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Thesis Summary 

Tef [Eragrostis tef (Zucc.) Trotter] is the most widely grown cereal crop in Ethiopia. Its 

grain is used for human consumption and the straw is an important and highly valued 

livestock feed. Soil acidity and Al toxicity are among the major production constraints 

affecting tef in Ethiopia. Utilization of lime and other non-genetic acid soil management 

options is constrained by various socio-economic factors. Development of cultivars 

with tolerance to Al-toxicity is a complementary approach to liming in the production 

of globally important crops such as wheat, rice, maize, barley, sorghum and rye. 

However, no breeding for tolerance to Al toxicity in tef had been undertaken previously. 

Hence, this research project was initiated in order to address the following objectives: 

1. To assess the perceptions, challenges and coping mechanisms of farmers dealing 

with soil acidity and Al-toxicity in problem areas of north western Ethiopia; 

2. To characterize the reactions of released tef varieties to soil acidity and the 

associated Al-toxicity; 

3. To determine the extent of genetic diversity among tef germplasm collected from 

areas of Ethiopia with acid soil; 

4. To isolate and characterize EMS-induced mutants of tef for tolerance to Al-toxicity 

and other important agronomic traits; 

5. To evaluate the use of hydroponics system as a phenotyping platform to screen 

for Al-tolerance in tef, using root measurement and haematoxylin assay methods. 

There is no information on breeding for Al-tolerance in tef. Therefore, relational 

background literature was collated on other cereals on their mechanisms of Al-toxicity, 

tolerance mechanisms, genetic control, screening methods and marker assisted 

breeding. The information obtained from such sources was used to develop and 

undertake the subsequent breeding activities on tef.   

In order to meet the set objectives, several laboratory, greenhouse, and field 

experiments were conducted at the Amhara Regional Agricultural Research Institute 

(ARARI), Ethiopia, from December 2012 to June 2015. 

A Participatory Rural Appraisal (PRA) study was conducted in three Districts of north 

western Ethiopia that are affected by acid soils, in order to assess the state of soil 

acidity, and to determine its perceived causes and indicators, and to document the 

coping strategies of the farmers. Semi-structured interviews, group discussions and 
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soil analyses were the main techniques used to generate data in this background 

study. Farmers’ perceived the causes of soil acidity to include: soil erosion; poor 

nutrient recycling; the abandoning of traditional fertility management practices; the 

unbalanced and/or minimal use of external inputs; and the exclusive use of acid-

forming, inorganic fertilizers. Soil erosion, soil acidity, the high cost of mineral fertilizers 

and lime, cash shortages, and a lack of acid tolerant crop varieties were ranked as the 

top constraints. Species tolerance to soil acidity was found to be one of the major 

factors that influenced crop choice by farmers. A decline in genetic diversity and the 

rapid expansions of newly introduced, acid tolerant crops such as oat and triticale were 

noticed. The pH (H2O) of most of the soils in the study sites was in a strongly acidic 

range (4.6–5.5). Gashena Akayita of Banja District was the most acidic of all and had 

high levels of exchangeable Al. The limitations of the current coping strategies 

suggested the need to introduce compatible technologies that would ensure the 

sustainable management of the soils in the region, by the small-scale farmers there. 

Thirty three Released Varieties and selected accessions of tef were evaluated for their 

tolerance to soil acidity in pot trials. Twenty eight of these were then evaluated under 

field conditions. The results revealed the presence of significant genetic variability 

within the test genotypes. Nearly all the test genotypes were highly sensitive to soil 

acidity and Al-toxicity. However, a local landrace that is widely grown in Banja, a 

District severely affect by soil acidity, consistently outperformed the other genotypes 

both under pot and field conditions. There were changes in the ranking of the tef 

genotypes tested under pot and field conditions, which suggested the need to consider 

other edaphic and climatic factors when breeding for Al-tolerance. Overall, the grain 

yield of the test genotypes and the tolerant local landrace were less than the national 

mean yield of tef, identifying the need to develop varieties with better tolerance of acid 

soils and the associated Al-toxicity, aiming for superior agronomic performances in 

acid soils. 

Twenty-seven tef accessions collected from three regions of Ethiopia that are affected 

by acid soils were evaluated, together with released breeders’ varieties, and selected 

breeding materials for genetic diversity, using 16 selected and highly polymorphic SSR 

markers. Analysis of molecular variance (AMOVA) showed highly significant 

differences (P<0.001) among and within populations. Despite the wide geographical 

separation of the collection sites, 88.5% of the accessions from acid soils were 
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grouped into two clusters (Clusters II and III) while 90% of the breeding materials and 

the Released Varieties were grouped into Cluster I. A significant degree of genetic 

differentiation was observed among the populations. Accessions from the north 

western Ethiopia exhibited a significant level of variation for most of the genetic 

diversity parameters. The number of private alleles was significantly higher for tef 

plants from acid soils than the Released Varieties and the breeding materials the Pair-

wise estimates of genetic identity and gene flow showed higher values existed 

between the Released Varieties and breeding materials. 

About 15,000 M2 seeds were screened under acid soil conditions along with the M0 

mutagenized seeds of the parent variety Tsedey and an Al-tolerant local landrace, 

Dabo banja. Twenty one M2 plants with root lengths of greater than the mean plus 

standard deviation of the tolerant check were selected and their M3 progenies were 

characterized for Al-tolerance and morpho-agronomic traits under greenhouse and 

field conditions, respectively. There were highly significant differences for Al-tolerance 

between the M3 mutant lines and the parent (P<0.001); and between the M3 mutant 

lines and the sensitive check (P<0.001). However, there was no significant difference 

between the M3 mutant lines and the tolerant check. The result of the morpho-

agronomic characterization revealed the presence of significant differences between 

the M3 mutants for 16 of the 20 quantitative traits measured. 

Five levels of AlK(SO4)2.12H2O were evaluated (0, 150, 250,350, 450, 550 µM) in order 

to select the optimal concentration of Al that can most efficiently discriminate between 

sensitive and tolerant tef genotypes, using a hydroponic growing facility and 

measuring root lengths. The haematoxylin staining method was also assessed as a 

tool for the visual evaluation of tef varieties for Al-tolerance using selected test 

genotypes. There were highly significant differences (P<0.001) between the 

treatments, both for dose of Al and for genotype sensitivity to Al. The maximum 

differences in relative root length (RRL) (%) and root length (RL) (mm) between the 

sensitive and the tolerant genotypes were observed at the Al level of 150 µM Al. This 

concentration efficiently discriminated between 28 test genotypes with different levels 

of sensitivity to Al-toxicity. A visual assessment of the reactions of two sensitive and 

two tolerant genotypes to haematoxylin staining using 0, 150 and 250 µM of 

AlK(SO4)2.12H2O showed differential staining reactions in their roots that were 

consistent with their prior root growth measurements. 
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Thesis Introduction 

Background 

Tef [Eragrostis tef (Zucc.) Trotter] is an allotetraploid (2n = 4x= 40), herbaceous, 

annual, cereal crop that is widely produced and consumed in Ethiopia. In terms of area 

of cultivation, it is the most important crop, followed by maize (Zea mays L.) and wheat 

(Triticum aestivum L.). According to the Central Statistical Agency of Ethiopia (CSA) 

(2015), the area covered by tef during the 2014 cropping season was over 3 million 

hectares, constituting about 30% of the total area occupied by cereals in the country. 

Tef production in Ethiopia involves over 6 million rural households (CSA, 2015). 

Because of its importance in the national diet, the crop is always in demand and 

fetches better market prices for the farmers than other cereals (Ketema, 1993).  

In terms of nutritional composition, tef is equivalent or better than most of the cereals. 

It contains relatively high levels of the essential amino acids, including lysine (Jansen 

et al., 1962). According to Ketema (1993), the amino acid composition of tef is 

excellent and its lysine content is higher than that of all other cereals except rice and 

oats. The mineral content of tef is also appreciable. Mengesha (1966) found that tef 

contains more calcium, copper, zinc, aluminium, and barium than wheat, barley, and 

sorghum. Though there is agreement among various studies that tef is high in iron, it 

is still unclear whether the iron sources were from the grain per se or is a result of 

contamination with soil during threshing (Almgard, 1963; Mengesha, 1966; Bisrat et 

al., 1980). 

In Ethiopia, tef is used in many ways. The favourite form is ‘injera’, a pancake-like, soft 

and slightly sour bread made of fermented tef flour. Injera is traditionally consumed 

with wot, a sauce made of meat, or ground pulses like lentil, faba bean, field pea, 

broad bean or chickpea. The injera are used to wrap up the sauce with no need for 

spoons or forks. Sometimes tef is used for making porridge, kitta (an unleavened 

bread), local alcoholic drinks such as tela (an opaque beer), and katikala (a local spirit) 

(Ketema, 1993). Tef plays a primary role in the daily diet of Ethiopians. As such, its 

role in food security and the livelihood of Ethiopians who are directly or indirectly 

involved to its production, processing, marketing, and use is substantial. 
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Other countries such as Eritrea, the USA, the Netherlands and Israel produce small 

quantities of tef as a grain crop (Spaenij-Dekking et al., 2005). Currently, tef is gaining 

growing popularity worldwide as gluten-free healthy food (Spaenij-Dekking et al., 

2005). In Europe, tef derived products such as bread, breakfast cereals, breakfast 

drinks, breakfast bars, performance bars, drinks, pasta, bake-off breads, and cakes 

are appearing in supermarkets (Turkensteen, 2008).  

Besides the grain, tef straw is also an important and highly valued as livestock feed in 

Ethiopia. Seyoum and Dereje (2001) reported that tef straw is the most important 

livestock fodder in Ethiopia, and constitutes 27% of the total 14 million tonnes of crop 

residue produced in the country. They also indicated that crude protein content, in vitro 

digestibility, and energy value of tef straw is higher than that of other cereals. South 

Africa, India, Pakistan, Uganda, Kenya and Mozambique grow tef mainly as a pasture 

crop (Assefa et al., 2010).  

Tef can be grown from sea level to altitudes of over 3000 m under various rainfall, 

temperature and soil regimes (Ketema, 1993). However, it yields best within an 

altitudinal range of 1700-2200 m, an annual rainfall of 750-850 mm or a growing 

season rainfall of 450-550 mm and a temperature range of 10°C-27°C. In drought 

prone areas, tef is used as a rescue or emergency crop to replace long maturing crops 

that fail because of erratic rainfall or damage from pests or diseases (Ketema, 1993). 

Tef also has excellent tolerance of waterlogging. Tef gives a higher grain yield than 

wheat by 70% and 106% under poorly drained soil conditions, with and without 

fertilizer, respectively (Belayneh , 1986). Similarly, Tefera and Ketema (2001) reported 

that tef performed better than maize, wheat and sorghum (Sorghum bicolor L. Moench) 

under waterlogged conditions. Tef is also preferred for its flexibilie uses in various 

cropping systems such as double cropping and intercropping (Ketema, 1993).  

Constraints to tef production  

Improved tef varieties, with recommended agronomic packages, yield as much as 3.2 

and 2.6 t.ha-1 on research station fields, and on farmers’ fields, respectively (Tefera 

and Ketema, 2001; Assefa et al., 2010). On the other hand, the mean national 

productivity of tef is about 1.6 t ha-1. This gap is attributed to various constraints.  
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Lack of quality seeds of improved varieties; the unavailability of important agricultural 

inputs such as fertilizers and herbicides, a lack of awareness on the advantages of 

improved production technologies, and cash shortages are among the major 

socioeconomic constraints that have contributed to the low adoption of improved tef 

varieties and their production packages (Tesfaye et al., 2001; Yadeta et al., 2001).  

As a crop with an exceptionally small seed, tef is subjected to various constraints. 

During planting, it needs a well prepared, fine seedbed to germinate, establish, and 

compete well with weeds. Experimental results have shown that grain yields increase 

as the number of ploughing events increase from zero to five (Hundera et al., 2001). 

Gryseels (1998) reported that farmers with no oxen obtained less than half of the yield 

that farmers with two oxen obtain because of poorly prepared seedbeds and late 

planting. 

Weeds are major biotic constraints of tef in all production areas of Ethiopia. The 

problem is mainly associated with the poor competitive capacity of the crop and the 

difficulty in establishing uniform stands because of the small size of tef seeds. The 

intensity of the problem varies with the soil and climatic factors and the farmers’ 

production practices. Fisehaye and Tadele (2001) reported about 64 plant species in 

60 genera and 24 plant families as weeds on tef. These authors indicated that the 

parasitic weed Striga hermonthica (Del.) Benth, Parthenium hysterophororulus L., 

Convolvulus arvensis L., and Cyperus rotundus L. to be the most serious weeds. 

National yield loss assessments associated with weeds on tef have varied between 

23-65%. Farmers use hand weeding, herbicide, higher seed rates, and increased 

numbers of ploughing operations to overcome the problem of weeds (Fisehaye and 

Tadele, 2001; Yadeta et al., 2001).  

Compared to other crops, insect pests and diseases are of minor importance on tef in 

the major production areas. Among 36 insect pest species known to attack tef the 

most important nationally are the Wollo bush-cricket (Decticoides brevipennis Ragge), 

red tef worm (Mentaxya ignicollis Walker), shootfly (Hylemya arambourgi Seguy), tef 

fly [Delia arambourgi (Seguy)], black tef beetle (Erlagerius niger Weise), grasshopers, 

and termites (Ketema, 1993; Chichaybelu et al., 2001). 
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So far, over 24 fungi and two nematode species have been recorded to cause disease 

on tef. Among the fungal diseases, Stewart and Dagnachew (1967) as cited by 

Ketema (1993) reported that tef rust caused by Uromyces eragrustidis Tracy and head 

smudge caused by Helminthosporium miyakei Nisikado are the most important 

diseases of tef, but mainly in minor production areas. The two nematode species 

belonged to the genus Paratylenchus  and were of minor importance (Eshetu, 1986). 

Lodging is the most important constraint of tef production in Ethiopia. Ketema (1993) 

estimated mean grain yield loss due to lodging under natural conditions at 17% with a 

maximum loss of 27%. Teklu and Tefera (2005) reported tef yields of 4.6 t.ha-1 for tef 

when supported with nets relative to yields of 2.4-3.4 t.ha-1 when grown under natural 

conditions. Lodging affects tef production in several ways. It prevents the crop from 

ripening properly, and it often results in mouldy panicles, inferior seed quality and 

sprouting seeds on the panicle (van Delden et al., 2010). Consequently, it reduces 

seed vigour and the germination potential of the seed. Lodging also decreases 

productivity of the crop by hindering optimal use of external inputs such as nitrogen 

(Assefa et al., 2010). Thus, potential yield increments from Released Varieties is 

sacrificed because of limited use of production inputs such as mineral fertilizers. 

Attempts made to curb lodging through breeding have not been successful due to the 

lack of adequate natural variation for lodging resistance, and negative associations 

between lodging resistance traits with productivity enhancing traits such as plant 

height, panicle length, panicle form, grain and shoot biomass yield (Assefa et al., 

2010). 

Soil acidity, and poor soil fertility, are among the major abiotic constraints on tef 

production (Dubale, 2001; Tadesse, 2001; Holden and Shiferaw, 2004; IFPRI, 2010). 

Mineral fertilizer recommendations have been provided to reduce the problems of poor 

soil fertility. However, optimal use of fertilizers is constrained by lodging losses which 

are caused by luxurious growth of tef plants (Assefa et al., 2010). An additional 

problem is that tef crops respond poorly to applied fertilizers in acid soils (Mamo and 

Killham, 1987).  

Soil acidity is one of the major production constraints of crops worldwide. Over 40% 

of the arable lands of our world have problems of soil acidity, and 22% of the arable 

lands of Africa have soil acidity (pH < 5.5 in the surface layer) (von Uexk¨ull and Mutert, 
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1995). About 67% of the world’s acid soils have crop production constraint associated 

with Al-toxicity (Eswaran et al., 1997). 

The most important cause of soil acidity is the leaching of basic cations to the lower 

profiles of the soil by percolating rain water. The acidifying effect of acid forming 

nitrogen fertilizers, poor nutrient recycling and the continuous removal of basic cation 

through harvested crops, runoff loss and acid rain also contribute to the development 

of soil acidity and Al-toxicity. 

Leaching leaves the soil with the acidic cations, aluminium, manganese and hydrogen. 

Accumulation of aluminium causes toxicity that results in severe restriction of root 

growth. Consequently, absorption of minerals and water is affected. The resultant low 

soil pH also decreases the availability of important plant nutrients such as 

phosphorous, nitrogen, potassium, calcium, magnesium, sulphur, zinc and 

molybdenum (Rao et al., 1993). Furthermore, crops do not respond to fertilization with 

nitrogen because of the fixation or unavailability of phosphorous in acid clay 

complexes. Mamo and Killham (1987) reported the poor response of tef to fertilizer 

applications when grown in acid soils. 

Due to restriction on root development, the vulnerability of crops to droughts increases 

(Little, 1989; Foy, 1992). This is particularly important because most acid soils have 

inherently low water holding capacity, being highly leached soils (Little, 1989).  

The overall effects of Al-toxicity are stunted growth and low productivity (Rao et al., 

1993). Growth of several tropical crops in areas with acid soils are reduced by 50% or 

more when compared to plants grown on limed soil (Kamprath, 1984). Gallardo et al. 

(1999) also reported about 50% reduction in grain yields due to Al-toxicity. In wheat, 

Tang et al. (2001) found that liming increased shoot weight and grain yield by 60% 

and head number by 32%. Such yield increases are highly correlated with decreases 

in exchangeable Al as a result of liming.  

Problem statement 

Aluminium toxicity and other acidity related soil fertility problems are among the major 

constraints affecting crop production in Ethiopia (Dubale, 2001; IFPRI, 2010). The 

problem is widespread in the western, southern, south-western and the north-western 

part of the country, where reliable rainfall is available. This is in contrast with the 
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unpredictable and often inadequate rainfall that falls on the eastern parts of the 

country. 

Liming is the most common and widely used method to ameliorate the impact of Al-

toxicity in acid soils (Rao et al., 1993). In the tropics, utilization of lime is constrained 

by various factors. Due to sub-surface acidity and the strong buffering capacity of 

tropical acid soils, large quantities of lime are needed to ameliorate acid soils in these 

areas (Rao et al., 1993; The et al., 2006). For most of the resource poor farmers in the 

tropics, local unavailability, and the high costs of lime and its transport costs are 

prohibitive. The inherent slow mobility of lime in the soil, and the difficulties of 

mechanical incorporation into the sub-soil without large tractors are also problems for 

small-scale farmers dealing with sub-surface acidity. Runoff pollution and the adverse 

effects of lime on calcifuge crops in rotation system are negative effects of lime 

applications (Wang et al., 2006). 

The use of organic matter in the form of manure and compost can significantly reduce 

soil acidity (Wong and Swift, 2003). Several organic compounds released from the 

decomposition of organic matter are efficient in detoxifying Al3+ by forming various 

complexes with it (Haynes and Mokolobate, 2001). In addition, regular application of 

organic matter increases soil pH, and helps in the conversion of toxic species of Al to 

non-toxic and insoluble hydroxyl-Al compounds. However, the regular and high 

volume application of organic matter to the highly weathered soils of the tropics is 

constrained by several factors. In countries such as Ethiopia, animal manure and crop 

residues have many other uses, including as fuel, animal feed, and construction 

material. Therefore, there is little retention of organic matter on fields after harvest 

(Schlede, 1989; IFPRI, 2010).  

Di-ammonium phosphate (DAP) and urea are the mineral fertilizers almost exclusively 

applied in Ethiopia, on all soil types and in all agroecologies of the country (Abebe, 

2007). These fertilizers are acid-forming fertilizers and their use in areas with acid soils 

is known to aggravate the level of acidity (Barak et al., 1997; Bolan and Hedley, 2003). 

Currently, with the objective of improving crop productivity per unit area, the enhanced 

use of these fertilizers is being promoted by the national agricultural extension services 

across the country, irrespective of the negative consequences in areas with acid soils. 
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As a consequence of high human and animal population pressures, farmers in cereal 

dominated production areas have abandoned traditional fertility management 

practices such as fallowing. Crop rotation is not practiced due to land shortages, and 

the unsuitability of acid soils for rotation crops. Overall, the balanced use of external 

inputs is very low, and soil erosion is a widespread problem. All these factors ensure 

that outflows of nutrients from the system are common. Consequently, in some areas 

of Ethiopia affected by acid soils, farmers grow crops such as oat (Avena sativa L.), 

triticale (x Triticosecale Wittm. Ex A. Camus) and white lupin (Lupinus albus L.) that 

are adapted to acid soils, in order to ensure their household food security. These 

crops, however, do not have a good market demand and value compared to other 

popular cereals. 

Another problem is that areas which were previously under forest, woodland and 

savannah are being converted to fields in order to increase production of food, 

industrial and biofuel crops. These virgin soils, especially in the southern, south 

western and north western parts of the country, have a strong tendency towards 

acidification because of the parent material of the soil, the low buffering capacity of the 

soils (high acid saturation) and the conducive climatic factors (Abebe, 2007).  

Hence, if the goal of food security across the whole country through increased 

productivity and production of crops is to be achieved, then the acid soils need to be 

managed through a system of integrated soil management that is based on a number 

of interventions. From this perspective, the breeding and release of Al-tolerant 

varieties would be a socially, economically, and technically achievable way to assist 

small-scale farmers of developing countries like Ethiopia to grow their crops in acid 

soils. The integration of tolerant crop varieties, lime and organic fertilizers would have 

a synergistic effect, resulting in increased crop productivity, and in sustainable soil 

health. 

Currently, the breeding of crops, including tef, for tolerance of low soil pH or Al toxicity 

has not yet received adequate research attention. Most of the released tef varieties 

were bred primarily for optimal growing conditions (Assefa et al., 2010). A failure to 

target specific production constraints has been implicated in the high genotype by 

environment interactions that have been documented in several tef experiments, and 

the overall decline in genetic gains from tef breeding programmes (Assefa et al., 

2010). 
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In order to undertake long-term breeding for Al-tolerance in tef, a number of pre-

breeding activities have to be accomplished first. These include an appraisal of the 

importance of soil acidity, farmers’ preferences and selection criteria for tef varieties, 

an assessment of genetic variability in tef for tolerance of soil acidity and Al-toxicity, 

and the development of appropriate phenotyping techniques  

The overall goal of this study was to improve food security and income of tef farmers 

in areas with acid soils by enhancing the productivity of tef through the development 

of high yielding and Al-tolerant varieties. In order to achieve this goal, several 

experiments were conducted with the following specific objectives.  

Objectives:  

1. To assess farmers’ perceptions of soil acidity and Al-toxicity in areas with acid 

soils in north western Ethiopia, and their coping strategies; 

2. To characterize the reactions of a diverse collection of tef varieties and related 

species, including released tef varieties, to soil acidity and Al-toxicity;  

3. To determine the extent of genetic diversity among tef germplasm collected 

from areas of Ethiopia with acid soils, using SSR markers;  

4. To screen and characterize EMS-induced mutants of tef for tolerance to Al-

toxicity and other important agronomic traits; 

5. To develop a high-throughput, hydroponics system as a phenotyping platform 

to screen for tolerance to Al-toxicity in tef, using root measurements and a 

haematoxylin assay to quantify varietal responses to Al toxicity. 

Outline of thesis  

This thesis consists of seven chapters including a literature review, a participatory rural 

appraisal (PRA) and five experimental chapters (see outline below). The referencing 

system used in this thesis is based on the referencing style of the Journal of Crop 

Science. The thesis is in the form of discrete research chapters, each following the 

format of a stand-alone research paper (whether or not the chapter has already been 

published). This is the dominant thesis format adopted by the University of KwaZulu-

Natal.  

Chapter 1, titled “Aluminium toxicity tolerance in cereals: mechanisms, genetic control 

and breeding methods”, was published in the African Journal of Agricultural Research 
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Vol. 8(9), pp. 711-722, doi: 10.5897/AJARx12.003.” Chapter 3, entitled “Quantitative 

responses of tef [Eragrostis tef (Zucc.) Trotter] and weeping lovegrass [Eragrostis 

curvula (Schrad.) Nees] varieties to acid soil” was published in the Australian Journal 

of Crop Sciences 7(12):1854-1860 (2013) ISSN: 1835-2707. 

 

Chapter Title 

- Thesis introduction 

1 A review of the Literature 

2 Soil acidity: Importance, assessment of perceived causes and indicators, 

coping strategies and implications in cereal based mixed-farming system of 

north western Ethiopia 

3 Preliminary investigation on presence of genetic variability for soil acidity in 

tef [Eragrostis tef (Zucc.) Trotter] 

4 Response of selected tef [Eragrostis tef (Zucc.) Trotter] genotypes to soil 

acidity under pot and field experiments 

5 Evaluating the genetic diversity of tef [Eragrostis tef (Zucc.) Trotter] 

accessions collected from sites in Ethiopia with acid soils, using simple 

sequence repeats (SSR) markers 

6 Isolation and characterization of ethyl methane sulphonate (EMS) induced 

mutants of tef [Eragrostis tef (Zucc.) Trotter] for aluminium tolerance and 

morpho-agronomic traits  

7 Development of a hydroponic phenotyping platform to assess aluminium 

tolerance in tef [Eragrostis tef (Zucc.) Trotter] genotypes 

8 Overview of major research findings and their implications 
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CHAPTER 1  

A review of the Literature1 

Abstract  

Aluminium toxicity is a major crop production constraint of acid soils with a pH of below 

5.0. About 67% of the world’s acid soils have crop production constraints associated 

with Al-toxicity. In Ethiopia, about 13.2% of the total land area is strongly to moderately 

acidic (pH < 5.5). Management of acid soils in this country involves application of 

mineral fertilizers, lime, manure and compost. However, utilization of these options is 

constrained by various technical and socio-economic factors. Existence of natural 

factors that favour the development of soil acidity and the shortcomings of the existing 

management options suggest that soil acidity will remain as one of the most important 

challenges affecting Ethiopian agriculture. Hence, the development of complementary 

and acceptable management options is of paramount importance. Due to their wide 

area of production, cereals are the crops most affected by soil acidity and Al-toxicity. 

In regions of the world affected by acid soils, use of Al-tolerant crop varieties and non-

genetic management options such as liming are common practices. In Ethiopia, 

breeding for tolerance to soil acidity has not yet received adequate research attention. 

Consequently, for crops such as tef, which are of little economic importance beyond 

Ethiopia, there is no or little information available on the reaction of the crop to soil 

acidity. Hence, parallel studies on other cereals are presented to assist in developing 

a framework for the breeding of tef with tolerance of soil acidity and Al-toxicity. Thus, 

this article reviews the basic information available on Al-toxicity, tolerance 

mechanisms, screening methods and the prospects of molecular marker assisted 

selection for Al tolerance in cereals.  

Key words: Al-toxicity, Al-tolerance, cereals, soil acidity 

                                            
1 This literature review was published as: Ermias Abate, Shimelis Hussien, Mark Laing and Fentahun 

Mengistu. African Journal of Agricultural Research Vol. 8(9), pp. 711-722, 18 March, 20123 DOI: 
10.5897/AJARx12.003.  
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1.1 Introduction  

The global population is projected to reach 9 billion by the year 2050. The world will 

require 70 to 100% more food to feed this population (FAO, 2009). Mean annual 

increments of 44 million metric tons per year will be needed in the coming years to 

meet this demand. And this mean annual increment is more than a 38% increase over 

the historical increase in global food production (Tester and Langridge, 2010). 

Currently, more than 50% of world’s daily calorie requirement or about 80% of calories 

in the poorest countries of the world are directly derived from cereal grains (Awika, 

2011). However, the mean productivity of major cereals in the globe is substantially 

lower than the yield that can be obtained under ideal conditions Hence, meeting the 

projected global food demand needs to focus on enhancing the productivity of cereals 

in the low-yielding environments of the world (Tester and Langridge, 2010; Godfray et 

al., 2010).  

In Ethiopia, cereals are the predominant staple food crops of the population. They 

accounted for about 10.14 million ha or over 80.78% of the total area cultivated by 

grain crops (cereals, pulses and oil crops) in small-scale holdings (CSA, 2015). In 

terms of volume of production, cereals contributed over 23.6 million tonnes or 87.31% 

of the total grain produced in the country (CSA, 2015) (Table 1.1). However, the 

national productivity of these crops is lower than the global mean (Table 1.1). In 

addition to technical issues, socio-economic and market related problems, 

environmental constraints such soil acidity make a significant contribution to the low 

national mean productivity.  

Soil acidity is one of the major crop production constraints worldwide. Over 40 % of 

the arable land in the world has problems of soil acidity (pH< 5.5 in surface layer) and 

22% of the arable soils in Africa have soil acidity problems (von Uexk¨ull and Mutert, 

1995). About 67% of the world’s acid soils have crop production constraints associated 

with Al-toxicity (Eswaran et al., 1997). In Ethiopia, the soils of about 13.2% of the total 

land area are estimated to be moderately to strongly acidic (pH < 5.5) (Schlede, 1989). 

The overall effects of soil acidity are stunted growth, poor responses to applied 

fertilizers and vulnerability to drought. Consequently they are low potential soils. Al 

and Mn toxicities and deficiencies of macro- and micro-nutrients are major causes of 

these effects. Since Al dissolves at pH values below 5-5.2, all of the soils in Ethiopia 



16 

 

that fall into the moderately and highly acidic classes (pH<5.5) are likely to have Al-

toxicity. The paradox of the soil acidity problem in Ethiopia is that most of the acid soils 

are found in the high rainfall areas, which are falsely presumed to be high potential 

production zones for cereals and perennial cash crops (Abebe, 2007; IFPRI, 2010).  

Applications of mineral fertilizers, lime, compost and manure are the official 

components of acid soil management in Ethiopia. However, utilization of these options 

is constrained by various technical and socio-economic constraints. The existence of 

natural factors that enhance the development of soil acidity, and the shortcomings of 

the existing management options, suggest that soil acidity will remain as one of the 

most important challenges affecting Ethiopian agriculture. Hence, the development of 

complementary and acceptable management options is of paramount importance in 

order to increase productivity of crops in such environments.  

In areas of the world prone to acid soils, utilization of crop varieties tolerant of Al-

toxicity; along with other management methods, are common practices. In Ethiopia, 

the development of varieties adapted to specific marginal growing environments, such 

as acid soils, has not yet received adequate research attention. The lack of such 

strategies is considered to have contributed to declining genetic gains for nationally 

important crops such as tef (Assefa et al., 2010).  

In the world, breeding crops for tolerance to Al-toxicity has received strong research 

patronage for several decades. Basic studies have been conducted on mechanism of 

tolerance to Al-toxicity, genetic control of tolerance to Al-toxicity and screening 

methods for all the globally important crops. Conventional and molecular breeding 

methods have also been applied to develop Al-tolerant crop species. This chapter 

reviews basic information available on Al-toxicity and advances in breeding for 

tolerance to Al-toxicity in cereals with the objective of using this information as a basis 

for the breeding of tef for tolerance to Al-toxicity, as documented in the subsequent 

experimental chapters.  
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1.2 Development of aluminium toxicity: An overview 

Aluminium is the most abundant metal in Earth’s crust comprising 7% of its mass. It is 

also the third most common element in the earth’s crust (Vitorello et al., 2005). In soils, 

Al mostly exists as a structural constituent of primary and secondary aluminosilicate 

minerals (Delhaize and Ryan, 1995; Miyasaka et al., 2007).  

Acidity and aluminium toxicity develops as a consequence of leaching of basic cations 

in soils of high rain fall areas that have high drainage. The acidifying effect of acid 

forming nitrogen fertilizers, poor nutrient recycling and the continuous removal of soil 

cations through harvested crops, runoff losses and acid rain also contribute to the 

development of soil acidity (Rao et al., 1993; von Uexk¨ull and Mutert, 1995; Barak et 

al., 1997). As the soil becomes acidic, the silicon from aluminosilicate minerals are 

leached, leaving Al in solid forms such as aluminium oxyhydroxides, including 

boehmite and gibbsite. These forms release the phytotoxic aluminium species, Al3+  

(also represented as Al(H2O)6
3+) into the soil solution when the pH goes below 5.0 

(Abebe, 2007; Miyasaka et al., 2007).  

Table 1.1.  Area, production and productivity of cereal crops and other crops in Ethiopia 
during 2014 cropping season under small holders (CSA, 2015). 

Crops Area (ha) 

% of 
total 
grain 
area 

Yield (tons) 

% of 
total 
grain 
yield 

National 
mean 
productivity 
(tons.ha-1) 

*Global mean 
productivity 
(tons.ha-1) 

Cereals 10152015.05 80.76 23607662.44 87.30   

Tef 3016062.55 24.03 4750657.28 17.58 1.58 - 

Barley 993938.74 7.92 1953384.78 7.23 1.97 2.77 

Wheat 1663845.63 13.26 4231588.72 15.66 2.54 2.88 

Maize 2114876.10 16.78 7234955.10 26.74 3.43 5.16 

Sorghum 1834650.10 14.57 4339134.26 16.03 2.37 1.5 

Finger millet 453909.38 3.62 915314.52 3.39 2.01 - 

Oats 27899.64 0.22 50805.93 0.19 1.82 - 

Rice. 46832.21 0.37 131821.85 0.49 2.82 4.20 

Pulses 1558422.02 12.42 2671834.45 9.89   

Oilseeds 855762.91 6.82 760099.32 2.81   

Total grains 12566239.98 100 27039604.80 100   

*source:Awika (2011) 
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Negatively charged clay particles can remove Al3+ from the soil solution and therefore, 

they can reduce its toxicity to plants. Similarly, organic matter has many negatively 

charged carboxyl (-COO-) functional groups that can remove Al3+ from soil solutions 

by forming organic complexes. Other complexing inorganic anions such as SO4
2-, 

PO4
3+ and organic anions such as citrate, malate, and oxalate can have the same 

effect (Delhaize and Ryan, 1995; Miyasaka et al., 2007). Concentration of cations at 

a given pH also considerably affects the toxicity of Al3+. For instance, when the 

concentration of Ca2+ is optimal for a plant’s requirement, then the toxic effect of Al3+  

is reduced (Wang et al., 2006). 

1.3 Mechanisms of aluminium toxicity 

Despite its abundance in the earth’s crust, Al is not known to have a natural role in the 

physiology of any living organisms (Vitorello et al., 2005). Knowledge on the 

absorption of the phytotoxic forms of Al3+ is also limited. The toxic trivalent species 

cannot pass through the plasma membrane. Hence, it is hypothesised that it enters 

the root system either by endocytosis or via the calcium channels of the plasma 

membrane (Miyasaka et al., 2007). 

The transition region of root apex is the primary target of Al toxicity in plants. Kochian 

et al. (2005) and Miyasaka et al. (2007), in their comprehensive review of the subject, 

suggested that aluminium toxicity could potentially result from interaction of aluminium 

with the apoplast (cell wall), plasma membrane, symplastic (cytosol) targets, signal 

transduction pathways, the root cytoskeleton and DNA.  

1.4 Symptoms and effects of aluminium toxicity 

The most important short-term symptom of Al toxicity is the inhibition of root growth, 

which is expressed within a few minutes to a few hours after exposure to micromolar 

concentrations of Al (Barcelo and Poschenrieder, 2002). Root inhibition can be 

exhibited by primary and lateral root apexes, and such roots become thick and develop 

brown colour (Vitorello et al., 2005; Wang et al., 2006; Claudio et al., 2008). The distal 

transition zone (DTZ) of root tip, where the cells switch from cell division to cell 

elongation, is the most sensitive part of roots (Barcelo and Poschenrieder, 2002; 

Miyasaka et al., 2007).  

Callose formation and lignin deposition in cortical cells of roots are reported to be one 

of early symptoms of Al toxicity in various plant species (Miyasaka et al., 2007). 
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Reduced branching of fine roots, suppression of root hair development and abnormal 

root morphology are consequences of long term exposure of Al-sensitive plants to 

toxic concentration of Al (Vitorello et al., 2005; Miyasaka et al., 2007). These effects 

directly impact upon nutrient uptake as well as water absorption. Consequently, 

deficiencies of calcium, magnesium, potassium, iron, molybdenum and phosphorus 

are common symptoms in plants grown in soils with Al toxicity problems (Vitorello et 

al., 2005; Wang et al., 2006; Miyasaka et al., 2007). Excess Al in soil also has  a 

negative effect on the nitrogen fixing capacity of symbionts in legumes, and this is 

associated with the Al sensitivity of the rhizobial strains, resulting in reduced 

nodulation (Miyasaka et al., 2007). The inhibitory effect of Al on root development 

decreases tolerance of plants to drought and use of subsoil nutrients (Little, 1989; Foy, 

1992; Carver and Ownby, 1995; Haynes and Mokolobate, 2001). 

Suppression of photosynthetic capacity is associated to cellular and ultrastructural 

modifications in leaves; reduced stomatal opening and CO2 assimilation; reduced 

chlorophyll concentration; chlorosis and leaf necrosis are also effects of Al-toxicity 

(Vitorello et al., 2005; Moreno-Mateos et al., 2007; Chen et al., 2010). Some of the 

indirect effects of Al toxicity are increased susceptibility of stressed plants to diseases 

(Little, 1989). 

Consequently, the outcome of Al toxicity is significantly expressed on biomass and 

grain yield of crops. Growth of several tropical crops in areas with acid soils that had 

soil aluminium saturation levels of greater than 60% was reduced by 50% or more 

when compared to plants grown on limed soil (Kamprath, 1984). Gallardo et al. (1999) 

also reported 50% and 30% reductions of grain yield in Al sensitive and tolerant 

varieties, respectively. In a study on wheat, liming increased shoot weight and grain 

yield of Al-sensitive genotypes by 60% and head number by 32% (Tang et al., 2001). 

Such yield increases are highly correlated with reduced levels of exchangeable Al as 

a result of liming.  

1.5 Breeding for tolerance to Al toxicity 

Lime is the most common and widely used method to ameliorate the impact of Al-

toxicity in acid soils of temperate regions (such as Europe and North America) (Rao 

et al., 1993). In these areas, soil acidity develops in surface soils mainly as a 
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consequence of the heavy use of mineral fertilizers, and from environmental pollution 

(Rao et al., 1993). 

In the tropics, significant yield increase may result from the appropriate application of 

lime. However, due to sub-soil acidity, and their strong buffering capacity of acid soils, 

such soils need substantial doses of lime to neutralize the acidity (Rao et al., 1993; 

The et al., 2006). Most of resource poor farmers in the tropics are constrained by the 

local unavailability of lime, its high cost, and the costs of transporting a bulky product 

in the quantities that are needed. Furthermore, these farmers lack the appropriate 

technology for deep mechanical incorporation, which combines with the inherently 

slow movement of lime into soils, and especially the acidic sub-soils. Consequently, 

root development of acid sensitive crops is restricted to the surface soil, leaving these 

crops vulnerable to even minor droughts (Little, 1989; Foy, 1992). This is particularly 

important because many acid soils have inherently low water holding capacity (Little, 

1989; Haynes and Mokolobate, 2001). Runoff pollution and the adverse effect of lime 

on calcifuge crops in rotation systems are negative side effects of lime applications 

(Wang et al., 2006). 

The use of organic matter in the form of manure and compost can significantly reduce 

soil acidity (Wong and Swift, 2003). Many organic compounds are released or 

synthesized during the decomposition of organic matter by soil microorganisms. 

Among these, soluble humic molecules and low molecular weight aliphatic acids are 

efficient in detoxifying Al3+ by forming various complexes (Haynes and Mokolobate, 

2001). In addition, the regular application of organic matter increases soil pH. Under 

higher pH the toxic species of Al are converted to non-toxic and insoluble hydroxyl-Al 

compounds.  Application of organic matter also improves the availability of deficient 

soil nutrients such as phosphorus. Use of organic matter seems an applicable strategy 

to resource poor farmers of the tropics who cannot afford large quantities of lime and 

fertilizers. However, in countries like Ethiopia, animal manure and crop residues have 

many uses, including their use as fuel, animal feed, and construction material. 

Therefore, regular applications of organic matter to acid soils are not common 

(Schlede, 1989; IFPRI, 2010).  

Di-ammonium phosphate (DAP) and urea are the mineral fertilizers exclusively used 

on all soil types and agro-ecologies in Ethiopia (Abebe, 2007). Assimilation of these 

fertilizers into roots produces protons are excreted into the external medium, 
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increasing soil acidity (Marschner, 1995; Barak et al., 1997; Bolan and Hedley, 2003). 

