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Abstract

This thesis focuses on the determinants of infant and child mortality in Lesotho.
It specifically examines how infant and child mortality is related to environmen-
tal, demographic and socio-economic factors. A survival analysis approach is
used to analyze the determinants of child mortality. Duration or time-to-event
models are easily applicable to the problem of child mortality as this class of
models is able to account for problems like right-censoring, structural model-
ing and time varying covariates which other classes of models, such as logistic
regression, cannot handle adequately. In this application the age at the child’s
death is used as the time to event.

Household, environmental, demographic and socio-economic factors are found to
have significant impact on child mortality. Policies aimed at achieving the goal
of reduced child mortality should be directed on improving the households en-
vironmental and / or socio-economic status of a child for this goal to be realized.

Keywords: child mortality, infant mortality, neonatal mortality, duration model,
survival analysis, failure function, hazard rate
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Chapter 1

Introduction

Child mortality, commonly on the agenda of public health and international
development agencies, has received renewed attention as part of the United
Nations Millennium Development Goals (MDGs). Approximately ten million
infants and children under five years of age die each year, with large variations
in under-five mortality rates, across regions and countries [21].

Childhood mortality rates have declined all over the world in the last fifty-
five years. Between the mid 1940s and early 1970s, child death rates, even in
the developing countries, reduced significantly (see for example, [5]). A great
deal of these gains was achieved through interventions targeted at communicable
diseases (diarrhoea, respiratory infections, malaria, measles and other immuniz-
able childhood infections).

However these health gains were short lived. In the mid 1970s the worldwide
progress was not maintained and infant mortality rates rose especially in Africa
because disease oriented vertical programmes were not effective alone. Mater-
nal, environmental, behavioral and socio-economic factors were recognized as
additional important determinants of infant survival. According to UNICEF
[7], the decline in child mortality in Africa has been slower since 1980 than in
the 1960s and 1970s. Of the thirty countries with the world’s highest child
mortality rates, twenty-seven are in sub-Saharan Africa. The regions under-five
mortality in 1998 was 173 per 1000 live borns [76] compared to the minimum
goal of 70/1000 internationally adopted in the 1990 World Summit for Children.
Causes of infant mortality are multi-factorial, especially in developing countries,
where there are great variations between social, economic and demographical
groups of people even inside one country.

Although enormous literature exist on child mortality, evidence on why infant
and child mortality rates remain high in many sub-Saharan African countries
despite action plans and interventions made is still scanty.
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Environmental risk factors account for about one-fifth of the total burden of
disease in low income countries according to recent estimates [68]. Authors in
[57] report that among the ten identified leading high-mortality developing coun-
tries unsafe water, sanitation and hygiene ranked second, while indoor smoke
from solid fuels ranked fourth. About 3 per cent of these deaths (1.7 million) are
attributable to environmental risk factors and child deaths account for about
90 per cent of the total.

According to [67], environmental health risks fall into two broad categories. The
first are the traditional hazards related to poverty and lack of development, such
as lack of safe water, inadequate sanitation and waste disposal, indoor air pol-
lution, and vector-borne diseases. The second category is the modern hazards
such as rural air pollution and exposure to agro-industrial chemicals and wastes
that are caused by development that lacks environmental safeguards. As the
world covers the twenty-first century, debate on childhood mortality remains a
big issue for developing countries. Their commitment is reflected in their desire
to reduce the level of child mortality by two-thirds of their 1990 levels by the
year 2015, as expressed in the Millennium Development Goals. To achieve this
goal, it is imperative to determine what factors contribute to the high levels
of child mortality in the different developing countries. This study focusses on
Lesotho which is one of the high child-mortality countries in the sub-Saharan
Africa region.

Several studies have been conducted on infant and child mortality in Lesotho,
most of which have used indirect methods like the Trussell technique to estimate
child mortality [73]. Some of these studies have also employed multivariate lin-
ear and logistic regression to identify the determinants of infant child mortality.
However, Ordinary Least Squares (OLS) or binary dependent variable regression
models cannot handle the modelling problem of child mortality well because the
event of interest is time dependent and the observations may be subject to cen-
soring (and truncation), time varying covariates and structural modeling [35].
This study introduces survival analysis into child mortality modeling in Lesotho.
Time to event with age time models are the most suited for such analysis be-
cause they account for problems like right-censoring, structural modeling and
time varying covariates which traditional econometric techniques cannot handle
adequately.

1.1 Background

Globally, reducing child mortality and hence improving child health are two
of the major concerns of development agencies and the international public
health community [2]; [7]; [2]. The infant mortality rate is a good indicator of
a country’s health status and socioeconomic development [36]; [60]. According
to [60], this is due to its sensitivity to structural transformations that affect
the health of the entire population, such as disease epidemics and economic
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development, and to other changes that affect general living conditions, such
as social well-being and the quality of the environment. There is evidence that
there has been a large decline in under-five mortality for all regions in the world,
but sub-Saharan Africa still has the highest rates of both infant and under-five
mortality, and this is associated with low levels of development in the region
[74]. Another factor that explains why child mortality is high in sub-Saharan
Africa is that the health transition in the region began later than in other parts
of the world [24]. Identification of factors that contribute most to the high
rates of childhood mortality is of great importance both to policy makers and
to development agencies.

1.2 Country Background

Lesotho is a small landlocked, mountainous country that is completely sur-
rounded by the Republic of South Africa (RSA). With a total population of
about 2.2 million, the country is about 3, 000 square kilometres. Three-quarters
of the land is made up of highlands and the remaining one-quarter is lowlands.
However, the low land is home to over 55% of the population. Lesotho is a
constitutional monarchy with the King as the Head of State and the Prime
Minster as Head of Government and a dual legal system consisting of custom-
ary law and the common law. Political stability has been achieved through the
adoption of a relatively more inclusive electoral system as of 2002. At present,
the three major challenges facing the country are extremely high unemployment
and HIV/AIDS prevalence rate coupled with a high degree of food insecurity all
of which exacerbate poverty, gender inequality and erode the considerable gains
that Lesotho has made in human development.

Until recently, Lesotho had registered relatively high rates of social develop-
ment as illustrated by a relatively high life expectancy, high literacy and net
primary school enrolment but with a reversed gender gap indicating disparity to
the advantage of girls. The country was ranked 127 out of 174 countries in 1978,
but its ranking declined to 145th out of 175 by the 2004 Human Development
Index, indicating significant erosion in human development achievements. The
number of people living below the poverty line is estimated to be around 60%.
With a population growth rate of 2.1%, economic growth rate must at least be
as much, if Lesotho is to maintain the existing standard of living and be able
to respond to the growing demand for social services. The key socio-economic
indicators are: GNP per capita was 570 dollars in 2003; life expectancy 45 years
for men and 45.6 for women (2000); fertility rate of 4.1 children born per woman
(2001); HIV/AIDs prevalence rate of 31% (2002); 63% of the population with
access to safe drinking water; a net primary enrolment rate of 85%; under five
morality ratio of 132/100, 000 and maternal mortality ratio of 419(2001).

The 1990s presented both a looming threat and new opportunities to Lesotho.
For a long time, nearly half of Lesotho’s male labour force was employed in the
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mines of the RSA and contributed more than 20% of the country’s gross national
product (GNP) in the form of remittances. In late 1990s, the country experi-
enced a short-lived economic boom that was triggered by the construction of
the Lesotho Highland Water Project (LHWP) that was geared to exporting wa-
ter to the RSA and providing hydroelectricity to the domestic market. Thirdly,
Lesotho’s ability to attract foreign direct investment (FDI) and engage in manu-
factured textile exports created a sizable employment. The combination of these
favourable factors led to an average GDP growth of 3.5% between 1991− 2000.
As a result, the country has witnessed an annual growth of 7% in rural-urban
migration during the last decade, a trend that has put considerable pressure on
social services.

1.2.1 Poverty Profile and Gender

Out of an estimated population of 2.2 million, women are 50.6% of the popula-
tion. More than half of the population of Lesotho is under 18 years with 42%
being under 14. Lesotho is one of the poorest countries in the world with an
estimated 60% of the population living below the poverty line. All available in-
formation indicates that poverty is concentrated in rural areas and the mountain
areas of Lesotho, which are home to approximately one third of the population,
are significantly poorer. The Premium Rate Service (PRS) highlights geography
as the greatest determinant of poverty followed by gender. Altitude, climate,
soil quality and ease of communication affect the geographical distribution of
poverty. Three quarters of the land is made up of highlands rising to nearly
3500 meters in the Drakensburg Maluti Mountain range. The overall climate is
harsh but much more severe in the highlands with heavy snowfalls that cut off
access to most of the mountain areas. Such conditions deprive the population
of access to social services such as education, health, markets, and other inputs
and resources for economic activities. Poverty is also on the increase in urban
areas. Sectors of the population most at risk of poverty include those who de-
pend heavily on subsistence agriculture for their livelihood, the youth, orphans
and old women. Unemployment, which is estimated to have reached 40%, is also
a major cause of poverty in Lesotho. Unlike other countries, it is not limited to
urban areas due to the migratory labor system and the recent retrenchment of
Basotho mine workers.

Following the rationalization of the mining production in the RSA, a process of
retrenchment of Basotho labor began in the late 1980s but accelerated at a much
more rapid rate during the 1990s culminating in an estimated unemployment
rate of 40.5% by the end of 2000, then accompanied by a significant decline in
miners’ remittances. The export-led manufacturing strategy was bolstered by
access to international textile and clothing markets, particularly in the United
States under the Africa Growth and Opportunities Act (AGOA). Lesotho be-
came a top exporter of apparel to the US in 2003. However, the recent period
has been marked by declining rate of FDI and the closing down of a number
of factories following the expiry of the Multi-Fibre Agreement under the World
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Trade Organization (WTO). Consequently, Lesotho has been hit with another
wave of unemployment, this time mostly female labor. The second and most
alarming threat is the estimated 31% HIV/AIDS prevalence placing Lesotho as a
country with one of the highest prevalence rates of HIV/AIDS in the world while
facing a growing threat of food insecurity partly as a result of prolonged drought

Extreme poverty is concentrated in the rural areas, particularly the Moun-
tain areas where 71% of the population live below the poverty line. Women
in both rural and urban areas make up a predominant proportion of the poor.
It is estimated that 30.7% of households are headed by women. The incidence
of poverty among female-headed households is persistently high with approxi-
mately 64% well above the national average of 58% and a male headed average
of 57 per cent. A large proportion of female-headed households are vulnerable
to poverty because they lack agricultural assets due mostly to cultural beliefs
and practices coupled with limited access to social services that increases their
workload. While the available information tends to limit the gender profile of
poverty to female-headed households, not all female-headed households are poor,
while large numbers of women in male headed households are poor because they
lack access and control of household resources and decisions. Women are also
impoverished by discriminatory laws and most rural women are not aware of
their legal rights.

Poor nutrition is also a major feature of poverty. The poor in Lesotho have
a high degree of dependence on food purchase amounting to 45 − 60% of their
annual kilocalorie needs. About 25% of the total population are undernour-
ished, 15% of children are underweight while 31% are stunted indicating the
existence of a significant chronic food insecurity. Poverty and household food
insecurity in Lesotho reveal a strong gender dimension. Women are reported to
have earned 30.9% of the total national income despite their higher mean years
of school while men earned 69.1%. While the advent of HIV/AIDS appears to
be the most devastating and impoverishing force facing Lesotho, it has exacer-
bated the vulnerability of poor households especially the women to both income
and non-income poverty.

Unlike other African countries, there is a reverse gender gap that favors girls and
women when it comes to education. Women are more literate compared to men,
while girls and women also enjoy higher net primary, and secondary and tertiary
enrolment rates. The relatively higher female educational attainment has not
automatically translated into higher income for women because of cultural and
social norms that prevent them from having access and control to productive
resources and the type of skills that they acquire. A majority of women also
experience time poverty due to their heavy work load that combines household
management, child care as well as income earning activities. Household man-
agement includes the time and energy intensive tasks of fetching water and fuel
and food processing in a context where these services are either inadequate or do
not exist. These multiple gender disadvantages also trigger the intergenerational
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transfer of poverty as evidenced by poor social development indicators such as
high child mortality and morbidity and low educational attainment. Gender
aware poverty reduction is one that adopts a multi-pronged approach geared
towards addressing cultural and legal barriers that prevent women’s access to
strategic resources while also reducing their work burden.

Figure 1.1: The map of Lesotho

1.3 Problem Statement

The environment, which sustains human life, is also a profound source of ill
health for many of the world’s people. In the least developed countries, one in
five children does not live to see their fifth birthday, mostly because of avoidable
environmental threats to health. This translates into approximately 11 million
avoidable childhood deaths each year [83]; [56]. Hundreds of millions of others,
both children and adults, suffer ill health and disability that undermine their
quality of life and hopes for the future. These environmental health threats,
arguably the most serious environmental health threats facing the world pop-
ulation today, stem mostly from traditional problems long since solved in the
wealthier countries, such as a lack of clean water, sanitation, adequate housing,
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and protection from mosquitoes and other insect and animal disease vectors.

Poverty also influences health because it largely determines an individual’s envi-
ronmental risks, as well as access to resources to deal with those risks. Through-
out the developing world, the greatest environmental health threats tend to be
those closest to home. Many in these countries live in situations that imperil
their health through steady exposure to biological pathogens in the immediate
environment. More than 1 billion people in developing countries live without
adequate shelter or in unacceptable housing. A further 1.4 billion lack access
to safe water, while another 2.9 billion people have no access to adequate san-
itation [56], all of which are essential for good hygiene. Unable to afford clean
fuels, the poor largely rely on biomass fuels for cooking and heating. Inside
the smoky dwellings of developing countries, air pollution is often higher than
outdoors in the world’s most congested cities.

As already mentioned, the health indicators for Lesotho are generally not im-
proving as there are some formidable challenges to be addressed. The infant
mortality rate has remained largely unchanged from 2005 to 2012 (84/1000 and
74/1000, respectively); under-five mortality has gone from 108 to 100/1000 while
the maternal mortality ratio was estimated to have increased from 2005 to 2012,
a trend which is opposite to the expectations of the Millennium Development
Goal 5 (Lesotho Demographic and Health Survey 2009). Reducing child mor-
tality is the fourth Millennium Development Goal, whose target is to reduce the
under-five mortality rate by two-thirds between 1990 and 2015. Despite numer-
ous interventions and action plans, very little evidence exists on why the infant
and child mortality rates are increasing in Lesotho. If Lesotho is committed to
achieving the MDG on child mortality, it is prudent to understand clearly the
factors that are contributing to the high levels of mortality. This study there-
fore explores the household environmental and socio-economic characteristics
and their effect on child and infant mortality in Lesotho.

1.4 Objectives of the Study

The general aim of the study is to explore the relationship between households’
environmental, demographic factors and socio-economic characteristics on child
mortality. The specific objectives are:

• To use survival analysis or time to event models to understand factors
associated with child mortality in Lesotho.

• To identify the environmental determinants of child mortality, controlling
for other covariates.

In order to meet the above objectives, the following hypotheses are tested:

• Households’ access to safe water has no effect on child mortality.
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• Children born in households without sanitation facilities are more likely
to die than those in households with.

• The household’s main source of cooking fuel has no effect on child mor-
tality.

The rest of the thesis is structured as follows: The literature on child mortality
in Chapter 2. This is where the findings by other studies are presented. Chapter
3 discusses survival analysis methods. Regression models in survival analysis
such as Cox PH hazard model, residuals for Cox regression model, are discussed
in chapter 4. Chapter 5 represents parametric models such as Exponential PH
model, Weibull PH model, etc. Frailty models are represented in Chapter 6,
while Chapter 7 gives results from exploratory. Chapter 7 is about the ap-
plication to the DHS under five mortality using 2009 LDHS data, and how the
dependent variables were derived from the data sets. Chapter 8 the results from
the models. Finally, Chapter 9 gives the discussion, and conclusions
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Chapter 2

Literature Review

There is a relatively large literature that focuses on the determinants of child
mortality (for a survey, see [82]). Theoretical frameworks are often presented
as health production functions, which capture the structural relation between
health outcomes, and the household behavioral variables, like nutrition, breast-
feeding, child spacing, etc. (see [65]). In the framework of a health production
function, child mortality risks depend on both observed health inputs and un-
observed biological endowment or frailty. Not properly taking account of these
unobserved characteristics or the outcomes within a family or cluster may lead
to inconsistent and inefficient estimators (for example, see [61]).

There are a number of different analytical frameworks through which to view
the effects of different determinants on childhood mortality. Demographic re-
search by Mosley and Chen [51] and by Schultz [65] made the distinction between
variables considered to be exogenous or socio-economic (i.e. cultural, social, eco-
nomic, community, and regional factors) and endogenous or biomedical factors
(i.e. breastfeeding patterns, hygiene, sanitary measures, and nutrition). The
effects of the exogenous variables are considered indirect because they operate
through the endogenous biomedical factors. Likewise, the bio-medical factors
are called intermediate variables or proximate determinants because they con-
stitute the middle step between the exogenous variables and child mortality
([34];[51];[65].

Mosely [51] were among the first to study the intermediate biomedical factors
affecting child mortality, labeled proximate determinants. They distinguished
fourteen proximate determinants and categorized them into four groups: mater-
nal (fertility) factors, environmental sanitation factors, availability of nutrients
to the foetus and infant, injuries, and personal illness control factors.

Several studies have been carried out on infant and child mortality using census
and survey data. In Lesotho, all of these studies have used indirect methods,
mostly the Trussel technique, Preston method and Coale-Demeny model life
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table to estimate child mortality [71].

For instance in other countries, [33] and [53] combine the Trussell technique
for estimating child mortality based on the Coale-Demeny model life table with
multivariate linear regression; [79] employs the Trussell-Preston methods and
multivariate regression analysis to calculate mortality indices for each woman;
[55] utilizes the Coale and Trussel technique as well as multiple regression anal-
ysis using census data to estimate mortality; [20] and [58] also employ the
Trussell technique while [38] uses cross-tabulation and regression analysis. All
these studies, which use either the DHS or census data to measure the effect
of socio-economic, environmental or demographic covariates on child mortality,
find demographic, socio-economic and environmental factors (type of toilet facil-
ity, type of bathing facility, source of drinking water) to be significantly related
to infant and child mortality.

In other countries, [5] and [21] use indirect methods to estimate levels and
trends of mortality in that country. Although the results from former studies
indicate that owning a pit latrine does not have a significant effect on child
mortality (which is explained by the argument that just because a household
has sanitation facilities does not mean that it will be used hygienically or by all
members of the household), the latter results indicate that the source of drink-
ing water and sanitation facilities are strong predictors of infant mortality.

[81] employs a logistic regression to examine the effect of some environmen-
tal and socio-economic factors that determine childhood diarrhoea in Eritrea,
using data from the 1995 Eritrea Demographic and Health Survey (EDHS).
The results show that the type of floor material, household economic status and
place of residence are significant predictors of diarrhoea. Similarly [72], in a
comparative study of rural areas of Ghana, Egypt, Brazil and Thailand, find
out that children’s health is affected by environmental conditions and the eco-
nomic status of the household.

Time to event modeling is applied by [26] to assess the impacts of water and
sanitation on child mortality in Egypt. Results show that access to municipal
water decreases the risk and sanitation is found to have a more pronounced
impact on mortality than water.

The hazard rate framework is elegantly utilized by [78], in which a flexible
parametric framework for analyzing infant and child mortality is developed.
Their model predicts that a significant number of deaths of children under five
years can be averted by providing access to electricity, improving the education
of women, providing sanitation facilities and reducing indoor air pollution. In
particular, reducing indoor air pollution and increasing the educational level of
women might have substantial impacts on child mortality. In a related study,
[78] examine the linkages between child mortality and morbidity, and the quality
of the household and community environment in rural China using a compet-
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ing risks approach. The key findings are that: (1) the use of unclean cooking
fuels (wood and coal) significantly reduces the neonatal survival probability in
rural areas; (2) access to safe water or sanitation reduces child mortality risks
by about 34 per cent in rural areas; (3) a higher maternal education level re-
duces child mortality and female education has strong health externalities; (4)
access to safe water/sanitation and immunization reduces diarrhoea incidence
in rural areas, while access to modern sanitation facilities (flush toilets) reduces
diarrhoea prevalence in rural areas; (5) significant linkages between Acute Res-
piratory Infections (ARI) incidence and use of unclean cooking fuels are found
using the city level data constructed from the survey.

[78], using the results from the 2000 Ethiopia DHS, examines the environ-
mental determinants of child mortality by constructing three hazard models
(the Weibull, the piecewise Weibull and the Cox model) to examine three age-
specific mortality rates: neonatal, infant, and under-five mortality by location
(urban/rural), female education attainment, religion affiliation, income quintile,
and access to basic environmental services (water, sanitation and electricity).
The estimation results show a strong statistical association between child mor-
tality rates and poor environmental conditions.

