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Abstract  

Malaria is one of the most deadly infectious protozoan diseases known to man. It is spread by 

the Plasmodium parasite through the bite of the female Anopheles mosquito. Increasing 

resistance to currently available antimalarial drugs is a growing concern. Plasmepsins are 

malarial aspartic proteases, due to their characteristic mechanism of action, the fact that they 

are found in all Plasmodium species and are essential to parasitic survival they represent novel 

targets in the design of antimalarials. A unique structural feature of aspartic proteases and 

plasmepsins is the flap region lying perpendicular to the catalytic aspartic acid active, partially 

covering the active site. The flap region plays an important structural (and kinetic) role in 

regulating access to the active site, thereby regulating ligand binding.  

 

The present study focused on the flap dynamics of Plm I – V, proposing and validating 

parameters to accurately quantify the dynamic behaviour of the flap region. The catalytic 

aspartic acids is highly conserved in the plasmepsin family; sequence analysis revealed that 

although all plasmepsins are similar in structure, they differ greatly in the residues in the flap 

region. The heterogeneity in this region gives each plasmepsin unique substrate specificity and 

response to inhibitors. The parameters proposed in the present study gives a detailed account 

for the twisting of the flaps which move away from the active site in the absence of an inhibitor. 

Upon inhibitor binding, residues in the flap region form hydrogen bonds with the inhibitor 

pulling it inward towards the active site rendering the enzyme inactive. The parameters 

proposed in the present study will be of great value in the design of novel plasmepsin inhibitors, 

with increased efficacy and potency. 
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CHAPTER 1 

1. Background and rationale for the present study 

The current chapter covers the background and novelty of the research project related to malaria 

and a brief overview of malarial aspartic proteases, plasmepsins, as potential antimalarial 

targets.   

 

Malaria is one of the most life threatening diseases known to mankind, according to The United 

Nations Children’s Emergency Fund (UNICEF) “malaria kills one child every 30 seconds, 

about 3000 children every day.” 1. Malaria is caused by the obligate intracellular Plasmodium 

parasite that is passed on from person to person through the bites of infected female mosquitos 

(Anopheles) 2. The parasite’s lifecycle is complex, broadly broken down into a sexual phase 

(mosquito) and an asexual phase (vertebrate host) 3. While an infected mosquito feeds, the 

parasites are released into the host’s circulation through the mosquito’s saliva, where they 

move to the liver and infect hepatocytes 4. In the hepatocytes, the parasites proliferate 

exponentially eventually causing the cells to rupture upon which thousands of parasites are 

released into the bloodstream where they invade and infect red blood cells (RBC) 3.  

 

Currently there are several drugs used in clinical practice to treat malaria infection, although 

increasing resistance of the parasite to antimalarials and of the mosquito vector to insecticides 

is of growing concern. In July 2015, GlaxoSmithKline’ Mosquirix (RTS,S) received positive 

feedback from the European Medicines Agency, the first antimalarial vaccine to reach this 

stage 5,6. In spite of the progress that has been made in recent years in the fight against malaria, 

there is a dire need for more potent drugs to treat this life threatening infection, with fewer side 

effects, that are more efficacious, less susceptible to resistance and effective across the 

Plasmodium family. According to the Centre of Disease Control (CDC), drug resistance is one 



2 
 

of the “greatest challenges facing malaria control” 7. Essentially, drug resistances is responsible 

for the spread of malaria to new areas and for the re-emergence of the disease in area where it 

has previously been eradicated. It also has a significant impact on the occurrence and severity 

of epidemics across the world 7. We are at the stage where the Plasmodium parasite (only P. 

falciparum and P. vivax) has shown some degree of resistance to almost every drug used in 

clinical practice 7. In the face of increasing resistance, current treatment regimens rely on the 

combination of two or more actives, therefore no one compound is used as monotherapy with 

the aim of reducing the spread of antimalarial resistance 8,9.  

 

The first line treatment for uncomplicated malaria is artemisinin combination therapy (ACTs) 

which is the combination of an artemisinin derivative (artemether, dihydroartemisinin or 

artesunate) to a partner drug 9. Artemisinin, also known as qinghao, is a naturally occurring 

agent isolated from the leaves of the Artemisia annua (sweet wormwood) 10,11. Artemisinin 

derivatives are semi-synthetic peroxidases synthesised from artemisinin that are effective to all 

Plasmodium species 9. Partner drugs are usually derived from the natural compound quinine 

which is from the bark of the cinchona tree. Quinine derivatives can be divided into amino-

alcohols (closest chemical resemblance to quinine) such as mefloquine and lumefantrine and 

4-aminoquinolines (synthetic mimics) such as chloroquine, piperaquine, pyronaridine and 

amodiaquine (Figure 1 and 2) 9. In the combination approach, artemisinin is responsible for 

reducing the parasitic load in the first three days, whereas the partner drug is responsible for 

eliminating the parasite left over 11. Resistance to both artemisinin and quinine is on the rise, 

in February 2015 five countries in the Greater Mekong sub-region of the Asia Pacific has been 

confirmed resistant to artemisinin and more recently resistance has emerged in sub-Saharan 

Africa 12,13. Chloroquine resistance emerged in the 1950s in Southeast Asia, by 1978 

chloroquine resistance had spread to South Asia and East Africa and eventually to sub-Saharan 
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Africa where it drastically increased the mortality in malaria infected children 13,14. With the 

resistance to antimalarials and to insecticides increasing, it is of paramount importance to 

identify essential targets in the search of new antimalarials.  

 

 

 

Figure 1. Structures of the antimalarial drugs used to treat the asexual blood stage of the Plasmodium 

lifecycle 9. 
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Figure 2. Current antimalarials and their intracellular targets and pathways they disrupt, and potential 

antimalarial targets 15.  

 

In the infected RBC, hemoglobin degradation is crucial to the survival of the Plasmodium 

parasite and occurs in the acidic food vacuole (FV) 16,17.  Numerous enzymes are involved in 

the breakdown of hemoglobin, and dual proteinase families with partially redundant 

overlapping roles are required 17,18. Plasmepsins (Plm) are aspartic proteases found in malaria, 

sequencing of the P. falciparum genome has led to the identification of ten malarial aspartic 

proteases, Plm I-X 19,20. No registered drugs targeting plasmepsin, or other proteases.  

 

2.  Aims and objectives 

The aim of the present study was to better describe and investigate the dynamic behaviour of 

the flap and flexible loops covering the active site in plasmepsins, specifically Plm I-V, and 
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how inhibitor binding alters these dynamic motions. The aims are outlined in more detail 

hereunder: 

 

1. Define parameters that accurately account for and describe the flexibility and dynamics of 

the flap region: 

1.1. Extensive review of the literature available on all aspartic proteases, and identify which 

parameters have previously been used and how they have been used 

1.2. Define additional parameters that we believe would more accurately account for the 

dynamics of this region in the plasmepsin family 

1.3. Use these parameters in a proof of concept study to test the validity and relevance of 

the proposed parameters in a continuous 50 ns molecular dynamics (MD) simulation 

of PlmII as a prototype.  

2. To investigate the flap dynamics of apo plasmepsins I-V and how sequence heterogeneity 

affects the flexibility of the flap region: 

2.1. To ascertain the impact of sequence heterogeneity on flap motions, using sequence and 

visual analysis. 

2.2. To use available crystal structures and a homology model in continuous 50 ns MD 

simulations (all structures used were in the apo conformation, thereby establishing a 

base line for comparison). 

2.3. To use post-MD analysis to understand the flap dynamics and motions of apo Plm I-

V.  

2.4. To validate and implement previously proposed parameters to measure the flap 

dynamics across plasmepsins investigated in the present study. 

2.5. To investigate which plasmepsin is the most flexible is as defined computationally, 

and correlate findings to flap sequence, biological activity and function. 
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3. To better understand the binding landscape and impact on flap dynamics of PlmV upon 

inhibitor binding: 

3.1. To use the crystal structure of PlmV in complex with the inhibitor, WEHI-842, in 50 

ns continuous MD simulations. 

3.2. To use post-MD analysis to investigate the dynamics of apo PlmV compared to WEHI-

842 bound PlmV. 

3.3. To use the additionally defined parameters to quantify the impact of ligand binding on 

PlmV as a whole and with respect to the impact ligand binding had on the flap 

dynamics and flexibility.  

 

3. Novelty and significance of the present study 

Unique to the aspartic protease family of enzymes, is a flap region partially covering the active 

site. The importance of flap dynamics and flexibility in enzyme function is well documented 

in the literature. The flaps play a crucial role in ligand recognition and in regulating ligand 

access into the active site. Accurately quantifying the flexibility and dynamics of the flap region 

is quintessential to the design of novel inhibitors, with improved efficacy and potency. In the 

case of HIV protease, disrupting the flexibility and mobility of the flap regions leads to an 

overall inhibition of the enzyme rendering it inactive. The parameter (distance between the flap 

tip and Leu292 in PlmII) previously used to measure the dynamics of the flap regions in 

plasmepsins is nothing short of inadequate. To the best of our knowledge, the present study 

was the first of its kind to accurately define parameters that quantify the dynamic behaviour of 

the flap region of plasmepsins. Furthermore, how this flexibility varies between plasmepsins 

and how the dynamics are affected upon ligand binding. The computational parameters 

proposed and used in the present study could potentially aid in the development of plasmpesin 

inhibitors as antimalarials. Understanding the dynamic behaviour in this class of enzymes will 
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assist in the development of potent inhibitors. Additionally, a concise review focused on the 

flap region, flap dynamics and parameters used to quantify and measure the flexibility of these 

regions among aspartic proteases is also part of the present study.  

 

4. Overview of thesis 

This thesis is divided into seven chapters, including this chapter: 

Chapter 2 

Gives a general overview on malaria and the current therapies used to fight the malaria 

endemic. Aspartic proteases, more specifically plasmepsins, are discussed in more detail.  

Chapter 3 

Provides a general overview of computational chemistry, and focuses on the theories of the 

molecular modelling methods used in the work presented herein.   

Chapter 4 (Published work – this chapter is presented in the required format of the 

journal and is the final revised accepted version)  

This chapter is dedicated to the research paper “Flap dynamics of plasmepsin proteases: insight 

into proposed parameters and molecular dynamics”. In which the parameters to measure flap 

dynamics was tested and validated.  

Chapter 5 (Published work – this chapter is presented in the required format of the 

journal and is the final revised accepted version)  

This chapter is dedicated to the research paper “Flap flexibility amongst plasmepsins I, II, III, 

IV, and V: Sequence, structural, and molecular dynamics analyses”. In which the flap dynamics 

of apo PlmI-V were analysed. These parameters accurately account for the flexibility of the 
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active site, of which PlmIV and V were found to be the most dynamic, with the most flexible 

flap regions.  

Chapter 6 (Submitted – this chapter is presented in the required format of the journal 

and is the submitted version)  

This chapter is dedicated to the research paper “The binding landscape of plasmepsin V and 

the implications on flap dynamics”. In which the flap dynamics of unbound PlmV was 

compared to that of bound PlmV, and to assess the impact of ligand binding on the flexibility 

of the flap regions; and to analyse the impact of ligand binding on the overall conformation of 

PlmV. 

Chapter 7 (Submitted – this chapter is presented in the required format of the journal 

and is the submitted version)  

This chapter is dedicated to the review “Flap dynamics as unique conformational features 

among aspartic proteases”. Which focuses on aspartic proteases, and the structurally unique 

flap that partially covers the active site. And presents the parameters currently used to measure 

the dynamic behaviour of the flap region and its importance in enzyme function and ligand 

recognition.   
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CHAPTER 2 

1. Introduction 

 

Malaria – derived from Italian, meaning ‘bad air’ 

 

Malaria was first described by the Chinese almost 4000 years ago. It is a mosquito born 

infection that is completely preventable and treatable. According to the World Health 

Organisation (WHO), almost half of the world’s population (3.2 billion) are at risk of 

contracting malaria 1. So far in 2015, approximately 214 million cases of malaria have been 

reported with an estimated 438 000 deaths 1. Globally, the mortality rate has decreased by 60% 

since 2000. Sub-Sharan Africa carries the most significant portion of the malaria burden; in 

2015 the region represented 89% of the global malaria cases and 91% of the global malaria 

deaths (Figure 1) 1. Children under the age of five and pregnant woman are the most 

vulnerable; of all the malaria deaths reported two thirds (70%) are in children under the age of 

five. In 2013, South Africa reported 8645 malaria cases (100% P. falciparum) and 104 deaths, 

with approximately 10% (5 million) of the population at risk in certain areas of KwaZulu-Natal, 

Limpopo and Mpumalanga 2,3. The need to reduce and eliminate the spread of malaria is so 

pertinent, the Nobel Prize in Medicine or Physiology has been awarded four times for work 

related to malaria 4.        
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Figure 1. World map representative of the regions with ongoing malarial transmission in 2013 and 

the severity of each5.  

 

Malaria is one of the deadliest infectious parasitic diseases known to mankind; caused by the 

parasitic Plasmodium species, and transmitted to humans through the bite of an infected female 

Anopheles mosquito (vector). Throughout the world, there are approximately 400 Anopheles 

species, of which, 60 are natural malaria vectors. There are roughly 200 Plasmodium species, 

of which the five most common species to infect humans are P. falciparum, P. vivax, P. ovale, 

P. malariae and more recently P. knowlesi (Southeast Asia) 6–8.  The deadliest and most 

virulent strain is P. falciparum, causing approximately 90% of all reported deaths 9. Symptoms 

usually occur 8 days to 4 weeks after infection, and generally cycle every 48 to 72 hours, 

depending on the Plasmodium strain. Symptoms resemble flu-like symptoms, with 

characteristic fatigue, high fevers and sudden chills (paroxysm); in severe cases it can cause 



13 
 

convulsions, comas and eventually death 10.  Antimalarials used prophylactically or 

preventatively delay the onset of symptoms 11.  

 

Strategies to control malaria include vector control such as insecticides, bednets and insect 

repellents 12. GlaxoSmithKline is the first company to receive positive results and feedback 

from regulatory authorities for a malaria vaccine. Antimalarials used in clinical practice can be 

divided into five classes: artemisinin derivatives, quinolones and arylaminoalcohols, 

antifolates, antibacterial agents and hydroxynaphthaquinones 12. No new class has entered the 

market since 1996 13. The most important classes in the fight against malaria is the artemisinins 

and the quinolones, these classes have shaped and molded the current treatment regimens. The 

biggest hurdle in the fight against malaria is increasing resistance of the Plasmodium parasite 

to antimalarial medication. According to the Center for Disease Control (CDC) drug resistance 

is defined as “the ability of a parasite strain to survive and/or multiply despite the 

administration and absorption of a drug given in doses equal to or higher than those usually 

recommended but within tolerance of the subject” 14. Thus, there is a dire need to design 

antimalarials with increased efficacy and potency that are less susceptible to resistance.    

 

2. Life cycle 

The Plasmodium parasite has a complex, multistage lifecycle occurring in two hosts, the female 

Anopheles mosquito vector and a mammalian host (Figure 2). During its lifecycle, the malaria 

parasite undergoes several developmental stages such as sporozoites which are the infectious 

parasites injected into the host through the saliva of the mosquito, merozoites which invade 

host red blood cells (RBC), trophozoites which uses the nutrients from hemoglobin catabolism 

to multiply and gametocytes 6. The lifecycle can be broken down into a sexual phase 
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(sporogony) which occurs in the mosquito, and an asexual phase occurring in the host which 

can further be broken down into an intrahepatic (hepatocytes) and intraerythrocytic 

(erythrocytes) 7,15. As a female mosquito feeds on the blood from a malaria infected individual, 

male and female gametocytes move into the mosquito’s gut. Once in the gut, the male and 

female gametocytes fuse to form zygotes which eventually develop into sporozoites 16. After 

8-15 days the oocytes housing the thousands of sporozoites rupture, releasing the sporozoites 

into the mosquito’s body cavity which then travel to the salivary glands. When the mosquito 

feeds again, the sporozoites are injected through the saliva into the host’s bloodstream. Through 

the bloodstream the sporozoites travel to the liver, where they infect the hepatocytes. The 

sporozoites remain in the liver cells for 9 – 16 days, where they asexually replicate and mature 

into schizonts 16,17. Each sporozoite develops into a schizont which contain anything from 10 

000 to 30 000 merozoites, each merozoite has the ability to infect a RBC 18. The intrahepatic 

or pre-erythrocytic phase is a single cycle, at this stage infected individuals are asymptomatic. 

Merozoite filled merosomes derived in the liver, ensures the parasite bypass the hosts’ immune 

system and delivers the merozoites directly into the bloodstream 19. Once in the bloodstream, 

merozoites invade and infect RBCs. Merozoites grow and divide asexually inside RBCs, 

extensively remodeling the host cell; infected RBC become rigid and deformed which increase 

their ability to adhere to numerous cell types (such as endothelial cells lining blood vessels) 20. 

The various biochemical and structural changes that occur as the parasite develops in the RBC 

are responsible for the symptoms and pathologies (anemia and sequestering of infected RBC 

in the vasculature) associated with malaria 21. Eventually infected RBCs rupture, releasing 

more merozoites into the circulation to infect more RBCs (Figure 2) 22. At the same time in 

the infected RBC, a small portion of haploid parasites are stimulated to differentiate into 

gametocytes (male and female) 23,24. The gametocytes are non-replicating, do not cause any 

symptoms and are responsible for the transmission of malaria between hosts.  
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Figure 2. Malaria parasite in both the mosquito vector (sexual phase) and mammalian (human) host 

(asexual) 25.  

 

3. Hemoglobin degradation 

During the intraerythrocytic phase the parasite is encapsulated by three membranes – (i) 

parasitophorous vacuolar membrane (PVM) which is formed from the RBC plasma membrane 

as the parasite invades the cell, (ii) the parasite plasma membrane and (iii) the erythrocyte 

plasma membrane 26. Inside the RBC, the Plasmodium parasite degrades hemoglobin which 

makes up roughly 33% of a RBC; more than 80% of the RBC hemoglobin is degraded to 

provide energy and amino acids for parasitic growth as the Plasmodium species is incapable of 

de novo amino acid synthesis and have a limited capacity to exogenously take up amino acids 

27. Hemoglobin degradation is essential to parasitic survival and takes place in the lysosome-

like organelle, the acidic food vacuole (FV). Toxic heme, a by-product of hemoglobin 

hydrolysis, is sequestered into a crystal lattice known as hemozoin or malarial pigment. 

Hemoglobin hydrolysis is mediated by numerous protease families with functional redundancy 
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(Figure 3) 28–32. Enzymes responsible for the breakdown of hemoglobin have been grouped 

together as malarial hemoglobinases; the major hemoglobinolytic enzymes are cysteine and 

aspartic proteases (Figure 3) 32,33. These proteases work synergistically, in a semi ordered 

manner and each have their own unique specificity and function in the hemoglobin degradation 

pathway. The hemoglobin degradation pathway has numerous targets for drug design; 

proteases involved in the catabolism of hemoglobin include plasmepsins (aspartic proteases), 

falcipains (cysteine proteases), falcilysins (metalloprotease) and finally dipeptidyl 

aminopeptidase (DPAP1) (Figure 3) 30. Plamsepsins (I and II) make the initial attack on the 

native hemoglobin molecule in the conserved hinge region between Phe33 and Leu 34, this 

unravels the molecule and exposes it to further protease degradation 34,35. Further along the 

pathway in the acidic FV, falcipains, HAP and PlmIV degrade the denatured molecule into 

smaller peptides. Globins are cleaved by a metalloprotease into oligopeptides which are 

converted to free amino acids by DPAP1 in the parasitic cytosol 7. Inhibition of both cysteine 

and aspartic proteases is lethal to the Plasmodium parasite (Figure 3) 36.  

 

Figure 3. Hemoglobin degradation in the host RBC through numerous parasitic proteases37.  
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4. Aspartic proteases  

Aspartic proteases belong to the peptidase enzyme family, also known as enzymes of digestion. 

The peptidase family is not only one largest enzyme families, but also one of the most diverse 

as they are involved in almost every aspect of biological function 38. Proteases use water 

molecules to cleave amide bonds through a nucleophilic attack on the carbonyl carbon. 

Aspartic proteases share aspartic proteases as their catalytic apparatus, and function optimally 

in acidic conditions 38. These enzymes are bilobed (two assymetrical lobes) molecules (N- and 

C-terminals) with the active site situated at the interface of the two domains, each lobe 

contributes an aspartic acid to the catalytic dyad of the active site. The two aspartic acids are 

located in close geometrical proximity to each other, functioning at an optimum pH of roughly 

3 which ensures at any given moment one of the aspartic acid residues is protonated (ionised) 

and the other is deprotonated (unionised) 38–40. The mechanism of action is through a general 

acid-base reaction (“push-pull mechanism”), in which a nucleophilic attack occurs through the 

simultaneous transfer of two protons (between the conserved water molecule, the catalytic dyad 

and the substrate) leading to the formation of a transient neutral tetrahedral intermediate held 

non-covalently in the active site until bond cleavage occurs (Figure 4) 40–44.     

