

𝑢 (𝑥, 𝑡) =
1

6
+

1

6
tanh(

𝑥

6
−

𝑡

27
) . (50)
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Table 7: Maximum errors 𝐸
𝑁
for Fisher equation when 𝛼 = 1 using

𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.119𝑒 − 011 7.398𝑒 − 013 8.266𝑒 − 013 3.808𝑒 − 014

0.4 3.121𝑒 − 011 1.552𝑒 − 012 7.378𝑒 − 013 3.780𝑒 − 014

0.6 4.864𝑒 − 011 1.004𝑒 − 012 3.402𝑒 − 012 7.283𝑒 − 014

0.8 6.802𝑒 − 011 7.895𝑒 − 013 1.118𝑒 − 012 3.714𝑒 − 014

1.0 7.971𝑒 − 011 1.088𝑒 − 012 1.473𝑒 − 012 1.691𝑒 − 013

1.2 8.560𝑒 − 011 8.805𝑒 − 013 2.611𝑒 − 012 3.119𝑒 − 013

1.4 8.953𝑒 − 011 6.418𝑒 − 013 6.671𝑒 − 012 1.796𝑒 − 013

1.6 8.759𝑒 − 011 6.199𝑒 − 013 1.118𝑒 − 011 1.097𝑒 − 013

1.8 8.325𝑒 − 011 3.978𝑒 − 013 7.515𝑒 − 013 6.273𝑒 − 014

2.0 7.421𝑒 − 011 7.988𝑒 − 014 3.682𝑒 − 012 2.311𝑒 − 013

CPU
time
(sec)

0.013542 0.022967 0.023792 0.024758

Table 8:Maximum errors𝐸
𝑁
for the Burgers-Fisher equation when

𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.223𝑒 − 007 1.400𝑒 − 008 1.402𝑒 − 008 1.094𝑒 − 012

0.4 1.145𝑒 − 007 1.919𝑒 − 008 1.918𝑒 − 008 3.919𝑒 − 012

0.6 9.192𝑒 − 008 2.082𝑒 − 008 2.085𝑒 − 008 1.953𝑒 − 012

0.8 2.293𝑒 − 008 1.793𝑒 − 008 1.793𝑒 − 008 6.340𝑒 − 013

1.0 2.395𝑒 − 008 1.337𝑒 − 008 1.339𝑒 − 008 2.381𝑒 − 012

1.2 5.778𝑒 − 008 1.954𝑒 − 008 1.930𝑒 − 008 1.005𝑒 − 011

1.4 6.045𝑒 − 008 1.620𝑒 − 008 1.620𝑒 − 008 3.535𝑒 − 012

1.6 5.244𝑒 − 008 7.218𝑒 − 009 7.345𝑒 − 009 5.765𝑒 − 012

1.8 4.395𝑒 − 008 6.828𝑒 − 009 6.784𝑒 − 009 3.983𝑒 − 012

2.0 2.944𝑒 − 008 9.406𝑒 − 010 8.820𝑒 − 010 3.812𝑒 − 012

CPU
time
(sec)

0.019942 0.025988 0.027756 0.029436

The modified KdV-Burgers equation describes various kinds
of phenomena such as a mathematical model of turbulence
[43] and the approximate theory of flow through a shockwave
traveling in viscous fluid [44]. For this example, the linear
operator 𝐹 and nonlinear operator 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠󸀠

− 𝑢
󸀠󸀠

, 𝐺 (𝑢) = −6𝑢
󸀠

𝑢
2

. (51)

Example 6. We consider the high nonlinear modified KdV
equation

𝜕𝑢

𝜕𝑡
=

𝜕
3

𝑢

𝜕𝑥
3
+ (

𝜕𝑢

𝜕𝑥
)

2

− 𝑢
2 (52)

subject to the initial condition

𝑢 (𝑥, 0) =
1

2
+

𝑒
−𝑥

4

(53)

Table 9: Maximum errors 𝐸
𝑁
for the Fitzhugh-Nagumo equation

when 𝛼 = 1 using𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 6.326𝑒 − 007 1.311𝑒 − 009 2.886𝑒 − 012 1.131𝑒 − 012

0.4 6.721𝑒 − 007 1.467𝑒 − 009 3.310𝑒 − 012 1.564𝑒 − 012

0.6 7.140𝑒 − 007 1.602𝑒 − 009 3.617𝑒 − 012 1.936𝑒 − 012

0.8 6.730𝑒 − 007 1.496𝑒 − 009 4.707𝑒 − 012 1.196𝑒 − 012

1.0 6.660𝑒 − 007 1.487𝑒 − 009 3.675𝑒 − 012 1.264𝑒 − 012

1.2 6.449𝑒 − 007 1.366𝑒 − 009 1.897𝑒 − 012 1.727𝑒 − 012

1.4 5.690𝑒 − 007 1.083𝑒 − 009 2.972𝑒 − 012 1.200𝑒 − 012

1.6 4.931𝑒 − 007 8.010𝑒 − 010 1.519𝑒 − 012 8.590𝑒 − 013

1.8 3.986𝑒 − 007 4.658𝑒 − 010 1.068𝑒 − 012 6.790𝑒 − 013

2.0 2.904𝑒 − 007 2.968𝑒 − 010 1.592𝑒 − 012 1.770𝑒 − 013

CPU
time
(sec)

0.041048 0.049629 0.055008 0.053863

Table 10: Maximum errors 𝐸
𝑁

for the Burgers-Huxley equation
when 𝛾 = 0.5, 𝛽 = 1, and𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.866𝑒 − 006 1.119𝑒 − 008 3.670𝑒 − 011 1.150𝑒 − 012

0.4 3.401𝑒 − 006 1.420𝑒 − 008 5.744𝑒 − 011 1.638𝑒 − 012

0.6 3.814𝑒 − 006 1.687𝑒 − 008 7.426𝑒 − 011 1.958𝑒 − 012

0.8 3.915𝑒 − 006 1.729𝑒 − 008 8.171𝑒 − 011 7.002𝑒 − 013

1.0 3.938𝑒 − 006 1.738𝑒 − 008 8.157𝑒 − 011 1.267𝑒 − 012

1.2 3.808𝑒 − 006 1.624𝑒 − 008 7.687𝑒 − 011 1.710𝑒 − 012

1.4 3.456𝑒 − 006 1.527𝑒 − 008 6.965𝑒 − 011 5.109𝑒 − 013

1.6 3.230𝑒 − 006 1.349𝑒 − 008 5.535𝑒 − 011 8.203𝑒 − 013

1.8 2.925𝑒 − 006 1.078𝑒 − 008 3.598𝑒 − 011 8.294𝑒 − 013

2.0 2.497𝑒 − 006 7.505𝑒 − 009 2.265𝑒 − 011 9.726𝑒 − 014

CPU
time
(sec)

0.023822 0.024901 0.02685 0.032806

and exact solution

𝑢 (𝑥, 𝑡) =
1

𝑡 + 2
+

𝑒
−(𝑥+𝑡)

(𝑡 + 2)
2
. (54)

For this example, the linear operator 𝐹 and nonlinear opera-
tor 𝐺 are chosen as

𝐹 (𝑢) = 𝑢
󸀠󸀠󸀠

, 𝐺 (𝑢) = (𝑢
󸀠

)
2

− 𝑢
2

. (55)

4. Results and Discussion

In this section we present the numerical solutions obtained
using the BI-SQLM algorithm. The number of collocation
points in the space 𝑥 variable used to generate the results is
𝑁
𝑥

= 10 in all cases. Similarly, the number of collocation
points in the time 𝑡 variable used is 𝑁

𝑡
= 10 in all cases. It

was found that sufficient accuracy was achieved using these
values in all numerical simulations.
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Table 11: Maximum errors 𝐸
𝑁

for the modified KdV-Burgers
equation, with𝑁

𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 2.137𝑒 − 007 3.820𝑒 − 010 4.846𝑒 − 013 9.998𝑒 − 013

0.4 2.480𝑒 − 007 4.267𝑒 − 010 5.596𝑒 − 013 8.775𝑒 − 013

0.6 2.691𝑒 − 007 4.676𝑒 − 010 6.565𝑒 − 013 2.054𝑒 − 012

0.8 2.214𝑒 − 007 3.979𝑒 − 010 8.776𝑒 − 013 1.168𝑒 − 012

1.0 2.538𝑒 − 007 4.463𝑒 − 010 9.650𝑒 − 013 8.410𝑒 − 013

1.2 2.650𝑒 − 007 4.680𝑒 − 010 7.450𝑒 − 013 5.113𝑒 − 013

1.4 2.383𝑒 − 007 4.296𝑒 − 010 7.500𝑒 − 013 1.110𝑒 − 012

1.6 2.568𝑒 − 007 4.572𝑒 − 010 9.704𝑒 − 013 2.837𝑒 − 013

1.8 2.520𝑒 − 007 4.529𝑒 − 010 7.443𝑒 − 013 5.353𝑒 − 013

2.0 2.370𝑒 − 007 4.438𝑒 − 010 2.719𝑒 − 013 8.849𝑒 − 013

CPU
time
(sec)

0.062066 0.081646 0.080718 0.10775

Table 12: Maximum errors 𝐸
𝑁
for the highly nonlinear modified

KdV equation, with𝑁
𝑡
= 10.

𝑡 \ 𝑁
𝑥

4 6 8 10
0.2 1.986𝑒 − 008 1.119𝑒 − 011 7.398𝑒 − 013 7.171𝑒 − 013

0.4 8.010𝑒 − 005 3.577𝑒 − 007 3.902𝑒 − 008 1.979𝑒 − 010

0.6 7.235𝑒 − 005 2.549𝑒 − 007 2.016𝑒 − 008 4.899𝑒 − 010

0.8 6.284𝑒 − 005 1.663𝑒 − 007 1.155𝑒 − 007 2.679𝑒 − 010

1.0 1.642𝑒 − 005 1.620𝑒 − 007 1.243𝑒 − 007 2.474𝑒 − 010

1.2 2.753𝑒 − 005 1.073𝑒 − 007 1.073𝑒 − 007 1.679𝑒 − 010

1.4 3.738𝑒 − 006 8.971𝑒 − 008 8.598𝑒 − 008 4.788𝑒 − 011

1.6 1.223𝑒 − 005 2.153𝑒 − 008 2.503𝑒 − 008 2.941𝑒 − 011

1.8 5.836𝑒 − 006 2.986𝑒 − 008 9.127𝑒 − 009 5.177𝑒 − 011

2.0 9.310𝑒 − 006 6.548𝑒 − 008 7.277𝑒 − 008 1.453𝑒 − 009

CPU
time
(sec)

0.020609 0.021241 0.030617 0.032816

In Tables 1, 2, 3, 4, 5, and 6 we give the maximum
errors between the exact and BI-SQLM results for the Fisher
equation, Burgers-Fisher equation, Fitzhugh-Nagumo equa-
tion, Burgers-Huxley equation, the modified KdV-Burgers
equation, and the modified KdV equation, respectively, at
𝑡 ∈ [0.1, 1]. The results were computed in the space domain
𝑥 ∈ [0, 1]. To give a sense of the computational efficiency of
the method, the computational time to generate the results
is also given. Tables 1–6 clearly show the accuracy of the
method. The accuracy is seen to improve with an increase
in the number of collocation points 𝑁

𝑥
. It is remarkable to

note that accurate results with errors of order up to 10
−14

are obtained using very few collocation points in both the 𝑥

and 𝑡 variables 𝑁
𝑡
≤ 10, 𝑁

𝑥
≤ 10. This is a clear indication

that the BI-SQLM is powerful method that is appropriate
in solving nonlinear evolution PDEs. We remark, also, that
the BI-SQLM is computationally fast as accurate results are
generated in a fraction of a second in all the examples
considered in this work.
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Figure 1: Fishers equation analytical solution graph.
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Figure 2: Burger-Fishers equation analytical solution graph.

