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Abstract

Effective prevention of new HIV infections will require an understanding of the mechanisms involved in HIV acquisition.

HIV transmission across the female genital tract is the major mode of new HIV infections in sub-Saharan Africa and

involves complex processes, including cell activation, inflammation and recruitment of HIV target cells. Activated CD4+

T-cells, dendritic cells (DC) and macrophages have been described as targets for HIV at the genital mucosa. Activation of

these cells may occur in the presence of sexually-transmitted infections, disturbances of commensal flora and other

inflammatory processes. In this review, we discuss causes and consequences of inflammation in the female genital tract,

with a focus on DC. We describe the central role these cells may play in facilitating or preventing HIV transmission

across the genital mucosa, and in the initial recognition of HIV and other pathogens, allowing activation of an adaptive

immune response to infection. We discuss studies that investigate interventions to limit DC activation, inflammation and

HIV transmission. This knowledge is essential in the development of novel strategies for effective HIV control, including

microbicides and pre-exposure prophylaxis.
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Introduction

The Joint United Nations Programme for HIV/AIDS
report for 2012—Together we will end AIDS—
estimated that 34 million people worldwide were
living with HIV in 2011, and 23.5 million in sub-
Saharan Africa. In the same year, 2.5 million people
acquired new infections,1 highlighting the urgent need
for interventions to prevent transmissions.

Most HIV transmissions occur via the mucosal sur-
faces of the genital and gastrointestinal tracts.2 Women
are at higher risk of HIV acquisition than men. In het-
erosexual discordant relationships, male-to-female HIV
transmission is approximately eightfold greater than
female-to-male transmission during vaginal inter-
course.3–6 Several behavioural and biological factors
have been proposed to explain differences in HIV
acquisition between men and women, including differ-
ences in sex hormones, stage of HIV infection, age of
index patient, condom use, male circumcision, presence

of genital ulcers, mucosal area exposed during sexual
intercourse, areas of vulnerability at the transformation
zone of the cervix, dose of HIV transmitted in female
versus male genital secretions, and geographical loca-
tion.4 It is estimated that 30–40% of annual worldwide
infections occur through HIV invasion of the female
genital tract via exposure to virus-containing semen.7

In the female genital tract, HIV penetration and infec-
tion occurs through vaginal, ectocervical and
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endocervical mucosa, but the relative contribution of
each site to successful transmission remains unknown.
While the single-layer epithelial lining of the endocervix
offers the best opportunity for HIV to cross the barrier,
the relatively large surface area of the ectocervix and
vagina may offer HIV a greater chance of penetrating
the epithelium.7,8

The mechanisms by which HIV crosses the genital
epithelium are complex. It has been suggested that
during sexual transmission, cell-free or cell-associated
HIV traverses the female genital mucosa through trans-
cytosis and/or transepithelial emigration of infected
dendritic cells (DC), among other routes.9,10

Transcytosis of cell-free HIV-1 across epithelial sur-
faces of the genital tract occurs through an epithelial
transcellular vesicular pathway, where HIV-1 virions
are captured on the surface of the epithelium by epithe-
lial cells into vesicles and are liberated on the stromal
side of the epithelium.11 Many viral and host compo-
nents have been implicated in this process. These
include viral envelope glycoprotein (gp) 41 and gp120,
glycosphingolipids, the co-receptor CCR5, and the hep-
arin sulfate proteoglycan attachment receptors, among
others. The transcytosed virus can then bind to under-
lying CD4+ T cells leading to an effective infection.
Only a small percentage of viruses cross the epithelial
barrier by transcytosis.12,13

Transepithelial migration of HIV occurs through
cell-associated viruses (i.e. HIV-infected host cells).9

Seminal cells containing HIV particles may become
trapped in the mucus covering the epithelial surface.14

Upon contact with the epithelium, these cells can
release free viruses (which are able to penetrate between
epithelial cells), be captured by tissue-resident DC,
including Langerhans cells (LCs) and, ultimately,
become internalised in the endocytic compartment.14,15

These cells may become activated and migrate into the
basal compartments where they can transfer the virus
to CD4+ T-cells by trans-infection.16 During coitus,
mechanical abrasions of mucosal surfaces induced by
intercourse could allow free or cell-associated virus in
semen to penetrate the epithelium and have direct
access to DC, macrophages or CD4+ T cells that lie
underneath the stroma.7

Of the potential target cells present in the genital
tract, DC, macrophages and CD4+ T-cells are the
most likely cells infected with HIV infection.17

Although all these cell types can become infected with
HIV to varying degrees, CD4+ T-cells are the most
susceptible to HIV infection. DC become infected
with HIV both in vivo and in vitro, albeit at low
levels, and can migrate to draining lymph nodes
where Ag presentation occurs, leading to activation of
CD8+ and CD4+ T-cells, which can, in some instances,
control viral replication during established infection.18

DC, macrophages and epithelial cells of the genital
mucosa can recognise pathogens and are able to

produce inflammatory cytokines or chemokines,
which contribute to an immune response. The recogni-
tion of pathogens and the production of cytokines and
chemokines can lead to activation and recruitment of
target cells to the genital mucosa, which, although an
integral process in normal host immunity, in the case of
HIV, can, in turn, increase the odds of HIV capture and
transmission due to HIV targeting activated cells.