 

Figure 4. The general acid-base mechanism of proteolytic hydrolysis of aspartic proteases via the 

formation of the tetrahedral intermediate 45.  
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Unlike retroviral aspartic proteases eukaryotic aspartic proteases have a single hairpin loop 

lying perpendicular to the active site, partially covering the active site 39,46. The importance of 

the flap region and flap dynamics in regulating protein structure, protein function and ligand 

binding has been well documented for the HIV aspartic protease. Generally, the flap region 

moves away from the active site exposing the active site to the ligand, the flaps regulate access 

to the active site by guiding in the ligand and holing it in close proximity to the catalytic dyad. 

The flaps play a role in both the structure of the enzyme as well as the kinetics of the enzyme 

thereby regulating enzyme function and activity 47,48.  

 

5. Plasmepsins 

Sequencing of the P. falciparum genome has led to the identification of ten (I – X) malarial 

aspartic proteases, also known as plasmepsins (Plm). The overall structure and general 

mechanism of action is conserved throughout plasmepsins, although sequence heterogeneity in 

regions lining the active site such as the flap and other essential regions that regulate ligand 

access ensures unique substrate specificity and function 49.  Plasmepsin I, II, IV and histo-

aspartic protease (HAP) are situated in the FV and are responsible for the degradation of 

hemoglobin; Plm I, II and IV are classical Asp proteases with a catalytic Asp dyad in the active 

site whereas the active site of HAP is composed of only one Asp and the other residue of the 

active site is histidine 29,30,34,36,45,50–52. P. falciparum is the only Plasmodium species that 

actively expresses numerous plasmepsins in the FV, whereas the only aspartic protease in the 

FV of other Plasmodium species is an orthologue of PlmIV 53. Plasmepsins outside of the FV, 

Plm V – X, are highly conserved in all Plasmodium species 54,55. Although hemoglobin 

catabolism is essential to the survival of the malaria parasite, inhibition or knock down of 

vacuolar plasmepsins is compensated for by the hemoglobin degradation of other proteases 

such as falcipains albeit less efficacious and to a lesser extent. 
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Remodeling of the RBC surface ensures that infected cells bypass the host’s immune system 

(specifically the spleen); these changes are mediated through the export of hundreds of parasitic 

proteins 56. A staggering 8% of the parasite’s proteins are exported via the PEXEL pathway 

57,58. Proteins destined for export are tagged with the five amino acid consensus sequence/motif 

(RxLxE/Q/D) called the Plasmodium export element (PEXEL) 59,60. These proteins are 

transported to the endoplasmic reticulum (ER), where the ER resident aspartic protease PlmV 

cleaves the recognition PEXEL sequence between the highly conserved leucine and glutamic 

acid residue (RxL ↓ x E/Q/D) 61–65.  Plasmepsin V is distantly related to other plasmepsins and 

is not inhibited by pepstatin A; deletion and knock-down experiments has shown it is vital to 

the survival of all Plasmodium species 30,53,62,63,66.  Therefore, PlmV is a promising target in 

the search for potent antimalarials.  
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CHAPTER 3 

1. Introduction to Computational chemistry 

Computational chemistry, also known as molecular modeling, is a theoretical area of science 

that merges physics, mathematics, biology and chemistry; and is proving to be an invaluable 

adjunct to experimental studies. Computational chemistry is a general term, encompassing 

numerous methods and theories which can be used to solve various biochemical problems. 

Broadly speaking, it is an application in which computer simulations on an atomistic level are 

used to generate large volumes of data and information on the behaviour of atoms (molecules) 

over time. In order to do so, an understanding of the interactions at an atomic level is 

quintessential. Atomic interactions can be described in two ways; quantum mechanics (QM) 

and molecular mechanics (MM) 1. Quantum mechanics solely focuses on electrons, and 

electron distribution is used to model the interaction between atoms. Whereas, MM uses atoms 

(not electrons as single particles) and focuses on the classical Newtonian mechanics; modeling 

atomic interactions as a function of bond angles and bond length, non-bonded forces and 

dihedral angles 1. This chapter gives a general introduction to the computational chemistry 

theories used in MM and molecular dynamics (MD) applicable to the present study such as 

Schrödinger’s equation, the Born-Oppenheimer approximation and potential surface energy 

(PES).  

 

2. Schrödinger’s equation 

The behaviour of small particles such as nuclei and electrons cannot be explained or described 

using classical Newtonian physics. Fundamental to modern physics is Schrödinger’s equation, 

which describes the behaviour of electrons in a molecule as a wave like function and how the 

molecular system evolves over time (wave mechanics). QM solves Schrödinger’s equation and 

expresses the interaction in terms of a wave like function. This wave like function is a 
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mathematical function that is used to calculate the electron distribution. From the electron 

distribution other properties of the molecule can be determined, e.g. which part of the molecule 

is susceptible to nucleophilic or electrophilic attack 2. In computational chemistry, the most 

widely used Schrödinger’s equation is the time-dependent equation which is dependent on time 

and spatial coordinates of a system (time-dependent wave function, ψ). In its simplest, the 

Schrödinger equation is expressed as a sum of its operators: 

 

𝐻𝜓 = 𝐸𝜓                                                                                       (1) 

                    𝐻 = 𝑇 + 𝑉                                     (2)          

      

Where H is the Hamiltonian operator (total energy of a system), T is the kinetic energy operator 

of the system and V is the potential energy operator 1. The Hamiltonian operator can also be 

defined as: 

 

𝑯 =  [ − 
ℎ2

8𝜋2  ∑
1

𝑚𝑗
 (

𝜕2

𝜕𝑥2 + 
𝜕2

𝜕𝑦2 +  
𝜕2

𝜕𝑧𝑧)𝑖 ] + ∑  ∑ <𝑖  𝑗 (
𝑒𝑖𝑒𝑖

𝑟𝑖𝑗
)                      (3) 

 

3. Born-Oppenheimer approximation  

To circumnavigate the limitations of the Schrödinger equations, approximations are introduced for 

practicality. Quintessential to computational chemistry is the separation of electronic and nuclear 

motions. From the molecular orbital theory, nuclei move relatively slower compared to the electrons, 

which travel at the speed of light, – The Born-Oppenheimer approximation 3. This approximation allows 

the Schrödinger’s equation to be divided and expressed as an ‘electronic’ equation and a nuclear 

equation. Once this equation has been solved, it allows for the conceptualisation of the potential energy 
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surface (PES) which is used to solve for the nuclear motions in the system 1. A Hamiltonian operator 

that excludes the kinetic energy from the nuclei can be expressed: 

 

𝑻𝑒𝑙𝑒𝑐 =  [ − 
ℎ2

8𝜋2𝑚
  ∑  (

𝜕2

𝜕𝑥2 +  
𝜕2

𝜕𝑦2 +  
𝜕2

𝜕𝑧𝑧)𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠
𝑖 ]                            (4) 

 

The electronic Schrödinger’s equation with fixed nuclei, is expressed as: 

 

𝐻𝑒𝑙𝑒𝑐𝜑𝑒𝑙𝑒𝑐(𝑟, 𝑅) =  𝐸𝑒𝑓𝑓(𝑅)𝜑𝑒𝑙𝑒𝑐(𝑟, 𝑅)                                  (5) 

 

4. Potential energy surface (PES) 

Potential energy surface (PES) is the mathematical (or graphical) relationship between 

molecular energy and the geometry of a molecule; it plots the energy of a collection of electrons 

and nuclei (molecular energy) versus the geometric coordinates of the nuclei (molecular 

geometry), mathematically equating the molecular energy as a function of the nuclear 

coordinates (Figure 1) 2. Nuclear coordinates are the parameters used to define the geometry 

of a molecule due to the Born-Oppenheimer approximation. The nuclei on the potential energy 

surface can be calculated classically via Newtonian motions (molecular mechanics) or through 

quantum physics using Schrödinger’s wave methods.  
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Figure 1. A two-dimensional model of the potential energy surface (PES) 4.  

 

Potential surface energy graphically shows the ratio of the molecule’s potential energy to the 

geometry of the molecules, that is to say the potential energy is directly proportional to the 

geometry (Figure 1).  

 

5. Molecular mechanics (MM) 

From a computational perspective, a researcher has two options when trying to answers 

questions about a biomolecular system. One is to adhere to the fundamental laws of physics 

that govern the behaviour of electrons such as Schrödinger’s equation, solving the problem 

using quantum chemistry and physics. The QM approach however, even in its most simplistic 

form is computationally expensive and time-consuming; and is not feasible for biological 

systems which contain thousands of atoms. Alternatively, the second approach is to use MM, 

which is essentially a mechanical model of a molecule, envisioned as a collection of balls 

(atoms) which are held together by springs (bonds); adhering to Newton’s laws of classical 

mechanics. This mechanical system rotates, vibrates and translates until an energestically 

favourable conformation is reached while inter- and intra- molecular forces act on the system. 
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The underlying foundation of MM is that molecules are composed of structural units or 

functional groups that demonstrate similar behaviour in different molecules; and that 

mechanical models subjected to forces can be used to calculate the geometry, energy and other 

molecular properties of the biomolecular system 1. Therefore, MM expresses the energies of a 

molecule in relation to its resistance to bond stretching and bending, and atom crowding; and 

uses this energy equation to find the conformation representative of the minimum energy 

geometries or PES minima 2. MM provides an understanding of the mechanical nature of 

proteins, and provides insights into the changes in the cellular structure, cellular responses and 

cellular functions of a protein 5.  

  

The Born-Oppenheimer approximation allows for the energy calculation of a system to be 

represented as a function only of the position of the nuclei, ignoring the motions of electrons 

which are treated implicitly. Potential energy is a contributor to the total energy of a system 

and depends on the position of the atoms (expressed as coordinates on a Cartesian plane). With 

the help of empirical force fields, MM calculates the potential energy of an atom through 

atomic interactions or terms, each term is described as the energy required to distort a molecule 

in a particular manner (Equation 6). The position and motion of the nuclei in a molecule on 

surfaces such as PES will govern the molecule’s structure, function and dynamics 6.  

 

5.1. Force Fields 

Force fields (interatomic potentials) are the mathematical description that models the 

interactions between molecules at an atomistic level; it is the functional form of the potential 

energy function that predicts the molecular energy of a systems in relation to specific particle 

coordinates. Even though each force field uses different functional forms each equation is 
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always comprised of bonded terms (bond lengths, bond angles and torsions) and non-bonded 

terms (electrostatic and van der Waals) (Equation 6 and 7 ) 1,7.  

 

𝑬𝑡𝑜𝑡𝑎𝑙  =  𝑬𝑏𝑜𝑛𝑑𝑒𝑑  + 𝑬𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑      (6) 

𝑬𝑡𝑜𝑡𝑎𝑙 =  𝑬𝑠𝑡𝑟𝑒𝑡𝑐ℎ +  𝑬𝑏𝑒𝑛𝑑 +  𝑬𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +  𝑬𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 +  𝑬𝑣𝑑𝑊  (7) 

 

Where Etotal represents the total energy of the systems. Estretch is the energy contribution from 

bond stretching, Ebend is the energy contribution from angle bending, Etorsion is the energy 

contribution from torsional motions around single bonds; these make up the energy 

contributions from bonded interactions, Ebonded (Equation 2.1). Enon-bonded, interactions between 

atoms that are not directly bonded together, is made up of Eelectrostatic and Evan der Waals. 

Collectively these energies/parameters creates the MM force field, and describes the energy 

contribution of numerous atomic forces. The energy terms above are parameterized to align to 

experimental and QM data to ensure systems mimic the behaviour of actual molecules in 

motion 8. To date, numerous force fields have been developed and differ in their means of 

parameterisations; force fields should be selected based on the conditions and the type of 

system being investigated. The most commonly used biomolecular force fields include 

CHARMM 9, AMBER 10 and GROMOS 11. In the present study, the standard AMBER Force 

Field was used to parameterise the protein (Plasmepsins); and the general AMBER Force Field 

(GAFF) 12 was used to parameterise the ligands.      

 

6. Molecular dynamics (MD) 

Molecular mechanics and MD are related; MD uses MM to generate the forces acting on 

molecules, which is then used to calculate their motions in time 2. Structures generated from 
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NMR and crystallographic studies, represent a static view of biomolecular systems; these 

structures alone are insufficient in understanding the wide range of biological activity. In 

essence, MD is a deterministic method that strives to mimic the time dependent behaviour of 

molecules in space 13–15. The assumption is that the atoms in a given molecule will interact with 

each other in accordance to the force field applied; resulting in a MD trajectory. A trajectory is 

a data set that represents the positions (coordinates) and velocities of particles in the system 

over time; containing the structural and dynamic properties of the system 16. Molecular 

dynamics is based on an integrated approach of Newton’s laws of motion (F = m.a), which 

solves the equation of motion for atoms on an energy surface 1.  Therefore, motion can be 

simulated for a molecule as it changes conformations over time, or upon ligand binding 2. The 

evolution of interacting particles/atoms through time is followed by solving Newton’s equation 

of motions:    

 

𝑭𝑖 =  𝑚𝑖
𝑑2𝒓𝑖(𝑡)

𝑑𝑡2
        (8) 

 

Where Fi is the force acting on the particle (i) at t –time and mi – mass of particle i,  and ri (t) 

= (xi(t), yi(t), zi(t)) is the location vector of the ith particle. Required for the integration of the 

second order differential formulas above, is the specification of the immediate forces acting on 

the particles and their initial velocities and positions. The trajectories generated are defined by 

both location and velocity vectors which describe the time progression of the biomolecular 

system through phase space 17.  Numerical integrators, such as the Verlet algorithm, are used 

to propagate the locations and velocities at specific time intervals to outline the time 

progression of the MD trajectory. The location (changing through time) for each particle in 

space is expressed by ri (t); and the velocities vi (t) are used to determine the thermodynamics 
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(temperature and kinetic energy) of the biomolecular system. The functional properties of a 

system can be affected by dynamic events, which can be detected at an atomic level 18. The 

advantage of MD, is that by applying kinetic energy or temperature we are able to move along 

the molecule’s PES which enables numerous conformational states to be sampled through the 

simulation 6.      
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Abstract  

Herein, for the first time, we report the flap opening and closing in Plasmepsin proteases – 

plasmepsin II (PlmII) was used as a prototype model. We proposed different combined 

parameters to define the asymmetric flap motion; distance, d1, between the flaps tips residues 

(Val78 and Leu292); dihedral angle, ϕ; in addition to TriCα angles Val78-Asp34-Leu292, θ1, 

and Val78-Asp214-Leu292, θ2, are presented. Only three combined parameters, distance, d1, 

dihedral angle, ϕ and TriCα angle, θ1 were found to appropriately define the observed 

“twisting’ motion during the flap opening and closing. The coordinated motions of the proline-

rich loop adjacent to the binding cavity rim appeared to exert steric hindrance on the flap 

residues, driving the flap away from the active site cavity. This loop may also have increased 

movements around the catalytic dyad residue, Asp214, making the TriCα, θ2 unreliable in 

describing the flap motion. The full flap opening at d1, 23.6 Å corresponded to the largest TriCα 

angle, θ1 at 78.6° at ~46800ps time scale. Overall the average θ1 and θ2 for the bound was ~46° 

and ~53°, respectively compared to ~50° and ~59° for the Apo PlmII, indicating a drastic 

increase in the TriCα as the active site cavity opens. Similar trends in the distance, d1 and 

dihedral angle, ϕ were observed during the simulation. The asymmetrical opening of the 

binding cavity was best described by the large shift in ϕ from -33.90° to +20.99° corresponding 

to the partial opening of the flap at a range of 22091-31013ps. Though, the dihedral angle 

described the twisting of the flap, the extent of flap opening can appropriately be defined by 

combining the d1 and the θ1. The results presented here, on the combined parameters, will 

certainly augment current efforts in designing potent structure-based inhibitors against 

plasmepsins.     

Keywords: Malaria; Plasmodium falciparum; Plasmepsin II; Flap motion; Molecular                         

Dynamics. 
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1. Introduction 

The plethora of proteomics data on human pathogens has significantly augmented disease 

fighting strategies. Plasmodium falciparum is responsible for the most lethal form of malaria 

among the six known Plasmodium spp.(1-3). Plasmepsins (Plm) are plasmodium encoded 

proteins, similar to human pepsins, which play critical roles in the erythrocytic stages of 

plasmodium life cycle (4). Currently, only crystal structures of food vacuole plasmepsins (I, II, 

III, and IV) are available (5-8).  Plasmepsin II (PlmII), an aspartic protease encoded by P. 

falciparum, has been reported as a virulence factor in malaria where it is involved in 

haemoglobin degradation. Similar to other aspartic proteases, the PlmII active site contains two 

aspartic acid residues, a proton donor and acceptor, forming the catalytic dyad when cleaving 

the peptide bond. General features from experimental studies by Asojo et al, show a mature 

enzyme crystal structure consisting of a single chain, composed of 329 amino acid residues 

which fold into two topologically similar N and C terminal domains (6). The domains make 

contact along the bottom of the binding cleft, that contains the catalytic dyad Asp34 and 

Asp214. A single long β hairpin structure (flap, Lys72-Phe85) lies perpendicularly over the 

binding cleft and lying opposite is a flexible flap-like loop structure (6, 9). These two structures 

are highly flexible where they interact with bound inhibitors and presumably substrates. The 

amino and carboxyl ends of the polypeptide chain of PlmII are assembled into a characteristic 

six-stranded inter-domain β-sheet which serves to anchor the domains together (6, 9). 

 

Several non-structural proteins display unique and specific motions which are essential in 

defining their precise function(10). Determining the correct parameters which best describe 

such motions in proteins, is essential in understanding enzyme functions as well as its impact 

on drug binding and resistance. For instance, flap dynamics is a distinctive motion observed 

amongst aspartate proteases e.g. HIV protease and cathepsin. Flaps have been shown to 
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regulate access to the active site of proteases by providing access for substrate and/or inhibitors 

binding (10, 11). Flap opening and closure in HIV protease have been well studied using 

molecular dynamics (11-19). Generally, different parameters have been proposed to describe 

the HIV PR flap motion (16).  The distance between Ile50-Ile50’ (inter-flap distance) is one of 

the most commonly used parameter for defining flap motions. However, this parameter does 

not adequately describe the curling behaviour observed, which lead to the introduction of other 

parameters such as curling to better define HIV protease flap dynamics (19, 20). The flap 

dynamics in HIV protease is one such example, which highlights the importance of defining 

the appropriate parameters that best describe specific dynamics associated with inhibitor 

binding to the binding cavity.  

 

The characteristic flap and flap-like structure have been reported to be highly flexible in 

plasmepsins I-IV, in both the free and ligand-bound proteases relative to other enzyme 

structures (5-8). These structures are critical determinants in the conformational flexibility of 

the binding cavity of PlmII in accommodating different inhibitors, where crystallographic 

studies have demonstrated structural differences between the free and ligand-bound enzymes 

(6, 9). Precise insight into the mechanistic events associated with binding of plasmepsins 

inhibitors is essential for the design of more potent inhibitors. Crystallographic studies reveal 

that the binding cavity of PlmII is a highly flexible pocket, thus designing more potent 

inhibitors will require a better understanding of the plasticity of this cavity in response to 

different inhibitors. Moreover, different inhibitors have shown a varying scale of binding 

potential to the binding cavity of PlmII. Experimental parameters previously defined are 

insufficient in examining and predicting the binding modes and flap dynamics of different 

inhibitors (6, 9, 21). The interaction of the PlmII flap pocket with non-peptidomimetic 

inhibitors have been documented elsewhere (22). Therefore, defining appropriate parameters 
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to assess flap motions is critical. Furthermore, the exact parameters to precisely describe flap 

opening and closing are not well defined in literature, neither experimentally nor 

computationally. This has prompted us to report the first detailed computational study that 

highlights the flap dynamics amongst plasmepsins and different proposed parameters. We 

believe that this article will serve as a benchmark for observing this phenomenon in 

plasmepsins, potentially other proteases.  

 

2. Methods  

2.2. System preparation 

The apo crystal structure (PDB ID: 1LF4)(6)  and complex structure of plasmepsin II (PlmII) 

bound with potent inhibitor EH58 (PDB ID: 1LF3) (6) were obtained from the RSCB Protein 

Data Bank (23). The systems were prepared as described in our previous reports (24, 25).  

