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ABSTRACT 

Invasive alien plant (IAP) species affects a range of ecosystem types in various regions of the 

world. Therefore are now considered one of the main phenomena causing global change. 

Invasive alien plants (IAP’s) cause considerable impacts on ecosystem processes and functions, 

biodiversity, agriculture and human well-being.  Parthenium hysterophorus is an IAP which is 

widely spread across the globe. It is difficult to control and eradicate, and has detrimental impacts 

on the natural environment and human health. However, there is no record of accurate and up-

to-date information on the distributions and extent of P. hysterophorus. This study evaluated the 

capability of hyperspectral and multispectral data for mapping P. hysterophorus in northern 

KwaZulu-Natal province, South Africa. First, the study sought to determine an optimal subset 

of bands from canopy hyperspectral data for discrimination of P. hysterophorus from its co-

existing species. A novel hierarchical approach that integrates statistical filters and a wrapper 

technique has been proposed to select optimal bands to solve the problem of high spectral 

dimensionality and improve classification accuracy. A non-parametric algorithm, Support 

Vector Machines (SVM) showed inferior classification accuracy, i.e. 76.19% and 78.57% when 

using 20 best spectral bands from SVM – Recursive Feature Elimination (SVM-RFE) and entire 

dataset (n = 1633), respectively. On the other hand, superior overall accuracy of 83.33% was 

achieved when using ten spectral bands identified by the hierarchical approach. Next, SVM 

classifier was adopted to evaluate the capability of multispectral data (i.e. Operational Land 

Imager, OLI and SPOT 6) for determining the distribution and patch sizes of P. hysterophorus. 

The results showed that SPOT 6 had a higher overall accuracy of 83.33% than OLI, i.e.76.39%. 

While SPOT 6’s the higher spatial resolution was useful for better characterisation of the 

distribution and patch sizes, the study found that the spectral configuration of OLI was more 

important in identifying possible locations infested by P. hysterophorus. Overall, the study 

demonstrated that fewer spectral bands selected by the proposed hierarchical approach have the 

greatest potential for reliably discriminating IAP species using airborne and satellite 

hyperspectral sensors. The study also demonstrated that the current information needs on IAP’s 

can be addressed using accessible multispectral data, valuable for effective land management, 

site specific weed management, and site prioritisation.      



iv 

 

 

DEDICATION 

 

To my dear daughter, Oarona, you give me courage and strength to live each day. 

To my dearly loved mother; Rebecca, my sisters; Lydia and Magdeline, my brothers; Joseph 

(late), William and Thapelo, my nephews and my fiancée and best friend, Milly Mohlono, for 

your motivations, laughter, love, and prayers that have kept me going. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



v 

 

ACKNOWLEDGEMENTS 

Foremost, I thank God for granting me the ability to understand and to receive information from 

his servants, for giving me the strength to carry on, for his patience and mercy, for preserving 

my life, for providing me with great people to learn from and for his guidance.  

I would like to express my sincere gratitude to the South African National Space Agency 

(SANSA) for funding my studies and living expenses during my study period, for all the 

opportunities to advance my competences and the exposure to conferences and forums to share 

my work. I thank Dr. Paida Mhangara for his guidance, support, motivation and most of all, his 

believe in me from the first day.  I would like to thank Mr. Phila Sibandze, who assisted me to 

adjust to the working environment, guided me towards achieving my personal, professional and 

studying goals, and by the manner he carried his professional activities, inspired me to do the 

same. I thank him for assistance during fieldwork, language editing and proof-reading of my 

dissertation. I would also like to extend my sincere gratitude to all SANSA staff who in one way 

or another contributed to my professional development, hence the completion of this study. I 

would not have done it if it was not for your good wishes and support. 

I would like to express my infinite appreciation and deepest gratitude to my supervisors, Dr. 

John Odindi, Dr. Paida Mhangara and Dr. Clement Adjorlolo for their constant support, 

invaluable critical comments and expert advice, wisdom, enthusiasm and determination to build 

my scientific reasoning. Special thanks to Dr. Adjorlolo, who was diligently hands-on during the 

fieldwork at Ndumo Game Reserve and shared his wide experience and knowledge in remote 

sensing and ecology.  

I would like to thank KZN Wildlife for their permission to conduct the study in Ndumo Game 

Reserve. A Special thanks to Mr. Lucas Gumede for his assistance with the fieldwork and Mr. 

Ian Rushworth for assisting in identifying the study area and facilitating the fieldwork. Last but 

not least, I would like to thank my mother, who taught me to love, to laugh, to pray, to work 

hard, to play and all other principles of life. I thank my dear daughter, Oarona and my fiancée, 

Milly for being there for me always and giving me courage to continue living each day.         

 

 

 



vi 

 

Table of Contents 

DECLARATION .......................................................................................................................... i 

PUBLICATIONS AND MANUSCRIPTS .................................................................................. ii 

ABSTRACT ................................................................................................................................ iii 

DEDICATION ............................................................................................................................ iv 

ACKNOWLEDGEMENTS ......................................................................................................... v 

CHAPTER 1 ................................................................................................................................. 1 

GENERAL INTRODUCTION .................................................................................................... 1 

1.1. Background .................................................................................................................... 1 

1.1.1. The potential of Remote Sensing for IAP species discrimination ......................... 3 

1.1.2. Hyperspectral remote sensing of IAP species ........................................................ 4 

1.1.3. Multispectral remote sensing of IAP species ......................................................... 5 

1.1.4. Classification algorithms and vegetation indices for discriminating IAP species . 7 

1.1.5. Challenges and opportunities for discrimination of P. hysterophorus ................... 8 

1.2. Research problem .......................................................................................................... 9 

1.3. Aim and Objectives ..................................................................................................... 10 

1.3.1. Aim ....................................................................................................................... 10 

1.3.2. Objectives ............................................................................................................. 10 

1.4. Research questions ...................................................................................................... 10 

1.5. Scope of the study ....................................................................................................... 11 

1.6. Study area .................................................................................................................... 11 

1.7. Chapter outline ............................................................................................................ 12 

CHAPTER 2 ............................................................................................................................... 14 

DETERMINING THE OPTIMAL SPECTRAL SUBSET FOR DISCRIMINATING 

PARTHENIUM HYSTEROPHORUS ...................................................................................... 14 

2.1. Introduction ................................................................................................................. 14 

2.2. Materials and methods ................................................................................................. 16 

2.2.1. Species description ............................................................................................... 16 

2.2.2. Data collection...................................................................................................... 17 

2.2.3. Pre-processing and analysis ................................................................................. 19 



vii 

 

2.2.4. SVM classification and validation ....................................................................... 21 

2.3. Results ......................................................................................................................... 22 

2.3.1. Kruskal-Wallis ANOVA ...................................................................................... 22 

2.3.2. Inter-band correlation and AUC-ROC variable importance ................................ 24 

2.3.3. SVM-RFE............................................................................................................. 25 

2.3.4. SVM Classification and validation ...................................................................... 26 

2.4. Discussions .................................................................................................................. 28 

2.5. Conclusions ................................................................................................................. 32 

CHAPTER 3 ............................................................................................................................... 34 

EVALUATING THE CAPABILITY OF LANDSAT 8 OLI AND SPOT 6 FOR MAPPING 

INVASIVE ALIEN SPECIES IN THE SAVANNA LANDSCAPES OF KWAZULU-NATAL.

 .................................................................................................................................................... 34 

3.1. Introduction ................................................................................................................. 34 

3.2. Data and materials ....................................................................................................... 36 

3.2.1. Data description.................................................................................................... 36 

3.3. Methods ....................................................................................................................... 38 

3.3.1. Pre-processing ...................................................................................................... 38 

3.3.2. Support Vector Machines (SVM) Classification ................................................. 38 

3.3.3. Distribution and patch sizes of P. hysterophorus ................................................. 39 

3.3.4. Accuracy assessment and map comparisons ........................................................ 40 

3.4. Results ......................................................................................................................... 41 

3.4.1. Parameterisation of SVM classifier...................................................................... 41 

3.4.2. SVM classification results .................................................................................... 41 

3.4.3. Accuracy assessment and map comparisons ........................................................ 42 

3.4.4. Distribution and patch sizes of P. hysterophorus ..................................................... 44 

3.5. Discussions .................................................................................................................. 45 

3.5.1. The capability of multispectral data for mapping P. hysterophorus .................... 45 

3.5.2. Addressing information needs for optimising control mechanisms ..................... 48 

3.6. Conclusions ................................................................................................................. 51 

CHAPTER 4 ............................................................................................................................... 52 

SYNTHESIS AND CONCLUSION .......................................................................................... 52 



viii 

 

4.1. Introduction ................................................................................................................. 52 

4.2. Improving classification accuracy through feature subset selection and dimensionality 

reduction ................................................................................................................................. 53 

4.3. Optimal spectral bands for discrimination of P. hysterophorus .................................. 54 

4.4. Reliable information for effective management of P. hysterophorus ......................... 57 

4.5. Conclusions and Recommendations ............................................................................ 58 

REFERENCES ........................................................................................................................... 60 

APPENDICES ............................................................................................................................ 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Figures 

Figure 1. Factors affecting reflectance properties in various regions of electromagnetic 

spectrum and a comparison of contiguous spectral signature of P. hysterophorus (PH) and 

discrete band positions of multispectral data (Landsat 8 OLI). ................................................... 4 

Figure 2. Study area................................................................................................................... 12 

Figure 3. Kruskal-Wallis ANOVA and post hoc Dunn’s test results for P. hysterophorus (PH) 

and Acacia Trees (AT) (a); PH and Grass species (GS) (b) and PH and Other Plant Species 

(OPS) (c). The frequency of occurrence of significant spectral bands (d), where PH can be 

discriminated from all other co-existing species. ....................................................................... 23 

Figure 4. Kendall's τ correlation analysis .................................................................................. 24 

Figure 5. Spectral subset sizes evaluated by SVM-RFE on statistically filtered and entire 

spectral datasets. ......................................................................................................................... 26 

Figure 6. Differences in canopy and leaf structures of P. hysterophorus (a), Acacia Trees (b), 

Grass Species (c) and Other Plant Species (d) ........................................................................... 30 

Figure 7. P. hysterophorus infestations derived from Landsat 8 OLI (a) and SPOT 6 (b). ...... 42 

Figure 8. Overall Quantity and Exchange difference for Landsat 8 (Left) and SPOT 6 (Right).