In this review, we discuss causes and consequences of
inflammation, and their role in HIV acquisition in the
female genital tract, with a specific focus on the role of
DC in driving genital tract inflammation. While this
review focuses only on the role of DC in driving inflam-
mation, it is important to note that other innate cells
such as macrophages and neutrophils may also play a
critical role in inflammation and HIV transmission in
the female genital tract. We will discuss possible ways
of regulating genital tract inflammation through this
focus on DC, which may have an effect on HIV
transmission.

DC subsets and pathogen binding
receptors

DC were discovered in the 1970s, and today represent a
diverse and rare population of leukocytes with several
subsets that differ in their origin, maturation state and
anatomic location.19,20 DC are derived from haemato-
poietic bone marrow progenitor cells and are usually
found in an immature state, and are the first to respond
to invading pathogens. DC become activated upon
pathogen recognition leading to up-regulation of acti-
vation markers and cytokine production.21 DC can be
infected by a wide variety of pathogens, including bac-
teria and viruses. Recognition of pathogens by DC and
subsequent infection occur through various receptors
expressed on these cells. The type of innate response,
mostly mediated by DC, may dictate the type of adap-
tive immune response to an infection with a pathogen.
Activation of an adaptive response by DC is achieved
through Ag presentation of pathogen-derived peptides
to cells of the adaptive immune system. The ability of
DC to produce cytokines and to up-regulate expression
of MHC class I and II molecules and co-stimulatory
markers, makes them the primary and most efficient
activators of adaptive immunity.22

DC subsets differentially express pathogen-binding
receptors depending on their function and location.23

The type of PRR triggered may determine the outcome
of an innate immune response, as binding to different
receptors may result in distinct immune outcomes.24

PRRs are expressed mainly on innate cells and are cen-
trally involved in recognition of invading pathogens
and induction of immune responses.25,26 They bind to
conserved structures on microbial species known as
PAMPs or damage associated molecular patterns
(DAMPs), which are danger signals resulting from
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necrotic, stressed or apoptotic cells.27 These receptors
include TLRs, NOD-like receptors (NLRs); C-type
lectin receptors (CLRs), such as DC-specific intracellu-
lar adhesion molecule 3 (ICAM-3)-grabbing non-integ-
rin (DC-SIGN); mincle, dectin-1, Man receptor,
retinoic-acid-inducible protein RIG-1-like receptor,
complement receptors and scavenger receptors.28,29 Of
these PRRs, TLRs have been studied most extensively.
There are 10 characterised TLRs (1–10) in humans,
which are located either on the plasma membrane or
within endosomes recognising a wide variety of
PAMPs. TLRs 1, 2, 4, 5, 6 and 10 are mainly expressed
on the plasma membrane and recognise microbial
membrane components such as lipids, lipoproteins
and proteins. TLRs 3, 7, 8 and 9 are expressed in endo-
somal compartments where they recognise nucleic acid
components of (typically) viral origin.30,31 Twenty-
three human NLR genes have been identified, but the
physiological function of most of these receptors
remains poorly understood.32,33 The well-characterised
members of the NLR family are NOD1 and NOD2,
which recognise distinct structural motifs derived
from peptidoglycans.34 Other receptors expressed by
DC that are relevant to pathogen binding and signal-
ling include chemokine receptors.35 Chemokine recep-
tors bind chemokines, which are necessary for
recruitment of cells during inflammation and homeo-
stasis. These receptors are expressed by leukocytes,
including DC, macrophages and CD4+ T cells.
Several chemokine receptors have been described with
varying functions in the immune response to patho-
gens.35 Here, we focus mainly on the chemokine recep-
tors CCR5 and CXCR4 because they are co-receptors
for HIV entry into target cells.36

Three major subsets of DC have been identified
according to their origin, function and location: mye-
loid DC (mDC), plasmacytoid DC (pDC) and LCs
(Table 1).

mDCs

These cells are also referred to as conventional or clas-
sical DC, and are characterised by the surface expres-
sion of CD11c (CD11chigh) and the absence of CD123
expression (CD123low) (Table 1).37 mDC originate from
common myeloid progenitors and are found in blood in

an immature state. These cells migrate into tissues in
response to chemotactic cytokines and contribute to the
local inflammation.38 mDC express a wide range of
PRRs for the recognition and phagocytosis of patho-
gens, leading to the production of cytokines and
chemokines, and the up-regulation of surface co-stimu-
latory molecules. Commonly studied PRRs include
TLRs 2, 4, 5, 6, 7, 8, and NOD1 and NOD2. DC-
SIGN, CCR5 and CXCR4 are also highly expressed
on these cells and are of relevance to HIV infection.39

mDC can be further subdivided into mDC1 [expressing
CD11c and CD1c (BDCA-1)] and mDC2 [expressing
CD11c and CD141 (BDCA-3)].40 These subsets are
functionally distinct: CD11c+CD141+mDC2 are
more efficient than mDC1 at capturing exogenous
Ags for cross presentation on MHC class I molecules
to CD8+ T-cells. mDC1 and mDC2 have been reported
to induce Th type 1 and Th2 T-cell differentiation
respectively.41–43 mDC1 and mDC2 both express a
wide range of TLRs, albeit at different levels. mDC1
express high levels of TLR4, 5 and 7, while mDC2
express high levels of TLR 3 and 8. These differences
in PRR expression may explain their different roles in
the immune response to infection.

