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ABSTRACT 
 

MyCanesim® is a web-based crop simulation system that can be used for irrigation scheduling 

and yield estimation.  Two shortcomings of the system identified were that 1) advised irrigation 

amounts could exceed seasonal water limitations imposed on farmers and 2) simulations are 

only accurate if farmers follow the recommended irrigation actions and if simulated and actual 

available soil water content are similar.  These can be addressed by incorporating algorithms 

for optimal scheduling of limited water, and by making use of soil water content measurements 

in model simulations.  The objectives of this study were to 1) evaluate the performance of 

different optimization algorithms that schedule limited water and 2) determine the accuracy of 

irrigation scheduling advice and cane yield estimates with and without adjustment of 

simulations with soil water content records.   

Four irrigation scheduling algorithms were tested against a baseline algorithm, using 960 

hypothetical scenarios consisting of different water supply, climate and cropping situations.  

These were: (a) Crop stage, which accounts for the yield sensitivity to water deficit as it varies 

with growth stage; (b) Stress level, which evaluates different soil water depletion levels for 

determining irrigation dates; (c) Prorata, which reduces irrigation throughout the growing 

season in proportion to the seasonal allocation shortfall; and (d) Water satisfaction, which 

iteratively schedules irrigation events on the day with the largest water demand.  Algorithms 

increased simulated yields over the baseline by between 4.7 and 8.6 t/ha on average and 

operated at computational running times of between 1 and 40 s.  The stress level algorithm was 

recommended for inclusion into MyCanesim®, since it had both a high yield improvement (8.5 

t/ha) and quick operational time (2.5 s). 

Soil water measurements from capacitance probes for thirteen fields in Mpumalanga were 

integrated through an automated process into the MyCanesim® system.  The improvements in 

the accuracy of irrigation scheduling advice and yield estimates by the integrated system were 

assessed retrospectively.  The integrated system resulted in more accurate irrigation scheduling 

advice (by 2 days) than weather-based scheduling alone. 

These two improvements to MyCanesim® should allow sugarcane farmers to achieve higher 

irrigated water use efficiency and yields because of more accurate irrigation scheduling 

advice and yield estimates for full and restricted irrigation water supply. 
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GLOSSARY 
 

Acronym Key Concept Definition Units 

 Growing season The period from the start of the 

crop to the harvest date. 

Days 

 Growth stage A period within the growing season 

during which the crop behaves in a 

certain way. 

Days 

 Historical weather 

sequence 

A time series of daily historic 

weather data, covering the period 

of a growing season. 

 

 Irrigation schedule A program of irrigation dates and 

amounts for a given period. 

 

 Irrigation scheduling 

algorithm 

An algorithm that generates a 

schedule of irrigation dates and 

amounts over the entire growing 

season. 

 

 Irrigation scheduling 

strategy 

A set of rules that determined the 

dates and amounts of irrigation. 

 

 Rainfall classification A way of grouping past rainfall 

data sequences into classes 

according to total rainfall over 

those periods. 

 

 Stressed crop A crop that suffers yield loss due to 

having insufficient or too much soil 

water during some portion of the 

growing season. 

 

ADL Allowable depletion 

level 

The available soil water content 

(ASWC) at which an irrigation 

event will be triggered if there are 

no other constraints. 

mm 



 

2 

 

ALLOCcumd Cumulative daily 

allocation  

The total amount of water available 

for irrigating the crop since the 

start of the crop until day d. 

mm 

ALLOCstage s Stage allocation The total amount of water available 

for irrigating the crop for a 

particular growth stage s. 

mm 

ALLOCseason Seasonal allocation The total amount of water available 

for irrigating the crop over the 

entire growing season. 

mm 

ASWC Available soil water 

content 

The amount of water in the soil 

available to the plant, above the 

wilting point. 

mm 

ASWCprobe ASWC generated from 

capacitance probe data 

ASWC derived from SWI readings 

from capacitance sensors. 

mm 

AWS Automatic weather 

station 

A set of sensors, data loggers and 

transmitters for monitoring, storing 

and transmitting meteorological 

data.  

 

CR Conversion ratio A calibration factor used to convert 

SWI to ASWC. 

mm/% 

DNI Date of next irrigation The date when the next irrigation 

event is due. 

 

ET0  Reference grass  

evapotranspiration 

The rate of evapotranspiration from 

a large area covered by green grass, 

8 to 15 cm tall, which grows 

actively, completely shades the 

ground and which is not short of 

water.  (FAO, 2015 and Allen et al. 

1998)  

mm 

ETA Actual 

evapotranspiration 

Evapotranspiration of a crop under 

given conditions.  The crop may or 

may not be stressed and have a 

partial canopy. 

mm 
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Ecref Sugarcane reference 

evapotranspiration 

The potential evapotranspiration 

for an unstressed sugarcane crop 

with a full canopy.  

(McGlinchey and Inman-Bamber, 
1996) 

mm 

ETP Potential 

evapotranspiration 

Evapotranspiration of a crop at its 

given stage of development and 

with adequate water. 

mm 

GA Genetic algorithm A problem solving method that 

recombines and mutates current 

solution candidates to form new 

ones until a satisfactory solution 

has been found.  

 

GDD Growing degree days A thermal time measurement of 

plant age. 

0C days 

FTP File transfer protocol A method of transferring files 

across the internet. 

 

FCSWI Soil water index field 

capacity 

SWI reading from capacitance 

probes when soil water content is 

at field capacity. 

% 

Ischedcumd Cumulative irrigation 

amount 

The total amount of irrigation that 

has been scheduled and applied 

from the start of the crop to the 

current day d. 

mm 

Ischedcumseason Cumulative irrigation 

amount for the season 

The total amount of irrigation that 

has been scheduled and applied 

from the start of the crop to the 

harvest day. 

mm 

Id Daily irrigation 

amount 

Irrigation amount on day d. mm 

IRcumd Cumulative irrigation 

requirement 

The total amount of irrigation that 

a crop would need in order to avoid 

mm 
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water stress, from the start of the 

crop to the current day d. 

IRcumseason Cumulative irrigation 

requirement for the 

season 

The total amount of irrigation that 

a crop would need in order to avoid 

water stress, from the start of the 

crop to the harvest date of the crop. 

mm 

IWUE Irrigated water use 

efficiency 

The increase in cane yield per unit 

of irrigation applied. 

(t/ha/100mm) 

KC  Crop coefficient Used to convert from ET0 to the 

potential ET for a specific crop C. 

 

Ky Yield response factor 

to water  

The proportionality factor between 

relative yield loss and relative 

reduction in evapotranspiration, for 

a given growth stage or for the 

entire season. 

unitless 

PBS Probe-based 

simulation 

Simulation based on a combination 

of weather data and correction of 

soil water with ASWCprobe. 

 

Rd Daily rainfall total Rainfall total on a day d. mm 

SMS Short message service A method of text communication 

via cellular device. 

 

SWC Soil water content Generic term used to refer to some 

measure of soil water status. 

mm or 

cm3/cm3 

SWD Soil water deficit The difference between TAM and 

ASWC. 

mm 

SWI Soil water index A measure of soil water content as 

indicated by a capacitance probe 

(aggregated over all sensor 

readings). 

% 

TAM Maximum plant 

available soil water. 

The maximum amount of water in 

the soil that the plant can access 

when the roots occupy the full 

profile. 

mm 
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WBS Weather-based 

simulation 

Simulation based only on weather 

data and not on data from soil or 

plant based sensors. 

 

WSId Water satisfaction 

index 

An index reflecting the availability 

of water to the plant.  It is 

calculated from daily rainfall, daily 

irrigation and daily ETP records. 

unitless 

YA Simulated cane yield Simulated fresh stalk mass of the 

sugarcane crop, under given 

conditions, with or without water 

stress. 

t/ha 

YD Simulated dryland 

cane yield 

Simulated fresh stalk mass from a 

dry land crop. 

t/ha 

YI Simulated irrigated 

cane yield 

Simulated fresh stalk mass from an 

irrigated crop under specified 

irrigated conditions. 

t/ha 

YM Simulated maximum 

cane yield 

Simulated fresh stalk mass of a 

sugarcane crop that can be 

achieved under given conditions 

and with no water stress. 

t/ha 

Yobs Observed yield Yield derived from cane deliveries 

to the mill from a specific field. 

t/ha 

Yopt Optimal yield Simulated potential yield for a 

given field given its specific soil 

properties, irrigation system and 

weather conditions. 

t/ha 

Yswc ASWCprobe based 

simulated  yield 

Simulated yield for a given field 

using ASWCprobe to correct 

simulated soil water content. 

t/ha 

ΔYs Simulated stage yield 

increment 

The increase in simulated stalk 

fresh mass over a given growth 

stage s. 

t/ha 
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1. INTRODUCTION 
1.1 Introduction 

 

Irrigation scheduling is the process of deciding the timing, quantity and frequency of water 

application to a crop.  Leib et al. (2002) defined scientific irrigation scheduling as the use of 

physical measurements to estimate crop water use and soil water status to inform these 

decisions.  The main goals of irrigation scheduling are: to improve yield, conserve water, 

prevent groundwater pollution (Martin et al., 1990), to improve crop quality, avoid leaching of 

nutrients and avoid introducing crop stress through over or under-irrigation (Jensen et al., 

1970).  Irrigation scheduling often aims to maintain available soil water content (ASWC) within 

a predetermined range, in order to achieve the aforementioned goals (Olivier and Singels, 

2004).   

 

Irrigation scheduling methods can be classified as weather-based, soil-based or plant-based.  

This study focused on weather-based methods.  Weather-based irrigation scheduling decision 

support systems (ISDSS) rely on rainfall and potential evapotranspiration (ETP) data obtained 

from a network of weather stations.  Weather-based ISDSS can also provide estimates of yield 

by simulating crop growth. 

 

One example of a weather-based ISDSS is MyCanesim® (Singels and Smith, 2006), which has 

been in existence since 2004.  This system was developed by the South African Sugarcane 

Research Institute (SASRI) for farmers and researchers to make use of the Canesim® sugarcane 

model (of which various aspects are described by Singels et al., 1998; Singels and Donaldson, 

2000; and Singels and Bezuidenhout, 2002) for yield estimation and irrigation scheduling 

decisions.  The MyCanesim® system provides irrigation scheduling advice via a website, cell 

phone, e-mail and/or fax (Singels and Smith, 2006). 

 

After its initial development, MyCanesim® was used to provide real-time irrigation scheduling 

advice to a group of small-scale farmers in Pongola.  This service was initiated in May 2005 

and was extended to 50 farmers by 2008.  Two shortcomings and recommendations for the 

improvement of MyCanesim® identified during this project (Singels and Smith, 2008) were as 

follows:  
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(a) It was possible for the imposed seasonal water limitations to be exceeded when 

following prescribed irrigation scheduling advice.  Hence a method, or irrigation 

scheduling algorithm, was required which would provide sound irrigation advice, while 

taking seasonal water allocations into account.  It was therefore decided to investigate, 

develop and compare algorithms for the optimal scheduling of limited water and to 

include one of these in MyCanesim®. 

 

(b) Farmers mostly do not capture their irrigation records through the MyCanesim® web 

interface, mainly due to a lack of time, computer resources and or skills on their part 

(the majority of users are small scale farmers).  MyCanesim®’s implied assumption that 

farmers always follow the prescribed schedule may therefore lead to actual and 

simulated soil water balances being different when farmers deviate from 

recommendations. 

 

The use of soil water content measurements from soil water sensors, which form part of 

soil-based irrigation scheduling methods (Evett and Heng, 2008), were identified as a 

possible solution to this problem.  In this study, such measurements were used to correct 

simulated soil water content, thus implicitly recording farmer irrigation activities.  

Consequent improvements to the accuracy of irrigation scheduling and yield forecasting 

were investigated. 

 

Based on these shortcomings, the following research questions were addressed in this study: 

(a) Which limited water optimization algorithm, amongst those reviewed, achieves the 

highest yield and irrigation water use efficiency (IWUE)? 

(b) Will integrating ASWC records with a weather-based simulation model provide more 

accurate irrigation scheduling advice and yield forecasts? 

 

The two main objectives of the study were therefore to: 

(a) research and develop algorithms for scheduling limited water.  The theoretical 

performance of several algorithms should be compared by determining the simulated 

yield increase over that of a baseline.  The IWUE and computation time of each 

algorithm should also be evaluated.  The algorithms should be tested using historical 

data. 
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(b) determine the accuracy of irrigation scheduling advice and simulated cane yields with 

and without adjustment to simulations of the crop soil water balance by means of 

measured ASWC, for thirteen fields in Mpumalanga. 

 

The study is divided into three main sections (Chapters 2, 3 and 4), followed by a general 

discussion and conclusions (Chapter 5).  Chapter 2, the literature review, focuses on various 

ISDSS and what features they offer, on irrigation scheduling under limited water supply and on 

soil water monitoring technology, thus providing scope for both general and specific future 

improvements to MyCanesim®.  Chapter 3 addresses the first research question.  For each 

algorithm, simulated yields generated under various hypothetical conditions and water supply 

scenarios were compared to that of a baseline algorithm.  Chapter 4 addresses the second 

research question.  Chapter 5 reviews the degree to which the research questions were answered, 

highlights important considerations and gives recommendations and ideas for future work. 
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2. LITERATURE REVIEW 
2.1 Introduction 

 

Irrigation scheduling methods can be classified as weather-based, soil-based or plant-based. 

Jones (2004) and Stevens et al. (2005) reviewed the different irrigation scheduling methods and 

related technologies.  Weather-based methods rely on estimations of evapotranspiration (ET in 

mm) from the crop (Penman, 1948 and Monteith, 1965; Priestley and Taylor, 1972; Diak et al., 

1998), which can be potential, (ETP), i.e. what would be evapotranspired from a non-stressed 

crop, or actual (ETA), what a crop actually evapotranspires.  The ETP experienced by a short, 

well-watered grass crop (ET0) is related to a specific crop ETP by a coefficient KC.  Soil-based 

methods, which give an indication of soil water content, include capacitance sensors (Evett and 

Heng, 2008) and the wetting front detector (Stirzaker et al. 2007).  Plant methods include stalk 

elongation rate e.g. growth transducers (Inman-Bamber, 1995; Smit et al., 2005) and the 

difference between canopy and air temperatures e.g. infra-red thermometers (Raschke, 1960, 

cited by Jones 2004; Jones, 1999).  There are many more examples that can be found in the 

literature.  This study focuses primarily on weather-based ISDSS. 

 

With advances in telecommunication and internet services, many new weather and web-based 

ISDSS have been created over the last 20 years.  For example, PlanteInfo of Denmark (Thysen 

and Detlefsen, 2006); NDAWN for the USA (Akyuz et al., 2008); IMO of Oregon, USA 

(Hillyer and Sayde, 2010); WaterSense of Australia (Inman-Bamber et al., 2005); and finally 

MyCanesim® of South Africa, are all examples of recently created ISDSS.  Each system offers 

unique features to their client-base, which includes farmers, extension specialists and scientists.   

 

The various means of communication, such as short message service (SMS), e-mail, websites 

and remote logins, like file transfer protocol (FTP), have facilitated the fast and easy access of 

data.  Services, such as evapotranspiration estimations (Marek et al., 1996; CIMIS, 2011) and 

water balance and crop models (Annandale et al., 1999; Lecler, 2000; Inman-Bamber et al., 

2007), have been made more accessible (Thysen and Detlefsen, 2006) to farmers. 

 

The aim of this chapter is to report on a review of weather based ISDSS, to identify useful 

features and approaches in providing irrigation scheduling advice and to understand the state 

of such systems.  Recommendations for improving the services of MyCanesim® will be made. 
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2.2 Irrigation Scheduling Decision Support Services and Systems 

 

An ISDSS helps farmers to decide when and how much to irrigate.  Four types of ISDSS are 

reviewed, namely irrigation information services (IIS), desktop and online model based ISDSS 

and soil water probe based ISDSS. 

 

2.2.1 Irrigation information services 

 

Table 2.1 summarizes key aspect of IISs reviewed.  The services reviewed in this section do not 

simulate farmers’ fields or maintain a soil water balance, but give estimations of ET.  In some 

cases, users need to estimate KC values themselves.  In other cases, these are provided.  In the 

most advanced form, timing between irrigation events is given.  Irrigation scheduling 

information is provided by a variety of different media.  Some services deliver information 

related to crop growth, in addition to that of irrigation scheduling. 
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Table 2.1 Comparison of various IIS that provide generic information to support irrigation scheduling. 

Variable1 Explanation and further details of service  Media used Reference 

ET0
   Internet-based bulletin board,   

 e-mail, fax, a webpage 

Marek et al., 1996; 
AgriLifeExtension, 2011; 
Smith and Munoz, 2002 

ET0, KC values KC factors were determined from field visits.  Website, FTP, consultants CIMIS 2011; Smith and 
Munoz, 2002 

ET0 – rain The service provided irrigation requirement and 
took into account short-term weather forecasts.  Fax Hideshima et al., 1996 

ETP Crop-specific ETP information was provided for 
several crops and planting dates.  Radios, newspapers, consultants Salazar et al., 1996 

Ecref   Website Singels et al., 1999b 

ETP, temperature ETP was calculated as a function of crop type, 
crop start date and daily temperature.  Publication and website Werner, 1996 

GDD, physiological 
growth stage , KC 
values 

  Internet-based bulletin board Marek et al., 1996 

Irrigation intervals, 
delays for rain 

Intervals depend on crop start date, time of year 
and were developed from long-term ETP. 

 Tables on handouts, or electronic  
 sheets via e-mail Olivier et al., 2009 

1Refer to glossary for a list of terms and definitions 
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2.2.2 Crop model based desktop ISDSS 

 

These systems use a crop model and soil water balance simulation model to generate 

information that can be used to make irrigation scheduling decisions.  They operate on the user’s 

computer and require field specific data to be entered.  Table 2.2 lists the systems researched.   

 

Systems that described their irrigation scheduling component in greater detail were studied 

more deeply (Table 2.3).  Notable features are grouped according to the categories of, the 

operating engine, inputs and the outputs.  MyCanesim®, although web-based, is nevertheless 

included for comparison.  

 

The most popular features of these systems were: 1) the provision of irrigation scheduling 

advice (timing and amounts) and 2) the display of the soil water balance on a graph (both 

included in MyCanesim®).  Features that MyCanesim® lacked include: 

(a) The use of soil water measurements to correct simulations.  Five ISDSS had this feature, 

but the automation of the collection of soil water data were not developed; 

(b) The ability to cater for an irrigation strategy which changes during the season; 

(c) An algorithm for optimising the irrigation schedule when seasonal water supply is 

limited; and 

(d) The linking of the ISDSS to a GIS system, which adds a strong visual element. 

 

The development of these features into MyCanesim® would result in a more versatile and 

powerful irrigation scheduling service. 



 

14 

 

Table 2.2 List of crop model based desktop ISDSS and degree of crop coverage. 
Name Crop Coverage Reference 
AquaCrop Many crops Steduto et al., 2009; Raes et 

al., 2011 
Arkansas Irrigation 
Scheduling Program 

Soybeans Tacker et al., 1996 

BEWAB1 A few crops Bennie et al., 1988, cited by  
Singels et al., 2010 

Calex Cotton Cotton, else not clear Plant et al., 1992 
CANEGRO1 Sugarcane Inman-Bamber, 1991 
CanePro1 Sugarcane McGlinchey, 2011 
EPIC-PHASE Maize, else not clear Cabelguenne et al., 1997 
GISAREG, based on 
ISAREG (Pereira et 
al., 2003) 

Many crops Fortes et al., 2005 

GWK1 A few crops Stevens et al., 2005 
IrrigRotation Many crops Rolim and Teixeira, 2008  
Irricheck1 Many crops2 Stevens et al., 2005 
Mehran Model Wheat, cotton else not 

clear 
Lashari et al., 2010 

MODERATO Not clear Bergez et al., 2001 
PUTU1 Many crops2 De Jager et al., 1987;  

Stevens et al., 2005 
PRWIN1 Not clear Stevens et al., 2005 
SCHED Cabbage and squash Ells et al., 1993 
SimISP Potatoes Singh et al., 1993 
SQR Canesim1 Sugarcane SQR-Canesim manual, Vers. 

2004 
SWATRE Potatoes, else not clear Wesseling and van den Broek, 

1988 
SWB1 Many crops2 Annandale et al., 2005 
VINET1 Grapes Stevens et al., 2005 
WISE Not clear Leib et al., 2001 
ZIMSched1 Sugarcane Lecler, 2000 

1 Model developed in South Africa 
2 Includes sugarcane 
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Table 2.3 Features of crop model desktop based ISDSS that are used for irrigation scheduling.   

S = single-crop, M = multi-crop, Y = yes, N = no, U = unclear and NM = not mentioned in paper. 