 .................................................................................................................................................... 43 

Figure 9. Receiver Operating Characteristic (ROC) curve variable importance for OLI and 

SPOT 6. ...................................................................................................................................... 44 

Figure 10. P. hysterophorus patch sizes calculated from OLI and SPOT 6.............................. 45 

Figure 11. SPOT 6 patch sizes in communal croplands overlaid on aerial image acquired in 

2009/10 and picture on the right represents the respective infested areas as seen in the field in 

February 2014. ........................................................................................................................... 50 

Figure 12. Canopy and leaf structures and spectral signatures of P. hysterophorus (PH), Acacia 

Trees (AT), Grass species (GS) and Other plant species (OPS). ............................................... 54 

 

 

 

 



x 

 

List of Tables 

Table 1. Potential multispectral data for mapping IAP species. .................................................. 7 

Table 2. The number of plots and measurements per species ................................................... 19 

Table 3. Number of significant wavelengths for each pair of classes separated by broad 

spectral regions suggested by Fernandes et al. (2013). T denotes total number of input spectral 

bands........................................................................................................................................... 23 

Table 4. Selected spectral bands and their associated AUC-ROC importance. ........................ 25 

Table 5. Confusion matrix for hierarchical approach ................................................................ 27 

Table 6. Confusion matrix for entire spectral dataset ................................................................ 27 

Table 7. Confusion matrix for a combination of 20 spectral bands ranked by SVM-RFE ....... 28 

Table 8. Comparison of performance between the hierarchical approach, SVM-RFE and entire 

spectral dataset. .......................................................................................................................... 32 

Table 9. Landsat 8 OLI and SPOT 6 characteristics. ................................................................ 37 

Table 10.  Training and validation datasets for classifying P. hysterophorus........................... 38 

Table 11. Confusion matrices for OLI and SPOT 6 datasets. ................................................... 43 

Table 12. Comparison of OLI and SPOT 6 data for mapping P. hysterophorus. ..................... 44 

Table 13. Summary of SVM classification results from OLI and SPOT 6. .............................. 46 

Table 14. Previously selected bands for species discrimination separated by broad spectral 

regions suggested by (Fernandes et al., 2013). .......................................................................... 56 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

GENERAL INTRODUCTION 

1.1. Background 

Invasive alien Plants (IAP’s), also known as exotic weeds are non-indigenous plants introduced 

naturally, accidentally and/or deliberately by humans in a new geographical environments 

(Mandal, 2011). Modernity and globalisation have particularly played a major role in the spread 

of IAP’s.  In the recipient environment, the IAP’s grow rapidly, often out-competing native 

species for nutrients, water and space (Dogra et al., 2010, He et al., 2011). Consequently, IAP’s 

can among others alter ecosystem processes and functions, biodiversity, vegetation health and 

agricultural production in their new colonies. 

 Parthenium hysterophorus (known in variant names that include Carrot grass, Bitter weed, Star 

weed, White top, Wild feverfew, the ‘‘Scourge of India’’, Congress grass or Famine weed) is 

one of the most widely spreading and problematic invasive weeds across the globe (Patel, 2011, 

McConnachie et al., 2011, Dhileepan and McFadyen, 2012). It is an erect, ephemeral and 

herbaceous weed thought to originate from Mexico, Central and South America. In the past 

century, its invasion has been reported in among others North America, the Caribbean, Southern 

and Eastern Africa, the Indian Ocean islands, Australia and India (Dhileepan, 2007, Patel, 2011).  

Under favourable climatic conditions (rainfall >500mm per annum and temperatures from 10 to 

25oC) it grows rapidly, up to 1.8 m or higher and produces creamy-white flowers in four to six 

weeks after germination (Kumari and Kohli, 1987, Kandwal et al., 2009, Khan et al., 2012). 

Dhileepan (2007) and Adkins and Shabbir (2014) note that in ideal conditions, P. hysterophorus 

may geminate, grow and flower any time of the year. Each plant produces about 20 000 seeds 

that can persist for several years. Due to their light weight, they can be easily dispersed for longer 

distances by farm machinery, livestock, vehicles, wind, floods or flowing water and geminate 

rapidly in favourable conditions (Javaid et al., 2009, McConnachie et al., 2011, Dogra, 2011). 

The longevity and persistence of seeds in the soil during dry conditions, when native vegetation 

is commonly reduced necessitates longer movement of grazing animals in search for pasture, 

further increasing the seed distribution. This characteristic makes P. hysterophorus extremely 

difficult to control and eradicate. 

A number of studies, among others (Dhileepan, 2007, McConnachie et al., 2011) have reported 

its severe impacts on ecosystem processes and functions, biodiversity, agriculture and human 

health. In Australia for instance, Dhileepan (2007) note that native grass species decline with 
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increasing P. hysterophorus biomass, resulting in reduced pasture production while Nigatu et al. 

(2010) found that dry grass biomass in Ethiopian pasture land was reduced by 28.9%, 59.4% and 

90.4% in the low, medium and high P. hysterophorus infested areas respectively. Throughout its 

lifecycle, P. hysterophorus releases toxic chemicals which inhibit germination and growth of co-

existing vegetation (McConnachie et al., 2011). In India for instance, Dogra et al. (2009) found 

that P. hysterophorus significantly reduce the natural habitats and decrease productivity and 

diversity of native plants, consequently altering the structure, function and dynamics of habitats. 

It has been reported that prolonged human exposure to P. hysterophorus causes hay fever, 

bronchitis, dermatitis, allergic rhinitis, black spots, diarrhoea, skin inflammation and asthma 

(McConnachie et al., 2011). In livestock, the weed causes a reduction in quality of milk and milk 

products and death, if significant amounts are consumed, (McConnachie et al., 2011, Strathie et 

al., 2011) while in wildlife, it may cause degenerative changes in liver and kidney (Patel, 2011).  

In South Africa, P. hysterophorus has been identified as a major threat to grazing and croplands 

of northern KwaZulu-Natal province (Belz et al., 2007, Strathie et al., 2011). The weed has also 

been found in Mpumalanga, North West and Limpopo provinces (Belz, et al. 2007; Strathie, et 

al. 2011). Using a climatic suitability distribution model (CLIMEX), McConnachie et al. (2011) 

demonstrated that other provinces, particularly those bordering highly infested countries such as 

Swaziland and Mozambique are at high risk of invasion. Such findings necessitate accurate and 

up-to-date information on the locations and distribution of P. hysterophorus to design relevant 

mitigation measures. According to Franklin (2010) there is paucity of such information for 

environmental research, resource management and conservation planning. Additionally, 

information on spatial patterns of IAP’s is important for establishing ecological links to 

underlying ecosystem diversity, structure and processes and habitats changes (Turner et al., 

2003).  

Traditionally, the information on spatial patterns of IAP’s has relied heavily on the field-based 

surveys. However, such techniques are often labour intensive, time consuming and costly 

(Taylor et al., 2011). Cho et al. (2015) for intance note that IAP’s invading large and remote 

areas are hardly surveyed because of point-based nature of the surveying methods. According to 

Dorigo et al. (2012) the patchy nature in most emerging IAP species make them particularly 

difficult to identify and locate in highly heterogeneous landscapes. For these reasons, availability 

of information on P. hysterophorus distribution in South Africa are limited to coarse scale, i.e. 

quarter degree (Henderson, 1999). Previously, aerial photography have been adopted (Everitt 

and Judd, 1989), however their spectral and temporal intervals and cost may not be perfectly 
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optimised to characterise IAP’s distributions for operational purposes. For example, Lass et al. 

(2005) note that factors such as high cost of colour-infrared photographs, photo processing and 

interpretation, absence of quantitative data, variable interpretation and requirement for manual 

scanning or digitizing have limited their application for detecting IAP’s. These challenges have 

opened up opportunities for adoption of remotely sensed data for IAP species mapping.  

1.1.1. The potential of Remote Sensing for IAP species discrimination  

Remote Sensing has the capability to provide detailed quantitative land surface information at 

various spatio-temporal scales at relatively lower cost. Its unique data characteristics and 

capability to combine various methods (such as statistical models and mathematical algorithms) 

provide powerful and objective ways of determining landscape composition. The use of data 

captured by remote sensing is an attractive option for early detection, discrimination and 

mapping of IAP’s, valuable for generating optimal mitigation strategies.  Remote sensing 

measurements capture electromagnetic energy from IAP’s in various wavelengths, hence enable 

the detection and assessment of their bio-chemical and bio-physical properties (Jensen, 1983). 

