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Abstract 

Rapid diagnostic tests (RDTs) function in a diagnostic niche, linking point of care diagnosis 

with sophisticated lab-based methods tracking drug resistance. As ambitions move from 

malaria control to eradication, diagnosis is needed to identify the species causing disease, 

detect asymptomatic reservoirs and quantitate parasite loads. The latter is important to 

improve treatment dose and duration as well as preventing the spread of drug resistance. 

Multiple groups are developing alternate diagnostic methods; however improving RDTs 

would allow easier in situ implementation due to the popularity of these tests. This work 

aimed to identify alternate diagnostic targets and antibodies to those currently used in RDTs.  

The current RDT target, lactate dehydrogenase (LDH), was included for comparative 

purposes. Two metabolic proteins were identified as potential diagnostic targets, namely 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoethanolamine-N-

methyltransferase (PMT). The latter, like the other RDT target histidine rich protein 2 (Hrp2), 

is a plasmodial protein that is not expressed in humans. GAPDH and PMT were chosen based 

on in silico data suggesting higher transcript and protein concentrations in infected red blood 

cells in comparison to LDH. Both proteins are expressed throughout the red blood cell and 

gametocyte stages of the parasite life cycle and are conserved in the three most malignant 

species, Plasmodium falciparum, P. vivax and P. knowlesi. The P. falciparum orthologue 

(among others) of each of the target proteins was recombinantly expressed, affinity purified 

and their quaternary structure assessed by molecular exclusion chromatography. LDH formed 

a 145 kilo Dalton (kD) tetramer in solution, which resolved as a 35 kD protein on reducing 

SDS-PAGE and was shown to be enzymatically active. Similarly GAPDH formed a tetramer 

in solution of 148 kD and was identified as a 38 kD monomer on SDS-PAGE. PMT remained 

as a monomer in solution of approximately 29 kD, similar to its reduced form on SDS-PAGE. 

These recombinant proteins had similar quarternary structures to their native counterparts and 

formed the basis of the tests characterising all the antibodies prepared and described here.  

A peptide common to all Plasmodium PMT proteins (LENNQYTDEGVK) and peptides 

unique for P. falciparum GAPDH (ADGFLLIGEKKVSVFA), P. falciparum PMT 

(EVEHKYLHENKE), P. vivax PMT (VYSIKEYNSLKD) and P. knowlesi PMT 

(LYPTDEYNSLKD) were identified and synthesized. Chicken antibodies were raised against 

each peptide coupled to a rabbit albumin carrier protein and against purified recombinant 

PMT and GAPDH. Antibodies raised against the whole recombinant proteins were coupled to 
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HRPO and used as detection reagents in western blots and ELISAs. All antibodies detected 

only the Plasmodium parent proteins and did not cross react with human red blood cell, other 

malarial parasite or E. coli lysate proteins. Antibodies raised against the whole recombinant 

proteins and against unique and common peptides within these proteins detected all 

recombinant Plasmodium proteins tested. The species-specific anti-peptide antibodies 

detected only their specific Plasmodium protein orthologs. The antibodies detected each of 

the P. falciparum orthologs in parasite lysate samples by western blot. Detection of the 

respective recombinant proteins LDH and GAPDH in a double antibody sandwich ELISA 

assay, which mimics the RDT format, detected both proteins between 0.0004 to 1.5 µg. 

Single chain fragment variable (scFv) antibody clones were isolated against all three target 

proteins using the Nkuku® chicken scFv library. Polyclonal chicken antibodies specific to the 

cmyc peptide tag on the soluble scFvs were also produced and used to detect and purify 

soluble scFvs. The scFv clones detected their targets and did not cross react with human red 

cell or E. coli host cell proteins.  Five distinct scFv clones were identified against rPfLDH, 

three against rPfGAPDH and one against the P. vivax PMT peptide epitope. These reagents 

represent unique antibody variable-gene regions which can be expressed for the detection of 

the specific target they detect. A human anti-malaria antibody pool obtained from malaria 

patients was assessed for the presence of specific antibodies against the three target proteins. 

Lower yields of specific human antibodies against P. falciparum GAPDH and PMT were 

attained from the pool in comparison to P. falciparum LDH. This suggests that there are low 

titres of host antibodies against these proteins which are therefore unlikely to interfere with 

antibody-based detection of P. falciparum GAPDH or PMT in the blood of patients in a 

malaria endemic area. 

The chicken antibodies as well as the scFv clones need to be further characterised to 

determine their limits of detection. The concentration of each of the target proteins in parasite 

lysates needs to be determined in relation to LDH. The scFv expression and purification 

needs to be optimised further and all these reagents need to be tested in an ELISA and RDT 

format. The heat stability of these reagents should also be assessed. We propose the use of 

multiple test lines on RDTs to allow semi-quantitative detection of the parasite burden in 

patients. This could allow for discerning between mild and severe infections and aid with the 

dose and duration of anti-malarial drug treatment. These novel targets and immune-reagents 

present malaria diagnostic research with alternatives to the current targets and could allow for 

improved RDT based tests in the future. 
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Chapter 1 

Introduction and literature review 

 

Epidemiology entails studying the cause, transmission, control and surveillance of disease. 

Diagnosis is key to the study of any disease and this review highlights the main diagnostic 

tools and targets used to study malaria.  

1.1. An overview of malaria focused on diagnosis 
1.1.1 Importance of diagnosis 

Malaria is the leading global cause of human death due to a parasitic disease (Murray et al., 

2014). It affects approximately half the human population (3.2 billion people), where an 

estimated 1.2 billion people live in high-risk malaria endemic countries. Of the 124-283 

million reported malaria cases, approximately 584000 deaths resulted, most of which 

(455000) were children under the age of five (Hay et al., 2004; WHO 2015b world malaria 

report). This equates to a child dying of malaria and between 240-550 new malaria cases 

being diagnosed nearly every minute. The malaria cases may vary from mild (fever) to severe 

disease (prostration, impaired consciousness, difficulty breathing, jaundice, haemoglobinuria 

and severe anaemia (five-seven grams of haemoglobin per 100 ml of blood)) and cerebral 

malaria (Miller et al., 1994). To date attempts to develop an effective vaccine have been 

unsuccessful and despite it being a curable disease malaria continues to claim human lives 

every day. Most deaths result from failure to diagnose and treat malaria before the onset of 

severe disease. Even with proper treatment severe malaria mortality rates exceed 20% (Antia 

et al., 2008; Suh et al., 2004). Until such time as a “silver bullet” is found, diagnosis and 

timely treatment are vital to curb the mortality due to malaria.   

1.1.2 Which species infect humans and differences in treatment? 

Malaria treatment varies depending on the species of parasite causing the disease. The 

eukaryotic protozoan parasites that cause malaria fall within the genus Plasmodium 

(Bannister et al., 2000; Miller et al., 1994) and include over 100 species infecting avian, 

reptilian, amphibian and simian hosts (Suh et al., 2004). Of all the Plasmodium species 

known only five infect humans. These are Plasmodium falciparum, P. vivax, P. knowlesi, P. 

malariae and P. ovale (Daneshvar et al., 2009; Sabbatani et al., 2010).  
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Of these five species P. falciparum is the most aggressive pathogen causing cerebral malaria 

and death (Suh et al., 2004; Welch, 1897). P. knowlesi has only recently been recognised as a 

human infecting species, although the first natural human infection was recorded in 1965 

(Chin et al., 1965; Cox-Singh et al., 2008; Lee et al., 2011; van Hellemond et al., 2009; 

Yusof et al., 2014). P. knowlesi has a shorter red blood cell cycle than P. falciparum, rapidly 

multiplies in the blood and also causes severe disease and death (Chin et al., 1965; Daneshvar 

et al., 2009; Ng et al., 2008; Sabbatani et al., 2010). P. vivax and P. malariae were first 

described and differentiated in 1890 by Grassi and Feletti (Collins and Jefferey, 2007; Grassi 

and Feletti, 1890), where P. malariae can cause severe malaria but is not fatal. P. vivax on the 

other hand has been reported to cause severe and fatal malaria in humans (Kochar et al., 

2005; Shaikh et al., 2012) and its ability to remain dormant in the liver of infected patients 

even after drug clearance of the initial blood stage infection is shared by P. ovale. These 

dormant parasites can then cause relapsing blood infections more than two years later 

(Fujioka and Aikawa et al., 2002; Perkins and Bell, 2008). Specific drugs targeting the liver 

stages of P. vivax and P. ovale, such as primaquine are required to clear dormant liver 

infections (Beeching et al., 2007). P. ovale, the fifth of the human pathogens is the only 

species with humans as its sole host. It was first identified in 1922 and interestingly due to its 

benign nature; it was used to induce fever episodes as a treatment of neurosyphilis before the 

advent of penicillin (Collins and Jeffery, 2007). Each of the five species has different 

infection characteristics due to slight differences in their life cycles and requires species-

specific diagnosis and treatment as a result. 

1.1.3 Brief life cycle description  

A generic malaria life cycle which summarises the number of parasites released at the end of 

each stage is shown in Figure 1.1. Since malaria is transmitted by a mosquito vector of the 

Anopheles genus (Ross R., 1897) the life cycle starts here. In order to produce eggs the 

female mosquitoes require a high protein source, blood, in their diets and they need to feed 

regularly. This makes them an ideal vector for parasite transmission. Whilst feeding, the 

female mosquito injects anticoagulants into the host blood. Approximately ten to 100 mature 

parasites (sporozoites), residing in the salivary glands of the mosquito, are injected at this 

point allowing them entry into their human host (Baldacci and Menard, 2004; Kappe et al., 

2010; Miller et al., 1994).  

Once inside the host the sporozoites actively move to the liver using gliding motility 

(Baldacci and Menard, 2004; Kebaier et al., 2009; Shortt and Garnham, 1948). This process 
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Liver stage 

Mosquito vector 

Sexual stage 
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14 to 32 merozoites 

released (48 hrs)  

Ring  
(0.5 hrs) 

Trophozoite 

(26 hrs) 

Schizont 

(38 hrs) 

Red blood cell 
invasion (0-5 min) 

Red blood cell stage 
 Symptoms appear allowing clinical diagnosis 
 Morphological differences allow microscopic diagnosis 
 Molecular diagnosis detects malarial DNA or proteins 

10-100 
sporozoites 
released per bite 

 

1 sporozoite results 
in 10000-30000 

merozoites              
(1 to 2 weeks) 

10-1000 gametocytes 
ingested per blood 
meal 

 

2000 to 
4000 

sporozoites 
mature in 2 

weeks 

The first gametocytes 

appear 13 to 34 days 

post infection 

may take up to an hour, depending on the route taken, either via the blood stream or the 

lymphatic system. The sporozoites invade the liver via specialised liver macrophages known 

as Kupffer cells (Cha et al., 2015). Inside a liver hepatocyte the sporozoites divide and 

change their morphology to blood infective forms known as merozoites. A single sporozoite 

may divide to form as many as 10000 to 30000 merozoites, which are released into the blood 

of the host after about one to two weeks once the infected liver cell bursts (Fujioka and 

Aikawa, 2002; Miller et al., 1994).  

 

Figure 1.1 Generic malaria life cycle diagram including estimated number of parasites released per 

stage 

The times for the red blood cell stages were based on the P. falciparum life cycle. The parasite numbers per 
stage were taken from Antia et al., 2008; Baldacci and Menard, 2004; Fujioka and Aikawa, 2002; Kappe et al., 
2010; Miller et al., 1994 and Smith and Craig, 2005.  
 

The invasion of red blood cells occurs almost instantly (zero to five minutes) and was 

recorded by live cell imaging in a study by Gilson and Crabb (2009). The red blood cell cycle 

of the infection can take 24 (P. knowlesi), 48 (P. falciparum, P. vivax), 49 (P. ovale) or 72 (P. 

malariae) hours depending on the Plasmodium species causing the infection, where the P. 

falciparum blood stage times are shown in Figure 1.1 (Chin et al., 1965; Daneshvar et al., 

2009; Fujioka and Aikawa, 2002; Lee et al., 2011; Murray et al., 2009). Once development in 

the red blood cells is complete, the cells rupture and the newly infective merozoites are 

released (between eight to 32 daughter merozoites) and infect naïve red blood cells (Antia et 

al., 2008; Baldacci and Menard, 2004; Collins and Jeffery, 2005).  



 

4 
 

During the later stages of infection (usually after three to ten completed red blood cell cycles) 

a few of the merozoites mature into male or female gametocytes. Only once a female 

mosquito feeds on the infected host and ingests both gametocytes, does the sexual stage of 

the life cycle commence. The gametocytes fuse to form a zygote, which then forms a motile 

ookinete and migrates through the stomach wall to the midgut of the mosquito where it settles 

as an oocyst. Parasites divide and mature into sporozoites within the oocyst and are released 

to migrate to the salivary glands where they remain, until the mosquito seeks her next blood 

meal (Fujioka and Aikawa, 2002). Each of the Plasmodium species has different numbers of 

parasites and times for each developmental stage, which affects disease progression (see 

Figure 1.2). 

1.1.4 When do symptoms appear and what is the diagnostic window? 

During an infection the host remains asymptomatic until the parasite enters its red blood cell 

cycle. Due to the different Plasmodium species’ infection characteristics, malaria symptoms 

present differently (Gwer et al., 2007; Kidane and Morrow, 2000; Perkins and Bell, 2008; 

Sirima et al., 2003). At the point where the infected red blood cells lyse, parasites as well as 

their metabolites are released into the host blood system. This allows the host’s immune 

system direct contact with these factors and immune reactions follow, resulting in disease 

symptoms (Golgi, 1886; Miller et al., 1994). At this stage patients may seek medical attention 

and diagnosis depending on the severity of the disease. The incubation time (period between 

the initial infective bite and appearance of symptoms) may vary depending on the number of 

infective sporozoites injected, the state of the host immune system and the effect of any 

treatment prior to diagnosis. Ideally diagnosis should occur before development of severe 

disease (Antia et al., 2008; Barnes et al., 2015; Suh et al., 2004). The time taken for naïve 

and immune patients to develop severe infections can be estimated based on the numbers of 

parasites and time for each developmental stage from the life cycle (Figure 1.1) and accepting 

a simplified progression of disease. This is illustrated in Figure 1.2. 

These simplified disease progress graphs illustrate the limited time during which diagnosis 

should ideally occur. It also highlights the window in which “normal” drug doses are 

effective for treatment of infections and at which point increased dose and duration of 

treatment are required. Hyperparasitemic infections (parasitemia greater than 100000 per 

microliter) require such treatment (Barnes et al., 2015; White et al., 2009). 
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Figure 1.2 Dynamics of infection of each of the human infective malarias and the resulting 

diagnostic window for P. falciparum, P. knowlesi and P. vivax 

The diagnostic window for P. falciparum, P. knowlesi and P. vivax is shaded in blue. This is the period within 
which malaria should ideally be diagnosed to optimally treat the infection with “normal” dose and duration of 
drugs. As parasitemia increases beyond 10000 parasites / microliter, increased dose and duration of drugs are 
recommended. The window falls between 36-72 hours for symptomatic naïve (A) and 12-21 hours for 
symptomatic immune patients (B) (Antia et al., 2008; Baldacci and Menard, 2004; Barnes et al., 2015; Chin et 
al., 1965; Daneshvar et al., 2009; Fujioka and Aikawa, 2002; Lee et al., 2011; Miller et al., 1994; Murray et al., 
2008 and 2009; White et al., 2009).  
 

Only three species of malaria have been reported to reach hyperparasitemic levels. These are 

P. falciparum (maximum parasitemia of 2500000 per microliter), P. vivax (maximum 

parasitemia of 100000 per microliter) and P. knowlesi (maximum parasitemia of 800000 per 

microliter) (Zimmerman and Howes, 2015). Human populations in endemic regions develop 

some form of non-sterilizing immunity against malaria, meaning that the dynamics of the 

disease are different between naïve and immune patients. In the case of naïve patients, 
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including children under five years old, malaria symptoms will start to appear once the 

parasitemia reaches 100 parasites per microliter, which is why the origin of Figure 1.2 (A) 

was set at this parasitemia (Hänscheid, 1999). In contrast, immune patients may remain 

asymptomatic with a parasitemia of 2500-10000 per microliter as shown in Figure 1.2 (B) 

(Hänscheid T., 1999). Severe malaria is usually diagnosed at greater than 10000 to 30000 

parasites per microliter and prognoses deteriorate rapidly beyond this level of infection 

(Barnes et al., 2015; White et al., 2009).  

Based on Figure 1.2 (A) malaria may cause severe disease within 36 to 72 hours in naïve 

hosts for most of the human infecting species. In the case of P. malariae this may take longer, 

causing severe disease around 120 hours after the first clinical symptoms appear in naïve 

patients. In immune hosts (Figure 1.2 (B)) symptomatic infections may escalate to 

hyperparasitemic infections within very short periods of time, between 12 to 36 hours, due to 

higher initial parasitemia. The WHO recommends treatment within 24 hours of the onset of 

fever and diagnosis within two hours of patients presenting for treatment (WHO guidelines 

for treatment of malaria, 3rd edition, 2015a). The window for diagnosis and timely treatment 

ideally lies between parasitemia causing symptoms and severe disease as shaded in blue in 

Figure 1.2. Importantly, any complications, such as drug-resistant infections, also need to be 

diagnosed to allow for timely changes in treatment if required.  

The window for diagnosis narrows when considering that patients usually only present 

themselves to clinicians once they express symptoms and sometimes only after self-treatment 

has failed, resulting in an increased number of severe as opposed to mild malaria cases. This 

increases the time pressure on diagnosis and treatment. Diagnostic methods should ideally 

allow for rapid point of care diagnosis of the patient. Due to the high mortality, treatment 

may often be administered without confirmed diagnosis. 

1.1.5 The importance of diagnosis to prevent spread of resistance 

Treatment of malaria used to be based on the clinical diagnosis of disease and subsequent 

prescription of anti-malarial drugs. This was an effective strategy as little time was taken to 

treatment and antimalarial drugs such as chloroquine were readily available, cheap and 

effective. The unfortunate consequence of such “liberal” use of these drugs was that this 

practice selected for anti-malarial drug resistant parasite populations. The WHO no longer 

recommends fever as a sole diagnostic marker for malaria in the tropics and microscopic 

and/or molecular diagnosis as confirmation prior to treatment is now advised. Another factor 
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contributing to the spread of resistance is inadequate dosage and duration of anti-malarial 

drugs prescribed to patients with hyperparasitemic infections (Barnes et al., 2015; White et 

al., 2009). At hyperparasitemic levels, “normal” drug treatment regimens may still reduce the 

parasite load of the patient but are insufficient to clear the infection. This results in exposure 

of parasites to sub-optimal drug doses and the subsequent selection of resistant phenotypes. 

The ability to quantify the parasite load within the patient would allow clinicians to track 

disease progress and success of treatment. Diagnostic methods should ideally be able to 

quantify parasite load and be cheap enough to allow for repeat diagnoses to track treatment 

progress even in resource poor settings (Barnes et al., 2015; White et al., 2009).  

1.1.6 Complicated malaria infections  

Several additional challenges for diagnosis will be discussed to follow, including cerebral, 

placental and mixed infections. During a P. falciparum infection, the parasites produce 

proteins such as Histidine rich protein 2 (HRP2) and Erythrocyte membrane protein 1 

(EMP1) which are located to knobs on the surface of the infected red blood cell (Bannister et 

al., 2000). These proteins cause the infected red blood cells to stick to each other as well as to 

uninfected red blood cells. The infected cells also stick to endothelial cells of arterioles. 

These phenomena are referred to as rosetting and sequestration respectively (Leitgeb et al., 

2011). Resulting restricted blood flow causes cerebral malaria and organ failure in severe 

infections (David et al., 1983; Leitgeb et al., 2011). Malaria diagnosis during pregnancy is 

also complicated by this phenomenon, referred to as placental malaria. Sequestration and 

rosetting result in low levels of parasites in the peripheral blood, which makes microscopic 

detection of parasites difficult.  

This makes it important to either complement or replace microscopic diagnosis with detection 

of soluble targets released by sequestered parasites, such as proteins, nucleic acids and 

carbohydrates, as detection of parasites in the blood becomes less reliable (Kattenberg et al., 

2011). There is also a need to detect liver dormant parasites in a similar way to detect 

potential relapse infections (Fujioka and Aikawa et al., 2002). 

Coinfection with different malaria species is also possible (Chuangchaiya et al., 2010; 

Murray et al., 2008). This affects treatment and highlights the need for species-specific 

diagnosis. Drug resistance to date is most prominent within strains of P. falciparum followed 

by P. vivax and, in many cases diagnosis of these species requires treatment with combination 

therapies as opposed to conventional drugs (WHO guidelines for treatment of malaria, 3rd 
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edition, 2015a). This complicates treatment strategies and makes them more expensive which 

has made diagnosis prior to treatment more “cost effective”. Fortunately the other three 

Plasmodium species have not yet developed any resistance to anti-malarial drugs, making 

them simpler and cheaper to treat. P. knowlesi remains susceptible to artemisinin with 

variable to moderate susceptibility to chloroquine, but should not be treated with mefloquine 

(Fatih et al., 2012). Tracking the spread of drug resistance is critical in maintaining effective 

malaria control strategies and methods to diagnose resistance are essential (Carnevale et al., 

2007; Duraisingh et al., 1998).  

Several tropical diseases, including dengue, not only display similar symptoms to malaria, 

but also co-infect patients with malaria (Källander et al., 2004; Rao et al., 2015). This 

complicates clinical diagnosis and highlights the need for confirmed diagnosis using either 

microscopy or alternate molecular methods (Gwer et al., 2007; Perkins and Bell, 2008). 

Regardless of the challenges, malaria control efforts have been successful at reducing the 

global distribution of malaria and the next section will highlight the successes achieved and 

the current setting of diagnosis in endemic regions that resulted. 

1.2.  Malaria control to date and the setting of diagnosis 
Malaria used to be distributed globally, but has since been restricted to the tropics (Figure 

1.3). Our understanding of malaria has been integral in its control and some of the major 

discoveries and implementation of control strategies were highlighted in Figure 1.3. Tropical 

fevers have long been treated using anti-malarial drugs including artemisinin and quinine 

(China since the 4th and South America since the 17th century respectively).  

The cause of malaria, which was thought to be from bad air (“mal-aria” in Latin), was only 

discovered as late as 1880 by Laveran (Laveran, 1880). The subsequent detection of the 

Plasmodium parasite with a Giemsa stain for microscopy in 1891 is still used as the gold 

standard for malaria diagnosis today (Moody, 2002). Although this improved the diagnosis 

and treatment of malaria, only with the discovery of the mosquito vector by Ross in 1897 

(Ross, 1897), was the life cycle of the parasite understood. Between the 1930s and 50s a 

whole range of anti-malarial drugs were developed and discovered as well as the pesticide 

DDT. Together these tools allowed the WHO to launch and oversee the first large scale 

control programme against malaria in 1955. Malaria was since eradicated from Japan, Europe 

and North America, soon followed by Russia and Australia.  
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Figure 1.3 Malaria control / eradication statistics and timeline 

The map defines the regions of the world in which malaria was found and from which it has either been eradicated or controlled. The shading represents regions in which 
control strategies were implemented according to the timeline colours, where grey areas represent regions in which endemic malaria was never reported and red areas indicate 
countries in which malaria is still found today. The graph alongside the map shows the number of malaria cases diagnosed per year from 1955 to 2012. Literature sited for 
these figures included Faechem et al., 2010; Guerra et al., 2007; Hay et al., 2009 and the WHO 2015b. 
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As mentioned before, an unfortunate consequence of the “liberal” use of antimalarials and 

pesticides during this eradication strategy was the development and spread of resistant 

parasites and mosquito vectors. To counter this, greater emphasis has been placed on positive 

diagnosis prior to treatment, which led to the development and introduction of point-of-care 

diagnostic tests, such as rapid diagnostic tests (RDTs) in 1995. Although not as sensitive as 

more sophisticated and expensive molecular methods, these tests detect symptomatic 

infections within 15 minutes and are relatively simple to interpret (Moody, 2002).  

In spite of these successes, malaria prevalence seems to have increased (graph in Figure 1.3). 

The emphasis on and availability of diagnosis has also increased together with control efforts. 

The resulting malaria mortalities have fallen from 839000 to 438000 from 2000 to 2015 

(WHO guidelines for treatment of malaria 2015a). Better surveillance and record keeping are 

a spinoff of point-of-care diagnosis, enabling mapping of disease prevalence, transmission 

and drug resistance more accurately. The malaria atlas project (http://www.map.ox.ac.uk/) is 

a database which summarises and presents these data in regional to global formats with a user 

friendly interface. Such overviews are integral to organising control strategies, especially in 

light of malaria elimination ambitions. Statistics for current endemic regions were 

summarised in Table 1.1. Around 1.2 billion inhabitants live in high-risk malaria-endemic 

regions (WHO World Malaria Report 2015b). The cost associated with control as well as 

estimated and confirmed death tolls are also included. These numbers differ from the 

estimated global numbers as they only include confirmed “endemic cases” of malaria and not 

the number of “imported cases”. The total cost of control (in USD) in endemic regions was 

approximately 2.73 billion for the 2013 / 2014 period, of which 2.17 billion was for control in 

Africa alone. The greatest malaria burden remains in Africa and productivity losses amount 

to around 12 billion USD annually (Hay et al., 2009; Suh et al., 2004). The high cost of 

control on developing countries in endemic regions means that diagnosis needs to be cheap 

and simple. Point-of-care diagnosis is an ideal solution. Such diagnosis would allow rapid 

treatment of patients. In complicated infections, as described earlier, rapid provisional 

treatment may be life-saving, buying time for further diagnosis and more specific treatment 

for example. The addition of P. knowlesi to the human infecting species as well as the spread 

of artemisinin and multidrug resistance in the South-East Asia and Oceania regions is of great 

concern to control in these regions (Dondorp et al., 2009; Moyes et al., 2014). The absence of 

vectors transmitting P. knowlesi in Africa and the Americas has prevented it from spreading 

to these regions for the time being (Akler et al., 2007; Koenderink et al., 2010).  

http://www.map.ox.ac.uk/
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Endemic region

Population at risk *
Control funding (USD)
Estimated deaths
Confirmed deaths
Plasmodium  species P. falciparum P. ovale P. falciparum P. ovale P. falciparum P. ovale P. falciparum P. ovale

P. malariae P. vivax P. malariae P. vivax P. knowlesi P. vivax P. knowlesi P. vivax
P. malariae P. malariae

Drug resistance

Anopheles  species An. aconitus An. minimus An. aconitus An. leucosphyrus 
An. barbirostris An. sacharovi An. annularis An. maculatus
An. culicifacies An. sergentii An. balabacensis An. minimus
An. dirus An. sinensis An. barbirostris An. punctulatus
An. fluviatilis An. stephensi An. cracens An. sinensis
An. latens An. subpictus An. dirus An. subpictus
An. lesteri An. sundaicus An. farauti
An. leucosphyrus An. superpictus An. flavirostris
An. maculatus An. koliensis

Pesticide resistance

98,258

Chloroquine / amodiaquine (P.f )
Primaquine (P.v )

Carbamates
Organochlorides
Organophosphates
Pyrethroids

Carbamates
Organochlorides

Oceania

12,720 - 40,230

Pyrethroids

Primaquine (P.v )
Artemisinin and ACT (P.f )

Primaquine (P.v )
Chloroquine / amodiaquine (P.f )
Mefloquine / quinine (P.f )

Chloroquine / amodiaquine (P.f ; P.v )

44,722,000 (561,763)

305

121,000,000

Middle East & Asia

296,531,000 (1,814,993)

904

283,900,000
502,881 - 1,065,380

Central & South America

20,392,800 (389,575)
155,300,000
260 - 1 180
96

Chloroquine / amodiaquine (P.f )

An. albimanus
An. albitarsis
An. aquasalis
An. darlingi
An. nuneztovari
An. pseudopunctipennis

Carbamates
Organochlorides
Organophosphates
Pyrethroids

Africa

736,124,577 (75,191,566)
2,173,400,000
235,856 - 570,230

An. arabiensis
An. culicifacies
An. funestus
An. gambiae
An. melas
An. merus

Organophosphates
Pyrethroids

An. moucheti
An. nili
An. sergentii
Carbamates
Organochlorides

Table 1.1 Endemic malaria statistics for 2013 / 2014 from the WHO and malaria atlas project 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The population at risk estimations include people living in high-risk malaria endemic regions only, with the total number of confirmed malaria cases in brackets. 
The Anopheles species underlined are known for transmitting P. knowlesi in endemic regions. 
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The step from control to elimination of malaria from a target area has several implications. 

Control entails reducing the risk of malaria-associated morbidity and mortality to a point 

where it is no longer considered a public health problem. Control does not aim to prevent all 

transmission. Elimination on the other hand requires identification and treatment of all 

infected individuals, whether symptomatic or asymptomatic to prevent transmission. Lower 

limits of detection are therefore required. 

1.2.1 The importance of the malaria pool and the need for more sensitive diagnosis 

Asymptomatic infections present perhaps the greatest challenge to malaria elimination and 

effectively act as reservoirs of malaria (Alves et al., 2005; Hafalla et al., 2011; Miller et al., 

1994). These individuals are unlikely to seek diagnosis. Moreover natural infection of great 

apes and monkeys with P. falciparum has been reported (Araujo et al., 2013; Prugnolle et al., 

2010) and P. knowlesi naturally infects both humans and monkeys (Singh and Daneshvar, 

2013). Natural human infection with the simian malarias P. brazilianum and P. cynomolgi 

has also been reported (Lalremruata et al., 2015; Ta et al., 2014). The natural reservoirs of 

human infecting Plasmodium species add to the asymptomatic pool and present a great 

challenge to the elimination agenda. As a result diagnostic research has focused on 

development of more sensitive diagnosis to enable population screening for asymptomatic 

infections. Detection of parasitic infections from alternate source material, such as faeces, has 

also allowed for identification of non-human primate carriers (Araujo et al., 2013; Prugnolle 

et al., 2010). Abkallo et al. (2014) argued that detection of DNA in faecal matter is not 

necessarily an indicator of a blood stage infection. Measuring the number of malaria carrying 

mosquitoes in an area (entomologic inoculation rate) is another method of assessing the 

malaria burden in an area (Bashar et al., 2013; Durnez et al., 2011; Koekemoer et al., 2001; 

Mouatcho et al., 2007). 

1.2.2 Entomologic inoculation rate  

Plasmodium’s main Anopheles vectors generally inhabit the tropics (Kiszewski et al., 2004; 

Table 1.1). The ability to identify parasite carrying vector species is important and 

monitoring parasite loads within these populations is another measure of the effect of control 

measures within a region. This will have more significance if transmission blocking drugs 

and vaccines are developed further (Stone et al., 2015). “Prevention is better than cure” holds 

true for the control of malaria and preventing contact between the malaria vector and its host 

remains one of the most effective tools in the control of malaria, but the increased prevalence 

of insecticide resistance is concerning. 
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1.2.3 Insecticide resistance 

The current insecticides used against Anopheles include 12 varieties from only four classes 

including organochlorides, organophosphates, carbamates and pyrethroids (Table 1.1). The 

latter is the only insecticide approved for use in treated bed nets (Betson et al.,2009). 

Subsequent pyrethroid resistance has developed and was first recorded in the 1950s and has 

since spread against all four classes throughout endemic regions, predominantly due to the 

pyrethroid knock down resistance (kdr) mutation (Martinez-Torres et al., 1998). 

Organophosphates are the only class without resistance in the Oceania region (Betson et al., 

2009; Blanford et al., 2011; Malaria Atlas Project (http://www.map.ox.ac.uk/)). Alternate 

control measures are being developed including alternate pesticide formulations and 

biocontrol measures (Betson et al., 2009; Blanford et al., 2011). Since not all vectors are 

night feeders, controlling contact during the day becomes difficult and infection is inevitable 

in many circumstances. In addition the consequences of climate change and a change in the 

natural habitat of the vector may alter and affect countries currently without malaria (Siraj et 

al., 2014; Tonnang et al., 2010). Monitoring the entomological inoculation rates within 

control regions may become more important in the future. Diagnosis of human infection will 

be discussed further. 

1.3. The stages of the malaria life cycle targeted for diagnosis 
There are several approaches used for diagnosis and most focus on the blood stage of the 

infection since it is during that stage that the patient experiences the symptoms of malaria and 

has the highest parasite load of the life cycle (Antia et al., 2008; Baldacci and Menard, 2004; 

Miller et al., 1994; Figure 1.1). The source material, perhaps obviously, is patient blood. 

Several studies identified infections from alternate sources mentioned below, aiming to make 

diagnosis less invasive but also to improve surveillance of natural simian pools and vector 

populations (Abkallo et al., 2014; Bass et al., 2008; Jirku et al., 2012; Moody, 2002; 

Najafabadi et al., 2014; Stone et al., 2015). Detection of parasite proteins or nucleic acids 

from faeces, urine and saliva is also possible. Development of less invasive methods is 

important as there are often beliefs associated with drawing patient’s blood and for infants 

this may also be problematic. Abkallo et al. (2014) were able to detect liver stage infections 

in mice using PCR in both blood and faecal samples. The possibility of detecting alternate 

stages may have significance with regard to therapy as drugs preventing liver cell egress and 

gametocyte development may be applicable, thus limiting transmission. The different source 

materials used in these studies are summarised in Table 1.2. 

http://www.map.ox.ac.uk/
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Table 1.2 Summary of the source materials used for diagnosis 

Life cycle stage Source Reference 
Mosquito Mouthparts Bass et al., 2008; Stone et al., 2015 
Liver Blood  Abkallo et al., 2014 

 
Faeces Abkallo et al., 2014 

Red blood cell Blood  Moody, 2002 

 
Serum Moody, 2002 

 
Saliva Najafabadi et al., 2014 

 
Urine Najafabadi et al., 2014; Oguonu et al., 2014 

 
Faeces Jirku et al., 2012 

 
Cerebrospinal fluid Mikita et al., 2014 

Gametocytes Blood  Schneider et al., 2015 
 

Importantly there has not been a lot of progress regarding the diagnosis of placental or 

cerebral malaria. For placental malaria, the most accurate diagnosis is still by histology of the 

placenta, when compared to diagnosis using PCR, RDT and blood microscopy (Kattenberg et 

al., 2011). Due to sequestration of parasites in the placenta, parasitemia in the mother’s blood 

is inherently low and the study by Kattenberg et al. (2011) recommends RDT or PCR as a 

reference test as opposed to conventional peripheral blood microscopy. An interesting 

approach by Mikita et al. (2014) was to diagnose cerebral malaria infections from 

cerebrospinal fluid of patients. Although diagnosis of infection was possible, there was no 

statistical link between normal and cerebral malaria infections. Diagnosis of cerebral malaria 

is still elusive, however, a study by Bachman et al. (2014) measured levels of increased 

carbonic anhydrase 3 and creatine kinase in cerebral malaria patient plasma. These may aid 

as markers in diagnosing the onset of cerebral malaria. Only with the development of 

alternate methods to microscopy, have other stages of the life cycle become viable for 

diagnosis. The next section will focus on the different methods for malaria diagnosis and the 

targets will be discussed thereafter. 

1.4. Methods to diagnose malaria 
Diagnostic methods are compared in terms of their sensitivity, specificity and limit of 

detection. Test sensitivity refers to the ability to correctly diagnose a set of known positive 

and negative samples. Specificity on the other hand measures the test’s ability to correctly 

identify the infecting species causing malaria. Both are expressed as percentages of correctly 

diagnosed samples of a test pool. A test’s limit of detection measures the lowest level of 

accurately detecting an infection. Any new test is traditionally compared to microscopy as a 

gold standard for diagnosis, although PCR is often used in addition to this (Moody, 2002; 

Murray et al., 2008). This next section will describe methods used in malaria diagnosis and 
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compare them in terms of limits of detection alone. The reader is referred to the literature for 

additional information regarding sensitivity and specificity.  

The first set of methods detects parasite induced reactions in the host including clinical 

symptoms (Miller et al., 1994), host-immune-related proteins and parasite metabolites (Table 

1.3). As a foreign particle in the human body, the parasite elicits an immune response against 

it and the metabolites it produces. This forms the basis for clinical diagnosis (fever patterns), 

serodiagnosis (parasite specific host antibodies) and spectral methods (increased levels of 

metabolites in sera) amongst others.  

1.4.1 Clinical diagnosis of malaria 

Clinical diagnosis is based on the symptoms expressed by the patient during an infection 

(Golgi, 1886; Miller et al., 1994). Due to the differing lengths of the red blood cell stages of 

each of the human infecting Plasmodium species, different fever patterns result. P. knowlesi 

causes daily fever; P. falciparum, P. vivax and P. ovale cause tertian fever (every third day) 

and P. malariae causes quartan fever (every fourth day) episodes (Antia et al., 2008; Collins 

and Jeffery, 2007; Daneshvar et al., 2009; Sabbatani et al., 2010). Due to the different levels 

of host immunity, the limit of detection for clinical diagnosis ranges from 100 to 10000 

parasites per microlitre (Figure 1.2 and Table 1.3). The greatest advantage of clinical 

diagnosis is that it allows for point-of-care treatment. Fever is common to many tropical 

diseases however, including dengue and pneumonia (Källander et al., 2004; Rao et al., 2015) 

and the resulting accuracy of diagnosis for malaria falls to 20 to 30% (Gwer et al., 2007; 

Perkins and Bell, 2008). The high mortality especially in children under the age of five has 

seen the implementation of integrated disease management strategies (Gove S., 1993), which 

has resulted in 40% reductions in mortality rates for this age group (Kidane and Morrow, 

2000; Sirima et al., 2003).  

Snow et al. (2003) estimated 870 million fever cases in African children alone, which 

unfortunately highlight the “liberal” approach to using clinical diagnosis in the field. As 

mentioned previously the WHO now recommends either microscopy or a molecular based 

diagnosis for malaria prior to treatment. These will be discussed further. 

1.4.2 Serodiagnosis of malaria 

A more specific method diagnosing the immune reaction within the host is termed 

serodiagnosis. This method measures the antibodies in the patient raised specifically against 

the parasite (Olesen et al., 2010; She et al., 2007). An antibody response may result in as 
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little as one week after the onset of the red blood cell infection, which may be in as little as 

two to three weeks after an infective mosquito bite (Figure 1.1; She et al., 2007). The ability 

of the test to determine the species causing disease is dependent on the antigen used in the 

ELISA. Quantitation of parasitemia is not possible and the ELISA format makes this a 

laboratory-based test. The biggest drawback of serodiagnosis is that antibodies persist for up 

to a year after parasite clearance, and in endemic regions “immune” individuals will have 

almost constant levels of parasite specific antibodies, making accurate diagnosis of current 

infections difficult, if not impossible (Makler et al., 1998; She et al., 2007).  

1.4.3 Spectral analyses of malaria infections 

Detecting abnormalities in patients’ blood as a direct result of parasitic infections forms the 

basis for the next set of tests, where most detect haemozoin. Catabolism of haemoglobin 

forms a major part of the parasite red blood cell stage (Bannister et al., 2000; Olszewski et 

al., 2011). As the resulting amino acids are metabolised, the central haeme group of the 

protein remains and is polymerised by the parasite into an insoluble crystalline form referred 

to as haemozoin. Both haeme and haemozoin are released into the blood of patients (Dostert 

et al., 2009) as detected by Raman spectroscopy for example (Hobro et al., 2013). The limit 

of detection of this method has improved dramatically from around 1000 parasites per 

microlitre to 2.5 – 50 parasites per microlitre using the surface enhanced method (Bilal et al., 

2015; Chen et al., 2016). This enhancement does however require sample manipulation 

which was not previously necessary. The specialised equipment and interpretation of the 

spectra make this a laboratory based assay not suited to point-of-care diagnosis as yet. A 

different spectrum-based diagnostic method makes use of infra-red spectral analysis and is 

capable of detection within three minutes to a limit of one to 500 parasites per microlitre and 

samples only require methanol treatment in this case (Khoshmanesh et al., 2014). Both 

surface enhanced Raman and infra-red spectrometry methods are capable of parasite 

quantification which would allow for monitoring patient treatment success (Khoshmanesh et 

al., 2014). Alternatively parasite metabolites including NAD, FAD, porphyrin, tyrosine and 

tryptophan residue fluorescence is measured in comparison to uninfected blood. Differences 

in spectra are often disease specific, as with malaria, and were measured by NMR or 

spectrofluorometer, but require further assessment (Masilamani et al., 2014; Teng et al., 

2014). The last set of methods in this group is based solely on haemozoin detection. 
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1.4.4 Haemozoin based detection of malaria 

Targeting haemozoin for diagnosis has received a lot of attention to date. Following release 

of haemozoin into the blood, the particles are phagocytosed by white blood cells and can be 

detected using cell analysers or counters (Grimberg B.T., 2011; Hänscheid et al., 1999; 

Rebelo et al., 2013). Methods exploiting the birefringent and magnetic properties of 

haemozoin have since been developed and reduced the limit of detection from 500-1500 to 

10-40 parasites per microlitre. With further testing these tests have the possibility of being 

used as point-of-care diagnostic tests (Butykai et al., 2013; Delahunt et al., 2014; Orban et 

al., 2016; Pirnstill and Cote, 2015). Lower limits of detection have been achieved using mass 

spectrometry with sample analysis taking only a few minutes, however the sophisticated 

equipment required limits this to a laboratory setting (Demirev et al., 2002; Scholl et al., 

2004). A transdermal diagnostic prototype capable of instant detection of haemozoin was 

developed by Lukianova-Hleb et al. (2015) with a very low limit of detection of ~1.7 

parasites per microlitre.  

Different optical detection methods have been developed, which make use of microscopy in 

some way. These are perhaps the more “traditional” methods as listed in Table 1.4 and 

discussed thereafter. 
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Table 1.3 A summary of methods based on the detection of the host response as well as Plasmodium specific metabolites 

 
LOD limit of detection; NA data not available; ND not determined; POC point of care diagnosis 
 

Table 1.4 A summary of methods based on the physical/visual detection of Plasmodium parasites 

Method Format  LOD (parasites / µl) Speciation Quantitative 
Monitoring 
treatment Setting Time References 

Microscopy Giemsa 5-10 (expert) 100 
(average) 

Yes Yes Yes POC 30 min-1 hr Moody, 2002; Zimmerman and Howes, 2015 

 Fluorescence 60 No No No POC 10-15 min Adeoye and Nga, 2007; Baird et al., 1992 

Optical tweezer  parasitemia dependent No Yes Yes Lab 40 rbc / min Mohanty et al., 2004 

 
LOD limit of detection; NA data not available; ND not determined; POC point of care diagnosis; rbc red blood cell 

Method Format  LOD (parasites / µl) Speciation Quantitative 
Monitoring 
treatment Setting Time References 

Clinical Symptoms 100 (naïve) 2500-
10000 (immune) 

Yes No Yes POC Species 
dependent 

Gwer et al., 2007;  Kidane and Morrow et al., 
2000; Perkins and Bell, 2008; Sirima et al., 2003 

Serodiagnosis Parasite-specific antibodies NA Yes No No Lab 2 to 4 hrs Olesen et al., 2010; She et al., 2007 

Raman spectra Original method 1000 No No Yes Lab > 2 hrs Bilal et al., 2015; Hobro et al., 2013 

 Surface enhanced 2.5-50 No Yes Yes Lab > 1 hr Chen et al., 2016; Yuen and Liu, 2012 

Infrared spectra Attenuated total reflectance < 1 (detection) -500 
(quantification) 

No Yes Yes Lab < 3 min Khoshmanesh et al., 2014 

Haemozoin Flow cytometry 500-1500 No Yes Yes Lab > 30 min Grimberg, 2011; Hänscheid et al., 1999; Rebelo et 
al., 2013 

 Dark-field / polarized 
microscopy 

30 No Yes ND POC ND Delahunt et al., 2014; Pirnstill and Cote, 2015 

 Magneto-optical 10-40 No No No POC > 30 min Butykai et al., 2013; Orban et al., 2016 
 Mass spectrometry < 10 No Yes Yes Lab < 1 min Demirev et al., 2002; Scholl et al., 2004 

 Transdermal  1.7 No No No POC Instant Lukianova-Hleb et al., 2015 
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1.4.5 Microscopic detection of malaria 

Since the discovery of the blood stage of malaria and the development of the Giemsa stain, 

microscopy has remained the gold standard in malaria diagnosis (Moody, 2002). Visual 

identification of parasites under the microscope is still used for diagnosis today and exploits 

the terminally differentiated nature of red blood cells which lack DNA. The parasites do not 

lack DNA, thus detection of parasites within red blood cells based on DNA stains forms the 

basis of this method. Wright’s, Field’s and Leishman stains have also been developed 

(Moody, 2002; Sathpathi et al., 2014; Suh et al., 2004). Diagnosis to a species level is 

possible due to morphological differences between parasites (Anderios et al., 2009; David et 

al., 1983; Gkrania-Klotsas and Lever, 2007; Moody, 2002). The method also allows for 

quantification of the parasite burden by counting the number of infected red blood cells. This 

is either done in relation to a white blood cell count in a thick film preparation (number of 

infected red blood cells in comparison to 200 white blood cells) or red blood cells in a thin 

film preparation (a total of ~10000 red blood cells viewed ~ 40 fields of view at 100 X 

magnification). One microlitre of blood is assumed to contain ~ 5 x 106 red blood cells, 

therefore the following equation is used: 1% parasitemia = 5000 parasites per microliter of 

blood (Moody, 2002). The limit of detection for microscopy is subject to the expertise of the 

microscopist and can vary from five to ten, to 100 parasites per microliter (Moody, 2002; 

Zimmerman & Howes, 2015). To aid in this regard, Prescott et al. (2012) developed a 

microscopy image analysis slide reading device aiming to standardise microscopy by 

automation, but the method requires further optimisation. Fluorescence microscopy or the 

buffy coat method on the other hand has similar detection limits without the possibility of 

speciation; it does however take between half to a quarter of the time to diagnose a patient 

(Adeoye & Nga, 2007; Baird et al., 1992). Three fluorescent dyes are currently available 

including acridine orange; benzothiocarboxypurine and rhodamine-123 (Moody, 2002). A 

portable format has also been developed (Sousa-Figueiredo et al., 2010).  