Application 
/ 
Feature 

Aqua- 
Crop 

Cane- 
Pro 

GISA
-REG 

SQR- 
Canes
im 

MODE
-RATO 

My- 
Canesim® SWB WISE ZIM-

Sched 

Count  of 
ISDSS with 
this feature 

Multi-crop / single-crop1 M S M S S S M M S  
Schedules limited seasonal water 
optimally1 NM U NM N NM N NM NM NM 0/9 

Accounts for within field soil water 
spatial variability1 N5 U NM N Y Y NM NM Y 3/9 

Caters for flexible irrigation strategies 
e.g. for summer versus winter1 NM U NM N Y N Y Y Y 4/9 

Weather data downloaded from 
weather stations automatically2 

U5 U NM N NM Y N Y Y 3/9 

Makes use of soil water measurements2 U Y NM Y NM N Y Y Y 5/9 
Uses a GIS system for visualisation3 N5 U5 Y N NM N U5 NM N 1/9 
Allows for control of irrigation pumps3 NM Y NM N NM N Y NM NM 2/9 
Reports on physiological growth stage3 Y Y4 Y Y4 Y Y4 Y NM NM 7/9 
Recommends irrigation timing and 
amounts3  Y Y U Y Y Y Y Y Y 8/9 

Displays ASWC on a graph3 Y Y Y Y NM Y Y Y Y 8/9 
1 Engine features  
2 Input features  
3 Output features  
4 Canopy cover only 
5 Under research for further development 
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2.2.3 Crop model based online ISDSS 

 

Online ISDSS provide the benefits of a crop/water-balance model, whilst having a centralised 

data storage facility.  Similar to the desktop applications of Section 2.2.2, these systems require 

the user to enter field inputs and to learn how to identify useful information from the outputs.  

Each ISDSS will be discussed under the headings of engine, inputs, outputs and technology 

used.  Four systems were reviewed, namely PlanteInfo (Thysen and Detlefsen, 2006); NDAWN 

(Akyuz et al., 2008), IMO (Hillyer and Sayde, 2010) and WaterSense (Inman-Bamber et al., 

2005).   

 

PlanteInfo 

 

PlanteInfo, an internet-based ISDSS for crop production, was launched in Denmark in 1996 

(Jensen et al., 2000; Thysen and Detlefsen, 2006).  By 2005, 334 farmers and 56 advisers were 

using the system.  PlanteInfo is able to simulate the growth of all the major crops in Denmark, 

namely beet, pea, potato, maize, wheat, rape and grass (Thysen and Detlefsen, 2006).  Root 

depth, phenological stage and leaf area index (LAI) are modelled.  Crop development stages 

(e.g. elongation, filling and ripening for wheat) can be entered or calculated according to 

thermal time.  A soil water balance is simulated for individual fields.  Two soil horizons, each 

with their own depth and drainage properties, are modelled. 

 

The system uses data from a network of 40 automatic and manual stations and 400 rainfall 

stations in Denmark.  This is done with the aid of the Danish Meteorological Institute, who also 

provide weather forecasts.  Medium-range climatic forecasts are obtained from the European 

Centre for Medium-Range Weather Forecasts (ECMWF).  The processing of data from AWS’s 

and manual stations takes one hour and three hours, respectively.   

 

PlanteInfo has a simple interface for new users and a more advanced interface for experienced 

users.  There is an input form for each variable, allowing one variable to be captured for all 

fields on one form.  The developers of PlanteInfo felt that it was more user-friendly not to 

request all variables for an individual field on a single form.  Rainfall data can be based on local 

rainfall records or from a nearby weather station.  User-recorded rainfall data are captured into 

PlanteInfo, via a calendar type entry form. 
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The main output of the system via a webpage is the soil water status for the current and coming 

five days of every field.  This output is based on weather forecasts.  The system does not 

recommend irrigation actions.  Fields are grouped together on a single report, one field per line.  

Soil water deficit (SWD) is shown both numerically and graphically and is colour-coded to 

indicate its severity.  It is possible to sort and filter the table.  Several other variables are 

displayed, namely root development, LAI, evaporation from the soil (E), transpiration from the 

crop (T) and ETP. 

 

The application is coded in the Statistical Analysis Software package (SAS, Cary, North 

Carolina, USA) and uses SAS Graph and JavaScript.  The platform-specific user-interfaces (cell 

phone, desktop) are linked to a common database. 

 

North Dakota Agricultural Weather Network (NDAWN) irrigation advice service 

 

The NDAWN irrigation scheduling application can be found at http://ndawn.ndsu.nodak.edu.  

The system was described by Akyuz et al. (2008).  A spreadsheet version of the model used in 

the system is described by Steele et al. (2010).  By 2008, the system had 40 users and over 200 

fields registered. 

 

The NDAWN system uses a soil water balance model (water profit and loss system).  The three 

soil types occupying the largest area of the field are modelled as cohorts.  A multi-layered root 

zone that increases linearly in depth with time, is simulated (Scherer, 2011).  Although the crop 

canopy is not simulated, ET0 can be determined from radiation and temperature using the Jensen 

and Haise Equation (1963; cited by Steele et al., 2010).  ETP was determined using KC curves 

developed by Stegman et al. (1977; cited by Steele et al., 2010), based on days after emergence 

of the crop.  Actual evapotranspiration (ETA) is then calculated by the model from ETP and the 

crop water stress. 

 

Weather data are downloaded daily from an AWS network.  The user selects his field from aerial 

photographs from a GIS-type interface and enters the crop type, planting date and emergence 

date.  Soil properties, such as slope and rooting depth, are downloaded from a database of the 

United States Department of Agriculture-Natural Resource Conservation Services (USDA-

NRCS).  Irrigation data are captured by the farmer. 
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The system displays ETA and the SWD for the various soil types in each field in a table.  A GIS-

based aerial photograph of the field indicates the sub-field boundaries. 

 

The system was built from open source software.  JQuery and Yahoo User Interface (YUI) 

(Yahoo, Sunnyvale, California, USA) manages the web pages.  OpenLayers was used for the 

GIS interactions.  A PostgreSQL database was used to store GIS shape files and PostGIS, an 

extension to PostgreSQL, was used to create the layered soil maps 

 

Irrigation Management Online (IMO) 

 

IMO (Hillyer and Sayde, 2010) was developed by Oregon State University and the Natural 

Resources Conservation Service (NCRS).  By 2010, the system was undergoing its fourth year 

of field trials.  The system consists of three components: 1) the Irrigation Efficiency Model 

(IEM), 2) the web-based advisory system and 3) an Excel-based economics module. 

 

The IEM component provides yield estimates based on estimations of ET.  To achieve this, 

weather data from several automatic North American AWS networks are downloaded daily into 

the system.  The yield calculations are based on the method of Doorenbos and Kassam (1979) 

though the IMO developers intend to integrate the new FAO AquaCrop model (Steduto et al., 

2009) into their system.  Soil water measurements are combined with reference ET values to 

calculate ASWC.   

 

The second component is the web advisory system which takes into account the water needs 

for the whole farm and provides an optimum schedule for each field.  The system can provide 

irrigation scheduling advice under a limited water supply scenario.  Three different future 

weather scenarios, namely high, average and low ET scenarios are generated. 

 

The economics module calculates profits, based on yield income and cost of irrigation.  The 

module downloads yield and irrigation amounts from the simulation scenarios. 
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System inputs are facilitated through a series of wizards, which explain what is required at each 

step.  User inputs include: the irrigation efficiency, a soil water allowable depletion level (ADL), 

a target refill level and the daily farm irrigation capacity. 

 

System outputs such as irrigation dates and amounts and ASWC are provided for each field on 

graphs.  The system advises on the gross daily and seasonal irrigation requirements and 

indicates when the farm-level irrigation capacity would be exceeded by the irrigation schedule. 

 

The IEM component of the system is programmed in C# (Microsoft Corporation) and uses 

MODCOM.  The Economic spreadsheet is programmed in VBA in Excel (Microsoft 

Corporation). 

 

WaterSense 

 

WaterSense is a tool developed for sugarcane in the Childers and Bundaberg regions in 

Australia (Inman-Bamber et al., 2005).  WaterSense is the combination of two previous systems 

called WaterBalance (Inman-Bamber et al., 2007) and CaneOptimizer, based on the APSIM 

model for sugarcane (Keating et al., 2003).  WaterBalance was developed for irrigation 

scheduling under conditions where water supply would easily meet the ET demand and 

calculated ET0.  CaneOptimizer was developed for restricted water conditions (Inman-Bamber 

et al., 2007) and calculated canopy cover and the soil water balance.  The algorithm used by 

WaterSense to schedule under limited water is given in Section 2.3.2.  Essentially, it finds the 

optimal irrigation trigger (plant stress level) at which the limited water supply produces the 

highest yield. 

 

Field data inputs include: the nearest AWS, irrigation records, plant and harvest dates, soil type 

and the annual water allocation.  The user specifies a maximum ADL when scheduling with an 

unlimited water supply. 

 

The user is presented with graphs of canopy cover (%), a stress index (%), the advised dates 

and amounts of irrigation, the SWD at different depths in the soil profile and expresses the daily 

yield increment as a percentage of the unstressed value  (Inman-Bamber et al., 2007).  The user 

also receives e-mail feedback summarising his inputs, yield estimates, past irrigation and future 
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irrigation dates (Inman-Bamber, 2005).  Future irrigation events are shown as cumulative 

frequency distributions, since many historical weather sequences are used as substitutes for 

future scenarios. 

 

The model is written in VB.net (Microsoft Corporation,) and the data is stored in an SQL Server 

database (Microsoft Corporation,).  The website is written in ASP.net (Microsoft Corporation) 

(Inman-Bamber, 2011). 

 

2.2.4 Soil water probe based ISDSS 

 

A number of companies offer irrigation scheduling services through the use of capacitance 

probes.  In South Africa, these include Aquacheck, DFM, Probe Schedule and IrricheckTM.  

Typically, services from these companies will include installation and maintenance of probes, 

as well as provision of a software interface which gives soil water sensor outputs and irrigation 

scheduling recommendations.  In some cases agronomic support is also offered to help farmers 

to interpret such data.  The features of a few of these services are now discussed. 

 

Aquacheck (www.aquacheck.co.za) started in 1997. Soil water data may be delivered or 

collected using general packet radio service (GPRS), radio frequency (RF) or hand held devices 

either to a central server or to the local computer.  The data can then be viewed using the 

CropGraph desktop program, mobile or web interface (www.aquacheckweb.com).  Data is 

converted to mm values by agents and agronomists, who also choose the soil water irrigation 

trigger levels.  No forecasts appear to be made.  The software recommends current irrigation 

amounts equal to the current SWD.  Soil water data and precipitation can be graphed (Figure 

2.1).  Sensor measurements can be reported individually or as a weighted average over all 

depths.  The software also reports on root zone (weighted average of top sensor readings) and 

buffer zone (weighted average of lower sensor readings) soil water status. 

 

http://www.aquacheck.co.za/
http://www.aquacheckweb.com/
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Figure 2.1  Aquacheck separate sensors graph (available at www.aquacheckweb.com). 

 

Probe Schedule (www.probeschedule.com) offers a software service in conjunction with 

various probe vendors such as HydraWize.  Data from probes are transferred to a central server 

using GPRS.  The data are made available via apps and notifications for smart phones or via a 

website.  An in house agronomist determines the allowable depletion level (ADL) in soil water 

status terms used by the software for each field.    Each farm has its own dashboard listing the 

current soil water status of each probe over three depths, allowing the farmer to quickly 

determine his next irrigation action.  Soil water deficits (and hence irrigation requirements) are 

given in numbers and colour is employed to indicate the severity of the deficit (red – dry, green 

– sufficient, blue – overly wet).  Graphs of soil water status data are also available and ET is 

projected.  The software provides links to other useful websites that provide current wind 

conditions and short term rainfall forecasts. 

 

IrricheckTM
 (www.irricheck.co.za) provides irrigation scheduling advice through the use of data 

from capacitance probes as well as a network of weather stations.  Probes are connected to 

GPRS receivers and transmitters, which collect data half hourly.  Soil water data are stored on 

a cloud database and are used to determine crop water requirements, which depend on the 

phenological stage of the crop.  Software interfaces are available via apps for smart phones and 

through a website.  Weather forecasts (max and min temp, wind speed and cloud cover) are 

provided.  Advice includes the status of the top and bottom soil layers (too dry, ok, too wet) 

and irrigation dates and amounts are recommended.  Rainfall for each of the last four days as 

well as estimated actual transpiration and evaporation over the past week are reported on.  The 

service is backed by a team of agricultural and irrigation specialists and agents. 

 

http://www.aquacheckweb.com/
http://www.probeschedule.com/
http://www.irricheck.co.za/
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2.2.5 The MyCanesim® system 

 

MyCanesim® (http://portal.sasa.org.za, 2011) is a web-based crop simulation system that can 

be used for irrigation scheduling or research investigations.  Because this system forms the basis 

of this research, it will be described in more detail, compared to the previous systems in Section 

2.2.3. 

 

System description 

 

MyCanesim® is a centralised model based ISDSS and consists of several components (Singels 

and Smith, 2006).  Data (rainfall, temperature, solar radiation, humidity and wind) from 42 

automatic weather stations, are downloaded at 8am each day.  Both ET0 and Ecref are 

calculated, the data quality is checked and patched data are stored in an Oracle database.  Data 

processing takes approximately 2 hours.  A daily time step crop model (Canesim®) simulates 

the water balance, canopy cover and yield with or without irrigation.  Canesim®’s water balance 

algorithms are described by Singels et al. (1998), the canopy development by Singels and 

Donaldson (2000) and the sucrose and yield formation by Singels and Bezuidenhout (2002).  In 

Canesim, the accumulation of biomass is a function of the amount of radiation intercepted by 

the crop as well as crop water status.  The partitioning of biomass to stalks depends on the 

development stage of the crop. 

 

A program called IrrigationSMS determines the irrigation advice.  For irrigation systems which 

move to different cohorts in the same field, the scheduling takes into account three cohorts, as 

well as the anticipated ET on each cohort for the remainder of the irrigation cycle (Singels and 

Paraskevopoulos, 2010).  A program called the IrrigationController allows the system 

administrator to update harvest dates and capture irrigation events.  A web-based user-interface 

allows users to manage fields.  An e-mail-SMS gateway called SMS-Impi delivers the text 

messages and the program Canesim®-SMS-Reply responds to SMS feedback from farmers, 

which indicates whether irrigation advice is followed or not. 
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Inputs for the Canesim® model 

 

The MyCanesim® website allows the user to enter various types of data into the system through 

the field, irrigation and rainfall forms, respectively.  Field data can be divided into crop, soil, 

irrigation scheduling data and personal information.  The field data input page requires the 

following information: 

(a) Crop parameters (row spacing, trash layer, plant or ratoon type crop, plant and 

harvest dates); 

(b) Soil parameters (maximum/total soil water available to the plant in the root zone 

(TAM in mm) and the drainage rate for water in excess of the TAM); 

(c) Irrigation scheduling parameters (irrigation type, irrigation cycle lengths, fixed 

irrigation amount, depletion level, refill level and timing of irrigation, whether every 

fixed number of days or need-based);  and 

(d) Personal information for receiving the irrigation scheduling advice by SMS or e-

mail. 

 

Local rainfall and irrigation data can be entered into the system.  A current limitation, however, 

is that such data are not used for the real time scheduling advice, but only for exploratory 

simulations.   

 

Outputs of the MyCanesim® system 

 

Typically, large-scale farmers and extension staff would receive irrigation advice by e-mail, fax 

or website downloads, while small-scale farmers would receive advice by SMS (Singels, 2007).  

Three reports are provided to large-scale farmers.  The first, the Irrigation Advice and Current 

Estimates Report, contains: (a) the current recommended irrigation actions; (b) the future 

recommended actions; (c) the estimated dry-off dates; (d) the current simulated yields; (e) the 

cumulative rain; and (f) the cumulative irrigation up to the current date for each field.  The 

second report viz the Field Properties and Final Estimates Report, provides: (a) the start and 

harvest dates; (b) the estimated yield; (c) the cumulative rain; and (d) the cumulative irrigation 

at harvest.  The third, for users who are interested in detailed information, downloadable from 

the web interface (available in Excel 2003 format), provides daily values of irrigation, rainfall, 

yield, crop water stress and canopy cover. 
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The SMS advice is currently only available in isiZulu and consists of: (a) the recommended 

current irrigation action; (b) the current yield; (c) the expected yield at harvest; and (d) the 

drying off advice.  Users receive an SMS whenever there is a recommended change in irrigation 

action.  An SMS is also received on Wednesdays, confirming the current irrigation 

recommendation.   

 

Drawbacks of the MyCanesim® system 

 

Two major drawbacks of MyCanesim® which were identified in recent projects were that: (a) 

the irrigation scheduling rules do not take into account restricted water allocations and hence 

farmers can be advised to irrigate more than they are allowed; and (b) the information on actual 

irrigation and actual soil water status are not utilised.  Hence, the simulated soil water balances 

can be different from the actual soil water balances in a field, leading to incorrect advice 

(Singels, 2011).  In order to address the first problem, methods for optimising yield with a 

limited water allocation for a single field will later be examined.  The second issue can be 

addressed by utilizing data from soil water sensors to correct simulated soil water content. 

 

Technology on which MyCanesim® is built 

 

The web-based user-interface is driven by an Oracle Portal server (Oracle Corporation, 

Redwood Shores, California, USA), which allows forms to be generated by procedures on the 

Oracle 10g Database.  The IrrigationSMS program, which generates the advice, as well as 

IrrigationController for the system administrator, were written in C#, in Microsoft.Net Visual 

Studios 2008 (Microsoft Corporation).  The Canesim® model was written in the Oracle 

procedural language, PL/SQL (Singels and Smith 2006). 

 
2.2.6 Comparison of online ISDSS reviewed: highlighting key features 

 

From the previous sections, it may be asked what the differences between the online ISDSS are 

and what makes each one unique.  Hence, some sort of comparison is in order.  In Table 2.4 the 

various features of the online ISDSS just reviewed have been extracted and listed.  The table 

can serve as a starting checklist and reference for future developments of any ISDSS.   
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Table 2.4 Engine1, input2 and output3 features of the online ISDSS.  The presence of each feature 
is indicated by a Y.  Refer to glossary for a list of terms and definitions. 
 

Engine: Application/ 
Feature1 

Plante-
Info 

NDAW
N 

IMO Water
-Sense 

My-
Canesim® 

Multi-crop (M) / single-crop (S)1 M M  S S 
Crop simulation model1 Y Y  Y Y 
Thermal time1 Y    Y 
Soil water balance1 Y Y Y Y Y 

Growing root zone1  Y    
Spatial variability of soils1  Y    
Irrigation uniformity1   Y   
Optimizes use of limited water1   Y Y  
Multiple possible future weather 
scenarios1 

  Y   

Considers fields conjunctively1   Y   
Economics accounted for1   Y   
Short-term weather forecasts2 Y     
Automatic update of weather data2 Y Y Y Y Y 
Crop data2 Y Y  Y Y 
Soil data2 Y Y Y Y Y 
Irrigation scheduling info (e.g. cycles, 
amounts)2 

  Y  Y 

User irrigation and precipitation 
records2 

Y     

Management allowable depletion 
level2 

  Y  Y 

Management stress threshold2    Y  
Irrigation allocation2   Y Y  
GIS database used2  Y    
Yield estimate3 Y  Y Y Y 
Potential growth rate of non-stressed 
cane3 

   Y  

Current and future ASWC3 Y  Y Y Y 
Stress index3 Y    Y 
SWD3  Y    
Simulated ETA

3  Y   Y 
Current and future irrigation actions3    Y Y 
Total daily farm irrigated water use3   Y   
Graphs e.g. of ASWC3 Y  Y Y Y 
Grouping of fields in outputs3 Y    Y 
Non-internet-based media used3     Y 
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2.2.7 A special case of an ISDSS 

 

IrriSatSMS (Hornbuckle et al., 2009) is an ISDSS which does not fit into any of the above 

categories.  It uses a soil water balance to simulate farmers’ fields, but there is no graphical 

interface for the users.  The system calculates daily water budgets, based on irrigation, rainfall 

and ET0 data for its registered fields.  IrriSatSMS downloads rainfall and ET0 data from an AWS 

network on a daily basis.  Users can upload rainfall and irrigation data via SMS.  Crop factors 

(KC values) are determined from canopy cover, which is derived from normalised difference 

vegetation index (NDVI) values from satellite imagery.  From these data, IrriSatSMS calculates 

and sends ASWC values via SMS to users each day.  Novel features include the use of NDVI 

images and the reporting of ASWC via SMS. 

 

2.3 Irrigation Scheduling Under a Limited Water Supply 

 

In South Africa irrigation demand can often exceed water supply (Rossler, 2013).  Hence, there 

is a need to optimize the scheduling of limited water.  Reasons for water being restricted include 

limited rainfall, degradation of sources and competition between sectors (Pereira et al., 2002).  

In this thesis, the optimal scheduling of irrigation with limited water is considered on a per field 

basis and not over several fields in an area i.e. optimization is considered in time, over a 

cropping season and not spatially.   

 

Several approaches used to schedule irrigation under a limited water supply will be reviewed 

with respect to: (a) the model used; (b) the crop; (c) the method used to optimize; and (d) the 

method of forecasting necessary for operational use of each approach. 

 

2.3.1 Physiological growth stage approach 

 

In the approach of Rao et al. (1988b), a crop water balance model with a growing root zone 

was developed to determine the weekly ET deficit for cotton.  Since the model did not grow 

biomass, a yield-water production function, based on that of Doorenbos and Kassam (1979), 

was used to calculate the yield deficit of each physiological growth stage: 

 

1 − 
𝑌𝑖

𝑌𝑀𝑖

=  𝐾𝑖(1 −
𝐸𝑇𝐴𝑖

𝐸𝑇𝑃𝑖
)       Equation 2.1 
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where, for the ith physiological growth stage of the crop, 

Yi is the actual yield in t/ha,  

YMi is the potential, unstressed yield in t/ha,  

Ki is the yield-response factor, 

 ETAi is the actual ET in mm experienced by the crop for stage i, and 

 ETPi is the potential ET in mm that could have been experienced, if there was no 

stress. 