In Tables 7, 8, 9, 10, 11, and 12 we give the maxi-
mum errors of the BI-SQLM results for the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and themodified KdV equation, respectively, at selected
values of 𝑡 = 2 for different collocation points, 𝑁

𝑡
, in the

𝑡-variable. The results in Tables 7–12 were computed on the
space domain 𝑥 ∈ [0, 1]. We note that the accuracy does not
detoriate when 𝑡 > 1 for this method as is often the case with
numerical schemes such as finite differences.
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Figure 4: Burgers-Huxley equation analytical solution graph.

Figures 1, 2, 3, 4, 5, and 6 show a comparison of the
analytical and approximate solutions of the Fisher equa-
tion, Burgers-Fisher equation, Fitzhugh-Nagumo equation,
Burgers-Huxley equation, the modified KdV-Burgers equa-
tion, and the modified KdV equation, respectively, when 𝑡 =

2. The approximate solutions are in excellent agreement with
the analytical solutions, and this demonstrates the accuracy
of the algorithm presented in this study.

In Figures 7, 8, 9, 10, 11, and 12, we present error analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
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Figure 5: Modified KdV-Burger equation analytical solution graph.
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Figure 6: Modified KdV equation analytical solution graph.

modified KdV-Burgers equation, and the modified KdV
equation, respectively, when 𝑡 = 2.

In Figures 13, 14, 15, 16, 17, and 18, convergence analysis
graphs for the Fisher equation, Burgers-Fisher equation,
Fitzhugh-Nagumo equation, Burgers-Huxley equation, the
modified KdV-Burgers equation, and the modified KdV
equation, respectively. The figures present a variation of the
error norm at a fixed value of time (𝑡 = 1) with iterations
of the BI-SQLM scheme. It can be seen that, in almost all
the examples considered, the iteration scheme takes about
3 or 4 iterations to converge fully. Beyond the point where
full convergence is reached, error norm levels off and does
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The error graph of the Burgers-Fisher equation
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The error graph of the Fitzhurg-Nagumo equation
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Figure 9: Fitzhugh-Nagumo equation error graph.

The error graph of the Burger-Huxley equation
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The error analysis graph of the modified KdV-Burger equation
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not improve with an increase in the number of iterations.
This plateau level gives an estimate of the maximum error
that can be achieved when using the proposed method with
a certain number of collocation points. It is worth remarking
that the accuracy of the method depends on the number of
collocation points in both the 𝑥 and 𝑡 directions. The results
from Figures 13–18 clearly demonstrate that the BI-SQLM is
accurate.

5. Conclusion

This paper has presented a new Chebyshev collocation
spectral method for solving general nonlinear evolution
partial differential equations.The bivariate interpolated spec-
tral quasilinearisation method (BI-SQLM) was developed
by combining elements of the quasilinearisation method
and Chebyshev spectral collocation with bivariate Lagrange
interpolation.Themain goal of the current studywas to assess
the accuracy, robustness, and effectiveness of the method in
solving nonlinear partial differential equations.

Numerical simulations were conducted on the modified
KdV-Burger equation, highly nonlinear modified KdV equa-
tion, the Fisher equation, Burgers-Fisher equation, Fitzhugh-
Nagumo equation, andBurgers-Huxley equation. It is evident
from the study that the BI-SQLM gives accurate results in
a computationally efficient manner. Further evidence from
this study is that the BI-SQLM gives solutions that are
uniformly accurate and valid in large intervals of space and
time domains. The apparent success of the method can be
attributed to the use of the Chebyshev spectral collocation
method with bivariate Lagrange interpolation in space and
time for differentiating. This work contributes to the existing
body of literature on quasilinearisation tools for solving
complex nonlinear partial differential equations. Further
work needs to be done to establish whether the BI-SQLM can
be equally successful in solving coupled systems of equations.
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Appendix B

BSRM

This article is about the bivariate spectral relaxation method for unsteady three dimensional

magneto hydrodynamic flow and mass transfer in a porous media. The material appears in

Chapter 4 of this thesis.
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On a bivariate spectral relaxation 
method for unsteady magneto‑hydrodynamic 
flow in porous media
Vusi M. Magagula1†, Sandile S. Motsa1†, Precious Sibanda1*†  and Phumlani G. Dlamini2†

Introduction
This work describes a new approach to the solution of a system of four partial differ-
ential equations that model the flow of unsteady three-dimensional magneto-hydrody-
namic flow and mass transfer in porous media. As reported in Hayat et al. (2010), such 
equations arise in many applications including the aerodynamic extrusion of plastic 
sheets, the cooling of metallic sheets in a cooling bath and the manufacture of artificial 
film and fibers. Due to these important applications, many researchers have dedicated 
time and effort in studying these kind of problems and finding their solutions. The par-
ticular model equations considered in this work have been solved in Hayat et al. (2010) 
using the homotopy analysis method (HAM) and more recently, by Motsa et al. (2014a) 
using the spectral relaxation method (SRM) and the spectral quasilinearization method 

Abstract 

The paper presents a significant improvement to the implementation of the spec-
tral relaxation method (SRM) for solving nonlinear partial differential equations that 
arise in the modelling of fluid flow problems. Previously the SRM utilized the spectral 
method to discretize derivatives in space and finite differences to discretize in time. 
In this work we seek to improve the performance of the SRM by applying the spectral 
method to discretize derivatives in both space and time variables. The new approach 
combines the relaxation scheme of the SRM, bivariate Lagrange interpolation as well 
as the Chebyshev spectral collocation method. The technique is tested on a system of 
four nonlinear partial differential equations that model unsteady three-dimensional 
magneto-hydrodynamic flow and mass transfer in a porous medium. Computed 
solutions are compared with previously published results obtained using the SRM, the 
spectral quasilinearization method and the Keller-box method. There is clear evidence 
that the new approach produces results that as good as, if not better than published 
results determined using the other methods. The main advantage of the new approach 
is that it offers better accuracy on coarser grids which significantly improves the com-
putational speed of the method. The technique also leads to faster convergence to the 
required solution.
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(SQLM). The HAM has been used extensively by researchers working on such prob-
lems Abbas et al. (2008), Ahmad et al. (2008), Ali and Mehmood (2008), Mehmood et al. 
(2008), Alizadeh-Pahlavan and Sadeghy (2009), Fan et al. (2010), Xu et al. (2007), You 
et al. (2010). It is an analytic method for approximating solutions of differential equa-
tions developed by Liao (2012). The homotopy analysis method is an analytic method 
where accuracy and convergence are achieved by increasing the number of terms of the 
solution series. In some cases, such as when a large embedded physical parameter mul-
tiplies the nonlinear terms, far too many terms may be required to give accurate results. 
Retaining too many terms in the solution series is cumbersome, even with the use of 
symbolic computing software. The use of the HAM further depends on other arbitrarily 
introduced parameters such as the convergence controlling parameter which must be 
carefully selected through a separate procedure.

A popular numerical method used by many researchers to solve unsteady boundary 
layer flow problems is the Keller-box method Ali et al. (2010a, b), Lok et al. (2010), Nazar 
et  al. (2004a, b). The Keller-box method is a finite difference based implicit numeri-
cal scheme which was developed by Cebeci and Bradshaw (1984). Recently, Motsa 
et al. (2014a, b) used spectral based relaxation and quasilinearization schemes to solve 
unsteady boundary layer problems. These schemes are accurate, easy to implement and 
are computationally efficient. As observed in Motsa et al. (2014a), the limitation of the 
spectral quasilinearization method is that the coupled high-order system of differential 
equations may often lead to very large systems of algebraic equations that may require 
significant computing resources. In addition, the actual process of developing the solu-
tion algorithm is time-consuming in comparison to SRM. This is because with SQLM, 
the process begins with the quasi-linearization step whereas with SRM the iteration 
scheme is obtained directly by requiring some terms to be evaluated at the current itera-
tion and others at the previous iteration. The SRM works much like the familiar Gauss-
Seidel iteration by decoupling a system of non-linear PDEs into a system of linear PDEs 
which are then solved in succession. Consequently, the SRM is easy to implement and 
computationally efficient.

Both the original SRM and SQLM used in Motsa et al. (2014a) use finite differences 
to discretize derivatives in time. This is a disadvantage because finite difference schemes 
are known to converge slower than spectral methods. The use of finite differences effec-
tively nullifies the benefits of fast convergence when spectral collocation is used to dis-
cretize in space. Furthermore, finite differences require fine grids with very small step 
sizes to guarantee accuracy, hence there is a huge computation time overhead each time 
the grid is refined. This paper provides a different approach to the implementation of the 
spectral relaxation method introduced in Motsa et al. (2014a). The innovation is that the 
spectral collocation method is used to discretize derivatives in both space and time. As a 
result, there are uniform convergence benefits in both directions. The scheme uses fewer 
grid points in space and time and thus it converges very fast. We refer to the improved 
SRM as the bivariate interpolation spectral relaxation method (BI-SRM). To test the via-
bility of this innovation as a solution method, we have solved the coupled system of third 
and second order partial differential equations that describe a boundary-layer system. 
A careful comparison of the new results is made with the earlier SRM, SQLM and the 
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Keller-box results reported in Motsa et al. (2014a). We particularly compare the compu-
tational times for the different methods to reach the same level of accuracy.

Model equations
We consider the unsteady and three-dimensional flow of a viscous fluid over a stretch-
ing surface investigated by Hayat et al. (2010). The fluid is electrically conducting in the 
presence of a constant applied magnetic field B0. The induced magnetic field is neglected 
under the assumption of a small magnetic Reynolds number. The flow is governed by the 
following four dimensionless partial differential equations

with the following boundary conditions

In the above equations prime denotes the derivative with respect to η, c the stretching 
parameter is a positive constant. M is the local Hartman number, � the local porosity 
parameter, Sc the Schmidt number, Pr the Prandtl number and γ the chemical reaction 
parameter. The initial unsteady solution can be found exactly by setting ξ = 0 in the 
above equations and solving the resulting equations. The closed form analytical solu-
tions are given by

(1)f ′′′ + (1− ξ)

(

η

2
f ′′ − ξ

∂f ′

∂ξ

)

+ ξ

[

(f + g)f ′′ − (f ′)2 −M2f ′ − �f ′
]

= 0,

(2)g ′′′ + (1− ξ)

(

η

2
g ′′ − ξ

∂g ′

∂ξ

)

+ ξ

[

(f + g)g ′′ − (g ′)2 −M2g ′ − �g ′
]

= 0,

(3)

θ ′′ + Pr(1− ξ)

(

η

2
θ ′ − ξ

∂θ

∂ξ

)

+ Prξ(f + g)θ ′ = 0,

φ′′ + Sc(1− ξ)

(

η

2
φ′ − ξ

∂φ

∂ξ

)

+ Scξ(f + g)φ′ − γ Scξφ = 0

(4)f (ξ , 0) = g(ξ , 0) = 0, f ′(ξ , 0) = θ(ξ , 0) = φ(ξ , 0) = 1,

(5)f ′(ξ ,∞) = g ′(ξ ,∞) = θ(ξ ,∞) = φ(ξ ,∞) = 0,

(6)g ′(ξ , 0) = c

(7)f (0, η) = η erfc
(η

2

)

+
2

√
π

[

1− exp

(

−
η2

4

)]

,

(8)g(0, η) = c

(

η erfc
(η

2

)

+
2

√
π

[

1− exp

(

−
η2

4

)])

,

(9)θ(0, η) = erfc

(√
Prη

2

)

,

(10)
φ(0, η) = erfc

(√
Scη

2

)