Hence, these fertilizers are classified as acid-forming fertilizers. Cautious use of these 

fertilizers in areas with acid soils involves the concurrent application of acid-equivalent 

quantities of lime that can immediately neutralize acidity as it is released (Bolan and 

Hedley, 2003). Accordingly, the acidity equivalent or the number of parts of pure lime 

(calcium carbonate) required to neutralize the acidity caused by 100 parts of DAP and 

Urea is 74 and 79, respectively. For these two fertilizers, DAP and urea, the number 

of years required to decrease the pH by one unit varies between 10-33 and 25-78 

years, respectively, depending on the buffering capacity of the soil to change in pH 

(Bolan and Hedley, 2003). Currently, with the objective of improving crop productivity 

per unit area and bridging the existing yield gap between potential and actual yields, 

the extension services of the country are promoting the exclusive use of these 

fertilizers, without concurrent applications of lime The outcome of this practice will be 

that the less acidic soils will systematically be converted to strongly acidic soils.  

As consequence of high human and animal population pressures, farmers in cereal 

dominated production areas have abandoned traditional fertility management 

practices such as fallowing. Crop rotation lesson longer widely practiced due to land 

shortage and the unsuitability of acid soils for Al-intolerant rotation crops. Contending 

uses of crop residue and animal manure has restricted farmers from using these 

resources to replenish soil fertility. Overall, utilization of external inputs is unbalanced 

and very low. Soil erosion is rampant. All these factors combine to ensure that a 

substantial outflow of mineral nutrients from the soil system is very common. 

Consequently, in some areas of Ethiopia affected by acid soils, farmers have changed 

to growing crops such as oat, triticale, white lupine that are adapted to acid soils, in 

order to ensure their household food security. However, these crops, do not have a 

good market demand or value compared to popular cereal crops, especially tef. 

Furthermore, areas that were previously under forest, woodland and savannah are 

being converted into crop production fields in order to increase national production of 

food, industrial and biofuel crops. These soils, specifically the ones from the southern, 

south western and north western parts of the country have a strong tendency to 

become acid because of the parent soils, and the favourable climatic factors (Abebe, 

2007).  
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Hence, the goal of food security through increased productivity and production needs 

to employ sound and integrated methods to manage acid soils. From this perspective, 

the breeding and release of Al-tolerant varieties would be socially, economically and 

technically acceptable, and environmentally friendly for small-scale farmers of 

developing countries like Ethiopia. The combined uses of tolerant crop varieties, lime 

and organic fertilizers have a synergistic effect that will result in the increased 

productivity and sustainable health of acid soils. For instance, The et al. (2006) 

reported that maize varieties tolerant of acid soils gave 61% higher grain yields than 

Al-sensitive varieties. With lime treatments, yield increases of 208% and 82% were 

obtained for Al-sensitive and Al-tolerant varieties, respectively.  

1.6 Mechanisms of aluminium tolerance in cereals 

Globally, the breeding and utilization of Al-tolerant varieties has been used to 

complement to liming and other non-genetic management options in the production of 

globally important cereals in acid soils. The exclusion of Al from root apices and the 

detoxification of Al in the root and shoot symplasm are two known mechanisms of Al 

tolerance mechanisms in plants. In cereals and grass species, the exclusion 

mechanism is the most common mechanism.   

1.6.1 Exclusion mechanism 

Among cereals, exudation of an organic acid, malic acid, in Al tolerant genotypes was 

first reported on wheat (Delhaize et al., 1993b; Basu et al., 1994; Ryan et al., 1995b). 

More recently, a second mechanism of Al-tolerance that involves the efflux of citrate 

has been reported (Ryan et al., 2009). Exclusion mechanisms involved in important 

cereal crops are summarized in Table 1.2. Organic acids are exuded from the first few 

millimetres of root apices (Rincon and Gonzales, 1992; Delhaize et al., 1993b). 

Chelation of the Al ion with the organic acids in the rhizosphere prevents the Al3+ from 

binding to the negatively charged sites of the cell wall and the plasma membrane of 

tolerant varieties (Miyasaka et al., 1991; Delhaize et al., 1993b; Kochian et al., 2005). 

In contrast, Al-sensitive genotypes accumulate Al in their root apices. Exudation of 

organic acids is associated with the activation of a trans-membrane channel upon 

exposure of the roots to toxic Al concentrations. Organic acids that normally exist as 

anions in the cytoplasm are released into the root environment following activation of 

the trans-membrane channel.  
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1.6.2 Internal detoxification 

Compared to the exclusion mechanism, internal detoxification is a less common 

mechanism in cereals. In rice, the Al-specific expression of the OsALS1 gene localized 

in the tonoplast of root cells is reported to sequestrate Al into vacuoles as an internal 

detoxification mechanism (Huang et al., 2012). Earlier, a similar mechanism was found 

to operate in Al-tolerant barley and wheat varieties (Taylor et al., 1997). A rapid, Al-

induced increase in Mg concentration in the cytosol also increases tolerance of rice to 

Al (Chen et al., 2012). These authors suggested that an increase in Mg concentration 

in the cytosol prevents Al binding to enzymes and other cellular components. Masking 

aluminium binding sites through the modification of cell-wall composition of root cells 

has also been hypothesized (Huang et al., 2009) (See genetic control below). 

 

 Table 1.2. Exclusion mechanisms involved in Al-tolerance of various cereals  
 
Crop Exudation  Reference 

Wheat Malate  (Delhaize et al., 1993a; Basu et al., 1994; Ryan 
et al., 1995a)  

 Citrate   (Ryan et al., 2009) 
 Phosphate and malate  (Didier et al., 1996; Pellet et al., 1997) 
 Polypeptides   (Basu et al., 1997; Basu et al., 1999) 
Barley Citrate  (Zhao et al., 2003) 
 Phosphate   (Wang et al., 2006) 
Rice Citrate  (Ishikawa et al., 2000; Yokosho et al., 2011) 
Sorghum Citrate  (Magalhaes, 2002) 
Rye Citrate  (Li et al., 2000; Ma et al., 2002a) 
Triticale Citrate and malate  (Li et al., 2000; Ma et al., 2002a) 
Maize Citrate and malate  (Renato and Paulo, 1997) 
 Phenolic compounds  (Kidd et al., 2001) 

   

Plants that can accumulate silicon in their roots can release the silicon to detoxify 

aluminium by forming aluminosilicate compounds in the root apoplast (Cocker et al., 

1998). In cereals, this mechanism has been reported in sorghum, where Al and silicon 

are complexed in the outer wall of the endodermis of roots (Hodson and Sangster, 

1993). Suicidal death of cells affected by Al is also reported as a detoxification 

mechanism in wheat (Delisle et al., 2001). Hypersensitive reactions of cells is a 

common mechanism in plant defence against pathogens. 

1.7 Genetic control of Al-tolerance in cereals 

A comparative mapping study found extensive synteny or co-linearity among the 

genomes of rice, wheat, barley, rye, oat, maize and sorghum (Devos and Gale, 2000). 
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Genetic control of Al-tolerance in cereals is mainly associated with genes that control 

protein families linked to membrane transport (Table1.3). In a diverse range of wheat 

genotypes, a major aluminium tolerance gene at AltBH in wheat, TaALMT1, Triticum 

aestivum Aluminium activated Malate Transporter1, encodes for an Al-activated 

plasma membrane protein that allows for the efflux of malate from root apices upon 

exposure to Al (Sasaki et al., 2004; Raman et al., 2005b). This gene was mapped to 

Chromosome 4DL using ‘Chinese spring’ deletion lines and its absence resulted in the 

loss of Al-tolerance and malate exudation (Raman et al., 2005b). Another mechanism 

of Al-tolerance was found in Brazilian wheat cultivars that involves the efflux of citrate 

from root apices. The controlling gene, which resides on Chromosome 4BL, has been 

identified (Ryan et al., 2009). These authors indicated that the citrate efflux is 

controlled by a single gene, which could explain 50% of the phenotypic variation in 

citrate efflux. However, unlike the TaALMT1, this gene belongs to a gene encoding a 

multidrug and toxic compound extrusion protein and was designated as TaMATE1 

(Ryan et al., 2009).  

In barley, Echart et al. (2002) found that an F2 generation analysed with haematoxylin 

staining followed the Mendel’s segregation ratio of 3:1 for Al toxicity tolerant to 

sensitive plants, revealing the fact that the trait is controlled by single dominant gene 

at the Alp locus, which is located on the long arm of Chromosome 4H. This locus is 

associated with the Al-induced efflux of citrate from the root apices of tolerant barley 

encoded by a multidrug and toxic compound extrusion (HvMATE) protein (Wang et 

al., 2007). Quantitative trait loci that explained 50% of the phenotypic variation 

werealso associated with the same chromosomal location (Ma et al., 2004). Similarly, 

Raman et al. (2005a) identified QTLs for root elongation under aluminium stress on 

3H, 4H, 5H and 6H chromosomal locations.  

In rye, four independent loci, Alt1, Alt2, Alt3 and Alt4, located on chromosome arms 

6RS, 3RS, 4RL and 7RS, are known to confer tolerance to Al-toxicity (Matos et al., 

2007). Specifically, the Alt4 locus contained cluster of genes homologous to the Al-

activated malate transporter (TaALMT1) (Collins et al., 2008). Tolerant and sensitive 

rye genotypes contained five and two genes of the clusters at the locus, respectively. 

Out of these, two ScALMT1-M39.2 and one ScALMT1-M77 genes were highly 

expressed in the root tip (Collins et al., 2008). Silva-Navas et al. (2012) subsequently 

located a gene coding for a multidrug and toxic compound extrusion protein family 
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(ScMATE), an aluminium-activated citrate transporter, at the same chromosomal 

location, the 7RS chromosome arm, 25 cM away from the ScALMT1. 

Magalhaes et al. (2007) identified a gene encoding for a member of the multidrug and 

toxic compound extrusion family (SbMATE), which is the responsible gene for the 

major sorghum aluminium tolerance locus, AltSb. They also suggested that 

polymorphisms in the regulatory regions of AltSb are likely to contribute to large allelic 

effects, acting to increase AltSb expression in the root apices of tolerant genotypes. 

Earlier, Caniato et al. (2007) suggested the possibility of the presence of additive or 

co-dominant effects of different loci that would explain the occurrence of transgressive 

segregation observed in some tolerant lines. 

In maize, an Al-activated efflux of citrate from roots is well characterized and is the 

most important mechanism of Al tolerance (Renato and Paulo, 1997). The responsible 

gene is a member of the multidrug and toxin extrusion family (Maron et al., 2008 ). 

Maron et al. (2010) identified two members of the MATE family, ZmMATE1 and 

ZmMATE2, which co-localized with two independent Al-tolerance QTLs. The authors 

clearly showed the association of ZmMATE1 with up-regulation of citrate release at 

the root tips of tolerant varieties upon exposure to Al. In their most recent study, the 

authors indicated that a higher copy number of the gene encoding for ZmMATE1 was 

responsible for quantitative tolerance to Al toxicity (Maron et al., 2013). ZmNrat1, a 

maize homolog to the rice OsNrat1, described below, was also found to have a role in 

maize Al tolerance (Guimaraes et al., 2014). 

In rice, several QTLs have been identified that contribute to phenotypic variations for 

Al-tolerance (Ma et al., 2002b; Nguyen et al., 2002). A recent study indicated that 

multiple genes regulated by the Al Resistance Transcription Factor1 (ART1) control 

Al-tolerance (Yamaji et al., 2009). ART1 is a C2H2-type zinc-finger transcription factor 

and is found in the nuclei of all root cells (Yamaji et al., 2009). Among the multiple 

genes regulated by ART1 and associated with internal and external detoxification, 

STAR1 and STAR2 (Huang et al., 2009); Nrat1 (Xia et al., 2010); OsFRDL4 (OsMATE) 

(Yokosho et al., 2011); OsALS1 (Huang et al., 2012) and Oryza sativa Magnesium 

Transporter1 (OsMGT1) (Chen et al., 2012) have been characterized. STAR1 and 

STAR2 encode for a bacterial-type ATP binding cassette (ABC) transporter complex 

that transports UDP–glucose (Huang et al., 2009). The authors suggested that UDP-

glucose (a glycoside derived compound) is released from vesicles into the apoplast by 
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exocytosis and that it modifies the cell walls to mask the binding sites for aluminium, 

resulting in aluminium tolerance in rice. Both genes are expressed mainly in the roots 

and are specifically induced by Al. Disruption of either genes results in increased 

sensitivity to Al-toxicity (Huang et al., 2009). 

Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) 

family and is a plasma membrane-localized transporter for trivalent Al (Xia et al., 

2010). OsALS1 encodes for a half-size ABC transporter that is a member of the TAP 

(transporter associated with antigen processing) sub-group (Huang et al., 2012). 

OsALS1 is localized to the tonoplast of root cells and is responsible for sequestration 

of Al into vacuoles, which is required for internal detoxification of Al in rice (Huang et 

al., 2012). OsALS1 and Nrat1 operate cooperatively in that Al transported by Nrat1 is 

sequestered by OsALS1 (Huang et al., 2012).  

OsFRDL4 that encodes for a citrate transporter and is homologous to SbMATE of 

sorghum, sharing a 70% identity at the amino acid level (Yokosho et al., 2011). 

Knockout of this gene results in decreased citrate secretion and increased Al 

sensitivity. However, the contribution of the OsFRDL4 gene in overall Al-tolerance of 

rice is relatively small (Yokosho et al.) 

OsMGT1 is a plasma-membrane localized transporter for Mg in rice and its expression 

is specifically boosted by Al (Chen et al., 2012). Up-regulation of this transporter gene 

is required for conferring Al tolerance by increasing Mg uptake into the cells. Knockout 

of OsMGT1 resulted in increased sensitivity to Al in both solution and soil culture. It is 

hypothesised that Mg prevents Al binding to enzymes and other cellular components 

and enables its detoxification (Chen et al., 2012).  

1.8 Breeding for Al-tolerance in cereals 

Like any other trait of economic importance, breeding method for Al-tolerance depends 

on the pollination biology of individual crops, the inheritance of genes controlling the 

trait and their gene action (Poehlman and Sleper, 1995). The first step in breeding for 

tolerance to Al-toxicity is acquisition of diverse genetic resources. In the Ethiopian 

context, the germplasm acquisition and breeding for tolerance to Al-toxicity has to 

follow two strategies.  

For indigenous crops that have not been bred for Al-tolerance, collection of germplasm 

and evaluation for Al-tolerance and other economic traits is an appropriate strategy in 
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the short term. Studies on inheritance, gene action and follow up activities on genetic 

recombination and progeny evaluation will be undertaken as medium and long term 

goals. For globally important cereals that have been well studied, the introduction, 

evaluation and selection of adaptable tolerant materials can be the right entry point for 

the short term. Introgression of Al-tolerance gene/s from known sources into popular 

varieties and selection can help to develop Al-tolerant varieties with good agronomic 

features.  

Table 1.3. Genes encoding for membrane transport protein families in different cereals  
  
Crop Gene family  Reference  

Wheat (Triticum aestivum)  TaALMT1  (Sasaki et al., 2004) 
 (Raman et al., 2005b) 

 TaMATE1   (Ryan et al., 2009)  
Barley (Hordeum vulgare) HvMATE  (Wang et al., 2006)  

 (Wang et al., 2007) 
Rye (Secale cereale ) Sc ALMT1  (Fontecha et al., 2007) 

 (Collins et al., 2008) 
ScMATE  (Navas et al., 2012) 

Sorghum (Sorghum bicolor) SbMATE   (Magalhaes et al., 2007) 
Maize (Zea mays)  ZmMATE1, ZmMATE2  (Maron et al., 2008 ) 

 (Maron et al., 2010) 
 (Maron et al., 2013 

 ZmNrat1    Guimaraes, et al., 2014 
Rice (Oryza sativa) START1 and START2 (ABC transporters)  (Huang et al., 2009) 

 OsALS1 ( ABC transporter member of the 
TAP (transporter associated with antigen 
processing) sub-group 

 (Huang et al., 2012) 

 Nramp (natural resistance-associated 
macrophage protein) family 

 (Xia et al., 2010) 

 OsFRDL4 (OsMATE)-Citrate transporter  (Yokosho et al., 2011) 
 OsMGT1-Magnesium transporter   (Chen et al., 2012) 

 

One approach to starting breeding for Al tolerant varieties is to start with germplasm 

collected from areas prone to acid soils. Most of Al-tolerant crop genotypes developed 

so far were developed from parent populations sourced from regions of the world with 

highly acidic soils (Rao et al., 1993; Poehlman and Sleper, 1995; Ryan et al., 2009). 

For instance among 250 bread wheat landraces originating from 21 countries, all of 

25 accessions collected from highly acid soils in Nepal were found to be Al-tolerant 

(Stodart et al., 2007). The most likely reasons for such associations are natural 

selection and/or human selection by early farmers (Rao et al., 1993; Stodart et al., 

2007).  
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Induction of mutations using radiation or mutagenic chemicals can also be used to 

rapidly increase genetic variability for Al-tolerance for screening programmes. In 

barley and Arabidopsis thaliana L, mutagenic treatment with N-methyl-N-nitroso-urea 

(MNH) and sodium azide; and ethyl methanesulfonate (EMS), respectively, resulted 

in mutants with increased level of Al-tolerance,   (Nawrot et al., 2001; Kelly et al., 

2006). Acid soil/Al-tolerant variants of sorghum, rice and maize have been obtained 

from somaclonal variations under in vitro conditions (Foy et al., 1993; Duncan et al., 

1995; Jan et al., 1997; Sibov et al., 1999). Genetic engineering methods have also 

been used for genetic and expression analysis studies and to develop genotypes with 

enhanced aluminium tolerance (Deborah and Tesfaye, 2003; Dharmendra et al., 2011; 

Roy et al., 2011). 

1.9 Screening methods for Al-tolerance 

1.9.1 Nutrient solution culture 

This technique is the most common screening method for Al tolerance. It simplifies 

root measurement or other assay methods of Al-tolerance and allows for easy control 

over nutrient availability, pH, light conditions, etc. (Carver and Ownby, 1995). Regular 

monitoring the medium is imperative because plant root exudates can change the pH 

of the nutrient solution (Deborah and Tesfaye, 2003). 

Magnavaca’s nutrient solution for maize, sorghum and wheat, and Yoshida’s nutrient 

solutions for rice are the most commonly used nutrient solution formulations for Al-

tolerance screening (Yoshida et al., 1976; Magnavaca et al., 1987; Magalhaes et al., 

2004; Sasaki et al., 2004; Magalhaes et al., 2007). Nutrient solutions with low-ionic-

strength and low Al concentration are usually used to mimic the ionic strength and 

aluminium activity found in acid soil environments (Blamey et al., 1992). Accordingly, 

Famoso et al. (2010) modified Magnavaca’s nutrient solution and developed an Al 

screening nutrient solution with a reduced ionic strength and a reduced precipitating 

effect on Al. This solution also increased the availability of important nutrients by 

reducing their interaction with Al. They called this formulation a “modified Magnavaca’s 

nutrient solution” (Famoso et al., 2010).  

Different crop species vary in their sensitivity to toxic concentrations of Al. Specific Al 

concentrations are used to screening each cereal crop, in order to accurately 

discriminate between the Al-sensitivity of the available germplasm. For instance, the 
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concentration of Al that gives free Al3+ activity has been identified as 8.75 μM for wheat 

(Sasaki et al., 2004), 27 μM for sorghum (Magalhaes et al., 2007), 39 μM for maize 

(Pineros et al., 2005) and 160 μM for rice (Famoso et al., 2010).  

Root tip staining and root growth measurement methods are the main methods used 

to measure Al-tolerance in cereals grown in a nutrient solution culture. 

Root tip staining: There are several methods of root tip staining. Among these, 

haematoxylin staining of root tips is a widely used and powerful method (Polle et al., 

1978; Deborah and Tesfaye, 2003; Raman and Gustafson, 2011). Eriochrome 

cyanine, and lumogallion root staining methods have also been used to discriminate 

between tolerant and sensitive genotypes of various crop species (Junping et al., 

2006; Narasimhamoorthy et al., 2007). These stains identify Al-sensitive genotypes by 

forming complexes with Al ions accumulated in the root tips of the test plants. Nitroblue 

tetrazolium (NBT) is another stain that has been used to identify Al-tolerant genotypes. 

With NBT staining, a high degree of staining has been related to high levels of Al 

tolerance in wheat, rye, maize, and rice (Maltais and Houde, 2002; Raman and 

Gustafson, 2011).  

Root growth: Root growth measurements are also widely used to assess genotypes 

for Al-tolerance and sensitivity when tested in nutrient solutions (Baier et al., 1995; 

Carver and Ownby, 1995). The root growth method considers two Al tolerance 

parameters: Root growth (RG) and root tolerance index (RTI) (Baier et al., 1995). The 

RG parameter measures root growth under Al stress. Genotypes that exhibit longer 

roots and greater root densities under toxic concentration of Al are tolerant to Al. RTI 

or Relative Root Growth (RRG) is computed as the ratio of root growth under Al stress 

to root growth without Al stress (Hede et al., 2002; Raman and Gustafson, 2011). 

Plants with higher RTI values are more tolerant of Al. RTI needs an experimental set 

up that allows for the measurement of root growth parameters under both Al stress 

and without Al stress. Al tolerance can be a combination of two genes/ alleles 

controlling inherent root vigour, and root tolerance to Al. RTI removes the effect of 

genes controlling root vigour by taking relative growth of the genotype in an Al solution 

and comparing it with its growth without Al. The one drawback of RTI as a 

measurement is that environmentally sensitive genotypes that grow slowly under non-



30 

 

stressed conditions can have high RTI values and may appear Al-tolerant (DallAgnol 

et al., 1996; Hede et al., 2002).  

When the two assessment methods are compared, root staining evaluates the 

accumulation of aluminium in the roots, disregarding the possibility of an accumulation 

of aluminium in other plant parts. Hence, it may misclassify plants when there is 

genetic difference between plants in their mechanisms of Al tolerance. Root growth 

methods, however, avoids this complexity because they measure the genetic potential 

of plants to overcome the known effect of root growth inhibition (Raman and 

Gustafson, 2011).  

The shortcomings of root measurement methods includes the fact that they are time 

consuming. They are also dependent on non-genetic attributes of seeds such age, 

seed size, and physiological conditions which can lead to erroneous inferences 

(Raman and Gustafson, 2011). Nevertheless, these drawbacks can be overcome by 

using seeds with similar physical and physiological conditions (Baier et al., 1995). It is 

also important to germinate seeds and select for uniform seedlings before evaluating 

for Al tolerance (Hede et al., 2002).  

1.9.2 In vitro (tissue culture) screening method 

Compared to screening under field condition, the in vitro technique is relatively fast 

and can be done at an early stage of plant development. This method involves the 

evaluation of callus growth grown on an acid tissue culture medium containing a toxic 

concentration of aluminium, compared with an aluminium free acidic medium (Conner 

and Meredith, 1985; Deborah and Tesfaye, 2003; Dharmendra et al., 2011). The 

underlying assumption for the development of tolerant materials from callus culture is 

that tolerance at a cell culture level will operates in whole-plants under field conditions. 

This technique has been used to identify Al-tolerant plants. However, its economic 

feasibility is questionable for some species, and is challenging for many cereals that 

are not easily grown in tissue culture (DallAgnol et al., 1996). 

There are also technical challenges with in vitro screening. In order to emulate 

problems of acid soils with Al-toxicity problem, several modifications have to be made 

(Conner and Meredith, 1985). For instance, the pH has to be reduced to about 4.0. 

However, at pH of 4.0, agar does not solidify when autoclaved. In order to overcome 

this, a high concentration of Gelrite (up to 14 g. L-1) (Jan et al., 1997) and 5-9 g.L-1 is 
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used (Ramgareeb et al., 1999). Secondly, aluminium forms precipitates with various 

nutrients in the medium, so it is difficult to control the availability and activity of the 

toxic aluminium species in the medium (Ramgareeb et al., 1999). Hence, the use of a 

chemical equilibrium speciation model has been suggested to predict the availability 

and activity of the toxic Al species (Ramgareeb et al., 1999; Shaff et al., 2010).  

1.9.3 Soil based screening  

Screening crops in acid soils usually follows preliminary screenings made in solution 

culture. It is preferable to conduct soil-based screening in soils taken from the target 

production area or to represent the target production area (Carver and Ownby, 1995). 

Root growth and root tolerance index assessment methods discussed above under 

nutrient solution culture are commonly used. To compute a tolerance index, plants are 

grown in an acid soil limed to a non-toxic level, and in unlimed soil. Relative root dry-

matter and shoot dry-matter are used to evaluate the materials because the Relative 

value = the value with aluminium stress/value without aluminium stress (Foy et al., 

1987; Hill et al., 1989; Foy and Murray, 1998; Liu, 2005). The advantage of using soil 

based screening methods compared to nutrient solution culture is that they take into 

consideration other soil factors that may influence Al tolerance (Ring et al., 1993). 

1.9.4 Field evaluation 

The reason for breeding for Al-tolerant crop varieties is to make target areas with acid 

soils more productive. Hence, evaluation of selected varieties for yield and other 

economically important traits at target production areas is imperative. Field evaluation 

is usually conducted in pairs of lime amended and naturally acidic plots for all the 

genotypes to be evaluated, and tolerance indices are computed for analysis (Carver 

and Ownby, 1995; Johnson et al., 1997). In field evaluation, to the major challenge is 

to avoid heterogeneity effects in the soil, associated with non- treatment factors such 

as soil variability, differential soil compaction and the effect of soil-borne pathogens 

with a patchy distribution. 

1.10 Molecular marker assisted breeding for Al-tolerance in cereals 

Devos and Gale (2000) found extensive synteny or colinearity among the genomes of 

rice, wheat, barley, rye, oat, maize and sorghum in a comparative mapping study. This 

opens up the possibility of screening for Al-tolerance loci in cereals using a set of 

common DNA markers linked to Al-tolerance (Raman and Gustafson, 2011). 
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Currently, diagnostic markers associated with the candidate genes TaALMT, Sc 

ALMT1, HvMATE, SbMATE and ZmMATE1 have been developed (Table 1.2). These 

genes are mainly correlated with Al-tolerance in wheat, barley and sorghum, 

respectively. Molecular markers for Al-tolerance have been applied in breeding 

programmes to monitor for the presence of the desired alleles in different genetic 

background and in genetic diversity studies (Raman and Gustafson, 2011).  

1.11 Conclusion 

Much of the arable land in Ethiopia is negatively affected by soil acidity and Al-toxicity. 

These areas are mainly found in the high rainfall areas of the north western, western, 

south western and southern parts of the country. Use of lime in the areas affected by 

acid soils is affected by its local unavailability, its high cost, and the difficulties 

associated with its transport, and the application of the appropriate tonnages of lime 

often recommended to offset the of the  buffering capacity of the acid soils. On the 

other hand, competing uses of crop residues for fuel, animal feed and construction 

material hinders the widespread use of compost and animal manure for soil acidity 

management. In contrast, Al-tolerant crop varieties can be used as the primary 

component of an integrated acid soil management strategy for Ethiopia. However, this 

will need a shift in research priorities to enable the start of active breeding of staple 

crops for adaptation to the acid soils of Ethiopia, and specifically to tef breeding. 
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CHAPTER 2 

Soil acidity: Importance, assessment of perceived causes and 

indicators, coping strategies and implications in cereal based mixed-

farming system of north western Ethiopia 

Abstract 

Soil acidity is one of major crop production constraints in north western Ethiopia. 

Nonetheless, information on the extent of soil acidity across land-uses is scarce. A 

participatory rural appraisal (PRA) was conducted in three Districts of north western 

Ethiopia affected by acid soils in order to: 1) Assess the state of soil acidity under 

multiple land-uses; 2) Determine the perceived causes and indicators of soil acidity, 

and coping strategies of farmers dealing with soil acidity; and 3) Assess the 

importance of soil acidity as a crop production constraint. Semi- structured interviews, 

group discussions and soil analyses were the main techniques used to generate data. 

Soil samples were collected from five dominant land-uses and were analysed for soil 

pH, exchangeable acidity and other physico-chemical properties. Farmers’ 

perceptions were that the causes of soil acidity included: Soil erosion; competing use 

of local resources and poor nutrient recycling; the abandoning traditional fertility 

management practices; and the minimal and unbalanced use of external inputs. The 

farmers indirectly implicated the exclusive use of acid-forming inorganic fertilizers to 

exhaustion of the soil. Soil erosion, soil acidity, the high cost of mineral fertilizers and 

lime, cash shortages, and the unavailability of seeds of adapted varieties were viewed 

as the top ranking constraints. Species tolerance to soil acidity was found to be one of 

the major factors that influenced crop choice by farmers. Various land and soil 

characteristics, plant growth attributes, changes in genetic diversity were mentioned 

as indicators of soil acidity. The physico-chemical properties of the soils showed 

variation across land-uses and study sites. Nonetheless, the pH(H2O) of most of the 

soils in the study sites were in a strongly acidic range (4.6–5.5). Gashena Akayita of 

Banja District was the most acidic of all with high levels of exchangeable Al. At all the 

study sites, exchangeable Al was detected in soils having a pH of less than 5.0. Among 

the land-uses, eucalyptus fields were the most acidic followed by crop outfields and 

grazing lands, in that order. Mn toxicity was found to be a potential problem for the 

Districts of Enguti and Enerata. Farmers’ perceptions of soil acidity were in agreement 
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with the soil test results. The limitations of the current coping strategies and the need 

to avail compatible technologies that ensure sustainable soil management are 

discussed. 

Key words: Farmers’ perceptions, soil acidity, coping strategy  

 

2.1 Introduction  

Land degradation is an important global problem affecting current and future food 

production and rural livelihoods (Scherr and Yadav, 1996; Bruinsma, 2009; Godfray 

et al., 2010; Eswaran et al., 2001). The growing decline in productivity of soils due to 

soil acidity is one aspect of land degradation constraining crop production worldwide. 

Acid soils constitute 40% of the world’s total ice-free land. In Africa, 22% of the land, 

or 659 million ha of land have soil acidity problems (von Uexk¨ull and Mutert, 1995).  

In Ethiopia, acid soils with a pH of below 5.5 in the surface layer constitute about 13.2% 

of the total land area (Schlede, 1989) and are mainly distributed in the western, north 

western, south western and southern parts of the country (Schlede, 1989; Abebe, 

2007). The importance of the areas affected by acid soils lies in the fact that they are 

found in the high rainfall areas with good agricultural potential. In contrast, the eastern 

regions of Ethiopia have neutral soils, but suffer from recurrent droughts (Abebe, 2007; 

IFPRI, 2010).  

The promotion of mineral fertilizers, compost and lime use, along with soil and water 

conservation practices, have been the main strategies promoted by the government 

extension service to counter the problem of soil acidity. Nonetheless, variability in 

agro-ecologies, local resource endowment and the limited capacity of small-scale 

farmers to invest in such options have limited their impact in the management of acid 

soils (Alemneh, 2003).  

Land-use is one of the anthropogenic factor that affect pH and other physico-chemical 

properties (Behera and Shukla, 2015). However, most of the strategies under 

promotion are focused on the reclamation of crop fields, with no or little consideration 

given to the varied land-uses prevailing in the existing mixed farming systems.  

Farmers are a repository of indigenous knowledge, and have practical experience on 

how to adapt their farming practices to changing socioeconomic and biophysical 
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circumstances (Freudenberger, 1994; Dixon et al., 2001). Hence, farmers’ 

participation in the process of problem identification and technology development may 

help to identify management strategies that are compatible with local socio-economic 

and biophysical environments (Freudenberger, 1994; Nabhan, 1999; Dixon et al., 

2001). Furthermore, participatory approaches that involve local stakeholders help to 

avoid the inadequacies associated with quantitative methods that often are expert 

biased (Vaidya and Mayer, 2014). Various studies also shown a correlation between 

farmers’ knowledge and scientific evidence on the causes and indicators of land 

degradation related to soil fertility decline (Malley et al., 2006; Karltun et al., 2013; 

Vaidya and Mayer, 2014). Alemneh (2003) noted that the lack of participatory 

approaches has undermined soil fertility initiatives that could have improved soil 

productivity and intensification of the agriculture by combining high and low input 

technologies suitable for the small-scale farmers of Ethiopia. Research endeavours 

specifically targeting acid soil environments are in their infancy and are constrained by 

a paucity of information. This research was carried out in order to assess the state of 

soil acidity across multiple land-uses and to document farmers’ knowledge and 

understanding of soil acidity. The information generated from this study of several 

agro-ecologies affected by acid soils is expected to help in designing appropriate 

interventions for the study areas and similar environments. 

2.2 Material and methods 

2.2.1 Description of the study sites 

The study was conducted at the Enguti, Gashena Akayita and Enerata peasant 

associations (PA2s) in the Mecha, Banja and Gozamin Districts of West Gojjam, Awi 

and East Gojjam administrative zones in north western Ethiopia, respectively, from 

December 2012 to January 2013 (Figure 2.1). The study areas were carefully selected 

to represent areas severely affected by acid soils, and where the farmers are involved 

in mixed farming systems.  

According to the traditional agroecological classification, which is mainly based on 

altitude, the Dega and Woinadega zones include areas with elevations of 2300-3200m 

and 1500-2300 m above sea level, respectively (IFPRI and CSA, 2006). Gashena 

                                            

2 *PA is the smallest administrative unit in the government structure. 
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Akayita (2500-2700 m) and Enerata (2400-2700 m) fall into the Dega zone, whereas 

Enguti (1900-2100m) falls into the Woinadega Zone. In terms of their temperature and 

moisture regimes, Gashena Akayita is cool and sub-humid, whereas Enerata is cool 

and moist. Enguti is tepid and moist, allowing for the production of a greater diversity 

of crop species than the other two sites. The rainfall pattern is unimodal across all the 

study sites. Gashena Akayita usually receives the highest rainfall (Figure 2.2).  

The mean size of landholding per household was 0.5ha for Banja, and 1.5ha for the 

Mecha and Gozamin Districts. The soil class of Gashena Akayita is predominantly 

Acrisol (Ultisol), whereas those of Enerata and Enguti are mostly Nitosols (Yihenew, 

2002; IFPRI and CSA, 2006). 

2.2.2 Data collection 

Data collection involved secondary data gathering from local sources, participatory 

rural appraisal (PRA) techniques, and a comprehensive soil sampling programme. 

Secondary data collection: Included secondary data gathering on soil type, land-use, 

vegetation cover, major crops produced, animal and human population, etc. 

Direct Observation: A transect-walk was made at each site in the company of key 

informants in order to better understand the farming systems in terms of land-use, land 

form, vegetation cover, etc. through visual observation, and informal discussions with 

the people of the area.  

A semi-structured interview: A semi-structured interview was administered to 61 

farmers, i.e., 20 farmers at Enguti and Enerata, and 21 at Gashena Akayita, using a 

checklist of topics and guide questions. The farmers were randomly selected and the 

number of interviewees was determined based on the extent of data saturation 

achieved (Mason, 2010). Data were collected on farmers’ perceptions of the major 

production constraints affecting tef, their current coping strategies and their limitations; 

and the factors influencing their choice of major crops and varieties being grown. A 

key informant interview was also administered to five agricultural development workers 

at each site on the extent of soil acidity and farmers’ coping strategies. Iteration and 

probing techniques were used to generate the information adequately and precisely, 

with a degree of cross-checking. 
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Group discussion: Group discussions involving 15 farmers at each of Enguti and 

Gashena Akayita and 30 farmers at Enerata were held. Ranking of major production 

constraints that had been identified through the semi-structured interview, and 

identification of the prevalent soil fertility management methods being used were 

carried out through group discussions. Subsequently, farmers’ perceived indicators 

and causes of soil acidity; the spatial distribution of acid soils; and changing patterns 

in land-use  were assessed using cause-and-effect analysis, trend analysis, listing and 

sorting, and the spectrum of PRA tools. The initial outcomes were then confirmed 

through discussions leading to consensus among the participants. 

Soil sample collection: A soil sampling strategy across the different land-uses was 

established based on secondary data analysis, and the outcomes of the transect-

walks and the group discussions. Accordingly, the land-use and the management 

types were categorized into six classes: Homestead plots, limed outfields, unlimed 

outfields, eucalyptus fields, natural forest, and grazing land. Soil samples were 

collected from each land-use type except for the natural forest at Enerata and the 

limed outfields from Enguti. A field or a plot with an area of about 2ha was taken as a 

sampling unit (Motsara and Roy, 2008). Each composite soil sample was generated 

by samples from a minimum of 5 fields scattered over the PAs for the crop and 

eucalyptus fields. For natural forest and grazing land, all available patches were 

sampled. From each sampling unit (2ha area), a minimum of 5 samples were collected 

in a diagonal sampling pattern, using a 20cm auger. Overall, sixteen composite 

samples were collected to represent the different land-uses and crop management 

systems across the three study areas. Soil samples were air dried, crushed and sieved 

through a 2 mm diameter mesh, combined and thoroughly mixed for each land-use 

and study area. A quartering method was used to extract the final 1 kg of soil needed 

for analysis. 

Soil analysis: Soil samples were analysed in the laboratory of the Amhara Design and 

Supervision Works Enterprise, Soil Chemistry and Water Quality Section, Bahir Dar, 

Ethiopia. FAO laboratory procedures as outlined in Motsara and Roy (2008) were used 

to conduct the analysis of the specific physico-chemical properties. The pH was 

potentiometrically measured in the supernatant suspension of a 1:2.5 soil: H2O/ KCl 

mixture. The particle size was determined using a hydrometer method (Bouyoucos, 

1951).The pH (H20) was measured in 1:2.5 soil to water and soil. CEC was determined 
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by extracting with 1N ammonium acetate at pH 7.0 and using a titration method. 

Exchangeable bases were measured by an atomic absorption spectrophotometer 

(AAS). Mn was extracted by DTPA (diethylenetriamine penta acetic acid) and 

determined by AAS (Lindsay and Norvell, 1978). Exchangeable acidity and 

exchangeable aluminium were determined by titration methods after leaching with a 

neutral 1N KCl solution. Organic carbon content was determined using Walkley and 

Black (1934) titration method. The available phosphorus content was determined by 

the Olsen method (Olsen et al., 1954).The total nitrogen was analysed by the semi-

micro Kjeldahl procedure of Hitchcock and Belden (1933). 

 

 

 

Figure 2.1. Geographical location and altitudinal range of the study areas 
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Figure 2.2. Rainfall pattern of the study areas: Mean of 10 years interpolated by an 

FAO local climate estimator (FAO, 2005) 

 

 

2.3 Results  

2.3.1 Predominant land-uses of the farming system 

Sedentary mixed crop-livestock farming characterized the farming system in all the 

study areas. The proportion of land allocated to different agricultural uses ranged from 

63% in Mecha to 93% in Banja (Table 2.1). Gozamin and Banja host zonal towns and 

consequently had a smaller rural population. Banja was the most densely populated 

and had the smallest mean land holding per household. Among the agricultural land-

uses, crop production was first in terms of area of usage, followed by grazing land. 

Tenure of grazing lands is predominantly communal in all the study areas. A larger 

percentage of total land area was allocated for grazing at Gozamin. Nonetheless, most 

of the communal grazing lands were overgrazed and severely eroded. Substantial 

areas of the grazing lands were occupied by weed species with no feed value. The 

farmers collected cattle dung dropped on grazing lands for fuel during the dry season 

with no restrictions on this practice. Due to the low productivity of grazing lands and 

the high livestock populations, farmers rely on crop residues to feed their livestock. 

Most farmers at Banja used the most acidic outfields for pastures in order to cope with 

the problem of soil acidity. However, efforts to improve the productivity of either the 

communal or the private grazing lands were negligible. 
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A strong link between crop production and livestock rearing was demonstrated in the 

study areas. Horses and oxen were used in the extreme highland parts and mid-

altitude areas, respectively, to provide draught power for land preparation. Threshing 

and transport of crops was also carried out by livestock. Horses and donkeys were the 

predominant livestock used to transport agricultural produce to the markets, and bring 

in important inputs such as fertilizers and lime to the farms. Livestock also provided 

manure to replenish soil fertility, principally in homestead areas. In the Banja area, 

hura or night corralling of cattle on outfields is longstanding popular practice used to 

replenish the fertility through direct application of manure and urine. 

