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Abstract

One challenge in clinical medicine is that of the correct diagnosis of disease. Medical researchers

invest considerable time and effort to improving accurate disease diagnosis and following from

this diagnostic tests are important components in modern medical practice. The receiver oper-

ating characteristic (ROC) is a statistical tool commonly used for describing the discriminatory

accuracy and performance of a diagnostic test. A popular summary index of discriminatory

accuracy is the area under ROC curve (AUC). In the medical research data, scientists are

simultaneously evaluating hundreds of biomarkers. A critical challenge is the combination

of biomarkers into models that give insight into disease. In infectious disease, biomarkers

are often evaluated as well as in the micro organism or virus causing infection, adding more

complexity to the analysis. In addition to providing an improved understanding of factors

associated with infection and disease development, combinations of relevant markers are im-

portant to the diagnosis and treatment of disease. Taken together, this extends the role of, the

statistical analyst and presents many novel and major challenges. This thesis discusses some

of the various strategies and issues in using statistical data analysis to address the diagnosis

problem, of selecting and combining multiple markers to estimate the predictive accuracy of

test results. We also consider different methodologies to address missing data and to improve
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the predictive accuracy in the presence of incomplete data.

The thesis is divided into five parts. The first part is an introduction to the theory behind

the methods that we used in this work. The second part places emphasis on the so called

classic ROC analysis, which is applied to cross sectional data. The main aim of this chap-

ter is to address the problem of how to select and combine multiple markers and evaluate

the appropriateness of certain techniques used in estimating the area under the ROC curve

(AUC). Logistic regression models offer a simple method for combining markers. We applied

resampling methods to adjust for over-fitting associated with model selection. We simulated

several multivariate models to evaluate the performance of the resampling approaches in this

setting. We applied these methods to data collected from a study of tuberculosis immune

reconstitution inflammatory syndrome (TB-IRIS) in Cape Town, South Africa. Baseline levels

of five biomarkers were evaluated and we used this dataset to evaluate whether a combination

of these biomarkers could accurately discriminate between TB-IRIS and non TB-IRIS patients,

by applying AUC analysis and resampling methods.

The third part is concerned with a time dependent ROC analysis with event-time outcome

and comparative analysis of the techniques applied to incomplete covariates. Three different

methods are assessed and investigated, namely mean imputation, nearest neighbor hot deck

imputation and multivariate imputation by chain equations (MICE). These methods were used

together with bootstrap and cross-validation to estimate the time dependent AUC using a

non-parametric approach and a Cox model. We simulated several models to evaluate the

performance of the resampling approaches and imputation methods. We applied the above

methods to a real data set.

The fourth part is concerned with applying more advanced variable selection methods to predict

the survival of patients using time dependent ROC analysis. The least absolute shrinkage and
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selection operator (LASSO) Cox model is applied to estimate the bootstrap cross-validated, 632

and 632+ bootstrap AUCs for TBM/HIV data set from KwaZulu-Natal in South Africa. We

also suggest the use of ridge-Cox regression to estimate the AUC and two level bootstrapping

to estimate the variances for AUC, in addition to evaluating these suggested methods.

The last part of the research is an application study using genetic HIV data from rural

KwaZulu-Natal to evaluate the sequence of ambiguities as a biomarker to predict recent infec-

tion in HIV patients.
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Chapter 1

Introduction

1.1. Motivation, purposes and objectives

One challenge in clinical medicine is that of the correct diagnosis of disease. It is patently

undesirable to declare someone as being infected with a serious disease when in fact the in-

dividual is disease free and likewise undesirable to declare someone as disease-free when in

fact the individual is diseased. Both errors have serious implications to the individual and

the community at large. Medical researchers invest considerable time and efforts to improve

accurate disease diagnosis. The receiver operating characteristic (ROC) is a commonly used

statistical tool for describing the discriminatory accuracy and performance of diagnostic tests

(Pepe [104]). The ROC curve was first used in signal detection theory (Egan [40]; and Green

and Swets [59]). In the late 1980’s, researchers started applying ROC curves methodology

to medical diagnostic test evaluation (Hanley [61], Shapiro [119]). However the use of ROC

curves in Radiology was earlier reported in the 1980s in a paper by Swets and Pickett [132].

In general the ROC analysis has been extended for use in visualizing and analysing the behav-

ior of diagnostic systems (Swets [134]). A receiver operating characteristic (ROC) graph is a

technique for visualizing and ranking classifiers based on their performance. It is a commonly
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Chapter 1 – Introduction

used statistical tool for describing the discriminatory accuracy of a diagnostic test. In order to

appropriately define the ROC curve in relation to disease diagnosis, one needs to understand

the difference between sensitivity and specificity of a test. Sensitivity is the probability that

the test result is positive given the individual is truly diseased. Specificity is the probability

that the test result is negative given the individual is truly disease free. Suppose the classifica-

tion of a sample from an individual into diseased or disease free depends on a set threshold or

cut-off value of a continuous biomarker. At each of these cut-offs an estimate of the sensitivity

and specificity of the test can be found. The ROC is a plot of sensitivity versus 1−specificity

for different values of the cut-off points of the continuous biomarker.

Combining multiple biomarkers to estimate the area under the ROC curve or the AUC is of

interest in this era of multiple assessments. When we have several biomarkers we can combine

them to obtain better diagnostic accuracy and improve the AUC by maximizing its value over

all possible combinations of the biomarkers (Fang et al. [44]). We are interested in combining,

selecting and evaluating biomarkers to estimate the AUC and predict specified diseases. For

this purpose we use Logistic regression as it is commonly used when the outcome or response of

the presence is binary. A Cox model is also used in case of a time to event outcome or response.

In order to obtain a better AUC we applied feature selection, also known as variable selection,

which is desirable in order to obtain an interpretable prediction rule. This is a technique of

selecting a subset of relevant features for building models and it improves model performance.

Two methods are used, namely stepwise selection and LASSO, the latter being very attractive

as it simultaneously performs variable selection and shrinkage.

In our work, we use resampling procedures which are non-parametric inference methods based

on generating repeated samples drawn from the original sample. They can be implemented

computationally by simulating these new samples.

2



Chapter 1 – Introduction

The Cross-Validation method is a standard tool for estimating prediction error and it is a

specialized resampling procedure for application in model validation problems. It is mainly

used in settings where the goal is prediction and one is interested in estimating how accurately

a predictive model will perform in practice.

In 1979 Efron [37] introduced the bootstrap as a general method for estimating the sampling

distribution of a statistic based on the observed data. This method is also used for assigning

measures of accuracy to statistical estimates. Bootstrapping is accomplished by drawing with

replacement n observations from among the original set of n observations (unlike in the cross-

validation). In addition to that we also use the 632+ bootstrap method which was proposed by

Efron [37] and Efron and Tibshirani [39] in order to reduce the upward bias of the parameter

of the leave-one-out bootstrap method.

Some methodologists have described the problem of missing data as one of the most important

statistical and design problems in research. This is of greater concern when decisions are

to be made about the appropriateness of the care a patient should receive and also when

one is interested in using the predictive model to discriminate subjects as likely to have a

certain characteristic from those who do not. Missing values can severely affect the results

if there is dependence between the outcome and the missing data process, therefore dealing

with missingness in the data becomes necessary. Current available methods in analysing ROC

curves are limited to complete data sets and classical ROC analysis. In the development of

prognostic models the presence of missing data is a frequently encountered problem. Thus we

use the time dependent area under ROC curves to compare different imputation methods.

The main purpose of this thesis is to examine the performance of different resampling methods

with a particular interest to cross-validation and Bootstrap methods to estimate the AUC for

procedures that select and combine biomarkers and also to make inferences. We simulated
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several multivariate models to evaluate the performance of the resampling approaches in this

setting. We applied the resampling methods to data collected to study TB-IRIS by the Institute

of Infectious Disease and Molecular Medicine (IIDMM), University of Cape Town, South Africa.

The author was given permission to use the data through Professor Robert Wilkinson the lead

PI in the project. TB-IRIS occurs in 8%−43% of HIV-infected patients receiving TB treatment

after starting antiretroviral therapy (ART) [90, 95]. Baseline levels of five biomarkers were

evaluated and this dataset was used to investigate whether a combination of these markers could

accurately discriminate between IRIS and non-IRIS patients by applying the AUC analysis and

resampling methods.

In addition, we applied time dependent ROC analysis to data collected at GF Jooste Hospital

in Cape Town - a secondary-level hospital. This was done to predict the survival of patients

having meningitis in a high TB/HIV prevalence setting in this era of increasing availability

of ART. The hospital serves high density low income patients: it is a 200-bed public sector

referral hospital that serves adult patients from a community of approximately 1.3 million

people. We use this data set to explain how well the predictor index of combined variables in

TBM/HIV patients can accurately discriminate between the patients that may die during the

first six months and those who may be still alive beyond that time. Moreover we have extended

our discussion to genetic data on HIV drug resistance collected by the Genomics centre of the

University of KwaZulu-Natal.

The thesis objectives can be expressed as follow:

• To provide a solid understanding of the diagnosis of diseases and the use of ROC curves

for this purpose.

• To evaluate whether a combination of biomarkers can accurately discriminate between
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two groups of patients - namely diseased and non-diseased subjects and examining the

performances of different methods, with a particular interest in cross-validation and

bootstrap cross-validation, as methods for the estimation of the AUC and its variance.

• To handle missing values in the data and to, compare the different imputation methods in

evaluating different resampling methods and to estimate the time dependent area under

ROC curves.

• To compare resampling methods with respect to predictive power. These methods were

used together with the penalized Cox model using the LASSO method. We proposed

ridge Cox model to estimate time dependent AUC using bootstrap methods. We also

proposed two level bootstrapping techniques to estimate variances and evaluated these

techniques through simulation studies.

• To apply ROC analysis to a genetic data set and to evaluate the effect of genetic ambi-

guities in biomarker detection of recent HIV infection. We then examine which variables

are correlated with recently infected patients.

1.2. Background and related studies on ROC analysis

The history of ROC curves goes back to the Second World War where the methodology was

firstly used in analysing radar signals and later used in signal-detection theory (see Fawcett [47]

or Green and Swets [59]). Since then the usage and applications of ROC curves has spread to

many other fields such as psychophysics, medicine (Hanley [61], Shapiro [119]), epidemiology

(Aoki et al. [8]), radiology (Metz [97]), social sciences and evaluation of machine learning

techniques (Spackman [126]). ROC analysis is a very rich area for research and a large number

of articles have been published in the last two decades.
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The medical decision-making community has extensive literature on the use of ROC graphs

for diagnostic testing (Zou [157]). Swets et al. [135] brought ROC curves to the attention of

the wider public with their Scientific American article.

One of the earliest adopters of ROC graphs in machine learning was Spackman [126], who

demonstrated the value of ROC curves in evaluating and comparing algorithms. Recent years

have seen an increase in the use of ROC graphs in the machine learning community and for

examining the effectiveness of diagnostic markers in distinguishing between diseased (D) and

non-diseased (D) individuals (Greiner et al., [60], Pepe [104], Shapiro [119] and Zhou et al.

[156]). A diagnostic test result can be binary, ordinal or continuous. A binary test result

simply provides the diagnosis as positive or negative. Ordinal and continuous tests provide

measurements (on an ordinal or continuous scale). For instance, blood pressure, as an indicator

of hypertension, serves as an example of a continuous marker. Ordinal markers are widely

used in radiology for examining X−rays, where radiologists provide rankings corresponding to

likelihood of disease.

The area under the ROC curve (AUC) is a popular measure to summarize the ROC curve in

diagnostic testing. It is also used in non-diagnostic testing systems, for example the use of

AUC in clinical trials (Hauck [64]) and in toxicology (Bosch et. al. [48]).

Some experimental studies comparing different accuracy estimation methods have been previ-

ously proposed but most of them were on artificial or small datasets. We now briefly describe

some of these studies:

Dodd and Pepe [32] proposed a new method for making inferences about covariate effects

on the performance of a classifier. The advantage of this approach is that “it can be simply

applied by adapting standard binary regression methods as it requires fewer assumptions than
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existing ROC regression methods”.

Zhang et al., [155] considered clinical trials with two treatments and a non-normally distributed

response variable. The authors mentioned that the semi-parametric area under the ROC curve

(AUC) regression model proposed by Dodd and Pepe [32] can be used. However, because

a logistic regression procedure is used to obtain parameter estimates and a bootstrapping

method is needed for computing parameter standard errors, their method may be cumbersome

to implement. In [155] it is proposed that a set of AUC estimates be used to obtain parameter

estimates and combine DeLong’s method [29] and the delta method for computing parameter

standard errors. Their new method avoids the heavy computation associated with the method

of Dodd and Pepe and hence is easy to implement.

An estimation of the AUC is of interest. The resampling methods, such as Cross-Validation

and Bootstrap can be used for this purpose.

Efron [38] conducted five sampling experiments and compared leave-one-out cross-validation,

several variants of bootstrap and several other methods. The purpose of the experiments was

to investigate some related estimators, which seem to offer considerably improved estimation in

small samples. The results indicated that a leave-one-out cross-validation gives nearly unbiased

estimates of the accuracy, but often with unacceptably high variability, particularly for small

samples and that the 632 bootstrap performed best.

Fang et. al. [44] considered the optimal linear combination that maximises the AUC and

compared the estimation of the AUC associated with the estimated coefficients using cross-

validation, bootstrap and re-substitution methods. The authors recommended the cross-

validation procedure, which works very well as an estimate for the AUC associated with the

estimated coefficients.
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The authors of [152] proposed two easily-implemented algorithms, to find the best linear com-

bination of multiple biomarkers that optimise the partial AUC (pAUC), for given a range of

specificity values. Analysis of synthesized and real datasets shows that the proposed algorithms

achieve larger predictive pAUC values on future observations than existing methods, such as

Su and Lius method [130], logistic regression and others.

1.3. Thesis outlines

In this thesis we are mainly concerned with the ROC curves in the context of biomedical

research diagnostic testing and the computations of the area under the ROC curves (AUC).

The thesis is structured into nine chapters.

Chapter 1, which is the current chapter is an introduction to the thesis, which is itself divided

into three sections. In Sections 1.1 and 1.2 we introduce the purposes of the thesis, the ideas

and background behind the ROC curves analysis. Section 1.3 - the current section - describes

the structure of this thesis.

In Chapter 2 we discuss the concept of Receiver Operating Characteristic (ROC) Curves. This

chapter is divided into eight sections. We first give some important definitions and basic

concepts in Section 2.1. Section 2.2 is mainly concerned with using ROC curves for continuous

tests. In Section 2.3, we introduce four important indices of ROC curves; each is discussed in

a separate subsection. Section 2.4 discusses binormal ROC curves. In Section 2.5, we discuss

ROC curves for ordinal data. The ROC estimation is discussed in Section 2.6 and this is

divided into three subsections. This chapter also briefly discusses the modeling of covariates

effects on test results (Section 2.7) and on ROC curves (Section 2.8).

In Chapter 3, we discuss time dependent ROC curves. Section 3.1 is an extension of classical
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sensitivity and specificity analysis in the context of time dependent ROCs. Section 3.2 explains

time dependent true and false positive fractions. Section 3.3 illustrates the combination of time

dependent true and false positive fractions.

In Chapter 4 we discuss missing values in data sets. Section 4.1 explains the reasons for

missing values and this section is divided into four subsections. In Section 4.2 the imputation

strategies are discussed; these are the mean imputation, nearest neighbor hot deck imputation

and multivariate imputation via chain equation.

In Chapter 5 we start applying the proposed methods using a cross sectional data set. We give

an introduction in the beginning of this chapter (Section 5.1). Section 5.2 discusses variable

selection methods for biomarkers. This section is divided into three subsections. In Section 5.3,

we discuss some of the resampling methods in the context of multiple biomarkers. We divided

this section into ten subsections discussing over-fitting and various resampling methods, while

the last two subsections contain two algorithms to obtain and estimate the AUC through cross-

validation and bootstrapping respectively. The next two sections (5.4 and 5.5) discuss logistic

regression and linear discriminant models respectively. Section 5.6 presents our proposed

algorithm to obtain the AUC. In Section 5.7 we are concerned with simulation studies, while

in Section 5.8 we apply resampling methods to a real dataset that has been collected from a

study of tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in Cape Town.

Chapter 6 discusses the problem of combining multiple variables to estimate predictive accu-

racy; however the response variable in this chapter is time dependent. We also introduce the

problem of estimation accuracy in presence of missing values in some variables. This chapter

includes an introduction (Section 6.1), methods to address the missing data problem (Section

6.2), methods for estimating time dependent AUC (Section 6.3) and Section 6.4 discusses the

models that have been used in the analysis. Section 6.5 is an algorithm. Section 6.6 presents
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the simulation studies, followed by an application using real data (Section 6.7) and specific

conclusions to the chapter (Section 6.8).

In Chapter 7 we are mainly interested in predicting the outcome for TBM/HIV dataset from

Cape Town. Section 7.1 is an introduction. Section 7.2 discusses estimation methods for

predictive accuracy using the penalized Cox model, followed by important resampling methods

in Section 7.3. Section 7.4 is an algorithm. Section 7.5 presents the simulation studies, followed

by an application to TBM in Section 7.6 and a conclusion (Section 7.7).

Chapter 8 evaluates proportion of ambiguities as a biomarker to predict recent HIV infection

in rural KwaZulu- Natal, South Africa. This chapter includes three sections, where Section 8.1

is an introduction, Section 8.2 introduces the HIV data with genetic information and discusses

the methods used and in Section 8.3 we give key results and a discussion.

Finally, Chapter 9 is a conclusion to the thesis where also suggest some future work that can

be done as an extension to the current work.

We would like to mention that key publications out of this thesis are under review and prepa-

ration. These are:

1. M. B. Elshareef, L. Dodd and H. G. Mwambi, Combining multiple biomarkers in di-

agnostic testing with an application to TB disease data from Cape Town, submitted to

African Health Sciences.

2. M. B. Elshareef and H. G. Mwambi, Predictive accuracy of multiple time dependent

biomarkers with missing values in diagnostic testing, submitted to Pakistan Journal of

Statistics.

3. M. B. Elshareef and H. G. Mwambi, The role of ambiguous nucleotides as biomarkers of
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recent HIV infection in rural KwaZulu-Natal, South Africa, to be submitted.

4. M. B. Elshareef and H. G. Mwambi, Use of resampling methods to predict the outcome in

tuberculous meningitis in a high HIV prevalence patients in South Africa, to be submitted.

5. M. B. Elshareef and H. G. Mwambi, Classic and time dependent AUC estimations: A

survey study, in preparation.
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Chapter 2

Receiver operating characteristic

(ROC) curves

We would like to mention that in most of the work on this chapter we follow mainly the book

of Pepe [104] supplemented with our own understanding of the problem.

2.1. Definitions and basic concepts

In this section we present some of the basic and important definitions and concepts that will

be required throughout this thesis.

If a subject is classified as diseased or non-diseased and a test result as positive or negative, -

indicating the presence or absence of the disease, - then there are four possible test result-true

status outcome combinations. These are

• when the test reports a positive result for a person who actually has the disease. We

refer to this result as a true positive (TP),

• when the test reports a negative result for a person who actually is disease-free. We refer

to this result as a true negative (TN),
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• when the test reports a positive result for a person who is disease-free. We refer to this

result as a false positive (FP),

• when the test reports a negative result for a person who actually has the disease. We

refer to this result as a false negative (FN).

When a single test is performed, the person may in fact have the disease (D = 1) or the person

may be disease-free (D = 0). The test result may be positive (Y = 1), indicating the presence

of disease, or the test result may be negative (Y = 0), indicating the absence of the disease.

Using these actual disease status and test results variables, the previous four test result-true

status combinations can be summarized in the following table.

D = 1 D = 0

Y = 1 True Positives (TP) False Positives (FP)

Y = 0 False Negatives (FN) True Negatives (TN)

We define the true positive and negative fractions to be respectively TPF =
TP

TP + FN
and

TNF =
TN

TN + FP
.

Definition 2.1.1. The sensitivity (true positive fraction TPF ) is defined to be the proba-

bility that a test result will be positive when the disease is present in the individual, while the

specificity (true negative fraction TNF ) is defined to be the probability that a test result will

be negative when the disease is not present.

In probability notation the sensitivity and specificity are written respectively as

TPF = P (Y = 1|D = 1) = TP/(TP + FN) and (2.1)

TNF = P (Y = 0|D = 0) = TN/(TN + FP ). (2.2)
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Sensitivity and specificity describe how well the test discriminates between patients with and

without disease. In fact we are also interested in the probability of disease, given a positive

test result and likewise the probability of no disease given a negative test result. This leads to

two predictive values of the test formally defined below.

Definition 2.1.2. The positive predictive value, PPV, is defined as the probability that

disease is present when the test is positive, while the negative predictive value NPV is

defined as the probability that disease is not present when the test is negative.

In probability notation, the PPV and NPV are written respectively as

PPV = P (D = 1|Y = 1) = TP/(TP + FP ) and

NPV = P (D = 0|Y = 0) = TN/(TN + FN).

Definition 2.1.3. The likelihood ratio, LR, is the probability of a given test result among

people with the disease divided by the probability of that the test result among people without

the disease.

In probability notation the LR is written as P (Y = a|D = 1)/P (Y = a|D = 0), where a = 0

or 1 in the case of a binary test result.

Definition 2.1.4. The positive likelihood ratio, LR+, is defined to be the ratio between

the probability of a positive test result given the presence of the disease and the probability of

a positive test result given the absence of the disease, while the negative likelihood ratio,

LR−, is defined to be the ratio between the probability of a negative test result given the presence

of the disease and the probability of a negative test result given the absence of the disease.
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In probability notation the LR+ and LR− are written respectively as

LR+ = P (Y = 1|D = 1)/P (Y = 1|D = 0) and

LR− = P (Y = 0|D = 1)/P (Y = 0|D = 0).

Remark 2.1.1. Note that from Definitions 2.1.1 and 2.1.4 we obtain

LR+ =
sensitivity

1− specificity
and LR− =

1− sensitivity

specificity
.

2.2. Introduction to receiver operator characteristic curve (ROC) for continuous

tests

Definition of ROC Curves

A continuous test means a test based on a continuous test variable or biomarker as a measure

of presence of disease. For a threshold c, a binary test from the continuous test result Y is

said to be positive if Y ≥ c and negative if Y < c. The corresponding true and false positive

fractions, at threshold c, are defined to be

TPF (c) = P [Y ≥ c|D = 1], (2.3)

FPF (c) = P [Y ≥ c|D = 0], (2.4)

respectively.

Definition 2.2.1. The ROC curve based on a continuous is the set of all possible true and

false positive fractions for Y for all c. That is to say

ROC(.) = {(FPF (c), TPF (c))| c ∈ R}. (2.5)

The ROC curve shows the trade-off between specificity and sensitivity as the threshold for

determining positivity varies.

15



Chapter 2 – Receiver operating characteristic (ROC) curves

Remark 2.2.1. Note that as c increases, both FPF (c) and TPF (c) decrease, while if c

decrease, then both FPF (c) and TPF (c) increase. In the special cases of c −→ ∞, then

limc−→∞FPF (c) = limc−→∞ TPF (c) = 0 and if c −→ −∞, then limc−→−∞ FPF (c) =

limc−→−∞ TPF (c) = 1. Thus the ROC curve is a monotone increasing function in (0, 1)×(0, 1)

(see Figure 4.1 of Pepe [104] and Figure 2.1 below).

The ROC curve can also be written in the form (see Pepe [104]):

ROC(.) = {(t, ROC(t))| t ∈ (0, 1)}, (2.6)

where t 7→ TPF (c), thus this defines the ROC function and c is the corresponding threshold

given by the solution to FPF (c) = t.

Figure 2.1: A sketch of a ROC curve

2.2.1 Properties and attributes of ROC curves

A test result is said to be perfect if TPF (c) = 1 and FPF (c) = 0 for some threshold c.

Graphically, the diagnostic accuracy increases as its ROC curve approaches the left upper
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corner as shown in Figure 2.2.

On the other hand an uninformative test result is defined to be the test that does not separate

between diseased and non-diseased subjects. That is TPF (c) = FPF (c), ∀c. Graphically the

ROC curve of a uninformative test result is a straight line with slope 1 (i.e., the straight line

joining the points (0, 0) and (1, 1) and the area under such curve is 0.5.

Figure 2.2: ROC curves for perfect, uninformative and two tests A and B. Test A is better

than B

In the following proposition we quote some important results from Pepe [104].

Proposition 2.2.1. (i) The ROC curve is invariant to strictly increasing transformations of

Y,

(ii) if SD and SD denote the survivor function for Y in diseased and non-diseased populations,

where SD(y) = P [Y ≥ y| D = 1] and SD(y) = P [Y ≥ y| D = 0], then the ROC curve
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can be represented as follows:

ROC(t) = SD(S−1
D

(t)), t ∈ (0, 1), (2.7)

(iii) with LR being the likelihood ratio, the optimal criterion based on Y for classifying sub-

jects as positive for disease is LR(Y ) > c, in the sense that it achieves the highest

true positive fraction among all possible criteria based on Y with false positive fractions

t = P (LR(Y ) > c|D = 0).

Proof . We only show (ii). For other statements see Results 4.1, and 4.4 of Pepe [104]. Now

to show Equation (2.7), let c = S−1
D

(t), that is the corresponding FPF = t. Thus we have

P [Y ≥ c| D = 0] = t. The corresponding TPF is P [Y ≥ c| D = 1] = SD(c). Therefore the

TPF that corresponds to FPF = t is ROC(t) = TPF = SD(c) = SD(S−1
D

(t)). Hence the

result. �

We conclude this section by listing some of the important attributes of the ROC curves. These

attributes have been listed in Table 4.1 of Pepe [104] and in Fawcett [47]. In summary the

ROC curve:

• Provides a tool for describing the test across a range of values and it is useful in early

evaluation of tests when specific thresholds are unknown.

• Can be a useful guide for choosing thresholds in real applications.

• Is a useful mechanism for comparison between different non-binary tests, as it is scale

invariant.
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2.3. Some of ROC curves indices

In this section we briefly go over some of the ROC indices, which provide important information

about the ROC curves. Many indices have been developed in the literature and are used in

various applications, for example see Shapiro [119], Greiner et al., [60], Zhou et al., [156] and

Pepe [104].

2.3.1 Area under ROC curves (AUC)

While the ROC curve contains most of the information about the accuracy of a continuous

marker, we may want to reduce ROC performance to a single statistic representing expected

performance. The most commonly used global index is the area under the ROC curve (AUC).

It is a convenient way of comparing markers. For continuous markers the AUC is defined as

AUC =

∫ 1

0
ROC(t)dt. (2.8)

We note from Equation (2.8) that the AUC is a portion of the area of the unit square. Hence

its value is always bounded between 0 and 1. Values of AUC close to 1 indicate that the

marker has high diagnostic accuracy and a test is called perfect if its AUC = 1, while a test

is called an uninformative if its AUC = 0.5. AUCs less than 0.5 may suggest the scale needs

transformation so that increasing values indicate increasing likelihood of disease.

Definition 2.3.1. Let A and B be two tests. We say that A is better than B if

ROCA(t) ≥ ROCB(t), ∀ t ∈ (0, 1).

Proposition 2.3.1. Let A and B be two tests such that A is better than B. Then

AUCA ≥ AUCB.
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Remark 2.3.1. The converse of Proposition 2.3.1 is not necessarily true. For example it may

be the case that for some number k ∈ (0, 1), we have

ROCA(t) ≥ ROCB(t), ∀ t ∈ (0, k] and ROCB(t) ≥ ROCA(t), ∀ t ∈ [k, 1).

Thus ∀ t ∈ (0, k] test A is better than B and ∀ t ∈ [k, 1) test B is better than A

The AUC has an interesting statistical interpretation (Bamber [13], Hanley and McNeil [61],

Pepe [104]). It is equal to the probability that a test result chosen randomly from diseased

subjects is greater than a test result chosen randomly from non-diseased subjects. In general

AUC = P (YD > YD) +
1

2
P (YD = YD).

For a continuous test we have P (YD = YD) = 0. Thus the AUC for a continuous test will have

the form

AUC = P (YD > YD).

To show the above we have

AUC =

∫ 1

0
ROC(t)dt =

∫ 1

0
SD(S−1

D
(t))dt

=

∫ −∞
∞

SD(y)dSD(y)

=

∫ ∞
−∞

P (YD > y)fD(y)dy

=

∫ ∞
−∞

P (YD > y, YD = y)dy

= P (YD > YD)

by change of variable from t to y = S−1
D

(t), where fD denotes the probability density function

of YD and independence of YD and YD, we can write the AUC in the form above.

The interpretation of AUC as probability of correctly ordering the diseased and non-diseased

subjects is an interesting result but it does not provide the best interpretation of this important
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measure. We thus can regard the AUC as an average of TPF, averaged uniformly over the

whole range of FPF in (0, 1). Dodd [30] suggested the use of a weighted average approach,

weighting certain parts of FPF domain more than others.

2.3.2 The ROC(t0)

If we are interested in a specific FPF value say t0, then the corresponding TPF value ROC(t0)

provides a relevant summary index.

We can interpret ROC(t0) as a proportion of diseased subjects that have test results greater

than 1−t0 quantile for non-diseased observations. If t0 is small then the ROC(t0) is interpreted

as the proportion of diseased subjects with test result values above the normal range.

One of the restrictions of ROC(t0) is that it does not give all the information as the ROC(t).

For two tests A and B such that ROCA(t0) = ROCB(t0), if ROCA(t) ≥ ROCB(t) for any

t ∈ (0, t0), then it is obviously that test A is better than test B with regard to the overall

performance.

2.3.3 Partial AUC

The partial area under the curve pAUC(t0) is defined to be

pAUC(t0) =

∫ t0

0
ROC(t)dt. (2.9)

It is a measure concerned with the values of FPF ∈ (0, t0) and it uses all points on (ROC(0),

ROC(t0)). A lower bound for pAUC is
t20
2

and this happens when the test is uninformative

(TPF (c) = FPF (c) for all thresholds c). An upper bound for pAUC is t0 and this happens

when the test is perfect.
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The normalised value of pAUC is defined to be pAUC(t0)/t0 and it clearly ranges from t0/2 to

1 for uninformative and perfect tests respectively. The normalised pAUC can be interpreted

as

pAUC(t0)

t0
= P [YD > YD|YD > S−1

D
(t0)].

That is to say it is the probability of correctly ordering a diseased and non-diseased observation

selected randomly given that the non-diseased observation is above 1− t0 quantile of the non

diseased distribution.

A more general formula for Equation (2.9) has been given in Dodd and Pepe [31].

2.3.4 Kolmogorov-Smirnov (KS) index

The maximum vertical distance between the ROC curve and TPF = FPF is an index we

refer to as the KS index. We have

KS = maxt|ROC(t)− t| = maxt|SD(S−1
D

(t))− t| = supc∈(−∞,∞)|SD(c)− SD(c)|.

We can see that this is exactly the Kolmogorov-Smirnov measure, which measures the dis-

tance between two distributions with survival functions SD and SD for two tests YD and YD

respectively (Gail and Green [52]). In fact we identify the index KS with Kolmogorov-Smirnov

measure.

Another well-known measure is the Youden index, which is a special case of Kolmogorov-

Smirnov measure. For more information on this index, refer to Fluss [49].
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2.4. Binormal ROC curves

The binormal ROC curve plays a major role in ROC analysis and it provides the classic model

for ROC curves. Its form is derived from normal distributions for test results. To derive the

functional form of binormal ROC curves, suppose that the test results are normally distributed

in diseased and non-diseased populations.

