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Abstract

In this dissertation we construct radiating models for dense compact stars in rela-

tivistic astrophysics. We first utilise the standard Santos (1985) junction condition to

model Euclidean stars. By making use of the heuristic Euclidean condition and a linear

transformation in the gravitational potentials, we generate a particular exact solution

in closed form to the nonlinear stellar boundary condition. Earlier models of spherical

nonadiabatic gravitational collapse are then extended by considering the effect of ra-

dial perturbations in the matter and metric variables, on the evolution of the stellar

fluid and the dynamics of the collapse process. The governing equation describing the

temporal behaviour of the model is solved on the stellar surface. The model becomes

static in the later stages of collapse. The Santos junction condition is then generalised

to describe a radiating star which has a two-fluid atmosphere, consisting of a radiation

field and a string fluid. We show that in the appropriate limit when the string energy

density goes to zero, the standard result is regained. An exact solution to the gener-

alised boundary condition is found. The generalised boundary condition is extended to

hold in the case when the shear is nonvanishing. We demonstrate that our results can

be used to model the flow of a string fluid in terms of a diffusion transport process.
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Chapter 1

Introduction

Research in the field of relativistic astrophysics is crucial in improving our under-

standing of the various physical processes and phenomena that drive the dynamics of

gravitation. From trying to understand the behaviour of neutron stars, quark stars,

black holes, collapse of supermassive black holes and pulsars, to explaining how stars

collapse under gravity to form these compact objects, the field of astrophysics has

become one of the fundamental cornerstones of modern science. The main focus of

this thesis is to study the evolution and dynamics of dense compact stars and stellar

configurations, using the framework of general relativity.

Since the inception of the theory of general relativity, a substantial amount of

research has been completed involving applications to astrophysics. Four notable ex-

amples representing fundamental breakthroughs, in the absence of rotation, in this field

are;

• The generation of the first analytical solution to the Einstein field equations

describing the exterior gravitational field of a static star. The interior and exterior

Schwarzschild solutions provided the first complete relativistic description of the

matter content and spacetime geometry for a star (Schwarzschild 1916a, 1916b).

• The derivation of the physical and mathematical conditions governing the dy-

namics of the gravitational collapse of a star (Oppenheimer and Snyder 1939).
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• The discovery of the first radiating solution to the Einstein field equations which

describes the radial flow of coherent null radiation in the presence of a spherically

symmetric gravitational field (Vaidya 1951).

• More recently, and especially relevant to this thesis, is the construction of the

junction conditions relating the matter and thermodynamic variables on the stel-

lar surface. This is crucial in modeling the radiative transfer of heat energy in

compact stars (Santos 1985).

These basic results, and subsequent developments, have made it possible to completely

model a radiating relativistic compact object in astrophysics. The studies that are

presented in this work are separated into two parts. The first part involves the con-

struction of two exact stellar models in the context of the standard Santos formalism

for radiating stars. The second part considers the generalisation and extension of the

standard Santos (1985) framework. As mentioned earlier, the second part of this study

comprises a major theme of this dissertation, and effectively involves extending and

reconstructing the Santos junction condition. The purpose is to generate a framework

to produce more general and realistic radiating stellar models in future research efforts.

In terms of the standard Santos junction conditions, we first investigate the thermal

evolution and stability of a special class of relativistic stars called Euclidean stars. Her-

rera and Santos (2010) have investigated the general properties of these stars, in both

the nonadiabatic and adiabatic limits, and presented the appropriate stellar boundary

condition that governs the temporal dynamics of the model. Owing to the high degree

of nonlinearity in the boundary condition, no corresponding exact solution was pro-

duced in their studies. Consequently the thermal evolution during the latter dissipative

phases of collapse was left as an open question. With this application in mind, we ex-

tend the existing model for these stars by providing an exact solution to the junction

condition; this is then used to complete the description of the thermodynamics. We

also consider collapse models with heat flow that were first investigated by Govender
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et al (2003). In their work they studied the effect of radial perturbations in the matter

quantities and the gravitational potentials on the collapse process. It was demonstrated

that these perturbations allow for the dissipating star to eventually collapse to a static

compact state. Their results are useful in constructing models for compact X-ray pul-

sars, in particular Her X-1 (Sharma and Maharaj 2007). In our contribution to these

efforts, we strengthen existing models by mapping out the complete thermodynamic

evolution of a radiating star through to the final static state. This enables us to study

additional physical features of the model that arise from the perturbations.

In the second part we consider extending the standard Santos formalism to de-

scribe more general matter fields. Our intention is to provide a model which is more

meaningful physically, and to provide viable mechanisms for the radiative transfer of

heat energy in compact relativistic stars. This is effectively done by allowing the mass

function in the Vaidya radiating metric to be dependent on both the Eddington re-

tarded time and the comoving radial coordinate. This means that the emission of the

null photon radiation across the stellar surface is anisotropic and, significantly, the

atmosphere of the star must now be a coupled two-component fluid. We demonstrate

in detail how the new generalised junction conditions are derived from first principles.

We also show by means of direct application that these generalised conditions have the

remarkable consequence that the atmosphere and local interstellar region of such stars

exhibit evolutionary and dynamical behaviour that is still yet to be understood. The

physics governing these compact stellar systems may be far more complicated than in

the standard scenario. This is an area of ongoing research.

This dissertation is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: In this chapter we present a review and background on the funda-

mental concepts of differential geometry, general relativity and relativistic astro-

physics which are essential for constructing the stellar models to be studied. A
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number of key definitions and formalisms are highlighted. The Einstein-Maxwell

system of field equations are presented for charged fluid distributions as well as

those for neutral matter. The Oppenheimer-Volkoff equations for gravitational

collapse of stars are introduced and key physical features as well as dynamical

quantities are highlighted.

• Chapter 3: We investigate the thermal evolution of radiating Euclidean stars in

dissipative collapse. A particular exact solution, to the second order nonlinear

boundary condition in two variables, is generated by imposing the Euclidean con-

dition and a linear transformation in the gravitational potentials. This solution

is then used, in conjunction with the causal heat transport equation, to construct

the complete temperature, relaxation time and proper radius profiles. This work

and that of chapter 4 are done in the context of the standard Santos (1985)

formalism for radiative transfer in relativistic stars.

• Chapter 4: Here we investigate the gravitational and temporal dynamics of stars

that undergo nonadiabatic collapse to eventually reach a static configuration.

We consider the effect of radial perturbations in the metric as well as the matter

variables, on the evolution of the stellar fluid distribution and the collapse process

in terms of the causal and noncausal thermodynamics.

• Chapter 5: This chapter forms a substantial and central part of this study. The

Santos (1985) junction conditions for radiating stars are generalised and extended

to include the effect of an additional string fluid coupled with the standard null

radiation field in the star’s atmosphere. This is done by first introducing the

generalised Vaidya radiating solution and the stress energy tensor describing a

stellar atmosphere consisting of a two-fluid system. The new generalised junc-

tion conditions are then derived from first principles by carrying out the smooth

matching of a shear-free interior stellar spacetime to the stellar exterior described

by the generalised Vaidya metric. This result is then verified by considering the
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conservation of photon momentum flux across the stellar boundary. The new

junction conditions are then utilised to study some of the physics of the two-fluid

atmosphere. Profiles for the luminosity and redshift of the emitted radiation are

generated, taking into account the effect of the string fluid in the extended con-

dition on the surface of the dissipating star. We also generate an exact solution

to the generalised junction condition and show that it describes a model in which

a relativistic radiating star is undergoing geodesic heat flow in the presence of a

diffusing string atmosphere.

• Chapter 6: In this chapter we extend the results of the previous chapter by con-

sidering the role of shearing stresses in the interior stellar fluid on the generalised

junction conditions. We verify this result by using an alternative set of geometric

conditions that include the relevant spacetime curvatures without following the

matching process used in chapter 5. The shearing analogue of the modified condi-

tions are then applied to models describing the evolution of the star’s atmosphere

including the diffusion of the string fluid component.

• Chapter 7: Conclusion

5



Chapter 2

Basic theory for relativistic stellar

astrophysics

Einstein’s theory of general relativity is successful in describing the dynamical be-

haviour of spherically symmetric matter distributions in strong gravitational fields. A

review of the physics of compact objects, black holes and relativistic stellar processes

is provided by Shapiro and Teukolsky (1983). For a recent treatment of cosmological

models see Gron and Hervik (2007). In this chapter, we present the background theory

that enables us to generate a model of a dense compact relativistic star within the

context of a localised astrophysical system. We present a brief outline of the relevant

differential geometry, the Einstein-Maxwell system of equations for charged matter dis-

tributions and the essential physical criteria for a physically acceptable stellar model.

For more extensive details on differential manifolds and tensor analysis, and related

topics, the reader is referred to Bishop and Goldberg (1968), Misner et al (1973) and

Wald (1984). In §2.2, the essential components of differential geometry such as the

Riemann tensor, the Ricci tensor, the Ricci scalar and the Einstein tensor are intro-

duced. These components are required to generate the Einstein field equations which

are the governing equations needed to model a dense gravitating system. We introduce

the energy momentum tensor and the special case of a perfect fluid, for modeling as-
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trophysical situations, in §2.3. Then we present a covariant formulation of Maxwell’s

laws of electromagnetism. This allows us to formulate the Einstein-Maxwell system

of equations in which the electromagnetic and matter fields are coupled. In §2.4, the

physical conditions necessary for interior solutions for relativistic stellar systems are

considered. Finally in §2.5, we briefly discuss the concept of stability in stars and

consider the process of nonadiabatic gravitational collapse. We highlight key concepts

such as the Oppenheimer-Volkoff equations and the effective adiabatic index.

2.1 Spacetime geometry

In general relativity, we assume that the spacetime M is a four-dimensional differen-

tiable manifiold endowed with a symmetric, nonsingular metric tensor field g. In local

regions the manifold has the structure of Euclidean space which implies that it may be

covered by overlapping coordinate patches so that special relativity is regained in the

relevant limit. The manifold of general relativity, with an indefinite metric tensor field,

is called a pseudo-Riemannian manifold. The tensor field g represents the gravitational

field and it has signature (−+++). Individual points in the manifold are labelled by

the real coordinates (xa) = (x0, x1, x2, x3), where x0 = ct (c is the speed of light in

vacuum) is the timelike coordinate and x1, x2, x3 are spacelike coordinates. In this

thesis, we use the convention that the speed of light c = 1. For more comprehensive

treatments of spacetime geometry, the reader is referred to the standard text books in

differential geometry such as Bishop and Goldberg (1968), de Felice and Clark (1990),

Hawking and Ellis (1973), Misner et al (1973) and Wald (1984).

The invariant distance between neighbouring points in M is defined by the line

element

ds2 = gabdx
adxb (2.1.1)

The metric connection Γ is defined in terms of the metric tensor and its derivatives by

Γa
bc =

1

2
gad(gcd,b + gdb,c − gbc,d) (2.1.2)
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where commas denote partial differentiation. There exists a unique symmetric connec-

tion Γ that preserves inner products under parallel transport (do Carmo 1992). The

Riemannian (curvature or Riemann-Christoffel) tensor R is given by

Rd
abc = Γd

ac,b − Γd
ab,c + Γe

acΓ
d
eb − Γe

abΓ
d
ec (2.1.3)

On contraction of (2.1.3) we obtain the Ricci tensor

Rab = Rc
acb

= Γc
ab,c − Γc

ac,b + Γc
dcΓ

d
ab − Γc

dbΓ
d
ac (2.1.4)

which is symmetric. On contracting the Ricci tensor (2.1.4) we obtain

R = Ra
a

= gabRab (2.1.5)

which is the Ricci (or curvature) scalar.

With these definitions it is now possible to construct the Einstein tensor G, in

terms of the Ricci tensor (2.1.4) and the Ricci scalar (2.1.5), as follows

Gab = Rab − 1

2
Rgab (2.1.6)

Clearly the Einstein tensor G is symmetric. The Einstein tensor has zero divergence

so that

Gab
;b = 0 (2.1.7)

which follows from the definition of the Einstein tensor (2.1.6). This property is some-

times called the Bianchi identity, and it is a necessary condition to generate the con-

servation of energy momentum via the Einstein field equations.
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2.2 Fluids and electromagnetic fields

For applications in astrophysics the matter distribution is described by a relativistic

fluid. The energy momentum tensor for uncharged matter is described by the symmet-

ric tensor T where

T ab = (µ+ p)uaub + pgab + qaub + qbua + πab (2.2.1)

where µ is the energy density, p is the isotropic (kinetic) pressure, qa is the heat flux

vector (qaua) = 0 and πab is the anisotropic pressure (stress) tensor (πabua = 0 = πa
a).

These quantities are measured relative to a comoving fluid four-velocity u which is

unit and timelike (uaua = −1). In perfect adiabatic fluids there are no heat conduction

and stress terms (qa = 0, πab = 0). For a perfect fluid the energy momentum tensor,

equation (2.2.1) becomes

T ab = (µ+ p)uaub + pgab (2.2.2)

For many applications in large scale and open astrophysical systems, we require that

the matter distribution satisfies a barotropic equation of state

p = p(µ) (2.2.3)

on physical grounds. Sometimes the particular equation of state

p = (γ − 1)µ

where 0 ≤ γ ≤ 1, is assumed in galaxy and galaxy cluster astrophysics and cosmology

to describe matter distributions. This is called the linear γ equation of state. The case

γ = 1 corresponds to pressureless relativistic dust; γ = 2 gives a stiff equation of state

(valid for certain white dwarf stars) in which the speed of sound is equal to the speed

of light; γ = 4/3 corresponds to radiation. Often the particular equation of state

9



p = kµ1+ 1
n

where k and n are constants, is assumed in relativistic astrophysics. This is called a

polytropic equation of state and is fundamental for the realistic description of much

stellar matter. Hence, most stars in both the relativistic as well as the Newtonian

limits, are modelled as polytropes. Fang and Ruffini (1983) have provided more details

on polytropic stars.

The Einstein field equations

Gab = T ab (2.2.4)

govern the interaction between the curvature of spacetime and the matter content in

the absence of electric charge. We have set the coupling constant to be unity in (2.2.4).

From (2.1.7) and (2.2.4) we obtain

T ab
;b = 0 (2.2.5)

which is the conservation of matter.

We define the electromagnetic field tensor F in terms of the four-potential A by

Fab = Ab;a − Aa;b

which is skew-symmetric. The electromagnetic field tensor can be written in terms of

the electric field E = (E1, E2, E3) and the magnetic field B = (B1, B2, B3) as follows

F ab =



0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


(2.2.6)

The electromagnetic contribution E to the total energy momentum is given by the

result

Eab = FacFb
c − 1

4
gabFcdF

cd (2.2.7)
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To consider the effect of E on the gravitational field it is necessary to express the

fundamental equations of electromagnetism, namely Maxwell’s laws, in covariant form.