 

This calculation is done for each physiological crop stage and the final, seasonal ratio of 𝑌

𝑌𝑀
 is 

determined from the ratios at each stage (Rao et al., 1988a).   

 

The water balance model is separated into the physiological stages and takes the initial ASWC 

and assigned water allocation as inputs for each stage.  How rooting depth was accounted for 

is not clear, but may be fixed at the start of each physiological stage. 

 

The approach of Rao et al. (1988b) optimized the use of limited allocated water, by finding the 

optimal apportioning (which maximized yield) of the allocated water to the different 

physiological crop stages, rather than determining the optimal daily schedules.  Hence, this is a 

broad approach of optimization.  Optimizing the division of water into growth stages required 

testing all possible permutations of such divisions.  Every physiological stage is simulated with 

every possible apportionment of water.   

 

Each combination of initial ASWC and water apportionment can be simulated for each 

physiological growth stage, independent of the other stages.  These simulations can then be 

recombined to represent the simulation of the crop for the entire season.  This process is an 

example of dynamic programming (Bellman, 1954), since each unit of a solution to the problem 

is used many times, but only simulated once.  In this way, every possible cropping scenario can 

be simulated quickly.  For example, if there are 10 possible initial ASWC amounts (10 mm to 

100 mm in steps of 10mm), 10 possible apportionments (100 mm to 1000 mm in steps of 100 

mm) and four possible physiological stages, there are 400 base simulations from which any 

growing season can be constructed.  The algorithm then chooses the crop and apportionment 

which maximized yield.  Using this example, the number of possible combinations of 

apportionments of water to stages is large, namely 10x10x10x10 = 10000 permutations for four 
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stages, but can be reduced upon eliminating impossible combinations.  The large number of 

permutations is referred to as the “curse of dimensionality” by Paudyal and Manguerra (1990). 

 

The approach of Rao et al. (1988b) was adapted to run operationally to provide real time advice 

(Rao et al., 1992).  Historic data was used up to the current date.  Thereafter, long-term weekly 

average ETP was used to forecast the ETP and the rainfall was selected from the 25% long-term 

average percentile for the given week.  Irrigation was scheduled on a weekly basis.  The model 

would recalculate its schedules at the start of the new week.  Within each crop stage, water is 

used until it runs out.  Hence, there is a need for further optimization, especially if growth stages 

cover a long period of time. 

 

Prasad et al. (2006) and Ghahramani and Sepaskhah (2004) gave similar methods of optimising 

a seasonal irrigation schedule with a limited water supply for a single field.  Prasad et al. (2006) 

extended this approach to optimise water usage for a field across multiple crops and seasons. 

 

2.3.2 Stress level approach 

 

Inman-Bamber et al. (2005) developed an ISDSS system called WaterSense, based on the 

APSIM-sugarcane model (Keating et al., 2003), to optimize the use of a limited water supply.  

Their approach, unlike that of Rao et al. (1988b), involved the optimization of a daily irrigation 

schedule.  The steps in their algorithm were: 

 

(a) Simulate the crop up to the current date with available weather and irrigation data; 

(b) Simulate at least 400 future crop scenarios, using 40 historical weather sequences from 

the current date onwards.  Ten different stress levels are used as irrigation triggers, with 

the proviso that the total irrigation of each scenario may not exceed the specified water 

allocation.  Stress was quantified as the ratio between actual and potential 

photosynthesis (simulated); and 

(c) For each weather sequence, identify the simulated crop scenario that had the highest 

yield.  The median next irrigation date of these 40 best scenarios is taken as the 

recommended next irrigation date. 
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2.3.3 Evolutionary algorithms approach 

 

De Paly and Zell (2009) introduced a new approach of finding an optimal irrigation schedule 

for a crop with a limited water allocation, based on evolutionary algorithm techniques.  They 

used a water balance model and yield-water production functions similar to Rao et al. (1988b).  

They tested their model for maize on historical data.  A daily optimal irrigation schedule was 

found (Schutze et al., 2005), rather than an apportionment of water to stages.  However, it is 

important to note that their techniques apply generically to any model that can determine yield 

in some way. 

 

De Paly and Zell (2009) tested the following techniques: (a) genetic algorithms (GA’s), as 

demonstrated by Sivanandam and Deepa, (2008); (b) particle swarm optimization, as 

demonstrated by Kennedy and Eberhart (1995); and (c) differential evolution, as demonstrated 

by Storn and Price (1996).  These techniques have been shown to solve many types of 

optimization problems that cannot be solved by other means.  These techniques fall under the 

class known as evolutionary algorithms, since potential solutions to the problem evolve during 

its solving.  As an example of these techniques, a GA approach for finding an optimal irrigation 

schedule is described. 

 

Sivanandam and Deepa, (2008), Michalewicz (1992) and Bolboaca et al. (2010) described the 

basics of GAs.  The simplest form of a GA involves the representing of solutions to a problem 

in the form of sequences of binary bits (1s or 0s), usually of equal length.  The sequences are 

evaluated by a fitness (also known as objective) function (Y), to see how “good” the solution 

is.  The overall objective will be to find the specific sequence which maximises the fitness 

function.  The sequences are modified through an iterative process to find better solutions to 

the problem. 

 

In the case of an irrigation scheduler, an irrigation sequence I = 1001001...001 could represent 

an irrigation schedule for a season, with 1 indicating an irrigation event and 0 indicating no 

irrigation and the length of the sequence being 365 bits for each of the 365 days of the season.  

The GA would operate on these irrigation sequences, using crossover and mutation operations, 

in order to improve them.   
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The process of finding fitter irrigation sequences involves four steps.  The first step involves 

the selection of irrigation sequences with good fitness (those that achieve high yields), which 

will be used to create a new set of potentially fitter sequences.  The original sequences are said 

to be parents, the new ones children and a new generation of sequences is said to be formed.  

The second step is the selection of pairs of parents and a crossover point, where portions of two 

sequences are interchanged at the crossover point to create pairs of children.  The third step is 

the mutation of sequences, by randomly flipping a bit from 0 to 1 or vice versa e.g. flip the last 

bit of 1001...111 to obtain 1001...110.  The final step is the evaluation of the fitness of the new 

child sequences and then selecting the next generation. By modifying the sequences in this way, 

the average fitness of each new generation can be improved. 

 

An important theoretical result for GAs is the schema theorem, as derived in Michalewicz 

(1992).  It states that small subsequences of bits that tend to yield good fitness will occur more 

frequently in sequences, as the population grows from generation to generation.  

 

In the case of the work of De Paly and Zell (2009), the fitness function is represented by a yield 

calculated by a crop simulation model.  Such a model should have a fast execution time.  For 

real time irrigation scheduling, a technique of forecasting rainfall is necessary, in order to 

accurately predict the need for irrigation water.  De Paly and Zell (2009) did not discuss how 

they would forecast weather or run their model operationally.  In this approach, it is also 

possible that sequences may allow more water than the allocation (e.g. through crossover).  A 

fitness penalty function can be introduced that penalises such cases (subtracts yield), which 

causes the genetic algorithm to favour those sequences which adhere to the allocation. 

 

2.4 Soil Water Monitoring Technology for Irrigation Scheduling with Emphasis on 

Capacitance Probes 

 

Weather-based crop models are good at estimating evapotranspiration (ET) and future irrigation 

needs over large areas  (Akyüz et al., 2008; Busch et al., 2009; Inman-Bamber et al., 2005; 

Thysen and Detlefsen, 2006) while electronic soil water sensors are able to provide good 

estimates of soil water status at a given point (Farina and Bacci, 2005), provided sensor output 

is appropriately interpreted (Paige and Keefer, 2008).  Synergy can be obtained by combining 

these technologies to enhance their usefulness for irrigation management because the predictive 
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power of weather-based models (e.g. the ability to forecast irrigation requirements and yield) 

can be combined with the accuracy of field based sensors for estimating soil water status.  Soil 

water sensors are now reviewed, focusing on capacitance probes and then on efforts to integrate 

simulation models with soil water probe data.  The objective of the study is to provide 

background in support of using data from such sensors to improve the accuracy of irrigation 

scheduling in MyCanesim®. 

 

2.4.1 Overview 

 

Soil-based methods for scheduling irrigation can be divided into three categories (Stevens et 

al., 2005): soil water potential methods, soil water content (SWC) methods and the wetting front 

detector. 

 

Soil water potential is a measure of the suction (negative pressure in units of kPa) required to 

extract water from the soil.  Soil water potential instruments include tensiometers, gypsum 

blocks, granular matrix sensors and thermocouple sensors (Stevens et al., 2005). 

 

Some examples of commonly used soil water content methods include: 

(a) The gravimetric method, which requires sampling, drying and weighing of soil samples.  

The difference between wet and dry mass gives the SWC; 

(b) Neutron water meters, which measure the number of slow neutrons (count/standard 

count) passing through the soil (Reinders et al., 2010).  This number is dependent on 

SWC; 

(c) Capacitance sensors, also known as frequency domain reflectometers (FDR) and time 

domain reflectometers (TDR), which measure the soil dielectric permittivity determined 

mainly by the SWC (Reinders et al., 2010); and 

(d) Other technology for measuring SWC such as ground penetrating radar and the dual-

probe heat-pulse method (Frangi et al., 2009). 

  

The wetting front detector was described by Stirzaker et al. (2007).  As free water drains 

through the soil after a wetting event, it eventually reaches the funnel of the instrument where 

it is accumulated and causes a float to appear on the surface, providing an indication that the 



 

32 

 

wetting front has penetrated to the depth of the funnel.  Using two sensors in conjunction at 

different depths is recommended for irrigation scheduling. 

 

2.4.2 Capacitance soil water probes 

 

Technology 

 

Capacitance soil water probes estimate the SWC of a field by measuring the soil water dielectric 

permittivity, which is a measure of how the soil and the water it holds affect a surrounding or 

neighbouring alternating electric field (Gardner et al., 1998).  The permittivity of the soil has a 

real and complex part.  The real part is called the apparent permittivity (𝜖).  The 𝜖 of air is 1, of 

dry soil is 5 and of water is 80, thus changes in 𝜖 in soil are mostly affected by changes in SWC 

(Paige and Keefer, 2008).  By measuring the change in frequency of the oscillating electric field 

of the probe, 𝜖 can be measured.   

 

Probes are generally sensitive to temperature, but they can be designed to be insensitive to 

temperature changes between 10oC and 30oC (Vera et al., 2009).  Capacitance probes are only 

sensitive to changes in SWC in a small radius around the probe and are sensitive to disturbances 

during installation – hence the use of slurry to make them fit tightly in the soil (van Niekerk, 

2010).   

 

Calibration to estimate volumetric soil water content 

 

More than 60 years of work has been done on the correlation between 𝜖 and SWC (Starr and 

Paltineanu, 1998).  There are various equations for relating 𝜖 to volumetric SWC (𝜃), for 

example Topps Equation (Topp et al., 1980 as cited by Pumpanen and Illvesniemi, 2005): 

 

𝜃 =  𝑎𝜖3 + 𝑏𝜖2 + 𝑐𝜖 + 𝑑       Equation 2.2 

 

and Ledieu’s Equation (Ledieu J et al., 1986 as cited by Pumpanen and Illvesniemi, 2005): 

 

𝜃 = 𝑎√𝜀 − 𝑏         Equation 2.3 
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where a, b, c and d are constants that should be determined for the soil involved.   

 

Starr and Paltineanu (1998) found a non-linear relationship between 𝜃 and the frequency at 

which the capacitance field oscillates, while Vera et al. (2009) used a scaled voltage to 

determine 𝜃.  Gardner et al. (1998) related 𝜃 to 𝜖 using soil properties such as bulk density and 

texture. 

 

Results in research on the ability of capacitance probes to accurately measure 𝜃 differ.  Paige 

and Keefer (2008) cited several examples showing that capacitance probes measured 𝜃 

sufficiently accurately for research purposes.  In contrast, Evett et al. (2009) and Evett et al. 

(2012) found that capacitance probes produced large errors in measuring 𝜃 and recommended 

that the probes not be used for precision measurement.  Vera et al. (2009) found that capacitance 

probes responded well to both small and large changes in 𝜃 and are therefore useful for research.  

Zerizghy et al. (2013) found that they were accurate enough for measuring soil water 

evaporation.  There is general consensus that capacitance probes need to be calibrated after 

being installed if the user wants accurate measurements of 𝜃, because their calibration is 

affected by soil properties such as bulk density and texture (Paige and Keefer, 2008). Factory 

calibrations alone are insufficient for accurate measurement of 𝜃 (Leib et al., 2003 and  

Pumpanen and llvesniemi, 2005). 

 

Suitability for irrigation scheduling 

 

Typically, capacitance probes that are used for irrigation scheduling are calibrated for a 

theoretical field at factory level.  Factory calibrations typically involve taking a reading from 

the probe in air and a reading in water (Leib et al., 2003).  Thus, 𝜀 is related to a soil water 

index (SWI) ranging from 0 to 100, which would then be linearly related to the actual SWC of 

the field.  Leib et al. (2003) suggested that factory calibrated probes can still be used for 

irrigation scheduling if appropriate scheduling trigger levels are chosen.  Probes can be 

calibrated from factory settings to SWC from night-time (when ET is assumed zero) irrigation 

or rainfall.   

 

Irrigators make scheduling decisions based on the spatial average SWC of a field, so probes 

should be placed where the SWC is most representative of the average SWC of the field (Evett 
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et al., 2009).  Vera et al. (2009) stated that probes should be placed in the zone with the highest 

root density and be used as biological sensors as well as soil water sensors.  Having sensors at 

several depths in the soil will better reflect the true SWC (Leib et al., 2003) and can help explain 

the flow of water in the soil (Starr and Paltineanu, 1998).   

 

Capacitance probes are easily adapted to continuous real-time monitoring (Vera et al., 2009).  

Capacitance probes thus have the advantage over the gravimetric method in that readings can 

be taken automatically and on a regular, frequent basis.  Capacitance probes do not have the 

risk of radiation that neutron probes have. 

 

Other uses 

 

Probes can highlight “breaking points” in the soil, where the slope of extraction patterns change 

(e.g. the stress point or drainage), or can indicate more or less profuse root activity (Starr and 

Paltineanu, 1998) and consequent root depth.  Probes are also useful for estimating the total 

available moisture (TAM), for developing irrigation scheduling strategies and for seeing how 

water lower in the profile is used.   

 

2.4.3 Integration with weather-based crop and soil water balance simulation models 

 

Very little work has been published on the integration of probe and model technology, 

especially for enhancing irrigation scheduling and general irrigation management.  Holloway-

Phillips et al. (2008) proposed a framework for “fusing” soil water models and in situ soil water 

sensors to predict soil water extraction and the date of the next irrigation.  Real time data from 

sensors could be used to “enhance or calibrate” simulations of the soil water balance to support 

irrigation management. 

 

The Soil Water Balance (SWB) crop model system developed by Annandale et al. (2005) has 

the capability to store measured soil water data in its database for comparison with simulated 

values.  Neutron water meter data or converted volumetric soil water data can be uploaded 

manually into the SWB database and can be used to correct the simulated soil water content. 
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Thomson and Ross (1996) developed a system to use data from soil water potential sensors to 

adjust soil water balance parameters in a crop model for scheduling irrigation in peanuts.  

Sensor data were fed manually into the modelling database and used to automatically adjust 

soil and rooting parameters in order to improve the accuracy of soil water balance simulations 

and irrigation advice. 

 

It is clear that there is scope for integrating probe technologies into models and that soil water 

sensor data can add a new dimension to crop model simulation and irrigation scheduling. 

 

2.5 Discussion and Conclusions 

 

2.5.1 Approaches to providing irrigation scheduling advice  

 

In this review, two general approaches to providing irrigation scheduling advice were found: 

(a) the generic information provided by IIS; and (b) field-specific information provided by 

model based ISDSS.  The IIS provide easily obtainable ET and/or other data, which requires 

further work by the farmer to make irrigation scheduling decisions.  Field-specific ISDSS, on 

the other hand, simulate the soil water balance and recommend irrigation when a chosen soil 

water depletion level is reached.  They provide more detailed and precise information than IIS 

and have advanced features, such as the ability to test whether irrigation systems will meet the 

long-term demand of ET minus rainfall.  Users need more time to master these systems, 

although complexity can be hidden, as in the case of MyCanesim®, which gives simple SMS 

advice and does not require the user to operate the model (Smith et al., 2005).  The level of 

detail in the information provided could be tailored for individual users. 

 

Model based ISDSS can be implemented online or locally on desktops.  The online systems 

store code and data centrally, as opposed to locally on the desktops, thus providing better 

protection and requiring easier maintenance and upgrading.  A possible drawback of online 

systems is that they can become too slow when a large number of users use it simultaneously. 

 

The effort taken to generate, retrieve and apply useful information from these two approaches 

(generic vs field-specific), as well as the improvement in irrigation water use efficiency (IWUE) 

and yield should be compared. 
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2.5.2 Useful features of ISDSS 

 

Three aspects of the ISDSS will be discussed namely the engine (calculation method); inputs 

and outputs. 

 

From the useful operating features of ISDSS listed in Table 2.4, the ability to allow flexible 

scheduling rules (different rules for different times of the year or stages of the crop) was most 

relevant for the study.  For example, a farmer may speed up a centre pivot in summer and slow 

it down in winter, applying less or more water per event. The ISDSS must thus be able to 

smoothly transition from the summer strategy to the winter one. Flexible irrigation strategies 

may also need to be tested ahead of their implementation. 

 

The accuracy and relevance of irrigation advice and yield forecasts can be enhanced by 

correcting simulations with field measurements of soil water content, irrigation and canopy 

cover.   For example NDVI data from satellites can be used to estimate canopy cover and crop 

coefficients (Hornbuckle et al., 2009), which can be used to correct the simulated canopy cover, 

thus improving transpiration estimates and the consequent irrigation schedule and yield 

forecast.   

 

The organization of input is crucial for the ease of use of ISDSS.  Two approaches are used, 

namely: (a) the grouping of inputs by type for multiple fields in one form; and (b) the grouping 

of several input types for a given field in one form.  The former reinforces the nature of a given 

input and allows the farmer to see how that input varies for his farm, whilst the latter gives an 

overview of the field.   

 

The type of information that is generated by the systems, the presentation format and the 

medium of dissemination, can play important roles in determining the success of the systems 

in changing irrigation practices. 

  

Irrigation information includes various forms of ET, SWC, SWD, a crop water stress index and 

recommended irrigation amounts and dates.  SWC information empowers the farmer to make 

his own irrigation scheduling decision and possibly allows him to consider factors which are 

not accounted for by the system.  A crop water stress index can be used as an additional 
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scheduling criteria, possibly improving the accuracy of scheduling.  Future recommended 

irrigation dates can be useful when planning irrigation operations.  Recommended irrigation 

dates and amounts are useful for farmers who want to be simply told what to do.  They may not 

have the time to do their own calculations, or they do not understand how to determine their 

own schedules. 

 

In addition, yield and quality predictions are useful in allowing the farmer to plan financially 

e.g. for harvesting and transport purposes.  The simulation of both a stressed and non-stressed 

version of each crop will help the farmer ascertain growth and final yield losses.  The provision 

of an economic output that weighs costs (electricity and water) against benefits (yields), while 

taking all fields into account simultaneously, can help farmers make better irrigation decisions. 

 

Graphs are a powerful way of bringing messages across.  They allow for much more 

information to be presented at once than could be done in a table.  A useful feature is to allow 

a farmer to hover his cursor over a graph curve to be shown the numeric value at that point.   

  

Another powerful way of conveying information is the spatial representation of field data via 

maps.  In this way, farmers receive a whole farm perspective at a glance.  Maps of fields could 

be used to indicate the degree of key variables, e.g. dark greens could represent lush, well-

watered crops and brown could be used for water stressed crops.  Different variables, such as 

ET, yield and canopy cover, could be displayed on different maps.  

 

2.5.3 Scheduling with limited water 

 

Three approaches of optimizing the irrigation schedule under a limited water supply on a single 

field over time were reviewed, namely the crop stage approach (Rao et al., 1998b; 1), the stress-

based approach (Inman-Bamber et al., 2005; 2) and the GA approach (De Paly and Zell, 2009; 

3).  The common objective of all these approaches was to maximise crop yield for a given 

seasonal allocation of irrigation water.  Aspects of interest to this study taken from these 

approaches are: the method of calculating yield response to water, the method of calculating 

the soil water balance, the method of selecting weather data to represent the future and the 

optimisation approach.   
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A simple empirical approach was used to determine yield from water use in two of the study 

cases, namely that of a stage based production function driven by the ratio of ETA to ETP 

(approaches 1, 3).  In the case of approach (2), a sophisticated process-based yield model with 

a daily time step was used.  The first approach may have a shorter simulation time, whereas the 

second approach may generate more accurate yields. 

 

The calculation of the soil water balance model was done to occur at either weekly (1) or daily 

(2) time steps.  A weekly/coarser time step captures less of the dynamics of the system and 

relies more on assumptions, but requires less inputs.  Also, a weekly/coarser time step water 

balance allows for long term average rainfall and ET to be used to represent the future (see Rao 

et al., 1992), which would not be realistic for a daily water balance.  In that case, multiple 

simulatSteele 

ions using different historical daily weather sequences to represent the future, may be used to 

capture the uncertainty of rainfall (2).  Sequences with a higher probability of occurrence (as 

indicated by climate forecasts) may be selected.   