In the Mecha and Gozamin areas, the share of natural forest was negligible and 

restricted to the area of land surroundings ancient churches and monasteries. Despite 

having the least mean land holding per household, encroachment of natural forest 

seems minimal in the Banja area. Consequently, the proportion of land covered by 

natural forest in this District was significant. Considerable rural household income was 

derived from the sale of bamboo (Arundinaria spp. Michx.) and eucalyptus products in 

the study areas. Plantations of green wattle (Acacia decurrens (Wendl.) Willd.) are 

rapidly expanding onto acidic soils that no longer support good crop growth. Private 

eucalyptus plots constitute the primary plantation forest cover in Gozamin and Mecha. 

Soil acidity and the prohibitive cost of fertilizer were among the main driving factors 

forcing farmers to switch to eucalyptus farming. Traditional agroforestry that involves 

the deliberate cultivation of nitrogen fixing forestry species such as Croton 

macrostychus Hochst. ex Ferret et Galinier and Cordia spp. L. also contributed to the 

vegetation cover in the Mecha area. 

 

 

 

 

 

 



49 

 

Table 2.1. Selected indicators of farming system, landuse characteristics, and climatic 

features of the study districts 

 Districts 

Variables Gozamin Banja Mecha 

Total Population* 225,638 126,546 323,374 

Rural Population (%)* 63 77 91 

Population density (persons/km2) 182.0 249.1 218.3 

Mean land holding (ha) <1.5 <0.5 <1.5 

Total area for all land-uses (ha) 121,781 30,217 156,027 

Soil and Climatic features     

Dominant soil type Nitisol Acrisol Nitisol 

Altitude (m) (only the study sites) 2400-2700 2500-2700 1900-2100 

Annual rainfall (mm)* 1200-1300 2100-2200 1300-1400 

Mean Min/ Max Temperature (oC)* 10/22 8.5/24 12/27 

Major agricultural land-uses (%) 76.4 93 63 

Cultivated area (ha) (%) 44,488 (36.5) 12,277 (40.6) 72,138 (46.2) 

Grazing land (ha) (%) 32,936 (27) 3443 (11.4) 15,591 (10) 

Natural forest (ha) (%) 
15,594(12.8)** 

2679 (8.9) 5971 (3.8) 

Plantation forest (ha) (%) 9694.5 (32.1) 3106 (1.99) 

Livestock population    

Cattle 129,158 73,820 300,890 

Shoats 121,998 102,416 175,619 

Equines  21,838 26,622 35,355 

Source : Respective zonal and district offices of agriculture  
             *2012 National Statistics (Abstract), CSA 2013; ** total for both plantation and natural forest.  

 

2.3.2 Major crops grown  

The percentage of land area allotted for crop production varied across the study sites. 

The largest share (46%) was allotted for crop production in Mecha and the least was 

in Gozamin (36.5%). Crop production was principally cereal based. At Banja, which is 

the most acidic environment, the main crops were tef (Eragrostis tef Zucc. Trotter) and 

Irish potato (Solanum tuberosum L.) grown on over 50% of the cultivated land (Table 

2.2). Triticale (X Triticosecale Wittmark), a newly introduced crop to the country, 

occupied over 14% of the cultivated land in Banja (Table 2.2). 

Farmers selected specific crops and varieties to grow, based on various determining 

factors (Table 2.3). Adaptability to acid soils was among the major determining factors 

in crop selection. Brown seeded tef landraces called Dabo were widely grown in 

Gashena Akayita and Enerata. Compared to white seeded tef varieties, these 

landraces fetched lower market prices. However, farmers valued the better 
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adaptability of the brown seeded tef landraces to their acidic soils and the cooler 

temperatures. These landraces were grown on acidic outfields with a minimum of 

fertilizer applications. The dominance of brown seeded tef landraces in the highland 

ecologies of the country has been reported previously (NRC, 1996).  

Potato was the only non-cereal crop produced on substantial scale in all the study 

sites. In addition to other factors, its natural adaptation to acidic soils and to cool 

climates (Jadhave and Kadam, 1998) explain its widespread production in the study 

areas. 

Triticale was introduced to the farming system of Banja, Gozamin and similar acid soil 

prone areas a few years ago. In addition to threshing difficulties, farmers were not 

accustomed to its utilization. Nevertheless, its cultivation has been rapidly expanding 

in the farming systems owing to its adaptability to acidic outfields. Triticale is classified 

as an acid tolerant crop owing to the genes for tolerance to Al-toxicity that it has 

derived from the rye genome (Niedziela et al., 2012). 

White lupin (Lupinus albus L.) and oat (Avena sativa L.) were also produced on 

substantial areas, mainly on outfields. White lupin can fix nitrogen on a low pH and in 

P deficient, acidic soils (Vance, 2001), and can tolerate Al-toxicity in acid soils (Wang 

et al., 2007). Oat is also considered to be naturally Al-tolerant and is commonly grown 

in rotation with crops such as potato (Foy et al., 1987; Radmer et al., 2012). In addition 

to Al-tolerance, oat has been reported to be tolerant to Mn toxicity (Sillanpaa, 1972).  

Finger millet (Eleusine corocana (L.) Gaertn.) occupied over 22% of total area 

cultivated in Mecha. The farmers reported that it is highly adapted to the acidic 

outfields and demand less mineral fertilizer than maize. The reaction of finger millet to 

soil acidity and Al-toxicity is not known. However, its capacity to mobilize rock 

phosphate has been reported to be stronger than most cereals (Flack et al., 1987). 

Generally, there was a trend to commit more land to growing acid tolerant species and 

landraces, suggesting that soil acidity has become one of the determining factors for 

selection of crops.  
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Table 2.2. The top five crops grown in the study areas during 2012 cropping season  

 

District  Crop Area(ha)  % total area 

Banaja (Gashena Akayita) Total area  12227  

 Tef 3323 27.2 
 Potato 3012 24.6 
 Triticale 1764 14.4 
 Wheat 1152 9.4 
 Maize 900 7.4 

Gozamin (Enerata) Total area 44417  

 Wheat 13903 31.3 
 Tef 10131 22.8 
 Maize 5079 11.4 
 Barley 3050 6.9 
 Potato 2489 5.6 

Mecha (Enguti) Total area 69676.35  

 Maize 29732 42.67 
 F.millet 15349 22.03 
 Tef 6851 9.83 
 Noug 3052 4.38 
 Potato 2680 3.85 

Source: Respective District Offices of Agricultural Development  
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 Table 2.3. Major crops grown and factors affecting their choice assessed by semi-structured interview of farmers (n=61)    

 
 

Study sites 

   
 
Crops 

Determinant factors  

High 
yield 

House 
Hold 
food 
security  

Crop 
residue 
for  
feed 

Market 
value 

Crop 
rotation 

Early 
maturity 

Demands 
less fertilizer 

Tolerates/ 
adapted 
to soil 
acidity  

Other 
values of 
residue 

Tolerance 
to biotic 
stresses  

Fits to 
double 
cropping  

 
 
Banaja (G. Akayita) 
(n=20) 

Tef  * * *  * * * * * * 

Potato * *  * * * * *   * 

Triticale * * *    * * *   

Wheat *   *     *   

Maize * * * *     *   

 
 
Gozamin (Enerata) 
(n=21) 

Wheat *   *     *   

Tef  * * *  * * * * *  

Maize * * * *     *   

Barley  * * *  * *   *  

Potato * *  * * *  *    

 
 

Mecha (Enguti) 
(n=20) 

Maize * * * *     *   

F.millet  * * * *  * * * *  

Tef  * * *  * * * * *  

Noug   * * *  * *  *  

Potato * *  * *       
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2.3.3 Farmers’ perceptions and physico-chemical properties of the soils 

The textural class of soils from Enerata and Enguti was clay whereas that of Akayita 

was mainly loamy. Variations were observed in the physical properties of soils across 

different land-uses. Outfields of Enerata belonged to the heavy clay class and had 

very low organic carbon (OC) levels (<2%), while homestead, grazing land and 

eucalyptus plots had a clay texture and higher OC levels. Generally, soil samples from 

homesteads and grazing land had relatively high OC contents (Table 2.4). Homestead 

soils benefited from organic matter applied in the form of household refuse and animal 

manure. The absence of tillage practices and the slow decomposition of manure might 

contribute to the relatively high OC levels of the grazing lands in the study areas.  

Table 2.4. Soil texture components, and levels of organic carbon and organic matter 

of soil samples from three Districts and with multiple land-uses 

Site Land-use  Texture (%) Class  OC 
(%) 
  

  OMC       
(%) 
  

sand clay silt 

Enerata Limed 13 65 22 heavy clay 0.94 1.61 
 Unlimed 11 67 22 heavy clay 0.82 1.41 
 Homestead 19 53 28 clay 2.22 3.83 
 Grazing land 21 49 30 clay 2.11 3.63 
 Eucalyptus 14 59 27 clay 1.95 3.36 

Akayita Limed 23 21 56 Silt loam 2.96 5.11 
 Unlimed 13 21 66 Silt loam 3 5.18 
 Homestead 61 11 28 Sandy loam 3.96 5.11 
 Grazing land 35 21 44 Loam 3.61 6.22 
 Eucalyptus 35 23 42 Loam 0.7 1.21 
 Nat. forest 47 9 44 Loam 1.76 3.03 

Enguti Unlimed 5 69 26 heavy clay 2.57 4.44 
 Homestead 19 53 28 clay 2.94 5.08 
 Grazing land 23 47 30 clay 4.25 7.33 
 Eucalyptus 9 65 26 heavy clay 2.38 4.1 
 Nat. forest 23 47 30 clay 1.48 2.55 

 

In his study of Ethiopian soils, Landon (1991) found the carbon content of nearly all 

the study sites and land-uses to fall in the very low (<2%) to low (2-4%) range (Table 

2.4). Soils of Gashena Akayita had the highest OC levels for all land-use types except 

for eucalyptus. The farmers reported that they heavily rely on crop residue for animal 

feed. Dried animal manure is also widely used as a fuel for cooking and heating. 

Hence, the low OC content of the soils can be partly attributed to the ongoing low 
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return of organic matter and crop residues to the soil. The extremely low OC levels of 

the limed and unlimed crop lands may be associated with the many tillage events 

required to create a fine seed bed for the tiny seeds of tef. Hence tef cultivation 

probably exacerbates the loss of OC through oxidation resulting from tillage. 

According to the FAO classification of soils outlined by Motsara and Roy (2008), the 

pH (H2O) of most of the soils in the study sites were in the strongly acidic range (4.6–

5.5) (Table 2.5). Only, one soil sample taken from homesteads at Enguti had a 

moderately acidic pH (H2O) of (5.6–6.5). A sample from the outfields of Gashena Akayita 

belonged to the extremely acid class (<4.6). Among the study sites, Gashena Akayita 

was the most acidic environment, followed by Enguti and Enerata. Except for samples 

from natural forest and homesteads, the pH (H2O) values of all samples from Gashena 

Akayita were below 5.0. Among land-uses, samples from unlimed outfields and 

eucalyptus plots were the most acidic (Table 2.5). 

At all the study sites, exchangeable Al was detected in all the soils having a pH of less 

than 5.0 (Table 2.5). At Enerata, only the soil samples collected from eucalyptus fields 

were positive for exchangeable Al (1 cmol Kg-1 of soil). At Enguti, the levels of 

exchangeable Al were 0.56 and 0.24  cmol kg-1 of soil for crop outfields and eucalyptus 

plots, respectively. At Gashena Akayita exchangeable Al was detected under all the 

land-uses, except in samples from natural forest. Since the soil samples were 

composites, the detected Al levels were mean values. Al-toxicity was probably a 

problem in outfields of all the study sites, and those of Gashena Akayita in particular 

(Table 2.5). High levels of soil acidity, with appreciable level of exchangeable Al, were 

previously reported for sites in the Mecha and Banja areas (Yihenew, 2002).  

Interpretation of available phosphorous varies depending on the crop demand 

(Sanchez, 2007). Using Olsen’s method, an available P content of less than 4.0 mg kg-

1 of soil is deficient, and above 8.0 mg kg-1 of soil is adequate for cereals. For potato, 

an available P content of less than 11 mg kg-1 of soil is deficient, and above 21mg kg-

1 is adequate (Cooke, 1967). Accordingly, except for homestead soils, the Nitosols of 

Enguti and Enerata are less than, or close to, the deficiency threshold. The soil class 

of these two sites was predominantly Nitosols and such soils are inherently strongly P 

fixing soils (Driessen et al., 2001). Yihenew (2002) also reported q low P content for 

areas with Nitisol soils in north western Ethiopia. The highest levels of available P were 

obtained from homestead samples for all the study sites. At Gashena Akayita the P 
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content of soils from all the land-uses except that of natural forest was above 8 mg.kg-

1. At Gashena Akayita the available P content of the outfields and the homesteads 

was above 8mg kg-1. High levels of available P were previously reported for the soils 

of Banja District (Gashena Akayita) (Yihenew, 2002).  

For total N content, as determined by the Kjeldahl method, an N level of less than 

0.1% is very low; 0.1-0.2% is low; 0.2-0.5 medium; 0.5-1 high; and above 1% is very 

high (Landon, 1991). Accordingly, the N content of the soils from Enerata, Enguti and 

Gashena Akayita were predominantly in very low, low and medium ranges, 

respectively. Overall, the soil samples taken from homestead, natural forest and 

grazing lands had relatively high N levels (Table 2.5).  

As per Landon’s (1991) classification, the CEC of the soils samples from all the study 

sites and the land-uses fell into the categories of high (25-40 cmol kg-1 of soil) and very 

high (>40  cmol kg-1 of soil). The base saturation of the soils of the study sites fell into 

the medium (20-60%) and high (>60%) ranges (Landon, 1991). Despite their clay and 

heavy clay texture, the CEC values of soils from the Enerata and Enguti were lower 

than that of Gashena Akayita. This can be attributed to the relatively high organic 

matter content of soils from Gashena Akayita. Given that both Nitisols and Acrisols 

predominantly contain 1:1 kaolinitic clay particles (Driessen et al., 2001), the difference 

cannot be associated with the nature of the clay minerals. 

Of all the study sites, the soils from Gashena Akayita had the lowest level of base 

saturation. All the soil samples collected from all land-uses at Enerata had higher base 

saturation levels than those from Enguti. Among all the land-uses, crop outfields and 

eucalyptus plots had the lowest base saturation. Even though the overall base 

saturation status is one of the indicators of soil fertility status, the relative balance 

among the bases is a more important indicator of soil fertility, and availability of 

nutrients to plants (Landon, 1991). 

Exchangeable Ca values of above 10.0 cmol kg-1 soils are considered to be high and 

values less than 4 are low (Landon, 1991). Except for the crop outfields of Gashena 

Akayita (1.56 cmol kg-1 of soil), all the study sites and land-uses had calcium levels of 

greater than 4.0 cmol kg-1 of soil. Nevertheless, soil pH, CEC and proportion of other 

cations such as Mg and K affect availability and uptake of calcium by plants (Landon, 

1991).  



56 

 

In the tropics, Mg deficiency occurs when the exchangeable Mg falls below 

0.5 cmol kg-1of soil, whereas Mg levels of above 4.0 cmol kg-1 of soil are considered 

to be high (Landon, 1991). However, the availability of Mg is affected by the levels of 

other cations such as Ca and K. The availability of magnesium decreases when the 

ratio of Ca:Mg is above 5:1. Conversely, when the proportion of Mg is higher than that 

of Ca, then the availability of Ca to the plant will be affected negatively (Landon, 1991). 

In this study, all the sites and the land-uses had Mg levels of above 0.5 cmol kg-1 soil. 

For most of the land-uses at Enerata and Enguti, the Ca:Mg ratio was close to or less 

than the desired ratio of 5:1. At Gashena Akayita the Ca:Mg ratio for crop outfields 

and eucalyptus plots was extremely low, which reflected a low level of available Ca, 

and the need to apply Ca in the form of calcitic lime to improve both the soil pH and to 

provide Ca for plant nutrition. High levels of exchangeable K also affect the uptake of 

Mg by plants. Potassium to magnesium ratios of above 2:1 are likely to supress the 

uptake of Mg by plants, especially in low Mg soils (MAFF, 1967). However, in this 

study, except for homestead soils of Gashena Akayita, all the study sites and the land-

uses had K:Mg ratios of less than 2:1. Furthermore, as Mg levels of all the samples 

were above 0.5 cmol kg-1 of soil, so Mg uptake problem for these soils would be 

unlikely (Table 2.5).  

Responses to K fertilizer application are unlikely when the exchangeable K content of 

the soil is above 0.4 cmol kg-1 soil (Landon, 1991). Nevertheless, the availability and 

uptake of K is affected by its balance with other cations. Hence, an exchangeable 

potassium percentage (EPP) (exchangeable potassium expressed as percentage of 

total CEC) of 2% is recommended as the minimum EPP level to avoid K deficiency in 

humid, tropical soils (Boyer, 1972). In this study, the exchangeable K content of the 

soil samples from all the study sites and land-uses, including crop outfields was above 

0.4 cmol kg-1 of soil. However, the EPP of the study sites and the different land-uses 

showed considerable variation. Crop outfields had EPP values of less than 2% across 

all the study sites, reflecting the need to apply K. The highest EPP was recorded for 

homestead soils across all the sites. Exchangeable Na content of all the soil samples 

was below threshold levels of potentially sodic soils, i.e., >1.0 cmol kg-1 of soil (Landon, 

1991). ECe values (<2.0) for all the surveyed sites also indicated that salinity effects 

were negligible (Landon, 1991). This result is particularly important for the Enguti area 

where irrigated production is practiced. 
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Based on the critical limits of DTPA-extractable micro-nutrient levels described in 

Motsara and Roy (2008), all soil samples from Enerata and Akayita, except samples 

taken from natural forest and homestead, had Zn content in the low range (0.5-

1 mg kg-1). Samples from eucalyptus plantations had the lowest Zn content at both 

sites. Samples from Enguti had medium Zn availability (1-3 mg kg-1), the highest 

(2.9 mg kg-1) being for homestead samples (Table 2.5). Enerata had a Cu content in 

the high range (0.8-3 mg kg-1), the least being for eucalyptus plots and the highest 

being (2.3 mg kg-1) for homestead soils. The most acidic environment, Gashena 

Akayita, had Cu availability mainly in the medium range (0.3-0.8 mg kg-1). Only two 

samples taken from homestead soils (1.6 mg kg-1) and eucalyptus plots (1.0 mg kg-1) 

had Cu availability in the high range (0.8-3.0 mg kg-1). Relative to Enerata and 

Gashena Akayita, samples from Enguti had greater higher Cu availability, the majority 

of the samples being in the medium range. 

Iron contents for all the sites and the land-uses were within the very high range 

(>10 mg kg-1). When the three sites are compared, iron availability was highest at 

Gashena Akayita, followed by Enguti and Enerata. Iron content of as high as 

35.9 mg kg-1 was obtained at Gashena Akayita. Similarly, the Mn contents of Enguti 

and Enerata sites were in the very high (>6.0 mg kg-1) range. Only two samples from 

homestead and natural forest soils at Gashena Akayita had a Mn content of 

>6.0 mg kg-1. The rest of the samples from this site had Mn levels in the medium range 

(1.2-3.5 mg kg-1). Unlimed outfields of Enerata and Enguti had pH(H2O) values of less 

than 5.5 and Mn content of >12.0 mg.kg-1. Such a combination of low pH and extremely 

high Mn content could result in Mn toxicity to plants (Menzies, 2003). The widespread 

cultivation of oat and triticale on outfields of these areas could be associated with the 

tolerance of these species to Mn toxicity. 

The farmers mentioned that their homestead soils were less acidic than the outfields, 

which were strongly acidic at all the study sites. Nonetheless, the area of homesteads 

often ranged between less than a quarter to one-third of the total land holdings of each 

household in all the study areas. The strongly acidic outfields constituted the bulk of 

the land available to each household across the study areas. Farmers were realistic 

in viewing soil acidity (from its symptoms) to be among the top five constraints affecting 

crop production across the study sites (Table 2.6). 
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Table 2.5. Chemical properties of the soils across study sites and predominant land-uses 

Site Land-use  PH 
(H2O) 
1:2.5 

  

PH 
(KCl) 
1:2.5 

  

ECe  Exchangable bases 
(cmol(+).kg-1 

  %  
base 
Sat. 

CEC  
cmol 

(+) 
.kg-1 

  

TN           
(%) 

  

Av. P    
mg/Kg 
  

Ex. Al 
cmol 

(+).kg-1 

  

Ex.acid 
cmol 

(+).kg-1 
  

Micro nutrients 
(mg.kg-1) 

 Ca Mg Na K  Ca:Mg K:Mg   
 Fe  Zn  Cu  Mn 

Enerata 
limed 5.64 4.38 0.29 20.26 3.14 0.1 0.5    6.45 0.16 69.36 34.6 0.04 3.24 0 0.48 13.2 0.7 1 14.4 

 
Unlimed 5.28 3.89 0.17 14.71 2.59 0.33 0.47 5.68 0.18 55.86 32.4 0.04 4.98 0 1.2 15.4 0.6 1.3 12 

 
Homestead 5.49 4.17 0.68 16.54 2.87 0.03 2.11 5.76 0.74 74.31 29 0.1 24.62 0 0.64 27.8 1.4 2.3 21.6 

 
Grazing land 5.36 3.95 0.23 17.16 3.45 0.03 0.65 4.97 0.19 68.68 31 0.1 4.21 0 1.12 21.1 0.7 1.5 16.9 

 
Eucalyptus 4.74 3.42 0.45 11.52 2.69 0.19 0.52 4.28 0.19 51.45 29 0.08 4.4 1.92 4.24 18.9 0.5 1 13.8 

Akayita 
limed 4.84 3.81 0.86 7.22 3.46 0.03 0.51 2.09 0.15 25.50 44 0.25 17.99 1.44 3.84 29.8 0.6 0.8 2.6 

 
Unlimed 4.57 3.73 1.24 1.56 6.93 0.08 0.47 0.23 0.07 21.02 43 0.27 18.82 1.6 4.08 28.3 0.7 0.7 2.6 

 
Homestead 5.16 4.12 1.68 12.16 0.76 0.07 1.52 16.0 2.00 38.18 38 0.25 34.6 1.76 4.4 39 1.5 1.6 7.9 

 
Grazing land 4.61 3.81 1.81 5.84 1.95 0 0.86 2.99 0.44 19.22 45 0.31 10.52 0.16 1.28 28.4 0.5 0.5 1.8 

 
Eucalyptus 4.82 3.81 0.86 6.09 6.64 0.09 0.35 0.92 0.05 30.63 43 0.06 13.67 1.36 3.36 27.6 0.4 0.4 1.5 

 
N. forest 5.44 4.62 1.43 33.74 4.75 0.08 0.95 7.10 0.20 73.19 54 0.76 3.18 0 0.48 35.9 1.6 1 7.1 

Enguti 
 Unlimed 4.9 3.68 0.29 7.24 1.56 0.05 0.52 4.64 0.33 30.62 30.6 0.11 3.98 0.56 2.24 12.6 1.5 1.9 21.5 

 
 Homestead 5.86 4.67 0.68 17.58 3.23 0.24 2.1 5.44 0.65 74.68 31 0.13 11.23 0 0.48 22.7 2.9 3.5 32.5 

 
 Grazing land 5.23 4.07 0.83 17.19 4.58 0.24 1.72 3.75 0.38 66.66 35.6 0.18 3.56 0 0.64 32.8 1.7 2.5 17.1 

 
Eucalyptus 4.98 3.79 0.29 8.61 1.98 0.17 1.18 4.35 0.60 42.04 28.4 0.1 2.92 0.24 1.36 17.8 1.1 2.3 22.2 

 
 N. forest 5.5 4.54 0.75 21.23 6.22 0.08 0.81 3.41 0.13 79.61 35.6 0.13 1.37 0 0.4 28.1 1.4 3 28.9 
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Table 2.6. Farmers ranking of of soil acidity in the top five constraints limiting crop 

production in the study sites 

2.3.4 Causes of soil acidity as perceived by farmers 

2.3.4.1 Soil erosion and unwise farming  

Farmers mentioned the loss of fertile top soil through runoff as one of the causes of 

soil acidity in the surveyed areas. Observations made during the surveys confirmed 

that soil erosion was more critical on cultivated, sloped outfields. However, this varied 

by location. Land degradation associated with soil erosion was more acute at Enerata 

than Enguti and Gashena Akayita. According to the farmers, rugged terrain, high 

rainfall, and cultivation of steep slopes with limited conservation practices were the 

primary underlying factors that aggravated soil erosion. Land degradation on grazing 

lands was driven by high animal populations and over-grazing, and the lack of any 

sustainable management system. 

2.3.4.2 Contending use of animal manure and crop residue  

According to the farmers, as the human population increased, the need for more 

agricultural land had resulted in extensive deforestation of the natural forest in the 

study areas. With a decline in forest cover, the resultant shortage of firewood forced 

the farmers to use cattle dung and stalks of crops like maize for fuel than to replenish 

the soil. During the dry season, dung dropped in homestead areas and grazing lands 

are systematically collected and dried for home use and sometimes for sale. Since 

 

Priority  

Study sites 

Enerata (n=30)  Gashena Akayita (n=15) Enguti (n=15) 

1 Soil erosion, soil acidity and 
decline in  soil fertility and 
prohibitive cost of fertilizer and 
lime and cash shortage 

Lack of adaptable crop 
species and varieties 

Soil acidity and prohibitive 
price of fertilizer and cash 
shortage  

2 Erratic rainfall  Crop diseases  Shortage of labour  
 

3 Crop diseases  Soil acidity and prohibitive 
cost of fertilizer and lime 
and cash shortage 

Crop diseases and pests  

4 Land shortage Natural calamities: frost, 
hail and flooding 

Land shortage  
 

5 Lack of adaptable crop 
species and varieties 

Land shortage Lack of adaptable crop 
species and varieties for 
irrigated system 

1-highest priority; 5- lower priority 
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communal grazing lands were generally unproductive, farmers heavily relied on crop 

residue for animal feed. 

Thatching for houses was another sink for stalks of small cereals such as wheat, barley 

and triticale that otherwise would be returned to the soil. Stalks of crops like wheat and 

triticale were preferred for roofing than animal feed. According to the CSA (2007), 54% 

of residential houses in the Amhara region were thatch roofed (Figure 2.3). 

Furthermore, almost all of residential houses in the rural areas and small towns were 

mud-walled, using a plaster consisting of mud and straw of small cereals such as tef 

and finger millet. The mud walls and the floors of these houses were also painted with 

cattle dung to make them smooth and good looking. Straws of tef, finger millet and 

other small cereals were also used for to create mattresses that are widely used in 

rural villages and small towns. 

Grains, pastures and crop residues usually have an alkaline pH due to their high 

content of basic minerals (Upjohn et al., 2005). Hence, the comprehensive outflow of 

basic minerals in the form of grain and crop residue, as seen in the study areas, will 

contribute to a growing decline in soil pH. 

  

 

Figure 2.3. Proportion of corrugated iron sheet roofed houses for the Amhara region  

(Source: CSA, 2007) 

        

2.3.4.3 Abandoning traditional fertility management practices  

According to the farmers, high population pressures and the consequent shortage of 

arable land were the underlying factors leading to the abandoning of traditional fertility 
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management practices such as fallowing, ‘Chichet’ or ‘hura’ (corralling of cattle at night 

on outfields during the rainy season as a method of in situ manure application), crop 

rotation, and manure application. In the Banja area, where soil acidity is an acute 

problem, ‘Chichet’ or ‘hura’ is still maintained while it has been abandoned in Enerata 

and Angti. 

According to the farmers, rotation of cereals with pulses and noug (Guizotia abyssinica 

(L.F.) Cass.) were traditional practices that had been primarily used to replenish soil 

fertility. However, the farmers stated that the suitability of outfields for the cultivation 

of pulses was declining due to the growing level of soil acidity. Consequently, the 

production of legumes was mainly restricted to the homestead areas, and less acidic 

outfields. Land shortages have also compelled farmers to give priority to the cultivation 

of cereals, which are staple foods and are needed for household food security. For 

household needs, pulses were intercropped with crops such as maize, potato and 

Brassica spp. on the homestead fields. Hence, cropping cereal after cereal, or rotation 

with the acid-tolerant white lupin have become common practices on the acidic 

outfields of the study areas  

2.3.4.4 Limited use of external inputs  

The farmers agreed that continuous and exploitative farming with little nutrient 

recycling characterized their crop production system. Di-ammonium phosphate (DAP) 

and urea accounted for 100% of the mineral fertilizers sold in the study areas for many 

years. DAP provides P and N while urea supplies only N. Consumption of grains and 

biomass concurrently remove basic cations such as K, Ca and Mg, in addition to N, P 

and other minerals (Upjohn et al., 2005).  

Application of fertilizers or lime was not optimal for all crops, across different land-uses 

and socio-economic groups. For instance, deliberate application of local or external 

inputs on communal grazing land is non-existent across all the study sites. Farmers in 

most of the study areas were reluctant to apply lime on acidic crop outfields due to its 

high initial cost, the costs of transporting lime, and the labour of applying it. Outfields 

were generally more acidic and were often fertilized with mineral fertilizer than 

homestead soils, which benefited more from manure and household refuse. Other 

reports have shown that the low level of fertilizer usage is one of the causes of 

depletion of soil nutrients in Ethiopian agriculture (IFPRI, 2010; ATA, 2013). 
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2.3.5 Indicators of soil acidity as perceived by the farmers 

2.3.5.1 Land and soil characteristics 

The farmers reported that sloped crop outfields, often with shallow soils, were the most 

affected by soil acidity, whereas bottomlands and flat plateau lands where the slope 

is close to zero were considered to be more fertile and less acidic. According to the 

farmers, the bottomlands benefit from the inflow of nutrient and organic matter through 

sedimentation from the uplands, whereas the flat plateau lands experience minimal 

outflow of nutrients through runoff.  

Acidic outfields were described as ‘kelal’ or ‘forehe’ at Enguti. ‘Kelal’ refers to their 

ease of ploughing and poor water holding capacity. ‘Forehe’ refers to highly friable 

infertile soil lacking organic matter. Such soils were light red compared to reddish 

brown fertile outfields or deep brownish homestead soils. At Enerata such soils were 

called ‘borebore’. At Gashena Akayita, acid soils were described as ‘gibiz’ which 

literarily means ‘pretender’. Such soils appear to be fertile but in reality they were poor 

in crop response. Like the acid soils of Enerata and Enguti, gibiz soils were described 

as soils with good drainage and being easy to plough. 

2.3.5.2 Plant growth and productivity attributes  

Poor establishment, stunted growth, pale green young seedlings, poor stands and 

poor tillering by cereals and therefore, poor grain and straw yields were among the 

major indicators of acid soils mentioned by the farmers. 

The diminishing suitability of the soils for the cultivation of once popular crops such as 

barley, faba bean and field pea, and the widespread cultivation of acid tolerant crops 

such as triticale, oat and white lupin was also another indicator of the increasing 

problem of soil acidity. At Enerata fields that were not suitable for production of even 

oat, triticale and lupin were described as “Yemote” or ‘dead’, to connote extremely 

acidic soils, which were often planted to eucalyptus. Farmers associated poor 

responses or an increasing demand of crops for mineral fertilizers with growing level 

of acidity. 
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2.3.5.3 Weed species  

Prevalence of specific weed species on crop fields was also identified as another 

indicator of soil acidity. Farmers complained about prevalence of the weed couch 

grass (Cynodon dactylon (L.) Pers.) on the acidic outfields of Enerata and Enguti. At 

Gashena Akayita, corn spurry (Spergula arvensis L.), annual knawel (Scleranthus 

annuus L.), and tiny mousetail (Myosurus minimus L.) were the main weed indicators 

of soils with high levels of acidity. Poor pasture growth, often with slippery algal growth 

when wet, and the invasion by weed species of no feed value, were indicators of soil 

acidity on grazing lands. 

2.3.5.4 Decline in crop genetic diversity  

According to the farmers, a decline in area and diversity of once popular crop species, 

and the introduction of new crop and forestry species to the farming systems was 

mainly related to soil acidity. Wofiye, Senefkolo, Limenish, and Werenj were traditional 

barley cultivars that used to be widely grown but which were now under threat. At 

Gashena Akayita, Sindemena, Temj, Saldini, Masno, and Dubar were traditional 

barley cultivars that used to be grown widely. Among these, Saldinin and Temeje were 

disappearing most rapidly, due to the increasing levels of soil acidity. At Enerata, 

substantial areas of land that used to be covered by barley had been replaced by oat. 

The local name of oat is Engido, which was derived from the Amharic term Engida, 

which means “stranger” or “newcomer”. Currently, two cultivars of oat, Chimburdi and 

Rejjimu engido, are grown in the Enerata areas. Triticale is also another recently 

introduced, acid tolerant crop that is rapidly expanding and is replacing the traditional 

crops. 

Farmers at Enerata area identified Dabo, Tikurmure, Bursa or Sergegna, Zambi, 

Natchmure as landraces of tef grown in the area. Currently, Dabo is the most popular 

and widely grown landrace. It is liked for its adaptation to the soil and its earliness. 

Nonetheless, this landrace is brown seeded and fetches a lower price on market than 

white seeded varieties. It is also short statured, which means that it provides little straw 

and is difficult to harvest. According to the farmers, there has been a decline in 

production of white seeded and bursa or mixed-colour landraces in their area due to 

their poor tolerance to acid soils. A similar pattern was also witnessed by farmers from 
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Gashena Akayita. The effect of soil acidity on crop genetic resources diversity is 

pronounced in the highland areas, Enerata and Gashena Akayita, where the range of 

crop choices is already limited due to the low temperatures prevalent in these high 

altitude districts. 

The rate of conversion of crop lands to eucalyptus and green wattle (Acacia decurrens 

(Wendl.) Willd.) was alarming and a threat to the remaining genetic resources in the 

wild and crop environment. Farmers reported a substantial loss of genetic resources 

as a result of agricultural encroachment onto the areas remaining of natural 

vegetation, and the selection pressure exerted by soil acidity. The contribution of 

natural forests to the overall vegetation of the study areas has been significantly 

reduced during the last half a century, and acid tolerant, exotic forestry species such 

as eucalyptus now covers much of the study area. Concurrently, the communal 

grazing lands have also been overgrazed, and have become extremely acid, with the 

result that they have been invaded with weed species of no feed value that can thrive 

well on acidic soils. 

2.3.6 Coping strategies  

The coping strategies of the farmers to deal with soil acidity were classified into two 

categories. The first were the strategies being promoted by the extension service 

which included recommendation to the farmers that they apply lime, mineral fertilizer 

and compost, and that they should diligently implement soil and water conservation 

measures. Shifting to production of tolerant crop species, landraces and forestry 

species; night corralling of cattle and manure application; spatial segregation of crop 

species and crop rotation were the farmers’ own coping strategies. However, the 

viability and hence the levels of implementation of these coping strategies was 

determined by various socio-economic and technical factors (Table 2.7).  

2.3.6.1 Application of lime 

Despite the high prevalence of acid soils in the study areas, acid soil reclamation by 

the application of lime had only started relatively recently, in 2007. Even so, lime 

utilization has been relatively insignificant. For instance, the quantity of lime utilized in 

the most acidic district of the study areas, Banja, over a period of 7 years was only 
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433.5 t. This was equivalent to a mean use of only 62 t per annum for an area of over 

12,000 ha that had been cultivated annually, a mere 5.2 kg ha-1 (Figure 2.4). 

 

 

Figure 2.4 Lime utilization pattern for the most acidic district, Banja, in the years 2006-

2012 (Source: Awi Zone Office of Agricultural Development) 

 

Various factors constrained lime use in the study areas. Lime recommendation were 

as much as 16 t.ha-1 in the study areas. Extremely low pH (KCl) of below 4.0 for all 

unlimed samples, coupled with high and medium CEC, reflected the strong buffering 

capacity of the soils. Liming of such soils needs large quantities of lime to neutralize 

the acidic cations (H+ and Al3+) in soil solution, as well as on exchange sites (Landon, 

1991; Rao et al., 1993). 

According to the farmers and key informants, the farmers had no cash for purchase of 

crop inputs because of the low productivity and low market value of the crops grown 

in the study areas. Thus there was no possibility of the farmers buying the large 

quantities of lime that were recommended to combat the soil acidity. The problem was 

further aggravated by the lack of all-weather roads, the absence of farm roads, the 

ruggedness of the terrain, and the fragmentation of each farmer’s lands. Risks of crop 

losses associated with hail, frost, flood, pests and diseases were other factors that 

made farmers unwilling to gamble on the use of lime, even when a combination of 

credit and a subsidy was available to the farmers in order to buy lime. Farmers also 
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complained about a perceived health risk associated with manual application of lime, 

applied as a fine dust.  

2.3.6.2 Mineral fertilizers  

Due to their high level of acidity, outfields were always given priority for mineral 

fertilizer application. Mineral fertilizers were applied at recommended rates or higher 

levels on crops such as maize at Mecha and wheat at Banja and Gozamin. The 

farmers reported that all the outfields needed mineral fertilizer applications to give 

reasonable yields of all crops. Soaring fertilizer prices, the poor financial status of the 

farmers, the unavailability of crop insurance, the high risks posed by hail, frost, pests 

and disease damage, and prohibitive interest rates were among the factors that 

stopped farmers from using the local credit services available to them. Consequently, 

most of the resource poor farmers applied sub-optimal rates of mineral fertilizer, or 

resorted to other options. 

Diammonium phosphate (DAP) and urea are two mineral fertilizers that have been 

applied exclusively on all soil types and in all agroecologies in Ethiopia. The farmers 

expressed their discontent with the use of these mineral fertilizers, describing them as 

‘addictive’, in that the soil needs increasing quantities of these fertilizers, season after 

season. The farmers firmly believed that, “these mineral fertilizers have spoiled our 

soil”. The assimilation of these fertilizers in roots produces protons that are released 

to the external medium and thereby increase rhizosphere acidity. Furthermore, 

leaching of nitrate, converted from these N sources, along with basic cations increases 

root zone acidity (Marschner, 1995; Barak et al., 1997; Bolan and Hedley, 2003). 

Declining responses of crops to recommended fertilizer levels as reported by the 

farmers would also be caused by the acidifying effect of these mineral fertilizers. Thus, 

these fertilizers should not be applied in areas with acid soils without concurrent 

applications of acid equivalent quantities of lime that can neutralize the acidity 

released from the fertilizer material alone (Bolan and Hedley, 2003). Utilization of non-

acid forming fertilizers in areas affected by acid soils is a better option for resource 

poor farmers who cannot invest more on external inputs, and lime in particular (Bolan 

and Hedley, 2003). 
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2.3.6.3 Compost and manure   

Compost preparation and utilization at the household level has been strongly 

promoted by the extension service in order to improve soil fertility. Use of organic 

matter in the form of manure and compost can reduce soil acidity (Haynes and 

Mokolobate, 2001; Wong and Swift, 2003). However a number of factors work against 

this approach. These include: A shortage of labour to collect and apply the materials; 

difficulties in transporting large quantities of compost to outfields in the absence of 

roads or tractors; competing use of animal manure for fuel; and the use of green matter 

for animal feed (Schlede, 1989; IFPRI, 2010). Consequently, compost preparation is 

limited to the rainy season when there is an adequate supply of manure, green matter 

and moisture. Its application was also mainly restricted to the homestead areas.  

2.3.6.4 Soil and water conservation (SWC) 

The farmers indicated that soil acidity was worse on sloped outfields than bottom 

lands, flat plateaus and homesteads. Soil erosion was an active and widespread sign 

of physical land degradation that has captured the attention of high level policy makers 

and experts. Consequently, extensive work was being done on soil and water 

conservation (SWC) measures in the study areas through mass mobilization of the 

population under the supervision of national experts. The objective of soil conservation 

practices was to lessen the extent of soil and water loss through runoff, and to improve 

crop productivity through the optimal use of mineral fertilizers and compost. Research 

has shown that water runoff removes basic cations, including liming materials, and 

that it accelerates the rate of acidity development (Ritchey et al., 2012). 

2.3.6.5 Shifting to production of adapted crop species and acid-tolerant 

landraces 

At Gashena Akayita, which was the most acidic environment, a lack of adaptable and 

high yielding cultivars was reported to be the most important constraint of crop 

production (Table 2.6). Key informants also confirmed that the performance of the 

“improved” varieties of wheat, tef and other crops at Gashena Akayita and Enerata 

was poor. Consequently, farmers had shifted to growing brown seeded tef landraces, 

potato, triticale, oat, lupin, and timber crops. These crops are well adapted to acid 

soils. According to the farmers in Enerata and Gashena Akayita, white lupin is valued 
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because it tolerates soil acidity and it improves soil fertility, helping to avoid or reduce 

the need to apply mineral fertilizer on subsequent crops such as wheat. However, 

because of land shortage and its negligible value as a food and feed crop, only farmers 

with large areas of farming lands could afford to include lupin in their rotation or 

intercropping system. The lupin cultivars were exclusively high alkaloid types and were 

not used for forage. Hence, the main benefit of lupin is from biological nitrogen fixation 

by rhizobia, as well as the minerals and organic carbon released by the decomposition 

of its biomass after harvest. 