Proposition 2.4.1. Suppose that YD ∼ N(µD, σ
2
D) and YD ∼ N(µD, σ

2
D

). Then

ROC(t) = Φ(a+ bΦ−1(t)), (2.10)

where a =
µD − µD
σD

, b =
σD
σD

and Φ denotes the standard normal cumulative distribution

function.

Proof . Let c be any threshold. Then because of the symmetric nature of the normal distri-

bution we have

FPF (c) = P (YD > c) = Φ

(
µD − c
σD

)
,

TPF (c) = P (YD > c) = Φ

(
µD − c
σD

)
.

For FPF we can see that c = µD − σDΦ−1(t). Thus

ROC(t) = TPF (c) = Φ

(
µD − c
σD

)
= Φ

(
µD − µD + σDΦ−1(t)

σD

)
= Φ

(
a+ bΦ−1(t)

)
and this completes the proof. �

Thus the binormal ROC curve is defined to be ROC(t) = Φ(a + bΦ−1(t)). The coefficients a

and b are referred to as the intercept and the slope of the binormal ROC curve respectively.
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Remark 2.4.1. Note that the slope of the ROC curve at t is the likelihood ratio at the

corresponding threshold c.

Now

• if b = 1, then the binormal ROC curve is concave everywhere,

• if b > 1, then the likelihood ratio decreases and then increases,

• if b < 1, then the likelihood ratio increases and then decreases, for t ∈ (0, 1).

Thus b 6= 1 leads to ill behaved ROC curve. Therefore the fact that the binormal ROC

curve may not have the monotone likelihood ratio raises some concern about using it for

approximation of real data. However Swets [133] and Hanley [62] and [63] showed that a

binormal ROC curve is a good approximation in practice.

We have seen in Proposition 2.2.1 that the ROC curve is invariant to monotone increasing data

transformations. Therefore if YD and YD have normal probability distributions and if we let

WD = h(YD) and WD = h(YD), where h(.) is a monotone strictly increasing function, then the

ROC curve for WD and WD is a binormal curve given by ROC(t) = Φ(a+bΦ−1(t)). Conversely,

to say that the ROC curve for YD and YD is binormal simple means that for some strictly

increasing transformation h(.), the functions h(YD) and h(YD) have normal distributions (see

Pepe [104]).

Although the binormal form is the classic parametric form for ROC curves, other parametric

forms can be adopted. Any parametric form adopted can be fitted using ordinal data likelihood

methods. Usually the AUC summary indices are used as the basis for comparing binormal ROC

curves. The standard error of the difference is calculated using the delta method and alternative
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summary indices can likewise be used. Metz [97] suggested that instead of comparing summary

indices, the fitted ROC parameters can instead be compared.

We conclude by mentioning that the binormal assumption states that some monotone trans-

formation of the data exists to make YD and YD normally distributed and this can be taken

as a weak assumption.

The binormal AUC: The AUC for the binormal ROC curve is given by (Pepe [104])

AUC = Φ

(
a√

1 + b2

)
Proof . Recall that AUC = P (YD > YD) = P (YD − YD > 0). Let W = YD − YD then

W ∼ N(µD − µD, σ2
D + σ2

D
) and

p(W > 0) = 1− Φ

−µD + µD√
σ2
D + σ2

D


= Φ

 µD − µD√
σ2
D + σ2

D


= Φ

µD − µD
(σD)

/

√
1 +

σ2
D

σ2
D


= Φ

(
a√

1 + b2

)
which completes the proof. �

Robustness of the binormal estimator

The choice of the binormal estimator to fit a ROC curve is usually justified by theoretical

considerations, mathematical tractability, familiarity with the normal model or just by conve-

nience.
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The word robust can have many different meanings. Here it is used in the sense of robust

statistics, i.e. meaning that in the presence of a certain amount of observations coming from

a non-normal distribution the binormal estimator will yield reliable results. Robustness, in

Swets [135] and Hanley [63], is understood as the ability of the binormal estimator to fit a

ROC curve that looks right in comparison either with the theoretical ROC curve or with the

observed rating method.

2.5. The ROC for ordinal tests

2.5.1 Ordered discrete tests results

Although many of test results are continuous, some tests yield discrete results. For example the

minimal inhibitory concentration of an antibiotic as standard measure of bacterial residence

is measured on a continuous scale, but some questionnaire reporting systems may also yield

discrete numeric results. However it should be noted that many tests are not numeric at all, for

example in the assessment of an image by a radiologist. In this case the radiologist assessment

that the disease is present is classified on an ordinal scale.

The key difference between qualitative assessments that are measured on ordinal scales and

quantitative assessments made on numeric scales is the recognition that different assessors can

use the ordinal scale differently. For example an image considered as highly suspicious for

cancer by one radiologist may be considered as possibly malignant by another even though

both have the same perception of the image. ROC analysis has been very popular for use

with rating data as it helps to disentangle the inherent discriminatory capacity of the test or

imaging device from the particular use of the scale by the assessor [104].
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2.5.2 The latent decision variable model

Suppose that there is an unobserved latent continuous variable L corresponding to the assessor’s

perception of the image. The reader or assessor has some thresholds values that correspond

to his/her classification or rating of the image. If Y denotes the reported classification, then:

cy−1 < L < cy, y = 1, · · · , P, where c0 = −∞ and cP = ∞ which yields a P -level ordinal

variable. The reader classifies the image in the yth category if L falls within the interval

corresponding to his/her implicit definition for the yth category in terms of the latent variable

L. Different raters might perceive an image in the same way but classify it differently because

their implicit decision thresholds may be different. The ROC curve for L can be defined as

follows: If Y ≥ y and L > cy−1 then we can denote the true and false positive fractions as

TPF (cy−1) and FPF (cy−1) respectively. Then the ROC curve in terms of L can be identified

for the P + 1 points and represented as follows: (FPF (cy−1), TPF (cy−1)), y = 1, · · · , P + 1.

The latent variable framework with decision thresholds that give rise to observed test results,

is an appealing conceptual model. However strictly speaking the latent variable does not have

an explicit clinical meaning and thus the interpretations of the ROC curve for L are somewhat

dubious. Also, the available set of points for the ROC curve are only the set of discrete

observable points and thus the curve is not fully identifiable.

2.5.3 The discrete ROC curve

One popular approach to ROC analysis for ordinal data is to simply define the ROC curve as

a discrete function. This alternative curve is defined as

ROC = (ty, ROC(ty)), y = 1, 2, · · · , P + 1. (2.11)
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In Equation (2.11), ty = P [Y ≥ y|D = 0] and ROC(ty) = P [Y ≥ y|D = 1]. The first cutoff

point or threshold at y = 1 is the corner point (0, 0) while the threshold at y = P + 1 is the

(1,1) corner point. This difference between this definition and the one for continuous results

is that the set of possible false positive fractions (domain) is finite. One of the binormal form

with discrete domain T = {ty| y = 1, 2, · · · , P + 1} that can be used for discrete ROC function

is given by

ROC(ty) = Φ(a+ bΦ−1(ty)), y = 1, 2, · · · , P + 1. (2.12)

The ROC curve for a discrete decision variable is not like the one for continuous decision

variable. It serves more as a visual aid to depict an ROC function associated with the discrete

observed decision variable Y . Moreover the discrete domain is required together with the

parameters a, b to completely characterise the discrete ROC function. A very important point

about discrete ROC functions is that two ROC functions differ if their domains differ, even if

their points lie on the same smooth curve. The discrete ROC analysis requires, in addition

to the trade-off between true and false positive fractions, consideration of the FPFs that are

attainable with the test. This is different from continuous tests as all FPFs in the range (0, 1)

are attainable.

For the discrete ROC functions the summary measure cannot be applied directly. A summary

of the discrete ROC curve can be calculated by joining the points and then calculating the area

relative to the resulting curve, but they are difficult to interpret. When the linearity is used for

joining points, the area under that curve has an interesting interpretation of the probability

of correctly ordering diseased and non-diseased observation. Thus formally the area under the

ROC function based on linear interpolation between points (AUC) is:

AUC = P [YD > YD] +
1

2
P [YD = YD]. (2.13)

When case and control values are tied, the ROC curve has simultaneous horizontal and vertical
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jumps and thus the AUC can be calculated as an averages of tie-corrected percentile values.

The second part of the RHS of the above equation represents a situation of indistinguishable

of diseased and non-diseased cases as a result of discretisation.

Finally we would like to conclude this section by mentioning that the ROC curve is the most

popular tool for describing the accuracy of a continuous or ordinal valued tests. The ROC curve

has been popular for a long time in radiology research, in addition to the fact that it provides a

description of separation between distributions and is still very useful in clinical trials research.

The binormal ROC curve described before in Section 2.4 is the classic parametric model, but

one of the weakness of the model is that in some applications it may not be concave.

2.6. The ROC curve estimation

This section introduces the statistical methodology for making inference about the ROC curve

from data. We describe three approaches for estimating the ROC curve and its summary

indices [104]. The first method is based on applying non-parametric empirical methods to

the data to obtain the empirical ROC curve from which the empirical summary measures can

be calculated especially for continuous test results. The second approach is by modeling the

distributions of YD and YD, after which the parameters in these distribution are estimated and

then the induced ROC curve is calculated. However this approach requires strong assumptions

about the form of the distributions of test results which make it less popular. The ROC curve

is concerned only with the relationship between the distributions of YD and YD. The third

approach is to use a smooth parametric function of the ROC curve rather than modeling the

distributions (second approach). The parameters of the third approach are estimated from the

rankings of the test results for diseased and non-diseased subjects.

We assume that the data can be presented as test results for nD cases and nD controls as
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follows: YDi , i = 1, · · · , nD and YDj
, j = 1, · · · , nD. We assume that YDi and YDj

are se-

lected randomly from the populations of test results associated with diseased and non-diseased

outcomes, respectively.

2.6.1 Non-parametric empirical estimator

The aim is to apply non-parametric empirical methods to the data to obtain an empirical ROC

curve, which is a popular choice for continuous tests results settings. The empirical estimator

of the ROC curve simply applies the definition of the ROC curve to the observed data. For

each c the empirical true and false positive fractions are calculated as follows:

̂TPF (c) =

nD∑
i=1

I[YDi ≥ c]/nD, (2.14)

̂FPF (c) =

nD∑
j=1

I[YDj
≥ c]/nD, (2.15)

where I(A) is a function which takes value 1 when A is true and 0 otherwise. Then it follows

we can write the empirical ROC denoted by R̂OCe as:

R̂OCe(t) = ŜD(Ŝ−1
D

(t)), (2.16)

where ŜD and ŜD are the empirical survivor functions for YD and YD, respectively. The

empirical ROC curve is a function based only on the rank of the data. That is it depends

on the relative ordering of the test results and their status as being from diseased and non-

diseased individuals. Therefore the empirical ROC curve is invariant to strictly increasing

transformations of the data. That is if YD > YD, then h(YD) > h(YD), where h(Y ) is the

increasing transformation of Y .

The empirical AUC given by
∫ 1

0 R̂OCe(t)dt, can be considered as a Mann-Whitney U-statistic
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calculated as a double summation given below

nD∑
j=1

nD∑
i=1

[I[YDi > YDj
] +

1

2
I[YDi = YDj

]/nDnD]. (2.17)

Following Pepe and Cai [105], the ROC curve can be interpreted as a cumulative distribution

function for the discriminatory measure Y in the affected population (D = 1) after Y has

been standardised to the distribution in the reference population (D = 0). The standardised

values are called placement values. Using the distribution of YD as the reference distribution

the placement for y in the diseased population is defined as P [YD ≥ y] = SD(y) and then the

empirical placement value is given by ŜD(y). We can also write ÂUCe as the sample average

of empirical disease placement values for non-disease observation:

ÂUCe =

nD∑
j=1

ŜD(YDj
)

nD
.

The variance of a summary measure such as R̂OCe is often complicated and in practice boot-

strapping is used to calculate confidence intervals.

Delong et al. [29] proposed an expression for var(ÂUCe) in terms of the variability of placement

values. This method provides a nice computational algorithm for estimating the variance of

ÂUCe in a large sample given by:

var(ÂUCe) =
var(SD(YD))

nD
+
var(SD(YD))

nD
(2.18)

Which is estimated using the sample variances for the empirical standardized values and given

by:

var(ÂUCe) =
v̂ar(SD(YDi))

nD
+
v̂ar(SD(YDj

))

nD
(2.19)

The variance is directly a function of the variability in the placement values of diseased obser-

vations within the non-diseased reference and of non-diseased observations within the reference

distribution diseased. The confidence interval for the AUC can be given by:

ÂUCe ± Φ−1
(

1− α

2

)√
v̂ar(ÂUCe). (2.20)

31



Chapter 2 – Receiver operating characteristic (ROC) curves

An asymmetric confidence interval that guarantees an interval in (0, 1) is preferred. Thus we

can use a logistic transformation to compute the confidence interval for logit AUC (log(AUC/(1

- AUC))) which is given by:

log

(
ÂUCe

1− ÂUCe

)
± Φ−1(1− α

2
)

√
var(ÂUCe)

ÂUCe(1− ÂUCe)
(2.21)

An alternative representation of the asymptotic variance was derived by Hanley and McNeil

[61]. Assume that there are no ties between diseased and non-diseased observations, so that

formula (2.17) simplifies to ÂUCe =
∑nD

j=1

∑nD
i=1 I[YDi ≥ YDj

]/nDnD. Then the variance of the

empirical ROC can be defined as:

var(ÂUCe) =
1

(nDnD)
AUC(1−AUC) + (nD − 1)(Q1−AUC2) + (nD − 1)(Q2−AUC2)

(2.22)

where

Q1 = P [YDi ≥ YDj
, YDi′ ≥ YDj

],

Q2 = P [YDi ≥ YDj
, YDi ≥ YDj′

],

(YDi , YDi′ ) and (YDj
, YDj′

) denote random pairs of observations from the diseased and non-

diseased populations, respectively. Observe that empirical estimates of each component are

easily calculated to yield a variance estimator.

The empirical methods can be used for continuous or ordinal test results data. The methods

that rely on the ROC curve being defined as curves with domain on the interval (0, 1) and

therefore apply only to ROC curves for continuous tests.

The most commonly used statistic for comparing two ROC curves when test results are con-

tinuous is based on the difference in empirical AUC estimates. We denote the two curves by

ROCA and ROCB, then the estimated difference is given by,

∆ÂUCe = ÂUCAe − ÂUCBe.
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The null hypothesis H0 : ROCA = ROCB is tested by comparing the value of ∆ÂUCe√
var(∆ÂUCe)

with standard normal distribution tails values. If data for the two ROC curve estimates are

derived from independent samples, then

var(∆ÂUCe) = var(ÂUCAe) + var(ÂUCBe).

Other summary indices, estimated empirically can likewise be used as the basis for a non-

parametric comparison of ROC curves, with resampling methods employed for formal statistical

inference.

We can also use empirical methods to estimate discrete ROC functions for tests with ordinal

results. The R̂OCe is defined as in previous section except that linear interpolation between

estimated ROC points ( ˆFPF (y), ˆTPF (y)), y = 1, · · · , P is not performed. In finite samples

one will not know what false positive fractions are attainable with a discrete test. Hence fixing

t and making inferences about ROC(t) is not feasible in the same way that it is for continuous

test.

For discrete data, the empirical AUC index is usually calculated using a linear interpolation

between ROC points and the trapezoidal rule. Although, it is not interpreted as an area under

the curve because the ROC for an ordinal test is a discrete function not a curve. The AUC as

a summary index for the discrete ROC function is identical to the Mann-Whitney U-statistic

and its interpretation as the probability P [YD ≥ YD].

Similarly, comparisons between AUCs can be made as before, however it is not always sensible

to compare AUCs with two discrete ROC functions. Differences between two AUCs may exist

that are simply caused by the fact that their domains are different. Empirical methods can be

used for continuous or ordinal test result data.
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2.6.2 Modeling test results

Fully parametric modeling

The ROC(t) can be estimated through constituent distribution functions parametrically and

to calculate the induced ROC curve estimate. The fully parametric method makes strong

assumptions about the forms of the distributions, SD and SD. Suppose that we model each

distribution as a parametric distribution with parameters α and γ for non-diseased and diseased

populations, respectively:

SD(y) = Sα,D(y)

and

SD(y) = Sγ,D(y).

Then the resultant ROC estimate is

R̂OCα̂,γ̂(t) = Sγ̂,D(S−1
ˆα,D(t)

). (2.23)

The standard error for R̂OC(t) can be calculated using the variance of (α̂, γ̂) and delta method.

The ROC estimate will be fully efficient assuming that the models are correctly specified and

the parameters are estimated with maximum likelihood methods.

Comparing ROC curves in this framework is not easy because one cannot simply compare

parameters. The same ROC curve can result from different pairs of constituent test result

distributions. Comparing parameters of the distributions αA and αB and γA and γB for two

curves indexed by A and B does not achieve a comparison of ROC curves. Wieand [150]

evaluated the comparison of two ROC curves, with the difference in AUC indices estimated

with fully parametric normal models and this approach was compared with that based on the

non-parametric ∆ÂUCe. The parametric model is more efficient as expected.
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Semiparametric models

For the test results YDi and YDj
, the semiparametric location scale model for independent

errors can be given by:

YDi = µD + σDεi ,

YDj
= µD + σDεj ,

where ε are independent errors, mean = 0 and variance = 1 random variables with survivor

function S0. Pepe [104] suggested to leave S0 unspecified.

The ROC curve can be written using the location-scale model as:

ROC(t) = S0(
µD − µD
σD

) + (
σD
σD

)S−1
0 (t)). (2.24)

The empirical survivor function is a consistent estimator and is given by:

Ŝ0(y) =
1

nD + nD
[

nD∑
i

I[
YDi − µ̂D

σ̂D
≥ y] +

nD∑
j

I[
YDj
− µ̂D
σ̂D

≥ y]]. (2.25)

Then ˆROC(t) estimator is given by:

ˆROC(t) = Ŝ0(
µ̂D − µ̂D
σ̂D

) + (
σ̂D
σ̂D

)Ŝ−1
0 (t)). (2.26)

The form of the function S0(.) is not specified, thus this model is semiparametric.

In [104], Pepe mentioned that the idea of modeling test results in order to estimate the ROC

curve is somewhat unnatural. The ROC curve is invariant to monotone increasing trans-

formations of the test results measurement. However the parametric and semi parametric

methods that model the test results in order to estimate the ROC are not invariant to such

data transformations. They are not distribution free in the sense that the ROC curve relies

on the distributional forms for both SD and SD, not just on their relationship or separation.
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Modeling the test results can be restated as modeling the quantiles of SD and SD. The main

advantages of this approach of modeling test results over the empirical methods are firstly, the

ROC curves are smoother and secondly, there is potential for increased statistical efficiency.

2.6.3 Parametric methods

We discussed non-parametric methods for making statistical inferences (see Subsection 2.6.1)

and then discussed an approach that modeled the distributions of test results in order to

estimate ROC curve in Subsection 2.6.2. We now discuss strategies that are intermediate

between these two methods [104].

The first approach is suggested by Metz et al. [97] in which the authors described a parametric

distribution free which is an extension of the one for ordinal data. One way to deal with

continuous data is to categorize them into a finite number of predefined categories and to

apply methods for fitting parametric ROC curves to ordinal data. Note that the ordinal

data methods only make assumptions about the parametric form for the ROC curve. No

assumptions are made about the survivor function SD for the discrete test result YD.

Another rank based estimator is suggested by Pepe [104]. She parameterised the form of the

ROC curve without making additional assumptions about the distributions of test results. This

approach produces smooth parametric ROC curves but does not require that the test result

distributions be modeled, rather they are based only on the ranks of the data. We previously

defined the ROC as:

ROC(t) = P [Y D > S−1
D

(t)]

= P [SD(YD) ≤ t].

Writing Uit = I[SD(YDi) ≤ t], the binary variable denoting whether or not the placement value
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exceeds t we see that:

E(Uit) = P [SD(YD) ≤ t]

= ROC(t)

Now a parametric form for the ROC curve can be expressed as:

g(ROC(t)) =
∑
s

αshs(t) (2.27)

where g is a link function and h = h1, · · · , hS are specified functions. As a special case

the binormal model is specified when g = Φ−1, h1(t) = 1 and h2(t) = Φ−1(t). The ROC

model in Equation (2.27) defines a generalised linear model for Uit with link function g and

covariates hs(t), s = 1, · · · , S. The ROC-GLM approach is designed to use procedures for

fitting generalised linear models to binary data in order to estimate the parameters αs, s =

1, 2, · · · , S. For a set T = t ∈ T over which the model is to be fitted the empirical placement

values ŜD(YDi
), i = 1, · · · , nD are calculated. For each t ∈ T the binary indicators based on the

empirical placement values:

Ûit = I[ŜD(YDi) ≤ t],

for i = 1, · · · , nD. Binary regression methods with link function g and covariates h(t) =

h1(t), · · · , hS(t) provide estimates of α1, · · · , αS from the data arranged as nD × nT where nT

is the number of points in T

Ûit, h1(t), · · · , hS(t), t ∈ T, i = 1, · · · , nD.

The ROC-GLM procedure is based only on the ranks of the data and requires a model only

for the ROC curve, not for the distributions of the test results. Hence it is a parametric rank

based distribution free method. Pepe investigated the efficiency of ROC-GLM for estimating

a binormal ROC curve with ordinal data. She found that its performance was close to the
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method proposed by Dorfman [33]. The main advantage of ROC-GLM over the Dorfman [33]

method is that it is easier and faster computationally when data are continuous.

The ROC-GLM method provides estimates of parameters and an estimate of variance co-

variance matrix via resampling. Pointwise confidence intervals for ROC(t) can therefore be

constructed. Models can be fitted simultaneously for multiple curves and hypothesis tests for

parameter estimates can also be done.

Now we conclude this section by mentioning that [104]:

• Three approaches are described: empirical methods, distribution free parametric methods

and distributional modeling methods.

• The empirical and distribution free methods are based only on the ranks of data while

the latter is not.

• The distinction between the empirical and distribution free methods is that the the former

places no structure on the ROC curve while the later assume a parametric form for it.

• To compare two ROC curve when parametric form is assumed then the comparison can

be based on the estimated parameters and their standard errors.

• To traditionally compare two ROC curves, differences in AUCs are typically calculated

using the empirical or parametric distribution free methods.

2.7. Modeling covariate effects on test results

The first approach for evaluating covariate effects on the ROC curve was proposed by Tosteson

and Begg [141]. Their development was geared specifically towards ordinal data but it actually
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applies more generally. The basic idea is to model SD,Z in addition to SD,Z and then calcu-

late the induced covariate specific ROC curve, ROCZ(t) = SD,Z(S−1
D,Z

(t)) for any particular

covariate values Z of interest. A comprehensive model that includes both YD and YD in one

model by incorporating disease status as a covariate can be fitted.

The strategy of modeling the test results distributions and calculating induced ROC curves is

the longest established approach for evaluating covariate effects on the ROC. It is popular in

part because distributional modelling is a familiar task for statisticians. However it does not

yield simple ways of summarizing covariate effects on the ROC curve.

2.8. Modeling covariate effects on ROC curve

We can model the covariate effects on ROC curves directly by modeling the ROC curve itself.

There are several advantages to direct modeling of the ROC approach.

• The interpretation of model parameters pertains directly to the ROC curves.

• Multiple tests can be accommodated simultaneously.

• It provides a mechanism for comparing two tests even when their results are quantified

in different units.

A ROC regression model to quantify covariate effects on the ROC curves has two components.

These are the covariables X and secondly a formulation for the ROC curve as a function of t.

Let h0(.) and g(.) denote monotone increasing functions on (0, 1) then the equation

g(ROCZ(t)) = h0(t) + βX,

with t ∈ TZ ⊂ (0, 1) is an ROC-GLM regression model. The link function g is specified as

part of the model and the baseline function h0(t) is unknown. A parametric form for it can be
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specified or it can remain completely unspecified.

The restriction on h0 and on g are meant to ensure that ROCZ(t) is an ROC curve in the

sense that the domain and range are in (0, 1) and that it is increasing in t. However the model

need not be defined for the entire interval t ∈ (0, 1) but possibly only on a proper or “concave”

subset [40] and that the subset can vary with Z. Thus these models are applicable to ordinal

tests where TZ denotes the attainable false positive fractions for the test operating at covariate

value Z.
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Time dependent receiver operating

characteristic curves

In this chapter we will discuss time dependent ROC curves. In event-time analysis both time

to event and the binary outcome are observed. Assuming the event occurs, (Y = 1) then

the time to event is uncensored whereas if an individual is followed up and the event did not

occur (Y = 0) then the time to the event is censored. Event-time analysis is used to describe

data that correspond to the time from a time origin until the occurrence of the specified event

or end point. For example the time origin in medical research will often correspond to the

recruitment of an individual into an experimental study, the end point may be the death of

the patient, relief of pain and so on.

Event-time often refer to the development of a particular symptom or to relapse after remission

of a disease, as well as to the time to death. A significant and important feature of event-

time analysis studies is that the event of interest is very rarely observed in all subjects. Such

event-times are termed censored, to indicate that the period of observation was cut off before

the event of interest occurred. As an example suppose that in clinical trial, a patient moves

to another part of the country and can no longer be traced. In this case the time when the
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individual experiences the event will not be known hence the time to event will be censored

for such an individual.

The purpose of the ROC analysis is to characterise the prognostic potential of a marker (or

model) by focusing on the correct classification rates. The ROC can be extended to time

dependent ROC curves when we have time to event data.

The classical ROC curve deals with dichotomous diagnostic tasks (presence or absence of

disease at a given time), we call this a cross sectional data type. In the real world we often

deal with disease outcomes that depend on time and in this case the ROC curve will be a

function of time. In time to event studies, the end point is subject to censoring and ignoring

censoring will introduce bias. There are many existing proposed methods that accommodate

censored data, which we will discuss later in this chapter (Section 3.3).

Time dependent ROC curves entail extending the concepts of sensitivity and specificity to

time dependent binary variables such as vital status, allowing characterisation of diagnostic

accuracy for censored event-time outcomes.

For test results defined on continuous scales, the ROC curves are standard summaries of

accuracy. As described in Section 2.2, suppose Y denotes the diagnostic test or marker, with

higher values more indicative of disease and D is a binary indicator of disease status, then the

ROC curve for Y is a plot of the sensitivity associated with the dichotomized test Y > c versus

(1 - specificity) for all possible threshold values c.

Diagnostic tests are often developed to detect or predict the occurrence of an event, such as

the onset of cancer, infection and so forth. In this context D is a time dependent variable.

The time at which the diagnostic test is performed relative to the incidence of the event - or

outcome in general - has a big influence on its operating characteristics.
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Example: Mother to infant transmission of HIV-1 trial [127]

A biomarker evaluation for predicting the after birth HIV-1 infection events for babies delivered

by HIV-1 infected mothers, is a common example for the applications of time dependent ROC

curves. The study was carried out between November 1997 and January 2001 by the HIV

prevention trial network (HPTN) as mentioned in Hu [100]. The primary endpoints of this

trial were:

• HIV-1 infected rate of the infants and

• The proportion of those infants who were alive and free of HIV at 18 months of age.

The main purpose of the study was to compare the efficacy of two treatment regimens:

• Nevirapine (200 mg at labor onset and 2 mg/Kg for babies within 72 hours of birth) and

• Zidovudine (600 mg orally at labor onset then 300 mg every 3 hours until delivery and

4 mg/Kg orally twice daily for babies for 7 days).

One interesting question to be answered in this randomized trial is the evaluation of the

capacities of two baseline biomarkers, the maternity HIV-1 RNA level and CD4 for identifying

who would be infected by their mothers after birth at various points in time or at various time

intervals. There are various factors that may affect the biomarker distribution and performance

in predicting a disease event. These factors are those covariates that need to be adjusted in

time dependent ROC models. It is necessary to adjust for treatment regimens (Nevirapine and

Zidovudine) when constructing the time dependent ROC curve of the biomarkers as it has an

important impact on the prognostic capacity of HIV-1 RNA level and CD4.
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3.1. Extensions of sensitivity and specificity

It has been previously mentioned that ROC curves are commonly used in the analysis of

diagnostic test results Y for a binary disease outcome D. However in practice many disease

outcomes depend on time t, which we denote by D(t), and hence ROC curves that vary as a

function of time may be more appropriate and various definitions and estimators have been

proposed. Subjects are initially non-diseased but can succumb to disease during the course of

the study [67]. A common example of a time-dependent variable is vital status, where D(t) = 1

if a patient has died prior to time t and zero otherwise. It is clear that this type of data is

most appropriately handled using time to event or survival analysis.

Let Ti be the survival time for subject i and assume that we only observe the minimum of Ti

and Ci, where Ci represents an independent censoring time. Here survival times is interpreted

to mean the time until an individual experiences an event of interest and Ci ≤ Ti if the time

is censored. Define the follow-up time as Xi = min(Ti, Ci), and let ∆i = I(Ti, Ci) denote the

censoring indicator. The advantage of survival analysis approaches as opposed to a snapshot

cross-sectional analysis of the binary outcome at a given time is that the time accrual until

the event is taken into account. We then show that a certain choice of time dependent true

positive rate (TPR(t)) and false positive rate (FPR(t)) definitions leads to time dependent

ROC curves and time dependent AUC summaries. As we mentioned before with survival data

we need to take the time into account since the accuracy may be higher when the markers are

measured closer to the onset of disease.

To extend the notion of diagnostic accuracy to incorporate the time domain, the outcome is

the time elapsed until an event takes place. This can be viewed as a binary outcome of function
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of time. Equations (2.1) and (2.2) are now replaced by:

sensitivity(c, t) = P (Y > c|D(t) = 1) and (3.1)

specificity(c, t) = P (Y ≤ c|D(t) = 0), (3.2)

which signify that the sensitivity and specificity are functions of time in the context of time to

event data. Using Equations (3.1) and (3.2), we can estimate the sensitivity and specificity for

each c and plot these estimates to get the ROC curve at a specific time point t. These estimates

can be obtained using the following relations, which follow from definitions of conditional

probability as well as the application of Bayes’ Theorem:

P (Y > c|D(t) = 1) =
1− S(t|Y > c)P (Y > c)

1− S(t)
and

P (Y ≤ c|D(t) = 0) =
S(t|Y ≤ c)P (Y ≤ c)

S(t)
,

where S(t) denotes the survival function, i.e. S(t) = P (T > t) and S(t|Y > c) is the conditional

survival function for the subset defined by Y > c.

The definition of the time dependent ROC curves follows from definitions of the usual ROC

curves and relies on first defining time dependent sensitivity and specificity. Then simple plots

of TPR vs FPR for different values of the threshold c will yield the ROC at time t. The time

dependent AUC at time t is then defined as the area under this curve,

AUC(t) =

∫ ∞
−∞

TPR(c, t)|∂FPR(c, t)

∂c
|dc. (3.3)

There are several definitions of cases and controls in the survival outcome setting. It is nec-

essary to mention that the definitions of sensitivity and specificity are given in terms of the

actual survival time Ti. In addition censoring needs to be addressed for valid estimation. A

certain choice of time dependent true positive and false positive definitions leads to time de-

pendent ROC curves and time dependent AUC summaries. We remark that time dependent
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AUC summary is directly related to concordance summary for survival data. Concordance

probability measures how often predictions and outcomes are concordant. The probability of

concordance is defined as the number of concordant pairs plus the number of tied pairs divided

by the number of all informative pairs [55]. For a binary outcome, the area under the empirical

ROC curve is equivalent to the concordance probability, which is defined on a pair of subjects

where one of the pair has the outcome and the other does not. The probability that the subject

with the outcome has a greater marker value than the subject without outcome is called the

concordance probability. Define

ψ(Yi, Yj) =


1 if Yi > Yj ,

0.5 if Yi = Yj ,

0 if Yi < Yj .