An interesting innovation is the use of optical tweezers in malaria diagnosis. This method 

measures the rotational ability of red blood cells once captured between optical tweezers. Due 

to the increased rigidity of the infected red blood cell membrane, these cells lose their 

inherent ability to rotate whereas normal cells do not. The basis is similar to a flow 

cytometric analysis, where currently 40 red blood cells can be analysed per minute (Mohanty 

et al., 2004). The last set of methods is based on the detection of parasite-specific molecular 

targets listed in Table 1.5. 
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Table 1.5 A summary of methods based on the detection of Plasmodium-specific molecular targets 

Method Format LOD (parasites / µl) Speciation Quantitative 
Monitoring 
treatment Setting Time References 

Antigen based RDT 100 Yes No Yes POC 15 min Mouatcho and Goldring, 2013 

 DAS ELISA 12 Yes No Yes Lab 2 -4 hrs Noedl et al., 2006; Sousa et al., 2014 

 pLDH 200 Yes Yes Yes Lab 2-3 hrs Makler et al., 1993b; Piper et al., 1999, 2011 

 Immunomagnetic pLDH 21 Yes Yes Yes Lab 45 min Markwalter et al., 2016 

 Amperometric x (400) Possible Possible Possible POC 34-55 min Sharma et al., 2010 

 Paper based  + (0.7-12) Possible Possible Possible POC ND Grant et al., 2016 

 Electrochemical *(< 3) Possible Possible Possible POC 1-2 hrs 15 min Glavan et al., 2014 

PCR Single 1-5 No No No Lab 2 hrs Demas et al., 2011 

 Multiplex 0.025-0.27 Yes No No Lab 2 hrs Chew et al., 2012; Hofmann et al., 2015 

 Nested 0.1-10 Yes No No Lab 4-4.5 hrs Singh et al., 1999 

 Real time PCR (qPCR) 0.25-2.5 Yes Yes Yes Lab 3 hrs Kamau et al., 2013; Rougemont et al., 2004 

 TARE-2 0.03-0.15 No Yes Yes Lab 2-3 hrs Hofmann et al., 2015 

 LF-RPA 4-20 No No No POC 15-30 min Kersting et al., 2014 

 NASBA 0.02 No Yes Yes Lab 4 hrs Schneider et al., 2005 

 NALFIA 1-8 No No No Lab 1 hr 15 min Mens et al., 2012 

LAMP Turbidity 1-10 Yes No No POC 30-40 min Mohon et al., 2014; Polley et al., 2010 

 LFD ND Yes No No POC 1.5 hours Yongkiettrakul et al., 2014 

 
LOD limit of detection; POC point of care diagnosis; LF lateral flow; LFD lateral flow dipstick 
x The amperometric method had a limit of detection of 60 ng/ml of HRP2, which is equivalent to ~ 400 parasites per microliter (Marquart et al., 2012) 
+ The paper based method was found to have a limit of detection equal to the CELISA test based on the detection of HRP2  
* The electrochemical method was found to have a limit of detection 4 times lower than that of an HRP2 based DAS-ELISA (the CELISA was not used in this case) 
 

 

 



 

21 
 

1.4.6 Antigen detection methods 

Molecular methods have the advantage of allowing diagnosis based on specific molecular 

target genes or proteins. Rapid diagnostic tests are perhaps the most user-friendly of these as 

they allow for point-of-care diagnosis within 15 minutes and are simple to perform and 

interpret. Current RDTs are based on the detection of three Plasmodium proteins namely 

Histidine rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. Of these HRP2 

is only found in P. falciparum where LDH and aldolase serve as pan malarial antigens. 

Hurdayal et al., (2010) identified species specific and pan malarial peptide epitopes on the 

surface of LDH for differentiation of the infecting species of malaria. RDTs will be discussed 

further at the end of this chapter as this forms part of the aims and objectives of the current 

study. A derivative of these assays is an antigen capture ELISA format which uses enzyme 

activity as part of the detection step. One of these assays employs the parasite LDH enzyme 

captured out of solution as part of the detection step with a resulting limit of detection of 

around 200 parasites per microlitre (Makler et al., 1993a and b; Piper et al., 1999). The most 

sensitive of these assays are the conventional double antibody sandwich ELISAs (DAS-

ELISA) which detect as few as 12 parasites per microlitre (Noedl et al., 2006; Sousa et al., 

2014). The detection methods for the latter methods rely on spectrophotometric analysis 

making both methods laboratory based. Novel innovations to circumvent this have been 

demonstrated by Glavan et al. (2014) and Grant et al. (2016) who developed paper based 

detection methods with similar detection sensitivities as the original DAS-ELISA method 

(Noedl et al., 2006).  

1.4.7 PCR based methods for malaria detection 

Laboratory based diagnosis based on nucleic acid detection such as PCR reaches far lower 

limits of detection. These limits range from a low of 0.02 to a high of 20 parasites per 

microlitre of blood. This increase in sensitivity comes with increased complexity and several 

of the methods take hours to complete. PCR based assays may be divided into groups based 

on their methodology. Conventional methods include nested, single and multiplex PCR. 

Fluorescent dye based methods include real time and quantitative PCR and finally the 

simplified isothermal methods such as LAMP. There have been several groups focusing on 

simplification of these methods, most attempting to reduce the dependence on sample 

preparation, thermal cycling and visualisation protocols. A microwave based DNA extraction 

method for the LAMP assay was demonstrated by Port et al. (2014) by treating 10 µl samples 

at 800 W for two minutes and using the condensed droplets for LAMP assays. The presence 
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of PCR inhibitors in blood has been overcome with the development of mutant polymerases 

resistant to blood components and allows direct PCR in blood samples without additional 

sample preparation (Kermekchiev et al., 2009; Mens et al., 2012). Kersting et al. (2014) 

developed an isothermal method for DNA replication and subsequent detection using a lateral 

flow mechanism similar to RDTs. The resulting test had a limit of detection of four to 20 

parasites per microlitre and took only 15 to 30 minutes to complete. The isothermal 

replication was performed between 30 to 45°C which is lower than the current LAMP 

methods (Mohon et al., 2014; Polley et al., 2010). Cyclic electrochemically controlled DNA 

helix denaturation and renaturation using intercalating agents that bind DNA in a redox 

dependent manner may also present novel approaches for PCR methods, reducing the need 

for thermal cycling (Syed et al., 2012). Alternate detection methods such as multi-pathogen 

gold nanoprobes have also been developed, which can differentiate between single or mixed 

Mycobacterium tuberculosis and P. falciparum infections using a single gold nanoprobe 

(Veigas et al., 2015). A simplification of the real time PCR format was demonstrated by 

Lucchi et al. (2013, 2014) using photo-induced electron transfer fluorogenic primers which 

avoid the need for internal probes or intercalating dyes. Multiplex assays are faster and more 

accurate than real time PCR at speciation (Lee et al., 2015). 

Interestingly several groups have adapted methods to make use of smart phone technology in 

diagnostic analyses. These have the advantage of providing global positioning as well as 

instant recording of diagnosis which may further aid record keeping (Gulka et al., 2015; 

Pirnstill and Cote, 2015). The diagnostic ability of molecular tests is largely dependent on the 

target molecule that it detects and these are discussed next as listed in Table 1.6. 

1.5. Molecular targets for malaria diagnosis and laboratory-based detection 
The molecular targets can be separated into those used to diagnose infection, those used in 

transmission studies and those used to detect drug resistance.  

1.5.1 Molecular targets for the diagnosis of malaria infection 

Although microscopy is not a molecular method, it was included here as it is still recognised 

as the gold standard for comparison of tests (Aydin-Schmidt et al., 2013; Moody, 2002). 

Microscopy allows for identification of all five human infecting species of Plasmodium as 

well as the detection of gametocytes. After drug clearance, the residual parasites are cleared 

from the blood of patients within two days (one to seven days) (Aydin-Schmidt et al., 2013). 



 

23 
 

Due to sequestration of parasites, microscopy may underestimate parasitemia and molecular 

methods detecting parasite factors are preferred (Kattenberg et al., 2011). 

Haemozoin is released by all malaria parasites and during a symptomatic P. falciparum 

infection (one to 10% parasitemia) between 0.2-2 grams of haemozoin is released per 

completed red blood cell cycle (Frita et al., 2012). During severe infections approximately 

100 g of haemoglobin is digested per red blood cell cycle (Egan et al., 2002; Frita et al., 

2012; Goldberg et al., 1991). The released haemozoin crystals are rapidly phagocytosed by 

leucocytes (monocytes and neutrophils) (Grimberg, 2011; Hänscheid et al., 1999; Rebelo et 

al., 2013). In this form haemozoin remains in circulation between three to nine days, where 

haemozoin containing monocytes were detected up to 21 days after clearance of infection. 

Haemozoin also accumulates in tissues of the liver, spleen, brain and bone marrow where it 

can remain for up to 270 days after clearance of parasitemia (Day et al., 1996). It should be 

noted, however, that although haemozoin detection does allow for quantitative measures of 

parasitemia, Rebelo et al. (2013) and Delahunt et al. (2014) demonstrated that haemozoin is 

only detectable in rings older than six to 18 hours. To add to this, the total parasite load may 

be underestimated due to sequestration of late trophozoite parasites especially in 

P. falciparum (Leitgeb et al., 2011). 

There are three recognised protein targets detected by current RDTs including HRP2, LDH 

and aldolase (Moody, 2002). HRP2 is the dominant target for most RDTs currently on the 

market including Paracheck Pf®; ParaHIT f® and ParaSight-F for example (Murray et al., 

2008). During its red blood cell development, the malaria parasite exports several proteins to 

the red cell surface, including HRP2, which aggregate and form knobs on the membrane 

surface (Bannister et al., 2000). This protein is unique to P. falciparum (Murray et al., 2008) 

and the histidine rich repeats present within this antigen make it an ideal target for antibody-

based tests, as signal amplification results if antibodies bind these repeats. The histidine rich 

repeats have also been exploited similarly to His-tag technology, in that nickel-conjugant 

probes as opposed to antibodies can be used for detection (Gulka et al., 2015). As a target for 

tracking therapeutic outcome in patients it is not preferred, however, due to its persistent 

nature. Marquart et al. (2012) demonstrated that the minimum period for clearance is seven 

days, however this may be prolonged based on the level of parasitemia reached during the 

infection, taking on average 28 days after successful drug cure of infections. HRP2 can also 

be detected in saliva and urine samples owing to its stable nature (Fung et al., 2012; Oguonu 

et al., 2014). Variable RDT results have been attributed to genetic variations of the HRP2 
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gene and HRP3 cross reactivity in some tests (Baker et al., 2005). Verma et al. (2015) have 

since developed detection reagents specific for HRP2 alone. More alarmingly some strains in 

South America (Gamboa et al., 2010; Houze et al., 2011; Maltha et al., 2012; Okoth et al., 

2015; Solano et al., 2015), Senegal (Deme et al., 2014; Wurtz et al., 2013), India and the 

China-Myanmar Border (Kumar et al., 2012, 2013; Li et al., 2015b), do not express HRP2 

and HRP3 or have several deletions compromising detection of the protein by RDTs.  

For these reasons alternate targets have been sought, LDH and aldolase being amongst these. 

Both targets have comparably shorter half-lives in patient’s blood with an average clearance 

of seven days, making them more suited for tracking infections (Ashley et al., 2009; Iqbal et 

al., 2004). Being conserved metabolic proteins these targets are common to all five species 

infective to humans and they are usually included as common malaria targets in diagnostic 

tests in combination with HRP2 (Brown et al., 2004; Lee et al., 2006; Shin et al., 2013). Such 

tests include CARESTARTTM (LDH) and BinaxNOW® (aldolase) (Ashley et al., 2009; 

Murray et al., 2008). LDH is a more popular target than aldolase due to lower sensitivity of 

aldolase based tests (Lee et al., 2006). Isozymes of LDH for P. falciparum were first studied 

in the 1970s by Carter and Voller (Carter and Voller, 1973) and Vander Jagt et al. (1982) 

suggested the use of the specific activity of Plasmodium LDH as a measure of parasite purity. 

Since then an antibody based detection of Plasmodium LDH was used to detect parasites and 

measure drug sensitivity (Makler et al., 1993a and b; Piper et al., 2011). The first LDH based 

RDTs were developed in 1999 (Piper et al., 1999) and tests targeting LDH alone include 

OptiMAL® and OptiMAL-IT®. LDH is present at lower levels than HRP2, and LDH based 

tests thus have higher limits of detection than those detecting HRP2 (Marquart et al., 2012; 

Martin et al., 2009).  

Another parasite specific product released is DNA. The most common target used for 

diagnosis is the 18S rRNA gene (Dinko et al., 2013; Snounou et al., 1993). Different studies 

have assessed DNA clearance after drug cure of parasitemia and found there to be a two day 

lag on average (one to 28 days) (Aydin-Schmidt et al., 2013; Jarra & Snounou, 1998) where 

Dakic et al. (2014) reported a six day lag in clearance. A drawback of the 18S rRNA gene 

target is its incompatibility with multiplex assays for detection of mixed infections. If species 

identification is required then a nested PCR approach is used which is more time consuming 

and technical to perform than multiplex PCR (Demas et al., 2011). Targets with greater copy 

numbers than the traditional 18S rRNA gene target include TARE-2, varATS, Pvr47, Pfr364 
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and COX-III which at least in the case of TARE-2 and varATS were shown to result in lower 

limits of detection (Hofmann et al., 2015, Table 1.5). 

1.5.2 Targets for transmission studies 

Some of the interesting markers listed include stage specific markers such as the male and 

female gametocyte markers Pfs230p and Pfs25 respectively detected by reverse transcriptase 

PCR (Schneider et al., 2015). Monitoring male and female gametocyte ratios has implications 

in transmission blocking studies. Dissection of mosquitoes and measuring the number of 

sporozoites in the mouth parts is still seen as the gold standard in entomological studies 

(Durnez et al., 2011). This method is labour intensive however and alternate methods that 

allow for higher throughput screening have been developed including ELISA and PCR based 

methods. 

An ELISA targeting the circumsporozoite surface protein (CSP) of Plasmodium parasites has 

become the preferred method for detection of sporozoites found in mosquito mouth parts. In 

contrast, although PCR detects fewer parasites (ten versus 100 using ELISA), this method 

detects all forms of the parasite within the mosquito and not only the sporozoites, which is 

not ideal for transmission studies (Durnez et al., 2011).  

The CSP based ELISA has proven useful in multiple studies, although false positive results 

have been observed (Koekemoer et al., 2001; Mouatcho et al., 2007). Due to the heat labile 

nature of the CSP protein, Bashar et al. (2013) and Durnez et al. (2011) averted false 

positives by heating samples (100°C for ten minutes) prior to performing the ELISA. The last 

set of targets concern the detection of drug resistant parasite strains. 
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Table 1.6 Molecular targets for diagnosis and detection of malaria 

Target Species  Stage Abundance / 
parasite Clearance (days) Comments References 

Whole parasites All 5 RBC & gametocyte NA 2 (1 to 7) Gold standard for diagnosis Aydin-Schmidt et al., 2013 
Hrp2 P. f RBC 14 pg 28 (7 to 42) Predominant target in RDTs Aydin-Schmidt et al., 2013; Marquart et al., 

2012; Mikita et al., 2014 
LDH Unspecific; P. f; P. v RBC 2.3 pg 7 (2 to 14) Common RDT target Aydin-Schmidt et al., 2013; Hurdayal et al., 

2010; Martin et al., 2009 
Aldolase Unspecific RBC ND 7 (2 to 14) Less common RDT target Ashley et al., 2009; Iqbal et al., 2004 
Haemozoin Unspecific RBC 8 pg 3 to 9 (up to 21) Persists 196 to 270 days in tissue Day et al., 1996; Frita et al., 2012 

18S rRNA All 5 RBC, gametocyte, 
mosquito 

4 to 8 copies 2 (1 to 28) Standard for molecular diagnosis 
in multiple studies 

Snounou et al., 1993; Aydin-Schmidt et al., 2013 

AMA-1 P. k RBC ND   Lau et al., 2011 
TARE-2 P. f RBC ~ 250 copies   Hofmann et al., 2015 
varATS P. f RBC 59 copies   Hofmann et al., 2015 
Pvr47 P. v  14 to 41 copies   Demas et al., 2011 
Pfr364 P. f  14 to 41 copies   Demas et al., 2011 
COX-III All 5 RBC 150 copies   Echeverry et al., 2016 
pgmet All 5 RBC 1 copy   Beshir et al., 2010 
Pfs25 P. f; P. k; P. v Female gametocyte ND   Schneider et al., 2015 
Pfs230p P. f ; P. k; P. v Male gametocyte ND   Schneider et al., 2015 
CSP P. f; P. v Mosquito 

sporozoites 
ND  Heat treatment is essential to 

avoid false positives 
Bashar et al., 2013; Durnez et al., 2011 

 
NA not applicable; ND not determined; P. falciparum (P. f); P. vivax (P. v); P. knowlesi (P. k) 
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1.6. Methods and targets used to detect drug resistant strains 
The drug resistance targets to date were summarised in a review by Sinha et al. (2014), 

including a total of nine genes that either have polymorphisms, single point mutations or 

altered copy numbers. The gene targets include: pfnhe; crt; mdr1; dhfr; dhps; cytb; 

PfATPase6; Pfubp-1 and the K13 propeller. These impart resistance to: chloroquine; quinine; 

proguanil; sulfadoxine; pyrimethamine; mefloquine; halofantrine; atovaquone; artemisinin 

and artesunate. Methods to diagnose resistance are all PCR based and the most common is 

the restriction fragment length polymorphism (RFLP) assay and a nested PCR method 

(Duraisingh et al., 1998). Since resistance has developed against such a wide variety of drugs, 

methods detecting multiple resistance phenotypes are essential.  

Multiplex approaches have since been developed to detect several resistance phenotypes at 

once. If resistance markers are present, they are amplified and then detected with 

oligonucleotide-tagged-fluorescent probes using a DNA ligase. This results in specific 

fluorogenic read-outs depending on the type of marker present (Carnevale et al., 2007). These 

tests have since been validated in the field (LeClair et al., 2013; Nankoberanyi et al., 2014). 

An alternate novel approach was to use H-NMR analyses of resistant and normal parasites. 

NMR profiles revealed differences in metabolites between these two forms of parasites, but 

the method needs further optimisation (Teng et al., 2014). 

1.7. The diagnostic niche of RDTs 
Currently both microscopy and rapid diagnostic tests are used as point-of-care tests. The 

ability to use both test samples for further analysis using PCR based methods places them at a 

critical point in the patient treatment time line. Recent analysis revealed that dried blood 

spots were a better source material for subsequent PCR analysis (Wihokhoen et al., 2016). 

Being paper based, RDTs thus have an added advantage over microscopy and subsequent 

PCR analyses could serve for quality control as well as surveillance of resistance markers 

(Bisoffi et al., 2009; Ishengoma et al., 2011; Veron and Carme, 2006). Although several 

more sensitive methods to RDTs are available, the setting of malaria still demands a simple 

test that diagnoses the disease. Misdiagnosis of the disease-causing pathogen in a mixed 

infection (malaria and an alternate disease) as a result of very low limits of detection, 

especially in immune adults, could result in inadequate treatment. Increased test sensitivity 

should ideally be accompanied by the ability to semi-quantitatively discriminate between 

severe and mild malaria cases. Inadequate dosing and duration of treatment during severe 
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malaria, especially hyperparasitemic infections, has been identified as a contributor to 

selection for drug resistance (Barnes et al., 2015; White et al., 2009). Based on the 

prevalence of resistance, especially in P. falciparum, speciation should also be prioritised.  

To introduce the aims and objectives of this study a brief description and basic principle to 

RDTs is outlined in Figure 1.4.  

 

 

 

 

 

Figure 1.4 Basic outline of a simple rapid diagnostic test (RDT), both top and side view 

 

Rapid diagnostic tests are immunochromatographic test strips that detect malaria antigens in 

infected blood samples using an antibody capture and detection step. The test sample (patient 

blood) is mixed with a lysis buffer solution containing a colloidal gold-labelled detection 

antibody. This antibody will bind its target malaria antigen if it is present in the blood sample. 

This solution is applied to the one end (left in Figure 1.4) of the test strip and migrates toward 

the other end (right in Figure 1.4) by capillary action. An antigen-specific antibody line fixed 

on the test strip then captures the detection antibody-antigen complex and due to the attached 

gold particle a visible test line forms. Any unbound detection antibody migrates further along 

the test strip and is captured by an antibody specific to the detection antibody, resulting in a 

control line that indicates the sample has migrated completely across the strip and that the test 

is working (Makler et al., 1998; Murray et al., 2008). 

1.8. The aims and objectives of the current study. 
Rapid diagnostic tests have several advantages, perhaps best summarised by their adherence 

to the ASSURED criteria for effective diagnostic methods (Peeling et al., 2006). These 

stipulate that ideal diagnostic tests should be Affordable, Sensitive, Specific, User-friendly, 

Rapid and robust, Equipment-free and Deliverable to end-users. There are several concerns 

regarding RDT performance however, which we wished to address in this study.  
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1) Firstly LDH was chosen as the model protein in this study, as it is a target that is 

currently being used in RDTs (Moody, 2002). 

2) To achieve similar limits of detection to HRP2 based tests, we searched through 

transcript and proteomics data for alternative diagnostic targets. The HRP2 protein is 

present at approximately six times greater concentrations than LDH (Marquart et al., 

2012; Martin et al., 2009). We identified two target proteins predicted to be present at 

higher concentration than LDH. These could potentially serve as alternatives to HRP2 

rather than either of the current targets, LDH and aldolase. We adopted an approach 

outlined by Hurdayal et al. (2010) which entailed identifying Plasmodium-species-

specific and Plasmodium-common peptide epitopes on the surface of the target 

proteins. These were used to raise polyclonal antibodies against our proposed targets. 

The resulting anti-peptide antibodies allowed species-specific detection of the target 

protein orthologs or detection of multiple Plasmodium target protein orthologs. This 

formed the aims of chapter 3. 

3) RDTs detecting LDH or aldolase often detect multiple Plasmodium species. This has 

been attributed to the conserved nature of LDH and aldolase amongst Plasmodium 

species (Kawai et al., 2009; Maltha et al., 2010; McCutchan et al., 2008). HRP2 

based tests are unaffected as this antigen is only expressed in P. falciparum therefore 

making it a species specific antigen (Murray et al., 2008). For this reason, multiple 

orthologs of the intended target proteins were recombinantly expressed, purified and 

their quaternary structures verified. This formed the aims and objectives of chapter 4.  

4) Antibody specificities were assessed using these recombinant proteins in chapters 5 

and 6. The aims in these two chapters were to produce antibodies and scFv clones 

with specificity to the target proteins and peptides and to demonstrate their use in an 

antigen capture and detection system. 

5) Cross reactivity with Rheumatoid factor due to Fc portion of IgG molecules was 

averted by using chicken IgY and scFv antibodies which lack an Fc portion (Delves et 

al., 2006; Iqbal et al., 2000). This was an objective in chapters 5 and 6, although 

confirmative tests of antibody reactivity would be useful. 

Finally additional concerns and future work are discussed in chapter 7 to end the thesis.  
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Chapter 2 

Materials and Methods 

2.1 Introduction 

General materials and methods are described first here and the reader is referred back to these 

in later chapters where applicable. Hereafter the materials and methods section follows the 

flow of the thesis, where a list of materials was followed by a description of the methods used 

relative to each chapter. Unless specifically stated in text in the subsequent chapters, 

concentrations in the materials and methods section were used.  

2.2 Equipment 

General lab equipment included: Micro Tube Peristaltic pump MP-3 from EYELA Tokyo 

Rikakikai co. Ltd (Tokyo, Japan); VirsonicTM cell disruptor from VirTis (New York, USA); 

Edwards One Stage 5 A.C. pump from GEC. Machines Ltd. (Newcastle, UK); AvantiTM J-26 

XPI and AllegraTM X-22R centrifuges from Beckman Coulter (California, USA); magnetic 

stirrers from Velp Scientifica (Europe); Orbital shaking incubator from New Brunswick 

Scientific (New Jersey, USA); UV-1800 Shimadzu spectrophotometer from Shimadzu 

corporation (Kyoto, Japan); water bath from GFL (Burgwedel, Germany); weigh balance 

from Denver Instruments (USA); pH meter from HANNA instruments; bench top orbital 

shaker  and Spectrafuge bench top centrifuge from Labnet International Inc. (USA). 

Specialised equipment used in molecular studies included: T100TM Thermal cycler, Basic 

PowerPacTM, Miniprotean® 3 system with 1mm spacers, from Bio-Rad (California, USA); 

miniGES agarose gel system from Wealtec corporation (Taiwan). The ÄKTA Prime Plus 

System was from GE Healthcare (Buckinghamshire, England). 

Equipment used in immunochemical studies included: TEZZ Mighty Small Transphor Unit 

from Hoefer Inc. (California, USA); Poly Prep® affinity columns from Bio-Rad (California, 

USA); VersaMaxTM ELISA plate reader from Molecular Devices Corporation (California, 

USA). 

Image capture systems included: MiniBis Pro DNR Bio-Imaging Systems (Israel) and the 

Syngene G:Box system (UK). 
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2.2 General molecular biology methods 

This section describes general molecular biology methods used throughout the study.  

2.2.1 Reagents 

Bradford reagent, ethidium bromide (EtBr), β-mercaptoethanol, acrylamide, 

ethylenediaminetetraacetic acid (EDTA), N,N’-methylenebisacrylamide, bromophenol blue, 

Coomassie Brilliant Blue R-250 as well as G-250, glycine, sodium dodecyl sulphate (SDS), 

tris, tricine, ammonium persulphate, ovalbumin, Sephacryl S200 and N’,N’,N’,N’-

tetramethylethylenediamine (TEMED) were purchased from Sigma-Aldrich-Fluka 

(Steinheim, Germany). Di-potassium hydrogen orthophosphate, potassium dihydrogen 

orthophosphate, sodium carbonate, sodium dihydrogen orthophosphate, potassium chloride, 

sodium hydroxide, sodium chloride, disodium hydrogen orthophosphate anhydrous, 

magnesium chloride hexahydrate, silver nitrate, magnesium sulphate and sodium hydrogen 

carbonate were purchased from Merck (Damstadt, Germany). The following were purchased 

from Fermentas (Vilinus, Lithuania): Agarose, DNA MassRulerTM, 10mM dNTP mix, Alu1, 

EcoR1, Nde1, Pst1, Xho1, Buffer OTM, an unstained protein molecular weight marker 

ranging from 14.4 to 116 kD and a spectra multicolour broad range protein marker ranging 

from 10 to 260 kD. Molecular biology reagents purchased from Solis Biodyne (Tartu, 

Estonia) included the 10× PCR buffer (MgCl2 and detergent-free), PCR MgCl2 stock solution 

(25mM) and Taq polymerase. Snake skinTM dialysis membrane (10 kD MWCO) was 

purchased from Pierce Perbio Science (Erembodegem, Belgium). Bovine serum albumin 

(BSA) was purchased from Roche (Mannheim, Germany). 

2.2.2 Bradford protein determinations 

Protein sample concentrations were determined using the Bradford assay (Bradford, 1976). A 

standard curve was prepared using a 1 mg/ml BSA stock. The stock was diluted to give a 

range of concentration standards from (0-50 µg) in triplicate. These were made up to 100 µl 

with dH2O, added to 900 µl Bradford dye, vortexed and left to react with the dye for 

15 minutes. Sample absorbance was read at 595 nm using a UV-1800 Shimadzu 

spectrophotometer and plotted against BSA concentration.  

Unknown protein samples were prepared in the same way as the standards in that an 

appropriate dilution of the unknown was prepared which allowed the concentration to be 

extrapolated from the standard curve shown in Figure 2.1. 
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Figure 2.1 Bradford standard curve 
All values are average values of triplicate readings with standard deviations shown.  

 

2.2.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

In order to assess the purity of protein samples and to determine their size, discontinuous 

SDS-PAGE was used as described by Laemmli (1970). Since the malarial recombinant 

proteins as well as the expressed single chain fragment variable (scFv) antibodies were all 

within 30 to 80 kD in size, a standard 12.5% running and 4% stacking gel was used 

throughout the study.   

The gels were prepared according to Table 2.1, where the volumes stated are sufficient for a 

single gel, that is a 4.7 ml running and 1.25 ml stacking gel preparation. The buffers were 

named A through E for simplicity of the table and were as follows: A (4.1 M acrylamide and 

52 mM N,N’-methylenebisacrylamide); B (1.5 M Tris buffer at pH 8.8); C (495 mM Tris 

buffer at pH 6.8); D (10% (w/v) SDS solution in dH2O) and E (10% (w/v) ammonium 

persulfate solution in dH2O). Gels were set using a Bio-Rad Miniprotean® 3 system with 

1 mm spacers, with either 10 or 15-well combs, depending on the number of samples. The 

gel-casting unit was assembled according to manufacturer’s instructions after cleaning plates 

with detergent and rinsing under dH2O. 

Once the TEMED was added, the running gel solution was swirled to mix and the entire 

4.7 ml was gently poured into the gel casting cassette and overlaid with 200 µl dH2O. This 

allows the gel to polymerise properly, as oxidation would otherwise inhibit gel 

polymerisation. Once polymerised, the water was decanted and the freshly prepared stacking 

gel solution was overlaid. A 10 or 15 well comb was then inserted immediately and the 

stacking gel was left to polymerise.  
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Table 2.1 Running and stacking gel recipes to prepare a single gel for SDS-PAGE 

 12.5% 
Running gel (4.7 ml) 

4%   
Stacking gel (1.25 ml)  

A 1.97 ml 163 µl 
B 1.18 ml 

0 
47 µl 
47 µl 

1.45 ml 
2.4 µl 

0 
C 313µl 
D 12.5 µl 
E 6.25 µl 
dH2O 750 µl 
TEMED 2.5 µl 
 

Samples were prepared as follows: first diluted 1:1 in PBS and then 1:1 with 50% (v/v) 

sample buffer for non-reducing gels (2.5 ml solution C; 2 ml glycerol; 4 ml solution D; with 

few grains of bromophenol blue to colour the buffer). For reducing gels β-mercaptoethanol 

was added 1:10 to the sample buffer before mixing with the samples. The initial dilution with 

PBS often aided in reducing streaking of samples on the gel, especially with bacterial lysate 

samples and was therefore kept constant throughout the study. 

After loading the samples the gels were electrophoresed at 20 mA per gel in tank buffer 

(25 mM tris; 192 mM glycine and 0.1% (w/v) SDS) until the dye front had migrated to within 

1 to 0.5 cm from the bottom of the gel. The gels were then removed immediately and stained 

with Coomassie stain (45% (v/v) methanol; 10% (v/v) acetic acid; 0.25% (w/v) Coomassie 

brilliant blue R-250) for a minimum of 4 hours, followed by several changes of destaining 

solution (50% (v/v) methanol and 10% (v/v) acetic acid) and left in dH2O until the gels had 

swollen back to their original size. The sizes of protein bands were determined by 

extrapolation from a graph of log molecular weight of molecular weight standards (either an 

unstained Fermentas marker or a prestained marker was used) run on the same gel, against 

their relative mobility (Rf values).  

2.2.3.1  Silver staining  

This method was performed according to (Chevallet et al., 2006). Glassware used for staining 

was meticulously cleaned with detergent and then rinsed with fixing solution (50% (v/v) 

methanol; 12% (v/v) acetic acid and 0.5% (v/v) formaldehyde) and allowed to dry. SDS-

PAGE gels were transferred to glass Petri dishes and fixed for 1 hour or overnight (16 hours) 

in fixing solution. All incubations and washes were performed on a rocker. The gels were 

washed three times with wash solution (50% (v/v) ethanol) after fixing, and then left in pre-

treatment solution (4 mg/ml Na2S2O3.5H2O) for 1 minute and 15 seconds. Gels were then 

washed three times with dH2O, 20 seconds per wash and then left in impregnation solution 
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(0.2% (v/v) AgNO3; 0.3% (v/v) formaldehyde prepared just before use) for 20 minutes. Gels 

were washed three times with dH2O, 20 seconds per wash and then incubated with 

developing solution (566 mM Na2CO3; 0.2% (v/v) formaldehyde; 2% (v/v) pre-treatment 

solution) until the first bands appeared. The developing solution was then replaced with dH2O 

and bands were allowed to develop until the intensity was satisfactory, at which time the gels 

were incubated in stop solution (50% (v/v) methanol; 12% (v/v) acetic acid) for 10 minutes, 

and stored in 50% (v/v) methanol. 

2.2.4 Molecular exclusion chromatography (MEC) using the ÄKTA Prime Plus system 

Samples were dialysed into three changes (2 x two hours and one overnight incubation at 

4°C) of MEC buffer (50 mM NaH2PO4; 150 mM NaCl at pH 8.0) each change was 100 times 

the sample volume. Prior to use all MEC buffers were degassed for 45 minutes at 4°C using 

an Edwards One Stage 5 A.C. pump. 

The Sephacryl S-200 column was washed with 60 ml of 0.2 M NaOH, followed by 60 ml 

dH2O and equilibrated with 240 ml MEC buffer (all done at 1 ml/min). For calibration of the 

column, the molecular weight standards were prepared to a final volume of 3 ml as follows: 

6 mg blue dextran (2000 kD), and 15 mg each of sheep IgG (150 kD), bovine serum albumin 

(68 kD), ovalbumin (45 kD), and myoglobin (18.8 kD). The parameters for running the 

column were set to a flow rate of 0.5 ml/min and collection of 4 ml eluents. The absorbance 

at 280 nm (A280) was constantly recorded once the samples were loaded to give a calibration 

curve of A280 plotted against elution volume (ml). After calibration, between four to 6 mg of 

each of the recombinant proteins (in 4 ml) was separated on the column at 0.5 ml/min for a 

total of 300 ml MEC buffer. All samples, including the standards, were ultra-centrifuged at 

100000 x g, 20 minutes prior to loading the supernatant onto the column. 

2.2.5  Colony Polymerase Chain Reaction (PCR) 

Colony PCR was performed to verify the presence of plasmid inserts within the expression 

hosts. Single colonies were used to inoculate 5 ml LB media (with the respective antibiotic) 

and cultured overnight (16 hours) at 37°C. Following centrifugation (1210 x g, RT, five 

minutes) the supernatant media was discarded and the pellet suspended in 500 μl MiliQ 

dH2O. Two microliters of this suspension was then diluted further in 50 µl MiliQ dH2O. After 

boiling for 5 minutes, the samples were centrifuged (17530 x g, RT, 10 min), and 3 μl of the 

supernatant was transferred to a PCR tube and used as the template in the PCR reaction. The 

reaction mixture was completed by addition of the following: 1 μl each of the forward and 
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reverse primers (10 µM); 0.25 µl Taq polymerase (5 units / µl); 2 μl MgCl2 (25 mM); 0.8 µl 

dNTPs (10 mM); 2 μl 10 x PCR buffer (MgCl2 free) and made up to 20 µl with MiliQ dH2O. 

The reaction conditions were represented in Figure 2.2 below and a total of 30 cycles were 

run per reaction. 

The specific annealing temperature of the primers used differed per reaction, and were 

optimised using gradient PCR if required.  

 

 

 

 

 

Figure 2.2 PCR cycle conditions 

The conditions were standard for all PCR performed, except in the case of the annealing temperature “x” of the 
specific primers used, which were optimised if required.  

 
The primers were listed in Table 2.2, with the respective annealing temperatures used. 

Table 2.2 Primer sequences used in this study (sequencing and PCR) 

Primer Sequence 
Annealing temp. 

(°C) 
T7 promoter primer #69348-3 TAA TAC GAC TCA CTA TAG GG 55 
T7 reverse primer #69337-3 GCT AGT TAT TGC TCA GCG G 55 
pLDH forward primer GGA TCT GGT ATG ATT GGA GGT GTT ATG GCC 65 
pLDH reverse primer TTC GAT TAC TTG TTC TAC ACC ATT ACC ACC 65 
OP52 CCC TCA TAG TTA GCG TAA CG 55 
M13 reverse CAG GAA ACA GCT ATG AC 55 
ScFv nested PCR primer TCA GGT GGA GGT GGC TCT GG  55 

 

2.2.6 Plasmid isolation 

Plasmid isolation was performed (Sambrook et al., 1989) for both the malarial protein and 

scFv expression vectors. This served as the DNA template for PCR, restriction digests and 

sequencing analyses described later. 

 In general a 10 ml overnight (16 hour) culture of a single colony was grown at 37 ºC, 

centrifuged (1210 x g, 4 ºC, 5 min) and the supernatant discarded. The cell pellet was 
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suspended in 200 µl GTE solution (25 mM Tris; 1 mM EDTA; 50 mM glucose at pH 8.0), 

left at room temperature (RT) for 5 minutes and then transferred to a microfuge tube, 

containing 2 µl RNase A (10 mg/ml in 10 mM Tris; 1 mM EDTA at pH 8.0). All subsequent 

sample incubations were done on ice. Four hundred microlitres NaOH/SDS solution (200 

mM NaOH; 35 mM SDS) was added and the sample was incubated for 5 minutes to allow 

cell lysis. Hereafter, 300 µl potassium acetate (3 M potassium acetate at pH 4.8 titrated with 

glacial acetic acid) was added, mixed thoroughly and incubated for 5 minutes. Following the 

formation of a coarse white precipitate (cell debris and chromosomal DNA), the sample was 

centrifuged (17530 x g, RT, five minutes) and 800 µl of the supernatant was transferred to a 

fresh tube. Six hundred microliters isopropanol was added, mixed thoroughly and incubated 

for 30 minutes, after which the sample was centrifuged (17530 x g, RT, 5 minutes) to pellet 

the plasmid DNA. The pellet was then washed with ice cold 70% (v/v) ethanol and 

centrifuged (17530 x g, RT, 5 minutes), with the final plasmid pellet suspended in 50 µl TE 

buffer (10 mM Tris; 1 mM EDTA at pH 8.0) and resolved on a 1% agarose gel to check its 

purity.  

2.2.7 Agarose gel electrophoresis 

Agarose gels were used to assess the purity of the isolated plasmid vectors (isolated as 

described in section 2.2.5), or to analyse their restriction digestion or PCR amplification 

products.  

The miniGES agarose gel system was assembled to give gels with 7 x 6.5 cm dimension. 

30 ml of TAE buffer (2 M Tris; 50 mM EDTA; 0.95 M glacial acetic acid, pH 8.0) was used 

to prepare 1 or 3% (w/v) agarose gels (0.3 or 0.9 g agarose respectively). This solution was 

heated in a microwave until the agarose had melted completely. Once cooled to ~47 °C, EtBr 

(1% (w/v) stock in TAE buffer) was added to a final concentration of 0.00006 % (w/v) and 

the solution was poured into the gel cassette and allowed to set after the comb had been 

placed into the gel. Samples were prepared by diluting 5:1 in Fermentas sample loading 

buffer (0.25% (w/v) bromophenol blue and 40% (w/v) sucrose in TAE buffer). The gels were 

run at 80 V for 40 minutes, visualised under UV light and images captured using a MiniBis 

Pro DNR gel imaging system. The sizes of bands in base pairs (bp) were extrapolated from a 

graph of relative distance travelled from the sample loading well to log of the band size in bp 

of DNA standards (DNA MassRulerTM) run on the same gel. 
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2.2.8  Sequencing 

Sequencing was used as confirmation of both the recombinant malarial protein and scFv 

coding sequences and was performed at the Central Analytical Facility at Stellenbosch 

University. The plasmid DNA isolated as described in section 2.2.6 served as the template for 

the sequencing reactions, with a list of primers given in the Table 2.2. The rPfLDH and 

PvLDH samples were sequenced with the pLDH primers, where all other pET vector samples 

were sequenced with the T7 forward and reverse primers. The scFv samples were sequenced 

using the OP52 and M13 reverse primers. The resulting consensus sequences were analysed 

by Clustal Omega alignment to assess their identity with the corresponding coding sequences 

and the IgY light and heavy chain germline sequences in the case of the scFv sequences.  

 

2.3 General immunochemical techniques 

The general immunochemical techniques used during this study are described next.  

2.3.1 Reagents 

Nunc MaxiSorpTM 96-well ELISA plates were from Nunc products (Roskilde, Denmark). 4-

chloro-1-naphthol, Biomax® X-ray film, p-iodophenol, luminol, Ponceau S and Tween-20 

were purchased from Sigma-Aldrich-Fluka (Steinheim, Germany). Citrate and hydrogen 

peroxide were purchased from Merck (Darmstadt, Germany). 2,2’-azino-bis(3-

ethybenzothiazolinesulfonate) (ABTS) was purchased from Boehringer (Mannheim, 

Germany). Hybond-CTM Extra nitrocellulose membrane was purchased from GE Healthcare 

(Buckinghamshire, England). Peroxidase-conjugated rabbit anti-IgY and peroxidase 

conjugated goat anti-mouse IgG antibodies were from Jackson Immunochemicals 

(Pennsylvania, USA).  

2.3.2 Western blotting 

This method (Towbin et al., 1979) follows on from the SDS-PAGE method described in 

2.2.3. After resolving protein samples on an SDS-PAGE gel, the proteins were transferred 

onto a nitrocellulose membrane. This was done by sandwiching the gel and nitrocellulose 

between two pairs of blotting paper and one set of sponges in a blotting cassette. The gels and 

nitrocellulose were soaked in blotting buffer (50 mM Tris; 192 mM glycine; 20% (v/v) 

methanol) for 10 minutes prior to preparing the sandwich, and the nitrocellulose was 

carefully rolled onto the gel to avoid trapping air bubbles. The cassettes were inserted into the 

cassette holder and placed in the blotting tank, after which they were immersed in blotting 
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buffer. Electrophoretic transfer was carried out overnight at 20 mA. The nitrocellulose pieces 

were then carefully removed and blocked with 10 ml of a 5% (w/v) low fat milk powder in 

TBS (20 mM Tris; 200 mM NaCl at pH 7.4) solution for one hour. The nitrocellulose strips 

were then washed three times in 10 ml TBS for 5 minutes per wash. Primary antibody 

solutions were prepared in 0.5% (w/v) BSA-TBS as specified and nitrocellulose strips were 

incubated for 2 hours with these solutions, followed by three washes in TBS as described 

before. The nitrocellulose strips were then incubated for 1 hour with secondary antibody 

solution 1/12000 (unless stated otherwise) in 0.5% (w/v) BSA-TBS, followed by three 

washes in TBS as described before. Finally the nitrocellulose strips were developed for ten to 

30 minutes using 2 ml of a substrate stock solution (0.3% (w/v) 4-chloro-1-naphthol in 

methanol) diluted in 8 ml TBS containing 4 µl H2O2. After developing the nitrocellulose 

strips were washed with dH2O and left to dry. 