 

Optimisation of the irrigation schedule was done in two ways.  Multiple irrigation schedules 

were evaluated iteratively (1, 2, 3) and/or a set of rules were used to build the optimal schedule 

(2).  The time resolution of the optimized schedule also differs.  Stage based optimisation may 

be faster and offer a broad perspective on optimal water application, while daily based 

optimisation allows for more detailed scheduling.  The performance of the different approaches 

need to be compared, which will be the subject of chapter 3. 

 

2.5.4 Capacitance soil water balance monitoring 

 

There are many different types of soil monitoring technology, of which capacitance probes are 

one.  Capacitance probes have the advantages over the gravimetric method and neutron probes 

in that they offer automatic logging and are not radioactive.  The literature disagrees about the 

suitability of capacitance probes for measuring 𝜃 accurately, but suggests they can used for 

irrigation scheduling even with just factory calibrations.  For scheduling irrigation, probes 

should be placed at a location where they are representative of the average SWC of the field, as 

well as where roots are active.  Sensors at several depths should be used.  Not much work has 
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been done in incorporating the data from soil water probes into models and discovering related 

benefits, so there is scope for new research in this area.   

To ensure compatibility with simulation systems, soil water data processing and data integration 

should be automated as far as possible.  The option to correct simulations with soil water records 

may enhance the relevance and accuracy of irrigation advice, as well as estimates of crop 

performance (e.g. yield).  

 

2.5.5 Conclusions 

 

This chapter described the most pertinent features of ISDSS and approaches to providing 

decision support for irrigation scheduling which are relevant to this study.  Based on this it is 

recommended that the following features be considered for inclusion and testing in 

MyCanesim®: 

(a) A system output report, per field, for ASWC, daily rainfall and next irrigation date and 

amount; 

(b) A spatial representation of a farm to enhance the reporting of the system; 

(c) A method for optimizing the scheduling under limited water allocation; 

(d) Functionality to integrate field measurements (ASWC, irrigation and canopy cover) with 

simulations of water balance and crop growth, in order to improve the accuracy of real 

time advice; 

(e) Functionality to allow flexible scheduling rules to enable more powerful strategizing 

and to accommodate farmers who change practices throughout a season; and 

(f) Functionality for simultaneously considering the demand for water by all fields, 

especially when water supply is limited, and providing irrigation scheduling advice 

accordingly. 

 

The next two chapters focus on introducing features (c) and (d) (for ASWC only) into 

MyCanesim® and assessing potential benefits.  
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3. ALGORITHMS FOR SCHEDULING LIMITED IRRIGATION 

WATER 
 

3.1 Introduction 

 

One of the drawbacks of the MyCanesim® sugarcane yield and irrigation scheduling system is 

that the advised irrigation total for a twelve month crop can exceed the seasonal water allocation 

(ALLOCseason) imposed by the relevant Water User Associations.  Irrigation scheduling 

algorithms are needed to provide sound irrigation advice that, apart from minimising water 

stress and water wastage, also maximise yields, adhere to the ALLOCseason within the constraints 

of the irrigation system and which execute in a reasonable amount of time.  In the literature 

review, three scheduling algorithms were identified for possible use in MyCanesim®, namely: 

(a) The physiological growth stage or crop stage algorithm (Rao et al., 1988a,b, and Rao 

et al., 1992).  This algorithm simulates the water balance and yield contribution for 

different growth stages using various allocations of irrigation water for each stage 

(stage allocation, ALLOCstage).  The algorithm finds a set of stage simulations that 

produces the highest yield at harvest, while adhering to the ALLOCseason. 

(b) The stress level algorithm (Inman-Bamber et al., 2005 and Inman-Bamber et al., 

2007), which uses a water balance and yield model to evaluate the impact of 

irrigation schedules derived from applying different allowable depletion levels (ADL).  

The operator enters their choice of ADL values that should be applied before the 

algorithm is run. 

(c) Genetic algorithms (De Paly and Zell, 2009), which simulate yield from various sets of 

daily irrigation schedules covering the entire growing season.  These schedules are 

represented using binary strings (1 for a day with irrigation and 0 for a day with no 

irrigation) and then use the crossover and mutation processes to find new irrigation 

schedules, which may achieve higher yields.  Due to the large number of simulations 

required to execute the genetic algorithm, this component was left out of the study. 

 

Four additional scheduling algorithms were evaluated namely: 

(d) The prorata algorithm, which schedules irrigation so that the cumulative irrigation total 

at the current date d in the season does not exceed a specified fraction of the long-term 
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average cumulative irrigation requirement on that day.  That fraction is the seasonal 

allocation divided by the long-term average seasonal irrigation requirement. 

(e) An advanced version of the prorata algorithm that allows a variance to the cap on to-

date water use.  The extent of the variance declines as the season progresses and is 

cancelled when the to-date water use reaches a specified percentage of the seasonal 

allocation.   

(f) The water satisfaction algorithm, which schedules irrigation on the day in the growing 

season where the ratio of water supply (rainfall plus irrigation) to water demand 

(potential evapotranspiration (ETP)) is the lowest.  Preference for irrigation is given to 

growth stages that show a greater yield response to water, all else being equal.  

(g) A baseline algorithm where irrigation was scheduled whenever the ASWC reached the 

base ADL of 50% of maximum plant available moisture (TAM), provided that the to-

date cumulative irrigation total does not exceed ALLOCseason.  If ALLOCseason is reached 

before the end of the growing season, irrigation is ceased. 

 
3.2 Methods 

 

3.2.1 Simulation test cases 

 

In order to compare the performance of algorithms, crop yield and soil water balance 

simulations were performed using historical weather data.  The algorithms had access to the 

weather record of the entire growing season.  Nine hundred and sixty (960) hypothetical crop 

scenarios were simulated per algorithm.  These scenarios were constructed as follows: data was 

used from four weather stations, each in a different sugarcane milling region (Komati, 

Malelane, Pongola and Umfolozi).  Two crop cycles were selected, April and October, 

representing a late summer/early autumn harvest and a late winter/early spring harvest.   

 

Since the irrigation scheduling algorithms may perform differently under different rainfall 

conditions, three classifications of rainfall season (low, medium and high total rainfall) per 

weather station and crop cycle were simulated.  The low, medium and high rainfall seasons 

were selected as follows: for each weather station and crop cycle (April or October start and 

harvest), seasonal rainfall totals for historical weather sequences were ranked from smallest to 

largest.  Complete weather sequences with rainfall totals closest to the 17%, 50% and 83% 

percentile rankings (i.e. the median low, normal and high rainfall sequences) were chosen to 
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represent dry, average and wet years (Table 3.1).  Weather sequences that had missing data 

were excluded and replaced with the closest available percentile year.  Only three sequences 

were chosen per site to keep the number of simulations manageable.  

 

Properties of two hypothetical soils (TAMs of 80 mm and 120 mm and well drained) were used 

as simulation input.  Two fixed irrigation amounts (8 mm and 40 mm) were chosen with an 

irrigation cycle of 1 day.  The assumed irrigation system was drip, so as to avoid confounding 

effects of canopy interception on simulated crop water use and yield.  The default ADL was set 

to 70% of TAM (meaning that only 30% of TAM was depleted before irrigation was triggered) 

for 8 mm fixed irrigation scenarios (to avoid water stress) and to 50% of TAM for 40 mm fixed 

irrigation scenarios (to avoid water stress, minimize water wastage through runoff and deep 

percolation and maximize rainfall efficiency).  The initial ASWC value was set to 50% of TAM 

for each scenario.  Ten different ALLOCseason, ranging from 100 mm to 1000 mm in steps of 

100 mm, were investigated.  Crop input parameters represented a ratoon crop of cultivar 

NCo376 at row spacing of 1.5 m.  
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Table 3.1 Selected twelve month weather sequences for each weather station and crop cycle.  Three types of sequences were chosen for each 

station, namely a dry, average and wet rainfall scenario.  Rainfall totals and percentile rankings 3,4 for the specified twelve month periods are 

indicated. 

  April crop cycle October crop cycle 
Weather Station Classification Start year Twelve 

month 
rainfall 

total (mm)1 

Percentile 
(%)3 

Start year Twelve 
month 
rainfall  

total(mm)2 

Percentile 
(%)4 

Amanxala - Komati Mill Dry year 2004 462 18.8 2000 430 18.8 
Average year 2009 713 50.0 2011 685 50.0 
Wet year 2005 944 87.5 2005 944 87.5 

Malelane – Mhlati Dry year 2004 382 15.4 2007 393 23.1 
Average year 2009 569 53.8 2003 646 53.8 
Wet year 2010 900 84.6 2009 757 84.6 

Pongola – SASRI Dry year 1997 558 12.5 2004 586 18.8 
Average year 2007 654 50.0 2003 695 50.0 
Wet year 2006 827 87.5 2009 758 87.5 

Mtubatuba – Dangu Dry year 2002 501 21.4 2002 578 21.4 
Average year 2003 886 50.0 2009 825 50.0 
Wet year 2004 980 71.4 2011 1073 85.7 

1 Rainfall total from 1 April to 31 March the subsequent year 
2 Rainfall total from 1 October to 30 September the subsequent year 
3,4 Percentile ranking (ascending) of the rainfall total for the specified season, based on a ranking of all twelve month seasons for the specified 
station. 
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3.2.2 Theory and implementation of algorithms 

 

Crop Stage Algorithm 

 

The crop stage scheduling algorithm was described in the literature review (Rao et al., 1988b).  

In the implementation of the algorithm in this study, the simulated crop growing season (12 

months) was divided into eight stages of equal duration (45 days).  Using eight stages instead 

of the four used by Rao et al. (1988b) allowed more flexibility in scheduling of ALLOCseason, 

which should result in better solutions.  Nine possible ALLOCstage of irrigation were tested for 

at each stage, ranging from 0 to 320 mm in steps of 40 mm.  The maximum ALLOCstage of 320 

mm was chosen since it was divisible by the 40 mm and 8 mm fixed irrigation depths and it 

was unlikely that a stage would use more than 320 mm.  Steps of 40 mm were used because of 

divisibility by the fixed irrigation depths.  While the ALLOCstage was varied for a specific 

growth stage, the remainder of the ALLOCseason was distributed evenly between the remaining 

growth stages.  Within a given stage, irrigation was scheduled using ADL = 50% of TAM and 

until the ALLOCstage was exhausted.  This implies that there may have been water deficits and 

stress in some stages if water was exhausted before the end of the 45 day period. 
 

The final step was the recombination process.  All possible combinations of sequences of crop 

stages were assessed by comparing the sum of ALLOCstage with ALLOCseason and evaluating the 

sum of yields.  The optimal irrigation schedule was chosen from the combination that had the 

highest simulated yield and for which the sum of ALLOCstage did not exceed the ALLOCseason.  

Simulated yield at harvest was recalculated by simulating the crop as a whole using the chosen 

optimal irrigation schedule. 

 

Stress Level Algorithm 

 

The stress level scheduling algorithm (Inman-Bamber et al., 2005) schedules using a 

predetermined set of ADLs and constraining seasonal total irrigation (𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛) season  

below the seasonal allocation (ALLOCseason).  

 

This approach is best explained by an example.  Let us assume that the algorithm has already 

determined the first n optimal irrigation events through n rounds of testing.  In test round n + 
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1, it determines optimal irrigation event n + 1 as follows: starting after the nth irrigation event, 

schedule irrigation and simulate crop growth using a given ADL value, till the end of the 

simulated season and ceasing irrigation when the ALLOCseason is exhausted.  This is repeated 

for every ADL value.  The algorithm then picks the n + 1th irrigation event from the ADL value 

that simulated the highest yield.  This procedure is then repeated for event n + 2 and subsequent 

events, until the end of the growing season. Thus the algorithm explores the use of different 

ADL for different periods and evaluates simulated yield response to water stress imposed during 

different periods in the season.   

 

Implementation: simulations were conducted for six different ADLs, ranging from 10% to 60% 

of TAM in steps of 10%.  Each simulation consisted of two parts, namely the first part for which 

an irrigation schedule had already been determined and the second part which explored the 

impact of irrigation triggered by a given ADL and the remainder of the ALLOCseason on 

simulated yield.  Next irrigation dates were determined iteratively from the simulations that 

produced the highest yields.  This process was repeated until the ALLOCseason was exhausted 

and no more irrigation could be scheduled.  Finally, the crop was re-simulated with the chosen 

set of irrigation events and the simulated yield recorded in the database. 

 

Prorata Algorithm 

 

The prorata algorithm presumes that yield losses due to water deficit will be minimized by 

spreading the available irrigation over the growing season in proportion to the long term average 

irrigation requirement.  The prorata algorithm restricts the to-date irrigation total of a crop from 

exceeding the to-date allocation (ALLOCcumd) which is calculated as the product of the long 

term average to-date irrigation requirement (expressed as fraction of the long term average 

irrigation requirement) and the seasonal allocation (ALLOCseason).  

Irrigation is scheduled so that: 

 

𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑 ≤ (1 + 𝛿)𝐴𝐿𝐿𝑂𝐶𝑐𝑢𝑚𝑑 = (1 + 𝛿)
𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛

𝐼𝑅𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
× 𝐼𝑅𝑐𝑢𝑚𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅    Equation 3.1 

 

where 

 𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑  = the cumulative irrigation for the crop on day d in mm, 

𝐴𝐿𝐿𝑂𝐶𝑐𝑢𝑚𝑑    = the cumulative irrigation allocation since the start of the crop on day 
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   d in mm, 

 𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛   = the seasonal irrigation allocation in mm, 

  𝐼𝑅𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = the long-term average cumulative irrigation requirement at the  

      end of the season in mm, 

𝐼𝑅𝑐𝑢𝑚𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = the long-term average cumulative irrigation requirement on day d in 

   mm, and 

𝛿   = a fraction which allows irrigation water to be used more quickly  

   (𝛿 >0) or more slowly (𝛿 <0), called the tolerance factor. 

 

𝛿 = 𝛿0 × (1 −  
𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑 

𝛽×𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛
) ;   𝑎𝑛𝑑 𝛿 = 0 𝑖𝑓 

𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑 

𝛽×𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛
 ≥1  Equation 3.2 

 

where 

𝛿0  = a base increase or reduction in allowed cumulative   

                              irrigation (as a fraction), and 

  𝛽  = the fraction of 𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛at which 𝛿 becomes 0, 

 

And 

 

𝐼𝑅𝑐𝑢𝑚𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝐼𝑅𝑐𝑢𝑚𝑑,𝑖

𝑛
𝑖=1        Equation 3.3 

 

where  

𝐼𝑅𝑐𝑢𝑚𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = the long-term cumulative irrigation requirement for the crop on 

growing day d in mm, generated by simulating and averaging the 

irrigation demand for many seasons, 

𝐼𝑅𝑐𝑢𝑚𝑑,𝑖  = the cumulative irrigation requirement for season i on day d; where  

there are n number of such seasons. 

 

𝐼𝑅𝑐𝑢𝑚𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (and hence and 𝐼𝑅𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) were calculated for a given cropping situation (given 

site, soil, crop cycle and irrigation system).  𝐼𝑅𝑐𝑢𝑚𝑑,𝑖 were determined by scheduling irrigation 

events when ASWC reached ADL = 50% of TAM.  𝐼𝑅𝑐𝑢𝑚𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  was pre-calculated using long-term 

weather data in C# and stored in the Oracle database for use in different crop situations. 
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An example of how the algorithm schedules irrigation is shown in Figure 3.1.  

 

 
Figure 3.1 The long-term average cumulative irrigation requirement (𝐼𝑅𝑐𝑢𝑚𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), the pro-

rata cumulative allocation (𝐴𝐿𝐿𝑂𝐶𝑐𝑢𝑚𝑑) and the cumulative scheduled irrigation 

(𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑) for a seasonal irrigation allocation (𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛) of 500 mm.  The value of 𝛿 

is also plotted as it decreases from 0.2 to 0 as 𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑 approaches 𝛽 (= 0.7) of 

𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛 (see Equation 3.2).  The example was for a hypothetical twelve month Pongola 

crop started in April 2007 with a long term average seasonal irrigation requirement of 839 mm. 

 

Two versions of the algorithm were implemented.  The basic version used 𝛿0 = 0 in Equation 

3.2, while the advanced version tested each of 𝛿0  ∈ {-0.2, 0, 0.2}.  The value of 0.2 was used 

because it was considered a mild alteration of the 𝛿 = 0.  𝛽  (Equation 3.3) was chosen to be 

0.7, so that, for the last 30% of the 𝐴𝐿𝐿𝑂𝐶𝑠𝑒𝑎𝑠𝑜𝑛, there would be adequate irrigation water left 

to support the remaining stalk growth. 

 

In the advanced version of the algorithm, 𝛿 decreases linearly in absolute value as the 

cumulative irrigation for the crop increases, becoming 0 when the cumulative irrigation equals 
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𝛽 multiplied by the ALLOCseason.  Flexibility is thus given to the algorithm to use more (or less) 

water early in the season than the standard version.  This flexibility is tightened as the 

percentage depletion of the seasonal allocation approaches 𝛽. 

 
Water Satisfaction Algorithm 

 

The water satisfaction algorithm is built on the assumption that the yield response to irrigation 

depends on growth stage and the irrigation requirement on a given day.  The irrigation 

requirement is calculated on the principle that long periods without rainfall and with high ET, 

have high irrigation demand and conversely.  The algorithm compares a time integration of 

rainfall plus irrigation with a time integration of ET to determine which day has the greatest 

demand for water (Equation 3.4). Irrigation, rainfall and ET are evaluated over the entire 

growing period.  The sensitivity of sugarcane to water deficits during different growth stages is 

also taken into account.   

 

The water satisfaction index (WSI) on a day d of the growing season was defined as: 

 

𝑊𝑆𝐼𝑑 = 𝐾𝑦,𝑑
∑ (|𝑑−𝑒|+1)𝛼𝑒=𝑓𝑖𝑛𝑎𝑙 𝑑𝑎𝑦

𝑒=1 ×(𝑅𝑒+𝐼𝑒)

∑ (|𝑑−𝑒|+1)𝛼𝑒=𝑓𝑖𝑛𝑎𝑙 𝑑𝑎𝑦
𝑒=1 ×(𝐸𝑇𝑝,𝑒)

      Equation 3.4 

 

where 

 d  = the day d in the growing season which is being evaluated, 

𝐾𝑦,𝑑  = a water stress sensitivity factor for day d, 

 e  = any day in the growing season, 

𝛼  = the time difference scaling constant, 

𝑅𝑒   = the rainfall on day e in mm, 

𝐼𝑒   = the irrigation amount on day e in mm, and 

𝐸𝑇𝑃,𝑒   = the potential evapotranspiration on day e in mm. 

 

𝑊𝑆𝐼𝑑 is large when d is distant from high values of rain and irrigation water and close to high 

values of ET, and conversely.  Thus the maximum 𝑊𝑆𝐼𝑑 represents the day that is most water 

needy.  When α<1 it reduces the impact of larger values of |d - e| + 1 on 𝑊𝑆𝐼𝑑 and places more 

emphasis on the rain, irrigation and ETP amounts on day d.  The value of |d - e| + 1 represents 
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the number of days or time distance between days d and e and is used to determine how far 

away a wetting event or evapotranspiration event is from the current day d.  Values for 𝐾𝑦,𝑑 

and ∝ should be calculated by experimentation. 

 

The algorithm iteratively schedules irrigation on the day with maximum WSI taking into 

account previously scheduled irrigation events until ALLOCseason has been depleted. 

 

Parameterisation 

 

Values for Ky.d were determined by evaluating Canesim® simulated yield using irrigation 

schedules generated by the water satisfaction algorithm using four sets of tentative Ky,d values.  

These four sets were designed to reflect the varying sensitivity of crops to water deficit as 

growing season progresses (Figure 3.2).  The Ky,d values within a set were varied in stepwise 

fashion from month to month only, but a continuous variation could have been used instead. 

 

A distinction was made between the stalk growth phase, when the crop is relatively sensitive to 

water deficits and the shoot emergence and tillering phase when the crop is less sensitive (Pene 

and Edi, 1999).  It was therefore necessary to estimate the time when the stalk growth phase 

commences.  This was done by assuming that the crop requires a thermal time (base10) of 1100 
oCd (Jones, 2013).  The onset of stalk growth was rounded to the closest end of the month (4 

months for April crops and 3 months for October crops at all sites) 

 

Four possible sets of parameters were tested in a simulation trial to determine a best set of 𝐾𝑦,𝑑 

values (Figure 3.2).  Each parameter set consisted of twelve values representing the twelve 

months of the year, to be applied in calculating 𝑊𝑆𝐼𝑑. 

 

The Ky,d sets 1, 2 and 3 have values < 1 in the first 4 (April) or first 3 (October) months of the 

growing period (tillering stage).  This implies that the water satisfaction algorithm will give 

preference to scheduling irrigation in later months i.e. during stalk elongation, all else being 

equal.  Parameter set 4 has Ky,d =1 for all months, implying no preference for scheduling during 

any specific period.  Each set of Ky,d parameters was tested, by applying them on the 960 

scenarios described in section 3.2.1. and feeding the resultant irrigation schedule to the 

Canesim® model for simulating yield at harvest. 
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Figure 3.2 Water stress sensitivity factor (Ky,d ) parameter sets tested for use in the water 

satisfaction algorithm for two crop cycles (April, October) for different months of the year.   

 

The Ky,d parameters sets 1, 2 and 3 achieved similar simulated yields irrespective of region or 

crop cycle.  Parameters sets 1, 2, 3 and 4 achieved the best yields in 53, 53, 63 and 12 cases out 

of 80, respectively.  Parameter set 4 performed the best at the highest allocation of 1000 mm.  