There is general consensus in the literature that a household’s socio-economic
and environmental characteristics do have significant effects on child and infant
mortality. This is true for studies which employ both direct and indirect tech-
niques to estimate infant and child mortality.

As observed in most studies, a household’s income has a significant effect on
the survival prospects of children. Higher mortality rates are experienced in low
income households as opposed to their affluent counterparts.

The mother’s level of education is strongly linked to child survival. Higher
levels of educational attainment are generally associated with lower mortality
rates, since education exposes mothers to information about better nutrition,
use of contraceptives to space births, and knowledge about childhood illnesses
and treatment. Larger differences have been found to exist between the mor-
tality of children of women who have attained secondary education and above
and those with primary level of education or less.

On the households environmental characteristics, safe source of drinking wa-
ter supply has a significantly negative effect on child mortality. The same holds
true for those with sanitation, which in most cases is taken to be access to a
flush toilet or a ventilated improved pit latrine.

Differentials by urban/rural residence have commonly been observed, with ur-
ban areas having more advantages and therefore better child survival prospects.

As concerns the demographic variables, the patterns of mortality by mater-
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nal age and birth order are typically U-shaped [44]. Children born to both
relatively old and young women have higher mortality rates than others; the
interpretation of the effect of maternal age at birth on infant mortality must be
biological, i.e., it depends on reproductive maturity. Moreover, first and higher
order births also have higher mortality rates since the birth order reflects the
components of the child biological endowment. As for the child’s gender, it is
widely believed that male mortality is higher due to biological disadvantages.
Twins face a higher mortality risk.
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Chapter 3

Survival Analysis

Survival analysis is a statistical method that deals with time to event data [80].
According to [31] the name survival data arose because originally events were
most often deaths. This term is now used for all kind of time to event data.
In all cases the event can be viewed as a transition from one state to another [43].

The main concept in survival analysis is about modelling the time to event,
also called the failure time. Survival time is defined as the length of time that is
measured from a specified time origin to the time the event of interest occurred
[27]. When determining the survival time it is important to know the time ori-
gin (starting point), a scale for measuring the passage of time must be agreed
upon, and the definition of the event (often called failure) must be entirely clear
[43].

Difficulty in survival analysis arises when some individuals have experienced
the event while others have not had the event by the end of study and thus
their actual survival times are unknown, which lead to the concept of censoring.

Censoring occurs when we have some information about individual survival
time, but we do not know the survival time exactly [66]. According to [43] there
are three types of censoring; the first one is right censoring, which occurs if the
event occurs after the observed survival time. It follows that right censored sur-
vival time is less than the actual survival time. Secondly, left censoring, which
occurs if we observe the presence of a condition but do not know where it began;
the actual survival time here is less than the observed censoring time. The last
one is the interval censoring which occurs when the individual is known to have
experienced an event within an interval of time but the actual survival time is
not known.

An important assumption for methods presented here for the analysis of cen-
sored survival data is that the individuals who are censored are at the same risk
of subsequent failure as those who are still alive and uncensored. This implies
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that a subject whose survival time is censored at time C must be representative
of all other individuals who have survived to that time. If this is the case, the
censoring process is called non-informative [80]. Statistically, if the censoring
process is independent of the survival time, if

P (X ≥ x,C ≥ x) = P (X ≥ x)P (C ≥ x)

where X is the actual time to event. Thus independent censoring is a special
case of non-informative censoring [80].

3.1 The Survivor Function and the Hazard Func-
tion

Suppose we have a group of individuals with survival times t1, t2, . . . , tN some
of which may be censored. These values can be regarded as the values of con-
tinuous variable T, which has probability density function f(t), and cumulative
distribution function F (t) [80], where F (t) is given by

F (t) = P (T < t) =

∫ t

0

f(u)du.

This represents the probability that the survival time is less than some value t
[9]. The survivor function, which represents the probability that an individual
will survival beyond t, is given by

S(t) = P (T ≥ t) = 1− F (t).

Since the survival distributions are usually skewed and there may be censored
observations, the mean and the variance are not used to summarize the distribu-
tion of T, but rather the median and quantiles are used. These can be estimated
from the survival function [43]. For example the median survival time is that
value tm of T satisfying S(tm) = 0.5

For a continuous random variable T [80], the probability density function(pdf)
is given by

f(t) = F ′(t) = −S′(t), t ≥ 0.

and the hazard function gives the instantaneous failure rate at t given that the
individual has survived up to time t which is given by

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)
δt

; t ≥ 0. (3.1)
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By using conditional probability laws, and the mathematical definition of deriva-
tives, the above equation can be rewritten in the following manner.

h(t) = lim
δt→0

P (t ≤ T ≤ t+ δt)

δtP (T ≥ t)

= lim
δt→0

[
F (t+ δt)− F (t)

δt

]
1

P (T ≥ t)

=
f(t)

S(t)

The relationship of S(t) and h(t) is given below

h(t) =
f(t)

S(t)
= −d logS(t)

dt
.

Likewise,

S(t) = exp

[
−
∫ t

0

h(u)du

]
= exp(−H(t)), t ≥ 0,

and H(t) =
∫ t
0
h(u)du is called cumulative hazard function, which can be ob-

tained from the survival function since H(t) = − logS(t) while the probability
density function can be given by

f(t) = h(t) exp

[
−
∫ t

0

h(u)du

]
, t ≥ 0.

All these functions give a mathematical equivalent specification of the distribu-
tions of the survival time T. If one of them is known, then the other two can
be determined. The survival function is most useful for comparing the survival
progress of two or more groups. The hazard function gives a more useful descrip-
tion of the risk of failure at any time point. It is the instantaneous probability
of failure at a given time given the individual survived up to that time.

The methods of estimation can be broadly grouped into parametric and non-
parametric methods. Other methods such as the semi-parametric approach due
to Cox [10] (namely the Cox proportional hazards model) have also been devel-
oped. These methods will be briefly explained in this project.

The survival function is always a decreasing function while the hazard func-
tion is always an increasing function.

3.2 Types of Survival Distributions: Parametric
Distribution

Survival data are usually right skewed or skewed to the right, thus symmetric
distributions such as the Normal are not useful in modelling such data [43].
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Typically asymmetric distributions are the exponential, Weibull and log-logistic
distributions [80]. Only the exponential and the Weibull model will be briefly
discussed in this section. The aim is to derive some basic relationships when
specific survival distributions are assumed.

3.2.1 Exponential Distribution

The exponential distribution is characterized by the following probability den-
sity function (p.d.f)

f(t;λ) = λe−λt, t > 0

The cumulative distribution function (c.d.f) is given by

F (t) = 1− e−λt

and the survivor function is

S(t) = 1− F (t) = e−λt.

while hazard function is given by

h(t) =
f(t)

S(t)
=
λe−λt

eλt
= λ (constant).

From this it can be seen that the exponential distribution has a constant haz-
ard, which means that the risk of death is independent of time, which is quite
an unrealistic assumption, because intuitively the risk of death may increase or
decrease as an individual ages, for example.

According to [45] an important property of the exponential distribution is the
lack of memory property. Suppose that the random variable T is associated
with survival time, and is exponentially distributed with parameter λ. Consider
the probability that an individual survives for a time greater than t1 given that
he or she has survived up until time t0. Then

P (T > t1|T > t0) =
P (T > t1 and T > t0)

P (T > t0)

=
P (T > t1)

P (T > t0)

=
S(t1)

S(t0)

=
e−λt1

e−λt0

= eλ(t1−t0).

This can be interpreted in the following manner. Given survival to time t0, the
excess life beyond t0 still has the exponential distribution with parameter λ. This
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result also explains why the exponential distribution may not be such a realistic
distribution for modeling time-to-event data [37]. However, since the equation
is simple and the calculations relatively easy, this model can be appealing in cer-
tain circumstances and for also explaining basic properties of time to event data.

The following is the hazard plot for exponentially distributed time-to-event data.

Figure 3.1: The hazard plot assuming exponentially distributed time to event
variable

Figure 3.1 shows that exponential hazard function is always constant with no
flexibility at all. Thus such a distribution ought to be used with caution because
in reality it is an almost unattainable assumption.

3.2.2 Weibull Distribution

The two parameter p.d.f. for the Weibull distribution is given by

f(t; γ, λ) = λγtγ−1e−λt
γ

, t > 0.
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Here γ is known as the shape parameter, and δ is the scale parameter [80]. Note
that when γ = 1 the Weibull distribution reduces to the exponential distribution
with parameter δ. The c.d.f. of the Weibull distribution is given by

F (t) = 1− e−λt
γ

, t > 0

and thus the corresponding survivor function is

S(t) = e−λt
γ

and hence the hazard function is

h(t) =
f(t)

S(t)
= λγtγ−1.

Clearly for γ 6= 1, the hazard is not constant, in contrast to the exponential
distribution. The hazard function takes a different shape depending on the
shape parameter γ, as summarized in the following table:

Table 3.1: Hazard function for different values of γ

Values of γ Shape of h(t)

0 < γ < 1 Exponential decay
γ = 1 Constant (h(t) = δ)
γ = 2 Straight line
γ > 2 Exponential growth
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Figure 3.2: The hazard plot for parametric data, representing the Weibull func-
tion

Figure 3.2 shows that the Weibull hazard function can be constant, increasing or
decreasing. Other continuous distributions that can be used are log-normal, log-
logistic, gamma and other non-measure distributions for continuous distribution.

3.3 Non-Parametric Methods

In this subsection we briefly describe two common non-parametric methods that
are used to explore and describe time to event data. These are the Kaplan-Meier
estimate of the survival function and the log-rank test [48] used to compare two
groups with time to event outcomes or observations.

3.3.1 The Kaplan-Meier Estimate for the Survivor Func-
tion

Let
t(1) < t(2) < . . . < t(m),
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denote the distinct ordered actual times of death of m individuals out of a
sample of N individuals (not counting censoring times). Let di be the number
of deaths at t(i), and let ni be the number alive just before t(i). This is the
number exposed to risk at time t(i). By [43] the Kaplan-Meier or product limit
estimate of the survivor function is

Ŝ(t) =
∏

i:t(i)<t

(
1− di

ni

)
. (3.2)

Likewise, to survive to time t an individual must first survive to t(1). The indi-
vidual must then survive to t(2) given that he/she had already survived to t(1)
and so on. Note we assume there are no deaths between t(i−1) and t(i), therefore
the probability of dying between these times is zero. The conditional probabil-

ity of surviving at time t(i) is the complement of di
ni

, that is
(

1− di
ni

)
. The

overall unconditional probability of surviving to t is obtained by multiplying
the conditional probabilities for all relevant time intervals up to t.

Non-Parametric Maximum Likelihood

Consider the likelihood contribution of a case that experiences an event or cen-
sored at time ti. Taking ci to represent the number of cases censored between
t(i−1) and t(i), and taking di be the number of cases which die or experience the
event at t(i) [27]. Then the likelihood function takes the following form which
is,

L =

m∏
i=1

[
S(t(i−1))− S(t(i))

]di [
S(t(i))

]ci
(3.3)

where the product is over the m distinct, and taking t(0) = 0 with S(t(0)) = 1.
According to [43] to estimate m parameters representing the values of the sur-
vival function at the death times t(1), t(2), . . . , t(m), the conditional probability

of surviving from S(t(i−1)) to S(t(i)) is denoted by πi =
S(t(i))

S(t(i−1))
. Thus S(t(i))

can be written as
S(t(i)) = π1π2 . . . πi

and the likelihood becomes

L =
m∏
i=1

(1− πi)di πcii (pi1π2 . . . πi−1)
di+ci

taking into account that all cases who die at t(i) or are censored between t(i) and
t(i+1) contribute a term πj to each of the previous times of death from t(1) to
t(i−1). In addition, those who die at t(i) contribute 1−πi, and the censored cases
contribute an additional πi. Let ni =

∑
j>i (dj + cj) denote the total number

exposed to risk at t(i). Thus, collecting the terms on each πi, the likelihood
becomes

L =
m∏
i=1

(1− π)
di πni−dii (3.4)
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a binomial likelihood. The maximum likelihood estimator of πi is then given by

π̂i =
ni − di
ni

= 1− di
ni
.

The K-M estimator follows from multiplying these conditional probabilities.

Greenwood’s formula

As shown from the likelihood obtained above, it follows that the large sample
variance of p̂i conditional on the data ni and di is given by the usual binomial
formula, as

V ar(π̂i) =
πi (1− πi)

ni
. (3.5)

assuming the cov(π̂i, π̂j) = 0 for i 6= j, that is the covariances of the contribu-
tions from different times of death are all zero. This can be verified by taking
logs and then first and second derivatives of the log-likelihood function. To ob-
tain the large sample variance of Ŝ(t), the K-M estimate of the survival function,
we apply the delta method twice [43], starting by taking logs so that instead of
the variance of a product we can find the variance of a sum, working with

Ki = log Ŝ(t(i)) =

i∑
j=1

log π̂j .

To find the variance of the log of π̂i, we apply the delta method for the first
time, so the large-sample variance of a function f of a random variable X is

V ax(f(x)) = (f ′(X))2var(X).

Thus, for log function, the variance becomes

V ar(logπ̂i) =

(
1

πi

)2

var(πi) =
1− πi
niπi

.

For the reason that Ki is a sum and the covariances of the π′is and hence of the
log π′is are zero, we find that

V ar(log Ŝ(t(i))) =
i∑

j=1

1− πj
njπj

=
∑ dj

nj(nj − dj)
. (3.6)

Using delta method again, this time to get the variance of the survivor function
from the variance of its log, we get

V ar(Ŝ(t(i))) =
[
Ŝ(t(i))

]2 i∑
j=1

1− π̂j
njπ̂j

. (3.7)

This result is known as Greenwood’s formula.
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3.3.2 Mantel-Haenszel

Consider the problem of comparing two or more survivor functions, for example
urban versus rural in Lesotho. Let

t(1) < t(2) < . . . < t(m)

denote the distinct times of death observed in the total sample, obtained by
combining all groups of interest. Let

dij = death at time t(i) in group j, and,

nij = number at risk at time t(i) in group j,

di = total number of deaths, and

ni = child at risk at time t(i).

If the survival probabilities are the same in all groups, then the di deaths at
time t(i) should be distributed among the k groups in proportion to the number
at risk. Thus, conditional on di and nij ,

E(dij) = di
nij
ni

where the last term shows that we can also view this calculation as applying an
overall failure rate di

ni
to the nij subject in group j.

The Mantel-Haenszel statistic (log-rank test) tests the null hypothesis that the
risk or hazard of death is the same in the two groups or more groups. Without
loss of generality we consider the case of two groups [43]. In other words, if
the study was about comparing the hazard of death (child mortality as in the
current study) in the rural and the urban areas of Lesotho, the null hypothesis
would be that there is no different in the risk of death of a child between the
two groups. The test is described in detail below.

Suppose the two groups are denoted by 1 and 2 the urban and the rural ar-
eas respectively, and that there are k distinct times, t1 < t2 < . . . < tk, across
the two groups. The test uses a conditional argument based on the number at
risk of failing just prior to each observed failure time. Suppose that at time
ti there are di deaths and ni at risk in total, with di1 and di2 deaths and ni1
and ni2 at risk in group 1 and 2 respectively such that di1 + di2 = di and
ni1 + ni2 = ni. At each death time ti such data can be summarized in a 2 × 2
table below.

Table 3.2: Number of deaths at time ti

Group No.of deaths No. survived Total
1 di1 ni1 − di1 ni1
2 di2 ni2 − di2 ni2

Total di ni − di ni
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Except for the tied survival times, di = 1, and hence either di1 or di2 have the
value 0 or 1. If a child is censored at time ti then that child is considered to
be at risk at that time and is included in ni. In other words the assumption is
that censoring occurs after the event [43]. If the null hypothesis is true, then
the number of deaths at any time is expected to follow the hypergeometric
distribution, and therefore

E(di1) = ei1 =
ni1di
ni

and the variance is given by

V ar(di1) =
di(ni − di)ni1ni2

n2i (ni − 1)
.

The difference between di1 and ei1 is the basis for the test statistics for testing
the null hypothesis. The log-rank test is the combination of these differences
over all death times [43]. Summing the various measures over the death times
gives

O1 =
∑
i

di1,

E1 =
∑
i

ei1, and

V1 =
∑
i

V ar(di1)

where E1 can be seen as the expected number of deaths occurring in group 1
over the entire period while O1 are the total observed deaths in the group. The
variance of the difference O1 − E1 assuming independent event times is given
by V1 . The test statistic is then given by

χ2
1 =

(O1 − E1)
2

V1

which, under H0, is χ2 distributed with 1 degree of freedom [48]. If the calcu-
lated value is larger than the value corresponding to the χ2 distribution at a
significance level of α, then the null hypothesis of no differences is rejected and
one can conclude that the risk of death is different in the two groups [43].

Alternatively, assuming the deviations di1−ei1, i = 1, 2, . . . , k, are independent,

Z =
O1 − E1√

V1

should have an approximately standard normal distribution, and the null hy-
pothesis is rejected for large values of Z. In particular at 5% level of significance
the null hypothesis is reject if the observed Z is greater than 1.96. The ratios
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O1

E1
and O2

E2
are referred to as the relative death rates and they measure the ratio

of the death rate in each group to the death rate among both groups combined.
The ratio of these two relative rates estimates the death rate in group 1 relative
to the death rate in group 2.

The log rank test can be generalized to test equality of death rates in s > 2
groups. The test statistic, with (s− 1) degrees of freedom, would then be given
by

χ2
s−1 =

(O1 − E1)
2

V1
+

(O2 − E2)
2

V2
+

(O3 − E3)
2

V3
+ . . .

If the calculated value exceeds the table value at α significant level, we reject
the null hypothesis of no group differences survivor or hazard functions.

Some important remarks in the derivation of the log-rank statistic are stated
below. First the vector of observed-minus-expected failures does not in fact have
independent components and the central limit theorem usually applied to prove
asymptotic normality fails. Further still, differences between observed and ex-
pected failures are given equal weight regardless of the risk set (namely number
of cases still under observation) at observed failure times. Such weighting will
have implications on the overall test statistic. These more delicate aspects of
significance tests are studied in the book on counting processes and survival
analysis by Fleming and Harrington [23].
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Chapter 4

Regression Models in
Survival Analysis

4.1 Introduction

The non-parametric methods described in the previous chapter, namely the
log-rank and the Kaplan-Meier curves, cannot control for covariates therefore
extensions to include covariates is necessary. These non-parametric methods
do not control for covariates and they require categorical predators. When we
have several prognostic variables, we must use multivariate approaches, but we
cannot use multiple linear regression or logistic regression because they cannot
deal with censored observations [12]. We need another method to model survival
data with the presence of censoring. One very popular model in survival data
is the Cox proportional hazard (PH) model, proposed by Cox [10].

4.1.1 Cox Proportional Hazard (PH) Model

The proportional hazard model introduced by Cox [10] is a regression model
with event time as dependent variable. However the regression model is for-
mulated through the dependence of the hazard function on covriates. It allows
the inclusion of information about known (observed) covariates in models of
time-to-event data in an easy way.

Cox proportional hazard model is given by

h(t|X) = h0(t) exp(β1X1 + β2X2 + . . .+ βpXp) = h0(t) exp(β′X)

where h0(t) is called the baseline hazard function, which is the hazard function
for an individual for whom all the variables included in the model are zero,
X = (x1, x2 . . . , xp) is the values of the vector of exploratory variables for a par-
ticular individual, and β′ = (β1, β2, . . . , βp) is a vector of regression coefficients.
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The corresponding survival function given the covariate X is

S(t|X) = [S0(t)] exp(β′X)

where S0(t) =
∫ t
0
h0(u)du denotes the baseline survival function and the com-

ponent of the vector β are unknown regression parameters. Thus the survival
function of an individual with covariate vector X is a power of the baseline
survival function.

This model is also called the semi-parametric model, because it takes no as-
sumptions about the form of h0(t) (non-parametric part of model) but assumes
parametric form for the effect of the predictors on the hazard (parametric part
of model) [27]. Even though the baseline hazard is not specified, we can still get
a good estimate for regression coefficients β, hazard ratio and adjusted hazard
curves [12].

The measure of effect is called hazard ratio. The hazard ratio of two individuals
with different baseline or time-invariant covariates X and X∗ is

ĤR =
h0(t) exp(β̂′X)

h0(t) exp(β̂′X∗)
= exp(

∑
β̂′(X −X∗)) (4.1)

This hazard ratio is time-independent, which is why this is called the propor-
tional hazard model. In other words from (4.1) we see that the hazard of the
individual with covariates X is proportional to the hazard of the individual with
covariates X∗.