.
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Bivariate interpolated spectral relaxation method (BI‑SRM)
In this section we introduce the Bivariate Interpolated Spectral Relaxation Method (BI-
SRM) for solving the system of nonlinear partial differential equations (1)–(3). Applying 
the relaxation scheme Motsa et al. (2014a) to the system of nonlinear partial differential 
equations gives the following linear partial differential equations;

subject to

where the variable coefficients are given by

and r and r + 1 denote previous and current iterations respectively. The system of linear 
partial differential equations (11)–(14) is discretised using the Chebyshev spectral col-
location both in space (η) and time (ξ) directions. The Chebyshev collocation method is 
valid in the domain [−1, 1] in space and time. Therefore, the physical region, ξ ∈ [0, 1] 
is converted to the region t ∈ [−1, 1] using a linear transformation and similarly, 
η ∈ [0, L∞] is converted to the region x ∈ [−1, 1]. The system of linear partial differential 
equations (11)–(14) is decoupled. Therefore, each equation can be solved independently 
of the other equations in the system. We assume that the solution to Eq.  (11) can be 
approximated by a bivariate Lagrange interpolation polynomial of the form

(11)f ′′′r+1 + α1,r f
′′
r+1 + α2,r f

′
r+1 + α3,r fr+1 − ξ(1− ξ)

∂f ′r+1

∂ξ
= R1,r ,

(12)g ′′′r+1 + β1,rg
′′
r+1 + β2,rg

′
r+1 + β3,rgr+1 − ξ(1− ξ)

∂g ′r+1

∂ξ
= R2,r ,

(13)θ ′′r+1 + σ1,rθ
′
r+1 + σ2,rθr+1 − Prξ(1− ξ)

∂θr+1

∂ξ
= R3,r ,

(14)φ′′
r+1 + ω1,rφ

′
r+1 + ω2,rφr+1 − Scξ(1− ξ)

∂φr+1

∂ξ
= R4,r ,

(15)

fr+1(ξ , 0) = gr+1(ξ , 0) = 0, f ′r+1(ξ , 0) = θr+1(ξ , 0) = φr+1(ξ , 0) = 1,

f ′r+1(ξ ,∞) = g ′r+1(ξ ,∞) = θr+1(ξ ,∞) = φr+1(ξ ,∞) = 0,

g ′r+1(ξ , 0) = c

α1,r =
1

2
η(1− ξ)+ ξgr , α2,r = −ξ(M2 + �), α3,r = 0,

β1,r =
1

2
η(1− ξ)+ ξ fr , β2,r = −ξ(M2 + �), β3,r = 0,

σ1,r = Pr

(

1

2
η(1− ξ)+ ξ(fr + gr)

)

, σ2,r = 0

ω1,r = Sc

(

1

2
η(1− ξ)+ ξ(fr + gr)

)

, ω2,r = −γ Sc ξ

R1,r = ξ(f ′)2r − ξ fr f
′′
r , R2,r = ξ(g ′)2r − ξgrg

′′
r , R3,r = 0, R4,r = 0

(16)f (η, ξ) ≈
Nx
∑

p=0

Nt
∑

j=0

f (xp, tj)Lp(x)Lj(t),
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which interpolates f (η, ξ) at selected points in both the η and ξ directions defined by

The Chebyshev–Gauss–Lobatto grid points (17) ensures that there is a simple conver-
sion of the continuous derivatives, in both space and time, to discrete derivatives at the 
grid points. The characteristic Lagrange cardinal polynomial Lp(x) is defined as

where

Similarly, we define the function Lj(t). Equation  (16) is then substituted into Eq.  (11). 
An important step in the implementation of the solution procedure is the evaluation of 
the derivatives of Lp(x) and Lj(t) with respect to x and t respectively. The derivative of 
f (η, ξ) with respect to ξ at the Chebyshev–Gauss–Lobatto points (xs, ti), is computed as

where dij =
dLj(ti)

dt
 are the entries of the standard first derivative Chebyshev differen-

tiation matrix d = [dij] of size (Nt + 1)× (Nt + 1) as defined in Trefethen (2000) for 
i, j = 0, 1, . . . ,Nt. Similarly, we compute the derivative of f (η, ξ) with respect to η at the 
Chebyshev-Gauss-Lobatto points (xs, ti), as follows

where Dsp = dLp(xs)

dx
, are the entries of the standard first derivative Chebyshev differenti-

ation matrix of size (Nx + 1)× (Nx + 1). Therefore, an nth order derivative with respect 
to η is given by

(17){xp} =
{

cos

(

πp

Nx

)}Nx

p=0

, {tj} =
{

cos

(

π j

Nt

)}Nt

j=0

.

(18)
Lp(x) =

Nx
∏

p=0

p �=s

x − xs

xp − xs
,

(19)Lp(xs) = δps =
{

0 if p �= s
1 if p = s

(20)
∂f

∂ξ

∣

∣

∣

∣

(xs ,ti)

= 2

Nx
∑

p=0

Nt
∑

j=0

f (xp, tj)Lp(xs)
dLj(ti)

dt

(21)= 2

Nt
∑

j=0

dijf (xs, tj) =
Nt
∑

j=0

dijFj

(22)
∂f

∂η

∣

∣

∣

∣

(xs ,ti)

=
(

2

L∞

) Nx
∑

p=0

Nt
∑

j=0

f (xp, tj)
dLp(xs)

dx
Lj(ti)

(23)=
(

2

L∞

) Nx
∑

p=0

Dspf (xp, ti) = DFi,

(24)
∂nf

∂ηn

∣

∣

∣

∣

(xs ,tj)

=
(

2

L∞

)n Nx
∑

p=0

Dn
spf (xp, ti) = D

n
Fi, i = 0, 1, 2, . . . ,Nx,



Page 6 of 15Magagula et al. SpringerPlus  (2016) 5:455 

The vector Fi is defined as

where the superscript T denotes matrix transpose. Collocating using Eqs. (24) and (21) 
on (11), we get

where αααv,r (v = 1, 2, 3) is the diagonal matrix of the vector 
[αv,r(x0),αv,r(x1), . . . ,αv,r(xNx )]T and R1,r = [R1,r(x0),R1,r(x1), . . . ,R1,r(xNx )]T . The 
boundary equations are given by

The initial unsteady solution given by equation (7) corresponds to t = tNt = −1. There-
fore, we evaluate Eq. (26) for i = 0, 1, . . . ,Nt − 1. Equation (26) can be expressed as

where

and FNt is the known initial unsteady solution given by equation (7). Imposing bound-
ary conditions for i = 0, 1, . . . ,Nt − 1, Eq.  (28) can be expressed as the following 
Nt(Nx + 1)× Nt(Nx + 1) matrix system

where

Imposing initial boundary conditions and applying the Chebyshev bivariate collocation 
as described above on Eqs. (12), (13) and (14) we get

(25)Fi = [fi(x0), fi(x1), . . . , fi(xNx )]T .

(26)
[

D
3 + ααα1,rD

2 + ααα2,rD+ ααα3,r

]

Fr+1,i − ξi(1− ξi)

Nt
∑

j=0

dijDFr+1,j = R1,r , i = 0, 1, 2, . . . ,Nt ,

(27)fr+1,i(xNx ) = 0, f ′r+1,i(xNx ) = 1, f ′r+1,i(x0) = 0,

(28)
[

D
3 + ααα1,rD

2 + ααα2,rD+ ααα3,r

]

Fr+1,i − ξi(1− ξi)

Nt−1
∑

j=0

dijDFr+1,j = R1,i, i = 0, 1, 2, . . . ,Nt ,

R1,i = R1,r + ξi(1− ξi)diNtDFNt ,

(29)









A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1

...
...

. . .
...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1

















F0

F1

...
FNt−1









=









R1,0

R1,1

...
R1,Nt−1









,

(30)Ai,i = D
3 + ααα1,rD

2 + ααα2,rD+ ααα3,r − ξi(1− ξi)diiD

(31)Ai,j = −ξi(1− ξi)dijD, when i �= j,

(32)
[

D
3 + βββ1,rD

2 + βββ2,rD+ βββ3,r

]

Gr+1,i − ξi(1− ξi)

Nt−1
∑

j=0

dijDGr+1,j = R2,i,

(33)
[

D
2 + σσσ 1,rD+ σσσ 2,r

]

���r+1,i − Prξi(1− ξi)

Nt−1
∑

j=0

dij���r+1,j = R3,i,
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where

and the vectors GNt, ���Nt and ���Nt are the known initial unsteady solutions given by Eqs. 
(8), (9) and (10) respectively. Imposing boundary conditions for i = 0, 1, . . . ,Nt − 1, 
equations (32), (33) and (34) can be expressed as the following Nt(Nx + 1)× Nt(Nx + 1) 
matrix system

where

and I is the standard (Nx + 1)× (Nx + 1) identity matrix. We obtain the numerical 
solutions for g(η, ξ), θ(η, ξ) and φ(η, ξ) by solving matrix equations (38), (39) and (40) 

(34)
[

D
2 +ωωω1,rD+ωωω2,r

]

���r+1,i − Scξi(1− ξi)

Nt−1
∑

j=0

dij���r+1,j = R4,i,

(35)R2,i = R2,r + ξi(1− ξi)diNtDGNt ,

(36)R3,i = R3,r + Prξi(1− ξi)diNt���Nt ,

(37)R4,i = R4,r + Scξi(1− ξi)diNt���Nt ,

(38)









B0,0 B0,1 · · · B0,Nt−1

B1,0 B1,1 · · · B1,Nt−1

...
...

. . .
...

BNt−1,0 BNt−1,1 · · · BNt−1,Nt−1

















G0

G1

...
GNt−1









=









R2,0

R2,1

...
R2,Nt−1









,

(39)









C0,0 C0,1 · · · C0,Nt−1

C1,0 C1,1 · · · C1,Nt−1

...
...

. . .
...

CNt−1,0 CNt−1,1 · · · CNt−1,Nt−1

















���0

���1

...
���Nt−1









=









R3,0

R3,1

...
R3,Nt−1









,

(40)









E0,0 E0,1 · · · E0,Nt−1

E1,0 E1,1 · · · E1,Nt−1

...
...

. . .
...

ENt−1,0 ENt−1,1 · · · ENt−1,Nt−1

















���0

���1

...
���Nt−1









=









R4,0

R4,1

...
R4,Nt−1









,

(41)Bi,i = D
3 + βββ1,rD

2 + βββ2,rD+ βββ3,r − ξi(1− ξi)diiD

(42)Bi,j = −ξi(1− ξi)dijD, when i �= j,

(43)Ci,i = D
2 + σσσ 1,rD+ σσσ 2,r − Prξi(1− ξi)diiI

(44)Ci,j = −Prξi(1− ξi)dijI, when i �= j,

(45)Ei,i = D
2 +ωωω1,rD+ωωω2,r − Scξi(1− ξi)diiI

(46)Ei,j = −Scξi(1− ξi)dijI, when i �= j,
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iteratively for r = 1, 2, . . .M, where M is the number of iterations to be used. Equations 
(8), (9) and (10) are used as initial guesses.

Results and discussion
In this section we present the numerical solutions of the three dimensional unsteady 
three dimensional magneto-hydrodynamic flow and mass transfer in a porous media 
obtained using the BI-SQLM algorithm. In our computations the η domain was trun-
cated to η∞ = 20. This value gave accurate results for all the quantities of physical inter-
est. To get accurate solutions, Nx = 60 collocation points were used to discretize the 
space variable η and only Nt = 10 collocation points were enough for the time variable ξ.