Hence ψ indicates which member of the pair has the higher value, with ties indicated by 0.5.

The concordance probability can be written as follows:

P (concordance) =
1

mn

n∑
i=1

m∑
j=1

ψ(Yi, Yj),

where n and m are the numbers of patients with and without outcome respectively. This

summation represents the number of pairs that have Yi > Yj , so the entire expression is the

fraction of patient pairs where the one with the higher marker value had the outcome.

The idea of concordance can be extended to time to event setting. Let T1 and T2 be the event

times in a given pair of patients with marker values Y1 and Y2. The concordance between a

marker Y and the time to event outcome T is defined as CP (Y, T ) = P (T1 > T2|Y1 > Y2).

3.2. Time dependent true positive rate (TPR(t)) and false positive rate (FPR(t))

This section discusses different definitions for time dependent true positive and false positive

rates [67].
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3.2.1 Time dependent true positive rate

True positive rate (TPR) or sensitivity in classic settings with binary outcomes is defined to be

the probability that a test result will be positive when the disease is present in the individual.

However in practical settings the outcome may be failure time, where in this case, there are

various definitions of TPR. In the following sections, we list two definitions of time dependent

TPR.

Incident true positive rate TPRI

The incident TPR for a biomarker value Y at event time t for any threshold c, denoted by

TPRI(c, t) is given by:

TPRI(c, t) = P (Y > c|T = t). (3.4)

Using this definition the cases are stratified according to the time at which events occur and

in this case we are more interested in the disease incidence at a fixed time. There are many

advantages of this definition of TPRI , given it is based on diseased cases occurring at a given

time. This feature is helpful when the total sample size is small. In addition this definition

does not contain redundant information on disease cases.

Cumulative true positive rate TPRC

The cumulative TPR for a biomarker Y at event time t for any threshold c, denoted by

TPRC(c, t) is given by:

TPRC(c, t) = P (Y > c|T ≤ t). (3.5)

TPRC evaluates the sensitivity of the biomarkers for detecting events occurring throughout

the follow up time up to t. Using this definition we are more interested in predicting the

disease prevalence of the study at a given time. Thus the definition of TPRC is useful when
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disease prevalence is of interest. The disease cases are calculated based on cumulative time

interval, which results in a large number of disease cases that are used for estimating the

sensitivity. However (TPRC) contains redundant information, unlike TPRI . In addition, it

cannot distinguish the sensitivity for early events from that for late events.

3.2.2 Time dependent false positive rate

False positive rate (FPR) with binary outcomes is defined to be the probability that a test

result will be positive when the disease is absent in the individual. Time dependent FPR are

of various types according to the definition of the controls. In the following sections we list

two definitions of time dependent FPR.

Static false positive rate FPRS

The static time dependent false positive rate denoted by FPRS for a biomarker value Y and

any threshold c, is defined to be:

FPRS(c, t∗) = P (Y > c|T > t∗). (3.6)

Using this definition controls are subjects who are event free through a fixed follow up time

(0, t∗), where t∗ is a fixed point in time. In the definition of FPRS controls are static over

time. Thus the time defining the controls differs from that defining those in the corresponding

TPR, no matter what type of TPR is used.

Dynamic false positive rate FPRD

Dynamic false positive rate for a biomarker value Y and any threshold c, denoted by FPRD

is given by:

FPRD(c, t) = P (Y > c|T > t). (3.7)
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Using in this definition, the time defining the event is dynamic, thus the controls at time t are

defined to be patients who were still event free at time t. The advantage of FPRD is that it

is based on the time defining the corresponding TPR in the ROC curve.

In summary we stress that a case i is said to be incident if Ti = t and cumulative if Ti ≤ t

for the two definitions of cases. It is also important to distinguish whether controls are static

defined as subjects with Ti > t∗ for fixed value of t∗, or whether controls are dynamic defined

for time t as those subjects with Ti > t.

3.3. Combinations of time dependent TPR and FPR

Since the time dependent ROC curve is a compound function of TPR and FPR, a combination

of various types of the two rates need to be selected according to the purpose of study. Table

3.1 (see [100]) lists some combinations of TPR and FPR for constructing certain types of time

dependent ROC curve.

Table 3.1: Combinations of time dependent TPR and FPR

TPR (Cases) FPR (Controls) Examples from literature

Cumulative Dynamic Etzioni et al. (1999)

Heagerty et al. (2000)

Zheng and Heagerty (2004)

Song and Zhou (2008)

Incidence Dynamic Zheng and Heagerty (2004)

Heagerty ans Zheng (2005)

Incidence Static Cai et al. (2006)
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After presenting definitions for time dependent sensitivity and specificity, ROC curves and AUC

summaries can be computed and interpreted. We will present formulae for most commonly

used ones.

3.3.1 Incident-Static combination

Using the following definitions

SensitivityI(c, t) = P (Yi > c|Ti = t) and

SpecificityS(c, t∗) = P (Yi ≤ c|Ti > t∗).

each subject does not change disease status and is treated as either a case or a control. Cases are

stratified according to the time at which the event occurs (incident) and controls are defined

as those subjects who are event free though a fixed follow-up period (0, t∗) static. These

definitions facilitate the use of standard regression approach for characterising sensitivity and

specificity as the event time Ti can be used as a covariate.

The group of static controls mimics the group of individuals who never develop the disease,

meaning patients with preclinical diseases are eliminated from the control group as far as

possible if t is large enough. This can be viewed as the ideal control group in some situations.

The cumulative TPR can be computed from the incident TPR when the distribution of the

event time is known. Consider the incident TPR and static FPR as defined in Equations (3.4)

and (3.6). Applying Bayes’ Theorem, they can further be rewritten:

TPRI(c, t) =

∫∞
c f(t|y)g(y)dy∫∞
−∞ f(t|y)g(y)dy

and

FPRS(c, t∗) =

∫∞
c P (T > t∗|Y = y)g(y)dy∫∞
−∞ P (T > t∗|Y = y)g(y)dy

,
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where g(y) is the probability density function of Y and f(t|y) = ∂P (T ≤ t|Y = y)/∂t is

conditional density function of T given Y = y.

Heagerty and Zheng [67] estimated the TPRI(c, t) using the Cox model of the form λ(t, Y ) =

λ0(t) exp(β(t)Y ), where λ(t, Y ) stands for the conditional hazard rate of T given Y while λ0

is the unspecified base line hazard rate. Let the notation R(t) denote the risk set at time t.

The authors mentioned that the distribution for the random variable Y ×exp(βY ) for subjects

in the risk set at time t is equal to the conditional distribution of Y given T = t. Setting

R(t) = i : Xi ≥ t, this leads to

TPRI(c, t) =

∑
i∈R(t) I(Yi > c) expβ(t)Yi∑

i∈R(t) expβ(t)Yi
.

As for estimation of FPRS(c, t∗), they also proposed

FPRS(c, t∗) =
1

nt∗

∑
i∈St

I(Yi > c),

where St = i : Xi > t∗ is the control set and nt∗ is the cardinality of St∗ .

3.3.2 Incident-Dynamic combination

We recall that

SensitivityI(c, t) = P (Yi > c|Ti = t) and (3.8)

SpecificityD(c, t) = P (Yi ≤ c|Ti > t). (3.9)

Using the approach of incident-dynamic combination, a subject can play the role of a control

for an early time Ti > t, but then play the role of a case when Ti = t. Sensitivity is a measure

of the expected fraction of subjects with a marker greater than the threshold c among the

subpopulation of individuals who truly have the event at time t, while specificity measures the
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fraction of subjects with a marker less than or equal to c among those who survive or do not

experience the event beyond time t.

Incident-Dynamic ROC curves are defined following Equation (3.8) as the function ROC
I/D
t (ρ),

where ρ denotes the corresponding incident true positive rate. Let cρ be defined as the threshold

that yields a false positive rate of ρ : P (Yi > cρ|Ti > t) = 1 − specificityD(cρ, t) = ρ. The

true incident-dynamic positive rate, ROC
I/D
t (ρ) is the sensitivity that is obtained using this

threshold or ROC
I/D
t (ρ) = sensitivityI(cρ, t) = P (Yi > cρ|Ti = t). Using the true and false

positive rate functions allows the ROC curve to be written as:

ROC
I/D
t (ρ) = TPRIt [FPR

D
t ]−1(ρ),

for ρ ∈ [0, 1],

The area under the I/D ROC curve for time t is

AUC(t) =

∫ 1

0
ROC

I/D
t (ρ)dρ.

So the ROC curve is simply the plot of TPR(c, t) = [P (Y > c|D(t) = 1)] and FPR(c, t) =

[P (Y > c|D(t) = 0)]. The area under the I/D ROC curve for time t denoted by AUC
I/D
t is

then defined:

AUCI/D(t) =

∫ 1

0
ROC

I/D
t (ρ)dρ. (3.10)

3.3.3 Cumulative-Dynamic AUC AUCC/D(t)

For a baseline marker value, Heagerty and et al. [66] proposed versions of time dependent

sensitivity and specificity under the cumulative case definition as

SensitivityC(c, t) = P (Yi > c|Ti ≤ t) and

SpecificityD(c, t) = P (Yi ≤ c|Ti > t).
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Using this approach, at any fixed time t the entire population is classified as either a case or a

control on the basis of vital status at time t. Also, each individual plays the role of control for

times Ti > t, but then contributes as a case for taken times Ti ≤ t. Cumulative and Dynamic

accuracy summaries are most appropriate when one is interested in discriminating between

subjects who experience an event of interest such as death prior to time t and those survive

beyond t.

The setting of cumulative cases and dynamic controls may be regarded as most natural when

specific evaluation times are of particular interest. It simply corresponds to defining cases at

time t as subjects who experienced the event prior to time t, and controls at time t as subjects

who were still event free at time t.

AUC
C/D
t (t) is then obtained by using these definitions of TPRC and FPRD. However I(T ≤ t)

is not observed for all subjects due to presence of censoring before time t. To handle censoring,

Baye’s Theorem can be used to rewrite AUCC/D(t) as a function of the conditional survival

function P (T > t|Y = y). There are other approaches called Inverse Probability of Censoring

Weighted (IPCW) estimates. We first mention the method based on primary estimates of

P (T > t|Y = y), using Bayes’ Theorem where

TPRC(c, t) =

∫∞
c P (T ≤ t|Y = y)g(y)d(y)

P (T ≤ t)
,

FPRD(c, t) =

∫∞
c P (T > t|Y = y)g(y)d(y)

P (T > t)
.

From Equation (3.3), it follows that

AUCC,D(t) =

∫ ∞
−∞

∫ ∞
c

P (T ≤ t|Y = y)P (T > t|Y = c)

P (T ≤ t)P (T > t)
g(y)g(c)dydc.

Since P (T > t) =
∫∞
−∞ P (T > t|Y = y)g(y)dy, we let Ŝn(t|y) to be the estimator of the

conditional survival function P (T > t|Y = y). Then

AUCC/D(t) =

∑n
i=1

∑n
j=1 Ŝn(t|Yj)[1− Ŝn(t|Yi)]I(Yi > Yj)∑n
i=1

∑n
j=1 Ŝn(t|Yj)[1− Ŝn(t|Yi)]

.
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Heagerty [66] suggested a conditional Kaplan-Meier estimator to derive estimates for Ŝn(t|y).

Also Hung et al. [69] suggested to use IPCW estimates, so we have:

TPRC(c, t) =

∑n
i=1 I(Yi > c, Ti ≤ t) ∆i

nŜC(Ti)∑n
i=1 I(Ti ≤ t) ∆i

nŜC(Ti)

and

FPRD(c, t) =

∑n
i=1 I(Yi > c, Ti > t)∑n

i=1 I(Ti > t)
,

where ŜC(.) is Kaplan-Meier estimator of survival function of the censoring time C. Then the

AUCC/D(t) estimator is given by:

AUCC/D(t) =

∑n
i=1

∑n
j=1 I(Ti ≤ t)I(Ti > t)I(Yi > Yj)

∆i

ŜC(Ti)
ŜC(t)

n2Ŝ(t)[1− Ŝ(t)]
,

where Ŝ(t) is Kaplan-Meier estimator of P (T > t). To conclude this section we would like to

mention that all time dependent ROC curves definitions can be used to evaluate and compare

biomarkers in classifying subjects based on their survival times. The Incidence-Static ROC

curve is useful in distinguishing subjects that fail at a given time from those failing after

another time. The Incidence-Dynamic ROC curve is useful in distinguishing subjects that fail

at a given time from those failing after that time. The Cumulative-Dynamic ROC curve is

useful in distinguishing subjects that fail by a given time from those failing after another time.
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Missing data and imputation

methods

Missing data are quite common in both designed clinical trials and observational research

studies. Some methodologists have described missing data as one of the most important

statistical and design problems in research. The problem of missing data is of a greater concern

when decisions are to be made about the appropriateness of the care a patient should receive

and also when there is interest in using a predictive model to discriminate subjects as likely

to have a certain characteristic from those who do not.

Missing values can severely affect the results if there is dependence between the outcome and

the missing data process, therefore dealing with missingness in the data becomes necessary.

Despite the important nature of the problem, a large number of researchers routinely employ

old standby techniques that have been criticized in the methodological literature. A simple and

common strategy is to ignore cases with missing values, which means reducing the size of the

original data set and can introduce substantial biases in the analysis and inference. Deletion

methods are among the worst methods available for practical applications [113] and this can

lead to severe bias if especially the missing data are not occurring in a purely random manner.
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Define the complete data set as Y = (yij), where yij denotes the jth observation for individual

i = 1, 2, · · · , N and j = 1, 2, · · · , ni. Note that Y includes both observed and unobserved

values. Thus the data Y can be partitioned as Y = (Yobs, Ymis), where Yobs and Ymis denote

the observed and missing part of the complete dataset respectively. To the dataset Y we also

associate a matrix I = Iij and we refer to this matrix as the missing data indicator matrix. It

is defined as:

Iij =


1 if yij is observed,

0 if yij is missing.

A common modeling approach for missing data is to assume the missing data mechanism is

characterised by the conditional distribution of I given Y , that is f(I|Y, φ), where φ denotes

missing data parameters. The joint probability distribution of the response variables and the

missing data indicator variables can be expressed as

f(Y,R|θ, ψ) = f(Y |θ)f(R|ψ, Y ), (4.1)

where f(Y |θ) and f(R|ψ, Y ) denote the marginal distribution of the response variable and

the conditional distribution of missing data, conditional on the response variable, respectively.

The probability model 4.1has two sets of parameters θ and ψ representing the parameters of

interest and the missing data parameters, respectively. In model (4.1), the correct inferences

on θ in general need to be conducted.

It is important to have a clear understanding of the so-called missing data mechanisms. Rubin

et al. [113, 115] introduced three missing data mechanisms. These mechanisms describe the

relationships between measured variables and the probability of missing data. While these

terms have a precise probabilistic and mathematical meaning, there are different reasons for

why the data were missed.
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4.1. Missing reasons

According to [115] there are three missingness mechanisms. In this section we give a conceptual

description of each mechanism and for more details on these mechanisms, we refer the readers

to (Allison [5], Enders [36], Little and Rubin [81], Rubin [113], Schafer and Graham [118]).

4.1.1 Missing completely at random (MCAR)

The first mechanism is called missing completely at random (MCAR) and it happens when

the probability of missing observations is unrelated to the value of that observation or to the

value of any other variable. That is f(I|(Yobs, Ymis), φ) = f(I|φ) for all Y and φ.

There are many and varied reasons for the data to be missed completely at random (MCAR).

It can happen, for example, as a result of equipment malfunction, inclement weather, illness

incapacitating subjects or testers; or incorrectly entered data. When we say data are missing

completely at random, we mean that the probability that an observation Xi being missing is

unrelated to the value of Xi or to the value of any other variables. Thus data on family income

would not be considered MCAR if people with low incomes were less likely to report their

family income than people with higher incomes. Similarly, for example, if in the USA Whites

were more likely to omit reporting income than African Americans, we again would not have

data that were MCAR because missingness would be correlated with the factor of ethnicity.

However if a participant’s data were missing because s/he was stopped for a traffic violation

and missed the data collection session, his/her data would presumably be missing completely

at random. This is supported by the fact that being stopped due to traffic violation can occur

to any participant regardless of the value his/her outcome.
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An interesting feature of data that are MCAR is that the analysis remains unbiased even if

complete cases only are used. We may lose power for our design, but the estimated parameters

are not biased by the absence of data. However the key concluding comment here is that

practically the MCAR assumption is hard to justify.

4.1.2 Missing at random (MAR)

The second mechanism of missing data is when data are missing at random (MAR). This

happens when the probability of a missing observation depends only on available information.

Thus the MAR mechanism can be expressed as: f(I|(Yobs, Ymis), φ) = f(I|Yobs, φ) for all

Ymis and φ. The MAR mechanism requires a less stringent assumption about the reason for

missing data. This terminology is often confusing because of the use of the word random. The

MAR mechanism is in fact is not random at all and it describes systematic missingness where

the propensity for missing data is related to other measured variables in the analysis model,

but not to the underlying values of the incomplete variables [113]. Sometimes we refer to

MAR as ignorable missingness. MCAR missingness also falls under the ignorable missingness.

Cases of missing not at random (MNAR), to be introduced next, could be labeled as cases of

nonignorable missingness.

4.1.3 Missing not at random (MNAR)

Data that are not MCAR or MAR are classified as Missing Not at Random (MNAR). As an

example if we are studying mental health and people who have been diagnosed as depressed

are less likely than others to report their mental status, the data is missing not at random.

Clearly the mean mental status score for the available data will not be an unbiased estimate
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of the mean that we would have obtained with complete data. The same thing happens when

people with low income are less likely to report their income on a data collection form. In

this case the probability that income is not reported depends on the unobserved income value

itself.

The data are classified as Missing Not at Random (MNAR) when the presence of miss-

ing data depends on variable values, which are themselves subject to missingness. That is

f(I|(Yobs, Ymis), φ) 6= f(I|Yobs, φ). To obtain an unbiased estimate of parameters we have to

model the missingness itself. In other words we need to formulate and estimate a model that

accounts for the missing data. That model could then be incorporated into a more complex

model for estimating missing values (see [35] for an example).

4.1.4 Ignorable and non-ignorable missingness

Difficulties appear when we have data that are MNAR. We say that the mechanism controlling

missing data is non-ignorable. That means we cannot sensibly solve a model unless we are

also able to write a model that controls missingness. Modeling the missingness is not an easy

task and most discussions, including this one, do not discuss the treatment of data whose

missingness is non-ignorable. On the other hand, if data are at most MAR, the mechanism

for missingness is ignorable. Thus we can proceed without worrying about the model for

missingness. The intention is to find better estimators of the parameters in our model, but we

do not have to write a model that incorporates missingness. In the next section we introduce

some strategies seeking an improvement in the estimation.
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4.2. Imputation strategies

There are several ways to deal with missing data. One of them is to discard subjects with

incomplete sequences and then analyse only the units with complete data [101]. Methods that

use this approach are called deletion methods. These methods do not replace or impute

missing values and do not make other adjustments to account for missing values.

The main advantages of deletion methods are their simplicity and that they can be applied

easily with much of the available statistical software. Some of the deletion methods are good,

but are applicable only under certain conditions [18]. Ideally for the analysis to be valid one

strong condition or assumption is that the data need to be missing completely at random.

These conditions do not generally hold, therefore McKnight et al. [94] proposed that deletion

methods be avoided whenever is possible. Furthermore Little and Rubin [81] do not recommend

any of the available deletion methods except if the amount of missing data is limited. The

simplest deletion approach is the complete case analysis or list-wise deletion analysis in which

the analysis uses only those subjects with completely recorded observations, that is complete

observations. Some of the advantages of complete case analysis are:

• It is simple, in the sense that the method can be quite effective and may be satisfactorily

used with small amounts of missing data. However, it is important to make sure that,

even in such a situation, the deleted cases are not unduly influential [118].

• It is easy to carry out. It is used by default routines in most statistical software packages,

but implementation details vary.

The primary disadvantages of this method - which clearly outweigh the advantages - are that:
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• It can produce inefficient estimates, in the sense of loss of statistical power specifically

when drawing inferences for sub-populations.

• When data are not MCAR, then the method can lead to seriously biased results. In

other words, this method is valid only when data are MCAR [80]. We remark that even

when MCAR holds, it can still be inefficient [118].

• If the units with missing values differ systematically from observed cases, this could bias

the complete-case analysis.

• If many variables are included in a model, there may be very few complete cases, so that

most of the data would be discarded for the sake of a simple analysis. Thus McKnight

et al. [94] state that one should give careful consideration before the use of this method

regardless of its ease of use.

• It is easy to imagine situations where complete case analysis can be very misleading.

Kenward et al. [74] and Wang-Clow et al. [149] presented examples where the complete

case has led to misleading results.

Next we discuss further deletion methods that can be considered as a replacement for listwise

deletion.

Pairwise deletion is a well-known deletion method. Under this approach each element of the

intercorrelation matrix is estimated using all available data. As an example if one participant

reports his/her income and life satisfaction index, but not his/her age, s/he is included in

the correlation of income and life satisfaction, but not in the correlations involving age. The

problem with this approach is that the parameters of the model will be based on different sets

of data, with different sample sizes and different standard errors.
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It is known that if there are only few missing observations, it does not affect the use pairwise

deletion. If there are many missing observations, this may lead to inappropriateness in the

analysis.

Another simple approach is available case analysis, where different aspects of a problem are

studied with different subsets of the data. For example, in the 2001 Social Indicators Survey

carried out in New York, USA, all 1501 respondents stated their education level, but 16%

refused to state their earnings. We could thus summarize the distribution of education levels

of New Yorkers using all the respondents and the distribution of earnings using the 84% of

respondents who answered that question. A major problem of this approach is that different

analyses will be based on different subsets of the data and thus will not necessarily be consistent

with each other. In addition, as with complete case analysis, if the nonrespondents differ

systematically from the respondents, this will bias the available case summaries.

We now turn to discuss methods that generate possible values for the missing data. These

alternative methods are called imputation methods, where one “fills-in” (imputes) the missing

data to obtain a full data set. Then the resultant data are analysed by standard statistical

methods without concern as if the new set represented the true and complete data set [80, 115].

This is the key idea behind commonly used procedures for imputation which include simple

and multiple imputation [80]. Multiple imputation fills in more than one value for each missing

item to allow for the appropriate evaluation of imputation uncertainty [80, 115]. In contrast

to multiple imputation, simple imputation techniques substitute one value for every missing

value in the data set [80, 81]. Simple imputation methods are valid under the ignorability

assumption [5, 115, 118]. Simple imputation methods that were used in the current research

are

• Mean imputation, where missing observations are replaced with the estimated mean of
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the data set;

• Hot Deck imputation, where the missing data can be replaced with the observed data

taken from matched data from the variables that contain non-missing values.

Simple imputation methods are general and flexible for handling missing data and can be

implemented quickly in several statistical software packages.

We now discuss in details some of the simple imputation methods that have been used in this

work.

4.2.1 Mean imputation

The single imputation method is a simple technique for handling missing data and consists of

replacing any missing observation with a plausible value. The most common single imputation

techniques are the overall mean imputation for continuous variables and the mode imputation

for categorical variables. The mean imputation can be used either by using a conditional mean

based on other variables in the data set or by using the unconditional mean of the variable

of interest. The mean and mode summary statistics are used because they seem to provide

reasonable point estimates. However it is important to mention some of the advantages and

disadvantages of the mean imputation method.

Advantages of mean imputation:

• This technique is easy to implement for any type of variable.

• Once missing values are imputed and incorporated into the data set, multiple users can

use the data with consistent results.
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• If knowledge regarding the mechanism producing missing values is available, imputed

values can often be improved to reflect this additional information.

Disadvantages of mean imputation:

• Rubin [115] showed that one imputed value cannot reflect sampling variability and

marginal distributions and associations are distorted as there is no residual variance

after the imputation.

• The tendency of this technique to reduce the overall variance and increase the significance

of individual covariates within a regression model leads to type II modelling errors. This

problem can be controlled only under the strong mostly unattainable MCAR assumption,

where the variance estimation is consistent with the true variance adjusted by a correction

factor [108].

• Imputed missing data do not represent additional uncertainty when the reason for non-

response is unknown.

• All observed values are considered as actual observations.

4.2.2 Hot deck imputation

The second simple imputation strategy we discuss is the nearest neighbor hot deck imputation

(also known as distance function matching). The term hot deck indicates that the information

of responding units (donors) come from the same dataset as the recipients. Following this

approach [7, 108] the missing values of one or more variables for the non-respondents are

replaced by values from observed closest similar donors in the sample. This is a donor method
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where the donor is selected by minimising a specified distance. This method involves defining

a suitable distance measure, where the distance is a function of the auxiliary variables.

There are several reasons for the popularity of the hot deck method among survey practitioners.

As with all imputation methods, the result is a rectangular data set that can be used by

secondary data analysts employing simple complete-data methods. It avoids the issue of cross-

user inconsistency that can occur when analysts use their own missing-data adjustments. The

hot deck method does not rely on model fitting for the variable to be imputed and thus is

potentially less sensitive to model miss specification error.

Advantages of hot deck imputation: [23]:

• Missing values are imputed with real observed values.

• Nearest neighbor is more efficient than other hot deck methods as it uses the information

of the auxiliary variables.

• It makes no distributional assumptions, in other words it is a distribution free method.

• We can use standard analysis for the imputed dataset.

Disadvantages of hot deck imputation:

• Requires some programming to be implemented

• Requires complete information on auxiliary variables

• Estimated values depend on the selected auxiliary variables.

• Most implementations don’t provide an uncertainty assessment.

The nearest neighbor hot deck imputation (NNI) method has some interesting features:
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• It is a hot deck method in the sense that non-respondents are substituted by a value of

the same variable from a respondent of the same pool; the imputed values are actually

occurring values, not constructed values, and they may not be perfect substitutes, but

are unlikely to be nonsensical values.

• It is more efficient than other hot deck methods in the sense that non-respondents are

imputed by deterministic values, given the y-respondents and x-values [108]. It is im-

portant to keep in mind that the hot deck method makes implicit assumptions through

the choice of the metric to match donors to recipients, and the variables included in this

metric, so it is far from assumption free.

• Only plausible values can be imputed, since values come from observed responses in the

donor pool.

• There may be a gain in efficiency relative to complete-case analysis, since information

about the incomplete cases is being retained.

• There is also a reduction in non-response bias, to the extent that there is an association

between the variables defining imputation classes and both the propensity to respond

and the variable to be imputed.

• It makes use of auxiliary information and does not use an explicit model and hence it

is expected to be more robust against model violations than methods based on explicit

models, such as ratio imputation and regression imputation.

• The NNI method provides an asymptotically valid distribution.

Let xi = (xi1, · · · , xiq) be the values for subject i of q covariates that are used to create

adjustment cells and let C(xi) denote the cell in the cross classification in which subject i falls.
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Then matching the recipients i to donors j in the same adjustment cell is the same as matching

based on the metric:

d(i, j) =


0 if i ∈ C(xi),

1 if j 6∈ C(xi).

The other measure of potential closeness of potential donors to recipients can be defined to

be the maximum deviation, d(i, j) = maxk |xik − xjk| where xk have been suitably scaled to

capture differences comparable (e.g. by using ranks and then standardizing). The Mahalanobis

distance [108],

d(i, j) = (xi − xj)T v̂ar(xi)−1(xi − xj),

where ̂var(xi) is an estimate of the covariance matrix of xi, or the predictive mean,

d(i, j) = (Ŷ (xi)− Ŷ (xj))
2,

where Ŷ (xi) = xTi β̂ is the predicted value of Y for non-respondent i from the regression of Y

on x using only the respondents’ data. One way to define the donor set for non-respondent i

is as the set of respondents with (d(i, j) < δ), for a pre-specified maximum distance δ. If the

closest respondent to j is selected, the method is called nearest neighbor hot deck.

Nonetheless despite the availability of the single imputation techniques (e.g. mean and hot

deck), they are not at all recommended when the rate of missing values and number of param-

eters are large. A major shortcoming in using them is that single imputation does not account

for imputation error.

4.2.3 Multiple imputation

In multiple imputation (MI) each missing value is replaced with several imputed values that

reflect the uncertainty of the imputation model. Multiple imputation is a method to handle
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incomplete data in statistical inferences and was first proposed by [115]. Under MI, m ≥ 2

independent imputations are carried out for each missing value to create m complete data sets.

Next each complete imputed data set is analysed separately using an appropriate standard

analysis method and the results are finally combined to produce estimates and confidence

intervals for parameter values. Multiple imputation operates under the assumption that given

the variables used in the imputation procedure, the missing data are Missing At Random

(MAR), which means that the probability that a value is missing depends only on observed

values and not on unobserved values [118]. In other words, after controlling for all of the

available data (i.e., the variables included in the imputation model) any remaining missingness

is completely random [57]. MI procedures are very flexible and can be used in a broad range

of settings. Because MI involves creating multiple predictions for each missing value, the

analysis of multiple imputed data take into account the uncertainty in the imputations and

yield accurate standard errors. On a simple level, if there is not much information in the

observed data (used in the imputation model) regarding the missing values, the imputations

have high variability, leading to high standard errors in the analyses. In contrast, if the

observed data are highly predictive of the missing values the imputations will be more consistent

across imputations, resulting in smaller, but still accurate standard errors [58]. The method

of multiple imputation ensures high efficiency even for a small number of imputations. The

efficiency of this method is given by

q = (1 +
γ

m
)−1,

where γ is the fraction of missing information due to non-response. For m imputations we have

m estimates θ̂i, i = 1, 2, · · · ,m each with an estimated sampling variance. Then the overall

MI estimator for the parameter of interest (which can be vector-valued) is simply given by

the average of the m estimators obtained from each of the m complete data sets and this is
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computed through the formula

θ =
1

m

m∑
i

θ̂i.

The standard error is obtained by taking into account of within imputation variance, as well as

between imputations variance. These two variances are then combined together and the square

root of the sum determines the standard error. Average sampling variance of m estimates result

in within imputation variance W expressed as

W =
m∑
i

var(θ̂i)

m
.

The variability of estimates across m imputations namely between imputation variance B is

given by

B =

m∑
i

(θ̂i − θ)2

(m− 1)
.

The total imputation variance T of θ is then given by

T = W + (1 +
1

m
)B.

Multiple imputation has a number of advantages over the other missing data imputation ap-

proaches. Multiple imputation involves filling in the missing values multiple times, creating

multiple complete datasets. Following [118], the missing values are imputed based on the

observed values for a given individual and the relations observed in the data for other partici-

pants, assuming the observed variables are included in the imputation model. The MI inference

assumes that the model used in analysing the multiple imputed data (the analysis model) is

the same as the model used to impute missing values in MI (the imputation model). However,

practically, the two models might not be the same [116]. The quality of the imputation model

will influence the quality of the analysis model results, so it is important to carefully consider

the design of the imputation model. Therefore, in order to obtain high quality imputations

for a particular variable, the imputation model should include variables that are potentially
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related to the imputed variable and variables that are potentially related to the missingness

of the imputed variable [116]. Van Buuren et al. [143] recommended including the following

covariates in the imputation model:

• Variables in the analysis model.