The interaction of electromagnetic radiation with plant leaves, i.e. reflectance, absorption or 

transmittance, depends on plant’s bio-physical properties such as leaf tissue density, 

arrangement, size, age, structure, texture and thickness. Furthermore, length of the plant stem, 

presence of flowers and fruits and bio-chemical characteristics such as proteins, lipids, starch, 

cellulose, chlorophyll, nitrogen, water and oil determine the spectral reflectance characteristics 

(Clark and Roush, 1984, Narumalani et al., 2009, Usha and Singh, 2013). For example, 

carotenoids, xanthophyll, anthocyanin and chlorophyll pigments are primarily absorbed in the 

blue (i.e. 450nm-520nm) and red (i.e. 630nm-600nμm) regions of electromagnetic spectrum, 

while the spongy mesophyll cells result in high reflectance in the 700-1200nm range that 

constitute the near-infrared region (Jensen et al., 2007) (see Figure 1).  

These spectral properties have been the basis for most vegetation studies, including the 

development of empirical techniques such as vegetation indices for estimating leaf area index 

(LAI) and biomass (Shen et al., 2009). Spectroscopy; the study of the interaction of 

electromagnetic energy and earth’s surface features is commonly studied at field level and forms 

the basis of most air-borne and satellite-based imaging systems (Milton et al., 2009).  Therefore 

an understanding of the spectral signatures of IAP species and their co-existing species allows 

for an assessment of the feasibility of identification and discrimination prior to mapping 

activities.  
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1.1.2. Hyperspectral remote sensing of IAP species 

Hyperspectral data contains reflected electromagnetic energy from an area of interest in hundreds 

of contiguous narrow band intervals (see Figure 1) (Jensen et al., 2007). The added spectral 

resolving power allows for discrimination of subtle intra and inter-species reflectance differences 

(Narumalani et al., 2009). A distinct advantage of hyperspectral data is their inherent capability 

to provide high spectral information on, and capture minute differences in the biophysical and 

biochemical properties of vegetation (Xu et al., 2009, Usha and Singh, 2013). These properties 

allow species discrimination based on their absorption of specific regions of the electromagnetic 

spectrum (Jia et al., 2011, Chun et al., 2011). Figure 1 shows an example of a contiguous canopy 

hyperspectral signature of P. hysterophorus (PH) and band positions of Landsat 8 Operational 

Land Imager (OLI). Additionally, main factors affecting the spectral signature across 400nm-

2500nm regions of the electromagnetic spectrum are shown (Adam et al., 2010, Adjorlolo et al., 

2012b). The red-edge indicate a transition region of rapid change in reflectance between strongly 

absorbed red region and highly reflected NIR region and is renowned for its high sensitivity to 

small changes in canopy chlorophyll content, gap fraction and senescence (Potter et al., 2012).  

Figure 1. Factors affecting reflectance properties in various regions of electromagnetic 
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spectrum and a comparison of contiguous spectral signature of P. hysterophorus (PH) and 

discrete band positions of multispectral data (Landsat 8 OLI). 

Whereas airborne and spaceborne hyperspectral image data have been known to generate highly 

reliable IAP species classifications (Yang and Everitt, 2010, Yang et al., 2011, Olsson and 

Morisette, 2014), they are often costly and have limited global coverage, and therefore currently 

limited to a small number of projects (Narumalani et al., 2009, Huang et al., 2009, He et al., 

2011). Furthermore, existing sensors e.g. EO-1 Hyperion and Compact High Resolution Imaging 

Spectrometer (CHRIS) are insufficient (Buckingham and Staenz, 2008); hence there are 

significant data gaps in most invaded areas. Alternatively, leaf and canopy level hyperspectral 

measurements using field spectrometers have been used to understand the reflectance properties 

of various species for discrimination purposes (Schmidt and Skidmore, 2003, Adam and 

Mutanga, 2009, Fernandes et al., 2013), to estimate biochemical properties such as nitrogen 

content (Bajwa et al., 2010, Wei et al., 2012), chlorophyll content (Xu et al., 2009) and leaf-

water content (De Jong et al., 2014, Mirzaie et al., 2014). Canopy hyperspectral data are cheaper 

to acquire and allow for in-depth understanding of spectral signatures of IAP species in a 

heterogeneous landscape for mapping. For example, Fernandes et al. (2013) note that optimal 

spectral bands selected from canopy hyperspectral measurements are essential for selecting most 

suitable satellite imagery for mapping. However, the adoption of canopy hyperspectral data is 

often limited by their characteristic high data dimensionality, often resulting into lower 

classification accuracies and high computational requirements (Pal and Foody, 2010). A novel 

approach to select optimal spectral subset of bands that yield improved classification accuracy 

and optimises computation is therefore proposed in chapter 2 of this dissertation.  

1.1.3. Multispectral remote sensing of IAP species 

For decades, multispectral remotely sensed data has been adopted to monitor the spread and 

determine the distributions of IAP’s. Multispectral sensors capture reflected and emitted energy 

from an area of interest in multiple broad band intervals (i.e. ~4 to 36) of the electromagnetic 

spectrum (see Figure 1) (Jensen et al., 2007). To date, a wealth of historical and current low or 

no cost multispectral data at different spatial and temporal resolutions exist (see Table 1). As a 

result, researchers have extensively applied remotely sensed data from multispectral sensors such 

as MODIS, NOAA/AVHRR, Landsat, ASTER and SPOT to monitor the spread and determine 

the spatial distributions of IAP’S (Huang and Asner, 2009, Viana and Aranha, 2010, Zong et al., 

2010, Frazier and Wang, 2011, Qu et al., 2011). For example, moderate spatial resolution (30m) 

data from Landsat TM, with six spectral bands in visible (VIS), near-infrared (NIR) and 
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shortwave infrared (SWIR) and SPOT 5, with 4 spectral bands in VIS, NIR and SWIR and a 

10m spatial resolution have allowed for the detection of Spartina alterniflora (saltmarsh 

cordgrass) with overall accuracies of 71% to 78.8% in China (Zong et al., 2010). Laba et al. 

(2008) obtained overall accuracies of between 64.9% and 73.6% when mapping Trapa natans 

(water chestnut), Phragmites australis (common reed), and Lythrum salicaria (purple 

loosestrife) using Quickbird data  (4 spectral bands in the VIS and NIR at 2.4m spatial 

resolution).  Generally, medium resolution sensors have been found useful for mapping larger 

patches, i.e. >0.5 ha (Arzandeh and Wang, 2003).  

Recent studies (Lantz and Wang, 2013, Adelabu et al., 2013, Müllerová et al., 2013) have shown 

that very high spatial resolution data (i.e. <1m) combined with additional narrow bands, i.e. red 

edge and yellow have high capability of detecting and discriminating species. Using Worldview-

2 imagery, with 8 multispectral bands and 2m spatial resolution for instance, Lantz and Wang 

(2013) mapped the distribution of Phragmites australis (common reed) in a coastal wetland, 

achieving a classification accuracy of 94%. Generally, developments in multispectral 

instruments are expected to enable higher classification accuracies and provide further 

opportunities for testing classification algorithms used for discriminating and determining IAP’s 

distributions. Such new generation sensors include Worldview-3, which offers very high spatial 

resolutions (1.24m-multispectral, 31cm-panchromatic, 3.7m-SWIR 3.7m, and 30m-Clouds, 

Aerosols, Vapours, Ice, and  Snow bands (CAVIS)) with super spectral resolution (8 VNIR 

bands; 8 SWIR bands and 12 CAVIS bands). However, whereas very high resolution data may 

provide higher classification accuracy, they are often costly for operational applications. 

Consequently, data accessibility and cost from heritage missions such as SPOT and Landsat 

provide an opportunity for mapping the distribution and patch sizes of P. hysterophorus in 

infested areas of Kwa Zulu Natal province. SPOT 6 (launched in 2012), in comparison to its 

predecessor, has an improved spatial resolution (i.e. 6m - multispectral bands, 1.5m - 

panchromatic band) and four spectral bands in Visible and NIR regions. On the other hand, 

Landsat 8 (launched in 2013) has 10 spectral bands in Visible, NIR, SWIR and TIR regions of 

the electromagnetic spectrum. These datasets were evaluated for mapping the distribution and 

patches of P. hysterophorus in Chapter 3 of this study. Table 1 outlines some of the potential 

data for mapping IAP species.  
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Table 1. Potential multispectral data for mapping IAP species. 

Moderate Resolution Sensors (<30m) 

Sensor PAN Multispectral Swath 

width 

Revisiting 

Period 

Archive  Programmable Accessibility 

Landsat 8 

OLI 

15m 30m (VNIR, 

CB, 2×SWIR 

185km 16 days 2013 No Free 

ASTER  15m (V + 

2×NIR), 30m 

(5×SWIR) 

  1999 Yes US$80/60km2 

High Resolution Sensors (<10m) 

SPOT 5 2.5m 10m (VNIR) 

& 20m 

(SWIR) 

60km/120km  26 days 2002 Yes Free for non-

commercial 

use in SA 

SPOT 6 & 7 1.5m 6m (VNIR) 60km 1 to 3 

days 

2013 Yes Free for non-

commercial 

use in SA, 

otherwise 

US$5.15/km2 

Quickbird 0.6m 2.4 

(VNIR+RE) 

16.5km 1 to 3 

days 

2002 Yes US$16/km2 

RapidEye  6.5m 

(VNIR+RE) 

 1 day 2008 Yes US$1.28/km2 

IKONOS 0.82m 3.2m (VNIR) 11km 1 to 3 1999 Yes US$10/km2 

 Very High Resolution Sensors (<0.5m) 

GeoEye-1 0.5m 2m (VNIR) 15.2km 1 to 3 2008 Yes US$16/km2 

Pleiades 0.5m 2m 20km Daily 2012 Yes US$13/km2 

WorldView-

2 

0.5m 2m (V, CB, 

2×NIR, RE, Y) 