2.3.3. Direct ELISA method 

Antigens were diluted to 1 µg / ml in PBS (137 mM NaCl; 3 mM KCl; 7 mM Na2HPO4; 

1.5 mM KH2PO4 at pH 7.2) and 150 µl was pipetted to each well. The plates were incubated 

overnight at 4ºC to allow coating of the wells. All wash steps were done with PBS containing 

0.1% (v/v) Tween 20 and repeated three times and all incubations subsequent to coating were 

done at 37ºC, except with substrate, which was left at room temperature. After coating, the 

plates were washed and then blocked with 200 µl 0.5% (w/v) BSA-PBS per well and 

incubated for 1 hour. After a wash step the plates were incubated for 2 hours with 100 µl of 

the antigen-specific primary antibody and washed again. They were then incubated with 

120 µl of the rabbit-anti-chicken HRPO antibody diluted 1/15000 for 1 hour and washed. All 

antibody solutions were prepared in 0.5% (w/v) BSA-PBS. Finally the plates were incubated 

with 150 µl substrate (0.05% (w/v) ABTS; 0.0015% (v/v) H2O2 prepared in a 0.15 M citrate 

phosphate buffer at pH 5.0) per well and left to develop in the dark at room temperature for 

30 minutes. The plates were then read immediately in an ELISA-plate reader at 405 nm. 

Background controls included: no antigen (or no coat), no primary antibody and no detection 

antibody in separate wells during each of the respective ELISA incubation steps. All results 

were corrected for background. Positive controls included a no blocking control. Additional 

controls were stated in text where applicable. 
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2.4 Bioinformatics (Chapter 3) 

The in silico work done to identify the malaria protein targets: LDH, GAPDH and PMT, as 

well as deciding on the respective peptide epitopes to target is described below. All results 

from this work were compiled into chapter 3. 

2.4.1 Identifying malaria protein targets for diagnosis 

The initial identification of possible protein targets for diagnosing malaria were based on 

mining of literature which focused on transcriptional and translational studies of Plasmodium 

falciparum. Most of this data could also be found on the malaria site PlasmoDB 

(www.plasmodb.org/). A potential target’s suitability was then assessed using the following 

set of programmes.  

2.4.2 Sequence alignments 

In order to assess a protein target’s homology with its related malaria and human orthologs, 

alignments were performed. The primary protein amino acid sequences were aligned using 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The sequences were obtained 

either from NCBI (www.ncbi.org/) or PlasmoDB (www.plasmodb.org/) as indicated in text. 

Sanger sequencing results obtained in later chapters were aligned with their respective DNA 

coding sequences, or the IgY heavy and light chain germline sequences for scFvs, also 

obtained from NCBI or PlasmoDB as indicated (chapters 3 and 6). 

2.4.3 Predict7TM 

Using the protein alignment data obtained above, specific peptide sequences of ten to 16 

amino acids in length were selected. These were either species-specific peptides, in which 

case they had sequences unique to their respective Plasmodium species, or alternatively they 

were common conserved peptides, common to all human-infecting Plasmodium species but 

differing from the corresponding human peptides. Predict 7TM was used to assess the physical 

properties of the candidate peptides in terms of hydrophilicity, surface probability, 

antigenicity and flexibility. Most important was to ensure that the peptides were soluble 

(hydrophilic) and found on the surface of the parent protein (surface probable). 

2.4.4 3D modelling 

To verify the location of the candidate peptides, they were located on the surface of their 

respective parent 3D protein models. The 3D crystal structures were downloaded from the 

Swiss model repository (http://swissmodel.expasy.org/repository/) and manipulated with 

Deep view Swiss pdb viewer downloaded from http://www.expasy.org/spdbv/.   

http://www.plasmodb.org/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ncbi.org/
http://www.plasmodb.org/
http://swissmodel.expasy.org/repository/
http://www.expasy.org/spdbv/
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2.4.5 Sequencing (see section 2.2.8) 

The sequencing results for each of the recombinant proteins were included in chapter 3 as 

part of the bioinformatics approach to verify the location of the selected peptide sequences 

within the recombinant proteins used further. 

 

2.5 Recombinant work with malarial proteins (Chapter 4) 

The three chosen malaria proteins were recombinantly expressed, purified and partially 

characterised. Together these results formed chapter 4. 

2.5.1 Reagents  

Isopropyl thioglucopyranoside (IPTG), ampicillin and kanamycin were purchased from 

Sigma-Aldrich-Fluka (Steinheim, Germany). Molecular biology grade DTT was purchased 

from Fermentas (Vilinius, Lithuania). TALON® cobalt metal affinity resin was from 

Clontech Laboratories Inc. (California, USA). Imidazole, polyethylene glycol 20000 (PEG 

20000), MES hydrate, tryptone, agar bacteriological, D(+) glucose anhydrous, sucrose, 

glycerol and yeast extract were purchased from Merck (Damstadt, Germany). A DNA 

purification kit was purchased from PEQLAB Biotechnologie (Erlangen, Germany). 0.22 and 

0.45 µm syringe filters were from PALL Life Sciences (Ann Arbor, MI, USA). 

2.5.2 Expression host E. coli 

The E. coli BL21(DE3) strain (Novagen, Damstadt, Germany) was used as the host for 

expression of all malarial proteins throughout this study. The strain’s genotype is as follows: 

(F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])). 

The choice of E. coli strain was primarily based on the protease deficiency of this strain. 

2.5.3 Expression vectors 

The malarial target proteins had previously been cloned into their respective vectors as listed 

in the Table 2.3. All three PMT proteins were kindly provided by Prof. B. Mamoun (Harvard 

University). The coding genes for PfLDH (Pf(K1) strain) and PvLDH were cloned into 

pKK223-3 and were kindly provided by Professor R.L. Brady (University of Bristol, UK). 

PfGAPDH (from the Pf(3D7) strain) was cloned into the pET-15b vector and kindly provided 

by Professor L. Tilley (Satchell et al., 2005). Finally the two P. yoelii proteins, PyLDH and 

PyGAPDH had previously been cloned into pET-28a vector (Novagen, Darmstadt, Germany) 

in our laboratory. 
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Table 2.3 List of vectors used in the study for expression of the respective malarial proteins 

 

Recombinant protein expression from all vectors was inducible with IPTG due to the 

presence of T7, lac or Tac promoters. The resulting recombinant proteins were all tagged 

with at least one set of six recurring histidine residues, which allowed for affinity 

purification.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 pKK223-3 expression plasmid vector map  

The vector map depicts the restriction sites available for inserting the desired coding sequence. The PfLDH 
sequence was inserted between the PstI and EcoRI restriction sites. The vector codes for ampicillin resistance, 
which is used as the selective maker for transformed cells. The size of the plasmid without insert is 4.6 kb as 
shown in the centre of the map. The map was obtained from http://www.biovisualtech.com/bvplasmid/pKK223-
3.htm. 

Vector name 
Resistance 

marker 
Vector size 

(bp) 
Protein 
target Promoter Tag 

pET-15b Ampicillin 5708 PfGAPDH T7 / lac N-terminal His (6) 

   
PfPMT 

  pET-28a(+) Kanamycin 5369 PyLDH T7 N-terminal His (6) 

   
PyGAPDH 

  
   

PvPMT 
  pKK223-3 Ampicillin 4600 PfLDH Tac None 

   PvLDH   

http://www.biovisualtech.com/bvplasmid/pKK223-3.htm
http://www.biovisualtech.com/bvplasmid/pKK223-3.htm
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In the case of the pKK223-3 vector, the histidine tags were attached to the respective LDH 

inserts via PCR amplification (Turgut-Balik et al., 2004). Detailed maps of the vectors used 

in this study are shown in Figures 2.3 to 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 pET-15b expression plasmid vector map 

The vector map depicts the restriction sites available for inserting the desired coding sequence. The PfGAPDH 
and PfPMT sequences were inserted between the XhoI and NdeI restriction sites. The vector codes for ampicillin 
resistance (Ap), which is used as the selective maker for transformed cells. The size of the plasmid without an 
insert is 5.7 kb as shown in the centre of the map. The map was obtained from 
https://www.embl.de/pepcore/pepcore_services/strains_vectors/vectors/pdf/pET-15b_map.pdf. 

 

https://www.embl.de/pepcore/pepcore_services/strains_vectors/vectors/pdf/pET-15b_map.pdf
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Figure 2.5 pET-28a expression plasmid vector map 

The vector map depicts the restriction sites available for inserting the desired coding sequence. The PyLDH and 
PyGAPDH sequences were inserted between the EcoRI and NotI or NdeI and XhoI restriction sites respectively. 
The vector codes for Kanamycin resistance (Kan), which is used as the selective maker for transformed cells. 
The size of the plasmid without an insert is 5.4 kb as shown in the centre of the map. The map was obtained 
from https://www.embl.de/pepcore/pepcore_services/strains_vectors/vectors/pdf/pET-28a-c_map.pdf. 

 

Several methods were used for confirmation of the vector inserts prior to sequencing. These 

methods included restriction digestion and PCR amplification of the inserts, both giving size 

confirmation. This was ultimately followed by sequencing, where only the sequencing data 

was included in this study. 

https://www.embl.de/pepcore/pepcore_services/strains_vectors/vectors/pdf/pET-28a-c_map.pdf
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2.5.4 Transformation of E. coli BL21(DE3) host  

Approximately 50 to 100 ng of plasmid DNA was added to 50 µl competent E. coli 

BL21(DE3) and mixed gently. The samples were incubated on ice for 30 minutes and then 

heat shocked at 42°C for 45 seconds and returned to the ice for a further 2 minutes. Four 

hundred and fifty microliters SOC media (2% (w/v) Tryptone; 0.5% (w/v) Yeast extract; 10 

mM NaCl; 2.5 mM MgCl2; 10 mM MgSO4 and 20 mM Glucose) was added per sample and 

incubated at 37°C, 200 rpm for an hour. The entire volume was plated onto two LB plates 

(pre-warmed to 37°C for 30 min) containing either Ampicillin (50 µg/ml) or Kanamycin 

(25 µg/ml) and incubated overnight (16 hours) at 37°C. Individual colonies were inoculated 

into 5 ml LB media containing the appropriate antibiotic (Ampicillin at 50 µg/ml or 

Kanamycin at 25 µ/ml) and incubated overnight (16 hours) at 37°C, 200 rpm. Glycerol stocks 

of transformed cells were prepared from overnight cultures (850 µl) combined with 150 µl 

glycerol (50% (v/v)) and stored at -70°C.  

For further work single colonies of transformed E. coli were picked off LB agar (1% (w/v) 

tryptone; 0.5% (w/v) yeast extract; 85 mM NaCl; 11 mM glucose; 1.5% (w/v) bacto-agar 

prepared in dH2O and autoclaved) plates (containing the specific antibiotic), which were 

three way streaked from glycerol stocks and incubated overnight (16 hours) at 37°C.  

Colony PCR (section 2.2.5) was performed to verify the presence of inserts within the 

expression hosts.  As a final verification, the malarial protein vector inserts were sequenced 

as described in section 2.2.8. The consensus sequences were aligned with sequences obtained 

from PlasmoDB. 

2.5.5 Expression of recombinant malarial proteins 

As a general rule, no bacterial culture volumes exceeded 20% of the culture flask volume in 

which they were grown. Volumes mentioned in text therefore refer to culture volumes, 

keeping this rule in mind. Single colonies were picked off agar plates and inoculated into 

10 ml LB broth (as for LB agar, without the addition of agar) prepared in dH2O and 

autoclaved) and incubated overnight (16 hours) at 37ºC. These cultures were then used to 

inoculate larger broth volumes, which were induced for expression of the respective 

recombinant proteins. Different broth formulations were used, either for induction with IPTG 

or auto-induction (without IPTG). To simplify interpretation of the expression conditions 

used per protein, Table 2.4 was included. 
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Table 2.4 Expression media used per recombinant protein and additional supplements 

Recombinant 
protein 

Expression 
media / broth 

Antibiotic 
(µg / ml) 

IPTG 
(mM) 

Temp. 
(°C) 

Time. 
(hrs) 

PfLDH TB Amp. (50) auto 37 16 
PvLDH TB Amp. (50) auto 37 16 
PyLDH TB Kan. (25) auto 37 16 
PfGAPDH TB Amp. (50) auto 37 16 
PyGAPDH TB Kan. (25) auto 37 16 
PfPMT LB Amp. (100) 1 37 16 
PvPMT TB Kan. (25) auto 37 16 
PyPMT TB Kan. (25) 1 37 16 

 
TB: Terrific broth; LB: Lysogeny broth; Amp.: Ampicillin; Kan.: Kanamycin; auto: auto-induction (without 
IPTG) 

 
The Terrific broth (TB) formulation, prepared in dH2O and autoclaved, was as follows: 1.2% 

(w/v) tryptone, 2.4% (w/v) yeast extract, 0.4% (w/v) glycerol, 0.231% (w/v) KH2PO4, 

1.254% (w/v) K2HPO4. All additional media supplements were prepared in dH2O and filter 

sterilised through 0.22 µm syringe filters and stored in 1 to 2 ml aliquots at -20°C. All 

cultures were supplemented once with their respective antibiotics, and IPTG was also only 

added once. For the cultures requiring IPTG, they were grown to an optical density measured 

at 600 nm (O.D. 600nm) of between 0.5-0.6 before supplementing. In preparation for affinity 

purification all expression cultures were grown overnight, the cells were pelleted by 

centrifugation at 4000 x g for 30 min at 4°C and the supernatant media removed. 

2.5.6  Affinity purification 

Following expression, each recombinant His6-tagged protein was extracted from prepared 

expression culture pellets (described above 2.5.5) and passed over a separate TALON (Co2+) 

affinity matrix for purification as described below. 

The pelleted culture samples were suspended to 5% of their original culture volume in wash 

buffer (50 mM NaH2PO4; 300 mM NaCl; 10 mM imidazole; 0.02% (w/v) NaN3 at pH 8.0) 

and lysed using 4 x 30 second sonication steps (0.6-0.8 Watts). Samples were then 

centrifuged (12000 x g, 4ºC, 20 minutes) and 10 ml at a time, the clear supernatant lysate 

samples were incubated for 20 minutes with 1 ml of a packed TALON (Co2+) affinity resin 

(i.e. 2 ml of 50% slurry). The resin had been equilibrated prior to this step with two 10 ml 

changes of wash buffer, with a 5 minute centrifugation step at 1210 x g after each wash and 

removal of the supernatant buffer. After the sample incubation, the resin was washed twice 

with wash buffer as described above and transferred to a column. The bound recombinant 
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protein was eluted using 5 ml elution buffer (the wash buffer with 250 mM imidazole 

instead) and profiles were recorded using absorbance at 280 nm (A280). The protein 

concentration of specific eluents was determined by the Bradford method as described in 

2.2.2.  

The resin was regenerated by washing with 10 ml MES buffer (20 mM MES at pH 5.0) for 

20 minutes, followed by a 10 ml wash with dH2O and stored at 4ºC in storage buffer (20% 

(v/v) ethanol; 0.1% (w/v) NaN3 prepared in dH2O). The resin was reused for further 

purifications, but each recombinant protein was assigned its own batch of resin to avoid 

contamination. 

2.5.7 SDS-PAGE analysis, dialysis and storage of recombinant proteins 

To assess the purity of the affinity purified recombinant proteins, samples were purified and 

resolved by reducing 12.5% SDS-PAGE as described in section 2.2.3. For long term storage 

recombinant protein samples were dialysed (see section 2.2.4) into PBS, 10% (v/v) glycerol, 

5 mM EDTA, 10 mM DTT at pH 8.0 and snap frozen in liquid nitrogen and stored at -70°C. 

 

2.6 Raising antibodies (Chapter 5) 

In order to raise chicken antibodies, the immunogenic proteins and peptides had to be 

prepared as described here. 

2.6.1 Reagents 

Ellman’s reagent, formamide, Freund’s complete adjuvant (FCA), Freund’s incomplete 

adjuvant (FIA), maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), rabbit albumin (RA), 

L-cysteine, sodium azide, Sephadex G-25 and Sephadex G-10 were purchased from Sigma-

Aldrich-Fluka (Steinheim, Germany). Polyethylene glycol 6000 (PEG 6000) was purchased 

from Merck (Darmstadt, Germany). SulfoLinkTM and AminoLinkTM coupling gels were 

purchased from Pierce Perbio Science (Erembodegem, Belgium). Synthetic peptides were 

synthesized by GL Biochem (Shanghai, China).  

This included preparation of the purified whole malaria recombinant proteins (section 2.5) as 

well as specifically selected peptide targets (sections 2.4 and 2.6.2). All antibodies raised and 

used in this study were listed in Table 2.5. Only the PMT, cmyc and the second P. falciparum 

GAPDH specific peptide (C-ADGFLLIGEKKVSVFA) IgY were raised during this study. The 

rest had all been raised and purified previously in our laboratory. In total, 46 chickens were 
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immunised, with most giving high yields of final specific IgY. The sequence identity between 

the chicken and target proteins / peptides was also listed.  

Table 2.5 List of targets immunised into chickens for IgY production 

Target 
Target 
species Target description Type 

Percent identity 
with chicken 

sequence  Chickens 
LDH P. falciparum rPfLDH protein 31 6 

 LISDAELEAIFD-C peptide 0 2 
P. vivax rPvLDH protein 29 2 
 KITDEEVEGIFD-C peptide 8 2 
P. yoelii rPyLDH protein 28 2 
common APGKSDKEWNRDDL-C peptide 14 2 

      
GAPDH P. falciparum rPfGAPDH protein 66 6 

 C-ADGFLLIGEKKVSVFA peptide 25 2 
 C-AEKDPSQIPWGKCQV peptide 40 2 
P. yoelii rPyGAPDH protein 64 2 
common C-KDDTPIYVMGINH peptide 54 2 

      
PMT P. falciparum rPfPMT protein 0 2 

 C-EVEHKYLHENKE peptide 0 2 
P. vivax rPvPMT protein 0 2 
 VYSIKEYNSLKD-C peptide 0 2 
P. knowlesi rPkPMT protein 0 2 
 LYPTDEYNSLKD-C peptide 0 2 
common LENNQYTDEGVK-C peptide 0 2 

      
scFv  C-EQKLISEEDLN peptide 0 2 

 

2.6.2 Peptide synthesis 

The peptides for this study were all from GL Biochem (Shanghai) Ltd. Terminal cysteine 

residues were added to the original sequences to allow for coupling to carrier proteins 

(section 2.6.3) or resins (section 2.6.6). 

2.6.3 Coupling peptides to rabbit albumin 

Due to the general low immunogenicity of peptides, they were coupled to rabbit albumin as a 

carrier protein (Harlow and Lane, 1988). The coupling was performed with the 

heterobifunctional coupling agent, maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), 

using the terminal cysteine sulfhydryl groups of the peptides and free amine groups on the 

carrier protein. The reaction to couple 4 mg of peptide to rabbit albumin involved two steps: 
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1) Activation of the rabbit albumin carrier protein with MBS, and 2) reduction of the target 

peptide’s terminal cysteine sulfhydryl groups. These were outlined below. 

1) Activation of the rabbit albumin carrier protein with MBS: 

The ratio of peptide to carrier is 40:1, therefore the mass of rabbit albumin (RA) required for 

coupling was calculated as follows, where the molar mass of rabbit albumin is 68.2 kD:  

 

The ratio of carrier to MBS is 1:40, therefore the mass of MBS required for coupling was 

calculated as follows, where the molar mass of MBS is 314.26 g / mol. 

 

The calculated amounts of RA were dissolved in 500 µl PBS and the MBS was dissolved in 

200 µl Dimethyl formamide (DMF) and 300 µl PBS. Once dissolved, the two solutions were 

combined and left to stand at room temperature for 30 minutes. This incubation was timed to 

start 30 minutes into the peptide incubation with DTT. 

2) Reduction of the target peptide’s terminal cysteine sulfhydryl groups. 

Four milligrams of the target peptide was dissolved in 50 µl DMSO and made up to 500 µl in 

reducing buffer (100 mM Tris; 1 mM EDTA; 0.02% (w/v) NaN3 at pH 8.0), after which 

500 µl 10 mM DTT solution (10 mM DTT in reducing buffer) was added and the solution 

was mixed and incubated at 37ºC in a water bath for 90 minutes.  

Two molecular exclusion chromatography columns (Sephadex G-10 and G-25) were washed 

with at least two column volumes of 0.2 M NaOH and then equilibrated with MEC buffer 

(100 mM NaH2PO4; 0.02% (w/v) NaN3 at pH 7.0). A Sephadex G-10 column (column 

volume 20 ml) was used to separate the reduced peptide from DTT. The eluted 500 µl 

fractions were assessed for reduced peptide by adding 10 µl eluent to 10 µl Ellman’s reagent 

(4 mg/ml) prepared freshly in Ellman’s buffer (100 mM Tris; 1 mM EDTA; 0.1% (w/v) SDS 

68200 x         x 
1 

40 

4 x 10-3 g (peptide) 

    Mr peptide 
x 1000 = carrier (mg) 

314.26 x 40 x 
carrier (mg) 

    68200 
x 1000 = MBS (mg) 
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at pH 8.0). Yellow reactions indicated reduced peptide eluents. These were pooled and used 

for coupling to the MBS activated RA carrier.  

The activated RA carrier was prepared by separating it on a Sephadex G-25 column (column 

volume 120 ml) following the 30 minute incubation at room temperature with MBS as 

explained above. Fractions (1 ml) were collected and fractions with A280 values greater than 

0.3 were pooled and combined with the reduced peptide fractions eluted off the Sephadex G-

10 column. This mixture was then left to stand at room temperature for 3 hours with gentle 

stirring. The resulting peptide-carrier conjugate solution was then split into four aliquots and 

stored at -20ºC until required for immunisation. 

Only one of the peptides was insoluble in the DMSO and reducing buffer solution, and had to 

be solubilised in DMSO alone. An alternative method was used for coupling of this peptide 

as described by Lateef et al. (2007). 

2.6.4 Chicken immunisation 

Ethical clearance for the use of experimental animals in this study was granted by the animal 

ethics committee of UKZN (Ethics number 004/15//Animal). 

A total of 200 µg of pure recombinant protein was used to immunise each chicken. 

Alternatively 4 mg of a prepared peptide conjugate sample was used to immunise each 

chicken. The protein or peptide preparations were split into four aliquots allowing for one 

priming and three booster immunisations. These samples were prepared in PBS and were 

mixed 1:1 with either Freund’s complete adjuvant (FCA) or Freund’s incomplete adjuvant 

(FIA). The FCA formulation contains heat killed Mycobacterium and was used for primary 

immunisations, whereas the incomplete adjuvant (FIA) without Mycobacterium was used for 

booster immunisations (weeks two, four and six). All samples were prepared by trituration 

with a syringe until thick water in oil emulsions formed. The immunisations were 

administered intramuscularly into each chest muscle, where the skin was wiped locally with 

70% (v/v) ethanol prior to immunisation.  

2.6.5 Isolation of crude IgY from chicken egg yolk 

The immunised chickens were kept in laying batteries to allow for easy collection of eggs. 

These were dated and kept at 4°C until required. Importantly IgY from single eggs collected 

prior to immunisation (non-immune) and at the end of each week following immunisation 

were isolated first. This allowed for monitoring of antibody production (by ELISA method, 
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see section 2.7.3) throughout the immunisation schedule and up to weeks 12 or 14 after the 

first immunisation. In turn this allowed for selective isolation of IgY from weeks with high 

antibody responses only. IgY was thus generally isolated from weeks three to 12 or 14 as 

described by Polson et al. (1985).  

The egg yolk was separated from egg white and then drained from the yolk sac and its 

volume determined. The yolk volume was increased three fold with isolation buffer (100 mM 

NaH2PO4; 0.02% (w/v) NaN3 at pH 7.6) and PEG (Mr 6000) was added to a final 

concentration of 3.5% (w/v). The solution was stirred gently to dissolve the PEG, followed 

by centrifugation (4420 x g, 4ºC, 30 minutes), and removal of the precipitated vitellin pellet. 

The supernatant was filtered through cotton wool and its volume recorded. The PEG 

concentration was increased to 12% (w/v) and stirred gently until dissolved. In this case the 

sample was centrifuged (12000 x g, 4ºC, 10 minutes) and the precipitate was retained and 

dissolved in a volume of isolation buffer equal to that of the filtrate. The PEG concentration 

was brought to 12% (w/v) again and allowed to dissolve completely with gentle stirring. The 

sample was then centrifuged (12000 x g, 4ºC, 10 minutes) and the final pellet dissolved in 1/6 

of the initial yolk volume with storage buffer (100 mM NaH2PO4; 0.1% (w/v) NaN3 at pH 

7.6) and stored at 4ºC.   

In order to purify specific antibodies from the stored batches of crude IgY, the respective 

malarial target proteins or peptides were coupled to AminoLinkTM or SulfoLinkTM resins 

respectively. Both methods are described in the following section. 

2.6.6 Preparation of affinity matrices 

AminoLinkTM and SulfoLinkTM resins were used to couple the whole recombinant 

Plasmodium proteins or the specifically selected peptides respectively as described to follow. 

2.6.6.1  Recombinant malarial proteins coupled to AminoLinkTMresins 

AminoLinkTM coupling exploits the free primary amines on the surface of proteins. Due to 

the hydrophilic or charged nature of these groups, they are often found on the surface of 

proteins and include the N-terminal and lysine side chain amines. Therefore the purified 

recombinant proteins were coupled to AminoLinkTM resins as outlined here. 

Five milligrams of the purified recombinant protein was dialysed (10 kD MWCO) against 

coupling buffer (100 mM NaH2PO4; 300 mM NaCl; 0.05% (w/v) NaN3 at pH 7.2). The 

coupling buffer was modified from the manufacturer’s instruction by the addition of 300 mM 
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NaCl to aid protein solubility. Two millilitres of the AminoLinkTM resin (resulting in a 1 ml 

packed resin) was poured into a mini-column and the storage buffer drained after the resin 

had settled. The resin was then equilibrated with 6 ml coupling buffer and drained. The 

dialysed protein solution was then added (2-4 ml) and 0.1 ml was retained to determine the 

coupling efficiency of the protein to the column. Forty microliters cyanoborohydride solution 

(5 M NaCNBH3; 1 M NaOH) was added, and the column was mixed end-over-end for 

6 hours at room temperature. The column was then drained of buffer and an eluent sample 

retained to determine the coupling efficiency of the protein to the column. The column was 

then washed with 4 ml coupling buffer after which 2 ml quenching buffer (1M Tris-HCl at 

pH 7.4) was added with 40 µl cyanoborohydride and mixed on an end-over-end mixer for 

30 minutes. The column was then drained again and washed with 10 ml wash solution (100 

mM NaH2PO4; 0.2% (w/v) NaN3 at pH 6.5) and stored at 4ºC until required. Coupling 

efficiency was assessed by measuring protein concentration after coupling using the Bradford 

assay (section 2.2.2). 

2.6.6.2  Peptides coupled to SulfoLinkTM resin 

SulfoLinkTM resin was used for producing peptide-linked affinity columns, linking the 

peptides via terminal cysteine sulfhydryl residues.  

Five milligrams of the peptide to be coupled was dissolved in 100 µl DMSO and 400 µl 

general buffer (50 mM Tris-HCl; 50 mM EDTA at pH 8.5), to which 500 µl DTT was added 

and the sample was then incubated for 1.5 hours at 37ºC (water bath). A Sephadex G-10 

column (column volume 75 ml), washed with at least two column volumes of 0.2 M NaOH 

and then equilibrated with general buffer, was used to separate the reduced peptide from the 

DTT. This was done by collecting 500 µl eluents off the column and combining 10 µl of each 

eluent separately with 10 µl Ellman’s reagent as described in 2.6.3. The reduced peptides 

reacted with the Ellman’s reagent to give a yellow solution. The eluents containing the 

reduced peptide were pooled and added immediately to 1 ml (packed resin volume) of 

SulfoLinkTM resin equilibrated in general buffer and mixed for 15 minutes after which it was 

left to stand for 30 minutes. After three washes with general buffer (1 column volume 

each)  1 ml of a 50 mM L-Cysteine solution was added to the resin, mixed for 15 minutes on 

an end over end mixer and left to stand for 30 minutes. The column was drained and washed 

with 16 column volumes washing buffer followed by two column volumes of a 0.1 M 

phosphate buffer at pH 7.6 and stored at 4ºC until use. 
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2.6.7 IgY affinity purification 

Crude IgY isolated from weeks showing high antibody responses were pooled and used for 

affinity purification. The crude IgY was circulated over the column overnight at room 

temperature. The column was then washed with PBS until the A280 of eluting samples 

dropped down to between 0.01-0.02. Eppendorfs were prepared for collection of eluents by 

adding 100 µl neutralisation buffer (1 M NaH2PO4; 0.02% (w/v) NaN3 at pH 8.5) to each 

tube. The specific antibodies bound to the antigen on the affinity column were then eluted 

with a change in pH by adding 8 ml elution buffer (100 mM glycine; 0.02% (w/v) NaN3 at 

pH 2.8) to the column and collecting 1 ml eluents. Affinity purified samples with A280 values 

greater than 0.2 were pooled and the final IgY concentration was calculated using the sample 

A280 value and the extinction coefficient of IgY (Ɛ = 1.25) (Goldring and Coetzer, 2003). The 

pooled samples were kept at 4ºC until required and the remainder was discarded. 

2.6.8 Human IgG affinity purification 

Three hundred milligrams of a human anti-malaria hyperimmune serum pool was used to 

affinity purify human IgG antibodies against five recombinant P. falciparum proteins. These 

include rPfLDH, rPfGAPDH, rPfPMT, rPfHsp70 and rPfCox17. The latter two proteins were 

included for comparison. The purification of the human IgG antibodies was essentially as 

described above in section 2.6.7. The final IgG concentration was calculated using a human 

IgG extinction coefficient (Ɛ = 1.35) (Semenova et al., 2004). 

2.6.9 Conjugation of horse radish peroxidase to IgY antibodies 

Conjugation of HRPO to antibodies was performed as per Kumar et al. (2014). Eight 

milligrams of horse radish peroxidase (HRPO) (1360 Units) was dissolved in dH2O. Two 

hundred microliters 0.1 M sodium periodate was added and the solution turned from brown to 

a greenish brown and was stirred gently for 20 minutes at room temperature. The solution 

was then dialysed overnight (16 hours) at 4ºC against sodium acetate buffer (0.1 M sodium 

acetate; 0.22% (v/v) acetic acid at pH 4.4), after which 20 µl sodium carbonate buffer (13 ml 

of a 0.2 M sodium carbonate solution and 37 ml of a 0.2 M sodium hydrogen carbonate 

solution were made up to 200 ml at pH 9.5) was added to raise the pH of the solution to 

between 9-9.5. One millilitre (8 mg) of the IgY sample to be conjugated was added 

immediately. The antibody-HRPO mixture was inverted every 15 minutes and left at room 

temperature for a total of 2 hours. Finally 100 µl sodium borohydride solution (4 mg/ml) was 

added to reduce any unbound HRPO and the solution was left to stand for 2 hours at 4ºC. The 

IgY-HRPO solution was then dialysed against a 0.1 M borate buffer at pH 7.4 after which an 
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equal volume of 60% (v/v) glycerol (prepared in borate buffer) was added and the samples 

were stored at 4ºC.  

The IgY antibodies were characterised further using western blotting (section 2.3.2), ELISA 

(section 2.3.3) and ECL described below. 

2.6.10 Enhanced chemiluminescence 

The procedure (Mruk et al., 2011) follows that of western blotting (section 2.3.2), except that 

TTBS (0.1% (v/v) Tween 20 added to the TBS buffer as described in 2.5.1) was used and the 

blocking was performed with 8% (w/v) low fat milk powder in TTBS, and wash steps were 

increased to 8 minutes per wash. After blocking for 1 hour and washing three times 8 minutes 

with TTBS, the blots were incubated with primary antibody overnight (16 hours) at 4ºC with 

rocking. The primary and secondary antibodies were prepared in 0.5% (w/v) BSA-TTBS to 

the desired concentrations, which were both optimised. Detection of the chemiluminescent 

signal was done using the Syngene G:Box system (UK). The chemiluminescent reagent was 

then prepared by mixing 50 µl of a luminol stock solution (40 mg/ml luminol in 1% (v/v) 

DMSO), 25 µl of a p-iodophenol stock (0.1 M p-iodophenol in 1 ml DMSO) and 10 ml 0.1 M 

Tris-HCl pH 8.5 buffer directly onto the blots and exposure was optimised per sample.  

2.6.11. Double antibody sandwich ELISA method 

Plates were coated with 150 µl of an antigen-specific capture antibody at a concentration of 

1 µg / ml prepared in PBS and incubated overnight at 4ºC. All other antibody solutions were 

prepared in 0.5% (w/v) BSA-PBS As in the direct ELISA method, all subsequent incubation 

steps were done at 37ºC and all wash steps were repeated three times with PBS containing 

0.1% (v/v) Tween 20. After coating plates were washed and incubated with 0.5% (w/v) BSA-

PBS for 1 hour and washed. The antigen-containing sample (150 µl) was then loaded per well 

at the desired concentration which had to be optimised to avoid the prozone effect. 

Recombinant protein solutions were prepared in 0.5% (w/v) BSA-PBS and used to prepare 

antigen standard curves. Plates were incubated for 2 hours, washed and then incubated with 

150 µl of a detection antigen-specific antibody linked to HRPO diluted 1/200 for 2 hours and 

washed again. Substrate solution (150 µl) was added per well and the plates were incubated 

in the dark for 30 minutes at room temperature, after which they were immediately read in an 

ELISA-plate reader at 405 nm. Background controls included separate wells in which: 

antigen, capture antibody or detection antibody were excluded during the respective 
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incubations. All results were corrected for background readings. Positive controls included a 

no blocking control. Additional controls were stated in text where applicable. 

2.7 ScFv work (Chapter 6) 

The next section describes the scFv work done to identify monoclonal recombinant 

antibodies against the target proteins and peptides. These results are shown in chapter 6. 

2.7.1 Reagents 

TG1 E. coli, M13KO7 helper phage and the Nkuku® phagemid library were kindly provided 

by the Onderstepoort Veterinary Institute, South Africa (van Wyngaardt et al., 2004). Ninety 

six well culture plates and immunotubes were from NUNC (Roskilde, Denmark). The anti-

M13 monoclonal antibody was from Thermo Scientific (Waltham, MA, USA) and the Goat 

anti-mouse-HRPO secondary antibody was from Jackson Immunochemicals (Pennsylvania, 

USA).   

2.7.2 E. coli hosts 

The following E. coli host strains were used for the panning and expression of the scFv 

library. The E. coli TG1 strain was used as the host for panning experiments since it has a 

supE mutation, which allows for the expression of  scFv fusion proteins with the minor coat 

protein III and subsequent display of the scFv on the phage surface. The E. coli Top10 strain 

lacks the supE mutation and is therefore used solely as an expression host for the 

recombinant expression of soluble scFv particles. 

E. coli TG1 with genotype: (F' [traD36 proAB+ lacIq lacZΔM15]supE thi-1 Δ(lac-proAB) 

Δ(mcrB-hsdSM)5, (rK
-mK

-)) (Lucigen).  

E. coli Top10 with genotype: (F'[lacIq Tn10(tetR)] mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 deoR nupG recA1 araD139 Δ(ara-leu)7697 galU galK rpsL(StrR) 

endA1 λ-) (Invitrogen).  

2.7.3 Helper phage 

The M13 phage used here has a single stranded DNA genome and forms part of the Ff 

filamentous phage group that infects male E. coli cells (Hoogenboom et al., 1991). 
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2.7.4 pHEN1 vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 pHEN1 vector map used in phage display 

The vector map depicts the SfiI and NotI restriction sites used to inserting the scFv coding sequences. The vector 
codes for Ampicillin resistance. The size of the plasmid without an insert is 4.5 kb as shown in the centre of the 
map. The vector map was adapted from Hoogenboom et al. 1991.  

 

2.7.5 Library preparation 

Before panning the library, several stocks and media had to be prepared. These will be 

mentioned first and used as reference throughout this section. 

Table 2.6 Media recipes for phage display work 

Media name Recipe Antibiotic 
2xYT 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl 

 2xYT (A/G) as above, with 2% (w/v) glucose 100 µg /ml Amp. 
TYE 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.8% (w/v) NaCl 

 TYE (A/G) as above, with 2% (w/v) glucose 100 µg /ml Amp. 
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The above media may have been adapted with the addition of 1.5% (w/v) agar to allow for 

agar plate preparation, or with the addition of kanamycin at 50 µg/ml. These changes were 

mentioned in the methods section where applicable. As a general rule, all bacterial culture 

volumes never exceeded 20% of the culture flask volume in which they were grown. 

Volumes mentioned in text the therefore refer to culture volumes, keeping this rule in mind. 

2.7.5.1  Preparation of E. coli TG1 cells (panning host) 

The host E. coli for the panning protocol were TG1 cells. Since this strain has a supE 

mutation, it is able to read through the amber codon in the pHEN1 vector and thus translate 

an scFv fusion protein with the minor phage coat protein 3. This allows the rescued phage to 

display the scFv on its surface. 

We were provided with an initial uninfected E. coli TG1 glycerol stock, which was streaked 

onto TYE agar plates (Table 2.6) and incubated overnight at 37°C. A single colony was then 

picked and inoculated into 10 ml 2xYT (Table 2.6) and grown overnight (16 hours) at 37°C 

at 200 rpm. Fresh glycerol stocks were prepared with a final concentration of 15% (v/v) 

glycerol and stored at -70°C until required. Importantly these stocks were always streaked 

onto TYE (A/G) plates (Table 2.6) prior to preparing working cultures to ensure they were 

not accidentally infected with phage. 

As E. coli strains with an F’ genotype replicate, they form pili which the M13 phage uses in 

its mode of infection. Pili production occurs during the log or exponential growth phase of 

these E. coli and as such, log cultures were used throughout the panning procedures. These 

were prepared by inoculating 25 to 50 ml 2xYT broth 1/100 with overnight TG1 cultures and 

allowing them to grow to an O.D. at 600 nm of 0.5 to 0.6. Both cultures were then kept at 

4°C and were used within one week of preparation. 

2.7.5.2  Preparation of M13KO7 helper phage stocks 

Due to the presence of the scFv fusion on the viral coat protein 3, the phagemids are not as 

infective as the wild type phage (M13KO7). The M13KO7 phage is therefore used to 

“rescue” the phagemids out of infected E. coli cells, resulting in a mosaic of wild-type and 

scFv-fusion coat protein 3 on the surface of rescued phages. This improves the infectivity of 

the phagemid particles whilst the phagemids still display the specific scFv on their surface, 

which can be selected for by affinity interactions or panning as described later. 
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Pfu/ml = [(# plaques on plate) x dilution factor ] / (0.5 x 0.1 ml)  

Prior to panning, the wild type M13KO7 phage is grown and stocks at specific concentrations 

are prepared. Phage concentration is measured as infectivity or the number of plaque forming 

units per millilitre (pfu/ml). An initial M13KO7 glycerol stock was diluted in 2xYT (Table 

2.6) to approximately 1x10-10, with the last three doubling dilutions (1x10-8,9,10) prepared in 

200 µl 2xYT. One hundred microliters of each of these dilutions was added to 100 µl of a 

TG1 log culture and left at room temperature (RT) for 5 minutes. Thereafter, the dilutions 

were added to 3 ml of molten (kept at 47°C) 0.7% (w/v) 2xYT agar and poured onto 2xYT 

agar plates which were pre-warmed to 37°C. The plates were then allowed to set and were 

incubated at 37°C overnight (16 hours). 

The M13KO7 phage caused plaques of approximately 1 mm diameter on the TG1 E. coli 

lawn. A single plaque was punched out with the reverse end of a pipette tip and inoculated 

into 4 ml 2xYT, to which 40 µl of an overnight TG1 culture had been added simultaneously. 

The culture was then incubated for 2 hours at 37°C, shaking at 100 rpm. This served as the 

inoculum for two 400 ml 2xYT cultures, which were incubated for another hour at 37°C, 

shaking at 100 rpm. Thereafter kanamycin was added to a final concentration of 50 µg/ml 

and the cultures were grown overnight under the same conditions. The E. coli were then 

pelleted by centrifugation (10800 x g for 15 minutes at 4°C) and the supernatant medium was 

retained.  

2.7.5.2.1 Phage and phagemid precipitation protocol 

Phages and phagemids were all precipitated from supernatant media using the following 

protocol: The supernatant volume was increased by ¼ of its initial volume with the addition 

of a precipitation solution (20% (w/v) PEG 6000 and 2.5 M NaCl in distilled water and 

autoclaved). After a 30 minute incubation (1 hour for phagemids) on ice, the solution was 

centrifuged (10800 x g for 15 minutes at 4°C) and the pelleted phages retained. A second 

centrifugation (2000 x g for 2 minutes at 4°C) served to further condense the phage pellet as 

well as allowing removal of any remaining supernatant. This pellet was suspended in 6 ml 

PBS (1 ml for phagemids) and filter sterilised through a 0.45 µm syringe filter.  

The filtered sample was titred by preparing a range of dilutions in 2xYT as described earlier. 

The last three dilutions, 1x10-8,9,10 were plated and titres were determined by counting the 

number of plaques formed on the E. coli lawn the next day.  
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The filtered stock was diluted to 1x1012 pfu/ml in 15% (v/v) glycerol and stored as 1 ml 

aliquots at -70°C for long term, or 4°C for up to 6 months.  

2.7.5.3 Culturing the Nkuku
® phagemid library 

The Nkuku® library was provided as an E. coli TG1glycerol stock. Before the first panning 

rounds were performed, the library was cultured to prepare fresh glycerol stocks. A large 

culture (500 ml 2xYT (Amp.)) was inoculated with 250 µl of the initial glycerol stock, 

ensuring an initial O.D. of approximately 0.05. This was incubated at 37°C shaken at 

240 rpm until log phase was reached, with an O.D. of approximately 0.5. A hundred 

millilitres of this culture was used to prepare phagemid stocks which will be explained to 

follow. The remaining culture was grown for an additional 3 hours under the same conditions 

and then centrifuged (3300 x g for 15 minutes) to pellet the TG1 cells. These were suspended 

in 1/100 of the initial culture volume of 2xYT and aliquots containing 15% (v/v) glycerol 

were stored at -70°C. 

The 100 ml sample removed from the initial culture above was used to prepare phagemid 

stocks of the library. In other words, these were rescued from the TG1 E. coli cells using the 

wild type M13KO7 helper phage. The helper phage was added in a ratio of 20 helper phages 

to one bacterial cell. The bacterial population density was estimated based on its O.D., where 

an O.D. of one was representative of 8 x 108 bacteria / ml. The culture was incubated at 37°C 

for 30 minutes standing and 30 minutes shaking at 100 rpm to allow the helper phages to 

infect the TG1 cells. After a centrifugation (3300 x g for 15 minutes) the pelleted cells were 

suspended in 1 liter 2xYT (ampicillin and kanamycin) and incubated overnight at 30°C 

shaking at 240 rpm to allow for rescuing of the phagemids from the TG1 cells. The TG1 cells 

were pelleted by centrifugation (3300 x g for 20 minutes) the following day and the 

phagemids in the supernatant media were precipitated as described (section 2.7.5.2.1). The 

phagemid pellets were suspended in 20 ml PBS in this case, centrifuged (11000 x g for 

2 minutes) to remove any precipitant material and the supernatant sterilised through a 

0.45 µm syringe filter. This served as the starting stock used for panning the library and was 

stored at 4°C.  