4.2 Partial Likelihood Estimate for Cox PH Model

When fitting the Cox proportional hazard model, the main focus is the esti-
mation of the regression parameters (β1, ..., βp) where individual parameter βj
is interpreted as the log-hazard ratio corresponding to covariate or predictor
variable Xj [11]. If Xj is a two group classifier then exp(βj) is the hazard ratio
of one group to the other group used as the reference, while if Xj is continuous
the exp(βj) is the hazard ratio for a unit increase in Xj . One approach is to
attempt to maximize the likelihood function for the observed data simultane-
ously with respect to β. A more popular approach was proposed by Cox [11] in
which a partial likelihood function that does not depend on h0(t) is obtained
for β. The partial likelihood is a technique developed to make inference about
the regression parameters in the presence of nuisance parameter (h0(t) in the
Cox PH model).

Let t1, t2, . . . , tn be the observed survival time for n individuals. Let the or-
dered death or event times of r individuals who experience the event of interest
be t(1) < t(2) < · · · < t(r) and let R(t(j)) be the risk set just before t(j) and rj for
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its size. So that R(t(j)) is the group of individuals who are alive and uncensored

at a time just prior to t(j). The conditional probability that the ith individual
dies at t(j) given that one individual from the risk set on R(t(j)) dies at t(j) is

exp(β′Xi(tj))∑
kεR(t(j))

exp(β′Xk(t(j)))

Then the partial likelihood function for the Cox PH model is given by

L(β) =
r∏
j=1

exp(β′Xi(tj))∑
kεR(t(j))

exp(β′Xk(t(j)))
(4.2)

in which Xi(t(j)) is the vector of covariate values for individual i who dies at
t(j). The general method of partial likelihood was discussed by Cox [11]. This
likelihood function is only for the uncensored individuals. Let t1, t2, . . . , tn be
the observed survival time for n individuals and δi be the event indicator, which
is zero if the ith survival time is censored, and unity otherwise. The likelihood
function in the above equation can be expressed by

L(β) =

n∏
j=1

[
exp(β′Xi(tj))∑

kεR(t(j))
exp(β′Xk(t(j)))

]δi
(4.3)

where R(ti) is the risk set at time ti.

The partial likelihood is valid when there are no ties in the dataset; that means
there are no two subjects who have the same event time.

4.3 Cox PH Assumption Checking

The main assumption of the Cox PH model is proportional hazards [43]. Propor-
tional hazards means that the hazard function of one individual is proportional
to the hazard function of the other individual, i.e, the hazard ratio is constant
over time. There are several methods for verifying that a model satisfies the
assumption of proportionality, and among them is the graphical method, adding
time-dependent covariates as well as a formal test based on the Schoenfeld resid-
uals [43].

4.3.1 Graphical Method

We can obtain Cox PH survival function by the relationship between hazard
function and survival function, that is

S(t,X) = [S0(t)]
exp(

∑p
i=1 βixi)

where X = (x1, x2, . . . , xp) is the values of the vector of explanatory variables
for a particular individual. When we take the logarithm twice, we can easily
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show that

ln [− lnS(t,X)] =

p∑
i=1

βixi + ln [− lnS0(t)] .

Then the difference in log-log curves corresponding to two different individual
with variable X1 = (x11, x12, . . . , x1p) and X2 = (x21, x22, . . . , x2p) is given by

ln [− lnS(t,X1)]− ln [− lnS(t,X2)] =
n∑
i=1

βi (x1i − x2i)

which does not depend on t provided the two covariate vectors X1 and X2 are
not time dependent. This relationship is very helpful to help us identify situ-
ations where we may have proportional hazards. By plotting estimated log(-
log(survival)) versus survival time for two groups we would see parallel curves if
the hazards are proportional [43]. This method does not work well for continu-
ous predictors or categorical predictors that have many levels because the group
becomes cluttered. Furthermore, the curves are sparse when there are few time
points and it may be difficult to tell how close to parallel is close enough [43].

However, looking at the K-M curves and log(-log(survival)) is not enough to be
certain of proportionality since they are univariate analysis that do not necessar-
ily show whether hazards will still be proportional when a model includes many
other predictors, but they support our argument for proportionality. There are,
however, other statistical methods for checking the proportionality [43].

4.3.2 Adding Time-dependent Term in the Cox Model

We create time-dependent term by creating an interaction between the predictor
or covariate of interest and a function of survival time and including it in the
model. For example, if the predictor of interest is Xj , then we create a time-
dependent term or covariate given by Xj(t), Xj(t) = Xj × g(t), where g(t) is
a function of time, for instance, t, log t or heaviside function of t. The model
assessing PH assumption for Xj adjusted for other covariates is

h(t,X(t)) = h0(t) exp [β1x1 + β2x2 + . . . βjxj + . . . βpxp + δxj × g(t)]

where X(t) = (x1, x2, . . . , xp, xj(t))
′ is the values of the vector of explanatory

variables for a particular individual. The null hypothesis to check the PH as-
sumption for Xj is: δ = 0 and it’s alternative hypothesis is: δ 6= 0 (H0 : δ = 0
virsus Ha : δ 6= 0). The test procedure can be carried out using either a Wald
test or likelihood ratio test. In the Wald test, the test statistic post-estimation

W =

(
δ̂

se(δ̂)

)2

which is asymptotically distributed as chi-square with one degree of freedom.
The likelihood ratio (LR) test statistic that compares the likelihood under the
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null hypothesis H0 and the likelihood under the alternative hypothesis Ha. It
requires that the model under H0 be nested within the model under Ha. Thus
the LR test statistic is given by

LR = −2 ln

(
L0

La

)
= −2 (`0 − `a) ,

where `0, `a are the log likelihoods under the two hypotheses respectively. The
statistic follows a chi-square distribution with one degree of freedom under the
null hypothesis. If a time-dependent covariate is significant, i.e, the null hypoth-
esis is rejected, then the predictor is declared not to satisfy the PH assumption.
In the same way, we can also assess the PH assumption for several predictors
simultaneously.

4.4 Residuals for Cox Regression Model

There are methods for calculating residuals in survival analysis, especially in
Cox regression model by which each method has specific use, such as goodness-
of-fit, to identify possible outliers and influential observations or in general to
check necessary assumptions. In this thesis, we study six methods of residuals,
namely Cox-Snell, Modified Cox-Snell, Schoenfeld, Martingale, Deviance and
Score residuals.

4.4.1 Cox-Snell Residuals

These residuals are commonly used in the analysis of survival data, and were
named after [13]. The Cox-Snell residual for the ith individual, i = 1, 2, . . . , n is
given by

rCi = exp (β′xi) Ĥ0(ti) (4.4)

where Ĥ0(ti) is an estimate of the baseline cumulative hazard function at time
ti, the observed survival time of that individual. This residual can be derived
from a general result in mathematical statistics on the distribution of a function
of a random variable. According to this result, if T is the random variable as-
sociated with the survival time of an individual, and S(t) is the corresponding
survivor function, then the random variable Y = − logS(t) has an exponential
distribution with unit mean, irrespective of the form of S(t) [16]. The proof of
this result is obtained in the following paragraph, which can be omitted without
loss of continuity.

According to a general result, if fX(x) is the probability density function of
the random variable X, the density of the random variable Y = g(X) is given
by

fY (y) = fX

{
g−1(y)

}
| dydx |
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where fX
{
g−1(y)

}
is the density of X expressed in terms of y. Using this result,

the probability density function of the random variable Y = − logS(T ), is given
by

fY (y) =
fT
{
g−1(y)

}
| dydx |

(4.5)

where fT (t) is the probability density function of T. Now,

dy

dx
=
{− logS(t)}

dt
=
fT (T )

S(t)

and when the absolute value of this function is expressed in terms of y, the
derivative becomes

fT
{
S−1(e−y)

}
S−1(e−y)

=
fT
{
S−1(e−y)

}
e−y

Finally, on substituting for the derivative in equation (4.5), we find that

fY (y) = e−y

is the probability of the exponential random variable with unit mean. The cru-
cial step in the argument is, if the model fitted to the data is satisfactory, then
a model-based estimate of the survivor function for the ith individual at ti, the
survival time of that individual will be closed to the corresponding true Si(ti)
[16]. This suggests that if the correct model has been fitted, the values Si(ti)
will have properties similar to those of Si(ti). Then, the negative logarithms
of the estimated survivor functions, − log Ŝi(ti), i = 1, 2, . . . , n will behave as
n observations from a unit exponential distribution. These estimates are the
Cox-Snell residuals [14].

If the observed survival time for an individual is right-censored, then the corre-
sponding value of the residual is also right-censored. The residual will therefore
be a censored sample from the unity exponential distribution.

The Cox-Snell residuals, rCi have properties that are dissimilar to those of
residuals used in linear regression analysis, for example. In particular, they
will not be symmetrically distributed about zero, and in fact they cannot be
negative. Furthermore, since the Cox-Snell residuals are assumed to have an
exponential distribution when an appropriate model has been fitted they have
a highly skewed distribution and the mean and variance of the ith residual will
both be unity [15].

4.4.2 Modified Cox-Snell Residuals

Suppose that the ith survival time is a censored observation, t∗i , and let ti be
the actual, but unknown survival time, so that ti > t∗i . The Cox-Snell residual
for this individual evaluated at the censored survival time, is then given by

rCi = Ĥi(t
∗
i ) = − log Ŝi(t

∗
i )
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where Ĥi(t
∗
i ) and Ŝi(t

∗
i ) are the estimated cumulative hazard and survivor func-

tions, respectively, for the ith individual at the censored survival time [16].

If the fitted model is correct, the values rCi can be taken to have a unity
exponential distribution. The cumulative hazard function of the individual in-
creases linearly with time, and so the greater the value of the time ti for the ith

individual the greater the value of the Cox-Snell for that individual [9]. It then
follows that the residual for the ith individual at the actual (unknown) failure
time, Ĥi(ti), will be greater than the residual evaluated at the observed censored
survival time. To take account of this, Cox-Snell residual can be modified by
the addition of a positive constant 4, which can be called the excess residual.
Modified Cox-Snell residuals are therefore of the form

r′Ci =


rCi, for uncensored observations

rCi +4, for censored observations

where rCi is the Cox-Snell residual for the ith observation, defined in equation
(4.4). To identify the suitable value for 4, we use the lack of memory property
by [15], suppose that the random variable T has an exponential distribution with
mean λ−1, and consider the probability that T exceeds t0+t1, t1≥0 conditional on
T being at least equal to t0. From the standard result for conditional probability
given in the previous chapter this probability is

P (T ≥ t0 + t1|T ≥ t0) =
P (T ≥ t0 + t1 and T ≥ t0)

P (T ≥ t0)
.

The numerator of this expression is simply P (T ≥ t0 + t1) after simplifying it
and so the required probability is the ratio of the probability of survival beyond

t0 + t1 to the probability of survival beyond t0, that is S(t0+t1)
S(t0)

. The survivor

function for the exponential distribution is given by the S(t) = e−λt. Hence

P (T ≥ t0 + t1|T ≥ t0) =
exp {−λ(t0 + t1)}

exp(−λt0)
= e−λt

which is the survivor function of an exponential random variable at time t1, that
is P (T ≥ t1). This result means that, conditional on survival to time t0, the
excess survival time beyond t0 also has an exponential distribution with mean
λ−1. In other words, the probability of survival beyond time t0 is not affected
by the knowledge that the individual has already survived to time t0.

From this result, since rCi has a unity exponential distribution, the excess
residual 4, will also have a unity exponential distribution by [14]. The ex-
pected value of 4 is therefore unity, suggesting that 4 may be unity, and this
leads to modified Cox-Snell residuals, given by

r′Ci =

{
rCi, for uncensored observations

rCi + 1, for censored observations
(4.6)
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The ith modified Cox-Snell residual can be expressed in an alternative form by
introducing an event indicator, δi which takes the value zero if the observed
survival time of the ith individual is censored and unity if it is uncensored.
Then the modified Cox-Snell residual is given by

r′Ci = 1− δ + rCi (4.7)

Notice that from the definition of the type of residual, r′Ci must be greater than
unity for a censored observation. Also as for the unmodified residuals the r′Ci
can take any value between zero and infinity, and they will have a skew distri-
bution.

On the basis of empirical evidence, [17] found that the addition of unity to
a Cox-Snell residual for a censored observation inflated the residual t0 by too
great an extent. They suggest that the median value of the excess residual be
used rather than the mean. For the unity exponential distribution the survivor
function is S(t) = e−t, and so the median t(50) is such that e−t(50) = 0.5 where
t(50) = log 2 = 0.693. Thus, a second version of the modified Cox-Snell residual
has

r′′Ci =

{
rCi, for uncensored observations

rCi + 0.693, for censored observations
(4.8)

However, if the proportion of censored observations is not too great the set of
residuals obtained from each of these two forms of modification will not appear
too different.

4.4.3 Martingale Residuals

This residual is used to examine overall test of goodness-of-fit of a Cox model
[9]. The modified residuals r′Ci defined in equation (4.7) have mean of unity for
uncensored observations. Accordingly, these residuals might be further refined
by relocating the r′Ci so that they have a mean of zero when an observation is
uncensored. If in addition the resulting values are multiplied by −1, we obtain
the residuals

rMi = δi − rCi (4.9)

These residuals are known as Martingale residuals, since they can also be de-
rived using what are known as Martingale methods. In this derivation the rCi
are based on the Nelson-Aalen estimate of the cumulative hazard function.

A comprehensive account of the Martingale approach to the analysis of sur-
vival data has been presented by a number of authors, including ([4],[23] and
[70]).
Martingale residuals takes values between −∞ and unity, with the residuals
for censored observations, where δi = 0 being negative. It can be shown that
these residuals sum to zero and in large samples the Martingale residuals are
uncorrelated with one another and have an expected value of zero.
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In this respect, they have properties similar to those possessed by residuals
uncounted in linear regression analysis. Another way of looking at the Martin-
gale residuals is to note that the quantity rMi in equation (4.9) is the difference
between the observed number of deaths for the ith individual in the interval
(0, ti) and the corresponding estimated expected number of the basis of the
fitted model. To see this note that the observed number of deaths is unity if
the survival time ti is uncensored, and zero if censored, that is δi. The second
term in equation (4.9) is an estimate of Hi(ti), the cumulative hazard of death
for the ith individual over the interval (0, ti). Since we are dealing with just
one individual, this can be viewed as the expected number of deaths in that
interval. This shows another similarity between the Martingale residuals and
residual from other areas of data analysis.

4.4.4 Deviance Residuals

Although Martingale residuals share many of the properties possessed by residu-
als encountered in other situations, such as in linear regression analysis, they are
not symmetrically distributed about zero, even when the fitted model is correct.
This skewness makes plots based on the residuals difficult to interpret. The de-
viance residuals, which were introduced by [25] are much more symmetrically
distributed about zero. They are defined by

rDi = sgn(rMi) [−2 {rMi + δi log (δi − rMi)}]
1
2 (4.10)

where rMi is the Martingale residual for the ith individual, and the function
sgn(.) is the sign function. This is the function that takes the value +1 if its
argument is positive and −1 if negative. Thus sgn(rMi) ensures that the de-
viance residuals have the same sign as the Martingale residuals.

The original motivation for these residuals is that they are components of the
deviance. According to [19] the deviance is a statistic that is used to summarize
the extent to which the fit of a model of current interest deviates from that
of a model which is a perfect fit to the data. This latter model is called the
saturated or full model in which β−coefficients are allowed to be different for
each individual. The statistic is given by

D = −2
{

log L̂c − log L̂f

}
where L̂c is the maximized partial likelihood under the current model and L̂f
is the maximized partial likelihood under the full model. The smaller the value
of the deviance, the better the model.

The deviance can be regarded as a generalization of the residual sum of squares
used in modeling normal data to the analysis of non-normal data, and features
prominently in generalized linear modeling by [19]. Note that differences in de-
viance between two alternative models are the same as differences in the value
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of the statistic −2 log L̂. The deviance residuals are D =
∑
r2Di, so that obser-

vations that correspond to relatively large deviance residuals are those that are
not well fitted by the model.

Another way of viewing the deviance residuals is that they are Martingale resid-
uals that have been transformed to produce values that are symmetric about
zero when the fitted model is appropriate [70]. To see this, first recall that the
Martingale residuals rMi can take any values in the interval (−∞, 1). For large
negative values of (rMi), the term in the square brackets in equation (4.10) is
dominated by rMi. Taking the square root of this quantity has the effect of
bringing the residual closer to zero. Thus Martingale residuals in the range
(−∞, 0) are shrunk toward zero. Now consider the Martingale residuals in the
interval (0, 1). The term δi log(δi − rMi) in equation (4.10) will only be non-
zero for uncensored observations, and will then have the value log(1 − rMi).
As rMi gets closer to unity, 1 − rMi gets closer to zero and log(1 − rMi) takes
large negative values. The quantity in square brackets in equation (4.10) is then
dominated by this logarithmic term, and so the deviance residuals are expanded
toward +∞ as the Martingale residual reaches its upper limit of unity.

One final point to note is that although these residuals can be expected to
be symmetrically distributed about zero when an appropriate model has been
fitted they do not necessarily sum to zero.

4.4.5 Schoenfeld Residuals

Two advantages of the residuals described in previous sections are that they
depend heavily on the observed survival time and require an estimate of the
cumulative hazard function. Both of these advantages are overcome in a residual
proposed by [64]. These residuals were originally termed partial residuals, for
the reason given in the sequel, but are now commonly known as Schoenfeld
residuals. These residuals differ from those considered previously in one other
important respect. This is that there is no single value of the residual for each
individual, but a set of values, one for each explanatory variable included in the
fitted Cox regression model. The ith partial or Schoenfeld residual for Xj , the
jth explanatory variable in the model, is given by

rPji = δi {xji − âji} (4.11)

where xji is the value of the jth explanatory variable, j = 1, 2, . . . , p for the ith

individual in the study,

âji =

∑
ιεR(ti)

xjι exp
(

ˆβ′xι

)
∑
ιεR(ti)

exp
(

ˆβ′xi

) (4.12)

and R(ti) is the set of all individuals at risk at time ti. Note that non-zero val-
ues of these residuals only arise for uncensored observations. Moreover, if the
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largest observation in a sample of survival times is uncensored, the value of âji
for that observation, from equation (4.12), will be equal to xji and so rPji = 0.

The ith Schoenfeld residual, for the explanatory variable Xj , is an estimate
of the ith component of the first derivative of the logarithm of the partial like-
lihood function with respect to βj , which is given by

∂ logL(β)

∂βj
=

n∑
i=1

δi {xji − aji} (4.13)

where

aji =

∑
ι xjι exp(β′xι)∑
ι exp(β′xι)

(4.14)

The ith term in this summation, evaluated at β̂, is then the Schoenfeld residual
for Xj , given in equation (4.11). Since the estimates of the β′s are such that

∂ logL(β)

∂βj
|β̂ = 0

the Schoenfeld residuals must sum to zero. These residuals also have the prop-
erty that, in a large sample, the expected values of rPji is zero and they are
uncorrelated with one other.

It turns out that a scaled version of the Schoenfeld residuals, proposed by
[25], is more effective in detecting departures from the assumed model. Let
the vector of Schoenfeld residuals for the ith individual be denoted by rP =
(rP1i, rP2i, . . . , rPpi)

′. The scaled or weighted Schoenfeld residuals, r∗Pji, are
then the components of the vector

r∗Pi = rvar(β̂)rPi

where r is the number of deaths among the n individuals, and varβ̂ is the
variance-covariance matrix of the parameter estimates in the fitted Cox re-
gression model. These scaled Schoenfeld residuals are therefore quite straight-
forward to compute.

4.4.6 Score Residuals

Other types of residuals that are useful in some aspect of model checking, and
which, like the Schoenfeld residual, are obtained from the first derivative of the
logarithm of the partial likelihood function with respect to the parameter βj , j =
1, 2, . . . , p [69]. However, the derivative in equation (4.13) is now expressed in a
quite different form, which is

∂ logL(β)

∂βj
=

n∑
i=1

δi (xji − aji) + exp (β′xi)
∑
tr<tti

(aji − xji) δr∑
ιεR(t)

exp (β′xι)


(4.15)
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xji is the ith value of the jth explanatory variable. δi is the event indicator which
is zero for censored observations and unity otherwise, aji is given in equation
(4.14), and R(tr) is the risk set at time tr. In this formulation, the contribu-
tion of the ith observation to the derivative only depends on information up to
time ti. In other words, if the study was actually concluded at time ti, the ith

component of the derivative would be unaffected. Residuals are then obtained
as the estimated value of the n component of the derivative

From equation (4.15) the first derivative of the logarithm of the partial like-
lihood function, with respect to βj , is the efficient score for β score for βj , and
so these residuals are known as score residuals.