2.3.6.6 Spatial segregation, rotation and others 

The farmers broadly categorised their crop production fields into two classes, based 

suitability for crop growth. The first was called ‘lem’ ‘kilze’ ‘yebadima afer’ or ‘yeguaro 

afer’ and represented the fertile soils that were mainly located around the homesteads 

and the bottom lands. The second was ‘borebor’ (Enerata) or ’Kelal’ or ‘forehe’ at 

(Enguti) or ‘Gibiz’ at Gashena Akayita, which represented acidic outfields. In the study 

areas, the various crops were spatially segregated, based on the sensitivity of each 

crop to soil acidity. At Gashena Akayita, which was the most acidic environment, 

cultivation of acid sensitive crops was restricted to the homestead areas, which had 

the least acidic soils. Heavy feeder crops such as wheat were grown on relatively 

fertile and less acidic outfields with the application of mineral fertilizers at Gashena 

Akayita, often following a lupin fallow in the Enerata area. Oat and triticale were 

produced on acidic outfields without mineral fertilization. Tef and finger millet were 

cropped with sub-optimal applications of mineral fertilizers on outfields.  

According to the farmers, increases in level of soil acidity had minimized the role of 

rotation crops in their farming systems. The cultivation and productivity of legumes 

such as faba bean and field pea on outfields had substantially decreased with 

increasing level of soil acidity. The decline in production of these legumes can be 

associated to poor adaptability of these legumes and their strains of Rhizobium to acid 

soils (von Uexkull, 1986; Miyasaka et al., 2007). Nodulation by Rhizobium is also 

affected by Al and Mn toxicities, and deficiencies of P (Caradus, 1993). Since legumes 

are also sensitive to Zn deficiency, the low level of Zn (<1.0 mg kg-1) in the most acidic 

environments would compound the problem (Sillanpaa, 1972).  
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White lupin, noug, and linseed (Linum usitatissimum L.) were the main rotation crops 

grown on the outfields. The common rotation crop cycle in the Enerata area was 

noug / linseed / oat / lupin, followed by cereals (tef / wheat / triticale). In Gashena 

Akayita and the neighbouring highlands, most rotations included potato and cereals, 

but left out lupin. In the Enguti area, noug and occasionally linseed were typically 

rotated with cereals. However, due to a decline in the productivity of beneficial rotation 

crops, and because of land shortages, the cropping of cereal after cereals was 

becoming a common practice.  

2.3.6.7 Shifting to forestry and livestock  

Eucalyptus was the dominant vegetation cover of the study areas. The increasing 

levels and spread of soil acidity, and the prohibitive cost of mineral fertilizers and lime 

were the primary factors driving the planting of eucalyptus in the study areas. 

Eucalyptus is highly tolerant to Al-toxicity (Neves et al., 1982; Barros and Novais, 

1996). The planting of eucalyptus plantations has a number of advantages. The timber 

can be sold in various forms and can generate a good income. Its primary use is for 

fuel and building materials. The crop is tolerant of acid soils, drought, hail, diseases 

and pests and does not need labour for routine management, or fertilizer applications. 

Furthermore, timber crops are a recognized capital asset and can also be used as 

collateral to borrow money from informal sources. A further advantage is that, after  

the planting of eucalyptus trees, no further management is needed, allowing male 

members of the households to migrate to urban areas to seek informal labour in order 

to generate a secondary income.  

In addition to eucalyptus, farmers in Banja and neighbouring areas with acid soils were 

switching production in their outfields to green wattle (A. decurrens) plantations. This 

timber crop has multiple uses, especially as a feedstock for charcoal production by the 

farmers. Green wattle is a nitrogen-fixing tree species (Roughley, 1986) and its 

ectomycorrhizal association has also been reported (Reddell and Warren, 1986). 

There is little information on its tolerance to acid soils, however, its luxuriant growth in 

the study areas suggests that it is highly tolerant of soil acidity. 
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2.3.6.8 Corralling of cattle at night on crop or grazing lands  

There was a traditional practice of corralling of cattle on crop land, with the objective 

of replenishing soil fertility through the direct application of dung and urine. This was 

known as “hura” in the Banja area, and “chihit” in the Gozamin and Enguti areas. It 

was a longstanding traditional soil fertility management that persisted mainly in Banja 

and other districts of the Awi Zone in north western Ethiopia. A similar practice has 

been reported in several African countries, where it is also used to maintain soil fertility 

(Murwira et al., 1993; Harris, 2002). Compared to manure collected from pens or 

compost, corralling of livestock at night on crop lands does not demand labour for 

collection, storage, preparation, transporting and application. This is particularly 

important because a single farmer’s outfields are often fragmented and scattered. 

‘Hura’ is practiced during the wet season when cattle provided greater volumes of 

dung and urine, and when there is little loss of nutrients as a result of solar radiation, 

heat or drying winds. One challenge is that ‘Hura’ needs the collective action of farmers 

in a village due to the relatively few cattle held by each household. 

Table 2.7. Summary of farmers’ assessment of constraints associated with soil fertility 

management methods at the study areas. 
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Mineral fertilizer   * *        
Compost *    *  *   *  
Lime  *   * * *   *  
Animal manure *   * *  *     
Rotation  * *     *   * 
Short fallow        *    
Night corralling  *       * *   
Erosion control  *      * *   

 

2.3.6.9 Other coping strategies  

According to farmers and key informants, conversion of most acidic crop outfields to 

private pastures was an increasing trend in the Banja area as a strategy to cope with 

soil acidity. Resource poor farmers who could not afford to purchase mineral fertilizers 

and lime rented out or share-cropped their outfields to better-off farmers.  
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2.4 Discussion  

The farming systems of all the study areas can be classified as a highland temperate 

mixed farming system, as described by Dixon et al. (2001). By virtue of their suitability 

for human and animal health, the distribution of the human population is generally 

skewed towards the highland areas of the world (UNECA, 1996; Pankhurt, 2009). 

Human population density for all the Districts in the study was higher than the national 

mean, being 85 people km-2 (http://country-facts.findthebest.com/l/84/Ethiopia), and 

the mean land holding was below 2.0 ha (Dixon et al., 2001). Land degradation 

associated with soil erosion and nutrient depletion is a serious problem affecting this 

farming system (Schlede, 1989; Dixon et al., 2001; Dubale, 2001; Bishaw, 2001; 

IFPRI, 2010).  

Soil test results confirmed the prevalence of soil acidity across all the study areas and 

land-uses. Despite their clay and heavy clay textures, the overall CEC values of the 

soils of the Enerata and Enguti sites were lower than those of Gashena Akayita. This 

can be partly attributed to a relatively high organic matter content in soils from 

Gashena Akayita. Compared to organic matter, the contribution of clay minerals to 

CEC is extremely low (Landon, 1991). The higher exchangeable acidity at Gashena 

Akayita indicated a greater contribution of acidic cations Al3+ and H+ to the CEC of this 

site. Such soils need the application of large quantities of lime to neutralize the high 

levels of Al3+ and H+ ions in the soil solution, as well as on the exchange sites. But this 

high rate was prohibitively expensive for small-scale farmers due to their financial and 

technological limitations (Rao et al., 1993). Most of the farmers in the study areas were 

not willing to apply lime to their soils because of the cost factor. Exchangeable Al of 2-

3.0 cmol kg-1 of soil is excessive for some crop species (Chapman, 1966). As the soil 

samples were composites, high levels of exchangeable Al are expected, particularly 

from the acidic Acrisols of Gashena Akayita. The crop outfields from Enerata and 

Enguti had pH(H2O) levels of less than 5.5 and Mn levels of >12.0 mg kg-1. Such 

combinations of low pH and extremely high Mn content would result in Mn toxicity for 

most plants (Menzies, 2003). When the pH falls below 5.0, Mn toxicity occurs 

concurrently with Al toxicity. However, tolerant plants can change the toxic divalent 

manganese to a non-toxic form through increase of the rhizosphere pH, hence bulk 

soil data may not reflect the toxicity of Mn on roots (Menzies, 2003). 

http://country-facts.findthebest.com/l/84/Ethiopia
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The variability observed in the balance of the bases and micronutrient levels across 

the various land-uses and study areas could be associated with intrinsic and extrinsic 

factors. For instance, the Nitosols of Enguti and Enerata showed similar patterns for 

available P and potentially toxic levels of Mn. While Gashena Akayita represented the 

sub-humid climate, the Acrisols of Banja and its neighbouring districts were distinct. 

Unique and ancient management practices such as ‘hura’ or corralling of livestock on 

crop lands at night, was widely practiced in the Gashena Akayita, and would have 

contributed to  the higher level of available P measured there. At Gashena Akayita, 

exchangeable Al3+ was detected from more of the land-uses than the other two sites. 

The contributions of both intrinsic and anthropogenic activities to variations in 

important chemical properties has also been reported for acid soils in India (Behera 

and Shukla, 2015).  The worst soils, with poor availability of nutrients, were in the 

outfields and eucalyptus plots. Crop production on outfields was difficult without N 

application. However, the N sources being used were exacerbating the problem. In 

addition to the problems of N deficiency and P fixation, the imbalanced levels of Ca 

and the unavailability of Ca were also a problem for crop production on the outfields 

of the study areas. Hence, the application of calcium ammonium nitrate 20% N and 

6% Ca or calcium nitrate urea (calurea, 34% N, 10% Ca), along with other P sources 

such as superphosphate, can be recommended to provide N, P and Ca without 

enhancing the soil fertility problems of the study areas (Barak et al., 1997; Bolan and 

Hedley, 2003).  

Farmers and key informants identified soil erosion, and unwise farming practices; poor 

nutrient recycling, and competing uses of animal manure and crop residues; the 

abandoning of traditional fertility management practices; and the limited use of 

external inputs as the major causes of soil acidity. High rainfall, undulating land 

profiles, the poor water holding capacity of the soil, and inadequate soil and water 

conservation practices have contributed to the severe loss of soil in the highlands of 

Ethiopia (Lakew et al., 2000; Bishaw, 2001). Controlled experiments have shown that 

runoff removes basic cations including liming materials and accelerates the rate of soil 

acidity development (Anna et al., 1997; Ritchey et al., 2012). In Ethiopia, cultivated 

outfields are more seriously affected by soil erosion than grazing land (Bishaw, 2001). 

Hence, the high level of soil acidity on crop outfields revealed in this study can be 

partly explained by high levels of soil erosion. Due to their distance from residential 
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areas and the difficulties  of transporting compost and manure, outfields were the worst 

affected by the poor recycling of basic cations in the form of organic matter (Teshome 

et al., 2014). Low organic matter content in soils of all the land-uses in the study areas 

would also contribute to poor soil physical properties and would enhances the loss of 

basic cations through soil erosion and leaching. 

The widespread utilization of crop residues for animal feed and thatching, and the use 

of animal manure for fuel were the main competing uses of organic matter that would 

otherwise be used to replenish soil fertility. Organic matter content of all the dominant 

land-uses across all the study areas was low to extremely low. Similar results were 

obtained in a previous study conducted the study areas (Yihenew, 2002). In the mixed 

farming system of the central part of Ethiopia, 70% of the total tef straw produced is 

used for animal feed (Zinash and Seyoum, 1991). Grain, pasture and crop residues 

generally have an alkaline pH due to their high content of basic minerals (Upjohn et 

al., 2005). Hence, continuous removal of basic minerals in the form of grains and 

biomass subjects crop and grazing lands to increasing soil acidity (Murwira et al., 

1993). Widespread use of cattle dung for fuel in the mixed farming system of Ethiopia 

has been reported in several studies (Schlede, 1989; Dixon et al., 2001; Dubale, 2001; 

Bishaw, 2001; IFPRI, 2010). Zenebe (2007) estimated that the use of dung as fuel 

instead of fertilizer reduces the country’s agricultural GDP by 7.0%. The beneficial 

effects of manure for soil fertility is mainly related to its supply of P, basic cations such 

as Ca and Mg, organic matter and its contribution to the improvement of soil physical 

properties (Murwira et al., 1993; Giller et al., 1996). Increasing pressure on agricultural 

land has also compelled farmers to abandon traditional soil fertility replenishment 

practices such as fallowing, night-corralling, crop rotation etc. resulting in depletion of 

soil nutrients (Sanchez et al., 1997; Lakew et al., 2000).  

Farmers did not recognize that leaching associated with high rainfall, and the soil 

parent material, were the major causes of the decline of soil fertility or the development 

of soil acidity. Soils in high rainfall and high temperature areas acidify faster because 

of high rates of weathering and the leaching of basic cations (Hede et al., 2001). The 

amount of rainfall in the study areas is generally high and consistent. Specifically, the 

sub-humid agro-ecology of Banja (Gashena Akayita) receives over 2000 mm per 

annum, whereas Mecha (Enguti) and Gozamin (Enerata) receive above 1200 m 
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(IFPRI and CSA, 2006). The higher levels of soil acidity at Gashena Akayita than the 

other two study sites relates mainly to the district’s higher rainfall (Figure 2.2). 

Leaching of basic cations can be high in clay minerals that are dominated by a 1:1 

silicate layer such as kaolinite, which does not fix significant quantities of basic cations 

when compared to montmorillonitic or other 2:1 group clay particles (von Uexkull, 

1986). The soils of Enguti and Enerata are predominantly Nitosols while that of 

Gashena Akayita is an Acrisol (Yihenew, 2002; IFPRI and CSA, 2006). Inherently, the 

clay assemblages of these two soil classes are dominated by the kaolinite (Driessen 

et al., 2001). Hence, these soils lose basic cations rapidly through leaching and hence 

acidify faster than soils with less drainage. 

Neither farmers nor key informants recognized that the mineral fertilizers being used 

enhanced the development of soil acidity. However, the farmers said that ‘mineral 

fertilizers are addictive and have already spoiled our soils’. This can be related to 

increasing levels of acidity as a result of the acidifying effects of DAP and urea which 

are considered to be acid forming fertilizers. Assimilation of these fertilizers results in 

the release of H+ in to the rhizosphere, increasing soil acidity (Marschner, 1995; Barak 

et al., 1997; Bolan and Hedley, 2003). The fact that the outfields had lower pH values 

than other land-use areas can be ascribed to the acidifying effect of these fertilizers 

being applied to the crop lands. 

Farmers used various terms that indicated physico-chemical and plant attributes that 

related to acid soils.  As the loss of basic cations through erosion is enhanced with an 

increase in slope of lands, the identification of slope as a cause of soil acidity by the 

farmers was valid. Abebe (2007) also found that acid soils were found on gentle to 

steep slopes of western, north western, south western and southern parts of Ethiopia.  

As manure and compost utilization is labour demanding, they are often applied on 

gardens in mixed farming systems of small-scale farmers in Africa, but not to large 

cereal fields (Giller et al., 1996; Sanginga and Woomer, 2009). Teshome et al. (2014) 

also reported similar practices in north western Ethiopia. Consequently, garden or 

homestead soils were presumed to be in a suitable pH range for crop growth in the 

study areas. Nonetheless, in the most acidic environment, Gashena Akayita, the pH 

of the homestead soils was below 5.5, with high levels of exchangeable Al, suggesting 

the need to reconsider the current assumption and to formulate suitable management 
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options. Various indicators of acid soils were identified by farmers: Poor crop stands, 

stunted growth, reduced microbial activity, high friability of the soils when ploughing, 

poor water holding capacity (specifically of the Acrisols of Gashena Akayita), all  of 

which are scientifically valid (Little, 1989; Driessen et al., 2001; Upjohn et al., 2005). 

Corn spurry (Spergula arvensis L.) and annual knawel (Scleranthus annuus L.) are 

acidophilic weed species that constrain crop production in areas with acid soils 

(Čiuberkis, 2001; Čiuberkis and Koncius, 2006). A strong correlation between farmers’ 

indicator plants of soil fertility with soil analysis results has been reported previously 

(Karltun et al., 2013). Hence, the use of these weeds as markers of acidic soils by 

farmers was also valid. 

Changes in the spectrum of crops grown on agricultural lands followed increases in 

soil acidity. Such trends can be associated with the variable sensitivity of plant species 

to low pH soils and their associated mineral toxicities (von Uexkull, 1986; Rao et al., 

1993; Upjohn et al., 2005).  The declining role of legumes such as field pea and faba 

bean in the rotation systems of the study areas could be associated their intolerance 

of soil acidity, and Al and Mn toxicities, that affect both the host and their symbiont 

Rhizobium strains (Hamdi, 1982; von Uexkull, 1986; Upjohn et al., 2005). In addition 

to soil acidity, overgrazing can also change species composition on grazing lands 

(Angassa, 2014).  

Soil acidity selects acidophilic plants that have the capacity to grow on acid soils due 

to their peculiar capacity to overcome Al-toxicity and low P availability (Houdijk et al., 

1993; Roem and Berendse, 2000). This selection pressure results in the loss of 

calcicole species and variants in wild and cultivated areas. Oat has been recognized 

to have replaced a wide range of local crop species and landraces in the farming 

systems of the central highlands of Ethiopia (IBC, 2007). A rapid expansion of triticale 

production in the study areas is also causing the loss of indigenous crop genetic 

resources. 

On strongly acidic crop outfields, a switch from crop production to eucalyptus 

plantations is one of the most prevalent coping strategies adopted by farmers to deal 

with severe soil acidity. Eucalyptus is highly tolerant of acid soils and aluminium 

toxicity (Neves et al., 1982; Barros and Novais, 1996). Leite et al. (2010) reported 

reductions in the exchangeable Ca2+, Mg2+ and K+ and increases in Al3+ and H+ 

contents as a consequence of eucalyptus cultivation. The soil samples collected from 
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eucalyptus plantations in this study were highly acidic and had high levels of 

exchangeable Al, confirming that eucalyptus cultivation can enhance soil acidity. 

Finally, the loss of productivity of crop and grazing lands due to increasing soil acidity 

has forced farmers to open up new lands by encroaching on the remnants of the wild 

ecosystem, decreasing the biodiversity associated with the wild ecosystem (Sanchez, 

1995). 

2.5 Conclusion  

The soil samples showed variability in the physicochemical properties across study 

areas and land-uses. Such variation was related to intrinsic factors such parent 

material and climate, as well as to anthropogenic activities such as land-use and 

management practices. Most of the soil samples gave strongly acidic reaction. Soil 

samples from eucalyptus plantations, crop outfields, and grazing lands were the most 

acidic, with high levels of exchangeable Al. Among the study areas, Gashena Akayita 

was the most acidic environment, and even the homestead soils gave a strongly acidic 

reaction.  

Farmers ranked soil acidity as one of the top five production constraints. Farmers 

perceived soil acidity to result from a range of causes that emanated from increasing 

densities of humans and animals. Although climate (high rainfall), edaphic factors, and 

the use of acid forming fertilizers were major contributing factor to soil acidity, they 

were not recognized by farmers and key informants as being directly associated with 

soil acidity.Farmers utilized various indicators of soil acidity to classify their crop fields, 

most of which were correlated with the actual presence of soil acidity and related soil 

conditions. 

The indigenous coping strategies used by the farmers and those promoted by the 

extension were not compatible due to various socioeconomic and technical 

constraints. In particular, the value of most of the crops grown in the most acidic 

environments were low. Consequently, the farmers’ capacity to invest on external 

inputs was limited. Furthermore, the costs of the proposed investments in lime and 

fertilizer would not be matched by the financial returns the crops could provide. The 

low pH and the high buffering capacity of the acid soils meant that large quantities of 

lime rates were needed. And the only fertilizers used in the region are acid-forming 

fertilizers that exacerbate the problem. In addition, the “improved” crop varieties 



___________________________________________________________________ 

77 

 

released to the farmers were not bred for tolerance to soil acidity. Hence, farmers have 

resorted to the production of unpopular, and low yielding crops and landraces that 

fetch little income but reliably produce crops on acid soils. The predominance of 

inherently acid tolerant crop species and landraces in the farming system 

demonstrated the significance of soil acidity in determining crop choices. Uncontrolled 

conversion of crop lands to forestry species was changing the farming system from a 

crop-livestock farming to a crop-livestock-forestry system, with the largest area 

devoted to forestry. Such a shift can compromise food production and challenge food 

sovereignty at the household level and beyond. So far, little research has focused on 

farmer-friendly of management strategies to deal with acid soils. Nor has there been 

studies or recognition of a range of farmers’ coping strategies. With the current 

resources available to the farmers, sustainable management of acid soils and 

improvement in productivity of the system seems very unlikely. Hence, the 

development of technologies compatible with smallholders’ system are needed. Such 

options need to combine the philosophies of both “changing the plants to fit the soil” 

and “changing the soil to fit the plant (Schaffert, 1993).  

Towards this end, there is a need to emulate the farmers’ indigenous coping strategy 

in developing improved varieties of acid tolerant crops, forages, and forestry species 

as components of a set of sustainable acid soil management technologies to be used 

across the different land-uses. It is also imperative that there is a nationally 

coordinated programme to rescue priceless crop genetic resources under threat of 

extinction in the regions of the country with acid to highly acid soils. 
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CHAPTER 3 

3Preliminary investigation on presence of genetic variability for soil 

acidity in tef [Eragrostis tef (Zucc.) Trotter]  

 Abstract  

Tef [Eragrostis tef (Zucc.) Trotter] is the most widely produced and consumed cereal 

crop in Ethiopia. It is a gluten free crop with growing popularity worldwide. Unlike most 

globally important cereals, tef has not yet been bred for tolerance to soil acidity and to 

Al-toxicity. This study was conducted to assess the quantitative responses of some 

grain and pasture varieties of tef to soil acidity. A strongly acidic soil (pH 3.94 and an 

acid saturation of 78%) was used to evaluate the tef varieties. A highly Al-tolerant 

weeping lovegrass [Eragrostis curvula (Schrad.) Nees], variety, Ermelo, was used as 

a check. A randomized complete blocks design (RCBD) with 4 replications was used 

to evaluate the materials under limed and unlimed conditions. Measurements were 

taken of various root and shoot parameters. The results indicated the presence of 

genetic variability among the tef varieties for root length, shoot length, root dry weight 

and shoot dry weight. All the tef varieties were inferior to the E. curvula var. Ermelo in 

their Al-tolerance. The brown seed tef varieties consistently showed better Al-

tolerance than the white seeded varieties. A similar pattern was also observed for 

tolerance indices, which were computed as the ratio of the value under unlimed to 

limed condition. Highly significant correlations (r>0.9) were observed for all the 

parameters used to assess Al-tolerance in this experiment. This is the first systematic 

study to demonstrate the presence of genetic variability for soil acidity and Al-tolerance 

within E. tef.  

Key words: Aluminium toxicity, Eragrostis tef, genetic variability, screening, soil 

acidity  

                                            
3 This chapter was published as: Ermias, A., H. Shimelis, M. Laing, and M. Fentahun. 2013. Quantitative 
responses of tef [Eragrostis tef (Zucc.) Trotter] and weeping lovegrass [Eragrostis curvula (Schrad.) 
Nees] varieties to acid soil. Australian Journal of Crop Sciences 7(12):1854-1860 (2013) ISSN:1835-
2707. 
 



___________________________________________________________________ 

85 

 

3.1  Introduction  

Acid soils (soils with a pH < 5.5 in the surface layer) constitute 3,950 million ha or 30% 

of the world’s total ice-free land. In Africa, 22% or 659 million ha of the total 3.01 billion 

ha land has a soil acidity problem ( (von Uexk¨ull and Mutert, 1995; Malcolm and 

Andrew, 2003) . The main problems of crop production on acid soils is mineral toxicity 

related to aluminium, manganese, and iron, and deficiencies of phosphorus, calcium, 

magnesium, and molybdenum ( (von Uexk¨ull and Mutert, 1995; Hede et al., 2001; 

Kochian et al., 2004). Sixty-seven percent of the acid soils of the world have Al-toxicity 

problem ( (Eswaran et al., 1997).  

In Ethiopia, acidity-related soil fertility problems are major production constraints, 

reducing productivity of the major crops grown in the country ( Dubale, 2001; IFPRI, 

2010). The soil acidity problem of Ethiopia is mainly related to the Oxisols and Ultisols 

soil classes, and some Alfisols, that occur in the western, north-western, south-

western and southern parts of the country ( (Abebe, 2007).  

Tef [Eragrostis tef (Zucc.) Trotter] is the most widely produced and consumed cereal 

crop in Ethiopia (Spaenij-Dekking et al., 2005). Tef is routinely cultivated on about 3 

million hectares or 30 of the total area covered by cereals in the country (CSA, 2015). 

Consequently, it is among the worst affected crops by soil acidity. Tef responded 

poorly to fertilizer application on acid soils (Mamo and Killham, 1987; Mamo et al., 

1996; Spaenij-Dekking et al., 2005). 

Beyond Ethiopia, countries such as Eritrea, USA, the Netherlands and Israel produce 

a negligible quantity of tef as a grain crop (Spaenij-Dekking et al., 2005). On the other 

hand, South Africa, India, Pakistan, Australia, Uganda, Kenya and Mozambique grow 

tef mainly as a forage or pasture crop (Assefa et al., 2010).  

The use of lime, compost, manure and other organic fertilizer sources has been 

recommended to cope with problem of soil acidity. However, these options are 

constrained by several factors. In the tropics, most acid soils have a strong buffering 

capacity against amendments of lime (Rao et al., 1993). Hence, large amounts of lime 

are needed to normalize the pH. Most resource-poor farmers in the tropics are 

constrained by the local unavailability of lime, the high cost of transport and the 

unaffordable costs of the large quantities needed to treat the soils (Rao et al., 1993; 

von Uexk¨ull and Mutert, 1995). In addition, lime has low mobility and its mechanical 
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incorporation into the subsoil is difficult for farmers without large tractors. 

Consequently, when surface soils are amended with lime in adequately, the failure to 

adjust the pH of the sub-soils results in restricted root growth and, therefore, poor plant 

growth (Rao et al., 1993; von Uexk¨ull and Mutert, 1995; Abebe, 2007). Limited root 

growth also increases the vulnerability of plants to drought of even short durations 

(Foy, 1992). This is particularly important because many acid soils have inherently low 

water holding capacity (Little, 1989; Haynes and Mokolobate, 2001). The use of 

organic matter in the form of manure and compost can significantly reduce soil acidity 

(Wong and Swift, 2003). However, in countries like Ethiopia animal manure and crop 

residues are heavily used as fuel and animal feed, respectively, with the result that 

this option is not commonly applied (Schlede, 1989; IFPRI, 2010). The problem of soil 

acidity in cultivated land is further aggravated by the use of acid-forming chemical 

fertilizers. The predominant inorganic fertilizers available in Ethiopia are urea and 

diammonium phosphate (DAP) (Abebe, 2007). These fertilisers increase soil acidity 

when converted to nitrate nitrogen by releasing hydrogen ions (Barker and Bryson, 

2007).  

Worldwide, development of varieties tolerant to aluminium has been a sound 

alternative to liming and other non-genetic management options in the production of 

globally important crops such as wheat, rice, maize, barley, sorghum and rye (Foy and 

Murray, 1998; Pinto-Carnide and Guedes-Pinto, 1999; Hede et al., 2001; Paterniani 

and Furlani, 2002; Kochian et al., 2005; Portaluppi et al., 2010). On tef, no systematic 

study has been made searching for tolerance to Al-toxicity. However, a closely related 

forage species, weeping lovegrass [Eragrostis curvula (Schrad.) Nees], is known to 

have a high level of tolerance to soil acidity (Miles and de Villiers, 1989). This species 

is considered as one of progenitors of tef (Ketema, 1993). This research work was 

conducted in order to investigate the presence of genetic variability among some grain 

and pasture varieties of tef.  

3.2  Material and methods  

3.2.1 Genetic stock  

Four grain and 5 pasture tef (E .tef) varieties, along with E. curvula var. Ermelo, were 

evaluated under greenhouse conditions at the University of KwaZulu-Natal, 

Pietermaritzburg, South Africa.  
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3.2.2 Experimental set up  

A sample of highly acidic subsoil with a pH of (KCl) 3.94 and an acid saturation of 78% 

was used in the experiment. The acid soil was analysed for pH and other chemical 

properties at the Soil Fertility Analytical Services laboratory of the KwaZulu-Natal 

Department of Agricultural and Environmental Affairs (Table 3.1). The soil was limed 

to a pH of 6.21 (KCl) with the application of 3.6 g of CaCO3 (97%) powder per kilogram 

of dry soil and was incubated for seven days in greenhouse. Before planting, the soil 

was fertilized with NPK at the rate of 100, 109 and 137 μg.g-1 of soil, respectively, 

using NH4NO3 and KH2PO4 as the fertilizer sources. Twenty seeds of each variety 

were planted per pot (10 cm) and then thinned out to 15 plants soon after emergence. 

The nine tef varieties and the E. curvula var. Ermelo were planted into limed and 

unlimed soil, forming 20 treatment combinations. The experiment was set up in a 

randomized complete blocks design with 4 replications.  

3.2.3 Data collection and analysis  

Root and shoot length (mm) data were collected from each pot 30 days after planting 

from randomly selected plants and the mean of five plants was used for statistical 

analysis. Root and shoot dry weights (mg) were recorded on the basis of five randomly 

selected plants per replication after oven drying at 65OC for 72 hours.  

Tolerance indices (relative values) were computed as the ratio of the measured 

parameters under unlimed or toxic conditions, relative to the parameter measured 

under limed or nontoxic conditions. In addition, the shoot-to-root ratio was computed 

under both limed and unlimed conditions.  

Analysis of variance and a single degree of freedom contrast, multiple means 

separation and correlation coefficients were carried out using GenStat Statistical 

Software Version:14 (GenStat., 2009).  

 

3.3  Results  

3.3.1 Genetic variability under unlimed treatments  

Under unlimed conditions the acid soil (pH [KCl] 3.94 and acid saturation of 78%) 

caused variety specific responses for root length, shoot length, root dry weight, and 

shoot dry weight. The analysis of variance revealed highly significant differences 
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between the varieties (p<0.01) (Table 3.2). The single degree of freedom contrast 

showed a highly significant (p<0.01) difference between E. curvula var. Ermelo and all 

the E. tef varieties for all the parameters measured (Table 3.2). Contrast analysis 

between the pasture and food grain tef varieties did not show any significant 

differences for the parameters. On the other hand, comparison between brown seeded 

and white seeded tef varieties showed a highly significant difference (P<0.01) for all 

the parameters measured (Table 3.2). Stunted shoot growth coupled with severe root 

pruning effects were observed in the more sensitive varieties, which were the typical 

effects of Al-toxicity in the unlimed soil (Figures 3.2 and 3.3).  

For all the parameters measured, the E. curvula variety showed better growth under 

unlimed conditions, followed by the brown seeded tef varieties Dima, Emmerson and 

SA Brown, in that order. Among the tef varieties, the highest and lowest values for 

mean root length and mean shoot length were recorded for Dima and Witkop varieties, 

respectively. Similarly, substantial variability was observed among the varieties for root 

dry weight and shoot dry weight (Table 3.3). Among the tef varieties, the lowest and 

highest root dry weights recorded were 3.38 mg and 10.45 mg for Highveld and Dima, 

respectively. For shoot dry weight Quncho and Highveld gave the smallest weights of 

7.38 mg whereas the brown seeded tef variety, Dima produced 20.9 mg.  
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Table 3.1. Chemical properties of unlimed and limed sub-soil used for the study  

 Sample Clay 
(%) 

pH 
(KCl) 

Na K 
(mg. 
L-1) 

Ca 
(mg. 
L-1) 

Mg 
(mg. 
L-1) 

Total 
Cation 
(Cmol. L-

1) 

Exc. acidity 
(Cmol.L-1) 

Acid 
saturat
ion 
(%) 

P Zn Mn Cu Mid infrared 
estimate 

mg/l ESP 
(%) 

mg. 
L-1 

mg. 
L-1 

mg. 
L-1 l 

mg. 
L-1 

Organic 
Carbon 
(%) 

N (%) 

Unlimed 48 3.94 1.98 0.24 109 69 17 3.5 2.74 78 1 0.8 4 1.2 <0.5 0.07 

Limed 47 6.21 3.08 0.17 119 1351 83 7.77 0.04 1 1 0.6 2 0.7 <0.5 0.05 

ESP-Exchangeable sodium percentage 
 

Table 3.2. Analysis of variance and orthogonal contrasts for growth parameters of nine tef varieties and E. curvula var. Ermelo 

grown in an unlimed, highly acidic soila. 

Source of variation d.f.  ARL ASHL RDWT SHDWT 

Block 3      

Varieties  9 P value <0.001 <0.001 <0.001 <0.001 

F statistic  13.85 9.13 11.58 19.62 

E. curvula vs E .tef 1 P value <0.001 <0.001 <0.001 <0.001 

F statistic  83.51 38.56 67.03 120.56 

Pasture vs. food grain varieties (E. tef ) 1 P value 0.420 0.5 0.419 0.560 

F statistic  0.67 0.47 0.67 0.35 

White vs. brown seeded varieties (E. tef ) 1 P value 0.001 <0.001 0.008 <0.001 

F statistic  12.87 18.08 8.33 18.41 

Residual 27      

Total 39      

 ad.f-degrees of freedom; ARL-Mean root length; ASHL-Mean shoot length; RDWT-Root dry weight; SHDWT-Shoot dry weight. 
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Figure 3.1. Shoot growth of E. tef varieties and E. curvula var. Ermelo in limed and unlimed 
acid soils 

 

 

Figure 3.2. Root length E. tef varieties and E. curvula var. Ermelo grown in a limed and unlimed 
acid soil 
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Table 3.3. Growth of tef varieties grown in an unlimed, highly acidic soil (pH=3.94) 

Varieties  
Seed  
colour Use 

ARL 
(mm)  

ASHL 
(mm) 

RDWT 
(mg) 

SHDWT 
(mg) 

Witkop White Pasture 15.45 a 8.85 a 4.90ab 8.50a 

Quncho White Food 16.85 a 12.35ab 4.525ab 7.38a 

Etsub White Food 18.60 a 12.25ab 4.50ab 8.28a 

Rooiberg Brown Pasture 16.40 a 15.35bcd 5.30ab 10.10ab 

Yilmana White Food 19.15 a 13.90bc 4.075a 7.85a 

Highveld Brown Pasture 20.00 a 11.30ab 3.375a 7.38a 

SA Brown Brown Pasture 25.35 ab 15.60bcd 5.550ab 11.35ab 

Emmerson Brown Pasture 37.60 bc 18.50cd 7.55bc 14.80b 

Dimma Brown Food 48.20 c 19.95de 10.45c 20.90c 

E. curvula var. Ermelo Brown Pasture 72.20 d 24.10e 14.25d 30.45d 

Mean   29.0 15.21 6.45 12.70 

F statistic   13.85 9.13 11.58 19.62 

P value    <0.001 <0.001 <0.001 <0.001 

LSD (5%)   14.47** 4.38 2.92 4.95 

CV (%)   34.4 19.8 31.2 26.8 

aMeans in the same column followed by the same letter are not significantly different at p=0.05. 

bARL-mean root length; ASHL-mean shoot length; RDWT-Root dry weight; SHDWT-Shoot dry weight 

 

3.3.2 Variability for tolerance indices (relative values) and shoot to root ratio  

Highly significant differences were observed for tolerance indices of all the growth 

parameters that were measured as ratio of the values under unlimed versus limed 

conditions. These indices indicated the extent of stress created by soil acidity relative 

to the limed or amended soils. Single degree of freedom contrasts between E. curvula 

and E .tef varieties showed a highly significant difference, which a large proportion of 

the variation between the varieties for all the tolerance indices. Similarly, there were 

highly significant differences between the brown and white seeded varieties of tef. 

However, there were no significant differences observed between pasture and grain 

varieties of tef for all the growth parameters (Table 3.4). 

The tolerance indices for E. curvula ranged between 0.81 for root length to 0.98 for 

root dry weight. This reflects the extremely high tolerance of E. curvula variety to Al-

toxicity and other stresses associated with the highly acidic soils. Lime had negligible 

effects on all the growth parameters measured for E. curvula. This result is consistent 

with earlier research reported on the species (Foy et al., 1987; Miles and de Villiers, 
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1989; Foy and Murray, 1998). The tolerance indices or relative values among tef 

varieties ranged between 0.13-0.39 mm for relative root length; 0.23-0.43 mm for 

shoot length; 0.12-0.36 mg for root dry weight and 0.11-0.31 mg for shoot dry weight, 

indicating substantial variability between the tef varieties. Within tef varieties, the 

brown seeded grain variety Dima consistently gave the highest tolerance indices for 

all the growth parameters measured. The tef varieties generally responded more 

strongly to liming than E. curvula. However, severe suppression of growth of tef 

varieties under unlimed conditions resulted in very low tolerance indices of tef for all 

the parameters (Table 3.5).  

Table 3.4. Analysis of variance and orthogonal contrasts of tolerance indices (relative 

values) of growth parameters under limed and unlimed conditionsa.  

Source of variation d.f.  RRL RSHL RRDWT RSDWT 

Block 3      

Varieties  9 P value <.001 <.001 <.001 <.001 

F statistic  20.06 46.44 19.08 37.1 

 E. curvula vs E. tef 1 P value <.001 <.001 <.001 <.001 

F statistic  151.72 380.23 158.73 317.74 

 Pasture vs food grain varieties (E. tef) 1 P value 0.04 0.201 0.932 0.453 

F statistic  0.85 1.72 0.01 0.580. 

 White vs brown seeded varieties (E. tef) 1 P value 0.002 0.001 0.031 0.041 

F statistic  12.47 12.89 5.2 4.58 

Residual 27      

Total 39      

aRRL-Relative root length; RSHL-relative shoot length; RRDWT-Relative root dry weight; RSHDWT-
Relative shoot dry weight. 

 

Shoot to root ratio for the limed treatments gave highly significant differences and the 

values ranged between 2.7 for SA Brown to 1.95 for Yilmana. Under unlimed condition 

significant differences were not observed for shoot to root ratios. Generally, shoot to 

root ratios were reduced under unlimed condition (Table 3.5). A product-moment 

correlation coefficient indicated a high (>0.9) and highly significant correlation (p<0.01) 

between the growth parameters (Table 3.6). In screening experiments for Al-tolerance, 

shoot and root dry matter are usually recorded to capture variability in root density that 

cannot be accounted for by the length parameters per se  (Miles and de Villiers, 1989; 

Liu, 2005). The high correlation between shoot and root length, and corresponding dry 

matter values observed in this experiment indicated the possibility that data recorded 

on length parameters can explain for root density.  
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Table 3.5. Tolerance ratios of growth parameters of tef varieties for root and shoot 

parametersa,b  

Varieties  
Seed 
colour Use RRL RSHL RRDWT RSHDWT 

SH:RT 
(DWT) 
Limed 

SH:RT 
(DWT) 
unlimed 

Witkop White Pasture 0.13a 0.21a 0.17a 0.12a 2.42abc 1.75 

Quncho White Food 0.15ab 0.32bc 0.18ab 0.14a 2.10a 1.65 

Etsub White Food 0.15ab 0.27ab 0.13a 0.12a 2.08a 1.86 

Rooiberg Brown Pasture 0.16ab 0.31abc 0.22ab 0.15a 2.88 2.07 

Yilmana White Food 0.16ab 0.31abc 0.12a 0.12a 1.95a 1.92 

Highveld Brown Pasture 0.18ab 0.28ab 0.14a 0.12a 2.42abc 2.17 

SA Brown Brown Pasture 0.27abc 0.33bc 0.25ab 0.20ab 2.78bc 2.02 

Emmerson Brown Pasture 0.29bc 0.39cd 0.22ab 0.15a 2.82c 2.01 

Dimma Brown Food 0.39c 0.44d 0.36b 0.31b 2.29abc 2.24 

E. curvula var. 
Ermelo 

Brown Pasture 0.81d 0.93e 0.98c 0.96c 2.19ab 2.21 

Mean   0.27 0.38 0.28 0.239 2.39 1.99 

F statistics    20.06 46.44 19.08 37.10 3.21 0.61 

P value   <.001 <.001 <.001 <.001 0.009 0.778 

LSD (5%)     0.1344 0.0871 0.0836 0.1240 0.5402 NS 

CV (%)   34.7 15.9 42.7 35.8 15.6 25.2 

 aMeans in a column followed by the same letter are not significantly different at p=0.05. bRRL-
Relative root length; RSHL-relative shoot length; RRDWT-Relative root dry weight; RSHDWT-Relative 
shoot dry weight; SH: RT- shoot to root ratio; DWT-dry weight 

 

 

Table 3.6. Correlation coefficients between the various growth parameters measured in the  
study . 