The governing equations are given by

Fab;c + Fbc;a + Fca;b = 0 (2.2.8a)

F ab
;b = Ja (2.2.8b)

where J is the four-current density defined by

Ja = σua (2.2.9)

and σ is the proper charge density. For further information on Maxwell’s field equations

(2.2.8) see Misner et al (1973) and Narlikar (2002). Note that the Maxwell equations

(2.2.8) are the basic equations that govern the behaviour of the electromagnetic field

in a curved background.

We point out that the total energy momentum tensor is the sum ofT and E. We are

now in a position to introduce the Einstein-Maxwell system of equations for a charged

fluid in a gravitational field. The interaction between T, E and g is governed by the

Einstein-Maxwell system of equations

Gab = T ab + Eab (2.2.10a)

Fab;c + Fbc;a + Fca;b = 0 (2.2.10b)

F ab
;b = Ja (2.2.10c)

The system (2.2.10) is a highly nonlinear system of coupled, partial differential equa-

tions governing the behaviour of gravitating systems in the presence of an electromag-

netic field. In (2.2.10a), we use units in which the coupling constant in the Einstein

equations is unity. We need to solve the system (2.2.10) to generate an exact solution;
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one approach is to specify a particular form for the matter distribution and electro-

magnetic field on physical grounds and then integrate the partial differential equations

to find the metric tensor field g. For uncharged matter, the only equation that has to

be satisfied is the Einstein field equation (2.2.10a) with E = 0. Note that from (2.1.7)

and (2.2.10a) we obtain

(T ab + Eab);b = 0 (2.2.11)

which is the total conservation of matter and charge which generalises (2.2.5).

2.3 Physical conditions

We briefly consider the physical conditions applicable to a relativistic stellar model.

For physical viability, any solution applicable to the interior of the stellar body should

match smoothly to the appropriate exterior spacetime. The gravitational field outside

a static spherically symmetric body, in the absence of charge, is given by

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) (2.3.1)

which is the exterior Schwarzschild solution. Here the quantity m is the mass of the

stellar body as measured by an observer at infinity. The exterior gravitational field to

a static spherically symmetric body, in the presence of charge, has the form

ds2 = −
(
1− 2m

r
+

q2

r2

)
dt2 +

(
1− 2m

r
+

q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) (2.3.2)

In the above q is the constant related to the total charge of the sphere. The line element

(2.3.2) is the exterior Reissner-Nordstrom solution. The radial electric field is

E =
q

r2

and, consequently, the proper charge density is σ = 0. Therefore, the four current

density J = 0 which is consistent with an exterior spacetime with no barotropic matter.

If q = 0 then (2.3.2) reduces to the exterior Schwarzschild line element (2.3.1).
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Physical conditions will restrict the solutions of the Einstein-Maxwell system (2.2.10)

for a realistic star. It is often assumed by researchers that realistic stellar models for

isotropic matter should satisfy the following conditions:

(a) The energy density µ and the pressure p should be positive and finite throughout

the interior of the star. The radial pressure should vanish at the boundary r = b:

0 < µ < ∞, 0 < p < ∞, p(b) = 0

(b) The energy density µ and the pressure p should be monotonic decreasing functions

from the centre to the boundary:

dµ
dr

≤ 0, dp
dr

≤ 0

(c) Causality should be satisfied. The speed of sound should remain less than the speed

of light throughout the interior of the star which leads to the condition:

0 ≤ dp
dµ

≤ 1

(d) The metric functions e2ν and e2λ and the electric field intensity E should be positive

and nonsingular throughout the interior of the star.

(e) At the boundary the interior gravitational potentials should match smoothly to the

exterior line elements (2.3.1) and (2.3.2) for neutral and charged matter, respectively.

This generates the following conditions on the gravitational potentials:

e2ν(b) = e−2λ(b) = 1− 2m
b
, (E = 0)

e2ν(b) = e−2λ(b) = 1− 2m
b
+ q2

b2
, (E ̸= 0)

(f) The electric field intensity E should be continuous across the boundary for the case

of charged models:

E(b) = q
b2

13



(g) The models should be stable with respect to radial perturbations.

It should be observed that not all relativistic stellar models satisfy the full set of

the conditions listed above throughout the stellar interior; particular solutions may be

valid only in some regions of spacetime. Several examples are listed by Delgaty and

Lake (1998) which become singular at the centre. Such solutions need to be treated

as an envelope of the star and should be matched to another solution valid for the

core. An example of a core-envelope model is provided by Thomas et al (2005). Some

of the conditions (a)-(g) may be very restrictive. For example, observational evidence

suggests that in some stars the energy density µ may be not a strictly decreasing

function. However, many researchers, for example Delgaty and Lake (1998), require

that an exact solution satisfy these conditions. In addition, it is interesting to study

the behaviour of anisotropic matter distributions with radial pressures different from

tangential pressures. Such cases were studied by Chaisi and Maharaj (2005), and Dev

and Gleiser (2002, 2003) in the case of neutral spheres; Herrera and Ponce de Leon

(1985) analysed tangential pressures in the presence of charge. Anisotropic matter and

charge distributions may be relevant in the description of quark stars as pointed out by

Sharma and Maharaj (2007) and Komathiraj and Maharaj (2007), respectively. Exact

solutions to the field equations which do not satisfy all of the conditions (a)-(g) are

still of value because they provide useful information which assist in the qualitative

analysis of relativistic stars.

2.4 Gravitational collapse of stars

In general a star is in a state of hydrostatic equilibrium if the governing forces that

dominate in the stellar matter are balanced. These forces are due to the interior

hydrodynamic thermal fluid pressure directed radially outward and the self gravity

due to the stars mass which is directed radially inwards. An internal pressure gradient

from within is responsible for opposing the inward self gravity, and thus keeping it in
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hydrostatic equilibrium. For a relativistic star, this pressure gradient forms part of a

crucial system of dynamical equations which govern its stability and collapse. These are

called the Oppenheimer-Volkoff equations, and they are written for isotropic pressures

as

m(r) =
1

2

∫ r

0

µ(x)x2dx (2.4.1a)

dp

dr
= −

[p+ µ]
[
m+ 1

2
r3p
]

r [r − 2m]
(2.4.1b)

where µ(r) and p(r) are the radial fluid mass density and pressure, respectively. The

quantity m is interpreted as the gravitational mass of the star. The above system

(2.4.1) describes a star which is static and spherically symmetric (sometimes called

Schwarzschild stars). They are crucial in describing stars which are initially in a static

state before undergoing dissipative gravitational collapse. The system (2.4.1) becomes

important in the early stages of collapse. For more information on (2.4.1) and their

role in the stability and collapse dynamics of relativistic stars, the reader is referred

to Glendenning (2000). For the general principles underlying relativistic gravitational

collapse and the formation of singularities the reader is referred to Penrose (1969).

Once hydrostatic equilibrium is broken, the stellar fluid starts to contract and col-

lapse radially inward and heat energy is released due to the changing gravitational

field. This heat energy is used within the core and envelope regions to aid the dissoci-

ation of fluid particles and to reionize the neutral fluid. The excess heat energy must

then be dissipated across the stellar surface in the form of null radiation by means of

radiative transfer (Phillips 1994). In this thesis we focus on the process of heat dissi-

pation in relativistic stars. During the collapsing phases, it is important to be able to

describe the temporal evolution of the stellar fluid from within the core region through

to the surface across which the radiation is lost. In order to achieve this we have to

solve the Maxwell-Cattaneo equation, a causal heat transport equation, and generate

the corresponding temperature profiles for particular values of the model parameters
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and integration constants. Another physical quantity which is of importance in mod-

elling the temperature evolution in a dissipative collapsing stellar fluid is the effective

adiabatic index

Γeff =

[
∂(ln p)

∂(lnµ)

]
Σ

(2.4.2)

at the stellar surface Σ. The effective adiabatic index measures the ability of the

stellar matter to resist compression under gravity, and depends on the fluid pressure

and energy density profiles which must be obtained by generating an exact solution to

the Einstein field equations.
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Chapter 3

Thermal behaviour of Euclidean

stars

3.1 Introduction

The study of dissipative gravitational collapse achieved prominence with the presen-

tation of the junction conditions by Santos (1985). Earlier work on collapsing stars in

general relativity assumed the exterior spacetime to be empty and as a consequence,

it was required that the pressure at the boundary vanish. Santos provided the gen-

eral junction conditions required for the smooth matching of a spherically symmetric,

shear-free spacetime to the exterior Vaidya (1951) solution across a timelike hypersur-

face. An important consequence of the matching conditions is that the pressure on the

boundary of the radiating star cannot be zero. It is assumed that the interior of the

star is radiating energy in the form of a radial heat flux. The junction conditions due to

Santos rejuvenated the study of gravitational collapse and the end states of radiating

stars. The simplistic model of Oppenheimer and Snyder (1939) has been generalised

to include pressure (Bonnor et al 1989), anisotropic stresses (Chan 1997), electromag-

netic field (Maharaj and Govender 2000), and the cosmological constant (Govender

and Thirukkanesh 2009). These exact models, although simplified, give much insight
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into the dissipative collapse process as well as physical characteristics of the radiating

star such as its temperature and luminosity.

What makes the study of dissipative collapse of stars particularly difficult is the

solution to the boundary condition representing the conservation of momentum across

the timelike hypersurface. While many exact solutions for shear-free radiating spheres

have appeared in the recent literature, there are very few models that include the effects

of shear in the interior of the star. One of the first exact models of a shearing radiating

star that allowed for an analysis of the gravitational and thermodynamical behaviour of

the stellar fluid was found by Naidu et al (2006). However, their model was restrictive

in the sense that it was acceleration-free, but more importantly, the matter variables

such as pressure and density become infinite at the centre of the star. It was pointed

out that this model could form part of a core-envelope model of a radiating star.

Further exact shearing solutions were obtained by Rajah and Maharaj (2008) in which

it was assumed that the particle trajectories within the stellar core were geodesics.

An analysis of the temperature profiles for these models reveals unphysical behaviour

in that the temperatures closer to the surface of the star become negative. A recent

study of shearing, dissipative collapse considered a model of a spherically symmetric

matter distribution in which the areal radius is equal to the proper radius throughout

the stellar evolution (Herrera and Santos 2010). These Euclidean stars were shown to

exhibit very interesting general properties. In this chapter we present an exact solution

to the boundary condition that determines the temporal evolution of an Euclidean star.

Our solution allows us to study the physical and thermodynamical properties of this

class of stars even when the stellar fluid is far from equilibrium. Since Euclidean stars

are not acceleration-free we are able to draw comparisons with the earlier models of

Naidu et al (2006) and Rajah and Maharaj (2008).

In this chapter we study the dynamical and thermal evolution of these compact

radiating stars and investigate some of the physical features during the collapse process.

In §3.2 we provide the details describing the interior stellar fluid distribution and the

18



associated Einstein field equations. The exterior spacetime of the star and the junction

conditions that are valid on the stellar surface are defined in §3.3. Section 3.4 is a

crucial component of this chapter. Here we introduce the Euclidean condition and

generate an exact solution to the boundary condition which will be used to study

the thermal evolution of the model. In §3.5 we present a detailed description of the

thermodynamics. Profiles for the causal and noncausal temperatures, the relaxation

time scale and the proper radius of the collapsing star are generated. Finally some

concluding remarks are made in §3.6.

3.2 Shearing spacetimes

The interior spacetime is described by the general spherically symmetric, shearing

metric in comoving coordinates

ds2 = −A2dt2 +B2dr2 +R2(dθ2 + sin2 θdϕ2) (3.2.1)

where A = A(t, r), B = B(t, r) and R = R(t, r) are metric functions yet to be deter-

mined. The matter content for the interior is described by

Tab = (µ+ pT )uaub + pTgab + (pr − pT )χaχb + qaub + qbua (3.2.2)

where µ represents the energy density, pr the radial pressure, pT the tangential pressure

and qa the heat flux vector. The fluid four–velocity u is comoving and is given by

ua =
1

A
δa0 (3.2.3)

The heat flow vector assumes the form

qa = (0, q, 0, 0) (3.2.4)

since qaua = 0 ensuring radial heat dissipation. We introduce the vector χa such that

χaχa = 1, χaua = 0 (3.2.5)
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The expansion scalar and the fluid four acceleration are given by

Θ = ua
;a, aa = ua;bu

b (3.2.6)

where

aa =

(
0,

A′

A
, 0, 0

)
(3.2.7)

and the shear tensor by

σab = u(a;b) + a(aub) −
1

3
Θ(gab + uaub) (3.2.8)

For the comoving line element (3.2.1) the kinematical quantities take the following

form

a =
A′

A
(3.2.9a)

Θ =
1

A

(
Ḃ

B
+ 2

Ṙ

R

)
(3.2.9b)

σ =
1

A

(
Ḃ

B
− Ṙ

R

)
(3.2.9c)

where dots and primes denote differentiation with respect to t and r respectively. The

nonzero components of the Einstein field equations for the line element (3.2.1) and the
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energy momentum tensor (3.2.2) are

µ =
1

A2

(
2
Ḃ

B
+

Ṙ

R

)
Ṙ

R
− 1

B2

[
2
R′′

R
+

(
R′

R

)2

− 2
B′

B

R′

R
−
(
B

R

)2
]
(3.2.10a)

pr = − 1

A2

[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]
+

1

B2

(
2
A′

A
+

R′

R

)
R′

R
− 1

R2
(3.2.10b)

pT = − 1

A2

[
B̈

B
+

R̈

R
− Ȧ

A

(
Ḃ

B
+

Ṙ

R

)
+

Ḃ

B

Ṙ

R

]

+
1

B2

[
A′′

A
+

R′′

R
− A′

A

B′

B
+

(
A′

A
− B′

B

)
R′

R

]
(3.2.10c)

q =
2

AB

(
Ṙ′

R
− Ḃ

B

R′

R
− Ṙ

R

A′

A

)
(3.2.10d)

This is an underdetermined system of four highly nonlinear coupled partial differential

equations in seven unknowns, viz. A,B,R, µ, pr, pT and q.

3.3 Exterior spacetime and junction conditions

The exterior spacetime is taken to be Vaidya’s outgoing solution

ds2 = −
(
1− 2m(v)

R

)
dv2 − 2dvdR +R2

(
dθ2 + sin2 θdϕ2

)
(3.3.1)

where m(v) represents the gravitational energy contained within the stellar radius and

can also be interpreted as the Newtonian mass of the gravitating body as measured

by an observer at infinity. The necessary conditions for the smooth matching of the

interior spacetime (3.2.1) to the exterior spacetime (3.3.1) have been extensively inves-

tigated. We present the main results that are necessary for modelling a radiating star.

The continuity of the intrinsic and extrinsic curvature components of the interior and
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exterior spacetimes across a timelike boundary are

m(v)Σ =

R

2

(Ṙ

A

)2

−
(
R′

B

)2

+ 1


Σ

(3.3.2a)

(pr)Σ = (qB)Σ (3.3.2b)

Relation (3.3.2b) determines the temporal evolution of the collapsing star.