From equation (4.15) the ith score residual i = 1, 2, . . . , n for the jth explanatory
variable in the model, Xj , is given by

rSji = δi (xji − âji) + exp
(

ˆβ′xi

) ∑
tr<tti

(aji − xji) δr∑
ιεR(t)

exp (β′xι)

using equation(4.11), this may be written in the form

rSji = rPji + exp( ˆβ′xi)
∑
tr<tti

(aji − xji) δr∑
ιεR(t)

exp (β′xι) (4.16)

which shows that the score residuals are modifications of the Schoenfeld residu-
als. As for the Schoenfeld residual the score residuals sum to zero, but will not
necessarily be zero when an observation is censored [69].
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Chapter 5

Parametric Model

The Cox PH model outlined in the previous chapter is the most common ap-
proach used to model survival data particularly in health research such as clinical
trials. This is probably due to the fact that this model allows one to make in-
ferences about the model parameters without assuming any distribution for the
survival time. However, when the PH assumption is not tenable, these models
will not be suitable. On the other the PH assumption may be tenable but a suit-
able distribution for the time to event variable. In this case a fully parametric
model can be used. In this section, we introduce parametric models, in which
specific probability distributions are assumed for survival times. In the first
section we introduce the parametric PH model. In the second section we will
present the accelerated failure time (AFT) model and more detailed discussion
of the exponential, Weibull, log-logistic, log-Normal and gamma AFT models.

5.1 Parametric PH Model

The parametric PH model is the parametric version of the Cox PH model. It is
given with the similar form to the Cox PH model. The hazard function at time
t for the particular patient with a set of p covariate (x1, x2 . . . , xp) is given as
follows:

h(t|X) = h0(t) exp(β1x1 + β2x2 + . . .+ βpxp) = h0(t) exp(β′X).

The key difference between the two kinds of model is that the baseline haz-
ard function is assumed to come from a specified distribution leading to a fully
parametric PH model, where as the Cox PH model has no such constraint. The
coefficients are estimated by partial likelihood in Cox model but by a fully max-
imum likelihood estimation in the parametric PH model. Other than this, the
two types of models are equivalent. Hazard ratios have the same interpretation
and PHs still hold in both. A number of different parametric PH models may be
derived by choosing different hazard functions. The commonly applied models
are Exponential, Weibull, or Gompertz models.
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5.1.1 Exponential PH Model

Exponential PH model is the special case of the Weibull model when γ = 1.
The hazard function for exponential PH model is assumed to be constant over
time. The baseline survival and hazard function for this model are given by

S(t) = exp(−λ0t) (5.1)

and the hazard function is given by

h(t) = λ0. (5.2)

The hazard model for a particular patient with covariates xi1, xi2, ..., xip is given
by

h(t|X) = λ0 exp(β1x1 + β2x2 + . . .+ βpxp) = λ0 exp(β′X).

The extension of the exponential PH model to the piecewise constant exponen-
tial model is possible [6]. For the piecewise exponential model, the follow up
period say [0, T ] is divided into K intervals (tj , tj+1] for j = 1, 2, . . . ,K, with
t1 = 0 for simplicity. The approach assumes that the baseline hazard is constant
within each interval but can vary across intervals, so that h0(t) = exp(αj) = λj
for tj < t < tj+1 that is the baseline hazard function is approximated by a step
function. The piecewise exponential model is given by

λij = λj exp(β′xi) (5.3)

where λij is the hazard corresponding to individual i in interval j and exp(β′xi)
is the relative risk for an individual with covariate value xi compared to the
baseline at any given time.

For piecewise exponential model approach, a log-linear model is used to es-
timate both the effects of the covariates and the underlying hazard function.
Estimates of the underlying hazard function and the regression parameters can
be obtained using maximum likelihood. The maximum likelihood estimate of
the baseline hazard function in interval j for given regression coefficients β is
given by

λ̂j =
dj∑

iεRj
exp(β̂′xi)tij

where dj denotes the number of events in interval j, Rj denotes the risk set enter-
ing j, and tij is the observed survival time for individual i in interval j ([28];[29];
[54]). The great challenge related to the use of the piecewise exponential model
is to find an adequate grid of time-points needed in its construction. The ad-
vantage of this method is the ability to incorporate time-dependent covariates.
If there were any time-dependent covariates, their values at the beginning of
each interval could be assigned to the records for that time interval.
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5.1.2 Weibull PH Model

The survival time is said to follow the Weibull distribution with scale parameter
λ and shape parameter γ, so the survival and hazard function of a W (λ, γ)
distributions are given by

S(t) = exp(−λtγ) (5.4)

and the baseline hazard function is

h(t) = λ0γt
γ−1 (5.5)

with λ, γ > 0. The hazard rate increases where γ > 1 and decreases when γ < 1
as time goes on. For Weibull PH model, the hazard function of a particular
patient with covariates xi1, xi2, . . . , xip where the i denotes the individual, is
given by

h(t|X) = λ0γt
γ−1 exp(β′X)

where λ0 exp(β′X) denotes the scale parameter and γ the shape parameter.
Therefore the Weibull family with fixed γ possesses the PH property. This
indicates that the effects of the explanatory variables in the model alter the scale
parameter of the distribution, while the shape parameter remains constant. The
corresponding survival function is given by

S(t|X) = exp
{
− exp(β′X)λ0t

λ
}
.

The baseline survival function (with no covariates) for Weibull distribution can
be transformed to obtain the following equation

log(− log(S(t))) = log λ0 + γ log t (5.6)

where a plot of log(− log(S(t))) versus log(t) should give approximately a straight
line if the Weibull distribution assumption is reasonable. The intercept and the
slope of the line will be rough estimates of log λ0 and γ respectively. If the two
lines for two groups in this plot are essentially parallel, this means that the pro-
portional hazards model is valid. Furthermore, if the straight line has a slope of
nearly one, the simpler exponential distribution is reasonable. In other words,
for an exponential distribution, there is logS(t) = −λ0t. Thus we can consider
the graph of − logS(t) versus log t. This should be a line that goes through the
origin if exponential distribution is appropriate.

5.1.3 Gompertz PH Model

Under the Gompertz PH model the baseline survival and hazard distribution is
given by

S(t) = exp

(
λ0
θ

(
1− eθt

))
(5.7)

and the hazard is
h(t) = λ0 exp (θt) (5.8)
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where t is between [0,∞) and λ0 > 0. The parameter θ denotes the shape of the
hazard function. If θ = 0, the hazard function reduces to that of an exponential
distribution. That is, the exponential distribution is also a special case of the
Gompertz distribution. Like the Weibull hazard function, the Gompertz hazard
increases or decreases monotonically. For the Gompertz distribution, log h(t) is
linear with t.

Under the Gompertz PH model, the hazard function of a particular patient
is given by

h(t|x) = λ0 exp(θt) exp(β1x1 + β2x2 + . . .+ βpxp) = λ0 exp(β′X) exp(θt).

It can easily be shown that the Gompertz model has PH property [31]. Although
the Gompertz distribution is rarely used in practice it has some appealing prop-
erties such as the PH property.

5.2 Accelerated Failure Time (AFT) Model

One alternative parametric model used to analyze time-to-event data is the
accelerated failure time model. These models assume a given probability distri-
bution for the survival time. The AFT model is an alternative to the PH model
for the analysis of time-to-event data. In the AFT model we measure the direct
effect of the explanatory variables on the survival time instead of hazard, as
we do in PH model. This formulation allows for an easier interpretation of the
results because the parameters measure the effect of a given covariate on the
survival time directly. Currently, the AFT model is not commonly used for the
analysis of clinical trial data, although it is fairly common in the field of manu-
facturing. Similar to the PH model, the AFT model describes the relationship
between survival probabilities and a set of covariates.

The AFT assumption can be expressed as S2(t) = S1(ηt) for t ≥ 0, where
S1(t) and S2(t) are the survival functions for group one and group two, re-
spectively and η is a constant called the acceleration factor comparing group
one and group two. In regression framework the acceleration factor η could
be parameterized as exp(α) where α is a parameter to be estimated from the
data. With this parameterization, the AFT assumption can be expressed as
S2(t) = S1(exp(α)t) or equivalently, S2(exp(−α)t) = S1(t) for t ≥ 0. The AFT
assumption can also be expressed in terms of random variables for survival time
rather than the survival function. If T2 is a random variable (following some
distribution) representing the survival time for group two and T1 is a random
variable representing the survival time for group one, then the AFT assumption
can be expressed as T1 = ηT2.

The acceleration factor is the key measure of association obtained in an AFT
model. It allows us to evaluate the effect of predictor variables on survival time
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just as the hazard ratio allows the evaluation of predictor variables on the haz-
ard.

The acceleration factor describes the “stretching out” or contraction of survival
functions when comparing one group to another. More precisely, the accelera-
tion factor is a ratio of survival times corresponding to any fixed value of S(t);
more examples will be shown in the following subsections.

In this section we will be estimating the Exponential AFT model, Weibull AFT
model and the Log-logistic AFT model.

5.2.1 Exponential AFT Model

The exponential survival and hazard functions are given by S(t) = exp(−λt)
and h(t) = λ respectively. In this subsection we show how S(t) can be reparam-
eterized as an AFT model. The AFT assumption, for comparing two levels of
covariates, is that the ratio of times to any fixed value of S(t) = q is constant for
any probability q. We develop the model with the survival function and solve
for t in terms of S(t). We then scale t in terms of the predictor. For example,
from exponential survival function

S(t) = exp(−λt)

solving for t by first taking the natural log, multiplying by −1 on both sides,
and then multiplying by the reciprocal of λ, yields

t = [− lnS(t)]× 1

λ
,

letting 1
λ = exp (α0 + α1GROUP) where GROUP is 1 for group two and is 0

for group one. Then t becomes

t = [− lnS(t)]× exp (α0 + α1GROUP)

it can be seen how the predictor variable GROUP is used to scale the time to
any fixed value of S(t). Suppose S(t) = q, therefore t is going to be

t = [− ln q]× exp (α0 + α1GROUP) .

The acceleration factor η is found by taking the ratio of the times to S(t) = q
for GROUP = 1 and GROUP = 0, that is

η =
[− ln(q)]× exp (α0 + α1)

[− ln(q)]× exp (α0)
= exp(α1)

After canceling, η reduces to exp(α1).
The parameter estimates can be used to estimate time t̂ to any value of q;
for example they can estimate time in years for the first (q = 0.25), second
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(median (q = 0.5)), and third quartiles (q = 0.75). The main property of the
exponential model is that he corresponding acceleration factor and hazard ratio
(for example. GROUP= 1 and GROUP= 0) are reciprocals of each other, as
shown on the table below:

Table 5.1: Acceleration factor and hazard ratio

AFT HR
η > 1 ⇒ Exposure benefits survival HR > 1 ⇒ Exposure harmful to survival
η < 1 ⇒ Exposure harmful to survival HR < 1 ⇒ Exposure benefits survival
η = 1 ⇒ No effect from exposure HR = 1 ⇒ No effect from exposure

Although the exponential PH and AFT models focus on different underlying
assumptions, they are in fact the same model. The only difference is in their
parameterization. The resulting estimates for the survival function, hazard
function, and median survival do not differ between these models.

5.2.2 Weibull AFT Model

An AFT can also be formulated with the Weibull distribution. We derive the
AFT parameterization similarly to that done with the exponential model, by
solving for t in terms of a fixed S(t). The Weibull survival function is given by

S(t) = exp (−λtγ) .

Solving for t by first taking the natural log, multiplying by negative 1 on both

sides, raising to the power of 1
γ , and then multiplying by the reciprocal of λ

1
γ ,

yields the expression for t as follows.

t = [− lnS(t)]
1
γ × 1

λ
1
γ

letting
1

λ
1
γ

= exp (α0 + α1GROUP)

then t becomes

t = [− lnS(t)]
1
γ × exp (α0 + α1GROUP) .

By reparameterizing 1

λ
1
γ

= exp (α0 + α1GROUP) , it can be seen that the pre-

dictor variable GROUP is used to scale the time to any fixed value of S(t).
For any fixed probability S(t) = q. For example to find an expression for the
median survival time tm, substitute q = 0.5, then t, becomes

t = [− ln q]
1
γ × exp (α0 + α1GROUP)

but the median survival time, q = 0.5 that implies that

t = [− ln(0.5)]
1
γ × exp (α0 + α1GROUP)
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likewise the acceleration factor, η(GROUP = 1versus GROUP = 0) is given by

η =
[− ln(q)]

1
γ exp (α0 + α1)

[− ln(q)]
1
γ exp(α0)

= exp(α1)

acceleration factor η is obtained as the ratio of the times to S(t) = q for
(GROUP = 1versus GROUP = 0). After canceling η reduces to exp(α1). As
with the PH form of the model, this result depends on γ not the varying by
groups status; otherwise η would depend on q.

Relating Weibull AFT and PH Coefficients

Corresponding coefficients obtained from the PH and AFT forms of the Weibull
models are related as βj = −αj for the jth covariate. This can most easily be
seen by formulating the parameterization equivalently in terms of ln(λ) for both
the PH and AFT form of the model as shown below, For AFT:

λ
1
γ = exp [− (α0 + α1GROUP)]

taking natural log on both sides yields

1

γ
lnλ = − (α0 + α1GROUP)

solving for lnλ that is,

lnλ = −γ (α0 + α1GROUP)

and for proportional hazard

λ = (β0 + β1GROUP)

solving for lnλ yields
lnλ = β0 + β1GROUP.

So the relationship of coefficients is

βj = −αjγ

so that
β = −α

for exponential (γ = 1).

5.2.3 Log-logistic AFT Model

The log-logistic distribution accommodates an AFT model but not a PH model.
It’s hazard function is shown below

h(t) =
λγtγ−1

1 + λtγ
, p > 0, λ > 0.
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Unlike the Weibull model, a log-logistic AFT model is not a PH model. However,
the log-logistic AFT model is a proportional odds (PO) model. A proportional
odds survival model is a model in which the odds ratio is assumed to remain
constant over time. This is analogous to a proportional hazard model where the
hazard ratio is assumed constant over time.

We develop the AFT parameterization by solving for t in terms of a fixed S(t),
where

S(t) =
1

1 + λtγ
=

1

1 + (λ
1
γ )γ

.

Solving for t from the expression for S(t), by first taking the reciprocals, sub-

tracting 1, raising to the power 1
γ , and then multiplying by the reciprocal of λ

1
γ ,

yields the expression for t as follows:

t =

[
1

S(t)
− 1

] 1
γ

× 1

λ
1
γ

letting
1

λ
1
γ

= exp [α0 + α1GROUP]

likewise, t becomes

t =

[
1

S(t)
− 1

] 1
γ

× exp [α0 + α1GROUP] .

By reparameterizing 1

λ
1
γ

= exp [α0 + α1GROUP] ; we allow the predictor vari-

able GROUP to be used for the multiplicative scaling of time to any fixed value
of S(t). The expression for t started letting S(t) = q substituting this on t yields

t =

[
1

q
− 1

] 1
γ

× exp [α0 + α1GROUP] .

The acceleration factor η is found by taking the ratio of the time to S(t) = q
for GROUP = 1 and GROUP = 0. After canceling η reduces to exp(α1), that
is, η(GROUP = 1GROUP = 0) is

η =

[
q−1 − 1

] 1
γ exp(α0 + α1)

[q−1 − 1]
1
γ exp(α0)

= exp(α1).
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Chapter 6

Frailty Models

6.1 Introduction

There may be times when the proportional hazard is a plausible model for the
time to event data but there exists individual to individual heterogeneity or
when we are dealing with clustered data of some kind. Such heterogeneity may
sometimes be explained through inclusion of random effects, otherwise known
as frailty [40]. A possible cause of this is when covariates that are important
in describing the survival of an individual are omitted. If standard methods
are applied to this data (such as Cox PH model) the resulting estimate will be
biased. To account for frailty in model, an unmeasured random effect is incorpo-
rated in the hazard function, under the assumption that frailty is independent
of any censoring that may take place. The frailty term acts multiplicatively on
the hazard function. The following introduction to frailty is based on the 1979
paper by [77].

Let hi(t, x, z) be the hazard function for an individual in population cluster
i or group (or individual i as a cluster) with a vector of covariate x, at some
time t, and with a frailty of z. The definition of frailty, as defined by Vaupel
et al, [77], states that the ratio of the hazards for two different individuals in
population group i is equal to the ratio of their frailties. Mathematically this is
expressed as

hi(t, x, z)

hi(t, x′, z′)
=

z

z′

or
z′hi(t, x, z) = zhi(t, x, 1) (6.1)

where an individual with a frailty of 1 might be viewed as a standard individual.
If an individual has a frailty of 2, and the fixed effect is age, then in frailty terms
that person is twice as likely to die at any particular age, at any particular time,
than a standard individual. On the other hand, a person with a frailty of 0.5
is only half as likely to die. In other words, if z > 1 then an individual is more
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frail than a standard individual, if z < 1 the subject is less frail than an average
individual. Thus the frailties can be interpreted as relative risks.

The above definition of frailty assumes that each individual maintains a constant
level of frailty, from birth to death. However, it does not imply that individuals
with the same frailty are identical. Also, it is more convenient to define frailty
in terms of the hazard, rather than the age-specific probability of death, q(x)
for the following reasons:

• q(x) is bounded above by one (because it is a probability) and thus the
range of the frailty values would also be bounded above.

• q(x) is a nonlinear function of the size of the age interval used.

For simplicity, let hi(t, x, z) and hi(t, x, 1) be denoted by h(z) and h respectively.
Then the equation (6.1)can be rewritten as

h(z) = zh.

The following relationships for the cumulative hazard and hence the survivor
function clearly follow

H(z) = zH

likewise
S = e−H

this implies that
S(z) = Sz

where S = S(t, x, 1) for some vector x and time t.

6.2 Univariate and Multivariate Frailty in Sur-
vival Data

In univariate survival data, each cluster has only one individual with only one
survival outcome. Korosok [45] stated that univariate survival models can only
have univariate frailty under certain conditions. Multivariate survival data con-
sist of clusters of more than one individual. The cluster may be multiple survival
outcomes for a single individual or one or more survival comes out for multiple
correlated individuals, such as relatives.

Multivariate survival data can be modeled using univariate or multivariate frail-
ties. The frailties across different clusters are assumed to have a distribution;
they account for unexplained heterogeneity at the cluster level. The frailty term
zij being a scalar and the same across all different j′s with the same cluster.
Individuals within a cluster share a common frailty (also termed shared frailty).
In a multivariate frailty model, each cluster has two or more frailties, and can
come from a multivariate distribution (in the case of correlated frailty).
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6.3 The Distribution of Frailty

Hougaard [30] and [32] discussed the choice of frailty distributions, mainly for
the case of shared frailty [30] and [32] and also described how the theoretical
properties of the various models and the distributions impacting the fit of the
model are used in selection of the frailty distribution. The gamma distribution
has typically been used to fit the frailty random effect. According to Hougaard
[32], the gamma distribution was chosen for mathematical reasons but there are
no known biological reason motivating the choice of the gamma distribution. If
one chooses a gamma distribution for the frailty, the advantages are that they
have simple densities for which parameters are easily obtained through likeli-
hood estimation. For simplicity the gamma frailty distribution is chosen with
the same shape parameter and different scale parameter for the survivors at a
given age or time [32].

Other than the gamma distribution, Hougaard [32] discussed how the choice
of frailty distribution was extended to the natural exponential family, where the
gamma distributions are the simplest family. Examples of these distributions
include the inverse Gaussian and the positive stable distributions.

In univariate frailty models (generally parametric), because of the identifiability
problem, the distribution specified for the frailty is often given a pre-specified
fixed mean of 1 for multiplicative (or proportional) hazard model to identify the
frailty distribution.

Identifiability refers to being able to uniquely estimate both the parameters
of the hazard function as well as of the frailty distribution in univariate data
[8].

6.4 Estimation in the Frailty

The baseline hazard h0(t) can be specified explicitly or left unspecified. Under
a parametric assumption for h0(t), parameters in the resulting model can be
estimated using maximum likelihood estimation (MLE) procedures. However,
if h0(t) is left unspecified, then the unknown parameters in the shared frailty
model have to be estimated by various approaches or methods such as

• Expectation Maximization (EM) algorithm [42],

• Penalized Partial Likelihood (PPL) approach [70],

• Markov Chain Monte Carlo (MCMC) methods [75],

• Monte Carlo EM (MCEM) approach [62], and

• Different method using Laplace approximation [63].
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The choice of estimation method depends largely on the choice of frailty dis-
tribution. When a gamma frailty is assumed the EM algorithm can be used.
However, when a log-normal frailty is used, the estimation procedures are based
on numerical integration methods such as the Laplace approximation methods.
This thesis will focus on the maximum likelihood estimation (M.L.E.) proce-
dures.