 

2.3. Molecular dynamic analysis 

An all atom explicit solvation molecular dynamics simulation was performed using GPU 

version of PMEMD engine integrated with Amber14 (26). All the systems were set up using 

the standard methodology discussed in our previous reports (24, 27). Visualisation of enzyme 

structures was carried out using graphical user interface of UCSF Chimera package (28) and 

data were plotted using the GUI of Microcal Origin data analysis software version 6 

(www.originlab.com) and Surfer version 12 (www.goldensoftware.com). 

 

 

http://www.originlab.com/
http://(www.goldensoftware.com)/
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3. Results and Discussion 

3.1. Experimentally Determined Parameter and Its Limitations  

X-ray diffraction studies on PlmII found that the uncomplexed form (PDB ID: 1LF4, 1.9 Å) (6) 

of the enzyme is more open than the bound, by measuring the distance between Cα of Val78 at 

the flap tip and Cα Leu292 on the opposite side of the hydrophobic rim of the binding cavity. 

In the free enzyme crystal structure, this distance was found to be 12.6 Å. However, upon 

binding to EH58 inhibitor (PDB ID: 1LF3, 2.7 Å) (6) this distance slightly reduced to 12.0 Å, 

indicating the closing of the flap upon ligand entry. In PlmII - Pepstatin A complex, the distance 

between flaps reduced significantly to 9.9 Å, indicating that the binding cavity closes to embrace 

the inhibitor (6). Thus, as evident from these measurements, the binding cavity of PlmII exhibits 

a rather flexible conformation which adapts to accommodate inhibitors based on their bulkiness.  

However, the defined parameter as described by Asojo et al.2003, provide some information on 

the opening and closing motion of the flap-like structure, this single parameter was based on a 

rigid crystal structure and only described the motions in one-dimension of space (6, 9) (Figure 

1). Analysis of the MD trajectories clearly indicated that more parameters need to be defined to 

appropriately describe the flap motion (see section 3.2)  
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Figure 1. An illustration of the different proposed parameters to describe the flap motion; distance 

(d1) between the flap tip residues (Val78, Leu292) and TriCα angles, θ1, θ2 and dihedral angle, ϕ. 

 

3.2. Proposed different parameters to describe flap opening and closing 

Visual inspection of the molecular dynamic trajectory snapshots shows that the opening and 

closing of the binding cavity of the free PlmII structure is characterized by an extensive 

“twisting” of the flap and the concerted recoiling of a proline rich loop (flap-like structure).  
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Figure 2. MD trajectory showing the flap dynamics of free and bound (PlmII-EH58) PlmII (blue 

ribbons) superimposed against the starting structure (grey ribbons). Flap tips for the free and bound are 

shown in green and red, respectively. 

 

Upon observation of the flap motions in PlmII (Figure 2), we propose that these motions can 

be explained accurately by considering the distance between flap tip residues (d1) in relation 

to the TriCα angles, Val78-Asp34-Leu292, θ1 and Val78-Asp214-Leu292, θ2 as well as the 

dihedral angle, ϕ (Figure 1). 
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Figure 3. Plot of root mean square fluctuation (RMSF) of apo PlmII (blue) and PlmII-EH58 complex 

(red). Region showing high residual fluctuation corresponding to the proline-rich region of PlmII is 

shown in pink whereas the flap region is highlighted in orange. 

 

The “twisting” of the flap and the lateral shift of the highly flexible loop in the open 

conformation appears to be a coordinated movement, involving the highly flexible loop a 

proline-rich region (223-295) (Figure 3). As evident from the root mean square fluctuation 

(RMSF) plot of the free and bound PlmII, the apo PlmII shows high residual fluctuation 

(average fluctuation ~1.37 Å) around this proline-region loop compared to the bound PlmII 
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(average fluctuation ~1.07 Å), indicating less residual interaction in the bound state of the 

enzyme. The average RMSF of the apo was 1.11 Å, whereas it was 0.82 Å for the bound 

enzyme, indicating a more compact bound enzyme with less residual fluctuations and a more 

flexible apo enzyme with high residual atomic fluctuations. Higher residual fluctuations were 

observed in the proline rich area, as well as the flap residues. The flap residues (residue 76-86) 

displayed a significant increase (~4 Å) in fluctuation in case of apo conformation as compared 

to bound Plm-II complex. Interestingly the RMSF of flap tip residue of β-hairpin region 

(otherwise known as flap region), Val78 found to be 1.97 Å in case of apo whereas in case of 

bound the RMSF significantly decreased and found to be 0.75 Å. Similarly, the fluctuation of 

Leu292 found to be 1.97 Å in case of apo as compared to 0.64 Å in bound conformation. Higher 

RMSF of flap tips (Val78 and Leu292) further confirmed the flexible nature of flaps whose 

opening leads to incorporation of inhibitor in the protease active site. The bound PlmII adopts 

a compact closed conformation all through the simulation, whereas in the free enzyme, the 

flexible regions adopt different conformations with the opening and closing of the binding 

cavity. This loop, recoils inside the binding cavity towards the catalytic dyad (Asp34, Asp214) 

as it adopts a lateral shift away from the main enzyme structure. Interestingly, the residue at 

the tip (Leu292) of this loop moves relatively less compared to the entire loop. Notably, the 

intense motion at the highly flexible proline-rich loop seems not to orient Leu292 away from 

the binding cavity rather, the loop movement seems to cause steric hindrance on the flap tip 

residues resulting in the movement of the flap away from the binding cavity. The average radius 

of gyration (Rg) for the free PlmII was found to be 12.31 Å at 46819 ps which corresponds to 

the fully opened conformation of apo PlmII. Whereas, the initial value of Rg was 4.92 Å and 

closing was observed at 49999ps with an Rg value of 6.96 Å. The trend of Rg in case of apo 

conformation of PlmII was found to be similar that of d1 as well as θ1. Whereas the bound 

conformation of Plm II observed a stable Rg fluctuation with an average fluctuation of 6.02 Å 



43 
 

(Figure S3, Supplementary Information). This significant fluctuation in case of apo Plm II 

highlighting the rigorous asymmetrical opening and closing of the flap which may have led to 

changes in moment of inertia.  

 

As such, this intensive and coordinated flap motion may certainly not be defined by distance 

(d1) alone, but rather a combination of parameters including TriCα angles (θ1, θ2) and dihedral 

angle, ϕ, as have been proposed in this paper. The distance, d1, between flap tip residues was 

10.69Å at the starting structure of the free enzyme. Partial flap opening was observed at ~30 

ns, with the full flap opening occurring at 46820 ps (d1 = 23.61 Å). Towards the end of the 50 

ns MD simulation, the closing of the flap was observed at 49999 ps (d1 = 12.69Å). Further, for 

the first time we observed an asymmetrical opening of the binding cavity evident by the 

“twisting” of the flap and a maximum “twisting” at the time range of 22091-31013 ps 

corresponding to a large shift in the dihedral angle, ϕ from -33.90° to +20.99°. Although 

“twisting” alone may not solely describe the extent of flap opening, it however reveals the 

asymmetrical nature of flap opening as defined by the dihedral angle, ϕ. This demonstrates the 

intensive motion which involves the movement of adjacent residues around the highly flexible 

loop which seems to generate steric hindrance that drives away the flap lying at the active site 

cavity. 
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3.3. Defining the appropriate “Combined” Parameters  

 

Figure 4. Combined plots of distance, d1, between flap tip residues (Val78, Leu292), dihedral angle, 

ϕ, and TriCα angles, θ1, θ2 against time (ns) of the Apo PlmII [A] and PlmII-EH58 complex [B]. 

 

3.3.1. Distance, d1, between flap tip residues and dihedral angle, phi (ϕ)   

Plotting the dihedral angle, ϕ and distance, d1 against time (ns) for the free PlmII (Figure 4A), 

it is evident that d1 increases with an increase in the angle ϕ. A sharp increase in d1 and ϕ 

corresponding to the partial opening of the active site cavity is observed at 30 ns. This is 

consistent with the “twisting” motion of the flap as it moves away from the active site pocket. 

The partial opening of the active site cavity at 30 ns is accompanied by an increase in the 

dihedral angle, ϕ which demonstrates that though movement is observed at the flaps, there is 
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an intensive orientation of the peptide bond, evident by the large shift in the dihedral angle, ϕ, 

which results in a concerted movement of the flap away from the active site pocket. 

 

 In the PlmII-EH58 complex, there was no significant movement of the flap as the ligand 

(EH58) remained embraced by the flap at the active site cavity. The average distance between 

Val78 at the flap tip and Leu292 remained at 13 Å across the 50 ns simulation of the bound 

PlmII (Figure 4B).  

 

3.3.2. Distance, d1 between flap tips and TriCα Angles, θ1 and θ2 

Measuring the distance as well as the angle between the flap tip residues and the catalytic 

residues may better explain the flap dynamics in this protease. The aspartic residues sitting in 

the active site are observed to show minimal movement relative to the highly dynamic flap tip 

residues and the highly flexible loop. Interestingly, the trend in distance of Cα of Val78 and 

Leu292 highly correlates with the angle between Val78-Asp34-Leu292. However, the angle 

between Val78-Asp214-Leu292 did not accurately describe the flap movement observed in the 

MD simulation as well as the observed “twisting” of the flap structure to allow the opening of 

the binding cavity. Thus, the opening and closing of the binding cavity can better be explained 

by measuring the angle, θ1, between Val78-Asp34-Leu292 and correlating it with the distance 

between Cα of the flap tip residues (Figure 4). The apo conformation of plasmepsin II 

displayed a θ1 of 78.64 Å at 46840 ps which highly corresponds to fully opened conformation 

of PlmII. The θ1 displayed a value of 44.61 Å at 4999 ps which suggests a tendency of flap 

closing which is similar to the trend in d1. The active site residue, Asp214, has a high atomic 

fluctuation compared to Asp34. This may be attributed to its closeness to the highly flexible 

proline-rich loop region located at the binding cavity rim. Thus, Asp214 is highly mobile and 
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may not give an accurate representation of the “twisting” as well as the opening and closing of 

the flap.     

 

In the PlmII-EH58 complex, there was no observed drastic fluctuation in the TriCα angles, θ1 

and θ2. Average angle (θ1) during the 50 ns simulation was ~46°. This trend is similar to the 

observed minimal changes in the d1 during the 50 ns simulation average distance between 

Val78 at the flap tip and Leu292 remained at 13Å across the 50 ns simulation of the bound 

PlmII (Figure 4B).  

 

4. Concluding Remarks 

The binding cavity of plasmepsin has been observed to adapt to different inhibitors 

demonstrating its plasticity. Precise parameters to define flap motion in plasmepsin will 

certainly assist in the design of potent inhibitors to bind to the flexible binding cavity. In 

addition, recent identification of flap pockets for potent non-peptidomimetic inhibitors further 

raises the important of this study. 

 

In conclusion, the asymmetrical flap opening and closing was evident, characterized by a 

“twisting” motion.   Only three parameters we postulated namely distance, dihedral angle and 

TriCα angles which appropriately defined the observed “twisting’ motion during the flap 

opening and closing. However, the extensive motion of a proline-rich loop adjacent to the 

binding cavity rim appeared to exert steric hindrances on the flap residues, driving the flap 

away from the active site cavity. This loop may also have increased movements around the 

catalytic dyad residue, Asp214, resulting in the observed distortion of the TriCα angle, θ2. 

Overall the average θ1 and θ2 for the bound was ~46° and ~53°, respectively compared to ~50° 
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and ~59° for the Apo PlmII, indicating intensive changes in the TriCα as the active site cavity 

opens. Similar trends in the distance, d1 and dihedral angle, ϕ were observed during the 

simulation. The asymmetrical opening of the binding cavity was best described by the large 

shift of -33.90° to +20.99° in the ϕ, corresponding to the partial opening of the flap at a range 

of 22091-31013 ps. Though, the dihedral angle describes the twisting of the flap, the extent of 

flap opening can be defined by combining the distance,d1 and the Val78-Asp34-Leu292 TriCα 

angle, θ1. In contrast to the apo conformation the bound conformation of Plm II observed a 

stable trend in d1, θ1, Rg, as well as dihedral angle. This is due to the fact that EH58 bound 

conformation pf Plm II displayed crucial hydrogen bond interactions between the ligand (Eh58) 

and flap tip residue, Val78; catalytic residues Asp34 and Asp214 (Figure S4, Supplementary 

Informations) which played a key role in retaining the closed conformation of Plm II. Hence 

designing novel inhibitors which can interact with flap tip residue, Val78 as well as catalytic 

aspartic residues, Asp34 and Asp214 will be crucial to maintain a tight closed conformation of 

Plm II which will help in keeping the inhibitor tightly within the active site pocket of Plm II. 

Thus interactions with flap tip residue and catalytic dyads will play an important role in 

designing selective and potent Plm II inhibitors and pharmacophores of EH58 might act as a 

template in this regard. The results presented here on the combined parameters will certainly 

augment current efforts in designing potent structure-based inhibitors against plasmepsins.  

Acknowledgements 

The authors like to acknowledge the School of Health Sciences, University of KwaZulu-Natal, 

and Westville for financial support.  

Conflicts of Interests 

Authors declare no conflicts of interest. 

 



48 
 

5. References 

1. Gil L, A., Valiente, P. A., Pascutti, P. G., and Pons, T. (2011) Computational 

perspectives into plasmepsins structure-function relationship: implications to inhibitors 

design, Journal of tropical medicine 2011, 657483-657483. 

2. Greenwood, B., Bojang, K., Whitty, CJ., Targett, GA. . (2005) Malaria, Lancet 365, 

1487-1498. 

3. Greenwood, B. (2014) Treatment of Malaria - A Continuing Challenge, New England 

Journal of Medicine 371, 474-475. 

4. Bhaumik, P., Gustchina, A., and Wlodawer, A. (2012) Structural studies of vacuolar 

plasmepsins, BBA-Proteins Proteomics 1824, 207-223. 

5. Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., and Goldberg, D. E. (2002) 

Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a 

protease with an active-site histidine, Proceedings of the National Academy of Sciences 

of the United States of America 99, 990-995. 

6. Asojo, O. A., Gulnik, S. V., Afonina, E., Yu, B., Ellman, J. A., Haque, T. S., and Silva, 

A. M. (2003) Novel uncomplexed and complexed structures of plasmepsin II, an 

aspartic protease from Plasmodium falciparum, Journal of Molecular Biology 327, 

173-181. 

7. Bhaumik, P., Horimoto, Y., Xiao, H., Miura, T., Hidaka, K., Kiso, Y., Wlodawer, A., 

Yada, R. Y., and Gustchina, A. (2011) Crystal structures of the free and inhibited forms 

of plasmepsin I (PMI) from Plasmodium falciparum, Journal of Structural Biology 175, 

73-84. 

8. Bhaumik, P., Xiao, H., Parr, C. L., Kiso, Y., Gustchina, A., Yada, R. Y., and Wlodawer, 

A. (2009) Crystal Structures of the Histo-Aspartic Protease (HAP) from Plasmodium 

falciparum, Journal of Molecular Biology 388, 520-540. 

9. Asojo, O. A., Afonina, E., Gulnik, S. V., Yu, B., Erickson, J. W., Randad, R., Medjahed, 

D., and Silva, A. M. (2002) Structures of Ser205 mutant plasmepsin II from 

Plasmodium falciparum at 1.8 angstrom in complex with the inhibitors rs367 and rs370, 

Acta Crystallographica Section D-Biological Crystallography 58, 2001-2008. 

10. Ishima, R., and Louis, J. M. (2008) A diverse view of protein dynamics from NMR 

studies of HIV-1 protease flaps, Proteins-Structure Function and Bioinformatics 70, 

1408-1415. 

11. Cai, Y., Yilmaz, N. K., Myint, W., Ishima, R., and Schiffer, C. A. (2012) Differential 

Flap Dynamics in Wild-Type and a Drug Resistant Variant of HIV-1 Protease Revealed 

by Molecular Dynamics and NMR Relaxation, Journal of Chemical Theory and 

Computation 8, 3452-3462. 

12. Hornak, V., Okur, A., Rizzo, R. C., and Simmerling, C. (2006) HIV-1 protease flaps 

spontaneously open and reclose in molecular dynamics simulations, Proceedings of the 

National Academy of Sciences of the United States of America 103, 915-920. 

13. Scott, W. R. P., and Schiffer, C. A. (2000) Curling of flap tips in HIV-1 protease as a 

mechanism for substrate entry and tolerance of drug resistance, Structure 8, 1259-1265. 

14. Ishima, R., Freedberg, D. I., Wang, Y. X., Louis, J. M., and Torchia, D. A. (1999) Flap 

opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, 

and their implications for function, Structure with Folding & Design 7, 1047-1055. 

15. Toth, G., and Borics, A. (2006) Flap opening mechanism of HIV-1 protease, Journal 

of Molecular Graphics & Modelling 24, 465-474. 

16. Galiano, L., Bonora, M., and Fanucci, G. E. (2007) Interflap distances in HIV-1 

protease determined by pulsed EPR measurements, Journal of the American Chemical 

Society 129, 11004-+. 



49 
 

17. Hornak, V., Okur, A., Rizzo, R. C., and Simmerling, C. (2006) HIV-1 protease flaps 

spontaneously close to the correct structure in simulations following manual placement 

of an inhibitor into the open state, Journal of the American Chemical Society 128, 2812-

2813. 

18. Galiano, L., Ding, F., Veloro, A. M., Blackburn, M. E., Simmerling, C., and Fanucci, 

G. E. (2009) Drug Pressure Selected Mutations in HIV-1 Protease Alter Flap 

Conformations, Journal of the American Chemical Society 131, 430-+. 

19. Heaslet, H., Rosenfeld, R., Giffin, M., Lin, Y.-C., Tam, K., Torbett, B. E., Elder, J. H., 

McRee, D. E., and Stout, C. D. (2007) Conformational flexibility in the flap domains 

of ligand-free HIV protease, Acta Crystallographica Section D-Biological 

Crystallography 63, 866-875. 

20. Kovalskyy, D., Dubyna, V., Mark, A. E., and Kornelyuk, A. (2005) A molecular 

dynamics study of the structural stability of HIV-1 protease under physiological 

conditions: The role of Na+ ions in stabilizing the active site, Proteins-Structure 

Function and Bioinformatics 58, 450-458. 

21. Prade, L., Jones, A. F., Boss, C., Bildstein, S. R., Meyer, S., Binkert, C., and Bur, D. 

(2005) X-ray structure of plasmepsin II complexed with a potent achiral inhibitor, 

Journal of Biological Chemistry 280, 23837-23843. 

22. Zuercher, M., Gottschalk, T., Meyer, S., Bur, D., and Diederich, F. (2008) Exploring 

the flap pocket of the antimalarial target plasmepsin II: The "55% rule" applied to 

enzymes, Chemmedchem 3, 237-240. 

23. H.M. Berman, J. W., Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, 

P.E. Bourne (2000) The Protein Data Bank, Nucleic Acids Research 28., 235-242. 

24. Karubiu, W., Bhakat, S., and Soliman, M. E. S. (2014) Compensatory Role of Double 

Mutation N348I/M184V on Nevirapine Binding Landscape: Insight from Molecular 

Dynamics Simulation, The protein journal 33, 432-446. 

25. Bhakat, S., Martin, A. J. M., and Soliman, M. E. S. (2014) An integrated molecular 

dynamics, principal component analysis and residue interaction network approach 

reveals the impact of M184V mutation on HIV reverse transcriptase resistance to 

lamivudine, Molecular BioSystems 10, 2215-2228. 

26. D.A. Case, V. B., J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, III, 

T.A. Darden, R.E. Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. 

Janowski, J. Kaus, I.  Kolossváry, A. Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. 

Luo, B. Madej, K.M. Merz, F. Paesani, D.R. Roe, A. Roitberg, C. Sagui, R. Salomon-

Ferrer, G. Seabra, C.L. Simmerling, W. Smith, J. Swails, R.C. Walker, J. Wang, R.M. 

Wolf, X. Wu and P.A. Kollman. (2014) AMBER 14, University of California, San 

Francisco. 

27. Bhakat, S., Martin, A. J. M., and Soliman, M. E. S. (2014) An Integrated Molecular 

Dynamics, Principal Component Analysis and Residue Interaction Network Approach 

Reveals the Impact of M184V Mutation on HIV Reverse Transcriptase Resistance to 

Lamivudine, Molecular BioSystems. 

28. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, 

E. C., and Ferrin, T. E. (2004) UCSF chimera - A visualization system for exploratory 

research and analysis, Journal of Computational Chemistry 25, 1605-1612. 