 

 

 

 

ARL-mean root length; ASHL-mean shoot length; RDWT-Root dry weight; SHDWT-Shoot dry weight 

 

3.4  Discussion  

The primary effect of Al-toxicity is the inhibition of root growth, which eventually results 

in the reduced absorption of water and nutrients, and consequently the stunted growth 

of plants (Little, 1989; Delhaize and Ryan, 1995; Hede et al., 2002; Deborah and 

Tesfaye, 2003; Kochian et al., 2004; Miyasaka et al., 2007). In this study, a high level 

of root pruning effects and stunted growth was observed among the tef varieties grown 

Parameter ARL ASHL RDWT 

ARL  -   

ASHL 0.9314**  -  

RDWT 0.9287** 0.9229**  - 
SHDWT 0.9161** 0.9512** 0.9490** 
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under unlimed conditions. Root and shoot growth parameters of seedlings have been 

commonly used to evaluate genetic variability and to screen acid or Al-tolerant 

varieties in many crop and forage species (Little, 1989; Foy and Murray, 1998; Hede 

et al., 2001; Liu, 2005; Dai et al., 2011). In this experiment, high and statistically 

significant correlations were observed between all the parameters, indicating the 

appropriateness of these parameters for similar studies on tef. Under unlimed 

condition, the root and shoot growth of tef varieties were generally lower than those of 

the E. curvula variety, Ermelo. This can be attributed to the high tolerance of E. curvula 

to highly acidic soils (Foy et al., 1987; Miles and de Villiers, 1989). 

Similarly, the maximum tolerance index recorded for E. tef (0.44) for shoot length was 

very low compared to the values of over 0.9 recorded for E. curvula. As tolerance 

indices are the ratio of growth under unlimed (toxic) to limed (nontoxic) conditions, the 

low tolerance indices of tef varieties can be attributed to vigorous or weak growth of 

tef varieties under limed and unlimed condition, respectively. This can be seen clearly 

with the similar growth measurement of the Dima variety of tef and E. curvula under 

unlimed conditions (Table 3.2, Figs 3.1 and 3.2).  

Assefa et al. (2010) described the existing tef cultivar development strategy as 

breeding for general adaptation. However, the E. tef varieties tested in this study had 

not been bred for tolerance to acid soils or Al-tolerance. Recent figures on variety 

development in tef have shown a decline in genetic gain, mainly because of a lack of 

specifically adapted varieties and the presence of strong genotype by environment 

interactions (Assefa et al., 2010).The large differences in the responses of nine tef 

varieties to an acid soil reflect the need to launch tef breeding programmes specifically 

targeting such agro-ecologies. 

3.5  Conclusion  

The highly acid subsoil used for the experiment was effective at exposing the 

intraspecific genetic variation in tef tolerance for Al-toxicity and other acidity associated 

stresses. The tef varieties used in this experiment were not intentionally bred for Al-

tolerance and the considerable variation observed suggests the possibility of selecting 

tef varieties with high level of tolerance to Al-toxicity among diverse tef accessions. In 

this regard, deliberate screening of tef accessions collected from areas with acid soils 

could be an effective starting point. A consistent association of brown seed colour with 
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tolerance to Al toxicity in this experiment suggests that further research might show a 

genetic linkage between brown seed colour and tolerance of acid soils. 
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CHAPTER 4 

Responses of selected tef [Eragrostis tef (Zucc.) Trotter] genotypes to 

soil acidity in pot and field experiments 

Abstract  

Soil acidity causes substantial yield losses on tef production in Ethiopia. There has 

been no systematic investigation conducted on the response of tef genotypes to soil 

acidity and Al-toxicity. The objectives of this study was to examine the response of 31 

tef genotypes together with two related Eragrostis spp., and to assess farmers’ 

preference and selection criteria for tef genotypes. The tef genotypes were constituted 

from improved varieties, parents of mapping populations, and a local check. Growth 

measurements and tolerance indices were used to evaluate the responses of the 

genotypes. There were significant difference between the genotypes under both the 

pot and field conditions. Significant correlations were observed between tolerance 

indices under both conditions. Nonetheless, within and between variations in ranks 

were observed for the tolerance indices for the pot and field experiments. Within 

experiment changes in rank were associated with the inherent properties of the 

tolerance indices and the parameter used. The rank changes between pot and field 

experiments could be attributed to the difference in adaptability of some genotypes to 

other edaphic and climatic factors in the test conditions. The local check, consistently 

outperformed the other genotypes, both under pot and field conditions. A lack of 

adequate contrast between the three parents of the mapping population rules out the 

possibility of using the two mapping populations developed from these parents for 

molecular mapping of tolerance to soil acidity and Al-toxicity. Grain yields of the 

‘improved’ varieties, as well as the local check under unlimed condition, were far below 

the national mean yield of tef. This highlights the need to develop tef varieties that are 

tolerant to acid soils; agronomically superior and  can perform adequately in agro-

ecologies with acid soils. Farmers selected one late maturing variety and three early 

maturing varieties to grow in their moderately acidic soils.  

Key words: Aluminium toxicity, Eragrostis tef, soil acidity, tolerance indices  
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4.1. Introduction  

Tef [Eragrostis tef (Zucc.) Trotter] (2n=4x=40) is the most widely produced and 

consumed cereal crop in Ethiopia. In terms of area of cultivation, it is the leading cereal 

crop followed by maize and wheat. According to the Central Statistical Authority of 

Ethiopia (CSA, 2015), the area covered by tef during the 20014/2015 cropping season 

was over 3 million hectares corresponding to 24.03% and 30% of the total area 

occupied by grain and cereal crops, respectively. In the country, over 6 million rural 

households are engaged in tef production (CSA, 2015). Besides the grain, tef straw is 

also highly valued as an important livestock feed in the country. Tef straw contributes 

27% of the total of 14 million tons of crop residue produced in the country (Seyoum 

and Dereje, 2001). Tef is gaining growing popularity worldwide primarily due to its 

gluten free property (Spaenij-Dekking et al., 2005). 

Aluminium toxicity and other acidity related soil fertility problems are among the major 

constraints of crop production in the Ethiopia, affecting most crops (Dubale, 2001; 

IFPRI, 2010). Tef is one of the major crops affected by soil acidity and Al-toxicity. 

Mamo and Killham (1987) reported the poor response of tef to fertilizer applications 

when grown in acid soils. Nonetheless, breeding of tef for specific adaptation to low 

soil pH or aluminium toxicity has not yet been initiated. The national tef improvement 

programme of Ethiopia Agricultural Research system has released several high 

yielding varieties. However, most of these varieties have been bred for optimal growing 

conditions, with a few of them being specifically bred for drought tolerance (Assefa et 

al., 2010). High levels of genotype by environment interaction have been reported in 

several tef breeding trials (Kassa et al., 2006; Assefa et al., 2010; Ashamo and 

Getachew, 2012). Declining overall genetic gain from the national breeding 

programme has been associated with the failure in the breeding approaches to target 

specific production constraints (Assefa et al., 2010). Cool temperatures at high 

altitudes and moisture stress in drought prone areas have been implicated as the 

underlying factors causing low productivity and the high genotype by environment 

interactions (Assefa et al., 2010). Although soil acidity is an edaphic factor constraining 

crop productivity in the ‘optimal growing’ environments, its role in the high genotype 

by environment interactions and the overall declining genetic gain has not been 

recognized widely. A popular and supposedly well adapted tef variety, Quncho, 

(Assefa et al., 2011) has been found to be among the most Al-sensitive tef varieties 
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(Abate et al., 2013). Overall, there is little information on the reaction of most tef 

varieties to soil acidity and the associated Al-toxicity.  

Crop genotypes can be screened for Al-toxicity or soil acidity under field conditions or 

in controlled environment facilities. Compared to field-based techniques, controlled 

environment methods under laboratory and greenhouse conditions can be more rapid, 

accurate and non-destructive, and can be applied at early developmental stages of 

the crop (Howeler and Cadavid, 1976; Carver and Ownby, 1995; Hede et al., 2001). 

The ultimate purpose of screening in a controlled environment is the rapid and large 

scale screening of many promising genotypes before confirmatory field evaluations 

and subsequent seed production of the best lines. Hence, the evaluation of selected 

genotypes for yield and other economically important traits under field condition is 

essential (Hede et al., 2001). Field evaluations help to assess the response of 

genotypes under the influence of complex edaphic and climatic factors, in addition to 

low soil pH. Furthermore, field experiments can be used to gather farmers’ feedback 

towards the genotypes. 

Under controlled environmental conditions, the relative growth index of seedlings, 

expressed as the ratio of growth under unlimed condition to limed conditions, has been 

widely used to identify tolerant lines (Bona et al., 1993; Hede et al., 2001; Liu, 2005). 

Tolerance indices are also used to screen crops for tolerance of other abiotic stresses 

such as drought (Shirani and Abbasian, 2011; Khalili et al., 2012; Abdi et al., 2013; 

Abdolshahi et al., 2013).  

This study was conducted in order to evaluate the response of 31 tef genotypes to Al-

toxicity or soil acidity in pot and field experiments, and to assess farmers’ preferences 

and selection criteria.  

4.2 Material and methods  

4.2.1 Greenhouse experiment  

4.2.1.1 Genetic stock 

Thirty one (E .tef) genotypes consisted of 28 Released Varieties, 2 parents of mapping 

population (Key murrie, and DZ-01-2785) and a farmers’ landrace called Dabo banja 

were evaluated, together with two Eragrostis spp. (Eragrostis pilosa (L.) Beauv. and 

Eragrostis curvula (Schrad.) Nees var. Ermelo) under greenhouse conditions at the 
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Amhara Regional Agricultural Research Institute (ARARI), Bahir Dar, Ethiopia (Table 

4.1). Key Murrie, DZ-01-2785 and E. pilosa  (Acc 30-5) were used to develop two sets 

[E. tef (Key Murrie) X E. pilosa (30–5)] and [E. tef (DZ-01-2785) X E. pilosa (30–5)] of 

recombinant inbred lines to be used as mapping populations for a molecular mapping 

studies of tef (Solomon, 2007; Assefa et al., 2010). Eragrostis curvula var. Ermelo was 

used as an Al-tolerant check (Abate et al., 2013). Dabo banja was identified as a widely 

grown farmers’ landrace in areas of Banja district with acid soils during the PRA Study.  

4.2.1.2 Experimental set up  

A sample of an acidic soil with a pH (H2O) 1:2.5 and pH (KCl) of 4.45 and 3.68 was 

collected from the Banja District of north western Ethiopia. The soil was analysed for 

various physico-chemical properties at the Amhara Design and Supervision Works 

Enterprise, Soil Chemistry and Water Quality Section, Bahir Dar, Ethiopia (Table 4.2). 

In order to facilitate computation of tolerance indices, the experiment was established 

under limed and unlimed conditions. Accordingly, the acid soil was limed to a pH of 

6.2 by applying 8.5 g of CaCO3 (99.5%) powder per kilogram of dry soil (17 t lime ha-

1) (Nyachiro and Briggs, 1988) and incubating the limed soil for seven days in a 

greenhouse. Before planting, the soil was fertilized with NPK at the rate of 100, 109 

and 137 µg.g-1 of soil, respectively, using NH4NO3 and KH2PO4 fertilizers. Seeds were 

planted in 10 cm pots. All the varieties were planted in limed and unlimed pairs. The 

experiment was set up in in a randomized complete blocks design (RCBD), with 5 

replications. 

4.2.1.3 Data collection  

Shoot and root length (mm) data were collected from each pot 28 days after planting 

from randomly selected plants, and the mean of 7 plants was used for statistical 

analysis. Root and shoot dry weights (mg) were recorded on the basis of 10 randomly 

selected plants per replication after oven drying at 65OC for 72 hours.  

Tolerance indices (relative values) were computed as the ratio of the measured 

parameters under unlimed versus limed conditions. 
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4.2.2 Field experiment  

4.2.2.1 Genetic stock 

Twenty seven (Table 4.1) improved varieties of tef, along with popular local farmers’ 

landrace, Dabo banja, were used in this trial. 

4.2.2.2 Experimental set up  

A field experiments was conducted at a newly established experimental station in the 

Banja district of north western Ethiopia during the main rainy season of 2014. Banja 

area represents the most acidic, high rainfall highlands of north western Ethiopia. A 

detailed description of the district is presented in Chapter 2. The soils of the testing 

site was analysed for soil pH and selected physico-chemical properties by collecting 

a composite sample of the field at a depth of 15 cm and following appropriate lab 

protocols described under Chapter 2. The analysis was carried out at the soil analysis 

laboratory of the Adet Agricultural Research Centre. The experiment was replicated in 

farmers’ field in order to gather data on farmers’ preferences and selection criteria.  

The experiment was laid out in a randomized complete blocks design (RCBD) with two 

replications with limed and unlimed treatment pairs. Liming rates of 8.0 t.ha-1 and 

6.0 t.ha-1 were used for the on-station and on-farm experiments, respectively, based 

on the soil test result (Table 4.2). The lime was applied two weeks before planting the 

limed plots.  

Each genotype was established in a plot with the area of 1.0 m2, with an inter row 

spacing of 20 cm. Seeds were drilled within rows and seed rate of 15 kg.ha-1 was 

used. Spacings of 1.0 m between plots within replications and 1.5 m between blocks 

were used. Fertilizers were applied based on the recommendation under use in the 

area, i.e.,100 kg.ha-1 DAP and 100 kg.ha-1 urea. All of the DAP and one third of the 

urea was applied at planting, and the remaining two thirds of the urea was applied at 

the tillering stage. 

4.2.2.3 Data collection  

The following data were collected on a plot basis or from randomly pre-tagged 

individual plants in the central rows. 
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Data collected on a plot basis:  

 Days to panicle emergence (DPE): Number of days from planting until 

emergence of panicles on 50% of the plants in the plots;  

 Days to maturity (DM): Number of days from planting to the day when 50% 

of the plants in the plot reached physiological maturity; 

 Shoot biomass (SB): Total dry above-ground biomass for the entire plot; 

 Grain yield (GY): The weight of the seed harvested from each plot; 

 Establishment: Rated 30 days after planting and at harvest, with the 

following visual scale of 1-5:  

5-(>85% establishment)  

4-(70-84 establishment)  

3-(55-69% establishment)  

2-(40-54% establishment) 

1-(below 40% establishment) 
 

Data was collected from five randomly selected and pre-tagged plants basis:  
 

 Plant height (PH): mean height of 5 pre-tagged plants in centimetres 

 Panicle length (PNL): mean length of 5 pre-tagged plants from the base of the 

panicle to the tip in centimetres. 

 Tiller number (TN): the mean number of fertile tillers of 5 pre-tagged plants in 

each plot 

 Weight of panicle branches per main shoot panicle (NPBPPN): the mean 

dry weight in grams of the above-ground biomass of 5 pre-tagged plants in 

each plot. 

Computation of acidity tolerance indices:  these indices were computed as follows:  

i. Relative tolerance index (RTI)-STI-1: Ratio of values under unlimed or 

stressed versus the values under limed or non-stressed conditions; 

 
ii. Stress tolerance index-2 (STI-2) (Fernandez, 1992)  

                                                      

                                        

iii. Stress tolerance index-3 (STI-3) modified from STI-2 of  (Fernandez, 
1992) 

STI-3= Ys/ Ῡp 
 

STI-1= Ys/Yp 

 
STI-2= (Ys) (Yp)/ (Ῡp)

2 
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iv. Stress tolerance index-4 (STI-4) (Fischer et al., 1998) 

STI-4= (Ys/Yp)/ (Ῡs/Ῡp) 

 

Where Ys is yield or any other variable for each genotype under stress or 

unlimed condition; Yp is the same variable under non-stressed or limed 

condition; Ῡs is the grand mean of yield or any other variable of all genotypes 

under stress; Ῡp is grand mean of the same variable for all genotypes under 

non stressed condition.  

 

Farmers’ assessment of varieties: Twenty- five farmers in two groups of 12 and 13 

assessed the varieties under unlimed condition for various attributes on the 3rd of 

November 2014: The landraces Dabo banja and Feso served as benchmarks for the 

farmers to use as the basis for assessment. Dabo banja is a widely cultivated and 

relatively late maturing landrace, whereas Feso is an early maturing landrace used in 

double cropping of tef after potato. Farmers’ preferred attributes and selection criteria 

were documented.  

4.2.3 Statistical analysis  

Measurements of each parameter and their associated tolerance indices were 

subjected to analysis of variance and means separation. Hierarchical cluster analysis 

was undertaken to visualize the grouping of the genotypes using their similarities 

based on growth values under unlimed condition and their tolerance indices, 

independently. Euclidean distances between the genotypes was used to group the 

genotypes. Correlation analyses between tolerance indices and growth parameters 

were also performed in order to determine their pattern of association. Grain and 

biomass yield under unlimed conditions and tolerance indices computed from these 

variables were used for statistical analysis of the field experiment. Analysis of 

variance, mean separation and correlation analysis were also performed. GenStat 

Statistical Software Version:17.10013780 (GenStat., 2014) was used to undertake all 

the statistical analysis.  
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Table 4.1. Description of tef genotypes used for the study.  

 

Table 4.2. pH and other physico-chemical properties of the soil used for the pot 
experiment and in the field  

 

No. Name Code/Pedigree Released 
from (centre) 

Year of 
Release 

Seed 
colour 

Test 
Environment 

1 Amarech Ho-Cr-136 Holleta 2006 White  P/F 

2 Ambotoke DZ-01-1278 Holleta 2000 White  P/F 

3 Asorgi DZ-01-99 Debrezeit 1970 Brown P/F 

4 Boset RIL 50D Debrezeit  2012 White  P 

5 Dega Tef DZ-01-2675 Debrezeit 2005 White  P/F 

6 Dimma DZ-01-2423 Adet 2005 Brown P/F 

7 Dukem DZ-01-974 Debrezeit 1995 White  P/F 

8 Enatit DZ-01-354 Debrezeit 1970 White  P/F 

9 Etsub DZ-01-3186 Adet 2005 White  P/F 

10 Gemechis DZ-Cr-387/RIL-127 Melkassa 2007 White  P/F 

11 Genete DZ-01-146 Sirinka 2005 White  P/F 

12 Gerado DZ-01-1281 Sirinka 2002 White  P/F 

13 Gibe DZ-01-255 Debrezeit 1983 White  P/F 

14 Gimbichu DZ-01-899 Debrezeit 2005 White  P/F 

15 Holeta Key DZ-01-2053 Holleta 1999 Brown P/F 

16 Keytena DZ-01-1681 Debrezeit 2002 Brown P/F 

17 Koye DZ-01-1285 Debrezeit 2002 White  P/F 

18 Magna DZ-01-196 Debrezeit 1978 White  P/F 

19 Mechare Acc.205953 Sirinka 2007 White  P/F 

20 Melko  DZ-Cr-82 Debrezeit 1982 White  P/F 

21 Menagesha DZ-01-44 Debrezeit 1982 White  P/F 

22 Quncho DZ-Cr-387/RIL-355  Debrezeit 2006 White  P/F 

23 Simada DZ-Cr-387/RIL-295 Debrezeit 2009 White  P/F 

24 Tseday DZ-Cr-37 Debrezeit 1984 White  P/F 

25 Welenkomi DZ-01-787 Debrezeit 1978 White  P/F 

26 Yilmana DZ-01-1868 Adet 2008 White  P/F 

27 Ziquala DZ-Cr-358 Debrezeit 1995 White  P/F 

28 Zobel DZ-01-1821 Sirinka 2005 White  P/F 

29 Dabo banja  Local check   Brown P/F 

30 DZ-01-2785 PMP    white P 

31 Kay Murrie PMP   white P 

32 E. pilosa (Acc 30-5) PMP   Brown P 

33 E.curvula var. Ermelo  
 

Tolerant check   Brown P 

P-pot; P/F-pot and field; PMP- parents of mapping population 

No Experiment  
  

Lime 
Treatment   

pH H2O) 
1:2.5 

pH 
(KCl) 

Exchangeable bases 
(Cmol(+).kg-1 

CEC N total 
(%) 

Av.P Ex.Ac. Ex.Al 

Ca Mg Na K (Cmol(+).kg-

1 
(mg.kg-1) (Cmol(+).kg-1 

1 Pot 
  

Limed 6.23 5.48 46.75 0.05 0.01 0.61 22.00 0.478 5.75 5.68 0 

Unlimed  4.45 3.68 13.03 0.12 0.12 0.56 23.40 0.384 5.33 18.64 4.16 

2 
 

Field: 
On farm 

  

Limed  6.2 5.07 18.90 0.77 0.04 0.06 38.20 0.6 25 0.058 0 

Unlimed 4.89 3.8 0.29 1.75 0.02 0.06 32.88 0.56 29.14 4.14 3.57 

3 Field 
On station 

  

Limed  6.13 4.87 14.50 1.56 0.00 0.07 27.85 0.41 2.02 1.14 0.05 

Unlimed 4.42 3.75 0.16 2.14 0.01 0.07 30.36 0.33 1.21 5.13 5.05 

Av. P- available phosphorous; CEC- Cation exchange capacity; Ex Ac.- exchangeable acidity; Ex Al.-exchangeable Al  
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4.3 Results  

4.3.1 Response of tef genotypes to soil acidity in the pot experiment  

The response of the tef genotypes to soil acidity in terms of their growth parameters 

under unlimed conditions and their relative tolerance indices are presented in Tables 

4.3 and 4.4, respectively. There were significant differential responses by the varieties 

to soil acidity, suggesting that the test soil used in the experiment had adequately 

discriminated between the genotypes.  

Based on the measurement of growth parameters under unlimed condition, the root 

dry weight (RDW), mean root length (ARL), mean shoot length (ASHL), and shoot dry 

weight (SHDW) values of the best performing varieties were 3.4, 2.95, 1.69 and 2.1 

times higher than the worst performing varieties, respectively. The tolerant check 

E. curvula var. Ermelo ranked 27th for RDW and ARL, and 30th and 18th for SHL and 

SHDWT, respectively. This could be attributed to the initial slow growth of this 

perennial species compared to the tef genotypes. The local check, Dabo banja, which 

is widely grown in areas with acid soils, ranked 2nd, 5th, 1st for RDWT, ARL and SHL 

and SHDWT, respectively.  

The result of the relative tolerance index (RTI) confirmed the significant superiority of 

the local check, Dabo banja, over all the improved varieties, the parents of the mapping 

populations and the tolerant check, E. curvula var. Ermelo. Figure 4.1 shows the 

contrast between the local check (Dabo banja) and the most sensitive variety (Holleta 

Key) and the most popular variety (Quncho) (Belay et al., 2008; Assefa et al., 2011) 

under limed and unlimed conditions. The RTI values derived from roots and shoots 

were over 100% for the local check. The RTI also showed the high tolerance of 

E. curvula var. Ermelo, which was not apparent from the use of growth measurements 

as indicators of tolerance to soil acidity. All three parents of the mapping populations, 

i.e., Key Murrie, DZ-01-2785 and E. pilosa (Acc 30-5) showed poor tolerance to soil 

acidity for their growth parameters, and their soil acidity tolerance indices.  

The differences observed for both the growth and RTI values presents an opportunity 

to select for relatively acid tolerant varieties among the existing varieties.  
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Table 4.3. Root and shoot growth of tef genotypes grown in unlimed soils  

 

There were highly significant correlations (P<0.001) between all growth parameters 

and all the RTI values, with the exceptions of RSHL (relative shoot dry weight) and 

SHL, RSHL and RDW, and SHL and RRDW (Relative Root Dry Weight) (Table 4.5).  

There was considerable change in rank of the varieties for their growth parameters 

and their relative tolerance indices. Visualization of the genotypes through clustering 

showed differential grouping of the genotypes for RTI and growth parameters under 

unlimed condition (Figures 4.2 and 4.3). However, the RTI data grouped together the 

No Variety RDWT 
(mg) 

 Rank ARL 
(mm) 

Rank ASHL 
(mm) 

Rank SHDWT 
(mg) 

Rank 

1 Mechare 25.22  1 87.49 3 97.03 16 38.83 4 
2 Dabo banja 24.40  2 85.54 5 117.91 1 56.83 1 
3 Enatit 24.40  3 89.20 2 95.11 18 34.17 12 
4 Genete 23.60  4 83.83 8 102.26 9 36.83 6 
5 Gerado 23.60  5 82.43 10 99.89 10 31.83 16 
6 Ziquala 23.40  6 97.46 1 104.43 6 38.83 4 
7 Menagesha 23.20  7 82.11 11 98.69 13 47.17 2 
8 Gibe 22.45  8 83.09 9 106.40 5 36.17 8 
9 Asorgi 22.00  9 85.34 6 107.86 3 38.83 4 
10 Dimma 21.00  10 86.08 4 106.57 4 36.50 7 
11 Tseday 20.80  11 70.74 19 103.5 7 37.83 5 
12 Amarach 20.20  12 71.76 18 107.97 2 41.50 3 
13 Yilmana 19.80  13 70.20 20 99.63 11 33.17 14 
14 Gimbichu 19.60  14 72.13 17 93.43 19 28.17 20 
15 Boset 19.20  15 68.46 21 103.43 8 32.17 15 
16 Zobel 19.20  16 73.60 15 91.86 20 34.50 11 
17 Melko 19.00  17 84.43 7 95.91 17 31.83 16 
18 Magna 18.80  18 64.17 24 85.14 24 27.83 21 
19 Ambotoke 17.80  19 75.74 14 98.89 12 35.50 9 
20 Koye 17.80  20 72.51 16 89.94 22 25.50 23 
21 Keytena 17.40  21 77.24 12 98.14 14 35.17 10 
22 Welenkomi 17.20  22 60.57 28 78.03 29 23.17 24 
23 Etsub 17.00  23 76.51 13 86.80 23 33.83 13 
24 DZ-01-2785 16.80  24 67.17 22 97.83 15 38.17 5 
25 Dega Tef 16.20  25 65.14 23 90.89 21 31.50 17 
26 Dukem 15.80  26 64.00 25 80.51 26 26.17 22 
27 E. curvula 15.40  27 60.86 27 77.14 30 29.50 18 
28 Gemechis 15.40  28 62.31 26 80.37 27 22.50 25 
29 Simada 15.20  29 57.60 29 82.40 25 19.50 26 
30 Quncho 13.40  30 49.63 31 78.29 28 19.50 26 
31 Kay Murrie 11.20  31 57.17 30 71.00 32 34.50 12 
32 E. pilosa  10.00  32 43.51 32 76.74 31 28.83 19 
33 Holeta Key 7.40  33 31.73 33 70.26 33 18.17 27 

Mean 
F static  
P value  
LSD (5%) 
CV (%) 

18.6   71.5  92.93  32.86  
4.02   5  4.48  15.09  
<0.001   <0.001  <0.001  <0.001  
5.97   17.62  15.68  5.73  
25.7   19.7  13.9  13.5  

ARL  ARL-Mean root length; ASHL-Mean shoot length; RDWT-Root dry weight; SHDWT-Shoot dry weight 
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two genotypes with proven acidity tolerance, i.e., the local check from acid soils and 

E. curvula. 

Table 4.4. Relative soil acidity tolerance indices of tef varieties derived from shoot and 
root growth 

 

No Variety RRL(%) Rank RRDW (%) Rank RSHL (%) Rank RSHDWT (%) Rank 

1 Dabo banja 108.26 1 128.2 1 121.85 1 149.46 1 
2 E.curvula 102.21 2 115.11 2 106.67 2 133.56 2 
3 Ziquala 101.51 3 76.00 10 78.68 10 71.00 10 
4 Dimma 96.43 4 85.46 3 94.02 3 88.56 3 
5 Melko 93.75 5 63.50 21 76.63 13 62.51 19 
6 Genete 91.9 6 80.85 5 85.30 4 73.37 5 
7 Asorgi 88.02 7 68.02 14 78.44 11 64.95 16 
8 Keytena 87.79 8 67.64 18 74.37 15 66.92 14 
9 Gibe 85.59 9 79.45 6 83.84 6 69.04 12 
10 Mechare 85.41 10 85.23 4 76.07 14 71.91 7 
11 Ambotoke 85.01 11 43.28 29 62.78 29 59.46 22 
12 Enatit 83.78 12 68.06 13 72.52 18 59.19 23 
13 Gerado 81.87 13 78.04 8 84.73 5 71.03 9 
14 Tseday 81.36 14 79.32 7 77.25 12 70.12 11 
15 Gimbichu 81.26 15 74.88 11 80.09 8 51.81 26 
16 Magna 80.06 16 61.62 24 66.09 26 61.95 20 
17 Dukem 79.47 17 52.83 26 70.95 20 46.69 28 
18 Amarach 79.21 18 77.23 9 68.65 22 53.85 25 
19 Zobel 79.18 19 67.97 15 73.97 17 67.17 13 
20 Menagesha 77.27 20 72.60 12 65.71 28 72.55 6 
21 DZ-01-2785 77.15 21 67.58 17 81.58 7 71.68 8 
22 Dega Tef 76.91 22 63.67 20 72.32 19 63.20 18 
23 Koye 74.45 23 52.72 27 66.13 25 41.75 31 
24 Boset 70.31 24 64.39 19 79.32 9 64.83 17 
25 Simada 66.87 25 61.79 23 54.94 32 42.55 30 
26 Quncho 64.33 26 49.89 27 65.56 27 44.51 29 
27 Yilmana 64.24 27 53.35 25 74.23 16 65.53 15 
28 Etsub 63.21 28 42.12 30 68.93 21 60.84 21 
29 Welenkomi 60.35 29 62.10 22 66.71 24 49.49 27 
30 Gemechis 58.08 30 38.04 32 55.31 31 41.01 32 
31 Kay Murrie 54.22 31 43.54 28 68.42 23 73.83 4 
32 Holeta Key 39.30 32 27.51 33 50.56 33 34.02 33 
33 E. pilosa  39.20 33 38.94 31 62.04 30 54.34 24 

Mean 
F static  
P value  
LSD (5%) 
CV (%) 

77.51  66.4  74.69  65.84  
11.6  10.88  7.48  23.58  
<.001  <.001  <.001  <.001  
13.261  17.45  14.255  13.232  
13.7  21  15.3  16.1  

 RRL-Relative Root Length; RRDW-Relative Root Dry Weight; RSHL-Relative Shoot Length; 
RSHDWT-Relative Shoot Dry Weight 
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Figure 4.1. Growth of sensitive and tolerant tef varieties in unlimed and limed soil from the Banja District, Ethiopia (pH(KCl) 3.68) 
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Figure 4.2 Clustering of tef genotypes based on soil acidity reaction; similarities are 
indexed by relative tolerance indices 

 

 

 Figure 4.2 Clustering of tef genotypes based on soil acidity reactions; similarities 
indexed by growth under unlimed condition. 
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Table 4.5. Correlation analysis of root and shoot growth measurements (unlimed) and 
relative acidity tolerance indices of tef genotypes (n=165) 

   

RDW 1 -        

RRDW 2 0.44*** -       

RRL 3 0.46*** 0.68*** -      

RSHDW 4 0.26*** 0.71*** 0.52*** -     

RSHL 5 0.17NS 0.74*** 0.56*** 0.72*** -    

ARL 6 0.75*** 0.40*** 0.60*** 0.28*** 0.24** -   

SHDW 7 0.50*** 0.51*** 0.45*** 0.64*** 0.47*** 0.54*** -  
ASHL 8 0.74*** 0.16NS 0.28*** 0.21** 0.06NS 0.55*** 0.46*** - 

   1 2 3 4 5 6 7 8 

  RDW RRDW RRL RSHDWT RSHL RL SHDWT SHL 
***= P<0.001; **= P<0.01; *= p<0.05; NS= not significantly different at P=0.05; RDW=root dry weight; 
RRDW=relative root dry weight; RRL=relative root length; RSHW=relative shoot dry weight; RSHL-relative shoot 
length; ARL=mean root length; SHDW=shoot dry weight; ASHL=mean shoot length.  

 

4.3.2 Response of tef varieties to soil acidity in field experiments 

The combined ANOVA showed highly significant differences (P<0.001) between the 

genotypes for grain yield under unlimed condition and for all the acidity tolerance 

indices. Similarly, a significant difference was observed between the two sites for grain 

yield under unlimed condition (Table 4.6). The mean grain yield of unlimed on-farm 

plots (0.814 t.ha-1) was higher than the mean grain yield from on-station plots (0.383 

t.ha-1) (Table 4.7). The soil tests showed that the on-farm plots were less acidic than 

the on-station plots (Table 4.2). None of the other tolerance indices showed significant 

differences between the two sites. Significant differences were observed for genotype 

by site interaction only for STI-2 (P<0.001). STI-2 tended to select for genotypes with 

better performances on limed plots.  

The local check, Dabo banja, consistently ranked among the top two genotypes across 

all the tolerance indices and testing sites. It was notably superior in the most acidic of 

soils, found in the more discriminating on-station environment. Nevertheless, its grain 

yield at both sites was below the national mean for tef (1.58 t.ha-1) (CSA, 2015). 

Among the improved varieties, Gibe and Tsedey consistently gave better yields across 

the test sites, and registered good tolerance indices. But the overall yields of these 

varieties were poor compared to the current national mean productivity of tef. The 

tolerance indices showed variation in their ability to identify sensitive varieties. Holleta 

Key, Magna, Dukem, Yilmana, Menagesha, Quncho were among the most sensitive 

varieties across all the acidity tolerance indices (Table 4.7).  
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The yields of above-ground shoot biomass of genotypes also showed highly significant 

differences (P<0.001) across all the tolerance indices and the test sites (Table 4.8). 

The two locations showed significant differences (P<0.001) for all the tolerance 

indices, except for STI-4 (P=0.604). Variety by site interactions were only identified for 

STI-2 (Table 4.8). As with the grain yield, the overall mean of above-ground biomass 

was higher for the on-farm site than on station, i.e., 3.44 t.ha-1 vs 2.42 t.ha-1 (Table 

4.9). The local check, Dabo banja, consistently gave the highest above-ground 

biomass yields followed by the improved variety Gibe. The tolerance indices with 

significant variety-by-site interactions resulted in rank changes between sites, 

specifically in identification of the most sensitive varieties. STI-1 and STI-4 computed 

from grain yield and above-ground biomass gave similar results for variety, site, and 

variety- by-site interactions. On the other hand, the results for STI-2 and its modified 

version, STI-3, used in this study differed considerably, suggesting the possibility of 

their complementary use. 

Correlation analysis among tolerance indices showed a weak association of yield of 

limed plots with most of the tolerance indices (Table 4.10). But highly significant 

associations were observed between limed plots and unlimed plots for both grain yield 

and above-ground biomass. Grain and above-ground biomass yields from unlimed 

plots, on the other hand, strongly associated with all the tolerance indices, reflecting 

the importance of using actual performance of genotypes under stressed conditions 

for the selection of tolerant genotypes. STI-I and STI-4 showed perfect association 

(r=1, P<0.001) for grain yield and (r=0.9, P<0.001) for above-ground biomass (Table 

4.10). STI-4 is normally STI-1 divided by the same denominator, i.e., the mean unlimed 

value divided by the mean limed value. Consequently, STI-4 was removed from 

subsequent analysis.  

Table 4.6. Summary of combined analysis of variance for soil acidity tolerance indices 
of grain yield under on-station and on-farm experiments  

 
Source of variation Df  UL GY STI-1 STI-2 STI-3 STI-4 

Block 1       

Variety 27 F-statistic 3.92 6.06 12.91 9.91 6.05 

  P-value <.001 <.001 <.001 <.001 <.001 

Site  1 F-statistic 34.99 0 0.8 0.02 0.05 

  P-value <.001 0.96 0.376 0.876 0.832 

Variety. Site 27 F-statistic 1.32 0.57 5.25 2.17 0.57 

  P-value 0.191 0.941 <.001 0.008 0.941 

Residual 55       

Total 111       

UL GY-Unlimed grain yield STI-1-4- Stress tolerance indices 1-4 , as described in section 4.2.2.2 
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Table 4.7. Acidity tolerance indices of tef varieties computed from their above-ground biomass

 
Varieties 

GY-UL (T.ha-1) STI-1 STI-2 STI-3 STI-4 

(OS)  Rank (OF) Rank Combined Rank (OS) Rank (OF) Rank (OS) Rank (OF) Rank Combined  Rank 

Dabo banja 0.62 1 1.08 2 111.35 1 137.41 2 88.39 7 122.8 1 100.28 2 147.51 1 

Gibe 0.56 2 1.10 1 88.18 2 140.55 1 112.62 2 110.08 2 101.39 1 116.81 2 

Tseday 0.55 3 0.95 4 87.22 3 132.29 3 88.73 5 107.64 3 88.33 4 115.54 3 

Etsub 0.42 6 1.04 3 73.95 16 99.14 5 116.31 1 83.2 6 95.83 3 97.96 16 

Amarech 0.54 4 0.88 9 86.18 4 129.21 4 77.51 15 106.46 4 81.48 9 114.16 4 

Gimbichu 0.37 12 0.95 5 78.55 8 68.19 12 97.34 3 72.79 12 88.29 5 104.05 8 

Simada 0.45 5 0.87 12 81.07 5 97.77 6 77.78 14 88.55 5 80.09 12 107.4 5 

Keytena 0.41 7 0.88 10 76.25 13 84.87 7 85.28 8 80.53 7 81.02 10 101 13 

Ziquala 0.37 11 0.88 8 76.64 12 72.01 11 82.94 9 72.89 11 81.71 8 101.53 12 

Welenkomi 0.34 17 0.90 6 74.72 14 59.66 22 93.05 4 67.22 17 83.33 6 98.97 14 

Genete 0.34 19 0.87 11 78.31 10 58.43 25 79.93 12 66.79 19 80.56 11 103.74 10 

Gerado 0.36 13 0.85 14 78.09 11 63.05 16 80.59 11 71.43 13 78.24 13 103.44 11 

Dimma 0.41 8 0.80 17 78.77 7 80.42 8 68.98 20 80.18 8 73.61 17 104.34 7 

Mechare 0.37 10 0.83 15 78.35 9 66.86 13 76.51 17 73.74 10 76.39 15 103.78 9 

Gemechis 0.31 24 0.89 7 71.95 19 55.4 27 88.65 6 61.85 24 81.94 7 95.31 19 

Dega Tef 0.32 23 0.85 13 70.29 22 59.73 21 80.6 10 62.35 23 78.24 14 93.13 22 

Melko 0.35 15 0.78 18 74.43 15 59.53 23 72.56 19 68.07 15 72.22 18 98.59 15 

Magna 0.30 28 0.80 16 66.28 23 57.09 26 77.04 16 59.88 28 73.75 16 87.81 23 

Zobel 0.34 16 0.76 20 70.41 21 62.06 19 72.58 18 67.91 16 69.91 20 93.26 21 

Dukem 0.30 27 0.78 19 63.09 26 58.92 24 78.71 13 60.02 27 71.76 19 83.57 26 

Koye 0.33 21 0.70 21 73.46 17 60.35 20 54.91 23 65.51 21 64.81 21 97.31 17 

Asorgi 0.39 9 0.63 25 73.06 18 77.88 9 48.16 26 77.64 9 57.87 25 96.77 18 

Enatit 0.36 14 0.66 22 79.98 6 62.65 17 45.21 27 70.53 14 60.65 22 105.95 6 

Ambotoke 0.34 18 0.65 23 71.93 20 64.83 15 48.91 25 67.08 18 60.19 23 95.29 20 

Holeta Key 0.31 25 0.64 24 56.99 28 65.97 14 61.32 21 61.53 25 59.26 24 75.49 28 

Yilmana 0.32 22 0.62 27 61.76 27 62.63 18 53.58 24 63.12 22 56.94 27 81.8 27 

Menagesha 0.31 26 0.62 26 65.45 24 50.19 28 58.14 22 61.3 26 57.41 26 86.68 24 

Quncho 0.34 20 0.59 28 64.27 25 73.16 10 42.79 28 66.19 20 54.54 28 85.15 25 

Mean 0.3836  0.814  75.39  77.2  75.3  75.62  75.4  99.9  

F-statistic 16.72  3.81  6.06  20.4  6.22  16.72  3.81  6.05  

P-value <.001  <.001  <.001  <001  <001  <001  <001  <.001  

LSD (0.05) 0.0606
7 

 0.209
9 

 11.902  17.14  21.81  11.96  19.44  15.78  

CV (%) 7.7 
 12.6  11.1  10.8  14.1  7.7  12.6  11.1  

GY-UL-grain yield from unlimed plots; OS-On-Station; OF-On-farm; STI 1-4 stress tolerance indices 1-4 as indicated in section 4.2.2.2. 
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 Table 4.8. Summary of combined ANOVA for soil acidity tolerance indices of 
above-ground biomass of on-station and on-farm field experiments  

 

Source of variation Df  UL AGBM STI-1 STI-2 STI-3 STI-4 

Block 1       

Variety  27 F-statistic 12.58 3.92 28.44 12.51 3.84 

  P-value <.001 <.001 <.001 <.001 <.001 

Site  1 F-statistic 300.52 34.99 52.14 57.54 0.27 

  P-value <.001 <.001 <.001 <.001 0.604 

Variety. Site 27 F-statistic 1.7 1.32 3.37 1.54 1.37 

  P-value 0.048 0.191 <.001 0.089 0.16 

Residual 55       

Total 111       
UL-Unlimed; AGBM- above-ground biomass yield, STI-1-4- Stress tolerance indices 1-4 , as described in section 4.2.2.2 

 

4.3.3 Correlations between pot and field experiments 

Correlations between the results from the pot and field experiments were significant. 