6.5 Univariate Frailty Model

At the observation level, frailty is introduced as an unobservable multiplicative
effect denoted by z on the hazard function such that

h(t|z) = zh(t) (6.2)

where h(t) is a non frailty hazard function, such as hazard function of any of
the parametric models seen in the previous chapters. The frailty z is a random
positive quantity and, for model identifiability, is assumed to have mean one and
variance θ. [80]. Using the relationship between the cumulative hazard function
and survivor function gives the expression for the survivor function given the
frailty to be as follows

S (t|z) = exp

(
−
∫ t

0

h (u|z) du
)

= exp

(
−z
∫ t

0

f(u)

S(u)
du

)
= (S(t))

z
(6.3)

where S(t) is the survivor function that corresponds to h(t) because z is unob-
servable, it must be integrated out of S(t|z) to obtain the unconditional survivor
function. Let g(z) be the probability density function of z, in which case an
estimable form of our frailty model is achieved as

Sθ(t) =

∫ ∞
0

S (t|z) g(z)dz =

∫ ∞
0

(S(t))
z
g(z)dz. (6.4)

Given the unconditional survivor function, we can obtain the unconditional
hazard and density in the usual way, that is

fθ = − d

dt
S′θ(t), hθ =

fθ(t)

Sθ(t)
.

Hence, a univariate frailty model is merely a typical parametric survival model,
with the additional estimation of an over-dispersion parameter θ. In a standard
survival regression, the likelihood calculations are based on S(t), h(t) and f(t).
In a univariate frailty model, the likelihood is based analogously on Sθ(t), hθ(t)
and fθ(t). Any continuous distribution supported on the positive numbers that
has expectation one and finite variance θ is allowed here. For mathematical
tractability, however, we limit the choice to either the gamma( 1

θ , θ) distribution
or the inverse-Gaussian (IG) distribution with parameters one and 1

θ , denoted as
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IG(1, 1θ ). The gamma (α, β) distribution has probability density function given
by

f(x) =
xα−1e−

x
β

Γ(α)βα
(6.5)

and the IG(α, β) distribution has density function given by

f(x) =

(
β

2πx3

) 1
2

exp

(
β

2α

{x
α
− 2 +

α

x

})
. (6.6)

Therefore, by integrating equation (6.4) it can be shown that the gamma frailty
will result in the frailty survival function (in terms of the non frailty survivor
function, S(t)), given by

Sθ(t) = (1− θ log {S(t)})−
1
θ (6.7)

and the inverse Gaussian frailty will result in the frailty survival model given
by

Sθ(t) = exp

{
1

θ

(
1− [1− 2θ log {S(t)}]

1
2

)}
. (6.8)

Regardless of the choice of frailty distribution, limθ→0 Sθ(t) = S(t) and thus the
frailty function reduces to S(t) when there is no heterogeneity present.

6.5.1 Likelihood for Univariate Frailty Model

The relationship between the survival function and hazard function still holds
unconditional on z, and thus we can obtain the population hazard function using

hθ = − d

dt
Sθ(t) [Sθ(t)]

−1
. (6.9)

It can be shown equivalently that the hazard function is given by

hθ(t) = h(t)E(z|T > t).

That is, the unconditional hazard is the average hazard at any given time [32].
As with the standard survival model the response is given as (t0i, ti, δi) where
i = 1, 2, . . . , n is the ith observation corresponding to the time (t0i, ti], with
either failure occurring at time ti (or δi = 1) as a combination of the failure and
the censored observation in the usual representation. Thus the log-likelihood is
given by

ln (L) = ln
n∏
i=1

[Sθi(ti)]
1−δi [fθi(ti)]

δi

=
n∑
i=1

[ln {Sθi(ti)} − ln {Sθi(t0i)}+ δihθi(ti)]

where δi is the event indicator variable, and the subscript i is used such that,
for example hθi(t) = hθ(t|xi).
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6.6 Shared Frailty Model

An extension of the univariate (unshared) frailty model is where individuals are
allowed to share the same frailty value. Sharing a frailty value also generates
dependence between those individuals who share frailties, whereas conditional
on the frailty those individuals are independent.

If the data consist of n groups with the ith group comprised of ni individu-
als for i = 1, 2, . . . , n we write the hazard of the frailty model as

hij(t|zi) = zihij(t), (6.10)

where zi denote the random variable, j = 1, 2, . . . , ni with hij(t) = h(t|xij)
denote hazard without frailty. That is, for any member of the ith group, the
standard hazard function is now multiplied by the shared frailty zi. For instance,
in the case of Weibull PH regression, the conditional hazard for an individual
is given by

hij(t|zi) = zihij(t) = zi exp(Xijβ)γtγ−1 (6.11)

with the conditional survival function given by

Sij(t|zi) = {Sij(t)}zi = exp (−zi exp {Xijβ} tγ) . (6.12)

6.6.1 Likelihood Estimation

By [80] likelihood of the data can be obtained by computing the group-level
conditional likelihoods and integrating out the frailty. For data having n groups
with ni observation per group consisting of the three response (t0ij , tij , dij)
where i = 1, 2, . . . , n; j = 1, 2, . . . , ni which indicate the start time, end time,
and failure or censoring indicator to the jth individual from the ith group .

For frailty zi, the likelihood of the ijth individual is given by

Lij(zi) =
Sij(tij|zi)

Sij(t0ij |zi)
{hij(tij |zi)}dij

=

[
Sij(tij)

Sij(t0ij)

]zi
[zihij(tij)]

dij

where Sij(t|zi) = [Sij(t)]
zi and {hij(tij |zi)}dij = zi {hij(tij)}dij , by defining

Di =
∑ni
j=1 dij , the likelihood of the ith group is given by

Li(zi) = (zi)
Di

ni∏
j=1

[
Sij(tij)

Sij(t0ij)

]zi
[hij ]

dij . (6.13)

Unconditionally, we can get the marginal likelihood of the ith group by inte-
grating out zi, that is

Li =

∫ ∞
0

Li(zi)g(zi)dzi
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where g(zi) is the probability density function of the frailty in the case of the
gamma distribution with mean 1 and variance θ, the pdf is given by

g(zi) =
z

1
θ−1
i exp

(
− ziθ

)
Γ
(
1
θ

)
θ

1
θ

.

For gamma frailty distribution, the marginal likelihood contribution becomes

Li =

 ni∏
j=1

[hij(tij)]
dij

 Γ( 1
θ +Di)

Γ( 1
θ )

θDi

1− θ
ni∑
j=i

ln
Sij(tij)

Sij(t0ij)


− 1
θ−Di

. (6.14)

So given the conditional group likelihoods, we can estimate the regression pa-
rameters and frailty variance θ by maximizing the overall marginal log-likelihood,
that is

lnL =
n∑
i=1

lnLi.

The details of estimation and inference procedures of the models are well ex-
plained by Gutierrez [46]. Model selection was ascertained by comparing log
likelihood values and on the basis of Akaike’s information criterion (AIC) [3].
Lower AIC value gives the best model fit.
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Chapter 7

Application to the Lesotho
DHS Under Five Mortality

7.1 Exploratory Data Analysis

This chapter demonstrates the application of the models discussed in the pre-
vious chapters using data on maternal, socioeconomic and environmental con-
comitant variables associated with infant and child mortality in Lesotho using
DHS data for 2009. In particular the chapter examines the extent to which the
survival outcomes of siblings are associated with the above class of variables.

The extra variability of infant and child survival across households and commu-
nities even after accounting for different known determinants of mortality will
be taken into account by means of frailty terms.

Frailty models were fitted using the STATA software version 11.

7.2 Measurement of the Family and Community
Frailty Effect

For the frailty model, we suppose that conditional on the frailty, zi the haz-
ard function hik(t) for the failure time of the kth children in the family (k =
1, 2.3 . . . , k; i = 1, 2, 3 . . . , n) follows the usual proportional hazards form and is
given by

hik(t) = h0(t)zi exp (β′Xik) , t > 0 (7.1)

where zi is group-level (frailty). These frailties are unobservable, assumed to be
independent and identically distributed with unity mean and unknown variance
θ. Each family could have different values of random effects and the variability
in the zis reflect heterogeneities of risks between families.
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The frailty is often assumed to follow gamma distribution for the sake of com-
putational convenience and convergence [42]; [59]; and [70] and this model is
expected to yield correct z−ratios, on which researchers rely heavily for their
conclusion.

We used the STCOX command in STATA to compute the coefficients for the
family and community frailty effects for infant and child mortality. We fitted
the following two models to the data:

• Model I: Single random effect to allow for clustering by family;

• Model II: Single random effect to allow for clustering by community.

The estimated coefficients from the two models are interpreted just as in a stan-
dard hazard model, while the estimated parameters describing the distributions
of the frailty effects are interpreted as variances of the frailty distribution. If the
variance is zero, observations from the same family or community are indepen-
dent. A larger variance implies greater heterogeneity in frailty across families or
communities and greater correlation among individuals belonging to the same
family or community.

7.3 Data

The data used in this study was the 2009 Lesotho Demographic and Health
Survey (LDHS). The sample was selected using a two-stage stratified random
sampling design that relied on a sampling frame. Fieldwork was conducted
between April and September 2009 and achieved an overall response rate of
97% of households and 96% of women aged 15 − 49 who were eligible for an
individual interview. The interview includes a retrospective maternity history
that collects data on date of birth, survival status, and age at death for all
children each woman had given birth to.

7.4 Variables in the Study

The table below gives a summary distribution of the socio-economic, demo-
graphic, health and environmental characteristics that are considered as the
most important determinants of child survival status.
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Table 7.1: Urban and Rural areas percentage distribution of live births by some
of the selected explanatory variables

Variables Category Urban percent Rural percent
Child is alive No 55 8.2 338 10.2

Yes 617 91.8 2989 89.8
Total 672 100 3327 100

Preceding birth less < 18 months 21 6.1 115 5.4
18− 35 months 61 17.8 737 34.3
> 36 months 260 76.0 1297 60.4
Total 342 100 2149 100

Highest education No education 7 1.1 83 5.5
Primary incomplete 95 14.1 1188 35.7
Primary complete 125 18.6 1010 30.4
Secondary+ 445 66.2 1046 31.4
Total 672 100 3327 100

Succeeding birth < 19 years 16 20.5 107 14.5
19− 35 years 33 42.3 422 57.2
36 or more 29 37.2 209 28.3
Total 78 100 738 100

Type of toilets Pit Latrine 39 6.2 5 0.2
Water closet 537 84.5 1209 38.5
No facility 57 9.0 1930 61.4
Total 633 100 3144 100

Water source Piped water 516 86.0 1677 53.2
Well water 48 8.0 911 28.9
River, streams, rain water 36 6.0 564 17.9
Total 600 100 3152 100

Breastfeeding status Never 55 8.2 234 7.1
Ever 613 91.8 3076 92.9
Total 668 100 3310 100

Breastfeeding duration < 6 months 174 25.9 635 19.1
≥ 6 months 498 74.1 2692 80.9
Total 672 100 3327 100

Birth size Small 66 9.9 507 15.4
Average 488 72.8 2138 64.9
Large 116 17.3 648 19.7
Total 670 100 3293 100

Birth order 1st birth 328 48.8 1166 35.1
2-4th 311 46.3 1621 48.7
> 4th birth 33 4.9 540 16.2
Total 672 100 3327 100

Child is twin Single birth 658 97.9 3222 96.8
Multiple birth 14 2.1 105 3.2
Total 672 100 3327 100

Continued on next page
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Table 7.1 – Continued from previous page
Variables Category Urban percent Rural percent
Place of delivery Home 86 13.1 1616 49.5

Public 528 80.4 1583 48.5
Private 43 6.5 65 2.0
Total 657 100 3264 100

Mother’s age at first birth <20yrs 290 43.2 1819 54.7
≥20 382 56.8 1508 45.3
Total 672 100 3327 100

Religion Roman 274 40.9 1419 42.7
Christian 239 36.7 1594 47.9
Other Christian 12 1.8 78 2.3
Islam 55 8.2 236 7.1
Total 670 100 3327 100

Wealth index Poorest 1 0.2 1174 35.3
Poorer 89 13.2 1552 46.6
Rich 582 86.6 601 18.1
Total 672 100 3327 100

Sex of child: Male 316 47.0 1695 51.0
Female 356 53.0 1632 49.1
Total 672 100 3327 100

Table 7.1 shows the distribution of the urban and rural areas in Lesotho in
2005 − 2009. As shown in the table about 91.8% of births in urban areas were
live births compared to 89.8% in the rural areas. In urban areas, most of the
births took place at the public hospitals (80.4% of all births)while in rural areas
almost an equal percentage of births took place in public hospitals and at homes
(48.5% in public hospitals and 49.5% at home). The percentage of female births
seem to be higher than male births in urban areas (53% females and 47% males)
and lower in rural areas (49% females and 51% males). Most of the respondents
in both urban and rural areas reported their babies’ sizes to be of average body
size. The percentage of teenage deliveries is about 54.7% in rural areas while
it was 43.2% in urban areas. Likewise, those who gave birth at age of 20 and
above is about 56.8% in urban areas while it was 45.3% in the rural areas.
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Figure 7.1: Proportion of the residence during the survey period 2005 − 2009
for Lesotho.
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Figure 7.2: Proportion of those who survived, and died reported during the
survey period 2005− 2009 for Lesotho.
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Figure 7.1 and 7.2 represent the number of children survived and died during
the study as well as the number of rural and urban areas present during the
study in Lesotho in 2005 − 2009. The above figure shows a larger number of
people from rural areas than urban areas that participated in the study. It also
shows that few children died during the study.

7.5 Dependent Variable and Explanatory Vari-
ables

In our application the age at a child’s death or survival is used as the time to
event where the event whether a child is dead or is alive at the time of the survey.

The explanatory variables that determine infant and child survival status are so-
cioeconomic, demographic, and biological variables[39]. These variables include
the gender of the child, age of the child, preceding birth interval, birth order
of the child, mother’s age at child birth, place of residence, mother’s education
level, mother’s work status, household economic status, etc. as shown in the
following table.

Table 7.2: Determinants of infant and child survival in Lesotho.

Variable Definition
Socioeconomic

Mother’s highest educational None (0), Primary (1), Secondary (2)
Higher (3)

Mother’s occupation Not working (0), Agriculture (1), Sales (2),
Other (3)

Wealth index Poorest (1), Poorer (2), Rich (3)
Type of residence Urban (1), Rural (2)

Demographic
Age at birth Age of the mother at time of child birth
Age at first birth Age of the mother at her first birth
Sex of the child Male (1), Female (2)
Type of place of residence Urban (1), Rural(2)

Biological variables
Birth order 1st birth(0), 2-4th birth(1), >4th birth(2)
Birth size Average (1), Large/ very large (2),

small/ very small (3)
Breast feeding Never (0), Ever (1)
Breast feeding duration < 6 months(0), ≥ 6 months (1)
Previous birth interval Time space in months between this and

preceding child birth
Place of delivery Home (1), Public Health Sector (2),

Private Health Sector (3)
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7.6 Data Processing

Some continuous variables were categorized before starting the analysis. Age
of mother at birth was categorized into six age groups which are, 15− 19, 20−
24, 25− 34, 30− 34, 35− 39 and 40− 44. Breast-feeding status was categorized
into ever and never while birth order was categorized into three groups: first
order, 2 − 4 birth order and 5+ birth order. The preceding birth interval was
grouped into two groups: less than two years and two or more years. Because
some first birth orders do not have a preceding birth interval, preceding birth
interval and birth order were combined in one variable of five categories: first
order, 2-4 birth order with less than 2 years of preceding spacing, 2 − 4 birth
order with 2 years or more of preceding spacing, 5th or more birth order with
less than 2 years of preceding spacing and 5th or more birth order with two
years or more of preceding spacing. This categorization method of birth spac-
ing variables had been used by [52] in their study, and is used here because of
its appropriateness.

Categorized variables were further edited by combining some of their groups
in one or two groups either because of the small number of observations in
those categories or to make the analysis and the interpretation more meaningful.
For instance, in the variable mother’s occupation, occupations like professional,
technical, managerial, clerical, services, domestic and manual were all combined
with sales occupation in one group because of the small number of observations
in those occupational categories. At the end of fitting each model, the Wald test
was used to test the overall significance of the variables selected by the model.
The p-value produced by the test was measured using the rank-order of the ex-
planatory factors in terms of their importance in determining the outcome, since
the overall P-value for a factor is a measure for the relative need of that variable
in explaining the variability in the outcome [49]. However, several authors have
identified problems with the use of the Wald statistics [50];[1]. This technique
enables adjusting for many explanatory factors and controlling for many con-
founders at the same time as it enables easy detection of interactions between
explanatory factors. It is flexible, easy to use and usually gives meaningful inter-
pretation by giving the magnitude and the direction of the association between
explanatory and outcome variables [41].
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Chapter 8

Results

8.1 Selected Explanatory Variables

As a preliminary exploratory analysis was conducted to study the association
of predictor variables for child survival.

Table 8.1: Chi-square test of association

Variable χ2 df p-value
Maternal highest educational level 5.881 3 0.1180
Wealth index 9.300 4 0.0540
Type of place of residence 2.460 1 0.1175
Age at birth 23.099 6 0.0010
Sex of the child 9.085 1 0.0030
Birth order 11.258 2 0.0040
Birth type 83.940 1 0.0000
Birth size 40.939 2 0.0000
Breast feeding 483.433 1 0.0000
Breast feeding duration 143.204 1 0.0000
Previous birth interval 12.625 2 0.0020
Place of delivery 10.301 2 0.0060

Table 8.1 shown above represents variables found to be more significant than
other variables that were in the data. The software used to check whether the
variable is significant or not was SPSS. These variables will be used in different
models (Cox models) to check which model is preferable. The results indicate
that there is association between child survival and the following predictor vari-
ables: Age at birth, Sex of the child, Birth order, Birth type, Birth size, Breast
feeding, Breast feeding duration and Previous birth interval; the p-values are
all less than the 5 percent level of significant.
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(a) Kaplan-Meire survival estimate by gender

Figure 8.1: Figures of the Kaplan-Meire by gender in Lesotho

Figure 8.1 shows the plot of the K-M curves for females and males shown on
the same graph. Notice that the K-M curve for females is consistently higher
than the K-M curve for males. This figure indicate that females have a better
survival curves than males.

Table 8.2: The results of Cox proportion hazard model

Variable β SE Wald df P-value Exp(β)
95.0% CI for Exp(β)
Lower Upper

Birth size: Small 17.0363 2 0.0002
Average -0.5321 0.1306 16.5986 1 <0.001 0.5874 0.4547 0.7587
Large -0.2893 0.1599 3.2730 1 0.0704 0.7488 0.5473 1.0244
Birth order: 1st birth 2.7900 2 0.2490
2nd-4th birth 0.0246 0.1431 0.0300 1 0.8634 1.0249 0.7743 1.3567
>4th birth 0.3523 0.2443 2.0803 1 0.1492 1.4224 0.8812 2.2958
Child is twin 0.7272 0.1815 16.0565 1 <0.001 2.0693 1.4499 2.9533
Place of birth: Home 23.15427 2 9.38E-06
Public -0.5396 0.1133 22.6696 1 <0.001 0.5830 0.4669 0.7280
Private -0.5985 0.3710 2.6016 1 0.1068 0.5497 0.2656 1.1374
Age at 1st birth 0.1697 0.1164 2.1255 1 0.1449 1.1850 0.9432 1.4887
Wealth index: Poorest 2.6039 2 0.2720
Poorer 0.2027 0.1289 2.4730 1 0.1158 1.2247 0.9513 1.5768
Rich 0.0893 0.1514 0.3480 1 0.5553 1.0934 0.8127 1.4712
Age group: 45-49 422.834 6 <0.0010
15-19 1.7270 0.1450 141.7460 1 <0.0010 5.6250 4.233 7.4750
20-24 0.7680 0.1350 32.4200 1 <0.0010 2.1560 1.655 2.8090
25-34 0.5120 0.1360 14.2260 1 <0.0010 1.6680 1.655 2.1760
30-34 0.5420 0.1380 15.4740 1 <0.0010 1.7190 1.2790 2.2510
35-39 0.4740 0.142 11.1900 1 <0.0010 1.6060 1.217 2.1210
40-44 0.2120 0.1500 1.990 1 <0.0010 1.2360 0.9210 1.6610

Table 8.2 shows the results obtained after applying the Cox PH models to the
LDHS 2009 data using age at death as the time to event. The exponent of the
parameter estimates gives the hazard ratio associated with a particular variable
in the first column.
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The hazard of death for a child whose mother’s place of birth is public hos-
pital is 0.5830 (95%CI : 0.4669, 0.7280) times the hazard of death for a child
whose mother’s place of birth is at home (reference category). This indicates a
reduced hazard of death of about 41.7% for a child born at the public hospital
than a child born at home, and is statistically significant (p < 0.05).