16.4km Daily 2009 Yes US$16/km2 

WorldView-

3 

0.31m 

nadir/ 

0.34 

off-

nadir 

1.24m 

nadir/1.38m 

off-nadir (V, 

CB, 2×NIR, 

RE, Y); 3.70m 

nadir/4.10m 

off-nadir 

(8×SWIR) & 

30m nadir 

(CAVIS) 

13.1 km <1 day 2014 Yes US$32/km2 

Acronyms : ‘V’=standard Blue, Green & Red bands; ‘CB’ =coastal/aerosol ‘NIR’=Near Infrared band; ‘Y’=Yellow 

band, ‘RE’=Red Edge, ‘SWIR’=Short-wave Infrared, ‘TIR’=Thermal Infrared band, ‘CAVIS’=Clouds, Aerosol, 

Vapours, Ice and Snow bands 

 

1.1.4.  Classification algorithms and vegetation indices for discriminating IAP species 

For decades, various parametric algorithms such as ISODATA, Parallelpiped, Minimum 

Distance to Means (MDM) and Maximum Likelihood Classifier (MLC) have been used on 

remotely sensed data. Such algorithms have a priori assumptions that the data is normally 

distributed and utilise image statistics (such as mean, standard deviation and covariance 

matrices) to allocate pixels to clusters (Memarian et al., 2013). Arzandeh and Wang (2003) 

achieved overall accuracies of between 82% and 87% using MLC and multispectral data from 

SPOT, Landsat and Indian Remote Sensing Satellite (IRS) for monitoring Phragmites australis 
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(Common reed). Whereas ISODATA and MLC have been the most commonly used parametric 

algorithms, for monitoring and determining IAP’s spatial distribution (Theriault et al., 2006, 

Viana and Aranha, 2010, Everitt et al., 2005), other studies (Chi et al., 2008, Mountrakis et al., 

2011) have established that classification using parametric algorithms is tedious (requiring 

enormous training samples), and yield poor classification results when highly dimensional data 

and small training sample are used.  Furthermore, parametric algorithms do not take into account 

the complexity of class distributions in multi-temporal datasets, i.e. non-normality and 

multimodality (Gavier-Pizarro et al., 2012).  

On the other hand, non-parametric machine learning algorithms such as Artificial Neural 

Networks (ANN), Spectral Angle Mapper (SAM), Random Forests (RF), Decision Trees (DTs) 

and Support Vector Machines (SVMs) have no prior assumptions about the data, can incorporate 

ancillary data, and are flexible and adaptable (Carpenter et al., 1997). Such algorithms have 

recently been successfully adopted on both hyperspectral and multispectral data (Pal and Mather, 

2004, Gavier-Pizarro et al., 2012, Adelabu et al., 2013, Yagoub et al., 2014, Atkinson et al., 

2014). SVM was adopted in Chapter 2 and 3 of this dissertation for spectral discrimination and 

mapping the distribution and patches of, P. hysterophorus. 

1.1.5. Challenges and opportunities for discrimination of P. hysterophorus 

In hyperspectral remote sensing of vegetation, challenges such as multicollinearity and 

multidimensionality are commonly encountered (Adjorlolo et al., 2013, Peerbhay et al., 2013, 

Pal, 2006). The Hughes phenomenon, also known as the ‘curse of dimensionality’ reduces the 

performance of the classifier when there is limited training data (Hughes, 1968). In addition, 

narrow and contiguous spectral bands in hyperspectral data are often correlated with one another, 

resulting in highly unstable parameter estimates hence, increasing the generalization error of a 

classifier (Clevers et al., 2007, Mirzaie et al., 2014).  Although several techniques have been 

proposed to overcome these challenges, none of them has been proven superior (Adam and 

Mutanga, 2009, Jia et al., 2011). This provides an opportunity to test the performance of other 

innovative techniques for dimensionality reduction and to improve classification accuracy. 

In multispectral image classification, phenomena such as mixed pixels and spectral confusion 

are common, where the former refers to pixels that contain two or more classes and the latter 

occurs when two or more classes have similar reflectance properties (Hsieh et al., 2001, Yang et 

al., 2011). Medium resolution (i.e. 10 – 30m) images often have pixels that cover larger areas, 

hence patches of P. hysterophorus that cover smaller proportion of each pixel are likely to be 
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missed by the hard classifiers. For example, using Landsat TM to distinguish between native 

vegetation and an invasive species Pennisetum ciliare (buffelgrass), Olsson et al. (2011) found 

very low classification accuracy due to the heterogeneity of the landscape which resulted in 

mixed pixels.   

Generally, studies have indicated that higher spatial resolution image data (i.e. <10m) offer 

greater resolving power, hence a higher probability that smaller patches can be detected with 

higher accuracy (Jensen, 1983, Dorigo et al., 2012). However, this is not always the case as 

spectral variability within one species, i.e. intra-species variability may be increased, resulting 

in spectral confusions and reduced classification accuracy. As noted by Hsieh et al. (2001), high 

spatial resolution imagery provides a wealth of spatial information about various objects on the 

ground; however the classification results are not always as promising as can be expected. In 

addition, it is challenging to distinguish IAP species from native species using discrete and broad 

wavelengths in multispectral images, since these are less capable of defining minute spectral 

differences between species. P. hysterophorus has sporadic growth and rapid spread; hence 

usually have varying patch sizes. This variability in patch sizes and different phenology of one 

species in an image may yield high uncertainty in the derived classification (Muad and Foody, 

2012). As a result, a fair compromise between the spectral and spatial resolutions is fundamental 

when choosing data for mapping IAP’s.  

1.2. Research problem 

Parthenium hysterophorus (Parthenium weed) has been identified as one of top 7 most 

devastating weeds in the world. Considerable impacts on ecosystem processes and functions, 

biodiversity, agriculture and human health have been reported. Hence, eradication and control 

of the species has recently become the focus in literature, with several interventions being 

proposed. In South Africa, P. hysterophorus invades savanna landscapes of northern KwaZulu-

Natal where it has become dominant. As a result, it need to be eradicated and controlled to 

prevent further spread and introductions into new areas. Accurate and up-to-date information on 

the locations and distribution of P. hysterophorus is required for designing relevant mitigation 

measures. However, traditional field-based methods are costly, tedious, unsustainable and 

inappropriate for large and inaccessible areas. In that regard, remotely sensed data from 

hyperspectral and multispectral sensors can be exploited for providing useful information critical 

for effective weed management and site prioritisation. 

This study sought to address the following research problems: 
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i. The inherent high dimensionality in hyperspectral data reduces classification accuracy 

due to Hughes effect.  

ii. Among existing feature selection techniques, there is no single technique that has been 

proved superior in literature, hence an opportunity exist to explore other techniques.  

iii. The usefulness of the spatial and spectral configurations of OLI and SPOT 6 datasets 

for characterizing the patches of P. hysterophorus, have never, to the best of our 

knowledge, been explored. 

1.3.  Aim and Objectives 

1.3.1. Aim 

The aim of this study was to explore the capability of hyperspectral and multispectral data for 

discriminating and mapping Parthenium hysterophorus.  

1.3.2.  Objectives 

The objectives of the study were: 

(i) To determine optimal subset of spectral bands from canopy hyperspectral data for accurately 

discriminating P. hysterophorus and co-existing species. 

(ii) To evaluate capability of multispectral data from Landsat 8 OLI and SPOT 6 for determining 

P. hysterophorus distribution and patch sizes.  

1.4.  Research questions 

This study attempted to address to the following research questions: 

i. What is the optimal subset of bands for discriminating P. hysterophorus from its co-

existing species? 

ii. How can classification accuracy be improved by reduced subset of bands versus entire 

dataset? 

iii.  What is the utility of the spectral and spatial configurations of multispectral data (i.e. 

OLI and SPOT 6) in mapping the patches of P. hysterophorus? 



11 

 

1.5. Scope of the study 

This study explored the capability of hyperspectral and multispectral data for discriminating and 

mapping P. hysterophorus in the Savanna landscapes of northern Kwa Zulu-Natal province. A 

robust classification algorithm, i.e. Support Vector Machines (SVM) was used with canopy 

hyperspectral and multispectral datasets to discriminate P. hysterophorus from co-existing 

species and to determine its distribution and patch sizes, respectively. Specifically, Chapter 2 

presents the potential of an innovative hierarchical approach to deal with high dimensionality in 

hyperspectral data and to improve classification accuracy of P. hysterophorus while Chapter 3 

presents the capability of multispectral data for providing accurate information on P. 

hysterophorus distribution and patch sizes. According to (Turner et al., 2003), this information 

is fundamental in understanding the ecological links to the diversity, structure and processes of 

the ecosystem and habitats changes.  