3.4 Radiating Euclidean stars

Following Herrera and Santos (2010) we impose the condition that the areal radius of

any spherical surface contained within Σ, with centre placed at the origin, is equal to

the proper radius from the centre through to r = b, the boundary of the star. The

physical consequences of this assumption are discussed by Herrera and Santos (2010).

This implies that

B = R′ (3.4.1)

The Einstein field equations (3.2.10) reduce to

µ =
1

A2

(
Ṙ

R
+ 2

Ṙ′

R′

)
Ṙ

R
(3.4.2a)

pr = − 1

A2

[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]
+ 2

A′

A

1

RR′ (3.4.2b)

pT = − 1

A2

[
R̈

R
+

R̈′

R′ −
Ȧ

A

Ṙ

R
−

(
Ȧ

A
− Ṙ

R

)
Ṙ′

R′

]

+
1

R′2

[
A′′

A
−
(
R′′

R′ −
R′

R

)
A′

A

]
(3.4.2c)

q = − 2

AR′

(
Ṙ

R

A′

A

)
(3.4.2d)
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and the mass function becomes

m =
R

2

(
Ṙ

A

)2

(3.4.3)

The boundary condition (3.3.2b) yields

R̈

R
+

1

2

(
Ṙ

R

)2

− Ȧ

A

Ṙ

R
− (A+ Ṙ)A′

RR′ = 0 (3.4.4)

valid on r = b. We now have a system of six coupled partial differential equations, viz.

(3.4.1), (3.4.2) and (3.4.4) in seven unknowns.

We focus on (3.4.4), as a solution of this equation will yield all the relevant kine-

matical and physical quantities. In doing so, we note that we are requiring (3.4.4)

to hold for all r and not just on the boundary r = b. Equation (3.4.4) is a nonlin-

ear partial differential equation in the gravitational potentials A(r, t) and R(r, t). We

could analyse it as a quasi–linear partial differential equation in A(r, t) only. Then

the general solution of (3.4.4) will reduce to a general function of the solutions of two

ordinary differential equations. Unfortunately the resulting equations are still difficult

to solve. As a consequence, we provide a simple solution to (3.4.4) by imposing the

following linear relation

R = εA (3.4.5)

for which ε is an arbitrary constant. (Note that this closes our system of partial

differential equations as we now have seven equations in seven unknown functions.)

This assumption leads to

R(r, t) =
[
C1(r)e

λ1t + C2(r)e
λ2t
]2

(3.4.6)

where

λ1 =
1 +

√
3

2ε
λ2 =

1−
√
3

2ε
(3.4.7)

which is the general solution to the resulting form of (3.4.4) with the assumption (3.4.5)

valid for all r. To prevent divergence of the solution it may be necessary to restrict
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(3.4.6) for small time intervals. Utilising the form (3.4.6), the Einstein field equations

(3.2.10) yield

µ =
2εż

[
et/ε

[
(3−

√
3)C2C

′
1 + (3 +

√
3)C1C

′
2

]]
z′z6

+
12ε2ż

(
λ1C1C

′
1e

2λ1t + λ2C2C
′
2e

2λ2t
)

z′z6
(3.4.8a)

pr =
−2eλ1t

(
1 +

√
3
)
C1 − 2eλ2t

(
1−

√
3
)
C2

z5
(3.4.8b)

pT = −
C2

2C
′
2e

3λ2t
(
3− 2

√
3
)
+ C2

1C
′
1e

3λ1t
(
3 + 2

√
3
)

z′z6

−
C1C2e

t/ε
[
(9 + 2

√
3)C ′

1e
λ1t + (9− 2

√
3)C ′

2e
λ2t
]

z′z6
(3.4.8c)

q = −4ε
ż

z5
(3.4.8d)

where we have defined

z(r, t) = C1(r)e
λ1t + C2(r)e

λ2t (3.4.9)

The magnitude of the shear tensor is given by

σ =

√
3e(−1+2

√
3)t/ε (C2C

′
1 − C1C

′
2)

z′z3
(3.4.10)

The above relation indicates that the shear vanishes when C1(r) ∝ C2(r). In the next

section we study the thermodynamical properties of our model. In order to ensure that

the shear remains finite and nonzero for all time we make the following choice, as a

specific example, for our metric function

R(r, t) =
[
(a2 + r2)eλ1t + (c2 + r2)eλ2t

]2
(3.4.11)

where a and c are constants and λ1 and λ2 were defined earlier.
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3.5 Thermodynamics

In this section we investigate the evolution of the temperature profile of our model

within the context of extended irreversible thermodynamics. The causal transport

equation in the absence of rotation and viscous stress is

τha
bq̇b + qa = −κ

(
ha

b∇bT + T u̇a

)
(3.5.1)

where hab = gab+uaub projects into the comoving rest space, T is the local equilibrium

temperature, κ (≥ 0) is the thermal conductivity, and τ (≥ 0) is the relaxational time-

scale which gives rise to the causal and stable behaviour of the theory. To obtain the

noncausal Fourier heat transport equation we set τ = 0 in (3.5.1). For the metric

(3.2.1), equation (3.5.1) becomes

τ(qB)·+ AqB = −κ(AT )′

B
(3.5.2)

In order to obtain a physically reasonable stellar model we will adopt the thermody-

namic coefficients for radiative transfer. Hence we are considering the situation where

energy is transported away from the stellar interior by massless particles, moving with

long mean free path through matter that is effectively in hydrodynamic equilibrium,

and that is dynamically dominant. Govender et al (1998, 1999) have shown that the

choice

κ = γT 3τc, τc =

(
α

γ

)
T−ω, τ =

(
βγ

α

)
τc (3.5.3)

is physically reasonable for the thermal conductivity κ, the mean collision time between

massive and massless particles τc, and the relaxation time τ . The quantities α ≥ 0,

β ≥ 0, γ ≥ 0 and ω ≥ 0 are constants. Note that the mean collision time decreases

with growing temperature as expected except for the special case ω = 0, when it is

constant. With these assumptions the causal heat transport equation (3.5.2) becomes

β(qB)·T−ω + A(qB) = −α
T 3−ω(AT )′

B
(3.5.4)
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This equation was comprehensively studied in the noncausal (β = 0) case by Govinder

and Govender (2001) as well as in specific causal cases. In the noncausal case, (3.5.4)

can be solved to yield

(AT̃ )4−ω =
ω − 4

α

∫
A4−ωqB2dr + F (t), ω ̸= 0 (3.5.5a)

ln (AT̃ ) = − 1

α

∫
qB2dr + F (t), ω = 4 (3.5.5b)

where F (t) is a function of integration which is fixed by the surface temperature of

the star. Note that T̃ corresponds to the noncausal temperature when β = 0. For

a constant mean collision time (ω = 0), (3.5.4) can be integrated to give the causal

temperature:

(AT )4 = − 4

α

[
β

∫
A3B(qB)·dr +

∫
A4qB2dr

]
+ F (t) (3.5.6)

In (3.5.3) we can think of β as the ‘causality’ index, measuring the strength of relax-

ational effects, with β = 0 giving the noncausal case.

The effective surface temperature of a star is given by

(T̄ 4)Σ =

(
1

r2B2

)(
L

4πδ

)
(3.5.7)

where L is the luminosity at infinity and δ(> 0) is a constant. The luminosity at

infinity can be calculated from

L∞ = −dm

dv
(3.5.8)

where m(v) is given in (3.4.3). We are now in a position to analyse the evolution of

the temperature in both the causal and noncausal theories.

Figure 3.1 represents the causal temperature (dashed line) and noncausal tempera-

ture (solid line) as a function of the radial coordinate. It is clear that the temperature

in both the causal and noncausal theories is a maximum at the centre of the star and

drops off smoothly as the radial coordinate increases towards the boundary. This trend

also indicates that the surface layers of the star are much cooler than the interior re-

gions. As in the acceleration-free case studied by Naidu et al (2006) and Rajah and
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Figure 3.1: Causal (dashed line)and noncausal (solid line) temperature profiles versus

radial coordinate.

Maharaj (2008), the causal temperature in Figure 3.1 is everywhere higher than its

noncausal counterpart at each interior point of the star. The causal and noncausal

temperatures are equal at the boundary of the star. Figure 3.1 also reveals that relax-

ational effects account for a larger temperature gradient within the stellar core. This

is expected at late times during the collapse as the stellar fluid is far from hydrostatic

equilibrium.

Figure 3.2 illustrates the trend in the relaxation times for the shear stresses. Fol-

lowing Naidu et al (2006) the shear transport equation yields

τ1 =
−p

ṗ+ 8
15
r0σT 4

(3.5.9)

where the coefficient of shear viscosity for a radiative fluid

η =
4

15
r0T

4τ1 (3.5.10)

was utilised. In (3.5.9) we have used p = 1
3
(pT − pr) and r0 is the radiation constant

for photons. We have further assumed that τ1 = β1τc where β1 is a constant. Figure

3.2 also clearly shows that the relaxation time for the shear stresses can vary as much

as a factor of 102s during the evolution of the collapsing fluid. A similar result was
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Figure 3.2: Relaxation time for the shear stress (close to equilibrium - dashed line),

(far from equilibrium - solid line) versus radial coordinate.

found for the acceleration-free model investigated by Naidu et al (2006).

Figure 3.3 shows the proper radius as a function of time. We have followed the

conventions of Chan (2003) in generating Figure 3.3. It is a monotonically decreasing

function as expected since the star is losing mass in the form of a radial heat flux. It is

interesting to note that the formation of the horizon can be avoided in our model even

in the presence of shear, by carefully choosing the arbitrary functions C1(r) and C2(r).

Such a choice would ensure that the mass-to-radius ratio 2mΣ/r̄Σ < 1 is satisfied and

thereby avoids the appearance of the horizon for all time. The horizon-free model of

a radiating, shear-free star undergoing collapse was first considered by Banerjee et al

(2002). The physical viability of this model was studied by Naidu and Govender (2008)

where it was shown that the temperature and luminosity profiles were well behaved

throughout the stellar interior.

3.6 Discussion

We have presented an exact solution that completely describes the temporal and radial

behaviour of a particular class of radiating stars, the Euclidean stars. We have shown
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Figure 3.3: Proper radius versus time.

that the model is reasonably well behaved throughout the collapse process, with the

physical and thermodynamical variables remaining physically viable. Our model of a

radiating star with nonvanishing shear adds to the limited class of such solutions that

are currently available in the literature.
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Chapter 4

Temperature evolution for a

perturbed model

4.1 Introduction

Dissipative processes such as heat generation, shear, particle creation and bulk viscosity

during stellar collapse have been extensively studied in the past. It has been shown in

numerous models that casual transport equations predict thermodynamical behaviour

that are different from their noncausal counterparts. In particular, radiating stellar

collapse has been shown to yield causal temperature profiles which are always higher

within the stellar core. It is well known that during the latter stages of collapse the

core temperature of stars are of the order of 109 K. Using a perturbative scheme in

which the metric functions and thermodynamical variables are perturbed to first order,

Herrera and Santos (1997) have shown that for a temperature range of 106 − 109K,

the relaxation time may vary from as much as τ ≈ 102s to as little as τ ≈ 10−4 s.

Herrera and Santos carried out both Newtonian and post-Newtonian approximations

on the causal heat transport equation. They demonstrated that the causal temperature

gradient can differ as much as five orders of magnitude from the noncausal temperature

gradient.
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It is now our aim to calculate and study the complete temperature profiles of a

compact star undergoing nonadiabatic gravitational collapse to a final static equilib-

rium state. In §4.2 we describe the matter distribution and spacetime geometry of the

stellar interior. The exterior of the star and junction conditions are defined in §4.3. In

§4.4 we construct a radiating model by introducing radial perturbations to first order

in the matter and gravitational variables. The thermodynamics of the compact static

state is studied in §4.5. We summarise our results in §4.6.

4.2 Interior Spacetime

The interior of the star is described by a spherically symmetric line element with

vanishing shear, in comoving and isotropic coordinates, so that

ds2 = −A2dt2 +B2
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
(4.2.1)

where A = A(t, r) and B = B(t, r) are metric functions. The matter distribution for

the stellar interior is represented by the energy momentum tensor of an imperfect fluid

Tab = (µ+ p)uaub + pgab + qaub + qbua (4.2.2)

where µ is the energy density, p is the pressure and q = (qaqa)
1
2 is the magnitude of

the heat flux. The fluid four-velocity u is comoving and is given by

ua =
1

A
δa0 (4.2.3)

The heat flow vector takes the form

qa = (0, q, 0, 0) (4.2.4)

since qaua = 0 and the heat is assumed to flow in the radial direction. The fluid collapse

rate Θ = ua
;a of the stellar model is given by

Θ = 3
Ḃ

AB
(4.2.5)
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The Einstein field equations reduce to

µ = 3
1

A2

Ḃ2

B2
− 1

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
(4.2.6a)

p =
1

A2

(
−2

B̈

B
− Ḃ2

B2
+ 2

Ȧ

A

Ḃ

B

)

+
1

B2

(
B′2

B2
+ 2

A′

A

B′

B
+

2

r

A′

A
+

2

r

B′

B

)
(4.2.6b)

p = −2
1

A2

B̈

B
+ 2

Ȧ

A3

Ḃ

B
− 1

A2

Ḃ2

B2
+

1

r

A′

A

1

B2

+
1

r

B′

B3
+

A′′

A

1

B2
− B′2

B4
+

B′′

B3
(4.2.6c)

q = − 2

AB2

(
−Ḃ′

B
+

B′Ḃ

B2
+

A′

A

Ḃ

B

)
(4.2.6d)

for the line element (4.2.1). In the above system we have used the convention that

overhead dots and primes denote derivatives with respect to the comoving and isotropic

coordinates t and r respectively.

4.3 Exterior Spacetime

Since the star is radiating energy to the exterior it is natural that the exterior spacetime

be described by Vaidya’s outgoing solution given by

ds2 = −
(
1− 2m(v)

r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdϕ2

)
(4.3.1)

where dm
dv

< 0. In order to get a complete description of the radiating star, the interior

spacetime is matched to the Vaidya exterior across a timelike hypersurface. These

junction conditions were first presented by Santos and are widely utilised to model

radiating stars in relativistic astrophysics. Here we present the main results of the
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matching for easy reference. The continuity of the metric functions and the extrinsic

curvature across the boundary Σ yield

m(v) =

(
r3B

2A2
Bt

2 − r2Br −
r3

2B
Br

2

)
Σ

(4.3.2a)

pΣ = (qB)Σ (4.3.2b)

where m(v) represents the total mass contained within a sphere of radius r in (4.3.2a)

and (4.3.2b) ensures the conservation of momentum across the boundary.