A child born with average body size has a hazard of death of 0.5874 (95%CI :
0.4547, 0.7587), times the hazard of a child born with a small body size. This
shows a reduced hazard of death of an average size baby of about 41.3% than
the small size baby. The effect is statistically significant (p < 0.001).

The hazard of death for a child whose mother’s age is between 15 − 19 years
and 20 − 24 years is 5.6250 (95%CI : 4.233, 0.7.4750) and 2.1560 (95%CI :
1.655, 2.8090) respectively. This shows a higher mortality hazard for mother’s
aged 15 − 19 with wide confidence interval than that of mothers aged 45 − 49
years (the reference category), meaning that mothers aged 15 − 19 years do
not take good care of their babies. The reason might be because they are still
teenagers or they are full time students, so they do not have enough time for
babies. Likewise the mortality hazard for mothers aged 40− 44 years is 1.2360
(95%CI : 0.9210, 1.6610) times higher than that of mothers aged 45− 49 years
the reference category. This indicates that mothers aged 40− 44 years have not
enough time to take care of their babies compared with mothers aged 45 − 49
years. The reason here might be because they are working, they wake up in the
morning, go to work and come back in the evening [47].

As shown in the table above some variables such as wealth index, large size
baby, birth order are not statistically significant.

8.1.1 Results Using Household Frailty

The following results were obtained using different softwares namely the R and
STATA software. In R we used Cox-PH formula and in STATA we used STCOX
command. These softwares are used to compute coefficients and relative risks
(hazard ratio) for household (family) and community effects for under five child
mortality using Lesotho 2009 data. With this data we fitted the single ran-
dom effect to allow for clustering by household. STATA was found to be more
suitable software than R because STATA yields smaller output values for each
variable than R.

The following tables provide the Cox PH and the Weibull results which con-
sist of two models per table. The left-hand side model is the model without
household or alternatively family frailty and the right-hand side model is the
model with household frailty. For the same effects the results consists of the
Hazard ratio (HR) or relative risks, Standard error (SE), Z test statistic values,
p-value of Z test statistics and 95% confidence interval (95%CI)). It will be
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noted that the hazard ratios for both models (with and without frailty) are very
close to each other.

The estimated parameters describing the distributions of the frailty effects are
interpreted as variances of the frailty distribution. If the variance is zero, it
means that household to household heterogeneity is negligible. A large variance
implies greater heterogeneity in frailty across households and a greater correla-
tion among individuals belonging to the same household.

Some variables shown on these tables have no results when the frailty effect
is taken into account; that indicates that the variable gives an error or keeps on
running without giving results when the frailty effect is included in the model.
This indicates that the frailty effect has an effect on the variable.
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Table 8.3: Cox PH model results with and without household frailty

Cox PH without household Frailty model Cox PH with household Frailty Model
Variables HR SE z P>z 95% CI. HR SE z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.3450 0.0816 -4.5 <0.001 0.2170 0.5486 0.3358 0.0803 -4.5600 <0.001 0.2101 0.5368
25-29 0.2558 0.0686 -5.08 <0.001 0.1511 0.4330 0.2539 0.0690 -5.0500 <0.001 0.1492 0.4322
30-34 0.1877 0.0568 -5.53 <0.001 0.1037 0.3398 0.1871 0.0571 -5.4900 <0.001 0.1029 0.3404
35-39 0.1969 0.0655 -4.89 <0.001 0.1026 0.3780 0.1977 0.0664 -4.8300 <0.001 0.1024 0.3818
40-44 0.1924 0.0707 -4.48 <0.001 0.0937 0.3956 0.1909 0.0711 -4.4500 <0.001 0.0920 0.3961
45-49 0.1675 0.0736 -4.06 <0.001 0.0708 0.3965 0.1640 0.0732 -4.0500 <0.001 0.0684 0.3932

Birth order: 1st birth - - - - - - - - - - -
2− 4th order 1.3335 0.1983 1.9300 0.0530 0.9963 1.7848 1.3274 0.1987 1.8900 0.0590 0.9897 1.7800

> 4 birth 2.0723 0.5300 2.8500 0.0040 1.2555 3.4202 2.0338 0.5262 2.7400 0.0060 1.2248 3.3771
Birth size: Small

Average 0.4803 0.0607 -5.8100 <0.001 0.3750 0.6153 0.4770 0.0609 -5.8000 <0.001 0.3714 0.6126
Large 0.5871 0.0916 -3.4100 0.0010 0.4324 0.7972 0.5809 0.0916 -3.4400 0.0010 0.4265 0.7914

Place of birth: Home
Public 0.6194 0.0703 -4.2200 <0.001 0.4960 0.7736 0.6158 0.0706 -4.2300 <0.001 0.4919 0.7709

Private 0.6755 0.2491 -1.0600 0.2870 0.3279 1.3915 0.6849 0.2544 -1.0200 0.3080 0.3308 1.4183
Wealth: Poorest - - - - - - - - - - -

Poorer 1.2297 0.1574 1.6200 0.1060 0.9570 1.5803 1.2184 0.1577 1.5300 0.1270 0.9455 1.5702
Rich 1.3568 0.2037 2.0300 0.0420 1.0108 1.8211 1.3511 0.2051 1.9800 0.0470 1.0034 1.8192

Breast feeding: Never - - - - - - - - - - - -
Ever: 0.0947 0.0113 -19.7600 <0.001 0.0749 0.1196

Breast feeding duration:< 6 months - - - - - - - - - -
≥6 months 0.1312 0.0145 -18.4200 <0.001 0.1057 0.1628 - - - - -

θ - - - - - - 0.0958 0.0692 - - -
Likelihood-ratio test of θ = 0 : χ2

1 = 2.44, the value of p = 0.059 at 5 percent level of significant
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Table 8.3 shows the results of a Cox model for the survival times namely, age at
death or survival of a child. The left-hand side results represent the Cox model
without household frailty while the right-hand side model results represent the
Cox model with household frailty. The results obtained on the left-hand side of
the table are almost the same as the results obtained on the right-hand side of
the table. Likewise, variables that are significant on the left-hand side are also
significant on the right-hand side of the table, vice versa.

For example, on the right-hand side of the table, the hazard of death for a
child whose mother’s age is 20 − 24 years is reduced about 65.5% from the
hazard of death for a child whose mother’s aged is between 15− 19, years and
it is statistically significant p < 0.05 level of significance. This indicates that
when Cox PH is used the mortality hazard of babies being born to mothers aged
20−24 years is 0.3450 (95%CI : 0.2170, 0.5486); when the unobserved household
effect is taken into account, the mortality hazard is reduced about 66.42% from
the mortality hazard for a child whose mother’s age is between 15− 19. In the
Cox PH with frailty model, the mortality hazard for children born to mothers
aged 25 − 29 years is 0.2539 and it’s confidence interval is as little as 0.1492
and as much as 0.4322. Clearly here, when the unobserved household effect is
taken into account, the hazard of death of a child decreases from that of the
Cox PH without frailty. Likewise, for mothers aged 30−34, 35−39, 40−44 and
45− 49 years, their mortality rate is lower than the mortality rate for mothers
aged 15− 19 years which is the reference category.

The average size babies at birth have 47.70% excess hazard than the small
size babies at birth when the unobserved household effect is taken into account.
This means that small child babies (reference category) are more likely to die
than average size babies, and it’s p-value is p < 0.001, indicating highly signifi-
cant.

The mortality rate (hazard of death) for a child born at public hospital is 0.6158
(0.419, 07709) when the unobserve household effect is taken into account. This
indicates a hazard of death of about 61% times lower than the hazard of death of
a child born at home, and it is said to be statistically significant with a p-value
which is less than 5% level of significant. Likewise, the hazard of death for a
child born at private hospital is 0.6849 (95%CI : 0.3308, 1.4183). This indicates
a reduced hazard of death for a child born at private hospital of about 31.51%
than a hazard of death for a child born at home. It is statistically insignificant
(p = 0.3080).

Infants who are breastfed have significantly lower hazard of death HR = 0.0947
(95%CI : 0.0749, 0.1196) than those who have never been breastfed (p < 0.001).

Some variables are statistically insignificant (p > 0.05) such as 2 − 4th birth
order, and the wealth index (poorer).
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When the unobserved frailty component (household) effect is taken into ac-
count as a gamma frailty, the variance of frailty θ is estimated to be 0.0958 with
non-significant likelihood ratio test for the presence of heterogeneity (p > 0.05).
This indicates that the variance is not significantly different from 0, therefore
there is not much evidence of household to household heterogeneity given the
fixed effects variables that have been included in the model.

As shown on the table above, Cox PH with household frailty is considered
the best model as it has the lowest mortality hazard for each variable than Cox
PH without frailty.

(a) The KM plot for mother’s age (b) The KM plot for breast feeding status

(c) The KM plot for breast feeding duration

Figure 8.2: Figures of the Cox PH assumption by mother’s age, breastfed du-
ration and breastfed status in Lesotho
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Figure 8.2 shows the graphs of KM (Kaplan Meier). The first panel of the
graphs represents mother’s age and the breastfeeding status, and likewise the
bottom represents the breastfeeding duration in Lesotho.

Parallel lines for mother’s age and breastfeeding status, implies that the propor-
tional hazard assumptions for mother’s age and breastfed status is not violated.
Likewise for the bottom panel, crossing lines for breastfeeding duration indicate
that the PH assumption is violated.

Table 8.4: Test of proportional-hazards assumption using Schoenfeld residual

variable ρ χ2 df P-value

Breastfeeding status 0.04249 6.57 1 0.0440
Mother’s age 0.13086 66.78 1 0.0104

breastfed duration -0.00176 0.01 1 0.9170
global test 69.87 3 <0.0001

Table 8.4 shown above shows that for both mother’s age and the breast-feeding-
status, there is evidence that the proportional hazard assumption has been
violated (p < 0.05), while for the breastfed duration, there is no evidence that
the proportional hazard assumption has been violated (p > 0.05).
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Table 8.5: Hazard ratios of child mortality associated with various socio-demographic variables

Weibull model without household frailty Weibull model with household frailty
Variable HR SE. z P>z 95% CI. HR. SE. z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.3675 0.0853 -4.3200 <0.001 0.2332 0.5791 0.3611 0.0845 -4.3600 <0.001 0.2283 0.5711
25-29 0.3120 0.0776 -4.6800 <0.001 0.1916 0.5081 0.3120 0.0779 -4.6600 <0.001 0.1912 0.5090
30-34 0.2363 0.0662 -5.1500 <0.001 0.1365 0.4092 0.2372 0.0667 -5.1200 <0.001 0.1367 0.4114
35-39 0.2613 0.0792 -4.4300 <0.001 0.1442 0.4734 0.2642 0.0804 -4.3700 <0.001 0.1454 0.4798
40-44 0.2630 0.0889 -3.9500 <0.001 0.1356 0.5101 0.2651 0.0902 -3.9000 <0.001 0.1361 0.5163
45-49 0.2566 0.1057 -3.3000 0.0010 0.1145 0.5753 0.2571 0.1067 -3.2700 0.0010 0.1139 0.5801

Birth order: 1st birth - - - - - - - - - - - -
2-4th birth 1.2693 0.1850 1.6400 0.1020 0.9539 1.6890 1.2588 0.1843 1.5700 0.1160 0.9448 1.6772
>4th birth 1.7424 0.4262 2.2700 0.0230 1.0789 2.8142 1.7020 0.4198 2.1600 0.0310 1.0496 2.7599

Birth size: Small - - - - - - - - - - - -
Average 0.4681 0.0590 -6.0200 <0.001 0.3655 0.5993 0.4658 0.0592 -6.0100 <0.001 0.3631 0.5976

Large 0.5711 0.0891 -3.5900 <0.001 0.4207 0.7753 0.5679 0.0892 -3.6000 <0.001 0.4174 0.7727
Place of birth: Home - - - - - - - - - - - -

Public 0.6488 0.0735 -3.8200 <0.001 0.5196 0.8102 0.6471 0.0738 -3.8200 <0.001 0.5174 0.8092
Private 0.6714 0.2475 -1.0800 0.2800 0.3260 1.3828 0.6793 0.2519 -1.0400 0.2970 0.3285 1.4050

Wealth index: Poorest - - - - - - - - - - - -
Poorer 1.2295 0.1571 1.6200 0.1060 0.9572 1.5793 1.2244 0.1577 1.5700 0.1160 0.9512 1.5761

Rich 1.3338 0.2002 1.9200 0.0550 0.9938 1.7901 1.3296 0.2012 1.8800 0.0600 0.9883 1.7886
Breast feeding:Never

Ever 0.0977 0.0116 -19.6600 <0.001 0.0774 0.1232
Breast feeding duration: < 6 months - - - - - - - - - - - -

≥ 6 months 0.1327 0.0145 -18.4600 <0.001 0.1071 0.1645
ln γ 0.5512 0.0429 12.8400 0.0000 0.4670 0.6353 0.5529 0.0428 12.9300 <0.001 0.4691 0.6368
γ 1.7353 0.0745 - - 1.5952 1.8876 1.7383 0.0744 - - 1.5985 1.8903

1/γ 0.5763 0.0247 - - 0.5298 0.6269 0.5753 0.0246 - - 0.5290 0.6256
θ - - - - - - 0.0745 0.0661 - - 0.0131 0.4238

ln θ - - - - - - -2.5969 0.8870 -2.9300 0.0030 -4.3353 -0.8585

Likelihood-ratio test of θ = 0 : χ2
1 = 1.55, the value of p = 0.107 at 5 percent level of significant
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Table 8.5 shows the results of a parametric regression model assuming a Weibull
distribution for the survival times namely age at death or survival of a child.
The left-hand side results are for a Weibull without family frailty model and the
right-hand side results are for Weibull with family frailty model. The results
obtained on the left-hand side model are almost the same as on the right-hand
side model. Variables that are significant on the left-hand side are also signifi-
cant on the right-hand side and those that are not significant on the left-hand
side are also insignificant on the right-hand side.

In both models (left-hand side and right-hand side), there is a decreasing mor-
tality hazard for children born to mothers aged 20 − 24 years at birth com-
pared to children born to mothers aged 15− 19 years, that is 0.3675 (95%CI :
0.2332, 0.5791) and 0.3611 (95%CI : 0.2283, 0.5791). This means that the
mortality hazard for children born to mothers aged 20 − 24 is lower than
the mortality hazard for children born to mothers aged 15 − 19 years. Even
though the mortality hazard for babies born to mothers aged 20 − 24 years is
lower when the Weibull without frailty is taken into account, it is even smaller
when the unobserved frailty effect is taken into account. In the Weibull with
frailty model, mothers aged 25 − 29 years, the mortality hazard for babies
being born by these mothers remains the same when the unobserved house-
hold effect is taken into account, that is (HR=0.3120; 95% CI: 0.1916, 0.5081)
for Weibull without frailty model while for Weibull with frailty model it is
(HR = 0.3120; 95%CI : 0.1912, 0.5090). All HR are less than 1. It kis indi-
cating the higher mortality hazard for children born to mothers aged 15 − 19.
When the unobserved household effect is taken into account the mortality haz-
ard for children born to mothers aged 30−34, 35−39, 40−44 and 45−49 years
increases, but it does not exceed the reference category (15 − 19 years). This
means the reference category still has higher mortality hazard compared to all
these mothers aged mentioned on the previous sentence. The reason behind this
might be because these mothers are still teenagers and they need their mothers
to take care of them too. Another reason might be that she might be scared to
tell her parents that she is pregnant, so she decides to abort the baby. The table
shows that the variable age of the mother is statistically significant because its
p-value is less than 5% level of significant in both models.

On the right-hand side output, higher than the fourth birth order has a mor-
tality of 1.7020 (95%CI : 1.0496, 2.7599) times higher than that of the 1st birth
order, this implies about 70.2% increase in the mortality hazard than the mor-
tality hazard for the first birth order, and when the unobserved household effect
is not taken into account the mortality hazard is higher than the fourth birth
order is 1.7424 (95%CI : 1.0789, 2.8142). On the left-hand side the risk of death
times higher than the hazard for first birth order; this clearly shows that the
presence of unobserved frailty decreases the risk of death by 4% on the right-
hand side model, it is statistically significant because the confidence interval
does not include one, with the p-value of < 0.005.
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On the right hand side, the relative risk for average birth size babies is about
0.4658 (95%CI : 0.3631, 0.5976) times that of small size babies at birth, while
the larger size babies at birth have a relative risk of about 0.5679 (95%CI :
0.4174, 0.7727) times the relative risk of small size babies (the reference cate-
gory) at birth, and these are statistically significant. The reason behind this or
the cause of death, might be that a child being born before time, for example
born in seventh month instead of ninth month, or the mother had a miscarriage.

Some categorical variables on the table are significant and non-significant vari-
ables, such as the birth order and the place of birth of a child.

When the unobserved frailty component (household) effect is taken into ac-
count as a gamma frailty, the variance of frailty θ is estimated to be 0.0745 and
an insignificant likelihood ratio test for the presence of heterogeneity (p > 0.05).
This indicates that the variance is not significantly different from 0, therefore we
conclude that observations from the same household (family) are independent.

The estimate for the shape parameter γ in Weibull without and with frailty
models is 1.7353 and 1.7383 respectively, suggesting a slightly decreasing haz-
ard over time. The Weibull with frailty model is considered the best fit, because
it consists of lower mortality hazard than the Weibull without frailty.

8.1.2 Results Using Community Frailty

In the following tables we will be using community frailty as an unobserved
frailty effect, while in the previous tables we used household frailty as an un-
observed frailty effect. The following tables provide the Cox PH and Weibull
results which consist of two models per table. The left-hand side model is the
model without community frailty and the right-hand side model is the model
with community frailty. For the same effects the results consist of the Hazard
ratio(HR) or relative risk, Standard error(SE), Z test statistics value, p-value
of Z test statistics and 95% confidence interval (95%CI)). It will be noted that
the hazard ratios for both models (with and without frailty) are almost the same.

The estimated parameter describing the distributions of the frailty effects are
interpreted as variances of the frailty distribution. If the variance is zero, it
means that community to community heterogeneity is negligible. A large vari-
ance implies greater heterogeneity in frailty across community and a greater
correlation among individuals belonging to the same community.

Some variables shown on these tables have no results when the frailty effect
is taken into account; that indicates that the variable did not converge when
the frailty effect is included in the model.
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Table 8.6: Cox PH model results with and without community frailty

Cox PH model without community frailty model Cox PH model with community frailty model
Variables HR SE. z P>z 95% CI. HR SE. z p>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.3450 0.0816 -4.5 <0.001 0.2170 0.5486 0.3289 0.0808 -4.5200 <0.001 0.2032 0.5325
25-29 0.2558 0.0686 -5.08 <0.001 0.1511 0.4330 0.3664 0.0897 -4.1000 <0.001 0.2268 0.5920
30-34 0.1877 0.0568 -5.53 <0.001 0.1037 0.3398 0.2827 0.0747 -4.7800 <0.001 0.1684 0.4744
35-39 0.1969 0.0655 -4.89 <0.001 0.1026 0.3780 0.3209 0.0871 -4.1900 <0.001 0.1885 0.5463
40-44 0.1924 0.0707 -4.48 <0.001 0.0937 0.3956 0.3160 0.0932 -3.9100 <0.001 0.1773 0.5632
45-49 0.1675 0.0736 -4.06 <0.001 0.0708 0.3965 0.2790 0.1106 -3.2200 <0.001 0.1283 0.6066

Birth order: 1st birth - - - - - - - - - - - -
2− 4th birth 1.3335 0.1983 1.9300 0.0530 0.9963 1.7848 - - - - -

> 4birth 2.0723 0.5300 2.8500 0.0040 1.2555 3.4202 - - - - -
Birth size: Small - - - - - - - - - - - -

Average 0.4803 0.0607 -5.8100 <0.001 0.3750 0.6153 0.7327 0.1046 -2.1800 0.0290 0.5539 0.9693
Large 0.5871 0.0916 -3.4100 0.0010 0.4324 0.7972 0.5809 0.0916 -3.4400 0.0010 0.4265 0.7914

Place of birth: Home - - - - - - - - - - -
Public 0.6194 0.0703 -4.2200 <0.001 0.4960 0.7736 0.5909 0.0688 -4.5200 <0.001 0.4704 0.7423

Private 0.6755 0.2491 -1.0600 0.2870 0.3279 1.3915 0.5425 0.2056 -1.6100 0.1070 0.2581 1.1403
Wealth: Poorest - - - - - - - - - - - -

Poorer 1.2297 0.1574 1.6200 0.1060 0.9570 1.5803 - - - - - -
Rich 1.3568 0.2037 2.0300 0.0420 1.0108 1.8211 - - - - - -

Breast feeding: Never - - - - - - - - - - -
Ever: 0.0947 0.0113 -19.7600 <0.001 0.0749 0.1196 0.0779 0.0105 -18.9000 <0.001 0.0598 0.1015

Breast feeding duration:< 6 months - - - - - - - - - - -
≥6 months 0.1312 0.0145 -18.4200 <0.001 0.1057 0.1628 0.1126 0.0137 -17.9700 <0.001 0.0887 0.1429

θ - - - - - - 0.2148 0.0883 - - -
Likelihood-ratio test of θ = 0 : χ2

1 = 10.1500, the value of p = 0.0010 at 5 percent level of significant
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Likewise, Table 8.6 shows that, on the right-hand side of the table, the haz-
ard of death for a child whose mother has ever breastfed is 0.0779 (95%CI :
0.0598, 0.1015) times the hazard of death for a child whose mother has never
breastfed. This indicates a hazard of death of about 7.8% times lower than
the hazard of death for a child whose mother has never breastfed, and it is
statistically significant since its p-value is less than 5% level of significance and
the confidence interval does not include one. The reason behind this might be
that breastfed babies are better nourished than those babies who drink milk,
for example Nana, (powdered milk for small babies or infants, to drink after
mixing it with boiled water) when they are young; breastfed is more preferable
than other milk.