• Variables associated with missingness of the imputed variable.

• Variables correlated with the imputed variable.

However, one can include auxiliary variables which may or may not have missing values. Gen-

erally, including variables that do not have missing values is recommended in the imputation

model. For more details of the imputation model, the reader may consult [117, 118, 143].

Advantages of MI:

• It is applicable to any type of variables.

• It represents missing data uncertainty.

• It takes into account the variability given by the multiple imputed data set with appro-

priate statistical inference.

• It yields robust estimates.

• The use of standard analysis in each imputed data set.

Imputation methods keep the full sample size, which can be advantageous for bias and precision;

however, they can yield different kinds of bias. Whenever a single imputation strategy is used,

the standard errors of estimates tend to be too low. The intuition here is that we have

substantial uncertainty about the missing values, but by choosing a single imputation we
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in essence pretend that we know the true value with certainty. Although MI is intuitively

appealing, it still has some defects. Disadvantages of MI:

• Analysis of multiple data sets is time consuming and requires statistical expertise.

• MI can introduce bias over a complete case analysis if not carried out appropriately.

The MI is the most commonly used approach to deal with missing data. MI is generally pre-

ferred to Inverse-Probability Weighting (IPW) as it is more efficient. If the imputation model

is correctly specified, MI should work well. Furthermore, we were interested in comparing

between single and multiple imputation methods in order to estimate time-dependent AUC.

We are planning to use the IPW in the future work.

4.2.4 Multiple imputation via chained equations

Multiple Imputation via Chained Equations (MICE) is a particular multiple imputation tech-

nique [111, 144]. The name chained equations refers to the fact that the Gibbs sampler can

be easily implemented as a concatenation of univariate procedures to fill out the missing data.

Implementing MICE when data are not MAR could result in biased estimates. Many of the

initially developed multiple imputation procedures assumed a large joint model for all of the

variables, such as a joint normal distribution. In large datasets, with hundreds of variables

of different types, this is rarely appropriate. MICE is an alternative, flexible approach to

these joint models. In fact, MICE approaches have been used in datasets with thousands of

observations and hundreds of variables [65, 129]. In the MICE procedure, a series of regres-

sion models are run whereby each variable with missing data is modeled conditional upon the

other variables in the data. Thus MICE falls under the general class of models called the fully

conditional specification (FCS) of the joint distribution. This means that each variable can
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be modeled according to its distribution for example, binary variables modeled using logistic

regression and continuous variables modeled using linear regression. Let X1, X2, · · · , Xk be a

set of variables some or all having missing values, the MICE algorithm can be described as

follows:

• IfX1 has missing values, it will be regressed on other variables, the estimation is restricted

to individuals with observed X1. The missing values in X1 are then replaced by simulated

draws from the posterior predictive distribution of X1.

• The following variable with missing values is regressed on all other variables, thus the

estimation is restricted to individuals with observed values for that variable and uses the

imputed values of X1.

• This process is repeated for all other variables for c cycles, which is suggested to be more

than 10 for the convergence of the sampling distribution of imputed values. The entire

process is repeated independently m times.

The number of cycles to be performed can be specified by the researcher. At the end of these

cycles, the final imputations are retained, resulting in one imputed dataset. Generally, ten

cycles are performed [112]. The idea is that by the end of the cycles, the distribution of the

parameters governing the imputations (e.g., the coefficients in the regression models) should

have converged in the sense of becoming stable. This will, for example, avoid dependence on

the order in which the variables are imputed. In practice, researchers can check the convergence

by, for example, comparing the regression models at subsequent cycles, as discussed in [65].

Different MICE software packages vary somewhat in the exact implementation of this algorithm

but the general strategy is the same. To make the MICE approach more concrete, imagine

a simple example where we have three variables in our dataset: age, income, and gender,
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and all three have at least some missing values. The MAR assumption would imply that the

probability of a particular variable being missing depends only on the observed values and

that, for example, whether someone’s income is missing does not depend on their (unobserved)

income. In step 1 of the MICE process, each variable would first be imputed using, for example,

mean imputation, temporarily setting any missing value equal to the mean observed value for

that variable. Then in step 2 the imputed mean values of age would be set back to missing.

In step 3, a linear regression of age predicted by income and gender would be run assuming all

cases were observed [11]. In step 4, predictions of the missing age values would be obtained

from that regression equation and imputed. At this point, age does not have any missingness.

Steps 2 to 4 would then be repeated for the income variable. The originally missing values of

income would be set back to missing and a linear regression of income predicted by age and

gender would be run using all cases with income observed. Imputations (predictions) would be

obtained from that regression equation for the missing income values. Then steps 2 to 4 would

again be repeated for the variable gender. The originally missing values of gender would be

set back to missing and a logistic regression of gender on age and income would be run using

all cases with gender observed. Predictions from that logistic regression model would be used

to impute the missing gender values. This entire process of iterating through the 3 variables

would be repeated until convergence. The observed data and the final set of imputed values

would then constitute one complete data set. The process is repeated again to yield the second

complete data set and again until m complete data sets ready for analysis are created via this

simulation and estimation algorithm.

Advantages of MICE:

• It is considered a flexible approach because it gives flexibility to the researcher having a

multivariate structure on the data.
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• It can handle variables of different types.

• It can handle arbitrary missing-data patterns.

• It can accommodate certain important characteristics of the observational data.

Disadvantages of MICE:

• If the imputation model has too many variables it may lead to multicollinearity problems.

• It also requires comprehensive computational skills.

• Implementing MICE when data are not MAR could result in biased estimates.

Although facilitating computation is very important, such a viewpoint ignores the imputer’s

assessments and information inaccessible to the users [96]. In [96] it was mentioned that “This

view underlies the recent controversy over the validity of multiple-imputation inference when a

procedure for analyzing multiply imputed data sets cannot be derived from (is “uncongenial”

to) the model adopted for multiple imputation”. The uncongeniality arises when the analyst

and the imputer have access to different amounts and sources of information, and have different

assessments (e.g., explicit model, implicit judgement) about both responses and non-responses.

If the imputer’s assessment is far from reality, Rubin [115] stated “all methods for handling non-

response are in trouble”. Based on such assessment, all statistical inferences need underlying

key assumptions to hold at least approximately. If the imputer’s model is reasonably accurate,

the multiple imputation prevents the analyst from producing inferences with serious non-

response biases.

An issue of uncongeniality is that it reveals a unique feature of multiple imputation inferences

that has not been studied systematically and is therefore unfamiliar to some analysts [96]. For
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an analyst, conducting multiple imputation inferences remove two major burdens of analysing

incomplete data: the difficulty of modeling missing data mechanisms and the computational

complications of incomplete data analyses. It is therefore recommended that the imputation

model should be rich enough and include all the variables that are used in the analysis model

including auxiliary variables if any. This condition was met in the current research because

our imputation model used all the information that was used in the analysis model.
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Combining multiple biomarkers in

diagnostic testing for cross-sectional

data

5.1. Introduction

In medicine a biomarker is a characteristic that is objectively measured and evaluated as an

indicator of normal, pathogenic processes or a pharmacologic response to therapeutic inter-

vention [128]. More specifically, a biomarker indicates a change in expression or state of a

protein that correlates with the risk or progression of a disease, or with the susceptibility of

the disease to a given treatment. Biomarkers have gained immense scientific, clinical value

and interest in the practice of medicine. For example clinical signs, symptoms, laboratory

tests, gene expression technology and combinations of the afore-mentioned rely on the use of

biomarkers.

Complex organ functions or general characteristic changes in biological structures can also

serve as biomarkers. Although the term biomarker is relatively new, they have been used
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in pre-clinical research and clinical diagnosis for a considerable length of time. Biomarkers

measure the progress of disease and assist in the evaluation of the most effective therapeutic

regimes for the disease. In medicinal biology, they play major roles and help in early diagnosis,

disease prevention, drug target identification and evaluation as well as drug response. Before

diagnosis, markers may be used for screening and risk assessment. During diagnosis, markers

can determine the staging, grading, and selection of initial therapy. During treatment, they can

be used to monitor therapy, select additional therapy, or monitor recurrent diseases. An ideal

biomarker should be safe and easy to measure. If the biomarker is to be used as a diagnostic

test, it should be sensitive and specific and have a high predictive value. In other words, most

patients without the disease should have negative test results and vice-versa [72]. Biomarkers

may be used alone or in combination to allow classification of an individual to a unique group

with defined characteristics. Biomarkers are also used in fields like geology, astronomy and

chemistry.

A critical challenge in clinical research is the combination of multiple biomarkers into models

to improve disease or outcome predictive accuracy. In medical research data, scientists are

evaluating a number of biomarkers simultaneously, which introduces an added complexity to

the analysis. In addition to providing an improved understanding of factors associated with

infection and disease development, a combination of relevant markers is important to the

diagnosis and treatment of disease. In this chapter we are mainly interested in combining

multiple biomarkers since this combination may possess a better diagnostic accuracy than any

single test on its own. For example, a single biomarker may not give sufficient sensitivity and

specificity in the study of a population with ovarian cancer, however combinations of biomarkers

may do so. Combining biomarkers can be used to identify important disease features, diagnosis

and prognosis. Therefore it is of interest to develop methods that can achieve this goal.
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Correct diagnosis of disease is a real challenge and medical researchers invest considerable

time and effort to the enhancement of accurate disease diagnosis. In the field of genomics

or genetic analysis, genotyping methods are being advanced to enhance accurate detection of

disease presence or disease stage generally. The ROC is a commonly used statistical tool for

describing the discriminatory accuracy and performance of a diagnostic test. The prediction

error can be used for model comparisons and evaluation, but it is not a meaningful indicator

for disease discriminatory capacity and may not necessarily represent the targeted population.

Thus we proposed the use of the AUC estimator as an evaluation method.

Features selection methods must be taken into account to improve the inferior univariate

selection of features based on traditional inference tests. Although univariate models have

some appealing strengths and are comparatively easy to fit. However, correlation cannot

be modeled using univariate process thus multivariate models provide more comprehensive

analysis. It is well-known that evaluating the model on the same data that was used to build

it will cause an over-fitting problem, thus resampling methods should be used. There has

been much recent work on developing methods for combining multiple biomarkers. Su and Liu

[130] proposed linear combination of markers to maximise sensitivity over the entire specificity

range. They also provided a solution of the best linear combination of markers in the sense

that the AUC of this combination is maximised among all possible linear combinations. Pepe

and Thompson [103] proposed a distribution free rank based approach for optimising the AUC.

In [93] McIntosh and Pepe showed that the risk score defined as the probability of disease given

data on multiple markers is the optimal function that maximises the ROC curve at every point.

Etzioni et al. [43] proposed screening rules based on the consideration of logical combinations of

biomarker measurements. Yuan and Ghosh [153] proposed a novel model combining algorithms

for classifying biomarkers in studies.
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In this chapter, multivariate stepwise logistic regression is used to select the biomarkers. Then

the bootstrap leave one out cross-validation (LOOCV) technique is applied to evaluate the di-

agnostic performance of the combined markers using the ROC analysis. The process of variable

selection is applied to each training set. In a simulation study, we developed a statistical model

based on the multivariate normal distribution and used it to show that accounting for statisti-

cal correlation among the biomarkers is useful to help improving the predictive accuracy. The

method is applied to a real data set collected to study the occurrence of TB-IRIS in patients

from Cape Town, South Africa. The method is designed for the analysis of cross-sectional

data.

5.2. Variable selection

Feature selection, also known as variable selection is the technique of selecting a subset of rele-

vant features or variables for building models. Variable and feature selection have become the

focus of much research when tens or hundreds of thousands of variables are available. Feature

selection is the common first step when developing a class predictor based on microarray data

[122]. In fact it is reasonable to assume that only some subsets of many of measured biomark-

ers contribute useful information for distinguishing the phenotype classes. By removing most

redundant biomarkers or variables from the data, feature selection helps improve the perfor-

mance of models. However, prior to variable selection it is important to ensure that distorting

features such as identification of outliers are properly handled. This may include exclusion of

outliers and transformation of variables appropriately. The objective of variable selection is to

avoid over-fitting, improve model performance and provide faster and more effective predictors.

Faraway [46] states that among several plausible explanations for a phenomenon, the simplest

and smallest that fits the data is best. It is well known that unnecessary predictors will add

noise to the estimation of other quantities that are of interest and degrees of freedom will be
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unnecessarily wasted. Moreover, collinearity is caused by having too many variables trying to

achieve the same goal. Finally, if the model is correctly identified, we can save time and cost

by not measuring and including redundant predictors.

One approach to feature selection is to select variables based on their statistical significance in

univariate tests of differences between the classes. For this purpose the t-test or Wilcoxon rank-

sum test can be used to assess univariate statistical significance [122]. Then those variables

considered statistically significant are to be identified for inclusion in the multivariate model.

The most commonly used methods for variables selection are backward elimination, forward

selection, and stepwise selection. We briefly summarize these methods.

5.2.1 Backward elimination

Backward elimination is the simplest of all variable selection procedures and can be easily

implemented without special software. Backward elimination begins with a full model consist-

ing of all candidate predictor variables. Variables are sequentially eliminated from the model

until a predefined stopping rule is satisfied. The variable whose elimination would result in

the smallest decrease in a summary measure is eliminated. A common stopping rule is to stop

when all variables that remain in the model are significant at a pre-specified significance level.

Below are the steps for backward variable selection:

1. Start with all the predictors in the model.

2. Remove the predictor with highest p-value greater than the pre-specified one.

3. Refit the model and return to step 2.

4. Stop when all p-values for the remaining predictors are less than the pre-specified level
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such as α = 0.05.

Backward elimination does not perform well in the presence of multicollinearity and it cannot

be used if there are more variables than observations, p > n. Additionally it may be compu-

tationally expensive if there are many variables. A classical alternative is forward selection.

5.2.2 Forward selection

Forward selection reverses the backward selection and begins with an empty or null model.

Variables are added sequentially to the model until a pre-specified stopping rule is satisfied. At

a given step in the selection process, the variable whose addition would result in the greatest

increase in the summary measure is added to the model. A typical stopping rule is that

if any added variable would not be significant at a pre-specified significance level, then no

further variables are added to the model. Below are the key steps under the forward selection

procedure.

1. Start with no variables in the model.

2. For all predictors not in the model, check their p-value if they are added to the model

and choose the one with lowest p-value less than a pre-specified threshold value such as

0.05.

3. Continue until no new predictors can be added.

5.2.3 Stepwise regression

Stepwise regression is a standard procedure for variable selection, which is based on the proce-

dure of sequentially introducing the predictors into the model one at a time. Stepwise selection
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is a combination of backward elimination and forward selection. At each step of the variable

selection process, after a variable has been added to the model, variables are allowed to be

eliminated from the model. For instance, if the significance of a given predictor is above a

specified threshold, it is eliminated from the model. The iterative process is ended when a pre-

specified stopping rule is satisfied. In other words, this addresses the situation where variables

are added or removed early in the process and we want to change our mind about them later.

At each stage a variable may be added or removed and there are several variations on exactly

how this is done. It is important to realize that a stepwise approach is not guaranteed to lead

to the best possible model. But it almost always leads to a good model.

Various model selection methods such as Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) are available and commonly used criteria. The AIC is a measure

of the goodness of fit of an estimated statistical model. The AIC is a method of assessing

the trade-off between the complexity of an estimated model against how well the model fits

the data. The preferred model is the one with the lowest AIC value. The AIC and BIC are

respectively given by

AIC = −2 logL+ 2p

while

BIC = −2 logL+ p log n,

where L is the likelihood of the data given the model parameters, p is the number of model

parameters and n is the number of observations. Note that BIC penalizes larger models more

heavily and so will tend to prefer smaller models in comparison to AIC. Both AIC and BIC

can be used as selection criteria for all models both nested and non-nested, although for nested

models the likelihood ratio test is preferred.
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5.3. Resampling methods in the context of combining multiple biomarkers and

estimation of the AUC

Diagnostic tests are important components in modern medical practice. Recall that the ROC

curve is a graphical tool for evaluating the discriminatory accuracy of diagnostic tests and the

AUC is the most popular summary index of discriminatory accuracy. When we have several

biomarkers with varying information about a condition or disease, it might be beneficial to

combine them in order to obtain better diagnostic accuracy with a goal of maximising the

AUC over all possible combinations (Fang et al. [44]).

As pointed out in Fang et al. [44], the procedure of combining multiple test results has been

well studied. For example, Su and Liu [130] discussed the optimal linear combination under

the multiple-normal assumption; Pepe and Thompson [103], Pepe, Cai, and Longton [106];

and Ma and Huang [84] discussed this procedure under the generalised linear model (GLM)

assumption or formulation. Copas and Corbett [25] addressed the over-fitting problem (arguing

that using the same data both to fit the prognostic score and to calculate its ROC tends to

give an over optimistic estimate of the performance of the score) when combining tests through

a logistic regression model. In this thesis we use the logistic regression model, which is often

used to find a linear combination of covariates that best discriminates between two populations.

The purpose of this section is to briefly discuss the resampling methods with application to

estimating the AUC in the context of variable selection.

In recent years many emerging statistical analytical tools, such as resampling methods have

been gaining attention among psychological and educational researchers. However, many re-

searchers tend to embrace traditional statistical methods rather than experimenting with these

new techniques, even though the data structure does not meet certain parametric assumptions.
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Resampling techniques are rapidly entering mainstream data analysis; some statisticians be-

lieve that resampling procedures will soon overtake common traditional non-parametric pro-

cedures and may displace most parametric procedures as well.

Resampling procedures are statistical inference methods based on generating repeated samples

drawn from the original sample. Compared to standard methods of statistical inference, these

modern methods often are simpler and more accurate, require fewer assumptions. Resampling

provides clear advantages when assumptions of traditional parametric tests are not met, as

with small samples from non-normal distributions. Additionally, resampling can address ques-

tions that cannot be answered with traditional parametric or non-parametric methods, such as

comparisons of means, medians or ratios. Thus, resampling also has the advantage of concep-

tual simplicity. Classical parametric tests compare observed statistics to theoretical sampling

distributions. Resampling is a revolutionary methodology because it departs from theoretical

distributions. Rather, the inference is based upon repeated sampling within the same sample.

Indeed, the resampling method is tied to the Monte Carlo simulation, in which researchers

“make up” data and draw conclusions based on many possible scenarios [83]. Monte Carlo

simulations are widely used by statisticians to study the actions of different statistical proce-

dures. In resampling one could explore all possible combinations, but such a strategy can be

too time-consuming and computing-intensive.

5.3.1 Over-fitting

In statistics, over-fitting occurs when a statistical model describes random error or noise instead

of the underlying systematic relationship. An over-fitting problem can also be defined as fitting

a statistical model with too many degrees of freedom in the modeling process. Thus over-

fitting leads to users being too optimistic about the performance of the model. Over-fitting
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unrealistically leads to a complex model making the training data set too noisy and too small,

in addition it gives a very rich hypothesis space. The possibility of over-fitting exists because

the criterion in the training data model may not be the same as the criterion used to judge the

efficacy of a model. In particular, a model is typically trained by maximising its performance

on some set of training data. However, its efficacy is determined not by its performance on

the training data but by its ability to perform well on unseen data. It may occur that a model

begins to memorize training data rather than learning to generalise to new data. In other

words, validating a model using the same data used to develop it is no evidence of prediction

accuracy for the data.

One very common way of selecting variables for a regression model is to start with a series

of univariate models to study the relation between each variable and the response. Then one

selects only those variables significant for entry into the subsequent multivariate regression

analysis. However the process still leads to degrees of freedom being spent against the sample

and leading to increased risk of over-fitting. Using univariate prescreening also creates other

problems in the context of multivariable modeling. Variables in isolation may behave quite

differently with respect to the response variable than when they are considered simultaneously

with one or more other variables. The relation between a variable and an outcome may not

appear to be important at all in the univariate case, but may become quite important after

adjustment for other covariables and vice-versa.

In order to avoid over-fitting, it is necessary to use additional techniques such as cross-validation

and bootstrapping. The basis model validation techniques is either to explicitly penalize overly

complex models, or to test the model’s ability to generalise by evaluating its performance on

a set of data not used for training, which is assumed to approximate the typical unseen data

that a model will encounter.
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Bootstrap validation of models also has been shown to be superior to older techniques of model

validation, such as splitting the data set into training and validating data sets. Enhancements

to models - such as shrinkage techniques - allow us to understand the extent of over-optimism

and generate an estimate of how well the model might fit in a new sample. In the following

we discuss some of the above mentioned resampling techniques.

5.3.2 Cross-validation

Cross-validation is useful in dealing with the problem of over-fitting. Validation techniques are

motivated by fundamental problems such as model selection and performance estimation. As

we mentioned before, over-fitting is one aspect of the larger issue of what statisticians refer

to as shrinkage. Cross-validation techniques are one way to address this over-fitting bias and

it is a model evaluation method that is better than simply looking at the residuals. Residual

evaluation does not indicate how well a model can make new predictions on cases it has not

already handled. Cross-validation techniques tend to focus on not using the entire data set

when building a model but rather on subdividing the data into training and validation or

testing subsets. Some cases are removed before the data is modelled; these removed cases

are often called the testing set. Once the model has been built using the cases - often called

the training set - the cases which were removed - the testing set - can be used to test the

performance of the model on the “unseen” data.

Recall that the prediction error (PE) is a quantity that measures how well the model predicts

the response value of a future observation. It is often used for model selection since it is

sensible to choose a model that has the lowest prediction error among a set of candidates

[39]. In regression models it is referred to as the expected squared difference between a future

response and its prediction from the model that is PE = E(y − ŷ)2.
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Cross-validation is mainly used in settings where the goal is prediction and one wants to

estimate how accurately a predictive model will perform in practice. It is a strong standard

tool for estimating prediction error and it is a specialized resampling procedure that is designed

specifically for application in model validation problems. It can be used to estimate the error

of a given model as a basis for model selection by choosing one of several models that has the

smallest estimated prediction error. Cross-validation is important especially in cases where

further samples are costly or impossible to collect.

Cross-validation is only valid if the test set is not used in any way in the development of

the model. Using the complete set of samples to select markers violates this assumption and

invalidates cross-validation. With proper cross-validation, the model must be developed from

scratch for each leave-k-out training set. This means that feature selection must be repeated

for each leave-k-out training set. The objective of variable selection is to avoid over-fitting,

improve model performance and provide faster and more effective predictors.

As we have indicated earlier; if many diagnostic tests are available and some of them are

redundant, then we want to seek an optimal subset of diagnostic tests where the combined

test has the largest AUC. Note here the term test has same meaning as a biomarker. Thus

for each subset of diagnostic tests we calculate the cross-validation estimation of the AUC

and then we choose the subset of diagnostic tests, which give the largest - or maximises - the

cross-validated AUC as the best one. We remark that including the redundant diagnostic tests

in the combination will decrease the AUC. This gives rise to the variable selection problem

[39].

Cross-validation is accomplished by implementing the following steps.

• Leaving out a portion of the sample.
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• Building the prediction rule on the remaining sample (training set).

• Predicting the class labels of the left out (test set) sample.

There are many types of cross-validation. We will discuss some of them below.

5.3.3 K−fold cross-validation

K−fold cross-validation can be summarized in the following steps:

• Split the full dataset into K randomly equal sized subsets. Keep one of them for testing

the model and use the other K − 1 parts as training data.

• Fit the model to the K− 1 parts included and calculate the prediction error of the fitted

model when predicting the k-th part of the data left out.

• repeat the above step for all k = 1, 2, · · · ,K data subsets and average the K results from

the K-fold prediction.

The advantage of this method is that all observations are used for both training and testing

and each observation is used for testing exactly once and used for training K − 1 times. Note

that the variance of the resulting estimate is reduced as K is increased. On the other hand

the training algorithm has to be rerun from scratch K times.

The simplest case of K−fold cross-validation is when K = 2 (2−fold cross-validation). For

each fold, we randomly assign data points to two sets, so that both sets are equal size. We

then train on the first set and test on the second set, followed by training on the second set and

testing on the first set. This has the advantage that each data point is used for both training

and validation on each fold.
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5.3.4 Leave one out cross-validation (LOOCV)

This is same as the K-fold cross-validation with K being equal to the number of observations

in the original sample. We use a single observation from the original sample as the validation

data, and the remaining observations as the training data. This is repeated such that each

observation in the sample is used once as the validation data. Leave one out cross-validation

is a common choice for small sample sizes. It is accomplished through the following steps:

• The full dataset is divided into training and test (validation) sets. The test set contains

a single observation.

• The prediction rule is built from scratch using the training set.

• The rule is applied to the observation in the test set for class prediction.

• The process is repeated until each observation has appeared once in the test set.

Cross-validation is a method for estimating the error rate given test data not used in the

training stage. Regardless of what value you set for K-fold cross-validation, using a K of 10-20

gives better results than using a smaller number, but each number could result in a slightly

different error estimate.

5.3.5 Bootstrap method

In 1979 Efron [37] introduced the bootstrap as a general method for estimating the sampling

distribution of a statistic based on the observed data.

Bootstrapping can be used to estimate measures of accuracy to statistical estimates. Bootstrap

estimation of the true error rate [122] is an alternative to cross-validation. Bootstrapping is
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accomplished by selecting with replacement n observations from among the original set of n

observations (unlike in the cross-validation). With bootstrapping the original sample could be

duplicated as many times as computing resources allow. Also every resample has the same

number of observations as the original sample. Thus the bootstrap method has the advantage

of modeling the impact of the actual sample size. It should be noted that a predictive model is

developed from scratch; this includes the variable selection step with each bootstrap replicate.

The model is then used to predict the class for each observation not in the bootstrap sample.

Each prediction is recorded as correct or incorrect. This process is repeated for many bootstrap

samples and the average number of misclassifications per prediction is used as an estimate of

the misclassification rate [122]).

To understand bootstrap, suppose it were possible to draw repeated samples of the same size

from the population of interest, a large number of times. Then it is possible to get a fairly

good idea about the sampling distribution of a particular statistic from its estimated values

arising from these repeated samples. The purpose of a sample study is to gather information

cheaply in a timely fashion. The idea behind bootstrap is to resample with replacement from

the sample data at hand and create a large number of bootstrap samples. The sample summary

is then computed on each of the bootstrap samples.

The bootstrap method has been shown to be successful in many situations, therefore being

accepted as an alternative to the asymptotic methods. In fact, it is better than some other

asymptotic methods, such as the traditional normal approximation.

In this method estimates θ∗b , b = 1, 2, · · · , B of the parameter of interest θ are calculated from

B pseudo samples. Then an estimate of the bootstrap variance of the parameter of interest is
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calculated as:

V arBS(θ) =
1

B − 1

B∑
b=1

(θ∗b − θ∗)2,

where B is the number of replicate samples and θ∗ = 1
B

B∑
b=1

θ∗b .

It has been suggested that the number of replicate samples needs to be large. Efron[39] stated

that a large B would be 200 replicates and generally variance decreases as the number of

replicate samples increases. For this reason we use 1000 bootstrap replicates in both simulation

studies and application to real dataset.

5.3.6 Bootstrap standard errors and confidence intervals

Let F̂ be the empirical distribution. A bootstrap sample is defined to a random sample of size

n drawn from F̂ , say x∗ = (x∗1, · · · , x∗n). The bootstrap data points (x∗1, · · · , x∗n) are a random

sample of size n drawn with replacement from the population of n objects (x1, · · · , xn). Thus

some members of original data may not appear in the bootstrap sample and others may appear

more than one times. A bootstrap replicate estimate θ̂∗ is given by:

θ̂∗ = s(x∗),

where s(x∗) is the estimating function S(.) applied to x∗ as was applied to x. The bootstrap

estimates of standard error seF̂ (θ̂∗) is the standard error of θ̂ for data sets of size n randomly

sampled from F̂ . Below is the algorithm for estimating the standard error of θ̂ = s(x) from

the observed data x.

• Select B independent bootstrap samples x∗1, · · · , x∗B each consisting of n data values

drawn with replacement from x. The number of bootstrap replicates B will ordinarily

be in range 25− 200.
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• Evaluate the bootstrap replication estimate corresponding to each bootstrap sample,

θ̂∗(b) = s(X∗b), b = 1, 2, · · · , B.

• Estimate the standard error seF (θ̂) by the sample standard deviation of the B replica-

tions:

ˆseB =

√√√√ 1

B − 1

B∑
b=1

(
θ̂∗(b)− θ̂∗(.)

)2
,

where

θ̂∗(.) =
1

B

B∑
b=1

θ̂∗(b).

Confidence intervals for a given population parameter θ are sample based whose range [θ1, θ2]

given out for the unknown number θ . The range possesses the property that θ would lie

within its bounds with a high (specified) probability. The latter is referred to as confidence

level. Of course this probability is with respect to all possible samples, each sample giving rise

to a confidence interval which thus depends on the chance mechanism involved in drawing the

samples. The two mostly used confidence coefficients are 95% and 99%. We limit ourselves

to the level 95% for our work here. Traditional confidence intervals rely on the knowledge of

sampling distribution of θ̂, exact or asymptotic as n→∞.

There are two rules for the number of replicates:

• Even a small number of bootstrap replicates, for example B = 25, is usually informative

and B = 50 is often enough to give a good estimate of seF (θ̂).

• Very seldom are more than B = 200 replications needed for estimating a standard error,

Much bigger values of B are required for bootstrap confidence intervals.

Standard errors are often used to assign approximate confidence intervals to a parameter θ of

interest. Given an estimate of θ̂ and estimated standard error ŝe the usual 95% confidence
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interval for θ is

θ̂ ± 1.96ŝe.

The number 1.96 comes from standard normal table.

5.3.7 Bootstrap cross-validation

The method is proposed by Fu et al. [51] to handle small sample problems. The procedure

generates B bootstrap samples of size n from the observed sample and then calculates a leave-

one-out cross-validation estimate on each bootstrap sample. Averaging the B cross-validation

estimates gives the bootstrap cross-validation estimate for the prediction error. The authors

of [51] did not carefully address the issue of feature selection when the method is applied

to high dimensional gene expression data. The bootstrap cross-validation method tends to

underestimate the true prediction error.

5.3.8 Leave-one-out bootstrap

The leave-one-out bootstrap procedure [39] generates a total of B bootstrap samples of size n.

Each observation is predicted repeatedly using the bootstrap samples in which the particular

observation does not appear. In this way, the method avoids testing a prediction model on

the observations used for constructing the model. The leave-one-out bootstrap is basically a

smoothed version of the leave-one-out cross-validation. The leave-one-out bootstrap estimate

has much smaller variability than the leave-one-out cross-validation estimate. A bootstrap

sample of size n contains roughly 0.632n distinct observations from the original sample. It is

often inadequate to represent the distribution of the original data when the sample size n is

small. Hence the leave-one-out bootstrap estimate tends to overestimate the true prediction
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error.

For estimation of bootstrap leave one out cross-validated AUC, we drew a bootstrap sample and

performed AUC cross-validation on the bootstrap sample. We used 1000 bootstrap replicates

and obtained 1000 AUC estimates, and then we calculated the mean for these 1000 AUCs in

order to obtain a single AUC.

Bootstrapping was used to get the variance estimates for the cross-validated AUC as the

bootstrap estimates have smaller variances, especially for small sample sizes.