Finally the phagemid library stock solution was titred before panning, which is important as 

using too little of the stock during panning rounds would underrepresent the library which 

may result in poor panning yields. The phagemid stock was thus titred by preparing a series 

of dilutions up to 1 x 10-6 in 2xYT. Again the last three dilutions were made up to 200 µl in 
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Cfu/ml = [(# colonies on plate) x dilution factor ] / (0.5 x 0.1 ml)   

2xYT and 100 µl of each was combined with an equal volume of log phase TG1 cells and left 

at RT for 5 minutes. The entire volume was plated onto TYE A/G agar plates and incubated 

overnight at 30°C. Titres were determined in terms of the number of colonies counted per 

plate and expressed as colony forming units (cfu) per 1 ml. For accurate estimations, plates 

with between 30 to 300 colonies were counted. 

 

 

2.7.6 Panning the Nkuku
® library 

The process of selecting scFv clones from the library which had affinity for the target 

molecule, in this case the malarial proteins and peptides, was termed panning. Once the 

various stocks had been prepared as described in section 2.7.5, panning of the library could 

begin. There were two types of targets which the library was panned for, similar to those used 

to immunise chickens (section 2.6) and these were listed in Table 2.7. 

Immunotubes were coated overnight at 4°C with the target molecules in 3.5 ml PBS. Each 

successive panning round was coated with decreasing concentrations of the target molecules, 

for a total of four rounds. In the case of the recombinant proteins a range of 100, 50, 25 and 

10 µg/ml was used, where the peptides were coated at 50, 25, 10 and 1 µg/ml (Table 2.7). 

The coated tubes were washed three times with PBS and then blocked with 5 ml of a 2% 

(w/v) milk powder PBS solution for an hour. The tubes were washed twice with PBS 

containing 0.1% (v/v) Tween 20 (PBST) followed by two washes of PBS. The phagemid 

stock prepared previously (section 2.7.5.3) was diluted to between 1x1012 to 1013 cfu/ml in 

3.5 ml of a 2% (w/v) milk powder PBST solution and incubated for 30 minutes at RT prior to 

adding it to the immunotubes. This was done to block the milk powder binders from binding 

to the blocked immunotubes.  
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Table 2.7 Malarial targets used to pan the Nkuku
® library and the concentrations used per round 

Target 
Target 
species Target description Type 

Panning rounds 1 to 4 
concentrations used (µg/ml) 

LDH P. falciparum rPfLDH protein 100, 50, 25, 10 

 
LISDAELEAIFD-C peptide 50, 25, 10, 1 

P. vivax rPvLDH protein 100, 50, 25, 10 

 
KITDEEVEGIFD-C peptide 50, 25, 10, 1 

P. yoelii rPyLDH protein Not done 
common APGKSDKEWNRDDL-C peptide 50, 25, 10, 1 

     GAPDH P. falciparum rPfGAPDH protein 100, 50, 25, 10 

 
C-ADGFLLIGEKKVSVFA peptide 50, 25, 10, 1 

 
C-AEKDPSQIPWGKCQV peptide 50, 25, 10, 1 

P. yoelii rPyGAPDH protein Not done 
common C-KDDTPIYVMGINH 

 
50, 25, 10, 1 

     PMT P. falciparum rPfPMT protein Not done 

 
C-EVEHKYLHENKE peptide 50, 25, 10, 1 

P. vivax rPvPMT protein Not done 

 
VYSIKEYNSLKD-C peptide 50, 25, 10, 1 

P. knowlesi rPkPMT protein Not done 

 
LYPTDEYNSLKD-C peptide 50, 25, 10, 1 

common LENNQYTDEGVK-C peptide 50, 25, 10, 1 
     

 

The immunotubes were then incubated with the 3.5 ml phagemid preparation at RT for 

30 minutes on an end-over-end rotator, followed by standing for 90 minutes. Following 20 

washes with PBST and 20 with PBS, the tubes were incubated with 3.5 ml of a log phase 

TG1 culture and incubated for no longer than 30 minutes at 37°C. This step served both as 

the elution step and infection of TG1 cells, since the bound phagemids were released from the 

column by infecting the TG1 cells. This was used as it is a much gentler elution method than 

pH dependent elution methods and potentially allows for selection of much rarer phagemid 

binders from the library (Noppe et al., 2009). After the 30 minute incubation the infected 

TG1 cells were pelleted by centrifugation (3,300 x g for 10 minutes). The pellet was 

suspended in 1 ml 2xYT and the entire volume was plated onto three TYE (A/G) plates and 

incubated overnight at 30°C. All colonies were then suspended in 5 ml 2xYT and between 

200 to 500 µl of this suspension was used to inoculate 50 ml 2xYT (A/G) media, ensuring 

that the initial O.D. was as close to 0.05 as possible. The remainder of the suspended colonies 

were used to prepare glycerol stocks (15% (v/v) glycerol) and were stored as stocks of the 
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specific panning round performed. These could then be used to repeat a panning round, 

starting with inoculation of the 50 ml 2xYT (A/G) broth as described above. This culture was 

grown to log phase (O.D. ~0.5) and 5 ml of this was then removed and rescued with 

M13KO7. The infected cells were pelleted by two centrifugation steps (3300 x g for 

10 minutes) and removal of the supernatant each time. The pellet was then suspended in 

25 ml 2xYT (Amp. and Kan.) and incubated overnight at 30°C shaking at 240 rpm. The cells 

were pelleted again by centrifugation (3300 x g for 20 minutes) and the rescued phagemids in 

the supernatant were precipitated as described previously in section 2.7.5.2.1. Half a millilitre 

was used for the next panning round and 0.5 ml was stored at 4°C for use in the polyclonal 

ELISA described to follow. These panning rounds were repeated a total of four times with the 

target molecule concentrations decreasing after each round as described in Table 2.7. 

2.7.7 Polyclonal ELISA to determine phagemid enrichment against target molecules 

In order to assess whether enrichment was achieved after each selection round, the phagemid 

solutions prepared at the end of each round (section 2.7.6) were assessed using an ELISA 

format. This was done by coating ELISA plates overnight with 100 µl of the respective target 

molecules prepared in PBS, either 5 µg/ml for peptides, or 100 µg/ml for rPfLDH and 

rPfGAPDH.  Three washes with PBS were performed between each of the ELISA plate 

incubation steps where mentioned and all incubations were performed at 37°C. The plates 

were blocked by incubating with 2% (w/v) milk powder in PBS for one hour, whilst the 

prepared phagemid solutions were diluted 1/20 in the same final concentration of milk 

powder PBS with 0.1% (v/v) Tween 20 for at least 30 minutes at RT. Once the plates were 

blocked and washed, the phagemid solutions were added (50 µl / well) and incubated for 

1 hour. After washing, the plates were incubated for another hour with 50 µl / well of a 

1/10000 dilution of an anti-M13 mouse monoclonal antibody prepared in 0.5% (w/v) BSA-

PBS. A secondary goat anti-mouse antibody, coupled to HRPO, at a 1/1000 dilution in 0.5% 

(w/v) BSA-PBS was added (50 µl / well) and the plates were incubated for 1 hour. Finally 

100 µl / well substrate (0.05% (w/v) ABTS; 0.0015% (v/v) H2O2) prepared in a 0.15 M 

citrate phosphate buffer at pH 5.0, was added per well and incubated in the dark for 1 hour 

before measuring product development at 405 nm. 

2.7.8 Picking single scFv clones 

If enrichment was achieved, then the next step was to isolate single colonies from the panned 

library and assess their specificity for the target molecules. This entailed diluting the TG1 
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glycerol stocks prepared at the end of each selection round and growing these on TYE (A/G) 

plates overnight. The stocks were diluted in 2xYT to get single colonies for selection.  

Forty eight colonies were selected from each selection round per target molecule, giving a 

total of 196 single colonies per target molecule ranging from panning rounds one to four. 

These were used to inoculate individual wells of 96-well culture plates (master plates) 

containing 100 µl / well 2xYT (A/G). The plates were grown overnight at 30°C with shaking 

at 220 rpm. A small inoculum (5 µl) of each clone was transferred to a duplicate plate (clone 

plate) containing 150 µl 2xYT (A/G) per well. Fifty microlitres of a 60% (v/v) sterile 

glycerol solution was then added to each well of the master plate which was then stored at -

70°C. 

The clone plates were then grown at 37°C for 2.5 hours with shaking at 220 rpm. Hereafter 

phagemids were rescued from the TG1 host E. coli with the addition of 50 µl / well of a 

2 x 109 pfu/ml M13KO7 stock prepared in 2xYT (A/G). The plates were incubated at 37°C 

for 30 minutes and then centrifuged (600 x g for 10 minutes). The supernatant was discarded 

and the pellets suspended in 150 µl 2xYT containing ampicillin (100 µg/ml) and kanamycin 

(25 µg/ml) and grown at 30°C overnight, 220 rpm and then centrifuged (600 x g for 

10 minutes). The culture supernatants containing the rescued phagemid particles were then 

used in an ELISA, which was performed as described for the polyclonal ELISA procedure 

(2.7.7). The only change was the use of a 1/10 dilution of the supernatant culture prepared 

here as the phagemid sample. The ELISA controls for the individual selected scFv clones 

included no coat / antigen, no phagemid / scFv, no anti-M13 or anti-cmyc antibody and no 

goat anti-mouse-HRPO or rabbit anti-chicken-HRPO antibody. A no blocking control was 

used as a positive control. 

2.7.9 Preparation of scFv clone glycerol stocks 

Six clones showing highest A405 values in the monoclonal ELISA assay were selected for 

each target molecule. Five microlitres of inoculum per sample was used to prepare 10 ml 

overnight cultures in 2xYT (A/G), grown at 37°C with 200 rpm shaking. Aliquots were 

prepared, containing 15% (v/v) glycerol and stored at -70°C.  

2.7.10 Transduction of E. coli expression host, Top10  

An E. coli strain with an F’ positive genotype but lacking the supE mutation was selected as 

the host for soluble expression of scFv clones. The lack of the supE mutation results in 

termination of the translated scFv proteins at the amber stop codon present in the pHEN1 
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phagemid vector. This allows for soluble expression of the scFv’s without attachment to the 

phage coat protein 3 as was the case in the TG1 host. The F’ genotype was necessary to allow 

for infection or transduction of the E. coli strains with the rescued phagemids. 

The selected clones were streaked onto TYE (A/G) plates (incubated overnight at 37°C) and 

single colonies were used to inoculate 5 ml 2xYT (A/G) media and grown overnight at 37°C 

shaking at 200 rpm. The cultures were pelleted by centrifugation (3300 x g for 10 minutes) 

and the supernatant was used to prepare phagemid stocks (section 2.7.5.2.1).  

The expression host E. coli Top10 were prepared by inoculating 5 ml 2xYT media with 

single colonies grown on 2xYT agar plates (overnight at 37°C) and incubating these cultures 

overnight at 37°C while shaking at 200 rpm. Log phase (O.D. ~0.5) cultures were grown 

from 1/100 inoculations of 50 ml 2xYT media with the respective overnight cultures, grown 

at 37°C at 200 rpm shaking.  

Half a millilitre of the respective phagemid preparations were incubated with 0.5 ml of the 

log phase Top10 E. coli for 30 minutes at 37°C and then plated onto 2xYT (A/G) media 

(incubated overnight at 37°C). Single colonies were then inoculated into 5 ml 2xYT (A/G) 

media and grown overnight at 37°C of which 1 ml aliquots were prepared in a final glycerol 

concentration of 15% (v/v) and stored at -70°C.  

2.7.11 Soluble expression of scFvs from Top10 E. coli 

Overnight cultures of the respective transduced scFv clones were used to inoculate 100 ml 

2xYT (A/G) media and grown to O.D. ~0.5 at 37°C. Once at O.D. the cultures were split into 

50 ml volumes and pelleted by centrifugation (4000 x g for 10 minutes). The pellets were 

suspended in either 50 ml TB or 2xYT (ampicillin with 1 mM IPTG) and incubated overnight 

at 37°C, shaking at 220 rpm.  

2.7.12 Periplasmic isolation of soluble scFv antibodies 

The overnight expression cultures were pelleted by centrifugation (4000 x g for 10 minutes at 

4°C). All subsequent steps were done on ice and using ice cold buffers (chilled on ice for at 

least 30 minutes before use). The pellets were suspended in 12.5 ml sucrose buffer (50 mM 

Tris, 1 mM EDTA, 20% (w/v) sucrose at pH 7.4) in 50 ml sterile Falcon tubes and stirred 

gently using a small magnetic stirrer for 10 minutes. The cells were pelleted again (4000 x g 

for 10 minutes at 4°C) and the supernatant was removed. The pellets were suspended in 5 ml 

MgCl2 buffer (5 mM MgCl2 with 0.1% (w/v) NaN3) and stirred gently again for 10 minutes 
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to lyse the E. coli periplasm by osmotic shock. A final centrifugation (4000 x g for 

10 minutes at 4°C) pelleted the cytoplasmic fraction and the supernatant containing the 

E. coli periplasmic fraction was retained and the centrifugation repeated to remove any 

residual precipitants. The periplasmic supernatant was stored at 4°C until use. Samples were 

run on SDS-PAGE as outlined in section 2.2.3 to assess their purity. 

2.7.13  Restriction digest 

Restriction digests were performed on colony PCR products of each of the clones as 

mentioned in 2.2.5. To obtain a DNA fingerprint of each of the selected clones, each purified 

plasmid sample was digested with Alu1, which is a high frequency endonuclease that 

recognises the sequence AG^CT. The PCR amplicons (10 µl) were digested overnight at 

37°C with 5 units of Alu1 (1 µl), 2 µl 10 x digestion buffer and 18 µl MilliQ dH2O. The 

samples were then resolved on 3% agarose gels for analysis (section 2.2.7).  

2.7.14 Nested PCR 

To confirm the presence of the (GGGGS)3 linker region common to all scFv’s in the present 

library, we designed a nested PCR primer targeting this region. All scFv clones were 

subjected to this and if positive they were sent for sequencing to the Central Analytical 

Facility, Stellenbosch University (section 2.2.8 and Primer Table 2.5). 
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Chapter 3 

Search for possible new Plasmodium diagnostic target proteins and peptides for 

antibody production using a bioinformatics approach 

 

3.1 Introduction 

Relative expression and proteomics data derived from the malaria parasite’s red blood cell 

cycle provide valuable data which could be used to identify potential new diagnostic target 

proteins (Foth et al., 2011; LeRoch et al., 2003; www.PlasmoDB.org). Ideally an immuno-

diagnostic target should be present throughout the Plasmodium red cell cycle as this is when 

disease symptoms appear and patients seek medical help (Antia et al., 2008; Golgi, 1886; 

Miller et al., 1994). The target proteins should also be present at relatively high 

concentrations, therefore using these data sets parasite proteins, of which there are 5554 (Foth 

et al., 2011), can be ranked according to their relative abundance which dramatically narrows 

the search. The targets should also be unique, or have a unique structural component to the 

parasite homologue, which could be exploited for diagnosis. Using the bioinformatics 

approach outlined here, two possible diagnostic target proteins were identified and are briefly 

introduced. The first potential target was glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), which is involved in glycolysis and the second was phosphoethanolamine-N-

methyltransferase (PMT), which is involved in phospholipid metabolism.  

During a malaria infection a single merozoite divides into 14-36 new parasites within 24-72 

hours in a human Plasmodium infection (Antia et al., 2008; Baldacci and Menard, 2004; 

Collins and Jeffery, 2007). This process has a high energy demand resulting in up to 100-fold 

greater glycolytic rates in infected compared to uninfected red blood cells (Daubenberger et 

al., 2000; Mehta et al., 2006). Since two current RDT target proteins, aldolase and LDH are 

both involved in glycolysis, targeting proteins which functions within the same pathway and 

are suggested to be present at higher concentrations than LDH and aldolase (Foth et al., 2011; 

LeRoch et al., 2003) would be attractive. Another important metabolic pathway is 

phospholipid metabolism. The parasite needs to produce sufficient phospholipid membranes 

to envelope each newly developing daughter merozoite. The phospholipid content of 

P. falciparum therefore increases between five to six fold after infecting a red blood cell for 

example (Dechamps et al., 2010). Current RDTs targeting a metabolic enzyme also have the 

http://www.plasmodb.org/
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advantage, of monitoring treatment outcome. This was shown with RDTs using LDH as the 

target antigen, which was no longer detected in patient blood two to seven days after the 

clearance of an infection (Iqbal et al., 2004, Murray et al., 2008).  

Anaerobic glycolysis yields two ATP molecules from the breakdown of glucose to pyruvate 

and L-lactate. In the absence of oxygen, the pathway has ten reactions of which the fifth and 

last reactions are coupled by a dinucleotide cofactor NAD+(H) and involve two 

dehydrogenases: GAPDH and LDH respectively (Voet and Voet, 2004).  

 

 

 

 

 
 
 
 
Figure 3.1 NAD+(H) linked glycolytic reactions involving GAPDH and LDH 
The respective reduction and oxidation of NAD+(H) by GAPDH and LDH highlighted in bold (Voet and Voet, 
2004). 
 

From a glycolysis perspective, an excess of either GAPDH or LDH would be redundant due 

to limiting NAD+(H) levels. In vitro, however, P. falciparum GAPDH mRNA levels exceed 

LDH levels by three to four fold (LeRoch et al. 2003) and semi-quantitative proteome data 

also suggest greater GAPDH to LDH levels (Foth et al., 2011; Lasonder et al., 2002; 

Nirmalan et al., 2004; Smit et al., 2010). This suggests a greater demand for GAPDH in 

relation to LDH and that Plasmodium GAPDH may have additional functions to glycolysis. 

These non-glycolytic functions, often termed “moonlighting” functions have been identified 

in seven of the ten glycolytic enzymes (Alam et al., 2014; Gómez-Arreaza et al., 2014). These 

moonlighting functions of GAPDH as well as the possible post-translational modifications 
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involved will be discussed later as possible explanations for comparatively higher levels of 

GAPDH to LDH.  

The second new target, PMT, is involved in phospholipid synthesis. Interestingly, no 

homologs of higher or lower eukaryote phosphatidylethanolamine methyltransferases were 

identified in the P. falciparum genome. Instead, Pessi et al. (2004 and 2005) identified a 

plant-like phosphoethanolamine methyltransferase gene homolog (PfPMT) in P. falciparum 

and hypothesised that the protein was involved in an alternate serine decarboxylase-

phosphoethanolamine methyltransferase pathway. Several plant-like P. falciparum proteins 

are targeted to the apicoplast (Foth et al., 2003), however PfPMT lacks any signal or transit 

peptides (Pessi et al., 2004) and localises as a soluble protein within the Golgi (Witola et al., 

2006). In culture PfPMT expression increased by three-fold as the parasite progressed from its 

initial ring to trophozoite stages (Pessi et al., 2004; LeRoch et al., 2003) and was expressed 

during the gametocyte and sporozoite stages of the life cycle (www.PlasmoDB.org). Analysis 

of the P. falciparum proteome also confirmed the presence of PfPMT throughout the red 

blood cell cycle ranking it within the top 20 most abundant soluble proteins (Foth et al., 2011; 

Nirmalan et al., 2004). PMT homologs were identified in Burkholderia pseudomallei, B. 

oklahomensis, Xenopus laevis, X. tropicalis, Caenorhabditis briggsae, Danio rerio, 

Branchiostoma floridae, Caenorhabditis elegans and Anopheles gambiae, but critically no 

human homologs exist (Pessi et al., 2004; Bobenchik et al., 2011, 2013). In theory antibodies 

raised against such a target are unlikely to cross-react with human proteins, therefore reducing 

misdiagnosis. 

Differences in the PMT and GAPDH primary amino acid sequences could potentially be 

exploited to develop immune-reagents for species identification, as demonstrated by Hurdayal 

et al. (2010), targeting unique LDH peptide epitopes. This strategy was adopted in this work 

and the aim was to identify and exploit unique and conserved amino acid sequences on both 

GAPDH and PMT. The LDH sequences identified by Hurdayal et al. (2010) were also 

included in this study. This is therefore outlined in chapter 3 in which the bioinformatics 

approach taken to identify the two novel protein targets and their respective surface epitopes 

is described. 

http://www.plasmodb.org/
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3.2 Results 

3.2.1 Compilation of a list of proteins from which the diagnostic targets were selected 

Based on the Plasmodium transcriptional data compiled by LeRoch et al., in 2003, a list of the 

20 highest expressed genes was generated as shown in Table 3.1. These data present the 

average expression values of the listed genes throughout the whole red blood cell cycle of the 

P. falciparum parasite. 

 

Table 3.1 Twenty highest expressed genes based on mRNA abundance (LeRoch et al., 2003) 

# Gene ID Average expression* Protein name / function 
1 PF11_0040 12186.5 Early transcribed membrane protein 11.2 
2 PFB0120w 11956.4 Early transcribed membrane protein, putative 
3 PF14_0598 7940.3 Glyceraldehyde-3-phosphate dehydrogenase 
4 PF08_0054 6703.5 Heat shock 70 kDa protein 
5 PF11_0224 6221.5 Circumsporozoite-related antigen 
6 PF11_0508 5995.7 Hypothetical protein 
7 PF10_0019 5451.5 Early transcribed membrane protein 
8 PF10_0159 5364.3 Glycophorin-binding protein 130 precursor 
9 PF10_0372 5347.6 Hypothetical protein 
10 PF14_0486 5253.6 Elongation factor 2 
11 PF11_0043 4279.6 60S acidic ribosomal protein p1, putative 
12 PFA0420w 4273.9 Hypothetical protein 
13 PFL2515c 3797 Hypothetical protein 
14 MAL6P1.91 3783.1 Ornithine aminotransferase 
15 PF13_0346 3771.4 Ubiquitin/ribosomal fusion protein uba52 homologue, putative 
16 PFI1090w 3741.4 S-adenosylmethionine synthetase, putative 
17 PFE0070w 3723.9 Interspersed repeat antigen, putative 
18 PF11_0039 3708.1 Early transcribed membrane protein 11.1 
19 PF14_0678 3666.8 Exported protein 2 
20 PF14_0425 3564.5 Fructose-bisphosphate aldolase 

 
*Average transcription values for the ring to trophozoite stages of the red blood cell life cycle. 
 

The second data set was from a proteomics study of the P. falciparum red blood cell cycle 

(Foth et al., 2011). In this study proteins were ranked according to their relative abundance, 

with ten being the highest and one being the lowest ranking. Table 3.2 was compiled by 

selecting the top 20 proteins from the data, where their respective transcriptional rankings 

from the LeRoch et al., (2003) study were also included. 
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Table 3.2 Twenty most abundant proteins according to proteome data from Foth et al., (2011) 

 
* Note the transcription ranking according to the LeRoch et al. (2003) data was included here and not the 
average expression values shown in Table 3.1. 
▲ These columns include the Foth et al. (2011) data 
 

Finally Tables 3.1 and 3.2 were combined, resulting in the 35 most abundant proteins 

throughout the parasite intra-erythrocytic cycle as shown in Table 3.3.  

The list of 35 proteins was narrowed down to seven proteins of interest for use as diagnostic 

targets and those of interest were highlighted in green, where excluded proteins were 

highlighted in red. The criteria used are explained briefly to follow. 

 

# 
PlasmoDB / 
NCBI ID 

Protein name Transcription 
ranking * 

Ring 
▲ 

Trophozoite 
▲ 

Schizont 
▲ 

1 PF14_0598 Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) 

3 10 10 10 

2 PF08_0054 Heat shock protein 70-1 4 10 10 10 
3 PFI1090w S-adenosylmethionine 

synthetase 
16 10 10 10 

4 PFI0875w Heat shock protein 70-2 (BiP) 24 10 10 10 
5 PF08_0019 Receptor for activated C kinase 

(PfRACK) = Guanine 
nucleotide-BP 

28 10 10 10 

6 PF10_0155 Enolase 65 10 10 10 
7 PF07_0029 Heat shock protein 86 121 10 10 10 
8 PFI1105w Phosphoglycerate kinase 205 10 10 10 
9 MAL13P1.214 Phosphoethanolamine N-

methyltransferase, putative 
812 10 10 10 

10 PFL1070c HSP90 (Endoplasmin homolog 
precursor, putative) 

1078 10 10 10 

11 PFI1475w Merozoite surface protein 1 
(MSP1) 

454 10 9 10 

12 PFL2215w Actin I 138 10 9 9 
13 PFF1300w Pyruvate kinase, putative 788 9 9 10 
14 PF14_0655 RNA helicase 45 (H45, eIF4A) 1041 9 10 9 
15 MAL13P1.56 M1-family aminopeptidase 2916 9 10 9 
16 PFF0435w Ornithine aminotransferase 14 9 9 9 

17 PF14_0425 Fructose-bisphosphate aldolase 20 9 9 9 
18 PF13_0141 L-lactate dehydrogenase 

(LDH) 
35 9 9 9 

19 MAL8P1.17 Protein disulfide isomerase 
(PDI-8) 

47 9 9 9 

20 PF11_0208 Phosphoglycerate mutase 64 9 8 8 
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Table 3.3 Compilation of the 35 most abundant proteins, highlighting potential diagnostic targets in green and proteins that were excluded in red 

 

 
* denotes proteins that are either membrane bound or associated with the insoluble cytoskeleton. 
Pan-Plasmodium and species-specific peptides were chosen based on ClustalΩ alignments and BLASTp searches. 
Available P. falciparum crystal structures were searched for on the RCSB PDB database. 

 # Gene ID Protein name  
Known 
function 

Conserved amongst human malaria 
species 

Human 
orthologue 

Pan-Plasmodial 
peptides 

Species-specific 
peptides 

Crystal structure 
available 

1 PF11_0040 Early transcribed membrane protein 11.2 yes only P.f. no no no  
2 PFB0120w Early transcribed membrane protein 2, putative yes only P.f. no no no  
3 PF14_0598 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) yes all 5 yes yes yes yes 
4 PF08_0054 Heat shock 70 kDa protein yes P.f., P.v., P.k. yes yes no  
5 PF11_0224 Circumsporozoite-related antigen yes only P.f. no no no  
6 PF11_0508 Hypothetical protein no 

    
 

7 PF10_0019 Early transcribed membrane protein yes only P.f. no no no  
8 PF10_0159 Glycophorin-binding protein 130 precursor yes only P.f. no no no  
9 PF10_0372 Hypothetical protein no 

    
 

10 PF14_0486 Elongation factor 2 yes P.f., P.v., P.k. yes yes no  
11 PF11_0043 60S acidic ribosomal protein p1, putative yes P.f., P.v., P.k. no yes no  
12 PFA0420w Hypothetical protein no 

    
 

13 PFL2515c Hypothetical protein no 
    

 
14 MAL6P1.91 Ornithine aminotransferase yes P.f., P.v., P.k. yes yes no  
15 PF13_0346 Ubiquitin-60S ribosomal protein L40  yes P.f., P.v. yes no no  
16 PFI1090w S-adenosylmethionine synthetase, putative yes P.f., P.v., P.k. yes yes no  
17 PFE0070w Interspersed repeat antigen, putative yes only P.f. no no no  
18 PF11_0039 Early transcribed membrane protein 11.1 yes only P.f. no no no  
19 PF14_0678 Exported protein 2 yes only P.f. no no no  
20 PF14_0425 Fructose-bisphosphate aldolase yes P.f., P.k. yes no yes  
21 PFI0875w Heat shock protein 70-2 (BiP) yes only P.f. yes no no  
22 PF08_0019 Receptor for activated C kinase (PfRACK) = Guanine nucleotide-BP yes P.f., P.v., P.k. yes yes no  
23 PF10_0155 Enolase yes P.f., P.v., P.k. yes yes no  
24 PF07_0029 Heat shock protein 86 yes P.f., P.v., P.k. yes yes yes Only the N-terminus 
25 PFI1105w Phosphoglycerate kinase yes P.f., P.v., P.k. yes yes no  
26 MAL13P1.214 Phosphoethanolamine N-methyltransferase, putative (PMT) yes P.f., P.v., P.k. no yes yes yes 
27 PFL1070c Heat shock protein 90 (Endoplasmin homolog precursor, putative) yes P.f., P.v., P.k. yes yes yes Only the N-terminus 
28 PFI1475w Merozoite surface protein 1 (MSP1) yes* all 5 no yes yes  
29 PFL2215w Actin I yes* P.f., P.v., P.k. no yes yes  
30 PFF1300w Pyruvate kinase, putative yes P.f., P.v., P.k. yes yes yes yes 
31 PF14_0655 RNA helicase 45 (H45, eIF4A) yes P.f., P.v., P.k. yes yes yes no 
32 MAL13P1.56 M1-family aminopeptidase yes P.f., P.v., P.k. no yes yes yes 
33 PF13_0141 L-lactate dehydrogenase (LDH) yes all 5 yes yes yes yes 
34 MAL8P1.17 Protein disulfide isomerase (PDI-8) yes P.f., P.v., P.k. yes yes yes yes 
35 PF11_0208 Phosphoglycerate mutase yes P.f., P.v., P.k. yes yes yes yes 
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All proteins with unknown functions were excluded since only proteins involved in metabolic 

processes were of interest. Any membrane-bound or cytoskeletal proteins were also excluded 

from further analysis as indicated in Table 3.3 with an asterisk. This was decided based on the 

inherent difficulties of expression of membrane bound proteins and the additional 

requirements to solubilise these if used in an RDT or ELISA test format. Only proteins of 

known function, which were conserved in P. falciparum, P. vivax and P. knowlesi species, 

were further pursued, as this would potentially allow tests to specifically detect all three 

infections. Ideally a protein unique to the parasite and not present in the human genome 

would be targeted, but this was not used as an exclusion criterion. The primary amino acid 

sequences of the proteins with human orthologs were evaluated and those with close to 100% 

identity were excluded since antibodies against the P. falciparum proteins would detect the 

human proteins and not be of use for diagnosis. Finally proteins without crystal structures 

were excluded since a criterion for the selection of peptide epitopes was to verify their 

presence on the surface of the proteins, where they are more likely to be detected by 

antibodies. 

GAPDH was chosen as the first diagnostic target since it was the highest expressed of the 

seven remaining proteins in Table 3.3. PMT was chosen as the second target as it was the 

highest expressed protein of those without human orthologs. LDH was included as the model 

control protein in this study as a current diagnostic protein. The available amino acid 

sequences of each protein were aligned and potential species-specific and common malaria 

peptide epitopes were identified as described in section 3.2.2. 

3.2.2 Peptide epitope selection 

The choice of peptide epitopes was outlined in Figures 3.2 to 3.8. All peptides were a 

minimum of 12 to 16 amino acids long with a cysteine (C) added to either the N- or C-

terminals to facilitate coupling reactions. Coupling via amino groups was avoided due to the 

presence of lysine residues in most of the selected peptides. To select specific Plasmodium 

peptide epitopes, multiple protein sequence alignments of the Plasmodium orthologs were 

used. Epitopes were selected from regions of low similarity to the mammalian (human and 

mouse) and chicken proteins in the cases of LDH and GAPDH. In order to raise antibodies in 

chickens or in mice (monoclonal antibodies), sequence identity between mouse, chicken and 

Plasmodium proteins was assessed.  This was not necessary for PMT as the protein is not 

found in mammals or avian species which we confirmed. 
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Figure 3.2 Alignment of Plasmodium and mammalian LDH sequences indicating 
the peptides chosen for polyclonal chicken antibody and monoclonal scFv production, 
adapted from Hurdayal et al. (2010) 
A multiple sequence alignment of the P. falciparum (PfLDH); P. vivax (PvLDH); P. 
knowlesi (PkLDH), P. yoelii (PyLDH), human heart (HuLDHh), human muscle (HuLDHm), 
chicken (GallusLDH) and mouse (MouseLDH) LDH amino acid sequences was done in 
ClustalΩ. The first criterion for peptide selection was % identity (ID) and residues were 
annotated as follows: “*” identical residues; “:” conserved residues; “.” semi-conserved 
residues and blank spaces represented no identity between the sequences. Percentage 
identity was assessed between the 4 Plasmodium sequences (P. spp ID) and between all 8 
LDH sequences (Overall ID). Specific peptides were selected based on lowest percentage 
identity and common peptides on 100 % identity between the Plasmodium sequences. The 
three peptide sequences of interest were underlined in green and blue for the specific 
peptides and red for the common peptide. Sequence accession numbers from PlasmoDB are 
PfLDH:  PF3D7_1324900; PvLDH: PVX_116630; PkLDH: PKH_122820 and PyLDH: PY03885. 
NCBI ID’s for HuLDHh: P07195.2 and HuLDHm: P00338.2; GallusLDH: P00340.3 and MouseLDH: 
NP_001129541.2 (accessed 14.9.15). 
 

PfLDH          ----------------------------------------------MAPKAKIVLVGSGM 14 

PvLDH          ----------------------------------------------MTPKPKIVLVGSGM 14 

PkLDH          ----------------------------------------------MAPKPKIVLVGSGM 14  

PyLDH          ----------------------------------------------MAPKAKIVLVGSGM 14 

P.spp ID                                                     *:** ********* 

HuLDHh         -----------------------------MATLKEKLIAPVAEEEATVPNNKITVVGVGQ 31 

GallusLDH      ------------------------------MSLKDHLIHNVHKEEHAHAHNKISVVGVGA 30 

HuLDHm         -----------------------------MATLKDQLIYNLLKEEQ-TPQNKITVVGVGA 30 

MouseLDH       MSKSSGGYTYTETSVLFFHFKVSKDSKSKMATLKDQLIVNLLKEEQ-APQNKITVVGVGA 59 

Overall ID                                                      . ** :** *  

 

PfLDH          IGGVMATLIVQKNLGD-VVLFDIVKNMPHGKALDTSHTNVMAYSNCKVSGSNTYDDLAGA 73 

PvLDH          IGGVMATLIVQKNLGD-VVMFDVVKNMPQGKALDTSHSNVMAYSNCKVTGSNSYDDLKGA 73 

PkLDH          IGGVMATLIVQKNLGD-VVMFDVVKNMPQGKALDTSHSNVMAYSNCKVTGSNSYEDLEGA 73 

PyLDH          IGGVMATLIVQKNLGD-VVLFDIVKNMPHGKALDTSHTNVMAYSNCKVSGSNTYDDLKDA 73 

P.spp ID       **************** **:**:*****:********:**********:***:*:**  * 

HuLDHh         VGMACAISILGKSLADELALVDVLEDKLKGEMMDLQHGSLFLQ-TPKIVADKDYSVTANS 90 

GallusLDH      VGMACAISILMKDLADELTLVDVVEDKLKGEMLDLQHGSLFLK-TPKIISGKDYSVTAHS 89 

HuLDHm         VGMACAISILMKDLADELALVDVIEDKLKGEMMDLQHGSLFLR-TPKIVSGKDYNVTANS 89 

MouseLDH       VGMACAISILMKDLADELALVDVMEDKLKGEMMDLQHGSLFLK-TPKIVSSKDYCVTANS 118 

Overall ID     :* . *  *: *.*.* :.:.*::::  :*: :* .* .::   . *: . : *     : 

 

PfLDH          DVVIVTAGFTKAPGKSDKEWNRDDLLPLNNKIMIEIGGHIKKNCPNAFIIVVTNPVDVMV 133 

PvLDH          DVVIVTAGFTKAPGKSDKEWNRDDLLPLNNKIMIEIGGHIKNLCPNAFIIVVTNPVDVMV 133 

PkLDH          DVVIVTAGFTKAPGKSDKEWNRDDLLPLNNKIMIEIGGHIKKLCPNAFIIVVTNPVDVMV 133 

PyLDH          DVVIVTAGFTKAPGKSDKEWNRDDLLPLNNKIMIEIGGHIKNNCPNAFIIVVTNPVDVMV 133 

P.spp ID       *****************************************: ***************** 

HuLDHh         KIVVVTAGVRQQEGESRLN-----LVQRNVNVFKFIIPQIVKYSPDCIIIVVSNPVDILT 145 

GallusLDH      KLVIVTAGARQQEGESRLN-----LVQRNVNIFKFIIPNVVKYSPDCKLLIVSNPVDILT 144 

HuLDHm         KLVIITAGARQQEGESRLN-----LVQRNVNIFKFIIPNVVKYSPNCKLLIVSNPVDILT 144 

MouseLDH       KLVIITAGARQQEGESRLN-----LVQRNVNIFKFIIPNIVKYSPHCKLLIVSNPVDILT 173 

Overall ID     .:*::***  :  *:*  :     *:  * :::  *  .: : .*.. :::*:****::. 

 

PfLDH          QLLHQHSGVPKNKIIGLGGVLDTSRLKYYISQKLNVCPRDVNAHIVGAHGNKMVLLKRYI 193 

PvLDH          QLLFEHSGVPKNKIIGLGGVLDTSRLKYYISQKLNVCPRDVNALIVGAHGNKMVLLKRYI 193 

PkLDH          QLLFEHSGVPKNKIIGLGGVLDTSRLKYYLSQKLNVCPRDVNALIVGAHGNKMVLLKRYI 193 

PyLDH          QLLHQHSGVPKNKIVGLGGVLDTSRLKYYISQKLNVCPRDVNAHIVGAHGNKMVLLKRYI 193 

P.spp ID       ***.:*********:**************:************* **************** 

HuLDHh         YVTWKLSGLPKHRVIGSGCNLDSARFRYLMAEKLGIHPSSCHGWILGEHGDSSVAVWSGV 205 

GallusLDH      YVAWKISGFPKHRVIGSGCNLDSARFRHLMGERLGIHPLSCHGWIVGEHGDSSVPVWSGV 204 

HuLDHm         YVAWKISGFPKNRVIGSGCNLDSARFRYLMGERLGVHPLSCHGWVLGEHGDSSVPVWSGM 204 

MouseLDH       YVAWKISGFPKNRVIGSGCNLDSARFRYLMGERLGVHALSCHGWVLGEHGDSSVPVWSGV 233 

Overall ID      :  : **.**.:::* *  **::*::: :.::* :   . .. ::* **:. * :   : 

 

 

 

PfLDH          TVGGIPLQEFINNKLI--SDAELEAIFDRTVNTALEIVNLHASPYVAPAAAIIEMAESYL 251 

PvLDH          TVGGIPLQEFINNKKI--TDEEVEGIFDRTVNTALEIVNLLASPYVAPAAAIIEMAESYL 251 

PkLDH          TVGGIPLQEFINNKKI--TDEEVEAIFDRTVNTALEIVNLLASPYVAPAAAIIEMAESYL 251 

PyLDH          TVGGIPLQEFINNKKI--TDQELDAIFDRTVNTALEIVNLHASPYVAPAAAIIEMAESYI 251 

P.spp ID       ************** *  :* *::.*************** ******************: 

HuLDHh         NVAGVSLQELNPEMGTDNDSENWKEVHKMVVESAYEVIKLKGYTNWAIGLSVADLIESML 265 

GallusLDH      NVAGVSLKALHPDMGTDADKEHWKEVHKQVVDSAYEVIKLKGYTSWAIGLSVADLAETIM 264 

HuLDHm         NVAGVSLKTLHPDLGTDKDKEQWKEVHKQVVESAYEVIKLKGYTSWAIGLSVADLAESIM 264 

MouseLDH       NVAGVSLKSLNPELGTDADKEQWKEVHKQVVDSAYEVIKLKGYTSWAIGLSVADLAESIM 293 

Overall ID     .*.*: *: :  :      . . . :.. .*::* *:::* .    * . :: :: *: : 

 

PfLDH          KDLKKVLICSTLLEGQYGHS-DIFGGTPVVLGANGVEQVIELQLNSEEKAKFDEAIAETK 310 

PvLDH          KDIKKVLVCSTLLEGQYGHS-NIFGGTPLVIGGTGVEQVIELQLNAEEKTKFDEAVAETK 310 

PkLDH          KDIKKVLVCSTLLEGQYGHK-NIFGGTPLVIGGTGVEQVIELQLTAEEKAKFDEAVAETK 310 

PyLDH          RDLRKVLICSTLLEGQYGHK-DIFAGTPLVIGGNGVEQVIELQLNADEKKKFDEAVAETS 310 

P.spp ID       :*::***:***********.:**.***:*:*..**********.::*** *****:***. 

HuLDHh         KNLSRIHPVSTMVKGMYGIENEVFLSLPCILNARGLTSVINQKLKDDEVAQLKKSADTLW 325 

GallusLDH      KNLRRVHPISTAVKGMHGIKDDVFLSVPCVLGSSGITDVVKMILKPDEEEKIKKSADTLW 324 

HuLDHm         KNLRRVHPVSTMIKGLYGIKDDVFLSVPCILGQNGISDLVKVTLTSEEEARLKKSADTLW 324 

MouseLDH       KNLRRVHPISTMIKGLYGINEDVFLSVPCILGQNGISDVVKVTLTPEEEARLKKSADTLW 353 

Overall ID     ::: ::   ** ::* :* . ::* . * ::   *: .:::  *. :*  ::.::      

 

PfLDH          RMKALA--- 316 

PvLDH          RMKALI--- 316 

PkLDH          RMKALI--- 316 

PyLDH          RMKALI--- 316 

P.spp ID       ***** 

HuLDHh         DIQKDLKDL 334 

GallusLDH      GIQKELQF- 332 

HuLDHm         GIQKELQF- 332 

MouseLDH       GIQKELQF- 361 

Overall ID      ::       
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For common epitopes (underlined in red in the figures) 100% identity between the malaria 

sequences was ideal, where low sequence identity was required for the species specific 

epitopes (underlined in green / blue in the figures). Further analysis of all the peptide targets 

was done by using an epitope prediction program Predict7TM (Carmenes et al., 1989), 

followed by location of the targets on the protein crystal structures of the P. falciparum 

proteins and finally by BLASTp analysis. The results were therefore presented and discussed 

in this order for all three proteins, starting with LDH.  

The common LDH peptide “APGKSDKEWNRDDL” (red; residues 85 to 98) in the 

P. falciparum sequence (Figure 3.2) was chosen within a region that contained five amino 

acids “WNRDD” absent from the mammalian and chicken proteins scoring only 20% identity 

compared to 100% identity between the Plasmodium orthologs. In contrast the P. falciparum 

specific “LISDAELEAIFD” (green; residues 208 to 219) and the P. vivax specific 

“KITDEEVEGIFD” peptides (blue; residues 208 to 219, Figure 3.2) lacked a two amino acid 

insert present within the mammalian and chicken proteins of which one was a conserved “D”.  

After Predict7TM analysis (Figure 3.3 (A)), a cysteine required for coupling was added to the 

C-terminus of the common peptide (designated C). This exposed the more immunogenic N-

terminus, with residues “KSDK” scoring close to and above one for hydrophilicity and 

surface probability. Similarly for the P. falciparum and the P. vivax specific peptides the 

cysteine was also added to the C-terminus. The residues “AE” for the P. falciparum peptide 

(Figure 3.2 (B)) scored close to one for hydrophilicity and close to 0.5 for surface probability. 

The P. vivax peptide scored similarly for residues “KITDEEV” (Figure 3.2 (C)). All three 

peptides had similar flexibility at either terminus therefore hydrophilicity and surface 

probability was more important for the coupling orientation. 
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Figure 3.3 Predict7TM analyses of three selected Plasmodium LDH peptides (data adapted from 
Hurdayal et al. (2010)  
Predict7TM plots of the three LDH peptides illustrating hydrophilicity, surface probability, flexibility and 
antigenicity (key in the bottom right). The common peptide was plotted in (A), the P. falciparum specific peptide 
in (B) and the P. vivax specific peptide in (C).  Flexibility and antigenicity were plotted on the secondary axes in 
each graph. The amino acid sequences were shown along the bottom of the graphs, with the numbering of the 
first and last amino acid residues shown in superscript corresponding to the residue number in the P. falciparum 
primary sequence. The addition of a C-terminal cysteine was indicated with a “C” in each case.  
 

The GAPDH sequences were aligned as shown in Figure 3.4. The common peptide 

“KDDTPIYVMGINH” (red; residues 126 to 138), where the “K” residue was a single amino 

acid insert which was absent from the chicken and mammalian sequences. This peptide 

sequence was 100% conserved amongst the Plasmodium sequences and shared only 54% 

identity with the mammalian and chicken sequences. The two P. falciparum specific peptides 

“ADGFLLIGEKKVSVFA” (green; residues 63 to 78) and “AEKDPSQIPWGKCQV” (blue; 

residues 78 to 92) scored 6 and 30% identity with their mammalian and chicken orthologs. 