4.4 A radiating model

Following Govender et al (2003) we consider a model in which the star undergoes

dissipative collapse and evolves to a stable equilibrium state. In order to obtain an

analytical model we impose the following conditions on our metric functions and ther-

modynamical variables

A(r, t) = A0(r) + ϵa(r)H(t) (4.4.1a)

B(r, t) = B0(r) + ϵb(r)H(t) (4.4.1b)

µ(r, t) = µ0(r) + ϵµ̄(r, t) (4.4.1c)

p(r, t) = p0(r) + ϵp̄(r, t) (4.4.1d)
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where the heat flux is of the order of ϵ (0 < ϵ ≪ 1) and (A0, B0) represent the final

static configuration. For the static end state we have

µ0 = − 1

B2
0

[
2
B′′

0

B0

−
(
B′

0

B0

)2

+
4

r

B′
0

B0

]
(4.4.2a)

p0 =
1

B2
0

[(
B′

0

B0

)2

+
2

r

B′
0

B0

+
2

r

A′
0

A0

+ 2
A′

0

A0

B′
0

B0

]
(4.4.2b)

The pressure isotropy equation for the static configuration is(
A′

0

A0

+
B′

0

B0

)′

−
(
A′

0

A0

+
B′

0

B0

)2

− 1

r

(
A′

0

A0

+
B′

0

B0

)
+ 2

(
A′

0

A0

)2

= 0 (4.4.3)

and the perturbed quantities up to first order in ϵ are

µ̄ = −3µ0
b

B0

H +
1

B3
0

[
−
(
B′

0

B0

)2

b+ 2

(
B′

0

B0

− 2

r

)
b′ − 2b′′

]
H (4.4.4a)

p̄ = −2p0
b

B0

H − 2
b

A2
0B0

Ḧ

+
2

B2
0

[(
B′

0

B0

+
1

r
+

A′
0

A0

)(
b

B0

)′

+

(
B′

0

B0

+
1

r

)(
a

A0

)′]
H (4.4.4b)

q̄ =
2ϵ

B2
0

(
b

A0B0

)′

Ḣ (4.4.4c)

The condition of pressure isotropy for the perturbed matter distribution yields[(
a

A0

)′

+

(
b

B0

)′]′
− 2

[(
a

A0

)′

+

(
b

B0

)′](
A′

0

A0

+
B′

0

B0

)

−1

r

[(
a

A0

)′

+

(
b

B0

)′]
+ 4

A′
0

A0

(
a

A0

)′

= 0 (4.4.5)

Introducing the following parameters

α =
A2

0

bB0

[(
B′

0

B0

+
1

r
+

A′
0

A0

)(
b

B0

)′

+

(
B′

0

B0

+
1

r

)(
a

A0

)′]
(4.4.6a)

β =
A2

0

2b

(
b

A0B0

)′

(4.4.6b)
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allows us to write (4.4.4b) and (4.4.4c) as

p̄ = −2p0
b

B0

H + 2
αb

A2
0B0

H − 2
b

A2
0B0

Ḧ (4.4.7a)

q̄ =
4ϵb

A2
0B

2
0

βḢ (4.4.7b)

Substituting (4.4.7a) and (4.4.7b) into (4.3.2b) we obtain the temporal evolution equa-

tion

Ḧ + 2βḢ − αH = 0 (4.4.8)

where we have taken (p0)Σ = 0 which is necessary for the static end state. Bearing

in mind that we are investigating a collapse scenario, more specifically the evolution

leading to a final equilibrium configuration, we take

H(t) = H0e
−(βΣ+

√
αΣ+β2

Σ)t (4.4.9)

which is obtained by direct integration of (4.4.8) and obeys the following set of bound-

ary conditions

H(t)|t=∞ = 0, H(t)|t=0 = H0

where H0 is a constant. For the proper description of a physically reasonable stellar

situation we require H(t) to decrease with time, so we must have αΣ > 0.

4.5 Thermodynamics

Our primary interest is to investigate the physical viability of a collapsing star evolving

into a final static configuration. To this end, we seek to obtain the temperature profile

of our model within the context of extended irreversible thermodynamics. The role

of relaxational effects during dissipative gravitational collapse have been highlighted

in many studies. Previous works have shown that the inclusion of relaxation effects,

especially during the late stages of collapse (when the stellar fluid is far from hydrostatic
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equilibrium) lead to higher temperatures within the stellar core. The causal transport

equation in the absence of rotation and viscous stress is

τha
bq̇b + qa = −κ

(
ha

b∇bT + T u̇a

)
(4.5.1)

where hab = gab+uaub projects into the comoving rest space, T is the local equilibrium

temperature, κ (≥ 0) is the thermal conductivity, and τ (≥ 0) is the relaxational time-

scale which gives rise to the causal and stable behaviour of the theory. To obtain the

noncausal Fourier heat transport equation we set τ = 0 in (4.5.1). For the metric

(4.2.1), equation (4.5.1) becomes

τ(qB)·+ AqB = −κ(AT )′

B
(4.5.2)

In order to obtain a physically reasonable stellar model we will adopt the thermody-

namic coefficients for radiative transfer. Hence we are considering the situation where

energy is transported away from the stellar interior by massless particles (photons),

moving with a long mean free path through matter that is effectively in hydrodynamic

equilibrium, and that is dynamically dominant. Govender et al (1998, 1999) have

shown that the choice

κ = γT 3τc, τc =

(
α

γ

)
T−ω, τ =

(
βγ

α

)
τc (4.5.3)

is physically reasonable for the thermal conductivity κ, the mean collision time between

massive and massless particles τc and the relaxation time τ . The quantities α ≥ 0,

β ≥ 0, γ ≥ 0 and ω ≥ 0 are constants. Note that the mean collision time decreases

with growing temperature as expected except for the special case ω = 0, when it is

constant.

With these assumptions the causal heat transport equation (4.5.2) becomes

β(qB)·T−ω + A(qB) = −α
T 3−ω(AT )′

B
(4.5.4)

In (4.5.3) we can think of β as the ‘causality’ index measuring the strength of relax-

ational effects, with β = 0 giving the noncausal case. For our perturbative model, we
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write

T = T0 + ϵT̄ S(t) (4.5.5)

where T0 represents the equilibrium temperature and S(t) is an arbitrary function.

Utilising (4.5.5) in (4.5.4) we obtain

T̄ (r) =
−2

α

[
β

A0

S̈

S

∫ (
b

A0B0

)′

T0
−3dr +

1

A0

Ṡ

S

∫
A0T ω−3

0

(
b

A0B0

)′

dr

]

−aT0

A0

+
C1

A0

(4.5.6)

where C1 is an integration constant and

(A0T0)
′ = 0 (4.5.7)

Relation (4.5.7) leads to

T0 =
C0

A0

(4.5.8)

where C0 > 0 is a constant. As pointed out by Herrera and Santos (1997), this is a well

known result first obtained by Tolman which ensures the existence of a temperature

gradient that prevents heat flux from regions of higher to regions of lower gravitational

field intensity during thermal equilibrium. This result follows since A0 is an increasing

factor of r. In order to investigate the evolution of the temperature we assume that

the end state of collapse is described by the static Schwarzschild interior solution in

isotropic coordinates

A0 = ζ1 − ζ2
1− r2

1 + r2
(4.5.9a)

B0 =
2R

1 + r2
(4.5.9b)

where ζ1, ζ2 and R are constants. We can easily calculate the energy density and
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pressure for the static configuration as

µ0 =
3

R2
(4.5.10a)

p0 =
1

R2

(
−1 +

2ζ2(1− r2)

ζ1(1 + r2)− ζ2(1− r2)

)
(4.5.10b)

The vanishing of the pressure at the boundary and the continuity of the metric functions

across Σ leads to

ζ1
ζ2

= 3
(1− r2Σ)

(1 + r2Σ)

and

ζ2 =
1

2

As demonstrated by Bonnor et al (1989), the physical requirements µ0 > 0, p0 > 0,

p0 < µ0 and 0 ≤ r ≤ rΣ are satisfied provided that

r2Σ <
1

3
(4.5.11a)

2m0

rΣ
=

4r2Σ
(1 + r2Σ)

2
<

3

4
(4.5.11b)

where

m0 =
4Rr3Σ

(1 + r2Σ)
3

represents the total mass within the static sphere up to the boundary Σ. Furthermore,

the pressure isotropy condition for the nonstatic configuration is ensured by choosing

a

A0

=
b

B0

=
k1
2

∫
rB2

0dr + k2 (4.5.12)

where k1 and k2 are constants of integration.

It is clear from Figure 4.1 that the causal temperature is greater than the noncausal

temperature everywhere within the stellar interior. We must point out that the contri-

butions from T̄ in (4.5.5) to the overall temperature profile T are due to the positive

contribution of T̄ and the relaxational effects in T̄ . Plots of T̄ in both the casual and
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Figure 4.1: Causal (dashed line)and noncausal (solid line) temperature profiles versus

radial coordinate.

noncausal cases indicate that T̄ is a positive decreasing function from the centre of the

star through to the stellar surface. This perturbative contribution is greatly enhanced

by relaxational effects. Figure 4.1 clearly indicates that the causal temperature gra-

dient is steeper than its noncausal counterpart closer to the core with the difference

dropping off as one gets to the stellar surface.

4.6 Discussion

We have provided a complete description of a radiating star, undergoing dissipative

gravitational collapse in the form of radial heat emission, with the final end state

being static. The temperature profile is obtained for both the casual and noncausal

regimes. It is clear that the temperature induced by perturbations leads to higher core

temperatures. This effect is enhanced by relaxational effects which is noticeable at late

stages of collapse (when the system is far from hydrostatic equilibrium). Our results

confirm earlier findings by Herrera and Santos (1997) in which it was shown that the

causal temperature gradient can be as high as five orders of magnitude greater than its

noncausal counterpart. Our results are also in keeping with the perturbative results of

Govender et al (1999) in which it was shown that for a sphere collapsing from an initial
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static configuration, relaxational effects become dominant during the latter stages of

collapse.
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Chapter 5

Radiating stars with generalised

Vaidya atmospheres

5.1 Introduction

The study of radiating stars in the context of general relativity has generated much

interest in researchers because of the variety of applications in relativistic astrophysics.

These studies are important as they enable us to investigate physical features such

as surface luminosity, dynamical stability, particle production at the stellar surface,

relaxation effects, causal temperature gradients and other thermodynamical processes.

Some relevant references investigating these issues are given by Di Prisco et al (2007),

Govender et al (1998), Herrera et al (2009) and Pinheiro and Chan (2008). Relativistic

radiating stars are also important in the process of gravitational collapse, describing

the final state of stars, formation of singularities and black hole physics, in four and

higher dimensions. Recent investigations in this regard are contained in the works of

Goswami and Joshi (2007), Joshi (2007) and Madhav et al (2005). In particular, the

validity of the cosmic censorship conjecture can be tested in this physical scenario.

The model of a relativistic radiating star undergoing dissipation was completed by

Santos (1985) by analysing the junction conditions at the stellar surface. By matching
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a shear-free interior spacetime to the radiating Vaidya exterior spacetime, he showed

that at the surface the pressure is nonvanishing and proportional to the magnitude

of the heat flux. Subsequently several explicit relativistic radiating stellar models

have been found by investigating the appropriate boundary condition. Kramer (1992)

and Maharaj and Govender (1997) generated nonstatic radiating spheres from a static

model by allowing certain parameters to become functions of time. Kolassis et al (1988)

and Thirukkanesh and Maharaj (2009) assumed geodesic fluid trajectories to produce

new radiating models. In the approach of De Oliviera et al (1985) and Nogueira

and Chan (2004) the model has an initial static configuration before the radiating

sphere starts gradually to collapse. Exact solutions for shear-free interiors which are

conformally flat generate radiating stellar models as shown by Herrera et al (2004),

Herrera et al (2006), Maharaj and Govender (2005) and Misthry et al (2008). Stellar

models which are radiating with nonzero shear are difficult to analyse because of the

complexity of the boundary condition. However even in this case there have been

advances in obtaining exact solutions. Particular exact models have been found by

Naidu et al (2006) and Rajah and Maharaj (2008).

We now seek to generalise the Santos junction conditions by matching a shear-free

interior spacetime to the generalised Vaidya exterior spacetime (Husain 1996). The

energy momentum tensor of the generalised Vaidya spacetime may be interpreted as

a superposition of two fluids, a pressureless null dust and a null string fluid. The

physical properties of the generalised Vaidya spacetime have been discussed by Husain

(1996) and Wang and Wu (1999). Glass and Krisch (1998) have interpreted the exterior

spacetime as a superposition of two fluids outside a relativistic star, the original Vaidya

null fluid and a new null fluid composed of strings. By assuming diffusive transport

for the string fluid Glass and Krisch (1999) found new solutions to Einstein’s equa-

tions with transverse stresses. Physically reasonable energy transport mechanisms have

been generated by Krisch and Glass (2005) in the stellar interior with the generalised

Vaidya metric as the exterior spacetime. These investigations, and other treatments,
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have largely focussed on physical processes in the exterior of the stellar model with

a generalised Vaidya atmosphere. To fully describe a radiating stellar model requires

generation of the junction conditions at the stellar surface. This is now our aim.

We follow the convention that the coupling constant 8πG
c4

and the speed of light c are

unity; the metric has signature (− + ++). In §5.2 we introduce the relevant definitions

and theory describing the junction conditions, and we present the junction conditions

in their most general form. We discuss in §5.3 the defining geometries for the interior

and exterior spacetimes, and the respective energy momentum tensors; the Einstein

field equations are presented in full. In §5.4 we perform the matching of the interior

and exterior spacetimes across the stellar surface in detail. The new set of junction

conditions are derived for the generalised Vaidya spacetime. In §5.5 we indicate how

the new junction conditions generalise the junction conditions previously derived by

Santos (1985). The physical significance of our new result is highlighted in terms of a

string fluid. We consider the new junction condition in the context of conservation of

momentum flux across the stellar boundary in §5.6. In §5.7 we discuss the luminosity

and redshift. An exact solution to the generalised boundary condition is given in §5.8.

We discuss the significance of our results in §5.9.

5.2 Junction conditions

Spacetime needs to be divided into two distinct regions, the interior spacetime M−

and the exterior spacetime M+ for a stellar model. The boundary of the star Σ serves

as the matching surface for M− and M+. The boundary or stellar surface is a timelike

three-dimensional hypersurface. We assume that Σ is endowed with an intrinsic metric

gαβ so that

ds2Σ = gαβdξ
αdξβ
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The intrinsic coordinates on Σ are given by ξα where α = 1, 2, 3. The line elements in

the exterior and interior spacetimes, respectively, have the form

ds2± = gabdχ
a
±dχ

b
±

The coordinates in the exterior and interior spacetimes, respectively, are χa
± where

a = 0, 1, 2, 3. For consistency we require that

(ds2+)Σ = (ds2−)Σ = ds2Σ (5.2.1)

so that the line elements match on the boundary Σ. This implies that the coordinates

of Σ in M± are χa
± = χa

±(ξ
α). It is clear that the first junction condition (5.2.1) is

generated by the continuity of the metric across Σ.