In our case we used leave-one-out cross-validation (LOOCV) as it is nearly unbiased, easy to

implement and to understand. In the LOOCV function, we split the full dataset into training

and a test, which contains a single observation. The training set consists of the other remaining

observations. For the training set, we used logistic regression to build our predictive models

together with stepwise variable selection method based on AIC criteria. This gives prediction

values between 0 and 1. The process is repeated until all the possible sets are selected. Finally

the tested observations are then pooled together to estimate the AUC. Formally, the AUC is

calculated with LOOCV as ([2])

1

|X+||X−|
∑

xi∈X+

∑
xj∈X−

H(C{i}(xi)− C{j}(xj)),

where H is the Heaviside step function defined by

H(x) =


1 if x ≥ 0.5,

0 if x < 0.5,

C{i} and C{j} denote classifiers trained without the ith and jth respectively and X+ ⊂ X and

X− ⊂ X denote the positive and negative samples in the training set X respectively.
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5.3.9 Algorithm to obtain the AUC through cross-validation

The following is a leave one out cross-validation algorithm.

• The full dataset is divided into training and test (validation) sets. The test set contains

a single observation.

• For the training set, feature selection is performed from scratch to build a predictive

model.

• Predicting the part of the data left out.

• This gives a value in (0,1) for each subjects.

• The process is repeated until all the possible sets are selected.

• These values can be used to estimate the AUC.

5.3.10 Algorithm to estimate the variance of AUC through bootstrapping

The Bootstrap is used to obtain variance estimates of the cross-validated AUC. The following

is the procedure to do this.

• Draw a bootstrap sample, stratifying by disease status.

• Perform cross-validation as described in previous algorithm on the bootstrap sample.

• Estimate the SE of the cross-validated AUC based on the bootstrap replicates.
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5.4. Logistic regression

Logistic regression is part of a broader family of generalised linear models (GLMs), where the

conditional distribution of the response falls in the Bernoulli or Binomial distribution, and

the parameters are set by the linear predictor. Ordinary least-squares regression is the case

where response is Gaussian, with the mean equal to the linear predictor, and constant variance.

Logistic regression is the case where the response is binomial, in R, any standard GLM can be

fit using the (base) glm function. The major wrinkle is that, of course, one needs to specify the

family of probability distributions to use, by the family option “binomial” defaults to logistic

regression.

Logistic regression is commonly used when the outcome or response is the presence or absence

of a condition, often a disease. In these cases, the explanatory variable is often a test or pro-

cedure used to detect this condition. Logistic regression allows us to convert these agreement

proportions into probabilities of having the disease. In addition, these probabilities can be

converted into sensitivity and specificity which can be used to determine the accuracy of a

procedure or test in successfully predicting the absence or presence of a condition. The most

common regression model used to model binary outcomes such as disease outcomes is the

logistic regression model given by

log
P (Y )

1− P (Y )
= β0 +

p∑
i=1

βiYi,

where Yi, i = 1, 2, · · · , p are the p disease markers of interest measured from each subject or

case and Y = (Y1, · · · , Yp)
′
, βi, i = 1, 2, · · · , p is the regression coefficient for Yi, and β0 is the

intercept, the value of the log odds when Yi = 0 for all i i.e. the null model with no additional

information on the odds of the outcome. The model falls under a broader class of models

called generalized linear models [92]. We can compute the probability P from the regression
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equation also. So, if we know the regression equation, we could, theoretically, calculate the

expected probability that D = 1 for a given value of the vector Y = (Y1, Y2, · · · , Yp)
′
. Logistic

regression is one of the most commonly used tools for applied statistics.

Advantages of logistic regression:

• The technique is traditional and easy to understand and implement. It is very useful

for understanding the influence of several independent variables on a single dichotomous

outcome variable.

• The quantity log p/(1− p) plays an important role in the analysis of contingency tables

(the log odds). Classification is a bit like having a contingency table with two columns

(classes) and infinitely many rows (values of y).

• It is closely related to the exponential family which arises in many contexts in statistical

theory, thus there are lots of problems which can be turned into logistic regression.

• It often works surprisingly well as a classifier.

• The dependent and independent variables do not have to be normally distributed.

• It does not assume a linear relationship between the dependent and independent vari-

ables.

• It may handle nonlinear effects.

• There is no homogeneity of variance assumption.

• Normally distributed error terms are not assumed.

Disadvantages of logistic regression:
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• Logistic regression cannot predict continuous outcomes.

• Logistic regression requires that each data point be independent of all other data points.

When using the logistic distribution, we need to make an algebraic conversion to arrive at our

usual linear regression equation. The goal of logistic regression is a bit different, because we are

predicting the likelihood that Y is equal to 1 rather than 0 given certain values of Y . That is,

if Y and D have a positive linear relationship, the probability that a person will have a score of

D = 1 will increase as values of Y increase. So we are concerned about predicting probabilities

rather than the scores of dependent variable. As mentioned before logistic regression predicts

probabilities and since the modeling is based on a given distributional assumption, the Bernoulli

model, we can fit or estimate the model using a likelihood approach. Since the probabilities of

the two possible outcomes are either P if D = 1 or 1−P if D = 0, then the likelihood is given

by:

L(β0, β) =

n∏
i=1

P (Y )D(1− P (Y ))1−D.

The log likelihood is then given by:

`(β0, β) =
n∑
i=1

D logP (Y ) + (1−D) log(1− P (Y ))

=
n∑
i=1

log(1− P (Y )) +
n∑
i=1

D log
P (Y )

1− P (Y )

=

n∑
i=1

log(1− P (Y )) +

n∑
i=1

D(β0 + Y β)

=

n∑
i=1

− log(1 + exp(β0 + Y β)) +

n∑
i=1

D(β0 + Y β).

Iterative methods such the Newton-Raphson, Iterated (Re-)Weighted Least squares and the

Fisher scoring can easily be used to estimate the parameters of the model including their

asymptotic variances.
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5.5. Linear discriminant analysis

Discriminant analysis is a statistical technique that allows one to understand the differences

between two or more groups with respect to several variables simultaneously. In other words,

the aim of discriminant analysis is to classify an observation, or several observations, into these

known groups. In general, discriminant analysis is concerned with the development of a rule

for allocating objects into one of some distinct groups. Then the constructed classification rule

will be used to determine a group membership for some future objects.

In different papers (see for example [42, 103, 130]), linear combinations of markers that max-

imise the area under the receiver operating characteristic curve have been proposed. However,

none of them can be applied in all possible scenarios.

We used the normal linear discriminant approach LDA to estimate the true value of the AUC.

As it has been mentioned before the simulated outcomes yD and yD are distributed as a

multivariate normal with means µD and µD for the diseased and non-diseased populations

respectively and corresponding variance-covariance matrices given by ΣD and ΣD. With the

above notations the true AUC is given by:

AUCLD = Φ

[√
(µD − µD)′

(
ΣD + ΣD

)−1
(µD − µD)

]
, (5.1)

where Φ denotes the standard normal cumulative distribution function [103].

5.6. Algorithm

In this section we supply an algorithm for the computations of the AUC.

• The first step is to evaluate the diagnostic performance of biomarkers: We estimate the
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diagnostic accuracy of each biomarker by computing and plotting the ROC curve and

estimating its area under the ROC curve using roc and auc functions in pROC package in

R software. The area under an ROC curve captures the overall diagnostic accuracy of the

test. In our proposed algorithm, a non-parametric estimate of the area using trapezoidal

rule is used in this step for the classical ROC curve (binary response). AUC with high

values indicate diagnostically informative biomarkers and low values suggesting a low

discriminatory performance of the biomarkers. We also obtained the confidence interval

for each biomarker AUC using bootstrapping. However, since the diagnostic performance

of one biomarker may be correlated with that of others the single biomarker may not

give a good AUC and thus the biomarker combination method was used. This leads to

step two below.

• The second step is undertaken to optimise the set of biomarkers with high and indepen-

dent diagnostic information content in a multivariate setting. There are critical issues

that need to be considered in this step: choosing an appropriate statistical method for

multivariate analysis, choosing the number of diagnostically informative biomarkers to

be entered into the multivariate model and using an appropriate method to optimise the

number of finally selected biomarkers. As the outcome variable is by definition dichoto-

mous, the likely choices can be methods like logistic regression or probit regression. In

our algorithm we use logistic regression (implemented using the glm function in stats

R package) for binary response outcomes and linear discriminant function model which

is an extension of the linear regression model and can also be used in place of logistic

regression. Therefore the linear discriminant score is used. Stepwise regression using

backward elimination procedure based on stepAIC function within the MASS package

was used.

• Before applying the algorithm to derive a discriminatory rule and in order to avoid the

100



Chapter 5 – Combining multiple biomarkers in diagnostic testing for
cross-sectional data

over-fitting problem associated with model selection, we split each original dataset into

a training set and a validation set. This split is done as many times as the number

of individuals, because we use leave one out cross-validation (LOOCV) as described

in Subsection 5.3.9. We also report bootstrapping LOOCV estimator of AUC and its

variance as in Subsection 5.3.10. We wrote our own code in R for estimating the bootstrap

LOOCV AUC and its variance. Feature Selection was done from scratch for each training

set.

5.7. Simulation studies

In this section we are mainly concerned with examining the performances of different methods,

with particular interest to cross-validation and bootstrap cross-validation, as methods for the

estimation of the AUC and its variance. Our simulation is based on different assumptions of

biomarkers correlations in order to understand the effect of different correlations on the AUC

estimation.

We simulate datasets under the following group settings: Assume that there are K diagnostic

tests (corresponding to K biomarkers) Y1, Y2, · · · , YK . In our case, we let K = 5, that is five

biomarkers Y1, Y2, Y3, Y4 and Y5. Let the mean vector of the K biomarkers in diseased and

non-diseased be denoted by µDk and µDk respectively.

With the above settings, the biomarker outcomes yDik and yDjk for diseased and non-diseased

populations are respectively given by

yDik = µDk + aDi + εDik

and

yDjk = µDk + aDj + εDjk,
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where the notation and assumptions in our case are

• n (resp. m) is the number of individuals from diseased (resp. non-diseased) population

and i (resp. j) is the index for the set {1, 2, · · · , n} (resp. {1, 2, · · · ,m}),

• k is the index for a biomarker,

• aDi (resp. aDj ) is the subject specific random effect which is assumed to follow the normal

distribution that is aDi ∼ N(0, 0.5) (resp. aDj ∼ N(0, 0.5)) and

• εDik (resp. εDjk) is the random error effect also assumed to follow the normal distribution

εDik ∼ N(0, 0.25) (resp. εDjk ∼ N(0, 0.25)).

We use small variances (0.25 and 0.5) in simulation since low variance means that, in general,

samples will be close to the mean and hence to each other.

The outcome vectors yD and yD are respectively generated from three multivariate normal

distributions with means given by µDk = (0.5, 0.25, 0, 0, 0) and µDk = (0, 0, 0, 0, 0) for three

group settings defined by three different variance-covariance matrices. The three variance-

covariance matrices are as follow:

• For the first setting (Model 1) we assume independence between all the biomarkers and

consequently we will have variances in the main diagonal and zeros elsewhere.

• For the second setting (Model 2) we add dependence for the biomarkers Y1 and Y2.

• For the third setting (Model 3) we assume the same dependence across all the biomarkers.

The resulting covariance structure is the exchangeable or compound symmetry.

Biomarkers from simulated datasets were used to evaluate whether a combination of these
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biomarkers can accurately discriminate between two groups of diseased and non-diseased indi-

viduals after applying logistic regression to predict the disease outcome for different biomarker

combinations and applying re-sampling methods. Stepwise regression is a standard procedure

for variable selection, which is based on the procedure of sequentially introducing the predictors

into the model one at a time. Stepwise selection is a variation of forward selection. At each

step of the variable selection process, after a variable has been added to the model, variables

are allowed to be eliminated from the model. In the simulations and application we applied

stepwise variable selection using the AIC criterion to select the biomarkers implemented using

the stepAIC function from MASS R package.

An original R program was written to carry out this process for the simulated data. We

calculated the AUC (from the auc function available in pROC package) after combining the

biomarkers using bootstrap Cross-Validation which we denote by AUCbcv. Computing cover-

age probability is complex in this setting, therefore we evaluated the performance of the fixed

predictor model on a large simulated dataset of sample sizes set at 10 000.

Table 5.1 shows a summary of different types of quantities which were estimated from the

analysis. These include first: The true AUC based on LDA (AUCTLD), the mean of Cross-

Validated AUCs (AUCcv) across 1000 simulations, the mean of Bootstrap Cross-Validated

AUCs (AUCbcv) across 1000 simulations, in columns 1, 2 and 3 respectively.

Columns 4, 5 and 6 include respectively the confidence interval (CI) of Cross-Validated AUC

(AUCcv) across 1000 simulations, the confidence interval for AUCcv based on standard errors

obtained from the Hanley and McNiel [61] method, the confidence interval of AUCbcv based

on asymptotic normality using bootstrap standard errors.

Proportion of times lower confidence limits of AUCcv and AUCbcv excludes 0.5, are listed
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in columns 7 and 8 respectively. In columns 9 and 10 we show respectively the coverage

probabilities of AUCcv and AUCbcv that include the true AUC (TAUC).

Columns 11, 12, 13 and 14 display respectively the empirical standard errors for AUCbcv

(SEb.e), bootstrap standard errors (SEb), the empirical standard errors for AUCcv (SEe.cv)

and the standard errors for AUCcv (SEcv) using the Hanley and McNeil Equation [61].

Finally the last three quantities reported are the prediction errors (PE), true prediction errors

(TPE) and the true AUC (TAUC) obtained from a large dataset.

With a total sample size N = 200, bootstrap replicates B = 1000 and number of simulations

nsim = 1000, we used the proposed three variance-covariance matrices specified under Models

1, 2 and 3 respectively in Table 5.1 together with the mean vectors of diseased and non-diseased

µD and µD to perform our simulation. In the simulations 1000 AUC values were estimated.
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Table 5.1 (continued)

SEe.b SEb SEe.cv SEcv PE TPE TAUC

Model 1: (the no 0.039 0.0525 0.0515 0.0387 0.389 0.384 0.662

correlation case)

Model 2: (with

correlation only 0.032 0.0539 0.0516 0.039 0.399 0.393 0.649

between the

first two markers)

Model 3: (the

correlation

between all 0.033 0.0434 0.048 0.036 0.342 0.339 0.722

the biomarkers)

From Table 5.1, we can see that:

• For Model 1, the AUCTLD equals to 0.6772 while the TAUC equals to 0.662 which means

that using a large dataset gives AUC values (TAUC) nearly close to true AUC from LDA

(AUCTLD). The values of AUCcv and AUCbcv are very close to each other and they are

nearly unbiased as their values are very close to the true AUC values.

Based on CIs for both AUCcv and AUCbcv we deduce that the two methods yield a

significant discriminatory probability (the CI’s do not include 0.5). We also investigated

the the level of discrimination of the two methods by looking at how often the lower

limits exclude an AUC = 0.5. The proportion of times lower limits of CIs for AUCcv

and AUCbcv exclude 0.5 are 0.903 and 0.875 respectively. Clearly, both methods (cross-

validation and bootstrap cross-validation) perform well given only 9.7% and 12.5% of the

times do the lower limits respectively include the threshold of 0.5.

The coverage probabilities (proportion of times the CI’s include the true AUC values)

for AUCcv and AUCbcv, shows that 875 out of 1000 CI’s of AUCcv include the true
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AUC values, while 963 out of 1000 CI’s of AUCbcv include the true AUC values. This

indicates that the bootstrap cross-validated AUC estimation method performs better

than just cross-validated AUC estimation. We also found that the bootstrap method

produces larger variances therefore yielding larger standard errors while using the Hanley

and McNeil method gives smaller standard errors. Finally, both PE and TPE values are

similar to each other.

• For Model 2, the AUCTLD equals to 0.6628 while the TAUC equals to 0.649. The AUCcv

and AUCbcv equal to 0.639 and 0.655 respectively. This result indicates that values of

AUCcv and AUCbcv based on a model with some correlation are close to each other and

nearly unbiased since their values are close to the true AUC values.

Based on CIs for both AUCcv and AUCbcv we deduce that the two values of AUCcv and

AUCbcv are statistically significant because they both exclude 0.5 the value under H0.

However the AUC values tend to be lower here than in Model 1. The results from Model

2 also show that the bootstrapping is better than just cross-validation for estimating the

coverage probability and it gives AUC values close to true AUC.

• From Model 3 CIs for both AUCcv and AUCbcv we deduce that the two values of AUCcv

and AUCbcv are statistically significant (the CI’s do not include 0.5).

The proportion of times lower limits of CIs for both AUCcv and AUCbcv that exclude

0.5 are 0.982 and 1 respectively. The coverage probabilities of CI’s (include true AUC

values) for both AUCcv and AUCbcv are 0.896 and 0.960 respectively, indicating that the

bootstrap affords confidence intervals that most of them include the true AUC.

From the above results we can see that LOOCV is nearly unbiased as a method of estimating

the AUC for the three models. It appears that the bootstrap cross-validated AUC values are

larger than the cross-validated AUC values. Most of the bootstrap cross-validated confidence
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intervals contained the true values of AUC. We conclude by remarking that using Model 3

(with correlation) is preferable since it yielded the highest AUC values and smallest variance

compared to other two models. Furthermore the bootstrap method gives larger variances

compared to empirical variances.

5.8. Application to TB-IRIS

The dataset that is used was collected in a study to investigate the occurrence of tuberculosis

immune reconstitution inflammatory syndrome (TB-IRIS). According to a recent paper by

Marais et al., [90], paradoxical TB-IRIS occurs in 8 − 43% of HIV-infected patients receiving

TB treatment after starting antiretroviral therapy (ART) in South Africa. It was reported

that TB-IRIS results from rapid restoration of Mycobacterium tuberculosis (M. tuberculosis)-

specific immune responses. A prospective observational study targeting adults (≥ 18 years)

ART-naive HIV-infected patients presenting with meningitis was carried out at GF Jooste

Hospital, a public sector referral hospital in Cape Town. The hospital serves a low-income,

high-density population in which the TB notification rate exceeds 1.5% per year with 70% of TB

cases co-infected with HIV. This study was carried from March 2009 through October 2010. For

more details about these biomarkers, we refer the reader to [9, 27, 82, 88, 107, 142, 148]. There

are not many published studies describing tuberculous meningitis TBM-IRIS. The authors

of [90] investigated clinical and laboratory findings in ART-naive HIV-infected patients who

presented with TBM. They based their study on serial cerebrospinal fluid (CSF) samples in

patients who did and did not develop TBM-IRIS.

Five biomarkers, namely Interleukin 6 (il6), interleukin 10 (il10), interleukin 12p40 (il12p40),

interferon gamma (infg), and tumor necrosis factor alpha (tnfa) were selected as candidate

markers of TBM-IRIS. These biomarkers were measured in CSF at the time of TBM diagnosis.
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The authors of [90] suggested an analysis model for evaluating the multivariate biomarkers

model. They selected significant biomarkers using Wilcoxon rank sum tests for a logistic re-

gression model and the final model was found by dropping the non-significant biomarkers. The

authors of [90] used bootstrap cross-validation method to build the model and the permuta-

tion test to provide a cross-validated estimate of the AUC and confidence intervals. In this

manuscript we used bootstrapped cross-validation to estimate AUCs and CIs and in addition

to that we did not pre-specify the biomarkers but allowed the most informative biomarkers

come out of the model.

First we considered AUC estimation individually for each biomarker in order to evaluate the

performance of each biomarker in distinguishing between IRIS and Non-IRIS groups. However

our main purpose was to calculate the AUC after combining biomarkers using resampling

methods. Baseline levels of five biomarkers were used to evaluate whether a combination of

these biomarkers could accurately discriminate between IRIS and non-IRIS patients. This was

accomplished by applying AUC analysis and resampling.

Graph 5.1 plots the estimated disease risk versus the risk distribution. Risk estimates are based

on a generalised linear binary model for disease risk as a function of the specified marker.

Table 5.2 contains the AUC values for each of the above biomarkers, their 95% confidence

intervals (CI) and standard errors SE. The CI and SE were estimated using the bootstrap

method with 1000 replicates.

As already stated a larger AUC value would suggest that the marker or test is more accurate

in distinguishing between IRIS and non-IRIS subjects and it is expected that the higher the

AUC, the less variability there would be (for example from Table 5.2 the biomarker with the

highest AUC value has the smallest SE). As can be seen in Table 5.2, the results show that
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Figure 5.1: Predictiveness curves for TB-IRIS biomarklers

Table 5.2: AUC values for TB-IRIS biomarkers

Biomarkers AUC value CI SE

il12p40 0.67 (0.48, 0.84) 0.09

tnfa 0.87 (0.74, 0.96) 0.06

infg 0.77 (0.58, 0.94) 0.09

il10 0.66 (0.45, 0.84) 0.1

il6 0.86 (0.74, 0.96) 0.06

fitting a logistic regressions for each biomarker, the smallest AUC values were for il12p40 and

il10 equal to 0.67 and 0.66 respectively and the CIs both include 0.5. The bootstrap technique

provided 95% confidence interval of (0.48, 0.84) and (0.45, 0.84) respectively and their respective

standard errors equal to 0.09 and 0.1. Based on the null hypothesis of H0 : AUC = 0.5 and

from the confidence intervals for the il12p40 and il10, we conclude that il12p40 and il10 AUCs
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are not statistically significant and therefore the two markers individually do not have a high

discriminatory ability between the two groups of IRIS and non-IRIS patients. In addition

their variances which are larger compared to other biomarkers is an indication of less precise

tests. The CI for infg indicates that the AUC for this biomarker is statistically significant;

the estimated AUC value suggests that this biomarker does have a fairly good ability to

discriminate between two groups of IRIS and non-IRIS.

From Table 5.2 we conclude that the two biomarkers tnfa and il6 have the best ability to dis-

tinguish between the two groups of IRIS and non-IRIS patients compared to other biomarkers

as they have the highest statistically significant AUCs values and less variable estimates.

Similar to simulation studies, we calculated the AUC from combination of the five biomarkers

using bootstrap cross-validation with repeated variable selection in each training set. We

also calculated the variance for bootstrap cross-validated AUC the same way we did for the

simulated data.

An R program similar to the one used in simulation studies, was written in order to apply the

bootstrap cross-validation technique of AUC and variance estimation to the IRIS data. In our

case we used 1000 bootstrap replicates.

Table 5.3 shows the results obtained from the application of the bootstrap cross-validation tech-

nique from the model that combines the biomarkers. The AUCbcv is estimated as 0.956 with

Table 5.3: Bootstrap cross-validation of AUC for composite marker from TB-IRIS

AUCbcv SEb CI

0.956 0.036 (0.8153, 0.9907)
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the corresponding bootstrap cross-validated standard error of 0.036. The confidence interval

was found to be (0.8153, 0.9907), which does not contain 0.5 and thus the estimated AUCbcv

is statistically significant. The values of AUCbcv, SEb and CI suggests that the combination

of biomarkers yields a high AUC value and small variability. This shows that the combina-

tion of biomarkers may have a high ability to distinguish between diseased and non-diseases

samples. Applying the cross-validation method (without bootstrapping), we found that the

cross-validated AUC (AUCcv) is given by 0.967, which is larger than the AUC from bootstrap

AUCbcv, although the difference is small. We also estimated the PE from cross-validation ap-

plied to the logistic regression as PE = 0.059, indicating that the model performance is good.

It is clear that the AUC obtained by combining multiple biomarkers using both cross-validation

and bootstrap cross-validation methods have high distinguishing accuracy between IRIS and

non-IRIS subjects compared to AUC based on involving single biomarker in the model.

Figure 5.2 contains the ROC curves, AUCs and CIs for two of the biomarkers, namely tnfa

with a high significant AUC of 0.87 (95%CI : 0.74, 0.96) and il10 with a low non-significant

AUC of 0.66 (95%CI : 0.45, 0.84).

Figure 5.3 shows empirical and smoothed ROC curves for tnfa. It also shows the AUC value

corresponding to the best threshold.

We conclude this section by remarking that resampling methods (e.g., cross-validation and

bootstrap) in terms of variable selection for the purpose of estimating the AUC for a model

that combine biomarkers for both simulated and real datasets (TB-IRIS) gives deep insight in

understanding the disease and provide a more accurate diagnosis of the disease.
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Figure 5.2: ROC curves for tnfa and il10

5.8.1 Conclusion

In this chapter, we used stepwise logistic regression combined with LOOCV bootstrapping in

the estimation of the AUC. The AUC which is the area under the ROC is a popular summary

index to evaluate the discriminatory accuracy of a diagnostic method. It can also be used to

assess the ability of a prognostic factor to correctly distinguish patients who have an event

such as a disease from those who do not. In the application to TB-IRIS data, for example, our

estimated AUC value using the composite marker was 0.96. This means that the combination

of biomarkers has high ability to predict TB-IRIS.

We studied the proposed methodology by simulating three correlation scenarios (no correlation,

two biomarkers with some correlation, same correlation between all pairs of biomarkers or the

exchangeable correlation structure).
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Figure 5.3: ROC curve for tnfa

We found that Model 3 gives higher AUC values compared to the other models. This shows

that accounting for correlation between biomarkers gives a better predictive model than a

model that ignores it. We also deduced that LOOCV gives nearly unbiased AUC estimates

and using bootstrap LOOCV estimator gives high coverage probability. We note that the

bootstrap method gives larger variances compared to empirical variances, and its coverage

probability is at or above the nominal level. In addition AUC estimates based on bootstrap

cross-validation are larger than those based on cross-validation alone. An interesting point

noted is that our proposed method gives similar AUC estimates to those using either large

independent dataset or LDA.

An application to IRIS dataset reveals that the bootstrap LOOCV for combining TB-IRIS

biomarkers gave higher AUC value than using a single biomarker in the model. Both cross-
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validation and bootstrap cross-validation yield AUC estimations closely to each other.

We would like to mention that in [90], the authors produced a cross-validated AUC of 0.91

which is less than our estimated cross-validated AUC (with or without bootstrapping of 0.956

and 0.967 respectively). In our opinion this is because in this earlier analysis the biomarkers

were pre-specified. This agrees to what we mentioned before that variable selection should be

done in each training set.
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Chapter 6

Predictive accuracy of multiple time

dependent biomarkers with missing

values in diagnostic testing

6.1. Introduction

Current available methods in analysing ROC curves are limited to complete data sets and

classical ROC analysis. However in the development of prognostic models the presence of

missing data is a frequently encountered problem and cannot be overlooked. Using the complete

case analysis to deal with missing values will reduce the sample size for analysis considerably if

the missing rate is high. This might distort the results by introducing bias into the estimation

of model parameters and the prediction accuracy in a predictive model. Thus it is necessary

to consider some of the methods for handling missing data in order to mitigate this problem in

diagnostic testing. It is also important to make robust assumptions regarding the missing data

mechanism. In this work, we use three imputation techniques namely, mean, nearest neighbor

hot-deck and multiple imputation (discussed in Chapter 4) to impute variables containing

missing values.
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The classic ROC curve deals with dichotomous diagnostic outcomes (presence or absence of

disease) but in the real world we often deal with time-dependent disease outcomes and thus

ROC curves that vary as a function of time become necessary [66].

The aim of this chapter is to improve the discriminating accuracy and performance of a di-

agnostic test, and compare imputation methods when estimating the time dependent AUC in

the presence of missing values. That is to discriminate between subjects who may have an

event of interest and those who may not. In addition it is appealing to use resampling meth-

ods to adjust for over-fitting associated with model selection that have been applied to choose

important biomarkers or covariates. We applied different imputation methods when handling

missing values and evaluated different resampling methods to estimate the time dependent

area under ROC curves. Such an approach can be summed up as imputation before AUC

estimation.

In this chapter, the biomarkers are combined using the Cox and logistic regression models

in order to come up with a predictor index. We then predicted the status of cases in the

validation set and then used the predicted values to calculate the time dependent AUC at time

t. Bootstrap cross-validated time dependent AUC values were computed using the nearest

neighbor estimation to measure the predictive accuracy [3, 66]. The bootstrapping technique

was used to obtain the variances of the estimators of interest. The estimation methods were

evaluated using simulations and illustrated using data on primary biliary cirrhosis PBC.

6.2. Missing data and imputation methods

Recall from Chapter 4 that missing data are quite common in biomedical research studies.

Some methodologists have described missing data as one of the most important statistical

and design problems in research. The problem of missing data is of a greater concern when
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decisions are to be made about the appropriateness of the care a patient should receive and

also when we are interested in discriminating subjects as likely to have a certain characteristic

from those who do not.

Recall that Rubin [113, 115] came up with three missing data mechanisms (discussed in Sec-

tion 4.1). These mechanisms describe the relationships between measured variables and the

probability of missing data. While these terms have a precise probabilistic and mathematical

meaning, they essentially have different explanations for why the data were missed.

In this chapter we consider the three imputation methods (mean, nearest neighbor hot-deck

and multiple imputation) discussed in Section 4.2.

6.3. Methods for estimation of AUC(t)

Let Y be a continuous biological biomarker whose values are an indicator of disease. Suppose

if Y > c for some cut off c it implies an individual is diseased and disease free otherwise. With

survival data we take the time to the event into account since the accuracy may be higher when

the markers are measured closer to the onset of disease. ROC curves that vary as a function of

time may be more appropriate to derive the corresponding time dependent ROC curves [67].

Definitions of time dependent ROC curves rely on first defining time dependent sensitivity

(TPR(c, t) ) and specificity (1 − FPR(c, t)). Then using simple plots of TPR(c, t) versus

FPR(c, t) to get the ROC curve at a specific time point, t. The sensitivity and specificity are

considered as time dependent functions and are given by Equations (3.1) and (3.2).

The time dependent area under the ROC curve denoted by AUC(t) is given by:

AUC(t) =

∫ ∞
−∞

TPR(c, t)|∂FPR(c, t)

∂c
|dc. (6.1)

As mentioned before in Section 3.1 and according to Heagerty and Zheng terminology [67],
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there are two ways of defining cases; cases are said to be incident if Ti = t and cumulative if

Ti ≤ t is used instead. On the other hand, controls are said to be static if Ti > t∗, where t∗ is

a fixed point in time and controls are said to be dynamic if Ti > t.

In this chapter we are interested in distinguishing between people who may experience the

event of interest (which in our case is death) before a given time and those who may still

be event free after that time. Thus we use the theory introduced by Heagerty [66], where

they proposed summarizing the discrimination potential of a marker Y measured at baseline

(t = 0), by calculating cumulative/dynamic ROC(t) curves. They proposed an estimator that

can accommodate censored survival data, which is based on a nearest neighbor estimator for

the bivariate distribution function of (Y, T ), where T represents survival time. This estima-

tor guarantees monotonicity and moreover the censoring process is allowed to depend on the

diagnostic biomarker. Using these definitions (cumulative/dynamic), they defined the corre-

sponding ROC curve for any time t, ROC(t) by using an estimator of the bivariate distribution

function F (c, t) = P (Y ≤ c, T ≤ t), or equivalently S(c, t) = P (Y > c, T > t), provided by

Akritas [3]. This estimator is based on the representation S(c, t) =
∫∞
c S(t|Y = s)dFY (s),

where FY (s) is the distribution function for Y.

We used the Heagerty et al. [66] approach which is briefly presented below. The authors

proposed summarizing the discrimination potential of a marker Y , measured at baseline (t = 0),

by calculating ROC curves for cumulative disease incidence by time t, denoted as ROC(t).

A typical complexity with survival data is that observations may be censored. Two ROC

curve estimators that can accommodate censored data were proposed by Heagerty et al. [66].