1.6.  Study area 

The study area is located in the northern part of Kwa Zulu-Natal province, South Africa 

(Latitudes 26°45′ to 27°7′ and Longitudes 22°7′ to 32°20′; Figure 2).  The area lies in the summer 

rainfall belt, with an annual range of 500 – 2000mm. Temperatures are cooler (13.9 oC)  during 

winter and warm (21.7oC)  in summer (Atkinson et al., 2014). The area falls within the savanna 

biome, characterised by open Lowveld savanna vegetation, shrubs and grasses. Common tree 

species include; Umbrella thorn (Acacia tortillis), Sweet thorn (Acacia karroo), and Tamboti 

(Spirostachys Africana) while grass species include Spreading prinklegrass (Aristida congesta 

subsp. Barbicollis) and Pinhole grass (Bothriochloa insculpta) that occur in highly disturbed 

areas and Redgrass (Themeda triandra) and Spear grass (Heteropogon contortus) that dominate 

less disturbed areas. The prevalence of non-native plants has become a serious problem in the 

area where IAP’s such as P. hysterophorus have become increasingly prolific. P. hysterophorus 

infestations are particularly evident along roads, in croplands, along fences and backyards, 

disturbed grasslands and protected areas. P. hysterophorus was first recorded in Kwa Zulu Natal 

province in 1880 and again after the floods in 1984 caused by Cyclone Demoina (McConnachie 

et al., 2011). As a result, field surveys showed that Ndumo Game Reserve is one of the most 

heavily infested reserves in the province; hence communal rangelands surrounding the reserve 

are also infested. Spectroscopy data (Chapter 2) was collected within Ndumo Game Reserve (26° 

54' 43'' S and 32° 15' 48'' E, total area 102 km2), while Landsat 8 OLI and SPOT 6 images 

(Chapter 3) covered the reserve, communal farmlands and settlements (26o45′00″S and 32o 

00′00″E).    
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Figure 2. Study area  

1.7.  Chapter outline 

CHAPTER 1: GENERAL INTRODUCTION 

The chapter provides a general background to Parthenium hysterophorus, including its 

description, distribution and impacts, the advantages of using remote sensing data and algorithms 

for discriminating IAP species. An overview of common challenges in remote sensing of IAP’s 

are also briefly discussed.  Additionally, research objectives, description of the study area, and 

the scope of the study are outlined. 

CHAPTER 2: DETERMINING THE OPTIMAL SPECTRAL SUBSET FOR 

DISCRIMINATING PARTHENIUM HYSTEROPHORUS 

This chapter adopts field spectroscopy data for discriminating P. hysterophorus and co-existing 

species. A novel approach integrating statistical filters and Support Vector Machines – Recursive 

Feature Elimination (SVM-RFE) for dealing with multidimensionality and co-linearity is 

proposed. The performance (i.e. classification accuracy) of hierarchically selected bands was 
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compared to the performance of entire spectral data and a combination of 20 best spectral bands 

selected by SVM-RFE.  

CHAPTER 3: EVALUATING THE CAPABILITY OF LANDSAT 8 OLI AND SPOT 6 FOR 

DISCRIMINATING INVASIVE ALIEN SPECIES WITHIN THE SAVANNA LANDSCAPES 

OF KWAZULU-NATAL, SOUTH AFRICA.  

This chapter explores the utility of multispectral data from Landsat 8 OLI and SPOT 6 sensors 

for discriminating P. hysterophorus. The goal was to determine the optimal data for providing 

useful information on the distribution and patch sizes of P. hysterophorus for control and 

eradication, environmental and resource management and conservation planning. A robust 

algorithm, Support Vector Machines was used for classifying both datasets. Each dataset was 

evaluated using confusion matrix.  

CHAPTER 4: SYNTHESIS AND CONCLUSION   

This chapter presents a synthesis of the main findings of study, discuss the relevance of the 

results, make necessary recommendations for future studies and provides the limitations of the 

study.  
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CHAPTER 2 

DETERMINING THE OPTIMAL SPECTRAL SUBSET FOR 

DISCRIMINATING PARTHENIUM HYSTEROPHORUS 

2.1. Introduction 

Hyperspectral remotely sensed data have been proven to be valuable for discriminating woody 

vegetation, herbaceous plants and grass species in sub-tropical and savanna grasslands 

(Adjorlolo et al., 2013, Mansour et al., 2012, Adam and Mutanga, 2009, Jia et al., 2011, Peerbhay 

et al., 2013, Atkinson et al., 2014). The major advantage of hyperspectral data is their narrow 

spectral bandwidths and large number of contiguous spectral bands, which are useful for 

distinguishing subtle differences in vegetation features (He et al., 2011).  The higher sensitivity 

of hyperspectral instruments to biophysical and biochemical reflectance properties of various 

vegetation types make such instruments useful for characterizing plants species (Bajwa et al., 

2010, Jensen, 1983, Daughtry et al., 2000, Xu et al., 2009). However, for species discrimination, 

the utility of hyperspectral data has been commonly impeded by its inherent properties such as 

multidimensionality and multi-collinearity (Demir and Ertürk, 2008). Hughes (1968) observed 

that the addition of more dimensions lead to a decrease in classification accuracy when training 

sample is small, i.e. n < p. This phenomenon, also referred to as “the curse of dimensionality” 

or Hughes effect, causes highly unstable parameter estimates and hence high generalization 

errors for the classifier (Clevers et al., 2007). For example, Tadjudin and Landgrebe (1998) 

determined that parametric classifiers such as Maximum Likelihood (ML) are less capable of 

estimating mean and covariance statistics from multidimensional data, hence yield undesirable 

classification accuracies, particularly with limited training data.  

More robust non-parametric classifiers such as Support Vector Machines (SVM) have been 

reported to efficiently handle noise and multidimensionality in hyperspectral data (Pal and 

Mather, 2004, Cortes and Vapnik, 1995).  Studies (Pal and Mather, 2004, Pal, 2006) have 

adopted SVM classification algorithm using large training samples (>100 pixels per class) to 

overcome the Hughes effect. The major challenge is that acquisition of large training samples 

can be tedious, costly and time consuming, particularly where areas to be  sampled are 

inaccessible (Adam and Mutanga, 2009, Jia et al., 2011). Using Airborne Visible InfraRed 

Imaging Spectrometer (AVIRIS) and Digital Airborne Imaging Spectrometer (DAIS) datasets, 

Pal and Foody (2010) observed a significant decrease in SVM classification accuracy with an 

increase in dimensionality for small training data (≤ 25 pixels per class).  The authors concluded 



15 

 

that the Hughes effect was more prevalent when a small training data was used. In this regard, 

feature selection and dimensionality reduction is fundamental to aid the classifier to use only the 

relevant subset of predictor features that capture relevant properties of the response variable 

(Camps-Valls and Bruzzone, 2005, Pal and Foody, 2010). Additionally, feature selection may 

reduce the computational costs related to processing hyperspectral data, thus reducing training 

time and simplifying classification tasks (Pal, 2009). Feature selection and dimensionality 

reduction prior to classification have consequently become necessary in hyperspectral data 

analysis and has led to better classification accuracies and increased computational efficiency 

(Zhang and Ma, 2009, Pal and Foody, 2010, Löw et al., 2013).  

Feature extraction techniques such as principal component analysis (Mather, 2004), maximum 

noise fraction (Green et al., 1988) and partial least squares regression (Wold, 1995) transform 

the original feature-space in order to provide fewer de-correlated components sorted by their 

signal to noise ratio (SNR) (Huang et al., 2004). However, these techniques do not automatically 

select relevant spectral bands for the classification model (Chun and Keleş, 2010). Critically, 

these techniques use all spectral bands in the transformation, including redundant bands and may 

be insensitive to subtle differences that are helpful for the discrimination of species (Tsai et al., 

2005, Yao and Tian, 2003). Filter-based techniques on the other hand evaluate the intrinsic worth 

of each feature based on some relevance index such as correlation coefficients, test statistics or 

information theory (Pal, 2009, Guyon and Elisseeff, 2006). Whereas they are computationally 

efficient, they do not use a classifier to evaluate the performance of each feature and often ignore 

the impact of class labels (Deng et al., 2013). Conversely, wrapper techniques such as Support 

Vector Machines - Recursive Feature Elimination (RFE) (Guyon et al., 2002) use a classifier as 

a ‘black-box’ to evaluate the predictive worth of each feature while embedded techniques 

simultaneously perform feature selection and classification (Guyon and Elisseeff, 2006). 

However, the technique's high computational requirements has limited its wide adoption with 

commonly used classifiers (Pal, 2009).  

Nevertheless, SVM-RFE (Guyon et al., 2002) are often preferred over filter-based and embedded 

models due to their high performance and ability to overcome orthogonality assumptions. This 

is achieved by adopting mutual information between features and using support vectors 

exclusively as a decision function (Pal and Foody, 2010). Typically, the technique uses the 

weight value calculated during the training stage of SVM as the ranking criterion for evaluating 

features (Zhang and Ma, 2009, Pal and Foody, 2010). Pal (2009) compared the performance of 

Greedy Feature Flip algorithm, Iterative Search Margin-based algorithm and SVM-RFE and 
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found that the performance of all the approaches were comparable when using best combination 

of 20 features selected by respective algorithms from both DAIS and AVIRIS datasets. Pal and 

Foody (2010) showed that smaller subsets of selected spectral bands ranked by SVM-RFE, 

Random Forest and mutual information-based max-dependency (mRMR) techniques were 

equally significant to achieve comparable accuracies with the entire dataset. Other studies 

(Zhang and Ma, 2009, Li et al., 2011) found that SVM-RFE was affected by the dataset’s noise 

and has high computational requirements. Generally, a number of studies, among others (Adam 

and Mutanga, 2009, Pal and Foody, 2010, Jia et al., 2011) have shown that different approaches 

result in dissimilar sets of optimal features due to different number and separability of classes, 

study objectives and nature of the dataset.  This indicates that there is no single superior 

technique that can be used to select an optimal subset of spectral bands for improving 

classification accuracy (Yang et al., 2005).  Therefore, this study presents the potential of a 

hierarchical approach for dimensionality reduction and subset size selection for improved 

classification accuracy. 

The study implements an integration of both filter and wrapper approaches to effectively reduce 

dimensionality and concurrent selection of optimal subset of spectral bands for discrimination 

of IAP species in the study area. The first step of analysis involves Kruskal-Wallis analysis of 

variance (ANOVA) to identify spectral bands with significant differences in median at p < 0.05. 