The second junction condition is generated by the continuity of the extrinsic cur-

vature of Σ across the boundary. The extrinsic curvature of Σ is defined by

K±
αβ ≡ −n±

a

∂2χa
±

∂ξα∂ξβ
− n±

a Γ
a
bc

∂χb
±

∂ξα
∂χc

±

∂ξβ
(5.2.2)

In the above n±
a (χ

b
±) are the components of the vector normal to Σ. The second

junction condition is then given by

(K+
αβ)Σ = (K−

αβ)Σ (5.2.3)

Note that the junction conditions (5.2.1) and (5.2.3) are equivalent to the Lichnerowicz

(1955) and O’ Brien and Synge (1952) junction conditions.

5.3 Interior and exterior spacetimes

The line element for the interior manifold M− is given by

ds2 = −A2(t, r)dt2 +B2(t, r)[dr2 + r2(dθ2 + sin2 θdϕ2)] (5.3.1)
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in comoving and isotropic coordinates. The interior spacetime is expanding and accel-

erating but is shear-free. The following Einstein tensor components

G−
00 = 3

Ḃ2

B2
− A2

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
(5.3.2a)

G−
01 = − 2

B2

(
BḂ′ −B′Ḃ −BḂ

A′

A

)
(5.3.2b)

G−
11 =

1

A2

(
−2BB̈ − Ḃ2 + 2BḂ

Ȧ

A

)
+

1

B2

(
B′2 + 2BB′A

′

A
+

2

r
B2A

′

A
+

2

r
BB′

)
(5.3.2c)

G−
22 = −2r2

BB̈

A2
+ 2r2BḂ

Ȧ

A3
− r2

Ḃ2

A2
+

r
A′

A
+ r

B′

B
+ r2

A′′

A
− r2

B′2

B2
+ r2

B′′

B
(5.3.2d)

G−
33 = sin2 θG−

22 (5.3.2e)

are nonvanishing for the shear-free metric (5.3.1). In the above dots and primes denote

differentiation with respect to the coordinates t and r respectively. A physically relevant

interior matter distribution that is consistent with (5.3.1) and (5.3.2) is given by

T−
ab = (µ+ p)uaub + pgab + qaub + qbua (5.3.3)

where µ is the energy density, p is the isotropic pressure, qa is the radial heat flux

vector and ua = 1
A
δa0 is the comoving fluid four-velocity. The Einstein field equations
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G−
ab = T−

ab for the interior manifold M− are given by

µ = 3
Ḃ2

A2B2
− 1

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
(5.3.4a)

p =
1

A2

(
−2

B̈

B
− Ḃ2

B2
+ 2

Ȧ

A

Ḃ

B

)

+
1

B2

(
B′2

B2
+ 2

A′

A

B′

B
+

2

r

A′

A
+

2

r

B′

B

)
(5.3.4b)

p = −2
B̈

A2B
+ 2

Ȧ

A3

Ḃ

B
− Ḃ2

A2B2
+

1

r

A′

AB2

+
1

r

B′

B3
+

A′′

AB2
− B′2

B4
+

B′′

B3
(5.3.4c)

q = − 2

AB2

(
−Ḃ′

B
+

B′Ḃ

B2
+

A′

A

Ḃ

B

)
(5.3.4d)

where we have used (5.3.2) and (5.3.3).

The line element for the exterior manifold M+ is taken to be

ds2 = −
(
1− 2

m(v, r)

r

)
dv2 − 2dvdr + r2(dθ2 + sin2 θdϕ2) (5.3.5)

where m(v, r) is the mass function, and is related to the gravitational energy within a

given radius r (Lake and Zannias 1991, Poisson and Israel 1990). This metric is often

called the generalised Vaidya spacetime since it reduces to the Vaidya spacetime when

m = m(v) which is the mass of the star as measured by an observer at infinity. The
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following nonzero Einstein tensor components

G+
00 = − 2

r2
mvṽ

2 + 2
(r − 2m)

r3
mr (5.3.6a)

G+
01 =

2

r2
mr (5.3.6b)

G+
22 = −rmrr (5.3.6c)

G+
33 = sin2 θG+

22 (5.3.6d)

are all defined in terms of m = m(v, r) and we have used the notation

mv =
∂m

∂v
, mr =

∂m

∂r
, ṽ =

dv

dτ

where τ is a timelike coordinate on the hypersurface.

It has been demonstrated by Husain (1996) and Wang and Wu (1999) that an

energy momentum tensor consistent with (5.3.5) and (5.3.6) is

T+
ab = T

(n)
ab + T

(m)
ab (5.3.7a)

T
(n)
ab = µ̃lalb (5.3.7b)

T
(m)
ab = (ρ+ P ) (lanb + lbna) + Pgab (5.3.7c)

which represents a superposition of a pressureless null dust and a null string fluid. In

general T+
ab represents a Type II fluid as defined by Hawking and Ellis (1973). The

null vector la is a double null eigenvector of the energy momentum tensor T+
ab. The

weak and strong energy conditions, and the dominant energy conditions are satisfied

for proper choices of the mass function m(v, r).
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In (5.3.7) we have introduced the two null vectors

la = δ0a (5.3.8a)

na =
1

2

[
1− 2

m(v, r)

r

]
δ0a + δ1a (5.3.8b)

where lal
a = nan

a = 0 and lan
a = −1. The Einstein field equations G+

ab = T+
ab for the

exterior manifold M+ are then given by

µ̃ = −2
mv

r2
ṽ2 (5.3.9a)

ρ = 2
mr

r2
(5.3.9b)

P = −mrr

r
(5.3.9c)

where we have utilised (5.3.6) and (5.3.7). We interpret µ̃ as the energy density of the

null dust radiation; ρ and P are the null string energy density and null string pressure,

respectively.

5.4 Matching

The intrinsic metric to the hypersurface Σ is defined by

ds2Σ = −dτ 2 + Y2
(
dθ2 + sin2 θdϕ2

)
(5.4.1)

with coordinates ξα = (τ, θ, ϕ) and Y = Y(τ). The timelike coordinate τ is defined only

on Σ and the coordinates are comoving. In the interior manifold M−, the equation of

the hypersurface Σ is defined by

f(t, r) = r − rΣ = 0

48



where rΣ is a constant. This implies that the vector ∂f/∂χa
− is orthogonal to Σ.

Therefore the unit normal vector to Σ is

n−
a = [0, B(rΣ, t), 0, 0] (5.4.2)

On the hypersurface Σ we must set dr = 0 in (5.3.1) and when comparing with (5.4.1)

we find

A(rΣ, t)dt = dτ (5.4.3a)

rΣB(rΣ, t) = Y(τ) (5.4.3b)

for the first junction condition (5.2.1).

The extrinsic curvature K−
αβ can be evaluated with the quantities (5.2.2), (5.3.1)

and (5.4.2). The surviving nonzero components are

K−
11 =

(
− 1

B

A′

A

)
Σ

(5.4.4a)

K−
22 = [r(rB)′]Σ (5.4.4b)

K−
33 = sin2 θK−

22 (5.4.4c)

which are valid on the stellar surface Σ. In the exterior region M+ the stellar surface

is defined by the equation

f(r, v) = r − rΣ(v) = 0

Consequently the vector orthogonal to the stellar surface Σ is ∂f
∂χa

+
=
(
−drΣ

dv
, 1, 0, 0

)
.

Then the unit vector normal to the hypersurface Σ can be written as

n+
a =

(
1− 2m

rΣ
+ 2

drΣ
dv

)−1/2(
−drΣ

dv
, 1, 0, 0

)
(5.4.5)
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For the exterior region M+ the first junction condition (5.2.1) yields the results

rΣ(v) = Y(τ) (5.4.6a)

(
1− 2m

r
+ 2

dr

dv

)
Σ

=

(
dv

dτ

)−2

Σ

=

(
1

ṽ2

)
Σ

(5.4.6b)

when comparing the line elements (5.3.5) and (5.4.1). Using equation (5.4.6b) the unit

normal vector (5.4.5) can be written as

n+
a =

(
− dr

dτ
,
dv

dτ
, 0, 0

)

= (−r̃, ṽ, 0, 0) (5.4.7)

In the above we have utilised the notation

r̃ =
dr

dτ
, ṽ =

dv

dτ

The extrinsic curvature K+
αβ may now be evaluated from the quantities (5.2.2), (5.3.5),

(5.4.6b) and (5.4.7). The nonvanishing components of the extrinsic curvature tensor

are calculated and are given as follows

K+
11 =

[
ṽ̃

ṽ
− ṽ

m

r2
+ ṽ

mr

r

]
Σ

(5.4.8a)

K+
22 =

[
ṽ

(
1− 2m

r

)
r + r̃r

]
Σ

(5.4.8b)

K+
33 = sin2 θK+

22 (5.4.8c)

which are valid only on the stellar surface Σ. Observe the appearance of the term

containing mr in K+
11 which does not exist in the treatment of Santos (1985). As we

shall see later this has a profound effect on the physics of the model.
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Equations (5.4.3) and (5.4.6) correspond to the first junction condition (5.2.1).

Observe that the quantity τ was defined on the surface Σ as an intermediate variable.

On eliminating τ we find that

A(rΣ, t)dt =

(
1− 2m

rΣ
+ 2

drΣ
dv

)1/2

dv (5.4.9a)

rΣ(v) = rB(rΣ, t) (5.4.9b)

Equations (5.4.9) are the necessary and sufficient conditions for the first junction con-

dition (5.2.1) to be valid.

By equating the extrinsic curvature components (5.4.4) and (5.4.8) we generate the

second set of junction conditions (5.2.3). These are given by(
− 1

B

A′

A

)
Σ

=

[
ṽ̃

ṽ
− ṽ

m

r2
+ ṽ

mr

r

]
Σ

(5.4.10a)

(r(rB)′)Σ =

[
ṽ

(
1− 2m

r

)
r + r̃r

]
Σ

(5.4.10b)

The mass profile in terms of the metric functions can be generated by eliminating r, r̃

and ṽ from (5.4.10b) with the help of (5.4.3) and (5.4.6). We find that

m(v, r) =

[
rB

2

(
1 + r2

Ḃ2

A2
− 1

B2
(B + rB′)2

)]
Σ

(5.4.11)

which is the total gravitational energy contained within the stellar surface Σ. From

(5.4.3a) and (5.4.6a) we can produce the relationship

r̃Σ =

(
r
Ḃ

A

)
Σ

Using this expression for r̃Σ and substituting equation (5.4.11) into the junction con-

dition (5.4.10b) we obtain the following expression

ṽΣ =

(
r
Ḃ

A
+

(rB)′

B

)−1

Σ

(5.4.12)
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Now differentiating the above expression with respect to τ , and using the restriction

(5.4.3a) on the surface, we get

ṽ̃ =

 1

A

(
1 + r

B′

B
+ r

Ḃ

A

)−2(
rḂ

Ȧ

A2
+ r

B′Ḃ

B2
− r

Ḃ′

B
− r

B̈

A

)
Σ

(5.4.13)

Then substituting (5.4.12) and (5.4.13) into the junction condition (5.4.10a) and using

the restrictions (5.4.3b) and (5.4.6a) on the surface, we get(
− 1

B

A′

A

)
=

(
1 + r

B′

B
+ r

Ḃ

A

)−1

×

[
mr

r
+

B′

B2
+

r

2

B′2

B3
− r

2

Ḃ2

BA2
− 1

A

(
r
Ḃ′

B
+ r

B̈

A
− r

B′Ḃ

B2
− rḂ

Ȧ

A2

)]
Σ

This expression may be simplified further: multiply with 1 + rB′

B
+ r Ḃ

A
and utilise

(5.3.4b) and (5.3.4d). We then arrive at the result

p =
(
qB − 2

mr

r2B2

)
Σ

which generalises the junction condition of Santos (1985).

Hence we have demonstrated that equations (5.4.10) are equivalent to

m(v, r) =

[
rB

2

(
1 + r2

Ḃ2

A2
− 1

B2
(B + rB′)2

)]
Σ

(5.4.14a)

p =
(
qB − 2

mr

r2

)
Σ

(5.4.14b)

We have shown that (5.4.14) are the necessary and sufficient conditions for the second

junction condition (5.2.3) to be valid.

5.5 Santos conditions generalised

We have generated the relationships (5.4.9) and (5.4.14) so that the junction conditions

(5.2.1) and (5.2.3) are satisfied for the shear-free interior spacetime (5.3.1) and the gen-

eralised Vaidya exterior spacetime (5.3.5) across the hypersurface Σ. This generalises
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the Santos (1985) result for a relativistic radiating star when m = m(v). Observe that

when m depends on the coordinate v only then (5.4.14b) becomes

p = qB (5.5.1)

at the boundary Σ, which is the earlier Santos junction condition. When (5.5.1) is valid

then the pressure p on the boundary depends only on the heat flux q. We have shown

here that if m = m(v, r) then (5.4.14b) is valid, and the pressure p on the boundary

depends on the heat flux q and the gradient mr(v, r).

The generalised Vaidya spacetime has physical significance and contains many

known solutions of the Einstein field equations with spherical symmetry. It contains

the monopole solution, the de Sitter and Anti-de Sitter solutions, the charged Vaidya

solution and the radiating dyon solution. The physical features and the energy mo-

mentum complexes, that provide acceptable energy momentum distributions for these

systems, have been studied by Barriola and Vilenkin (1989), Chamorro and Virbhadra

(1995), Virbhadra (1990a, 1990b,1999) and Yang (2007). Glass and Krisch (1998,1999)

and Krisch and Glass (2005) have interpreted the generalised Vaidya spacetime to rep-

resent a superposition of an atmosphere composed of two fluids: a string fluid and a

pressureless null dust fluid. This atmosphere may model several physical situations

at different distance scales, eg. the exterior regions of black holes (distance scale of

multiples of the Schwarzschild radius) and globular clusters containing a component of

dark matter (distance scale of the order of parsecs). The additional term 2mr

r2
in the

boundary condition (5.4.14b) arises from the matching at the surface Σ. This quan-

tity has physical significance and can be interpreted as a particular contribution from

the energy momentum tensor. We observe that the term 2mr

r2
in (5.4.14b) is the same

quantity as that in (5.3.9b). Therefore we may interpret the quantity 2mr

r2
as the string

density ρ.

We can therefore write (5.4.14b) in the more transparent form

p = [qB − ρ]Σ (5.5.2)
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at the boundary Σ. Consequently for a radiating star with outgoing dissipation in the

form of radial heat flow, with the generalised Vaidya spacetime as the exterior, the

pressure on the surface depends on the interior heat flux q and the exterior string den-

sity ρ. The appearance of the quantity ρ in (5.5.2) allows for more general behaviour

that was the case in the Santos (1985) treatment. From (5.5.1) we observe that q = 0

implies that p = 0 on Σ and the exterior manifold M+ must be the Schwarzschild exte-

rior metric with m being constant. In (5.5.2) we note that we obtain the Schwarzschild

exterior geometry when q = 0 = ρ. However it is clear from (5.5.2) that when qB = ρ

then p = 0 on Σ and the exterior spacetime remains the generalised Vaidya spacetime

with m = m(v, r). In addition, when q = 0 then p = −ρ on Σ and the interior is not

radiating.