pDCs

In contrast to mDC, pDC express high levels of CD123
(CD123high) and low levels of CD11c (CD11clow)
(Table 1). They can also be identified by the expression
of CD303 or BDCA-2.37,40 pDC originate from a
common lymphoid progenitor as pre-pDC expressing
CD123 and require granulocyte–macrophage colony
stimulation factor (GM-CSF) to differentiate into
immature cells.44 pDC are principally found in blood
and migrate to tissues in response to chemotactic cyto-
kines and contribute to the local inflammation pro-
cess.38 pDC play a major role in the immune response
to viral infections, as the major producers of anti-viral
type I IFNs. pDC exhibit several additional character-
istics that make them effective during viral infec-
tions.20,45 They contain MHC class I molecules in
their early endosomal compartments, which facilitate
Ag presentation from the exogenous processing path-
way to CD8+ T-cells. In addition, the late endosomal
compartment of pDC contain MHC class II molecules

Table 1. DC subtypes, identification markers and major HIV-related receptors expressed.

Cell type Identification markers Major PRRs Major HIV binding receptors

mDCs CD11c TLR2, 3, 4, 5, 7, 8

NOD1, NOD2

DC-SIGN, Man receptor

CCR5, CXCR4,

DC-SIGN

pDCs CD123 TLR2, 3, 6, 7, 8, 9 CCR5, CXCR4

LCs CD1a or langerin TLR1, 3, 6, 7, 10 CCR5, langerin
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for viral Ag presentation to CD4+ T-cells. An extensive
endoplasmic reticulum compartment facilitates high-
capacity secretion of anti-viral factors, including type
I IFNs. The secretion of type I IFNs, IL-6, and the
expression of CD70 upon stimulation with CpG (a
TLR9 ligand) make pDC efficient activators of
plasma B cells and Ab responses.46,47 These cells are
central to anti-viral immunity owing to the high density
expression of receptors that recognise or bind viral
components and production of type 1 IFNs. These
receptors include chemokine receptors CCR5 and
CXCR4, TLRs 3, 7 and 9.39,48 They also express
other TLRs, including TLRs 1, 2, 4, 6 and 10, which
can recognise bacterial components.49,50

LCs

LCs are DC found in the skin and the mucosal epithe-
lium of the vagina and ectocervix. LCs are often defined
by the expression of CD1a and/or langerin, a C-type
lectin receptor (Table 1).51 LCs are thought to originate
from bone marrow haematopoietic precursors, but are
maintained by local precursors present in the skin.52,53

LCs are usually the first APC to encounter pathogens in
the genital tract. Their high motility allows them to
emigrate from tissues to draining lymph nodes upon
contact with the Ags.54,55 LCs express PRRs, including
TLRs and chemokine receptor CCR5. TLRs expressed
by LCs include TLRs 1, 3, 6, 7 and 10, but little or no
TLR 2, 4 or 5.56,57 LCs are also characterised by the
presence of Birbeck granules that are involved in the
cytolytic breakdown of pathogens.58 Birbeck granules
are rod-shaped subdomain cytosolic organelles of the
endocytic recycling compartment in LCs.59

Innate receptor signalling and generation
of an immune response

DC play an important role in Ag capture and presen-
tation to T-cells, critical to immune surveillance. Upon
recognition of the ligand expressed on pathogens by
PRR on DC, a signalling cascade is initiated, which
involves either phosphorylation or de-phosphorylation
of different adaptor molecules and transcription fac-
tors.60 This signalling cascade is necessary for the gen-
eration of an immune response, including cytokine/
chemokine production and maturation of innate cells.
Adaptor molecules associated with TLR signalling
include MyD88, TIR-domain containing adapter–
inducing IFN-b translocating chain associated mem-
brane protein (TRIF), and TIR domain-containing
adapter proteins (TIRAP).61,62 All TLRs (except
TLR3) signal through MyD88. TLR3 signals through
TRIF, while TLR4 can signal through either MyD88 or
TRIF. All of this signalling via these adaptor molecules
culminates in the activation of the transcription factor
NF-kB, which translocates into the nucleus for the

induction of pro-inflammatory genes.60 The resulting
inflammation is a critical early step in controlling the
invading microbe while an adaptive immune response is
initiated. Although TLRs are essential for protective
immunity against infection, inappropriate TLR
responses may contribute to acute and chronic inflam-
mation, as well as to systemic autoimmune diseases.25

In contrast to TLRs, NLRs and CLRs utilise differ-
ent signalling pathways, typically via the caspase
recruitment domain family, member 9 (CARD9).63