In the second step, inter-band correlation and Area under Receiver Operating Characteristic 

curve (AUC-ROC) analysis are performed to remove redundancy while retaining relevant 

spectral bands using AUC as a goodness measure. In the final step, we apply SVM-RFE to select 

a minimum subset of spectral bands which together yield improved classification accuracy. 

Using spectral reflectance characteristics on an area characterized by P. hysterophorus IAP and 

co-existing species, we compare classification accuracy from the hierarchical approach against 

the accuracy achieved from entire spectral dataset (n = 1633) and a combination of 20 best 

spectral bands ranked by SVM-RFE. The choice of IAP species discrimination, particularly P. 

hysterophorus in this study was based on several challenges in management of the species and 

mapping of its distribution using conventional methods.  

 

2.2. Materials and methods 

2.2.1. Species description 

Parthenium hysterophorus (Parthenium weed) is regarded as one of the seven most aggressive 

and problematic weeds in the world (Dhileepan 2007). It is known to invade agricultural fields, 
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hence reduce agricultural production and affect livelihoods (Dhileepan, 2007, Patel, 2011). The 

weed is also known to invade ecological systems, reducing biodiversity and compromising 

ecological integrity and the ability to provide ecosystem goods and services (Dhileepan, 2007, 

Patel, 2011). Typically, P. hysterophorus rapidly invades and colonizes disturbed areas such as 

abandoned croplands, building peripheries, roadsides, fallow and overgrazed lands, waste lands 

and cultivated fields (McConnachie et al., 2011). Each plant grows sporadically and rapidly, 

flowers and produces approximately 25 000 light seeds, which are dispersible for longer 

distances by vehicles, water, animals, farm machinery and wind (Javaid et al., 2009, 

McConnachie et al., 2011, Dogra et al., 2011).  

Throughout its lifecycle, P. hysterophorus releases toxic chemicals which inhibit germination 

and growth of co-existing species (McConnachie et al., 2011). This  leads to a decline in pasture 

production (Dhileepan, 2007), dry grass biomass (Nigatu et al., 2010) and natural habitats and 

biodiversity (Patel, 2011). Prolonged exposure and excessive consumption has been reported to 

result in health complications in human populations, declined quality of milk and meat products 

from cattle and degenerative changes in liver and kidney of sheep and buffalo (Patel, 2011). 

Therefore, to mitigate these impacts, early detection is necessary for design and implementation 

of management and eradication measures. Hence a need to determine the most optimal bands for 

spectral discrimination of P. hysterophorus, valuable for mapping using remotely sensed 

imagery.  

2.2.2. Data collection 

2.2.2.1. Field sampling 

Field survey of several P. hysterophorus infested sites was conducted to identify the distribution 

of P. hysterophorus. During the survey, it was also ensured that the conditions in which P. 

hysterophorus exists, including co-existing species were identified prior to spectral data 

collection. Based on the survey, 1×1m plots of homogeneous (>90%) juvenile P. hysterophorus 

canopy cover and co-existing species were delineated. A total of 149 plots with P. hysterophorus 

and co-existing species were then randomly selected from the study area (see Table 2).  This was 

done to account for intra-species variability and to ensure that both P. hysterophorus and co-

existing species were well represented. In each 1×1m plot, a minimum of three random positions 

were selected for hyperspectral measurements.  

2.2.2.2. Hyperspectral data collection 
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Spectral reflectance characteristics were acquired using a Spectral Evolution PSR-3500 

Spectrometer (Spectral Evolution, Inc. © 2014) with a 350nm–2500nm spectral range. The 

spectrometer has ~3.5nm spectral resolution at 350-1000nm, 10nm at 1500nm and 7nm at 2100. 

The spectral bands from 350-1000nm, at 1500nm and at 2100nm have nominal spectral sampling 

intervals of 1.5nm, 3.8nm and 2.5nm, respectively. The spectral measurement unit consisted of 

spectrometer, a handheld Personal Digital Assistant (PDA) device and a fiber optic cable 

attached to the pistol grip for easy handling. Garmin Montana 650 standard GPS with ±3m 

accuracy was used for locating and navigating to the sampled plots.  

P. hysterophorus and co-existing species canopy reflectance measurements were taken from 

1×1m plots in early December 2014 (see Table 2 and Appendix 1). The scale of measurement 

ensured that the spectral measurements were a representative mixture of radiance as determined 

by the proportion, physical arrangement and reflective and transitive properties of plants 

components (Clark and Roush, 1984). Each spectral curve was visualized on a PDA and noisy 

measurements (including those affected by shadows) replaced by new measurements before 

being recorded. Each observation measured by the spectrometer was an average of 10 scans, at 

optimized integration time with a dark current correction and plots were tagged with a GPS 

coordinate and a photograph. Each plot was represented by an average of 3-5 pure spectral 

measurements, taken from distinct random positions within a plot. A fiber optic cable with a 25o 

FOV was consistently held at nadir angle. Also, an observation distance of 0.5m above each 

homogeneous canopy was maintained in all measurements. This yielded a circular surface area 

measurement (i.e. instantaneous field of view - IFOV) with a radius of approximately 11.08cm. 

In each case, the IFOV was significant to measure the radiances from targets without the 

interference of background reflectance. To normalize target measurements and to minimize the 

influence of the change of atmospheric conditions and solar irradiance (Mirzaie et al., 2014, 

Darvishzadeh et al., 2008), a white reference panel (spectralon) reflectance was taken before and 

after each plot measurements. All reflectance measurements were taken on cloudless or near 

cloudless conditions between 10:00 and 14:00 South African Standard Time (GMT+02:00). This 

was necessary to limit the variability due to changes in sun angle (Bajwa et al., 2010); to avoid 

excessive shadows (Menges et al., 1985) and to minimize atmospheric perturbations and 

Bidirectional Reflectance Distribution Function (BRDF) effects (Darvishzadeh et al., 2008). 
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Table 2. The number of plots and measurements per species 

Species Number of Plots Number of 

measurements 

P. hysterophorus (PH) 65 195 

Acacia trees (AT) 33 99 

Grass species (GS) 19 57 

Other plant species (OPS) 32 96 

 

2.2.3. Pre-processing and analysis 

2.2.3.1. Pre-processing 

The original spectral measurements consisted of 1024 spectral data points, with varying spectral 

resolution and sampling interval. These were interpolated to 1nm using Cubic spline 

interpolation, yielding 2151 spectral data points. The interpolation to finer sampling intervals 

was necessary to minimize errors that may arise from varying spectral sampling interval and 

detector steps of the spectrometer (Clark and Roush, 1984, Gardner, 2003). The noisy spectral 

bands (350-399nm; 1350-1465, 1790nm-1960nm and 2350nm-2500nm) were removed from 

further analysis (Thenkabail et al., 2004). Noise removed spectral data were then subjected to 

Savitzky Golay Filtering (Savitzky and Golay, 1964) experimental procedures with linear and 

quadratic polynomials (i.e. p = 1, 2, 3) and different window sizes (i.e. m = 5, 11, 25).  Savitzky 

Golay Filter with parameters p = 2 and m = 11, resulted in relatively smooth spectral curves, 

while closely maintaining the absorption features across all wavelengths (see Figure 3). Noise 

removal and Savitzky Golay (SG) filtering resulted in 1633 spectral data points for further 

analysis. Cubic spline interpolation and SG filtering were performed using “prospectr” package 

(Stevens and Ramirez–Lopez, 2014) in R Statistical software. 

2.2.3.2. Data analysis 

Due to the aforementioned challenge in determining the optimal spectral bands from high 

dimensional spectral data and lack of a single superior technique for selecting optimal spectral 

bands, we implemented an innovative hierarchical technique consisting of Kruskal-Wallis 

ANOVA, inter-band τ correlation and AUC-ROC variable importance and SVM-RFE. Kruskal-

Wallis ANOVA (Kruskal and Wallis, 1952) and post hoc Dunn’s test (Dunn, 1964) were used 

to test the null hypothesis that there is no significant differences between the median spectral 

signatures of P. hysterophorus and its co-existing species at 95% significance level (p < 0.05). 
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Kruskal-Wallis ANOVA is a rank-based non-parametric test used to compare multiple 

independent samples. Contrary to one-way ANOVA, it calculates a unique initial table with p-

value of the test for all the wavelengths and all co-existing species simultaneously (Quinn and 

Keough, 2002). The difference between medians of spectral signatures was tested as opposed to 

difference of means since Kruskal-Wallis ANOVA does not assume a normal distribution of the 

data (Lehman, 1975). Additionally, Kruskal-Wallis ANOVA is robust on different sample sizes 

(Quinn and Keough, 2002).  

Since the dimensionality of the data remained high even after significantly different spectral 

bands were identified by Kruskal-Wallis ANOVA, we implemented inter-band correlation 

analysis using Kendall’s tau (τ) and AUC-ROC variable importance. The correlation analysis 

was implemented to identify and remove redundant spectral bands with a correlation coefficient 

of >0.9, while AUC-ROC variable importance was used to estimate the importance of each 

retained band (by correlation analysis) for discriminating P. hysterophorus and co-existing 

species. Kendall’s τ (Joe, 1990) is a distribution-free measure of concordance between two 

observed variables. A pair of points (xi, yi) and (xj, yj ) are said to be concordant if (yj − yi)/(xj − 

xi) > 0 and discordant if (yj − yi)/(xj − xi) < 0 (Joe, 1990). In the current study, a correlation 

coefficient of >0.9 was considered highly correlated for spectral bands of P. hysterophorus and 

co-existing species being redundant. The spectral bands with correlation coefficient less than the 

threshold of 0.9 were subjected to AUC-ROC variable importance available in “caret” package 

(Kuhn, 2008) to determine their individual inter-species discriminatory ability. AUC-ROC 

variable importance for multiple classes uses one-against-all strategy to perform ROC curve 

analysis on each band with a series of cutoffs being applied to predict classes. For each cutoff, a 

two dimensional space is formulated, where sensitivity is the vertical axis and 1-specificity is the 

horizontal axis (see Formulae 1 and 2). Area under the ROC curve (AUC) is then calculated for 

each class using trapezoid rule and the maximum AUC across the relevant pair-wise AUC's is 

used as the variable importance measure. In essence, AUC is used as a goodness measure for 

judging whether each band is important or not, where an area of 1 represents absolute importance 

and an area of 0.5 indicates that the spectral band has no discriminative power (Deng et al., 

2013). Inter-band τ correlation and AUC-ROC variable importance allow filtering of redundant 

and less important spectral bands, while maintaining those with high discriminating power 

before SVM-RFE is applied.  