 

 

 

 



50 
 

Supplementary Information  

 

Figure S1. The RMSD fluctuation during the simulation time for both apo (black) and bound 

(red) conformations. The RMSD was calculated taking in account C- atoms of the systems. 

 

 

Figure S2. The potential energy fluctuations for both apo (black) and bound (red) 

conformations during simulation time.  
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Figure S3. The fluctuation in radius of gyration (Rg) for apo and bound conformations of 

plasmepsin taking in account 
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Abstract 

Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin 

I – V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during 

the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and 

virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from 

infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the 

malaria parasite across the endoplasmic reticulum. Flap structures covering the active site of 

aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and 

dynamics of the protein, and ultimately control the binding landscape. The flap-structure in 

plasmepsins is made up of a flip tip in the N-terminal lying perpendicular to the active site, 

adjacent to the flexible loop region in the C-terminal. Using molecular dynamics, we propose 

three parameters to better describe the opening and closing of the flap-structure in apo 

plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral 

angle, ϕ, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown 

that as the flap-structure twists, the flap and flexible region move apart opening the active site, 

or move towards each other closing the active site. The data from our study indicate that of all 

the plasmepsins investigated in the present study, Plm IV and V display the highest 

conformational flexibility and are more dynamic structures versus Plm I, II and HAP.  

Keywords: Malaria; Plasmodium falciparum; Plasmepsin; Flap motion; Molecular                         

Dynamics 
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1. Introduction 

Malaria is one of the most infectious and deadly protozoan diseases known to man. In 2012, 

malaria caused an estimated 207 million cases and approximately 627 00 deaths, of which 90% 

occurred in sub-Saharan Africa mostly in young children under the age of 5 (1). The spread of 

the malaria parasite, Plasmodium, in humans is dependent on the female Anopheles mosquito 

vector (2). Humans are infected by the following Plasmodium species - Plasmodium vivax, 

Plasmodium ovale, Plasmodium malariae and Plasmodium falciparum (2, 3). P. falciparum, 

which predominates in Africa, is the most virulent human parasite, causing almost all human 

deaths (4, 5). Worldwide the malaria pandemic is not improving (6) as there are no effective 

vaccines against malaria, and increasing resistance to both insecticides (to control mosquito 

vectors) and antimalarial drugs is of growing concern (2, 5).  

 

The Plasmodium parasite has a complex life cycle, during which the plasmodium parasite 

undergoes numerous developmental stages (5). The erythrocytic phase is responsible for the 

clinical symptoms of malaria, typically characterized by high fevers due to the lysis of infected 

red blood cells (RBCs) (2, 5). Hemoglobin degradation occurs in the acidic food vacuole (FV), 

with a pH of approximately 5 (8, 9).  Hemoglobin degradation provides energy for the parasite, 

and generates amino acids used in parasitic protein biosynthesis (10). In P. falciparum, several 

enzymes have been implicated in hemoglobin proteolysis and represent potential targets for 

drug design: three cysteine proteases – falcipains; four aspartic proteases – plasmepsins (Plm) 

and histo-aspartic protease (HAP); one metalloproteases – falcilysins and one dipeptidyl 

aminopeptidase (DPAP1) (12). Among all the Plasmodium species that infect humans, P. 

falciparum is the only species that has numerous plasmepsins active within the FV (13). 

Hemoglobin degradation occurs in an semi ordered manner in the acidic food vacuole (12), in 

which plasmepsins (specifically Plm I and II) initially cleave the native hemoglobin tetramer 
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between αPhe33-αLeu34 in the highly conserved hinge region, unravelling and exposing the 

protein to further degradation (14, 15). Smaller proteins (globins) are generated by further 

plasmepsin (HAP and Plm IV) and falcipain degradation; metalloproteases then cleave globins 

into oligopeptides. Hydrolysis to free amino acids occurs via aminopeptidases in the parasitic 

cytosol (2). Protease inhibitors have shown that hemoglobin degradation is critical for the 

survival of the Plasmodium parasite (16), although dual protease families with overlapping 

function and partial redundant degradation pathways are utilised in hemoglobin degradation 

(17). Aspartic and cysteine protease inhibitors show synergistic activity in inhibiting the growth 

of cultured Plasmodium, a combination of aspartic and cysteine protease inhibitors may offer 

the most effective treatment, potentially limiting resistance to protease inhibitors (18). 

 

Aspartic proteases are found in most eukaryotes, generally functioning in a similar manner (12). 

In this class of enzymes, a water molecule acts as the active nucleophile that breaks the scissile 

bond of the substrate. Different pKi values of the aspartic residues within the catalytic dyad, 

ensures that one acts as an acid and the other a base, a ‘push and pull’ reaction forming a 

transient tetrahedral oxyanion intermediate. Once the peptide bond is protonated, the substrate 

is cleaved into two shorter peptides (12). Aspartic proteases found in Plasmodium, previously 

known as aspartic hemoglobinases, are functionally classed together as plasmepsins. 

Sequencing of the P. falciparum genome has revealed 10 genes encoding aspartic proteases I-

X, including the closely related histidine-aspartic protease (HAP and/or Plm III) (12, 19). Despite 

a high degree of sequence similarity, each plasmepsin has different responses to inhibitors and 

unique substrate specificity due to the heterogeneous nature of the residues lining the active 

site, including the flap and flexible loop region (flap-structure) (20). The present study will focus 

on plasmepsins I-V.  
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In P. falciparum, vacuolar plasmepsins (Plm I,II, IV and HAP) are expressed during the 

intraerythrocytic stages and reside within the acidic FV where they are responsible for 

hemoglobin degradation (14). The four genes are clustered together on chromosome 14, and are 

more closely related than those encoding Plm V-X (12). Vacoular plasmepsins I, II and HAP are 

not found in the genomes of other Plasmodium species, only P. falciparum actively expresses 

all four FV plasmepsins throughout the asexual phase (13).  Whereas, plasmepsins located 

outside the FV, Plm V-X, can be found in all other Plasmodium species (14, 21). Sequence 

comparison has revealed a single FV plasmepsin in other Plasmodium species, orthologous to 

PlmIV, responsible for hemoglobin degradation. It has been postulated that Plm I, II and HAP 

were created by gene duplications and have evolved unique, although redundant functions in 

P. falciparum (13).  Plasmepsin I and II (75% identity) are expressed in the early stages of RBC 

infection, PlmI readily cleaves native hemoglobin whereas PlmII prefers acid denatured 

hemoglobin (12, 22).  Plasmepsin IV and HAP are expressed during the later stages of the 

erythrocytic phase, where they further degrade hemoglobin peptides (globins) generated from 

Plm I and II degradation. Plasmepsin II and IV have also been implicated in the degradation of 

the membrane skeleton proteins of RBCs (14). Histo-aspartic protease has a 60% identity to 

PlmI, II and IV, preferentially cleaves denatured globins at unknown sites downstream of Plm 

I and II (14, 23). The functional redundancy of FV plasmepsins in P. falciparum confers a 

selective growth advantage, whereby multiple FV plasmepsins (with different cleavage 

specificity and complementary roles) synergistically cleave hemoglobin to increase catalytic 

efficiency and degradation of hemoglobin (14, 24). Individually, vacuolar plasmepsins are not 

essential during the asexual phase and knock down or elimination of all four FV plasmepsins 

shows that other proteases are capable of degrading hemoglobin sufficient for survival (25). Due 

to the functional redundancy within the FV plasmepsins, the use of selective inhibitors 

targeting a single plasmepsin will not effectively or efficiently kill the parasite (24).   
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Malaria parasites develop in the PV, and export over 450 proteins into the infected RBC 

cytoplasm that are crucial to cellular remodelling and virulence (26). Proteins destined for export 

contain an N-terminal signal sequence (RxLxE/Q/D) known as the plasmodium export element 

(PEXEL) (27, 28). Upon export, this motif is cleaved by PlmV in the endoplasmic reticulum (ER). 

Plasmepsin V is located on chromosome 13, and localized to the parasitic ER (29). Deletion of 

the PlmV gene has revealed that it is crucial to the survival of the malaria parasite (29-31). 

Analyses have shown that PlmV is only distantly related (17% to Plm II) to the other 

plasmespsins and is conserved in all Plasmodium species (12, 13). Plasmepsin V cleaves PEXEL-

containing proteins at the carboxy terminal, after the conserved Leucine residue (RxL↓) (32, 33). 

Approximately 8% of P. falciparum’s proteins are exported via the PEXEL exportome pathway 

(33, 34). Plasmepsin V is distinguishable from most aspartic proteases, including vacuolar 

plasmepsins, based on its affinity and binding to pepstatin (potent inhibitor of aspartic 

proteases) (29). Unlike vacuolar plasmepsins, where pepstatin acts as a potent inhibitor, 

pepstatin does not bind to PlmV (29). It is well known that P. falciparum is more virulent 

compared to other Plasmodium species, this is due to the fact that infected RBCs have the 

ability to adhere to the walls of blood vessels via exported molecules known as adhesins. Thus, 

bypassing the spleen, where splenic macrophages detect and eliminate deformed RBCs with 

altered antigenicity (35). 

 

Plasmepsins have a varying degree of identity and similarity with human aspartic proteases, 

with the highest degree of similarity with Cathepsin D (catD) a lysosomal enzyme (36). Thus, 

catD is often used as a marker for cross inhibition when designing inhibitors of plasmepsins 

(36, 37). Similar to most proteases, plasmepsins are synthesized as inactive zymogens, pro-

plasmepsins, enzymatically activated upon cleavage of N-terminal pro-segment (38, 39). 
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Activation of pro-plasmepsin I, II, HAP and IV requires the acidic conditions present in the 

FV, removal of the pro-domains releases mature active enzymes (12). The pro-domain of PlmV 

is non-inhibitory, thus removal is not necessary for the activation of PlmV (6, 29). The mature 

form of the enzymes fold into two topologically related N- and C-terminal domains. These two 

domains are connected towards the bottom, forming the binding cleft housing the active site 

with two catalytic aspartic acid (Asp/D) residues (12, 14), with the exception of HAP in which 

one catalytic Asp is replaced by histidine (His/H) (40, 41). The His residue within the active site 

of HAP is protonated, thus HAP functions in an aspartic-protease fashion with lower affinity 

for hemoglobin relative to other plasmepsins, functioning at an optimum pH near 6 (14, 23). The 

amino and carboxyl ends of each domain, are assembled into a characteristic six-stranded inter-

domain β-sheets, which anchors the two domains together (42). The highly flexible domains are 

conserved within the aspartic protease class of enzymes, where substrate interaction occurs. 

Similar to other aspartic acid proteases, the N-terminal domain of plasmepsins contains a single 

long β-hairpin loop (flap), which lies perpendicularly over the binding pocket adjacent to the 

flexible loop region found in the C-terminal domain (42). Crystallographic studies have shown 

a high degree of enzyme flexibility, this substantial flexibility is essential for the recognition 

and binding to different sequences within the hemoglobin molecule (2, 43). Conformational 

changes in the flap and flexible loop region regulate substrate access, assuming a more closed 

conformation upon substrate binding.   

 

Flap dynamics is a fundamental aspect in understanding the ligand binding landscape, as well 

as the overall conformational flexibility of enzymes. In HIV protease, flaps covering the active 

site play a major role in substrate binding, where flap motions dictate the movement of the 

incoming ligand and tightly bind the ligand in the active site (44). Two main flap conformations 
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have been observed experimentally; (i) a ligand-bound closed conformation, and (2) a apo 

semi-open conformation (44). The most commonly used metric to measure various flap 

confirmations is based on the distance between the Cα of Ile50 and Ile149 (44-46). This parameter 

alone does not adequately describe the curling or twisting motion observed in HIV protease, 

which has led to the introduction of additional parameters to more accurately describe flap 

motions and dynamics (46, 47). The flap dynamics of HIV protease highlights the significance of 

defining more suitable parameters that best describe flap dynamics for plasmepsins.  

 

It is well known that the flap and loop region is highly flexible for Plm I-IV, both in the free 

and ligand-bound conformations (14, 48-50). Crystallographic studies of PlmII has shown that 

residues in the active site move to accommodate substrate binding, while others fold inwards 

to form hydrogen bonds. Residues in the flap (Val78) and loop region (Ile290, Leu292, Phe294) 

undergo majority of the relative changes between free and bound PlmII conformations, not 

only in relative positions of the side chains but also movements within the main chains (42). 

Flap opening and closing for PlmII was measured by the distance between the flap tip, Val78, 

and the residue opposite the tip in the hydrophobic rim of the active site, Leu292 (hinge residue) 

(42). These two residues close the active site upon substrate binding, as can been seen upon 

pepstatin A binding (43). Previous parameters to measure flap motion were defined using a rigid 

crystal structure for PlmII, and only described motions in a one-dimensional space (42, 51). The 

parameters used to accurately describe flap motions are poorly defined in the literature, both 

experimentally and computationally. Recently, we have proposed additional parameters to 

measure flap dynamics, which we believe best describes not only flap and flexible region 

motions, but also the characteristic ‘twisting’ (52) motion during the opening and closing of 

plasmepsins (51). The aim of the present study is to investigate and compare the flap-structure 

movements of free, unbound Plm I-V. 
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* Abbreviations as used throughout the manuscript 

2. Computational Methodology 

2.1. System Preparation 

The simulated systems, crystal structures (PDB codes) and corresponding abbreviations are 

listed in Table 1. All crystal structures were obtained from the protein data bank (PDB) (53) and 

prepared as detailed in our previous reports (54, 55). Free un-liganded structures were generated 

by manually deleting bound inhibitors from the crystal structures complexes where applicable. 

For PlmV, where to date no crystal structure has yet been published, a homology model was 

used in the simulations as previously described (26, 56). All enzymes were prepared and 

visualised using Chimera (57). In total, 5 systems (Table 1) were subjected to 50 ns continuous 

molecular dynamic simulations as described below in section 2.2. To verify and validate the 

results from the single continuous MD approach adopted herein, we ran multiple MD 

simulations (using 3 replicas) for one system and compared the results.  

Table 1. Crystal structures of the simulated systems, PDB codes and abbreviations 

System PDB code Abbreviation* 

Apo Plm I 3QRV PlmI 

Apo Plm II 1LF4 PlmII 

Apo HAP 3FNS HAP 

Apo Plm IV 1LS5 PlmIV 

Apo Plm V  PlmV 

 

 

2.2. Molecular Dynamics and Post dynamics analyses 

To investigate the flap opening and closing of apo Plm I-V, a continuous 50 ns MD approach 

was utilised in the present study. All-atom, explicit solvation unrestrained molecular dynamic 

simulations was performed using the GPU version of the PMEMD engine incorporated with 



61 
 

the Amber 14 package (52). The ff99sb Amber force field was used to describe the protein 

systems (53).  The LEAP module of Amber 14 was used to generate the topologies for the 

system, by adding missing hydrogen atoms and counter ions for neutralization. Before 

simulations, all systems were solvated in a orthorhombic box of TIP3P (54) water molecules at 

a distance of 10 Å from all protein atoms. Simulations were performed using periodic boundary 

conditions. The particle-mesh Ewald (55) (PME) method was used to treat long-range 

electrostatic interactions, with a direct space and van der Waals cut-off distance of 12 Å. All 

systems were minimised in two steps – partial minimisation followed by full minimisation. 

Initially all systems underwent minimisation with 750 steps of steepest decent, thereafter 1750 

steps of conjugate gradients and harmonic restraints with a constant force of 500 kcal/mol Å2 

was applied to the solute. Following this, a further 1000 a step of unrestrained conjugate 

gradient energy minimisation was performed on all systems. All systems were gradually heated 

from 0 to 300 K for 50 ps in the canonical ensembles (NVT), by the application of harmonic 

restraints of 10 kcal/mol Å2 and collision frequency of 1.0 p.s-1 to all solutes in the system. 

The simulation temperature was controlled using the Langevin thermostat (56). All systems were 

equilibrated at 300 K in an NPT ensemble for 500 ps with no restraints and a constant pressure 

(1 bar) was maintained using the Berendsen 57) thermostat. The SHAKE algorithm (58) was used 

to constrict the bonds of all hydrogen atoms. A 2 fs time step and the SPFP precision model (59) 

was used for all simulations. Continuous MD was performed on all systems for 50 ns in an 

NPT ensemble with a constant pressure of 1 bar, constant temperature of 300 K and a pressure 

coupling constant of 2 ps. Trajectories were saved every 1 ps and further analysed (e.g. RMSD, 

RMSF, d1, angles) using the CPPTRAJ module incorporated in Amber 14. As an additional 

validation of the continuous MD approach utilised in the current study, a multiple MD approach 

was performed for one system. In which three 50 ns MD runs with different initial velocities 
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were performed and the average trajectory analysed. The trends for both approaches are similar, 

the results are reported in the supplementary information (graphs S4 – S11).  

 

The graphical interface of UCSF chimera (50) was used to visualise all enzyme structures, and 

data was analysed and plotted using the GUI of Microcal Origin data analysis software version 

6 (60).     

 

2.3. Parameters used in the present study 

The present study utilised parameters previously proposed by our group to more accurately 

describe flap dynamics for aspartic proteases, in which Plm II was used as a prototype (44). 

These parameters are explained in more detail and illustrated below (Section 3.1, Figure 2, 

Table 1 and 2).   

 

3. Results and discussion 

3.1. Sequence analysis and experimentally defined parameters 

Although the full sequence analysis of Plm I-V has previously been reported (12, 65), the present 

study provides the first in-depth analysis of the two regions that could impact on the flap 

dynamics and motion of plasmepsins, more specifically, the flap region including the flap tip, 

and the flexible loop region including the hinge residue – collectively called the flap-structure 

(Table 1, Figure 1 and 3). Previously the flexible loop region has been referred to as a proline-

rich area in homologous aspartic proteases renin and catD, where three consecutive proline 

residues make up the loop that forms part of the binding site (43). In PlmII, the β-strand that 

makes up the loop is shorter and has only two proline residues separated by a valine (42). Upon 
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sequence analysis, we found that the proline-rich area is not present in the other plasmepsin 

variants; henceforth the previously defined proline-rich area will be referred to as the flexible 

loop region (Table 2, Figure 1). From the sequence analysis it can be seen that the flap-

structure is heterogeneous, where the flap tip and hinge region reportedly responsible for the 

motion of the flap-structure is not conserved between plasmepsins (Table 2, Figure 1). In Plm 

I, II, IV and V a highly conserved tyrosine residue (52) lies adjacent to the flap tip in the β-

hairpin loop, with the exception of HAP where it is replaced by a serine residue (23). In the 

flexible loop region, the hinge residue is followed by an aspartic acid with the exception of 

PlmV where the hinge residue is followed by an asparagine residue (Table 2, Figure 1). The 

changes observed in the flap-structure sequence will ultimately affect the motion of the flap-

structure and the binding landscape.  

 

Figure 5. Schematic representation of the flap-structure and corresponding sequences for Plm I 

(blue), II (red), IV (cyan) and V (purple) and HAP (green). 
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Table 2. Plasmepsin I–V - Length, active sites, flap and flexible loop regions. 

Blue – hydrophilic residues; purple – hydrophobic residues. Flap tips are bolded and italicised. The flexible loop 

is taken from one beta sheet to the following, outlined by the residues above. The residue responsible for the 

lateral ‘pivoting’ motion upon substrate binding (hinge residue) is in bold and italicised. + 

 

To date, no computational studies have comparatively investigated the opening and closing of 

the flap-structure in plasmepsins. From previous molecular dynamic simulations of free and 

bound PlmII, we have shown a characteristic ‘twisting’ motion of the flap region and the 

coordinated recoiling of the flexible loop region (flap-structure) (51). In this study we have 

defined more accurate parameters to describe the opening and closing of both free and bound 

PlmII, by calculating the distance between the flap tip and the hinge residue of the flexible loop 

(d1), in relation to the dihedral angle ϕ, as well as the TriCα angles, θ1 and θ2 (Figure 2, Table 

2 and 3) (51). These parameters, in addition to other post MD analyses, were used to compare 

the flap-structure motions and dynamics between Plm I-V. 