NLRs can also signal via interacting protein 2 and
TANK-binding kinase 1. CLRs signal via Raf1, and
FcR-gamma converging to CARD9 for signalling.
Other transcription factors involved in PRR signalling
pathways include activator protein-1 (AP-1), MAPK
and IFN regulatory factors (IRF).64–66 Activated tran-
scription factors translocate into the nucleus and initi-
ate transcription of immune response genes, such as
those for cytokines and chemokines. The initial produc-
tion of cytokines, chemokines and other molecules that
result from activating these signalling pathways then
serve to shape and determine the type of subsequent
adaptive immune response generated.67

Cytokines

Several cytokines mediate inflammation and innate
immune responses. These cytokines include IL-12, IL-
10, IL-6, IL-1b, TNF-a and IFN-a,67,68 and play
important roles in the development of inflammation
and the polarisation of naı̈ve T-cells into Th1, Th2,
Th17 or regulatory T-cells (Tregs).69–71 The type of
PRR triggered ultimately determines the cytokines
that are produced by innate cells, and therefore the
outcome of the innate response. For example, the trig-
gering of TLRs 7 and 9 on pDC by viral components
leads to elevated production of IFN-a, while triggering
of cytosolic receptors such as NLRs may lead to the
formation of an inflammasome complex resulting in the
production of IL-1b through a caspase-1-dependent
pathway.72,73 Together this provides an innovative
way for the immune system to link the type of pathogen
to an appropriate innate and eventually adaptive
immune response.

Chemokines

Chemokines are chemotactic cytokines that are import-
ant in innate immune responses to pathogens, and
facilitate leukocyte migration and positioning to
ensure that the correct immune cells arrive at the cor-
rect locations, and are involved in additional processes
such as leukocyte degranulation.74 There are many che-
mokines with diverse and overlapping functions in
immunity.75–77 These chemokines include MIP-1a,
MCP-1, MIP-1b, CXCL12/SDF-1 and RANTES,
among others. These are secreted in response to
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infection and their expression can be enhanced by other
inflammatory cytokines such as IL-1b. The primary
role of chemokines is to create a microenvironment
that acts as a chemotactic gradient, attracting immune
cells from the blood to the site of the infection, which is
often in tissue.78,79 Inflammatory chemokines include
CCL3 (MIP-1a) and CCL2 (MCP-1), which bind to
CCR1 and CCR2 respectively.

DC activation and maturation

Most DC are immature in phenotype and undergo mat-
uration only upon pathogen encounter. Maturation
comprises morphological and functional changes
associated with activation of innate cells by microbial
stimuli such as TLR agonists.20 Immature DC are effi-
cient phagocytes and, once activated, these cells mature
by increasing expression of maturation markers, while,
at the same time, their phagocytic capacity is reduced.
Some of the better-studied maturation markers on DC
include CD86, CD80, CD83 and CD40. CD80 and
CD86 belong to the B7 family of co-stimulatory mol-
ecules and provide co-stimulation during Ag presenta-
tion by binding to two molecules on T-cells: CD28 for
activation and CTLA-4 for inhibition of T-cell
responses.80 CD83 is a maturation marker that is
expressed on DC and up-regulated upon activation.81

CD40 belongs to the TNF receptor superfamily and is
expressed by innate cells such as DC and monocytes,
and binds to CD40 ligand (CD154) expressed on
T-cells, thereby activating the T-cells.82,83 While
CD86 and CD80 are required for T-cell activation
during Ag presentation, CD40 is required for long-
term DC activation, cytokine production and T-cell
polarisation.80,82,84

Inflammation in the genital mucosa

Genital immune responses are similar in some ways to
responses in blood or other mucosal sites, but are also
distinct owing to differences in cellular composition,
local cytokine milieu, microbiome complexity and
microbial burden. Inflammation generally results from
increased cytokine and/or chemokine production by
cells that have recognised the presence of pathogens,
signalling infection. The main goal of inflammation is
the increased recruitment of cells to the site of infection
to perform effector functions that lead to pathogen
clearance. Cytokines orchestrate an inflammatory
response by inducing cell death of inflammatory tissues
and modifying vascular endothelial permeability.85

They also facilitate the recruitment of more immune
cells to the site of infection, thus amplifying the inflam-
matory response. As DC are among the first immune
cells to recognise and respond to infection with genital
tract pathogens, they are likely to contribute substan-
tially to genital tract inflammation.