The Plasmodium sequence aligning with the “KG” insert was avoided and will be discussed 

later. 
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 PfGAPDH          MAVTKLGINGFGRIGRLVFRAAFGRKDIEVVAINDPFMDLNHLCYLLKYDSVHGQFPCEV 60 

PvGAPDH          MAVTKLGINGFGRIGRLVFRAAYERSDIEVVAVNDPFMDIKHLCYLLKYDSIHGVFPAEV 60 

PkGAPDH          MAATKLGINGFGRIGRLVFRSAYERNDVEVVAVNDPFMDIKHLCYLLKYDSVHGVFPAEV 60 

PyGAPDH          MAITKVGINGFGRIGRLVFRSAQERSDIEVVAINDPFMDINHLIYLLKHDSVHGKFPCEV 60 

P.spp ID         ** **:**************:*  *.*:****:******::** ****:**:** **.** 

GallusGAPDH      --MVKVGVNGFGRIGRLVTRAAVLSGKVQVVAINDPFIDLNYMVYMFKYDSTHGHFKGTV 58 

HuGAPDH          MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVYMFQYDSTHGKFHGTV 60 

MouseGAPDH       --MVKVGVNGFGRIGRLVTRAAICSGKVEIVAINDPFIDLNYMVYMFQYDSTHGKFNGTV 58 

Overall ID          .*:*:********** *:*    .:::**:****:*:::: *::::** ** *   * 

 

PfGAPDH          THADGFLLIGEKKVSVFAEKDPSQIPWGKCQVDVVCESTGVFLTKELASSHLKGGAKKVI 120 

PvGAPDH          TPGDGCFTVGNKKIFVHSEKDPAQIPWGKYEIDVVCESTGVFLTKELSNAHLKGGAKKVI 120 

PkGAPDH          TPGDGFFTIGNKKIFVHHEKDPANIPWGKYGIDVVCESTGVFLTKELSSAHLKGGAKKVI 120 

PyGAPDH          TPTEGGIMVGSKKVVVYNERDPAQIPWGKHAIDVVCESTGVFLTKELSNAHIKGGAKKVI 120 

P.spp ID         *  :* : :*.**: *. *:**::*****  :***************:.:*:******** 

GallusGAPDH      KAENGKLVINGHAITIFQERDPSNIKWADAGAEYVVESTGVFTTMEKAGAHLKGGAKRVI 118 

HuGAPDH          KAENGKLVINGNPITIFQERDPSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVI 120 

MouseGAPDH       KAENGKLVINGKPITIFQERDPTNIKWGEAGAEYVVESTGVFTTMEKAGAHLKGGAKRVI 118 

Overall ID       .  :* : :  . : :. *:**::* *..   : * ****** * * : :*::****:** 

 

PfGAPDH          MSAPPKDDTPIYVMGINHHQYDTKQLIVSNASCTTNCLAPLAKVINDRFGIVEGLMTTVH 180 

PvGAPDH          MSAPPKDDTPIYVMGINHDKYDPKQLIVSNASCTTNCLSPIAKVLHDNFGIVEGLMTTVH 180 

PkGAPDH          MSAPPKDDTPIYVMGINHDKYDPKQTIVSNASCTTNCLAPIAKVLNDKFGIVEGLMTTVH 180 

PyGAPDH          MSAPPKDDTPIYVMGINHEKYNSSQTIVSNASCTTNCLAPIAKVIHENFGIVEGLMTTVH 180 

P.spp ID         ******************.:*: .* ************:*:***:.:.************ 

GallusGAPDH      ISAPS-ADAPMFVMGVNHEKYDKSLKIVSNASCTTNCLAPLAKVIHDNFGIVEGLMTTVH 177 

HuGAPDH          ISAPS-ADAPMFVMGVNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTVH 179 

MouseGAPDH       ISAPS-ADAPMFVMGVNHEKYDNSLKIVSNASCTTNCLAPLAKVIHDNFGIVEGLMTTVH 177 

Overall ID       :***   *:*::***:**.:*: .  *:**********:*:***:.:.************ 

 

PfGAPDH          ASTANQLVVDGPSKGGKDWRAGRCALSNIIPASTGAAKAVGKVLPELNGKLTGVAFRVPI 240 

PvGAPDH          ASTANQLVVDGPSKGGKDWRAGRCALSNIIPASTGAAKAVGKVLPELNGKLTGVAFRVPI 240 

PkGAPDH          ASTANQLVVDGPSKGGKDWRAGRCALTNIIPASTGAAKAVGKVLPELNGKLTGVAFRVPI 240 

PyGAPDH          ASTANQLVVDGPSKGGKDWRAGRSALLNIIPASTGAAKAVGKVLPELNGKLTGVAFRVPI 240 

P.spp ID         ***********************.** ********************************* 

GallusGAPDH      AITATQKTVDGPS--GKLWRDGRGAAQNIIPASTGAAKAVGKVIPELNGKLTGMAFRVPT 235 

HuGAPDH          AITATQKTVDGPS--GKLWRDGRGALQNIIPASTGAAKAVGKVIPELNGKLTGMAFRVPT 237 

MouseGAPDH       AITATQKTVDGPS--GKLWRDGRGAAQNIIPASTGAAKAVGKVIPELNGKLTGMAFRVPT 235 

Overall ID       * **.* .*****  ** ** ** *  ****************:*********:***** 

 

PfGAPDH          GTVSVVDLVCRLQKPAKYEEVALEIKKAAEGPLKGILGYTEDEVVSQDFVHDNRSSIFDM 300 

PvGAPDH          GTVSVVDLVCRLEKPAKYEEIAAQMKKAAEGPLKGILGYTEDEVVSQDFVHDKRSSIFDL 300 

PkGAPDH          GTVSVVDLVCRLEKPAKYEEIAAHMKKAAEGPLKGILGYTEDEVVSQDFVHDKRSSIFDM 300 

PyGAPDH          GTVSVVDLVCRLEKPAKYEDVAKKIKEASEGPLKGILGYTDEEVVSQDFVHDSRSSIFDL 300 

P.spp ID         ************:******::* .:*:*:***********::**********.******: 

GallusGAPDH      PNVSVVDLTCRLEKPAKYDDIKRVVKAAADGPLKGILGYTEDQVVSCDFNGDSHSSTFDA 295 

HuGAPDH          ANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPLKGILGYTEHQVVSSDFNSDTHSSTFDA 297 

MouseGAPDH       PNVSVVDLTCRLEKPAKYDDIKKVVKQASEGPLKGILGYTEDQVVSCDFNSNSHSSTFDA 295 

Overall ID        .******.***:*****:::   :* *::**********:.:*** **  :.:** 

 

PfGAPDH          KAGLALNDNFFKLVSWYDNEWGYSNRVLDLAVHITNN- 337  

PvGAPDH          KAGLALNDNFFKIVSWYDNEWGYSNRVLDLAVHITKH- 337 

PkGAPDH          KAGLALNDNFFKIVSWYDNEWGYSNRVLDLAIHITKH- 337 

PyGAPDH          KAGLALNDNFFKIVSWYDNEWGYSNRLLDLAIHITKH- 337 

P.spp ID         ************:*************:****:***:. 

GallusGAPDH      GAGIALNDHFVKLVSWYDNEFGYSNRVVDLMVHMASKE 333 

HuGAPDH          GAGIALNDHFVKLISWYDNEFGYSNRVVDLMAHMASKE 335 

MouseGAPDH       GAGIALNDNFVKLISWYDNEYGYSNRVVDLMAYMASKE 333 

Overall ID        **:****.*.*::******:*****::**  :::.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Alignment of Plasmodium and mammalian GAPDH sequences showing selected peptide 
epitopes chosen for polyclonal chicken antibody and monoclonal scFv production 
A multiple sequence alignment of the P. falciparum (PfGAPDH); P. vivax (PvGAPDH); P. knowlesi 
(PkGAPDH); P. yoelii (PyGAPDH); human (HuGAPDH); chicken (GallusGAPDH) and mouse 
(MouseGAPDH) GAPDH amino acid sequences was done using ClustalΩ. Percentage identity (ID) was the first 
criterion for selection and residues were annotated as follows: “*” identical residues; “:” conserved residues; “.” 
semi-conserved residues and blank spaces represented no identity between the sequences. Percentage identity 
was assessed between the 4 Plasmodium sequences (P. spp ID) and between all 7 GAPDH sequences (Overall 
ID).  Specific peptides were selected based on lowest percentage identity and common peptides on 100% identity 
between the Plasmodium sequences. The three peptide sequences of interest were underlined in green and blue 
for the specific peptides and red for the common peptide. Sequence accession numbers from PlasmoDB are 
PfGAPDH: PF3D7_1462800; PvGAPDH: PVX_117322; PkGAPDH: PKH_124290; PyGAPDH: PY17X_1330200. NCBI 
ID’s for Human GAPDH: P04406.3; Chicken (Gallus gallus) GAPDH: NP_989636.1; Mouse GAPDH: AAH83149.1 
(accessed 16.9.15). 
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In contrast to the LDH peptides, the cysteine was added N-terminally to all three GAPDH 

peptides as shown by the C in Figure 3.5 to follow. Flexibility was prioritised for coupling of 

the common and the second P. falciparum specific peptides (Figure 3.5 (A and C) 

respectively). The coupling orientation for the first P. falciparum peptide (green) in Figure 3.5 

(B) followed the same logic as the LDH peptides described earlier. In this case flexibility 

scores were similar at either end of the peptide. 

 

Figure 3.5 Predict7TM analyses of three selected Plasmodium GAPDH peptides  
Predict7TM plots of the three GAPDH peptides illustrating hydrophilicity, surface probability, flexibility and 
antigenicity (key in the bottom right). The common peptide plotted in (A) and the two P. falciparum specific 
peptides were plotted in (B) and (C). Flexibility and antigenicity were plotted on the secondary axes in each 
graph. The amino acid sequences were shown along the bottom of the graphs, with the numbering of the first and 
last amino acid residues shown in superscript corresponding to the residue number in the P. falciparum primary 
sequence. The addition of a C-terminal cysteine was indicated with a “C” in each case. 
 

Finally the PMT peptides were selected (Figure 3.6) and since PMT is not found in humans or 

chickens and is absent from mouse-infecting malarias, the alignment was a lot simpler than 

that of LDH and GAPDH.  The common Plasmodium peptide “LENNQYTDEGVK” (red) 

included amino acids 14 to 25 of P. falciparum PMT and scored 83% identity with the 
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PfPMT    MTLIENLNSDKTFLENNQYTDEGVKVYEFIFGENYISSGGLEATKKILSDIELNENSKVL 60 
PvPMT    ---MISEPVDIKYLENNQYSDEGIKAYEFIFGEDYISSGGIIATTKILSDIQLDANSKVL 57 

PkPMT    ---MVSESVDIEYLENNQYSDEGIKAYEFIFGEDYISSGGIVATTKILSDIYLEPNSKVL 57 
            : .   *  :******:***:*.*******:******: **.****** *: ***** 
PfPMT    DIGSGLGGGCMYINEKYGAHTHGIDICSNIVNMANERVSGNNKIIFEANDILTKEFPENN 120  
PvPMT    DIGSGLGGGCKYINEKYGAHVHGVDICEKMVTIAKLRNQDKAKIEFEAKDILKKDFPEST 117 
PkPMT    DIGSGLGGGCKYINEKYDAHVYGVDICEKMIAIAKLRNKDKSKVEFEAMDILKKDFPECT 117 
         ********** ******.**.:*:***.::: :*: * ..: *: *** ***.*:*** . 
PfPMT    FDLIYSRDAILHLSLENKNKLFQKCYKWLKPTGTLLITDYCATEKENWDDEFKEYVKQRK 180  
PvPMT    FDMIYSRDSILHLSYADKKMLFEKCYKWLKPNGILLITDYCADKIENWDEEFKAYIKKRK 177 
PkPMT    FDMIYSRDAILHLPYADKKKLFEKCYKWLKPNGILLITDYCADKIENWDEEFKAYINKRK 177 
         **:*****:****.  :*: **:********.* ******** : ****:*** *:::** 
PfPMT    YTLITVEEYADILTACNFKNVVSKDLSDYWNQLLEVEHKYLHENKEEFLKLFSEKKFISL 240  
PvPMT    YTLMPIQEYGDLIKSCKFQNVEAKDISDYWLELLQLELSKLEEKKEEFLKVYSIKEYNSL 237 
PkPMT    YTLIPIQDYGDLIKSCNFQNVQAKDISDYWLELLQMELNKLEEKKDEFLKLYPTDEYNSL 237 
         ***:.:::*.*::.:*:*:** :**:**** :**::* . *.*:*:****::. .:: ** 
PfPMT    DDGWSRKIKDSKRKMQRWGYFKATKN- 266  
PvPMT    KDGWTRKIKDTKRDLQKWGYFKAQKMI 264 
PkPMT    KDGWTRKIKDTKRHLQKWGYFKAQKMV 264 
         .***:*****:**.:*:****** *   

 

P. vivax and P. knowlesi proteins. There were two substitutions in both the P. vivax and 

P. knowlesi sequences, namely a “T” for “S” and a “V” for “I”. The P. falciparum specific 

peptide “EVEHKYLHENKE” (blue) shared only 33% identity with its P. vivax and 

P. knowlesi counterparts including amino acids “E, L, E and K” in that order.  

 

 

 

 

 

 

 

Figure 3.6 Alignment of Plasmodium PMT sequences showing selected peptide epitopes chosen for 
polyclonal chicken antibody and monoclonal scFv production 
A multiple sequence alignment of the P. falciparum (PfPMT); P. vivax (PvPMT); P. knowlesi (PkPMT) PMT 
amino acid sequences was done using ClustalΩ. Percentage identity (ID) was the first criterion for selection and 
residues were annotated as follows: “*” identical residues; “:” conserved residues; “.” semi-conserved residues 
and blank spaces represented no identity between the sequences. Percentage identity was assessed between the 
three malaria sequences.  Specific peptides were selected based on lowest percentage identity and common 
peptides on 100% identity between the malaria sequences. The three peptide sequences of interest were 
underlined in blue and green for the specific peptides and red for the common peptide. Sequence accession 
numbers are PfPMT: PlasmoDB ID: PF3D7_134300; PvPMT: PlasmoDB ID: XP_001614208.1; PkPMT: 
PlasmoDB ID: XP_002259925.1. 

Choosing the P. vivax and P. knowlesi epitopes proved more challenging as they shared 

greater identity with each other (88%) than with the P. falciparum sequence (64 and 62% 

respectively). The epitopes highlighted in green, residues 228 to 239, were chosen as the 

species specific peptides for P. vivax “VYSIKEYNSLKD” and P. knowlesi 

“LYPTDEYNSLKD” detection respectively. The sequences differed by four of the twelve 

amino acids, namely “V, S, I and K” all situated toward the N-termini of the peptides. 

The coupling orientation of the peptides was determined next (Figure 3.7). The orientation of 

the common peptide was based on exposing the greater surface probable amino acids and 

hydrophilic N-terminus, since flexibility was similar at either end. Although the flexibility in 

the case of the P. falciparum peptide was greatest toward the N-terminus, the coupling 

cysteine “C” was added to the same terminus due to the very high surface probability and 
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hydrophilicity scores at the C-terminus. Finally the P. vivax and P. knowlesi peptides were 

coupled via their C-termini, therefore exposing the greater surface probable and hydrophilic 

N-termini, but more importantly the N-terminal ends contained the four variable amino acids 

mentioned above.  

 
 
Figure 3.7 Predict7TM analyses of four selected Plasmodium PMT peptides  
Predict7TM plots of the three PMT peptides illustrating hydrophilicity, surface probability, flexibility and 
antigenicity (key in the bottom right). The common peptide was plotted in (A) with the species specific peptides 
for P. falciparum, P. vivax and P. knowlesi plotted in (B to D) respectively. Flexibility and antigenicity were 
plotted on the secondary axes in each graph. The amino acid sequences were shown along the bottom of the 
graphs, with the numbering of the first and last amino acid residues shown in superscript corresponding to the 
residue number in the P. falciparum primary sequence. The addition of a C-terminal cysteine was indicated with 
a “C” in each case. 
 
The selected peptides were shown to be surface located on the respective crystal structures of 

each of the proteins as highlighted in Figure 3.8, complementing the Predict7TM results. 
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Figure 3.8 Location of the P. falciparum specific and the pan-Plasmodial epitopes on the 3D crystal 
structure of Pf/PvLDH (A), PfGAPDH (B) and PfPMT (C) 
The selected peptide sequences were located on the surface of the 3D structure of PfLDH (shown as a monomer) 
on the left in (A) with the PvLDH tetramer shown on the right, PfGAPDH (shown as a tetramer) in (B) and 
PfPMT (shown as a monomer) in (C) and highlighted in their corresponding colours on the structure using 
Swiss-Pdb viewer 4.0.1 (http://www.expasy.org.spdbv/). The amino acid sequences were shown alongside of the 
structure, with the first and last amino acid residues shown in superscript and the addition of an N- or C- 
terminal cysteine indicated with a “C” in each case. Structural data for PfLDH (1t2d), PvLDH (2aa3) PfGAPDH 
(1ywg) and PfPMT (3uj6) obtained from Swiss-Pdb.   
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It should be noted that a tetrameric crystal structure of P. falciparum LDH was not available 

and the monomer was shown instead (Figure 3.8 (A)), with the tetrameric P. vivax LDH 

alongside. Only one of the four specific peptides (green) was not visible as it was hidden 

behind the molecule. 

Table 3.4 summarises the selected peptides, where the chosen peptides were underlined. The 

common LDH peptide was identical in all but P. malariae where it scored 93% identity due to 

a semi-conserved valine for alanine substitution in its sequence. The common peptide for 

GAPDH was identical throughout all five human infecting malarias. Finally, for PMT the 

common peptide had 83% identity in both P. vivax and P. knowlesi. This was due to 

conserved substitutions of threonine to serine and valine to isoleucine in both cases for all the 

Plasmodium species sequences available. As expected the species specific peptides all scored 

below 75% identity with their respective orthologs, with the PfLDH specific peptide scoring 

the highest identity of 75% with both P. malariae and P. ovale. The only peptide not 

highlighted was the P. knowlesi PMT peptide, as it spans the same region as the P. vivax 

peptide and its BLAST result identified only P. knowlesi PMT (indicated with “#” in the 

PvPMT column).  

Each selected peptide was subjected to NCBI BLASTp analysis and the results that had 100% 

sequence coverage and 100% sequence identity were listed in Table 3.4. As expected the 

common peptides in each case had the greatest number of BLAST hits as they were located in 

highly conserved regions. Only Plasmodium hits were identified for all peptides, supporting 

the specificity of the peptides for malaria diagnosis. In contrast to the common peptides, the 

species specific peptides BLAST analysis identified some similar simian malaria species. In 

the case of both the LDH common and P. falciparum peptides, hits from as yet unclassified 

gorilla and chimpanzee Plasmodium clades were also identified. The P. vivax PMT peptide 

identified a methanogen (Methanobrevibacter wolinii) isolated from sheep faeces. 

Importantly in all cases, no alternative human pathogen sequences were returned which 

suggests that the peptides were specific to malaria proteins and should therefore not result in 

cross reactivity with alternate human pathogen proteins sequenced and identified to date. In 

addition to this, no alternate human, mouse, chicken or rabbit proteins were identified. This 

would rule out cross reactivity with linear epitopes in human proteins and also validates the 

potential use of the animal species for anti-peptide-antibody production.



81 
 

 Table 3.4 Alignment and BLAST results of the selected Plasmodium LDH, GAPDH and PMT peptides  

 

Percentage sequence identity of the chosen peptide sequence (underlined) are given in brackets. Overall identity between the peptide sequences was annotated as follows: 
“*” identical residues; “:” conserved residues; “.” semi-conserved residues and blank spaces represented no identity between the sequences. The malariae and ovale 
sequences were from partial sequences attained from NCBI (accessed 21.9.15). Accession numbers were as follows: P. malariae LDH AAS77572.1, P. ovale LDH 
AIU41758.1, P. malariae GAPDH ABU50375.1 and P. ovale GAPDH AJG43655.1. The BLAST results list species with 100% sequence coverage and identity with the 
underlined peptide sequences. The P. knowlesi BLAST result was included under the PvPMT column and identified only P. knowlesi PMT as indicated with “#”.

Plasmodium 
species PfLDH  LDH common PfGAPDH 1 PfGAPDH 2 GAPDH common PfPMT  PvPMT  PMT common 
falciparum LISDAELEAIFD (100) APGKSDKEWNRDDL (100) ADGFLLIGEKKVSVFA (100) AEKDPSQIPWGKCQV (100) KDDTPIYVMGINH (100) EVEHKYLHENKE (100) LFSEKKFISL (40) LENNQYTDEGVK (100) 

vivax KITDEEVEGIFD (58) APGKSDKEWNRDDL (100) GDGCFTVGNKKIFVHS (38) SEKDPAQIPWGKYEI (67) KDDTPIYVMGINH (100) QLELSKLEEKKE (42) VYSIKEYNSL (100) LENNQYSDEGIK (83) 

malariae KITDAELDAIFD (75) VPGKSDKEWNRDDL (93) GDGKIIVGNKTINIHN (25) NEKEPSQIPWGKYGI (67) KDDTPIYVMGINH (100) - - - 

ovale KITDAELDAIFD (75) APGKSDKEWNRDDL (100) GEGMFTVGDKKIYVHS (31) SEKDPAQIPWGKYAI (67) KDDTPIYVMGINH (100) - - - 

knowlesi KITDEEVEAIFD (67) APGKSDKEWNRDDL (100) GDGFFTIGNKKIFVHH (50) HEKDPANIPWGKYGI (60) KDDTPIYVMGINH (100) QMELNKLEEKKD (33) LYPTDEYNSL (60) LENNQYSDEGIK (83) 

Overall 
Identity 

 *:* *::.*** .************* .:* : :*:*.: :.  **:*::*****  : ************* ::* . *.*:*: ::. .:: ** ******:***:* 

BLAST  falciparum, 

gorilla clade G1 

to G3, 

chimpanzee clade 

C2 and C3 

falciparum,vivax, 

knowlesi, ovale, 

yoelii 

nigeriensis, 

semiovale, 

fragile, 

cynomolgi, gorilla 

clade G1 to G3, 

chimpanzee clade 

C2 and C3, 

chabaudi chabaudi, 

berghei, yoelii 

yoelii, vinkei 

petteri  

falciparum falciparum, 

reichenowi 

falciparum, 

vivax, ovale 

curtisi, chabaudi 

chabaudi, 

malariae, 

knowlesi, 

coatneyi, 

reichenowi, 

fragile, 

brasilianum, 

cynomolgi, 

berghei, vinkei 

vinkei, yoelii 

yoelii, inui, 

gallinaceum  

falciparum vivax, 

Methanobre-

vibacter 

wolinii  

 

# knowlesi 

falciparum, 

reichenowi 
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3.2.3 Verification of peptide epitopes in the recombinant proteins used in this study. 

The recombinant proteins expressed in this study included P. falciparum LDH, GAPDH and 

PMT; P. vivax LDH and PMT; P. knowlesi PMT and P. yoelii LDH and GAPDH. Plasmid 

DNA coding for each of the proteins was isolated from the E. coli BL21(DE3) expression 

hosts and sequenced. The consensus sequences were then aligned with the respective coding 

sequences to verify the identity of the insert DNA. The consensus sequences were also 

translated and aligned with their respective protein sequences as some of the sequences were 

codon optimised for expression in E. coli. The summarised sequence identity results of the 

coding sequence and translated protein sequences were shown in Table 3.5. 

 

Table 3.5 Alignment and BLAST results for the sequenced vector DNA inserts and translated 
sequences 

 

All sequences aligned with greater than 90% identity to their corresponding DNA coding 

sequences except for P. vivax PMT showing 78% identity. The resulting translated protein 

sequences either aligned just as well (PfLDH and PyLDH) or better than their respective 

DNA sequences. Most notably was the codon optimised PvPMT sequence which had only 

78% identity with its corresponding DNA coding sequence, but when translated showed 95% 

identity to its protein amino acid sequence. 

 

 

 

Protein  Plasmodium species strain DNA sequence identity (%)  Translated protein identity (%) 

LDH falciparum K1 98 98 

 
vivax Sal-1 99.7 100 

 
yoelii 17XNL 98 98 

GAPDH falciparum 3D7 96 99 

 
yoelii 17XNL 91 96 

PMT falciparum 3D7 99 100 

 
vivax Sal-1 78 95 
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3.3 Discussion 

Ideally an immuno-diagnostic target molecule should be present throughout the malaria red 

blood cell cycle and expressed at relatively high levels to allow for detection of the target 

during early stages of infection while parasitemia is still low. The target molecule should also 

be parasite specific and not expressed in the host, or if protein in nature, have parasite 

specific peptides within its sequence, which could be exploited for diagnosis. The 

bioinformatics approach used in this study to identify such potential targets was outlined in 

this chapter.  

The aim to identify highly abundant proteins was addressed using transcriptome and 

proteomic data (LeRoch et al., 2003; Foth et al., 2011; www.PlasmoDB.org). LeRoch et al. 

(2003), Bozdech et al. (2003) and others hypothesised that the malaria parasite may have a 

“just in time” strategy for gene expression. Simply put the genes of the proteins required 

during a specific growth stage are transcribed and translated as the parasite requires them. 

Foth et al. (2011) studied the proteome of the parasite and found other possibilities. The “just 

in time” hypothesis was supported for some genes, but others exhibited delayed translation 

while they still mirrored their respective mRNA fluctuations. Finally a third group of genes 

clearly experienced alternate control of its proteome most likely involving post-translational 

modifications, meaning that their protein levels did not necessarily correlate with mRNA 

levels. The list of 35 potential proteins compiled here included proteins described by all three 

criteria. 

Post translational modifications have been identified in LDH, GAPDH and PMT. Post 

translational modifications include acetylation, nitrosylation, phosphorylation, methylation 

and ubiquitination amongst others (Alam et al., 2014; Chung et al., 2009). In humans, post 

translational modifications result in approximately 1.8 million protein variants from only 

~30000 open reading frames (Alam et al., 2014). Acetylation of lysine residues was long 

known to be essential in histone function (Chung et al., 2009), but has only been recognised 

as a regulatory modification in other malaria proteins in the last three to five years with Miao 

et al. publishing the malaria “acetylome” in 2013, which interestingly included LDH, 

GAPDH and PMT. Acetylation is thought to play a role in the regulation of glycolysis 

(Guarente, 2011), where alternate modifications such as phosphorylation seem to “switch on” 

non-glycolytic moonlighting functions (Sirover 1999, 2005, 2012). Importantly post 

translational modifications such as acetylation and phosphorylation may affect antibody 
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affinities due the change in charge of the amino acid side chains and these possibilities are 

discussed in the general discussion (chapter 7).  

Buehner et al. first described the common N-terminal nucleotide (NAD+(H))  binding motifs 

between mammalian LDH and GAPDH (Rossman fold) in 1973. This nucleotide binding 

ability has since implicated both mammalian enzymes in transcriptional regulation (Kim and 

Dang., 2005). Although this has not been empirically shown for Plasmodium LDH or 

GAPDH, both orthologs also share a common Rossman fold (Adams et al., 1973; Akinyi et 

al., 2008; Daubenberger et al., 2000; Granchi et al., 2010), suggesting they may also share 

this moonlighting function. Several additional moonlighting functions found with mammalian 

GAPDH, as a result of post translational modifications, have also been described (Alam et 

al., 2014). These may explain the apparent increased abundance of GAPDH in relation to 

LDH in Plasmodium. Some of these functions include: DNA repair, RNA binding, telomere 

binding, cell cycle regulation, histone expression, membrane fusion, phosphorylation, 

phosphatidyl serine binding, nitric oxide interaction, cytoskeletal binding and apoptosis 

(Demarse et al., 2009; Kaneda et al., 1997; Kim and Dang, 2005; Sirover M.A., 1999, 2012; 

Tristan et al., 2011). Mammalian GAPDH has been shown to interact with Band 3 on the 

erythrocyte surface in an NADH and ATP dependent manner (Heard et al., 1998). 

Structurally P. falciparum GAPDH shares 63.5% amino acid sequence identity with its 

human counterpart (Daubenberger et al., 2003), and forms a tetramer in solution (337 aa; 

36651 Da; pI 7.59) (Berwal et al., 2008; Daubenberger et al., 2000; PlasmoDB; Satchell et 

al., 2005). P. falciparum GAPDH shares several post translational modification sites with its 

human counterpart, in addition to a few unique sites (Alam et al., 2014). In P. falciparum 

studies thus far, GAPDH has been detected in parasite membrane fractions in a GTPase 

(Rab2) dependent manner and the authors suggested roles in apicoplast formation and vesicle 

transport (Daubenberger et al., 2003), although sequence analysis suggests GAPDH to be 

cytosolic and not plastid targeted (Akinyi et al., 2008; Alam et al., 2014). These findings 

suggest there may be multiple additional functions for both “housekeeping” genes which may 

explain their different abundances within the parasite in spite of their linked role in cycling 

cellular NAD+(H). 

The choice of peptides in this study was based on the approach taken by Hurdayal et al. 

(2010). The current diagnostic target LDH was the subject of that study and was therefore 

included as a model for this study. The peptide selection strategy from the Hurdayal et al. 

(2010) study was to choose specific and common peptide epitopes that were unique to the 
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Plasmodium proteins using multiple sequence alignment and epitope prediction programs. 

Polyclonal antibodies raised against these peptides then allowed for the specific detection of 

Plasmodium LDH even to a species level. The GAPDH and PMT peptides were identified 

using a similar strategy and would serve as the target antigens for raising polyclonal chicken 

antibodies as well as chicken scFv antibodies as described in the later chapters. The chosen 

peptides were between ten and 16 amino acids in length, which is sufficient to allow specific 

detection of the parent protein (Hurdayal et al., 2010; Tomar et al., 2006). Multiple sequence 

alignments were used to identify the common and species specific targets. Predict7TM 

analysis was then used to analyse the potential peptides. Since each amino acid side chain has 

unique properties, this program uses algorithms to compare primary amino acid sequences 

and is able to predict secondary structure (Chou and Fasman, 1979); surface probability 

(Emini et al., 1985; Kyte and Doolittle, 1982); hydrophilicity (Hopp and Woods, 1981) and 

antigenicity (Jameson and Wolf, 1988). Since the recognition of proteins in an RDT or 

ELISA format uses antibodies, the peptides had to be located on the surface of their 

respective proteins, to facilitate antibody recognition (Saravanan et al., 2009) making the 

hydrophilicity plots very important. To complement these plots, target peptides were also 

located and shown to be on the surface of their respective parent protein crystal structures. 

The greater the hydrophilicity also meant that the peptides were likely to be easily solubilised 

and stable in solution which is essential for use in an ELISA format. Due to the small size of 

peptides, they are not able to stimulate an immune response by themselves and require 

coupling to larger carrier proteins such as rabbit albumin used in this study (Hurdayal et al., 

2010; Tomar et al., 2006). For this purpose and to allow coupling to an affinity resin, 

terminal cysteine residues were added to the selected peptides during synthesis. The 

Predict7TM plots were important in deciding whether the cysteines were added N- or C-

terminally as it was preferred to expose the side with the greatest hydrophilicity, surface 

probability and flexibility.  

Both sets of peptides selected from LDH were within regions that had insertions either in the 

Plasmodium proteins or the mammalian counterparts. The common peptide had a five amino 

acid insertion and formed part of the cofactor binding loop (Alam et al., 2014; Gomez et al., 

1997). The specific peptides lacked a two amino acid insertion present in the mammalian 

proteins. The GAPDH peptides were selected from the regions of greatest variation, which is 

within the Rossman fold with 68% variance amongst the Plasmodium (Akinyi et al., 2008; 

Fast et al., 2001). One of the major differences between human and Plasmodium GAPDH is 
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the presence of a two amino acid (K194; G195) insert within a structural region called the S-

loop (residue 188 to 203) in the Plasmodium protein (Daubenberger et al., 2000; Satchell et 

al., 2005). The S-loop separates the Rossman folds of the adjacent subunits in the tetrameric 

form of the enzyme (Akinyi et al., 2008). Another difference is a substitution of two amino 

acids (L187; V188 for K187; T188) in the same region of the Plasmodium protein 

(Daubenberger et al., 2000). These changes are thought to be responsible for the 

ferriprotoporphyrin susceptibility of the Plasmodium protein in comparison to its human 

counterpart (Akinyi et al., 2008; Satchell et al., 2005). 

PfPMT is not expressed in humans and its closest homolog is a histamine methyltransferase 

which is also a small-molecule S-adenocyl-L-methionine dependent methyl transferase with 

7-16% sequence identity and approximately 31% sequence similarity around the substrate 

binding site (Horton et al., 2001). Amongst the different Plasmodium species PMT has only 

been confirmed in P. falciparum, P. vivax and P. knowlesi, with over 62% sequence identity 

between these species. Following genome sequencing PMT may also be expressed in P. 

reichenowi and P. gallinaceum, but appears to be absent from all rodent malaria species 

(Dechamps et al., 2010). PMT homologs were identified in Burkholderia pseudomallei, B. 

oklahomensis, Xenopus laevis, Xenopus tropicalis, Caenorhabditis briggsae, Danio rerio, 

Branchiostoma floridae, Caenorhabditis elegans and Anopheles gambiae, but critically, no 

human homologs exist (Pessi et al., 2004; Bobenchik et al., 2013). In theory, antibodies 

raised against such a target should have no cross-reactivity with the human proteome. The 

closest homolog to PfPMT in humans is a histamine methyltransferase which is also a small-

molecule SAM-dependent methyl transferase with 7-16% sequence identity and 

approximately 31% sequence similarity around the substrate binding site (Horton et al., 

2001). 

Selection of P. falciparum specific peptide sequences was less challenging than selecting the 

P. vivax and P. knowlesi peptides. This was because the P. falciparum proteins had lower 

identity with their Plasmodium counterparts. As a result, the chosen P. vivax and P. knowlesi 

LDH species specific peptides aligned with 91% identity, the GAPDH sequences had around 

80% identity and the PMT sequences 60%. It would be important to test the specificity of the 

antibodies produced against these targets using P. vivax and P. knowlesi proteins and parasite 

lysates. In this study, the P. falciparum and P. vivax LDH and PMT, P. falciparum GAPDH, 

as well as the P. yoelii LDH and GAPDH proteins were expressed and purified. The coding 

DNA for each recombinant protein was verified by sequencing. According to Hill et al., 
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(2000); Kristensen et al., (1992) and Lamperti et al., (1992) Genbank entries may carry 

between 3.1 to 3.6% error rates. The sequences in this study were all within 4% identity of 

their respective database entries, where only the P. yoelii GAPDH sequence scored 91% and 

the P. vivax PMT sequenced scored 78 %. The P. vivax PMT sequence was codon optimised 

for expression in E. coli however, which explained its lower identity (Garg et al., 2015). 

When translated, it scored 95% identity with the primary protein amino acid sequence and the 

P. yoelii GAPDH amino acid sequence scored 96%. Overall the sequencing results were 

satisfactory and validated the presence of the peptide targets on the recombinant proteins 

expressed and used in this study as described in the next chapter.  
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Chapter 4 

Recombinant expression, purification and characterisation of the potential 

Plasmodium diagnostic target proteins LDH, GAPDH and PMT 

 

4.1 Introduction 

Each of the Plasmodium target proteins sequenced in chapter 3 was recombinantly expressed 

and characterised as described here. This included three orthologs of LDH from Plasmodium 

falciparum, P. vivax and P. yoelii; two of GAPDH from P. falciparum and P. yoelii and two 

of PMT from P. falciparum and P. vivax. The DNA of the genes encoding the recombinant 

proteins was sequenced and translated, confirming the presence of the peptide epitopes 

selected in chapter 3. It was important to assess if these translated proteins folded into similar 

quaternary structures as their native counterparts. If they did then the predicted surface 

location of the peptide epitopes was likely and would reinforce their use for raising antibodies 

as described in chapters 5 and 6. The objectives described in this chapter were therefore to 

express, purify and evaluate the sizes of the recombinant proteins both as reduced monomers 

and in their native forms in solution. The predicted sizes of each of the expressed proteins 

and their quaternary structures are summarised in Table 4.1 (www.plasmodb.org). 

Table 4.1 The predicted monomeric and quaternary sizes of the native Plasmodium target proteins 
recombinantly expressed in this study 

 

 

 

 

 
All sizes were from PlasmoDB (www.plsmodb.org). 
 

The BL21(DE3) E. coli strain was used as the expression host in work described in this 

chapter. Since the plasmid vectors used here were all dependent on the T7/lac promoter 

(pET-15b and pET-28a(+)) or the tac promoter (pKK223-3), an E. coli strain containing a T7 

RNA polymerase (hence the (DE3) nomenclature) capable of binding these promoter regions 

Protein name Expected Mw (kD) Quaternary structure (kD) 
PfLDH 34 tetramer (136) 
PvLDH 34 tetramer (136) 
PyLDH 34 tetramer (136) 
PfGAPDH 37 tetramer (148) 
PyGAPDH 37 tetramer (148) 
PfPMT 31 monomer (31) 
PvPMT 31 monomer (31) 
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was required (de Boer et al., 1983). The BL21 nomenclature refers to the strain’s protease 

deficiency which avoids the need for additional protease inhibitor cocktails in the isolation 

procedure and circumvents protease degradation of the expressed proteins. The BL21 strains 

all lack the ompT and lon proteases (Casali, 2003; Sorensen and Mortensen, 2005). This was 

also important since high density cultures that reach stationary growth phase, like those used 

here (~ 16 hour, overnight cultures) often induce protease expression resulting from a 

depletion of nutrients in the media (Sivashanmugam et al., 2009). 

The abovementioned promoter regions or the lac/tac operator inhibit transcription of the 

target gene of the plasmid vector if bound by a LacI repressor. In the presence of allolactose 

or IPTG (allolactose is a metabolite of lactose and IPTG is a non-hydrolysable analogue) 

LacI loses its affinity for and releases the operator as it binds allolactose or IPTG in solution. 

This in turn allows the transcription and subsequent expression of the target gene (Schumann 

and Ferreira, 2004; Sorensen and Mortensen, 2005). E. coli cells metabolise the simpler 

monosaccharide glucose prior to switching to more complex disaccharides such as lactose. 

Importantly only E. coli strains that harbour the lacZ (β-galactosidase) or lacY (lactose 

permease) genes are known to import and convert lactose to allolactose such as the 

BL21(DE3) strain used here (Casali, 2003; Studier, 2005).  The addition of glucose in culture 

media therefore not only prevents target gene expression, but also promotes rapid growth of 

the culture (Sorensen and Mortensen, 2005). Once an increased biomass is achieved and the 

culture is growing rapidly (exponential growth phase at an O.D. of around 0.5) the E. coli 

culture can be induced manually with the addition of lactose or IPTG to the culture allowing 

targeted gene expression.  

To avoid the manual induction of expression, cultures may also be grown in more complex 

auto-inducing media such as terrific broth (TB) used in this study (Studier W.F., 2005). In 

this case the E. coli cultures are grown in glucose and glycerol containing media allowing 

their rapid growth, where glycerol does not interfere with induction (Blommel et al., 2007; 

Studier, 2005). Instead of manually adding lactose or IPTG, the culture is left to grow for an 

extended period (~ 16 hours) and expression of the target gene occurs when the E. coli cells 

transition from glucose to lactose metabolism as the glucose is depleted. A low glucose 

concentration within the cells induces cyclic AMP production which is necessary to 

completely activate the lac/tac operon (Rosano and Ceccarelli, 2014). Once the cells start 

metabolising lactose to allolactose, the LacI repressor releases the lac/tac operator resulting 

in target gene expression as described earlier. Longer culturing periods of up to 40 hours 
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were described by Sivashanmugam et al., (2009). Over such a long period, protein 

degradation and plasmid loss or instability may occur however. This is primarily due to 

media acidification which means that the pH needs to be monitored in such cultures. This is 

critical with Ampr plasmids as ampicillin degrades rapidly in low pH thus reducing its 

selective pressure (Sivashanmugam et al., 2009). 

Protein expression in E. coli has some guidelines but most conditions may be optimised. 

Importantly media and culture growth should be monitored and optimised as they are usually 

protein dependent (Sivashanmugam et al., 2009). This was observed for the expression of 

PfGAPDH and PfPMT from the same plasmid vector discussed later. Adequate culture 

growth is important as high cell densities usually translate in greater expression yields, which 

is why rich media (such as LB or TB) promoting such growth are used (Studier W.F., 2005). 

High cell densities are important if plasmids with low to moderate copy numbers are used. In 

this case the pET and pKK plasmids both have moderate copy numbers of 15 to 20 per cell 

(Rosano and Ceccarelli, 2014).  Importantly with such expression conditions, the use of 

multiple small cultures as opposed to single large cultures is recommended, as well as a final 

culture volume no greater than 20% of the flask volume to allow better O2 saturation (Rosano 

and Ceccarelli, 2014; Sivashanmugam et al., 2009; Studier, 2005).  

This chapter therefore describes the expression of the potential Plasmodium diagnostic target 

proteins identified in chapter 3. These were purified and characterised in order to verify their 

use for raising antibodies in the chapters 5 and 6 to follow. 
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4.2 Results 

All the recombinant proteins used in this study were expressed from a common, protease 

deficient E. coli BL21(DE3) host strain. Each of the proteins was expressed as a His-tag 

conjugate, although they were not all expressed from the same plasmid vector. This allowed 

for affinity purification using a TALON® Cobalt (Co2+) affinity resin with imidazole as the 

eluent. The results described here are the optimisation of expression and affinity purification 

strategies used and further characterisation of each of the recombinant proteins. 

4.2.1 Results from the E. coli expression host using the proposed expression and 

affinity purification strategies 

Since the E. coli host and affinity resin were common to all the purified proteins, the first 

objective was to assess the growth of the untransformed host under the proposed culture 

temperatures and media used. Figure 4.1 (A) shows a growth time of around 2 hours for each 

of the LB cultures to reach an O.D. of ~ 0.5, where the TB cultures at either 30 or 37°C took 

between 2.5 to 3 hours. The addition of IPTG to the LB cultures at this time did not appear to 

have a detrimental effect on the growth of the E. coli host cells when compared to the LB 

cultures without IPTG addition. In all cases the logarithmic growth phase lasted for about 

2 hours, where after a reduction in growth rate occurred, known as the stationary phase.  

The second control was to assess if any E. coli host proteins would co-purify with the target 

recombinant proteins on the TALON® Co2+ resin and whether the different culture conditions 

resulted in increased co-purified proteins. To do this each of the untransformed cultures were 

prepared by sonication and the cleared lysate supernatants were “purified” using the 

TALON® Co2+ resin. Washes were performed until the absorbance at 280 nm was below 

0.02, which is why in some instances the number of washes varied in the subsequent elution 

profiles (Figures 4.2 to 4.8). In order to elute the bound proteins a 0 to 500 mM imidazole 

gradient over 20 ml was used. Figure 4.1 (B) shows that E. coli host proteins were bound to 

the resin even after the wash steps. When the samples were run on SDS-PAGE, bands were 

only detected once silver stained (Figure 4.1 (C)), with the greatest number of contaminants 

eluting within the first four to five fractions, correlating to ~80 to 100 mM imidazole required 

for the removal of these proteins from the resin. Based on these results later purifications 

were adapted to include 10 mM imidazole in the lysate and wash buffers to reduce the 

number of E. coli host proteins co-purifying with the target proteins (Figures 4.10 to 4.12). 
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Figure 4.1 Untransformed BL21(DE3) host growth under different conditions and elution profiles off a TALON® (Co2+) resin using a linear imidazole 
gradient, analysed by silver staining on SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) in different culture media at 30 and 37°C were plotted, with the addition of IPTG for induced cultures at O.D. 
~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® (Co2+) resin and the bound E. coli proteins were 
eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm on the primary axis. The key to both (A) 
and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% reducing SDS-PAGE gels (C) and silver 
stained. The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the TALON® resin (lane 1); unbound sample (lane 
2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).      
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The imidazole concentrations required to elute the BL21(DE3) proteins off the TALON® 

(Co2+) resin were between 80 to 100 mM as summarised in Table 4.2. 