A simple estimator is based on using the Kaplan-Meier estimator for each possible subset

{i : Yi > c}. However, this estimator does not guarantee the necessary condition that

sensitivity and specificity are monotone in Y. Another problem with KM-based ROC estimator
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is that the conditional Kaplan-Meier estimator ŜKM (t|Y > c) assumes that the censoring does

not depend on Y . This assumption may be violated as the intensity of follow-up efforts are

influenced by the base line diagnostic marker measurements. An alternative estimator is based

on a nearest neighbor estimator for the bivariate distribution function of (Y, T ), where T

represents survival time. This estimator guarantees monotonicity in addition to the fact that

it allows censoring to depend on Y .

The authors considered sensitivity and specificity as time-dependent functions defined as:

sensitivity(c, t) = P (Y > c|D(t) = 1)

specificity(c, t) = P (Y ≤ c|D(t) = 0)

In the first method Heagerty et al. [66] used the Bayes Theorem to rewrite the sensitivity and

the specificity as

P (Y > c|D(t) = 1) =
1− S(t|Y > c)P (Y > c)

1− S(t)
,

P (Y ≤ c|D(t) = 0) =
S(t|Y ≤ c)P (Y ≤ c)

S(t)
,

where S(t) is the survival function S(t) = P (T > t) and S(t|Y > c) is the conditional survival

function for the subset defined by Y > c. Define τn, to be the unique values of Xi, for observed

events, ∆i = 1. The Kaplan-Meier (KM) estimator is defined as:

ŜKM (t) =
∏

s∈τn,s≤t

[
1−

∑
j 1(Xj = s)∆i∑
j 1(Xj ≥ s)

]
.

The KM estimator uses all of the information in the data, including censored observations, to

estimate the survival function. When obtaining the KM estimator, censoring is assumed to

occur after an event therefore censored observation at or after an event time will be included

in the risk set at that time.

A simple estimator for sensitivity and specificity at time t is then given by combining the KM
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estimator and the empirical distribution function of the marker covariate, Y, as

P̂KM (Y > c|D(t) = 1) =
{1− ŜKM (t|Y > c)}{1− F̂Y (c)}

{1− ŜKM (t)}
,

P̂KM (Y ≤ c|D(t) = 0) =
ŜKM (t|Y ≤ c)F̂Y (c)

ŜKM (t)
,

where F̂Y (c) =
∑

1(Yi ≤ c)/n. One problem with this simple estimator is that it does not guar-

antee that sensitivity (or specificity) is monotone. By definition, we require P (Y > c|D(T ) =

1) > P (Y > c
′ |D(t) = 0) for c

′
> c. A valid ROC solution can be provided by using an

estimator of the bivariate distribution function, F (c, t) = P (Y ≤ c, T ≤ t), or equivalently

S(c, t) = P (Y > c, T > t), provided by Akritas [3]. This estimator is based on the represen-

tation S(c, t) =
∫∞
c S(t|Y = s)dFY (s) , where FY (s) is the distribution function for Y . As

shown by Akritas [3], an estimator can be provided by

Ŝλn(c, t) =
1

n

∑
i

Ŝλn(t|Y = Yi)I(Yi > c),

where Ŝλn(t|Y = Yi) is a suitable estimator of the conditional survival function characterised

by a parameter λn.

Define the weighted Kaplan-Meier estimator as:

Ŝλn(t|Y = Yi) =
∏

s∈τn,s≤t
1−

∑
jKλn(Yj , Yi)I(Zj = s)δj∑
jKλn(Yj , Yi)I(Zj ≥ s)

,

where Kλn(Yj , Yi) is a kernel function that depends on a smoothing parameter λn. Akritas [3]

shows that the nearest neighbor estimator (NNE) is a semiparametric efficient estimator.

The resulting estimates of sensitivity and specificity mentioned by Heagerty et. al. [66] are

given by:

P̂λn(Y > c|D(t) = 1) =
[(1− F̂Y (c))− Ŝλn(c, t)]

1− Ŝλn(t)
,

P̂λn(Y ≤ c|D(t) = 0) = 1− Ŝλn(c, t)

Ŝλn(t)
,
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where Ŝλn(t) = Ŝλn(−∞, t).

The proposed estimators of Heagerty et al. [66] yield time-dependent ROC curve methods

that provide a natural way for handling censored survival data, and involve no parametric

assumptions. Heagerty et al. assume the measurement time for the prognostic marker, Y, is

fixed at baseline and as a result the ROC curve is only a function of the disease ascertainment

time t. When a marker is measured repeatedly over time, a method that also incorporates the

time at which the measurement was obtained allows for an updating of the medical decision at

the current follow-up time. Heagerty et al. estimators assume that the data are derived from

a cohort study where sampling does not depend on the disease outcome D(t).

6.4. Models for predictive scores

Since we have several prognostic variables, there is need to use multivariate approaches. In

this work we used two statistical models to estimate predictor scores, then use these scores to

estimate the AUC(t). First, logistic regression (discussed in Section 5.4) was used to build the

model when the outcome or response is defined as the presence or absence of a condition or

disease.

Logistic regression cannot deal with censored observations and does not take account of time.

Thus an alternative method is to use survival analysis models in the presence of censoring.

One very popular model for survival data is the Cox proportional hazards model (CPH), which

was proposed by Cox [6, 137]

The Cox model [6] is based on a modeling approach to the analysis of survival data. It is a

statistical technique for exploring the relationship between the survival of a patient and several

explanatory variables. The Cox model provides an estimate of the treatment effect on survival
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after adjustment for other explanatory variables. In addition, it allows us to estimate the

hazard or risk of death for an individual, given their prognostic variables. In a clinical trial

the Cox model is used to analyse the survival of patients. The model can also be used if it

is known that there are other variables besides treatment that influence patient survival and

these variables cannot be easily controlled in a clinical trial. Using this model may improve

the estimate of treatment effect by narrowing the confidence interval. The regression method

introduced by Cox is used to investigate the effect of several variables on the hazard function.

It is also known as proportional hazards regression analysis. Briefly, the procedure models or

regresses the hazard of an event on the explanatory variables. Thus final model from a Cox

regression analysis will yield an equation for the hazard as a function of several explanatory

variables.

The Cox proportional hazards model describes survival data with covariates in terms of a

hazard function of the form:

h(t|X) = h0(t) exp(β′X),

where β is an unknown vector of parameters, h0(t) is the baseline hazard and X is a vector of

covariates. The unknown vector β can be estimated by solving the partial likelihood:

L(β) =

f∏
i=1

exp(β′X(i))

Σj∈R(ti)exp(β
′zj)

,

where R(ti) is the risk set at event time ti and f different failure times t1 < t2 < · · · < tf with

exactly one failure at each time. The estimate of the survival function for an individual with

covariates X may be obtained via:

S(t) = [S0(t)]exp(β′X).

Note in the above equation S0(t) is known as the baseline survival when X = 0. The Cox

regression analysis yields an equation for the hazard as a function of several explanatory
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variables. A coefficient for a single covariate give the log-hazard for that variable given all

other variables included in the model. A positive regression coefficient for an explanatory

variable means that the hazard is higher, and thus the prognosis is worse. Conversely, a

negative regression coefficient implies a better prognosis for patients with higher values of that

variable. This model is a semi-parametric model because it makes no assumptions about the

form of h0(t) the non-parametric part of the model, but assumes a parametric form for the

effect of the predictors on the hazard. Corresponding to h0(t) is S0(t) - also known as the

baseline survival - which also remains unspecified. The beauty of this model, as observed by

Cox, is that if one is to use such a model, and one is interested in the effects of the covariates

on survival, then one does not need to explicitly specify the form of h0(t). A standard Cox

regression model can be used to derive a composite marker effect as a weighted combination

of biomarkers and clinical variables, in which the weights are determined by the estimated

regression coefficients. Recall that a Cox regression model is specified via the hazard function,

which is defined as the instantaneous rate at which failures occur for individuals that are

surviving at time t, therefore it is formally defined as

h(t) = lim
4t→0

P [t ≤ T < t+4t]
4t

.

The Cox regression model employs a log function to relate the hazard function to a linear

combination of biomarkers and clinical variables:

log h(t) = log h0(t) +

p∑
i=1

βiXi +

q∑
j=1

γiZi,

where βi are regression parameters that correspond to biomarkers Xi and γi are regression

parameters that correspond to clinical variables Zi. Since h(t) is a product of h0(t) and a term

that is a function of the biomarkers and clinical variables this leads to a proportional hazards

model if both the biomarkers and the clinical variables are baseline variables and are constant

over time. Censoring can be accommodated in likelihood-based estimation of the regression
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parameters, but censoring must be assumed to be independent of survival, i.e. non-informative

censoring. The estimated regression coefficients can then be used to derive a composite marker

index M as a weighted combination of biomarkers and clinical variables given by

M =

p∑
i=1

βiXi +

q∑
j=1

γiZi.

To quantify the predictive accuracy of the composite marker, M can be used as the input to

a time-dependent ROC analysis. Note that M(t) is time dependent because now cases are

defined according to a time to event outcome.

It is not desirable to use the same data to both develop and evaluate the models, thus cross-

validation and bootstrapping were used to estimate the time dependent AUC denoted by

AUC(t) in the context of variable selection. Using the same data both to fit the score and to

calculate its ROC at a specific time leads to what is known as over-fitting and this problem

tends to give an over optimistic estimate of the performance of the score [25]. We remark that

variable selection should be done from scratch using a number of training sets not the complete

data.

Leave-one-out cross-validation (LOOCV) was used together with multivariate Cox and logistic

regression models to fit the prediction model. Bootstrapping was used to get the bootstrap

cross-validated AUC(t) and its variance estimate. In this case we used 200 bootstrap replicates

in both simulation studies and application to real data set.

For each of the training sets, both the logistic regression and CPH models were used to build

the predictive model and for each variable selection was applied from scratch for each training

set. We then predicted the part of the data left out. These procedures are repeated until every

observation appears once in a validation set. Finally the predicted values were used to estimate

the time dependent AUC. Bootstrapping was applied to estimate AUC(t) as well as its vari-
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ances and therefore standard errors for confidence interval estimation. We were interested in

comparing the two models in three aspects namely, obtaining the predictive scores, evaluation

of two resampling methods in terms of variable selection as methods to estimate AUC(t) and

finally performance models (when comparing between imputation methods discussed earlier)

for handling missing values.

6.5. Algorithm

The following is an algorithm to estimate the AUC.

• Considering the missing value problem. Most of the current research ignores this problem

yet it is very important to deal with missing values. In our algorithm we consider single

and multiple imputation methods as described in Chapter 4. For mean imputation we

used mean function from “ForImp” package in R software. The function “impute.NNHD”

in HotDeck Imputation was used to apply nearest neighbor hot deck imputation and

MICE for multiple imputation via chained equations. We evaluate and compare these

methods in order to estimate time dependent AUC.

• The second step needs to be undertaken to optimise the set of biomarkers with high and

independent diagnostic information content in a multivariate setting. In our algorithm

we use logistic regression using glm function in stats package and Cox model using coxph

in survival package.

• Before applying the algorithm to derive a discriminatory rule and in order to avoid

an over-fitting problem associated with model selection, we split each original dataset

into a training set (to build the model) and a validation set (to test whether the score

discriminates between the same diagnostic classes in an independent group of subjects).
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This split was done as many as the number of individuals, as we use LOOCV. We also

reported bootstrap LOOCV estimator of the AUC(t) and its variance. The diagnostic

performance of the discriminant score was assessed by estimating sensitivity, specificity

and diagnostic accuracy by plotting the ROC curves at our interested time. As stated

earlier, variable or feature selection should be done from scratch for every training set.

• For the prediction score from the logistic regression or Cox model, a non-parametric esti-

mator proposed by Heagerty [66] for time dependent AUC was used. The survivalROC.C

function in R was used with nearest neighbor estimation of time dependent AUC.

6.6. Simulation studies

In order to evaluate the performance of the suggested resampling methods and different im-

putation techniques for computing time dependent AUCs, we conducted simulation studies as

follows. For each of N = 50 subjects we simulated a survival time including five biomarkers

with a possibility of missing values. The survival time T was generated from the exponential

distribution. The censoring indicator was generated using the binomial distribution with 40%

censoring rate.

Missing values on the biomarkers were generated using missing rates of 10% and 20% under

MCAR and MAR assumptions. As a summary our simulated data sets contain the survival

times, the censoring indicator and five biomarkers with missing values. Then we imputed these

missing values using the mean, nearest neighbor hot-deck (NNE HD) and multiple imputation

methods.

Biomarkers from the simulated data set were used to evaluate whether a model output based

on a combination of these biomarkers can accurately discriminate between individuals who are
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likely to experience the event before a given time (120 days) from those who may not after

that time. This was accomplished by applying time dependent AUC analysis and resampling

methods for imputed data sets.

Our analysis of simulated data was based on estimation of the following quantities: Cross-

validated time dependent AUC denoted by AUCtC , bootstrap time dependent AUC denoted

by AUCtB, bootstrap standard error denoted by SEB, confidence interval using bootstrapping

denoted by CIB. We summarize these results in Table 6.1 below.

From Table 6.1, under MCAR assumption and when the missing rate is 10% using Cox model

and mean imputation, the estimated value of AUCB(t) is equal to 0.724 and according to its

confidence interval (0.571, 0.877), this diagnostic test is statistically significant (CI excludes

0.5). Thus it has the ability to distinguish between patients who are likely to die during the

first four months and those who are likely to survive beyond that time. The estimated value of

AUCcv(t) is equal to 0.687. Using the NNE HD imputation, the estimated value of AUCbcv(t)

is equal to 0.743 and according to its confidence interval (0.613, 0.902, ) this diagnostic test

is statistically significant. The standard error based on bootstrapping equals to 0.081. With

the MI, the estimated value of AUCbcv(t) equals to 0.746 and associated standard error equals

to 0.083. The confidence interval (0.583, 0.909) shows that the diagnostic test is statistically

significant and could predict the survival at 120 days.

Under MCAR assumption and when the missing rate is 10% using logistic regression and

mean imputation, the estimated value of AUCbcv(t) is equal to 0.638. According to its CI

(0.434, 0.842), the combinations of biomarkers are not statistically significant (CI includes 0.5)

and do not have any ability to discriminate between subjects who may die during 120 days and

those who may not. The estimated value of SEB is equal to 0.104. With the same settings

but using NNE HD and MI we obtained the same conclusion.
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Table 6.1: Mean of the time dependent AUC at 120 days obtained from 250 simulated samples

under MCAR and MAR for each combination of censoring rate, predictive model and impu-

tation method. B = 1000 bootstrap replications are performed for computing the AUCcv,

AUCbcv, SE and CIs for the AUCs

Mechanism of Missing rate Models Imputation AUCbcv(t) SEB CIbcv AUCcv(t)

missingness methods

Mean 0.724 0.078 (0.57112, 0.87688) 0.687

Cox HD 0.743 0.081 (0.6134, 0.90176) 0.711

10% MI 0.746 0.083 (0.58332, 0.90868) 0.706

Mean 0.638 0.104 (0.43416, 0.84184) 0.592

Logistic HD 0.659 0.106 (0.45124, 0.86676) 0.62

MCAR MI 0.635 0.109 (0.42136, 0.84864) 0.59

Mean 0.732 0.078 (0.65712, 0.88488) 0.693

Cox HD 0.784 0.074 (0.63896, 0.92904) 0.757

20% MI 0.770 0.072 (0.62888, 0.91112) 0.736

Mean 0.641 0.104 (0.43716, 0.84484) 0.598

Logistic HD 0.734 0.086 (0.56544, 0.90256) 0.698

MI 0.630 0.084 (0.46536, 0.79464) 0.661

Mean 0.709 0.074 (0.56396, 0.85404) 0.673

Cox HD 0.714 0.073 (0.571, 0.85708) 0.707

10% MI 0.704 0.078 (0.55112, 0.85688) 0.682

Mean 0.605 0.109 (0.39136, 0.81864) 0.542

Logistic NNE HD 0.68 0.104 (0.47616, 0.88384) 0.602

MAR MI 0.614 0.107 (0.40428, 0.82372) 0.608

Mean 0.746 0.069 (0.61076, 0.88124) 0.738

Cox NNE HD 0.813 0.078 (0.66012, 0.96588) 0.802

20% MI 0.800 0.069 (0.66476, 0.93524) 0.800

Mean 0.674 0.096 (0.48584, 0.86216) 0.644

Logistic NNE HD 0.751 0.086 (0.58244, 0.91956) 0.726

MI 0.719 0.1 (0.523, 0.915) 0.686
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Under MCAR assumption for 20% missing rate, the estimated values of AUCbcv(t) using the

Cox model with the three imputation methods suggested that the combined markers have the

discrimination ability.

Under MCAR assumption for 20% missing rate, the estimated values of AUCbcv(t) using

the logistic model with mean and multiple imputation methods suggested that the combined

markers do not have the ability to discriminate between patients who will die during the first

four months and those who may be alive after that time. However with NNE HD imputation

the confidence interval (0.565, 0.903) excludes 0.5.

In all the above cases bootstrap cross-validation seems to perform better than just cross-

validation. The NNE HD performed better in most cases when compared to other imputation

methods in that there are slightly higher AUC(t) estimations. All imputations methods per-

form equally well if the missing mechanism is MCAR. It is the difference that the Cox model

for time dependent AUC is clearly better than the logistic regression as the predictive model.

For the MAR mechanism when the missing rate is either 10% or 20%, using Cox model the

estimated values of AUCbcv(t) from the three imputation methods are similar (NNE HD ob-

tained slightly higher AUC(t) estimations) and statistically significant. These results suggest

that the combination of biomarkers have the ability for discrimination in 120 days.

Under MAR assumption and when the missing rate is 10% using logistic regression with the

mean imputation, NNE HD imputation and MI, the estimated values of AUCbcv(t) equal

to 0.605 ,0.68 and 0.614 respectively. The combinations of biomarkers are not statistically

significant and do not have any ability to discriminate between subjects who may die during

120 days and those who may not.

Under MAR assumption and when the missing rate is 20% using logistic regression and mean
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imputation, the estimated value of AUCbcv(t) equals to 0.674 with SEB = 0.096. We found

that the combinations of biomarkers are not statistically significant.

When the missing rate is 20%, it could be seen that with all imputation techniques- and for

MAR- the resulting AUCbcv(t) values are better than those when the mechanism is MCAR.

This indicates that for higher missing rates- and specially if MAR was the case- then applying

imputation methods will be necessary and may help improve the results.

The true simulated AUC(t) is 0.742 which is clearly close to the values estimated under the

Cox model than those estimated under the logistic regression model. This emphasizes the

point that the Cox model is best suited to handle the estimation of time dependent AUCs

than the logistic regression.

From Table 6.1 we found that nearest neighborhood hot deck reveals higher AUCbcv(t) and

AUCcv(t) estimates. However the difference between AUC estimates obtained using the three

imputation methods were not statistically significant. The Cox regression as a predictive model

is better than the logistic regression. Its AUC values are higher than those from the logistic

model. This tells us that the appropriate model for the data should be the first step in the

process. Since in this work the data set is time to event, it is obvious that Cox regression

model performs better as it gives AUC(t) estimations similar to the true AUC. Bootstrapping

performed better than cross-validation, however the differences in values of AUCs are small.

6.7. Application to primary biliary cirrhosis (PBC)

This data is from the Mayo Clinical trial in primary biliary cirrhosis (PBC) of the liver con-

ducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during

a ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the
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drug D-penicillamine. The first 312 cases in the data set participated in the randomized trial

while the other 112 cases did not. Here we consider the first 312 cases.

In Table 6.2 we show the missingness rate for the covariates that have missing values:

Table 6.2: Missing rate in PBC dataset

Covariate chol copper trig platelet

Missings rate 28 (9%) 2 (1%) 30 (10 %) 4 (1 %)

We used the PBC data set to develop the clinical prediction model. In our analysis we compare

between model scores using the time dependent ROC analysis. Table 6.3 contains results for

two models- namely that based on list wise deletion (Model 1) and the multiple imputation

model (Model 2). We fitted the multivariate Cox model as the predictive model under both

missing data handling method and this table gives the significant variables from each model,

which are strong indicators of mortality. The number of observations is 276 after list wise

deletion, meaning 36 patients were not used in analysis. From the table we can see that there

is a covariate that appears under Model 1 and does not appears in the Model 2 results and

vice-versa. This indicates that the method used to deal with missing data may affect the final

predictive model even if not in a big way.

We considered time dependent AUC estimation distinguishing between people who may die

and those who may not.

A larger AUC(t) value would suggest that the model score is more accurate in its discriminatory

capacity. Based on Cox regression results for each model in Table 6.3, the estimated AUC(t)

value for Model 1 is equals to 0.90 and the estimated AUC(t) value for Model 2 is equals

to 0.92. These results suggest that both predictive models have high ability to distinguish
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Table 6.3: Cox regression estimates for PBC dataset

Covariate Estimate SE Z-statistic p-values CI

age 0.00007173 0.0000309 2.322 0.0203 * (1.00, 1.0001)

edema 0.9248 0.3782 2.445 0.0145 * (1.2014, 5.2915)

Model 1 log(bili) 0.7221 0.1618 4.463 8.1e-06 *** (1.4993, 2.8272)

albumin -0.678 0.3049 -2.223 0.0262 * (0.2792, 0.9228)

stage 0.3867 0.1757 2.201 0.0277 * (1.0432, 2.0772)

age 0.00007493 0.00002833 2.645 0.00818 ** (1.00, 1.0001)

edema 0.8375 0.3283 2.551 0.01074 * (1.2142, 4.3969)

Model 2 log(bili) 0.7342 0.1504 4.883 1.04e-06 *** (1.5519, 2.7980)

albumin -0.7039 0.2802 -2.512 0.01199 * (0.2857, 0.8566)

log(protime) 2.798 1.191 2.349 0.01882 * (1.5898, 169.5695)

where in Table 6.3, “*” means that the p-value is less than 0.05, the “**” means that the

p-value is less than 0.01 and the “***” means that the p-value is less than 0.001.

between patients who are likely to die from those who are not. However the imputation model

(Model 2) is better than the model that ignores missing values (however the difference is very

small).

We also obtained time dependent AUCs when we used the Cox and logistic regression models.

Figure 6.1 contains time dependent ROC curves for the two models at the first year. It is clear

that the two ROC curves are very close to each other at 365 days. We expect the Cox model

to perform better, thus we investigate the performance of the two models over long period.

Figure 6.2 explains the performance of the two models and their AUC values from minimum

time until ten years.

In the first 1000 days the two models are quite similar which is supported by Figure 6.2.
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However after over time, the Cox regression model seems to perform better and thus the score

obtained has higher ability for discrimination purpose.

Figure 6.1: ROC curves for Cox model and logistic regression for t = 365 days using PBC

dataset

In survival data, the accuracy may be higher when the markers are measured closer to the

onset of disease. In Figure 6.3 we plotted three ROC(t) curves at different times to investigate

the performance of the model and its ability to discriminate with time.

Figure 6.3 shows that predictive accuracy decreases with increasing time since baseline. It is

clear that the best ROC(t) is when time is 180 days. However the area under the ROC(t)
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Figure 6.2: AUC estimates up to 10 years for PBC dataset

Figure 6.3: ROC curves at different times using the Cox regression model for PBC dataset

curves become smaller when it goes to 1000 days and thereafter. This indicates that the closer

the biomarkers are measured to the event time the better is the AUC(t) and thus there is a

better discrimination ability.

Table 6.4 shows the results for AUC(t) values based on resampling methods and when variable
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selection were used to evaluate whether the obtained scores could accurately discriminate

between people who are likely to die before the first year and those who may still be alive

after that time. In this table we list the values of AUCB(t), SEB, CIB and AUCC(t). These

estimates were based on the Cox and logistic regression models under three imputation methods

for missing values.

Table 6.4: The AUCcv and AUCbcv estimations using mean imputation, nearest neighbor

imputation and multiple imputation

Models statistic Mean imputation Hot deck imputation Multiple imputation

AUCB(t) 0.932 0.0.930 0.931

SEB 0.034 0.034 0.035

Cox CIB (0.865, 0.999) (0.863, 0.997) (0.862, 1)

AUCC(t) 0.932 0.925 0.924

AUCB(t) 0.0.921 0.922 0.922

SEB 0.032 0.030 0.0.030

Logistic CIB (0.858, 0.984) (0.863, 0.981) (0.863, 0.982)

AUCC(t) 0.932 0.0.932 0.932

The following is an explanation for the results in Table 6.4.

• Using the Cox model to build the predictive model for the predicted scores, we found

the following:

– With the mean imputation method, the estimated AUCB(t) is equal to 0.932 and

estimated SEB equal to 0.034. The 95% bootstrap CI is (0.865, 0.999) which means

that this score is statistically significant and has a high ability to discriminate at
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365 days.

– With the NNE HD method the values of AUCB(t), their CIBs, suggest that this

predicted score is statistically significant. It is also appears that the obtained value

of AUCC(t) is also high and very close to AUCB(t).

– With multiple imputation method, the estimated AUCB(t) equals to 0.931 and

according to SEB and CIB the score has high ability to discrimination at the first

year. The obtained value of AUCC(t) is a bit smaller than AUCB(t), however the

difference is very small.

• Using the logistic regression model to build the predictive model for predicted scores, we

have the following:

– With the mean imputation method, the estimated bootstrap AUC AUCB(t) and

its corresponding CI confirm that this score is statistically significant which shows

it has a high ability to discriminate between subjects who are likely to die before

120 days and those who are likely to survive beyond that time.

– With the NNE-HD and MI methods the estimated values are almost identical and

very close to the estimate obtained by using the mean imputation as well. These

results suggest that the score is statistically significant.

From all the above findings, we conclude that both resampling methods perform well and

similarly. Bootstrapping seems to perform better but the difference is small. Estimates

from all the imputation techniques are very similar to each other in both estimated

AUC(t)s from resampling methods. According to the null hypotheses

H0 : AUCA = AUCB, H0 : AUCA = AUCC or H0 : AUCB = AUCC ,

where A, B and C are three different imputation strategies, the obtained statistics suggest
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that there is no evidence to reject H0 and thus it will not make difference to which

imputation method we use in order to estimate the AUC(t).

Parameter estimates for some covariates (with missing values) obtained from multiple imputa-

tion with m = 5 are given in Table 6.5. In this table, W, B and T stand for: within, between

and total imputation variances respectively.

Table 6.5: Pooled estimates from MI for some variables in PBC dataset

Covariate Est W B T

Copper 97.66 23.63 0.32 24.01

Platelet 261.98 29.20 0.57 29.88

Cholesterol 367.08 174.75 10.58 187.44

triglycerides 124.91 13.46 0.44 13.99

6.8. Conclusion

The time dependent area under receiver operating characteristic is an important summary

index of discriminatory accuracy in modern clinical medicine. In this chapter we evaluated

some of the imputation techniques and resampling methods for the purpose of estimating time

dependent AUCs in the presence of missing data.

According to our simulation studies, we deduced that LOOCV gives good estimates of the AUC,

however bootstrapping LOOCV seems to perform even better. An interesting observation is

that the three imputation methods gave rise to similar discrimination accuracy where the

AUC(t) estimates obtained by the nearest neighborhood hot deck method were slightly higher.

However we recommend the use of multiple imputation method as it represents missing data
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uncertainty and takes into account the variability given by the multiple imputed data set with

appropriate statistical inference. The Cox model performed better than the logistic regression

and specifically at 120 days most results suggest using the logistic regression as the combination

method did not have ability to discriminate at that time.

An application to the PBC data set reveals that both cross-validation and bootstrap cross-

validation yield AUC(t) estimations are close to each other. Cox regression outperforms the

logistic regression for large period estimation time.
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Chapter 7

Use of resampling methods to

predict the outcome of tuberculous

meningitis in high HIV prevalence

patients in South Africa

7.1. Introduction

Early diagnosis of disease has the potential to reduce morbidity and mortality. Biomarkers

may be useful for detecting disease at early stages before it becomes clinically apparent. Our

interest is to evaluate the predictive and discriminatory capacity for the diagnostic index.

Meningitis causes significant mortality and morbidity in HIV infected persons [16, 56, 71, 89,

131]. Tuberculous meningitis (TBM) accounts for a substantial proportion of deaths, particu-

larly in high tuberculosis (TB) prevalence areas [71]. However, few studies have investigated

the predictors of mortality in patients with HIV associated TBM.

Missing data is a common problem in many fields especially in medical clinic research. It is
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very important to consider missing values in order to reduce the bias associated with parameter

estimates. We applied nearest neighbor hot-deck imputation (discussed in Subsection 4.2.2) to

consider missing values associated with TBM/HIV data set. This method is suitable for any

kind of variable because it does not require strong distributional assumptions and standard

statistical methods could easily be applied to the imputed data.

When we have many variables and the interest is to estimate the diagnostic test accuracy, we

have to select the best variables in order to have better predictive accuracy. Moreover resam-

pling methods are recommended to adjust for over-fitting associated with variable selection.

To estimate the AUC(t), we used the proposed method by Heagerty [66] to calculate ROC

curves for cumulative disease or death incidence by time t, which we denote as ROC(t)C/D.

See Section 3.1 for more details.

A retrospective study of Tuberculous Meningitis in a high HIV prevalence settings at GF

Jooste Hospital in Cape Town is used to describe the application of cross-validation, 632 and

632+ bootstrapping to estimate AUC(t). We also described the presentation and outcome of

patients with TBM. The nearest neighbor hot-deck technique was used to impute the missing

values in the variables used to construct the TBM-IRIS scores. These scores were then used

to estimate the AUC(t) with respect to discriminate between TBM-IRIS patients who may die

before six months and those who may survive after that time.

Penalized regression models provide a statistically appealing method to build prediction mod-

els, where the aim is to simultaneously select features and to fit the model [45, 121]. Since

the introduction of the LASSO for linear regression models (Tibshirani [138]), the method-

ology has been extended to generalized linear regression models and time-to-event endpoints

among others. In addition to the well-known L1-norm (LASSO) and L2-norm (ridge) penalty
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functions, various other penalties have been proposed in recent years to select features and/or

estimate their effects. In particular, we will use the L1-norm and L2-norm.

We used two methods to estimate the cross-validated, 632 and 632+ AUC(t). These are the

proposed method of using ridge-Cox regression and least absolute selection and shrinkage oper-

ator (LASSO)-Cox regression [50]. Ridge-Cox regression and LASSO-Cox regression methods

were evaluated through simulation studies. The AUC(t) was used to compare resampling meth-

ods with respect to predictive power. Estimation of the variances of the estimated AUC values

are very necessary when the interest is to evaluate the performance of combined biomarkers

or predictor index. Thus we considered and evaluated (through simulation studies) two level

bootstrapping to estimate standard errors and then confidence intervals.

7.2. Penalized Cox methods

The Ordinary Least Squares (OLS) estimates are obtained by minimising the residual squared

error [138], which is the difference between the observed and estimated function value. There

are some problems with estimates obtained by OLS, the first is the difficult interpretation. In

addition to that OLS estimates demonstrate large variances despite having low bias.

There are two solutions to improving OLS estimation [138], namely subset selection and ridge

regression. Subset selection has interpretable models but can be extremely variable because it

is a discrete process and regressors are either retained or dropped from the model. A small

change in data can result in different models being selected and this can reduce its prediction

accuracy. Ridge regression has been proposed as an alternative, it is a continuous process that

shrinks coefficients and hence is more stable. However it does not set any coefficients to zero

and hence does not give an easily interpretable model [138].
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7.2.1 LASSO-Cox regression

Tibshirani [138] proposed the least absolute selection and shrinkage operator (LASSO) for

variable selection and shrinkage. The proposal by Tibshirani is based on minimising the log

partial likelihood subject to the sum of the absolute values of the parameters being bounded

by a constant. This technique shrinks coefficients and reduces some to zero.