Sensitivity = TP/(TP + FN)     [1] 

Specificity = TN/(TN + FP)     [2] 
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Where; TP, FN, TN, FP denote true positive, false negative, true negative and false positive 

respectively. 

As a final step, we applied a wrapper feature selection approach, viz. Support Vector Machines 

- Recursive Feature Elimination, to automatically choose the optimal subset of features that yield 

high classification accuracy. SVM-RFE is a robust wrapper feature selection technique that uses 

an objective decision function (1/2)||w||2 of SVMs to select optimal nested subset of features 

ordered by their discriminatory ability (Guyon et al., 2002). It uses backward feature elimination 

strategy, where a full set of features are used as the starting point of feature selection and features 

that cause changes in the decision function are progressively eliminated. At each iteration, the 

ranking scores of features are computed from coefficients of the weight vector w and the features 

with least score wi
2 are recursively eliminated (where wi

2 represents the corresponding ith 

component of w). Unlike other feature selection techniques, SVM-RFE uses mutual information 

between features and the decision function is based solely on support vectors, thus eliminating 

orthogonality assumptions (Guyon et al., 2002, Pal and Foody, 2010). A detailed discussion of 

SVM-RFE can be found in Guyon et al. (2002) and Pal (2006). 

2.2.4. SVM classification and validation 

The SVM classification algorithm was applied to verify that selected wavelengths by the 

previous analysis can reliably discriminate P. hysterophorus (PH) and co-existing species. This 

was done to determine the optimal hyperplane with maximum margin (Boser et al., 1992). The 

procedure ensures that the samples with class labels ±1 are located on the either side of the 

hyperplane and the distance (or optimal margin) of the closest training vectors (support vectors) 

is maximized, thus reducing the generalization error of the overall classifier (Vapnik, 1999). A 

training sample N can be represented by (yi, xi), i = 1, 2,..N), where yi represents class labels ±1 

and xi is a feature vector with n components. The linear SVM classifier is represented by the 

function f(x, α) → y, where α is the parameter of the classifier (Mercier and Lennon, 2003).  In 

a nonlinearly separable problem, a regularization parameter C and kernel parameter σ are 

introduced. C is used to control the trade-off between the maximization of the margin between 

the training data vectors, decision boundaries and margin errors of the training data. On the other 

hand, σ is used to control the width of the kernel (i.e. polynomial, radial basis function (RBF) or 

sigmoid kernel), allowing SVM to distinguish multi-modal classes in a high dimensional space 

(Foody and Mathur, 2004). Decomposition approaches such as one-against-one and one-against-

all have been developed to deal with multiple-class classification problems, since the original 

SVMs were developed for two-class problems. One-against-one approach applies (M(M −
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1))/2  classifiers on each pair of classes and the mostly computed class label is kept for each 

vector, while one-against-all approach iteratively applies M classifiers on each class against the 

rest. M is the number of classes (Hsu and Lin, 2002, Mercier and Lennon, 2003). We used one-

against-all approach with an RBF kernel and a 10-fold cross validation (CV) within “kernlab” R 

package (Karatzoglou et al., 2005). The tuning parameters for the classification model were 

selected by evaluating candidate pairs of a constant σ directly estimated from the training data 

by “sigest” function within “kernlab” and “caret” packages (Kuhn, 2008), and nine values of 

possible C parameters, i.e. 0.25, 0.5, 1, 2, 4, 8, 16 and 32. Additional classification experiments 

were performed on entire spectral dataset and a combination of 20 best spectral bands ranked by 

SVM-RFE for comparison with the hierarchical approach. Classification accuracy was assessed 

using confusion matrix and 95% confidence intervals (Congalton, 1991, Foody, 2002). 

2.3. Results 

2.3.1. Kruskal-Wallis ANOVA 

Kruskal-Wallis ANOVA was used to determine if there are any statistical differences in spectral 

signatures of PH and co-existing species at p < 0.05. The analysis rejected the null hypothesis 

that there are no significant differences between the spectral signatures of PH and co-existing 

species. A post hoc Dunn’s test was used to determine the pairwise significance of each spectral 

band. The results are shown in Figure 3 and Table 3. Figures 3a, b, and c indicate the pairwise 

significance between spectral signatures of PH and each of the co-existing species, i.e. Acacia 

Trees - AT, Grass species - GS and Other Plant Species - OPS respectively. The grey areas 

highlight the spectral bands with significant difference between the PH and each of the co-

existing species. The number of significant spectral bands were partitioned into six broad spectral 

regions (blue: 350 – 449nm, green: 450 – 549nm, red: 550 – 649nm, red-edge: 650 – 749nm, 

near infrared: 750 – 1299nm and shortwave infrared: 1300 – 2500nm) as suggested by   (see 

Table 3). Figure 3d indicates the frequency of significant spectral bands between all possible 

species pairs. The significant spectral bands at p < 0.05 with higher frequency of occurrence (i.e. 

maximum grey shading) have greater statistical separability for PH and all other co-existing 

species. 



23 

 

 

Figure 3. Kruskal-Wallis ANOVA and post hoc Dunn’s test results for P. hysterophorus 

(PH) and Acacia Trees (AT) (a); PH and Grass species (GS) (b) and PH and Other Plant 

Species (OPS) (c). The shaded areas highlight all spectral bands that are significant for 

discriminating PH and other species at p < 0.05. The frequency of occurrence of significant 

spectral bands (d), where PH can be discriminated from all other co-existing species. 

Table 3. Number of significant wavelengths for each pair of classes separated by broad 

spectral regions suggested by Fernandes et al. (2013). T denotes total number of input spectral 

bands. 

Species pairs No. of significant Spectral bands at p<0.05 

Blue 

(45T) 

Green (100T) Red (100T) Red-edge (100T) NIR (550T) SWIR (738T) 

PH vs. AT 100% 85% 64% 95% 100% 56% 

PH vs. GS 100% 78% 50% 93% 100% 48% 

PH vs. OPS 49% 26% 21% 71% 67% 31% 

Generally, the results indicate that PH can be discriminated from its co-existing species in most 

spectral bands located in the visible, NIR and SWIR regions of the electromagnetic spectrum. It 

is clear from the results that most wavelengths in the green, red-edge and NIR regions were 
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mostly significant for discrimination of PH from co-existing species. The spectral signatures for 

PH and OPS seem to be closely related, since only a few wavelengths were significant in all 

spectral regions, with the exception of the red-edge region, 71% (n = 71) (see Table 3). When 

all possible pairs of species were considered, the results indicated that most spectral bands in the 

red-edge and NIR regions provided relatively higher statistical separability, followed by the 

SWIR and blue, green and red regions (see Figure 3d). This shows that the red-edge and NIR 

regions of the electromagnetic spectrum have a greater potential to discriminate the species than 

other regions. Overall, statistical significance test using Kruskal-Wallis ANOVA and post hoc 

Dunn’s test, reduced data dimensionality by 63.32%, i.e. n = 1034. A total of 599 spectral bands 

were carried over for further analysis. 

2.3.2. Inter-band correlation and AUC-ROC variable importance 

The spectral bands selected by Kruskal-Wallis ANOVA and post hoc Dunn’s test, i.e. n = 599; 

were highly correlated (see Figure 4). We therefore implemented Kendall’s τ inter-band 

correlation analysis to identify and remove spectral bands with a correlation coefficient of >0.9. 

These were considered redundant and added no independent information to the discrimination 

of PH and co-existing species. 

 

Figure 4. Kendall's τ correlation analysis 
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The spectral bands resulting from inter-band correlation analysis were assessed for their 

individual discriminative ability of the species using AUC-ROC variable importance. The results 

are given in Table 4. 

Table 4. Selected spectral bands and their associated AUC-ROC importance. 

 Spectral bands (nm) Total 

Blue Green Red Red-edge NIR SWIR 

Kendall’s τ 

<0.9 

427 537 562 658; 685;707 1115 1966; 1971; 1982;  1990; 2003; 

2005; 2013 

14 

AUC-ROC 

variable 

importance 

0.89 0.94 0.95 0.93;0.95;0.99 0.99 0.96; 0.96; 0.96; 0.96; 0.95; 0.95; 

0.95 

 

As indicated in Table 4, inter-band correlation and AUC-ROC analysis identified distinct 

spectral bands with high individual discriminative ability for PH and co-existing species, n = 14. 

Several spectral bands, i.e. seven; were selected in the SWIR region, three in the red-edge region 

and one in the blue, green, red and NIR regions respectively. AUC-ROC variable importance for 

spectral bands in most regions was high, i.e. >0.9, with the exception of the blue region. Inter-

band correlation and AUC-ROC variable importance were essential to further reduce 

dimensionality and collinearity prior to wrapper-based feature selection and to identify potential 

spectral bands for discrimination of PH and other co-existing species. 