Table 4.2 Imidazole concentrations required for elution of bound BL21(DE3) proteins off the 
TALON® (Co2+) resin 

 

 

 

 

 

4.2.2 Optimisation of expression and affinity purification strategies for the 

recombinant Plasmodium LDH proteins 

The rPfLDH and rPvLDH proteins were expressed from a pKK223-3 vector, with a His tag 

introduced during the cloning procedure, allowing for the TALON® Co2+ purification, where 

rPyLDH was expressed from a pET-28a(+) plasmid. All growth curves had similar trends, 

where the TB cultures for all three proteins had the fastest growth rates to O.D. ~0.5 as 

shown in Figures 4.2 to 4.4 (A). The rPyLDH TB cultures had an initial O.D. that was higher 

than the LB cultures and maintained this difference in O.D. even during the stationary growth 

phase till around the tenth hour after inoculation. The rPfLDH cultures were the only cultures 

with a noticeable lag phase after inoculation.  

For rPfLDH the highest 280 nm absorbance values were observed for the TALON® (Co2+) 

resin elution profiles of the induced LB cultures grown at 37°C and both the 30 and 37°C TB 

cultures. With regard to rPvLDH the best elution profiles were attained for the TB cultures 

and the induced 37°C LB culture (Figure 4.3 (B)). The TB cultures expressing rPyLDH gave 

the highest absorbance readings in this case (Figure 4.2 to 4.4 (B)).  

Analysis of the eluents on SDS-PAGE showed that some cultures had more co-purifying 

proteins, but these were also limited to the first two to three eluents in each case, which 

correlated to the elution of the E. coli host proteins seen in Figure 4.1 (C). It should be noted 

that the purifications performed here did not include imidazole in the wash steps. Some leaky 

expression was observed for all three proteins with cultures grown in LB media without IPTG 

induction. 

Culture Growth conditions Eluent peak # Imidazole (mM) 
BL21(DE3) LB 30°C 4 80 

 
LB 30°C + IPTG 3 50 

 
TB 30°C 5 100 

 
LB 37°C 5 100 

 
LB 37°C + IPTG 4 80 

 
TB 37°C 5 100 
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Figure 4.2 Growth of rPfLDH expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPfLDH (pKK223-3 vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPfLDH was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm 
on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% 
reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the 
TALON® resin (lane 1); unbound sample (lane 2); final wash (lanes 3); eluents 1 to 6 (lanes 4 to 9). 
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Figure 4.3 Growth of rPvLDH expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPvLDH (pKK223-3 vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPvLDH was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm 
on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% 
reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the 
TALON® resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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Figure 4.4 Growth of rPyLDH expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPyLDH (pET-28a(+) vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPyLDH was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm 
on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% 
reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the 
TALON® resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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The imidazole concentrations required to elute the respective Plasmodium LDH proteins 

expressed here off the TALON® (Co2+) resin are summarised in Table 4.3 below.  

Table 4.3 Imidazole concentrations required for elution of bound recombinant Plasmodium LDH 
proteins off the TALON® (Co2+) resin 

Growth conditions 
rPfLDH 

[Imidazole] (mM) 
rPvLDH 

[Imidazole] (mM) 
rPyLDH 

[Imidazole] (mM) 
LB 30°C 80 80 80 
LB 30°C + IPTG 80 80 80 
TB 30°C 50 80 80 
LB 37°C 80 80 50 
LB 37°C + IPTG 50 80 100 
TB 37°C 80 80 80 

 

Recombinant P. falciparum LDH eluted off the TALON® (Co2+) resin at imidazole 

concentrations between 50 to 80 mM; rPvLDH at 80 mM and rPyLDH between 50 to 

100 mM, dependant on the conditions used for expression.  

 

4.2.3 Optimisation of expression and affinity purification strategies for the 

recombinant Plasmodium GAPDH proteins 

The growth curves of the GAPDH expressing cultures all reached an O.D. value of ~ 0.5 

within 2 to 3 hours after inoculation. However, unlike the LDH cultures, the TB cultures did 

not show faster growth times in comparison to the LB cultures (Figure 4.5 and 4.6 (A)). A 

pET-15b plasmid was used for rPfGAPDH expression and a pET-28a(+) plasmid vector for 

rPyGAPDH. Unlike the rPyLDH cultures that grew better in TB media, the GAPDH cultures 

grew similarly in LB or TB media, even though the same plasmid vector was used. 

Both of the recombinant GAPDH proteins eluted between fractions two and ten in this 

instance, which correlated to an imidazole concentration range of ~30 to 260 mM (Figure 4.5 

and 4.6 (B)). The TB cultures in both cases showed about double the amount of protein eluted 

(absorbance at 280 nm) in comparison to the LB induced cultures, and the SDS-PAGE 

analysis supported these results, although smaller molecular weight products were more 

abundant in the TB cultures (Figure 4.5 and 4.6 (C)).  
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Figure 4.5 Growth of rPfGAPDH expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPfGAPDH (pET-15b vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPfGAPDH was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 
nm on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 
12.5% reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded 
onto the TALON® resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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Figure 4.6 Growth of rPyGAPDH expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPyGAPDH (pET-28a(+) vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPyGAPDH was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 
nm on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 
12.5% reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded 
onto the TALON® resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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The imidazole concentrations required to elute the respective Plasmodium GAPDH proteins 

expressed here off the TALON® (Co2+) resin were summarised in Table 4.4 below.  

Table 4.4 Imidazole concentrations required for elution of bound recombinant Plasmodium 
GAPDH proteins off the TALON® (Co2+) resin 

Growth conditions 
rPfGAPDH 

[Imidazole] (mM) 
rPyGAPDH 

[Imidazole] (mM) 
LB 30°C 80 100 
LB 30°C + IPTG 80 100 
TB 30°C 80 100 
LB 37°C 80 80 
LB 37°C + IPTG 80 80 
TB 37°C 80 80 

 
Recombinant P. falciparum GAPDH eluted off the TALON® (Co2+) resin at around 80 mM 

imidazole, where rPyGAPDH eluted between 80 to 100 mM imidazole dependant on the 

conditions used for expression.  

 

4.2.4 Optimisation of expression and affinity purification strategies for the 

recombinant Plasmodium PMT proteins 

For both recombinant PMT proteins the culture growth curves followed a similar pattern with 

the exception of the TB cultures of rPvPMT, which had the best growth times to O.D. of 

~ 0.5 in comparison to the other cultures (Figure 4.7 and 4.8 (A)). As was observed with 

LDH and GAPDH cultures an O.D. of ~ 0.5 was reached within 2 to 3 hours after 

inoculation. 

Interestingly rPfPMT was the only protein studied here that did not express well in the TB 

culture system (Figure 4.7 (B)), even though the same pET-15b plasmid was used as for 

rPfGAPDH. The SDS-PAGE analysis showed a similar banding pattern for the non-induced 

LB cultures and the TB cultures (Figure 4.7 (C)). The rPfGAPDH cultures on the other hand 

yielded absorbance values approximately double that of the induced LB cultures. Expression 

of rPfPMT was best with IPTG induction in LB media at either 30 or 37°C.  

In contrast to this, the expression of rPvPMT was best when cultures were grown in TB at 

30°C, which exceeded the corresponding induced LB culture yield (absorbance 280 nm) by 

approximately two-fold (Figure 4.8 (B)). In this case the pET-28a(+) vector was used and the 

result correlated with that observed for rPyGAPDH and rPyLDH.  
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Figure 4.7 Growth of rPfPMT expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPfPMT (pET-15b vector) in different culture media at 30 and 37°C were plotted, with the addition 
of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® (Co2+) resin 
and the bound rPfPMT was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm on the 
primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% reducing 
SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the TALON® 
resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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Figure 4.8 Growth of rPvPMT expressing cultures under varying conditions and elution profiles off a TALON® (Co2+) resin analysed by SDS-PAGE 
Growth curves of the expression host E. coli strain BL21(DE3) expressing rPvPMT (pET-28a(+) vector) in different culture media at 30 and 37°C were plotted, with the 
addition of IPTG for induced cultures at O.D. ~ 0.5 indicated on the y-axis in (A). Each of the cultures were lysed by sonication and incubated on 1 ml packed TALON® 
(Co2+) resin and the bound rPvPMT was eluted with a linear imidazole gradient from 0 to 500 mM as shown on the secondary axis in (B), eluting protein measured at 280 nm 
on the primary axis. The key to both (A) and (B) was shown between the graphs. Lysates and eluents of the corresponding cultures plotted in (A and B) were run on 12.5% 
reducing SDS-PAGE gels and Coomassie stained (C). The samples run in each lane were as follows: molecular weight marker (Mw); original sample lysate loaded onto the 
TALON® resin (lane 1); unbound sample (lane 2); final wash (lane 3); eluents 1 to 6 (lanes 4 to 9).  
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The imidazole concentrations required to elute the respective Plasmodium PMT proteins 

expressed here off the TALON® (Co2+) resin were summarised in Table 4.5 below.  

Table 4.5 Imidazole concentrations required for elution of bound recombinant Plasmodium PMT 
proteins off the TALON® (Co2+) resin 

Growth conditions 
rPfPMT 

[Imidazole] (mM) 
rPvPMT 

[Imidazole] (mM) 
LB 30°C 25 25 
LB 30°C + IPTG 80 25 
TB 30°C 25 80 
LB 37°C 25 50 
LB 37°C + IPTG 25 80 
TB 37°C 25 25 

 

Both of the recombinant Plasmodium PMT proteins eluted off the TALON® (Co2+) resin 

between 25 to 80 mM imidazole, dependant on the conditions used for expression.  

 

4.2.5 Expression and affinity purification of the recombinant Plasmodium proteins 

From the initial optimisation experiments, each of the recombinant proteins was expressed 

and purified, with the final yields of purified protein obtained from 50 ml cultures shown in 

Table 4.6. 

Table 4.6 Optimized expression conditions for each recombinant proteins including affinity 
purified yields  

 
 

 

 

 

 
The media used in each case was abbreviated as TB for Terrific broth and LB for Lysogeny broth.  
 

The only notable changes from the optimisation results were that rPfLDH was expressed in 

TB at 37°C in further experiments, since yields from a 50 ml culture were around 9.5 mg, 

which was more than adequate. The rPfLDH yields may have been improved further by using 

Protein 
Plasmid 
vector 

Antibiotic 
(µg/ml) Media Induction 

Temp. 
(°C) 

Yield (mg / 50 
ml culture) 

PfLDH pKK223-3 Ampicillin (50) TB auto 37  9.5 
PvLDH pKK223-3 Ampicillin (50) TB auto 30 2.96 
PyLDH pET-28a(+) Kanamycin (25) TB auto 37 6.05 
PfGAPDH pET-15b Ampicillin (50) TB auto 30 6.55 
PyGAPDH pET-28a(+) Kanamycin (25) TB auto 37 8.95 
PfPMT pET-15b Ampicillin (100) LB 1 mM IPTG 37 5.57 
PvPMT pET-28a(+) Kanamycin (25) TB auto 37 5.87 
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the LB with IPTG induction method. The second change was that rPfPMT was expressed 

overnight using the LB with IPTG induction method. All proteins were expressed at greater 

than 5 mg from 50 ml cultures, except for rPvLDH which yielded approximately 3 mg per 

50 ml culture. Another change to the methodology used in the optimisation studies was that 

10 mM imidazole was included in the lysis and wash buffers, with 250 mM imidazole used in 

the elution buffer. 

Examples of the resulting purifications were shown in Figures 4.9 to 4.11 to follow. Purity of 

the eluted proteins was assessed on 12.5% reducing SDS-PAGE and the recombinant proteins 

were detected in each case with an anti-His tag mouse monoclonal antibody in western blots 

shown alongside the respective gels. 
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Figure 4.9 Recombinant expression and affinity purification of Pf, Pv and PyLDH analysed by SDS-
PAGE and western blot 
All three recombinant proteins were expressed in E. coli BL21(DE3) cells. The His-tagged proteins were 
affinity purified using a TALON® (Co2+) resin and the purification steps were analysed on 12.5% reducing SDS-
PAGE gels (left panel) and probed with an anti-His tag mouse monoclonal antibody at 1/10000 dilution and a 
secondary goat anti-mouse-HRPO antibody at 1/6000 dilution (right panel). The elution profiles measuring 
absorbance at 280 nm were shown as inserts in the respective western blots. The lanes were loaded with 
molecular weight marker (Mw); BL21(DE3) untransformed cell lysate (lane 1); supernatant sample loaded onto 
the TALON® (Co2+) resin (lane 2); unbound lysate (lane 3); 10 mM imidazole wash sample (lane  4); eluents 1 
to 5 using 250 mM imidazole (lanes 5 to 9). 
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The recombinant PfLDH had an estimated molecular weight of ~ 37 kD in the anti-His blot, 

with an additional protein band at ~ 84 kD, suggesting the presence of a dimeric form of the 

protein. Two additional minor bands of ~ 35 kD and ~ 63 kD were also detected (Figure 4.9). 

None of the untransformed E. coli BL21(DE3) lysate proteins (lane 2, Figures 4.9) were 

detected in any of the western blots probed with anti-His tag antibodies. Recombinant 

PvLDH was detected as a single band of approximately 39 kD, where rPyLDH was similarly 

detected at ~ 40 kD, with low concentrations of a dimer at around 90 kD. The overall yield of 

the rPfLDH may have been improved further since the protein was still detected in the 

unbound fraction, suggesting the TALON® (Co2+) resin may have been saturated. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.10 Recombinant expression and affinity purification of Pf and PyGAPDH analysed by SDS-
PAGE and western blot 
Both recombinant proteins were expressed in E. coli BL21(DE3) cells. The His-tagged proteins were affinity 
purified using a TALON® (Co2+) resin and the purification steps were analysed on 12.5% reducing SDS-PAGE 
gels (left panel) and probed with an anti-His tag mouse monoclonal antibody at 1/10000 dilution and a 
secondary goat anti-mouse-HRPO antibody at 1/6000 dilution (right panel). The elution profiles measuring 
absorbance at 280 nm were shown as inserts in the respective western blots. The lanes were loaded with 
molecular weight marker (Mw); BL21(DE3) untransformed cell lysate (lane 1); supernatant sample loaded onto 
the TALON® (Co2+) resin (lane 2); unbound lysate (lane 3); 10 mM imidazole wash sample (lane  4); eluents 1 
to 5 using 250 mM imidazole (lanes 5 to 9). 
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The recombinant PfGAPDH protein had an estimated molecular mass of 38 kD, where 

rPyGAPDH was detected at ~ 40 kD. Similarly to the rPfLDH result, some rPfGAPDH was 

detected in the unbound sample run in lane three (Figure 4.10), suggesting some of the 

protein was unable to bind the TALON® (Co2+) resin. This was also the case for both rPfPMT 

and rPvPMT as shown in Figure 4.11. The rPfPMT was detected at ~ 29 kD and the rPvPMT 

at ~30 kD in their respective blots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Recombinant expression and affinity purification of Pf and PvPMT analysed by SDS-
PAGE and western blot 
Both recombinant proteins were expressed in E. coli BL21(DE3) cells. The His-tagged proteins were affinity 
purified using a TALON® (Co2+) resin and the purification steps were analysed on 12.5% reducing SDS-PAGE 
gels (left panel) and probed with an anti-His tag mouse monoclonal antibody at 1/10000 dilution and a 
secondary goat anti-mouse-HRPO antibody at 1/6000 dilution (right panel). The elution profiles measuring 
absorbance at 280 nm were shown as inserts in the respective western blots. The lanes were loaded with 
molecular weight marker (Mw); BL21(DE3) untransformed cell lysate (lane 1); supernatant sample loaded onto 
the TALON® (Co2+) resin (lane 2); unbound lysate (lane 3); 10 mM imidazole wash sample (lane  4); eluents 1 
to 5 using 250 mM imidazole (lanes 5 to 9). 
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4.2.6 Assessing the recombinant Plasmodium proteins’ native structures 

The next experiments were performed to assess the size of the recombinant proteins’ 

structures to determine whether they had similar sizes in solution as they are predicted to 

have within the parasites themselves (compare to Table 4.1). LDH and GAPDH are both 

known to form tetramers in solution for example, where PMT is a monomer. Figures 4.12 to 

4.19 therefore show results of molecular exclusion chromatography (MEC) for each of the 

proteins as well as an activity assay performed with both rPfLDH and rPvLDH.  

For the MEC experiments a Sephacryl S-200 column was used as it has a separation range of 

5000 to 250000 Da. The column was calibrated with the elution profile shown in Figure 4.12 

(A). The resulting standard curve used to estimate the sizes of the recombinant protein 

eluents was shown in (B).  

The first of the recombinant proteins assessed was rPfLDH, which ran at ~ 37 kD on the 

reducing SDS-PAGE gel shown previously (Figure 4.9). The recombinant protein eluted with 

an estimated molecular mass of 145 kD (Figure 4.13 (A)). This was close to the calculated 

tetrameric size of 148 kD (4 x 37 kD). In comparison rPvLDH eluted with an estimated 

molecular mass of 95 kD (Figure 4.14). It ran as a 39 kD band on reducing SDS-PAGE 

previously (Figure 4.9) which suggests it eluted as a dimeric protein close to an estimated 

molecular mass of 78 kD (2 x 39 kD). Finally rPyLDH eluted with an estimated molecular 

mass of 112 kD (Figure 4.15). This was close to a trimeric form estimated from its molecular 

mass determined by SDS-PAGE of 41 kD (Figure 4.9).  
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Figure 4.12 Calibration of the Sephacryl S-200 molecular exclusion chromatography column 
The HiPrep 16/60 pre-packed Sephacryl S-200 High Resolution column (column volume of 120 ml) was calibrated using the following standards: 3 mg Blue Dextran (2000 
kD); 5 mg Sheep IgG (150 kD); 5 mg BSA (68 kD); 5 mg Ovalbumin (45 kD); 5 mg Myoglobin (17 kD) , and the profile was recorded on the ÄKTAprime plus system (A), 
with the standards and their respective peaks analysed on a 12.5% reducing SDS-PAGE gel (insert in A). The column was run at 0.5 ml/min and 2 ml fractions were 
collected, with a total of 120 ml run over the column per run using a 50 mM NaH2PO4, 300 mM NaCl pH 8.0 buffer. Standard curve of molecular weights in (B). 
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Figure 4.13 rPfLDH elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPfLDH was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 high 
resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 running 
buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) labelled 
on the primary and secondary axes (A). The solid line depicts the rPfLDH elution profile (plotted on the 
secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~145 kDa peak were evaluated on a 12.5% reducing SDS-PAGE gel stained 
with Coomassie blue (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the 
respective 2 ml eluents 46 to 58, with the dimeric and monomeric forms labelled alongside the gel. 

 

 

 

 

Figure 4.14 rPvLDH elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPvLDH was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 high 
resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 running 
buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) labelled 
on the primary and secondary axes (A). The solid line depicts the rPvLDH elution profile (plotted on the 
secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~95 kDa peak were run on a 12.5% reducing SDS-PAGE gel and Coomassie 
stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the respective 2 ml 
eluents 48 to 62.  
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Figure 4.15 rPyLDH elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPyLDH was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 high 
resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 running 
buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) labelled 
on the primary and secondary axes (A). The solid line depicts the rPyLDH elution profile (plotted on the 
secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~112 kDa peak were run on a 12.5% reducing SDS-PAGE gel and Coomassie 
stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the respective 2 ml 
eluents 46 to 64.  
 

As further confirmation of the native conformation of the rPfLDH and rPvLDH, 

dehydrogenase activity of both proteins was demonstrated as shown in Figure 4.16. The 

oxidation of L-lactate by LDH producing NADH was measured at 340 nm, showing an 

increase of NADH over time. 

 

 

 

 

 

Figure 4.16 Enzyme activity of both recombinant PfLDH and PvLDH assessed by measuring the 
increased formation of NADH due to the oxidation of L-lactate 
Recombinant PfLDH and PvLDH both displayed dehydrogenase activity with the oxidation of L-lactate (1mM) 
resulting in the concomitant reduction of NAD (200 µM) to NADH. The increased NADH was measured as an 
increase in absorbance at 340 nm over a 5 min period. 35 µM of each of the recombinant proteins was used and 
the reactions were performed in a 100 mM Tris pH 9.0 buffer at 25°C. The control reaction without recombinant 
LDH or with 35 µM BSA instead remained at 0 even after 20 min. 
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Under native conditions the purified rPfGAPDH eluted in two peaks estimated at 148 kD and 

36 kD from the Sephacryl column. Comparing this to the SDS-PAGE result in Figure 4.10 

where rPfGAPDH was detected at ~ 38 kD, the eluted peak of 148 kD was close to the 

expected tetrameric form and that of 35 kD was close to the monomeric form. Interestingly 

the monomer in the SDS-PAGE gel (B) ran slightly lower at ~ 35 kD than it did in Figure 

4.10, although a different molecular weight marker was also used in this case. 

 

 

 
 

 
 
 
 
 
Figure 4.17 rPfGAPDH elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPfGAPDH was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 
high resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 
running buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) 
labelled on the primary and secondary axes (A). The solid line depicts the rPfGAPDH elution profile (plotted on 
the secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~148 and ~ 36 kDa peaks were run on a 12.5% reducing SDS-PAGE gel and 
Coomassie stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the 
respective 2 ml eluents 42 to 52 and 64 to 68. 
 

In comparison rPyGAPDH was estimated to be around 41 kD on the SDS-PAGE gel (Figure 

4.10), and eluted as an estimated 110 kD protein from the Sephacryl column (Figure 4.17), 

which suggested trimer formation. 

Finally analysis of the PMT proteins revealed that both proteins formed monomers in 

solution, with rPfPMT eluting as an estimated 29 kD protein and rPvPMT as a ~ 27 kD 

protein.   

250
130
100
70
55

35

25

Mw  42    44   46 48   50    52    64    66    68     Eluent (ml)

459      315    224    165    125     97       31       27      24        ~ kD

B 

A 

250 
130 
100 
70 
55 

35 

25 

0

5

10

15

20

25

30

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

A
bs

or
ba

nc
e 

(m
A

u)

A
bs

or
ba

nc
e 

(m
A

u)

Elution volume (ml)

20
00

kD

15
0

kD

68
kD

45
kD

17
kD

14
8

kD

36
kD



113 
 

 

0

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

A
bs

or
ba

nc
e 

(m
A

u)

A
bs

or
ba

nc
e 

(m
A

u)

Elution volume (ml)

20
00

 k
D
 

15
0 

kD
 

68
 k

D
 

45
 k

D
 

17
 k

D
 

11
0 

kD
 

260 
140 
95 
72 
52 
42 
34 
26 

17 

Mw 44     46     48    50    52    54    56     58    Eluent (ml) 
314        224        165      125      97         77       63          52        ~ kD   

  

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

A
b

so
rb

an
ce

 (
m

A
u

)

A
b

so
rb

an
ce

 (
m

A
u

)

Elution volume (ml)

20
00

kD

15
0

kD

68
kD

45
kD

17
kD

29
kD

116
66.2

45

35

25

18.4

Mw 60 62 64 66 68 70 72 Eluent (ml)
43 37 31 27 24 21 19 ~ kDB

A 

 

 

Figure 4.18 rPyGAPDH elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPyGAPDH was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 
high resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 
running buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) 
labelled on the primary and secondary axes (A). The solid line depicts the rPyGAPDH elution profile (plotted 
on the secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). 
The eluted fractions comprising the ~110 kDa peak were run on a 12.5% reducing SDS-PAGE gel and 
Coomassie stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the 
respective 2 ml eluents 44 to 58. 
 

 

 

Figure 4.19 rPfPMT elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPfPMT was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 high 
resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 running 
buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) labelled 
on the primary and secondary axes (A). The solid line depicts the rPfPMT elution profile (plotted on the 
secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~29 kDa peak were run on a 12.5% reducing SDS-PAGE gel and Coomassie 
stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the respective 2 ml 
eluents 60 to 72. 
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Figure 4.20 rPvPMT elution profile over a Sephacryl S-200 MEC column 
Four milligrams of affinity purified rPvPMT was passed over a HiPrep 16/60 pre-packed Sephacryl S-200 high 
resolution column with a column volume of 120 ml, using a 50 mM NaH2PO4; 300 mM NaCl pH 8.0 running 
buffer. The profile was recorded on the ÄKTAprime plus system using milli Absorbance units (mAu) labelled 
on the primary and secondary axes (A). The solid line depicts the rPvPMT elution profile (plotted on the 
secondary axis), with the calibration standards included as the dashed line (plotted on the primary axis). The 
eluted fractions comprising the ~27 kDa peak were run on a 12.5% reducing SDS-PAGE gel and Coomassie 
stained (B). The lanes were labelled as follows: molecular weight marker (Mw), followed by the respective 2 ml 
eluents 62 to 78, with their respective estimated molecular weights indicated above the lanes.  
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4.3 Discussion 

E. coli expression host results under the proposed expression and affinity purification 

conditions 

Prior to expression of the recombinant Plasmodium proteins as described in this chapter, the 

effect of the proposed temperatures and media on the untransformed expression host E. coli 

BL21(DE3) cells was assessed. The growth between cultures was very similar, regardless of 

temperature or media taking approximately 2 hours to reach an O.D. of ~ 0.5 and reaching 

the stationary phase at around 4 hours. This was comparable to results by Larentis et al., 

(2014) for their un-induced cultures, although they used E. coli BL21 (DE3) Star™/p E  

cells. The addition of 1 mM IPTG did not seem to have a detrimental effect on the host E. 

coli growth either. Overall none of the transformed cultures were drastically affected by 

induction of expression since most cultures grew comparably to their uninduced counterparts. 

This was important since there is usually a positive correlation between expression host 

growth and final protein yields (Larentis et al., 2014). Reduced growth rates may be expected 

after expression is induced due to competition for the translation machinery and depletion of 

biomolecules within the host E. coli (Choveaux et al., 2012; Larentis et al., 2014). To 

maintain selective pressure for transformed host E. coli, antibiotics were used here. Unlike 

ampicillin, kanamycin is not hydrolysed during culture, making it an ideal antibiotic for long 

term cultures (16 hours). In the initial 16 hour expression experiments E. coli cultures 

transformed with Ampr plasmids were supplemented with ampicillin every 2 hours to avoid 

the loss of selection due to hydrolysis of the antibiotic. Busso et al. (2008) suggested the joint 

use of carbenicillin and ampicillin for such long term cultures containing Ampr plasmids. In 

doing so, ampicillin imparts an early, strong selective pressure against E. coli before it 

becomes hydrolysed and carbenicillin then maintains the selective pressure over a longer 

period, thus avoiding periodic supplementation of the cultures. Following optimisation of 

culture growth, the next step was to optimise the concentration of imidazole used to elute the 

recombinant proteins off the affinity columns. 

 Optimising the expression and elution conditions for each of the recombinant proteins 

A concentration range of between 150 to 250 mM imidazole is recommended for the elution 

of recombinant proteins off TALON® (Co2+) affinity resin. Based on the optimisation data 

using imidazole gradients, all of the recombinant proteins eluted between 25 to 100 mM 

imidazole. A similar trend was observed for the elution of the E. coli host cell proteins bound 
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to the columns as the peak eluents were between 50 to 100 mM imidazole. As a result a 

10 mM imidazole concentration was used to “wash” the bound E. coli host proteins off the 

column, thus removing E. coli proteins bound with low affinity from the bound recombinant 

proteins which had higher affinity for the TALON® (Co2+) resin. A 250 mM imidazole 

concentration was then used to elute the bound recombinant proteins. The purity of the 

resulting purified recombinant proteins was satisfactory. The results for each of the 

recombinant proteins will now be discussed in turn. 

 LDH expression optimisation and confirming native conformation 

Starting with rPfLDH its monomeric form was close to that detected by Hurdayal et al. 

(2010) and Turgut-Balik et al. (2001), where the 145 kD tetramer in this study correlated 

with that obtained by Berwal et al. (2008). Dimeric forms of rPfLDH after reducing SDS-

PAGE were also detected by Hurdayal et al. (2010) and Krause et al. (2015). Dimer 

formation under reducing SDS-PAGE conditions is not uncommon as recombinant P. 

falciparum glutamate dehydrogenase was similarly detected as a dimer by Zocher et al. 

(2012). The lower molecular weight band detected in the rPfLDH blot has been noted 

previously and is thought to be a truncated form of the protein due to an internal Shine 

Dalgarno sequence (GGAGGA) located between bases 46 to 51 in the coding sequence of the 

protein (Hurdayal et al., 2010). Since two histidine tags were added to the coding sequence, 

the loss of one of these tags would still have allowed for the purification and subsequent 

detection of the recombinant protein on the anti-His tag blot. The rPvLDH expressed here 

was close to that detected in the Hurdayal et al. (2010) and Turgut-Balik et al. (2004) studies 

who detected it at 34 kD. Although the native form eluted as a dimeric form and not the 

expected tetrameric form, the enzyme was still active. Both the recombinant P. falciparum 

and P. vivax LDH orthologs were therefore shown to be enzymatically active despite the 

presence of the additional His tags, which supported findings by Berwal et al. (2008) and 

Gomez et al. (1997). Yamamoto and Storey (1988) observed that human LDH tetramer and 

dimer formation were influenced by lactate or pyruvate concentrations respectively, where 

lactate promoted tetramer formation and pyruvate promoted dimer formation. Both forms 

were enzymatically active as well. With regard to the enzyme assay used here, since a low 

concentration of NAD was used (1 mM), this meant that the maximum absorbance of the 

reaction, if all NAD was reduced to NADH, would be approximately 0.16 at 340 nm (NADH 

Ɛ = 6.22 mM-1 cm-1). The recombinant LDH enzymes therefore depleted all available NAD 

after ~140 seconds, hence the plateau of the A 340 nm readings after this point, with both 
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enzymes showing very similar activity curves. The rPyLDH protein detected here around 

40 kD ran at a slightly larger size than the 39 kD band detected by Hurdayal et al. (2010). 

The addition of the His-tag from the pET-28(a) vector (36 amino acids approximately 

3.7 kD) gives a calculated size of 37.7 kD from the native protein size. The 112 kD eluent 

from the MEC column suggests a trimeric form in solution.  

GAPDH expression optimisation and confirming native conformation 

The 38 kD monomer of rPfGAPDH was close to that purified by Satchell et al. (2005) and 

Daubenberger et al. (2003) who both recorded sizes of around 37 kD. The ~ 148 kD 

tetrameric form found here was larger than that obtained by Satchell et al. (2005) who 

isolated a ~130 kD form, but agreed with that of Sangolgi et al. (2016) and the predicted size 

from PlasmoDB. The size of the rPyGAPDH monomer of approximately 40 kD was close to 

the calculated size of ~ 40.7 kD resulting from the addition of the N-terminal His-tag (36 

amino acids correlating to approximately 3.7 kD). This was close to the band detected by 

Sangolgi et al. (2016) in P. yoelii lysates. A trimeric form eluted from the MEC column, 

similar to the trimeric form of rPyLDH. 

PMT expression optimisation and confirming native conformation 

Finally the PMT species eluted from the MEC column showed that both the rPfPMT and 

rPvPMT proteins remained as monomers in solution which agreed with PlasmoDB 

(www.plasmodb.org) and previous expression data (Pessi et al., 2004; Garg et al., 2015).  

These results are the first to our knowledge describing the expression of these proteins using 

auto-induction media. Interestingly the expression of rPfPMT was very low when grown in 

auto-inducing terrific broth, but was optimal for rPfGAPDH even though both were 

expressed from the same pET-15b plasmid vector. Overall the proteins expressed and 

purified in this chapter all correlated closely with their respective native sizes as well as their 

reduced monomeric forms. The results therefore support the further use of these recombinant 

forms of the Plasmodium target proteins for raising immune reagents in chapters 5 and 6 to 

follow. 
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Chapter 5 

Assessment of polyclonal IgY raised against both the recombinant Plasmodium 

proteins and peptide targets of LDH, GAPDH and PMT  

5.1 Introduction 

The aim of the work described in this chapter was to raise polyclonal antibodies against the 

potential Plasmodium diagnostic target proteins and peptides identified in chapter 3. Two sets 

of antibodies were raised, the first against the peptide epitopes identified in chapter 3 which 

were synthesized and coupled to rabbit albumin as a carrier protein and the second against the 

whole recombinant proteins expressed and purified in chapter 4. The second aim was to 

assess all the antibodies and test if they cross-reacted with uninfected human red blood cell or 

E. coli BL21(DE3) expression host cell lysate proteins and to demonstrate their use in a 

double antibody sandwich ELISA assay mimicking a rapid diagnostic test system. 

Antibodies are glycoproteins expressed by B-cells of the adaptive immune systems in all 

jawed vertebrates including fish, amphibians, reptiles, birds and mammals (Marchalonis et 

al., 2006; Sun et al., 2008). In mammals these proteins are divided into five classes IgG, IgD, 

IgE, IgA and IgM. In chickens only three classes are expressed where the equivalent of IgG is 

known as IgY and is found in serum as well as egg yolk and hence called yolk 

immunoglobulin (IgY) (Polson et al., 1985). IgA and IgM form the two other classes of the 

chicken repertoire (Sun et al., 2008). Since polyclonal IgY was raised in chickens against the 

targets in this study and monoclonal IgG is usually used in rapid diagnostic tests (Makler et 

al., 1998; Murray et al., 2008), only IgG and IgY will be discussed further. These two 

molecules are heterodimers comprising two heavy and two light chains. The light chains are 

separated into two domains in both cases, where the heavy chains of IgG and IgY consist of 

four domains, but IgY lacks a hinge region between the third and fourth domains unlike IgG 

(Sun et al., 2008). The C-terminal domains of IgG and IgY are constant and the heavy chains 

form the Fc portion responsible for the effector functions of antibodies. The N-terminal 

domains, consisting of approximately 50 amino acids each, are variable and referred to as the 

variable heavy (VH) and variable light (VL) chains (van Regenmortel, 1993). It is these 

variable domains that are responsible for binding of antibodies to antigens. Both VH and VL 

form complementarity determining regions also known as the paratope which bind a 15 

amino acid region known as an epitope on the antigen (Benjamin and Perdue, 1996). 
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Importantly the paratope allows an epitope with complementary characteristics including 

charge, shape and size resulting from its amino acid composition to bind to it. Of the 15 

amino acids of the para- and epitope the main binding energy is between as few as five key 

residues of both sequences (Benjamin and Perdue, 1996; Dougan et al., 1998).  

A paratope may therefore bind a range of linear epitopes with varying affinities (Figure 5.1 

(A)) as well as conformational epitopes formed by the specific quaternary folding of a protein 

antigen (Figure 5.1 (B)) (van Regenmortel, 1993). This means that antibodies may recognise 

unrelated antigens, which is commonly termed cross reactivity. Potential antibody cross 

reactivity based on linear epitopes can be predicted in silico to some extent using BLAST 

analyses as done in chapter 3, however cross reaction due to conformational epitopes needs to 

be assessed experimentally as was done here. An example of both types of cross reactivity 

was shown in Figure 5.1. 

 

 

 

 

Figure 5.1 An illustration of potential cross reactivity caused by linear and conformational epitopes 
recognised by a hypothetical antibody 
One of the specific peptide epitopes (WGK) chosen for PfGAPDH was used as an example, where (A) 
represents the linear epitopes within the five Plasmodium species infective to man (see Table 3.4) with the 
corresponding identities of each amino acid annotated as “*” being identical residues; “:” conserved and “.” 
semi-conserved residues and blank spaces noting no identity. In (B) an example of a conformational epitope was 
illustrated where “X” represents any amino acid residue within the hypothetical protein. The circled region of 
the “Y”-like structure above each amino acid sequence represents a hypothetical antibody binding region 
(paratope) where five conserved amino acid residues within the peptide epitopes are highlighted which may 
cause cross reactivity. 
 
Initially antibodies were raised in chickens, which had several advantages. Since chickens 

package antibodies in egg yolk (IgY) to aid the development and immunity of the growing 

chick, this IgY can be purified from the yolk avoiding invasive bleeding (Polson et al., 1985). 

Chickens are easily kept and eggs can be collected and stored for long periods at 4°C. Eggs 

collected and stored during weeks of peak antibody titres can then be used for IgY isolation 

which avoids isolating IgY from eggs each week, saving time and reagents. IgY yields from 

eggs in a single week are equivalent to weekly yields from much larger mammals such as 

horses or cattle, and chickens are easier and cheaper to keep (Li et al., 2015a). Due to the 

evolutionary distance between humans and avian species, the Fc-domain of IgY is not 
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recognised by human Fc receptors, complement system or Rheumatoid factor which should 

avoid cross-reactivity in immunoassays (Delves et al., 2006). Importantly false positive 

reactions can be a problem with some rapid diagnostic tests due to cross reactivity of IgG-Fc 

domains with Rheumatoid factor (Iqbal et al., 2000) which would not be the case with IgY 

antibodies.  

In order to refine the specificity of antibodies, chickens were immunised with the selected 

peptide epitopes coupled to rabbit albumin as a carrier protein (Hurdayal et al., 2010; Tomar 

et al., 2006). This was necessary since the peptides, which ranged from 11 to 17 amino acids 

in length, were too small to elicit an immune response by themselves (Borras-Cuesta et al., 

1987). The coupling chemistry involved a heterobifunctional cross linker, maleimidobenzoyl-

N-hydroxysuccinimide ester (MBS) which coupled the peptide via the sulfhydryl of the 

added cysteine to an amine on the surface of rabbit albumin (Hurdayal et al., 2010). This is 

an advantage of using peptides for antibody production, since there is no need to 

recombinantly express or purify the native target protein to produce antibodies. Using peptide 

epitopes, however, does not allow for production of potentially high avidity antibodies 

recognising specific conformational epitopes on the surface of a target antigen (Figure 5.1). 

The simplicity of using synthetic peptides for antibody production is appealing, but peptide 

solubility may be a concern in some instances. Poor solubility due to hydrophobic residues 

within peptides may result in these regions clumping together in an aqueous environment 

resulting in the precipitation of the peptides. Lateef et al. (2007) described an alternate 

method for the coupling of such “problematic” peptides and this was employed here for one 

of the GAPDH peptides (the CAD peptide). 

Since LDH and GAPDH are both conserved metabolic proteins found in the Plasmodium and 

human genomes that share identity between these species’ orthologues (as argued in 

chapter 3), they potentially also share epitopes, both linear and conformational in nature. The 

concern with such targets is that antibodies raised against them may cross react with the 

human orthologues due to their similarity. With regard to PMT, a protein absent from the 

human genome, cross reactivity was not expected (Pessi et al., 2004). Human antibodies may 

interfere with RDT detection as shown with HRP2 (Ho et al., 2014). For this reason a human 

anti-malaria hyperimmune serum pool was assessed for the presence of antibodies against 

rPfLDH, rPfGAPDH and rPfPMT.  
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5.2 Results 

5.2.1 Assessing the specificity of the IgY antibodies raised against rPfLDH and the 

selected LDH peptides 

Polyclonal antibodies were raised against the whole recombinant Plasmodium target proteins 

or against their respective peptide targets. The antibodies were raised in chickens and isolated 

from egg yolk in the form of IgY. The data for antibody production and affinity purification 

of antibodies raised in this study were included here, where the data of antibodies raised 

previously can be found in the publications by Hurdayal et al. (2010) and Krause et al. 

(2015). All antibodies used in this study were assessed by western blot for 1) cross-reactivity 

against uninfected O+ red blood cell and E. coli BL21(DE3) expression host lysates and 2) 

specificity against the respective recombinant Plasmodium proteins expressed in chapter 4. 

Starting with the anti-Plasmodium LDH antibodies only the western blot results are shown in 

Figure 5.2. 

 

 

 

 

 

Figure 5.2 Panel of western blots showing specificity of the respective anti-LDH IgY antibodies 
The affinity purified IgY against rPfLDH as well as the respective peptide epitopes were assessed for specificity 
by western blotting. The Coomassie stained reference gel in the far left panel was loaded as follows: Molecular 
weight marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) lysate 
(lane 2); purified rPfLDH (lane 3); purified rPvLDH (lane 4) and purified rPyLDH (lane 5). The blots were 
probed with the respective affinity purified IgY antibodies as labelled above the blots at 1 µg/ml and rabbit anti-
chicken-HRPO at 1 in 12000. 
 

The antibodies raised against recombinant PfLDH detected the P. falciparum, P. vivax and 

P. yoelii proteins (lanes 3 to 5 respectively). With respect to the antibodies against the 

common LDH peptide (APG peptide), all three Plasmodium proteins were also detected. The 

antibodies raised against the specific peptides (FDC – P. falciparum peptide and KIT – 

P. vivax peptide) only detected their respective recombinant proteins. Importantly none of the 

antibodies cross-reacted with either the uninfected red blood cell or E. coli host cell lysates 

(lanes 1 and 2 respectively).  
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5.2.2 Assessing the specificity of the IgY antibodies raised against rPfGAPDH and the 

selected GAPDH peptides 

 

 

 

 

 

Figure 5.3 Panel of western blots showing specificity of the respective anti-GAPDH IgY antibodies 
The affinity purified IgY against rPfGAPDH as well as the respective peptide epitopes were assessed for 
specificity by western blotting. The Coomassie stained reference gel in the far left panel was loaded as follows: 
Molecular weight marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli 
BL21(DE3) lysate (lane 2); purified rPfGAPDH (lane 3) and purified rPyGAPDH (lane 4). The blots were 
probed with the respective affinity purified IgY antibodies as labelled above the blots at 1 µg/ml and rabbit anti-
chicken-HRPO at 1 in 12000. 
 

The specificity assessment of the GAPDH antibodies was shown in Figure 5.3, whereas the 

results for the second P. falciparum specific peptide (CAD peptide) IgY are shown in 

Figure 5.4 as these antibodies were raised during this study. The IgY against the whole 

recombinant P. falciparum GAPDH detected both the P. falciparum and P. yoelii proteins 

(lanes 3 and 4 respectively) in Figure 5.3. The common peptide antibodies (VMG peptide) 

detected both protein orthologues as well, where the P. falciparum specific peptide (WGK – 

P. falciparum peptide) antibodies only detected the P. falciparum protein. None of the 

antibodies cross-reacted with any of the uninfected red blood cell or E. coli expression host 

proteins. 

As for the second P. falciparum specific peptide (CAD – P. falciparum peptide), the antibody 

production results, cross-reactivity and specificity are shown together in Figure 5.4. The 

peptide had low solubility and precipitated as soon as it was diluted into buffer, which did not 

allow for the use of the Sephadex G-10 column during the coupling reactions with rabbit 

albumin. For this reason an alternate method described by Lateef et al. (2007) was used, 

which avoids the use of size exclusion chromatography. To assess the coupling success, the 

rabbit albumin-peptide coupled product was run in comparison to naïve rabbit albumin and 

the higher molecular weight products were evidence of successful coupling (panel A), where 
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Figure 5.4 Raising and affinity purification of IgY against the PfGAPDH specific peptide (CAD) 
The CAD (CADGFLLIGEKKVSVFA) peptide was coupled to rabbit albumin using the Lateef et al. (2007) 
protocol due to poor solubility of the peptide. The coupled rabbit albumin product was resolved on a 12.5% 
reducing SDS-PAGE gel, Coomassie stained and shown in (A). Uncoupled RA (lane Uc) was run in parallel to 
the coupled CAD-RA (lane C), with the molecular weight marker in lane (Mw). The increased MW products 
were highlighted alongside the gel with the estimated number of peptides coupled per RA molecule based on the 
size change of the RA bands. Egg antibody levels produced by each chicken were monitored by ELISA (the 
second chicken died) as shown in (B). Plates were coated with whole rPfGAPDH (1 µg/ml) due to the peptide 
solubility problem, or with RA (1 µg/ml) as a control. Crude IgY at 100 µg/ml and a rabbit anti-chicken-HRPO 
at 1 in 15000 were used. IgY isolated from weeks 3 to 7 and 8 to 12 were affinity purified over a rPfGAPDH 
AminoLink® column as shown in (C). The final affinity purified IgY was assessed for specificity by western 
blotting in (D). The Coomassie stained reference gel in the left panel was loaded as follows: Molecular weight 
marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) lysate (lane 2); 
purified rPfGAPDH (lane 3) and purified rPyGAPDH (lane 4). The blot was probed with anti-CAD affinity 
purified IgY at 1 µg/ml and rabbit anti-chicken-HRPO at 1 in 12000. 
 