However, correlation analyses between growth responses and tolerance indices of the 

pot experiment and field experiments were varied. Relative root dry weight (RRDW), 

and relative shoot length (RSHL) of seedlings showed strong and significant 

associations with all tolerance indices (Table 4.11). RSHDW also showed significant 

associations with all tolerance indices, except for GY-STI-2 of the field experiments. 

Inconsistent correlations between the rest of the seedling growth parameters and 

tolerance indices, and with field tolerance indices, reflects the importance of other 

agro-climatic factors affecting crop growth under field conditions more than the 

greenhouse experiment. The improved varieties tested in these experiments were not 

evaluated at the current test location before their release. Hence, their poor 

performance under field conditions could be due to their poor adaptation to the 

complex edaphic and climatic factors of the test environments. The consistent 

superiority of the local check, both in the pot and the field experiments, confirms the 

advantages of using local genetic resources collected from such ecologies in the 

breeding of acid tolerant or Al-tolerant varieties that are well adapted to these agro-

ecologies.  
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Table 4.9. Acidity tolerance indices of commercial tef varieties computed from their above-ground biomass 

 

 
Variety AGBM  Unlimed (T.ha-1) STI-1 STI-2 STI-3 STI-4 

OS Rank OF Rank Combined  Rank OS Rank OF Rank Combined  Rank Combined  Rank 

Dabo banja 4.17 1 5.20 2 106.27 1 142.99 1 140.78 2 122.76 1 139.80 1 

Gibe 3.80 2 5.45 1 88.09 3 141.62 2 188.61 1 120.36 2 116.00 3 

Tseday 2.88 3 3.65 6 89.53 2 77.36 7 85.77 12 85.41 3 118.10 2 

Amarech 2.75 4 3.39 13 87.34 4 70.94 12 77.14 19 80.35 8 115.40 4 

Dimma 2.68 5 3.75 4 86.99 5 69.09 13 93.07 5 83.69 4 114.80 5 

Etsub 2.60 6 3.70 5 74.80 15 83.97 5 95.89 3 82.00 6 98.00 15 

Simada 2.55 7 3.39 13 83.07 6 67.67 14 77.14 18 77.52 10 109.40 6 

Melko 2.53 8 2.75 19 69.55 24 75.37 8 64.38 22 69.57 20 92.00 22 

Holeta Key 2.50 9 3.85 3 78.77 9 83.74 6 89.60 7 82.34 5 102.30 10 

Gerado 2.48 10 3.25 14 79.79 8 63.31 18 77.64 17 74.81 14 105.40 7 

Keytena 2.48 11 3.75 4 70.62 22 90.55 3 95.55 4 80.78 7 91.80 23 

Gemechis 2.45 12 3.55 8 74.97 14 74.06 9 90.05 6 78.03 9 98.40 14 

Ziquala 2.40 13 3.40 12 79.96 7 65.95 15 76.78 20 75.51 12 104.80 8 

Koye 2.35 14 2.35 20 63.09 27 72.86 10 51.72 28 62.25 26 83.40 27 

Gimbichu 2.33 15 3.55 8 74.17 16 71.61 11 85.95 11 76.21 11 96.80 16 

Quncho 2.33 16 2.88 17 60.02 28 87.65 4 69.57 21 68.15 22 78.30 28 

Mechare 2.28 17 2.95 16 75.63 13 64.35 17 59.71 24 68.32 21 99.00 13 

Welenkomi 2.20 18 3.60 7 76.71 12 61.39 19 86.26 10 74.99 13 100.20 12 

Dega Tef 2.14 19 3.53 9 73.15 18 55.34 21 84.49 14 73.15 15 96.10 18 

Enatit 2.11 20 2.95 16 78.65 10 54.24 22 56.38 27 65.85 24 102.70 9 

Genete 2.03 21 3.43 11 76.91 11 49.43 27 80.08 15 70.35 17 100.70 11 

Yilmana 2.03 22 2.80 18 64.15 25 64.73 16 59.88 23 62.89 25 83.50 26 

Asorgi 1.98 23 2.80 18 70.82 21 50.46 26 58.71 25 62.17 27 92.80 21 

Dukem 1.98 24 3.53 9 73.04 19 51.95 24 86.37 9 70.82 16 95.40 20 

Menagesha 1.98 25 3.15 15 64.01 26 51.43 25 88.74 8 66.34 23 84.40 25 

Ambotoke 1.95 26 2.80 18 72.93 20 46.61 28 58.23 26 61.80 28 95.80 19 

Zobel 1.95 27 3.48 10 74.14 17 53.80 23 77.88 16 69.86 19 96.30 17 

Magna 1.90 28 3.55 8 69.73 23 56.08 20 84.78 13 70.02 18 90.40 24 

Grand mean  2.419  3.44  76.32  71.4  83.6  76.3  100.1  

F-statistic 6.43  7.63  3.92  12.19  19.9  12.51  3.84  

P-value <.001  <.001  <001  <001  <001  <001  <001  

LSD (0.05) 0.5954  0.686  13.679  19.44  17.59  11.619  18.45  

CV 12  9.7  12.6  13.3  10.3  10.7  13  

AGBM above-ground biomass from unlimed plots; OS-On-Station; OF-On-farm; STI 1-4 represent stress tolerance indices 1-4 as described in section 4.2.2.2.             
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Table 4.10.  Correlation between tolerance indices and actual yields from limed and unlimed plots (n= 112) 

 

GY- L 1  -           

GY-STI-1 2 0.01NS  -          

GY-STI-2 3 0.21* 0.59***  -         

GY-STI-3 4 0.18NS 0.80*** 0.95***  -        

GY-STI-4 5 0.02NS 1.00*** 0.59*** 0.80***  -       

GY-UL) 6 0.91*** 0.41*** 0.41*** 0.48*** 0.42***  -      

AGBM-L 7 0.68*** 0.08NS 0.28** 0.25** 0.09NS 0.66***      

AGBM-STI-1 8 0.42*** 0.50*** 0.43*** 0.51*** 0.51*** 0.55*** 0.18NS  -    

AGBM-STI-2 9 0.35*** 0.42*** 0.58*** 0.59*** 0.42*** 0.49*** 0.78*** 0.53***  -   

AGBM-STI-3 10 0.44*** 0.51*** 0.60*** 0.63*** 0.51*** 0.60*** 0.64*** 0.80*** 0.93***  -  

AGBM-STI-4 11 0.02NS 0.54*** 0.49*** 0.56*** 0.54*** 0.20* -0.09NS 0.90*** 0.45*** 0.70***  - 

AGBM-UL 12 0.70*** 0.41*** 0.46*** 0.50*** 0.42*** 0.80*** 0.74*** 0.78*** 0.85*** 0.94*** 0.54*** 

   1 2 3 4 5 6 7 8 9 10 11 

***= P<0.001; **= P<0.01; *= p<0.05; NS= statistically not significantly different at P=0.05; GY L/UL= grain yield under limed or 
UL-unlimed, respectively; AGBM-L/UL= Above-ground biomass yield under limed or unlimed plots, respectively; STI-1-4=Stress 
tolerance index 1-4. 
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Table 4.11. Correlations between tolerances indices generated in pot and field experiments (n=28)

AGBM-STI-1 1 -               

AGBM-STI-2 2 0.59*** -              

AGBM-STI-3 3 0.79*** 0.96*** -             

AGBM-UL  4 0.79*** 0.74*** 0.84*** -            

ARL-UL  5 0.22NS 0.04NS 0.09NS 0.27NS -           

ASHL-UL 6 0.45* 0.26NS 0.34NS 0.41* 0.81*** -          

GY-STI-1 7 0.83*** 0.56** 0.71*** 0.84*** 0.49** 0.65*** -         

GY-STI-2 8 0.73*** 0.77*** 0.84*** 0.96*** 0.15NS 0.34NS 0.71*** -        

GY-STI-3 9 0.82*** 0.75*** 0.85*** 0.99*** 0.28NS 0.48* 0.87*** 0.96*** -       

GY-UL 10 0.8*** 0.74*** 0.84*** 1.00*** 0.27NS 0.41* 0.83*** 0.96*** 0.99*** -      

RDW-UL 11 0.31NS 0.06NS 0.13NS 0.305NS 0.90*** 0.81*** 0.56** 0.17NS 0.33NS 0.31NS -     

RRDW 12 0.65*** 0.40* 0.52** 0.59*** 0.63*** 0.77*** 0.81*** 0.45* 0.62*** 0.59*** 0.77*** -    

RRL 13 0.38* 0.16NS  0.24NS 0.36NS 0.84*** 0.82*** 0.61*** 0.21NS 0.38* 0.36NS 0.77*** 0.78*** -   

RSHDW 14 0.61*** 0.45* 0.56** 0.49** 0.58** 0.75*** 0.70*** 0.37NS 0.53** 0.49** 0.64*** 0.85*** 0.72*** -  

RSHL 15 0.59** 0.46* 0.55** 0.53** 0.63*** 0.77*** 0.72*** 0.40* 0.56** 0.53** 0.67*** 0.88*** 0.78*** 0.91*** - 

SHDW-UL 16 0.46* 0.27NS 0.36NS 0.40* 0.74*** 0.88*** 0.61*** 0.33NS 0.46* 0.40*  0.77*** 0.76*** 0.73*** 0.84*** 0.72*** 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

***= P<0.001; **= P<0.01; *= p<0.05; NS= statistically not significantly different at P=0.05; n= 28; GY L/UL= grain yield under limed or UL-unlimed, respectively; AGBM-L/UL= Above-
ground biomass yield under limed or unlimed plots, respectively; STI-1-4=Stress tolerance index 1-4; RRDW=relative root dry weight; RRL=relative root length; RSHW=relative shoot dry 
weight ; RSHL-relative shoot length; ARL=mean root length; SHDW=shoot dry weight; ASHL=mean shoot length. 
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4.3.4 Farmers’ assessments   

Tef is the primary crop grown in the region, followed by potato and barley. Two 

systems of tef production prevail in the area, based on the growing period of the 

landraces. In the long season system, the brown seeded, relatively late maturing Dabo 

banja, is widely planted. The planting takes place during the second week of July and 

the harvesting after the second week of December.  The short season system is a 

component of a double cropping system where the early maturing landrace Fesso is 

planted in the second week of August after harvesting potatoes. This system avoids 

or escapes frost damage that can occur with the long season system.  

Tef is liked for its adaptability to the local soil and the climate, its use as a nutritious 

grain crop for human food and for the provision of a high quality straw which has many 

uses including as an excellent animal feed. Overall, it has better composite market 

value than any competing crop such as potato, barley or triticale.. It is also resistant to 

field and storage pests, and is less susceptible to hail and mild frost damage than the 

other crops grown in the area.   

The farmers’ preferred attributes for tef varieties were: Adaptability to acid soils; high 

grain yield; high straw yield; tolerance to mild frosts in the late maturing varieties; 

earliness and good yields for the short season varieties; tolerance to late rain and hail 

damage; straw palatability and preference by livestock; good milling qualities; and 

most importantly, for good cooking qualities for injera, a trait that is locally and 

collectively called bereket.  

The farmers’ selection criteria for tolerance to soil acidity were crop establishment or 

stand (locally called biqilet), tillering capacity (locally called ribbi) and plant vigour 

expressed as height. Very early varieties selected to fit into a double cropping system, 

and relatively early varieties to avoid late season frosts, had additional selection 

criteria. Good panicle length and panicle branching locally termed as zala was also a 

selection criterion to indirectly select for better grain yields. Based on these criteria, 

the farmers selected the variety Gibe for the long season system and the varieties 

Tseday, Simada and Amarach for the short season system, primarily based on their 

crop establishment and tillering capacity. The variety Gibe was late compared to the 

farmers’ benchmark local landrace, Dabo banja, but the farmers proposed to plant 

Gibe during the first week of July so that it would mature early, allowing it to escape 
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late season frosts. The farmers mentioned that Dabo banja was inferior to most of the 

varieties in panicle length and panicle branches.  

Correlations between various yield components with grain and above-ground biomass 

yield under unlimed condition are presented in Table 4.12. Except for days-to-maturity, 

all the variables showed a strong association with grain yield and above-ground 

biomass. The number of fertile tillers, plant height, and particular panicle features 

noted by the farmers may help to select varieties with better adaptability for desirable 

agronomic traits. The varieties tested in this experiment were not originally selected 

for the highly acid test environment. Early materials like Tsedey gave more grain and 

above-ground biomass than late maturing varieties. Consequently, days-to-maturity 

correlated poorly with grain yield and above-ground biomass.  

Table 4.12. Correlation between yield and other yield components of the on-farm 

experiment under unlimed condition  

     
DM-UL 1 -        

GY-UL 2 -0.06 NS -       

NPB-UL 3 0.27 ** 0.68*** -      

PH-UL 4 0.27** 0.78*** 0.86*** -     

PNL-UL 5 0.43*** 0.59*** 0.81*** 0.88*** -    

AGBM-UL 6 0.16NS 0.80*** 0.66*** 0.79*** 0.59*** -   

TN-UL 8 -0.20* 0.57*** 0.22* 0.39*** 0.20* 0.57*** 0.51*** - 

   1 2 3 4 5 6 7 8 

***= P<0.001; **= P<0.01; *= p<0.05; NS= statistically not significantly different at P=0.05; n= 112; UL-Un limed; 
DM= days to maturity; GY= grain yield; NPB= number of panicle branches per primary panicle; PH=plant height; 
PNL=panicle length; AGBM= Above-ground biomass; St at Harv= stand at harvest; TN=Number of fertile tillers 
number. 

 

4.4 Discussion 

The results of the pot experiment showed contrasting responses of E. tef genotypes 

to soil acidity when assessed with root and shoot growth parameters and relative 

tolerance indices. Growth parameters and relative tolerance indices have been used 

in screening of various crop and forage species for their tolerance of soil acidity  (Little, 

1989; Foy and Murray, 1998; Hede et al., 2001; Liu, 2005; Dai et al., 2011). In the pot 

experiment, despite significance correlation between the actual and relative 

measurements, considerable rank change was observed among the varieties in their 

tolerance to soil acidity. For instance, E. curvula is highly tolerant of Al-toxicity and soil 
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acidity (Foy et al., 1987; Miles and de Villiers, 1989; Abate et al., 2013). Whilst it ranked 

2nd for its tolerance indices, it ranked 27th for growth parameters. Genetically tolerant 

but slow growing or less vigorous species or varieties tend to have small values for 

root or shoot growth parameters (Hede et al., 2002). A similar pattern was observed 

with the local check, Dabo banja, that consistently ranked 1st for the relative tolerance 

index.   

The local check Dabo banja is a landrace that ranked 1st for all the relative tolerance 

indices with values of over 100% for all indices. In terms of growth measurements, it 

ranked 2nd for RDW, 5th for RL and 1st for SHL and SHDW. These ranks showed that 

the local check is highly tolerant of soil acidity. Landraces from acid soil regions have 

been the main source of acid tolerant varieties of many crops due to natural and 

artificial selection associated with soil acidity (Rao et al., 1993; Hede et al., 2001; 

Stodart et al., 2007; Caniato et al., 2011).  

Key Murrie, DZ-01-2785 and E. pilosa (Acc 30-5) showed poor tolerance to soil acidity 

when measured with both growth parameters and relative tolerance indices, with DZ-

01-2785 being the most tolerant. These parents were used to develop two sets of 

recombinant inbred lines [E. tef (Key Murrie) X E. pilosa (30–5)] and [E. tef (DZ-01-

2785) and E. pilosa (30–5)], which were to be used for molecular mapping studies of 

tef (Solomon, 2007; Assefa et al., 2010). Molecular mapping studies need a mapping 

population developed from parents with contrasting phenotypes for the trait of interest 

(Xu and Crouch, 2008; Varshney et al., 2009; Kassa et al., 2010). A lack of contrast 

for tolerance to soil acidity among these parents ruled out the possibility of using the 

recombinant inbred-lines developed from these parents for molecular mapping studies 

of tolerance to soil acidity and Al-toxicity. 

Field evaluation is essential in order to test the adaptabilities of test genotypes to 

complex biotic and abiotic factors other than soil acidity or Al-toxicity (Rao et al., 1993; 

Hede et al., 2001). The soil acidity tolerance index, expressed as the ratio of yield 

under unlimed to limed condition, is a commonly used index to determine tolerance to 

soil acidity of genotypes under field conditions (Carver and Ownby, 1995; Johnson et 

al., 1997). On the other hand, several indices have been used to identify genotypes 

tolerant to drought in a range of crop species (Shirani and Abbasian, 2011; Khalili et 

al., 2012; Abdi et al., 2013; Abdolshahi et al., 2013). Based on their performance in 

stressed and non-stressed environments, the tested genotypes could be grouped in 
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to four groups: (a) genotypes that showed superiority under both stressed and non-

stressed conditions; (b) genotypes that performed better only under non-stressed 

conditions; (c) genotypes that performed better only under stressed conditions; and 

(d) genotypes that performed poorly under both stressed and non-stressed conditions. 

Measurement of growth parameters under un-limed conditions helped to identify 

Group c genotypes. A limitation with the separate use of relative acidity tolerance 

indices is the fact that they may misidentifies Group d genotypes (Rao et al., 1993; 

Hede et al., 2001).  

In this study, the parameters used were: Growth under unlimed condition; relative 

acidity tolerance, STI-1, and STI-2 of Fernandez (1992) and its modification STI-3, 

and STI-4, derived from Fischer et al. (1998). Due to a nearly perfect association 

between STI-1 and STI-4, STI-4 was removed from use. The correlation analysis 

between stress tolerance indices and growth parameters under unlimed conditions 

showed strong associations. On the other hand, most of the indices did not show 

significant associations with growth measurements under limed conditions. All the 

tolerance indices identified the same varieties, with slight changes in ranks. STI-2, 

however, identified some varieties that were ranked low by the other tolerance indices. 

STI-2 is peculiar in that it selects genotypes that perform well under both non-stressed 

and stressed conditions (Fernandez, 1992).Tolerance indices of above-ground 

biomass and grain yield also showed significant associations under field conditions. 

Such associations have also been reported in similar studies (Valle et al., 2009).  

Correlations between relative tolerance indices of the pot experiment and most of the 

tolerance indices of the field experiment were significant. Such associations have 

helped to develop acid tolerant lines used in several breeding programmes (Rao et 

al., 1993; Gallardo et al., 1999; Hede et al., 2001). Despite the significant correlations, 

however, there were changes in ranks of the acidity tolerance of genotypes between 

the pot and the field experiments. These differences could be associated with 

interaction with other factors that affected the performance of the varieties. For 

instance, the two varieties, Mechare and Genete, were ranked 4th and 5th with RRDW 

of the pot experiment. They were released for drought prone areas of northeast 

Ethiopia with an altitude of 1450-1850m (MoARD, 2005; MoARD, 2007). These 

varieties ranked below 10th when they were tested in acid soils at a location which has 

a high rainfall and an altitude of about 2500m, and cool temperatures (IFPRI and CSA, 
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2006). None of these varieties were bred for such acid soil ecologies, so the 

performance of these varieties was inferior to the current mean national yield of 

1.5 t.ha-1 (CSA, 2015). Since the productivity of the local check was also far below the 

national mean productivity, its superiority over the improved varieties can be 

associated with its adaption to the edaphic and climatic conditions of the test location. 

Despite of the availability of many improved varieties, the local landrace, Dabo banja, 

was being cultivated over a wide area of land in the study area. This confirms the need 

to develop agronomically superior varieties that are adapted to specific acid soil 

ecologies.  

4.5 Conclusion 

In the present study found that there was significant variation for tolerance to soil 

acidity among the genotypes tested, in both the pot and field trials. Despite significant 

correlations among tolerance indices, variation in the ranking of germplasm was 

observed when using the tolerance indices. Growth under limed condition and relative 

tolerance indices can be used along with other stress tolerance indices that can be 

selected for their inherent benefits. The results revealed the importance of edaphic 

and climatic factors, other than soil acidity and Al-toxicity, in justifying the need for field 

testing of selected genotypes to ensure their adaptability to the target environment. 

Consistent superiority of the local check over the Released Varieties was observed. 

However, the grain yield of the ‘improved’ varieties, as well as the local check, under 

unlimed condition was far below the national mean for tef yields. This confirms the 

need to develop acid soil tolerant and agronomically superior varieties adapted to 

specific acid soil ecologies. Subsequent genetic studies need to develop a new 

mapping population since there was a lack of adequate contrast for tolerance of acid 

soils between the three parents of the mapping population used in this study. Farmers 

selected one late maturing variety (Gibe) and three early maturing varieties (Tsedey, 

Simada and Amarach) for cultivation on their moderately acidic soils. 
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CHAPTER 5 

Evaluating the genetic diversity of tef [Eragrostis tef (Zucc.) Trotter] 

accessions collected from sites in Ethiopia with acid soils, using simple 

sequence repeats (SSR) markers 

 

Abstract  

Soil acidity is one of the major crop production constraints in Ethiopia. Tef is among 

the most widely grown crops in areas of the country with acid soils. The adoption of 

released tef varieties in areas with acid soils, combined with lime applications, and the 

rapid expansion of acid tolerant crops such as oat and triticale, threaten tef genetic 

diversity in these areas. The aim of this study was to assess the extent of genetic 

diversity among and within tef populations collected from areas of Ethiopia affected by 

acid soils, using selected and highly polymorphic SSR markers. The SSR markers 

used were effective at discriminating between the tef genotypes examined. Analysis 

of molecular variance (AMOVA) showed highly significant differences (P<0.001) 

among and within populations. Among populations and within population variance 

contributed 9% and 60% of the total genetic variance, respectively. Despite the wide 

geographical separation of the collection sites, 88.5% of the acid soil accessions were 

grouped into two clusters (Clusters II and III), while 90% of the germplasm designated 

as Breeding Materials and Released Varieties were grouped into Cluster-I. A 

significant degree of genetic differentiation was observed among the populations. The 

Accessions from the north western Ethiopia exhibited significant level of variation for 

most of the genetic diversity parameters evaluated. The number of private alleles was 

significantly higher for the accessions from collected from acid soils than the Released 

Varieties or the Breeding Materials. Pairwise estimates of genetic identity and gene 

flow showed high values between Released Varieties and Breeding Materials. The 

implications of this study on breeding for tolerance to soil acidity, and conservation of 

genetic resources from areas with acid soils are discussed. 

Key words: genetic diversity, soil acidity, SSR markers, tef 
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5.1 Introduction 

Tef [Eragrostis tef (Zucc.) Trotter] is an allotetraploid (2n = 4x= 40), herbaceous, 

annual crop grown as a staple food crop in Ethiopia. It belongs to the family Poaceae, 

subfamily Eragrostoideae, tribe Eragrosteae and genus Eragrostis. This genus 

contains about 300 species (Costanza, 1974), but E. tef is the only species currently 

grown as a food crop for its grain. Wide genetic diversity within the genus Eragrostis 

exists mainly in Ethiopia (Vavilov, 1951; Costanza, 1974; Ketema, 1993). Tef is a 

versatile crop and can be grown under a wide range of climatic and edaphic conditions 

(Ketema, 1993; NRC, 1996). 

Tef is among the important crops affected by soil acidity in Ethiopia (Mamo and 

Killham, 1987; Mamo et al., 1996). Oat (Avena sativa L.) is now grown in areas of the 

central highlands of Ethiopia that are affected by acid soils, and areas of oat cultivation 

have expanded rapidly, replacing the crops that used be grown in these areas (IBC, 

2007). Cultivation of another acid tolerant crop, triticale (X Triticosecale Wittmark), is 

also expanding rapidly. Together, they threatening the genetic diversity of traditionally 

grown crops that used to be grown in high rainfall areas prone to acid soils. In addition, 

the national extension service is currently promoting lime use combined with the 

cultivation of white seeded, Released Varieties of tef in these areas of the country. 

Such developments threaten the existence of brown seeded local landraces in areas 

with acid soils (Belay et al., 2008) and were grounds for collection and conservation 

of tef germplasm in Ethiopia (Zeid et al., 2012). 

The prevalence of brown seeded tef landraces in areas affected by acid soils and 

altitudes of over 2400m has been documented (NRC, 1996). Nevertheless, the 

underlying reason for the dominance of brown seeded landraces in such areas has 

not been determined previously. Soil acidity and associated nutrient imbalances are 

known to affect genetic diversity of plant species (Houdijk et al., 1993; Roem and 

Berendse, 2000). Several studies also suggested that when soil acidity acts as a 

natural or artificial selection force, it can result in the dominance of acid tolerant 

species and selections within species (Hede et al., 2001; Stodart et al., 2007; Caniato 

et al., 2011). 

Analysis of the genetic diversity present within germplasm collections and among 

breeding materials is critical for the effective conservation and exploitation of genetic 
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resources in plant breeding programmes. In tef, genetic diversity studies have been 

undertaken using morpho-agronomic characteristics (Assefa et al., 2000; Assefa et 

al., 2001; Assefa et al., 2002; Assefa et al., 2003a; Adnew et al., 2005) and molecular 

markers such as amplified fragment length polymorphism (AFLP)  (Bai et al., 1999; 

Ayele and Nguyen, 2000); randomly amplified polymorphic DNA (RAPD) (Bai et al., 

2000), inter simple sequence repeats (ISSR) (Assefa et al., 2003b), expressed 

sequence tags containing simple sequence repeats (EST-SSR), single nucleotide 

polymorphism (SNP), indel and intron fragment length polymorphisms (IFLP) (Yu et 

al., 2006), and simple sequence repeats (SSR) (Zeid et al., 2011; Zeid et al., 2012). 

Compared to other DNA markers, the SSR markers were highly polymorphic and could 

detect high levels of diversity among tef accessions (Zeid et al., 2011; Zeid et al., 

2012). SSRs are widely used markers in genetic diversity studies of major cereals due 

to their high reliability, co-dominance in inheritance, their high polymorphism, and their 

abundance and good genome coverage (Varshney et al., 2005; Collard and Mackill, 

2008). 

There is no information with regards to the extent of genetic variation among and within 

tef accessions collected from areas in Ethiopia with acid soils using molecular 

markers. Previous studies were primarily focused on molecular diversity studies of a 

limited genetic pool that were selected and assembled by Ebba (1975), based on 

morph-agronomic traits variation. The objective of this study was to assess the extent 

of genetic diversity among and within dominant phenotypes of tef accessions collected 

from areas affected by acid soils using selected and highly polymorphic SSR markers.   

5.2 Materials and methods 

5.2.1 Genetic stock  

Tef accessions originally collected from areas affected by acid soils were sourced from 

the Institute of Biodiversity Conservation (IBC), Addis Ababa, Ethiopia. Accessions 

that had adequate “passport” data and were from areas with a prevalence of highly 

acid soil were selected and planted at the Adet Agricultural Research Centre during 

the 2012 cropping season. Dominant phenotypes (selections with the highest 

phenotypic frequency) were selected based on panicle colour and panicle form to 

represent each accession. In addition, ten Districts with widespread and high soil 

acidity problems were selected from the north-western, western and southern parts of 
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the country, based on secondary data. Twenty seven dominant phenotypes 

representing the ten Districts were selected for the present study (Table 5.1). Together 

with these accessions, sixteen additional genotypes were evaluated. These were 9 

designated as Released Varieties (6 grain and 3 pasture); 6 designated as Breeding 

Materials and a relative (Eragrostis curvula (Schrad.) Nees var. Ermelo), totalling 42 

genotypes for this study. Detailed information on the varieties is presented in Table 

5.1. 

5.2.2 DNA extraction  

DNA extraction was undertaken according to Mbogori et al. (2006) and Adugna et al. 

(2011). Five seedlings per genotype were planted in pots in a greenhouse. Leaves 

were collected from healthy and vigorous one month old seedlings during the morning 

hours. Proportionally sampled and bulked leaves of five individual seedlings per 

genotype were expressed onto labelled FTA cards (www.Sigma-Aldrich.com) 

wrapped in polythene bags. Pestles were used to press the leaf sample until both sides 

of the FTA card were soaked with a leaf extract. New polythene sheet coverings were 

used for each of the samples. The pressing board and pestle were rinsed with 70% 

ethanol between each sample to avoid cross-contamination. Finally, the FTA cards 

were hung at room temperature for 4 h then stored in paper bags until amplification. 

5.2.3 PCR amplification  

The DNA was extracted from bulked samples from the FTA cards per sample at the 

INCOTEC laboratory in South Africa (www.incotec.com). Sixteen highly polymorphic 

SSR primer-pairs, including 4 EST-SSR markers from the tef genome (Zeid et al., 

2012) were selected and used for amplification. PCR products were fluorescently 

labelled and separated by capillary electrophoresis on an ABI 3130 automatic 

sequencer (Applied Biosystems, Johannesburg, South Africa).  

5.2.4 Data analysis  

5.2.4.1 Genetic diversity analysis  

Two approaches were adopted to investigate the genetic structure and diversity 

among the tef genotypes. In the first approach, polymorphisms were treated as binary 

data (present or absent). However, to determine the genetic structure within and 

among accessions, a second approach was adopted, based on the co-dominant 

http://www.sigma-aldrich.com/
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nature of the marker, using GENALEX version 6.5 (Peakall and Smouse, 2012). The 

X2 test was performed to determine the differences in allele frequencies among the 

SSR markers. The total number of alleles per locus (Na), the number of effective alleles 

per locus (Ne), the observed heterozygosity (Ho), the mean gene diversity (unbiased) 

(He) and inbreeding coefficient (F) were determined using the protocol of Nei and Li 

(1979).The percentage of polymorphic loci was estimated for each predetermined 

group, based on areas of collection. Allelic richness (Ar) was corrected for sample size 

differences and was estimated by using the rarefaction method implemented in HP-

Rare 1.0 (Kalinowski, 2005). Global and pairwise FST were computed by Weir and 

Cockerham’s Q methods using [Q]FSTAT (Weir and Cockerham, 1984). To examine 

the degree of population differentiation, other parameters such as gene flow and Nei’s 

unbiased genetic distance and identity were estimated using GENALEX. The 

partitioning of total genetic variation into within and among the areas of collection was 

done with a molecular analysis of variance (AMOVA) procedure using GENALEX. 

5.2.4.2 Cluster analysis 

The binary data were used to obtain a dissimilarity matrix using the Jaccard index. The 

matrix was used to run a cluster analysis, based on Neighbour-joining employing the 

software DARwin (Perrier and Jacquemoud-Collet, 2006). A dendrogram was then 

generated on the dissimilarity matrix. Bootstrap analysis was performed for node 

construction using 10,000 bootstrap values.  
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Table 5.1. Descriptions of the tef populations and genotypes used in the study 

 Population/accession # Seed Colour Region District 

       Population-I: North western Ethiopia    

1 Acc# 55027 White Amhara Sekela 
2 Acc# 55028 Light Brown   Amhara Sekela 
3 Acc# 55029 Light Brown Amhara Sekela 
4 Acc# 55030 White Amhara Dangela 
5 Acc# 55334 Light Brown Amhara Dangela 
6 Acc# 55185 Light Brown Amhara Banja 

7 Acc# 55186 White Amhara Banja 
8 Acc# 55049 Light Brown Amhara Banja 
9 Dabo banja Brown Amhara Banja 
10 Acc# 242152 Light Brown Amhara Ankasha 
11 Acc# 238223 White Amhara Guzamn 

12 Acc# 238224 White Amhara Guzamn 

13 Acc# 238225 Brown Amhara Guzamn 

       Population-II: Western Ethiopia    

1 Acc# 55146 Light Brown Oromiya Nejo 

2 Acc# 55154 Brown Oromiya Nejo 
3 Acc# 55156 Light Brown Oromiya Nejo 

4 Acc# 207975-1 White Ben and Gumuz Asosa 
5  Acc# 207975-2 Brown Ben and Gumuz Asosa 

Population-III: Southern Ethiopia    

1 Acc# 212919 Brown SNNP Limo 
2 Acc# 212921 White SNNP Limo 
3 Acc# 212923 Brown SNNP Konteb 
4 Acc# 225747 Light Brown SNNP Chencha 
5 Acc# 225750 Light Brown SNNP Chencha 
6 Acc# 236093 Light Brown SNNP Chencha 

7 Acc# 227976 Light Brown SNNP Sodo Zuria 
8 Acc# 237734 Light Brown SNNP Sodo Zuria 
9 Acc# 212924 Light Brown SNNP Sodo Zuria 

Population-IV: Released Varieties     

1 Holeta Key (DZ-01-2053) Brown Grain, Ethiopia  

2 Gemechis (DZ-Cr-387/RIL-127) White Grain, Ethiopia  

3 Quncho (DZ-Cr-387/RIL-355) White Grain, Ethiopia  

4 Tseday (DZ-Cr-37) White Grain, Ethiopia  

5 Keytena (DZ-01-1681) Brown Grain, Ethiopia  

6 Mechare Acc.205953) White Grain, Ethiopia  

7 Witkop  (Pasture-SA) White Pasture, S. Africa  

8 Emmerson  (Pasture-SA) Brown Pasture, S. Africa  

9 SA Brown (Pasture) Brown  Pasture, S. Africa  

Population-IV: Breeding Materials    

1 MPSEL-22 White Mutant line  

2 MPSEL-6 White Mutant line  

3 Key Muri White PMP  

4 DZ-01-2785 White PMP  
5 E. pilosa (Acc. 30-5) Brown PMP  

6 E. curvula (var. Ermelo) White Wild relative  

PMP- parents of mapping population; SNNP-Southern Nations and Nationalities and People Region 
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Table 5.2. Characteristics of 16 SSR markers used in a genetic diversity study of Eragrostis tef (Zeid et al, 2012)  

 

 

 

 

  

 

No Marker name Forward primer Reverse primer 
 

Repeat  
type and size 

Exp. size 
(bp) 

PIC Gene 
diversity  

1 CNLTs 11 GTTCATGTGCCTGCGCGTGT TCCACGGGGAGAGCGACAGA CT24 216 0.88 0.89 

2 CNLTs 33 TTTGCACCTAGTCTCCCATTG ACGATCGGATGTTTTGCTTT GA16 230 0.88 0.75 

3 CNLTs 42 ATGCATGGATGGATGGCTA TTACCCAATTGCCCTAGCTG TC27 179 0.9 0.91 

4 CNLTs 60 AGGGTGATAGCTGCCCAGAC CCCGAGTAATTGGTCGCTAA TC20&CA7 297 0.86 0.87 

5 CNLTs 133 GGGGAGACTGCATTGGACTA CAAGAGGGACTGCACAGTGA GA9 249 0.88 0.89 

6 *CNLTs 136 TGAGAAGGTAATAACTGGTGAAGC CAAGGTTTACACACCGTGACTT CT18 246 0.79/0.88 0.81/0.89 

7 CNLTs 157 GGATCCGACATGACGTGTAGT CACAGAATGAGATTGGGGAGA CT18 168 0.77 0.79 

8 CNLTs 216 GGAAATTCGCACGAGAGAGA CGAGAGAGAAGCCTGTGAGG GA15AAG6 191 0.78 0.8 

9 CNLTs 255 TCTCAGCATCGTCTTTGTGTG TTTTGTGCACGTATTTTTGGA GA15 187 0.86 0.87 

10 CNLTs 295 CTCTAAACCCATGACCCCTTC GGGGAACATAGTTTGAACTTTTA GT22 182 0.79 0.81 

11 CNLTs 380 ACTGCAACGACAACGCTATG GGGTACATTCGCGAAAAGAG CT19 223 0.82 0.84 

12 CNLTs 416 AACAGATACAGTTGGAGACAGAAATG CTCTGAGTGCGTCGCAAG AG19 151 0.75/0.82 0.78/0.84 

13 CNLTs 438 CTAACCGGCGGCGAGAGA CTGCCACATGCGTCGTTAGA GA14 153 0.78 0.81 

14 CNLTs 455  ACTCCGGAAGAACCACAACA ACATGGAAAGAGGTGGCAAG GA10 GG GA5 220 0.82/0.82 0.84/0.84 

15 CNLTs 484  GAGATCCTACCACGGCGATA CGCTTTCCCCTCCTTTTGTA GA18 157 0.68/0.87 0.73/0.88 

16 CNLTs 538 CCATCTTAGCTTTGGCGAGA ACAAGAGGCAACAAGCCAGA AG18AGA20 176 0.87 0.88 

PIC= polymorphic information content; Exp.= Expected size of DNA fragment in base pairs 
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5.3 Results  

5.3.1 Genetic diversity within and among tef genotypes  

All the 16 primer-pairs successfully amplified DNA fragments of the expected size 

(Tables 5.2 and 5.3). This indicates that the use of FTA cards and the procedures 

followed were successful for the extraction and preservation of DNA from tef. Higher 

frequencies of null alleles (non-amplified) were observed for CNLTs11, CNLTs33, and 

CNLTs455. Among the genotypes assessed in the panel, the highest frequency of null 

alleles was observed for E. curvula. In this study, only five SSR markers, CNLTs11 

CNLTs11 CNLTs60, CNLTs255, CNLTs416 and CNLTs438, produced amplicons of 

the expected size for this species. Consequently, E. curvula was removed from the 

subsequent diversity analysis. 

The SSR markers generated a total of 148 alleles (different fragment sizes) and this 

allowed for the estimation of genetic diversity among the 41 genotypes (Table 5. 3). 