Therefore it was decided to choose Ky,d values from parameter set 3 for allocations between 100 

mm to 900 mm and from set 4 (i.e. Ky,d = 1 for all d) for allocations over 900 mm.  TAM, 

irrigation amount and rainfall class had no effect on the relative performance of the algorithms. 

 

It was also necessary to choose a value for ∝ in Equation 3.4.  Using Ky,d  parameter set 3 in the 

above simulation experiment, values of 1, 0.5, 0.2 and 0.1 were tested for ∝.  From 960 test 

simulations, average simulated yields were calculated for different regions, crop cycles and 

seasonal allocations.  Out of the 80 resultant cases, the values of 1, 0.5, 0.2 and 0.1 achieved 

the highest yields 7, 23, 21 and 29 times respectively.  The ∝ =  0.5, ∝ = 0.2 and ∝ = 0.1 values 

performed very similarly.  Since ∝ = 0.1 achieved the highest yields in 29 out of 80 cases as 

opposed to the next best of 23, it was decided to use the value of ∝= 0.1 in the main part of the 

study.  TAM had no effect on the order of performance of the algorithms.  For the large fixed 
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irrigation amount (40mm), the value of ∝ = 1 performs better than ∝ = 0.1 on ALLOCseason of 

400 mm or less.  Rainfall class had no effect on the algorithm performance. 

 

Thus, a suitable set of parameters was chosen for Equation 3.4 for use in comparison against 

the other algorithms. 

 

3.2.3 Summary 

 

Table 3.2 summarises the differences in approaches with regards to the scheduling aspects and 

the optimisation rule of the algorithms described thus far.  The majority of algorithms use a 

crop model to calculate the optimal irrigation schedule.   The exception is the water satisfaction 

algorithm, which nevertheless needs some information about yield and crop water stress 

relations at different growth stages to improve its accuracy.  Two algorithms (crop stage, stress 

level) generated a multitude of irrigation schedules and chose the schedule that maximised 

yield, while the other two algorithms (prorata, water satisfaction) applied a special set of rules 

in forming a single optimal schedule.  The former algorithms would run slowly (as seen in the 

following section), while the latter would run quickly.  The direct objective of the majority of 

algorithms was to maximise yield, except for the water satisfaction algorithm which attempted 

to minimise the cumulative water deficit across the growing season. 

 

In order to code these scheduling algorithms into procedures, flowcharts describing the main 

processes involved were developed.  These flowcharts were translated into C# procedures and 

linked to an Oracle database.  The procedures made use of the Canesim® sugarcane yield and 

water balance model, either in calculation or in simulating the optimal irrigation schedule, 

which is coded in Oracle PLSQL.  Canesim® was programmed to use a flexible ADL (which 

could vary through the growing season) for scheduling irrigation which helped with the 

implementation of the scheduling. 
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Table 3.2 Comparison of various strategies employed by the different scheduling algorithms. 

Strategy/Algorithm Crop stage Stress level Prorata Water satisfaction Baseline 
Model used to 
calculate schedule 

Canesim® Canesim® Canesim® Simple yield response factor 
model, based on Canesim® 

Canesim® 

Scheduling rule ADL1 = 50%, non-
exceedence of 
ALLOCstage

2 

ADL1 varied, non 
exceedence of 
ALLOCseason

3 

ADL1 = 50%, non-
exceedence of prorata 
allocation 

When water is most needed, 
non exceedence of 
ALLOCseason

3 

ADL1 = 50%, non-
exceedence of 
ALLOCseason

3 
Number of irrigation 
schedules formed and 
tested 

Many Many One One One 

Was weather data 
directly analysed 
during scheduling? 

No – done indirectly 
through model 

No – done indirectly 
through model 

Yes – historical water 
requirement derived 

Yes – rain and ET data used 
in formula 

No – done indirectly 
through model 

Was the crop divided 
into different growth 
stages? 

Yes Indirectly through 
Canesim® 

Indirectly through 
Canesim® 

Yes  Indirectly through 
Canesim® 

Optimisation objective Maximise ∑ ∆𝑌𝑆
4 

 
Maximise Ya

5 Maximise Ya
5 Maximise seasonal WSI6 None 

1 ADL   = allowable depletion level 
2 ALLOCstage  = irrigation allocation for a growth stage 
3 ALLOCseason = irrigation allocation for the growing season 
4 ∆𝑌𝑆 = yield increment for a growth stage 
5 Ya = actual yield achieved by the crop  
6 WSI = Water satisfaction index 
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3.2.4 Evaluation of algorithms. 

 

Algorithms were ranked according to their performance in terms of simulation computation 

time, simulated cane yields and irrigated water use efficiency (IWUE), taking into account the 

conditions under which these were achieved.  IWUE is defined as (Olivier and Singels, 2004): 

 

𝐼𝑊𝑈𝐸 = (100)
𝑌𝐼−𝑌𝐷

𝐼𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛
      Equation 3.5  

 

where  

 𝐼𝑊𝑈𝐸 is the simulated irrigated water use efficiency in t/ha/100mm, 

 𝑌𝐼 is the simulated irrigated yield in t/ha, 

 𝑌𝐷 is the simulated dryland yield in t/ha, and 

 𝐼𝑐𝑢𝑚𝑠𝑒𝑎𝑠𝑜𝑛 is the total simulated applied irrigation for the crop, in mm. 

 

Algorithms are deemed to perform better if they have shorter computation time, or achieve 

higher yields and/or IWUE. 

 

3.3 Results and Discussion 

 

3.3.1 Algorithm computation times 

 

The average computation time of each algorithm is given Table 3.3, with the fastest possible 

time (and hence the standard for comparison) being that of the baseline algorithm (0.41 s).  Of 

the algorithms under investigation, the prorata and water satisfaction algorithms were the 

fastest, with computation running times close to that of the baseline.  The stress level algorithm 

was the slowest.  The computation time of the crop stage and prorata algorithms was not 

affected by the fixed irrigation amount, while it was affected for the water satisfaction and stress 

level algorithms.  It was decided not to simulate the 8 mm irrigation amount for the stress level 

algorithm because a) it took too long to simulate a single scenario and b) the large numbers of 

simulation results caused the local database to crash.  This reduced the overall number of 

scenarios for the stress level algorithm from 960 to 480. 
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Algorithm computation times could be reduced when it is required to optimise the timing of the 

next irrigation event only (call this the operational computation time) (see Table 3.3).  This is 

true of the stress level algorithm, which needs to iterate only once over its set of exploratory 

ADLs to determine the date of the next irrigation event.  The prorata algorithm, which requires 

a single comparison of 𝐼𝑠𝑐ℎ𝑒𝑑𝑐𝑢𝑚𝑑 against  𝐴𝐿𝐿𝑂𝐶𝑐𝑢𝑚𝑑 (Equation 3.1) on each day of the 

simulation, has the same computation time as the baseline algorithm.  The crop stage and water 

satisfaction algorithms require optimisation over the entire growing period in order to optimise 

the timing of the next irrigation event and hence their computation time is not reduced. 

 

Table 3.3 The number of Canesim® simulations, average computation time (full season1) 

and approximate operational computing time (next event only2)  and required for optimising 

the irrigation schedule of a hypothetical crop for different algorithms for a 400 mm seasonal 

allocation. 

Algorithm Conditions for 
optimisation 

Number of 
simulations 

(n) 

Average 
computation 

time1 (s) 

Approximate 
operational 
computation 

time2 (s) 
Baseline   1 0.41  
Crop stage  8 stages with 7 

allocations each 
56 32.75 32.75 

Crop stage  8 stages with 9 
allocations each 

72 41.25 41.25 

Stress level 6 stress levels, 8 mm 
irrigation amount 

300 147.0 2.46 

Stress level  6 stress levels, 40 mm 
irrigation amount 

60 25.0 2.46 

Water satisfaction   0 1.83 1.83 
Prorata basic  1 0.99 0.41 
Prorata advanced  1 2.96 2.96 

 

3.3.2 Algorithm performance as determined by yield 

Algorithm performance was assessed on the increase in simulated yield and IWUE over that of 

the baseline algorithm.  Yield results (Table 3.4) are discussed first, followed by a brief 

discussion on IWUE, as IWUE results were similar to those of yields.  Selected results are also 

shown in Figures 3.3 to 3.6 and further numerical results are provided in Appendices A1-A3. 
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The ranking of the overall performance of the algorithms was: (1) crop stage, (2) stress level 

(3) advanced prorata, (4) water satisfaction and (5) prorata with average yield increases over 

the baseline of 8.6, 8.5, 5.7, 5.5 and 4.7 t/ha respectively.  The average simulated yield increases 

achieved by the crop stage and stress level algorithms were significantly higher than those 

achieved by the three other algorithms in most cases (Table 3.4).  Yield increases for these two 

algorithms did not differ significantly from each other for almost every comparison performed 

(Table 3.4).  The other three algorithms differed significantly from each other in certain cases 

only (Table 3.4).  The effect of region, rainfall class, crop cycle, allocation, TAM and irrigation 

amount on algorithm performance and ranking is now discussed. 

 

Region 

 

Performance ranking of the algorithms was not affected by region (Figure 3.3, Figure 3.4, Table 

3.4).  The average simulated yield increases achieved over the baseline by the crop stage and 

stress level algorithms were significantly higher than those achieved by the other algorithms. 
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Table 3.4 Summary of the simulated yields increases (t/ha) over that of the baseline algorithm achieved 

by each algorithm as averaged over different scenario inputs.  Significant differences were determined 

using the Fisherman’s protected least significant difference test (in the case of more than one 

comparison) or using the two sample unpaired Student’s t-test (for one comparison).  Standard 

deviations of the yield increases are shown and different letters indicate significant differences between 

means (p<0.05).  Each scenario input block was analysed separately. Upper case letters apply to 

individual rows and lower case letters apply to individual columns within each scenario input block. 

Inputs Yield increase (t/ha) for each algorithm 

Scenario 
input 

Input 
value 

Crop Stage Stress Level Water 
Satisfaction 

Prorata Advanced 
Prorata 

Station Komati 9.7 ±8.2  A,a 9.7 ±6.9  A,a 6.6 ±10.9 B,a 3.8 ±6.3 C,c 5 ±6.6     C,bc 

Malelane 8.4 ±6.5  A,b 8.5 ±6.3  A,a 4.9 ±8.3   B,bc 4.8 ±6.6 B,b 6.0 ±7     B,b 

Pongola 9.6 ±7.1  A,ab 9.2 ±6.3  A,a 6.4 ±8.2   B,ab 6.1 ±5.6 B,a 7.2 ±5.8  B,a 

Umfolozi 6.6 ±6.4  A,c 6.5 ±5.6  A,b 4.2 ±7.2   B,c 3.9 ±4.9 B,bc 4.6 ±5.1  B,c 

ALLOC-

season  

(mm) 

100 5.8 ±3.2  A,e 5.1 ±1.9  A,de 3.7 ±3.1   B,d 5.0 ±3.3 A,cd 5.7 ±3.2  A,c 

200 9.8 ±4.5  A,cd 7.9 ±3.4  B,c 4.8 ±4.7   C,d 4.8 ±4    C,d 5.7 ±4.1  C,c 

300 11.2 ±5.9A,bc 10.5 ±4.9A,b 11 ±7.3    A,ab 6.4 ±4.9 B,bc 7.6 ±5.2  B,b 

400 14.5 ±7.7A,a 13.5 ±6.6AB,a 12 ±9.3    B,a 7.2 ±6.6 C,b 8.5 ±7.1  C,b 

500 14.3 ±7.6A,a 14.2 ±6   A,a 12.2 ±9.3AB,a 8.8 ±7.1 C,a 10.5 ±7.5BC,a 

600 12.5 ±6.7A,b 12.5 ±6.1A,a 9.8 ±8.7  AB,b 7.3 ±6.8 C,b 8.4 ±7B   C,b 

700 9.3 ±5.6  A,d 10.4 ±5.6A,b 7.4 ±7.4  B,c 6.2 ±5.5 B,bcd 7.4 ±5.7  B,b 

800 5.1 ±4.9  A,e 5.9 ±5     A,d 0.4 ±6.5  C,e 2.0 ±4.5 B,e 2.9 ±4.4  B,d 

900 2.4 ±3.9  A,f 3.5 ±4.2  A,e -2.9 ±4.9 C,f 0.3 ±3.1 B,f 1.0 ±3.2  B,e 

1000 0.7 ±2.7  A,g 1.2 ±2.6  A,f -3.0 ±3.6 C,f -1.2 ±2.3B,g -0.7 ±2    B,f 

Crop 
cycle 

April 7.6 ±5.9  A,b 7.5 ±5     A,b 2.9 ±6.5  C,b 3.0 ±5     C,b 3.9 ±5      B,b 

October 9.5 ±8.2  A,a 9.4 ±7.4  A,a 8.2 ±10   B,a  6.3 ±6.3  C,a 7.5 ±6.8   B,a 

Soil TAM 
(mm) 

80 9.8 ±7.6  A,a 9.3 ±6.7  A,a 6.2 ±9.3  BC, a 5.6 ±6.2  C,a 6.7 ±6.5   B,a 

120 7.3 ±6.5  A,b 7.6 ±6     A,b 4.9 ±8.2  B,b 3.8 ±5.5  C,b 4.7 ±5.8   B,b 

Rainfall 
class 

High Rain 8.6 ±7.1  A,a 8.3 ±6.5  A,a 5.6 ±8.5  B,a 3.8 ±5.6  C,b 4.6 ±5.8   BC,b 

Med Rain 8.8 ±8.2  A,a 8.3 ±7.3  A,a 6.2 ±9.9  B,a 5.0 ±6.4  C,a 6.1 ±6.8   BC,a 

Low Rain 8.3 ±6     A,a 8.9 ±5.4  A,a 4.8 ±7.8  C,a 5.3 ±5.7  C,a 6.4 ±5.9   B,a 

Irrigation 
amount 
(mm)1 

8 9 ±7.3     A,a  6.5 ±9.2  B,a 5.0 ±5.9  C,a 5.7 ±6.2   BC,a 

40 8.1 ±7     A,b 8.5 ±6.4 A 4.5 ±8.3  C,b 4.3 ±6     C,a 5.6 ±6.3   B,a 

Average2 450 11.9 ±6.7A 11.5 ±5.9A 9.5 ±8.3 B 6.8 ±6     D 8.0 ±6.4  C 

Average3 550 8.6 ±7.2  A 8.5 ±6.4  A 5.5 ±8.8 B 4.7 ±5.9  C 5.7 ±6.2  B 

1 - The stress level algorithm (SL) was not simulated using the 8 mm fixed irrigation amount 
2 - The average was taken over the 200 mm to 700 mm allocation range 
3 – The average was taken over the 100 mm to 1000 mm allocation range 
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Figure 3.3 Increase in simulated yield over the baseline algorithm using different irrigation 

scheduling optimisation algorithms.  Average values are shown for different seasonal 

allocations (mm), crop cycles and regions (80 values per algorithm). 

 

 
Figure 3.4 Increase in simulated yield over the baseline algorithm using different irrigation 

scheduling optimisation algorithms.  Average values are shown for different seasonal 

allocations (mm), rainfall classifications and stations/regions (120 values per algorithm). 
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Allocation 

 

Algorithm performance rankings remained similar as before, except that, for ALLOCseason 

between 300 mm and 600 mm, the water satisfaction algorithm performed as well as the crop 

stage and stress level algorithms (there were no significant differences, Table 3.4).  

  

Yield increases were significantly different across ALLOCseason (Table 3.4).  Simulated yield 

increases achieved by the scheduling algorithms were small for the 100 mm ALLOCseason (5 

t/ha), were highest at the 500 mm and 600 mm ALLOCseason (12 t/ha) and then declined as the 

ALLOCseason increased to 1000 mm (-0.6 t/ha).  In some cases, simulated yields achieved by 

some algorithms were lower than the baseline for the 800 mm to 1000 mm ALLOCseason, for 

example, the case of the water satisfaction and prorata algorithms (Figures 3.3 to 3.7).  The 

good performances of the algorithms for the intermediate ALLOCseason levels stresses the 

importance of using optimization under ALLOCseason. of this magnitude.  At the higher 

ALLOCseason, it becomes sufficient to schedule according to the normal ADL rule.  The results 

confirm that the best impact of optimization is achieved with intermediate allocations because 

although the shortfall is large, the limited but substantial irrigation supply can make a difference 

to yields if applied optimally.   When allocations are very low, less impact is gained because 

there the supply is too limited, while optimization of allocations close to the seasonal demand 

brings little benefit because the crop mostly has adequate water. 

 
Crop cycle 
 

The algorithms performed significantly better for October crop cycles than April crop cycles 

(Table 3.4), suggesting a severe underperformance by the baseline algorithm for October crop 

cycles.  This is confirmed by the fact that the algorithms achieved similar absolute yields for 

April and October cycles (except for the water satisfaction algorithm which consistently 

performed worse for April than for October cycles), whereas the baseline achieved higher 

absolute yields for April than October cycles (4 t/ha on average) (Appendix A1).  This was true 

for all regions and rainfall classes, except for Umfolozi. 

 

Investigation was made into why baseline simulations achieved lower yields for October crop 

cycle than for April crop cycles.  Rainfall distribution is strongly seasonal with most of it 

occurring in summer in the study areas (Figure 3.5).  The baseline algorithm irrigates primarily 
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at the start of the crop.  Thus, for April crops, the baseline irrigates through the dry months, 

with rain covering crop water requirements near the end.  For an October crop, the baseline 

algorithm exhausts the allocation during the initial wet months and leaves a long dry period 

towards the end of the crop, resulting in a low yield. 

 

 
Figure 3.5  Long term average monthly rainfall for the Amanxala - Komati Mill weather station.  

Rainfall is higher in the summer months than in winter months. 

 

Further investigation was made into why the water satisfaction algorithm specifically 

performed better for October crop cycles than April crop cycles. The algorithm, as it is 

formulated in this study, allocates water to periods with a water deficit but prioritizing later 

growth stages over earlier growth stages.  This works well for October cycles when the early 

growth stages received a lot of rain.  It does not work as well for the April cycles because the 

earlier growth stages occur during periods of low rainfall (Figure 3.5). 

 

Maximum plant available soil water (TAM) 

 

Performances were significantly better for the scenarios with the 80 mm TAM (Table 3.4) than 

for those with the 120 mm TAM.  This makes sense because, for the simulated soils with the 

120 mm TAM, less water is wasted through runoff and drainage and therefore there is more 

buffering capacity for erroneous irrigation practices, while in the case of the 80 mm TAM, more 
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precise irrigation scheduling is required.  TAM appears to play no role on the ranking of 

algorithms.  

 

Irrigation amount 

 

The performance ranking of the algorithms remained as before (apart from the fact  that the 

stress level algorithm was not simulated on the 8 mm fixed irrigation amount due to excessively 

high simulation numbers) (Table 3.3).  Average yield increases were slightly higher for the 8 

mm irrigation amount than those of the 40 mm amount, though in general the differences were 

not statistically significant (Table 3.4).  These results imply that it is not necessary to consider 

TAM and irrigation amount when deciding which algorithm to program into MyCanesim®. 

 

Rainfall class 

Algorithm performance rankings remained as mentioned previously.  There were no significant 

differences between simulated yield increases across rainfall classes (crop stage and stress level 

algorithms, Table 3.4).  The prorata algorithms performed worse on average for the high rainfall 

scenarios than for the medium and low rainfall scenarios (Table 3.4).  This is due to the 

algorithm holding back water during the first part of the growing season and then not using up 

the full allocation due to adequate rainfall later.  The other algorithms are more flexible as to 

when they can irrigate and therefore perform better in high rainfall seasons. 

 

Figures 3.4, 3.6 and 3.7 give results in more detail than Table 3.4.  Examining region by rainfall 

class (Figure 3.4) showed that algorithms generally performed better for the medium rainfall 

class (for both April and October crop cycles) except for the Umfolozi region where the low 

rainfall class gave better yield improvements.  Algorithms showed better performances for 

April crop cycles for medium and low rainfall classes (Figure 3.6).   This can be attributed to 

the baseline algorithm performing better in high rainfall scenarios - there is less room for 

improving the irrigation schedule by the optimisation algorithms.  The crop stage and stress 

level algorithms were consistently the best performers in each rainfall class.  Although the water 

satisfaction algorithm seemed to perform better than the advanced prorata algorithm in the high 

and medium rainfall classes, (Figure 3.4, Figure 3.6), there were no significant differences in 

these cases (Table 3.4). 
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Figure 3.6 Increase in simulated yield over the baseline algorithm using different irrigation 

scheduling optimisation algorithms.  Average values are shown for different seasonal 

allocations, crop cycles and rainfall classifications (60 values per algorithm). 

 

 
Figure 3.7 Increase in simulated yield over the baseline algorithm using different irrigation 

scheduling optimisation algorithms.  Average values are shown for different seasonal 

allocations, total available moistures (TAM) and rainfall classifications (60 values per 

algorithm). 
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3.3.3 Algorithm performances as determined by irrigated water use efficiency (IWUE) 

 

The crop stage algorithm achieved a significantly higher IWUE over that of the stress level 

algorithm in 11 out of 24 cases (all other cases did not differ significantly) (Table 3.5).  The 

IWUE increases of these two algorithms were significantly higher than those of the other three 

algorithms in the majority of cases (Table 3.5). 