Two chickens were immunised with the conjugated rabbit albumin, but unfortunately one of 

the chickens stopped laying eggs and died. The antibody production of the remaining chicken 
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was monitored by ELISA. Antibody levels detecting whole recombinant PfGAPDH increased 

between weeks three and four, and started to decline between weeks nine and ten (panel B), 

although antibodies against rabbit albumin alone remained high until week 12. The resulting 

affinity purification data showed greatest yields from the week three to seven IgY pool, with 

very low yields from the week eight to 12 pool (panel C). For the affinity purification of the 

specific antibodies, a recombinant PfGAPDH AminoLink® was used due to the low solubility 

of the peptide which did not allow for coupling to a SulfoLink® resin. A low overall yield of 

~ 1.9 mg total IgY was attained, although the antibodies were specific to PfGAPDH and did 

not cross react with uninfected red cell lysate or E. coli expression host lysate proteins 

(panel D).  

5.2.3 Assessing the specificity of the IgY antibodies raised against rPfPMT, PvPMT 

and the selected PMT peptides 

The next set of antibodies was raised against recombinant PfPMT and PvPMT as well as the 

respective PMT peptides selected in chapter 3. Recombinant PfPMT as an immunogen 

generated IgY antibodies as early as week two in the one chicken and after week four in the 

second, which lasted between 13 to 14 weeks after the primary immunisation in both cases 

(Figure 5.5, panel A). In both chickens good signal was achieved with titres as low as 

25 µg/ml still giving absorbance above 0.2 (all values were already corrected for 

background). The affinity purification profiles reflected the early antibody production in the 

first chicken as its yields were slightly greater than the specific IgY yield from the second 

chicken (panel B). The affinity purified IgY did not cross react with the uninfected red blood 

cell or E. coli host cell proteins, but did detect both recombinant PfPMT and PvPMT (panel 

C). Finally a ~ 29 kDa protein was detected using ECL in a Pf(D10) infected red blood cell 

culture lysate (panel D) corresponding to the predicted size of PfPMT. 
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Figure 5.5 Raising and affinity purification of IgY against the whole rPfPMT protein 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated 
with whole rPfPMT (1 µg/ml). Crude IgY was diluted to 100, 50 and 25 µg/ml and a rabbit anti-chicken-HRPO 
at 1 in 15000 were used. IgY isolated from weeks 3 to 8 and 9 to 14 were affinity purified over a rPfPMT 
AminoLink® column as shown in (B). The final affinity purified IgY was assessed for specificity by western 
blotting in (C). The Coomassie stained reference gel in the left panel was loaded as follows: Molecular weight 
marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) lysate (lane 2); 
purified rPfPMT (lane 3) and purified rPvPMT (lane 4). The blot shown in the right panel was detected with 
anti-rPfPMT affinity purified IgY at 1 µg/ml and rabbit anti-chicken-HRPO at 1 in 12000. The blot in (D) 
detected native PfPMT from Pf(D10) lysates at different concentrations: 2.5, 5, 7.5 and 10 µg (lanes 1 to 4), 
with the same IgY concentration but a 1 in 10000 secondary concentration instead and detected using ECL. 
 

Similarly to recombinant PfPMT, chickens immunised with recombinant PvPMT elicited 

antibodies early from week two after the primary immunisation (Figure 5.6). Diluting the 

antibodies to 25 µg/ml had very little effect on the signal however (panel A) and this was 

reflected by greater yields off the affinity column (panel B) in comparison to the PfPMT 

antibody yields from Figure 5.5 (panel B). The affinity purified antibodies did not cross react 

with the uninfected red blood cell and E. coli host cell proteins (panel C) and detected both 

recombinant PfPMT and PvPMT proteins similarly to the anti-PfPMT antibodies. Due to the 

higher antibody yields and similar detection of both recombinant protein orthologues to the 

anti-PfPMT IgY, the anti-PvPMT IgY was coupled to HRPO for use as a detection antibody 

in a double antibody sandwich ELISA format for future work, as was done using LDH and 

GAPDH antibodies (Figures 5.11 and 5.12). After coupling, the anti-PvPMT IgY continued 

to detect both recombinant PfPMT and PvPMT as demonstrated in panel D of Figure 5.6. 
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Figure 5.6 Raising and affinity purification of IgY against the whole rPvPMT protein 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated 
with whole rPvPMT (1 µg/ml). Crude IgY was diluted to 100, 50 and 25 µg/ml and a rabbit anti-chicken-HRPO 
at 1 in 15000 were used. IgY isolated from weeks 3 to 8 and 9 to 14 were affinity purified over a rPvPMT 
AminoLink® column as shown in (B). The final affinity purified IgY was assessed for specificity by western 
blotting in (C). The Coomassie stained reference gel in the left panel was loaded as follows: Molecular weight 
marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) lysate (lane 2); 
purified rPfPMT (lane 3) and purified rPvPMT (lane 4). The blot shown in the right panel was probed with anti-
rPvPMT affinity purified IgY at 1 µg/ml and rabbit anti-chicken-HRPO at 1 in 12000. Anti-rPvPMT IgY was 
coupled to HRPO and used to detect both rPfPMT and rPvPMT in (D), where the reference gel was the same as 
in (C). The HRPO-coupled IgY was used at 1 in 200 dilution. 
 

Interestingly all anti-PMT peptide antibodies had higher detection levels against their 

respective peptide targets than in the rabbit albumin control ELISAs (Figures 5.7 to 5.10 

panel A) and all signals increased from as early as week two to three. The rabbit albumin 

ELISAs were included as controls of immunisation success, since rabbit albumin served as 

the carrier protein in each case. One chicken stopped laying for weeks three to five and eight 

to 12, hence the lack of data in Figure 5.7 (panel A). Poor yields of affinity purified 

antibodies were obtained for the common PMT peptide (DEG – common peptide) for chicken 

two weeks three to seven in Figure 5.7 panel B and the P. knowlesi PMT peptide (LYP – P. 

knowlesi peptide) for chicken 2 weeks eight to 12 in Figure 5.10 panel B.  
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Figure 5.7 Raising and affinity purification of IgY against the common PMT peptide (DEG) 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated at 1 µg/ml with either the DEG (LENNQYTDEGVKC) peptide 
or Rabbit albumin (RA) as a control. Crude IgY at 100 µg/ml and a rabbit anti-chicken-HRPO at 1 in 15000 were used. IgY isolated from weeks 3 to 7 and 9 to 12 were 
affinity purified over a DEG SulfoLink® column as shown in (B). The final affinity purified IgY was assessed for specificity by western blotting in (C). The Coomassie 
stained reference gel in the left panel was loaded as follows: Molecular weight marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) 
lysate (lane 2); purified rPfPMT (lane 3) and purified rPvPMT (lane 4). The blot shown in the right panel was probed with anti-DEG affinity purified IgY at 1 µg/ml and 
rabbit anti-chicken-HRPO at 1 in 12000. 
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Figure 5.8 Raising and affinity purification of IgY against the P. falciparum specific PMT peptide (CEV) 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated at 1 µg/ml with either the CEV (CEVEHKYLHENKE) peptide 
or Rabbit albumin (RA) as a control. Crude IgY at 100 µg/ml and a rabbit anti-chicken-HRPO at 1 in 15000 were used. IgY isolated from weeks 3 to 7 and 9 to 12 were 
affinity purified over a CEV SulfoLink® column as shown in (B). The final affinity purified IgY was assessed for specificity by western blotting in (C). The Coomassie 
stained reference gel in the left panel was loaded as follows: Molecular weight marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) 
lysate (lane 2); purified rPfPMT (lane 3) and purified rPvPMT (lane 4). The blot shown in the right panel was probed with anti-CEV affinity purified IgY at 1 µg/ml and 
rabbit anti-chicken-HRPO at 1 in 12000. 
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Figure 5.9 Raising and affinity purification of IgY against the P. vivax specific PMT peptide (VYS) 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated at 1 µg/ml with either the VYS (VYSIKEYNSLKDC) peptide 
or Rabbit albumin (RA) as a control. Crude IgY at 100 µg/ml and a rabbit anti-chicken-HRPO at 1 in 15000 were used. IgY isolated from weeks 3 to 7 and 9 to 12 were 
affinity purified over a VYS SulfoLink® column as shown in (B). The final affinity purified IgY was assessed for specificity by western blotting in (C). The Coomassie 
stained reference gel in the left panel was loaded as follows: Molecular weight marker (Mw); uninfected (O+) red blood cell lysate (lane 1); untransformed E. coli BL21(DE3) 
lysate (lane 2); purified rPfPMT (lane 3) and purified rPvPMT (lane 4). The blot shown in the right panel was probed with anti-VYS affinity purified IgY at 1 µg/ml and 
rabbit anti-chicken-HRPO at 1 in 12000. 
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Figure 5.10 Raising and affinity purification of IgY against the P. knowlesi specific PMT peptide 
(LYP) 
Egg antibody levels produced by each chicken were monitored by ELISA as shown in (A). Plates were coated at 
1 µg/ml with either the LYP (LYPTDEYNSLKDC) peptide or Rabbit albumin (RA) as a control. Crude IgY at 
100 µg/ml and a rabbit anti-chicken-HRPO at 1 in 15000 was used. IgY isolated from weeks 3 to 7 and 9 to 12 
were affinity purified over a LYP SulfoLink® column as shown in (B).  
 

None of the anti-PMT antibodies cross reacted with uninfected human red blood cell lysate or 

E. coli host cell proteins and detected their respective targets, with only the antibodies raised 

against the common peptide detecting both rPfPMT and rPvPMT as expected (panel C, 

Figures 5.7 to 5.9). Since there was no recombinant P. knowlesi PMT available, the 

P. knowlesi PMT peptide antibodies were not tested (Figure 5.10).  

Interestingly when summarising the overall antibody yields (Table 5.1) and comparing the 

anti-peptide antibody yields to the anti-whole protein yields, better overall yields were 

observed for the peptides than the whole protein in the case of PfPMT, whereas the opposite 

was true for PvPMT. The anti-CAD (PfGAPDH specific peptide) and the anti-LYP (PkPMT 

specific peptide) data were included for completeness. The yields for the anti-CAD peptide 

were comparable to the yields for some of the individual chickens immunised with peptides 

(anti-DEG and anti-LYP chicken 2) as well as whole recombinant protein (anti-rPfPMT 

chicken 2). This was interesting since an alternative method was used to couple the CAD 

peptide to the rabbit albumin carrier protein. 
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Table 5.1 IgY yields per antigen used in this study 

 

 

 

 

 

 

 

 
*The anti-CAD data included only a single chicken, since the second chicken stopped laying eggs and died. 
 

5.2.4 Double antibody sandwich ELISAs for the detection of the recombinant PfLDH 

and PfGAPDH proteins in solution 

Finally the LDH and GAPDH antibodies mentioned earlier in Figures 5.2 and 5.3 were used 

to optimise double antibody sandwich ELISAs. This format of ELISA mimics the rapid 

diagnostic test format with a capture anti-peptide antibody to bind the specific antigen from 

solution and the secondary anti-recombinant antibody coupled to HRPO which recognises the 

bound antigen, producing the signal. Here the anti-peptide antibodies (capture step) were 

immobilised on the ELISA plate. With regard to the LDH ELISAs (Figure 5.11) capture with 

the common LDH peptide antibodies (anti-APG) at between 2 or 4 µg resulted in a more 

sensitive assay as this system reached an absorbance of around 1 in the presence of only 0.5 

µg/ml (equal to 0.05 µg total protein) and detected as little as 0.004 µg/ml (0.0004 µg total 

protein) of recombinant PfLDH.  

IgY sample Chicken # Yield (mg) Total yield (mg) 
Anti-CAD (PfGAPDH pep.) 1* 1.9 1.9 
Anti-rPfPMT 1 5.9 8.6 

 
2 2.7 

 Anti-rPvPMT 1 51.9 117.7 

 
2 65.9 

 Anti-DEG (common PMT pep.) 1 54.6 56.4 

 
2 1.7 

 Anti-CEV (PfPMT pep.) 1 70.0 123.1 

 
2 53.2 

 Anti-VYS (PvPMT pep.) 1 37.4 97.3 

 
2 59.9 

 Anti-LYP (PkPMT pep.) 1 105.7 108.5 

 
2 2.8 
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Figure 5.11 Double antibody-sandwich ELISAs to detect rPfLDH 
Double antibody sandwich ELISAs were optimised for capturing and detecting rPfLDH. The LDH-common 
APG anti-peptide antibodies were used as capture antibody at 0.25 to 4 µg/ml to detect 0.5 to 0.004 µg/ml of 
protein. The PfLDH specific FDC anti-peptide antibodies were used as capture antibody at 1 to 16 µg/ml to 
detect 64 to 0.004 µg/ml of protein. The anti-rPfLDH IgY coupled to HRPO was used at 1 in 200 as the 
detection antibody in both assays. 
 
In contrast the PfLDH peptide antibodies used as the capture antibody gave an absorbance of 

around 1 in the presence of 15 µg/ml (equal to 1.5 µg total protein) and detected as little as 

0.004 µg/ml (0.0004 µg total protein) of recombinant PfLDH when captured with 8 to 16 µg 

of anti-FDC (PfLDH specific) IgY. Similar sensitivity to the anti-FDC (PfLDH specific) 

ELISA was achieved with both the GAPDH double antibody sandwich systems shown in 

Figure 5.12. Using either the common or the P. falciparum specific peptide IgY as the 

capture antibody, resulted in an absorbance of around 1 in the presence of 15 µg/ml (equal to 

1.5 µg total protein) and as little as 0.004 µg/ml (0.0004 µg total protein) of recombinant 

PfGAPDH. Interestingly the change in absorbance between the different capture antibody 

concentrations used here was not as pronounced as in the LDH systems. 

 

 

 
 
 
Figure 5.12 Double antibody-sandwich ELISAs to detect rPfGAPDH 
Double antibody sandwich ELISAs were optimised for capturing and detecting rPfGAPDH. The GAPDH-
common VMG and the PfGAPDH specific WGK anti-peptide antibodies were used as capture antibodies at 1 to 
16 µg/ml to detect 64 to 0.004 µg/ml of protein. The anti-rPfGAPDH IgY coupled to HRPO was used at 1 in 
200 as the detection antibody in both assays. 
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5.2.5 Human IgG pool affinity purified over the respective recombinant P. falciparum 

protein AminoLink® columns 

A human anti-malaria hyperimmune serum pool (approximately 300 mg) was passed over 

five different recombinant P. falciparum protein AminoLink® affinity columns and the 

resulting yields of affinity purified antibodies were compared in Figure 5.13.  

 

Figure 5.13 Affinity purified human IgG yields from an anti-malaria hyper immune serum pool 
against various recombinant P. falciparum proteins 
Three hundred milligrams of a human anti-malaria hyperimmune serum pool was passed consecutively over a 
set of 5 recombinant P. falciparum AminoLink® affinity resins and the bound human IgG antibodies were 
eluted. Antibodies against rPfLDH; rPfGAPDH; rPfPMT; rPfHsp70 and rPfCox17 were affinity purified as 
indicated in the key alongside the figure. The resulting human IgG eluent absorbance at 280 nm were monitored 
and the respective yields calculated using the human IgG extinction coefficient (ε = 1.35). 
 

Since there is no human protein orthologue of PfPMT, it was expected that this protein may 

yield the greatest IgG response, however it was as immunogenic as PfGAPDH by 

comparison. PfLDH and its human orthologue share the lowest identity of the five proteins 

evaluated here (29% identity) and gave the highest yield of high affinity antibodies. This was 

followed by PfHsp70 which shared 31% identity, yielding the second most IgG. PfCox17, a 

copper chaperone, shares 44% homology however resulted in only 0.3 mg of affinity purified 

human IgG, although this protein is comparatively much smaller than the other proteins 

assessed here (Choveaux et al., 2015). Finally PfGAPDH which shares 65% homology with 

its human orthologue, resulted in 0.42 mg of affinity purified human IgG, similar to the 

0.41 mg from PfPMT. 
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5.3 Discussion 

Polyclonal antibodies raised against a target protein potentially recognise epitopes both 

conformational and linear in nature. Since antibodies recognise approximately 15 amino acid 

regions, known as epitopes, a 30 kD protein has a minimum of 20 non-overlapping linear 

epitopes. Add to this the fact that epitopes may be overlapping and conformational in nature, 

formed by the specific quaternary fold of proteins, the amount of potential epitopes may 

exceed this number. The result is a broad spectrum of antibodies each targeting a separate 

epitope and each with its own specificity (Delves et al., 2006). In this study two sets of 

polyclonal antibodies were raised against the chosen malaria proteins. These included 

antibodies raised against the whole recombinant proteins as well as antibodies raised against 

specific peptide epitopes. Linear epitopes can be used to produce “refined” polyclonal 

antibodies with specificity only to the chosen epitope (Hurdayal et al., 2010; Tomar et al., 

2006). Both sets of antibodies were tested to see if they specifically detected their respective 

protein targets and did not cross-react with E. coli and uninfected human red blood cell 

proteins. If the collective pool of polyclonal antibodies specifically detects only the intended 

target protein, then this further validates the protein / peptide as a potential diagnostic target. 

Alternatively if the antibodies detect their intended target as well as multiple other related or 

unrelated targets, then the choice of protein / peptide target would have to be reconsidered. 

The Plasmodium proteins and epitopes chosen in this project were thus used to raise 

polyclonal antibodies in chickens and the resulting specificity of the purified antibodies was 

assessed. Each set of polyclonal antibodies raised here recognised their specific targets. 

Importantly none of the antibodies tested in this study cross-reacted with the uninfected 

human red blood cell or E. coli lysate proteins. 

A general observation of the antibody production was that all antibody levels started 

increasing around week two after immunisation and maintained relatively high readings up to 

12 weeks later. This is a typical response in chickens (Hurdayal et al., 2010; Krause et al., 

2015). Importantly the rabbit albumin control included in the anti-peptide ELISA served as 

an indicator of immunisation success, rather than a comparative result, since rabbit albumin 

as a whole protein consists of multiple epitopes, thus potentially stimulating a broader 

immune response than the single peptide epitope attached to it.  

 

 



135 
 

 Assessing anti-rPfLDH and anti-LDH peptide IgY specificity  

Interestingly the anti-LDH antibodies raised against rPfLDH and the common peptide (APG) 

both detected the P. falciparum, P. vivax and P. yoelii orthologues. Similarly to the anti-His 

tag probed blots shown in chapter 4, a dimeric form of rPfLDH and rPvLDH was also 

detected. The species-specific peptide antibodies only detected their respective parent 

recombinant protein orthologues, which supported the specificity of the linear peptide 

epitopes selected in chapter 3 and was similar to the results observed by Hurdayal et al. 

(2010). 

 Assessing anti-rPfGAPDH and anti-GAPDH peptide IgY specificity 

The poor solubility of the species specific PfGAPDH peptide CAD may have arisen due to 

interaction of hydrophobic residues within the linear epitope once it was dissolved in an 

aqueous solution, resulting in aggregation of the peptide (Malavolta et al., 2006). This may 

have been due to the hydrophobic troughs on either side of the two lysine residues evident in 

the Predict7TM plot as shown in chapter 3 (Figure 3.4 (B) pg. 61). The alternative coupling 

method used here was described by Lateef et al. (2007) and circumvents solubility problems 

by performing the reaction in a polar solvent environment which was also suggested by 

Malavolta et al. (2006). The increased molecular weight rabbit albumin bands following the 

coupling reaction suggested the CAD peptide was successfully coupled to the carrier protein. 

Instead of using a peptide-coupled SulfoLink® resin for the affinity purification of the raised 

antibodies, the whole rPfGAPDH protein was coupled to an AminoLink® resin and used for 

the purification. The resulting yields were poor, yet comparable to the lower yields achieved 

in some of the chickens immunised with other peptides (the PMT common DEG and the 

P. knowlesi LYP peptides) as well as rPfPMT. The anti-CAD antibodies specifically detected 

rPfGAPDH despite these low yields. A possible alternative peptide which excludes one of the 

two hydrophobic troughs could improve the solubility whilst maintaining the desired 

specificity of the antibodies generated against it. This would mean shifting the selected amino 

acid residues comprising the peptide by four amino acids N- or C-terminally.  

The remaining anti-GAPDH antibodies were specific, with the anti-rPfGPADH and the 

antibodies against the common epitope detecting both the P. falciparum and P. yoelii 

orthologues. A similar result was obtained by Sangolgi et al. (2016), who used anti-

rPfGPADH mouse IgG antibodies for studies on P. yoelii GAPDH in a mouse model. Unlike 

LDH, the GAPDH sequences only shared 83% identity between the P. falciparum and 



136 
 

P. yoelii orthologues (Sangolgi et al., 2016). The second species specific peptide antibodies 

(anti-WGK peptide) also detected only the parent recombinant P. falciparum GAPDH 

protein.  

 Assessing anti-rPfPMT, anti-rPvPMT and anti-PMT peptide IgY specificity 

Antibodies against both recombinant PfPMT and PvPMT detected both orthologues on 

western blots, similarly to the antibodies raised against the common PMT peptide. The 

detection of faint bands in the uninfected red cell and E. coli lysate lanes in Figures 5.5 and 

5.6 respectively are likely due to non-specific protein-protein interactions which may be 

resolved with more stringent washes and the addition of 0.1% (v/v) Tween 20 in the 

incubation buffers. The detection of higher and lower molecular weight bands in the western 

blots in Figures 5.5 to 5.9 may have been due to overloading the purified rPvPMT sample in 

those lanes. The species specific antibodies detected only their specific PMT targets, but the 

anti-P. knowlesi specific antibodies could not be tested since there was no rPkPMT available. 

The anti-rPfPMT antibodies detected a 29 kD band in a P. falciparum D(10) lysate, which is 

similar to the results reported by Pessi et al. (2004). Native P. falciparum LDH and GAPDH 

were detected with anti-rPfLDH and anti-rPfGAPDH antibodies in our previous work 

(Krause et al., 2015). Therefore all three P. falciparum protein targets were detected in 

infected red blood cell lysates, and since none of the antibodies raised here detected any 

proteins in uninfected blood lysates, the potential use of these protein targets and the 

antibodies raised against them for malaria diagnosis looks promising.  

 Double antibody sandwich ELISA results 

A series of double antibody sandwich assays were optimised to detect rPfLDH and 

PfGAPDH. This format mimics that of a rapid diagnostic test, where the only difference is 

the detection antibodies are usually labelled with colloidal gold, instead of HRPO (Makler et 

al., 1998; Murray et al., 2008). The detection range of the assays was from 0.05 µg to 0.0004 

µg of rPfLDH (for the APG ELISA) and 0.0004 to 0.15 µg of recombinant protein for the 

remaining assays. These ranges are within physiological levels, at least in comparison to 

HRP2 in plasma, which ranges between 0.57 and 1.11 µg/ml (Dondorp et al., 2005). HRP2 

was present at approximately 6 times the concentration of PfLDH in a study by Martin et al. 

(2009), which would make LDH concentrations between 0.095 to 0.19 µg/ml in plasma and 

possibly higher levels in whole blood (Dondorp et al., 2005). The assays developed here are 

thus predicted to be sensitive enough to detect the target antigens in infected blood samples.  
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Importantly the same AminoLink® affinity resins that were used for affinity purification of 

the human IgG antibodies were also used for the purification of the IgY antibodies earlier in 

this chapter and in our previous work (Krause et al., 2015). The IgY antibodies eluted with 

higher 280 nm absorbance than the human antibodies, which suggests that the amount of 

protein present on the AminoLink® affinity resins was not limiting in this case. It can be 

assumed therefore, that the human IgG eluted off these columns presents the total IgG 

specific to the target antigens in this pool. Interestingly the final yields showed some 

correlation with the percentage identity shared between the human and P. falciparum 

orthologues. Interestingly, however, the PfPMT result was similar to that of PfGAPDH, even 

though PfPMT lacks any orthologues in the human proteome (Pessi et al., 2004). These 

results may have implications in the performance of Plasmodium GAPDH and PMT targeting 

antibody based diagnostic tests in the field, as human IgG may compete for binding of the 

free antigens in patient blood as was the case with HRP2 based RDTs (Ho et al., 2014). This 

has not been reported for LDH based tests to date and since the levels of specific human IgG 

against GAPDH and PMT purified here were lower than for LDH, these results were 

promising for these proposed targets. 

Together the results in this chapter validated the use of the target antigens and polyclonal 

antibodies raised against both the whole recombinant proteins and their specific peptide 

epitopes in a malaria diagnostic format. Quantitative comparisons of LDH, GAPDH and 

PMT in infected blood lysates using the double antibody sandwich ELISA format would be 

essential data to further validate the chosen protein and peptide targets. The final chapter to 

follow focuses on raising monoclonal antibody reagents in the form of scFvs. 
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Chapter 6 

Selection of monoclonal recombinant scFv antibodies from the Nkuku
® library 

against the potential Plasmodium target proteins and their respective peptide 

epitopes 

 

6.1 Introduction 

Most malaria RDTs use monoclonal antibodies for the capture and detection of the malaria 

target antigens including HRP2, LDH and aldolase (Moody, 2002). Monoclonal antibodies 

have several advantages over polyclonal antibodies. Firstly their specificity can be well 

characterised, which can prove difficult with polyclonal antibodies due to multiple avidities. 

This is important for the consistent quality of RDTs. It is more difficult to standardise 

polyclonal antibody pools and this may result in variation of test performance between 

batches from different animals. Secondly, mass production of tests demands large quantities 

of antibodies. Raising polyclonal antibodies is very labour intensive and harmful to the 

animals used. Since monoclonal antibodies can be produced in vitro using hybridoma 

technology, this allows for expression of a potentially endless supply of identical antibodies. 

This characteristic is shared with recombinant scFv technology, however, the selection, 

recombinant expression and purification processes in the scFv system are less demanding 

than hybridoma technology (Baird et al., 2009).  

In this chapter, a naïve scFv library of chicken origin called the Nkuku® library was used to 

identify scFv clones that bound rPfLDH, rPfGAPDH and the specific peptides for each 

protein (chapter 3). The screening of scFv libraries is referred to as panning and is described 

in Figure 6.2. A simplified explanation of the Nkuku® library construction is presented below. 

The library was constructed from unimmunised chicken B-cell mRNA yielding a so-called 

naïve scFv library and was expanded with the addition of a synthetic variable heavy (VH) 

coding region 3 (CDR3) repertoire. The library was formed by synthetically combining the 

coding regions for the variable light (VL) and VH chains of chicken antibodies, that is the V + 

J and V + J + D genes respectively. The end result was a large library of an estimated 5 x 1012 

clones (van Wyngaardt et al., 2004). The pHEN1 phagemid vector was used to construct the 

library (Hoogenboom et al., 1991). The scFv coding genes were inserted between a pelB 

leader sequence and a cmyc peptide tag in the pHEN1 vector (Figure 6.1). The cmyc peptide 
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pelB scFv cmyc pIII 

AMBER 

~ 30 kD ~ 43 kD 

was followed by an amber (TAG) stop codon and phage coat protein III (pIII) coding regions. 

In amber suppressor E. coli host cells, like TG1 cells, the TAG stop codon is read through 

and codes for a Glutamate (E), hence the supE nomenclature for such strains. This results in 

expression of a scFv-pIII fusion protein of approximately 73 kD (Figure 6.1). In non-

suppressor E. coli strains like the Top10 strain, expression stops at the amber codon resulting 

in a soluble scFv molecule of approximately 30 kD. During overexpression conditions, with 

the addition of the inducer IPTG, suppressor strains also express soluble scFv due to the slow 

read-through at the amber codon. The pelB leader locates the scFv to the periplasm and the 

cmyc tag is used for detection of the soluble scFv proteins. The pHEN1 coding region is 

shown in Figure 6.1. 

   

 

 

 

Figure 6.1 Representation of the pHEN1 coding region including the scFv and protein III regions 
The scFv coding sequences were inserted between a pelB leader and cmyc peptide tag, resulting in an 
approximately 30 kD soluble scFv product in non-suppressor E. coli. Alternatively a scFv-pIII fusion protein is 
expressed in supE strains which read through the amber (TAG) codon, replacing it with Glutamate (E) and 
yielding a 73 kD protein. 
 

Panning of the scFv library involved a combination of four steps, each with its own selective 

pressure (illustrated in italics in Figure 6.2). The steps will be explained briefly, starting with 

growing the library in the E. coli TG1 host cells. The E. coli host cells are grown in the 

presence of ampicillin containing media, as the pHEN1 vector codes for an ampicillin 

resistance gene (Ampr cassette). Since pHEN1 codes only for the scFv-pIII fusion protein and 

no other phage coat proteins, a wild type phage (M13KO7), containing the kanamycin 

resistance marker is introduced to the culture. Subsequently kanamycin and ampicillin are 

added to the media to select for cells harbouring both the pHEN1 (Ampr) and phage / 

M13KO7 (Kanr) DNA. The incorporation of the M13KO7 DNA allows translation of the 

phage DNA into the coat proteins required for packaging new phage particles and the result is 

a mosaic bacteriophage population containing scFv-pIII and normal pIII on its surface. The 

phage particles are separated from the TG1 host cells by precipitating them from clarified 

media supernatant using the PEG/NaCl method (van Wyngaardt et al., 2004). These phages 
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are then allowed to bind to the target antigen coated on the surface of immunotubes. Any 

unbound phages are washed off at this stage. The bound phages then infect fresh TG1 cells 

via the E. coli F-pili only if phages have normal pIII and / or the scFv-pIII (Noppe et al., 

2009). This step removes any non-infective clones and subsequent growth in ampicillin 

containing media removes any cells harbouring the M13KO7 (Kanr) DNA instead of the 

pHEN1 vector. This completes one cycle of panning. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Schematic representation of one round of the panning procedure used to select for target 
antigen specific scFv-bearing phagemids from the Nkuku

® library 
The panning procedure combines four independent protocols A to D to select for scFv-bearing phagemids 
specific to a target antigen. The selective pressure at each step is in italics. To start the pHEN1 vector (  ) 
harbouring the scFv coding sequences (also known as phagemid DNA) was transformed into E. coli TG1 cells. 
(A (i)) The infected E. coli population was propagated in ampicillin supplemented media, selecting against any 
uninfected cells. (B) The phagemid DNA was rescued by wild-type M13KO7 phage infection. This activates the 
M13 origin of replication and subsequent phage formation. Ampicillin and kanamycin pressure selected for cells 
containing both genomes. The resulting mosaic phage population contained either phagemid or phage DNA 
encapsulated with pIII-scFv (  ) which is coded by the phagemid DNA or normal pIII (  ), coded by 
phage DNA. (C) Phages bearing antigen-specific pIII-scFv (  ) on their surface bound the target antigen 
immobilised on a solid support and any unbound phages were removed by washing. (D) The antigen-bound 
phages were eluted by “on-column” infection of TG1 cells (Noppe et al., 2009), removing any non-infective 
phages. Alternatively bound phages were eluted using a change in pH and then allowed to infect E. coli TG1 
host cells. The TG1cells that remained untransfected or contained the phage DNA (  ) were selected against 
using ampicillin (A (ii)). This completes one round of panning.  
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Phage technology has been used in malaria research, both for identification of peptide binders 

to parasite receptors as well as generating antibodies against certain parasite proteins (Chiliza 

et al., 2008; Fu et al., 1997; Lanzillotti and Coetzer, 2007; Lauterbach et al., 2003; McIntosh 

et al., 2007; Wajanarogana et al., 2006). 
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6.2 Results 

6.2.1 Raising and affinity purification of anti-cmyc IgY antibodies to detect soluble 

scFvs 

ScFv antibodies are expressed as a soluble fusion protein containing the cmyc amino acid 

sequence. This can be detected by anti-cmyc antibodies. The commercial anti-cmyc 9E10 

monoclonal antibody commonly used is expensive and since large quantities of this antibody 

would be required for routine detection and purification of scFvs, it was decided to raise anti-

cmyc antibodies in chickens for this work (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Titres and affinity purification of anti-cmyc antibodies from chicken eggs 
Antibody production was monitored in the eggs from immunised chickens by ELISA (A to D). Plates were 
coated with cmyc peptide (1 µg/ml) in (A and C) or the carrier protein rabbit albumin as an immunisation 
control (B and D). Crude IgY was evaluated at 100, 50 and 25 µg/ml (key shown alongside panel D) and 
detected with a rabbit anti-chicken-HRPO at 1 in 15000 dilution. IgY isolated from weeks 3 to 8 and 9 to 14 was 
affinity purified over a cmyc SulfoLink® affinity column as shown in (E). 
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The peptide tag, cmyc, which is of human origin, was coupled to rabbit albumin and 

immunised into chickens. Antibody production was monitored by ELISA and similar titres 

were obtained against cmyc as well as the carrier protein rabbit albumin (Figure 6.3 (A to 

D)). Antibodies were isolated from chicken eggs (Goldring and Coetzer, 2003). The 

subsequent elution profiles off the cmyc-SulfoLink® affinity column yielded 12.5 mg of 

affinity purified anti-cmyc IgY (Figure 6.3 (E)).  

6.2.2 Panning the Nkuku
® library 

The Nkuku® library was panned using recombinant PfLDH and PfGAPDH. The peptide 

epitopes chosen for each of these proteins were also used to pan the library and a detailed list 

of the protein and peptide targets is shown in Table 6.1. The table includes details of the 

concentrations of the target antigens used for each round of panning. 

 

Table 6.1 Malarial recombinant protein or peptide targets used to pan the Nkuku
® 

library and the concentrations used per round 

Protein 
target Target species Target description Type 

Panning  concentrations 
used for rounds 1 to 4 

(µg/ml) 

LDH 

P. falciparum rPfLDH protein 100, 50, 25, 10 
Common epitope APGKSDKEWNRDDL-C peptide 50, 25, 10, 1 
P. falciparum epitope LISDAELEAIFD-C peptide 50, 25, 10, 1 
P. vivax epitope KITDEEVEGIFD-C peptide 50, 25, 10, 1 

GAPDH 

P. falciparum rPfGAPDH protein 100, 50, 25, 10 
Common epitope C-KDDTPIYVMGINH peptide 50, 25, 10, 1 
P. falciparum epitope C-AEKDPSQIPWGKCQV peptide 50, 25, 10, 1 
P. falciparum epitope C-ADGFLLIGEKKVSVFA peptide 50, 25, 10, 1 

PMT 

Common epitope LENNQYTDEGVK-C peptide 50, 25, 10, 1 
P. falciparum epitope C-EVEHKYLHENKE peptide 50, 25, 10, 1 
P. vivax epitope VYSIKEYNSLKD-C peptide 50, 25, 10, 1 
P. knowlesi epitope LYPTDEYNSLKD-C peptide 50, 25, 10, 1 

 
The respective peptide names used in text and in the Figures to follow were underlined e.g. APG represents 
common peptide APGKSDKEWNRDDL-C and so on. 
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6.2.3 Polyclonal phagemid ELISA results after rounds one to four of panning 

The polyclonal phagemid ELISA results after four rounds of panning are summarised in 

Figure 6.4. A common trend for most targets was an increase in signal in the ELISA from 

rounds one to four (FDC, rPfGAPDH, WGK, CEV, VYS and LYP). A few samples peaked 

in round three and then declined in round four (rPfLDH, KIT and DEG) and some peaked in 

the initial rounds and dropped with consecutive panning rounds (APG, VMG and ADG).  

Figure 6.4 Polyclonal phagemid ELISA results for pans one to four of each of the respective target 
peptides and recombinant proteins 
Polyclonal phagemid ELISAs were performed using the rescued phagemids at the end of each panning round as 
well as the original Nkuku® stock. The plates were coated with recombinant protein (100 µg/ml) or peptide 
(10 µg/ml) in PBS. Bound phagemids were detected using monoclonal mouse anti-M13 at 1 in 8000 dilution 
and a goat anti-mouse-IgG-HRPO at 1 in 1000. A background reading against the blocking agent was included 
for comparison. 
 

6.2.4 Anti-LDH monoclonal phage selection 

Due to the variation in signals between rounds one to four in the polyclonal ELISA, 48 

colonies were selected from each panning round for all antigens giving a total of 192 clones 

per antigen. Initially the clones were screened for binding to the target antigen by a phagemid 

ELISA, after which the top six clones were screened further and subjected to background or 

cross-reactivity controls in both their phagemid as well as soluble expressed scFv forms 

(Figures 6.5 to 6.16 and 6.18). The results were presented in the same order as that used in 

Table 6.1 and Figure 6.4, starting with the LDH results. 
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Figure 6.5 Monoclonal phage and soluble scFv ELISA results for the anti-rPfLDH clones 
The initial phagemid ELISA to screen for monoclonal binders to rPfLDH were shown in (A) R1 to R4 denotes the panning round from which the clones were selected and A 
to H and 1 to 24 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including rPfLDH were coated at 
100 µg/ml (A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-
mouse-IgG-HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected 
using anti-cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.6 Monoclonal phage and soluble scFv ELISA results for the anti-APG (common LDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to APG was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including APG were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.7 Monoclonal phage and soluble scFv ELISA results for the anti-FDC (P. falciparum LDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to FDC was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including FDC were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.8 Monoclonal phage and scFv ELISA results for the anti-KIT (P. vivax LDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to KIT was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to H 
and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where cross 
reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including KIT were coated at 100 µg/ml (A 
and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-HRPO 
at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-cmyc 
IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Interestingly all clones with the highest signals in the preliminary ELISA (Figure 6.5 (A)) 

against rPfLDH were either from panning round one or four. The subsequent background or 

cross reactivity ELISA results showed specific detection of rPfLDH above background 

readings for all six selected clones (B and C). Five clones were selected from round four and 

one from round one. The signals against rPfLDH in the phagemid ELISA (B) increased to 

two fold over background in the soluble scFv format (C). Unfortunately none of the anti-

peptide scFv clones performed as well in the soluble scFv ELISAs (Figures 6.6 to 6.8). The 

background phagemid ELISAs all showed positive signals above background levels for the 

specific antigens tested (B), however in the soluble scFv format none had signals above 

background (C). Based on these ELISA results, six anti-rPfLDH clones from Figure 6.5 were 

chosen for further analysis. These included clones R4H1, R4H8, R4H13, R1A9, R4H9 and 

R4H23. 

6.2.5 Anti-GAPDH monoclonal phage selection 

The next monoclonal results were for the antibodies detecting the GAPDH protein (Figures 

6.9 to 6.12), starting with clones against whole rPfGAPDH. Like the rPfLDH results, clones 

with greatest signal were from round four, with single colonies from rounds one and two 

(Figure 6.9 (A)). Again the phagemid background ELISA results were complemented with 

the soluble scFv ELISA results, and the signal increased two-fold in each case (Figure 6.9 (B 

and C respectively)). The anti-peptide clones were disappointing as only a single clone 

against the P. falciparum ADG peptide gave a signal above background in the soluble scFv 

ELISA format (Figure 6.12 (C)). Again six clones against the whole rPfGAPDH (Figure 6.9) 

were chosen for further analysis. These were clones R1A11, R4H13, R4H15, R4H18, R4H20 

and R4H23. 
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Figure 6.9 Monoclonal phage and soluble scFv ELISA results for the anti-rPfGAPDH clones 
The initial phagemid ELISA to screen for monoclonal binders to rPfGAPDH was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and 
A to H and 1 to 24 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), 
where cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including rPfGAPDH were coated 
at 100 µg/ml (A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-
mouse-IgG-HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected 
using anti-cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.10 Monoclonal phage and soluble scFv ELISA results for the anti-VMG (common GAPDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to VMG was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including VMG were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.11 Monoclonal phage and soluble scFv ELISA results for the anti-WGK (P. falciparum GAPDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to WGK was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including WGK were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.12 Monoclonal phage and soluble scFv ELISA results for the anti-ADG (P. falciparum GAPDH peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to ADG was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including ADG were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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6.2.6 Anti-PMT monoclonal phage selection 

The largest number of positive clones was achieved with respect to the anti-PMT peptide 

clones. Positive clones from all except the P. knowlesi peptide were obtained. Starting with 

the common PMT peptide (DEG peptide), five clones were selected from round three and a 

single clone from round one (Figure 6.13 (A)). All six clones selected, had signals above 

background for both the phagemid (B) and soluble scFv ELISAs (C) and hence all of these 

were analysed further. 

For the P. falciparum PMT peptide (CEV peptide) all clones were selected from round four 

(Figure 6.14 (A)). All six clones also resulted in signals above background for the phagemid 

(B) and soluble scFv ELISAs (C). As a result all six clones were analysed further. 

The last of the positive scFv selections were for the P. vivax PMT peptide (VYS peptide). 

Four clones were selected from round one and single clones from rounds three and four 

(Figure 6.15 (A)). Each of the six selected clones detected the peptide in both the phagemid 

(B) and soluble scFv formats (C). Again all six clones were further analysed. 

The clone selections against the P. knowlesi PMT peptide (LYP peptide) were not as 

promising. Of the six selected clones, five from round three and one from round one 

(Figure 6.16 (A)) only clones R1H1 and R3F2 gave specific signals above background in 

both the phagemid and soluble scFv formats (B and C respectively). The soluble ELISA 

results had very low absorbance values therefore none of these clones were further analysed. 
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Figure 6.13 Monoclonal phage and soluble scFv ELISA results for the anti-DEG (common PMT peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to DEG was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including DEG were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.14 Monoclonal phage and soluble scFv ELISA results for the anti-CEV (P. falciparum PMT peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to CEV was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including CEV were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.15 Monoclonal phage and soluble scFv ELISA results for the anti-VYS (P. vivax PMT peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to VYS was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to 
H and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where 
cross reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including VYS were coated at 100 µg/ml 
(A and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-
HRPO at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-
cmyc IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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Figure 6.16 Monoclonal phage and soluble scFv ELISA results for the anti-LYP (P. knowlesi PMT peptide) clones 
The initial phagemid ELISA to screen for monoclonal binders to LYP was shown in (A). R1 to R4 denotes the panning round from which the clones were selected and A to H 
and 1 to 12 the specific 96-well culture well inoculated. Six clones with the highest absorbance readings from any round in (A) were characterised further in (B), where cross 
reactivity against milk powder; BL21(DE3) lysate; TG1 lysate and uninfected red blood cell lysate was assessed. All controls including LYP were coated at 100 µg/ml (A 
and B). Phagemids were diluted 1:1 with MP-PBS-Tween and detected with a monoclonal mouse anti-M13 antibody at 1 in 8000 dilution and a goat-anti-mouse-IgG-HRPO 
at 1 in 1000 dilution. The same six clones were assessed as soluble expressed scFvs in (C). The soluble scFvs were similarly diluted 1:1 but were detected using anti-cmyc 
IgY at 10 µg/ml and a rabbit anti-chicken-HRPO antibody at 1 in 5000. 
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6.2.7 Detection of soluble scFv fragments using the anti-cmyc IgY 

The presence of an amber stop codon (TAG) between the cmyc and protein III sequences 

(Figure 6.1) meant that if the scFvs were expressed from E. coli suppressor strains a ~ 30 kD 

pelB-scFv-cmyc protein was expected. The anti-rPfLDH clones selected in Figure 6.4 were 

used to assess this and were transfected into E. coli Top 10 cells. The resulting expression 

was assessed by SDS-PAGE and western blot in Figure 6.17. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Expression of the top six anti-rPfLDH scFvs analysed by SDS-PAGE and western blot 
The culture media, periplasm and cytoplasm fractions of an untransformed Top 10 E. coli culture were analysed 
on 12.5% reducing SDS-PAGE gel stained with Coomassie blue (A). The periplasm and cytoplasm of the top 
six scFv clones expressed from infected E. coli Top 10 cells using Terrific broth were similarly assessed in (B). 
The cmyc-tagged scFvs were subsequently detected with anti-cmyc-IgY at 1 µg/ml and a rabbit anti-chicken-
IgY-HRPO at 1 in 10000 (C) or anti-cmyc-rabbit-IgG at 1 in 80 and a goat anti-rabbit-IgG-HRPO at 1 in 2500 
(D). Lanes were labelled as (Mw) molecular weight marker; (s) supernatant / culture media; (p) periplasm; (c) 
cytoplasm fractions and the respective clones were labelled above the lanes in the panels (B to D). 
 