Sexually transmitted infections (STIs) are recognised
as major causes of inflammation in the genital mucosa.
Neisseria gonorrhoeae, Chlamydia trachomatis and
Mycoplasma genitalium have all been well described to
cause inflammation, as well as clinically important
sequelae, such as pelvic inflammatory disease in
women.86 Trichomonas vaginalis and, to a lesser extent,
bacterial vaginosis (not an STI but a perturbance of
local microbial flora) have also been implicated in caus-
ing inflammation through several mechanisms, includ-
ing the disruption of the epithelial barrier.87 Ulcerative
STIs comprising herpes simplex virus (HSV),
Haemophilus ducreyi (chancroid) and Treponema palli-
dum (syphilis) have all been characterised as pro-inflam-
matory sexually-acquired conditions that manifest
themselves both systemically and in the genital
tract.88–90 STI-causing pathogens are either extracellular
or intracellular, and activate DC through binding to
surface and intracellular PRRs such as TLRs, NLRs
and CLRs that recognise PAMPs on these pathogens.
DC and other PRR-expressing cells in the genital tract,
such as macrophages, neutrophils and epithelial cells,91

can become activated and produce inflammatory
cytokines/chemokines upon direct binding to these geni-
tal pathogens. Neisseria gonorrhoeae and C. trachomatis
have both been shown to stimulate DC and monocytes
in vitro leading to secretion of pro-inflammatory
cytokines.92,93 Ulcerative STIs, by definition, are those
that lead to breaches in the epithelial barrier. Trauma
caused on genital epithelium during sexual activity, as
well as vaginal practices, such as douching, may also
lead to inflammation.94,95

HIV acquisition in the genital mucosa

The vaginal and ectocervical compartments are com-
prised of multi-layered, stratified epithelial cells lacking
tight junctions, while the endocervix is protected by a
single, polarised layer of columnar epithelial cells sepa-
rated by tight junctions.17 HIV enters the lower female
genital tract mostly through the vagina and ectocervix,
which represent an extensive surface area when com-
pared with the endocervix.17

Inflammation causes the migration of HIV target
cells, including CD4+ DC, macrophages and T-cells,
as well as other immune cells such as neutrophils,
CD8+ T-cells and NK cells to the epithelium as a nat-
ural process to mediate host defence.7 In the rabbit
vaginal irritation model, vaginal inflammation was
shown to enhance trafficking of immune cells to the
mucosa and enhance activation of these cells, both of
which have also been associated with increased risk for
HIV acquisition and transcription in infected cells.96

The presence of microbes such as STI-causing patho-
gens in the genital mucosa has been associated with an
increased risk of HIV-1 transmission in several epide-
miologic studies.97,98
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DC play a dual role in determining the

outcome of HIV infection

DC can facilitate HIV transmission by getting infected
by HIV directly, and then transferring the virus to
CD4+ T-cells. Alternatively, DC could indirectly facili-
tate infection of other target cells by producing cyto-
kines that enhance the risk of infection, by either
recruiting more potential target cells (increasing target
cell density) or activating target cells so they are easier
to infect. The fate of HIV captured by DC may depend
on the activation state of these cells or on binding
receptors. The expression of CCR5 and langerin on
LCs enables these cells to capture, become infected by
or disseminate HIV.99 In vitro experiments using skin
explants have shown that LCs are mostly susceptible to
R5-tropic viruses.100 CXCR4 expression on LCs is still
controversial. This may be due to differences in sites
where these cells were isolated. While expression of
CXCR4 on genital tract LCs has been reported by
some,101 others have shown that CXCR4 is not
expressed on these cells in the skin.102 Others were
able to induce an increase in CXCR4 expression on
epithelial LCs after culture with GM-CSF.103

Activation of LCs in vitro down-regulates langerin
expression, which makes these cells more susceptible
to infection.58 In a human skin explant model, TNF-a
and PAM3, a ligand for TLR2/1, have been reported to
increase HIV capture by LCs, possibly in a langerin-
independent manner, and increase transmission.104

HSV-2 has been shown to decrease langerin expression
on LCs or competed with HIV for binding to langerin,
thereby increasing the risk of HIV transmission.105 LCs
can also play a role in inhibiting HIV transmission.
HIV binding by langerin rapidly internalises the virus
to Birbeck granules leading to virus degradation. When
LCs capture or internalise HIV, they rapidly migrate
from the epithelium to the sub-mucosal layer where
they can transfer the virus to CD4+ T-cells. They can
also migrate to lymph nodes where they can present
HIV-derived Ags to CD4+ or CD8+ T-cells generating
an adaptive immune response, which leads to the
destruction of HIV-1 infected cells.106 HIV-infected
CD4+ T-cells in the mucosa can also traffic to the
lymph nodes where more HIV replication occurs result-
ing in more infected target cells. Thus, LCs can either
inhibit or promote HIV transmission, depending on
their activation status and expression of langerin.

Whereas LCs reside in the genital mucosa where they
mediate initial contact with HIV, mDC and pDC are
predominantly found in blood and can be recruited to
the tissues in response to inflammatory signals. Several
studies in animal models have reported that pDC are
rapidly recruited to inflamed tissues, such as genital
mucosa, via high endothelial venules, where they rec-
ognize HIV, secrete IFN-a or take up Ag and migrate
to draining lymph nodes for Ag presentation.107,108

HIV-1 can infect pDC directly via receptors such as
CCR5, CXCR4 and CD4, resulting in IFN-a produc-
tion.109–112 Alternatively, HIV may bind and enter
mDC by endocytosis mediated by DC-SIGN, CCR5
and CXCR4, with CD4 as co-receptor.113,114 While
blood mDC and pDC have been reported to be more
frequently infected with HIV compared with monocytes
and resting CD4+ T-cells in vitro,115 other studies
reported that these cells are only rarely infected with
HIV-1 and are not activated by HIV to produce cyto-
kines or mature for Ag presentation.110,116 The minimal
infection of mDC in these studies was attributed to high
expression of a restriction factor SAMHD1, which is a
deoxynucleoside triphosphate triphosphohydrolase
that prevents reverse transcription of HIV RNA.117