 

The reason for the IWUE increases of the crop stage algorithm being significantly higher than 

those of the stress level algorithm can mostly be attributed to higher yields.  There were cases 

when the crop stage algorithm was able to use less than the full ALLOCseason, but still achieve 

simulated yields similar to those of the stress level algorithm (see the 900 mm and 1000 mm 

ALLOCseason cases in Table 3.4, Table 3.5). 

 

3.3.4 Optimising of future irrigation events  

 

In this study irrigation scheduling algorithms were evaluated using historical weather data.    In 

practice, when applying the algorithms operationally, this will not be the case.  In order to 

optimize the timing of future irrigation events, consideration should be given on how to 

represent future weather. 

 

An example is now given, proposed by Inman-Bamber et al. (2007) using a simple rainfall 

categorical forecast of low (below normal), medium or high (above normal) rainfall for the rest 

of the growing season.  Suppose that the forecast status is that the above normal rainfall 

category is likely to occur.  Future irrigation could be scheduled by substituting future weather 

data with data from all past seasons with above normal rainfall total for the relevant period.  

The median or average next irrigation event can be chosen as the next official irrigation date.   

This needs to be evaluated using historical weather data.  

 

Regarding the use of short term rainfall forecasts, Singels et al. (1999a) found that for 

supplementary irrigation conditions, there was no improvement to profitability and only a 3% 

saving in irrigation in the majority of cases.  Therefore it is recommend not to make use of short 

term rainfall forecasts, but to rather assume zero rainfall over the next week or two when 

determining irrigation scheduling advice. 
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Table 3.5 Summary of the simulated irrigated water use efficiency (IWUE) increases 

(t/ha/100mm) over that of the baseline algorithm achieved by each algorithm as averaged over 

different scenario inputs.  Significant differences were determined using the Fisherman’s protected 

least significant difference test (in the case of more than one comparison) or using the two sample 

unpaired Student’s t-test (for one comparison). Different letters indicate statistically significant 

differences between means (p<0.05).  Each scenario input was analysed separately.  Upper case letters 

apply to individual rows and lower case letters apply to individual columns within each scenario input 

block. 

Inputs IWUE  increase (t/ha/100mm) for each algorithm  

Scenario input Input 
value 

Crop stage Stress level Water 
satisfaction 

Prorata Advanced 
Prorata 

Station Komati 3.1A,a 2.7A,a 2.0B,a 1.5C,a 1.8BC,a 

Malelane 2.9A,a 2.4A,a 1.3C,b 1.5BC,a 1.8B,a 

Pongola 3.2A,a 2.8AB,a 1.8D,a 2.0CD,a 2.3BC,a 

Umfolozi 2.6A,a 2.2AB,a 1.0D,b 1.6C,a 1.9BC,a 

ALLOC-season  

(mm) 
100 7.7A,a 6.4B,a 4.2C,a 5.3B.a, 6.2B,a 

200 4.9A,b 4.0B,b 2.4C,b 2.3C,b 2.7C,b 

300 4.2A,c 3.8A,bc 2.9B,bc 2.1C,bc 2.6BC,bc 

400 3.6A,d 3.4AB,cd 3.0B,bc 1.8C,c 2.1C,c 

500 3.1A,d 3.0AB,d 2.5BC,c 1.8D,c 2.1CD,c 

600 2.2A,e 2.1A,e 1.6B,d 1.2B,d 1.4B,d 

700 1.6A,f 1.5A,f 0.6C,e 0.9B,d 1.1B,d 

800 0.9A,g 0.7AB,g -0.2D,f 0.4C,e 0.5BC,e 

900 0.7A,g 0.4B,gh -0.7C,fg 0.3B,e 0.3B,e 

1000 0.5A,g 0.2B,h -1.1C,g 0.2B,e 0.2B,e 

Crop cycle April 2.5A,b 2.2B,b 0.9D,b 1.1CD,b 1.4C,b 

October 3.3A,a 2.8B,a 2.1D,a 2.15CD,a 2.5BC,a 

Soil TAM (mm) 80 3.3A,a 2.6B,a 1.7D,a 1.9CD,a 2.2C,a 

120 2.6A,b 2.4A,a 1.3C,b 1.4BC,b 1.7B,b 

Rainfall class High Rain 2.8A,a 2.5A,a 1.4B,a 1.5B,a 1.8B,a 

Med Rain 3.1A,a 2.5B,a 1.6C,a 1.6C,a 2.0C,a 

Low Rain 2.8A,a 2.6A,a 1.5C,a 1.8BC,a 2.0B,a 

Irrigation 
amount (mm)1 

8 3.2A,a  1.8B,a 1.5B,a 1.7B,b 

40 2.7A,a 2.5B 1.2D,b 1.7C,a 2.1B,a 

Average2 450 3.3A 3.0B 2.2C 1.7D 2.0C 

Average3 550 2.9A 2.5B 1.5D 1.6D 1.9C 

1 - The stress level algorithm (SL) was not simulated using the 8 mm fixed irrigation amount 
2 - The average was taken over the 200 mm to 700 mm allocation range 
3 – The average was taken over the 100 mm to 1000 mm allocation range 
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3.4 Conclusions 

 

Simulated yield performances as well as computation time needs to be considered when 

choosing the most effective limited water irrigation scheduling algorithm for use in 

MyCanesim®.  In what follows, consideration is first given to choosing an algorithm for 

irrigation scheduling, for the purposes of maximising actual yields.  Secondly, consideration is 

given to choosing an algorithm which only forecasts yield, for planning purposes.  As will be 

seen, the algorithms are not the same, since the computation time for scheduling the next 

irrigation event is much less in some cases than that for scheduling over the whole season and 

hence a slow algorithm that achieves large yield benefits maybe be chosen in the former case. 

 

In this study, optimisation of the irrigation schedule was performed retrospectively for the entire 

growing season.  All algorithms were able to achieve higher yields than those of the baseline 

by at least 4.7 t/ha on average, and show promise for improving yields under conditions of 

seasonal water restriction, especially under intermediate restrictions of around 50%.  

Algorithms that simulate large yield increases (crop stage, stress level) ran slowly, while 

algorithms which achieved lower yield increases (water satisfaction, prorata) ran faster.  Yield 

differences between the crop stage algorithm and the stress level algorithm were marginal.  

However, for the purposes of providing irrigation advice to farmers, algorithm computation 

time (Table 3.3) required to optimise the timing of the next irrigation event and not necessarily 

that of the entire season, can be considered.  In that case, the stress level algorithm runs quicker 

than the crop stage algorithm (Table 3.3) and is therefore recommended for inclusion in 

MyCanesim®. 

 

Since the relatively slow stress level algorithm will be used to optimise the timing of the next 

irrigation event only, another algorithm is required for forecasting yield, the future soil water 

balance and future crop growth.  A fast algorithm, either the prorata or water satisfaction 

algorithm, is recommended.  The water satisfaction algorithm over-irrigates when the 

ALLOCseason is greater than 700 mm and should not be considered in its current form.  The water 

satisfaction algorithm should be improved to achieve better yields for higher ALLOCseason, by 

providing a feedback mechanism to indicate when over-irrigation has occurred.  The water 

satisfaction algorithm should also be programmed to use effective rainfall rather than rainfall.  

The prorata algorithm can therefore suffice for yield forecasting. 
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4. INCORPORATING SOIL WATER MONITORING TECHNOLOGY 

INTO MYCANESIM®  
 

4.1 Introduction 

 

A problem is created when farmers do not upload irrigation dates and amounts to MyCanesim® 

(Singels, 2007; Singels and Smith, 2006) because the simulated and actual soil water balance 

may differ when irrigation scheduling advice was not followed (noted in Singels and Smith, 

2008).  This implies that future scheduling advice may be inaccurate because it is based on an 

unrealistic simulated soil water status.  Resetting simulated soil water status with data collected 

from soil water sensors may be a solution to this problem (Farina and Bacci, 2005; Paige and 

Keefer, 2008).  In addition, accurate historical soil water content may also result in more 

accurate simulation of crop drought, water logging stresses (or lack thereof) and the consequent 

influence on crop growth, the recommended date of next irrigation, more accurate yield 

forecasts and more useful post-season irrigation performance analyses. 

 

The main objective of this part of the study was to incorporate near real-time field records of 

soil water status into the weather-based sugarcane simulation system, MyCanesim®, and to 

evaluate its use for supporting irrigation management (as suggested by Holloway-Phillips et al., 

2008).  The specific objectives were to:  

(a) develop a procedure to convert the soil water index (SWI, in %) data from the probes to 

available soil water content (ASWCprobe, in mm);  

(b) use ASWCprobe to reset simulated ASWC in MyCanesim®; and  

(c) assess the usefulness of the integrated system by (1) evaluating the quality of irrigation 

scheduling advice and yield forecasts and by (2) using it to analyse agronomic performance 

on the study fields.  
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4.2 Methods 

 

4.2.1 Trial sites and soil water monitoring 

 

Thirteen sugarcane fields in Mpumalanga were selected for evaluating the integration of soil 

water sensor data into MyCanesim®.  A map showing their locations is given in Figure 4.1.  

Details of the different sites and inputs used for simulations are given in Table 4.1.   

 

Plant available water holding capacity (TAM, in mm) of soils was determined from effective 

rooting depth (ERD, in m) and clay content (CC as a fraction) following the method of Van 

Antwerpen et al., (1994):  

 

𝑇𝐴𝑀 = 1000 ∗ 𝐸𝑅𝐷 ∗ (𝐹𝐶 − 𝑊𝑃)      Equation 4.1  

𝐹𝐶 = (
54.7∗𝐶𝐶

24.53+𝐶𝐶∗100
)        Equation 4.2 

𝑊𝑃 = (
91.94∗𝐶𝐶

135.54+𝐶𝐶∗100
)       Equation 4.3 

where  

FC  = volumetric field capacity in m3/m3, and 

  WP = volumetric wilting point in m3/m3. 

 

Fields on farm F had continuous logging capacitance probes (probes from Aquacheck (Pty) Ltd, 

Durbanville, South Africa) installed on them prior to the 2011/12 cropping season.  Aquacheck 

capacitance probes were installed on all the other fields listed in Table 4.1, some in November 

2011 and some in March 2012.  Probes had six sensors spaced at depth intervals of 100 mm (60 

cm probes), or four sensors spaced at 100 mm intervals with two more at 600 and 800 mm (80 

cm probes).  When converting probe SWI data to Canesim® ASWCprobe data, equal weightings 

were used for all sensors of a given probe, regardless of the sensor spacing.  This reflected the 

assumed lower rooting density in the bottom two layers of a 80 cm root zone where sensors 

were spaced at 200 mm rather than 100 mm.  Probes were installed as close as possible to the 

cane row or immediately next to drip emitters (in the case of drip irrigated fields) by inserting 

them in a vertical cavity created by a soil auger and filling any remaining space between the 

probe and the cavity wall with a slurry (van Niekerk, 2010).  Details of probe depths and 

operational periods are provided in Table 4.2. 
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Figure 4.1 Map of locations of study fields in Mpumalanga.  Locations include commercial 

(A, C, D, F) and small scale farms (B, E).  (Courtesy of Ingrid Mthembu, SASRI.) 
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Table 4.1 Field details for different sites and simulation settings for the Canesim® sugarcane model.  TAM is the maximum amount of water in the root zone available 

to the plant when the profile is at field capacity; Irrig. refers to irrigation, SD = surface drip, OH = overhead (centre pivot or dragline), SSD = sub-surface drip.  Irrigation amount 

(Irrig. amnt.) is the design irrigation amount per event.  ADL is the chosen allowable depletion level at which point an irrigation is triggered. 

Farm 
code 

Field 
name 

Rooting 
depth 
(m) 

Clay 
content 

(%) 

TAM 
(mm) 

Automatic weather 
stationa 

Vari
ety 

Row 

spacing 

(m) 

Crop start 
date 2011 

Crop harvest 
date 2012 

Crop harvest 
date 2013 

Irrig. 
syste

m 

Irrig. 
cycle 
(d) 

Irrig. 
amnt. 
(mm) 

ADL 
(mm) 

A 8A 0.77 36 102 Coopersdal – SASRI N25 1.1c 31/Jul/2011 29/Jun/2012 07/Jul/2013 SD 1 7 71 

A 8C 0.75 45 96 Coopersdal – SASRI N25 1.1c 31/Jul/2011 28/Jun/2012 11/Jul/2013 SD 1 7 70 

B 17 0.68 71 61 Kaalrug – Inala N25  0.95c 08/Sep/2011 25/Aug/2012 01/Nov/2013 OH 
SD 

7 
2 

24 
9 

42 
42 

C G1 0.72 39 93 Amanxala - Komati Mill N19 1.5b 11/Jun/2011 14/Jun/2012 27/Jun/2013 SD 1 7 65 

C G4 0.72 38 94 Amaxnala - Komati Mill N19 1.5b 24/Jun/2011 16/Jun/2012 23/Jun/2013 SD 1 7 65 

C G7 0.60 39 78 Amanxala - Komati Mill N14 1.5b 08/Aug/2011 04/Jul/2012 No crop OH 2 12 56 

C P4 0.70 41 90 Amanxala - Komati Mill N32 0.9c 14/Oct/2011 14/Dec/2012 26/Nov/2013 SSD  1 7 63 

D 3B 0.40 27 54 Amanxala - Komati Mill N19 1.1c 12/May/2011 20/Jun/2012 02/Nov/2013 SD 1 6 36 

D 7 0.72 36 80 Amanxala - Komati Mill N19 1.4b 01/Jul/2011 08/Jun/2012 Ploughed out OH 7 48 56 

E 12 0.75 20 96 Nkomazi - Lows Creek N32 0.95c 21/Jul/2011 21/Jul/2012 03/Aug/2013 SD 3 8 67 

F 70 0.57 25 76 Komatipoort – Tenbosch N36 0.95c 19/May/2011 21/May/2012 29/Jun/2013 SD 1 6 53 

F 72 0.70 43 89 Komatipoort – Tenbosch N23 1.5b 12/Sep/2011 23/Oct/2012 13/Sep/2013 OH 2 15 62 

F 81 0.73 46 90 Komatipoort – Tenbosch N36 0.95c 22/May/2011 26/May/2012 26/Jun/2013 SD 1 6 63 
a  Campbell Scientific Inc., North Logan, Utah 
b  Single line configuration   
c Tram line configuration
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4.2.2 System development 

 

Soil water status data conversion 

 

A method of converting the factory calibrated SWI data to ASWCprobe for use in MyCanesim® 

was needed.  The assumption was that the relationship between SWI and ASWCprobe was linear 

and that the coefficients of linearity would differ from field to field as determined by sensor 

and soil properties. 

 

Recorded soil water status of the root zone (the average SWI of all available sensors in the 

profile) was transformed to units of ASWCprobe using two field specific calibration factors, 

namely (1) the SWI at field capacity (FCSWI in %) and (2) a conversion ratio (CR in mm/%, 

defined as the amount of available soil water per unit of SWI): 

   

𝐴𝑆𝑊𝐶𝑝𝑟𝑜𝑏𝑒 = 𝑇𝐴𝑀 − 𝐶𝑅(𝐹𝐶𝑆𝑊𝐼 − 𝑆𝑊𝐼)     Equation 4.4 

 

where TAM is the available soil water content of the root zone at field capacity after drainage 

of free water (in mm).  Values for FCSWI were determined by investigating recorded drainage 

and extraction patterns after a wetting event.  Significant wetting of an already wet root zone 

will increase SWI above the FCSWI, causing rapid drainage and decline of SWI over time.  As 

soon as the SWI reaches FCSWI, drainage rate and decline in SWI would slow markedly, 

indicating the transition from rapid drainage of free water to extraction of water by plants, 

providing an indication of the value of FCSWI.  Values for CR were determined by comparing 

recorded extraction rates for dry days with MyCanesim® simulated extraction rates (assuming 

these are accurate) and adjusting CR values until these extraction patterns (average rates of 

decline in simulated and observed ASWC) matched.  Values for CR can also be determined by 

comparing recorded responses to night-time wetting events of known amounts of water but this 

was not used here because reliable irrigation and local rainfall records were not available.  

Actual values determined for FCSWI and CR are given in Table 4.2.  Note that in most cases 

recalibration of FCSWI and CR had to be done the second season and only in two cases (8C, P4) 

did one set of calibration factors apply to both seasons.  Recalibration was required in cases 

where probes were re-installed in the second season or where irrigation systems were changed 



 

81 

 

(17).  It should be noted that the calibration of the first season was sometimes based only on a 

partial data set (see Table 4.2). 

 

Soil water data integration into MyCanesim® 

 

Half-hourly SWI data were transferred from a central Aquacheck server to the MyCanesim® 

database and then converted to ASWCprobe.  The ASWCprobe value at 8:00 am is taken as the daily 

value that is displayed on soil water graphs (Figure 4.2).  The user can also manually upload 

ASWCprobe data into the database through the MyCanesim® web interface.  Users need to specify 

whether they want simulated ASWC to be corrected with measured values or not.  If the correct 

option is chosen, the simulated ASWC at the start of the day will be reset to the measured value, 

except on days when rainfall or irrigation exceeded 15 mm.  This exception was required to 

avoid potential errors that could be caused by the uncertainty of whether the wetting event 

occurred before or after the reading of the 8:00am SWI value. The threshold value of 15 mm 

was chosen so that large wetting events would not be double counted causing larger errors, 

while smaller, more frequent irrigation events would not excluded.
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Table 4.2 Details of soil water monitoring stations and values for soil water index conversion factors (see Equation 4.4). 

Farm 
code 

Field 
name 

Soil 
water 
sensor  
depth 
(cm) 

Operational period 2011-2012 FCSWI 

(%) 
CR 

(mm/%) Operational period 2012-2013 FCSWI 

(%) 
CR 

(mm/%) 

A 8A 80 
09/November/2011 – 
14/December/2011; 
20/January/2012 – 29/June/2012 

75.0 2.48 20/October/2012 – 03/July/2013 80.0 5.00 

A 8C 80 09/November/2011 – 28/June/2012 83.0 3.23 20/July/2012 – 04/July/2013 83.0 3.23 

 B 17 60 07/December/2011 – 25/August/2012 75.0 3.43 20/October/2012 – 03/March/2013 
24/April/2013 – 25/August/2013 

84.0 3.00 

C G1 60 09/November/2011 – 11/June/2012 86.0 9.50 20/July/2012 – 27/February/2013 
24/March/2013 – 03/June/2013 

85.0 14.00 

C G4 60 16/March/2012 – 11/June/2012 86.0 8.64 09/August/2012 – 12/June/2013 88.0 15.00 
C G7 60 16/March/2012 – 03/July/2012 83.0 4.70 Fallow NA NA 

C P4 60 16/March/2012 – 11/December/2012 86.6 5.78 13/February/2013 – 
06/November/2013 

86.6 5.78 

D 3B 60 09/November/2011 – 20/June/2012 
85.0 1.29 11/July/2012 – 27/September/2012 

14/October/2012 – 
08/October/2013 

77.0 2.00 

D 7 60 09/November/2011 – 08/June/2012 64.0 4.00 Fallow NA NA 
E 12 60 07/December/2011 – 12/July/2012 68.0 4.02 26/September/2012 – 11/July/2013 64.0 3.35 
F 70 80 03/May/2012 – 12/May/2012 80.0 3.26 06/June/2012 – 14/June/2013 74.0 4.00 

F 72 80 04/April/2011 – 15/September/2012 75.0 4.79 15/November/2012 - 
10/September/2013 

75.0 5.50 

F 81 80 
22/October/2011 – 06/November/2011; 
16/November/2011 – 22/March/2012; 
29/March/2012 – 12/May/2012 

80.0 4.00 06/June/2012 – 20/June/2013 84.0 4.00 
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System outputs 

 

The soil water graph, available on the MyCanesim® website, was modified to display values of 

ASWCprobe (Figure 4.2).  Online graphing was done using the freeware (available for non-

commercial use) at http://www.highcharts.com.  This package was chosen out of eleven 

freeware candidates because it could display multiple series on multiple axes, display values on 

mouse over events, allowed scrolling and zooming, could export graphs as images and was 

compatible with HTML and JavaScript.  An example of the new soil water graph is shown in 

Figure 4.2. 

 

 
Figure 4.2 An example of MyCanesim® output: Daily values of simulated (blue line) and 

measured (red open squares) root zone available soil water content (ASWC), rainfall (blue bars) 

and irrigation (red open circles).  The horizontal solid line indicates the ASWC at field capacity 

(TAM), the line with small dashes indicates the chosen allowable depletion level (ADL) and the 

line with mixed dot dash represents Canesim®’s stress point.  In this specific example simulated 

ASWC was corrected with measured values (ASWC probe). 

 

The different programming and data components of the integrated MyCanesim® system are 

illustrated in Figure 4.3.  Selected graphs of Canesim® simulations for the study fields as 

corrected by ASWCprobe are given in Appendix B1. 
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Figure 4.3 A flowchart summarizing components and data flow of the integrated 

MyCanesim® sugarcane simulation system.  Software components include: MySQL database, 

Oracle PORTAL 11, Oracle PL/SQL 10.0.5 and  Oracle database 10g (Oracle Corporation, 

Redwood Shores, California, www.mysql.com and www.oracle.com) and Microsoft Visual # 

2010 (Microsoft, Redwood, Washington,www.microsoft.com).  SWI refers to soil water index 

and ASWC refers to available soil water content. 
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4.2.3 System evaluation 

  

The usefulness of the integrated system was evaluated by (1) retrospectively assessing the 

improvement in the accuracy of irrigation scheduling advice and yield forecasts by probe-based 

simulation (PBS) over weather-based simulation (WBS) and (2) by using system outputs to 

analyse agronomic performance. 