The number of alleles revealed by each marker ranged from 2 (CNLTs60) to 27 

(CNLTs42), with a mean of 9.25. The genetic variability, measured by gene diversity 

(He) varied between 0.02 (CNLTs60) to 0.95 (CNLTs42).These two markers were 

genic or EST-SSR markers from the coding region of the tef genome. Variation across 

the 16 SSR loci, estimated by the mean polymorphic information content (PIC) was 

0.65, indicating a high level of genetic variation. On the basis of individual loci, the PIC 

varied between 0.02 (CNLTs60) and 0.95 (CNLTs42). Over 80% of the SSR-loci had 

PIC values of >0.50 and about 69% of the loci had PIC>0.70, indicating the effective 

discriminatory power of the individual SSR loci used in the study. Allelic richness was 

reflected by the number of variant alleles at a locus, which ranged between 1.13 

(CNLTs60) and 9.03 (CNLTs42) with a mean value of 4.78. Observed levels of 

heterozygosity per locus ranged from 0.0 to 0.85, with a mean of 0.23, i.e., only 23% 

of the loci were heterozygous and the remaining loci reached an acceptable level of 

homozygosity. The fixation index F (also called the inbreeding coefficient) exhibited 

contrasting values, ranging from 0.01 to 1.0, with an overall mean of 0.55, and 44% of 

the loci being completely homozygous. The mean expected heterozygosity value of 

0.67, suggests that 67% of the genetic individuals could be expected to be 

heterozygous at a given locus under random mating.   
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Table 5.3. Genetic diversity parameters of 41 tef genotypes assessed by 16 SSR 

markers 

 SSR-Loci Size range 
of alleles 

Genetic parameters 

Na Ne Ar Ho He F PIC 
aCNLTs11 155 - 175 3 2.43 2.89 0.00 0.60 1.00 0.59 
aCNLTs33 230 - 270 6 3.57 4.30 0.00 0.74 1.00 0.72 
aCNLTs42 179 - 215 27 19.10 9.03 0.63 0.96 0.33 0.95 
aCNLTs60 150 - 253 2 1.02 1.13 0.02 0.02 0.01 0.02 
CNLTs133 249 - 280 9 1.89 3.56 0.47 0.48 0.01 0.50 
CNLTs136 246 - 280 7 5.26 5.76 0.18 0.85 0.78 0.81 
CNLTs157 168 - 195 16 10.67 7.60 0.55 0.92 0.39 0.91 
CNLTs216 191 -220 7 4.33 4.85 0.00 0.78 1.00 0.77 
CNLTs255 85 - 240 8 1.36 2.45 0.27 0.27 0.01 0.27 
CNLTs295 182 - 215 7 4.60 4.96 0.00 0.79 1.00 0.78 
CNLTs380 223 - 245 10 5.55 5.91 0.00 0.83 1.00 0.82 
CNLTs416 151 - 182 6 3.57 4.37 0.00 0.73 1.00 0.72 
CNLTs438 85 - 195 6 1.26 2.10 0.22 0.21 0.08 0.20 
CNLTs455 220 - 245 5 3.50 4.12 0.00 0.73 1.00 0.71 
CNLTs484 157 - 195 16 7.17 6.90 0.85 0.87 0.02 0.86 
CNLTs538 176 - 220 13 7.06 6.52 0.49 0.87 0.43 0.86 

Mean  9.25 5.15 4.78 0.23 0.67 0.55 0.66 

SE  1.55 1.13 0.53 0.07 0.07 0.11 0.07 

;a- EST-SSR. Na- total number of alleles per locus; Ne- number of effective alleles per locus; Ar- 
allelic richness; Ho-observed gene diversity within genotypes; He- unbiased expected 
heterozygosity; F- fixation index; PIC- polymorphic information content, 

 

Inter-population analysis of genetic diversity indicated that all measures of genetic 

diversity (allelic richness, private allele richness, percent polymorphic loci, observed 

heterozygosity) differed significantly between populations (Table 5.4). Tef accessions 

from the north western Ethiopia had a higher number of observed and effective alleles 

over all the loci. Allelic richness, however, was highest for accessions collected from 

southern Ethiopia. Private alleles, the number of alleles found in a single sub-

population, was higher for accessions from north western Ethiopia and was smallest 

for the Breeding Materials. The Accessions had higher private allele scores than the 

Breeding Materials and the Released Varieties. The He or the probability that any two 

alleles chosen at random from a population differ at a single locus, was significantly 

higher for accessions from north western Ethiopia, indicating the presence of greater 

genetic diversity in this specific population. Out of the 16 SSR markers used, 13 or 

81% were polymorphic, with PIC of of over 50%. The percentage of polymorphic loci 

among the populations showed significant variation. The collections from north 

western Ethiopia were 100% polymorphic across all loci, while accessions collected 

from the southern sites were less polymorphic (69%). Plants from the north western 
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area had more alleles, more multilocus genotypes, more polymorphic loci, and higher 

levels of observed heterozygosity than the other tef populations.  

Table 5.4. Summary statistics of genetic parameters calculated from 16 SSR loci in 
41 tef genotypes classified by areas of collection 

Populations N Na Ne Ar Par I Ho He P 

North western 
Ethiopia 

13 6.00 3.85 2.94 1.07 1.34 0.27 0.66 100.00 

Western Ethiopia 5 2.94 2.42 2.38 0.56 0.80 0.18 0.50 75.00 
Southern Ethiopia 9 4.00 3.23 3.26 0.59 0.92 0.17 0.47 68.75 
Breeding Materials 5 3.06 2.45 2.4 0.37 0.83 0.24 0.51 81.25 
Released Varieties 9 4.00 3.15 2.48 0.45 0.97 0.21 0.52 81.25 

Mean  4.00 3.02 2.69 0.61 0.97 0.21 0.53 81.25 
 SE  0.34 0.27 0.17 0.12 0.08 0.03 0.04 5.23 

N-Number of individual within each population; Na-mean number of alleles per locus; Ne-mean 
number of effective alleles per locus; Ar-allelic richness;  Par-Private allelic richness;  I-Shannon’s 
information index; Ho-mean observed heterozygosity with in genotype; gene diversity within 
genotypes; He- mean unbiased expected heterozygosity under Hardy-Weinberg assumptions ; P- 
percentage of polymorphic loci; SE- Standard error 

 

5.3.2 Distance-based population differentiation  

The result of analysis of molecular variance (AMOVA) showed highly significant 

(P=0.001) genetic variation among tef populations, among genotypes, and within 

genotypes (Table 5.5). Among population variation explained 9% of the total genetic 

variance. About 60% of the genetic variation in the present sample could be attributed 

to variation among genotypes, while 31% was explained by variation within genotypes.  

Population differentiation (FST) measures, among the 41 tef genotypes varied between 

0.08 and 0.23 (Table 5.6). According to Wright (1978) the degree of differentiation 

between Breeding Materials and Released Varieties (0.08); Released Varieties and 

north western (0.13); and western and north western (0.14) were grouped under 

moderate level of differentiation. Accessions from western Ethiopia showed a large 

degree of differentiation from the accessions from southern Ethiopia (0.23), and the 

Breeding Materials (0.20) and the Released Varieties (0.23). Overall, the degree of 

differentiation was least between the Released Varieties and the Breeding Materials.  

According to Morjan and Rieseberg (2004) and Slatkin (1989), gene flow (Nm) between 

tef accessions from north western Ethiopia and the rest of the tef populations was 

high. Gene flow between accessions from southern Ethiopia and the other three 

populations was low. The highest level of gene-flow (2.72) was observed between the 



___________________________________________________________________ 

136 

 

Released Varieties and the Breeding Materials, which was expected because of the 

likelihood of physical and genetic mixtures being generated at experimental stations. 

 

Table 5.5. Analysis of molecular variance (AMOVA) among 41 tef genotypes collected from 

five collection sites, using 16 SSR markers 

 

Source df SS MS Est. Var. Per. Var. F-Statistics 

Among Populations 4 63.401 15.850 0.486 9% 0.001 

Among genotypes 36 293.087 8.141 3.247 60% 0.001 

Within genotype 41 67.500 1.646 1.646 31% 0.001 

Total 81 423.988  5.380 100%  
Df- Degree of freedom, SS-sum of squares, MS-mean sum of squares, Est. var.-estimated 

variance, Per. Var.-Percentage variation 

 

Mean genetic distance, as measured by Nei’s unbiased genetic distance (Nei, 1987), was 

higher between accessions collected from western Ethiopia and the Released 

Varieties, and was smallest between the Released Varieties and the Breeding 

Materials. Genetic identity, which is an estimate of the proportion of genes that are 

identical in two populations, was highest between the Breeding Materials and 

Released Varieties (0.92), and smallest between the Released Varieties and 

accessions from western Ethiopia.  

 

Table 5.6. Pair-wise estimates of gene flow (Nm) (above diagonal, within the brackets), genetic 

differentiation (FST) (above diagonal without brackets); genetic distance (GD) (lower 

diagonal without brackets) and genetic identity (GI) (lower diagonal within the 

brackets)  

  North 
western 

accessions 

Western 
accessions 

Southern 
accessions 

Breeding 
Materials 

Released 
Varieties 

North western  0.14 (1.55) 0.15 (1.47) 0.16 (1.34) 0.13 (1.68) 

Western 0.38 (0.69)  0.23 (0.82) 0.20 (0.99) 0.23 (0.83) 

Southern 0.36 (0.70) 0.46 (0.63)  0.19 (1.07) 0.17 (1.20) 

Breeding Materials 0.51 (0.60) 0.44 (0.65) 0.34 (0.71)  0.08 (2.72) 

Released Varieties  0.40 (0.67) 0.54 (0.59) 0.29 (0.75) 0.09 (0.92)  

Nm= gene flow = 0.25 (1-FST)/FST 

Elucidation of relatedness among the tef genotypes by a neighbour-joining algorithm 

using the unweighted pair group method (UPGMA) revealed three distinct clusters 

(Figure 5.1). All the Released Varieties, including the three pasture varieties from 

South Africa and 60% of the Breeding Materials, were grouped under Cluster-I. 
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Cluster–II consisted 55% of the accessions from southern Ethiopia and 60% of the 

accessions from western Ethiopia. And 84.6% of the accessions were grouped under 

Cluster-III. Accessions from the south were more scattered, compared to the other 

populations. Accessions from western Ethiopia were divided in to two clusters, i.e., 

Clusters II and III. Cluster II and III consisted 88.5% of the accessions collected from 

areas with acid soils.  

 

Figure 5.1.Neighbour-joining dendrogram depicting genetic relationship between genotypes 
and among the five populations. Light green, purple, blue, black and red colours 
represent Released Varieties, Breeding Materials, and Accessions from the southern, 
western and north western regions of Ethiopia, respectively. 

5.4 Discussion 

Successful retrieval and PCR amplification of the DNA fragments in this study verified 

the value of using FTA cards for DNA extraction, preservation and processing from tef 

plants. DNA collection on FTA cards does not require special skills and the technology 

is suitable for field and ecological studies, especially in remote areas and developing 

II 

I 

III 
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countries. Relative to conventional germplasm exchange methods, FTA-extracted 

DNA bears little risk of disease transfer, and avoids the danger of unauthorized 

multiplication and cultivation of precious genetic resources such as that of tef (Mbogori 

et al., 2006; Adugna et al., 2011).  

The high frequency of null alleles observed for E. curvula var. Ermelo (from South 

Africa) is assumed to be associated with species differences. Poor primer annealing 

due to nucleotide sequence divergence has been suggested as the probable cause of 

SSR null alleles. Species difference and mutations involving point mutations or indels 

are implicated in the sequence divergence that results in null alleles (Dakin and Avise, 

2004). The other species tested, E. pilosa, produced fewer null alleles than E. curvula. 

This was expected because these markers were tested and screened on 151 

recombinant inbred lines derived from the cross [E. tef (Kay Murri) X E. pilosa (Acc-

35)]  (Zeid et al., 2011). Earlier studies showed that E. tef had a greater genetic 

similarity with E. pilosa than E. curvula. It has been suggested that E. pilosa is possibly 

the closest wild ancestor of E. tef (Ayele et al., 1999; Bai et al., 1999; Ayele and 

Nguyen, 2000; Bai et al., 2000; Ingram and Doyle, 2003). In this study, E. pilosa was 

grouped in Cluster-II with tef accessions, which contrasts with the findings of Zeid et 

al. (2012) that grouped E. pilosa accessions along with other wild relatives, using 47 

SSR. Like E. tef, E. pilosa is an allotetraploid and is the only species that has been 

successfully crossed with E. tef.  (Assefa et al., 2010). 

Two SSR markers, CNLTs42 and CNLTs60, gave the maximum and minimum values, 

respectively, for nearly all the genetic diversity parameters, including gene diversity 

and PIC (Table 5.2). In earlier studies, these markers had gene diversity values of 

0.91 and 0.87, and PIC values of 0.9 and 0.89, respectively (Zeid et al., 2012). The 

low PIC values of CNLTs60, CNLTs255 and CNLTs438 markers in this study 

suggested that the genetic sequences used for developing these markers were highly 

conserved in the tef population used in this study.  

The high level of discriminating power of the 16 SSR markers used in this study was 

demonstrated by their ability to differentiate between tef Breeding Materials and 

Released Varieties related in pedigree. MPSEl-22 and MPSEL-61 were mutant (M3) 

lines derived from an ethyl methane sulfonate (EMS) treated variety, Tsedey (DZ-Cr-

37) (Jöst et al., 2014). These lines were accurately differentiated. (Figure 5.1).  

Similarly, Quncho and Gamachis, developed from a cross between Dukem (DZ-01-
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974) × Magna DZ-01-196) (Belay et al., 2008) were also effectively separated. This is 

consistent with the finding of Zeid et al. (2012), who used a larger number of SSR 

markers to discriminate between tef genotypes related in pedigree.  

Contrasting values of fixation index (F) was observed among the 41 tef genotypes 

across 16 SSR loci. Very high F values can be expected for tef because the crop is a 

highly self-pollinated plant with an out-crossing percentage of only 0.2-1.0% (Ketema, 

1993). Low F values detected in over 25% of the loci can be attributed to allelic 

multiplicity associated to the allotetraploid nature of the tef genome. 

Considerable levels of gene flow were observed between the tef populations. For self- 

pollinated crops like tef, gene flow is likely to be human mediated (Govindaraju, 2002). 

The high level of gene flow between the Released Varieties and the Breeding 

Materials screened in this study was probably associated with human mediated seed 

movement and the ad hoc creation of mixtures. Zeid et al. (2012) also reported mean 

genetic similarity estimates of 0.79 between two seed lots of 11 tef line fingerprinted 

for genetic purity. Since seed size of tef is very small (hundred kernel mass = 0.18–

0.38 mg vs hundred kernel mass of Arabidopsis = 0.17–0.21 mg) (Assefa et al., 2010), 

preserving complete fidelity of germplasm at experimental stations and seed 

production schemes is difficult. 

For the accessions, the indirect gene flow (Nm) estimates reported here give historical 

estimates and do not reflect the contemporary variation in gene exchanges between 

populations (Sork et al., 1999). Hence, the Nm values observed among the different 

populations could be associated with various factors associated with human 

movement over a long period of time. Nm inversely relates to FST (fixation index)..  The 

inverse association between the two parameters was observed in this study. For 

instance, the smallest FST was observed between the Breeding Materials and the 

Released Varieties that had the largest Nm values (Table 5.6). 

The result of the inter-population assessment of genetic diversity was that the rural 

accessions had the widest genetic variation for most of genetic diversity measures. 

High level of genetic diversity is expected in landraces because they are populations 

with high levels of genetic variability, having adapted to the natural and anthropological 

environments of their origin, and are therefore reservoirs of useful traits (Barcaccia, 

2010; Xu, 2010).  
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Among the accessions, tef population from the north western region had the highest 

values for all the genetic diversity parameters except for private alleles. This was 

consistent with earlier studies that found the northern part of Ethiopia is an area of 

high genetic diversity for tef (Bai et al., 1999; Bai et al., 2000; Kefyalew et al., 2000; 

Assefa et al., 2001; Assefa et al., 2003b).  

Analysis of molecular variance (AMOVA) showed that there were highly significant 

(P<0.001) variations between the populations. This was also in agreement with a 

measurement of a significant degree of differentiation (FST, 0.08-0.23) and genetic 

distance (GD, 0.09-0.54) between the populations. Cluster analysis also showed a 

clear pattern of differentiation between the populations, mapping onto the 

predetermined population structure. The proportion of variance explained by among 

genotypes variance is usually higher than between populations’ variance in self-

pollinated crops due to the high level of homozygosity within individual genotypes.  

A molecular diversity study conducted on tef populations collected from eight 

geographical areas using inter simple sequence repeat (ISSR) markers previously 

showed significant differences between and within populations (Assefa et al., 2003b). 

A phenotypic diversity study of quantitative traits conducted on different populations 

of tef belonging to 6 regions and 3 altitudinal ranges also showed highly significant 

variation between populations of different geographic origins, and between 

populations from the different altitudinal ranges for most of the quantitative traits 

studied (Assefa et al., 2001). A similar pattern was also reported from previous study 

(Tadesse, 1993). 

In the present study, the tef populations represented not only different geographical 

areas but also specific acid soil ecologies that would have contributed to the within 

population difference observed in earlier morpho-agronomic and molecular diversity 

studies. Despite wide geographical separation, 88.5% of the acid soil accessions were 

grouped into two clusters (Clusters II and III) while 90% of the Breeding Materials and 

Released Varieties were grouped into Cluster-I. Significant degrees of differentiation, 

and genetic distances were observed between the Accessions (Cluster-II and III), and 

Breeding Materials and Released Varieties (Cluster-I).  

Significantly higher numbers of private alleles were found in the Accessions from acid 

soil ecologies indicating the presence of distinct genetic features in these accessions. 
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Soil acidity and associated mineral imbalances are known to select acidophilic or 

calcifuge species and variants within species (Houdijk et al., 1993; Roem and 

Berendse, 2000; Pilbeam and Morley, 2007). In crop plants, several studies have 

documented that most of acid soil tolerant crop varieties have been selected from 

accessions collected from regions with highly acidic soils of the world (Hede et al., 

2001; Stodart et al., 2007; Caniato et al., 2011; Maron et al., 2013; Guimaraes et al., 

2014). 

On the other hand, the low number of private alleles in the population of Released 

Varieties can be related to the impact of plant breeding that narrows the genetic base. 

Selection for economically important traits through plant breeding is known to reduce 

the frequency of rare alleles and the overall genetic diversity (Fu et al., 2006; Rauf et 

al., 2010). Driven by the need to enhance crop production, expanded cultivation of 

Released Varieties has resulted in the replacement of some landraces in Ethiopia 

(Tsegaye and Berg, 2007). In tef, white seeded and high yielding varieties that rely on 

optimal external inputs have become a threat to tef genetic diversity (Assefa et al., 

2001; Belay et al., 2008; Zeid et al., 2012). The current push by the national extension 

services for farmers to plant of Released Varieties of tef and other cereals, combined 

with the application of lime, are direct threats to tef landraces adapted to acid soils. 

Over 69% of tef accessions that represented the dominant phenotypes collected from 

areas with acid soils in this study were brown seeded.     

5.5 Conclusion  

Relatively high levels of genetic diversity were found in the dominant phenotypes of 

accessions sourced from areas with acid soils, which offer great opportunity for plant 

breeders to breed for acid tolerant and agronomically superior varieties of tef. This will 

help to achieve two important goals. Firstly, it will improve food security and the 

livelihoods of small-scale farmers who do not use lime for the amelioration of soil 

acidity. Secondly, it will assist in the preservation of rare alleles that may confer acid 

tolerance under farmers’ condition. The lack of adequate “passport data” and a lack of 

accessions from specific growing environments such as acid soils, are the main 

shortcomings of the spectrum of tef accessions currently conserved in the national 

gene bank (Assefa et al., 2001; Assefa et al., 2010; Zeid et al., 2012). Hence, urgent 

efforts to collect a representative spectrum of accessions from areas with acid soils 
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are needed to rescue the threatened private alleles present in tef landraces that have 

evolved to tolerate acid soils. A programme is needed to breed tef for specific 

adaptation to acid soils. The result of this study identifies the need to include seed 

from all the regions affected by acid soils, and to maximize the within region sampling 

while undertaking the collection programme.   
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CHAPTER 6 

Isolation and characterization of ethyl methane sulphonate (EMS) 

induced mutants of tef [Eragrostis tef (Zucc.) Trotter] for aluminum 

tolerance and morpho-agronomic traits  

 

Abstract  

Soil acidity and Al-toxicity are among the major constraints affecting tef production in 

Ethiopia. However, research on breeding for tolerance to Al-toxicity in tef is in its 

infancy in the country. The aim of this study was to isolate and characterize Al-tolerant 

lines in an EMS-induced M2 population of tef. An improved tef variety, Tsedey (DZ-Cr-

37), was previously mutagenized using EMS. About 15000 M2 seeds were screened 

under acid soil condition, along with the M0 seeds of the parent variety Tsedey and an 

Al-tolerant local selection. Strongly acidic soil with an external application of a toxic 

level of Al-solution was used to maximize the root pruning effect of Al and easily rogue 

out sensitive phenotypes. Further, seedlings were exposed to moisture stress to 

maximize selection pressure against sensitive lines. Twenty one M2 plants with root 

lengths of greater than the mean plus standard deviation of the tolerant check were 

selected and planted for seed production. These M3 plants were characterized for 

variation for Al-tolerance and morpho-agronomic traits under greenhouse and field 

conditions, respectively. There were highly significant differences for Al-tolerance 

between the mutant lines and the parent (P<0.001); and between mutant lines and the 

sensitive check (P<0.001). However, non-significant difference was observed between 

the mutant lines and the tolerant check. Similarly, significant differences were 

observed between the mutant lines for 16 of the 20 quantitative traits measured. This 

study is the first to report successful induction of enhanced Al-tolerance in tef by using 

EMS. 

  

Key words: Al-tolerance; Al-toxicity; ethyl methane sulfonate (EMS); mutation 

breeding, tef   
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6.1 Introduction 

The global population is projected to reach 9 billion by the year 2050. The world will 

need 70 to 100% more food to feed this population (FAO, 2009). This in turn requires 

mean annual increment of 44 million metric tons per year for the coming years. 

Maximizing productivity of crops through development of high yielding crop varieties 

is one of the strategic options available to increase crop production and to meet the 

global food demand (FAO, 2009; Godfray et al., 2010; Tester and Langridge, 2010). 

 Tef [Eragrostis tef (Zucc.) Trotter] (2n=4x=40) is the most widely produced and 

consumed cereal crop in Ethiopia. In terms of area of cultivation, it is the leading cereal 

crop followed by maize and wheat. According to the Central Statistical Authority (CSA) 

(2015), the area covered by tef during the 20014/2015 cropping season was over 3 

million hectares or 30% of the total area occupied by cereals in the country. As a 

gluten-free cereal, tef is currently gaining popularity worldwide (Spaenij-Dekking et al., 

2005). Besides, tef is also grown as a pasture crop in several countries (Assefa et al., 

2010). 

Aluminium toxicity and other acidity related soil fertility problems are among the major 

constraints affecting tef production in Ethiopia (Dubale, 2001; IFPRI, 2010).The 

problem is widespread in the high rainfall areas of the north western, western, 

southern, and south western parts of the country (Schlede, 1989; Abebe, 2007). 

Worldwide, development of varieties tolerant of acid soils has been a sound alternative 

to liming, and other non-genetic management options in the production of globally 

important crops (Rao et al., 1993; Hede et al., 2001).  

Mutation breeding has been used to induce variability and develop improved varieties 

of various crop species worldwide (Jain, 2005; Mba, 2013). Many officially released 

mutant varieties have been developed worldwide (Mba, 2013). In tef, mutation 

breeding was started in 1972 using gamma radiation, with the cooperation of 

International Atomic Energy Agency (IAEA) and Food and Agricultural Organization of 

the United Nations (FAO) (Tefera et al., 2001). Due to lack of adequate variation in the 

natural population, the primary focus of tef mutation breeding has been on the 

development of lodging resistant phenotypes. Recently, a chemical mutagen, ethyl 

methane sulfonate (EMS), has been successfully utilized to induce mutation as a 

component of the reverse genetics approach known as TILLING (Targeting Induced 
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Local Lesions IN Genome) with the objective developing semi-dwarf tef variants 

resistant to lodging  (Esfeld et al., 2009; Jöst et al., 2014). Several studies reported 

that EMS produces a large number of (genome-wide) non-lethal point mutations in 

plants (Till et al., 2003; Greene et al., 2003; Till et al., 2004).  

Despite the wide spread problems of soil acidity and Al-toxicity affecting tef, breeding 

for tolerance to Al-toxicity in tef has not been a research focus in Ethiopia. This 

research work was conducted in order to screen and characterize Al-tolerant lines in 

an EMS induced M3 population of tef.  

6.2 Materials and methods 

The overall activities conducted in selection and characterization of the mutant lines 

is presented in figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Schematic illustration of mutation induction, isolation, evaluation and 

characterization for Al-tolerance 

 

6.2.1 Induction of mutation 

Seeds of an improved tef variety, Tsedey (DZ-Cr-37), were mutagenized by the Tef 

Improvement Project at the Institute of Plant Sciences, University of Bern in 
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Switzerland, using 0.2% of ethyl methane sulfonate (EMS) for 8 hours. About 10000 

plants from the first generation after mutagenesis (M1 population) were self-pollinated 

and about 7000 non-chimeric M2 families were obtained. M2 seeds pooled from 5000 

M2 families were used for selection on acid soil along with M0 seeds of untreated 

parent variety Tsedey (DZ-Cr-37) and an Al-tolerant local selection. 

6.2.2 Selection of Al-tolerant mutants  

Strongly acidic soil with pH (H2O) 1:2.5 of 4.5 was collected from the major acid soil 

affected district, Banja. The soil was continuously watered with 222 μM 

AlK(SO4)2.12H2O until a pH (H2O)1:2.5 of 4.0 was achieved (Islam et al., 2004). Fifteen 

thousand M2 seeds were planted in 30 pots (10cm diameter) in a greenhouse of the 

Amhara Agricultural Research Institute, at Bahir Dar, Ethiopia. A local landrace with 

Al-tolerance and the parent were also planted for comparison. The plants were 

fertilized with NPK at the rate of 100, 109 and 137 µg.g-1 of soil, respectively, using 

NH4NO3 and KH2PO4. The pots were uniformly watered with 222 μM AlK(SO4)2.12H2O 

(pH 4) for the first 2 weeks (14 days). Rogueing of seedlings with poor root 

development (poorly anchored) was started one week after planting, using fine tipped 

forceps (Figure 6.2).  

The concentration of AlK(SO4)2.12H2O was doubled to 444 μm after the second week 

in order to increase selection pressure. This concentration further differentiated the 

seedlings and enabled further rogueing during the third week.  

Since Al-toxicity impedes root development of sensitive plants, it enhances the 

vulnerability of such plants to drought of even a short duration. Hence, during the 4th 

week, green and apparently tolerant seedlings were subjected to moisture stress by 

discontinuing watering for 96 hours. The Al-tolerant landrace showed wilting after the 

4th day. All seedlings of the mutant population and the parent that showed temporary 

wilting earlier were rogued out. This procedure allowed for the identification of 

apparently tolerant plants with poorly developed root system. At this stage all the 

seedlings of the parent variety Tsedey were rogued out (Figure 6.3).  

Twenty-eight days after planting, the soil was washed and the roots of the Al-tolerant 

landrace were measured. The mean plus the standard deviation of the root length of 

the Al-tolerant landrace was used as truncation point to select the Al-tolerant mutant 
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plants. All mutant plants that had root length of greater the truncation point were 

transplanted into normal growing medium in pots for seed production (Table 6.1).  

 

Figure 6.2. Early root pruning effects of Al-toxicity and nutrient deficiency symptoms in 

sensitive M3 mutant lines (arrow indicate tolerant selections) 

 

Figure 6.3.Late rogueing of apparently Al-tolerant plants affected by moisture stress due to 

poor root development; arrows indicate the Al-tolerant landrace. 

 

In order to exclude sensitive segregants, subsequent generations of mutant lines were 

advanced by subjecting the seedlings to 350μM AlK(SO4)2.12H2O. Single plants with 

the longest root were preserved per mutant line.  
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Table 6.1. Description of root length of mutant selections compared to the local Al-tolerant 

selection 

Selections N Mean Std.  Min Max 

Al-tolerant landrace 70 34.46 12.35 15 70 
Mutant selections measured for root length 217 31.40 11.45 10 70 
Mutants selected i.e. above truncation point (47mm) 21 54.60 6.24 47 70 

Truncation point= Mean + Std. of Al-tolerant landrace i.e., 47mm; N-number individual plants 
measured; Std- Standard deviation; Min-Minimum; Max-Maximum. 

 

6.2.3 Evaluation of M3 lines for Al-tolerance 

6.2.3.1 Genetic stock 

Twenty one M3 lines with root length of above 47mm were planted in pots (10cm) in a 

greenhouse along with M0 parent Tsedey (DZ-Cr-37), an Al-tolerant landrace, and a 

sensitive check variety, Holeta Key.  

6.2.3.2 Experimental set up  

The experiment was established in randomized complete blocks design with three 

replications under limed and unlimed condition as described in Sections 4.2.1.2. 

6.2.3.3 Data collection and statistical analysis 

Data were collected and analysed as described in Sections 4.2.1.3 and 4.2.3.  

6.2.4 Morpho-agronomic characterization of mutant lines 

6.2.4.1 Experimental set up 

The twenty-one M3 lines, along with M0 parent Tsedey (DZ-Cr-37), were grown at the 

Adet Agricultural Research centre, Adet, north western Ethiopia, during the 2014 

cropping season under natural conditions. A randomized complete block design with 

two replications was used with a plot size of 0.6 m2 and inter-row spacing of 20cm. 

The seeds were drilled in the row with a seed rate of 15 kg.ha-1. At tillering, the plants 

within each row were thinned to an intra-row spacing of 5 cm. Fertilizers were applied 

with rates of 130 kg.ha-1 DAP and 36 kg.ha-1 urea. All of the DAP was applied at 

planting, and all of the urea at tillering. 
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6.2.4.2 Data collection  

Days to 50% panicle emergence; and days to 75% maturity were recorded on a plot 

basis. Culm length; number of internodes; first basal internode length (cm); first basal 

internode diameter (mm); second basal internode length (cm); second basal internode 

diameter (mm); panicle length (cm); number of panicle branches; number of spikelet; 

number of florets per spikelet; grain yield/panicle (g); and phytomass (gm) were 

recorded on the basis of the main shoots of seven randomly selected plants from the 

central row. Counts of spikelet per panicle and the number of florets per spikelet were 

made for the basal, middle and apical parts of the main shoot panicle.  

Number of fertile tillers/plant; grain yield/plant (g), and phytomass yield/plant (g), and 

the harvest index (%), were recorded on the basis of seven randomly selected plants 

from the central row. Culm and grains were dried in an oven at 70oC for 48 hours, as 

described by Hobbs and Sayre (2001), to determine the above-ground biomass and 

the harvest index. Mean values of these samples were used to describe each line for 

the traits under consideration. 

6.2.4.3 Statistical analysis 

Analysis of variance and cluster analysis were performed to assess the variability 

among the mutant lines and estimate the relatedness among the lines using GenStat 

Statistical Software Version:17.10013780 (GenStat., 2014). 

6.3 Results  

6.3.1 Variability for Al-tolerance  

Analysis of variance revealed the presence of highly significant differences between 

the mutant lines for both the tolerance indices and actual measurements under 

unlimed conditions (Table 6.2). Orthogonal contrast between the parent and the 

mutant lines also showed highly significant differences for all the parameters. 

However, the mutant lines and the Al-tolerant landrace, did not show significant 

differences for all the parameters. Figures 6.4 and 6.5 also showed equivalent shoot 

and root growth of the tolerant check and the mutant lines. The significant difference 

observed between the sensitive check and the parent showed that the parent variety 

was less sensitive to Al-toxicity than the sensitive check.  
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Table 6.3 shows the responses of the mutant lines in terms of tolerance indices and 

actual root and shoot growth under unlimed conditions, along with their rank. Relative 

root dry weight (RRDW) and relative root length (RRL) are better measures of 

tolerance to Al-toxicity because they indicate the relative performance of the genotype 

under unlimed conditions and limed conditions. Values of over 100% indicates that the 

genotype performed well under unlimed conditions relative to limed condition. 

Compared to RRL, RRDW gives a better measure of tolerance because it takes into 

account the root density. Accordingly, except for ML99, all the mutant lines were 

superior to the parent and the sensitive check. This result was expected because the 

selection was severe and only 0.14% plants from the original 15,000 seeds were 

retained. The parent variety was significantly less sensitive to Al-toxicity compared to 

the sensetive check. Similar pattern was observed in previous pot and field 

experiments (chapter 4) on the performance of these two varieties.  

Table 6.2. Analysis of variance for Al-tolerance parameters among mutant lines 

Source of variation d.f.  RRL (%) RRDW (%) RL RDW 

Block 2      

TRT 23 P value <.001 <.001 <.001 <.001 

  F-Static 14.26 13.99 4.97 7.07 

 Parent Vs ML 1 P value <.001 <.001 0.002 <.001 

  F-Static 36.61 27.53 11.19 18.46 

 Local Vs ML 1 P value 0.059 0.299 0.309 0.34 

  F-Static 3.74 1.1 1.06 0.93 

 Sensitive check Vs ML 1 P value <.001 <.001 <.001 <.001 

   F-Static 102.8 103.5 30.55 79.98 

 Parent vs Local  P value <.001 <.001 0.003 0.020 

  F-Static 33.39 20.76 10.02 5.81 

 Parent vs Sensitive check  1 P value 0.005 <.001 0.121 0.002 

  F-Static 8.76 12.71 2.49 11.31 

Residual 46      

Total 71      

ML-mutant lines; RRL-relative root length; RRDW-relative root dry weight; RL-root length unlimed; RDW-root 
dry weight unlimed. 
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Figure 6.4. Contrasts between root and shoot growth of the tolerant check, the parent and 

selected mutant tef lines under unlimed, acid soil conditions 

6.3.2. Variability for morpho-agronomic traits 

 

Analysis of variance indicated significant differences for 16 of the 20 morpho-

agronomic traits analysed (Table 6.4). The mutant lines did not show significant 

difference for hundred seed weight, number of internodes, first basal internode 

diameter and second basal internode diameter. Minimum and maximum values of 

each traits are presented along with the mean of all the genotypes and the parent 

variety (Table 6.4). 

Agronomically and economically important traits like days to 50% panicle emergence, 

days to maturity, seed and biomass yield per main shoot and whole plant, panicle 

length, and number of panicle branches all showed considerable variation around the 

mean of the parent, suggesting that the mutagenesis and the selection procedures 

employed have resulted in variability both in positive and negative directions. The 

maximum whole plant seed yield and whole plant biomass yields of 26.78g and 58.5g 

were obtained for the selection ML139, a gain of 58.0% and 55.1% over the mean of 

the parent for both traits, respectively. Similarly, a maximum harvest index of 54.57% 

was recorded for the selection ML61 with a gain of 22% over the parent. 

No difference was observed for most of the qualitative traits between the parent and 

the mutant lines. But some mutant lines like ML153 were distinct enough in developing 

an extremely loose panicle form compared to the parent and most of the mutant lines 

(data not shown). Hierarchical cluster analysis using the Euclidean distance between 

groups showed that the relatedness among the lines was very close with a maximum 

dissimilarity value of less than 0.1 for most of the mutant lines (Figure 6.5). The parent 
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did not show distinct clustering from the mutant lines and was most closely related to 

the line ML209.  

Table 6.3. Means and ranks of mutant lines measured in terms of tolerance indices and 

actual growth under unlimed condition  

Mutant lines 
RRDW (%) RRL(%) RL (mg) RDW (UL) 

Mean Rank Mean Rank Mean Rank Mean Rank 

ML-209 142.04 1 152.70 2 80.05 3 35.67 1 

ML-149 133.85 2 121.10 14 56.9 18 28.50 11 

ML-153 119.01 3 137.40 5 84.33 1 32.67 2 

ML-96 115.24 4 130.50 10 65 14 31.00 5 

ML-207 114.80 5 152.00 3 72.24 8 32.00 3 

ML-48 111.52 6 127.20 12 77.95 4 31.83 4 

Dabo banja 106.13 7 137.30 6 72.43 7 26.50 16 

ML-183 104.59 8 155.60 1 76.71 5 29.33 7 

ML-205 102.40 9 136.80 7 68.33 11 29.00 8 

ML-184 100.84 10 151.70 4 82.38 2 25.17 18 

ML-22 100.14 11 127.30 11 71.67 9 28.33 12 

ML-133 98.04 12 133.40 9 68.62 10 28.50 10 

ML-117 97.34 13 118.50 15 52.67 20 27.50 15 

ML-98 96.94 14 134.90 8 74.14 6 28.33 13 

ML-61 93.91 15 110.60 17 66.62 12 29.83 6 

ML-94 91.90 16 82.90 21 51.33 21 28.83 9 

ML-194 88.74 17 114.30 16 65.33 13 25.00 19 

ML-139 87.14 18 84.80 20 54.14 19 24.83 20 

ML-148 82.39 19 89.50 18 58.43 16 24.33 21 

ML-49 75.25 20 123.30 13 64.05 15 27.83 14 

ML-173 68.10 21 85.90 19 57.9 17 26.50 17 

Tsedey 65.41 22 71.00 23 47.58 23 20.17 22 

ML-99 61.98 23 76.00 22 49.43 22 20.00 23 

Holeta Key 33.55 24 37.00 24 35.19 24 11.33 24 

Mean 95.5  116.30  64.7  27.21  

LSD (5%) 17.99  23.11  15.8  5.287  

CV (%) 11.5  12.10  14.8  11.8  

RRDW-relative root dry weight; RRL-relative root length; RL-root length; RDW-root dry weight 
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Table 6.4. Minimum, maximum and mean values and significance tests of the selected 

mutant lines of tef for 20 morpho-agronomic traits  

 

No Trait Minimum  Maximum 
Mean±(SE)  Parent 

F-
value 

P-
value Value  ML Value ML 

1 Days to maturity 98.00 ML207 106.00 ML49 101.20±(1.68) 99.00 6.45 <.001 

     ML99     

2 Days to 50% panicle 
Emergence 

49.00 ML98 57.50 ML49 54.50±(1.51) 55.00 4.91 <.001 

     ML61     

     ML139     

     ML153     

     ML183     

3 Number of fertile tillers  3.67 ML173 10.86 ML139 6.32±(1.22) 5.50 3.69 0.002 

4 Main shoot biomass (g) 3.30 ML98 10.86 ML22 6.39±(1.28) 5.65 3.88 0.002 

5 Main shoot seed weight (g) 2.50 ML194 6.61 ML61 4.65±(0.89) 5.22 2.51 0.02 

6 Whole pant Biomass (g) 24.35 ML48 58.51 ML139 35.78±(3.16) 37.73 13.54 <.001 

7 Whole plant seed 
weight(g) 

8.98 ML183 26.78 ML139 14.64±(2.42) 16.93 6.99 <.001 

8 Hundred seed weight (mg) 27.00 ML96 31.00 Parent 28.66± (1.20) 31.00 1.63 0.135 
   ML194       

9 Harvest Index 26.55 ML183 54.57 ML61 40.72±(5.60) 44.80 3.05 0.007 

10 Plant height (cm) 74.36 ML98 96.14 ML148 84.11±(2.34) 77.32 14.23 <.001 

11 Culm length(cm) 43.57 ML207 57.50 ML173 48.69±(2.32) 46.43 3.68 0.002 
12 Panicle length  31.43 ML184 42.93 ML61 37.19±(1.99) 34.93 6.94 <.001 
13 Number of internodes 2.71 ML117 3.79 ML139 3.19±(0.54) 3.50 0.61 0.87 
   ML133       
14 First basal Internode 

length (cm) 
3.00 ML149 5.06 ML133 3.90±(0.32) 3.46 5.42 <.001 

15 First basal Internode 
diameter (mm)  

1.54 ML98 2.15 ML22 1.88±(0.19) 1.96 1.39 0.228 

16 Second basal internode 
length (cm) 

6.64 ML96 9.43 ML61 8.04±(0.68) 7.43 2.45 0.023 

17 Second basal internode 
diameter mm) 

1.60 ML149 2.11 ML61 1.89±(0.18) 2.02 1.51 0.177 

18 Number of panicle 
branches 

21.79 ML98 31.71 ML153 26.08±(2.53) 25.50 2.06 0.05 

19 Mean number of florets 5.01 ML61 7.06 ML48 6.03±(0.58) 5.68 2.39 0.026 
20 Number of Spikelets per 

panicle 
17.12 ML207 26.81 ML61 21.17±(1.89) 20.60 2.74 0.013 

ML-mutant lines; parent is the variety Tsedey; F-F statistic or variance ratio; SE-standard error  

6.4 Discussion  

This study has resulted in the successful isolation of Al-tolerant lines that exceeded 

the parent in all of the tolerance parameters and actual growth measurements under 

unlimed conditions. Most of the mutant lines were better or equivalent to the Al-tolerant 

landrace grown in strongly acidic Acrisols of north western Ethiopia. This suggests 

that the EMS application has successfully induced variability for Al-tolerance in the 

original tef population. The screening techniques employed in this study, i.e., 

combined use of strongly acidic soil along with application of Al in the form of 

AlK(SO4)2.12H2O, and subjecting seedlings to severe drought was efficient at 
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identifying Al-tolerant lines. This study is the first to report the use of EMS for induction 

of genetic variability for Al-tolerance in tef. Induction of mutation has been used to 

increase genetic variability for Al-tolerance in other plants. For instance, Nawrot et al. 

(2001) have reported increased level of Al-tolerance in barley after mutagenic 

treatment of four varieties with N-methyl-N-nitroso urea (MNH) and sodium azide. 

Similarly, treatment of Al-sensitive Arabidopsis with EMS resulted in variants that grew 

in highly toxic Al condition (Kelly et al., 2006). 