5.6 Momentum Flux

It is possible to provide a physical interpretation of our result by consideration of the

momentum flux across the boundary Σ. Since the quantity (5.4.14a) represents the

total gravitational energy for a sphere of radius r within Σ we can write m(v, r) =

m(t, r). Partially differentiate (5.4.14a) with respect to t to give(
∂m

∂t

)
Σ

=

(
r3

2

Ḃ3

A2
+

r3BḂB̈

A2
− r3BḂ2Ȧ

A3
− r2Ḃ′ − r3B′Ḃ′

B
+

r3

2

B′2Ḃ

B2

)
Σ

(5.6.1)

Then using the interior field equations (5.3.4b) and (5.3.4d) we can write (5.6.1) as(
∂m

∂t

)
Σ

= −r3

2
ḂB2p− r2

2
AB2(B + rB′)q (5.6.2)

Now taking note of (5.4.14b) and simplifying (5.6.2) we obtain(
∂m

∂t

)
Σ

= −r2

2

pA

v̇
−
(
2mr

r2

)
r2

2

A

v̇
+

(
2mr

r2

)
ṙr2A

2
(5.6.3)

where we have used (5.4.3a). Using the standard property of partial differentiation

dm = mvdv +mrdr we have (
∂m

∂t

)
Σ

=
ṽ

t̃
mv +

r̃

t̃
mr (5.6.4)
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Finally (5.6.3) and (5.6.4) yield

pΣ = − 2

r2
ṽ2mv −

2

r2
mr (5.6.5)

which reduces to the corresponding Santos (1985) equation when m = m(v).

The radial flux of momentum across the hypersurface Σ is defined by

F± = e±a
0 n±bT±

ab

where e±a
0 and n±b are vectors which are respectively tangent and normal to Σ. For

conservation of momentum flux across Σ we must have

F+ = F− (5.6.6)

In the interior manifold M− we have the forms

e−a
0 =

1

A
δa0

n−b =
1

B
δb1

and T−
ab is given by (5.3.3). Then we can generate the quantity

F− = −qB (5.6.7)

In the exterior manifold M+ we have the forms

e+a
0 =

(
1− 2

r
m+ 2

dr

dv

)−1/2(
δa0 +

dr

dv
δa1

)

n+b = −ṽδb0 +

[
r̃ + ṽ

(
1− 2

r
m

)]
δb1

and T+
ab is given by (6.2.11). This produces the quantity

F+ =
2

r2
ṽ2mv (5.6.8)

Then (5.6.5)-(5.6.8) yields the result

pΣ =

(
qB − 2

r2
mr

B2

)
Σ
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which is the same as (5.4.14b). Therefore the junction condition (5.4.14b) corresponds

to the conservation of the radial flux of momentum across the hypersurface Σ. It

represents the local conservation of momentum.

5.7 Surface redshift and luminosity

The junction condition given by (5.5.2) effectively relates the isotropic fluid pressure

on the stellar surface to the interior heat flux and the exterior string fluid density. This

relationship should have an effect on observable quantities measured on the surface of

the star as well as in the surrounding region. Investigations carried out by Chan (1997,

2003) show that the surface redshift and luminosity and the asymptotic luminosity play

a crucial role in understanding the formation of astrophysical black holes during the

radiative gravitational collapse of a dense star. In general, the redshift of the emitted

photon radiation observed on the stellar boundary is given by the equation

zΣ =

√
LΣ

L∞
− 1 (5.7.1)

where LΣ is the luminosity of the radiation on the surface of the star and is given by

LΣ = −
(
dv

dτ

)2
dm

dv

= −
(
dv

dτ

)
∂m

∂t

dt

dτ
(5.7.2)

where dv
dτ

is given in terms of the interior gravitational potentials by

dv

dτ
=

(
r
Ḃ

A
+

(rB)′

B

)−1

(5.7.3)

∂m
∂t

is given in terms of the isotropic pressure p and the magnitude of the heat flux q

by

∂m

∂t
= −1

2

(
pr3B2Ḃ + qr2AB2(B + rB′)

)
(5.7.4)

and

dt

dτ
=

1

A
(5.7.5)
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L∞ represents the luminosity of the radiation as measured by a stationary observer at

an asymptotic distance (r −→ ∞) away from the radiating star and has the form

L∞ = −dm

dv

= −∂m

∂t

dt

dτ

(
dv

dτ

)−1

(5.7.6)

With the new generalised junction condition (5.5.2), equation (5.7.4) can be rewritten

in the form

∂m

∂t
= −1

2
pr2B2

(
rḂ + A+ r

AB′

B

)
+

1

2
ρr2AB2

(
1 + r

B′

B

)
(5.7.7)

and using (5.7.7), (5.7.5) and (5.7.3) in (5.7.6) and (5.7.2) we are able to construct the

general forms for the surface and asymptotic luminosities as follows

LΣ =
1

2
r2B2

[
p

(
r
Ḃ

A
+

(rB)′

B

)
− ρ

(
1 + r

B′

B

)](
r
Ḃ

A
+

(rB)′

B

)−1

(5.7.8a)

L∞ =
1

2
r2B2

[
p

(
r
Ḃ

A
+

(rB)′

B

)
− ρ

(
1 + r

B′

B

)](
r
Ḃ

A
+

(rB)′

B

)
(5.7.8b)

It is interesting to note that in the above system L∞ and LΣ differ by the quantity(
r Ḃ
A
+ (rB)′

B

)2
. When ρ = 0 we have that

LΣ =
1

2
r2B2p, L∞ =

1

2
r2B2p

(
r
Ḃ

A
+

(rB)′

B

)2

(5.7.9)

which are the standard results so that ρ ̸= 0 for the generalised Vaidya metric generates

different values for the surface and asymptotic luminosities. Remarkably the form of

the ratio LΣ

L∞
, remains the same as in the standard scenario, and can be written as

LΣ

L∞
=

(
dv

dτ

)−2

(5.7.10)

Now with the system (5.7.8) and equation (5.7.1) we can generate the surface redshift

as follows

zΣ =

(
r
Ḃ

A
+

(rB)′

B

)−1

− 1 (5.7.11)
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Observe that the structural form of the surface redshift (5.7.11) does not change from

the standard form; however the gravitational potentialsA andB in (5.7.11) are different

from the interior potentials as they now satisfy the Einstein field equations as well as

a new junction condition, namely equation (5.5.2). In view of this fact it would be

appropriate to now relabel the new set of metric potentials in the following way

A −→ X, B −→ Y

and with the above, equation (5.7.11) may be recast as

zΣ =

(
r
Ẏ

X
+

(rY )′

Y

)−1

− 1 (5.7.12)

This distinguishes the surface redshifts for the standard Vaidya and generalised Vaidya

metrics. We can consider (5.7.11) as a special case of (5.7.12).

We can summarise our results as follows:

• In the limit when ρ = 0 (when p = qB), we regain the standard forms for the

surface and asymptotic luminosities.

• A stationary observer, located at some asymptotic distance (r −→ ∞) away from

the star, observes a much weaker luminosity signal when the atmosphere of the

star contains the string fluid (when compared with the standard Vaidya exterior).

• The surface redshift for the generalised Vaidya metric contains the standard result

even though the structural form for the formula remains the same in both cases.

5.8 An exact solution

We now turn our attention to relativistic stellar models in which the null fluid parti-

cles move along geodesics from the core and up through to the stellar surface where

the radiation is lost to the exterior. Such models were investigated by Govender

and Thirukkanesh (2009), Rajah and Maharaj (2008) and Thirukkanesh and Maharaj
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(2009). In particular the Govender and Thirukkanesh model studied a radiating star

undergoing geodesic heat flow in the presence of the cosmological constant. This sit-

uation may be interpreted as a star dissipating energy while immersed in a spacetime

background filled with a fluid having negative pressure. These works were carried out

using the standard Santos junction condition p = qB. We would now like to extend

these models by using the new generalised junction condition (5.5.2), and making use

of the fact that the stellar atmosphere is now a well defined two-fluid system. For

our investigations, we consider the string fluid density ρ to be constant on the stellar

surface and as we will see in the next chapter that this is not physically unreasonable

as this situation corresponds to the diffusion of the string fluid.

For geodesic motion of fluid particles in heat dissipation, the gravitational potential

A = 1. The fluid pressure and radial heat flux are given by

p =

(
−2

B̈

B
− Ḃ2

B2

)
+

1

B2

(
B′2

B2
+

2

r

B′

B

)
(5.8.1a)

q = − 2

B2

(
−Ḃ′

B
+

ḂB′

B2

)
(5.8.1b)

from (5.3.4b) and (5.3.4d) respectively. The condition of pressure isotropy admits the

following analytical form

B(r, t) = − d

c1(t)r2 − c2(t)
(5.8.2)

for the gravitational potential B. Here d is an arbitrary constant and c1(t) and c2(t)

are functions of integration which have to be determined in order to complete the exact

solution. With the above system (5.8.1) and the form (5.8.2) the generalised junction

condition given by (5.5.2) may be written as

−4db(ċ1c2 − c1ċ2)(c1b
2 − c2)− 4c1c2(c1b

2 − c2)
2 − 2d2(c̈1b

2 − c̈2)(c1b
2 − c2)

+5d2(ċ1b
2 − ċ2)

2 − ρd2(c1b
2 − c2)

2 = 0 (5.8.3)

where we have taken r = rΣ = b = constant, on the stellar surface. It is important to

note the presence of the additional term that arises due to the presence of the string
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fluid density ρ ̸= 0. The density ρ is taken to be constant on the stellar boundary

and this corresponds to the diffusion of the string fluid in the exterior of the star. In

the limit when the string density goes to zero, we regain the earlier equation obtained

by Thirukkanesh and Maharaj (2009). To integrate (5.8.3) we make use of the new

transformation

u(t) = c1b
2 − c2 (5.8.4)

Then equation (5.8.3) can be rewritten as

4bdu2ċ1 + 4(u2 − bdu̇)uc1 − 4b2u2c21 = d2
[
(2uü− 5u̇2) + ρu2

]
(5.8.5)

Equation (5.8.5) is a Riccati equation in c1 but is still difficult to solve in general. If

we let u = α (constant) then (5.8.5) becomes

ċ1 +
α

bd
c1 −

b

d
c21 =

d

4b
ρ (5.8.6)

We now make use of the transformation

c1 = −d

b

ẇ

w
(5.8.7)

where w(t) is an arbitrary function. Then equation (5.8.6) becomes

ẅ +
α

bd
ẇ +

ρ

4
w = 0 (5.8.8)

which is a second order linear ordinary differential equation with constant coefficients

and can be easily integrated. The general solution to equation (5.8.8) is given by

w(t) = g1(t) exp [λ1t] + g2(t) exp [λ2t] (5.8.9)

In the above solution g1(t) and g2(t) are functions of integration and

λ1 =
1

2

(√
α2

b2d2
− ρ− α

bd

)
, λ2 = −1

2

(√
α2

b2d2
− ρ+

α

bd

)
Then the functions c1(t) and c2(t) become

c1(t) = − d

2b

[
g1(t)

(
η − α

bd

)
− g2(t)

(
α
bd
+ η
)
exp(−ηt)

g1(t) + g2(t) exp(−ηt)

]
(5.8.10a)

c2(t) = −bd

2

[
g1(t)

(
η − α

bd

)
− g2(t)

(
α
bd
+ η
)
exp(−ηt)

g1(t) + g2(t) exp(−ηt)

]
− α (5.8.10b)

60



Consequently the gravitational potential B has the form

B(r, t) =
−2db

d

[
g1(t)(η− α

bd)−g2(t)( α
bd

+η) exp(−ηt)

g1(t)+g2(t) exp(−ηt)

]
(b2 − r2) + 2bα

(5.8.11)

and the metric has the form

ds2 = −dt2 +
4d2b2

[Ω(t)(b2 − r2)d+ 2bα]2
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
(5.8.12)

where Ω(t) is an arbitrary function given by

Ω(t) =
g1(t)

(
η − α

bd

)
− g2(t)

(
α
bd
+ η
)
exp(−ηt)

g1(t) + g2(t) exp(−ηt)
(5.8.13)

in terms of g1(t) and g2(t).

Our new exact solution (5.8.12) is similar, in structure, to the solution found by

Govender and Thirukkanesh (2009). However our model results from a different physi-

cal scenario since the atmosphere of our star does not contain the cosmological constant

Λ, but a two-fluid system in which one of the components is a string fluid. This model

corresponds to geodesic heat dissipation in a relativistic star when the string fluid in

the stellar atmosphere is undergoing diffusion. The solution (5.8.12) can now be used

in the framework of irreversible causal and noncausal thermodynamics, as in the previ-

ous chapters, to study the temperature evolution of the radiating star. This is ongoing

research.

5.9 Discussion

In this chapter we have produced a general model of a relativistic radiating star by

performing the smooth matching of a shear-free interior spacetime to the generalised

Vaidya exterior spacetime, across a timelike spatial hypersurface. We have demon-

strated that with the generalised Vaidya radiating metric, the junction conditions on

the stellar surface change substantially, and consequently represents a more general at-

mosphere surrounding the star. The atmosphere is a superposition of the pressureless
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null dust and a string fluid. We find that the density of the string affects the fluid

pressure at the stellar boundary. We have shown explicitly that

p = qB − ρstring

at the stellar surface. If the weak and strong energy conditions or the dominant energy

conditions are satisfied then ρstring ≥ 0 (µ ̸= 0) and ρstring ≥ Pstring ≥ 0 (µ ̸= 0)

respectively. This indicates that for outgoing heat flux in gravitational collapse, the

string density reduces the pressure on the stellar boundary. It is interesting to note

that we have shown using a geometric approach that the derivative of the mass function

with respect to the exterior radial coordinate is related to the string density.

We have also demonstrated the importance and impact that the generalised junction

condition has in constructing physically viable star models, as well as its crucial role in

describing the physics of relativistic stellar atmospheres. Our new junction condition

has been directly applied in the construction of the luminosity and redshift profiles

on the stellar surface as well as in the local atmosphere of the star. We have shown

explicitly, that these luminosities have a different form from the standard results. It

was also found that the surface redshift of the emitted null radiation is affected by the

new junction condition since the metric potentials are different. The metric potentials

have to satisfy the new generalised condition on the stellar boundary.