The lack of mDC maturation following binding to
HIV may also be due to concurrent binding to DC-
SIGN, which is known to inhibit TLR stimula-
tion.118,119 However, mDC are known to transfer
HIV to CD4+ T-cells in the absence of productive
infection or become dysfunctional during HIV
infection.39,120

Immature DC in tissues can more efficiently capture
and internalise the virus when compared to mature
DC.121 Virus captured by mature DC or retained for
longer periods by maturing DC can efficiently be trans-
ferred to CD4+ T-cells through trans-infection. DC
bind and internalise HIV through CCR5, CXCR4, lan-
gerin or DC-SIGN (Figure 1). The binding of HIV to
one or more of these receptors may result in different
outcomes. Binding of HIV-1 gp120 to DC-SIGN leads
to the internalisation of the virus and transfer to the
early endosomal compartment.122 In this compartment,
if not degraded, the virus can be transported to the sub-
epithelial mucosa or lymph nodes where T-cells may get
trans-infected through interaction with DC. Transfer of
virus from DC to T-cells can also occur independently
of the DC-SIGN.123 Once HIV is internalised by DC
(Figure 1), PRRs such as TLR7 and TLR9, expressed
intracellularly, recognise the presence of HIV and initi-
ate an antiviral immune response including the secre-
tion of IFN-a and other inflammatory cytokines by
pDC and DC maturation.

Depending on the cytokines produced by DC, and
the type of cells these cytokines recruit to the genital
mucosa in the presence of HIV and/or STIs, these cyto-
kines can either be beneficial (i.e. prevent) or detrimen-
tal to (i.e. promote) HIV transmission. The production
of IFN-a and IL-12 by pDC and/or mDC may result in
the activation of T-cells and killing of virus-infected
cells as has been shown in vitro,124 while other cytokines
such as TNF-a and IL-8 can lead to an increased rep-
lication of HIV in infected cells, and increased recruit-
ment of target cells to the site of infection, thereby
increasing the pool of susceptible target cells for
newly budding HIV virions in human skin or explant
cells.104,125 STIs are known to form a lethal synergy
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with HIV, where HIV can exploit the inflammation
caused by STIs to propagate itself and establish infec-
tion. Thus, inflammation in the genital tract resulting
from recognition of pathogens is a double-edged sword
that needs to be tightly regulated. While genital inflam-
mation may increase risk for HIV infection, the process
of inflammation is necessary in the control of infection
with other mucosal pathogens such as tuberculosis and
HPV.126,127 The relative contribution of each leukocyte
to the general inflammation in the genital tract is
unclear and is an important area for future studies.
Current evidence suggests that genital tract inflamma-
tion may be more of a ‘foe’ than a ‘friend’ in the context
of HIV transmission. A fine balance between the level
of inflammation that is beneficial or detrimental to host
immunity against pathogens may need to be
established.

The role of sex hormones in DC activation
and HIV acquisition in women

Gender differences in risk for HIV infection and patho-
genesis following infection may be attributed to several
factors, including sex hormones. Differences in HIV

shedding in genital secretions and transcription of
HIV genes have been associated with the menstrual
cycle in women and levels of progesterone.128,129

Hormones may have both protective and enhancing
roles in HIV infection, which may be related to changes
in immune cell function, as well as thickness of the
epithelial lining. In macaques, administration of estriol
prior to simian immunodeficiency virus (SIV) challenge
was shown to thicken the vaginal epithelial resulting in
protection against SIV infection.130 Oestrogen has also
been shown to directly reduce the susceptibility of
CD4+ T-cells and macrophages to HIV infection in
vitro through binding to oestrogen receptors and alter-
ing HIV entry into these cells.131 Progesterone contain-
ing depot medroxyprogesterone acetate is a commonly
used injectable contraceptive in high HIV prevalence
regions, particularly in sub-Saharan Africa. This hor-
mone was shown to significantly reduce the production
of inflammatory cytokines by peripheral blood DC in
response to TLR stimulation, as well as prevented
down-regulation of CCR5 and CXCR4 on activated
T-cells, and increased HIV transcription in in vitro
cell cultures.132 Women using this hormone also
expressed lower cytokine levels in blood and genital
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secretions than non-users.132 Hormonal contraceptive
use was associated with increased risk of HIV transmis-
sion in younger women compared with older women,
possibly owing to increased cervical ectopy in younger
women.133,134 Hormonal contraceptive use and fluctu-
ations in hormonal levels during the menstrual cycle
lead to changes in female genital tract immunology
and epithelial thickness, which may have serious conse-
quences on risk of HIV transmission.