When the unobserved community effect is taken into account, the mortality
rate for a child born at public hospital is 0.5909 (95%CI : 0.4704, 0.7423). This
shows that the hazard of death for a child born at public hospital is 59.1% times
lower than the hazard of death for a child born at home, and is statistically sig-
nificant (p < 0.05). The reason behind this might be because at the hospital
there are qualified nurses and doctors who know how to assist a women when
she is in labor whereas for home births there is usually no one qualified to help
when a women is in labor.

On the right hand-side mortality rate for a child whose mother breastfed for
6 months or more is 0.1126 (95%CI : 0.0887, 0.1429). Again the hazard of death
is reduced by 88.7% from the hazard of death for a child whose mother breastfed
for less than 6 months, likewise, it is statistically significant (p < 0.05).

The mortality hazard for average size child has increased from 48.03% to 73.27%
when unobserved community effect is taken into account and is statistically sig-
nificant (p < 0.05).

The mortality hazard for a child whose mother is aged between 20− 24 years is
reduced by 67, 11% from the hazard of death for a child whose mother is aged be-
tween 15−19 years and it is statistically significant (p < 0.05), on the right hand
side. The inclusion of the unobserved community effect has caused the increase
in mortality for children whose mothers are aged 25−29, 30−34, 35−39, 40−44
and 45−49 years: that is 25.58% to 36.64%, 18.77% to 28.27%, 19.69% to 32.09,
19.24% to 31.60% and 16.75% to 27.90 respectively, compared to the mother
aged 15−19 years. The reasons behind this are that mothers aged 15−19 years
are still too young to have a baby; they do not have enough time to take care
of their babies; and their parents are still taking care of them.

Other estimates shown on the table are statistically insignificant (p > 0.05),
such as the place of birth (private hospital), wealth index, birth order (2− 4th
birth) and birth size (large).

When the unobserved frailty component (community) effect is taken into ac-
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count as a gamma frailty, the variance of frailty θ is estimated to be 0.2148 and
an insignificant likelihood ratio test for the presence of heterogeneity (p < 0.05).
This indicates that the variance is significantly different from 0, therefore we
conclude that observations from the same community are not independent.

As shown in the table above the Cox PH without frailty is considered the best
model than Cox with frailty, this is because Cox PH without frailty has lower
mortality hazard for each variable.
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Table 8.7: Hazard ratios of child mortality associated with various socio-demographic variables

Weibull without community frailty Weibull with community frailty
Variable HR SE. z P>z 95% CI. HR SE. z P>z 95% CI.

Breast feeding: Never - - - - - - - - - - - -
Ever 0.0977 0.0116 -19.6600 0.0000 0.0774 0.1232 0.0852 0.0120 -17.5000 0.0000 0.0647 0.1123

Place of birth: Home - - - - - - - - - - - -
Public 0.6488 0.0735 -3.8200 0.0000 0.5196 0.8102 0.6015 0.0689 -4.4400 0.0000 0.4805 0.7528

Private 0.6714 0.2475 -1.0800 0.2800 0.3260 1.3828 0.5717 0.2144 -1.4900 0.1360 0.2742 1.1922
Breast feeding duration:< 6 months - - - - - - - - - - - -

≥ 6 months 0.1327 0.0145 -18.4600 0.0000 0.1071 0.1645 0.1178 0.0149 -16.8800 0.0000 0.0919 0.1510
Birth size: Small - - - - - - - - - - - -

Average 0.4681 0.0590 -6.0200 0.0000 0.3655 0.5993 0.7125 0.1001 -2.4100 0.0160 0.5411 0.9383
Large 0.5711 0.0891 -3.5900 0.0000 0.4207 0.7753 0.9671 0.1645 -0.2000 0.8440 0.6930 1.3496

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.3675 0.0853 -4.3200 0.0000 0.2332 0.5791 0.3268 0.0794 -4.6000 0.0000 0.2030 0.5263
25-29 0.3120 0.0776 -4.6800 0.0000 0.1916 0.5081 0.3683 0.0889 -4.1400 0.0000 0.2295 0.5910
30-34 0.2363 0.0662 -5.1500 0.0000 0.1365 0.4092 0.2896 0.0755 -4.7500 0.0000 0.1738 0.4827
35-39 0.2613 0.0792 -4.4300 0.0000 0.1442 0.4734 0.3241 0.0869 -4.2000 0.0000 0.1916 0.5483
40-44 0.2630 0.0889 -3.9500 0.0000 0.1356 0.5101 0.3298 0.0960 -3.8100 0.0000 0.1865 0.5834
45-49 0.2566 0.1057 -3.3000 0.0010 0.1145 0.5753 0.3534 0.1345 -2.7300 0.0060 0.1676 0.7453

wealth index: Poorest - - - - - - - - - - - -
Poorer 1.2295 0.1571 1.6200 0.1060 0.9572 1.5793 - - - - - -

Rich 1.3338 0.2002 1.9200 0.0550 0.9938 1.7901 - - - - - -
Birth order: 1st birth - - - - - - - - - - - -

2-4th birth 1.2693 0.1850 1.6400 0.1020 0.9539 1.6890 - - - - - -
>4th birth 1.7424 0.4262 2.2700 0.0230 1.0789 2.8142 - - - - - -

ln γ 0.5634 0.0424 13.2800 0.0000 0.4802 0.6465 0.5803 0.0427 13.5900 0.0000 0.4966 0.6639
γ 1.7566 0.0745 - - 1.6165 1.9089 1.7865 0.0763 - - 1.6431 1.9424

1/γ 0.5693 0.0242 - - 0.5239 0.6186 0.5598 0.0239 - - 0.5148 0.6086
θ - - - - - - 0.1580 0.0835 - - 0.0561 0.4449

ln θ - - - - - - -1.8454 0.5284 -3.4900 0.0000 -2.8811 -0.8098

Likelihood-ratio test of θ = 0 : χ2
1 = 5.17, the value of p = 0.012 at 5 percent level of significant
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Table 8.7 shows that in model one (left-hand side model) the hazard ratio for
ever breastfed children is about 9.8% and it is as little as 0.0774 or as much as
0.1232 compared to hazard ratio of never breastfed children, while in model two
(right-hand side model) it is about 8.5% and it is as little as 0.0647 or as much
as 0.1123 compared to hazard ratio of never breastfed children. Ever breastfed
children is significant in both models (p < 0.001).

The mortality hazard for children born to mother’s age 20− 24 years is reduced
by 67.32% when community frailty is taken into account than the mortality
hazard for children born to mothers aged 15 − 19, and is significant in both
models, but the most notable finding is the change in the p-value of mothers
aged 45 − 49. It is significant (p < 0.05)in model one but is not significant
(p > 0.05) in model two. As in Cox PH with and without frailty above, the
inclusion of the unobserved community effect has caused the increase in mor-
tality for children whose mothers are aged 25− 29, 30− 34, 35− 39, 40− 44 and
45 − 49, years that is 31.20% to 36.83%, 23.63% to 28.96%, 26.13% to 32.41,
26.30% to 32.98% and 25.66% to 35.34 respectively; compared to the mothers
aged 15− 19 years, they have a lower mortality hazard.

Other categorical variables have a variable which is significant and not signifi-
cant, such as the place of birth (public) has a hazard rate of 0.6488 (95%CI :
0.5196, 0.8102) times the hazard rate of children born at home, in model one
(left-hand side model); in model two (right-hand side model) has the hazard
rate of 0.6015 (95%CI : 0.4805, 0.7528) times the hazard rate of children born
at home and it is significant in both models. Other significant and insignificant
categories are the birth size: average size at birth is significant (p < 0.05) while
large size at birth is insignificant (p > 0.05). The hazard for ever breastfed ba-
bies in model one (left-hand side model) and two (right-hand side model) respec-
tively are 0.0977 (95%CI : 0.0774, 0.1232) and 0.0852 (95%CI : 0.00647, 0.1123)
times the hazard of never breastfed children, They are statistically significant
(p < 0.05).

On the right hand side, infants who are breastfed for ≥ 6 months have sig-
nificantly lower hazard of death (HR = 0.1178; 95%CI : 0.0919, 0.1510) than
those who are breastfed to less than six months.

When the unobserved frailty component (community) effect is taken into ac-
count as a gamma frailty, the variance of frailty θ is estimated to be 0.1580
(95%CI : 0.056, 0.4449) and a significant likelihood ratio test for the presence
of heterogeneity (p < 0.05). This indicates that the variance is significantly
different from 0, therefore we conclude that there is greater heterogeneity in
frailty across communities and a greater correlation among individuals belong-
ing to the same community.

The estimates for the shape parameter γ in Weibull with and without frailty
models are 1.7353 and 1.7865 respectively, suggesting a slightly decreasing haz-
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ard over time. The Weibull with frailty model is considered the best fit, because
it consists of lower mortality hazard than the Weibull without frailty.

Table 8.8: The AIC and BIC for each model used

Model without household frailty Model with household frailty
Model AIC BIC AIC BIC
Exponential 2633.717 2727.578 2634.873 2734.991
Lognormal 2580.877 2680.996 2581.588 2687.964
Weibull 2503.627 2603.745 2504.079 2610.454
Log-logistic 2518.436 2618.554 2518.978 2625.353
Cox PH 5359.543 5453.404 5357.106 5450.967

The Weibull model with household frailty shown on the above table has a smaller
Akaike information criterion (AIC) value (2504.079) compared to other models,
so it is a best fit model for household frailty.

Table 8.9: The Akaike information criterion (AIC) and Baysian information
criterion (BIC) for each model used

Model without community frailty Model with community frailty
Model AIC BIC AIC BIC
Exponential 2096.708 2178.713 2098.56 2186.114
Lognormal 1977.533 2065.078 1979.533 2073.331
Weibull 1955.798 2043.343 1952.6331 2046.43
Log-logistic 1957.283 2044.828 1959.22 2053.018
Cox PH 4739.029 4814.068 4728.879 4803.918

The Weibull model with community frailty seems to have a smaller Akaike
information criterion (AIC) value (1952.6331), and indicates the best fit model
for community frailty. This value is also the lowest AIC value when comparing
models with household frailty and community frailty. This suggests that the
Weibull model is the best fit model for DHS data with frailty model in Lesotho.
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Chapter 9

Discussion And Conclusion

9.1 Discussion of Results

The primary goal of the study was to asses the determinants of under-five mor-
tality by applying appropriate models to account for sibling-level correlation and
thus provide valid estimates and correct statistical inference needed for policy
decision making.

The results will be discussed according to factors such as demographic factors
(wealth index, place of residence), socioeconomic factors ( age of a mother, sex
of a child) as well as biological factors (birth order, type of birth, breast feeding,
place of delivery).

9.1.1 Biological Factors

The results from Cox model and Cox regression models with and without frailty
for child mortality that analyses the age of a mother at birth, indicate that from
all the biological factors analyzed in this study only a few factors are found to
be significant. Those factors include the birth order, place of birth, birth size,
breast feeding and breast feeding duration which appeared to be significant fac-
tors impacting deaths of children under this study.

Although other biological factors are not statistically significant they may still
have an impact on childhood mortality. For example, children born by an older
woman (age 30 − 49) have a reduced mortality compared to children born by
teenage mothers. These findings are, however, consistent with [36]who found
that children of older women had lower risk for infant mortality when compared
to children of younger mothers although their results were significant. Test for
difference in mortality among the age categories between mothers aged 15-19
and other age group such as age 45−49 shows that there is a significant different
between neonatal deaths of children born to women aged 40− 49. Although all

77



mothers’ age are significant it is observed that children born by older women
aged 35 and above have a lower mortality relative to children born by a teenager.

9.1.2 Environmental Factors

Most of the environmental factors typically associated with childhood mortality
do not have a significant impact on child mortality in Lesotho. However we
did not include them in the results. Type of floor material was expected to
be important for children older than one month, as research has indicated that
when the floor is dirty children are not likely to be affected because they have
started crawling or walking and are easily expose to the dirt [22]. Environmental
contamination is one of the five groups of proximate determinants identified by
[51], which assumes the direct influence of the risk of morbidity and mortality
among children. According to [51], the transmission of infectious disease comes
through different paths and that unsafe drinking water is one which could lead
to diarrhoea and other intestinal disease.

9.2 Conclusion

In conclusion, the main aim of the study was to discover out the best statisti-
cal method that can be used when investigating factors associated with child
mortality in Lesotho. Cox model with frailty is recommended for providing sta-
tistically valid estimates of the effects of proximate determinants after adjusting
for the background variables and unobserved random effect.

One objective of this study was to ascertain the risk factors associated with
child mortality for under five year of age and specifically the factors that af-
fect neonatal and child-age mortality. The factors identified as risk factors for
neonatal mortality are birth order, mother’s age, place of birth, age at first
birth, breastfeeding and breastfeeding duration.

The other objective of this study was to find different effects of risk factors
on three ages of mortality. The age of a mother, and breastfeeding were found
to be more pronounced for neonatal age, which is consistent with other findings
from other countries that use the DHS data [18]. Some of the factors analyzed in
this study that are identified in the literature as important to child mortality in
other countries, are not important to child mortality in Lesotho. Those factors
include place of residence, sex of a child and the source of drinking water. These
variables should be investigated further by interacting these variables with each
other. This approach would allow for testing, for example, whether the effect of
source of drinking water is different in the rural areas than in the urban areas.
The effect of HIV status of the mother should be investigated further as well.

78



Appendix A

Parametric Models

A.1 Results Using Household as Frailty

The following tables represent the results obtained using different models, such
as Exponential model, Log-normal model and Log-logistic model. Each table
consist of a model with and without frailty model.
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Table A.1: Hazard ratios of child mortality associated with various socio-demographic variables

Exponential model without household frailty Exponential model with household frailty
Variable HR. SE. z P>z 95% CI. HR. SE. z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - -
20-24 0.5315 0.1222 -2.7500 0.0060 0.3386 0.8341 0.5262 0.1216 -2.7800 0.0050 0.3345 0.8277
25-29 0.5033 0.1235 -2.8000 0.0050 0.3111 0.8143 0.5054 0.1245 -2.7700 0.0060 0.3119 0.8190
30-34 0.3869 0.1072 -3.4300 0.0010 0.2248 0.6658 0.3889 0.1080 -3.4000 0.0010 0.2257 0.67028
35-39 0.4387 0.1314 -2.7500 0.0060 0.2439 0.7891 0.4432 0.1332 -2.7100 0.0070 0.2459 0.7989
40-44 0.4756 0.1587 -2.2300 0.0260 0.2473 0.9146 0.4810 0.1613 -2.1800 0.0290 0.2493 0.9279
45-49 0.4941 0.2009 -1.7300 0.0830 0.2227 1.0962 0.4966 0.2031 -1.7100 0.0870 0.2228 1.1070

Birth order: 1st birth - - - - - - - - - - -
2-4th birth 1.2136 0.1764 1.3300 0.1830 0.9127 1.6137 1.2061 0.1758 1.2900 0.1980 0.9065 1.6049
>4th birth 1.5610 0.3789 1.8300 0.0670 0.9700 2.5120 1.5348 0.3747 1.7500 0.0790 0.9511 2.4767

Place of birth: Home - - - - - - - - - - -
Public 0.4707 0.0593 -5.9800 <0.001 0.3677 0.6027 0.4698 0.0595 -5.9700 <0.001 0.3666 0.6021

Private 0.5815 0.0906 -3.4800 0.0010 0.4285 0.7893 0.5805 0.0908 -3.4800 0.0010 0.4272 0.7889
Birth size: Small - - - - - - - - - - -

Average 0.6864 0.0781 -3.3100 0.0010 0.5491 0.8579 0.6863 0.0784 -3.2900 0.0010 0.5486 0.8586
Large 0.6709 0.2474 -1.0800 0.2790 0.3257 1.3820 0.6759 0.2500 -1.0600 0.2900 0.3273 1.3956

Wealth index: Poorest - - - - - - - - - - -
Poorer 1.2262 0.1565 1.6000 0.1100 0.9548 1.5746 1.2235 0.1570 1.57 0.1160 0.9514 1.5733

Rich 1.3077 0.1969 1.7800 0.0750 0.9736 1.7565 1.3055 0.1975 1.76 0.078 0.9705 1.7560
Breast feeding: Never - - - - - - - - - - -

Ever 0.1007 0.0120 -19.4000 <0.001 0.0799 0.1270 - - - - -
Breast feeding duration: < 6 months - - - - - - - - - - - -

≥ 6 months 0.1379 0.0151 -18.0700 <0.001 0.111229 0.1709 - - - - -
ln θ - - - - - - -2.9313 1.1721 -2.5 0.0120 -5.2284 -0.6341
θ - - - - - - 0.0533 0.0625 - - 0.0054 0.5304

Likelihood-ratio test of θ = 0 : χ2
1 = 0.84, the value of p = 0.0179 at 5 percent level of significant
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Table A.1 shows the results of the parametric regression model assuming a
Exponential distribution for the survival times. The left-hand side results are
for a Exponential without family frailty model and the right-hand side results
are for Exponential with family frailty model.
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Table A.2: Hazard ratios of child mortality associated with various socio-demographic variables

Lognormal model without household Lognormal model with household frailty
Variable Coef. SE. z P>z 95% CI. Coef. SE. z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.7017 0.1665 4.2100 <0.001 0.3754 1.0280 0.7107 0.1674 4.2500 <0.001 0.3826 1.0388
25-29 0.7661 0.1786 4.2900 <0.001 0.4160 1.1161 0.7649 0.1793 4.2700 <0.001 0.4135 1.1162
30-34 1.0084 0.2009 5.0200 <0.001 0.6147 1.4020 1.0056 0.2014 4.9900 <0.001 0.6108 1.4004
35-39 0.8855 0.2190 4.0400 <0.001 0.4562 1.3147 0.8788 0.2198 4.000 <0.001 0.4480 1.3097
40-44 0.9523 0.2489 3.8300 <0.001 0.4645 1.4400 0.9484 0.2499 3.7900 <0.001 0.4586 1.4383
45-49 0.9529 0.3197 2.9800 0.0030 0.3263 1.5796 0.9520 0.3211 2.9600 0.0030 0.3227 1.5813

Birth order: 1st birth - - - - - - - - - - - -
2-4th birth -0.1696 0.1053 -1.6100 0.1070 -0.3761 0.0368 -0.1653 0.1055 -1.5700 0.1170 -0.3721 0.0415
>4th birth -0.3859 0.1792 -2.1500 0.0310 -0.7371 -0.0347 -0.3727 0.1800 -2.0700 0.0380 -0.7254 -0.0200

Place of birth: Home - - - - - - - - - - - -
Public 0.5559 0.1020 5.4500 <0.001 0.3560 0.7558 0.5567 0.1023 5.4400 <0.001 0.3561 0.7572

Private 0.3654 0.1217 3 0.0030 0.1268 0.6040 0.3657 0.1222 2.9900 0.0030 0.1263 0.6051
Birth size: Small - - - - - - - - - - - -

Average 0.3479 0.0851 4.0900 <0.001 0.1810 0.5147 0.3485 0.0854 4.0800 <0.001 0.1811 0.515898
Large 0.3855 0.2625 1.4700 0.1420 -0.1291 0.9000 0.3798 0.2633 1.4400 0.1490 -0.1363 0.8960