 

 

Figure 6.5. Dendrogram showing similiarity among the mutant lines based on 20 
morpho-agronomic traits.  

The significant difference between the mutant lines for most of the agronomic traits 

showed that EMS has successfully induced variations in most of the traits measured. 

This suggests that many genes controlling these traits were affected by the EMS 

treatment. Earlier studies have reported that EMS produces a large number point 

mutations in plants (Till et al., 2003; Greene et al., 2003; Till et al., 2004).  

Despite considerable level of variation observed for most the traits measured in this 

study, the level of variation was narrower than the ones that have been observed in 
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natural populations for traits such as first basal internode diameter, second basal 

internode diameter, first and second internode length, total culm length, and number 

of internodes (Assefa et al., 1999; 2000; 2001). On the other hand, the value of 

agronomically important traits such as whole plant seed yield and whole plant biomass 

yields, and harvest index were higher in the present study than those reported by the 

above authors. This was expected because the mutation treatment was made on 

agronomically superior variety. 

6.5 Conclusion  

This study documented the successful induction of mutations for Al tolerance and 

several morpho-agronomic traits by using EMS. The screening procedures were 

efficient in identifying Al-tolerant lines. Induction of mutation by EMS may be utilized 

to develop Al tolerant varieties without sacrificing important agronomic traits, 

especially when used on popular varieties.  
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CHAPTER 7 

Development of a hydroponic facility as a phenotyping platform to 

assess for Al-tolerance in tef [Eragrostis tef (Zucc.) Trotter] using root 

growth measurements, and the haematoxylin staining technique 

Abstract  

Aluminium-toxicity contributes to 67% of crop production problem on acid soils of the 

world. Breeding crops for Al-tolerance is one strategy to cope with the Al-toxicity. 

Development of an appropriate phenotyping platform is a prerequisite to undertake Al-

tolerance breeding. In Ethiopia, many soils can be classified as acid to severely acid.  

Tef is the most widely grown crop in Ethiopia, with a growing global popularity as 

source of a nutritious, gluten free flour. However, due to its restricted geographical 

region of production, tef has not been studied for tolerance to Al-toxicity. The objective 

of this study was to develop an appropriate phenotyping platform to screen for Al-

tolerance in tef. Five levels of AlK(SO4)2 .12H2O (0, 150, 250,350, 450, 550 µM) were 

evaluated in order to select a moderately toxic level of Al to discriminate between 

sensitive and tolerant tef genotypes, assessed by measuring root growth. Further, the 

applicability of a haematoxylin staining method as a visual assay for Al-tolerance was 

assessed. There were highly significant differences (P<0.001) between the levels of 

Al-tolerance of the tef genotypes. The maximum differences in relative root length 

(RRL) (%) and root length (RL) (mm) between the most sensitive and the most tolerant 

tef genotypes were observed at the concentration of 150 µM. This concentration 

adequately discriminated between 28 tef genotypes with varied sensitivity to Al-

toxicity. Using haematoxylin staining for the visual assessment of the roots of two 

sensitive and two tolerant genotypes treated with 0, 150 and 250 µM Al showed a 

differential staining reaction consistent with the root growth measurement methods. 

The hydroponic platform, combined with the root growth measurement method or 

haematoxylin staining can be accurately used to assess the levels of Al-tolerance in 

tef genotypes for genetic, breeding or physiological studies.  

Key words: Aluminium toxicity, haematoxylin, hydroponics, phenotyping, tef   
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7.1 Introduction 

Acid soils (pH < 5.5 in the surface layer) constitute 30% of the world’s total ice free 

land. In Africa 22% land area has soil acidity problems (von Uexk¨ull and Mutert, 1995; 

Malcolm and Andrew, 2003). One of the effects of soil acidity is Al-toxicity, which 

affects at least 67% of crop production on acid soils of the world (Eswaran et al., 1997). 

In addition to liming, worldwide, Al-tolerant genotypes of wheat, rice, maize, barley, 

sorghum and rye are used to cope with the problem of Al-toxicity (Pinto-Carnide and 

Guedes-Pinto, 1999; Hede et al., 2001; Paterniani and Furlani, 2002; Portaluppi et al., 

2010).  

Development of Al-tolerant crop genotypes requires various screening methods under 

field or controlled condition. Screening under hydroponics condition using toxic Al 

concentrations is widely used technique (Rao et al., 1993; Hede et al., 2001; Deborah 

and Tesfaye, 2003; Dharmendra et al., 2011). This approach allows for direct access 

and non-destructive root measurements, which is not possible in field trials in soil. It 

also simplifies control over nutrient availability, pH, light conditions etc. (Carver and 

Ownby, 1995).  

There are various formulations of nutrient solutions used in Al tolerance screening 

including the widely used Magnavaca’s nutrient solution (Magnavaca et al., 1987; 

Magalhaes et al., 2004; Sasaki et al., 2004; Magalhaes et al., 2007). Recently, 

Famoso et al. (2010) modified Magnavaca’s nutrient solution in order to closely mimic 

the low-ionic-strength and Al activity in acid soils. This formulation reduces 

precipitation of Al ions and increases the availability of important nutrients. But since 

different crop species have varied sensitivity to toxic concentration of Al, experimental 

determination of an appropriate level of Al is necessary for crop species not previously 

studied for their Al-tolerance (Hede et al., 2001).  

Under hydroponic culture, root growth measurement and haematoxylin staining 

reactions are widely used assay methods for Al-tolerance. Relative root tolerance 

index (RTI), which is computed as the ratio of root growth under toxic levels of Al to 

root growth without Al, is widely used to characterize the tolerance of crop species and 

genotypes to Al ions (Rao et al., 1993; Hede et al., 2001; Hede et al., 2002).   

 Haematoxylin staining for the visual detection of tolerance to Al-toxicity in crops was 

first reported by Polle et al. (1978). Al-tolerant crop genotypes exclude phytotoxic Al-
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ions from their root system by exudation of organic acids that complex with the Al ion 

in the rhizosphere and prevent their entry into the root system (Kochian et al., 2005; 

Miyasaka et al., 2007). Since sensitive genotypes lack this mechanism toxic Al ions 

easily enter the root tips, attach to nuclear and cytoplasmic targets and thereafter 

affect cell division and cell elongation in the transition region of the root apex 

(Miyasaka et al., 2007) . In Al-tolerance assay, the Al already attached to nuclear and 

cytoplasmic targets serves as a mordant by atracting to these targets the negatively 

charged haematein of haematoxylin resulting in the development of a purple-blue 

colour dye that indicates presence of Al (Gill et al., 1974; Polle et al., 1978a; Kiernan, 

2010).  

Tef [Eragrostis tef (Zucc.)] is the most important cereal crop grown in Ethiopia. It is 

also a prospective global crop as a gluten free cereal and health food. The poor 

response of tef genotypes to fertilizer application on acid soils is one of the major 

constraints affecting tef production in Ethiopia (Mamo and Killham, 1987). Given the 

wide genetic diversity and agro-ecological adaptation of the crop, it may be possible 

to breed tef genotypes with Al- tolerance.  No prior research work has been done on 

breeding for tolerance to Al-toxicity in tef. Development of a practical phenotyping 

platform such as the use of hydroponics technique combined with efficient assessment 

methods are a prerequisite to undertake breeding activities for Al-tolerance in tef. The 

aim of this study was threefold: To develop a hydroponics system as a phenotyping 

platform to test for Al-tolerance in tef genotypes; to determine an appropriate 

concentration of Al to evaluate Al-tolerance in tef; and to appraise the use of 

haematoxylin staining for visual assessment of Al-tolerance in tef seedlings.  

7.2 Materials and methods   

7.2.1 Determination of the optimum Al concentration and evaluation of selected 

tef genotypes for Al-tolerance using the selected concentration  

7.2.1.1 Genetic stock  

Two tef genotypes Acc#55185 and Holeta Key, were previously classified in trials as 

relatively tolerant and sensitive, respectively. These were used to identify the optimal 

Al concentration for Al-tolerance screening in tef. Another twenty eight tef genotypes 

were then evaluated for their Al-tolerance using the selected concentration of Al.   
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7.2.1.2 Experimental setup 

Five Al concentrations were tested (0, 150, 250, 350, 450 and 550 AlK(SO4)2 

.12H2O µM). These levels cover the range that is optimal when screening other cereals 

such as sorghum, maize, wheat and rice. A randomized complete block design 

(RCBD) with four replications and 7 plants per replication was used.  

7.2.1.3 Plant growth condition  

One hundred seeds per each variety were surface sterilized with 1% commercial 

bleach (sodium hypochlorite) for five minutes, the rinsed five times with sterile water. 

Then the seeds were placed in a sterilized glass Petri dish (100 x 15 mm) on Whatman 

filter paper wetted with sterile water. Germination took place over 24 hours under dark 

conditions at a temperature of 30oC.  

A recipe for a modified Magnavaca’s nutrient solution were kindly provided by Dr Jon 

E. Shaff from Cornell University (Table 7.1). The nutrient solution was then 

supplemented with one of the six Al concentrations, 0, 150, 250, 350, 450, and 550 μm 

AlK(SO4)2 .12H2O µM. The pH of the treatment solutions was adjusted to 4.0 with 0.1 N 

HCl and/or 0.1 N KOH after Al was added. The pH of the control treatment was 

adjusted to 5.8 by using KOH. 

After 24 hours, 7 uniformly germinated seedlings were selected and placed in holed 

Eppendorf tubes supported by acid washed silica sand (0.25mm-2.5mm) for each 

variety and Al treatment combination. The tubes were inserted to neoprene foam to 

float on the nutrient solution and were aerated with aquarium pump [Hydrofarm 

AAPA45L Active Aqua (www.hydrofarm.com) ] fitted to infusion tubes clipped to the 

bottom of 4.5L plastic tubs by plastic tension clips (Figure 7.1). The pressure was 

regulated by the spigot of the air divider attached to the pump and the roller clamp of 

the infusion set to uniformly aerate the hydroponic solution in each in tub. The 

seedlings were exposed to 3600 lux cool white florescent lamp (16/8 light and dark 

hours) and were treated to Al ions for 4 days. The pH was continuously monitored. 

After the second day 50% of the hydroponic solution was changed. 

Twenty eight tef genotypes were evaluated for their Al-tolerance under non replicated 

conditions using the same procedures and growth conditions but, using only one Al 

concentration.   

http://www.hydrofarm.com/
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7.2.1.4 Data collection and analysis 

After 4 days in their respective Al solutions, the primary root length (mm) and shoot 

length (mm) of each plant were recorded. Total number and length (mm) of secondary 

roots and total number of dead plants were also recorded.  

The mean primary root length was used to compute relative tolerance length. Relative 

tolerance length (RTL) (%) = (Value with Al /Value without Al) x 100.  

Analysis of variance and a single degree of freedom contrast, and descriptive 

statistics, were computed using GenStat Statistical software Ver. 14 (GenStat., 2009). 

Excel 2013 was used to construct the graphs.  

7.2.2 Assessment of haematoxylin staining  

7.2.2.1 Genetic stock 

The Eragrostis tef genotypes: Holeta Key and Banja local (an Al-tolerant landrace), 

and Eragrostis pilosa (L.) P. Beauv. (Acc-30-5) and Eragrostis curvula (Schrad.) Nees 

var. Ermelo were used to assess the reaction of the plants to haematoxylin staining 

after exposure to Al.  

7.2.2.2 Experimental procedure  

The seeds of the test genotypes were germinated following the procedure described 

above. The Petri dishes were kept in a growth chamber at 25oC for 36 hours in the 

dark, and then 7 uniformly germinated seedlings were selected and placed in holed 

Eppendorf tubes to grow as described above. The hydroponic solution was 

supplemented with one of three doses of Al (0, 150, 250 μm AlK(SO4)2.12H2O µM). 

The pH of the Al solutions and the control were adjusted as indicated above.  

After 24 hours, the seedlings were removed and rinsed with distilled water three times 

for 20 minutes with slow agitation to remove unbound Al. The roots were then 

immersed in a solution of 0.2% (w/v) haematoxylin and 0.02% (w/v) KIO3 for 20 

minutes with slow agitation (Cancado et al., 1999). The stain was prepared a day 

before and was continuously stirred overnight to dissolve the haematoxylin (Delhaize 

et al., 1993). After 20 minutes in the staining solution, the roots were removed and 

washed with distilled water for 30 minutes to remove excess stain. The roots were 
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then rinsed with distilled water for 20 minutes with slow agitation and, kept wet and 

covered in a glass Petri dish until scoring for colour development. Finally, the staining 

pattern of the primary root, i.e., the tip 1.5 cm was viewed under a Nikon inverted 

microscope, and the degree of staining was scored on a 0-5 visual scale, where 0 was 

no stain and 5 was the maximal stain.   

Table 7.1. Formulation of modified Magnavaca’s nutrient solution used in the study 

No Elements Source Stock 
concentration 

MW g.L-1 Volume (ml) of stock per 
1 liter of treatment 

solution  

1) Ca Ca(NO3)2.4H2O 236 166.32 5 
  NH4NO3 80 20.8208  
2) K KCl 74.6 8.5932 5 
  K2SO4 174 20.328  
  KNO3 101 11.3652  

3) Mg Mg(NO3)2.6H2O 256.3 43.8592 5 

4) P KH2PO4 136 1.232 5 

5) Fe Fe(NO3)3.9H2O 403.8 6.2216 5 
  HEDTA 278.3 5.142368  

6) Micro nutrients     

 Mn MnCl2.4H2O 197.7 1.8018 1 
 Bo H3BO3 61.8 1.5708  
 Zn ZnSO4.7H20 287.4 0.6776  
 Cu CuSO4.5H20 249.5 0.154  
 Mo Na2.MoO4.2H2O 241.9 0.200  
Source: Jon E. Shaff, Cornell University (personal communication) 
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 Figure 7.1. Components of an indoor hydroponic system used to assess tef genotypes for Al-tolerance 

(A)-Areation system installation using infusion 
set 

(D) Plants planted in tubes floating in foam (E) Silica sand support in holed tubes

(B) Aeration system working

 

(C) A tef plant in 
an Eppendorf 
tube, supported 
by silica sand 
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7.3 Results  

7.3.1 The hydroponics system as a phenotyping platform 

The current indoor hydroponic phenotyping platform offered all the advantages of a 

controlled growth environment where the physical and the nutritional factors could be 

regulated. The physical environment including the temperature, and the relative 

humidity, and the light intensity, quality, and duration were controlled. As an indoor 

unit, the risk of contamination by dust particles was avoided. Algal development was 

also not noticed during the course of the experiment. A compact growth rack of 2 m 

height with inter-shelf spacing of 40 cm and width of 1.5 m has the potential to run 

many screening events at a time, all year round. 

An infusion set (medical grade) was used for the aeration system. The self-sealing 

latex end was connected to the air divider which in turn was attached to the air pump. 

The spike and the drip chamber were easy to clip to the floor of the tub using plastic 

tension clips. The spike, the drip chamber and the pipe were kink resistant. In practice, 

they were efficient delivering adequate aeration from the bottom of the tub (Figure 7.1 

A and B). The pressure was regulated by the spigot of an air divider attached to the 

pump and a roller clamp of the infusion set to uniformly aerate the tubs. Since the 

growth rack was compact with vertically arranged shelves, all the tubs were within the 

reach of the factory made infusion tubes with no need of air pipe extensions. The silica 

sand (0.25mm-2.5mm diameter) used to stabilize the seedlings also prevented the tiny 

germinated seeds of tef plants from escaping into the hydroponic tub through the hole 

at the base of the Eppendorf tubes (Figure 7.1 C and D).  

The consistency in the pH records of the solution before and after addition of different 

concentrations of Al was used to avoid procedural faults and ensure the reproducibility 

of the protocols followed. The linear decline in root length and relative root length of 

the genotypes and the consistent increases of the root pruning effect of the Al ions 

associated with increases in Al concentration also confirmed the reliability of the 

procedures used.  
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7.3.2 Selection of Al concentration for tef screening  

One-way analysis of variance for relative root length (RRL) (%) indicated highly 

significant differences (P<0.001) between the concentrations of Al for both the 

genotypes. The greatest reduction in RRL of 28% and 60% was observed between 0 

and 150 µM AlK(SO4)2 .12H2O for the tef genotypes Acc#55185 and Holleta Key, 

respectively (Table 7.2). The reduction in RRL declined with increasing level of Al for 

both the genotypes. The difference in RRL, i.e., T-SRRL was at a maximum (32%) 

between the two genotypes when the Al concentration was 150 µM (Table 7.2).  

Similarly, the one-way analysis of variance for actual root growth (mm) showed highly 

significant difference resulted from the differing Al levels. The difference in root length 

was at a maximum when the Al was increased from 0 to 150 µM for both the genotypes. 

The maximum difference for root length between the two genotypes was also observed 

at 150 µM of Al.  

Table 7.2. Result of one-way analysis of variance for relative root length (RRL) (%) and Root 
length (Al+) (mm) of tolerant and sensitive tef materials  

 

AlK(SO4)2 .12H2O 
(µM) 

RRL (%) Rl (mm) 

Acc#55185 
(T) 

Holleta Key 
(S) 

T-SRRL Acc#55185 
(T) 

Holleta Key 
(S) 

T-SRL 

0 100.00a 100.00a 0 18.39a 14.75a 3.64 

150 72.09b 40.24b 31.80 13.25b 5.79b 7.46 

250 46.66c 20.54c 26.12 8.57c 2.93c 5.64 

350 34.07d 17.49c 16.58 6.25d 2.57c 3.68 

450 28.31de 14.96c 13.35 5.23de 2.14c 3.08 

550 20.21e 13.65c 6.56 3.71e 1.96c 1.41 

Mean 50.2 34.5 15.70 9.23 5.02 4.21 

P (5%) <.001 <.001  <.001 <.001  
F statistic 58.05 121.75  58.14 68.27  
LSD (0.05) 12.01 9.16  2.207 1.811  
CV (%) 15.9 17.6  15.9 23.9  

RRL-relative root length; Rl-root length; T-tolerant, S-sensitive; T-S-difference between the two.  

 

The total number of dead plants was higher across all the Al levels for the sensitive 

variety. About 12 or 43% of the plants were dead for the sensitive variety at an Al level 

of 150 µM. At the same level of Al, no dead plants were recorded for the tolerant 

variety. The maximum difference between the tolerant and the sensitive for the number 

of dead plants was recorded at this level of Al (Figure 7.2).  
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Figure 7.2 Total number of dead plants for the tolerant and sensitive genotypes 
across different concentrations of Al 

 

Figure 7.3 Number and total length of plants with secondary roots 

 

The total number of plants with secondary roots and the total length of secondary roots 

was higher for the tolerant accession for all the Al levels. The maximum number of 

plants with secondary roots (6) and the maximum length (7.5 mm) of secondary roots 

was recorded for the tolerant accession at Al level of 450 µM. For the sensitive variety, 

the number of plants with secondary roots was at a maximum when the Al was 150 µM. 
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(Figure 7.3). Generally, it appeared that growth of secondary roots were initiated as a 

result of exposure of primary roots to Al as an adaptation mechanism. 

7.3.3 Screening of selected tef genotypes for Al-tolerance 

Differences were observed between tef genotypes screened for Al tolerance, both for 

relative root length (RRL) and root length (RL), when they were grown under 

hydroponic solution with 150 µM AlK(SO4)2.12H2O (Figure 7.4). The lowest RRL (%) 

was recorded for E. pilosa (Acc-30-5) and the highest was recorded for E. curvula var. 

Ermelo. The later had an RRL of over 100%, which was expected from prior 

experiments that had shown it to be a highly Al-tolerant species. Ten (36%) of the 

tested genotypes had RRL values of less than 50%. All the three parents of the 

mapping populations, i.e., Key Murrie, DZ-01-2785 and E. pilosa (Acc 30-5) and nearly 

all the released genotypes, belonged to this group sensitive genotypes. Most of the 

accessions and the mutant lines had RRL value of over 50%. Among the released 

genotypes, Mechare and Etsub had relatively, higher level of Al-tolerance in that order. 

Overall, the wide variation observed showed that the selected concentration of Al was 

efficient in discriminating between the sensitive and tolerant genotypes. The contrast 

between the growth of Al-tolerant and sensitive genotypes is shown in Figure 7.5. The 

root pruning effects of Al were clearly demonstrated on Al-treated E. pilosa and Holleta 

Key.  
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Figure 7.4 Root length (Rl) (mm) under 150 µM of AlK(SO4)2.12H2O and relative root length 

(%) of tef genotypes  
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E.pilosa  (Acc 30-5) E. curvula var. Ermelo 

  

  

Holleta Key (E. tef) Acc#55185 (E. tef) 
 
Figure 7.5 Root growth of selected E. tef, E. pilosa and E. curvula genotypes with and with 

out 150 µM of AlK(SO4)2.12H2O 
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7.3.4 Reaction of sensitive and tolerant E. tef genotypes to haematoxylin 

staining 

A visual assessment of the reactions of two Al-tolerant genotypes E. curvula (var. 

Ermelo) and E. tef (Dabo banja)  and two sensitive genotypes E. pilosa (Acc 30-5) and 

E. tef (Holleta Key) is presented in Figure 7.6. E. curvula showed no staining reaction 

across all the Al levels. The local Al-tolerant tef landrace, Dabo banja, showed a slightly 

purplish stain only at the highest level of Al. The two sensitive genotypes showed no 

staining at 0 Al and showed light purple and deep purple staining at concentrations 150 

and 250 µM AlK(SO4)2.12H2O, respectively. In both the sensitive materials, no staining 

reaction was observed on the outer most tip root part and the root cap of both light 

purple and deeply purple roots. In the rest of the roots, the tissues were uniformly 

stained with no uneven staining 
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0-Al 150 µM 250 µM 

   
E. curvula (Ermelo)  

   
E. tef (Dabo banja) 

   
E. pilosa (Acc 30-5) 

   
E. tef (Holleta Key) 

Figure 7.6 Haematoxylin staining of the primary roots of Al-sensitive and tolerant genotypes of tef and 

related species treated with various concentrations of Al 
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7.4 Discussion 

Hydroponic systems are often used as a phenotyping platform to assay Al tolerance 

using staining and root measurement techniques in several crop species (Tamas et 

al., 2006; Narasimhamoorthy et al., 2007; Famoso et al., 2010; Portaluppi et al., 2010). 

Compared to soil based techniques, hydroponics techniques of Al-tolerance screening 

allow for more stringent control over nutrient availability, Al-concentration, pH; aeration, 

light, temperature, and humidity. They also allow for the easy and non-destructive 

access to the root system, and facilitate the swift evaluation of large number of 

seedlings, yet require relatively little space (Carver and Ownby, 1995; Hede et al., 

2001; Raman and Gustafson, 2011).  

The root staining and root measurement methods used to assay Al tolerance under 

hydroponic conditions have been correlated with the results of field experiments 

conducted on acid soils (Spehar, 1994; Baier et al., 1995; Narasimhamoorthy et al., 

2007; Raman and Gustafson, 2011). In the present study, a hydroponic platform was 

successfully established with a high level of control over the growing conditions and is 

the first to be used to assess tef genotypes for Al-tolerance. 

The modified Magnavaca’s nutrient solution of Famoso et al. (2010) standardized for 

the screening of cereals was used in the present study. The five concentration of Al 

used in this study covered the concentrations of Al found to be most effective to screen 

for Al tolerance in sorghum (148 µM) (Magalhaes et al., 2007),  maize (222 µM) 

(Pineros et al., 2005), and rice (540 μM) (Blamey et al., 1991).  

According to the Geochem-EZ chemical speciation model of Shaff et al. (2010), the 

free Al3+ activity of 148 μM, 222 μM and 540 μM AlK(SO4)2.12H2O in modified 

Magnavaca’s nutrient solution was 27, 39 and 160 μM, respectively. In the present 

study, the selected Al level was 150 μM and this was equivalent to 148 μM 

AlK(SO4)2.12H2O or free Al3+ activity 27 μM determine to screen sorghum (Magalhaes 

et al., 2007). The rate determined for tef in this study was higher than the 27 μM or 

free Al3+ activity of 8.75 μM found to be optimal for the screening of wheat by Sasaki 

et al. (2004).  
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The relative root length (RRL) and root length (RL) declined consistently with increases 

in the level of Al from 0-550 μM for both the sensitive and tolerant genotypes tested. 

Significant differences were observed in the sensitive variety in response to 

concentrations of 0, 150 and 250 μM. For the tolerant variety, significant differences 

were observed as a result of all changes in concentrations of Al. This suggests that a 

higher concentration of Al such as 250 and 350 μM could be used to differentiate 

between the levels of Al-tolerance of relatively Al tolerant genotypes.  The difference 

between the two genotypes at a given Al concentration also declined as the 

concentration of Al was increased. The sensitive genotype was severely suppressed 

at the concentration of 550 μM Al for both Rl (mm) and RRL (%). Such a trend was 

also observed with wheat and sorghum in a previous study (Famoso et al., 2010). 

Hence, 150 μM was selected due to the high level of variation observed for this 

concentration both within and between the categorized genotypes. The assessment of 

twenty eight tef genotypes covering the spectrum of Al-tolerance varied in their 

sensitivity to Al at a concentration of 150 μM, which showed that this concentration had 

the discriminatory power to differentiate between the extremely sensitive (E. pilosa) 

and the extremely tolerant species (E. curvula) species as well as the genotypes of E. 

tef with intermediate levels of Al-tolerance (Figures 7.4 and 7.5). 

Hematoxylin is used in disease diagnosis and cytogenetic studies due to its powerful 

nuclear and chromatin staining properties. The staining mechanism is based on a 

haematein-mordant-cellular components interaction (Titford, 2005; Kiernan, 2010). 

The first application of haematoxylin staining for visual detection of tolerance to Al-

toxicity in crops was reported by Polle et al. (1978) on wheat. The technique worked 

well on tef and accurately discriminated between Al-sensitive and Al-tolerant 

genotypes evaluated in this study. 

In Al-sensitive genotypes, the negatively charged phosphate groups of DNA and the 

carboxyl group of proteins in cytoplasm are the main targets of toxic Al3+ ions 

(Matsumoto, 1991; Silva et al., 2000; Kochian et al., 2005; Miyasaka et al., 2007). The 

Al atoms already attached to these nuclear and cytoplasmic targets of the root tips 

serve as a mordant by attaching these targets to negatively charged haematin, 



___________________________________________________________________ 

179 

 

resulting in the development of a purple-blue colour (Gill et al., 1974; Polle et al., 1978; 

Kiernan, 2010).  

In the present study, the sensitive genotypes gave a positive reaction to the staining, 

whereas the tolerant genotypes did not Figures 7.5 and 7.6). This is in agreement with 

the use of the haematoxylin staining method to assess Al-tolerance in several cereals 

species including wheat, barley, sorghum and maize (Cancado et al., 1999; Nawrot et 

al., 2001; Anas and Yoshida, 2004; Stodart et al., 2007).  

In this study, the sensitive genotypes stained light purple at 150 µM and were deep 

purple at the concentration of 250 µM. The Al-tolerant local landrace, Dabo banja, 

showed slightly purple staining at the concentration of 250 µM. This result clearly 

shows that both the Al-concentration and the degree of host tolerance affect the 

intensity of colour development. 

Most sensitive varieties accumulate more Al in their root and therefore their intensity 

of purple coloration is higher. Further, higher levels of Al have a tendency to overcome 

the inherent tolerance of the genotypes (Polle et al., 1978; Cancado et al., 1999). 

Hence, specific Al levels that give adequate level of contrast between the sensitive and 

tolerant genotypes are needed if the Al exclusion mechanism through exudation of 

organic acids is the only mechanism of tolerance and its genetic control is known. For 

maize and sorghum 222 µM Al has been used for haematoxylin staining (Cancado et 

al., 1999; Anas and Yoshida, 2004).  

In the sensitive genotypes that tested positive for the staining, the root cap and the 

outer most root tip did not stain at any concentration of Al. Aluminium has been 

reported to affect cell division and cell elongation in the transition region of the root 

apex (Miyasaka et al., 2007). The differential reactions of Al-sensitive and Al-tolerant 

genotypes used in this study suggests that exclusion of Al from roots by organic acids 

may operate as a tolerance mechanism in tef. Nonetheless, since other tolerance 

mechanism that involve internal detoxification of Al after uptake by the root may stain 

positive for haematoxylin staining, positive staining does not necessarily indicate 

sensitivity. For instance, with rice the haematoxylin staining method does not 

discriminate between Al-sensitive and Al-tolerant genotypes in rice (Famoso et al., 
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2011). In rice, which is the most Al-tolerant species of popular cereals, a number of 

internal detoxification mechanisms involving quantitative genes have been reported 

(Huang et al., 2009; Xia et al., 2010; Chen et al., 2012; Huang et al., 2012).  

7.5 Conclusion  

In the present study a highly controlled indoor hydroponic system was developed that 

allowed for efficient discrimination between Al-sensitive and Al-tolerant tef genotypes. 

An appropriate concentration of Al (150 µM) that adequately discriminated between Al-

sensitive and Al-tolerant genotypes was also determined and was verified on 28 

genotypes. The results were consistent with the results of pot experiments conducted 

earlier in this thesis. Haematoxylin staining was shown to provide an effective 

technique for the visual assessment of Al-sensitivity and Al-tolerance in tef for the first 

time. 

In sets of genotypes evaluated in this study, Al-sensitive and Al-tolerant genotypes 

were consistently identified by both root growth measurement methods and 

haematoxylin staining methods. However, evaluations of many, diverse genotypes 

using haematoxylin staining compared with root measurements are needed before it 

would be safe to exclusively use this staining method as the only screening technique. 

Overall, the primary objective of this study was achieved, which was to develop a 

precise phenotyping platform to screen tef genotypes for Al-tolerance. 
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A Thesis Overview of the Major Research Findings and Their 

Implications 

Introduction  

Soil acidity and Al-toxicity are major constraints affecting crop production in high rainfall 

areas of Ethiopia which are traditionally considered as ‘surplus production areas’ (high 

potential areas), as opposed to the moisture stressed areas. Nonetheless, breeding 

for crop tolerance for specific adaptations to low soil pH or Al-toxicity has not yet been 

prioritized for tef and other cereals. The deployment of Al-tolerant crop varieties is an 

important component of sustainable acid soil management strategies in the context of 

small-scale farmers. In the past, the lack of a tef breeding programmes for adaptations 

to marginal environments such as acid soils has contributed to a decline in the overall 

genetic gain from the national  tef breeding programme in Ethiopia.  

The present PhD research project was initiated with the overall objective of undertaking 

pre-breeding activities preceding the breeding of tolerance to Al-toxicity in tef. 

Accordingly, activities focused on: 1) The characterization of the acid soil production 

environments present in Ethiopia; 2) The evaluation of different sets of tef genetic 

resources, screening for tolerance to soil acidity and Al-toxicity; 3) An assessment of 

the potential to use EMS to induce enhanced Al-tolerance in tef; 4) the determination 

of genetic diversity in a number of tef accessions collected from areas affected by acid 

soils; 5) The development of a phenotyping platform for the screening of Al-tolerance 

in tef. This overview presents a summary of the major finding and their implications. 
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Soil acidity: importance, assessment of perceived causes and indicators, coping 

strategies and implications for the cereal-based, mixed-farming systems of 

north western Ethiopia 

Major findings  

 Soil erosion; competing use of local resources and poor nutrient recycling; 

abandoning of traditional fertility management practices; minimal and 

unbalanced use of external inputs; exclusive use of acid-forming inorganic 

fertilizers, DAP and urea, were identified by farmers as the causes of soil acidity.  

 Soil erosion, soil acidity, the high cost of mineral fertilizers and lime, cash 

shortages, and a lack of seed of adaptable and high yielding crop varieties were 

identified as the top ranking constraints reducing tef production.  

 Both the mitigation strategies promoted by the national extension service, and 

farmers’ indigenous coping strategies, were constrained by various factors, and 

were not being implemented in practice. 

 Species and varietal tolerance of soil acidity was found to be one of the major 

factors that influenced crop and variety choices by farmers. 

 A decline in genetic diversity of once widespread crop species and landraces, 

and the rapid expansion of newly introduced, acid tolerant crops such as oat 

and triticale, were reported as clear indicators of the accelerating problems of 

soil acidity.  

 The study sites were different in their edaphic and climatic conditions. 

Nonetheless, the pH (H2O) of most of the soils of the study sites were all in a 

strongly acidic range (4.6–5.5). The soils of Gashena Akayita of Banja District 

were the most acidic of all, with high levels of exchangeable Al. Mn toxicity was 

also found to be a potential problem for the Districts of Enguti and Enerata.  

Implications  

 With the limited resources available to the farmers, sustainable management of 

acid soils and an improvement in the productivity of the farming systems seem 

unlikely, using the currently promoted management strategies. Hence, the 
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development of new technologies are needed that are compatible with the 

resources available to smallholders. 

 Farmers’ perceptions of soil acidity and their coping strategies are scientifically 

valid. Future research interventions need to capitalize on this knowledge if 

sustainable acid soil management is to be achieved. It was confirmed that the 

current top-down management approach of the extension service is not 

working, and is actually accelerating and widening the scale of the problem.  

 The importance of acid soil tolerance in crop and variety selection, and the rapid 

expansion of acid soil tolerant crop species with relatively low market values, 

and the poor performance of the so called “improved varieties” in areas with 

acid soils, suggest that the distribution of new tef varieties that are highly tolerant 

of Al-toxicity and reliably produce higher yields in acid soils is the best 

technological option to offer to the farmers. 

 Agro-ecological variations among the study sites suggest the need to address 

the full range of edaphic and climatic factors while breeding for tolerance to soil 

acidity and Al-toxicity. 

 Monitoring changes in crop genetic diversity and undertaking collections of 

landraces may be needed in order to rescue local landraces of various crop 

species under replacement by more acid tolerant crops. 

 

Response of selected tef [Eragrostis tef (Zucc.) Trotter] genotypes to soil acidity 

in pot and field experiments 

Major findings  

 The presence of genetic variation for Al-tolerance was demonstrated in tef for 

the first time.  

 The relative value of various tolerance indices for Al-tolerance evaluation were 

assessed.  

 Most of the Released Varieties were highly sensitive to soil acidity and Al-

toxicity.  

 Tolerant and sensitive varieties were identified for use in subsequent studies. 
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 The local check consistently outperformed the other varieties, both in the pot 

and field trials.  

 A lack of adequate contrast for Al-tolerance was observed among the three 

parents of mapping population.  

 When grown under unlimed condition, the grain yields of the ‘improved’ 

varieties, as well as the local check, were far below the national mean for grain 

yield by tef. 

 Feedback from farmers on their selection criteria and priorities for tef varieties 

were gathered during an on-farm evaluation of the improved varieties by a test 

group of farmers. 

Implications  

 The existence of significant levels of genetic variation among the test genotypes 

suggests that it will be possible to successfully breed for Al-tolerance in tef.  

 The high levels of sensitivity of the Released Varieties to Al-toxicity and their 

inferiority to the local landrace in both pot and field trials, suggests that attempts 

by the extension service to distribute these varieties to areas with acid soils is 

not viable, and will be detrimental to farmers growing these varieties. 

 A lack of adequate contrast for Al-tolerance among the three parents of mapping 

population ruled out the possibility of using the mapping populations developed 

from these parents for molecular mapping of genes for tolerance to soil acidity 

and Al-toxicity.  

 The consistent superiority of the local landrace, which is widely grown in the 

most acidic environments, indicates that there has been selection by farmers 

for tolerance to acid soils and of the acid tolerant landraces to the climatic 

conditions occurring in the areas with acid soils. This suggests that breeding for 

tolerance to acid soils must begin with a broad evaluation of tef genetic 

resources sourced from areas with acid soils.  

 An extremely high level of Al-tolerance was demonstrated for the closely related 

species E. curvula var. Ermelo in this study. Further studies on this species are 

warranted. This species could be used to enhance Al-tolerance in tef through 

conventional or gene transfer approaches, in the long run. 
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Evaluating the genetic diversity of tef [Eragrostis tef (Zucc.) Trotter] 

accessions collected from sites in Ethiopia with acid soils, using simple 

sequence repeats (SSR) markers 

Major findings  

 The selected SSR markers were effective at discriminating between the tef 

genotypes examined. 

 Analysis of molecular variance (AMOVA) showed highly significant differences 

(P<0.001) existed among and within populations.  

 Despite the wide geographical separation of the collection sites, 88.5% of the 

acid soil accessions could be grouped into two clusters (Clusters II and III), while 

90% of the Breeding Materials and Released Varieties could be grouped into 

Cluster I. 

 Accessions from north western Ethiopia exhibited a significant level of variation 

for most of the genetic diversity parameters. 

 The number of private alleles was significantly higher for tef varieties in the acid 

soil collections compared to the Released Varieties and the Breeding Materials. 

 Pair wise estimates of genetic identity and gene flow showed higher values 

between Released Varieties and Breeding Materials.  

 

Implications  

 A high levels of genetic diversity was found in acid soil accessions, which offers 

plant breeders an opportunity to breed for acid tolerant and agronomically 

superior varieties of tef. This will help to improve food security and the 

livelihoods of small-scale farmers, and will also help to increase and preserve 

rare alleles that may confer acid tolerance under farmers’ conditions. 

 The lower number of private alleles in Released Varieties can be related to the 

negative impact of plant breeding in narrowing the gene pool. 

 The current attempts to promote the use of released varieties of tef and other 

recently bred crop varieties in areas affected by acid soils, and the rapid 
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expansion of newly introduced, acid-tolerant crop species such as oat and 

triticale, put at risk the local landraces of tef. There is a clear need to collect a 

representative spectrum of accessions from acid soil environments. 

 The result of this study suggests the need to include all acid soil affected 

regions, and maximize the within region sampling during germplasm collection 

activities.  

 

Isolation and characterization of ethyl methane sulphonate (EMS) induced 

mutants of tef [Eragrostis tef (Zucc.) Trotter] for Al-tolerance and morpho-

agronomic traits  

Major findings  

 This study is the first to report the successful artificial mutation of tef for 

enhanced Al-tolerance  using EMS. 

 The screening technique combined the use of a strongly acidic soil with an 

external application of a toxic concentration of an Al solution, and subsequently 

exposed the test plants to drought for 96 hours. This was successful in 

identifying mutant lines with enhanced Al-tolerance.  

 There were significant differences (P<0.001) between mutant lines; between the 

mutant lines and the parent; and between mutant lines and the sensitive check. 

However, no significant difference was observed between the mutant lines and 

the tolerant check.  

 Significant differences were also observed between the mutants for 16 of the 

20 quantitative traits measured, confirming that EMS induced mutagenesis is a 

successful approach to creating a diversity of phenotypic expression in tef. 

Implications  

 EMS can be used to induce mutations in tef that include mutations for enhanced 

levels of Al-tolerance in Al-sensitive but popular tef varieties. 

 The screening technique employed in this study can be used in similar studies 

that aim at the identification of Al-tolerant breeding materials in tef and other 

crops. 
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 The mutant lines with enhanced Al-tolerance identified in this study shall be 

evaluated for important agronomic traits and their adaptability to other edaphic 

and climatic conditions in targeted environments with acid soils. 

 

Development of a hydroponic facility as a phenotyping platform to assess for Al-

tolerance in tef [Eragrostis tef (Zucc.) Trotter] using root growth measurements, 

and the haematoxylin staining technique 

Major findings  

 A highly controlled, indoor hydroponic system was developed that provided 

characterization reliable facility for the accurate assessment of tef breeding 

materials for levels of Al-tolerance or sensitivity. 

 A level of 150 µM AlK(SO4)2.12H2O was found to be an appropriate dosage in 

order to screen tef for Al-tolerance under hydroponics conditions.  

 Haematoxylin staining was verified for the first time on tef as a visual 

assessment technique to identify Al-tolerance in the roots of tef plants.. 

 

Implications  

 The novel hydroponic facility, and the root growth measurement methods tested 

on tef plants grown in the facility, can be used as a reliable phenotyping platform 

to launch a breeding programme to breed novel varieties of tef and other crops 

that will perform well in environments in Ethiopia with acid soils.  

 In a range of tef germplasm screened in this study, the result of the 

haematoxylin staining was consistent with that of the root growth measurement 

method. However, a future evaluation of more tef breeding materials using 

haematoxylin staining and root measurements is needed to conclusively prove 

the validity of the haematoxylin staining method for tef evaluations.  

 The superior genotypes evaluated in this study can be used as genetic stocks 

for future breeding programmes and genetic studies of Al-tolerance in tef. 