As earlier mentioned, this problem has been solved before by Motsa et  al. (2014a) 
using the spectral relaxation method (SRM), spectral quasilinearization method (SQLM) 
and the Keller-box method. The results from their paper combined with the present 
results of the BI-SRM are shown in Table 1. It can be observed from the table that the 
Keller-box method takes a significant amount of computational time than the SRM and 
SQLM. This is because the Keller-box is entirely based on finite difference schemes while 
the SRM and SQLM only uses finite differences in the time variable. In the space varia-
ble both the SRM and SQLM use spectral method. It is well documented from literature 

Table 1 Values of  f ′′(0, ξ), g′′(0, ξ), θ ′(0, ξ) and  φ′(0, ξ) when  � = 0.5,M = 2, c = 0.5,

Sc = γ = 1,Pr = 1.5

ξ BI-SRM SRM SQLM Keller-box
(Nt = 10) (Nt = 2000) (Nt = 2000) (Nt = 2000)

f ′′(0, ξ)

0.1 −0.851257 −0.851257 −0.851257 −0.851257

0.3 −1.316705 −1.316705 −1.316705 −1.316705

0.5 −1.685306 −1.685306 −1.685306 −1.685306

0.7 −1.992608 −1.992608 −1.992608 −1.992608

0.9 −2.259335 −2.259335 −2.259335 −2.259335

g′′(0, ξ)

0.1 −0.417150 −0.417150 −0.417150 −0.417150

0.3 −0.639602 −0.639602 −0.639602 −0.639602

0.5 −0.817649 −0.817649 −0.817649 −0.817649

0.7 −0.966603 −0.966603 −0.966603 −0.966603

0.9 −1.095983 −1.095983 −1.095983 −1.095983

θ ′(0, ξ)

0.1 −0.710882 −0.710882 −0.710882 −0.710882

0.3 −0.742842 −0.742842 −0.742842 −0.742842

0.5 −0.765244 −0.765244 −0.765244 −0.765244

0.7 −0.777270 −0.777270 −0.777270 −0.777270

0.9 −0.770807 −0.770807 −0.770807 −0.770807

φ′(0, ξ)

0.1 −0.634443 −0.634443 −0.634443 −0.634443

0.3 −0.766867 −0.766867 −0.766867 −0.766867

0.5 −0.891207 −0.891207 −0.891207 −0.891207

0.7 −1.010045 −1.010045 −1.010045 −1.010045

0.9 −1.125549 −1.125549 −1.125549 −1.125549

CPU time 0.47 18.90 83.24 900.30
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that spectral methods converge very fast when the solution is smooth. This brought 
about the idea of using spectral methods in both space and time to increase efficiency. 
The BI-SRM discretizes both the space and time domains using spectral methods. From 
the results shown in the table it is evident that the BI-SRM is by far superior than the 
other methods in terms of computational time taken to reach the same level of accuracy. 
In Table  1, we also show the number of grid points required by each of the methods 
to discretize in time. All the finite difference based discretizations required 2000 grid 
points compared to the spectral discretization of the BI-SRM which required only 10 
grid points to reach the same level of accuracy.

The grid independence test for the algorithm is shown in Table 2. The skin friction val-
ues, Nusselt number and Sherwood numbers are the variables used in carrying out the 
grid independence test in Table 2.

The residual error graphs of Eqs. (1)–(3) are presented in Figs. 1, 2, 3 and 4 respec-
tively. In Figs. 1 and 2, we observe that the residual error is reduced with an increase 
in the iterations of the scheme. The rate of reduction of the residual error appears to 
be linear. The residual error is minimum at ξ = 0 and is increased sharply near 0 until 
a certain level is reached after which it is almost constant. The residual error appears 
to be nearly uniform in 0 < ξ ≤ 1 or increases only slightly. It is also observed that the 

Table 2 Values of  f ′′(0, ξ), g′′(0, ξ), θ ′(0, ξ) and  φ′(0, ξ) when  � = 0.5,M = 2,

c = 0.5, Sc = γ = 1,Pr = 1.5

ξ\Nt 5 10 15 20

f ′′(0, ξ)

0.1 −0.85118289 −0.85125725 −0.85125723 −0.85125724

0.3 −1.31678885 −1.31670509 −1.31670508 −1.31670508

0.5 −1.68525477 −1.68530619 −1.68530619 −1.68530619

0.7 −1.99262557 −1.99260827 −1.99260827 −1.99260827

0.9 −2.25932899 −2.25933501 −2.25933501 −2.25933501

g′′(0, ξ)

0.1 −0.41712280 −0.41715041 −0.41715040 −0.41715040

0.3 −0.63962554 −0.63960199 −0.63960200 −0.63960200

0.5 −0.81764133 −0.81764898 −0.81764898 −0.81764898

0.7 −0.96660357 −0.96660340 −0.96660340 −0.96660340

0.9 −1.09598187 −1.09598304 −1.09598304 −1.09598304

θ ′(0, ξ)

0.1 −0.71037577 −0.71087263 −0.71088151 −0.71088162

0.3 −0.74357007 −0.74283215 −0.74284211 −0.74284190

0.5 −0.76493472 −0.76524664 −0.76524370 −0.76524351

0.7 −0.77722565 −0.77727704 −0.77727014 −0.77727005

0.9 −0.77086219 −0.77080729 −0.77080662 −0.77080662

φ′(0, ξ)

0.1 −0.63444437 −0.63444336 −0.63444326 −0.63444326

0.3 −0.76685596 −0.76686699 −0.76686689 −0.76686689

0.5 −0.89121805 −0.89120664 −0.89120666 −0.89120666

0.7 −1.01004174 −1.01004487 −1.01004494 −1.01004494

0.9 −1.12555031 −1.12554912 −1.12554913 −1.12554913

CPU time 0.13 0.47 1.25 2.47
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order of magnitude of the residual error can be seen to be small in the 0 ≤ ξ ≤ 1 inter-
val. Lastly, after only two iterations the residual error appears to be less than 0.01 in the 
entire range of ξ . The small residual error using only a few iteration points to the accu-
racy of the method. This error can be decreased at a linear rate with an increase in the 
number of iterations. The decrease in the error with additional iterations suggests that 
the iteration scheme converges. It should be noted that when ξ = 0, governing equa-
tions reduce to a linear system that can be solved directly using the spectral collocation 
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method with discretization only in η without the use of relaxation and iterations. This 
explains why the best accuracy is observed at ξ = 0. The near uniformity of the residual 
error in 0 < ξ ≤ 1 can be attributed to the use of Lagrange polynomial basis functions 
whose error is known to be uniformly distributed in the interpolating region. We can 
therefore conclude that the method gives accurate results, the rate of convergence of 
the method is linear and that the method requires only a few iterations to give very 
accurate results.

We observe that the residual error for the first iteration appears to be very small 
in Figs.  3 and 4. The residual error is the same for all iterations greater than one. 
The residual error increases with an increase in ξ. We also observe that the residual 
error is smaller than the one for f and g even when fewer iterations are used. The 
observation that the residual error for the momentum and energy is small even for 
the 1st iteration is perhaps the most interesting finding of the study. This means that 
when using the proposed approach, the best possible results that can be achieved 
by the method can be obtained after using just one iteration. Further increase in the 
number of iterations doesn’t improve the accuracy of the solution. After one itera-
tion of the momentum equations for f and g the energy and mass transfer equations 
reduce to linear homogeneous equations whose solution appears to be margin-
ally influenced by variations in fr and gr for r > 1. Since with just one iteration we 
obtain extremely accurate results for θ and φ, the implication is that in solving for 
energy and momentum equations for such a problem, it is not necessary to iterate. 
It is enough to just use the initial approximation. Is is worth noting that the energy 
and mass transfer equations are homogeneous equations in θ and φ respectively. It 
is possible that the findings obtained in this study are only applicable in such equa-
tions. This has to be investigated further.

The convergence graphs of Eqs.  (1)–(3) are presented in Figs.  5,  6 respectively. In 
Figs.  5 and 6, the residual error decreases linearly with an increase in the number of 
iterations. The residual error is smallest when ξ is near zero and largest when ξ is large. 
This is seen from the convergence level which is near 10−20 for ξ = 0.25 and about 10−15 
for ξ = 0.75. The slope of the residual error graphs is the same for all values of ξ. Full 
convergence is achieved after 13 iterations for both ξ = 0.75 and ξ = 1. For ξ = 0.25 full 
convergence is achieved after 16 iterations but at a much smaller magnitude of residual 
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error. The decrease in the residual error with increase in iterations suggests that the iter-
ation scheme converges. Small residual error near zero suggests that best accuracy (after 
full convergence) is observed near zero. The method converges (fewer iterations needed 
to attain full convergence) at or near ξ = 1. However, the convergence efficiency doesn’t 
translate to better accuracy because, as can be seen for the case of ξ values near zero, 
the convergence level is 10−16. The same slope for all the graphs means that the conver-
gence rates of the method is the same for all values of ξ. The method is convergent and 
very accurate in whole time domain ξ ∈ [0, 1] which translates to τ ∈ [0,∞). The method 
converges with nearly the same convergence rate for all values of ξ. The method gives the 
best accuracy near ξ = 0 and less accurate, comparatively, at or near ξ = 1. We note that 
even at ξ = 1, the method gives very accurate results with a residual error norm of about 
10−15. This is one of the highlights of this investigation.

The accuracy of the solutions for energy and mass transfer equations are not depend-
ent on successive relaxation or iterations of the momentum equations since the con-
vergence of the solutions doesn’t improve at all with an increase in the number of 
iterations. Hence, the results for θ(η) are not dependent on successive approximations 
for f (η) and g(η). It was observed that it is enough to use one iteration of f (η) to give 
accurate result for θ(η).
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In Table 1, we present the results we obtained using the algorithm. The skin friction 
values, Nusselt number and Sherwood number for various values of ξ are displayed in 
Table 1. The results obtained using the method match those obtained using other meth-
ods. Computing time for the BI-SRM is much smaller than the other methods it is com-
pared with. The method gives valid results when used with few collocation points. In 
particular, the BI-SRM requires only ten grid points to achieve the same valid results. 
The table validates the results obtained in this study. BI-SRM is computationally fast in 
generating valid results when compared with the SRM, SQLM and Keller-Box. We can 
infer that the BI-SRM is better than finite differences coupled SRM in terms of compu-
tational speed and accuracy and the better accuracy could be the result of applying spec-
tral collocation with uniform accuracy level in both η and ξ directions.

In Tables  3 and 4, the residual errors and convergence rates of g and g when 
� = 0.5,M = 2, c = 0.5, Sc = γ = 1,Pr = 1 are displayed. We observe that the conver-
gence rate is linear and the residual error is smaller near ξ = 0.

Table 3 The residual errors and  convergence rates of  f when  � = 0.5,M = 2, c = 0.5,

Sc = γ = 1,Pr = 1.5

Iter. �Res(f)�∞ Convergence rates

ξ = 0.25 ξ = 0.75 ξ = 1.00 ξ = 0.25 ξ = 0.75 ξ = 1.00

1 2.14× 10−2 2.36× 10−1 3.72× 10−1 1.14 1.00 0.98

2 6.03× 10−4 1.43× 10−2 2.24× 10−2 0.50 1.01 1.01

3 1.05× 10−5 8.58× 10−4 1.43× 10−3 1.53 1.00 1.00

4 1.36× 10−6 5.04× 10−5 8.85× 10−5 1.06 1.01 1.00

5 5.95× 10−8 2.98× 10−6 5.52× 10−6 0.97 1.02 1.00

6 2.18× 10−9 1.70× 10−7 3.40× 10−7 0.99 1.00 1.00

7 8.84× 10−11 9.06× 10−9 2.07× 10−8 0.95 1.00 1.00

8 3.75× 10−12 4.85× 10−10 1.27× 10−9 0.85 0.99 1.00

Table 4 The residual errors and  convergence rates of  g when  � = 0.5,M = 2, c = 0.5,

Sc = γ = 1,Pr = 1.5

Iter. �Res(g)�∞ Convergence Rates

ξ = 0.25 ξ = 0.75 ξ = 1.00 ξ = 0.25 ξ = 0.75 ξ = 1.00

1 4.17× 10−3 4.93× 10−2 7.83× 10−2 0.94 1.01 0.99

2 4.96× 10−5 1.40× 10−3 2.21× 10−3 0.75 1.03 1.04

3 7.66× 10−7 3.81× 10−5 6.39× 10−5 1.26 1.13 1.18

4 3.38× 10−8 9.21× 10−7 1.58× 10−6 1.07 0.76 0.56

5 6.56× 10−10 1.38× 10−8 2.01× 10−8 0.83 0.68 0.92

6 9.49× 10−12 5.75× 10−10 1.78× 10−9 1.00 1.27 1.18

7 2.82× 10−13 6.58× 10−11 1.93× 10−10 0.89 1.08 1.04

8 8.39× 10−15 4.19× 10−12 1.39× 10−11 0.95 1.00 1.00
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Conclusion
The aim of this work was to describe the bivariate spectral relaxation method for sys-
tems of coupled partial differential equations. This technique extends the previous spec-
tral relaxation method of Motsa et al. (2014a) to allow for discretization of both time and 
space derivatives using spectral collocation methods. The following conclusions can be 
drawn regarding this method;

  • The method gives accurate results in the whole space and time domains ξ ∈ [0, 1] 
and τ ∈ [0,∞) with residual errors rapidly approaching zero.