Reducing inflammation to prevent HIV
transmission

If genital inflammation is associated with increased risk
of HIV transmission, strategies to safely regulate
inflammation may be able to curb the spread of HIV.
These strategies could involve preventing, identifying
and treating the causes of genital tract inflammation,
inducing more natural anti-inflammatory mediators, or
using exogenous anti-inflammatory drugs. As one of
the major causes of genital tract inflammation is STIs,
and most of them are treatable, active diagnosis and
treatment of individuals with STIs could have a pro-
found impact on HIV transmission. Despite this, popu-
lation-wide approaches to STI prevention and
treatment have demonstrated mixed efficacy in achiev-
ing this goal, and have proven to be operationally dif-
ficult to implement effectively.135–141 HSV is possibly
the exception, as it infects a wide range of cells, includ-
ing leukocytes, epithelial cells and nerve cells. The virus
can remain latent in nerve cells until becoming reacti-
vated when the immune system is suppressed.142 It has
been reported that even after treatment of HSV lesions
and healing, HSV-induced inflammation still persists in
the genital tract for up to 20 wk.143 A vaccine to pre-
vent HSV acquisition in adolescents could have a huge
impact on preventing subsequent rates of HIV
infection.

Natural anti-inflammatory mediators that balance
the potential harm caused by inflammation include
soluble TNF receptors (sTNF-Rs), IL-1 receptor antag-
onist (IL-1Ra), IL-10 and Tregs.144 Among the anti-
inflammatory regulatory molecules, the role of the
IL-10 family of cytokines in human immunology and
in the response to viral and bacterial pathogens has
been well described.145 IL-10 is secreted by leukocytes
including macrophages, monocytes, DC and T-cells.144

Innate cells secrete IL-10 in response to TLR stimula-
tion and during clearance of apoptotic cells, while
T-cells secrete IL-10 in response to T-cell receptor trig-
gering.146,147 IL-10 functions by binding to the IL-10
receptors (IL-10R1 and IL-10R2), and uses the Janus
kinase family members and signal transducers and acti-
vators of transcription (STAT) transcription factors to
mediate its effects.148 The main inhibitory effects of IL-
10 are exerted on monocytes/macrophages by inhibit-
ing the production of pro-inflammatory cytokines and

down-regulating the expression of MHC II and CD86
in response to LPS or IFN-g stimulation.149–151 We
have also observed that IL-10 inhibits IL-6 and CD40
expression by monocytes and DC in response to TLR7/
8 and TLR4 ligands.152 IL-10 also inhibits T-cell pro-
liferation and cytokine production by both Th1 and
Th2 cells.153,154 The inhibitory effect of IL-10 on chla-
mydia-induced cytokine production by human epithe-
lial cells has also been described.155 In the context of
antiviral responses, IL-10 decreases the expression of
MHC I on DC, and increases deletion of mature DC
by NK cells.156 Culturing mature DC with HIV
resulted in a significant increase in IL-10 production
leading to a decrease in expression of CD83, HLA-
DR and HLA class I, while the opposite effect was
observed when immature DC were co-cultured with
HIV.156 However, IL-10 enhances the expression of
other regulatory molecules such as IL-1Ra and
sTNF-R.157,158

IL1Ra and sTNFR both directly inhibit the stimu-
latory effects of IL-1 and TNF-a via receptor competi-
tion. IL-1Ra is a member of the IL-1 family and is a
naturally occurring anti-inflammatory protein that
competitively blocks the binding of IL-1 to type I and
II IL-1 receptors without inducing any signalling activ-
ity or intracellular response.159 The action of TNF-a is
mediated by two receptors (TNF-R1 and TNF-R2).160

sTNF-Rs serve as antagonists of cell surface receptors
for TNF-a and have a dual role in the control of
inflammation in this environment. Binding of sTNF-
Rs to TNF-a can either reduce the ‘toxic’ effects of
TNF-a or serve as a carrier and stabiliser of TNF-a.
Thus, natural immune regulatory molecules are neces-
sary and present to control immune activation and
inflammation.

The female genital tract is in constant contact with
both commensal and introduced microbes, most of
which do not elicit an active immune response.
Because of the commensals and its primary role in fer-
tility, this mucosal environment is immune privileged
(tolerogenic), particularly with respect to T-cell popu-
lations. Tregs expressing FoxP3 and CD25 are a subset
of T-cells that form part of the natural anti-inflamma-
tory mechanisms and can actively suppress both cellu-
lar activation and inflammation via direct and indirect
mechanisms. Tregs actively suppress the activation or
persistence of an immune response, and prevent patho-
logical self-reactivity that leads to autoimmune disease,
by mechanisms that include IL-10 and TGF-b secre-
tion.161–165 While this subset has not been well-charac-
terised in the female genital tract of humans, this
population is common at other mucosal surfaces,
such as the gut.166 Treg development is opposed to
that of another inflammatory Th subset called Th17
cells. Both Treg and Th17 subsets are required for
effective host immunity, and their relative balance is
likely to influence levels of inflammation. Both of
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these T-cell subsets are also targets of HIV.167 In add-
ition to Tregs, pathogen-specific T-cells can up-regulate
molecules with regulatory functions, such as IL-10 and
CTLA-4, limiting their inflammatory potential.
Therefore, the relevance of the Th subset balance in
HIV-exposed mucosa includes their influence on the
inflammatory status of the mucosal environment, and
their presence as HIV targets. HIV infection is known
to impair the capacity of DC to induce Tregs by limit-
ing CD25 and FOXP3 expression in a caspase-
dependent manner, possibly owing to preferential kill-
ing of Tregs by HIV-infected DC.168 Tregs can also
down-modulate the capacity of DC to activate effector
T-cells through IL-10, and inhibition of the expression
of co-stimulatory molecules on DCs.169–171 In combin-
ation with vaccines and microbicides to prevent infec-
tion, immune modulatory strategies that induce Tregs
that dampen inflammation may have beneficial effects
by limiting HIV transmission.