 

 Length 

(amino 

acids) 

Resolution 

(Å) 

R-

value 

Active 

sites 
Flap region Flexible region 

PlmI (66) 336 2.40 0.211 
Asp32,

Asp215 

Asn74,Tyr75,Val76,Gly78,

Thr79 

Pro288,Val289,Asp290,Leu291,

Asn292,Lys296,Asn297 

PlmII (42) 331 1.90 0.217 
Asp34,

Asp214 

Tyr77,Val78,Ser79,Gly80 Gly291,Leu292,Asp293,Phe294,

Pro295,Val296,Pro297 

HAP (40) 332 2.50 0.226 
His32, 

Asp215 

Ser75,Lys76,Ala77,Gly78 Pro288,Ile289,Asp290,Leu291,

Glu292,Lys296,Asn297 

PlmIV (42) 328 2.80 0.220 
Asp34,

Asp214 

Ser76,Tyr77,Gly78,Ser79, 

Gly80,Thr81 

Pro291,Val292,Asp293,Ile294, 

Asp295,Asp296,Asn297,Thr298 

PlmV (26, 56) 357   

Asp36,

Asp220 

Tyr76,Leu77,Gln78,Ser79,

Tyr80,Cys81,Glu82,Gly83,

Ser83,Gln85,Ile86,Tyr87 

Val305,Asn306,Asn307,Lys308,

Pro309,Ile310,Leu311,Gly312 



65 
 

 

Figure 6. Schematic representation of the parameters used to define the flap-structure motion: d1 the 

distance between the flap tip and flexible region hinge residue, the dihedral angle ϕ and the TriCα 

angles, θ1 and θ2. Asp1 denotes the first aspartic acid residue for Plm I (blue), II (red), IV (cyan) and V 

(purple), in HAP (green) the first catalytic Asp is replaced with by His. Asp2 denotes the second Asp 

making up the active site for Plm I-V (refer to Table 1).  

 

Table 3. Residues used to calculate the distance (d1), dihedral angle (ϕ), and TriCα θ1 and θ2. 

 

 

 

 

 

 

 

 

3.2. Molecular dynamic simulations and post-dynamic analysis  

Snapshots of the molecular dynamics trajectories of Plm I-V were analysed throughout the 50 

ns simulation (Figure 3). From visual analysis of the snapshots, it can be seen that all 

plasmepsins transition between an open and semi-open conformations throughout the duration 

of the simulation. As previously reported for apo PlmII (51), the flap and flexible loop region of 

 PlmI PlmII HAP PlmIV PlmV 

Distance (d1) Val76-

Val289 

Val78-

Leu292 

Lys76-

Ile286 

Gly78-

Val292 

Cys81-

Asn306 

Dihedral ϕ Val76-

Asp32-

Asp215-

Val289 

Val78-

Asp34-

Asp214-

Leu292 

Lys76-

His32-

Asp215-

Ile286 

Gly78-

Asp34-

Asp214-

Val292 

Cys81-

Asp36-

Asp220-

Asn306 

TriCα θ1 Val76-

Asp32-

Val289 

Val78-

Asp34-

Leu292 

Lys76-

His32-

Ile286 

Gly78-

Asp34-

Val292 

Cys81-

Asp36-

Asn306 

TriCα θ2 Val76-

Asp215-

Val289 

Val78-

Asp214-

Leu292 

Lys76-

Asp214-

Ile286 

Gly78-

Asp214-

Val292 

Cys81-

Asp220-

Asn306 



66 
 

Plm I-V recoils inwards towards the active site as the enzymes closes.  Between the enzymes, 

a varying degree of motion and flexibility was observed. This in part can be attributed to 

sequence heterogeneity within the flap-structures (Table 2, Figure 1). The differences in 

motion from the trajectories are described in more detail below.  

Figure 7. Flap and flexible loop region movements of apo Plm I-V throughout a 50 ns molecular 

dynamics simulation.The blue regions denote the flap tip and the hinge region within the flexible loop. 

Red highlights the catalytic aspartic acid residues, with the exception of HAP in which the green 

highlights the catalytic histidine forming the active site. 

 

3.2.1. System stability 

Prior to MD analysis, the root mean square deviation (RMSD) of the Cα backbone and potential 

energy fluctuations of the trajectories were monitored during the 50 ns simulation to ensure 

stability within the systems and accuracy of successive post-dynamic analyses. Convergence 

and stabilisation in the potential energies was observed, with no fluctuations greater than 1000 
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kcal/mol for all systems (Figure S1). Convergence in the RMSD trajectories occurred after 

approximately 10ns (Figure S2). 

 

3.2.2. Root mean square fluctuation (RMSF) 

The per-residue fluctuation (RMSF) of the 5 different apo plasmepsins, show the 

conformational flexibility and dynamics of the proteins (Figure 4). The amino acids residues 

between 225 and 300 show a higher fluctuation relative to other residues. This is where the 

flexible loop region is situated, and the fluctuation can be attributed to the ‘twisting’ motion of 

the flexible region as a whole and not to a single residue. Previous studies have identified four 

loops that display large structural changes upon ligand binding in vacuolar plasmepsins – L1 

residues 12-14, L2 residues 158-165, L3 residues 231-244 and L4 residues 277-283 (PlmII 

numbering) (67, 68). The L3 loop was also shown to be highly flexible, and entropic analysis 

revealed that the L3 loop inherently loses entropy upon ligation in order to attain stability. 

Residues within these loops have negligible nonpolar and electrostatic interactions with bound 

inhibitors, but play a critical role in the openness of the binding pocket (67, 68). High residual 

fluctuations can be seen for all plasmepsins in the L3 loop region, indicative of conformational 

flexibility (Figure 4). Higher fluctuations are also observed between residue 50 and 80 where 

the flap region is situated (Figure 4).  

 

Overall, all plasmepsins show a high conformational flexibility with a similar trend in 

fluctuations, PlmIV and PlmV show the most erratic and volatile fluctuations relative to PlmI, 

II and HAP (Figure 4). This can also been seen in the higher average fluctuations for Plm IV 

and V, 1.33 Å and 1.58 Å respectively (Table 4). Higher residual fluctuations were observed 

in the flap tip residues for all plasmepsins, although Plm IV and V displayed the highest 
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fluctuations in this region, 2.85 Å and 4.51 Å respectively (Table 4). Flap tip residues of all 

plasmepsins showed higher fluctuations relative to the hinge residue in the flexible loop, 

indicative of more movement and flexibility in this region (Table 4). As previously reported, 

the hinge residue in the flexible loop (Leu292, PlmII numbering) shows less fluctuation and 

moves relatively less compared to the loop region as a whole for all plasmepsins investigated 

in the present study (Figure 4). The fluctuations around the two residues within the active sites 

are relatively low, and all follow a similar trend. With the exception of PlmIV, where the 

second Asp residue of the catalytic dyad (Asp214) shows a higher residual fluctuation 

compared to the first (Asp34), and compared to the active site residues in other plasmepsins 

(Table 4). These results indicate that Plm I-V are all highly flexible enzymes, most of the 

flexibility observed is within the flap and flexible loop region. Plamsmepsin IV and V appear 

to be the most flexible and dynamic enzymes. The fluctuations observed in the RMSF values, 

are supported by a similar trend in the fluctuations in the b-factor values (Figure S3). 

 

Figure 8. Plot comparing the C-α root mean square fluctuations (RMSF) of apo Plm I (black), II 

(red), HAP (magenta), IV (blue) and V (cyan). Dotted region highlights highly flexible L3 loop. 
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Table 4. Root mean square fluctuation (RMSF) values of apo Plm I-V for the binding site residues, 

tip and hinge residue and total average fluctuations. 

 PlmI PlmII HAP PlmIV PlmV 

Asp1* 0.75  0.59  0.79  0.96  0.64  

Asp2 0.87  0.61  0.94  1.20  0.80  

Flap tip  1.75  2.00  2.23  2.85  4.51  

Hinge 1.31  0.93  0.95  1.30  1.30  

Average 1.16  0.94  0.94  1.33  1.58  
*Active site residue 1 for Plm I, II, IV and V = Asp, HAP = His, distances measured in Å.  

 

3.2.3. Distance (d1) and dihedral angle (ϕ) 

The distance, d1, calculated between the Cα atom of the flap tip and the Cα atom of the opposite 

hinge residue in the flexible loop; and the dihedral angle, ϕ, calculated between the Cα atoms 

of the tip - catalytic dyad – hinge residue, has previously been used by our group to best 

describe flap motion for several aspartic proteases (51) (Figure 2, Table 3). For plasmepsins, d1 

accurately describes the opening and closing of the flap structure, whereas ϕ is used to gain 

insight into the twisting motion of the flap structure.  

 

Throughout the simulation, all plasmepsins move between open and semi-open conformations 

(Figure 5A). Plasmepsin I has two opening conformations, at ~8-12 ns and again at ~33-36 ns. 

Assuming a more closed conformation from ~19-30 ns and a semi-open configuration towards 

the end of the simulation (Figure 5A). Plasmepsin II assumes a more semi-open conformation 

throughout the simulation, opening briefly around ~20-21 ns and again toward the end of the 

simulation at ~43.5 ns (Figure 5A). Of all the plasmepsins, HAP fluctuated the most between 

semi-open conformations throughout the simulation, as reflected by erratic changes in d1. 

Starting the simulation in a more open configuration till ~8 ns where it remains in a semi-open 

conformation opening briefly at ~25.3 ns, 36.8 ns and 41.2 ns (Figure 5A). Plasmepsin IV 

starts the simulation in a more closed conformation until ~5.3 ns, where after it briefly (~6.1 

ns) assumes a semi-open conformation returning to a more closed conformation at ~8.5 ns, 
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fluctuating between a semi-open and more closed conformation. For the remainder of the 

simulation Plm IV assumes an open conformation (Figure 5A). Plasmepsin V starts the 

simulation in a more closed conformation up until 8 ns, briefly moving to an open conformation 

from ~10.2-12.2 ns. Thereafter it fluctuates between semi-open conformations till ~31.5 ns, 

assuming a more open conformation until the end of the simulation (Figure 5A).  

 

The highest average distance was observed for Plm IV and V, 13.97 Å and 13.56 Å respectively 

(Table 5). The flap structure for Plm IV and V seem to move apart the most, as reflected by 

the maximum distance of 19.63 Å and 20.75 Å respectively and wider range of motion (Δ) 

(Table 5). Whereas PlmII with a maximum d1 of 16.78 Å, has the lowest range movement in 

the flap structure (Table 5). Thus, Plm IV and V are more flexible and dynamic compared to 

PlmII.  

 

Table 5. Distance by which the flap structure moves, measured in angstroms (Å). 

 

* Change between the maximum and minimum distance. 

 

The dihedral angle (ϕ) calculated in the post MD analysis gives insight into the twisting motion 

of the Cα atoms between the flap tip, active site and hinge residue in the flexible loop region. 

Overall, all plasmepsins display a twisting motion (change in ϕ: from negative to positive, 

and/or positive to negative) which is reflected by a change in d1, albeit small (Figure 5B). Two 

major twisting motions can be seen for PlmI, which coincide with an increase in d1 (Figure 

 PlmI PlmII HAP PlmIV PlmV 

Average 9.67 13.24 11.91 13.97 13.56 

Max 
15.15 

@34.8ns 

16.78 

@33.3ns 

17.36  

@7.8ns 

19.63 

@22.6ns 

20.75 

@10.6ns 

Min 
5.94  

@16.4ns 

8.92     

@12ns 

8.62     

@17ns 

7.47     

@18ns 

6.46  

@21.5ns 

Δ* 9.22 7.87 8.74 12.16 14.29 
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5B). Between ~3.5-12 ns PlmI twists from -6.31 to 24.07, and again at ~32.7-38.5 ns from 

24.6 to -14.39 roughly correlating with the more open conformations of the flap-structure at 

these time points. Plasmepsin II showed less definitive twisting events in the flap-structure, the 

twisting observed is more gradual and less erratic. Most of the twisting observed in PlmII 

occurred in the beginning of the simulation until ~19 ns, -33.36 to 27, which coincides with 

the semi-open conformation. Thereafter, no twisting is observed up until the end of the 

simulation at ~41.7-44.2 ns, where PlmII twists from -12.9 to 27.17 as it transitions from a 

semi-open conformation to a more open conformation (Figure 5B). Only one major twisting 

motion can be seen in HAP, at ~4.3-9.3 ns, where the flap-structure twists from 8.39 to -36.06 

(7.1 ns) and then to 3.5. This twisting movement occurs as HAP assumes a more open 

conformation, with the highest distance between the flap and flexible loop region between 6.6-

7.8 ns (Figure 5B). As PlmIV moves into a more open conformation, a major twisting motion 

can be seen at ~14.6-20.5 ns as the flap-structure moves from -22.43 to 22.98. Thereafter, as 

PlmIV remains in a more open conformation and no significant changes in ϕ are observed 

(Figure 5B). Plasmepsin V starts off the simulation in a semi-open conformation, as the flap-

structure moves towards a more open conformation a twisting motion at ~4.5-9 ns can be seen, 

as ϕ changes from 19.7 to -24.53. As PlmV transitions into an open conformation towards 

the end of the simulation, a twisting motion between ~27.2-29.4 ns is observed as ϕ moves 

from -7 to -39.78 (Figure 5B). Plasmepsin IV and V twist more compared to other 

plasmepsins in the present study, as reflected by the magnitude and wide range of ϕ values. 

Overall, an increase in d1 and shift in ϕ corresponds to the opening of the flap structure as the 

flap twists away from the binding cavity. 
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3.2.4. TriCα angles, θ1 and θ2 

In addition to calculating the distance and the dihedral angle fluctuations in the flap-structure, 

we have previously reported that calculating the TriCα angles (θ1 and θ2) better explain the flap 

dynamics of PlmII (51). In unpublished work by our group, we have also shown the importance 

of TriCα angles, more specifically θ2, in understanding the flap opening and closing of apo and 

bound beta-secretase (an aspartic protease with distant homology to PlmIV (31)).  

 

In all plasmepsins investigated in the present study, θ1 and θ2 follow similar trends to each 

other (Figure 5C and 5D). The trend observed in θ1 and θ2 corresponds to the fluctuations 

observed in d1 for Plm I-V. The maximum θ1 and θ2 values coincide with opening of the flap-

structure, as the flap and flexible loop move away from each other exposing the active site 

(Table 6). The minimum θ1 and θ2 values correlate with a more closed flap-structure for Plm 

I-V, as the flap folds inwards towards the active and the flexible loop recoils closing the active 

site. Overall, as the flap-structure transitions into more open conformations (increase in d1), 

both θ1 and θ2 increase, whereas as the flap-structure moves towards a more closed 

conformations (decrease in d1) θ1 and θ2 decrease accordingly (Figure 5C and 5D).  

 

Plasmepsin II has the highest average values for both θ1 and θ2, although the minimum values 

for θ1 and θ2 (27.93° and 40.69° respectively) are significantly higher compared to other 

plasmepsins (Table 6). Plasmepsin I, II and HAP have similar ranges in motion reflected by 

the difference between the maximum and minimum θ1 and θ2 values, denoted as Δ in Table 6. 

Plasmepsin IV and V show the widest range of motion, as reflected by the significant 

differences between the maximum and minimum θ1 and θ2 values (Table 6). Thus, Plm IV and 

V appear to be more flexible and dynamic as the flap-structure is capable of a wider range of 
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motion, moving the flap and flexible loop closer into the binding cavity as it closes and further 

away as it opens.     

 

TriCα θ2 more accurately describes the opening and closing of the flap-structure, although θ1 

and θ2 follow a similar trend to the changes observed in d1, the magnitude of θ2 more accurately 

describes the extent of flap opening and closing in all plasmepsins investigated in the present 

study (Figure 5D). For PlmII, the maximum d1 of 16.78 Å at 33.3 ns corresponds to the 

maximum θ2 of 84.12° at 33.3 ns (Table 6).  The wider range of motion around θ2 could be 

due to the fact that the second residue of the active site (Asp2) lies in close proximity to the 

highly flexible L3 loop (residues 231-244, PlmII numbering) (67, 68).   

 

Table 6. TriCα angles, θ1 and θ2. 

 

* Change between the maximum and minimum distance. 

 

3.2.5. Radius of gyration (Rg) 

The radius of gyration is indicative to the compactness of the tertiary structure of a protein i.e. 

how folded or unfolded a protein is, and gives insight into the stability of biological molecules 

during the MD simulation. The Rg for all plasmepsins investigated in the present study, follow 

similar trends to those reported for d1 and θ2 (Figure 5E). With the exception of Plm II and V. 

Plasmepsin II follows a similar trend to d1 and θ2 for most of the simulation. However, towards 

 
PlmI PlmII HAP PlmIV PlmV 

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 

Average 27.46° 40.45° 41.79° 60.62° 34.97° 49.76° 39.24° 58.41° 34.64° 49.93° 

Max 
48.22° 

@11.8ns 

64.5° 

@33.1ns 

57.47° 

@45.8ns 

84.12° 

@33.3ns 

52.03° 

@2.7ns 

65.07° 

@43.5ns 

61.89° 

@5.6ns 

86.32° 

@5.6ns 

55.36° 

@10.6ns 

83.36° 

@41.4ns 

Min 
10.8° 

@2.3ns 

22.76° 

@16.4ns 

27.93° 

@11.9ns 

40.69° 

@1.1ns 

21.21° 

@21.4ns 

36.08° 

@22.2ns 

12.26° 

@2.5ns 

26.90° 

@2.7ns 

4.42° 

@41.5ns 

14.84° 

@2.1ns 

Δ* 37.42° 41.75° 29.54° 43.42° 30.82° 28.99° 49.63° 59.42° 50.94° 68.53° 
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the end of the simulation as the flap-structure moves to a more open conformation the Rg values 

do not increase accordingly and remain fairly constant with a brief increase at ~47.5 ns (Figure 

5E). The Rg for PlmV does not follow a similar trend to that seen in d1 and θ2 for most of the 

simulation, although there are periods during the simulation where Rg increases with an 

increase in d1 and θ2 (Figure 5E). This discrepancy could be due to the fact that a homology 

model was used for PlmV in the MD simulations. In addition, apo PlmV displayed an average 

Rg of 21.44 Å comparatively higher as compared to PlmI (20.5 Å), PlmII (20.48 Å), HAP 

(20.79 Å) and PlmIV (20.66 Å). Indicating PlmV is a more open, dynamic and flexible enzyme.  

 

4. Conclusion 

As previously reported, the present study indicates that differences in plasmepsin substrate 

specificity depend on the conformational differences at distant sites rather than variations 

within the active site itself (69, 70). Molecular dynamic simulations has shown that the activation 

energy of other aspartic proteases is highly sensitive to the distance between the substrate and 

catalytic aspartic acid residues in the active, which is controlled by the motion and dynamics 

of the flaps covering the binding site (71). In the present study we comparatively show the 

difference in flap motion and dynamics between apo Plm I-V. We also show how the flap 

opening and closing of plasmepsins can be more accurately describe by combining parameters 

namely – distance (d1), the dihedral angle (ϕ) and TriCα angle (θ2). These three parameters 

accurately account for the twisting motion responsible for opening the binding cavity, as the 

flap and flexible loop region move away from each other, and closing of the active site as the 

flap and flexible loop region move inwards towards each other and the active site. 
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Figure 9. Graphs showing the fluctuation in distance, d1 (A); dihedral angle ϕ (B), Tri Cα angles ϴ1 

(C) and ϴ2 (D); radius of gyration, Rg (E) throughout the 50 ns simulation time.  
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The data presented above indicate that Plm IV and V are the most flexible and dynamic, capable 

of wider ranges of motion. The flexibility observed in both these enzymes correlate to their 

function, as well as their conservation throughout all Plasmodium species. From the sequence 

analysis of the flap-structure, it can be seen the PlmIV has a glycine residue situated at the flap 

tip (Gly78). The inherent flexibility of glycine accounts for the mobility and increased 

flexibility observed in PlmIV (72, 73). Glycine is the smallest amino acid, due to it being achiral, 

with two hydrogen atoms composing the side chain. This offers less to no steric hindrance of 

the flap to the opposite flexible loop in PlmIV. Thus the flap-structure of PlmIV is highly 

mobile and flexible. In P. falciparum vacuolar plasmepsins have evolved from PlmIV, whereas 

in other species PlmIV is the only plasmepsin responsible for hemoglobin degradation. As 

observed in the present study, mobility and flexibility is less in Plm I, II and HAP possibly 

indicating that they have evolved more specific functions and unique substrate specificity 

versus PlmIV. Thereby, ensuring efficient and total degradation of all forms of hemoglobin in 

the virulent P. falciparum. 

 

Higher fluctuations and increased flexibility was also observed for endoplasmic reticulum 

resident PlmV. The instability reported, could be due to the fact that a homology model was 

used for the simulations, results need to be validated and verified once a crystal structure 

becomes available. The wide range of motion and high conformational flexibility seen in PlmV 

could be to accommodate the wide variety of PEXEL containing proteins destined for export. 