  • The application of spectral collocation to both time and space derivatives ensures 
that the method performs significantly better than the SRM and the Keller-Box 
method in terms of computational time.

  • The algorithm involves the usage of known formulas for discretization using Cheby-
shev spectral collocation.

  • In future we intend to show that the technique can be extended to coupled non-
linear systems in three-dimensions.
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MD-BSQLM

This article is about the multi-domain bivariate quasilinearisation method for nonlinear evolution

equations. It appears in Chapter 7 of this thesis.
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In this paper, we present a new general approach for solving nonlinear evolution partial
differential equations. The novelty of the approach is in the combination of spectral
collocation and Lagrange interpolation polynomials with Legendre–Gauss–Lobatto grid
points to descritize and solve equations in piece-wise defined intervals. The method
is used to solve several nonlinear evolution partial differential equations, namely, the
modified KdV–Burgers equation, modified KdV equation, Fisher’s equation, Burgers–
Fisher equation, Burgers–Huxley equation and the Fitzhugh–Nagumo equation. The
results are compared with known analytic solutions to confirm accuracy, convergence and
to get a general understanding of the performance of the method. In all the numerical
experiments, we report a high degree of accuracy of the numerical solutions. Strategies
for implementing various boundary conditions are discussed.

Keywords: Multi-domain; bivariate interpolation; spectral quasilinearization method;
evolution equations; Legendre–Gauss–Lobatto grid points.

1. Introduction

Evolution nonlinear partial differential equations (NPDEs) are useful for model-

ing many naturally occurring phenomena. There are different variants of evolution

NPDE’s, such as, for example, NPDEs that model traveling wave fronts which have

major applications in chemistry, biology and medicine [Sherratt (1998)]. NPDEs

also arise in various science and engineering fields, such as in shock wave forma-

tion, turbulence, heat conduction, traffic flow, gas dynamics, sound waves in viscous

medium, [Nawaz et al. (2013); Mittal and Jiwari (2009a; 2009b); Mittal and Tripathi

(2014); Kheiri and Ebadi (2010); Jiwari et al. (2012)]).

It is however difficult to obtain analytic solutions of NPDE’s due to their nonlin-

earity and complexities over large time domains. For this reason, there is always a

∗Corresponding author.
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need to develop numerical methods that are computationally fast, converge quickly

and are accurate. Pseudospectral methods have such qualities. They have been used,

and often preferred, because they use a few grid points to achieve a high degree of

numerical accuracy, and because they use few grid points, they generally require

minimal computational time.

Spectral methods with Lagrange interpolation polynomials and Legendre–

Gauss–Lobatto grid points have been used to solve various differential equations.

For example, they have been used to solve ordinary differential equations [Adibi

and Rismani (2010); Rismani and Monfared (2012); Pandey et al. (2012)], optimal

control problems [Wu and Wang (2009); Elnagar and Kazemi (1997); Fahroo and

Ross (2001); Tian and Zong (2010)] and partial differential equations [Wang and

Guo (2008); Ma (2001); Wu et al. (2003); Li et al. (2000); Shamsi and Dehghan

(2006); Ma and Sun (2000); Bhrawy (2013); Shamsi and Dehghan (2012); Bhrawy

et al. (2015)]. Li et al. [2000], Shamsi and Dehghan [2006], and Ma and Sun [2000],

approximated space derivatives using pseudospectral methods and time derivatives

using finite differences when solving NPDEs. Finite differences generally require a

large set of grid points for the underlying method to converge. On the other hand,

pseudospectral methods are more accurate, and use few Legendre–Gauss–Lobatto

grid points to achieve accurate results and hence are computationally faster com-

pared to finite differences. Applying pseudospectral methods in space, and finite

differences in time however leads to a slower and less accurate solution.

Motsa et al. [2014] used spectral collocation independently in both space and

time in order to improve the accuracy and computational speed in numerical simu-

lations. The method introduced in Motsa et al. [2014] uses a quasilinearization tech-

nique developed by Bellman and Kalaba [1965], the Chebyshev spectral collocation

method and bivariate Lagrange interpolation with Chebyshev–Gauss–Lobatto grid

points. The numerical method gave accurate results for smaller time domains. The

level of accuracy however deteriorated with an increase in the time domain. Also,

numerical experiments have shown that using Legendre–Gauss–Lobatto grid points

lead to slightly accurate solutions. In this paper, we propose to extend the work of

Motsa et al. [2014] by using the multi-domain approach in the time variable. This

leads to significant improvements in the accuracy of the method for large values of

time t. To ensure improved accuracy, we use Legendre–Gauss–Lobatto grid points

in the algorithm instead of Chebyshev–Gauss–Lobatto grid points. Linear forms of

the evolution partial differential equations are obtained by using the quasilineariza-

tion method. The pseudospectral collocation method is applied independently both

in space and time variables of the linearized equations. The multi-domain approach

is used only in the time variable t which is divided into small nonoverlapping sub-

intervals on which the pseudospectral collocation method is used to solve the par-

tial differential equations. The continuity condition is used to advance the solution

across the sub-intervals. A similar approach has been used previously to solve sys-

tems of first-order chaotic initial values problems [Dlamini et al. (2013); Shateyi
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et al. (2014); Motsa et al. (2013); Motsa et al. (2012); Motsa (2012); Motsa and

Sibanda (2012)].

The accuracy, reliability and robustness of the method is tested by solving a

number of nonlinear evolution equations, namely the modified KdV–Burgers, the

modified KdV, Fishers, Burgers–Fisher, Burgers–Huxley and the Fitzhugh–Nagumo

equations. The numerical results are benchmarked against exact solutions. The

order of accuracy of the method and the time taken to compute accurate solutions

are displayed in tables.

The organization of the paper is as follows. In Sec. 2, we introduce the method for

a general nth order nonlinear evolution PDE. In Sec. 3, we describe the application

of the method using various boundary conditions. The numerical experiments and

results are presented in Secs. 4 and 5, respectively. Finally, we conclude in Sec. 6.

2. A Multi-Domain Bivariate Approach

In this section, the multi-domain based Legendre–Gauss–Lobbatto bivariate

Lagrange spectral quasilinearization method for approximating solutions to nonlin-

ear evolution partial differential equations is introduced. Without loss of generality,

we consider an nth order NPDE of the form,

∂u

∂ξ
= H

(
u,

∂u

∂ν
,
∂2u

∂ν2
, . . . ,

∂nu

∂νn

)
, (1)

with the physical region {(ξ, ν) | ξ ∈ [0, T ], ν ∈ [a, b]}. The constant n denotes the

order of differentiation, the required solution is denoted by u(ν, ξ) and H is the non-

linear operator which contains u(ν, ξ) and all the spatial derivatives of u(ν, ξ). The

multi-domain technique approach assumes that the time interval can be decomposed

into p nonoverlapping sub-intervals. Let ξ ∈ Γ where Γ = [0, T ] be the time interval

where the solution of general nonlinear parabolic PDE exists. The sub-intervals are

defined as

Γl = (ξl−1, ξl), l = 1, 2, . . . , p with 0 = ξ0 < ξ1 < ξ2 < · · · < ξp = T. (2)

The main task in the multi-domain approach is determining the solution of Eq. (1)

independently on each sub-interval, one at a time, beginning at the initial condition.

The initial condition is considered to be the left boundary of the time interval. The

computed solution in the first interval is used to compute the solutions in the

remaining l−1 sub-intervals. The computed solution at the right hand boundary of

the first interval is used as an initial condition in the subsequent sub-interval. The

process is repeated until the last sub-interval. The process of matching the solutions

in different intervals along their common boundary is called patching. The patching

condition requires that

u(l)(ν, ξl−1) = u(l−1)(ν, ξl−1), ν ∈ [a, b], (3)
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where u(l)(ν, ξ) denotes the solution of Eq. (1) at each sub-interval Γl. Since the

grid points and differentiation matrices are defined in the interval [−1, 1], then,

in each sub-interval Γl, the time interval {ξl | ξl−1 ≤ ξl ≤ ξl} is transformed to

{t| − 1 ≤ t ≤ 1} using the linear transformation

ξl =
1

2
(ξl − ξl−1)t+

1

2
(ξl + ξl−1). (4)

Similarly, the space region, {ν | a ≤ ν ≤ b} is transformed using the linear transfor-

mation

ν =
1

2
(b− a)x+

1

2
(b+ a). (5)

to the region {x | − 1 ≤ x ≤ 1}. Therefore, in each sub-interval, we are required to

solve the nonlinear parabolic equation

∂u(l)

∂t
= H

(
u(l),

∂u(l)

∂x
,
∂2u(l)

∂x2
, . . . ,

∂nu(l)

∂xn

)
, t ∈ [−1, 1], x ∈ [−1, 1]. (6)

subject to

u(l)(x, tl−1) = u(l−1)(x, tl−1), (7)

where l = 1, 2, . . . , p. The solution method assumes that the solution in each sub-

interval Γl, denoted by u(l)(x, t), can be approximated by a bivariate Lagrange

interpolation polynomial of the form

u(l)(x, t) ≈
Mx∑

i=0

Mt∑

j=0

u(l)(xi, tj)Li(x)Lj(t). (8)

The bivariate Lagrange interpolation polynomial interpolates u(l)(x, t) at carefully

chosen grid points in both x and t directions. The selected grid points in both x and

t directions are respectively given by the roots of the polynomials [Canuto et al.

(1988); Canuto et al. (2007); Voigt et al. (1984)]

p(x) = (1 − x2)P ′
Mx

(x), p(t) = (1 − t2)P ′
Mt

(t), (9)

where P ′
Mt

is the first derivative of the Mt order Legendre polynomial, which is

given by

P ′
Mt

(t) =
Mt(Mt + 1)

(2Mt + 1)

[
PMt−1(t)− PMt+1(t)

1− t2

]
. (10)

The zeros of P ′
Mt

(t) can be computed using any polynomial root finding method.