4.2.3.1 Irrigation scheduling advice 

 

The MyCanesim® system provides tactical irrigation scheduling advice to farmers, by 

forecasting the date when the next irrigation is due (date of next irrigation, or DNI) based on 

simulated ASWC and the user-specified ADL.  Correcting simulated ASWC with ASWCprobe 

should improve the accuracy of irrigation scheduling advice, because the starting point of the 

ASWC projection is likely to be a more accurate reflection of reality than a simulation based on 

weather data and the assumption that the farmer followed previous advice.  The error (in days) 

resulting from forecasting the DNI should reduce when correcting simulations with ASWCprobe.   

 

To test this hypothesis, two approaches were used to simulate the soil water balance up to a 

hypothetical current date.  Firstly, the soil water balance was simulated using weather data only 

(weather-based simulation, WBS).  Secondly, ASWCprobe was used to correct the soil water 

content (probe-based simulation, PBS).   

 

For the subsequent irrigation management window (which extends from after the hypothetical 

current date until the actual DNI (DNIactual)), WBS was used to forecast the DNI for both 

simulation methods.  The forecasted DNI were then compared with the DNIactual, which was 

taken as the date when ASWCprobe depleted to the chosen ADL (70% of TAM) in the management 

window.  This process was repeated for each week of the growing period (for which ASWCprobe 

data was available) to emulate an operational mode. 

 

The accuracy of DNI forecasts was quantified by calculating the average difference (named the 

DNI bias, in units of days) and the average absolute difference (the DNI forecast error, days) 

between the predicted and actual DNI.  The frequency with which DNI forecasts were a) early 

(<DNIactual), b) on time (= DNIactual) and c) late (>DNIactual) was also calculated. 

 



 

86 

 

Where ASWCprobe indicated that a farmer probably irrigated earlier than DNIactual, the case was 

excluded from the analysis. 

4.2.3.2 Yield forecasts 

 

Correcting Canesim®’s simulated ASWC using measurements may also improve its yield 

forecasting accuracy, for similar reasons mentioned in the previous section. 

 

To test this hypothesis, two types of yield forecasts were made.  The first yield forecast 

(YieldWBS) was obtained by using WBS only, with a full record of weather data.  The second 

(YieldPBS) was obtained using PBS up to a hypothetical current date and then completing the 

simulation up to crop harvest using WBS.  This was done for each week of the growing season 

for which ASWCprobe data was available.   

 

Forecast accuracy was quantified by calculating the average difference (named the yield 

forecast bias, YFB in t/ha) and the average absolute difference (the yield forecast error, YFE, in 

t/ha) between the forecasted and observed yields viz: 

 

𝑌𝐹𝐵 =  
1

𝑛
∑(𝑌𝑓 − 𝑌𝑜𝑏𝑠)       Equation 4.5 

𝑌𝐹𝐸 =  
1

𝑛
∑ |(𝑌𝑓 − 𝑌𝑜𝑏𝑠)|       Equation 4.6 

 

where YFB and YFE were calculated for WBS and PBS respectively. 

 

The difference between the forecasted and observed yields (Yobs) as a percentage of Yobs, were 

also plotted (selected plots in Appendix B2) for each week of the simulated growing season. 

 

It should be noted that for both the DNI and yield forecasts, actual weather data was used 

throughout simulations.  In practice, future weather data is approximated through a substitute 

weather sequence from past records. 

 

 



 

87 

 

4.2.3.3 Reviewing agronomic performance 

  

The potential value of integrating soil water monitoring data with weather-based simulations 

was demonstrated by inferring the agronomic performance, including the quality of irrigation 

management, for the different fields by comparing simulated yields using optimal irrigation 

(Yopt), yields from ASWC corrected simulations (Yswc) and actual yields (Yobs).  Criteria for 

inferring agronomic performance are given in Table 4.3. 

 
Table 4.3 Knowledge gained by comparing yields from various simulations.  Yopt is the 

simulated yield using an optimal irrigation schedule; Yswc is the yield from a simulation based 

on observed soil water records; and Yobs is the actual yield achieved.   

Comparison Deduction 

Yobs > 0.85 Yopt Good irrigation2, good husbandry 

Yobs < 0.85 Yopt Crop underperformance due to one or more limiting factors 

Yswc > 0.85 Yopt Good irrigation2 

Yswc < 0.85 Yopt Under/over-irrigation caused preventable drought/water logging stress 

Yobs > 0.85 Yswc Good husbandry  

Yobs < 0.85 Yswc Suboptimal husbandry 
1 – Yield differences above the 0.85 limit indicate good management performances.  Canesim 

simulations assume ideal field management practices except for those of irrigation – the 0.85 

accounts for the difference between the ideal and more achievable, practical situation. 

2 – Irrigation practices were evaluated accounting for the limitations of the existing irrigation 

system 

 

The extent of water stress (drought stress and waterlogging) experienced is also an indication 

of the appropriateness of irrigation practices.  Drought stress days were defined as days when 

ASWC was less than 40% of TAM, excluding the last 30 days of the season (when irrigation is 

typically intentionally withheld to promote sucrose accumulation).  Water logged days were 

defined as days when ASWC was greater than 110% of TAM.  The Canesim® model assumes 

that drought stress occurs when ASWC is below 50% of TAM and that waterlogging occurs 

when ASWC exceeds 100% of TAM.  Thresholds of 40% and 110% of TAM were chosen in 

order to exclude days with slight drought and waterlogging stress. When the number of stress 
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days exceeded 30, a typical dry-off period, this was considered to have had a significant impact 

on yield. 

 

4.3 Results and Discussion 

 

4.3.1 Irrigation scheduling advice 

 

The Canesim® model was used to retrospectively simulate the soil water balance and crop 

growth of the case study fields, up to a hypothetical current date, using either WBS or PBS and 

the date of the next irrigation event (DNI) was forecast.  The DNI forecast bias and error for 

PBS and WBS, as they differed from DNIactual, were calculated. 

 

Results are given in Table 4.4 and show that PBS enabled more accurate irrigation advice than 

WBS.  This is evidenced by a lower average DNI forecast bias for both growing seasons, a lower 

DNI forecast error in 75% of cases for the 2011-2012 season and in 100% of cases for the 2012-

2013 season.  The DNIPBS was on time in 66% of cases for the 2011-2012 season and in 71% 

of cases (more than double that of DNIWBS) for the 2012-2013 season.  In just three cases, the 

DNI forecast error was more for PBS than for WBS (fields 8A, 8C and 81 for 2011-2012).  

 

The average DNIWBS forecast errors for fields with low (≤ 80 mm) and high TAM (> 80 mm) 

values were 4.1 and 3.8 days respectively, while the DNIPBS forecast errors were 0.7 and 1.8 

days.  Thus the improvement in accuracy of forecasts is greater in the case of low TAM soils 

than it is for high TAM soils, (3.4 days versus 2 days improvement).  The three fields with the 

lowest TAM values (3B, 17 and 70) had the smallest DNIPBS forecast bias and errors, as well as 

the highest frequency of on time DNI forecasts, for the 2011-2012 season (Table 4.4).  These 

results suggest that PBS is more beneficial for soils with low TAM than high TAM values.  This 

makes sense if one considers that the ratio between the error in days (when weather-based 

scheduling has led to inaccuracies in simulated ASWC) and the time taken to deplete the profile 

is larger for low TAM soils.  

 

The average DNIWBS forecast errors for drip irrigated fields and overhead irrigated fields, 

respectively, were 3.9 and 3.7 days, while the DNIPBS forecast errors were only 1.6 and 1.0 

days, respectively.  Thus, the size of the DNI forecast errors is smaller for overhead irrigated 
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fields than for drip and the degree of improvement in accuracy of forecasts is also slightly 

more for overhead than for drip.  Fields 8A, G1 and 81, which are all drip irrigated, had the 

largest DNIPBS forecast errors.  These results suggest that PBS is more beneficial for overhead 

irrigated fields than drip.  The reason for a greater improvement for overhead fields as 

opposed to drip fields is not clear. 
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Table 4.4 The bias, error and frequency of early, on time and late forecasts, of the date of next irrigation (DNI) for weather-based simulation 

(WBS) and probe-based simulation (PBS) for the 2011-2012 and 2012-2013 growing seasons;  TAM is the total available moisture of the soil. 
 DNI 

forecast bias 
DNI 

forecast error 
DNI forecast 

timing: 
Early 

DNI forecast 
timing:  
On time 

DNI forecast 
timing: 

Late 

 

Season Farm Field Soil TAM (mm) Irrigation system Irrigation 
amount 

(mm) 

WBS 
(days) 

PBS 
(day

s) 

WBS 
 (days) 

PBS 
(days) 

WBS 
 (%) 

PBS 
 (%) 

WBS 
 (%) 

PBS 
(%) 

WBS 
(%) 

PBS 
 (%) 

(n) 

2011 A 8A 102 SD 7 0.7 2.5 1.0 2.6 13.3 6.7 46.7 40.0 40.0 53.3 15 

A 8C 96 SD 7 0.9 1.3 0.9 1.3 0.0 0.0 42.9 71.4 57.1 28.6 14 

B 17 61 OH 24 3.2 -0.2 3.5 0.3 6.5 6.5 12.9 90.3 80.6 3.2 31 

C G1 93 SD 7 -3.4 -2.0 3.4 2.8 80.0 40.0 20.0 20.0 0.0 40.0 5 

C G4 94 SD 7 -4.0 -1.0 4.0 1.0 100.0 100.0 0.0 0.0 0.0 0.0 1 

C G7 78 OH 12 0.0 -1.3 2.4 1.6 44.4 44.4 22.2 44.4 33.3 11.1 9 

D 3B 54 SD 6 0.4 0.1 0.4 0.1 0.0 0.0 70.6 94.1 29.4 5.9 17 

D 7 80 OH 48 3.3 -0.9 5.2 1.2 27.8 38.9 0.0 55.6 72.2 5.6 18 

E 12 96 SD 8 -0.7 0.3 1.8 1.2 38.5 23.1 23.1 53.8 38.5 23.1 13 

F 70 76 SD 6 8.7 0.6 8.9 0.6 7.1 0.0 28.6 78.6 64.3 21.4 14 

F 72 89 OH 15 0.0 -0.8 2.1 1.3 31.6 26.3 31.6 57.9 36.8 15.8 19 

F 81 90 SD 6 1.3 2.7 1.5 2.7 9.1 0.0 54.5 54.5 36.4 45.5 11 

Avg      0.9 0.1 2.9 1.4 18.6 15.0 30.5 65.9 50.9 19.2   

 

2012 A 8A 102 SD 7 2.3 1.4 2.9 1.4 28.6 0.0 28.6 57.1 42.9 42.9 7 

A 8C 96 SD 7 3.8 2.9 3.8 3.0 0.0 6.7 46.7 46.7 53.3 46.7 15 

B 17 61 SD 9 3.5 0.3 3.5 0.3 0.0 0.0 4.5 90.9 95.5 9.1 22 

C G1 93 SD 7 5.0 0.5 5.0 0.5 0.0 0.0 39.4 87.9 60.6 12.1 33 

C G4 94 SD 7 7.1 -0.1 7.3 0.3 10.0 20.0 40.0 70.0 50.0 10.0 10 

C P4 90 SD 7 -8.7 -4.3 8.7 4.3 100.0 66.7 0.0 33.3 0.0 0.0 3 

D 3B 54 SD 6 1.2 -0.6 3.1 1.2 12.5 20.8 47.9 70.8 39.6 8.3 48 

E 12 96 SD 8 5.0 3.4 5.3 3.5 7.1 3.6 25.0 57.1 67.9 39.3 28 

F 70 76 SD 6 6.0 -0.3 6.1 0.4 3.3 13.3 33.3 80.0 63.3 6.7 30 

F 72 89 OH 15 2.8 0.1 5.1 0.7 46.2 23.1 15.4 61.5 38.5 15.4 13 

F 81 90 SD 6 2.6 1.6 2.9 1.9 14.3 7.1 42.9 57.1 42.9 35.7 14 

  Avg      2.8 0.4 4.9 1.6 10.3 10.8 33.6 70.9 56.1 18.4   
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4.3.2 Yield forecasts 

 

Table 4.5 gives the yield forecast bias and errors from the two simulation methods.  Selected 

diagrams showing the percentage differences between weekly (1) WBS and (2) PBS yield 

forecasts from the observed yields are given in Appendix B2. 

 

PBS yield forecasts were more accurate than WBS forecasts in 16 out of 24 cases.  However, 

the improvement in forecast accuracy, as measured by average forecast error, was small (1.5 

t/ha). 

 
Results show that PBS improves yield forecasts markedly over those of WBS when farmers 

deviate from an ideal irrigation schedule.  For example, in the case of field 17, which was 

severely under irrigated in 2011-2012 (see Appendix B2 for a graph), the PBS yield forecast 

error was 8.7 t/ha less than that of WBS.  Similarly for P4, which was severely over-irrigated in 

2012-2013, the PBS yield forecast error was 7.7 t/ha less than for WBS.  Therefore PBS is 

important in achieving accurate yield forecasts when irrigation management is poor.  In 

contrast, PBS and WBS-based yield forecasts were similar for fields that were well irrigated 

(fields 8A, 8C, G1, G4, G7, P4, 3B, 12, 70, 72 in the 2011-2012 season, fields 8A, 8C, G1, 

G4,12, 70, 72, 81 in the 2012-2013 season).   

 

For WBS, the yield forecast error for the 2012-2013 season was less than that for the 2011-2012 

season.  This suggests that farmers scheduled their irrigation closer to the ideal in 2012-2013. 

 

The average WBS yield forecast errors for fields with low TAM soils was 25.6 t/ha and for high 

TAM soils was 15.6 t/ha respectively, while the PBS yield forecast errors were 22.7 and 14.9 

t/ha.  This result suggests that minor improvement is made to the accuracy of yield forecasts by 

PBS over those of WBS, but that yield forecasts are more accurate for low TAM soils than for 

high TAM soils, irrespective of correction of simulations by ASWCprobe.  This makes sense if 

one considers that it is easier to maintain ASWC in the ideal range for high TAM soils than for 

low and hence the yield forecast, which assumes ideal irrigation, is more likely to be met. 

 

The average WBS yield forecast errors for drip irrigated fields and overhead irrigated fields 

respectively were 19.7 and 14.7 days, while the PBS yield forecast errors were 19.1 and 12.3 

days respectively.  Thus there is a small improvement in accuracy for overhead fields.  The 
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yield forecast error is smaller for overhead than for drip fields.  This suggests that the irrigation 

regime for drip irrigated fields was further from the ideal, while for overhead fields it was 

closer. 

 
Table 4.5 The bias and error of yield forecasts using weather-based simulation (WBS) and 

probe-based simulation (PBS) for different fields for the 2011-2012 and 2012-2013 growing 

seasons.  TAM is the total available moisture of the soil.  The percentage of days of the growing 

season for which soil water status data was available is also shown. 
  Yield forecast 

Bias (t/ha) 
Yield forecast 
Error (t/ha) 

Season 
 

Farm 
code 

Field Soil TAM 
(mm) 

Irrigation 
system 

Irrigation 
amount 

(mm) 

Percentage 
available 
data (%) 

WBS PBS WBS PBS 

2011 A 8A 102 SD 7 59 27.8 26.4 27.8 26.4 

A 8C 96 SD 7 69 33.6 31.7 33.6 31.7 

B 17 61 OH 24 73 19.4 8.2 19.4 10.7 

C G1 93 SD 7 57 17.6 16.2 17.6 16.2 

C G4 94 SD 7 25 -3.7 -5.4 3.7 5.4 

C G7 78 OH 12 33 9.0 8.0 9.0 8.0 

C P4 90 SSD 7 26 25.0 24.2 25.0 24.2 

D 3B 54 SD 6 55 55.4 55.8 55.4 55.8 

D 7 80 OH 48 61 38.4 30.9 38.4 30.9 

E 12 96 SD 96 61 -1.0 4.8 1.0 5.0 

F 70 76 SD 76 61 9.4 8.0 9.4 8.0 

F 72 89 OH 89 83 12.2 12.7 12.2 12.7 

F 81 90 SD 90 88 18.2 15.8 18.2 15.8 

Avg     58 20.1 18.3 20.8 19.3 

  

2012 A 8A 102 SD 7 62 16.0 16.1 16.0 16.1 

A 8C 96 SD 7 87 21.0 21.2 21.0 21.2 

B 17 61 OH 9 54 3.0 5.6 3.0 5.9 

C G1 93 SD 7 71 12.0 10.8 12.0 10.8 

C G4 94 SD 7 75 -17.0 -15.9 17.0 15.9 

C P4 90 SSD 7 75 24.0 16.3 24.0 16.3 

D 3B 54 SD 6 73 62.0 57.0 62.0 57.0 

E 12 96 SD 8 72 -7.0 -7.7 7.0 7.7 

F 70 76 SD 6 92 -7.0 0.1 7.0 5.4 

F 72 89 OH 15 92 -6.0 -5.5 6.0 5.5 

F 81 90 SD 6 92 7.0 7.3 7.0 7.3 

Avg     77 10.7 10.3 16.9 15.7 

 

For most fields, there was a decrease in the PBS yield forecast error from 2011-2012 to 2012-

2013, presumably because more SWI data were recorded in 2012-2013.  
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4.3.3 Reviewing agronomic performance with output from the integrated system 

 

Simulated yields using optimal irrigation (Yopt) and yields from ASWC corrected simulations 

(Yswc) were compared to actual yields (Yobs) to assess field irrigation and management 

performances on the study fields for both seasons (Table 4.6).  Fields that underperformed are 

identified and briefly discussed. 

 

 The analysis suggest that 2012 yields were limited well below potential for fields 8A, 8C, 17, 

3B, 7 because Yobs was less than 85% of Yopt.  Insufficient irrigation and preventable drought 

stress were inferred for fields 8C (excessive drying off identified) and 17 (irrigation system did 

not operate for long periods) as shown in Table 4.6.  Fields G7 seemingly also experienced some 

drought stress as shown in Table 4.6.  This was not reflected in the ratio of Yswc to Yopt because 

of limited SWI data. 

 

For fields where Yobs was less than 85% of Yswc, that was taken as an indication of the presence 

of yield limiting factors other than insufficient irrigation, for example poor crop stand, weed 

competition, nutrient deficiency or pest and disease damage.  This seemed to be the case for 

fields 8A, 8C, 3B, 7 (poor crop stand was observed in this field), 1 and 14, but this needs to 

verified through field visits.  Water logging may have been a problem on fields G1, 7 and 81 as 

indicated by high numbers of water logged days (Table 4.6). 

 

In 2013, yields were limited below potential for fields 8C, P4 and 3B (Yobs < 85% of Yopt).  For 

all three fields, the presence of limiting factors other than irrigation was identified as a 

contributing cause, based on the fact that Yobs was less than 85% of Yswc.  All three fields also 

experienced periodic water logging, while field 3B had extended periods of drought stress. 
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Table 4.6 Simulated yield using optimal irrigation (Yopt), observed yields (Yobs) and yields using ASWC 

corrected simulations (Yswc) expressed as percentages of the Yopt, the number of drought stress days 

(ASWC<40%TAM, excluding the last 30 days), the number of water logged stress days 

(ASWC>110%TAM) and the percentage of days of the growing season for which soil water status data 

was available (SWI data) for each field for the 2011-2012 and 2012-2013 growing seasons.   
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A 8A 116 76 95 81 41 23 13 59 Good irrigation1 and good husbandry. 

A 8C 116 71 86 83 40 56 44 69 Good irrigation, suboptimal husbandry. Some 
water logging. Excessive drying off. 

B 17 89 78 62 126 25 187 17 73 Under irrigation, good husbandry, prolonged 
drought stress. 

C G1 126 85 96 89 42 0 30 57 Good irrigation, good husbandry, some water 
logging. 

C G4 123 102 97 105 39 0 23 25 Good irrigation, good husbandry. 

C G7 113 92 97 94 35 45 8 33 Good irrigation, good husbandry, drought 
stress due to system limitations. 

C P4 160    73    Not enough data. 
D 3B 135 59 93 64 33 2 10 55 Good irrigation, suboptimal husbandry. 

D 7 120 67 91 73 39 27 24 61 Good irrigation, suboptimal husbandry, some 
water logging. 

E 12 101 92 97 104 32 40 4 61 Good irrigation, good husbandry, some 
drought stress. . 

F 70 123 92 96 97 41 5 77 61 Good irrigation, good husbandry, water 
logging. 

F 72 153 93 100 93 46 8 23 83 Good irrigation, good husbandry. 

F 81 130 86 93 92 42 14 35 88 Good irrigation, good husbandry, some water 
logging. 

2
0

1
2

 

A 8A 115 86 98 88 61 13 63 62 Good irrigation, good husbandry, some 
water logging. 

A 8C 115 82 98 84 59 8 30 87 Good irrigation, suboptimal husbandry. 

B 17 112 97 65 150 57 141 69 54 Under irrigation, good husbandry, prolonged 
drought stress, some water logging. 

C G1 123 90 91 99 77 83 16 71 Good irrigation, good husbandry, a long 
period of drought stress at the start of crop. 

C G4 121 114 100 114 77 48 24 75 Good irrigation, good husbandry. 

C P4 128 81 96 84 41 0 32 75 Good irrigation, suboptimal husbandry, 
water logging. 

D 3B 160 61 79 78 66 127 58 73 Under irrigation, suboptimal husbandry, 
excessive drying off, water logging. 

E 12 94 107 89 121 63 48 11 72 Good irrigation, good husbandry, mild 
drought stresses. 