Unlike other plasmepsins investigated in the present study, PlmV has a range of intracellular 

ligands. Thus, the high flexibility of the flap-structure in PlmV ensures that all naturally 

occurring substrates can be accommodated within the active site.   
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The parameters used in the present will aid in a better understanding of not only the flap 

dynamics across plasmepsins but also across the aspartic protease family, for both apo and 

bound enzyme conformations. The results obtained from the present study, further highlight 

the importance of flap dynamics and how they affect the binding landscape. Which will 

ultimately aid in the design and development of novel antimalarial drugs.  
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Supplementary Materials 

 

 

 

Figure S1. Potential energy fluctuations throughout the 50 ns continuous simulation for apo Plm I 

(black), II (red), HAP (magenta), IV (blue) and V (cyan). 

 

 

Figure S2. RMSD fluctuations throughout the 50 ns continuous simulation for apo Plm I (black), II 

(red), HAP (magenta), IV (blue) and V (cyan). 
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Figure S3. Per-residue fluctuations of the b-factors throughout simulation for apo Plm I (black), II 

(red), HAP (magenta), IV (blue) and V (cyan). 
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Abstract 

Plasmepsin V belongs to the plasmepsin family of aspartic proteases. PlmV is unique compared 

to other plasmepsins, as this membrane bound aspartic protease resides in the endoplasmic 

reticulum and is responsible for cleavage of PEXEL tagged proteins destined for export outside 

of the host red blood cell. Plasmepsin V is highly conserved throughout the Plasmodium 

species, and is essential to the survival of the parasite. Recently, two potent inhibitors of Plmv 

have been identified, WEHI-916 and WEHI-842. Of these inhibitors, WEHI-842 has a higher 

binding affinity for P.vivax PlmV and a crystal structure of PlmV in complex with WEHI-842 

has recently been resolved (4ZL4). The structure of PlmV is unique compared to other 

plasmepsins, it is stablised internally by seven disulphide bonds, a NAP1 insert/fold is 

associated with the movement of the flap covering the active site and a highly conserved helix-

turn-helix is situated towards the C-terminal. Flap motion and dynamics play an important role 

in enzyme selectivity and function. To better understand the impact of ligand binding on the 

flap dynamics; molecular dynamic simulations and post dynamic analysis was employed in the 

present study on PlmV in complex with WEHI-842. Previously defined parameters, which 

accurately account for the opening and closing of the active site were used to assess the 

conformational changes induced in the absence and presence of WEHI-842. From the 

simulations it can be seen that inhibitor binding significantly reduces the flexibility and 

mobility of not only the flap and flexible loop but areas outside of the active site. Ligand 

binding leads to the formation of a more stable compact structure. This being said, there is the 

mailto:soliman@ukzn.ac.za
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possibility of reducing the flexibility even further with potentially more lethal effects on the 

plasmodium parasite. We believe that results presented herein, would assist researches in the 

discovery of potent PlmV inhibitors as potential antimalarial therapies.  

 

Keywords: aspartic proteases; flap dynamics; plasmepsin; flexibility; plasmodium; malaria; 

molecular dynamics 
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1. Introduction  

Malaria is a highly infectious parasitic disease caused by the Plasmodium protozoa, of which 

the most virulent species to infect man is P. falciparum and P. vivax 1,2. In 2014, 97 countries 

had ongoing malarial transmissions with an estimated 3.3 billion people at risk globally and in 

2013 198 million cases were reported worldwide, with an estimated 584 000 deaths 3. To date, 

no malaria vaccine has been developed and drug resistance is widespread, with no new 

antimalarial classes entering clinical practice since 1996 1.  

 

The malaria parasite invades host erythrocytes, where it resides and replicates within a 

parasitophorous vacuole. To ensure survival in the host cell, the parasite degrades hemoglobin 

via a plethora of protein degrading enzymes with functional redundancy and exports numerous 

parasitic proteins into the red blood cell (RBC) cytoplasm and onto the surface of infected 

RBCs, remodeling the host cell 4. Export relies mostly on a vacuolar transport signal (VTS) or 

the Plasmodium export element (PEXEL), an N-terminal motif found in over 450 P. falciparum 

proteins 5. In P. falciparum, this is approximately 9% 6,7 of all proteins (exportome), of which 

20% or more are predicted to be essential for survival 8. The conserved pentameric PEXEL 

motif contains a consensus sequence, RxLxE/Q/D, and PEXEL-proteins destined for export 

are cleaved in the parasitic endoplasmic reticulum (ER) at the C-terminal of the leucine residue 

(RxL) 9,10. Cleavage requires the highly conserved arginine x leucine, and is performed by the 

ER aspartic protease, plasmepsin V (PlmV) (Figure 1) 6,11,12. Plasmepsin V and PEXEL tagged 

proteins are conserved throughout all Plasmodium species 7,13,14, deletion of the PMV gene has 

suggested it is essential to the survival of the parasite 11,12,14. The ER-resident PlmV is situated 

on chromosome 13 consisting of 590 amino acids (68.4kDa) 14, is only distantly related to other 

plasmepsins (17% to PlmII); and is phylogenetically unique as it shares distant homology with 

human aspartic proteases 11,12,14. Unlike most aspartic proteases, PlmV does not bind to the 
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aspartic protease inhibitor pepstatin A 14. These findings indicate that PlmV could be a very 

promising target for antimalarial treatment. 

 

Plasmepsin V belongs to the family of aspartic proteases, a class of proteolytic enzymes that 

typically house two catalytic aspartic acids in the active site partially covered by a β-hairpin 

loop (flap) (Figure 1). Traditionally, aspartic proteases are inhibited by transition state 

peptidomimetics which mimic and outcompete the biological substrate. In these 

peptidomimetic inhibitors, a non-cleavable moiety mimics the amide bond preventing 

proteolysis (e.g. statine) 5. Due to the hydroxyl groups in the transition state analogs, hydrogen 

bonds are formed between the inhibitor and the catalytic aspartic acids holding the inhibitor in 

the active site 19. Peptides transformed into therapeutic drugs/agents tend to be problematic due 

to their metabolic instability and poor bioavailability 16. It is well known that plasmepsin 

substrate specificity is dictated by conformational deviations in residues surrounding the 

actives site rather than the active site itself 11,12. Flap dynamics and motions play a big role in 

the overall conformational flexibility of a protein and is crucial in understanding the ligand 

binding landscape. Previously we have shown the flexibility of free unbound plasmepsins, and 

how the flap region covering the active site is the most mobile and flexible region in the active 

site 19. In an unbound conformation, the flap region moves freely opening and closing the active 

site. Using previously defined parameters to account for the dynamic behaviour of the active 

site, it was observed that Plm IV and V were the most flexible 19.  

 

Recently, a potent inhibitor (PEXEL-mimetic) of PlmV has been identified, WEHI-916, with 

an IC50 (nM) of 0.020 and 0.024 for P. falciparum and P. vivax respectively with good 

selectivity over BACE1 and CatD 20. Overexpression of PlmV led to an increase in resistance 

to WEHI-916, whereas knockdown of PlmV increased susceptibility and sensitivity to WEHI-
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916 20. Due to the polarised guanidinium group present on the P3 Arg, WEHI-916 was poorly 

membrane permeable thus had a high affinity for endogenous PlmV and only modestly affected 

P. falciparum growth 21. A new compound, WEHI-842, was synthesised in which the P3 

arganine was replaced by a non-proteinogenic amino acid (cavanine) and the sulfonamide of 

WEHI-916 was replaced by an N-terminal carbamate 21. WEHI-842 has been shown to be more 

potent than WEHI-916 against recombinant PlmV, with a binding affinity of 13.8 nM 

compared to 42.0 nM for WEHI-916. A structure of P. vivax PlmV in complex with WEHI-

842 was subsequently crystallised (PDB code 4ZL4, resolution 2.37 Å) (Figure 1) 21.  

 

 
 
Figure 1. Crystal structure of plasmepsin V (PDB 4ZL4) 22 showing the key regions and residues. 

Cysteine residues are highlighted in yellow, and disulfide bonds shown in yellow linkages, nepenthesin 

1-type aspartyl protease (NAP1) fold (magenta), catalytic aspartic acid residues are shown in red, the 

flap region (blue), unpaired cysteine flap tip (yellow sphere), flexible loop (purple) and the helix-turn-

helix motif (green). A. Side on view, B. Top view.  

 

 

Herein, we use previously defined parameters that we believe accurately depicts the opening 

and closing of the PlmV active site to ascertain how ligand binding affects protein dynamics 

and flexibility. The data presented herein will aid in the development of more potent inhibitors 

of PlmV.  
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2. Computational methodology 

2.1.  System preparation  

Plasmepsin V in complex with WEHI-842 (PDB code 4ZL4 23) was prepared using the GUI 

interface of the UCSF Chimera software package (www.cgl.ucsf.edu) 24. The structure was 

crystalised as a dimer (chain A and B), although only chain A was used in the simulations. It 

has been reported that PlmV is composed of 590 amino acids, including the peptide signal 

region, the pro-segment, mature PlmV and the transmembrane region 25. The crystal structure 

started at residue number 33, and the structure of residues in the loop region between Arg241 

and Glu272 could not be determined due to poor electron density 22. The authors noted that 

these residues are not of importance in the binding of WEHI-842 or effector proteins 22.     

 

2.2.  Molecular dynamics simulations 

Simulations were carried out using the GPU version of PMEMD engine incorporated with the 

Sander module of Amber14 26. Protein systems were modelled using the ff99sb force field in 

Amber14 27, the LEAP module of Amber14 was used to add missing hydrogen and heavy atoms 

for system stabilization 26. The systems were neutralized by the addition of Na+ counter ions. 

Ligands were parameterised using gasteiger charges in Avogadro 28, the Antechamber module 

by applying the GAFF (generalized Amber force field) 29. All systems were immersed within 

a orthorhombic box of TIP3P 30 water molecules such that protein atoms were within 10 Å of 

any box edge throughout the simulations. Periodic boundary conditions were used on all 

systems, long range electrostatic interactions were treated with the particle mesh Ewald (PME) 

method 31 in Amber14 with direct space and van der Waals interactions restricted to 12 Å.  

Systems were subjected to two minimisation steps, partial minimisation followed by full 

minimisation. Initial minimisation (1000 steps) was performed on all systems with restrained 

harmonic constraints (constant force of 500 kcal/mol-1 Å2) using the steepest descent 

http://www.cgl.ucsf.edu/
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algorithm. Thereafter, all atom energy minimisations without any restraints were conducted for 

1000 steps using the conjugate gradient method. Minimised systems were gradually heated 

from 0 to 300 K in the NVT ensemble using harmonic constraints of 5 kcal/mol Å2 (all solvent 

molecules) and a Langevin thermostat (collision frequency of 1 ps-1) 32 regulated and 

maintained temperatures throughout the simulations. Systems were equilibrated at 300 K in the 

non-restrained NPT ensemble for 500 ps prior to production runs, restraints were removed and 

constant pressure (1 bar) was maintained using a Barendson barostat 33. The SHAKE 34 

algorithm was used throughout runs to constrain all bonds involving hydrogen atoms. All 

simulations were run using a 2fs time step and the SPFP precision model 35. 

 

Continuous 50 ns MD simulations were run using the NPT ensembles (isothermal and isobaric) 

at a constant target pressure of 1 bar and a pressure coupling constant of 2 ps. Resulting 

coordinates were saved every 1 ps. Trajectories were analysed using the CPPTRAJ modules in 

Amber14. Trajectories were visualised using the GUIs Chimera 24. Results were analysed and 

plotted using Origin 36. In previous reports we have shown that a continuous approach for 50 

ns is sufficient to observe conformational changes and flap motions of aspartic proteases and 

ensures sample convergence and system stability 19,37. 

 

2.3.  Post-dynamic analysis  

2.3.1.       Principle component analysis (PCA) 

Principle component analysis (PCA) also known as essential dynamics (ED) 38, is a technique 

that aids in the understanding of the dynamic behavior of biological systems. Essentially, PCA 

defines atomic displacement and identifies conformational changes by extracting various 

conformational modes of the protein complex during the MD simulation. Principle component 

analysis defines the eigenvectors (direction of motion) and eigenvalues (magnitude of motion) 
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for the protein systems 39. The analysis was carried out by constructing a covariance matrix of 

the Cα atom displacements. After stripping counter ions (Na+) and solvent molecules from the 

50 ns trajectories, PCA was performed on all Cα backbone atoms. Data was averaged over 

1000 snapshots taken at 100 ps time intervals using the CPPTRAJ module of AMBER14 to 

generate the first two principal components, PCA1 and PC2 (corresponds to the first two 

eigenvectors of the matrix). Corresponding scatter plots were generated and analysed using 

Origin software (http://www.originlab.com/).  

 

2.3.2.        Dynamic Cross-Correlation Matrices (DCCM) 

 

The cross-correlation of dynamic trajectories is useful in understanding correlated motions of 

residual-based fluctuations throughout a simulation. The matrix is a 3D representation which 

graphically depicts time-correlated information among the residues of the protein systems 40 

and residue-base time correlated data can be analysed using visual pattern recognition 41. To 

better understand the dynamics of apo versus bound PlmV, a DCCM was generated to depict 

cross-correlated displacements of backbone Cα atoms in the trajectories. Dynamic cross-

correlation matrices were generated using the equation: 

𝐶𝑖𝑗 =  〈∆𝑟𝑖 ∗ ∆𝑟𝑗〉 (〈∆𝑟𝑖
2〉〈∆𝑟𝑗

2〉)⁄
1/2

                            (1) 

Where, i and j corresponds to the ith and jth residue and ∆𝒓𝑖 and  ∆𝒓𝑗 represents the 

displacement of the ith and jth atom from the mean respectively. The cross-correlation 

coefficient Cij, varies between the range of -1 to +1, where the upper and lower limits 

correspond to a fully correlated (+1) and anti-correlated (-1) motion throughout the simulation. 

The analysis was executed using the CPPTRJ module of AMBER 14. Matrices were generated 

and analysed using Origin software (http://www.originlab.com/). 

http://www.originlab.com/
http://www.originlab.com/
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3. Results and discussion 

3.1.      Molecular dynamics simulations 

3.1.1. System stability  

Before the MD trajectories were analysed, root mean square deviations (RMSD) and potential 

energy fluctuations were monitored throughout the 50 ns simulation. This was to ensure 

stability and reliability of the post-dynamic analyses to follow. Stabilisation and convergence 

was observed for both systems, and no major energy fluctuations were observed (Figure S1). 

After approximately 10 ns, the RMSD trajectories converged and fluctuations did not exceed 

2 Å for either system for the duration of the simulation (Figure S2). On average apo and bound 

PlmV show a similar trend in RMSD fluctuations, with an average RMSD of 1.2 Å and 1 Å 

respectively, although towards the end of the simulation apo PlmV fluctuates slightly higher 

than the bound conformation. In the apo conformation, PlmV reaches a maximum fluctuation 

of 2.7 Å compared to bound PlmV which only reaches a maximum of 1.8 Å. These results 

indicate that albeit slightly, apo PlmV displays more flexibility and deviates more compared to 

bound PlmV.  

 

3.1.2. Visual tajectory analysis 

Snapshots of the trajectories were taken at 10 ns intervals for both apo and bound PlmV, and 

analysed for the 50 ns duration (Figure 2 and 3). From the visual inspection of the snapshots 

it can be seen that in an unbound apo state, PlmV is much more flexible as the flap tip moves 

away from the flexible region opening up the active site (reflected by an increase in d1). 

Throughout the simulation it can be seen that apo PlmV deviates significantly more than bound 

PlmV from their initial starting structures (cornflower blue). It can be seen that the tip (Cys140) 

and the opposite flexible loop of apo PlmV moves a significant distance from the initial starting 

structure (Figure 2). The core of both apo and bound PlmV appears rigid, whereas significant 
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changes can be seen in the extremities more specifically in the nepenthesin 1-type aspartyl 

protease (NAP1) fold, regions adjacent to the NAP1 insert (N-terminal side) and the helix-turn-

helix towards the C-terminal. These regions appear to be flexible and mobile in both apo and 

bound PlmV, although ligand binding reduces mobility, decreases flexibility and increases the 

compactness of PlmV. In the presence of the inhibitor WEHI-842, the flexibility and dynamic 

motion of the flap tip and flexible loop is drastically reduced. The inhibitor stabilizes and 

reduces the flexibility of the active site; as the flap tip and flexible region move closer together 

(decrease in d1), folding inwards towards the two catalytic aspartic residues holding the ligand 

firmly in the active site (Figure 2 and 3). From the snapshots it can also be seen that the 

catalytic aspartic acids remain relatively constant throughout the simulation, and that ligand 

binding increases rigidity by binding to other key residues lining the binding cavity (Figure 2 

and 3). Interestingly, from the snapshots it seems as if ligand binding stabalises the flap region 

by reducing mobility and flexibility in the NAP1 insert region which moves significantly in the 

absence of WEHI-842. The helix-turn-helix flexibility is also hindered and reduced upon 

binding of WEHI-842, suggesting that WEHI-842 inhibits PlmV by inducing conformational 

changes outside of the active site. It is worth noting, that in the apo conformation the orientation 

of the flap tip (Cys140) is erratic, disordered and highly flexible; whereas in the bound 

conformation the orientation Cys140’s side chain is more stable and tends to orientate inwards 

towards the active site (Figure 3). 
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Figure 2. Visual analysis of the MD trajectories throughout the 50 ns simulation. 

 

Figure 3. Zoomed analysis of the MD trajectories throughout the 50 ns simulation, for both apo and 

WEHI-842 bound PlmV. Flap (blue), flap tip (yellow), catalytic aspartic acids (red) and flexible loop 

(magenta). 

 

3.2. Post MD analysis 

3.2.1. Root mean square fluctuation (RMSF) 

Protein function can be altered directly through interactions with the active site, or indirectly 

by disrupting motions essential to PlmV function. More specifically, the essential motions 

induced by the conformational changes that accompany ligand binding and dissociation 42,43. 

To better understand the structural fluctuations that occur upon ligand binding, the RMSF of 
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both apo and bound PlmV was calculated i.e. standard deviation of Cα atom from average 

structure (Figure 4).  

The protein core appears to be more rigid compared to the solvent exposed loops which are 

more flexible as indicated by the fluctuations in the RMSF values (Figure 4). Overall, the 

average RMSF does not differ much with a slightly lower RMSF for bound PlmV, 0.9 Å, 

compared to 1.1 Å for the apo conformation. The catalytic aspartic acid residues (80,313) 

showed no significant fluctuations upon ligand binding, thus binding of WEHI-842 inhibits 

PlmV activity due to conformational changes induced in residues lining the active site. The 

most significant changes in fluctuation can be seen in residues in the flap, notably Cys140 and 

Glu141. This is due to the formation of a salt bridge between the guanidinium ion of WEHI-

842 and the carboxylic acid of Glu141, inhibitor binding reduces the flexibility of Glu141 from 

2.4 Å to 1.6 Å. The formation of the salt bridge, further reduces the flexibility of the flap by 

indirectly lowering the fluctuation of the flap tip, Cys140, from 2 Å to 1.6 Å. Both the NAP1 

fold and helix-turn-helix are less flexible in the bound conformation. In the apo conformation, 

Asn95 has the highest fluctuation, 4.3 Å, upon ligand binding it becomes more rigid and 

fluctuates significantly less (2.7 Å). Asn95 is situated between Cys93 and Cys96 which form 

the second disulfide bond (C2) in the PlmV structure. The highest fluctuations were observed 

between residue 93-97, with an average RMSF of 3.5 Å in the apo conformation, and 2.5 Å in 

the bound conformation. Ligand binding lowers the fluctuation in this region, although even 

after ligand binding this region still fluctuates more than the average for the total bound 

conformation. The trend and conformational fluctuations observed in the b-factor values 

(Figure S3), support the fluctuations observed in the RMSF values.  
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Figure 4. RMSF of apo PlmV (black) and WEHI-842 bound PlmV (red). 

 

3.2.2. Flexibility of the active site 

Previously defined and reported parameters 19,37 were used to investigate the flap opening and 

closing of PlmV in the absence and presence of WEHI-842. These parameters accurately 

account for the twisting motion of the flap tip and the recoiling motion of the flexible loop. The 

parameters measured in the present study were the distance (d1) between the flap tip (Cys140) 

and the hinge residue of the flexible loop (Gln433), in relation to TriCα angles θ1 (Cys140-

Asp80-Gln433) and θ2 (Cys140-Asp313-Gln433), and to the dihedral angle ϕ (Cys140-Asp80-

Asp313-Gln433) (Figure S4). 