In this work, the second order Newton’s method was used. These grid points are

termed the Legendre–Gauss–Lobatto grid points. The function Li(x) is the charac-

teristic Lagrange cardinal polynomial based on the Legendre–Gauss–Lobatto points
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[Canuto et al. (1988); Canuto et al. (2007); Voigt et al. (1984)]

Li(x) =

Mx∏

k=0
k �=i

x− xk

xi − xk
. (11)

The characteristic Lagrange cardinal polynomial Li(x) based on the Legendre–

Gauss–Lobatto points, can also be expressed in the form [Canuto et al. (1988);

Canuto et al. (2007); Voigt et al. (1984)]

Li(x) =
1

Mx(Mx + 1)PMx(xi)

(x2 − 1)P ′
Mx

(x)

(x− xi)
. (12)

Equation (6) can be expressed in the form:

H
[
u
(l)
(x,0), u

(l)
(x,1), u

(l)
(x,2), . . . , u

(l)
(x,n)

]
− u

(l)
(t,1) = 0, (13)

where u
(l)
(x,n) denotes the nth partial derivative of u(x, t) with respect to x in the

lth sub-interval. Similarly, u
(l)
(t,1) denotes the first partial derivative of u(x, t) with

respect to t in the lth sub-interval and H is the nonlinear operator. We assume that

the difference u
(l)
(x,0,s+1) − u

(l)
(x,0,s) (note that s and s + 1 denote previous and cur-

rent iterations, respectively.) and all it’s space derivatives are small. The nonlinear

operator H is approximated by using the linear terms of the Taylor series and thus

H
[
u
(l)
(x,0), u

(l)
(x,1), u

(l)
(x,2), . . . , u

(l)
(x,n)

]

≈ H
[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]

+

n∑

k=0

∂H

∂u
(l)
(x,k)

(
u
(l)
(x,k,s+1) − u

(l)
(x,k,s)

)
. (14)

Let

∂H

∂u
(l)
(x,k)

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]

= ω
(l)
k,s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
. (15)

Therefore, Eq. (14) can be expressed as

H
[
u
(l)
(x,0), u

(l)
(x,1), u

(l)
(x,2), . . . , u

(l)
(x,n)

]

≈ H
[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]

+

n∑

k=0

ω
(l)
k,s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
u
(l)
(x,k,s+1)

−
n∑

k=0

ω
(l)
k,s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
u
(l)
(x,k,s) (16)
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Let

R(l)
s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]

=

n∑

k=0

ω
(l)
k,s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
u
(l)
(x,k,s)

−H
[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
. (17)

Equation (16) can be expressed as

H
[
u
(l)
(x,0), u

(l)
(x,1), u

(l)
(x,2), . . . , u

(l)
(x,n)

]

≈
n∑

k=0

ω
(l)
k,s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
u
(l)
(x,k,s+1)

−R(l)
s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
. (18)

Substituting Eq. (18) into Eq. (13), we get

n∑

k=0

ω
(l)
k,su

(l)
(x,k,s+1) − u

(l)
(t,1,s+1)

= R(l)
s

[
u
(l)
(x,0,s), u

(l)
(x,1,s), u

(l)
(x,2,s), . . . , u

(l)
(x,n,s)

]
. (19)

Equation (19) is a linearized form of Eq. (6). The next nontrivial important proce-

dure, termed collocation, is the evaluation of the time derivative at the Legendre–

Gauss–Lobatto grid points tj (j = 0, 1, . . . ,Mt) and the space derivatives at the

Legendre–Gauss–Lobatto grid points xi (i = 0, 1, . . . ,Mx). The values of the time

derivatives are computed at the Legendre–Gauss–Lobatto points (xi, tj), as (for

j = 0, 1, 2, . . . ,Mt)

∂u(l)

∂t

∣∣∣∣
(xi,tj)

=

Mx∑

ρ=0

Mt∑

η=0

u(l)(xρ, tη)Lρ(xi)
dLη(tj)

dt
, (20)

=

Mt∑

η=0

u(l)(xi, tη)djη =

Mt∑

η=0

djηu
(l)(xi, tη), (21)

where for l = 1, 2, . . . , p, djη =
dLη(tj)

dt , are the jηth elements of the stan-

dard first derivative Legendre differentiation matrix of size (Mt + 1) × (Mt + 1).

The first derivative Legendre differentiation matrix with respect to the Legendre–

Gauss–Lobatto points is given by [Canuto et al. (1988); Canuto et al. (2007);

1750041-6
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Voigt et al. (1984)],

djη =





−Mt(Mt + 1)

4
if η = j = 0

PMt(tj)

PMt(tη)[tj − tη]
if η �= j, 0 ≤ j, η ≤ Mt

0 if 1 ≤ j = η ≤ Mt − 1

Mt(Mt + 1)

4
if η = j = Mt.

(22)

The values of the space derivatives are computed at the Legendre–Gauss–Lobatto

points (xi, tj) (for i = 0, 1, 2, . . . ,Mx) as

∂u(l)

∂x

∣∣∣∣
(xi,tj)

=

Mx∑

ρ=0

Mt∑

η=0

u(l)(xρ, tη)
dLρ(xi)

dx
Lη(tj), (23)

=

Mx∑

ρ=0

u(l)(xρ, tj)Diρ =

Mx∑

ρ=0

Diρu
(l)(xρ, tj), (24)

where Diρ =
dLρ(xi)

dx , are the iρth elements of the standard first derivative Legendre

differentiation of size (Mx+1)× (Mx+1) as defined by Eq. (22). Similarly, the nth

order derivative is defined as

∂nu(l)

∂xn

∣∣∣∣
(xi,tj)

=

Mx∑

ρ=0

Dn
iρu

(l)(xρ, tj) =
[
DnU

(l)
j

]
i
, i = 0, 1, 2, . . . ,Mx, (25)

where [DnU
(l)
j ]i denotes the ith element of the column matrix DnU

(l)
j . The vector

U
(l)
j is defined as

U
(l)
j = [u(l)(x0, tj), u

(l)(x1, tj), . . . , u
(l)(xMx , tj)]

T . (26)

The superscript T in Eq. (26) denotes matrix transpose. If we evaluate Eq. (19) at

each grid point (xi, tj) and substitute Eq. (21) and (25) we get

n∑

k=0

ΩΩΩk,sD
kU

(l)
s+1,j −

Mt∑

k=0

djkU
(l)
s+1,k = R(l)

s , (27)

for j = 0, 1, 2, . . . ,Mt, where ΩΩΩk,r is a diagonal matrix given by:

ΩΩΩk,r =




ωk,s(x0, tj)

ωk,s(x1, tj)

. . .

ωk,s(xMx , tj)



. (28)
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Since the initial condition for Eq. (27) corresponds to ξMt = −1, we express

Eq. (27) as

n∑

k=0

ΩΩΩk,sD
kU

(l)
s+1,j −

Mt−1∑

k=0

djkU
(l)
s+1,k = R

(l)
j , (29)

where

R
(l)
j = R(l)

s + djMtU
(l)
Mt

, for j = 0, 1, 2, . . . ,Mt − 1.

For j = 0, 1, 2, . . . ,Mt − 1, Eq. (29) forms an Mt(Mx + 1) × Mt(Mx + 1) matrix

equation




A0,0 A0,1 · · · A0,Mt−1

A1,0 A1,1 · · · A1,Mt−1

...
...

. . .
...

AMt−1,0 AMt−1,1 · · · AMt−1,Mt−1







U
(l)
0

U
(l)
1

...

U
(l)
Mt−1



=




R
(l)
0

R
(l)
1

...

R
(l)
Mt−1



, (30)

where

Ai,i =
n∑

k=0

ΩΩΩk,sD
(k) − di,iI, (31)

Ai,j = −di,jI, when i �= j, (32)

and I is the identity matrix of size (Mx + 1) × (Mx + 1). Solving Eq. (29) gives

u(l)(xi, tj) which is subsequently used in Eq. (8) to approximate u(l)(x, t).

3. Boundary Conditions

In this section, different types of boundary conditions are considered. We consider

nonhomogeneous Dirichlet boundary conditions, nonhomogeneous Neumann bound-

ary conditions and nonhomogeneous mixed boundary conditions.

3.1. Nonhomogeneous dirichlet boundary conditions

In this section, we consider boundary conditions of the form

u(a, t) = f1(t), (33)

u(b, t) = f2(t), (34)

in the interval [a, b], where f1(t) and f2(t) are nonzero functions. In implementing

nonhomogeneous Dirichlet boundary conditions, we note that for ν ∈ [a, b], ν = a

1750041-8
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corresponds to x = −1, for x ∈ [−1, 1] and hence u(a, t) = u(ν(−1), t(ξ)). Similarly,

for ν ∈ [a, b], ν = b corresponds to x = 1, for x ∈ [−1, 1] and hence u(b, t) =

u(ν(1), t(ξ)). Therefore, when evaluating the boundary conditions at the Legendre–

Gauss–Lobatto grid points in each sub-interval

Γl = (tl−1, tl), l = 1, 2, . . . , p, with, 0 = t0 < t1 < t2 < · · · < tp = T, (35)

we obtain

u(l)(a, tj) = u(l)(xMx , tj) = f
(l)
1 (tj), (36)

u(l)(b, tj) = u(l)(x0, tj) = f
(l)
2 (tj), (37)

for j = 0, 1, . . . ,Mt.

3.2. Nonhomogeneous neumann boundary conditions

In this section, we consider boundary conditions of the form

∂u

∂x

∣∣∣∣
(a,t)

= g1(t), (38)

∂u

∂x

∣∣∣∣
(b,t)

= g2(t), (39)

in the interval [a, b], where g1(t) and g2(t) are nonzero functions. In general, the

first derivative with respect to x at any grid point (xi, tj) is given by Eq. (24). Thus,

the nonhomogeneous Neumann boundary conditions can be expressed as

∂u(l)

∂x

∣∣∣∣
(a,tj)

=
∂u(l)

∂x

∣∣∣∣
(xMx ,tj)

=

Mx∑

ρ=0

DMxρu
(l)(xρ, tj) = g1(tj), (40)

∂u(l)

∂x

∣∣∣∣
(b,tj)

=
∂u(l)

∂x

∣∣∣∣
(x0,tj)

=

Mx∑

ρ=0

D0ρu
(l)(xρ, tj) = g2(tj), (41)

for j = 0, 1, . . . ,Mt, respectively.

3.3. Nonhomogeneous mixed boundary conditions

In this section, we consider boundary conditions of the form

u(a, t) +
∂u(l)

∂x

∣∣∣∣
(a,tj)

= h1(t), (42)

u(b, t) +
∂u(l)

∂x

∣∣∣∣
(b,tj)

= h2(t), (43)
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in the interval [a, b], where h1(t) and h2(t) are nonzero functions. Using the ideas

from the previous two sections, Eq. (42) and (43) can be expressed as

u(l)(xMx , tj) +

Mx∑

ρ=0

DMxρu
(l)(xρ, tj) = h1(tj), (44)

u(l)(x0, tj) +

Mx∑

ρ=0

D0ρu
(l)(xρ, tj) = h2(tj), (45)

for j = 0, 1, . . . ,Mt, respectively.

4. Numerical Experiments

In this section, we apply the proposed algorithm to the popular nonlinear partial

differential equations of the form (6) with exact solutions. These examples were

considered as numerical experiments [Motsa et al. (2014)]. In all our calculations,

we consider nonhomogeneous Dirichlet boundary conditions. The space and time

domains are given by [a, b] = [0, 5] and [t0, T ] = [0, 10] respectively for most of the

numerical experiments. We choose a T = 10 to show the accuracy of the algorithm

over a large time domain.

Example 1. We first consider Fisher’s equation

∂u

∂t
=

∂2u

∂x2
+ αu(1 − u), (46)

subject to the initial condition

u(x, 0) =
1

(
1 + e

√
α/6 x

)2 , (47)

and exact solution [Wazwaz and Gorguis (2004)]

u(x, t) =
1

(
1 + e

√
α/6 x−5αt/6

)2 , (48)

where α is a constant. The Fisher equation represents a reactive-diffusive system

and is encountered in chemical kinetics and population dynamics applications. The

Fisher’s equation has been solved by [Mickens (1997); Olmos et al. (2006); Hariharan

et al. (2009)] using nonstandard finite differences, spectral collocation and Haar

wavelet method, respectively. For this example, the appropriate nonlinear operator

H is chosen as

H(u) = u′′ + αu − αu2, (49)

where here, and in the subsequent examples, the primes denote differentiation with

respect to x. We use [a, b] = [0, 5] and [t0, T ] = [0, 10] as our x and t domains,

respectively.
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Example 2. We consider the generalized Burgers–Fisher equation [Golbabai and

Javidi (2005)]

∂u

∂t
+ αuδ ∂u

∂x
=

∂2u

∂x2
+ βu(1− uδ), (50)

with initial condition

u(x, 0) =

{
1

2
+

1

2
tanh

( −αδ

2(δ + 1)
x

)} 1
δ

, (51)

and exact solution

u(x, t) =

{
1

2
+

1

2
tanh

( −αδ

2(δ + 1)

[
x−

(
α

δ + 1
+

β(δ + 1)

α

)
t

])} 1
δ

, (52)

where α, β and δ are parameters. For illustration purposes, these parameters are

chosen to be α = β = δ = 1 in this paper. The Burgers–Fisher equation has

been solved by [Javidi et al. (2006); Moghimi and Hejazi (2007); Golbabai and

Javidi (2009)] using spectral collocation method, spectral domain decomposition

and Homotopy analysis method. The nonlinear operator H is chosen as

H(u) = u′′ + u− uu′ − u2. (53)

We use [a, b] = [0, 5] and [t0, T ] = [0, 10] as our x and t domains, respectively.