The generalised junction condition has also been used to extend the models of

Govender and Thirukkanesh (2009) and Thirukkanesh and Maharaj (2009). We have

extended the model of a radiating star undergoing geodesic heat flow in the presence

of a generalised atmosphere. An exact solution to the generalised junction condition

(5.5.2) was found in terms of elementary functions. Even though the form of the

solution is the same as Govender and Thirukkanesh (2009) we are in a position to

model a two-fluid atmosphere with a constant string energy density. In future work we

intend to relate our results to astrophysical objects.
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Chapter 6

Generalised junction conditions

with shear

6.1 Introduction

Exact solutions of the Einstein field equations describing stellar configurations have

formed an active area of research within the framework of relativistic astrophysics.

The discovery of the Schwarzschild metrics (1916a, 1916b) have enabled researchers

to model various static stars with a wide spectrum of interior matter distributions in-

cluding perfect fluid sources, charged interiors and anisotropic matter. However, these

static models may represent only a small part of a star’s evolution. Observations indi-

cate that stars in general are continuously radiating energy to the exterior spacetime

while undergoing gravitational collapse. With the discovery of the exterior Vaidya radi-

ating solution (1951), it became possible to model a dynamically unstable, relativistic

star emitting null radiation across the stellar surface. The Vaidya solution is a unique

spherically symmetric solution of the Einstein field equations which describes a pure

radiation atmosphere. The junction conditions required for the complete description of

a spherically symmetric, shear-free stellar core undergoing nonadiabatic collapse with

a radiation atmosphere was first provided by Santos (1985). In this scenario, an imper-
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fect contracting sphere with radial heat flow is matched to Vaidya’s outgoing metric

across a timelike hypersurface. The main feature of the junction conditions require

that the pressure at the boundary of the star be nonzero which differed from static

interiors matched to the exterior Schwarzschild solution. In the latter, the pressure at

the boundary was required to vanish as there was no heat flux across the surface of the

star.

The Santos junction conditions have subsequently been generalised to include shear,

electromagnetic field, bulk viscosity and nonsphericity. These models have produced

a rich vein of physically tractable stellar models including acceleration-free collapse,

collapse from an initial static configuration, gamma-ray bursts, expansion free collapse

and Euclidean stars. The physical viability of these models have been extensively

studied within the framework of extended irreversible thermodynamics. Relaxational

effects have been highlighted within the stellar interior, particularly in the late stages

of collapse.

In the previous chapter the Santos junction conditions were generalised to describe

stars that have a two-fluid atmosphere. The exterior of such a star is described by

the generalised Vaidya solution in which the dynamical mass is a function of both the

temporal and radial coordinate. The generalised Vaidya solution has been widely em-

ployed in the study of the end state of gravitational collapse. It was shown that the

energy momentum tensor that is consistent with the generalised Vaidya solution con-

sists of a two-component fluid of strings and null radiation. In the previous chapter we

have shown that the matching of a general spherically symmetric, shear-free radiating

stellar interior to the exterior generalised Vaidya spacetime requires that the pressure

on the boundary be nonvanishing, similar to the Santos junction conditions. The main

difference is that the string density makes a contribution at the boundary. This is an

important result which highlights the role of the string component of the atmosphere

on the internal dynamics. We now aim to extend the results of the previous chapter

to include the effects of shear in the interior of the radiating model.
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In §6.2 we present the generalised junction condition for a radiating star with non-

vanishing shearing stresses. The Lichnerowiscz and O’ Brien and Synge conditions are

studied in detail in §6.3. The junction conditions are derived using a geometric argu-

ment. In §6.4 we study some physical features of the generalised boundary condition

and investigate models of isotropic strings and string fluid diffusion. Finally, in §6.5

we discuss our results.

6.2 Generalised junction conditions

The stellar interior is taken to be the most general relativistic fluid having nonzero

shear, expansion and acceleration and is described by the line element

ds2 = −A2dt2 +B2dr2 +R2
(
dθ2 + sin2 θdϕ2

)
(6.2.1)

Here A, B and R are the metric potentials describing the gravitational field inside the

star and are functions of the interior comoving coordinates t and r. The interior stellar

fluid is described by the following energy momentum tensor

T−
ab = (µ+ p)uaub + pgab + πab + qaub + qbua (6.2.2)

where µ and p are the energy density and isotropic pressure respectively, ua and qa are

the fluid four-velocity and the heat flux vectors respectively, and πab is the anisotropic

stress (pressure) tensor. In general the anisotropic pressure tensor has the following

form

πab = (pr − pT )

(
nanb −

1

3
hab

)
(6.2.3)

Here pr is the radial component of the interior pressure, pT is the tangential pressure

component, and n is a unit radial vector given by

na =
1

B
δa1 (6.2.4)

The interior isotropic fluid pressure p is related to the radial and tangential components

of pressure by the equation

p =
1

3
[pr + 2pT ]
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The kinematical quantities associated with the metric (6.2.1) may be given as

σ =
1

A

(
Ḃ

B
− Ṙ

R

)
(6.2.5a)

Θ =
1

A

(
Ḃ

B
+ 2

Ṙ

R

)
(6.2.5b)

a =
A′

A
(6.2.5c)

where σ is the shear, Θ is the scalar expansion and a is the fluid acceleration. The

energy momentum tensor (6.2.2) admits the following nonvanishing components

T−
00 = µA2 (6.2.6a)

T−
01 = −qAB (6.2.6b)

T−
11 = prB

2 (6.2.6c)

T−
22 = pTR

2 (6.2.6d)

T−
33 = sin2 θT−

22 (6.2.6e)
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and we may write the nonzero components of the Einstein curvature tensor as

G−
00 = 2

Ḃ

B

Ṙ

R
+

Ṙ2

R2
− A2

B2

[
2
R′′

R
+

R′2

R2
− 2

B′

B

R′

R
− B2

R2

]
(6.2.7a)

G−
01 = −2

(
Ṙ′

R
− Ḃ

B

R′

R
− Ṙ

R

A′

A

)
(6.2.7b)

G−
11 = −B2

A2

[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]
+

(
2
A′

A
+

R′

R

)
R′

R
− B2

R2
(6.2.7c)

G−
22 = −R2

A2

[
B̈

B
+

R̈

R
− Ȧ

A

(
Ḃ

B
+

Ṙ

R

)
+

Ḃ

B

Ṙ

R

]

+
R2

B2

[
A′′

A
+

R′′

R
− A′

A

B′

B
+

(
A′

A
− B′

B

)
R′

R

]
(6.2.7d)

G−
33 = sin2 θG−

22 (6.2.7e)

where dots and primes represent derivatives with respect to the coordinates t and r

respectively. With the systems (6.2.6) and (6.2.7) the Einstein field equations G−
ab = T−

ab

for the stellar interior become

µ =
2

A2

Ḃ

B

Ṙ

R
+

1

R2
+

1

A2

Ṙ2

R2
− 1

B2

(
2
R′′

R
+

R′2

R2
− 2

B′

B

R′

R

)
(6.2.8a)

pr = − 1

A2

[
2
R̈

R
− 2

Ȧ

A

Ṙ

R
+

Ṙ2

R2

]
+

1

B2

[
2
A′

A

R′

R
+

R′2

R2

]
− 1

R2
(6.2.8b)

pT = − 1

A2

[
B̈

B
+

R̈

R
− Ȧ

A

Ḃ

B
− Ȧ

A

Ṙ

R
+

Ḃ

B

Ṙ

R

]

+
1

B2

[
A′′

A
+

R′′

R
− A′

A

B′

B
+

A′

A

R′

R
− B′

B

R′

R

]
(6.2.8c)

q = − 2

AB2

(
−Ṙ′

R
+

Ḃ

B

R′

R
+

Ṙ

R

A′

A

)
(6.2.8d)
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Note that using the system (6.2.5), the heat flux (6.2.8d) may be rewritten in terms

of the dynamical quantities as follows

qB =
1

3
(Θ− σ)′ − σ

R′

R
(6.2.9)

We observe that in the above equation (6.2.9), if the interior stellar fluid is not shearing

and expanding (σ = 0,Θ = 0), then the heat flux q must vanish and the star is not

radiating. The stellar interior may be nonradiating (q = 0) but can still be shearing

and expanding.

The exterior spacetime of the star is described by the generalised Vaidya line element

ds2 = −
(
1− 2

m(v, r)

r

)
dv2 − 2dvdr + r2(dθ2 + sin2 θdϕ2) (6.2.10)

where m(v, r) is the mass of the star as observed at infinity. The atmosphere of the

star is considered to be a two-fluid system consisting of a pressureless null dust and a

null string fluid and is defined by the following energy momentum tensor

T
(+)
ab = µ̃lalb + (ρ+ P ) (lanb + lbna) + Pgab (6.2.11)

where µ̃ is the energy density of the null dust and ρ and P are the energy density

and pressure of the null string fluid respectively. Wang and Wu (1999) have provided

a detailed description and analysis of the above energy momentum tensor (6.2.11),

for relativistic stars having an atmosphere that is described by the generalised Vaidya

radiating metric. The nonvanishing components of the Einstein curvature tensor for

the metric (6.2.10) are given as follows

G+
00 = − 2

r2
mvṽ

2 + 2
(r − 2m)

r3
mr (6.2.12a)

G+
01 =

2

r2
mr (6.2.12b)

G+
22 = −rmrr (6.2.12c)

G+
33 = sin2 θG+

22 (6.2.12d)
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and the relevant components of the energy momentum tensor for (6.2.10) are given by

T+
00 = µ̃+ ρ− 2m

r
ρ (6.2.13a)

T+
01 = ρ (6.2.13b)

T+
22 = r2P (6.2.13c)

Using the systems (6.2.12) and (6.2.13) the Einstein field equations G+
ab = T+

ab for the

exterior manifold M+ may be written as

µ̃ = −2
mv

r2
ṽ2 (6.2.14a)

ρ = 2
mr

r2
(6.2.14b)

P = −mrr

r
(6.2.14c)

which is of the same form (5.3.9).

In general, the junction conditions can be derived by carrying out the smooth

matching of the interior and exterior spacetime geometries across the stellar surface

Σ following the procedure in chapter 5. This process requires the use of the first and

second fundamental forms. The first fundamental form is written as

(ds2+)Σ = (ds2−)Σ = ds2Σ (6.2.15)

and relates the interior and exterior spacetime metrics on the stellar surface Σ. We

can show that condition (6.2.15) yields the following equations that hold on the stellar
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surface

A(rΣ, t)dt =

(
1− 2m

rΣ
+ 2

drΣ
dv

)1/2

dv (6.2.16a)

rΣ(v) = rB(rΣ, t) (6.2.16b)

The extrinsic curvature for the interior and exterior spacetimes are given by the second

fundamental form

(K+
αβ)Σ = (K−

αβ)Σ (6.2.17)

where

K±
αβ ≡ −n±

a

∂2χa
±

∂ξα∂ξβ
− n±

a Γ
a
bc

∂χb
±

∂ξα
∂χc

±

∂ξβ
(6.2.18)

Making use of the first and second fundamental forms (6.2.15) and (6.2.17) and per-

forming lengthy calculations as in chapter 5, we are able to generate the junction

conditions which are valid on the stellar surface Σ. They are written as follows

m(r, t) =
R

2

1 +(Ṙ

A

)2

−
(
R′

B

)2
 (6.2.19a)

pr = qB − 2
mr

r2
(6.2.19b)

We can also generate these junction conditions using the Lichnerowiscz (1955) and O’

Brien and Synge (1952) conditions.

6.3 Derivation of the master equation

6.3.1 The Lichnerowiscz junction condition

The Lichnerowiscz (1955) approach is the first part of a geometric method that can be

used to derive the junction condition that relates the matter variables on the stellar

surface. A comprehensive discussion of this technique, for the modelling of a radiating
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star, is provided by de Oliveira et al (1987). The Lichnerowiscz junction condition may

be written in general as [
Gαβη

αηβ
]
= 0

This can be written more precisely as

G−
αβη

α
−η

β
− = G+

αβη
α
+η

β
+ (6.3.1)

The left hand side of equation (6.3.1) represents the relationship between the geometry

of the interior manifold and the three dimensional spatial hypersurface and the right

hand side represents the relationship between that of the exterior manifold and the

hypersurface. G±
αβ are the intrinsic and extrinsic components of the Einstein curvature

tensor and ηα± are intrinsic and extrinsic vectors that are tangent to the stellar surface.

In the stellar interior the components of the Einstein curvature tensor are given by

the system (6.2.7) and the interior tangent vector has the form

ηα− =

(
0,

1

B
, 0, 0

)
(6.3.2)

The left hand side of the Lichnerowiscz condition in equation (6.3.1) may be written

as

G−
αβη

α
−η

β
− = G−

11η
1
−η

1
−

= pr (6.3.3)

For the exterior spacetime M+ the Einstein curvature tensor components are given by

the system (6.2.12) and the exterior tangent vector has the form

ηα+ =
(
−ṽ, r̃ +

(
1− 2

m

r

)
ṽ, 0, 0

)
(6.3.4)

In the above we have utilised the notation

r̃ =
dr

dτ
, ṽ =

dv

dτ
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where τ is a timelike coordinate on the spatial hypersurface. The exterior Lichnerowiscz

condition on the right hand side of equation (6.3.1) may be written as

G+
αβη

α
+η

β
+ = G+

00η
0
+η

0
+ +G+

01η
0
+η

1
+ +G+

10η
1
+η

0
+ +G+

11η
1
+η

1
+

= − 2

r2
dm

dv
ṽ2 − 2

mr

r2
(6.3.5)

With (6.3.3) and (6.3.5) the Lichnerowiscz condition given by equation (6.3.1) can be

written as

pr = − 2

r2
dm

dv
ṽ2 − 2

mr

r2
(6.3.6)

which defines the radial fluid pressure.

6.3.2 The O’ Brien and Synge junction condition

The O’ Brien and Synge (1952) approach is the second part of the geometric method

that can be used to derive the general junction condition that is valid on the stellar

surface. In general the O’ Brien and Synge junction condition can be written as

[
Gαβl

αηβ
]
= 0

and this may be written more precisely as

G−
αβl

α
−η

β
− = G+

αβl
α
+η

β
+ (6.3.7)

The O’ Brien and Synge condition relates the geometry of the interior and exterior

manifolds to the spatial hypersurface and is defined in terms of two distinct intrinsic

and extrinsic tangent vectors lα± and ηβ±. For the interior manifold we make use of the

tangent vector given by (6.3.2) and the new vector lα−:

ηα− =

(
0,

1

B
, 0, 0

)
, lα− =

(
t̃, 0, 0, 0

)
(6.3.8)

where

t̃ =
dt

dτ
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We may write the O’ Brien and Synge condition for the stellar interior in the following

way

G−
αβl

α
−η

β
− = G−

00l
0
−η

0
− +G−

01l
0
−η

1
− +G−

10l
1
−η

0
− +G−

11l
1
−η

1
−

= −qB (6.3.9)

In a similar manner the right hand side of equation (6.3.7) for the exterior O’ Brien

and Synge condition may be written in terms of the exterior tangent vectors given by

(6.3.4) and lα+:

ηα+ =
(
−ṽ, r̃ +

(
1− 2

m

r

)
ṽ, 0, 0

)
, lα+ =

(
ṽ,

1

ṽ
− r̃ − ṽ

(
1− 2

m

r

)
, 0, 0

)
(6.3.10)

The exterior O’ Brien and Synge condition can now be written in expanded form as

G+
αβl

α
+η

β
+ = G+

00l
0
+η

0
+ +G01l

0
+η

1
+ +G+

10l
1
+η

0
+

=
2

r2
dm

dv
ṽ2 (6.3.11)

We can now write down the form of the O’ Brien and Synge condition by utilising

equations (6.3.9) and (6.3.11) which yields

−qB =
2

r2
dm

dv
ṽ2 (6.3.12)

which defines the heat flux.