Wealth index: Poorest - - - - - - - - - - - -
Poorer -0.14007 0.094787 -1.48 0.139 -0.32585 0.045707 -0.13876 0.095213 -1.46 0.145 -0.32537 0.0479

Rich -0.2575 0.1106 -2.3300 0.0200 -0.4742 -0.0408 -0.2571 0.1111 -2.3100 0.0210 -0.4747 -0.0394
Breast feeding duration: < 6 months - - - - - - - - - - - -

≥ 6 months 1.4990 0.0914 16.4000 <0.001 1.3199 1.6782
Breast feeding: Never - - - - - - - - - - - -

Ever 1.8641 0.1062 17.5500 <0.001 1.6558 2.0723
lnσ 0.2678 0.0385 6.9600 <0.001 0.1924 0.3432 0.2670 0.0386 6.9200 <0.001 0.1914 0.3426
σ 1.3071 0.0503 - - 1.2122 1.4094 1.3060 0.0504 - - 1.2109 1.408568
θ - - - - - - 0.0670 0.0646 - - 0.0101 0.4435

ln θ - - - - - - -2.7031 0.9643 -2.800 0.0050 -4.5931 -0.8131

Likelihood-ratio test of θ = 0 : χ2
1 = 1.29, the value of p = 0.128 at 5 percent level of significant
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Table A.2 shows the results of the parametric regression model assuming a log-
normal distribution for the survival times namely age at death or survival of a
child. The left-hand side results are for a log-normal model without household
frailty and the right-hand side results are for a log-normal results with household
frailty.
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Table A.3: Hazard ratios of child mortality associated with various socio-demographic variables

Log-logistic model without household frailty Log-logistic model with household frailty model
Variable Coef. SE. z P>z 95% CI. Coef. SE. z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.5990 0.1415 4.2300 <0.001 0.3217 0.8763 0.6075 0.1425 4.2600 <0.001 0.3283 0.8867
25-29 0.6890 0.1510 4.5600 <0.001 0.3931 0.9850 0.6881 0.1517 4.5400 <0.001 0.3908 0.9853
30-34 0.8635 0.1697 5.0900 <0.001 0.5309 1.1960 0.8600 0.1703 5.0500 <0.001 0.5264 1.1937
35-39 0.7950 0.1844 4.3100 <0.001 0.4336 1.1564 0.7880 0.1852 4.2600 <0.001 0.4251 1.1509
40-44 0.8092 0.2041 3.9600 <0.001 0.4091 1.2092 0.8043 0.2052 3.9200 <0.001 0.4021 1.2065
45-49 0.8237 0.2543 3.2400 <0.001 0.3253 1.3221 0.8214 0.2559 3.2100 <0.001 0.3198 1.3231

Birth order:1st birth - - - - - - - - - - -
2-4th birth -0.1460 0.0881 -1.6600 0.0980 -0.3188 0.0267 -0.1413 0.0884 -1.6000 0.1100 -0.3145 0.0319
>4th birth -0.3314 0.1480 -2.2400 0.0250 -0.6215 -0.0413 -0.3181 0.1488 -2.1400 0.0330 -0.6098 -0.0263

Birth size: Small - - - - - - - - - - - -
Average 0.4588 0.0810 5.6600 <0.001 0.3000 0.6175 0.4602 0.0814 5.6500 <0.001 0.3007 0.6197

Large 0.3342 0.0978 3.4200 0.0010 0.1426 0.5258 0.3360 0.0982 3.4200 0.0010 0.1435 0.5285
Place of birth: Home - - - - - - - - - - - -

Public 0.2641 0.0697 3.7900 <0.001 0.1275 0.4007 0.2651 0.0700 3.7900 <0.001 0.1279 0.4022
Private 0.2376 0.2202 1.0800 0.2810 -0.1941 0.6693 0.2308 0.2210 1.0400 0.2960 -0.2024 0.6640

Wealth index: Poorest - - - - - - - - - - - -
Poorer -0.1227 0.0781 -1.5700 0.1160 -0.2757 0.0303 -0.1207 0.0785 -1.5400 0.1240 -0.2745 0.0332

Rich -0.1837 0.0917 -2.0000 0.0450 -0.3634 -0.0039 -0.1822 0.0922 -1.9800 0.0480 -0.3629 -0.0015
Breast feeding: Never - - - - - - - - - - - -

Ever 1.5735 0.1019 15.4400 <0.001 1.3737 1.7732 - - - - - -
Breast feeding duration:< 6 months - - - - - - - - - - - -

≥ 6 months 1.3032 0.0890 14.6500 <0.001 1.1288 1.4776 - - - - - -
ln γ -0.5855 0.0430 -13.6200 <0.001 -0.6698 -0.5013 -0.5871 0.0430 -13.6500 <0.001 -0.6714 -0.5028
γ 0.5568 0.0239 - - 0.5118 0.6057 0.5559 0.0239 - - 0.5110 0.6048
θ - - - - - - 0.0719 0.0656 - - 0.0121 0.4293

ln θ - - - - - - -2.6320 0.9115 -2.8900 0.0040 -4.4185 -0.8455

Likelihood-ratio test of θ = 0 : χ2
1 = 1.46, the value of p = 0.114 at 5 percent level of significant
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Table A.3 shows the results of the parametric regression model assuming a Log-
logistic distribution for the survival times. The left-hand side results are for a
Log-logistic without family (household) frailty model and the right-hand side
results are for Log-logistic with family frailty model.

A.2 Results Using Community as Frailty
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Table A.4: Hazard ratios of child mortality associated with various socio-demographic variables

Exponential model without community frailty Exponential model with community frailty
Variable HR. SE. z P>z 95% CI. HR. SE. z P>z 95% CI.

Age of a mother: 15-19 - - - - - - - - - - -
20-24 0.5315 0.1222 -2.7500 0.0060 0.3386 0.8341 0.4725 0.1093 -3.2400 0.0010 0.3003 0.7434
25-29 0.5033 0.1235 -2.8000 0.0050 0.3111 0.8143 0.5830 0.1334 -2.3600 0.0180 0.3724 0.9129
30-34 0.3869 0.1072 -3.4300 0.0010 0.2248 0.6658 0.4703 0.1169 -3.0300 0.0020 0.2889 0.7656
35-39 0.4387 0.1314 -2.7500 0.0060 0.2439 0.7891 0.4990 0.1287 -2.6900 0.0070 0.3010 0.8273
40-44 0.4756 0.1587 -2.2300 0.0260 0.2473 0.9146 0.6051 0.1660 -1.8300 0.0670 0.3535 1.0359
45-49 0.4941 0.2009 -1.7300 0.0830 0.2227 1.0962 0.6597 0.2370 -1.16 0.2470 0.3263 1.3340

Birth order: 1st birth - - - - - - - - - - -
2-4th birth 1.2136 0.1764 1.3300 0.1830 0.9127 1.6137 - - - - -
>4th birth 1.5610 0.3789 1.8300 0.0670 0.9700 2.5120 - - - - -

Place of birth: Home - - - - - - - - - - -
Public 0.4707 0.0593 -5.9800 <0.001 0.3677 0.6027 0.6646 0.0718 -3.7800 <0.0001 0.5378 0.8214

Private 0.5815 0.0906 -3.4800 0.0010 0.4285 0.7893 0.5820 0.2130 -1.4800 0.1390 0.2841 1.1924
Birth size: Small - - - - - - - - - - -

Average 0.6864 0.0781 -3.3100 0.0010 0.5491 0.8579 0.7199 0.0956 -2.4700 0.0130 0.5548 0.9339
Large 0.6709 0.2474 -1.0800 0.2790 0.3257 1.3820 0.9670 0.1574 -0.2100 0.8370 0.7028 1.3306

Wealth index: Poorest - - - - - - - - - - -
Poorer 1.2262 0.1565 1.6000 0.1100 0.9548 1.5746 - - - - -

Rich 1.3077 0.1969 1.7800 0.0750 0.9736 1.7565 - - - - -
Breast feeding:Never - - - - - - - - - - -

Ever 0.1007 0.0120 -19.4000 <0.001 0.0799 0.1270 0.0988 0.0128 -17.8300 <0.001 0.0767 0.1275
Breast feeding duration: < 6 months - - - - - - - - - - -

≥ 6 months 0.1379 0.0151 -18.0700 <0.001 0.111229 0.1709 0.1356 0.0162 -16.7300 <0.001 0.1073 0.1714
ln θ - - - - - - -3.7357 2.7718 -1.3500 0.1780 -9.1683 1.6970
θ - - - - - - 0.0239 0.0661 - - 0.0001 5.4577

Likelihood-ratio test of θ = 0 : χ2
1 = 0.14, the value of p = 0.355 at 5 percent level of significant
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Table A.4 shows the results of the parametric regression model assuming a
Exponential distribution for the survival times. The left-hand side results are
for the Exponential without community frailty model and the right-hand side
results are for the Exponential with community frailty model.
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Table A.5: Hazard ratios of child mortality associated with various socio-demographic variables

Log-normal model without community frailty Log-normal model with community frailty
Variable Coef. SE. z P>z 95% CI. Coef. SE. z P>z 95% CI.

Breast feeding:Never - - - - - - - - - - - -
Ever 1.8641 0.1062 17.5500 <0.001 1.6558 2.0723 1.8640 0.1062 17.5400 <0.001 1.6557 2.0722

Place of birth: Home - - - - - - - - - - - -
Public 0.5559 0.1020 5.4500 <0.001 0.3560 0.7558 0.3374 0.0747 4.5200 <0.001 0.1911 0.4838

Private 0.3654 0.1217 3 0.0030 0.1268 0.6040 0.5741 0.2500 2.3000 0.0220 0.0841 1.0641
Breast feeding duration: < 6 months - - - - - - - - - - - -

≥ 6 months 1.4990 0.0914 16.4000 <0.001 1.3199 1.6782 1.4990 0.0914 16.4000 <0.001 1.3198 1.6781
Birth size: Small - - - - - - - - - - - -

Average 0.3479 0.0851 4.0900 <0.001 0.1810 0.5147 0.2046 0.0975 2.1000 0.0360 0.0134 0.3958
Large 0.3855 0.2625 1.4700 0.1420 -0.1291 0.9000 0.0121 0.1161 0.1000 0.9170 -0.2155 0.2398

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.7017 0.1665 4.2100 <0.001 0.3754 1.0280 0.6556 0.1569 4.1800 <0.001 0.3481 0.9630
25-29 0.7661 0.1786 4.2900 <0.001 0.4160 1.1161 0.5573 0.1562 3.5700 <0.001 0.2511 0.8636
30-34 1.0084 0.2009 5.0200 <0.001 0.6147 1.4020 0.7979 0.1691 4.7200 <0.001 0.4665 1.1293
35-39 0.8855 0.2190 4.0400 <0.001 0.4562 1.3147 0.6338 0.1757 3.6100 <0.001 0.2894 0.9782
40-44 0.9523 0.2489 3.8300 <0.001 0.4645 1.4400 0.7508 0.1953 3.8500 <0.001 0.3681 1.1335
45-49 0.9529 0.3197 2.9800 0.0030 0.3263 1.5796 0.6167 0.2630 2.3400 0.0190 0.1013 1.1322

Wealth index: Poorest - - - - - - - - - - - -
Poorer -0.14007 0.094787 -1.48 0.139 -0.32585 0.045707

Rich -0.2575 0.1106 -2.3300 0.0200 -0.4742 -0.0408
Birth order: 1st birth - - - - - - - - - - - -

2-4th birth -0.1696 0.1053 -1.6100 0.1070 -0.3761 0.0368 -0.1653 0.1055 -1.5700 0.1170 -0.3721 0.0415
>4th birth -0.3859 0.1792 -2.1500 0.0310 -0.7371 -0.0347 -0.3727 0.1800 -2.0700 0.0380 -0.7254 -0.0200

lnσ 0.0803 0.0370 2.1700 0.0300 0.0077 0.1529 0.0803 0.0370 2.1700 0.0300 0.0077 0.1529
σ 1.0836 0.0401 - - 1.0077 1.1652 1.0836 0.0401 - - 1.0077 1.1652
θ - - - - - - <0.001 0.0006 - - <0.001 .

ln θ - - - - - - -13.6693 531.8832 -0.0300 0.9790 -1056.1410 1028.8030

Likelihood-ratio test of θ = 0 : χ2
1 = 0.00, the value of p = 1.00 at 5 percent level of significant
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Table A.5 shows the results of the parametric regression model assuming a Log-
normal distribution for the survival times. The left-hand side results are for the
Log-normal without community frailty model and the right-hand side results
are for the Log-normal with community frailty model.
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Table A.6: Hazard ratios of child mortality associated with various socio-demographic variables

Log-logistic model without community frailty Log-logistic model with community frailty
Variable Coef. SE. z P>z 95% CI. Coef. SE. z P>z 95% CI.

Breast feeding:Never - - - - - - - - - - - -
Ever 1.5735 0.1019 15.4400 <0.001 1.3737 1.7732 1.5755 0.1025 15.3800 <0.001 1.3747 1.7763

Place of birth: Home - - - - - - - - - - - -
Public 0.2641 0.0697 3.7900 <0.001 0.1275 0.4007 0.3169 0.0694 4.5700 <0.001 0.1810 0.4528

Private 0.2376 0.2202 1.0800 0.2810 -0.1941 0.6693 0.4086 0.2143 1.9100 0.0570 -0.0115 0.8287
Breast feeding duration:< 6 months - - - - - - - - - - - -

≥ 6 months 1.3032 0.0890 14.6500 <0.001 1.1288 1.4776 1.3049 0.0893 14.6100 <0.001 1.1298 1.4799
Birth size: Small - - - - - - - - - - - -

Average 0.4588 0.0810 5.6600 <0.001 0.3000 0.6175 0.2003 0.0878 2.2800 0.0230 0.0281 0.3724
Large 0.3342 0.0978 3.4200 0.0010 0.1426 0.5258 0.0201 0.1055 0.1900 0.8490 -0.1867 0.2270

Age of a mother: 15-19 - - - - - - - - - - - -
20-24 0.5990 0.1415 4.2300 <0.001 0.3217 0.8763 0.6343 0.1486 4.2700 <0.001 0.3432 0.9255
25-29 0.6890 0.1510 4.5600 <0.001 0.3931 0.9850 0.5969 0.1476 4.0400 <0.001 0.3077 0.8862
30-34 0.8635 0.1697 5.0900 <0.001 0.5309 1.1960 0.7773 0.1584 4.9100 <0.001 0.4669 1.0878
35-39 0.7950 0.1844 4.3100 <0.001 0.4336 1.1564 0.6525 0.1656 3.9400 <0.001 0.3279 0.9771
40-44 0.8092 0.2041 3.9600 <0.001 0.4091 1.2092 0.7154 0.1785 4.0100 <0.001 0.3655 1.0653
45-49 0.8237 0.2543 3.2400 <0.001 0.3253 1.3221 0.6222 0.2419 2.5700 0.0100 0.1481 1.0964

Birth order: 1st birth - - - - - - - - - - -
2-4th birth -0.1460 0.0881 -1.6600 0.0980 -0.3188 0.0267 - - - - -
>4th birth -0.3314 0.1480 -2.2400 0.0250 -0.6215 -0.0413 - - - - -

Wealth index: Poorest - - - - - - - - - - - -
Poorer -0.1227 0.0781 -1.5700 0.1160 -0.2757 0.0303 - - - - - -

Rich -0.1837 0.0917 -2.0000 0.0450 -0.3634 -0.0039 - - - - - -
ln γ -0.6610 0.0423 -15.6400 <0.001 -0.7438 -0.5782 -0.6626 0.0428 -15.5000 <0.001 -0.7464 -0.5788
γ 0.5163 0.0218 - - 0.4753 0.5609 0.5155 0.0220 - - 0.4741 0.5606
θ - - - - - - 0.0174 0.0712 - - <0.001 52.9959

ln θ - - - - - - -4.0518 4.0929 -0.9900 0.3220 -12.0738 3.9702

Likelihood-ratio test of θ = 0 : χ2
1 = 0.06, the value of p = 0.401 at 5 percent level of significant
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Table A.6 shows the results of the parametric regression model assuming a Log-
logistic distribution for the survival times. The left-hand side results are for a
Log-logistic without community frailty model and the right-hand side results
are for Log-logistic with community frailty model.
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Appendix B

Stata Codes

B.1 Cox Model and Parametric Regression Mod-
els

B.1.1 Cox Model without Frailty

stcox i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin

B.1.2 Cox Model with Frailty

stcox i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, shared(household)

stcox i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, shared(community)

B.1.3 Parametric Regression Models without Frailty

***********Model 1: exponential distribution gamma shared frailty model***********
streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(exponential)

***********Model 2: lognormal distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(lognormal)

***********Model 3: weibull distribution gamma shared frailty model***********
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streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(weibull)

***********Model 4: loglogistic distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(loglogistic)

B.1.4 Parametric Regression Models with Household Frailty

***********Model 1: exponential distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(exponential) frailty(gamma) shared(household)

***********Model 2: lognormal distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(lognormal) frailty(gamma) shared(household)

***********Model 3: Weibull distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(weibull) frailty(gamma) shared(household)

***********Model 4: loglogistic distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, distribution(loglogistic) frailty(gamma) shared(household)

B.1.5 Parametric Regression Models with Community Frailty

***********Model 1: exponential distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, dist(exponential) frailty(gamma) shared(community)

***********Model 2: Weibull distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, dist(weibull) frailty(gamma) shared(community)
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***********Model 3: lognormal distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, dist(lognormal) frailty(gamma) shared(community)

***********Model 4: loglogistic distribution gamma shared frailty model***********

streg i.mothersage i.Birthorder i.Birthsize i.Placeofdelivery i.Breastfeeding i.
breastfeedduration i.wealthin, dist(loglogistic) frailty(gamma) shared(community)

B.1.6 KM Plots And Testing PH Assumptions

.sts graph, by(mothersage)

This code works for every variables, just need to interchange the variables.
For example instead of putting mothersage you can put breastfeedduration or
Placeofdelivery and so on.

*****************Testing the PH assumption using schoenfeld residuals***********

After cox results, then run this code

.estat phtest, rank detail
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Appendix C

R codes

C.1 Cox without Frailty

ab = coxph(Surv(Time,censored) relevel(as.factor(mothersage), ”1”), data =
Data)
summary(ab)
ac = coxph(Surv(Time,censored) relevel(as.factor(Birthorder),”2”), data = Data)
summary(ac)
ad = coxph(Surv(Time,censored) relevel(as.factor(Breastfeeding), ”1”), data =
Data)
summary(ad)
ad = coxph(Surv(Time,censored) relevel(as.factor(Birthsize),”3”), data = Data)
summary(ad)
ae = coxph(Surv(Time,censored) relevel(as.factor(Placeofdelivery),”1”), data
= Data)
summary(ae)
af = coxph(Surv(Time,censored) relevel(as.factor(wealthin),”1”), data = Data)
summary(af)

C.2 Cox with Frailty(Household)

ba = coxph(Surv(Time,censored) relevel(as.factor(mothersage), ”1”) + frailty(household),
data = Data)
summary(ba)
bc = coxph(Surv(Time,censored) relevel(as.factor(Birthorder),”2”)+ frailty(household),
data = Data)
summary(bc)
bd = coxph(Surv(Time,censored) relevel(as.factor(Breastfeeding), ”1”)+ frailty(household),
data = Data)
summary(bd)
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ad = coxph(Surv(Time,censored) relevel(as.factor(Placeofdelivery),”3”)+ frailty(household),
data = Data)
summary(ad)
be = coxph(Surv(Time,censored) relevel(as.factor(Birthsize),”1”)+ frailty(household),
data = Data)
summary(be)
bf = coxph(Surv(Time,censored) relevel(as.factor(wealthin),”1”)+ frailty(household),
data = Data)
summary(bf)

C.3 Cox with Frailty (Community)

ba = coxph(Surv(Time,censored) relevel(as.factor(Breastfeeding), ”1”) + frailty(community),
data = Data)
summary(ba)
bc = coxph(Surv(Time,censored) relevel(as.factor(Placeofdelivery),”2”)+ frailty(community),
data = Data)
summary(bc)
bd = coxph(Surv(Time,censored) relevel(as.factor(breastfeedduration ), ”1”)+
frailty(community), data = Data)
summary(bd)
ad = coxph(Surv(Time,censored) relevel(as.factor(birthsize),”3”)+ frailty(community),
data = Data)
summary(ad)
be = coxph(Surv(Time,censored) relevel(as.factor(Mother’sage),”1”)+ frailty(community),
data = Data)
summary(be)
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