Example 3. In this example, the Fitzhugh–Nagumo equation is considered,

∂u

∂t
=

∂2u

∂x2
+ u(u− α)(1 − u) (54)

with initial condition

u(x, 0) =
1

2

[
1− coth

(
− x

2
√
2

)]
. (55)

This equation has the exact solution [Li and Guo (2006)]

u(x, t) =
1

2

[
1− coth

(
− x

2
√
2
+

2α− 1

4
t

)]
, (56)

where α is a parameter. In this example, the nonlinear operator H is chosen as

H(u) = u′′ − αu+ (1 + α)u2 − u3. (57)

We use [a, b] = [1, 5] and [t0, T ] = [0, 10] as our x and t domains, respectively. This

equation has been solved by various researchers [Dehghan et al. (2010); Abbasbandy

(2008); Van Gorder and Vajravelu (2010); Van Gorder (2012)] using the homotopy

perturbation method (HPM), the variational iteration method (VIM), the adomian

decomposition method (ADM), and homotopy analysis method (HAM).
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Example 4. Consider the Burgers–Huxley equation

∂u

∂t
+ αuδux =

∂2u

∂x2
+ βu(1 − uδ)(uδ − γ), (58)

where α, β ≥ 0 are constant parameters, δ is a positive integer (set to be δ = 1 in

this study) and γ ∈ (0, 1). The exact solution subject to the initial condition

u(x, 0) =
1

2
− 1

2
tanh

[
β

r − α
x

]
, (59)

is reported in Fan [2002] as

u(x, t) =
1

2
− 1

2
tanh

[
β

r − α
(x− ct)

]
, (60)

where

r =
√
α2 + 8β and c =

(α− r)(2γ − 1) + 2α

4
. (61)

The general solution (60) was also reported in [Hashim et al. (2006); Wang et al.

(1990)]. The Burgers–Huxley has been solved by [Batiha et al. (2008); Darvishi

et al. (2008); Dehghan et al. (2012)] using the VIM, spectral collocation and finite

differences, respectively. In this example, the nonlinear operator H is chosen as

H(u) = u′′ − βγu− αuu′ + β(1 + γ)u2 − βu3. (62)

We use [a, b] = [0, 5] and [t0, T ] = [0, 10] as our x and t domains, respectively.

Example 5. We consider the modified KdV–Burgers equation

∂u

∂t
=

∂3u

∂x3
− ∂2u

∂x2
− 6u2∂u

∂x
, (63)

subject to the initial condition

u(x, 0) =
1

6
+

1

6
tanh

(x
6

)
, (64)

and exact solution [Helal and Mehanna (2006)]

u(x, t) =
1

6
+

1

6
tanh

(
x

6
− t

27

)
. (65)

The modified KdV–Burgers equation describes various kinds of phenomena such as

a mathematical model of turbulence [Burgers (1948)] and the approximate theory

of flow through a shock wave traveling in viscous fluid [Cole (1951)]. It has been

solved by [Darvishi et al. (2007); Kurulay and Bayram (2010)] using the spectral

collocation and by the differential transformmethod. For this example, the nonlinear

operator H is chosen as

H(u) = u′′′ − u′′ − 6u′u2. (66)

We use [a, b] = [0, 5] and [t0, T ] = [0, 10] as our x and t domains, respectively.
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Example 6. We consider the nonlinear modified KdV equation

∂u

∂t
=

∂3u

∂x3
+

(
∂u

∂x

)2

− u2, (67)

subject to the initial condition

u(x, 0) =
1

2
+

e−x

4
(68)

and exact solution [Polyanin and Zaitsev (2004)]

u(x, t) =
1

t+ 2
+

e−(x+t)

(t+ 2)2
. (69)

For this example, the nonlinear operator H is chosen as

H(u) = u′′′ − (u′)2 − u2. (70)

We use [a, b] = [0, 5] and [t0, T ] = [0, 10] as our x and t domains, respectively. This

problem was solved by [Motsa et al. (2014)] using the bivariate spectral quasilin-

earization method.

5. Results and Discussion

In this section, we discuss and present the numerical results. The results were all

generated using MATLAB 2013. To compare the accuracy, computational time,

and general performance of the method, we compared the maximum error terms

and the convergence of the method. In order to determine the level of accuracy of

the approximate solution, at a particular time level in comparison with the exact

solution, we report maximum errors defined by

EMx = max
k

{|ue(xk, t)− ua(xk, t)|, : 0 ≤ k ≤ Mx}, (71)

where ua(xk, t) is the approximate solution and ue(xk, t) is the exact solution at

the time level t. Here, we have used p = 10 and varying values of Mt and Mx,

determined through numerical experimentation. For convenience, we refer to the

current method using the abbreviations MD-LGL-BSQLM and the earlier method

of Motsa et al. [2014] by LGL-BSQLM.

5.1. Maximum error estimates

In this section, we analyze the accuracy and computational time of the LGL-BSQLM

and MD-LGL-BSQLM methods. We report the maximum errors obtained when

solving the nonlinear evolution partial differential equations using both methods.

We also report on the central processing unit (CPU) time taken to approximate

the solutions of the nonlinear evolution partial differential equations. In all cases,

we used Mt = 10 and varying values of Mx.

In Table 1, the maximum error estimates for the Fisher equation are displayed.

We observe that the maximum errors obtained using the LGL-BSQLM method are
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Table 1. Maximum error estimates EMx for the Fishers equa-
tion, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 1.840e-03 1.842e-03 9.508e-06 7.19e-10
2 2.906e-03 2.960e-03 1.033e-05 6.82e-10
3 1.150e-03 1.163e-03 4.555e-06 2.86e-10
4 7.918e-04 7.918e-04 2.597e-06 5.21e-11
5 5.383e-04 5.389e-04 5.600e-07 3.77e-12
6 3.721e-04 3.721e-04 3.176e-07 2.23e-12
7 2.494e-04 2.494e-04 6.682e-08 1.37e-13
8 1.172e-04 1.206e-04 1.077e-08 5.40e-14
9 1.264e-04 1.268e-04 9.716e-09 1.80e-14
10 2.210e-05 2.483e-05 6.086e-09 4.44e-15

CPU time 0.015507 0.044061 0.005363 0.009849

bigger compared to those obtained using the MD-LGL-BSQLM method. This sug-

gests that the MD-LGL-BSQLM method is more accurate than the LGL-BSQLM

method. We also observe that using Mx = 5 for the MD-LGL-BSQLM method gives

more accurate results than the LGL-BSQLM method with Mx = 10 and Mx = 20.

This in turn reduces computational time and hence the MD-LGL-BSQLM method

uses few grid points to achieve spectrally accurate results. On average, for the same

values of Mx and Mt, the difference between maximum error estimates obtained

using the MD-LGL-BSQLM and LGL-BSQLM method is of order ten. Increasing

space grid points for the LGL-BSQLM method does not improve the accuracy of

the method as shown in Table 1.

Table 2, shows the maximum error estimates for the Burgers–Fisher equation.

The maximum error estimates obtained using the MD-LGL-BSQLM method are

smaller compared to those obtained using the LGL-BSQLM method. Therefore,

Table 2. Maximum error estimates EMx for the Burgers–
Fisher equation, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 1.779e-03 1.772e-03 1.006e-05 3.68e-09
2 2.054e-03 2.066e-03 1.570e-05 7.78e-10
3 2.977e-03 2.977e-03 8.765e-06 4.55e-11
4 2.366e-03 2.366e-03 1.343e-06 3.14e-11
5 5.866e-04 5.856e-04 4.678e-07 4.31e-12
6 1.392e-03 1.392e-03 2.175e-07 5.53e-13
7 1.135e-03 1.135e-03 7.135e-08 1.37e-14
8 4.054e-04 4.054e-04 2.135e-08 1.20e-14
9 1.920e-04 1.923e-04 6.240e-09 4.66e-15
10 9.550e-05 1.034e-04 1.803e-09 4.22e-15

CPU time 0.025428 0.066148 0.011777 0.024576
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we conclude that the MD-LGL-BSQLM method is more accurate than the LGL-

BSQLM method. We also observe that using Mx = 5 for the MD-LGL-BSQLM

method gives more accurate results than the LGL-BSQLM method with Mx =

10 and Mx = 20. This in turn reduces computational time and hence the MD-

LGL-BSQLM method uses fewer grid points to achieve spectral accurate results.

Increasing Mx = 10 gives an error of approximately 10−12 in the time domain

[0, 10]. Increasing the number of space grid points for the LGL-BSQLM method

does not improve the accuracy of the method as shown in Table 2. Solutions of the

Burgers–Fisher equation were obtained in a fraction of a second.

Table 3, shows the maximum error estimates for the Fitzhugh–Nagumo equation,

obtained using both the MD-LGL-BSQLM and LGL-BSQLM methods. The maxi-

mum errors obtained using the MD-LGL-BSQLM method are smaller compared to

those obtained using the LGL-BSQLM method. Therefore, the MD-LGL-BSQLM

method is more accurate than the LGL-BSQLM method. We also observe that

using Mx = 5 for the MD-LGL-BSQLM method gives more accurate results than

the LGL-BSQLM method with Mx = 10 and Mx = 20. Using Mx = 5 reduces

the size of the variable matrix and in turn reduces computational time. Thus, the

MD-LGL-BSQLM method uses fewer grid points to achieve more accurate results

for large time domains. Increasing Mx = 10 gives an error of approximately 10−14

in the time domain [0, 10]. Increasing the number of space grid points for the LGL-

BSQLM method does not improve the accuracy of the method as shown in Table 3.

Solutions of the Fitzhugh–Nagumo equation were obtained using minimal compu-

tational time.

Table 4 displays the maximum error estimates for the Burgers–Huxley equa-

tion which were obtained using the MD-LGL-BSQLM and LGL-BSQLM methods.

It is evident from Table 4 that the maximum errors obtained using the LGL-

BSQLMmethod are bigger compared to those obtained using the MD-LGL-BSQLM

Table 3. Maximum error estimates EMx for the Fitzhugh–
Nagumo equation, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 1.770e-04 1.770e-04 6.049e-07 5.978e-11
2 2.383e-04 2.383e-04 6.071e-08 4.030e-13
3 4.189e-04 4.189e-04 1.037e-08 1.664e-14
4 3.305e-04 3.305e-04 2.430e-09 6.710e-15
5 1.480e-05 1.481e-05 7.108e-10 2.942e-15
6 2.413e-04 2.413e-04 2.455e-10 3.842e-15
7 2.198e-04 2.198e-04 9.683e-11 2.179e-15
8 8.642e-05 8.642e-05 4.264e-11 1.188e-15
9 4.103e-05 4.103e-05 2.056e-11 3.201e-16
10 1.595e-05 1.593e-05 1.065e-11 4.352e-16

CPU time 0.064019 0.076709 0.013449 0.026672
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Table 4. Maximum error estimates EMx for the Burgers–
Huxley equation, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 8.727e-04 8.705e-04 6.245e-17 1.735e-17
2 1.943e-03 1.950e-03 4.580e-16 9.021e-17
3 1.746e-03 1.773e-03 5.135e-16 4.857e-16
4 1.820e-03 1.820e-03 1.110e-15 9.437e-16
5 8.588e-04 8.507e-04 4.441e-15 4.441e-16
6 1.824e-03 1.824e-03 8.882e-16 3.109e-15
7 1.479e-03 1.479e-03 6.439e-15 1.332e-15
8 4.790e-04 4.790e-04 2.220e-15 4.885e-15
9 2.396e-04 2.556e-04 1.288e-14 3.997e-15
10 1.586e-04 1.599e-04 3.220e-15 6.661e-16

CPU time 0.040081 0.084866 0.013389 0.019958

method. Thus, the MD-LGL-BSQLM method is more accurate than the LGL-

BSQLM method. For Mx = 5, the MD-LGL-BSQLM method gives more accurate

results than the LGL-BSQLM method with Mx = 10 and Mx = 20. This in turn

reduces computational time and hence the MD-LGL-BSQLM method uses few grid

points to achieve more accurate results. On average, for the same values of Mx

and Mt, the difference between maximum errors obtained by the MD-LGL-BSQLM

and LGL-BSQLM method is approximately 12. Increasing space grid points for

the LGL-BSQLM method does not improve the accuracy of the method as shown

in Table 4. The solutions of the Burgers–Huxley equation were also obtained in a

fraction of a second.