F 70 110 105 111 95 49 132 15 92 Good irrigation, good husbandry, long period 
of drought stress at start of crop. 

F 72 111 105 99 107 32 0 30 92 Good irrigation, good husbandry. 

F 81 128 95 100 95 55 7 21 92 Good irrigation, good husbandry. 

1 – “Good irrigation” means good irrigation scheduling given the limitations of the existing irrigation system 
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4.4 Conclusions 

 

The main objective of this part of the study was to incorporate near real-time field records of 

soil water status into the weather-based sugarcane simulation system, MyCanesim®, and to 

evaluate its use for supporting irrigation scheduling. 

 

Irrigation scheduling advice accuracy determined from PBS improved over that from WBS for 

19 out of 22 crops.  PBS resulted in an improvement in the accuracy of the forecasted DNI over 

that of WBS by 1.5 and 3.3 days on average in the respective growing seasons. This 

demonstrated that the use of soil probe data greatly enhanced the ability of MyCanesim® to 

forecast DNI.  Results also show that probe data was more useful for scheduling irrigation on 

low TAM soils than high TAM soils.  Improvements in advice accuracy by PBS over WBS were 

greater for overhead irrigated fields than for drip irrigated fields. 

 

PBS yield forecasts were also more accurate than those from WBS in 15 out of 24 cases.  

However, the PBS forecast error was only slightly less than that of WBS.  Yield forecast 

accuracy was greatly enhanced by PBS over that of WBS when poor irrigation practices were 

followed.   

 

A framework was developed for comparing Yswc, Yopt, (produced by the integrated system) and 

Yobs, in order to assess the quality of irrigation practices and husbandry. The framework was 

useful for identifying fields which underperformed due to poor irrigation and could help farmers 

to adjust irrigation practices in consequent seasons. 

 

The integrated system promises to provide greater benefit to farmers than the weather-based 

system alone, provided that probe output is reliable. 
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5. GENERAL DISCUSSION AND CONCLUSIONS 
 

In this study two research questions were to be answered: 

(a) Which limited water allocation optimisation algorithm achieves, theoretically, the 

highest yield and irrigation water use efficiency (IWUE)?   

(b) Will integrating soil water records with a weather-based simulation model provide more 

accurate irrigation scheduling advice and yield forecasts? 

 

How successfully each research question was answered in this study, the main findings and any 

considerations and recommendations for further research are discussed below. 

 

5.1 Algorithms for Scheduling Limited Irrigation Water 

 

Five irrigation scheduling optimisation algorithms were programmed and simulated on 960 test 

case scenarios. Two of the algorithms were based on literature, namely the crop stage and stress 

level algorithms.  The water satisfaction, prorata and advanced prorata algorithms were 

developed in this study.  Simulated cane yields were compared with those generated by the 

baseline algorithm, which scheduled irrigation according to the allowable depletion level (ADL) 

rule until the seasonal allocation was exhausted.  The crop stage and stress level algorithms 

consistently achieved the highest yield benefit (8.6 and 8.5 t/ha higher, respectively, than the 

baseline on average) followed by the advanced prorata, water satisfaction and prorata 

algorithms (5.7, 5.5 and 4.7 t/ha yield benefit, respectively).  The water satisfaction and prorata 

algorithms had the fastest computing times (1.83 and 0.99 s/season, respectively).  However, a 

conclusion from Chapter 4 indicated that the stress level algorithm could also be run quickly 

(2.46 s/season) if it was used to schedule the next irrigation event only, instead of the entire 

season’s events.  Therefore the stress level algorithm was recommended for inclusion into 

Canesim®, for making the irrigation scheduling decision for the current day, while the prorata 

algorithm was recommended for yield forecasting and determination of the future irrigation 

schedule. 

 

Soil type, climate and irrigation system had little effect on the performance ranking of 

algorithms, while crop cycle did have an effect.  The water satisfaction algorithm generally 

performed as well as the crop stage and stress level algorithms for October crop cycles, but 
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performed worse than these two algorithms for April crop cycles.  This is because the water 

satisfaction algorithm tended to schedule irrigation in the later part of the season after stalk 

growth commenced, causing more water stress in the early part of the season for April crop 

cycles than for October crop cycles because of the typical seasonal rainfall distribution (dry 

from April to August, wet from September to March).  

 

The highest yield benefits for all algorithms were achieved for seasonal allocations between 

300 mm to 700 mm.  The water satisfaction and prorata algorithms performed poorly (small 

positive or negative yield benefits) at seasonal allocations of more than 700 mm.  In the case of 

the water satisfaction algorithm, this can be explained by the fact that it always scheduled the 

full allocation, causing simulated water logging stress in some cases, whereas the crop stage 

and stress level algorithms would only apply as much water as required by the crop to achieve 

maximum yield.  The prorata algorithm scheduled irrigation in proportion to the long-term 

demand, reserving some irrigation for the end of the growing season.  For seasons where 

irrigation deficits were above average early in the growing season and below average later on, 

the prorata algorithm caused unnecessary early season stress, reserving too much water for the 

late season that may not be required. 

 

Although the optimisation algorithms showed great promise in improving yields over those of 

the baseline scenario, it is important to consider their feasibility for practical implementation.  

Issues that need to be considered are: availability of input data, the water restriction conditions 

in which they will operate and scope for their further use. 

 

Knowledge of past water use, the current value of ASWC, future water availability, expected 

rainfall and an optimisation algorithm are necessary for scheduling irrigation optimally under 

limited water supply.  The current value of ASWC may be measured or calculated; expected 

rainfall may be estimated from short and long-term climate forecasts and the optimisation 

algorithms can be applied to make an appropriate irrigation scheduling decision.  Water 

availability for the remainder of the water year is, however, affected by water used to date.  It 

is therefore necessary for irrigation records to be regularly captured into MyCanesim®.  This is 

currently done manually, but the process could be automated using flow meters and/or rain 

gauges. 
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5.2 Incorporating Soil Water Monitoring Technology into MyCanesim® 

 

A system was developed which integrated soil water records into soil water balance simulations.  

Soil water records were automatically downloaded on a daily basis using a combination of 

cellular and internet technology, from a service provider’s database and stored in the local 

MyCanesim® database.  Soil water status data were converted into units of available soil water 

content (ASWCprobe), using a linear conversion.  The Canesim® crop model was adjusted to 

allow correction of simulated ASWC with ASWCprobe data.  Thus, crop growth simulations were 

affected by more accurate simulation of drought and soil water saturation stresses. 

 

Tests were performed to evaluate the improvement in irrigation advice and yield forecast made 

by the integrated system.  The forecast accuracy of the next date of irrigation (DNI) was 

improved by 2.4 days on average, which is considered a great improvement.  The accuracy of 

yield forecasts was improved for cases where farmers deviated from an ideal irrigation 

schedule, but not otherwise. 

 

Resetting simulations with ASWCprobe thus improved the accuracy of irrigation scheduling 

advice which should limit under and over-irrigation, leading to increased simulated yields and 

IWUE.  Another benefit of the integrated MyCanesim® system is that irrigation practices may 

be analysed post-season to guide future irrigation practices. 

 

The practical feasibility and limitations of the use of soil moisture probes for irrigation 

scheduling needs to be considered.  The placement of soil water probes may adversely affect 

irrigation practices in the case of drip irrigated fields, since the soil distribution of irrigation 

water may be irregular.  The farmer may under-irrigate, on average, if the probe were located 

in the wettest position (for example underneath the emitter, as is current practice).  Similarly, 

over-irrigation may occur when scheduling is based on data from probes located in the driest 

position (for example in the inter-row halfway between emitters).  The wetting patterns of the 

irrigation system and soil should therefore be studied to locate the position of average wetness 

for probe location, or alternatively for improving probe calibration procedures. 
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5.3 Conclusions 

 

The literature review described the most pertinent features and approaches of irrigation 

scheduling decision support systems (ISDSS).  Several features were recommended for 

inclusion to MyCanesim®.  These include:  

(a) The optimization of the irrigation schedule under limited water supply in order to 

maximise yields; 

(b) Prioritisation of fields for irrigation when water supply is limited. 

(c) Adding functionality for integration of field measurements (ASWC, irrigation and 

canopy cover) with simulations of the water balance and crop growth, in order to 

improve the accuracy of real time advice; and 

(d) Increasing the flexibility in the irrigation scheduling rules to enable better representation 

of irrigation practices (such as variable cycle times and irrigation amounts); 

(e) The addition of a report which lists, per field, the daily available soil water content 

(ASWC) value of the morning, rainfall from the previous day and night and the 

recommended irrigation date and amount; and  

(f) A spatial representation of the farm to enhance the reporting of the system.   

 

Two of these improvements, points (a) and (c) in the former list, were researched in more detail 

and developed and tested using the Canesim® sugarcane model. 

 

Five optimisation algorithms for irrigation scheduling were researched and their yields and 

IWUE determined under limited water supply for a large number of scenarios.  Simulated yield 

ranking results were similar to those of IWUE, hence analyses focused on yield.  All algorithms 

were able to improve on yields generated by the baseline algorithm (on average).  Algorithms 

which had short computation times generally achieved lower simulated yields than algorithms 

that were more complex and took longer to run.  The crop stage algorithm, which achieved the 

highest simulated yields and irrigated water use efficiency, was not recommended for inclusion 

in MyCanesim® due to the large number of investigative simulations required for optimisation.  

The stress level algorithm, which also achieved high simulated yields, was recommended for 

inclusion into MyCanesim® to provide irrigation advice, but was not recommended for 

MyCanesim® yield forecasting due to the long computation time required.  The water 

satisfaction algorithm is not precise enough and, in its current form, tends to irrigate in excess 
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of the crop requirement in some cases.  The prorata algorithm runs quickly, achieves reasonable 

simulated yields and was recommended for inclusion into MyCanesim® for yield forecasting.  

Suitable algorithms have been found for MyCanesim® which may be used to provide irrigation 

advice under limited water supply.  As the seasonal water allocation increases and approaches 

the irrigation requirement, the simple rule of irrigating at a well-chosen depletion level achieves 

yields close to potential, and optimisation provides little benefit.  

 

Near real-time field records of soil water status were successfully integrated into the weather-

based sugarcane simulation system, MyCanesim®, and evaluated for supporting irrigation 

scheduling.  The evaluation of the system showed that the use of soil water probe data improved 

the accuracy of irrigation scheduling advice in the majority of test cases.  Improvements in 

advice by probe-based scheduling (PBS) over weather based scheduling (WBS) were greater for 

soils with low TAM than soils with high TAM and greater for overhead irrigated fields than for 

drip irrigated fields.  Yield forecast accuracy was greatly enhanced by PBS over that of WBS 

when poor irrigation practices were followed. 

 

A framework for analysing yields based on optimal irrigation (Yopt), ASWCprobe corrected (Yswc) 

(both simulations) and observed yields (Yobs) was developed for assessing the quality of 

irrigation practices and husbandry.  The analysis in this study suggested that yields were limited 

well below potential for six fields in 2012 and for three fields in 2013.  The framework could 

help farmers to identify and address problematic irrigation practices and consequently achieve 

higher yields. 

 

In summary, the optimisation algorithms showed potential for enabling more efficient use of 

limited water and increased cane yields when seasonal water restrictions are imposed.  The 

automated integration of soil water status data into the MyCanesim® ISDSS lead to more 

accurate irrigation scheduling.  Together these technologies promise to promote the 

sustainability of the irrigated sugarcane industry in South Africa. 
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5.4 Recommendations for Further Research 

 

Recommendations concerning the limited water optimisation algorithms include the following:  

 

(a) This study demonstrated theoretical yield improvements of the optimisation algorithms 

over the baseline algorithm.  This theoretical results however, needs to be confirmed in 

practice. 

(b) The optimisation algorithms could be used to discover general irrigation scheduling 

rules for cases of limited seasonal water supply. They could be applied to many 

historical weather scenarios to derive best average irrigation schedules for various 

ALLOCseason and regions.  Such work may aid long-term irrigation planning at a farm or 

catchment level. 

(c) This study addressed the optimisation of the irrigation schedule of a single field over 

the growing season.  In practice, farmers must optimise limited water over many fields 

and over shorter periods - a more complex optimization problem. 

 

Recommendations concerning the integration of probe data into weather-based simulation 

models include the following: 

 

(a) Auto-calibration of capacitance data to ASWC is an attractive proposition.  A computer 

program could detect the value of 𝐹𝐶𝑆𝑊𝐼 (Equation 4.4) by monitoring for a large 

change in the derivative of capacitance data a few days after a large rainfall or irrigation 

event.  Also, an appropriate CR value (Equation 4.4) can be derived by matching the 

rate of depletion in ASWC to simulated ET for fully canopied crops (to eliminate 

uncertainty of canopy simulations) over known dry periods. The program could refine 

conversion coefficients as more data becomes available for calibration and regenerate 

the ASWCprobe data on a daily basis.  The stress point and wilting point may also be 

inferred. 

(b) A layered soil water balance model may be more suitable for integration with soil water 

capacitance probes, since such probes typically have sensors at several depths. An 

integrated layered system may enhance irrigation scheduling advice for the following 

reasons: 
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a. over-irrigation can be detected through accumulation of water in lower layers; 

and 

b. temporary alleviation of drought stress could be simulated when the top layers 

receive adequate water.   
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APPENDIX A 
A1 Aggregate Yields Achieved by the Optimisation Algorithms 

Table A1.1 Summary of the simulated yields (t/ha) achieved by each algorithm averaged over 

different scenario inputs.  The dryland yield (no irrigation), potential yield (no drought stress 

and with a limitless seasonal allocation (ALLOCseason)) and the algorithm that performed the 

best in terms of yield are also indicated.  CS = Crop Stage and SL = Stress Level. 

Inputs Yields (t/ha) for each algorithm Boundaries  

Scenario 
input 

Input 
value 

Crop 
Stage 

Stress 
Level 

Water 
Satisf
action 

Pro-
rata 

Advan-
ced 
Prorata 

Base-
line 

Dry-
land 

Poten
-tial 

Best 
perfor
ming  
algo-
rithm 

Station Komati 101.1 101.2 98.0 95.2 96.4 91.4 48.1 135.3 SL 

Malelane 102.5 102.6 99.1 99.0 100.1 94.1 40.1 139.6 SL 

Pongola 98.9 98.6 95.7 95.5 96.6 89.4 43.9 126.6 CS 

Umfolozi 103.4 103.3 101.0 100.7 101.3 96.8 52.3 127.5 CS 

ALLOC-

season  

(mm) 

100 55.8 54.9 53.6 54.9 55.6 49.9 46.1  CS 

200 70.1 68.9 65.1 65.1 66.0 60.3 46.1  CS 

300 79.4 78.6 79.2 74.6 75.8 68.2 46.1  CS 

400 93.0 92.7 90.5 85.7 87.0 78.5 46.1  CS 

500 101.8 101.4 99.7 96.3 98.0 87.5 46.1  CS 

600 112.0 112.6 109.4 106.9 108.0 99.6 46.1  SL 

700 118.2 118.8 116.3 115.1 116.2 108.9 46.1  SL 

800 125.2 126.0 120.4 122.0 122.9 120.0 46.1  SL 

900 128.4 129.1 123.1 126.3 127.0 126.0 46.1  SL 

1000 130.9 131.2 127.2 129.0 129.5 130.2 46.1  SL 

Crop cycle April 102.5 102.3 97.8 97.9 98.7 94.9 46.4 135.9 CS 

October 100.4 100.5 99.1 97.3 98.5 91.0 45.8 128.6 SL 

Soil TAM 
(mm) 

80 100.1 99.2 96.4 95.8 96.9 90.3 44.0 131.9 CS 

120 102.9 103.6 100.5 99.3 100.3 95.6 48.2 132.6 SL 

Rainfall 
class 

High Rain 104.8 104.7 101.7 99.9 100.8 96.1 53.6 132.2 CS 

Med Rain 105.2 104.9 102.6 101.4 102.5 96.4 50.6 130.5 CS 

Low Rain 94.5 94.7 91.0 91.5 92.6 86.2 34.1 134.1 SL 

Irrigation 
amount 
(mm)1 

8 101.9 1 99.4 97.9 98.6 92.9 46.1 132.5 CS 

40 101.0 101.4 97.4 97.3 98.6 92.9 46.1 132.0 SL 

Average2 450 95.8 95.5 93.3 90.6 91.8 83.8 46.1 132.2 CS 

Average3 550 101.5 101.4 98.4 97.6 98.6 92.9 46.1 132.2 CS 

1 - The stress level algorithm (SL) was not simulated using the 8 mm fixed irrigation amount 
2 - The average was taken over the 200 mm to 700 mm allocation range 
3 – The average was taken over the 100 mm to 1000 mm allocation range 
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A2 Aggregate Irrigated Water Use Efficiency (IWUE) Achieved by the Optimisation 

Algorithms 

Table A2.1 Summary of the simulated IWUE (t/ha/100mm) achieved by each algorithm 

averaged over different scenario inputs.  The IWUE of the crop that gave the potential yield (no 

drought stress and with a limitless seasonal allocation (ALLOCseason)) and the algorithm that 

performed the best in terms of IWUE are also indicated.  CS = Crop Stage and SL = Stress Level. 

Inputs IWUE (t/ha/100mm) for each algorithm   

Scenario 
input 

Input 
value 

Crop 
Stage 

Stress 
Level 

Water 
Satisfa
ction 

Pro-
rata 

Advan-
ced 
Prorata 

Base-
line 

IWUE 
for 
poten
-tial 
yield 

Best 
perfor
ming 
algo-
rithm 

Station Komati 10.3 10.1 9.2 8.7 9.0 7.2 8.27 CS 

Malelane 12.3 12.0 10.7 10.9 11.2 9.4 10.36 CS 

Pongola 11.1 10.7 9.6 9.8 10.1 7.8 8.9 CS 

Umfolozi 11.0 10.6 9.3 10.0 10.2 8.4 9.03 CS 

ALLOC-

season 

(mm) 

100 12.1 11.0 8.5 9.7 10.5 4.4  CS 

200 12.0 11.4 9.5 9.4 9.8 7.1  CS 

300 11.9 11.6 10.6 9.8 10.2 7.7  CS 

400 11.7 11.7 11.1 9.9 10.2 8.1  CS, SL 

500 11.6 11.5 11.0 10.3 10.6 8.5  CS 

600 11.2 11.2 10.5 10.2 10.4 9.0  CS, SL 

700 10.8 10.8 9.9 10.2 10.4 9.2  CS, SL 

800 10.3 10.2 9.3 9.8 10.0 9.4  CS 

900 10.0 9.8 8.7 9.7 9.7 9.4  CS 

1000 9.8 9.3 8.1 9.5 9.5 9.3  CS 

Crop cycle April 11.1 10.9 9.5 9.7 10.0 8.6 9.17 CS 

October 11.2 10.8 10.0 10.0 10.3 7.8 9.11 CS 

Soil TAM 
(mm) 

80 11.3 10.6 9.7 9.8 10.1 8.0 9.12 CS 

120 11.0 11.1 9.7 9.9 10.1 8.4 9.16 SL 

Rainfall 
class 

High Rain 10.4 10.2 9.0 9.0 9.3 7.5 8.26 CS 

Med Rain 11.4 11.0 10.0 9.9 10.3 8.3 9.14 CS 

Low Rain 11.6 11.4 10.3 10.6 10.8 8.8 10.02 CS 

Irrigation 
amount 
(mm)1 

8 11.3   9.9 9.6 9.8 8.1 9.14 CS 

40 11.0 10.8 9.5 10.0 10.5 8.3 9.14 CS 

Average2 450 11.5 11.4 10.4 10.0 10.3 8.3 9.14 CS 

Average3 550 11.1 10.8 9.7 9.8 10.1 8.2 9.14 CS 

1 – The stress level algorithm (SL) was not simulated using the 40 mm fixed irrigation amount 
2 – The average was taken over the 200 mm to 700 mm allocation range 
3 – The average was taken over the 100 mm to 1000 mm allocation range 
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APPENDIX B 
B1 Examples of Soil Water Balance Graphs for Selected Monitored Fields 

 
 

 
Figure B1.1 (top) and Figure B1.2 (bottom). The soil water balances for field 3B (top) and for 

field 7 (bottom) are shown, for the 2011-2012 growing season.  Daily values of simulated (blue 

line) and measured (red open squares) root zone available soil water content (ASWC), rainfall 

(blue bars) and irrigation (red open circles).  The horizontal solid line indicates the ASWC at 

field capacity (TAM), the line with small dashes indicates the chosen allowable depletion level 

(ADL) and the line with mixed dot dash represents Canesim®’s stress point.  Simulated ASWC 

was corrected with measured values (ASWCprobe).   
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B2 Examples of Yield Forecast Error Graphs for Selected Monitored Fields 

 
 

 
 

Figure B2.1 (top) and Figure B2.2 (bottom).  The forecast error (FE, defined as the difference 

between the forecasted (Yf) and observed yields (Yobs) expressed as a percentage of Yobs) for 

fields 17 (top) and G1 (bottom) for the 2011-2012 growing cycle, for weather-based simulation 

(WBS, solid brown line) and probe-based simulation (PBS, dots).  In the case of field 17, yield 

forecast accuracy was dramatically improved by correcting the simulated soil water balance 

with probe data.  In the case of field G1, the farmer irrigated in a near-optimal manner and the 

yield forecast accuracy was not improved by correcting the simulated soil water balance with 

probe data.  The line y = 0 represents the observed yield.  PBS Forecasts begin when probe data 

becomes available. 
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