 

As previously reported using a homology model for PlmV 20, the results presented in the 

present study show that in the apo conformation PlmV transitions between semi-open and more 

open conformations. Throughout the simulation, the flap and flexible regions of PlmV move 

significantly from each other; opening the active site exposing the catalytic aspartic acids. In 

comparison to apo PlmV, the flexibility and mobility of the flap region and the flexible loop of 

WEHI-842 bound PlmV is significantly reduced. Overall, the average distance of the flap tip 
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and flexible loop for apo PlmV was 13.4 Å which was reduced to 10.1 Å upon binding of 

WEHI-842. The major difference between the two conformations was in the range of motion, 

in a bound state PlmV showed more restricted movements between the flap tip and the flexible 

region (7.7 Å – 13.7 Å); whereas in the unliganded conformation PlmV reaches a maximum 

distance of 17.1 Å (Figure 5). It is worthwhile noting, that the distance between the flap and 

the flexible region in the bound conformation is not constant throughout the simulation; this in 

part could be attributed to the fact that WEHI-842 forms a salt bridge with Glu141 adjacent to 

the Cys140 flap tip, indirectly reducing the range of motion and flexibility of Cys140. In both 

the apo and bound conformations, the Tri Cα angles, θ1 and θ2, follow a similar trend to that 

observed in d1 (Figure 5). As the flap and flexible loop move away from each other (d1 ↑), both 

the Tri Cα angles, θ1 and θ2, increase in the apo conformation. The wide range of d1 in the apo 

conformation corresponds to the wide angular motion of the active site; as θ1 transitions 

between 17.4° and 56.6°, whereas θ2 reaches a staggering 84.8° from a base of 33.3°. Enabling 

the tip and flexible loop to move apart, reaching a maximal d1 of 17.1 Å exposing the active 

site. Ligand binding to PlmV induces rigidity and compactness of the active site as represented 

by the decreased range of motion of the Tri Cα angles, θ1 and θ2, 24.9° - 48.4° and 33.9° - 59.6° 

respectively and corresponding decrease in d1. As previously reported for plasmepsins, θ2 more 

accurately accounts for the magnitude of flap opening of PlmV. Ligand binding significantly 

reduces the angle between the flap tip, the second aspartic acid and the flexible loop; in an apo 

conformation the average value for θ2 is 65.7° which is reduced to 44.8° upon binding of 

WEHI-842 (Figure 5). Ligand binding also stabalises and reduces the twisting motion of the 

active site, as reflected by the conserved range of ϕ values (Figure 5). In the bound 

conformation, there is less twisting of the active site as bonds formed between WEHI-842 and 

residues in the active site prevent large torsional shifts. The apo conformation of PlmV twists 

more aggressively to open the active site, which can be seen in the large shift in the dihedral 
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angles in the beginning of the simulation as PlmV moves from a semi-open configuration to a 

more open configuration. As to be expected, the further the active site opens the more active 

site twists to accommodate the opening of the active site.  

 

The radius of gyration (Rg) measures the thermodynamics and kinetics of protein folding, and 

is an indication of the compactness and stability of protein complexes 44. From Figure 6, it can 

be seen that the Rg for both the apo and bound conformations is fairly similar to one another, 

with an average Rg of 23.7 Å and 23.4 Å respectively. Ligand binding induces a shift to a more 

compact structure, albeit only a 0.3 Å change, a relatively more stable structure is formed 

(Figure 6).  
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Figure 5. Plots showing the opening and closing of the active site of PlmV in two conformations, Apo 

PlmV (black) and WEHI-842 bound PlmV (red) as represented by the changes in distance in relation to 

the TriCα angles, θ1 and θ2, and the dihedral angle (ϕ). 
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Figure 6. Radius of gyration of Apo PlmV (black) and WEHI-842 bound PlmV (red). 

 

To further elucidate the impact of ligand binding on the structure of PlmV, the solvent 

accessible surface area (SASA) was measured. Solvent accessibility measures how much of a 

protein is exposed to or accessible by the solvent molecules 45. Overall, the apo conformation 

of PlmV has a larger surface area exposed to solvent compared to bound PlmV, average SASA 

of 17784.9 Å and 17254.8 Å respectively (Figure 7). These findings suggest that as WEHI-842 

binds to PlmV the structure becomes more compact as the active site folds inwards 

encompassing the inhibitor.     

 

 

Figure 7. Solvent accessible surface area of Apo PlmV (black) and WEHI-842 bound PlmV (red). 
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3.3. Dynamic cross-correlation matrix (DCCM) analysis 

To further investigate conformational changes upon WEHI-842 binding, DCCM analysis was 

performed on the positions of the Cα backbone atoms throughout each of the independent 

simulations, apo and bound, to determine the presence of correlated motions (Figure 8). Highly 

positive or correlated motions of specific residues are represented as red – yellow regions, 

whereas, highly negative or anti-correlated movements of specific residues are represented as 

blue – black regions. From the DCCM analysis it can be seen that WEHI-842 binding changes 

the structure of PlmV as reflected by the changes in correlated motions and dynamics. In the 

apo conformation (Figure 8A), there are small areas of correlated motions (red regions) which 

appear to be between regions where the disulfide bonds (between cysteine residues) are formed. 

This correlation, strongly increases upon ligand binding (Figure 8B). In the apo conformation, 

Cys141 is slightly correlated to Cys117 and Cys122 where the NAP1 insert is located. Upon 

binding of WEHI-842, this correlation strongly increases suggesting that flap movements and 

dynamics in part depends on the flexibility and dynamics of the NAP1 fold and surrounding 

regions (Figure 8B). The correlation observed for the flap tip can also be seen for Glu141, 

upon ligand binding and the formation of the salt bridge; correlated movements between the 

flap and NAP1 and surrounding regions increase. Suggesting, that upon ligand binding the 

correlation in movement between the flap region and the NAP1 insert and surrounding regions 

increase. Furthermore, ligand binding induces a shift to anti-correlated movement between the 

flap region and the helix-turn-helix (blue region) (Figure 8B). The flap region movement is 

more correlated to Asp80, this correlation increases upon ligand binding. Whereas, anti-

correlated movements increase between the flap region and Asp313 in the bound conformation 

of PlmV.   
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Figure 8. Cross-correlation matrices of the Cα fluctuations in both A. Apo PlmV and B. WEHI-842 

bound PlmV throughout the 50 ns simulation. 

 

 

3.4. Principle component analysis (PCA) 

PCA is a technique which reduces the size or dimensionality of a given set of data, while 

retaining as much variation as possible and has been used extensively to account for variations 

detected in experimental simulations. PCA or essential dynamics provides insight into 

conformational changes and dynamics in proteins by detecting large and concerted 

conformational dynamics and fluctuations. For the purpose of the present study, a restricted 

analysis for the first two modes was implemented. Figure 9 shows the essential dynamics for 

apo PlmV and WEHI-842 bound PlmV during the 50 ns MD simulation, where PC1 (X axis) 

and PC2 (Y axis) are constructs from a covariance matrix with the eigenvectors removed 

(rational motion). Each eigenvector is representative of the motion the Cα backbone atoms in 

a single direction through a multidimensional space; with a corresponding eigenvalue 

representative of amplitude. After collation of both the apo and bound systems, it can be seen 

that ligand binding to PlmV induces a conformation with restricted mobility and flexibility 

relative to its Cα backbone. Compared to apo PlmV, bound PlmV shows reduced spatial 

occupancy at any given moment (Figure 9). In the apo state two dominant conformations are 

observed, which is condensed to one main conformation upon ligand binding.      
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Figure 9. PCA scatter plots of 1000 frames along two planes, PC1 and PC2 for apo PlmV and WEHI-

842 bound PlmV showing the difference in the eigenvectors of the 50 ns trajectories. 

 

4. Conclusion 

The aspartic protease, ER resident membrane bound plasmepsin V is responsible for the 

cleavage of PEXEL tagged proteins, and is vital for Plasmodium survivial11,20,46. Plasmepsin 

V represents a novel target in the search for antimalarials, as it is highly conserved throughout 

all Plasmodium species; and is structurally and functionally different to other members of the 

plasmepsin family. Recently, two potent inhibitors of PlmV has been identified WEHI-916 

(IC50 P. falciparum 3.5nM; P. vivax 0.2 nM) and WEHI-842 (IC50 P. falciparum 2.1 nM; P. 

vivax 0.4 nM) 20,22. We previously documented the flap dynamics of free unliganded 

plasmepsins I-V, using a homology model for PlmV as no crystal structure was available. 

Subsequently, a crystal structure of PlmV (P. vivax) in complex with the peptidomimetic 

inhibitor WEHI-842 (PDB 4ZL4) has been resolved 22. In the present study, we comparatively 

show the differences in flap dynamics upon binding of WEHI-842 to PlmV using the crystal 

structure, MD simulations and previously defined parameters to measure flap opening and 

closing. Plasmepsin V has an array of intracellular target proteins, of varying shapes and sizes. 

The opening and closing of the active site ensures that target proteins are bought into the active 

site and held in close proximity to the catalytic aspartic dyad until amide bond cleavage occurs 
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releasing substrates for export. The sequence of the flap covering the active site of PlmV is 

highly conserved in Plasmodium species, this flap houses the unpaired cysteine residue at the 

flap tip (Cys140) 22. Unlike other plasmepsins, PlmV is stabalised internally through the 

formation of 7 disulfide bonds between 14 cysteine residues 22. As reported by Hodder and 

colleagues, we observed an association between the flap, the NAP1 insert and surrounding 

regions; from our simulations we observed flap opening as the NAP1 insert and surrounding 

regions become more disordered pulling the tip away from the flexible loop opening up the 

active site. Binding of WEHI-842 reduced flexibility and mobility in this region and in the flap 

region itself, via a salt bridge formed between Glu141 and WEHI-842. Inhibitor binding 

significantly reduced the flexibility and dynamics of the active site, although there is still 

movement between the flap and the flexible loop in the presence of WEHI-842. More 

specifically, the flexible loop region adjacent to the flap region is more flexible than expected. 

This could be due to the presence of the helix-turn-helix, a motif unique to PlmV which is 

highly conserved throughout Plasmodium species 22 and is not present in other members of the 

plasmepsin family. Lining the outside of the helix-turn-helix edges are highly conserved 

hydrophobic residues, which hold the amphipathic helices in strong antiparallel orientations. 

Upon visual inspection, ligand binding reduces flexibility in this region although visible 

movements throughout the simulation can be seen. Ligand binding induces a more compact 

rigid conformation, although regions located at the extremities are not as rigid as the core of 

PlmV. Thus ligand binding to PlmV, induces conformational changes outside of the active site 

to inhibit enzymatic activity. Such changes include reduced flexibility in the flap region, as the 

flap folds down towards the active site holding the inhibitor firmly in place thereby preventing 

activity. The current scaffold of WEHI-842 could potentially be further refined to allow the 

formation of a disulphide bond with the unpaired Cys141 residue in the flap; which could 
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potentially reduce flexibility and dynamics of the active site even more. The insights presented 

in the present study will aid in the design of more potent selective inhibitors of PlmV.  
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Supplementary Materials 

 

Figure S1. Potential energy fluctuations of apo PlmV (black) and WEHI-842 bound PlmV (red).    

 

 

Figure S2. The Cα root mean square deviations (RMSD) for apo PlmV (black) and WEHI-842 bound 

PlmV (red). 
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Figure S3. Plot of the b-factor values for apo (black) and bound (red) PlmV. 

 

Figure S4. Schematic of the parameters used to measure flap opening and closing. Flap region 138-

144(blue), flap tip Cys140 (yellow), catalytic aspartic acids 80, 313 (red), flexible loop region 433-

439 (magenta) and hinge residue Gln433 (purple).   
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CHAPTER 7 

Flap dynamics as unique conformational features among aspartic proteases 

McGillewie L and Mahmoud E. Soliman* 

 

Abstract 

Aspartic proteases are hydrolytic enzymes that have been implicated in a number of 

diseases such as HIV, malaria, cancer and Alzheimer’s. Generally speaking, their 

structure is relatively conserved in which the active site (aspartic acids) is housed at 

the interface of the N- and C-terminal lobes. Partially covering the active site is a 

flexible hairpin flap, lying perpendicular to the active site. The flap region in this class 

of enzyme is a characteristic unique to aspartic proteases; and has a profound impact 

on protein function. Dynamics in the flap region substantially affects the overall 

dynamics and conformation of the protein. Flap dynamics play a crucial role in drug 

binding, regulating access to the active site. Mutations in this region has a significant 

impact on the conformation of the protein and on drug binding; mutations that alter 

flap dynamics can lead to the development of resistance. Therefore understanding the 

dynamics and behaviour of the flap regions is crucial in the design of potent, selective 

inhibitors of aspartic proteases with increased efficacy and potency, and potentially 

reduce the incidence of resistance. The current review focuses on the flap region of 

aspartic proteases and the parameters used to measure the dynamics of the active site. 

Clear, concise and accurate parameters will aid in a better understanding of the 

dynamic nature of this enzyme family.  

Keywords: parameters, flap dynamics, HIV, malaria, Alzheimer’s, hypertension, 

cancer, aspartic protease, flexibility 
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1. Introduction to protein dynamics  

Enzyme catalysis in its very nature is a dynamic process, where the binding of ligands often 

induce subtle and/or dramatic conformational changes 1. Ultimately, atomic fluctuations result 

in bonds being broken and new ones being formed. It is well known that there is a correlation 

between the structure of a protein, the dynamics of a protein and the function of a protein – 

dynamics has a profound effect on function, therefore understanding the dynamics of a given 

system is critical to the success of ligand and protein design alike 1. Protein flexibility is 

paramount to ligand recognition, predicting flexibility on static structural data alone is 

problematic. Which has been circumvented by the introduction of molecular modelling studies, 

which seek to understand the dynamic behaviour of biological systems on an atomistic level.   

 

1.1. Aspartic proteases 

Aspartic proteases are a family of enzymes involved in numerous important biological 

processes, found in plants, viruses, protozoa and vertebrates 2,3. They are important hydrolytic 

enzymes that have become targets for diseases such as AIDS, malaria, hypertension and 

Alzheimers. Initially synthesised as proenzymes, aspartic protease are activated upon cleavage 

of the pro-segment. Aspartic proteases belong to a class of protease enzymes which use a 

catalytic aspartic acid dyad to cleave peptide bonds, through the activation and polarization of 

a water molecule and the formation of a transient tetrahedral intermediate 4–6. The catalytic 

aspartic acid residues take on different roles in a general acid-base or ‘push and pull’ reaction7. 

In spite of the heterogeneity among aspartic proteases, the active site (motif Asp-Ser/Thr-Gly) 

and mechanism of action is conserved throughout the family 7–9. The mechanism of action is 

highly conserved between members of the aspartic protease family, so much so that in 1991 

Sharma and colleagues demonstrated that HIV-1 protease (viral) has the ability to produce 

angiotensin I at levels comparable to that of human renin 10.  



114 
 

 

The family is divided broadly into two groups based on their characteristic folds 3,11. Retroviral 

proteases are β homodimers where the catalytic aspartic acid dyad is located at the monomer 

interface (1 Asp from each monomer) and the active site is covered by two identical hairpin 

loops 12. Whereas, eukaryotic aspartic proteases are either α or β monomers made up of two 

asymmetrical lobes where the catalytic aspartic acid dyad is situated at the interface of the two 

lobes covered by a single hairpin loop 12,13. Flaps covering the active site have a dual role in 

protease function: (i) structural, as interactions formed between a ligand and the flaps stabilise 

the ligand-protease complex, and (ii) kinetic, as flap closing induces ligand binding and flap 

opening induces ligand release 14,15. The mechanism of action or catalytic cycle, for aspartic 

proteases is generally a gating mechanism where binding of the ligand forms a loose complex 

with the enzyme, flap closure inwards towards the active site orientating the geometry of ligand 

for catalysis (reactive conformation), bond cleavage, opening of flaps releasing the products 

and active site reformation 16–18. By transitioning between different geometrical conformations 

of their active sites, aspartic proteases have the ability to modulate their catalytic activity 

(enhance or suppress). The residues making up the flap region and the flap tip of some of the 

aspartic proteases is listed in Table 1.  

 

Table 1. Flap regions and flap tip of aspartic proteases. 

 

 

 

 

 

 

 

 

 

 

Protein Flap region 

HIV protease K43-P44-K45-M46-I47-G48-G49-I50-G51-G52-F53-I54-K55-
V56-R57-Q58 

P
la

sm
e

p
si

n
*

 Plasmepsin I N74-Y75-V76-S77-G78-T79 

Plasmepsin II Y77-V78-S79-G80 

Plasmepsin III S75-K76-A77-G78 

Plasmepsin IV S76-Y77-G78-S79-G80-T81 

Plasmepsin V S138-Y139-C140-E141-G142-S143-Q144 

Renin L73-R74-Y75-S76-T77-G78-T79-V80 

Cathepsin D S73-F74-D75-I76-H77-Y78-G79-S80-G81-S82-L83-S84-G85-
Y86-L87 

β- secretase 1 V67-Y68-V69-P70-Y71-T72-Q73-G74-A75 
*Only Plm I-V, as the is not much data in the literature for VI-X 
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The opening and closing of the flap structures of aspartic proteases is crucial to their catalytic 

activity, better understanding flap dynamics will aid in the design of more efficient inhibitors. 

Additionally, disrupting flap movements could potentially inhibit this class of enzymes. The 

current review serves as a compilation of information on the flap regions of aspartic proteases, 

and the parameters used to measure the dynamics of these regions. Members of the aspartic 

protease are discussed in more detail below.               

 

2. HIV protease 

The human immunodeficiency virus (HIV) protease (PR) plays a role in the development of 

acquired immune deficiency syndrome (AIDS), and is an important target in the development 

of drugs targeted against AIDS. HIV-PR is responsible for cleaving the peptide bond in pol 

and gag polyprotein (between Phe and Pro, or Tyr and Pro) precursors into more mature 

structural proteins 19,20. Inhibition prevents viral maturation and prevents the virus from taking 

its infectious form 21. This aspartic protease is a symmetric 22 kDa homodimer, each chain 

consisting of 99 amino acid residues (Chain A 1-99, Chain B 100-198) (Figure 1) 1,22. The 

base of the binding pocket, situated at the interface between the two dimers is composed of a 

conserved catalytic triad, Asp25-Thr26-Gly27 (Asp124-Thr125-Gly126), where the aspartic 

acid dyad (Asp25 Asp124) forms the active site which is firmly held in place through a network 

of strong hydrogen bonds forming the fireman’s grip (residues 24 – 29, and 123 - 128) 22. 

Covering the active site is a pair of overlapping flexible flaps (residues 43 – 58, and 142 - 157), 

with the flap tips, Ile50 and Ile149, being the outmost residue of the flap 16,23. Other important 

structural features, named after their hypothesized function, include the fulcrum (residues 11 – 

22, and 110 - 121), the flap elbow (residues 35 – 42, and 134 - 141) and the cantilever (residues 

59 – 75, and 158 - 174) (Figure 1). Unique to HIV-PR is the conserved water molecule in the 

flap region, ‘flap water’, which is hydrogen bonded to the flap region via Ile50 22. Generally, 
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two distinct conformations is adopted by HIV PR; semi-open in apo HIV PR and a more closed 

conformation in the ligand bound HIV PR 24,25. Numerous crystallographic, NMR and 

computational studies have revealed that in an unbound conformation the flaps loosely 

transition between numerous conformations, most of the time a free HIV PR is in a semi-open 

conformation sterically regulating ligand access into the active site 16,26–28. The glycine rich 

flaps (Met-Ile-Gly-Gly-Ile-Gly-Gly-Phe-Ile) are highly mobile and flexible; and transitions 

between semi-open and open conformations in the absence of a ligand 23,29–32. The flexibility 

and curling of the flap regions, is in part due to the high degree of flexibility of glycine residues 

either side of the centrally located isoleucine 23. During simulations it was observed that in the 

ligand free conformation HIV PR assumes a semi-open conformation, as the flaps curl upwards 

away from the active site due to a concentrated downward movement in the fulcrum, flap 

elbows and cantilever. Ligand binding induces large conformational changes allowing the flaps 

to move from a semi-open conformation to a closed conformation; adopting a more stable 

compact structure, as the flaps are pulled inward 16,24,25. Stability conferred upon ligand binding 

is due to interactions between the ligand and the flaps, rather than the partially stable bonds 

that temporarily form between the flaps themselves 16.  

 

Figure 1. Schematic of HIV PR dimer (PDB 2UYO 33) denoting the active site aspartic acid residues 

(red, 25), the fulcrum (green; 11–22), the fireman’s grip (purple; 24-29), the flap elbow (magenta; 35-

42), the flap (cyan; 43-58) and the cantilever (blue; 59-75). 
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Currently there are several protease inhibitors used in clinical practice such as saquinavir, 

lopinavir and darunavir to name a few, unfortunately the benefits of these drugs is 

compromised by the high rate of HIV mutation and increasing drug resistance 7,34–36. 