Due to the PelB leader peptide, the scFv fragments are reported to reside in the periplasm 

after expression. For this reason the periplasmic fractions and cytoplasmic fractions were 

separately analysed on SDS-PAGE gels. A prominent band approximately 31 kD in size was 

produced in the periplasm of transfected E. coli cells (B), which was absent from the control 

(A). However when probed with the anti-cmyc IgY (C), as well as rabbit anti-cmyc crude 
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serum (D), a band around 60 kD was present in the cytoplasmic fraction. The anti-rPfLDH 

clone R4H1 was assessed further by passing both the cytoplasmic as well as periplasmic 

fractions over an anti-cmyc-IgY Hydrazide® column. Only the cytoplasmic fraction contained 

protein that bound the column and was eluted as an approximately 68 kD band as shown in 

Figure 6.18. 

 

 

 

 

 

 

Figure 6.18 Expression and affinity purification of the anti-rPfLDH scFv clone R4H1 analysed by 
SDS-PAGE and western blot 
The anti-rPfLDH scFv clone R4H1 was expressed in E. coli Top 10 cells using Terrific broth. The cmyc-tagged 
scFvs were affinity purified using an anti-cmyc-IgY Hydrazide® resin and the purification steps were analysed 
on a 12.5% reducing SDS-PAGE gel (A) and probed with the anti-cmyc tag IgY at 1 µg/ml and a secondary 
rabbit anti-chicken-IgY-HRPO antibody at 1/10000 dilution (B). The elution profile measuring absorbance at 
280 nm was shown as an insert on the western blot. The lanes were loaded with molecular weight marker (Mw); 
Top 10 unbound cell lysate (lane 1); supernatant sample loaded onto the Hydrazide® column (lane 2); eluents 1 
to 10 (lanes 3 to 12). 
 

6.2.8 Sequencing results of the scFv clones 

The 30 clones selected for further analysis from the ELISA results were first assessed by 

colony and nested PCR and Alu1 restriction endonuclease digest before sequencing. Only 13 

of the 30 scFv clones were sent for sequencing and were selected based on the following 

results. First colony PCR was performed on all 30 clones using the OP52 forward and M13 

reverse primers to amplify the expected ~1000 bp scFv coding regions (van Wyngaardt et al., 

2004). The resulting positive clones which gave ~1000 bp amplicons included five LDH 

clones (clone R4H13 was excluded); six GPADH clones, where clone R4H20 amplified an 

~800 bp sequence; two anti-DEG (common PMT peptide) clones R3F12 and R3G7 and three 

clones against the PvPMT peptide (VYS peptide) R1F9, R1H1 and R1G12 (Figure 6.19). 
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Figure 6.19 Colony PCR of the selected clones against rPfLDH, rPfGAPDH and the PMT peptides 
Colony PCR was performed on the selected scFv clones against rPfLDH, rPfGAPDH and the PMT peptides 
(DEG, CEV and VYS) and assessed on a 1% agarose gel visualised with EtBr. An unrelated clone was picked 
and used as a positive control in lane 1, where lane 2 was an uninfected E. coli TG1 colony used as a negative 
control. The DNA ladder was loaded in the lane marked L. All other lanes were labelled with the respective 
clone abbreviation loaded in that lane. 
 

Following successful colony PCR amplification of the scFv coding regions (~1000 bp 

amplicons), nested PCR was performed using a primer specific to the (GGGGS)3 linker 

coding sequence.  

 
Figure 6.20 Nested PCR of the selected clones against rPfLDH, rPfGAPDH and the PvPMT peptide 
(VYS) 
Nested PCR was performed on the selected scFv clones against rPfLDH (A), rPfGAPDH (B) and the PvPMT 
peptide (VYS) in (C) and assessed on a 3% agarose gel visualised with EtBr. An uninfected E. coli TG1 colony 
used as a negative control and the sample loaded in the TG1 lane. The DNA ladder was loaded in the lane 
marked L. All other lanes were labelled with the respective clone abbreviation loaded in that lane. 
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Successful amplification should result in amplicons around 500 bp in size as seen in Figure 

6.20. This narrowed the number of clones to 13 of the original 30. Only the GAPDH clone 

R4H20 once again ran at ~800 bp for the colony PCR amplicon, but a nested PCR amplicon 

of approximately 500 bp was observed.To assess the identity of the 13 clones, the colony 

PCR amplicons were digested with the restriction endonuclease Alu1 (Finlay et al., 2006). 

Depending on the number of Alu1 sites within each clone’s coding sequence, a unique 

“fingerprint” or pattern may be observed when resolved on agarose as shown in Figure 6.21. 

The resulting digest patterns suggested clones R4H1 and R4H8 to be similar; R4H9 and 

R4H23 and the two anti-PvPMT peptide clones R1H1 and R1G12. All 13 clones shown in 

Figure 6.21 were sent for sequencing using the colony PCR primer sets from Figure 6.19. The 

results for the LDH clones were presented first in Figure 6.22. 

Figure 6.21 Alu1 digest of the selected clones against rPfLDH, rPfGAPDH and the PvPMT peptide 
(VYS) 
Alu1 digest was performed on the colony PCR products of the selected scFv clones against rPfLDH, 
rPfGAPDH and the PvPMT peptide (VYS) and assessed on a 3% agarose gel visualised with EtBr. The DNA 
ladder was loaded in the lane marked L. All other lanes were labelled with the respective clone abbreviation 
loaded in that lane. 
 

To link the sequencing results with the Alu1 digest results in Figure 6.21, the number of Alu1 

restriction sites (AG^CT) within each of the anti-rPfLDH scFv coding regions was 

determined. The R4H1 clone coding sequence harboured two sites, which resulted in 

fragments of around 428, 368 and 233 bp which were visible in Figure 6.21. Clone R4H8’s 

coding sequence contained four sites, resulting in fragments of 428, 376, 259, 22 and 21 bp. 

The three larger fragments were visible on the agarose gel, whilst the smaller fragments were 

too small to be observed. The R4H9 clone coding sequence contained two restriction sites 

resulting in three fragments of 404, 360 and 230 bp which were visible (Figure 6.21).
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Figure 6.22 Alignment of the anti-rPfLDH scFv clones’ translated sequences with a 
chicken germline immunoglobulin and the Chiliza et al. (2008) anti-LDH scFv sequences 
The translated amino acid sequence for the anti-rPfLDH clones were aligned with a chicken 
IgG germline amino acid sequence in (A). The linker region (G4S)3 and the framework regions 
1 to 4 were underlined, with VH and VL for heavy and light chains respectively. The 
complementarity determining regions (CDR) 1 to 3 for both the VH and VL chains were box-
shaded and in bold. Each of the CDRs was additionally aligned with anti-LDH scFv CDRs 
isolated from an immune library by Chiliza et al. (2008) in (B). In the alignments “.” represent 
identical residues to the germline sequence, letters represent an amino acid substitution, “-” 
represent gaps in the alignment and “X” represent an undetermined amino acid codon from the 
sequencing results. 
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The R1A9 clone had two restriction sites within its coding sequence and resulted in three 

fragments of around 359, 261 and 257 bp respectively. The only aberration in the Alu1 

results was the larger band within the R1A9 sample, which may have been as a result of 

incomplete digestion that may result in a band of approximately 518 bp (261+257 bp). The 

size difference between the 261 and 257 bp fragments is unlikely to be visible and the band at 

around 260 bp on the gel most likely includes both fragments. Finally the R4H23 clone 

against rPfLDH had two restriction sites within its coding sequence, resulting in three bands 

of around 402, 358 and 234 bp respectively, which also correlated with the results of the 

restriction digest shown in Figure 6.21.  

The heavy and light chains in scFv coding sequences each code for as set of four frame work 

regions (FR1 to 4) and three complementarity determining regions (CDR1 to 3) as indicated 

in Figure 6.22 (A). Most conservation between sequences is expected for the frame work 

regions, which held true for most clones except the R4H23 clone which contained unique 

FR1 to three regions for its heavy chain. Most amino acid variations amongst all five clones 

were within the CDRs and in particular the CDR2 and 3 of both the light and heavy chains. 

The least variation was within the CDR1 of the light chain in all cases. Interestingly only 

clones R4H1 and R4H8 had identical CDRs and only varied within their heavy chain CDR1 

and 2 respectively. None of the clones resembled those isolated from an immune chicken 

library screened with rPfLDH by Chiliza et al. (2008) as shown in the alignment in Figure 

6.22 (B) though there were a few conserved amino acids within the respective CDRs.  

Analysis of the anti-rPfGAPDH scFv clones was done next. Based on the sequencing results, 

clone R4H20 had three Alu1 restriction sites which should have resulted in four fragments of 

434, 172, 153 and 23 bp respectively. From Figure 6.21 only two of these bands were visible, 

namely the 434 bp and 172 bp fragments. The R1A11 clone contained two restriction sites 

resulting in three fragments of 428, 398 and 240 bp respectively, which were all visible on 

the agarose gel. The individual sequences are shown in Figure 6.23. The R4H18 clone was 

only successfully sequenced in the reverse direction, hence an incomplete sequence was 

shown in Figure 6.23. A high degree of similarity between it and the R1A11 clone was 

observed, however, and the CDR1 to 3 of the heavy chain were almost identical to those of 

the R1A11 clone. What was more interesting was that clone R1A11 and clone R4H1 against 

rPfLDH (Figure 6.22) shared 85% identity, with identical CDRs throughout.  
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Figure 6.23 Alignment of the anti-rPfGAPDH scFv clones’ translated sequences with a chicken 
germline immunoglobulin sequence 
The translated amino acid sequence for the anti-rPfGAPDH clones were aligned with a chicken IgG germline 
amino acid sequence. The linker region (G4S)3 and the framework regions 1 to 4 were underlined, with VH and 
VL for heavy and light chains respectively. The complementarity determining regions (CDR) 1 to 3 for both the 
VH and VL chains were box-shaded and in bold. In the alignments “.” represent identical residues to the 
germline sequence, letters represent an amino acid substitution, “-” represent gaps in the alignment and “X” 
represent an undetermined amino acid codon from the sequencing results. 
 

Finally the anti-PvPMT peptide scFv clones were assessed as shown in Figure 6.24. Both 

clones harboured only single Alu1 restriction sites. This was predicted to result in 648 and 

393 bp fragments for clone R1H1 and 644 and 397 bp fragments for clone R1G12 which 

correlated with the bands detected on the agarose gel in Figure 6.21. 
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Figure 6.24 Alignment of the anti-PvPMT peptide (VYS) scFv clones’ translated sequences with a 
chicken germline immunoglobulin sequence 
The translated amino acid sequence for the anti-PvPMT peptide (VYS) scFv clones were aligned with a chicken 
IgG germline amino acid sequence. The linker region (G4S)3 and the framework regions 1 to 4 were underlined, 
with VH and VL for heavy and light chains respectively. The complementarity determining regions (CDR) 1 to 3 
for both the VH and VL chains were box-shaded and in bold. In the alignments “.” represent identical residues to 
the germline sequence, letters represent an amino acid substitution, “-” represent gaps in the alignment and “X” 
represent an undetermined amino acid codon from the sequencing results. 
 
The two clones share an identical CDR2 region in their light chains, with several amino acid 

differences in their remaining CDRs. Importantly these were the only two scFv sequences 

which were in frame for both the vector encoded N-terminal (LLLLAAQPA) and C-terminal 

cmyc sequence (EQKLISEEDLN). 
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6.3 Discussion 

The initial results from panning the scFv library against rPfLDH, rPfGAPDH and the 

peptides against Plasmodium LDH, GAPDH and PMT, showed increasing signals from 

rounds one to four for the polyclonal ELISA. Some clones showed higher signals in earlier 

rounds, however, and as a result single colonies were selected for further analysis from all 

four rounds for all targets. The initial monoclonal ELISA screen of the selected clones was 

promising. Six clones with the highest signals were selected for each target and these were 

assessed for background reactions with E. coli and uninfected red blood cell lysates as well as 

the blocking reagent. Colony PCR was performed on promising clones from the ELISA 

assays and if the expected 1000 bp amplicon for the scFv sequence was amplified, then the 

clone was assessed further. A similar strategy was employed by Leow et al. (2014) whilst 

screening a scFv library for binders against Plasmodium falciparum Histidine rich protein 2. 

Sizes of the PCR amplicons may vary slightly due to different CDRs however the presence of 

the framework regions within the sequences should allow for selection of such clones by PCR 

(van Wyngaardt et al., 2004). There was one exception to this pattern in the study and that 

was clone R4H20 isolated against rPfGAPDH which was sequenced before adopting this 

strategy. This clone encodes for a shortened heavy chain region, lacking a portion of the first 

frame work region and hence an 800 bp amplicon was observed after colony PCR.  

In addition to the colony PCR, samples were assessed by nested PCR. A nested primer was 

designed that anneals to the coding region for the (GGGGS)3 linker region common to all the 

scFv clones as this links the heavy and light chains (van Wyngaardt et al., 2004). In doing so 

an amplicon of approximately 500 bp was expected and this would exclude any clones 

lacking the linker region. Prior to sequencing, the PCR amplicons of all clones were digested 

with Alu1 which recognises an AG^CT restriction site. This was used by Finlay et al. (2006) 

to assess clone population homology. Initially a few clones seemed identical based on this 

analysis, however sequencing revealed substituted amino acids at various positions within 

CDRs of the clones. This method could be used as a crude measure of clonal diversity and is 

perhaps only useful in cases where high numbers of positive clones are identified in an initial 

screen. 

Most of the variation in the CDRs for the clones selected here fell within the heavy chain 

regions, especially CDR2 and 3. This was expected since the CDR3 VH coding region is the 

main source of antibody variation as it plays a major role in antibody binding (Marks et al., 

1991; Nissim et al., 1994; Sheets et al., 1998; van Wyngaardt et al., 2004). Interestingly the 
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clones raised against rPfLDH showed little homology within their CDRs with clones against 

the same protein isolated from an immune chicken scFv library (Chiliza et al., 2008). This 

could be explained by the different libraries used in the two studies, since scFv libraries are 

constructed from variable gene mRNA of B-cells. The Nkuku® library is a naïve library, 

whereas Chiliza et al. (2008) used an immune library. Immune libraries are constructed from 

mRNA of B-cells which have undergone immune maturation in the host’s immune system, as 

opposed to the whole naïve repertoire (Clackson et al., 1991). AbD Serotec® supply a 

commercial scFv monoclonal antibody for the detection of Plasmodium falciparum and 

Plasmodium vivax LDH. It was selected from the HuCAL® library and is a synthetic human 

antibody gene-based library expressed on phages by bacteria, but no sequence information 

was available, so no sequence comparison can be made here. 

The most costly steps in the selection of scFv antibodies from libraries are the monoclonal 

antibodies required for detection of the phage and scFv particles in the ELISAs, as well as the 

sequencing reactions to identify the selected clones (Rahim et al., 2003; van Wyngaardt et 

al., 2004). In this work it was decided to produce our own polyclonal chicken antibodies 

against the cmyc peptide tag used in the pHEN1 vector (Hoogenboom et al., 1991). The 

antibodies were successfully used in the soluble scFv ELISA format; however initial 

purification of scFv from periplasmic isolations did not purify the expected 30 kD protein. 

Instead a protein around 70 kD in size was purified from cytoplasmic fractions of E. coli used 

to express the scFvs. This was close to an expected size of approximately 73 kD for scFv-pIII 

fusion proteins.  

An explanation for the lack of detection of soluble scFvs (not linked to proteinIII) on western 

blots using the anti-cmyc antibodies raised here may be due to conformational orientation of 

the cmyc tag which may prevent binding of the antibodies. Perhaps extending the peptide to 

include the GAA(E) at the C-terminus which would mimic the extended cmyc coded for in 

the pHEN1 vector, where (E) is coded for by the amber codon would improve detection 

(Hoogenboom et al., 1991). The addition of GAA may not affect the antibody binding due to 

the small side chain groups of these amino acids. Depending on the expression host (supE+/-) 

the final E may be added, however and its polar side chain may well affect the affinity of 

antibodies. The two clones specific for the PvPMT peptide mentioned in Figure 6.24 should 

be expressed in E. coli Top10 cells and purified using the anti-cmyc antibody column. Since 

the sequencing data suggests that the clones are in-frame with the vector coding sequence 

(LLLLAAQPA) as well as a full cmyc tag (EQKLISEEDLN), these scFvs should purify 
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effectively as the expected 30 kD proteins. An E. coli Top10 lysate should also be included as 

a control in western blots to ensure that the ~70 kD protein is not of E. coli origin.  

There have been cases where stop codons can be read through, which could also explain the 

detection of the larger ~70 kD scFv-proteinIII fusion even though a non-suppressor E. coli 

Top10 strain was used. MacBeath et al. (1998) reported that the stop codon UGA may 

regularly be read through in protein overexpression systems and substituted with a tryptophan 

(T) or selenocysteine instead (Major et al., 1996). This was similarly suggested by Carcamo 

et al. (1998) for the UAA codon. The ability of ribosomes to change open reading frames by -

1; +1; +6 has been documented and in some cases ribosomal hopping and the ability to read 

through certain stop codons has also been reported (Weiss et al., 1991). Importantly the UAG 

(amber stop codon) is also read through in suppressor E. coli strains such as TG1 used during 

panning and use of non-suppressor strains such as Top10 is meant to increase soluble scFv 

fragments (not linked to proteinIII). This may alter the binding properties of scFvs as a result 

and should be assessed. 

There were multiple cases of scFv clones isolated here that did not amplify the expected 

~1000 bp coding regions even though they seemed to be good binders based on ELISA 

results. A few authors reported cases in which the final sequencing results after panning 

rounds have revealed frameshift mutations and stop codons within sequences (Carcamo et al., 

1998; Jacobsson and Frykberg, 1996). In the Carcamo et al. (1998) study the frequency of 

frameshift mutations or the presence of stop codons (UAA and UGA) was as high as 56% of 

clones (a total of 133 clones selected), where those lacking an open reading frame (either a -1 

or +1 frameshift mutation) gave ELISA signals equal to or greater than those with open 

reading frames. High guanine (G) and thymine (T) content in scFv DNA could potentially 

result in secondary mRNA structures caused by G:U (uracil) pairing in turn affecting 

translation. The authors suggest that regular clones with open reading frames are 

preferentially selected during panning, however if such clones are not selected then 

enrichment of rare binding clones may occur, such as those lacking open reading frames. 

Jacobsson and Frykberg (1996) also observed a high frequency of frameshift mutants in 

genomic libraries of Staphylococcus aureus origin cloned into a M13 based phagemid 

system. They suggested ribosomal “slippage” as a mechanism of translation in such cases.  

We decided to exclude such clones from this study by using colony and nested PCR, which 

resulted in a total of ten clones which will be characterised further in future studies. The high 
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homology between the R4H1 anti-rPfLDH and R1A11 anti-rPfGAPDH clones was 

interesting and should be characterised further. This homology may have resulted from the 

clones detecting the same region on the recombinant proteins such as the histidine-tag or 

alternatively conformational epitopes on the common Rossman fold motif shared between the 

two dehydrogenases is also possible. To conclude in this chapter monoclonal antibody 

reagents against all three target proteins were isolated, including scFv’s against whole 

recombinant proteins as well as a linear peptide epitope target. The preliminary screens 

showed that the clones detected their targets but further characterisation of binding affinities 

and specificity are required. 
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Chapter 7 

General discussion and future work 

 

7.1 Brief overview 

An effective diagnostic test should ideally conform to the ASSURED criteria: Affordable, 

Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-

users (Peeling et al., 2006). Of all the malaria diagnostic tests on the market thus far, RDTs 

best match these criteria, although some new methods such as haemozoin and LAMP based 

methods show promise for point-of-care diagnosis (Lukianova-Hleb et al., 2015; Orban et al., 

2016; Pirnstill and Cote, 2015; Polley et al., 2010; Yongkiettrakul et al., 2014). The 

introduction of RDTs in malaria control programmes has reduced the cost of malaria drug 

therapy due to a reduction in over-diagnosis and treatment (Harchut et al., 2013). The 

reduced cost of treatment has offset the additional cost of RDTs and in most cases the overall 

cost per patient has remained the same. An important additional benefit of the use of RDTs is 

improved case management and a less “liberal” use of anti-malarial drugs (Yukich et al., 

2010). Paper based test formats have also been used to allow for simple quality control 

checks for antimalarial drugs (Weaver and Lieberman, 2015) and a test for G6PD deficiency 

prior to primaquine treatment has been developed (Bancone et al., 2015). 

Of concern is the lack of quality RDTs on the market. According to the WHO only 10% of 

tests were capable of detecting malaria parasitemia at 200 parasites per microliter in 2011 

(Davis et al., 2014). This has since been addressed by the implementation of quality control 

screens for RDTs by the WHO, the results of which are published as recommendations for 

use in malaria control programmes (WHO Malaria rapid diagnostic test performance, 2013). 

RDTs can effectively be used as a source of DNA for further molecular analysis such as the 

presence of drug resistance markers (Morris et al., 2013). Subsequent PCR analysis can also 

be used for quality control of RDTs. This places RDTs at a pivotal point in the patient 

treatment time line. RDTs have the advantage of already being in the field and familiar to 

users. Implementing any improvements and innovations to these tests therefore has important 

practical advantages in comparison to introducing a new type of test. The findings presented 

here could aid in improving current tests without having major implications for end user 

implementation. The major findings are summarised and discussed. 
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Novel diagnostic reagents and targets identified in this study included the following: two 

potential diagnostic proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

phosphoethanolamine-N-methyltransferase (PMT); five peptide epitopes allowing pan-

malarial and species-specific detection of GAPDH and PMT, where the other peptides 

against LDH formed part of earlier work (data not shown, Hurdayal et al. 2010); polyclonal 

chicken antibodies against all five novel peptides, rPfPMT and rPvPMT were produced; anti-

cmyc peptide chicken antibodies for the detection and affinity purification of soluble scFvs; 

human antibodies against the P. falciparum protein orthologs, including LDH, GAPDH and 

PMT; monoclonal scFv clones against all three targets, including whole rPfLDH and 

rPfGAPDH proteins as well as the P. vivax PMT peptide epitope. To discuss these findings, 

the general discussion will be separated into findings from each of the chapter 3 to 6 and 

future work pertaining to each chapter included.  

7.2 Identification of new malaria diagnostic candidates (chapter 3) 

The aim was to identify new protein targets for diagnosis (chapter 3). The approach was to 

compile a list of potential targets using specific criteria, from which GAPDH and PMT were 

chosen. These two proteins were chosen based on the following: (1) both proteins are present 

throughout the parasite life cycle; (2) both proteins were predicted to be expressed at higher 

levels than the current target LDH; (3) slight amino acid sequence variations allowed for 

selection of species-specific and common peptides similar to the approach taken by Hurdayal 

et al. (2010) and Tomar et al. (2006); (4) the proteins have been expressed previously and 

importantly the crystal structures were available to verify the location of potential peptide 

epitopes on the surface of the proteins. Importantly the peptides selected here were specific to 

the parasite proteins and were not found to be part of the human orthologs. This was 

important for the GAPDH peptides. PMT is a protein that is unique to the parasite and not 

found in humans (Pessi et al., 2004). As P. knowlesi is becoming a more prominent infection 

in humans (Cox-Singh et al., 2008; Lee et al., 2009), specific peptides for this species from 

both LDH and GAPDH should be evaluated in future, as well as the P. knowlesi specific 

PMT peptide identified here. 

7.3 Recombinant expression of the target proteins (chapter 4) 

The selected protein targets were recombinantly expressed, including: the P. falciparum, 

P. vivax and P. yoelii orthologs of LDH; the P. falciparum and P. yoelii orthologs of GAPDH 

and the P. falciparum and P. vivax orthologs of PMT. This was the first description, to our 

knowledge, of expressing these proteins using auto induction media. High yields (> 5 mg) 
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from 50 ml cultures were obtained in most cases. These recombinant proteins formed the 

basis of testing the specificity of the selected anti-peptide polyclonal chicken antibodies. 

Recombinant LDH and GAPDH were also used to screen the Nkuku® scFv library (van 

Wyngaardt et al., 2004). An additional use of the recombinant antigens expressed here could 

be for RDT quality controls as demonstrated by Lon et al. (2005). The heat stability of the 

antigens should be assessed for this purpose. A heat stable target protein may also have 

implications for sample preparation methods, similar to the CSP ELISA protocol described in 

the introduction. The heat stability of CSP is exploited and samples are briefly heated to 

remove contaminating proteins which reduces cross-reactivity and false positive reactions 

within the assay (Bashar et al., 2013; Durnez et al., 2011). Importantly for future analysis, 

P. vivax GAPDH needs to be recombinantly expressed and purified to assess the specificity 

of the antibodies produced here, or alternatively P. vivax field samples could be used. 

7.4 Producing polyclonal IgY against the selected peptide and protein targets (chapter 5) 

Novel polyclonal chicken anti-peptide, anti-rPfPMT and anti-rPvPMT antibodies (IgY) that 

showed specificity to their respective recombinant protein targets were produced. This 

validated the bioinformatics approach used to identify the peptide epitopes described in 

chapter 3. Since a polyclonal response against the respective whole recombinant malaria 

proteins (GAPDH and PMT) showed no cross-reactivity with human red blood cell or E. coli 

proteins, the use of the target proteins for diagnosis of malaria was explored. Although the 

DAS ELISA format used in chapter 5 demonstrated the use of the anti-peptide capture and 

anti-recombinant protein detection antibodies, there are important differences to the RDT 

format. Firstly RDTs are paper or nitrocellulose based and the antibodies may perform 

differently when bound to this as opposed to an ELISA well (Shields et al., 1991). Secondly 

the detection antibodies in RDTs are often conjugated to gold nanoparticles as opposed to 

HRPO (Moody, 2002). The advantage of an enzyme-linked signal enhancement is therefore 

lost in an RDT format and the sensitivity of the tests may be lower than demonstrated here. 

These DAS-ELISAs still need to be optimised for PMT. Piper et al. (2011) demonstrated the 

importance of optimising capture and detection antibodies used in RDTs and the implication 

on RDT sensitivity. Similarly, the antibody combinations tested here detected LDH with 

different sensitivities dependent on whether they were used as the capture or detection 

reagent and tests can be improved by assessing which antibody combinations work best 

together. In previous work we have shown there to be approximately four to eight fold higher 

levels of P. falciparum GAPDH to LDH in a P. falciparum (D10) laboratory strain. This 
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places P. falciparum GAPDH in competitive concentrations with Hrp2, which is estimated to 

be present at six times the concentration of LDH (Marquart et al., 2012; Miller et al., 1994). 

PMT levels still need to be quantified using a DAS-ELISA approach and 

immunoprecipitation studies. PMT was detected in western blots of parasite lysate samples in 

this study. Ultimately all new diagnostic target proteins will be compared to the current target 

Hrp2, which is being expressed in our laboratory. 

7.5 Assessing the relative levels of human antibodies against each target from a human 

anti-malaria hyperimmune antibody pool (chapter 5) 

Experiments designed to determine the concentrations of specific antibodies against 

particular P. falciparum proteins in a human anti-malaria hyperimmune antibody pool 

revealed important information regarding the suitability of the chosen targets. Since RDTs 

are antibody based tests, high antigenicity of the target protein, although ideal for raising 

antibodies in animals, may not be an ideal characteristic for diagnostic tests. High levels of 

host antibodies against the diagnostic target protein may compete with test antibodies for 

binding to the target molecule resulting in reduced test signal and false negative results as 

reported for Hrp2 based tests (Ho et al., 2014). The same pool of human antibodies was 

sequentially passed over P. falciparum LDH, GAPDH and PMT recombinant protein affinity 

columns. Using rPfLDH as the reference, approximately half the affinity purified yield of 

human antibodies were attained off the rPfGAPDH and rPfPMT affinity columns. These 

human affinity purified antibodies could also be used in competition ELISAs to assess the 

extent to which they might interfere with target protein detection in the DAS-ELISA formats.  

7.6 ScFv clones against all peptides, rPfLDH and rPfGAPDH from the Nkuku® library 

(chapter 6) 

Five novel scFv clones were identified against rPfLDH, which were unique and differed from 

those identified and isolated from an immune chicken scFv library by Chiliza et al. (2008). 

The different sequences obtained here could be explained by the type of libraries used in both 

studies. The naïve library used here (van Wyngaardt et al., 2004), as opposed to an immune 

library used in the study by Chiliza et al. (2008), meant that the cloned V-genes of the 

immune library would have undergone affinity-maturation in the host animal prior to 

construction of the library, where naïve library V-genes would not (van Wyngaardt et al., 

2004; Yamanaka et al., 1996). Three novel scFv clones against rPfGAPDH were identified 

and sequenced. The R4H1 anti-rPfLDH and R1A11 anti-rPfGAPDH clones should be 
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evaluated further to assess whether they potentially react with the His-tag present on both 

recombinant PfGAPDH and PfLDH proteins. 

A novel clone was identified against the P. vivax PMT peptide (VYSIKEYNSLKD). This 

demonstrates the possibility of using peptides to screen the library. It would be interesting to 

assess whether peptides coupled to rabbit albumin, as was done for raising anti-peptide 

antibodies in chickens (chapter 5), would improve the success rate of the panning procedure 

against peptide targets as opposed to direct coating of immunotubes with the peptides as was 

done here. This may present the peptides in a more native conformation than when they are 

directly coated onto immunotubes. The Nkuku® library was panned again, but phagemids 

were eluted off the immunotubes prior to infecting the log-phase E. coli TG1 cells (van 

Wyngaardt et al., 2004), as opposed to using the on-column infection for all targets described 

here (Noppe et al., 2009). The polyclonal scFv results look promising (data not shown) and 

the monoclonal scFv results of this screen will be compared to the success of the on-column 

TG1 infection method used here. 

7.7 Future studies involving the scFv clones identified here 

The affinity of the scFv clones, identified in this study, for their respective targets could be 

improved. One such method known as in vitro affinity-maturation uses error-prone PCR and 

chain shuffling methods to introduce variation in the initial V-gene region of the selected 

scFv in the hopes of improving its affinity (Hoogenboom et al., 1998). This may also be a 

method of deriving antibodies of varying affinities, which may have use in the development 

of semi-quantitative RDTs (discussed later, see Figure 7.1). Tests with certain parasitemia 

cut-offs could be developed which could allow clinicians to test for severe and 

hyperparasitemic malaria infections for example and potentially track treatment success. In 

addition a unique method of detection of target proteins, namely immune-PCR is possible. 

The scFv portion on the surface of the phagemid binds its target antigen and the phagemid 

DNA is subsequently amplified using PCR. This method therefore combines PCR with scFv 

technology and reduces limits of detection of protein targets dramatically as was done with 

Hrp2 (Abkallo et al., 2014).  

The expression and purification of the scFvs selected here needs to be optimised. We 

produced our own polyclonal chicken antibodies against the cmyc peptide tag used in the 

scFv vector, which allowed for detection and affinity purification of expressed scFv 

antibodies. Further work in optimising the expression and improving the soluble scFv yields 
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from bacterial cultures is required. Alternate His-tag vectors such as the pET plasmids may 

also be assessed for this purpose and auto-induction versus IPTG induction as well as 

alternate expression host bacteria should be evaluated. An improved yield of scFv antibodies 

would potentially lower the cost of RDT production. Further work mimicking the RDT 

format, such as DAS ELISAs need to be done using the scFv’s in this case, as well as 

immunoprecipitation analyses. The sensitivity of scFv’s in detecting recombinant versus 

native protein targets needs to be tested.  

7.8 Comparative characterisation of the scFv and polyclonal IgY reagents  

All of the scFv and IgY reagents need to be assessed further in terms of their affinity for their 

respective targets. This would require surface plasmon resonance analysis, a technique not 

available in this laboratory at present, as well as competition or inhibition ELISAs with the 

IgY parent antibodies and the specific peptides (van Wyngaardt et al., 2004). This would 

present an ideal platform to compare the scFv antibodies to their parent polyclonal IgY 

molecules. In addition, the heat stability of the antibodies needs to be assessed as this pertains 

to potential long term storage conditions for these reagents in an RDT format (Chiodini et al., 

2007). This would require circular dichroism and additional functional ELISA assays (Chiliza 

et al., 2008). Temperatures in the tropics often exceed 40°C and in poorly ventilated storage 

containers they may be even higher (Jorgensen et al., 2006). If the need for a cold chain can 

be avoided then the cost and logistics of distributing tests in the field would be reduced / 

simplified. The scFv antibodies may be more heat labile than their IgY parent molecules 

although this was not tested here. A novel panning protocol was used to identify thermo-

stable anti-Hrp2 antibodies for use in RDTs (Leow et al., 2014). This method could also be 

assessed and compared to the scFv clones and IgY antibodies produced here. 

7.9 The possibility of capturing the native target proteins using IgY and scFv antibodies 

and exploiting their native enzymatic activity for detection 

The effect of the anti-LDH IgY and scFv antibodies on the LDH enzyme activity should be 

assessed. If the antibodies have no effect, then they could be used for capturing LDH from 

samples, where LDH activity is then used as the detection step, similar to the tests developed 

by Makler et al. (1993) and Piper et al. (1999). This could also be useful for drug screening 

studies. Unfortunately the poor stability of the GAPDH substrate does not currently allow for 

its use in detection steps. The PMT enzymatic activity relies on detection of phospholipids 

using TLC plates (Pessi et al., 2004), which makes it a difficult assay to perform and not 

suited to routine diagnosis in this format. 
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7.10 Retrospective analysis of the peptide targets with respect to post-translational 

modifications 

Since all three proteins (LDH, GAPDH and PMT) are targets for post translational 

modification by acetylation and phosphorylation, these changes in charge on the proteins and 

more importantly on peptide epitopes could affect the ability of antibodies to bind to them. 

The peptides selected in this study were therefore analysed for the presence of acetylation and 

phosphorylation sites. 

The acetylation of the selected peptides was based on the Miao et al. (2013) data. According 

to the Miao et al. (2013) data both the common peptides chosen in LDH and GAPDH in this 

study are acetylated (only one lysine residue in the case of the LDH peptide). The 

P. falciparum specific PMT peptide is also acetylated (only the one lysine (225) residue). The 

glutamate (236) in the P. vivax and P. knowlesi peptides corresponds to an acetylated lysine 

in the P. falciparum amino acid sequence which may actually improve the specificity of the 

antibodies against these two peptides. A possible approach to assess the effect of acetylation 

on antibody-based detection would be to raise antibodies against the acetylated peptides. 

Alternatively the antibodies raised here could be characterised by comparing their affinity for 

the acetylated and non-acetylated peptide targets using a direct ELISA approach. 

The kinase specific phosphorylation predictions were done online (NetPhos 2.0 

(http://www.cbs.dtu.dk/services/NetPhos/)). The common LDH peptide and the P. falciparum 

specific peptide are predicted to be phosphorylated (at their respective serine residues). The 

common GAPDH peptide was predicted to be phosphorylated at both its threonine and 

tyrosine residues, where the P. falciparum specific peptide (ADG) was only predicted to be 

phosphorylated once at its internal serine residue. Finally the common PMT peptide was 

predicted to be phosphorylated only once in the P. falciparum sequence (tyrosine) with a 

possible additional site in both the P. vivax and P. knowlesi proteins (substituted serine 

residue). The P. falciparum specific peptide is potentially phosphorylated only once (tyrosine 

residue), where both serine residues in the P. vivax peptide are predicted to be 

phosphorylated. In the case of the P. knowlesi peptide the tyrosine and serine residues are 

predicted to be phosphorylated.  

Ideally selected peptides without any post-translational modification sites, would be used, 

however this would narrow the possible peptides even further. Importantly the 

phosphorylation sites are predicted sites and not necessarily true sites on the native proteins 
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within the parasite. This highlights the importance of assessing the detection of the targets 

from parasite lysate samples and field isolates. It is also important to remember that not all 

proteins undergo post-translational modification and that acetylation and phosphorylation 

events will occur to a selected pool of native proteins with a regulatory purpose. Therefore a 

pool of unmodified native proteins will remain allowing detection on diagnostic tests. It 

should also be remembered that of the 15 amino acids of the para- and epitope, the main 

binding energy is between as few as five key residues of both the antibody and antigen 

sequences (Benjamin and Perdue., 1996; Dougan et al., 1998). Therefore the post-

translational modifications identified here may not necessarily have an effect on antibody 

affinity, especially if the residues fall outside of the five key residues comprising the para- 

and epitope. 

7.11 Retrospective analysis of the peptide targets with respect to single point mutations 

The P. falciparum LDH protein primary amino acid sequences shared between 98.1 to 100% 

identity (NCBI and PlasmoDB accessed 8.4.2016). One of the 16 LDH protein sequence 

entries had a G87R mutation and two had a D96L mutation. Both fall within the common 

peptide selected here. The G87R mutation is a change from a hydrophobic to a charged 

residue, and the D96L is a charged to hydrophobic residue mutation. Both may potentially 

alter the binding affinities of antibodies at this epitope. The P. vivax LDH primary amino acid 

sequence entries shared between 97.7 to 100% identity. The following mutations fell within 

the common epitope: S89G; D90V and D90N. The D90V mutation may have the most 

significant effect on the antibody binding affinity as this is the substitution of a charged for 

hydrophobic residue, which was found in two of the 33 samples aligned. An E212G mutation 

fell within the P. vivax peptide region and may affect antibody binding since it is a charged to 

hydrophobic residue mutation.  

The P. falciparum GAPDH sequences shared between 99.1 to 100% identity, where the 

single amino acid mutations Q140K and L272P did not fall within any of the chosen peptide 

regions. The P. vivax sequences were 100% identical. Finally of the PMT sequences only one 

of 20 P. falciparum isolates had a 99.6% identity, where all others were 100% identical. This 

was for an I192T mutation which falls outside of any of the chosen peptide sequences. All 

P. vivax and P. knowlesi isolates were identical although there were only two entries in the 

NCBI database for P. knowlesi at the time.  
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These slight amino acid variations may have implications for antibody affinity for LDH and 

will have to be assessed with parasite culture lysates and patient samples in future work. Thus 

far no mutations with implications for the anti-peptide antibodies against both PMT and 

GAPDH have been identified, which again support their potential for diagnosis.  

 

7.12 Comparing the half-lives of the target proteins 

The estimated half-lives of P. falciparum aldolase, LDH, Hrp2, GAPDH and PMT are all 

around 30 hours in mammalian reticulocytes. This was predicted using the ExPASy 

ProtParam tool (http://web.expasy.org/protparam/) which bases its calculation on the N-

terminal amino acid of the protein, which is a methionine in all five cases here (Varshavsky, 

1997). In vivo half-lives for aldolase and LDH were found to be approximately seven days 

(Ashley et al., 2009; Aydin-Schmidt et al., 2013) and seven to 28 days for Hrp2 (Aydin-

Schmidt et al., 2013; Marquart et al., 2012). The half-life in serum of GAPDH and PMT will 

have to be determined. GAPDH and LDH could be compared in a mouse model to assess 

their relation to parasitemia and to assess the possibility of using GAPDH as a target for 

tracking treatment. This cannot be done with PMT as it is absent in mouse malaria parasites 

(Dechamps et al., 2010).  

7.13 Essential field testing of the antibodies in an RDT format 

Concerns with RDTs themselves include interference or competition of circulating antibodies 

with detection antibodies in tests (Ho et al., 2014). For this reason it is essential to assess 

RDT performance of any new targets with clinical samples. Cross-reactivity with alternate 

pathogens and Rheumatoid factor are also a concern and need to be assessed (Gillet et al., 

2013). The choice of using chicken antibodies in this work was deliberate. Since IgY and 

scFv’s lack an Fc portion, tests using these reagents should not react with human Rheumatoid 

factor (Delves et al., 2006; Hoogenboom et al., 1991; Iqbal et al., 2000). 

7.14 A proposed semi-quantitative test for malaria 

In order to address the need for semi-quantitative detection of severe malaria infections as 

expressed by Barnes et al. (2015) and White et al. (2009), we propose multiple-test line 

detection systems (Figure 7.1). Quantifying the parasitemia is important as it has an effect on 

the dose and duration of treatment of malaria infections. Suboptimal dosing is also suggested 

to be an important driving factor for the spread of drug resistance in malaria parasites (Barnes 

et al., 2015; White et al., 2009).  

http://web.expasy.org/protparam/
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Figure 7.1 Proposed multi-test line semi-quantitative detection of malaria 

Scheme (A) presents the multiple test line approach in which a single target antigen (  ) is detected by multiple capture antibody test lines. In a mild case a single band 

appears, but as the parasitemia increases, a corresponding increase in the target antigen allows for multiple test lines to be detected, indicating severe malaria. Alternatively 

separate proteins present at different concentrations within the parasite are targeted in (B), such as Hrp2 (  ) and Cox17 (  ) for example. A mild malaria infections allows 

detection of Hrp2, however Cox17 is present at too low a concentration to be detected. As parasitemia increases to severe malaria, the Cox17 concentration increases to 

detectable levels, resulting in a second test line indicative of a severe malaria infection. Detection antibodies are usually labelled with a visible marker such as colloidal gold 

for example ( ). 
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The multiple test lines would effectively “mop up” the antibody-antigen complexes resulting 

in multiple test lines. The severity of infection would correlate to the number of test lines that 

develop. Four lines could be used to detect severe malaria and one line would present mild 

malaria, for example. Such a system could be optimised based on the known quantity of 

detection antibody added to the sample buffer used in the sample preparation. The more 

target antigen present in the sample (diamonds in Figure 7.1 (A)), the more antibody-antigen 

complexes form and are captured on the test strip forming test lines. Another possibility is 

that multiple antigen detection could be used; targeting proteins such as Cox17 (circle in 

Figure 7.1 (B)) for example (Choveaux et al., 2015). A protein present at lower 

concentrations than the current targets would require a higher parasitemia to be detected in a 

diagnostic test, which could be indicative of severe or hyperparasitemic infections. This could 

be exploited to allow for semi-quantitative diagnosis. Screening the scFv library for less 

sensitive clones would allow for concentration dependent detection of protein targets as well.  

Further innovations in RDT technology involve the development of novel reagents such as 

aptamers (Godonoga et al., 2016; Lee et al., 2014). A collaboration with Rhodes University 

in developing aptamers for the detection of P. falciparum and P. vivax LDH using the 

recombinant proteins raised here as targets, as well as the P. falciparum specific peptide 

epitope has been submitted to PLoS ONE (Frith et al., submitted 2016). The beauty of these 

methods is the robust nature of DNA aptamers and their stability which could allow for 

reusable tests as demonstrated by Dirkzwager et al. (2015). Inertial microfluidics has also 

been used to concentrate parasitized red blood cells and remove white blood cells from 

samples (Warkiani et al., 2015). Sample processing using Nickel coated magnetic beads 

improved the limit of detection of Hrp2 based tests by eightfold. This meant that the test was 

able to detect parasitemia as low as three parasites per microliter (Davis et al., 2014). Similar 

methods could be applied to other RDT targets in order to improve their sensitivity. A simple 

paper-based concentration method was employed by Pereira et al. (2015) which improved an 

LDH based RDTs limit of detection tenfold and only added an additional 5 minutes to the test 

time. Some groups have suggested alternate antigens for RDTs including glutamate 

dehydrogenase and thioredoxin peroxidase I (de Dominguez and Rodriguez-Acosta, 1996, 

2000; Hakimi et al., 2015) and three uncharacterised malaria proteins from saliva (Huang et 

al., 2012).  
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7.15 Conclusions 

This study further validated the Hurdayal et al. (2010) and Tomar et al. (2006) approaches to 

the identification and use of peptide epitopes on the surface of target proteins for specific 

antibody-based detection of these targets up to a species level. Two malaria metabolic 

proteins, GAPDH and PMT were identified which allowed the use of this approach and 

development of specific antibodies.  These targets show potential for use in malaria diagnosis 

as they are suggested to be present at higher concentrations than LDH, where PMT is unique 

to Plasmodium (P. falciparum, P. vivax and P. knowlesi) and not found in humans. The 

immunoreagents raised here and the targets identified in this study show potential of 

improving the current malaria RDT platform. Additional data regarding temperature stability 

and performance of these reagents in an RDT format will be invaluable. These novel targets 

show potential for the improvement of the RDT platform, but could also be used in alternate 

detection systems such as the DNA aptamer and immune-PCR assays for example. 
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