As we mentioned in Section 6.4, β could be estimated through maximisation of the partial

likelihood. Denote the partial log-likelihood of β as `(β) which is given by: `(β) = logL(β).

Then there are two definitions for LASSO [138] to estimate β, these definitions are:

• β̂ = argmax`(β), subject to
∑
‖ βj ‖≤ s, where s > 0 is user specified parameter and

‖ . ‖ is L1 norm,

• β̂ = argmax`(β)− λ ‖ β ‖1,

where β is the vector of regression coefficients and λ is the tuning parameter for L1. LASSO

is attractive as a regularisation method because it simultaneously performs variable selection

and shrinkage. It shrinks all regression coefficients towards zero and automatically sets many

of them exactly to zero. Variable selection is desirable in order to obtain an interpretable

prediction rule, and shrinkage is desirable to prevent over-fitting.

Geoman [53] proposed a method that presents a novel full gradient algorithm for maximising

the LASSO-penalized likelihood. It follows the gradient of the likelihood from a given starting

value of β. Their method uses the full gradient at each step, furthermore the algorithm can

automatically switch to a Newton Raphson algorithm when it gets close to the optimum [53].
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Let β = (β1, · · · , βP )T , the target function is defined as:

`pen(β) = `(β)− λΣP
i=1|βi|. (7.1)

This function includes two terms, the first term is the log likelihood function and the second

one is penalty p(β) = −λΣP
i=1|βi|. Geoman [53] mentioned two important points: Firstly the

penalized likelihood function is the sum of two concave functions and it is itself a concave

function. However this is not generally strictly concave. Secondly, the penalized likelihood

function is not differentiable everywhere due to the lack of differentiability of the penalty

function.

The gradient ascent algorithm is very simple to understand, but it requires a large number

of steps to converge. Geoman [53] proposed the option of switching to the Newton Raphson

algorithm to avoid too many steps. For more details about this two algorithms we refer the

reader to [53].

It is possible to define a directional derivative

`′pen(β, v) = lim
t→0

1

t
[`pen(β + tv)− `pen(β)], (7.2)

for every point β in every direction v ∈ R. The gradient can then be defined for every β as the

scaled direction of steepest ascent. Let vopt be the direction that maximises `′pen(β, v) among

all v with ‖ v ‖= 1 then the gradient can be defined as `′pen(β, vopt)− vopt if `′pen(β, vopt) ≥ 0

and 0 otherwise, where 0 is a p-vector of zeros. We can define the directional second derivative

as:

`′′pen(β, v) = lim
t→0

1

t
[`′pen(β + tv, v)− `′pen(β, v)]. (7.3)

For the penalized log likelihood the directional second derivative is given for every β and v by:

`′′pen(β, v) = v′
∂2`(β)

`(β)`(β′)
v. (7.4)
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In practice it is hardly ever necessary to calculate the full Hessian matrix of `(β) to calculate

the directional second derivative, as the direction v of interest, which is the direction of the

gradient, will typically have many zeros. Furthermore, in the Cox proportional hazards model,

as well as in generalised linear models with a canonical link function, the Hessian matrix is of

the form

∂2`(β)

`(β)`(βT )
= XTWX, (7.5)

where X is an n × p design matrix and W an n × n weights matrix. This structure of the

Hessian matrix allows the algorithm to avoid construction of the full p × p Hessian. The

gradient ascent algorithm uses a series of Taylor approximations. At each step it approximates

the penalty locally from β in the direction of the gradient by a directional second order Taylor

approximation, given by:

`pen(β + tg(β)) ≈ `pen(β) + t`′pen(β, g(β)) +
1

2
t2`′′pen(β, g(β)). (7.6)

This approximation is meaningful only within a single sub domain of gradient continuity, for

0 < t < tedge, with

tedge = min

{
− βi
g(β)

: sign(βi) = −sign[gi(β)] 6= 0

}
, (7.7)

where

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

The optimum of the Taylor approximation in the subdomain is at:

topt = −
`′pen(β, g(β))

`′′pen(β, g(β))
, (7.8)

provided topt < tedge, otherwise it is at tedge. The algorithm proceeds in every next step

with a new directional Taylor approximation from the optimum found in the previous one.
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Convergence occurs when g(β) = 0. If there is not a unique optimum, the algorithm will

converge to a point in the optimal area.

• Start with some β0.

• For steps i = 0, 1, · · · of the algorithm, iterate the following

βi+1 = βi + min(topt, tedge)g(βi).

Let β̃ = (βJ1, · · · , βJm)T and let g̃(β) = (gJ1(β), · · · , gJm(β))T be the gradient in the con-

strained domain and H̃ the m×m Hessian of the constrained optimisation, given by

H̃K,l(β) =
∂2`(β)

∂βJk∂βJl
, k, l = 1, · · ·m. (7.9)

A step of the Newton Raphson algorithm in the current subdomain would propose:

β̃i+1 = β̃i − [H̃(βi)]−1g̃(βi).

Then the Newton Raphson algorithm is implemented as follows:

• Start with some β0.

• For steps i =, 1, 2, · · · of the algorithm, iterate this until convergence:

βi+1 =


βi + tedgeg(βi) if topt ≥ tedge,

βi+1
NR if topt < tedge and sign(βi+1

NR) = sign(βi+),

βi + toptg(βi) otherwise.

7.2.2 Ridge-Cox regression

We also proposed the use of ridge-Cox regression model in order to estimate the AUC using

632+ and compare it to LASSO to estimate the 632+ AUC as proposed by [50]. Ridge
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regression scales all the coefficients towards 0, but sets none to exactly zero. Ridge regression

better handles correlated predictors and achieves a stable fit even in the presence of strongly

correlated predictors, shrinking each coefficient based on the variation of the corresponding

variable. If two predictors are very correlated, ridge regression will tend to give them equal

weight. Starting from the Cox model, the estimated coefficients can be constrained to satisfy

the condition β′β < C for some choice of C. This is known as ridge penalty which is only

applied to linear and generalised linear models. To control the estimates, a penalty term

with an appropriate weight w is subtracted from the log-likelihood, which now becomes the

penalized partial likelihood:

`ridgepen (β) =
D∑
i=1

Xiβ −
∑

j∈R(ti)

log(exp(Xjβ))

− 1

2
wβ′β. (7.10)

The penalized likelihood is maximised by taking the scores and using the Newton Raphson

method. At the end of the procedure, the Breslow estimator can be used to obtain an estimate

for the baseline hazard [139]. The authors of [145] suggested the use of the full likelihood to fit

the same model. The authors of [151] used an iterative weighted least squares procedure based

on the result that the partial likelihood is equivalent to the likelihood function of independently

sampled poisson random variables. The same procedure is used in [139] for fitting the LASSO

method.

7.3. Resampling methods

In this section we discuss the use of cross-validation and different bootstrap methods for esti-

mating AUC(t). Also the proposed method for variance estimation is described.

The bootstrap family was introduced by Efron and is fully described in Efron and Tibshirani

[138]. Efron [38] introduced the bootstrap, double bootstrap and the 632 estimator (all vari-

ations on the bootstrap) and compared them to the leave-one-out estimate using a variety of
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small sample simulations with Gaussian features.

7.3.1 632 bootstrap

The 632+ bootstrap was proposed by Efron and Tibshirani [138] in order to reduce the upward

bias of the leave-one-out bootstrap estimator. A bootstrap 632 estimator has been shown to

be superior to leave-one-out estimator in a variety of situations with small training sample

sizes [138].

Bootstrap cross-validated FN and FP fractions are obtained by:

FNFBCV (c, t) =
1

B

B∑
b=1

FNF b(c, t), (7.11)

FPFBCV (c, t) =
1

B

B∑
b=1

FPF b(c, t). (7.12)

The corresponding ROC curve is FPFBCV (c, t), 1− FNFBCV (c, t), c ∈ R and AUCBCV (c, t)

is the corresponding bootstrap cross-validation estimation of the AUC at time t. For a large

sample size (n > 40), the probability that the individual appears in the training set is approx-

imately equal to 1 − (1 − 1/n)n ≈ 0.632. The proportion of 0.368 is composed of completely

independent data from the replicated data included in the training set, which causes an un-

derestimation of the prognostic capacity. Efron [38] proposed the 632 estimator to correct

this underestimation:

FNF 632(c, t) = 0.368FNF (c, t) + 0.632FNFBCV (c, t), (7.13)

FPF 632(c, t) = 0.368FPF (c, t) + 0.632FPFBCV (c, t), (7.14)

where FNF (c, t) and FPF (c, t) are the apparent rates, calculated using the B training sets.

More precisely, the apparent FNF and FPF can be calculated using only the data included in
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the bootstrap sample

FNF (c, t) =
1

B

B∑
b=1

FNF b(c, t), (7.15)

FPF (c, t) =
1

B

B∑
b=1

FPF b(c, t). (7.16)

The 632 ROC curve is FPF 632(c, t), 1− FNF 632(c, t), c ∈ R and AUC632(c, t) is the corre-

sponding 632 estimation of the AUC at time t.

7.3.2 632+ bootstrap

The 632 rates may be associated with over estimations if the apparent estimations are very

small when over-fitting data. Efron and Tibshirani [38, 138] improved the correction with

the 632+ estimator [50]. The no-information rates associated with FNF and FPF may be

estimated using all the data and considering the independence between Y and T : γN (c, t) =

1− γP (c, t) = F̂ (c).

These no-information probabilities are used to define the over-fitting rates:

rN (c) =
FNFBCV (c, t)− FNF (c, t)

γN (c, t)− FNF (c, t)
, (7.17)

rP (c) =
FPFBCV (c, t)− FPF (c, t)

γP (c, t)− FPF (c, t)
. (7.18)

The authors of [50] assigned these rates to 0 for negative values and to 1 for values higher than

1. The 632+ estimations of the false negative and positive rates are thus defined by:

FNF 632+(c, t) = [1− ϕ(γN (c, t))]FNF (c, t) + ϕ(γN (c, t)))FNFBCV (c, t), (7.19)

FPF 632+(c, t) = [1− ϕ(γP (c, t))]FPF (c, t) + ϕ(γP (c, t)))FPFBCV (c, t), (7.20)

where ϕ(f) = 0.632
1−0.368f .
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The corresponding 632+ ROC curve is FPF 632+(c, t), 1− FNF 632+(c, t), c ∈ R andAUC632+(c, t)

is the corresponding 632+ estimation of the AUC at time t [50].

7.3.3 Estimation of standard errors

Estimation of the time dependent AUC together with its standard error are very important to

help in computing the confidence intervals. We can then use this to decide if the diagnostic

index has ability to discriminate between two populations or not. We applied the two-level

bootstrapping, where we performed B bootstrap samples from which B AUC(t)′s are computed

by any of the re-sampling methods discussed in Subsections 7.3.1 and 7.3.2. Then confidence

interval will be the 2.5th and the 97.5th percentiles of the B AUC(t) estimates at time t.

In this way we can clearly declare whether the associated predictor index has the ability to

distinguish or not. In this method, estimates θ∗b , b = 1, 2, · · · , B of the parameter of interest

θ are calculated from B pseudo samples. Then an estimate of the bootstrap variance of the

parameter of interest is calculated as:

VB(θ̂) =
1

B

B∑
b=1

(θ̂b
∗
− θ̂.

∗
)2, (7.21)

where B is the number of replicate samples and θ̂.
∗

= 1
B

B∑
b=1

θ̂b
∗
. Note that in the two-level

bootstrapping approach the θ̂b
∗

is estimated from another bootstrap sample as in previous

function. We wrote a specific R program for this function.

7.4. Algorithm

The following is an algorithm to estimate the AUC(t) using different methods of imputation,

variable selection and resampling.
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• Step 1: Considering missing values. In the algorithm we use nearest neighbor hot deck

imputation method.

• Step 2: Evaluation of diagnostic performance of biomarkers by estimating the AUC. The

AUC captures the overall diagnostic accuracy of the combined biomarker test.

• Step 3: This important step needs to be undertaken to optimise the set of biomarkers with

high and independent diagnostic information content in a multivariate setting. There are

a number of critical issues to consider in this step: These are choosing an appropriate

statistical method for multivariate analysis, choosing the number of diagnostically infor-

mative biomarkers to be entered into the multivariate model and using an appropriate

method to optimise the number of finally selected biomarkers. The Cox proportional

hazards model was used for the regression of hazard of experiencing an event of interest

according to quantitative factors. LASSO penalty was used as it is very reliable; it is a

variable selection method and results in considerably better prediction performance. We

also suggested the ridge-Cox regression model to estimate the AUC(t) as a comparative

competing model to LASSO-Cox penalty.

• Before applying the algorithm to derive a discriminatory rule and in order to avoid the

over-fitting problem associated with model selection, we split each original data set into

a training set and a validation set. This split was done using ordinary bootstrap, 632 and

632+ estimators of time dependent AUC and their variances as we mentioned before. We

used “boot.ROCt” function in “ROC632” package for estimating AUC(t) using various

resampling methods. Bootstrap and cross-validated AUC(t) estimates were estimated

using our own updated R code.
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7.5. Simulation studies

Simulation studies represent an important statistical tool to investigate the performance, prop-

erties and adequacy of statistical models, test statistics and estimation techniques considering

pre-specified conditions. In this work we apply the proposed two level bootstrapping method

with respect to estimating the AUC variance. In addition we also used simulation studies to

compare between different resampling methods to estimate AUC(t).

We simulate datasets under the following group settings: Assume that there are K diagnostic

tests (corresponding to K features) Y1, Y2, · · · , YK . In our case, we let K = 5, that is five

features Y1, Y2, Y3, Y4 and Y5. Denote the mean vector of the K features by µk.

With the above settings, the features outcomes yik is given by

yik = µk + ai + εik,

where the notation and assumptions in our case are

• n (resp. m) is the number of individuals and i is the index for the set {1, 2, · · · , n},

• k is the index for a feature,

• ai is the subject specific random effect which is assumed to follow the normal distribution

that is aDi ∼ N(0, 0.5) and

• εik is the random error effect also assumed to follow the normal distribution εik ∼

N(0, 0.25).

The outcome vector y are respectively generated using three model assumptions from the

normal distribution with mean given by µk = (1, 0.5, 0.25, 0, 0) for three different covariance
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structures given by:

• For the first setting (Model 1) we assume independence among the five biomarkers or

features.

• For the second setting (Model 2) we assume the same dependence across all the features.

The resulting covariance structure is the exchangeable or compound symmetry.

• For the third setting (Model 3) we remove dependence for the first three features.

We simulated data sets with sample size N = 50 and bootstrap replicates B = 200 for both

levels of bootstrapping. The time to event was simulated from the exponential distribution

and the censoring time was generated independently such that we fix the censoring rates to

30%.

Table 7.1 shows a summary of different types of quantities which were estimated from the

analysis. These include the AUC and it standard deviation based on different methods using

apparent, bootstrap cross-validation, 632 bootstrap and 632+ bootstrap, which is given in col-

umn 3. Column 4 includes standard error for AUC using our proposed two level bootstrapping.

Columns 5 and 6 include the lower and upper confidence limits of the AUC based on bootstrap

standard errors. Proportion of times lower confidence limits of AUC excludes 0.5, are listed

in column 7 for different estimation methods within a given model assumption. Finally, the

coverage probabilities that the CIs for different resampling methods include the true AUC are

listed in column 8.

From Table 7.1 we can see that:

For Model 1, the apparent AUC equals to 0.848 while the bootstrap cross-validated one equals

0.858. The values of 632 and 632+ AUC are almost the same. All estimated AUC’s are very
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Table 7.1: Mean of the time dependent AUC at 6 months obtained from 250 simulated samples

for each scenario B =200, bootstrap replications are performed for computing the apparent,

BCV, 632, 632+ and 2-level bootstrap standard error(SE) for the AUCs

Model Estimation method AUC(STD) SE Lower limit Upper limit Proportion of lower Coverage

limit excludes 0.5 probabilities

Apparent 0.848(0.0661) 0.053 0.744 0.952 0.985

Model1 BCV 0.858(0.044) 0.037 0.785 0.931 0.985 0.854

632 0.855(0.047) 0.036 0.784 0.926 0.995 0.968

632+ 0.855(0.047) 0.0.04 0.777 0.933 0.991 0.911

Apparent 0.812(0.064) 0.064 0.687 0.937 0.975

Model2 BCV 0.823(0.057) 0.055 0.714 0.930 0.985 0.950

632 0.819(0.055) 0.054 0.712 0.924 0.997 0.995

632+ 0.821(0.057) 0.0.056 0.731 0.931 0.995 0.955

Apparent 0.809(0.056) 0.064 0.684 0.934 0.980

Model3 BCV 0.82(0.055) 0.054 0.714 0.926 0.985 0.950

632 0.816(0.050) 0.055 0.708 0.924 0.995 0.990

632+ 0.818(0.055) 0.0.054 0.712 0.924 0.975 0.935

close to each other. Based on the CI’s, which do not include 0.5, for all AUCs from resampling

methods, we deduce that the combined biomarker yields a significant discriminatory ability.

In all scenarios, the BCV, the 632 and the 632+ estimates were similar to the true apparent

estimations. This conclusion can be made regardless of the simulation models.

In addition to comparing AUC values from different resampling methods, it is more important

to evaluate the performance of the score index or diagnostic tests in each resampling method.

Thus we obtained variances and confidence intervals for AUC estimations. We also investigated

the level of discrimination of the two level bootstrapping methods by firstly looking at how

often the lower limits exclude an AUC = 0.5. Secondly, we looked at how often the CIs for AUC

estimators (using resampling methods) include the true AUC. For example, the proportion of
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times lower limits of CI’s for 632 AUC that exclude 0.5 is 0.995 under Model 1. The coverage

probabilities (under Model 1) for AUC using 632 show that 242 out of 250 CI’s include the

true AUC values, while 228 out of 250 CI’s, using 632+, include the true AUC values. The

coverage probabilities for 632 estimator were 0.968, 0.995 and 0.990 for Model 1, Model 2 and

Model 3 respectively. This indicates that the two level bootstrap methods with 632 estimators

perform better compared to BCV and 632+ estimators. Two level bootstrap methods for all

scenarios perform very well in terms of proportion and coverage probabilities. However this

solution is time consuming and we need to investigate it with more simulations.

From Table 7.1, BCV, 632 and 632+ yielded significant diagnostic AUC results. We also found

that there is no statistical difference for resampling methods and true value which indicates

these estimators are nearly unbiased. Moreover we obtained the two level estimations of AUCs

with the same conclusion. We conclude by remarking that using Model 2 (with correlation)

is preferable since it yielded the highest coverage probabilities and proportion of times lower

limits of CI’s for AUC that exclude 0.5.

We are also interested in comparing the use of LASSO estimation of AUC [50] and our proposed

method of using ridge-Cox regression to estimate the AUC. We simulated data sets with sample

size N=50 and bootstrap replicates B = 200. Censoring rates were fixed to 10% and 30%. We

distinguished the following two scenarios:

First, among five biomarkers three are associated with the time to event, β = (log(1.2),− log(1.2),

0, log(2), 0). Indeed, there is no over-fitting because only five biomarkers are analysed by using

at least 50 individuals.

The second scenario involves 100 biomarkers, no biomarker is associated with the time to

event, β = (0, 0, · · · , 0). It is clear that this case leads to severe over-fitting as the number
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of biomarkers is larger than the number of individuals and there is no association between

biomarkers and time to event.

Table 7.2: Mean of the time dependent AUC at 6 months obtained from 250 simulated samples

for each combination of over-fitting level, censoring rate and penalized model, B =200 bootstrap

replications are performed for computing the apparent, BCV, 632 and 632+ estimations

Missing rate Model Method Apparent BCV 632 632+

model 1 (5 variable) LASSO 0.808 0.815 0.813 0.813

10% Ridge 0.809 0.825 0.819 0.821

100 variables (over-fitting) LASSO 0.829 0.834 0.832 0.832

Ridge 0.839 0.843 0.842 0.844

model 2 (5 variable) LASSO 0.833 0.832 0.832 0.831

30% Ridge 0.846 0.853 0.850 0.852

100 variables (over-fitting) LASSO 0.834 0.827 0.829 0.828

Ridge 0.844 0.848 0.847 0.848

From Table 7.2 and - when the censoring rate is 10%, - LASSO-Cox regression and ridge-Cox

regression obtained very closed AUC(t) values using the two scenarios. When the censoring

rate is 30%, it is clear that our proposed estimator using ridge-Cox regression model from the

first scenario resulted in a slightly higher estimation of AUC(t). As for the LASSO method,

the 632+ estimator was 0.831, whereas for ridge-Cox it was 0.852. Both methods performed

very well as their estimators of AUC using 632+ are very close to each other. The ridge-

Cox regression model and LASSO-Cox regression model revealed similar AUC results under

the second scenario. As for LASSO-Cox method the 632+ estimator was 0.828 whereas for

ridge-Cox regression it was 0.848. Thus using ridge-Cox to estimate 632+ bootstrap AUC(t)
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resulted in a slightly higher estimations than the LASSO-Cox method.

In the first scenario (no over-fitting) with 10% censoring rate, both ridge-Cox and LASSO-Cox

regressions obtained similar AUC(t) estimates. However the 632 estimator appeared to give

AUCs more close to the true AUC (apparent). The same conclusion can be made with 30%

censoring rate.

7.6. Application of tuberculous meningitis (TBM) in high HIV prevalence

This section is an application to TBM/HIV data set. The first subsection describes tubercu-

lous meningitis HIV data. The next subsection contains the statistical analysis, results and

discussion.

7.6.1 The TBM/HIV description

Mycobacterium tuberculosis is a common, devastating cause of meningitis in HIV-infected

persons. Meningitis causes significant mortality and morbidity in HIV infected persons. Tu-

berculous meningitis (TBM) accounts for a substantial proportion of cases, particularly in high

tuberculosis (TB) prevalence areas. Due to international rollout programs, access to antiretro-

viral therapy (ART) is increasing globally. Starting ART during TB treatment is associated

with reduced mortality in TB/HIV co-infected patients [1, 28]. However, few studies have

reported the influence of ART on the outcome of patients with HIV-associated TBM [26, 140].

The data of the study was collected at GF Jooste Hospital in Cape Town, South Africa. This

hospital serves a high density low income community. It is a 200-bed public sector referral

hospital that serves adult patients from a community of approximately 1.3 million people.

This predominantly low income, high density population is at the epicenter of the TB/HIV
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pandemic. In some parts of the referral area the reported TB case notification rate exceeds 1500

cases per 100 000 people per year and the HIV seroprevalence at antenatal clinics reaches 30%

[89]. All patients accessing public sector care facilities with suspected meningitis are referred

to GF Jooste Hospital for investigations, including a lumbar puncture (LP). Adult patients

(18+ years) who had a LP performed over a six-month period (1 March 200931 August 2009)

were identified from laboratory logs and included in the study. Definite, probable and possible

TBM were diagnosed according to published case definitions [140].

7.6.2 Statistical analysis, results and discussion

The demographic, clinical and investigative findings for patients with definite, probable and

possible TBM are detailed in Table 7.3. The majority of TBM cases (68%) presented with

advanced TBM disease (Stage 2 or 3). The percentage of patients who were receiving TB

treatment at the time of presentation was 23% (26/115). Median age for definite probable

and possible patients were 35, 36 and 38 respectively. The percentage of females who were

diagnosed as definite was of 47%. The percentage of patients who were HIV positive - of which

41% of them were definite TBM - was 88% (106/120). For HIV status a typical cerebrospinal

fluid (CSF) findings in patients with definite TBM (n = 47) included, a polymorphonuclear

cell predominance (median = 6.50, SE = 9.43 and CI = (12.26, 50.26)), a glucose level with

median 1.59 mmol/L.

The percentage of patients with probable TBM who received corticosteroids was 70%, which

is similar to that of the definite TBM group. The percentage of overall inpatient mortality

amongst patients who were hospitalized (for four days after LP) was 38% (45 out of 120

patients). The percentage of patients (discharged from hospital) who were HIV-infected and

not on ART at time of presentation was 57% (31 out of 54 patients). For those patients who
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Table 7.3: The demographic, clinical and investigative findings for patients with definite,

probable and possible TBM

Definite TBM (n = 47) Probable TBM (n = 35) Possible TBM (n = 38)

Age median SE (CI) 35.00 1.54 (32.98, 39.19) 36.00 2.4 (34.35,44.11) 38.00 1.65 (33.73,40.43)

Female, n/N (%) 22/47 (47) 16/35 (46) 22/38 (58)

HIV status, n/N (%)

Infected 43/47 (91) 27/35 (77) 36/38 (95)

Uninfected 2/47 (4) 5/35 (14) 1/38 (3)

Unknown 2/47 (4) 3/35 (9) 1/38 (3)

CD4+ median SE (CI) 63 10.22 (57.19,98.94) 103.00 21.49 (79.33,168.26) 109 17.12 (91.83,161.43)

On ART , n/N (%) 2 9/41 (22) 6/27 (22) 5/35 (14)

Previous TB, n/N (%) 15/43 (35) 7/34 (21) 12/38 (32)

On TB treatment, n/N (%) 9/43 (21) 8/34 (24) 9/38 (24)

BMRC TBM Disease Grade

Stage1 10/42 (24) 7/34 (21) 16/38 (42)

Stage2 9/42 (69) 23/34 (68) 20/38 (53)

Stage3 3/42 (7) 4/34 (12) 2/38 (5)

Hemoglobin median SE (CI) 10.45 0.36 (10.09, 11.53) 12.0 0.38 (11.13,12.68) 10.000 10 .39 (9.14,10.72)

Wcc 6.00 0.63 (6.04,8.57) 5.60 1.00 (4.95,8.98) 7.65 0.68 (6.77, 9.53)

Sodium (CI) 126.0 0.79 (124.51,127.71) 129.0 1.00 (127.46,131.54) 130.0 1.05 (128.79,133.05)

Protein (CI) 2.60 2.4 (2.50,12.16) 2.41 2.59 (2.3, 12.82) 1.21 0.15 ( 1.19, 1.81)

Glucose (CI) 1.59 .14 ( 1.36, 1.92) 1.87 .20 (1.6, 2.39) 2.66 .17 (2.41,3.09)

Lymphocytes (CI) 77.0 26.39 (93.02, 199.33) 58.50 27.69 (61.78,174.45) 12.00 21.56 (.85, 88.47)

Polymorphonuclear (CI) 6.50 9.43 (12.26, 50.26) 0.0 9.83 (4.5 ,44.50) 0.000 2.86 (.34, 11.95)

initiated ART during the six months of TB treatment at six month follow-up, the percentage

of TBM patients who had died was 48% while 10% were lost to the follow-up process.

Table 7.4 describes the management and outcome in patients with TBM.

Table 7.5 shows factors analysed for association with inpatient mortality for all patients (n=

120) in univariate and multivariate analysis. A higher BMRC TBM disease stage (2 or 3 versus
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Table 7.4: Management and outcome in patients with TBM

Outcome

History of previous TB No 81/115 (70%) yes 34

TB treatment On treatment at time of presentation yes 26/115 (23%) No 89

Corticosteroids started yes 64/113 (57%) No 48

on ART No 81/100(81%) yes 19

ART started 6 months after starting TB treatment Yes 31/54(57%) No 89

Inpatient mortality yes 45/120 (38%) No 75

1) remained predictive of mortality in multivariate analysis.

160



Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

T
ab

le
7.

5:
U

n
iv

ar
ia

te
an

d
m

u
lt

iv
ar

ia
te

an
al

y
se

s
of

as
so

ci
at

io
n

b
et

w
ee

n
va

ri
ab

le
s

an
d

in
h

o
sp

it
a
l

m
o
rt

a
li

ty
in

a
ll

p
a
ti

en
ts

U
n

iv
a
ri

a
te

a
n

a
ly

si
s

M
u

lt
iv

a
ri

a
te

a
n

a
ly

si
s

v
a
ri

a
b

le
s

lo
g

o
d

d
s

S
E

z
-v

a
lu

e
p

-v
a
lu

e
lo

g
o
d

d
s

S
E

z
-v

a
lu

e
p
-v

a
lu

e

a
g
e

0
.0

0
2
3
2

0
.0

1
6
2
6

0
.1

4
3

0
.8

8
7

-2
.6

4
0
e-

0
3

2
.8

9
9
e-

0
2

-0
.0

9
1

0
.9

2
7
5

se
x

0
.2

1
3
6

0
.3

7
7
8

0
.5

6
5

0
.5

7
2

6
.3

9
2
e-

0
1

5
.8

5
9
e-

0
1

1
.0

9
1

0
.2

7
5
3

h
is

to
ry

o
f

p
re

v
io

u
s

T
B

0
.0

5
1
0
6

0
.4

2
1
2
9

0
.1

2
1

0
.9

0
3
5

3
.1

5
6
e-

0
1

5
.4

6
8
e-

0
1

0
.5

7
7

0
.5

6
3
8

o
n

T
B

tr
ea

tm
en

t
-0

.3
7
7
3

0
.4

7
7
1

-0
.7

9
1

0
.4

2
9
1

-2
.4

3
8
e-

0
1

6
.2

0
5
e-

0
1

-0
.3

9
3

0
.6

9
4
4

H
IV

st
a
tu

s
1
.4

0
5

1
.0

8
8

1
.2

9
1

0
.1

9
6
6

1
.7

4
2
e+

0
1

1
.4

9
9
e+

0
3

0
.0

1
2

0
.9

9
0
7

w
cc

-0
.0

0
8
5
1
7

0
.0

4
1
2
5
5

-0
.2

0
6

0
.8

3
6

3
.6

3
4
e-

0
4

4
.9

9
5
e-

0
2

0
.0

0
7

0
.9

9
4
2

T
B

M
st

a
g
e

0
.9

9
3
3

0
.3

7
7
4

2
.6

3
2

0
.0

0
8
4
9

*
*

1
.1

4
9
e+

0
0

4
.7

3
1
e-

0
1

2
.4

2
8

0
.0

1
5
2
*

D
ia

g
n

o
si

s
o
f

T
B

M
0
.1

2
0
1

0
.2

2
5
0

0
.5

3
4

0
.5

9
3

4
.8

7
4
e-

0
1

3
.8

5
4
e-

0
1

1
.2

6
5

0
.2

0
6
0

so
d

iu
m

-0
.0

0
7
8
6
8

0
.0

3
1
4
0
4

-0
.2

5
1

0
.8

0
2

-1
.2

6
0
e-

0
2

4
.7

9
3
e-

0
2

-0
.2

6
3

0
.7

9
2
6

h
em

o
g
lo

b
in

-0
.1

1
2
0
7

0
.0

8
0
4
1

-1
.3

9
4

0
.1

6
3

-2
.1

5
5
e-

0
1

1
.2

9
8
e-

0
1

-1
.6

6
1

0
.0

9
6
8

.

g
lu

co
se

-0
.2

2
6
9
8

0
.1

7
4
3
3

-1
.3

0
2

0
.1

9
3

-1
.3

0
8
e-

0
1

2
.6

7
4
e-

0
1

-0
.4

8
9

0
.6

2
4
8

p
ro

te
in

0
.0

3
8
2
4

0
.0

1
8
9
6

2
.0

1
7

0
.0

4
3
7
3
3

*
4
.3

3
8
e-

0
2

2
.4

4
3
e-

0
2

1
.7

7
6

0
.0

7
5
7

.

st
er

o
id

s
-0

.4
6
5
4

0
.3

9
4
4

-1
.1

8
0

0
.2

3
8

-3
.1

6
2
e-

0
2

5
.6

9
1
e-

0
1

-0
.0

5
6

0
.9

5
5
7

ly
m

p
0
.0

0
0
5
2
2
2

0
.0

0
1
1
6
5
6

0
.4

4
8

0
.6

5
4
1
8

2
.0

2
3
e-

0
4

1
.7

8
7
e-

0
3

0
.1

1
3

0
.9

0
9
8

p
o
ly

-0
.0

0
0
3
3
9
7

0
.0

0
3
7
5
9
1

-0
.0

9
0
.9

2
7
9
9

-5
.6

6
5
e-

0
4

5
.2

8
1
e-

0
3

-0
.1

0
7

0
.9

1
4
6

161



Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

Table 7.6 shows factors analysed for association with inpatient mortality for HIV-infected

patients (n= 106) only. In a univariate analysis, CD4 count (p-value=0.0296) and a higher

BMRC TBM disease stage (p-value=0.00952) remained predictive of mortality same as was

with a multivariate analysis.