Natural anti-inflammatory mediators are ultimately
unable to sufficiently control high genital tract inflam-
mation in the presence of STIs or other inflammatory
conditions to reduce HIV transmission. The addition of
exogenous anti-inflammatory mediators is an interven-
tion that may further augment the body’s natural
defences. Anti-inflammatory medication, including cor-
ticosteroids and non-steroidal anti-inflammatory drugs,
have been licenced for use in humans to treat various
inflammatory conditions,172,173 and may possibly have
a role to play in reducing genital tract inflammation,
and HIV transmission. MAbs have also been used to
limit inflammation especially in autoimmune condi-
tions, for example the use of Infliximab and other
anti-TNF mAbs have clinical benefit in Crohn’s dis-
ease.174–176 Although these strategies to dampen inflam-
mation by TNF-a are useful to reduce symptoms of
autoimmunity, it should be noted that important side
effects have been described for anti-TNF-a treatment,
which include reactivation of latent tuberculosis, pneu-
monia, meningitis and sepsis among others.177

Anti-inflammatory mediators can exert the following
effects: (i) a decrease in pro-inflammatory cytokine pro-
duction, (ii) a decrease in the activation of DC and T
cells, and (iii) a reduction in the expression of some
binding/entry receptors (Figure 1). Decreases in inflam-
mation, receptor expression and activation of DC and
other target cells can have profound effects on HIV
transmission in the female genital tract.98 Animal
models have shown that glycerol monolaurate (GML),
a compound with anti-inflammatory properties, can
inhibit SIV transmission in the genital tract.178 GML
exhibits its anti-inflammatory effect by inhibiting
immune activation and cytokine/chemokine production
such as IL-8 and MIP-3a, thereby reducing DC recruit-
ment to the genital tract.178–180 Because of these anti-
inflammatory properties, GML was evaluated for its
ability to prevent SIV acquisition in the genital tract

of rhesus macaques. All GML-exposed animals were
completely protected from repeated high dose SIV chal-
lenges compared to no protection in the untreated con-
trol animals.178 These experiments support a model in
which the initial inflammatory cascade forms a central
feature of subsequent risk of HIV acquisition. The use
of anti-inflammatory agents in HIV control in humans
should therefore be investigated further.

Conclusion and future perspectives

DC activation results in cytokine production and
inflammation, and inflammation can reciprocally fuel
DC activation. Both immune activation and inflamma-
tion are risk factors for HIV transmission. PRRs and
chemokine receptors are centrally involved in the pro-
cess of HIV recognition and acquisition. Inflammation
that results from the presence of HIV and other patho-
gens in the genital mucosa can be regulated by various
anti-inflammatory mediators—whether they are
induced naturally or exogenous. Until recently, the
use of microbicides to prevent HIV transmission has
been largely ineffective. Some of the earlier microbi-
cides, such as nonoxynol-9 (N-9) and cellulose sulphate,
increased risk of HIV acquisition by causing genital
inflammation or micro-abrasions.181,182 The new gener-
ation microbicides, which include potent anti-retroviral
drugs such as 1% tenofovir topical gel showed moder-
ate, but encouraging, success in reducing risk of HIV
acquisition, although efficacy of this approach has been
shown to be influenced by pre-existing genital inflam-
mation.183 Women in this 1% tenofovir gel trial with
pre-existing genital inflammation were at increased risk
of HIV acquisition, irrespective of whether they were
using the tenofovir gel or placebo.184 Strategies to pre-
vent HIV infection at the genital mucosa (such as vac-
cines or microbicides) may be substantially improved
on safely limiting inflammation at the genital mucosa,
thereby reducing the risk of HIV transmission.

In summary, DC activation, inflammation and HIV
transmission are interrelated. Whereas cell activation
and inflammation may be beneficial in controlling
other pathogens, these host responses inadvertently
increase the risk of HIV transmission by increasing
the availability of HIV target cells in the female genital
tract. Identifying and treating causes of genital tract
inflammation by adding anti-inflammatory agents or
mediators to the female genital tract could make an
important contribution to controlling HIV transmis-
sion. The counter side to this approach is that inflam-
mation in the genital mucosa serves an important
function in protection against other pathogens. More
effective strategies to control HIV transmission in the
female genital tract will entail a comprehensive under-
standing of factors—cell activation and inflammation
in particular—that lead to sub-optimal efficacy of anti-
HIV microbicides or vaccines.
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