6.3.3 The general junction condition

The Lichnerowiscz and O’ Brien and Synge conditions can now be combined to generate

the general junction condition on the stellar surface. With the Lichnerowiscz condition

we obtained the equation

pr = − 2

r2
dm

dv
ṽ2 − 2

mr

r2
(6.3.13)
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It is clear that the Lichnerowiscz condition relates the radial pressure in the stellar

interior to the energy densities of the null dust and null string fluid in the stellar

exterior. The interior radial pressure is balanced by the exterior energy densities on

the boundary of the star. The O’ Brien and Synge condition generated the equation

−qB =
2

r2
dm

dv
ṽ2 (6.3.14)

It can be seen that on the stellar boundary the interior heat flux is equal to the exterior

null dust energy density. This confirms the fact that the null dust that is present in

the atmosphere of a radiating star is due only to the presence of a nonzero interior heat

source, namely the radial heat flux. Relating (6.3.13) and (6.3.14) we can generate the

junction condition

pr = qB − 2
mr

r2
(6.3.15)

Note that this is precisely the result (6.2.19b) that we have obtained by performing

the formal matching of the interior and exterior spacetimes across the stellar surface

obtained by following the general procedure as in chapter 5. Observe that the second

term on the right hand side of equation (6.3.15) corresponds to the string density ρ in

the exterior Einstein field equation (6.2.14b) hence equation (6.3.15) may be written

in the more compact form

pr = qB − ρ (6.3.16)

This result has the same form as in chapter 5 but in this case the shear is nonzero, and

consequently (6.3.16) is a new differential equation.

6.4 Some qualitative features

The junction condition (6.3.16) is crucial in modelling a relativistic radiating star, as

it explicitly relates the interior matter variables to the exterior matter variables on the

stellar boundary. For an interior stellar fluid that has nonzero shear, the radial pressure

is balanced by the interior heat flux as well as the energy density of the exterior string
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fluid. It is possible that for a shearing anisotropic stellar fluid, the radial component

of pressure may be zero (pr = 0). In such a case the above junction condition demands

that the interior heat flux is balanced by the exterior string density

qB = ρ (6.4.1)

In this case, although the pressure on the surface is zero the interior of the star is

still radiating and the stellar atmosphere is still a two-fluid system. When the stellar

interior is not radiating the radial heat flux must vanish (q = 0) and this results in the

radial pressure balancing the string density on the surface,

pr = −ρ (6.4.2)

Here the pressure must decrease towards the boundary and is possibly suppressed by

the density of the exterior string fluid.

6.4.1 Two-fluid models

A number of radiating stellar models for which the interior is shearing and anisotropic

and the atmosphere is a two-fluid system have been investigated. Glass and Krisch

(1998, 1999) and Krisch and Glass (2005) have extensively studied various physical

situations for the dynamics of the atmosphere which is described by the generalised

Vaidya radiating metric and the resulting null dust and string fluid system. These

treatments were carried out for general spherically symmetric spacetimes; Ghosh and

Deshkar (2010) have subsequently extended and generalised these models to include

plane symmetric as well as cylindrically symmetric spacetime geometries. In these

treatments the authors concentrated only on the physics of the interior or the exterior

of the radiating star. We have shown that the junction conditions are satisfied if

(6.3.16) holds, and now the model can be treated as a single system.
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6.4.2 Isotropic string fluid

An isotropic string fluid is described as a cloud of strings for which the string pressure

is isotropic, i.e. Pr = P⊥. This condition of pressure isotropy results in the following

differential equation for the string fluid mass

mrr

2r
=

mr

r2

which upon integration admits the radial mass profile

m(v, r) = r3c1(v) + c2(v) (6.4.3)

Using the above mass (6.4.3) the junction condition (6.2.19b) in terms of the exterior

radial mass gradient mr becomes

pr = qB − 6c1(v) (6.4.4)

This is the governing equation that has to be solved in order to provide a more complete

model of an isotropic string atmosphere.

6.4.3 Diffusive transport

It is possible to model the flow of a string fluid in terms of a diffusive transport

process. Diffusion has been used in the description of cosmic strings by Vilenkin

(1981). It is also largely understood that diffusive processes may play a pivotal role in

understanding quantum gravitational fluctuations (Percival 1995, Percival and Strunz

1997), particularly in the very early stages of the universe. For diffusion of the exterior

string fluid, the string number density n and the string fluid density ρ are related by

the following equation

ρ = Msn

where Ms is the constant string element mass. The governing diffusion equation for

the string fluid is written as

ṁ = 4πDr2
∂ρ

∂r
(6.4.5)
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Here D is the positive coefficient of self diffusion, which is taken to be constant. It

has been shown by Glass and Krisch (1999) that the above diffusion equation can be

solved for ρ and the resulting solutions then integrated to generate forms for m. These

analytical forms for ρ and m are exact solutions to the exterior Einstein field equations

in the region outside the star and may be interpreted as either anisotropic fluids or

diffusing string fluids. The above mentioned solutions are given below

ρ = ρ0 + k1/r (6.4.6a)

ρ = ρ0 + (k2/6)r
2 + k2Dv (6.4.6b)

ρ = ρ0 + k3(Dv)−3/2 exp[−r2/(4Dv)] (6.4.6c)

ρ = ρ0 + (k6/r) exp(−k2
4Dv)[sin(k4r) + k5 cos(k4r)] (6.4.6d)

where ρ0 is a static or constant string fluid density. The explicit spatial dependance of

the above density profiles (6.4.6) now allow us to investigate their asymptotic behaviour

as well as their effect on the junction condition (6.3.16).

It is clear that the density solutions given by (6.4.6a), (6.4.6c) and (6.4.6d) represent

spatially decaying behaviours, i.e. the string fluid density decays as the distance from

the stellar surface and the stars atmosphere increases. These solutions also show that in

regions very far away from the stellar atmosphere (r → ∞) the string fluid density must

become constant (ρ → ρ0). The evolutionary behaviour exhibited in these profiles are

consistent with diffusion of the string fluid. With the density solutions (6.4.6a), (6.4.6c)
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and (6.4.6d) the junction condition (6.3.16) takes the following forms respectively

pr = qB − ρ0 − k1/r (6.4.7a)

pr = qB − ρ0 − k3(Dv)−3/2 exp[−r2/(4Dv)] (6.4.7b)

pr = qB − ρ0 − (k6/r) exp(−k2
4Dv)[sin(k4r) + k5 cos(k4r)] (6.4.7c)

It is important to note that in the above system (6.4.7), the radial pressure at the

stellar surface is dependent on the static string fluid density ρ0. If the constants ρ0,

k1, k3 and k6 are all strictly positive then the radial pressure remains reduced and is

consistent with the outflow of null radiation. If these constants are strictly negative

then the radial pressure at the surface of the star is increased and this does not depict

behaviour that is physically reasonable. The junction condition (6.3.16) thus places

the restriction on the density solutions (6.4.6a), (6.4.6c) and (6.4.6d) that

ρ0 > 0, k1 > 0, k3 > 0, k6 > 0 (6.4.8)

for the acceptable description of a radiating stellar system with a two-fluid atmosphere.

Glass and Krisch (1999) have shown that the density solution given by (6.4.6b) has

two distinct types of behaviour. When k2 > 0, the string fluid density grows with

increasing radius and is not realistic, and when k2 < 0, the density decays with radius

indicating that the string atmosphere could be bounded. With the density profile

(6.4.6b) the junction condition (6.3.16) becomes

pr = qB − ρ0 − (k2/6)r
2 − k2Dv (6.4.9)

For the above form of the junction condition (6.4.9) we have the restriction that ρ0 >

0, k2 > 0 in order to have an acceptable radial pressure at the surface of the star.
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6.5 Discussion

The general junction condition on the surface of a relativistic radiating star having

an interior stellar fluid with nonzero shear has been presented. The matching of the

interior spacetime geometry to that of the exterior shows that on the stellar boundary

the interior radial pressure is related to the interior heat flux as well as the exterior

string fluid energy density as follows

pr = qB − ρ

We have also demonstrated that the above junction condition can be derived alter-

natively by using a systematic geometric approach which involves the Lichnerowiscz

and the O’ Brien and Synge conditions. In this treatment the junction conditions on

the stellar boundary have been obtained purely from the geometry of the spacetime

manifolds, and consequently it is the geometry that prescribes the way in which the

interior and exterior matter variables of a relativistic radiating star are related on the

spatial hypersurface. Physically reasonable stellar situations have been discussed and

the associated governing equations are highlighted. These equations are consistency

equations and must be solved as differential equations on the surface in order to yield

exact radiating models. In future we intend to use our results to construct more com-

plete models of astrophysical objects.
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Chapter 7

Conclusion

The major theme of this dissertation has been to generalise the stellar junction con-

ditions that are necessary for the well defined modelling of the radiative transfer of

heat energy in dense compact relativistic stars. The extended junction conditions may

be used to model a radiating star with a two-fluid atmosphere. In addition to this, it

has been our aim to construct new models for radiating relativistic stars, both in the

standard as well as the new generalised formalism. Within the standard framework

of a radiating star, we have studied the exact thermal behaviour of a special class of

relativistic stars by making use of the ‘Euclidean condition’ which allows one of the

gravitational potentials to be transformed away. These Euclidean stars were modelled

as having interior gravitating fluids with nonvanishing shear and undergoing nonadi-

abatic spherical gravitational collpase with a radial heat flux. Furthermore, we have

also investigated models in which a compact star is evolving under the action of radial

perturbations in the metric as well as matter variables. It has been demonstrated that

these perturbations play a pivotal role in the various stages of collapsing stellar mate-

rial and that the late phase thermodynamics and matter behaviour are substantially

affected.

We now provide an overview of the main results obtained during the course of our

investigations:
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• In Chapter 2, we provided the basic theory that is essential for the construction

and study of stellar and other localised astrophysical systems within the context of

general relativity. A concrete formalism for the geometry and matter distribution

in the presence of strong spherically symmetrical gravitational fields on curved

spacetime backgrounds was provided. Stability criteria and physical conditions

for the general dynamics as well as gravitational collapse of stars were briefly

discussed.

• Chapter 3 focussed on a study involving a special class of radiating stars which

satisfy a transformation property called the Euclidean condition. In these Eu-

clidean stars the areal radius, which is the radius measured according to a chang-

ing area, is equal to the proper radius of the dissipating star, as measured from

the central core region to the outer surface layer. The governing second order

nonlinear ordinary differential equation

R̈

R
+

1

2

(
Ṙ

R

)2

− Ȧ

A

Ṙ

R
− (A+ Ṙ)A′

RR′ = 0

was examined on the stellar boundary. A particular analytical solution which is

regular, well behaved and without any singularities at the centre of the star was

found. The new radiating solution

R(r, t) =
[
C1(r)e

λ1t + C2(r)e
λ2t
]2

enabled us to study the causal and noncausal thermal evolution of the collapsing

stellar matter from the central core region up to the stellar surface.

• In Chapter 4 we investigated the effects of radial perturbations in the gravi-

tational as well as the matter variables for a radiating star. A perturbative

construction was adopted to allow for a relativistic star to undergo nonadiabatic

spherical collapse which eventually leads to a static compact stellar configuration.

These perturbations affect the dynamics of the dissipation as well as the collapse
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and they have a marked impact on the thermodynamics of the stellar model. The

boundary condition has the exact solution

T (t) = T0e
−(βΣ+

√
αΣ+β2

Σ)t

which ensures that the model becomes static in the later stages of evolution. An

expression for the perturbed temperature can be found explicitly, and this plays

a major role in understanding the thermal evolution of the model in the final

stages just before reaching equilibrium.

• Chapter 5 extends the formalism developed by Santos in 1985. The Santos junc-

tion condition indicates that for a dense star undergoing nonadiabatic gravita-

tional collapse, the interior fluid pressure is proportional to the magnitude of

the heat flux across the star’s surface. The exterior of the star is described by

the conventional Vaidya solution with outgoing null radiation that is radially

isotropic with mass function depending only on the retarded time. We know

that the Santos junction condition can be generalised and extended by allowing

the mass function to be dependant on both the retarded time and comoving ra-

dial coordinates. The extrinsic curvature of the star’s interior and exterior were

matched and we were able to arrive at the following new generalised junction

condition

p = qB − ρstring

which shows that the interior isotropic fluid pressure now has an additional de-

pendance on the exterior string fluid energy density. The effect of the additional

string fluid, on the atmosphere and local exterior region of the star was investi-

gated by generating the surface and asymptotic luminosity profiles as well as the

surface redshift and showing that they are reduced by the string energy density.

We also generated a new exact solution to the expanded form of the generalised
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junction condition given by

ds2 = −dt2 +
4d2b2

[Ω(t)(b2 − r2)d+ 2bα]2
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
This solution provides a physically meaningful interpretation of the idea of a

dissipating star in the presence of a two-fluid atmosphere.

• In Chapter 6 we extended the results of chapter 5 for a fluid having nonvanish-

ing shear and showed that the same junction condition holds and that the radial

component of the pressure now depends on the heat flux as well as the string den-

sity. An alternate geometric approach to derive the generalised junction condition

was also provided utilising the Lichnerowiscz and O’ Brien and Synge conditions.

The physical impact and importance of the new junction condition were further

studied by applying it to the two-fluid star models proposed by Glass and Krisch

(1998, 1999) and Krisch and Glass (2005).

It has been clearly shown in this dissertation that the junction conditions on the stellar

boundary are crucial for the construction of physically reasonable and acceptable mod-

els of dissipating stars in relativistic astrophysics. In view of the fact that our central

result for the generalised Vaidya metric is new, it will have far reaching consequences

for the framework and formalism for radiating stars. It is our aim, in future work, to

apply our result to previous stellar models constructed and to provide more concrete

solutions to existing problems. The results presented in this thesis will be directly

applied to the following stellar astrophysical problems:

• The geodesic motion of fluid particles in radiating stars.

• The horizon-free gravitational collapse of stars.

• Collapse of dense stars from an initial static configuration.

• Radiating stars with conformal flatness.
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• Radiating stars having electromagnetic fields.

• Stellar models with polytropic equations of state.

amongst many others. This will form the basis for work to be carried out in the future.
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