162



Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

T
ab

le
7.

6:
U

n
iv

ar
ia

te
an

d
m

u
lt

iv
ar

ia
te

an
al

y
se

s
fo

r
as

so
ci

at
io

n
as

so
ci

at
io

n
w

it
h

in
p

a
ti

en
t

m
o
rt

a
li

ty
fo

r
H

IV
-i

n
fe

ct
ed

p
a
ti

en
ts

U
n

iv
a
ri

a
te

a
n

a
ly

si
s

M
u

lt
iv

a
ri

a
te

a
n

a
ly

si
s

v
a
ri

a
b

le
s

lo
g

o
d

d
s

S
E

z
-v

a
lu

e
p
-v

a
lu

e
lo

g
o
d

d
s

S
E

z
-v

a
lu

e
p
-v

a
lu

e

a
g
e

0
.0

0
4
3
7
1

0
.0

2
0
9
2
9

0
.2

0
9

0
.8

3
5

0
.0

1
6
4
0
3
2

0
.0

3
2
5
1
1
6

0
.5

0
5

0
.6

1
3
8
9

se
x

0
.3

2
1
6

0
.4

0
4
3

0
.7

9
5

0
.4

2
6

0
.6

7
5
4
3
1
7

0
.7

2
5
0
3
2
6

0
.9

3
2

0
.3

5
1
5
5

h
is

to
ry

o
f

p
re

v
io

u
s

T
B

0
.2

4
9
1

0
.4

3
9
8

0
.5

6
6

0
.5

7
1
1

0
.1

4
5
2
8
4
6

0
.7

0
6
0
2
0
1

0
.2

0
6

0
.8

3
6
9
6

o
n

T
B

tr
ea

tm
en

t
-0

.3
4
9
6

0
.4

8
6
6

-0
.7

1
8

0
.4

7
2
5

-0
.1

0
5
1
1
3
1

0
.7

2
1
9
1
5
6

-0
.1

4
6

0
.8

8
4
2
3

C
D

4
-0

.0
0
6
5
4
8

0
.0

0
3
0
1
0

-2
.1

7
5

0
.0

2
9
6

*
-0

.0
1
1
3
0
0
5

0
.0

0
4
8
6
8
0

-2
.3

2
1

0
.0

2
0
2
7

*

w
cc

0
.0

0
1
2
8
2

0
.0

4
1
1
2
7

0
.0

3
1

0
.9

7
5

-0
.0

1
7
5
3
4
0

0
.0

6
4
0
8
6
3

-0
.2

7
4

0
.7

8
4
3
9

T
B

M
st

a
g
e

1
.0

9
6
2

0
.4

2
2
8

2
.5

9
3

0
.0

0
9
5
2

*
*

1
.6

2
5
9
9
5
5

0
.5

9
1
6
5
3
4

2
.7

4
8

0
.0

0
5
9
9

*
*

D
ia

g
n

o
si

s
o
f

T
B

M
0
.1

9
5
9

0
.2

3
4
6

0
.8

3
5

0
.4

0
3
6

0
.7

3
4
9
3
3
8

0
.5

0
4
1
8
9
9

1
.4

5
8

0
.1

4
4
9
4

so
d

iu
m

0
.0

0
1
5
9
7

0
.0

3
3
2
8
1

0
.0

4
8

0
.9

6
2

-0
.0

0
6
9
8
6
6

0
.0

5
7
9
3
0
1

-0
.1

2
1

0
.9

0
4
0
1

h
em

o
g
lo

b
in

-0
.1

5
0
2
7

0
.0

9
0
4
4

-1
.6

6
2

0
.0

9
6
6

.
-0

.2
4
0
1
7
3
8

0
.1

6
1
5
5
9
8

-1
.4

8
7

0
.1

3
7
1
2

g
lu

co
se

-0
.2

1
9
7
3

0
.1

8
2
6
5

-1
.2

0
3

0
.2

2
9

0
.1

6
6
5
1
8
2

0
.3

1
0
5
3
0
4

0
.5

3
6

0
.5

9
1
7
9

p
ro

te
in

0
.0

2
6
1
4

0
.0

1
8
0
3

1
.4

5
0

0
.1

4
7
1
5

0
.0

3
2
0
9
8
5

0
.0

3
5
8
3
8
3

0
.8

9
6

0
.3

7
0
4
4

st
er

o
id

s
-0

.2
1
4
2

0
.4

2
1
5

-0
.5

0
8

0
.6

1
1

0
.4

5
9
8
1
3
5

0
.7

0
0
0
1
8
3

0
.6

5
7

0
.5

1
1
2
7

ly
m

p
0
.0

0
0
5
2
3
5

0
.0

0
1
1
7
9
5

0
.4

4
4

0
.6

5
7
1
6

0
.0

0
1
0
8
9
1

0
.0

0
2
3
7
9
3

0
.4

5
8

0
.6

4
7
1
5

p
o
ly

0
.0

0
2
0
3
2

0
.0

0
4
0
3
3

0
.5

0
4

0
.6

1
4
3
3

-0
.0

0
0
7
8
7
6

0
.0

0
5
8
9
7
3

-0
.1

3
4

0
.8

9
3
7
6

o
n

A
R

T
0
.3

2
1
6

0
.5

1
8
2

0
.6

2
1

0
.5

3
4
9
1

0
.6

0
6
7
0
1
5

0
.9

0
5
6
6
2
8

0
.6

7
0

0
.5

0
2
9
2

163



Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

Table 7.7 shows factors analysed for association with mortality for all patients (n= 120) in

univariate and multivariate analysis. A higher BMRC TBM disease stage (2 or 3 versus

1) (p-value=0.0417) and protein (p-value=0.00585) remained predictive of mortality in the

multivariate analysis.
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Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

Table 7.8 shows factors analysed for association with mortality for HIV-infected patients (n=

106) only and similar results to Table 7.7 were obtained - in which a higher BMRC TBM

disease stage and protein remained predictive of mortality.

Analysis of factors associated with six-month mortality is reported only for HIV-infected hos-

pital survivors for whom the outcome was known at the six-months follow-up. Patients on

ART at presentation, or having started ART during TB treatment, were negatively associated

with six-month mortality.
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Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

Figure 7.1 is a Cox proportional hazard model showing survival curves of TBM/HIV patients

On/Not ART and it is clear that the survival curves for patients on ART is higher than the

curve for patients did not take or start ART, suggesting that the survival experience is possibly

slightly better for patients on ART.

Figure 7.1: Survival curves for patients on ART and non ART for TBM/HIV dataset

Figure 7.2 is a Cox proportional hazard model showing survival curves of TBM stage for

patients (stage 1, stage 2 and stage 3). As expected the resulting survival curves for stage 1

is higher than the curves for stage 2 and stage 3, suggesting that the survival experience is

better for patients with stage 1.
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Figure 7.2: Survival curves for TBM stages for TBM/HIV dataset

Figure 7.3 is Cox proportional hazard model survival curves of TBM diagnosis as definite,

probable and possible TBM. The survival curve for possible diagnosed subjects is lower than

the curves for definite and probable patients, suggesting that the survival experience is worse

for possible TBM patients.

From figure 7.4 we can see that the survival curve for negative HIV status is higher than the

curve for positive HIV status, confirming that the survival experience for negative HIV status

is better for positive status.
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Figure 7.3: Survival curves for TBM diagnosis for TBM/HIV dataset

We are interested in investigating which variables are important and should be used to obtain

better AUC. We used time dependent AUC estimation with penalized LASSO-Cox regression

for variable selection. The use of the penalty LASSO-Cox regression model appears to be

the best approach as it balances between prediction and interpretation [50]. We used the

cross-validation, 632 and 632+ estimations of the ROC(t) and, the missing data were imputed

according to the nearest neighbor hot deck strategy (see Subsection 4.2.2).

In addition to comparing AUC values from different resampling methods, it is more important

to evaluate the performance of score index or diagnostic tests in each resampling method. Thus

we obtained variances and confidence intervals for AUC estimations. From Table 7.9, CV, 632

and 632+ estimators obtained significant diagnostic test - which means that the index scores

have an ability to discriminate between the TBM/HIV subjects who are likely to die before
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Figure 7.4: Survival curves for HIV status for TBM/HIV dataset

the first 6 months and those who may still alive beyond that time.

In Table 7.9, all the estimation methods yielded similar AUC values. The smallest among

them is that estimated using the BCV method and the 632+, with respective values 0.846 and

0.849. The highest value was from the apparent method followed by the 632. The standard

error was the smallest under the 632 resampling method. The BCV and apparent method

yielded similar SEs and it was highest under the 632+ method.

We estimated the 632+ AUC(t) as 0.85 for a prognosis up to 6 months. Thus a patient who

will die before 6 months has a 85% chance of having a score higher than a patient who will

be alive at this time. The AUC estimates from all methods are high which confirms the
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Table 7.9: AUC values from different resampling methods for composite biomarker from

TBM/HIV dataset

Methods AUC SE Lower-limit Upper-limit

apparent 0.858 0.076 0.709 0.998

BCV 0.846 0.075 0.774 0.993

632 0.850 0.069 0.715 0.985

632+ 0.849 0.087 0.678 0.997

discriminatory capacity between patients who will die before six months and those who are

alive after that time according to confidence intervals. The resulting p-values were strongly

statistically significant and suggested that they all agree that the prognostic score has a high

discriminatory capacity.

We propose the use of Ridge-Cox regression model to estimate the AUC as a competing method

to LASSO-Cox regression. Both the LASSO (L1) and Ridge (L2) penalized estimation meth-

ods shrink the estimates of the regression coefficients towards zero relative to the maximum

likelihood estimates [138]. The purpose of this shrinkage is to prevent over-fitting that arise

from either collinearity of the covariates or high-dimensionality. Although both methods are

shrinkage based methods, the effects of L1 and L2 penalization are quite different in practice.

Applying an L2 penalty tends to result in all small but non-zero regression coefficients, whereas

applying an L1 penalty tends to result in many regression coefficients shrunk exactly to zero

and a few other regression coefficients with comparatively little shrinkage.

The results are presented in Table 7.10, the AUCs obtained from LASSO using the 632+

estimator were 0.658 and 0.630 in 9 months and the first year respectively. The area decreased

172



Chapter 7 – Use of resampling methods to predict the outcome of tuberculous
meningitis in high HIV prevalence patients in South Africa

Figure 7.5: Observed values of multivariate signature for TBM/HIV dataset

Table 7.10: AUC estimations using LASSO and ridge methods for TBM/HIV dataset in dif-

ferent time points

method time BCV 632 632+

LASSO 270 days 0.653 0.661 0.658

365 days 0.610 0.637 0.630

Ridge 270 days 0.744 0.777 0.769

365 days 0.735 0.772 0.760

with prognostic time, illustrating that long-term failures are often more difficult to predict.

This illustrates the utility of this signature to predict mortality over different times; however

it explains that these signatures alone are not sufficient for medical decision making.
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From Table 7.10, it is clear that our proposed estimator using ridge-Cox regression model

resulted in higher AUC estimates. As for LASSO-Cox method the 632+ estimators in the

first year was 0.630 whereas for ridge-Cox regression it was 0.774, means that the ridge-Cox

regression appeared to be overoptimistic. From Figure 7.6, the over-fitting was high with

an apparent AUC around 0.86 (using the ridge-Cox regression). In contrast, the prognostic

capacity appeared to be underestimated when using the BCV estimator. The 632+ estimations

were less optimistic than the 632 estimations.

Figure 7.6: AUC according to the prognostic times and the different estimators using the

ridge-Cox model regression for TBM/HIV dataset
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7.7. Conclusion

In this chapter we used the LASSO method variable selection method in order to estimate

AUC(t). The LASSO uses a penalty like ridge regression, except the penalty is the L1 norm of

the coefficient vector, which causes the estimates of some coefficients to be exactly zero. This

is in contrast to ridge regression which never sets coefficients to zero. The fact that the LASSO

sets coefficients to zero can be a big advantage for the sake of interpretation - unlike ridge which

tend to give higher values of AUC(t) but is difficult in terms of interpretation. It is mentioned

in [50] that the use of the penalized LASSO-Cox regression appears to be the best approach

as it balances between prediction and interpretation. However our proposed method of using

ridge-Cox regression models appeared to perform similarly to LASSO-Cox regression in terms

of AUC(t) estimations. Our simulations showed that two level bootstrap methods performed

better with the 632 estimator in terms of confidence intervals. The application on TBM/HIV

data showed that CD4 and TBM could significantly predict mortality. More specifically CD4

counts could strongly distinguish between patients who may die before six months and those

who may survive thereafter.
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Chapter 8

The role of ambiguous nucleotides as

biomarkers of recent HIV infection

in rural KwaZulu-Natal, South Africa

8.1. Introduction

HIV infection is a global health problem as thousands of people are newly infected every year,

therefore HIV infection has become one of the most common health problems in the world.

However, it is a challenge to determine the difference between a recent infection and a chronic

infection. It is well known that using ART for the management of HIV infected patients has

been associated with reduction in morbidity and mortality. Estimation of the HIV incidence

in populations is important for developing specific prevention strategies. HIV incidence is

classically estimated by prospective cohort studies which are expensive and time consuming.

In recent years, several methods based on viral sequences have been developed to identify re-

cent HIV infection. Importantly, Kouyos et al. [76] showed that the proportion of ambiguous

nucleotides is correlated with the time elapsed between HIV infection and sampling for geno-

typing. In a study in Switzerland, the ambiguous nucleotide method performed well using a
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threshold of 0.5% as the cut off giving a high sensitivity of 86.8%, a reasonably high specificity

of 70% and a high negative predictive value of 98.7%. However, it has yet to be determined

if this method of measuring ambiguous nucleotides within a patient between sampling times

could be used to determine recent infections in South Africa.

The aim of this chapter is to evaluate the use of the proportion of ambiguous base cells in

HIV population sequences as a biomarker for use in an HIV incidence assay. To achieve this,

we used samples from ART-naive study patients from a South African HIV Study. We are

interested in distinguishing HIV recent infection (≤ 36 months) from long-term HIV infection

(> 36 months) using genetic data from a high risk HIV region in the province of KwaZulu-Natal

in South Africa.

We analysed the proportion of ambiguous nucleotides as biomarkers to distinguish between HIV

status. Samples from treatment naive participants from three rounds of an annual population

based HIV surveillance programme in rural KwaZulu-Natal were genotyped for drug resistance.

The sample types included capillary blood microtubes in 2010 and dried blood spots (DBS)

in 2011 and 2012. Using the genetic data available, the proportion of ambiguous nucleotides

was calculated. The receiver operator characteristic analysis (ROC) was used to evaluate the

diagnostic performance of ambiguities and determine the best cut-off values to identify recent

infection. The chi-squared test was used to test for difference in the proportion of participants

with ambiguities between recent and chronic infected patients.

In this chapter, we discuss some methods for evaluation the ambiguities as a biomarker in

Section 8.2. Results and interpretation of results are described in Section 8.3.
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8.2. Methods

8.2.1 Data description

The study [85, 86] used samples collected from a population-based HIV surveillance conducted

in 2011 and 2012 in KwaZulu-Natal, South Africa. The Africa Centre for Health and Population

Studies (Africa Centre) has conducted a longitudinal, population-based HIV surveillance pro-

gramme in the rural district of uMkhanyakude in northern KwaZulu-Natal since 2003. Adult

(15-49 years) HIV prevalence in 2011 was 29% [154] and crude HIV incidence was 2.63 per 100

person years. There has been rapid expansion of ART coverage in the area since 2004 with

an estimated 37% of all HIV-infected adults on ART in July 2011 [136]. HIV treatment and

care is delivered through a decentralized primary health care programme in accordance with

the national Department of Health guidelines. HIV-1 viral load tests were done on all dried

blood spot (DBS) samples that tested positive for HIV-1 during the 2011 and 2012 surveillance

rounds. Only samples from treatment naive participants with viral loads greater than 10,000

RNA copies/ml were genotyped. For participants with more than one sample during the study

period, only the earliest sample was used for analysis because the DBS genotyping protocol

has low amplification rates at viral loads < 10, 000 RNA copies/ml. The HIV-1 RNA was

extracted using an automated platform the NucliSense EasyMag - BioMerieux with an elution

volume of 50ml for the viral load determination. The same RNA extract was used for HIV-

1 drug resistance genotyping within six hours of extraction. Previously published sequences

from 2010 were also used in this analysis. The previously described SATuRN/Life Technologies

genotyping system was used for the genotyping [85, 86]. Briefly, the extracted RNA was re-

verse transcribed using the Superscript III first strand synthesis kit (Life Technologies, Foster

City, CA) followed by nested PCR using Platinum Taq polymerase (Life Technologies, Foster
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City, CA). Successful PCR amplification was assessed using 1% agarose gel (Bioline, Taunton,

Massachusetts) electrophoresis run at a 100V and 400mA for 40 minutes. The PCR products

were cleaned up using the PureLink QUICK PCR Purification Kit (Life Technologies, Foster

City, CA) and sequenced using the Big Dye Terminator kit ver3.1 (Life Technologies, Foster,

City) and a set of four bidirectional primers. Capillary sequencing electrophoresis was done on

3130Xl Genetic Analyser (Life Technologies, Foster, CA). The sequences covering all the 99

protease codons and the first 300 reverse transcriptase codons were assembled using Geneious

Pro genetic analyser [34]. The quality of the sequences was assessed using the HIV-1 Quality

Analysis Tool [4] and the Calibrated Population Resistance (CPR) tool [54]. HIV-1 subtyping

was performed using the REGA HIV-1 Subtyping Tool ver 3.0 [102]. Phylogenetics was used

to rule out contamination among the samples.

The following table shows the encoding for the four bases (A, C, T, G) and for ambiguous

positions in the DNA sequence.

A adenosine C cytidine G guanine

T thymidine N A/G/C/T (any) U uridine

K G/T (keto) S G/C (strong) Y T/C (pyrimidine)

M A/C (amino) W A/T (weak) R G/A (purine)

B G/T/C D G/A/T H A/C/T

V G/C/A

With the above, every patient has a sequence of nucleotides, which is either A, C, T or G and

ambiguities, which is either W, S, M, K, R, Y, B, D, H, V or N. Thus there was a need to

count all the (A,C,T,G) sequences in the DNA sequences and the ambiguities. We compiled a

special program in JAVA for this purpose.
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The estimated date of infection was calculated as the midpoint between the last negative test

date and the first positive test date. The duration of infection (months) was determined by

calculating the time between the estimated date of infection and sample date. Participants

with a duration of infection up to 36 months were classified as recent infections and non-recent

otherwise.

8.2.2 Statistical methods

Our main goal is to evaluate the usefulness of the proportion sequences of ambiguities as a

biomarker to predict recent infected patients. For this purpose the generalised linear model

(GLM) function in the R software with infection status, recent versus chronic as the outcome

and ambiguities as an independent variable was used. Both crude and adjusted analyses,

using sex, age, viral load and resistance status were included as covariates, first in a univariate

analysis and then a full multivariate analysis.

The relationship between the proportion of ambiguities (the dependent variable) and the du-

ration of infection was investigated using GLM. We performed a bootstrap analysis with 1,000

replicates to obtain 95% confidence intervals in order to assess the ability to accurately dis-

criminate between the recently and chronically infected patients. The proportions of samples

with any ambiguity were compared in terms of recent and chronically infected patients, using

the Chi-squared test for trend, to see if there was any trend. The trend analysis was confirmed

using logistic regression. The model was fitted using the generalised linear model function us-

ing ambiguity status, having any ambiguity (W, S, M, K, R, Y, B, D, H, V, N) versus having

no ambiguity as the outcome and infection status as the independent variable.

The level of statistical significance was set at 0.05. We sought to identify a cutoff in the pro-
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portion of ambiguous sites to classify a patient’s infection status into recent (infected for ≤ 3

year) or chronic (infected for > 3 year). Optimal cut-off values of the proportion of ambigu-

ous sites were established to distinguish recent from long-term infections. The classification

performance of two categorizations of the proportion of ambiguous sites was evaluated with

receiver operating characteristic (ROC) analyses. Sensitivity, specificity, positive predictive

value (PPV) and AUC were calculated for ambiguities.

8.3. Results and discussion

Table 8.1 summarizes the HIV-1 variables in recent and chronic patients. The median was used

to explain continuous variables, and the fractions were used to explain categorical variables.

The median for age was 24 and 31 in recent and chronic patients respectively.

Most participants were females comprising of 80.6% of the sample. The proportion of females

in long-term infected patients is 84% while the male proportion was only 16%. We also found

that 5% of patients are drug resistant and 34% of all patients have at least one ambiguity. The

proportion of recently infected patients having ambiguities was 28% whereas 63% of chronically

infected patients did not have any ambiguity. We also obtained proportions of recently versus

chronically infected at different times as in Table 8.1. In this table, logvl is the log of viral

load, res is resistance and amb is ambiguity.

Univariate and multivariate analyses were performed to identify significant differences between

recently infected patients and longtime infected patients. The results of these analyses are

shown in Table 8.2.

In univariate analysis the proportion of ambiguities appeared to be significant (p-value = 0.03)

in addition to age and gender. However in multivariate analysis the proportion of ambiguities
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Table 8.1: Summary of the HIV-1 variables in recent and chronic patients

Variables Recent N = 179 Chronic N = 372

Age Min - Max (Median) 16 - 77 (24) 16 - 87 (31)

Gender Male 46/179 26% 61/372 16%

Female 133/179 74% 311/372 84%

Logvl (Median) 5.058 4.991

resistance res 10/179 6% 19/372 5%

non-res 169/179 94% 353/372 95%

ambiguities amb 50/179 28% 139/372 37%

non-amb 129/179 72% 233/372 63%

2010 44/179 25% 23/372 6%

Sampling frame 2011 92/179 51% 252/372 68%

2012 43/179 24% 97/372 26%

was not significant whereas age and gender remained significant.

We calculated the area under the curves for various variables, and the results are shown in

Table 8.3. Standard error and confidence intervals were also calculated using the bootstrap

method.

The p-value obtained from linear regression between the proportion of ambiguous and the

duration time of infection was 0.107. The proportions of samples with any ambiguity were

compared for recent and chronic HIV infected subjects, using the Chi-squared test for trend, to

see if there was any trend in ambiguities. The median value of ambiguous nucleotides fractions
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Table 8.2: Univariate and multivariate analysis for genetic HIV data

Models Variables Estimations SE Z-value P-value

ambiguities 0.431 0.198 2.18 0.0295 *

age 0.063 0.010 6.197 5.76e-10 ***

Univariate analysis sex -0.567 0.221 -2.566 0.0103 *

logvl -0.172 0.161 -1.069 0.285

resistance -0.0947 0.4017 -0.236 0.814

ambiguities 0.2801 0.235 1.192 0.233

age 0.070 0.012 5.844 5.09e-09 ***

Multivariate analysis sex -0.799 0.257 -3.105 0.0019 **

logvl -0.113 0.174 -0.650 0.516

resistance -0.321 0.428 -0.750 0.454

Table 8.3: AUC estimations for some variable in HIV genetic data

Variables AUC SE CI

sex 0.547 0.019 0.510 - 0.585

resistance 0.502 0.011 0.483 - 0.522

ambiguities 0.547 0.021 0.506 - 0.587

age 0.709 0.023 0.662 - 0.755

logvl 0.527 0.041 0.447 - 0.604

for recent and long-term infections were 27.9% and 37.4%, respectively. The trend analysis

was confirmed using logistic regression and the p-value for trend test is 0.029. We found that
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the fraction of ambiguous nucleotides varied between recent and long-term infections, with

the fraction increasing with long-term infections. Then we attempted to find the optimal cut-

off value of the fraction of ambiguous nucleotides to determine the difference between recent

infections and long-term infections. The optimal cut-off value for determination of early HIV-1

infection was 0.5. That is, if the fraction of ambiguous sites from a sequence was not larger

than 0.5, then the sequence was from a recently-infected patient, otherwise the sequence was

from a long-term infected patient. The sensitivity and specificity were 0.374 and 0.721. The

area under the ROC curve (AUC) was 0.547 (95% CI, 0.508− 0.590, p-value = 0.015).

Figure 8.1 is the AUC for the proportion of ambiguities and its confidence interval. The optimal

cut-off is included with its specificity and sensitivity.

Figure 8.1: Ambiguous AUC estimation using optimal cut-off from HIV genetic dataset

Figure 8.2 explains the proportion of ambiguities for individuals which is spread from 0 to
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2.0%.

Figure 8.2: Proportion of ambiguities for individuals from HIV genetic dataset

We also calculated the AUC for combination of the ambiguities and other predictors (e.g. sex

and age) which is equal to 0.719. This indicates that the combination did not give improvement

compared to age alone. In conclusion, the proportion of ambiguous nucleotides may not be a

useful marker to distinguish recent from long-term HIV-1 infections. This new genotypic tool

cannot be used alone and must be interpreted with clinical and serological data. This method

has not performed well in the South African population.
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Chapter 9

Conclusion and future work

Diagnostic tests are important components in modern medical practice. In clinical medicine,

correct diagnosis of disease is of great interest and hence researchers invest considerable time

in developing methods to enhance accurate disease diagnosis. The receiver operating charac-

teristic (ROC) is a commonly used statistical tool for describing the discriminatory accuracy

and performance of a diagnostic test. The area under receiver operating characteristic (AUC)

is a popular summary index of discriminatory accuracy. The first part of this work discussed

the terminology of the receiver operating characteristic curve in classic and time dependent

scenarios. We also introduced missing data and some of the imputation strategies, then we

evaluated many strategies in order to predict disease outcome using simulation studies and

applications to interesting real data sets.

In literature many standard approaches for cross-validation suffer from extensive bias or vari-

ance when the AUC is used as performance measure. In Chapter 5 we recommend the use of

bootstrapping LOOCV for performance estimation, as it avoids many of these problems. The

bootstrapping LOOCV estimator is firstly easy to understand and the interpretation of the

resulting AUC is straightforward and secondly, LOOCV obtained nearly unbiased estimates.

Our proposed methods also involves the variable selection in each bootstrap iteration. It is
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possible that the LDA would give higher AUC estimates (the differences were small), but

logistic regression would presumably be more robust if LDAs distributional assumptions are

violated. The LDA estimator is only valid with a normal distribution data set - although in

practice, the two approaches do usually give similar results.

In addition the LDA estimator is only valid with normal distribution. We demonstrated in

Chapter 5 that the bootstrap LOOCV estimator of ROC using stepwise logistic regression

is useful to estimate the predictive accuracy of prognostic signature. The simulation reveals

that the bootstrap cross-validation method is unbiased and outperforms the cross-validation

method. We also applied the proposed method to predict TB-IRIS in TB patients, which

constitutes an example of an application in medical decision making.

Further extensions of this work will include combining markers measured over time using time

to event outcomes including longitudinal data measurements with censored observations to

add new insight into the problem. It was noted that more simulation studies are required

to investigate other models based on the use of 632 and 632+ resampling methods in order

to further understand and improve the methods. Model choice based on predictive criteria

methods, which can be viewed as minimizing posterior predictive loss [78, 98] may add some

improvements.

In Chapter 6, three imputation methods revealed similar results in the estimation of the time

dependent AUCbcv(t). The difference between AUC estimates obtained using these three im-

putation methods were not statistically significant. This conclusion can also be made with

application to PBC data (Section 6.7). Practically the MCAR assumption is hard to justify

thus we recommend the use of multiple imputation method. We recall that the multiple impu-

tation is based on MAR assumption and allows for the appropriate evaluation of imputation

uncertainty. Cox model revealed AUC(t) estimations similar the true AUC(t) value, where
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logistic regression tends to underestimate the AUC(t).

The introduction of a longitudinal component to the analysis added complexities but will

be a good extension to the current approach. Considering other types of variable selection

methods (for example LASSO) will improve the estimations. In this current work we noted

that LOOCV can be time consuming, thus other types of cross-validation combined with

advanced bootstrapping methods such as 632+ may better improve the results.

In Chapter 7, a retrospective study of Tuberculous Meningitis in a high HIV prevalence setting

at GF Jooste Hospital in Cape Town is used to describe the application of cross-validation,

632 and 632+ bootstrapping. These methods were used together with a penalized Cox model

using LASSO variable selection algorithm to estimate the TBM-IRIS scores. We also proposed

two level bootstrapping techniques to estimate variances; the proposed method was evaluated

through simulation studies. Our simulation results show that the two level bootstrapping

method could easily estimate the variances. This method performed better with the 632

estimator compared to BCV and 632+ estimators in terms of coverage probabilities and the

proportion of times that the lower limit of confident intervals exclude 0.5, for various scenarios.

However this method is time consuming. Our proposed method of using ridge-Cox regression to

estimate AUC(t) obtained similar results to LASSO method, however more simulation studies

are required in order to do an appropriate investigation. The ridge-Cox regression model

with application to TBM/HIV appeared to be overoptimistic in terms of AUC estimations.

Exploring other survival models and alternative AUC estimation approaches will be good

extensions to current work. The application show that the CD4 counts could strongly predict

the TBM-IRIS patients and could distinguish between the patients who will die before 180

days and those who may survive after that time.

In Chapter 8 the suggested methods that could be applied to the problem of distinguishing
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between recent and non-recent HIV infections. We evaluated the use of genotypic tool to

distinguish HIV-1 recent infection from long-term HIV-1 infection in South Africa. We analysed

the proportion of ambiguous nucleotides as a biomarker to distinguish between HIV-1 status.

The aim of the chapter was to test the hypothesis that the method could be used to discriminate

between recent and non-recent infections for HIV. Our findings show that the proportion of

ambiguous nucleotides may not be a useful marker to distinguish recent from long-term HIV-1

infections. This new genotypic tool cannot be used alone and must be interpreted with clinical

and serological data. This method has not performed well in the South African population.

Considering the limitation in our study, more investigations are needed to confirm our findings.

In conclusion, we agree that evaluation of multiple biomarkers adds more complexity to the

analysis. In addition to providing an improved understanding of factors associated with infec-

tion and disease development, combinations of relevant markers is important to diagnose and

treat disease. In disease screening, the combination of multiple biomarkers often substantially

improves the diagnostic accuracy over a single marker. This is particularly true for longi-

tudinal biomarkers and may improve the diagnosis. We discussed many strategies to select

and combine biomarkers in order to address the diagnosis problem. However evaluating these

strategies in longitudinal biomarkers will be an interesting extension.
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