Structurally, mutations in HIV PR are either located in the active site or outside the active site 

(non-active site mutations). Most mutations are situated in the active site, and tend to be 

conservative as they preserve the charge and polarity yet change the geometry and 

conformation of the active site. Mutations outside of the active site, cause structural 

geometrical rearrangements that distort the active site and alter the dynamics of HIV PR, such 

mutations can occur in the flap regions 7,36–38. It has been reported that not only do mutations 

alter the binding affinity of HIV PR inhibitors, some also have the ability to affect the dynamics 

of the flap. Mutations in the flap regions also have the ability to alter the flexibility of the flap 

region 39. In the face of increasing resistance, it is of paramount importance to design novel 

inhibitors that fits tightly in the active site that has the ability to inhibit different strains and 

variants of the target protein. Such adaptive inhibitors will slow down resistance, be more 

efficacious, suppress the viral load quicker and in the long run will be more affordable and 

economically viable.  

 

The importance of flap dynamics and protein flexibility is highlighted in HIV strains in which 

mutations in regions regulating flap movement, confer increased resistance and decreased 

susceptibility to HIV PR inhibitors. The flap dynamics and flap motions of HIV PR has been 

well characterised in the literature, although the exact parameters which accurately account for 

the opening and closing is more vague. The most commonly used metric to measure flap 

opening and closing, is to measure the distance (d1) between the Cα of Ile50 and the Cα of 

Ile149 (Figure 2). In the fully open conformation, the distance between the two flap tips is ~30 

Å  16,24,25,40–42. Measuring the distance between the Cα of Lys55 and the Cα of Lys154 (d2) 
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seem to give a more representative value for the magnitude and extent of opening of the active 

site, where a fully open active site reaches ~43 Å 43–45. More recently, it has been observed that 

the distance between Asp25-Ile50 and/or Asp124-Ile149 (d3) more accurately define flap 

movements, as it is accounts for both the asymmetry of the flaps as well as the curling of the 

flaps 46,47. Chibi and colleagues used all three distance parameters mentioned above and the 

dihedral angle (ϕ) of Gly48-Gly49-Ile50 (A) and Gly147-Gly148-Ile149 (B) to monitor the 

curling behaviour and opening and closing of HIV PR 48.  From this study they suggest the 

most accurate parameter to use is d2, the distance between Cα Lys55 – Cα Lys154 as it shows 

complete flap opening and closing. Whereas the dihedral angle is representative of the tightness 

and compactness of the active site 48. All parameters in the literature to date is captured in 

Figure 2 and Table 1 delineates the parameters to their corresponding residues and atoms. In 

the case of HIV PR, Scott and colleagues suggested that an inhibitor that locks the flaps of HIV 

PR in an open position preventing the flaps from closing, would be less susceptible to drug 

resistance. Therefore, understanding the flap behaviour and impact on protein dynamics and 

function is quintessential to the development of potent HIV PR inhibitors.  

 

Figure 2. HIV PR dimer (PDB 2UYO 33) showing the different parameters used to account for the 

flexibility of the active site and flap structure. 
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3. Plasmepsins 

Malaria is one of the deadliest diseases known to mankind; in 2013 alone, 198 million cases 

were reported with an estimated 584 000 deaths worldwide 49. Malaria is an infection caused 

by the Plasmodium parasite 50,51. Of all the species to infect man, Plasmodium falciparum is 

the most lethal and resistance of this strain to current antimalarials is increasing 52. Plasmepsins 

(Plm), aspartic proteases unique to the Plasmodium species, are attractive candidates in the 

development of novel potent antimalarials 52,53. Ten genes, encoding I-X plasmepsins have 

been identified through the sequencing of the P. falciparum genome 54,55. Plasmepsin I, II, IV 

and the closely related histo-aspartic protease (HAP) (vacuolar plasmepsins) are situated in the 

acidic food vacuole (FV) of infected red blood cells (RBC), where they are responsible for the 

degradation of hemoglobin 52,54,56–58. Hemoglobin catabolism is crucial to the survival of the 

malaria parasite, although the overlapping function of dual proteases and redundant catabolic 

hemoglobin pathways ensures optimum degradation; and necessitates the need for dual 

inhibition of aspartic and cysteine proteases 53,59,60. P. falciparum is the only Plasmodium 

species that actively expresses four Plms in the FV, other Plasmodium species only express 

PlmIV 61. Plasmepsins expressed outside of the FV, Plm V-X, are expressed in all other 

Plasmodium species   52,62. Vacuolar plasmepsins have roughly 60 – 75% identity with each 

other; HAP is structurally and functionally similar to vacuolar plasmepsins with the exception 

that the conserved catalytic aspartic dyad active site is composed of an Asp-His active site 

54,59,62. Plasmepsin V is conserved throughout all Plasmodium species and distantly related to 

other plasmodium aspartic proteases (17% to PlmII); deletion and knock down of PlmV has 

shown it is crucial to the survival of all Plasmodium species 63–66. Localised to the parasitic 

endoplasmic reticulum, this membrane bound aspartic protease is responsible for the export of 

PEXEL (plasmodium export element) tagged proteins into the cytoplasm and surface of 

infected RBCs 63,67,68. Similar to other aspartic proteases, mature plasmepsins fold into two 
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topologically similar N- and C- terminal lobes, anchored through a six stranded inter domain 

towards the bottom where the active site is housed 52,61. The active site is composed of two 

catalytic aspartic acids, which is partially covered by a β-hairpin flap 69. Numerous studies have 

shown that residues lining the active site such as the flap and flexible loop, undergo large 

conformational changes upon ligand binding. Essentially, the flap moves to a more closed 

conformation in the presence of an inhibitor or substrate, closing the active site 52,69–72. Despite 

the high degree of similarity in the overall structure and conservation of the active site, each 

plasmepsin has unique specificity towards substrates. Substrate specificity is due to the 

sequence heterogeneity of residues lining the active site, such as the flap and flexile loop 73. 

Using a set of parameters to quantify flap dynamics, we have previously reported how changes 

in the sequence of the flap and flexible loop region affect and alter the flexibility of the active 

site 70,74. These parameters measures the distance (d1) between Cα carbon atoms of the flap tip 

and the hinge residue of the flexible loop; in relation to the TriCα angles, θ1 and θ2, and the 

dihedral angle (ϕ) between the flap tip, the catalytic dyad and the hinge residue of the flexible 

loop (Figure 3). For the purpose of the review, the schematic is in accordance to PlmII and 

residues pertaining to the active site of PlmII; although these parameters were also used to 

measure flap dynamics and flexibility of Plm I, II, HAP, IV and V (Figure 3). To date, there 

are no approved plasmepsin inhibitors; thus better understanding the dynamics is crucial to the 

design of novel inhibitors more resilient to resistance.  
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Figure 3. Plasmepsin II structure (PDB 1LF4 69) showing the different parameters used to account for 

the flexibility of the active site and flap region. 

 

 

4. Renin 

Renin, also known as angiotensinogenase, is an aspartic protease involved in the renin-

angiotensin-aldosterone system (RAAS). This system is responsible for regulating the body’s 

water and electrolyte homeostasis; and is responsible for regulating arterial blood pressure 75. 

Renin is secreted from specialized granular cells found in the juxtaglomerular apparatus of the 

kidneys; and is secreted in response to decreased arterial blood pressure, decreased sodium 

chloride levels and sympathetic nervous system activation. Renin is classically termed a 

hormone, although renin is an enzyme responsible for the hydrolysis of the amide bond @ L10 

– V11 of angiotensinogen (from the liver) to angiotensin I (rate limiting step), which is 

converted to the potent vasoconstrictor angiotensin II 76,77. Angiotensin II leads to the 

constriction of blood vessels, increased secretion of antidiuretic hormone and aldosterone; all 

causing an increase in blood pressure. Defects in the RAAS, such as an over reactive RAAS 

causes vasoconstriction, retention of water and Na+ leading to the development of 
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hypertension. Since renin determines the rate limiting step in the formation of angiotensin I, 

inhibition would be useful in the management of hypertension 77,78. In clinical practice 

hypertension is treated using angiotensin converting enzyme (ACE) inhibitors or angiotensin 

II receptor blockers (ARB) 79,80. In 2007 the first direct renin inhibitor was approved by the 

FDA, aliskiren, which binds in the active pocket inhibiting the formation of angiotensin I 81–84. 

Synthesised as a precursor or pro-enzyme, renin is made up of ~406 amino acids and upon 

cleavage of the pre and pro-segments mature renin consists of 340 amino acids (37kDa). The 

active site, Asp32-Thr33-Gly34 and Asp215-Thr216-Gly217, is situated deep inside the 

binding pocket, covered by a single β-hairpin loop Leu73-Val80 (Figure 4) 85. A proline rich 

flexible loop lies across from the flap tip, Pro292, Pro293, Pro294 and Pro297. Similarly to 

other aspartic proteases, in the apo conformation renin is highly flexible as flap motions 

regulate ligand access to the active site. Ligand binding induces a more stable structure as the 

flap assume a closed position 86,87. The open and closed conformations differ in their 

orientations of the C-terminal loops 198-204, 236-254 and 270-286 (Figure 4) 88,89. The 

importance of flap movements and dynamics in regulating ligand access into the active site is 

clearly highlighted in the literature; although clear, concise and consistent parameters to 

measure the opening and closing of the renin active site has not yet been reported. One 

parameter that has been reported, is the distance between the flap tip (Ser76) and Asp32 in the 

active site 85; a distance parameter also used to account for the flap dynamics of HIV PR 

(Figure 4).  
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Figure 4. Renin structure (PDB 2V0Z 89) showing the different parameters used to account for the 

flexibility of the active site and flap region. 

 

5. CathepsinD 

Cathepsins are an intracellular lysosomal enzymes, found in eukaryotes and are responsible for 

the degradation of proteins in lysosomes at acidic pH’s 90,91. Cathepsins are subdivided 

according to the amino acids present in their active sites – cysteine (B, C, H, F, L, O, S, V, W), 

serine (G) or aspartic (D and E) 91,92. Cathepsin D (cat-D) is the major protein degrading 

enzyme in phagosomes and lysosomes (lysosomal hydrolase) 91. Over expression and hyper 

secretion of cat-D has been linked to an increased risk of cancer, and stimulates metastasis via 

effects on cell proliferation 93–96. Mature cat-D is mainly found in a two chain structure and 

phosphorylated N-linked oligosaccharides in cat-D target it to lysosomes, two characteristic 

features of lysosomal hydrolases. Typical of aspartic proteases cat-D consists of three distinct 

regions namely, the N-terminal domain, an antiparallel interdomain β-sheet and the C-terminal 

domain 90. The interdomain links the N and C terminal, each contributing an aspartic acid 

forming the active site of cat-D (Asp33 and Asp231) 90. The flexible β-hairpin loop (flap) 
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covering the active site is composed of residues 72-87, with the Gly79 situated at the flap tip. 

Upon binding of pepstatin, the flexibility of the flap region is reduced 90. Situated opposite the 

flap region, on the C-terminal side of cat-D, is a proline rich loop (Pro312-Pro313-Pro314-

Ser315-Gly316-Pro17) analogous to the proline rich loop found in renin 90. Although flap 

motions, and conformational changes induced upon ligand have been reported for cat-D, no 

concise or accurate parameters have yet been reported. In unpublished work from our group, 

we have proposed parameters adopted from other aspartic proteases (BACE and plasmepsins) 

to more accurately account for the flexibility of the cat-D active site (Figure 5). These 

parameters measure the distance (d1) between Cα carbon atoms of the flap tip (Gly79) and the 

hinge residue of the proline rich loop (Met309); in relation to the TriCα angles, θ1 (Gly79-

Asp33-Met309) and θ2 (Gly79-Asp231-Met309), and the dihedral angle (ϕ) between Gly79-

Asp33-Asp231-Met309 (Figure 5).     

 

Figure 5. Cathepsin D structure (PDB 1LYA 90) showing the different parameters used to account for 

the flexibility of the active site and flap region. 
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6. β-secretase (BACE) 

Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder that affects more 

than 36 million people worldwide; and is the leading cause of dementia in the elderly 97. The 

hallmark of AD is the formation amyloid plaques (extracellular) and neurofibrillary tangles 

(intracellular) in the cortical grey areas of the brain and in the hippocampus 17. The amyloid 

plaques are formed due to the accumulation and deposition of small peptides (40 or 40 amino 

acids) called amyloid β (Aβ) peptides; generated from the proteolytic cleavage of amyloid 

precursor protein (APP), a transmembrane protein, by the two aspartic proteases β- and γ- 

secretase 98–100. Amyloid peptides are generated by the sequential cleavage of APP; first by β- 

secretase (BACE) which represents the rate limiting step of the amylogenic pathway, followed 

by γ- secretase degradation 101–104. As BACE plays a crucial role in the rate limiting step of 

APP hydrolysis, inhibition of BACE would regulate the formation of amyloid plaques and 

potentially the progression of AD 105. There are two forms of the BACE enzyme, BACE1 (501 

amino acids) and BACE2 (518 amino acids), which are 45% identical and share ~75% 

homology 106,107. Both BACE1 and BACE2 have the ability to cleave APP at the β-site, 

although BACE2 has a higher preference for within the Aβ peptide 108.  BACE1 is highly 

expressed throughout the brain, whereas BACE2 is expressed at low levels in the brain but 

expressed at varying levels in peripheral tissue 100,106. Due to the cleavage specificity and 

localization of BACE1 activity, BACE1 is believed to be the secretase responsible for the 

formation of plaques in the brain 109. The membrane anchored BACE1 structure can broadly 

be broken down into three regions: the N-terminal ‘ectodomain’, a transmembrane domain and 

a cytosolic C-terminal domain 110. The protease domain of BACE1 is located in the N-terminal 

ectodomain; a conserved aspartic protease fold houses the active site at the interface between 

the N and C terminal lobes 111. The conserved catalytic aspartic acid dyad, Asp32 and Asp228, 

is partially covered by a hairpin loop (flap). The flap is made up of residues 67-75 and lies 
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perpendicular to the active site 112. In the apo conformations of BACE1, the flap region adopts 

more open configurations; whereas ligand binding causes the flap to move inwards towards the 

active site residues closing the binding cleft 14,111,113,114. Parameters that accurately account for 

the flexibility, opening and closing; as well as the twisting of the BACE1 active site have been 

reported and are depicted below (Figure 6)  115. These parameters measure the distance (d1) 

between Cα carbon atoms of the flap tip (Thr72) and the hinge residue of the proline rich loop 

(Ser328); in relation to the TriCα angles, θ1 (Thr72-Asp32-Ser328) and θ2 (Thr72-Asp228-

Ser328), and the dihedral angle (ϕ) between Thr72-Asp32-Asp228-Ser328 (Figure 6) 115.  

 

  
Figure 6. BACE1 structure (PDB 3TPL 116) showing the different parameters used to account for the 

flexibility of the active site and flap region 

 

7. Conclusion 

Out of the family of aspartic proteases that cause disease, only two have inhibitors that are 

currently used in clinical practice. These inhibitors are targeted towards HIV PR (Saquinavir, 

Ritonavir, Lopinavir to name a few)117 and renin (Aliskiren). To date, there are no approved 

inhibitors targeted towards plasmepsins, BACE1 and cat-D. In the case of HIV PR, even though 
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drugs targeted against HIV PR are currently used, increasing resistance is proving problematic. 

Numerous studies have shown the importance of protein dynamics and flexibility in protein 

function 118–121. Conformational changes in the flap region control ligand access into the active 

site, align the ligand in the correct geometry and assists in the removal of the byproducts of 

substrate hydrolysis 114. Therefore, understanding and quantifying the flexibility and dynamic 

behaviour of the flap region is advantageous to the design of novel inhibitors. Immobilising 

the flap region and the active site, could potentially render the aspartic protease inactive.  
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CHAPTER 8 

Conclusion 

The present study sought to understand the dynamic behaviour of the flap region of 

plasmepsins, and how these regions not only affect the overall structure but regulate the binding 

landscape. The flap region is a structural feature unique to aspartic proteases; in retroviral 

proteases two identical flaps partially cover the active site, whereas eukaryotic proteases have 

only a single hairpin loop which lies perpendicularly over the active site. The role flap motions 

and dynamics play in enzyme function is well documented for HIV protease; these regions are 

so important that alterations in the in the sequence of residues found in the flaps induced by 

mutations significantly alter the sensitivity to HIV protease inhibitors. Mutations in the flap 

region potentially leads to the development of resistance. On the flip side, inhibiting the 

dynamic motions and flexibility of the flap region leads to the inactivation of HIV protease.  

 

Plasmepsins have been identified as targets to develop novel drugs to treat malaria. In the 

design of potent plasmepsin inhibitors it is crucial to understand and quantify flap dynamics, 

due to the unique flap region and its essential role in enzyme function. The catalytic aspartic 

acid dyad is highly conserved in all plasmepsins (with the exception of HAP), therefore 

residues outside of the active site regulate each plasmepsin’s unique substrate specificity and 

individual response to inhibitors. The impact of sequence heterogeneity is highlighted in 

vacuolar plasmepsins, P. falciparum has four plasmepsins active in the food vacuole with 

varying affinities for hemoglobin. The differences in affinity is regulated, in part, by the 

residues making up the flap and flexible loop region. Between the vacuolar plasmepsins, the 

sequence of the flap region and flexible loop region vary significantly. These changes alter the 

dynamics and flexibility of not only the flap region, but the enzyme as a whole. It is believed 

that the vacuolar plasmepsin of P. falciparum resulted from gene duplication of an orthologue 
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of PlmIV found in all Plasmodium species. In the comparison of apo vacuolar plasmepsin, we 

observed PlmIV to be the most flexible and dynamic of all the vacuolar plasmepsins, capable 

of the widest range of motion, reaching a maximum opening distance 19.63 Å. This was 

accompanied by an aggressive twisting motion of the active site as reflected by changes in the 

dihedral angles, suggesting that flap movements not only opens the active site as the flap tip 

moves away from the active site but also induces large structural changes in the dynamics of 

the enzyme. The increased flexibility of PlmIV can be attributed to the glycine residue situated 

at the flap tip, which offers little to no steric hindrance to the movement of the flap. This 

correlates well to PlmIV’s biological function, and bearing in mind it is the only aspartic 

protease in other Plasmodium species therefore flexibility in the flap region ensures 

hemoglobin irrespective of shape or size is recognized and accommodated by the active site.   

 

Plasmepsin V is a promising target, although it is structurally similar to other plasmepsins it 

only shares a mere 17% homology with PlmII and is very unique. The membrane bound 

aspartic protease is highly conserved throughout all malaria species and is essential to the 

survival of the parasite. As with other plasmepsins and aspartic proteases, PlmV has a flap 

region partially covering the active site. Due to the biological function of PlmV, the active site 

is highly flexible as to accommodate numerous different PEXEL tagged proteins in the active 

site. The mobility of the flap region enable PlmV to accommodate proteins of various shapes 

and sizes, while the disulfide bonds between adjacent cysteine residues stabalises the enzyme. 

In an apo conformation the active site of PlmV transitions between open and semi open 

conformations; as the flap moves freely away from the flexible loop and active site. Upon 

inhibitor binding, WEHI-842, the flap folds down into the active site allowing the formation 

of hydrogen bonds between the catalytic dyad holding the inhibitor tightly in the active site. 
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Although the inhibitor does not directly bind to the flap tip, it binds to the adjacent glutamic 

acid which stabilizes and reduces the flexibility of the flap region and the active site. 

 

The parameters proposed in the present study accurately accounts for and quantifies the 

dynamic behaviour of the flap region. And will provide valuable insights into the development 

of plasmepsin inhibitors.            

 

Future studies    

The computational studies and parameters used in the present study is a cost effective and 

efficient tool that can be implemented in drug design and discovery. Going forward, 

implementing QM or hybrid QM/MM methodologies would provide a better understanding of 

the dynamic motions of these regions, give a more detailed account of the molecular 

interactions and bond formations with respect to the distribution of motion. Further refinement 

of the WEHI-842 scaffold, or a scaffold that reduces the flap flexibility to a greater extent is a 

possibility. To computationally search for inhibitor with dual activity against aspartic and 

cysteine proteases using virtual screening protocols, thereby reducing the number of 

compounds. Using key interacting residues to build a pharmacophore model based on the 

binding fee energy contribution of each residue to search for potential inhibitors of the 

plasmepsin family, more specifically targeted towards PlmV. Although 50 ns was sufficient 

for the present study, it would be worthwhile running simulations for longer time frames e.g. 

200ns and to further assess and validate the parameters proposed.  

 