Table 5 shows the maximum error estimates for the KdV–Burgers equation

which were obtained using the MD-LGL-BSQLM and LGL-BSQLM methods. In

this table, the maximum error estimates obtained using the LGL-BSQLM method

are bigger compared to those obtained using the MD-LGL-BSQLM method. Thus,

Table 5. Maximum error estimates EMx for the KdV-
Burgers equation, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 3.190e-04 3.182e-04 9.086e-07 2.114e-10
2 2.913e-04 2.918e-04 4.190e-07 4.539e-11
3 6.550e-04 6.550e-04 2.285e-07 1.660e-11

4 6.249e-04 6.249e-04 1.097e-07 6.400e-12
5 1.319e-04 1.320e-04 5.032e-08 2.561e-12
6 4.568e-04 4.568e-04 2.284e-08 1.174e-12
7 3.446e-04 3.446e-04 1.038e-08 5.967e-13
8 6.861e-05 7.126e-05 4.743e-09 3.062e-13
9 5.261e-05 5.266e-05 2.185e-09 1.230e-13
10 4.016e-05 4.714e-05 1.016e-09 5.757e-14
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the MD-LGL-BSQLM method is more accurate than the LGL-BSQLM method.

We observe that for Mx = 5, the MD-LGL-BSQLM method gives more accurate

results than the LGL-BSQLM method with Mx = 10 and Mx = 20. This in turn

reduces computational time and hence the MD-LGL-BSQLM method uses few grid

points to achieve more accurate results. For the same values of Mx and Mt, the

difference between maximum errors obtained by the MD-LGL-BSQLM and LGL-

BSQLM method is approximately 11. Increasing space grid points for the LGL-

BSQLM method does not improve the accuracy of the method as shown in Table 5.

The solutions of the Burgers–Huxley equation were also obtained in a fraction of a

second.

Table 6 shows the maximum error estimates for the modified KdV equation that

were obtained using the MD-LGL-BSQLM and LGL-BSQLM methods. The maxi-

mum error estimates obtained using the LGL-BSQLM method are bigger compared

to those obtained using the MD-LGL-BSQLM method. Therefore, the MD-LGL-

BSQLM method is more accurate than the LGL-BSQLM method. We observe that

for Mx = 5, the MD-LGL-BSQLM method gives more accurate results than the

LGL-BSQLM method with Mx = 10 and Mx = 20. This in turn reduces computa-

tional time and hence the MD-LGL-BSQLM method uses few grid points to achieve

more accurate results. For the same values of Mx and Mt, the difference between

maximum errors obtained by the MD-LGL-BSQLM and LGL-BSQLM method is

approximately 12. Increasing space grid points for the LGL-BSQLM method does

not improve the accuracy of the method as shown in Table 6. The solutions of the

Burgers–Huxley equation were also obtained in a fraction of a second.

5.2. Comparison of approximate and exact solutions

In this section, we consider the approximate and analytical solutions of the nonlinear

partial differential equations considered in this work. The graphs show the solutions

Table 6. Maximum error estimates EMx for the modified KdV
equation, with Mt = 10.

LGL-BSQLM MD-LGL-BSQLM

t\Mx 10 20 5 10

1 4.600e-04 4.794e-04 1.278e-06 4.53e-10
2 2.859e-04 2.859e-04 6.520e-07 1.30e-10
3 5.044e-04 5.044e-04 3.413e-07 4.66e-11
4 3.985e-04 3.985e-04 1.641e-07 1.76e-11
5 8.550e-05 8.785e-05 7.270e-08 7.09e-12
6 2.911e-04 2.911e-04 3.223e-08 2.96e-12
7 2.651e-04 2.651e-04 1.490e-08 1.34e-12
8 1.042e-04 1.042e-04 6.970e-09 5.31e-13
9 4.946e-05 4.946e-05 3.183e-09 2.72e-13
10 5.541e-05 5.556e-05 1.455e-09 5.01e-13

CPU times 0.023869 0.087991 0.006778 0.011656
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of the nonlinear partial differential equations in both space and time domains.

Figures 1–6 show the approximate and exact solutions of Fisher’s equation, Burgers–

Fisher equation, Burgers–Huxley equation, Fitzhugh–Nagumo equation, modified

KdV–Burgers equation and modified KdV equation, respectively. The approximate

solutions in these graphs were generated using the MD-LGL-BSQLM method. The

graphs show that the approximate and exact solutions are in excellent agreement in

the given time domain for all the equations considered. This implies that the MD-

LGL-BSQLM method can be used to approximate solutions of nonlinear partial

differential equations in large time domains. These graphs were generated using

Mx = 40 and Mt = 10. The time and space intervals used are t ∈ [0, 10] and

x ∈ [0, 5] for all the equations.

5.3. Convergence graphs

In this section, we compare the convergence and accuracy of the LGL-BSQLM

and MD-LGL-BSQLM methods graphically. In generating the results, we used
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Fig. 1. Approximate and exact solutions of the Fishers equation.
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Fig. 2. Approximate and exact solutions of the Burgers–Fisher equation.

1750041-18

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

r.
 V

us
i M

ag
ag

ul
a 

on
 1

0/
15

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 5, 2016 15:56 WSPC/0219-8762 196-IJCM 1750041

A Multi-Domain Bivariate Pseudospectral Method

0
5

10
15

0
10

20
30

0

0.5

1

x

Approximate Solution

t

u
( x
,t
)

0
5

10
15

0
10

20
30

0

0.5

1

x

Exact Solution

t

u
(x
,t
)

Fig. 3. Approximate and exact solutions of the Burgers–Huxley equation.
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Fig. 4. Approximate and exact solutions of the Fitzhugh–Nagumo equation.
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Fig. 5. Approximate and exact solutions of the modified KdV–Burgers equation.
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Fig. 6. Approximate and exact solutions of the modified KdV equation.

Mx =Mt = 10, t ∈ [0, 10], and x ∈ [0, 5]. In general, the MD-LGL-BSQLM method

converge approximately after two iterations, to a smaller error compared to the

LGL-BSQLM method. This implies that the MD-LGL-BSQLM method is more

accurate than the LGL-BSQLM method (see Figs. 7–12).

Figure 7 compares the convergence of the Fisher’s equation using both the LGL-

BSQLM and MD-LGL-BSQLM methods. The MD-LGL-BSQLM method converges

approximately after two iterations to an error of 10−14, while the LGL-BSQLM

method converges to 10−5 after nine iterations. This implies that the MD-LGL-

BSQLM method is a suitable method to approximate the solution of the Fisher’s

equation for large time domains since it gives more accurate results and converges

faster to the exact solution compared to the LGL-BSQLM method.

Figure 8 compares the convergence of the Burgers–Fisher equation using both

the LGL-BSQLM and MD-LGL-BSQLM methods. In this case, the MD-LGL-

BSQLM method converges to 10−12 approximately after two iterations, while the

LGL-BSQLM method converges to 10−4 after seven iterations. Since the MD-LGL-

BSQLM method gives more accurate results and converges faster to the exact
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Fig. 7. Fisher’s equation convergence graph.
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Fig. 8. Burgers–Fisher equation convergence graph.
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Fig. 9. Fitzhugh–Nagumo equation convergence graph.

solution than the LGL-BSQLM method, then it is a suitable method to approx-

imate the solution of the Burgers–Fisher equation for large time domains.

Figure 9 compares the convergence of the Fitzhugh–Nagumo equation using both

the LGL-BSQLM and MD-LGL-BSQLM methods. We observe that the MD-LGL-

BSQLM method converges to 10−13 after three iterations, while the LGL-BSQLM

method converges to 10−1 after two iterations. The LGL-BSQLM method converges

to a less accurate solution compared to the MD-LGL-BSQLM method. This implies

that the MD-LGL-BSQLMmethod is more accurate than the LGL-BSQLMmethod

and hence suitable for approximating the solution of the Fitzhugh–Nagumo equation

for large time intervals.

In Figure 10, the convergence of the LGL-BSQLM and MD-LGL-BSQLM meth-

ods for approximating the solution of the Burgers–Huxley equation is compared.

The graph shows that the MD-LGL-BSQLM method converges to 10−12 after two

iterations, while the LGL-BSQLM method converges to 10−6 after five iterations.

Clearly, the LGL-BSQLMmethod converges to a less accurate solution compared to
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Fig. 10. Burgers–Huxley equation convergence graph.
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Fig. 11. Modified KdV–Burgers equation convergence graph.

the MD-LGL-BSQLM method. Thus, the MD-LGL-BSQLM method is more accu-

rate than the LGL-BSQLM method and hence it is suitable for approximating the

solution of the Fitzhugh–Nagumo equation for large time intervals.

Figure 11 compares the convergence of the LGL-BSQLM and MD-LGL-BSQLM

methods for approximating the solution of modified KdV–Burgers equation. The

MD-LGL-BSQLM method converges to 10−11 after four iterations, while the LGL-

BSQLM method converges to 10−2 after two iterations. We observe that the

LGL-BSQLM method converges to a less accurate solution compared to the MD-

LGL-BSQLM method and hence the MD-LGL-BSQLM method is more accurate

than the LGL-BSQLM method. This implies that the MD-LGL-BSQLM method

is suitable for approximating solutions of the modified KdV–Burgers equation for

large time intervals.

Lastly, Fig. 12 compares the convergence of the LGL-BSQLM and MD-LGL-

BSQLM methods for approximating the solution of modified KdV equation. The

MD-LGL-BSQLM method converges to 10−13 after two iterations, while the
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Fig. 12. Modified KdV equation convergence graph.

LGL-BSQLM method converges to 10−4 after four iterations. We observe that the

MD-LGL-BSQLM method converges to a more accurate solution compared to the

LGL-BSQLM method and hence the MD-LGL-BSQLM method is more accurate

than the LGL-BSQLM method. Thus, the MD-LGL-BSQLM method is suitable for

approximating solutions of the modified KdV equation for large time intervals.

In summary, the convergence graphs show that the MD-LGL-BSQLM method

converges to a more accurate solution than the LGL-BSQLM method. We can con-

clude that the MD-LGL-BSQLM method is more accurate than the LGL-BSQLM

method for solving nonlinear evolution partial differential equations in large time

domains.

6. Conclusion

In this paper, we presented and implemented for the first time a new approach

termed the multi-domain Legendre–Gauss–Lobbatto Bivariate spectral quasilin-

earization method for solving general nonlinear evolution smooth partial differen-

tial equations. The method independently used Lagrange interpolation polynomials

based on Legendre–Gauss–Lobatto grid points in both space and time. The time

domain was further divided into small sub-intervals and the linearized evolution

equations were solved in each sub-interval.

Numerical simulations were carried out on the Burgers–Fisher equation,

Fitzhugh–Nagumo equation, modified KdV–Burger equation, highly nonlinear mod-

ified KdV equation, the Fisher equation and Burgers–Huxley equation. The MD-

LGL-BSQLMmethod converged to a more accurate solution than the LGL-BSQLM

method over large time domains. The MD-LGL-BSQLM method also used mini-

mal computational time compared to the LGL-BSQLM method. We can therefore

conclude that the MD-LGL-BSQLM method is more accurate and uses less com-

putational time compared to the LGL-BSQLM method.
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This study contributes to new techniques that can be used for solving NPDE’s

over large time domains. Further studies remain to establish whether the method

can be used successfully to find solutions of nonlinear coupled systems of differential

equations, including hyperbolic equations.
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