2.3.3. SVM-RFE 

SVM-RFE was used as a final step in our hierarchical approach, and to judge the value of our 

approach with the same dataset consisting of highly dimensional hyperspectral data, n = 1633. 

The goal was to select a subset of spectral bands which together improve classification accuracy 

from filtered spectral bands (by statistical analysis above) and entire spectral dataset. SVM-RFE 

generated nested subsets of spectral bands that yield maximum CV accuracy.  Based on 10-fold 

CV analysis, SVM-RFE selected 10 out of 14 spectral bands with better CV accuracy of 83.12%, 

compared to other subset sizes that were evaluated: 5 (79.34%), and 14 (79.15%). The optimal 

subset from the hierarchical approach consisted of red-edge band, 707nm which had the highest 

rank, followed by NIR band, 1115nm, SWIR bands, 1971nm, 1982nm, 1990nm, and 1966nm, 

red-edge band, 685nm and two SWIR bands, 2003nm, 2013nm and 2005nm accordingly. On the 

other hand, SVM-RFE on the entire dataset ranked all spectral bands according to their relative 

discriminatory importance for classification of P. hysterophorus and co-existing species (i.e. 
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acacia, grass and other plants) and yielded better overall 10-fold CV accuracy of 89.16%. Other 

evaluated subsets of spectral bands were 20 (63.19%), 50 (64.39%), 100 (62.82%), 500 

(83.76%), 1000 (78.76%), and 1500 (87.2%) (Figure 5). We selected and tested a combination 

of 20 best spectral bands ranked by SVM-RFE based on previous studies (Pal, 2009, Pal, 2006) 

and entire spectral dataset for classification and comparison with our hierarchical approach. 

 

Figure 5. Spectral subset sizes evaluated by SVM-RFE on statistically filtered and entire 
spectral datasets. 

2.3.4. SVM Classification and validation 

SVM classifier was used to determine the classification accuracy using entire spectral dataset, a 

subset of spectral bands selected by our hierarchical approach and a combination of 20 best 

spectral bands ranked by SVM-RFE. Each dataset was partitioned by stratified random sampling 

to yield a 70% (n = 107) training and 30% (n = 42) validation datasets. Results (in Table 5) 

indicate that our hierarchical approach yielded a superior overall classification accuracy of 

83.33% (95% CI = 68.64%, 93.03%). On the other hand, classification results using the entire 

spectral dataset (in Table 6) and a combination of 20 best spectral bands from SVM-RFE (in 

Table 7) had inferior overall accuracies of 78.57% (95% CI=63.19%, 89.7%) and 76.19% (95% 

CI=57.96%, 86.14%) respectively.  
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Table 5. Confusion matrix for hierarchical approach  

Prediction Reference Totals UA (%) 

PH AT GS OPS  

PH 17 0 1 1 19 100.0 

AT 0 7 0 1 8 50.0 

GS 0 1 4 0 5 75.0 

OPS 2 1 0 7 10 100 

Totals 19 9 5 9 42  

PA (%) 94.73 88.88 60.0 44.44   

OA (%) 83.33%   (95% CI = 68.64%, 93.03%)   

 

Table 6. Confusion matrix for entire spectral dataset 

Prediction Reference Totals UA (%) 

PH AT GS OPS  

PH 18 0 0 0 18 100.0 

AT 1 8 2 5 16 50.0 

GS 0 1 3 0 4 75.0 

OPS 0 0 0 4 4 100 

Totals 19 9 5 9 42  

PA (%) 94.73 88.88 60.0 44.44   

OA (%) 78.57% (95% CI=63.19%, 89.7%)   
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Table 7. Confusion matrix for a combination of 20 spectral bands ranked by SVM-RFE 

Prediction Reference Totals UA (%) 

PH AT GS OPS  

PH 16 0 0 2 18 88.88 

AT 0 9 2 2 13 69.23 

GS 0 0 1 0 1 100.0 

OPS 3 0 2 5 10 50.0 

Totals 19 9 5 9 42  

PA (%) 84.21 100.0 20.0 55.55   

OA (%) 76.19% (95% CI=57.96%, 86.14%)  

 

2.4. Discussions 

The major limitation in the application of hyperspectral remote sensing for discrimination of 

IAP’s has been the inherent multidimensionality in the dataset, with most studies opting for 

multispectral data (Laba et al., 2008, Viana and Aranha, 2010, Lantz and Wang, 2013). Hence, 

studies on techniques for dimensionality reduction and redundancy removal have recently 

become dominant in recent remote sensing literature (Adam and Mutanga, 2009, Pal and Foody, 

2010, Jia et al., 2011, Adjorlolo et al., 2013, Deng et al., 2013).  A growing interest in the 

potential of hyperspectral data is particularly due to the increasing current and planned 

availability of open-license hyperspectral data for land cover mapping and monitoring, e.g. 

Hyperion and Environmental Mapping and Analysis Program (EnMap). Additionally, due to 

their adverse impacts on food security, human health and biodiversity and ecosystem services, 

IAP’s such as P. hysterophorus have become a global concern. A number of studies (Khan et al., 

2012, Reddy et al., 2009) have recommended eradication of P. hysterophorus in its early growth 

stage. Therefore, this Chapter aimed to identify a spectral subset of bands with high 

discriminatory ability and therefore potential for early detection and discrimination of juvenile 

P. hysterophorus using satellite or airborne hyperspectral imagery. To achieve this, we applied 

a novel approach that integrates Kruskall-Wallis ANOVA, inter-band correlation and AUC-ROC 

analysis and SVM-RFE for selection of optimal spectral subset of bands from highly dimensional 

data, n = 1633. The approach was benchmarked against entire spectral dataset and a combination 
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of 20 best spectral bands ranked by SVM-RFE. A classification accuracy was used as an 

evaluation measure.  

Results in this study showed that using the proposed approach, statistical analysis and wrapper-

based models can be used conjunctively to select a minimum but optimal subset of spectral bands 

for discrimination of P. hysterophorus and co-existing species. The first stage of the hierarchical 

approach used Kruskal-Wallis ANOVA and post hoc Dunn’s test at p < 0.05 to identify spectral 

bands that are significantly different between all species-pairs (i.e. PH and AT; PH and GS, and 

PH and OPS). Although, results suggested that the spectral signatures of P. hysterophorus and 

co-existing species are statistically different in many bands (n = 599), the frequency of 

statistically different spectral bands was higher in the NIR and red edge regions (see Figure 3 

and Table 3). This finding is similar to previous studies (Schmidt and Skidmore, 2003, Jia et al., 

2011) and reinforces the importance of these regions for species discrimination.   

This study did not directly quantify the biochemical and biophysical properties of P. 

hysterophorus and co-existing species, however, the observed significant differences in 

reflectance and absorption properties in various spectral regions show the effect of such 

properties. The significant differences in reflectance in the red edge region can be attributed to 

differences in chlorophyll concentration and leaf area index between juvenile P. hysterophorus 

and co-existing species. This assertion is evidenced by physiological properties of juvenile P. 

hysterophorus, that are characterized by a short stem (2 - 6cm), about four to nine large dark 

green leaves spread on or close to the ground and each plant has a diameter of 6 to 30cm (Khan 

et al., 2012, Kumari and Kohli, 1987). These physiological properties ensured that effect of 

background soils (that otherwise would have caused reduced red-edge reflectance) is minimized. 

Also, due to its competitive nature relative to co-existing species, the differences in total pigment 

concentration, chlorophyll-a and nitrogen content cause significant differences in reflectance in 

the blue, green and red regions respectively (Blackburn, 1998, Gamon et al., 1997, Faurtyot and 

Baret, 1997). Canopy structure and water content in P. hysterophorus canopies were responsible 

for significant differences in the NIR region (Schmidt and Skidmore, 2003). Other subtle 

biochemical compositions such as  water content, cellulose, protein, starch, and sugars may have 

caused significant differences in the SWIR (Curran, 2001, Carter, 1994).  Overall, the results of 

Kruskal-Wallis ANOVA indicate that P. hysterophorus can be discriminated against its co-

existing species in many (n = 599) spectral bands. The differences in canopy and leaf structure 

of P. hysterophorus and co-existing species are indicated by Figure 6 below. 
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Figure 6. Differences in canopy and leaf structures of P. hysterophorus (a), Acacia Trees 

(b), Grass Species (c) and Other Plant Species (d) 

The retained spectral bands by Kruskal-Wallis ANOVA had high dimensionality and were 

highly correlated (see Figure 4). AUC-ROC variable importance was adopted to evaluate each 

un-correlated spectral band for its predictive worth before being considered for further analysis. 

All un-correlated spectral bands had an AUC-ROC variable importance of >0.8, indicating their 

high discriminatory ability (see Table 4). The conjunctive use of inter-band correlation and 

AUC-ROC variable importance was useful for retaining distinct spectral bands with high 

individual discriminatory ability, thus overcoming the shortcomings of statistical filters that do 

not take class labels into consideration as noted by Pal (2009) and Deng et al. (2013). Most of 

these spectral bands were located in the SWIR (n = 6) and red edge region (n = 3). The statistical 

filters were computationally efficient and spectral bands selected can be evaluated with different 

classifiers or wrapper-based feature selection techniques. As a final step of the hierarchical 

approach, SVM-RFE was adopted to select the optimal subset of spectral bands from the 

statistically filtered spectral bands by previous analyses. As shown in Table 7, this consisted of 

10 spectral bands located in the red-edge region (685nm and 707nm), NIR region (1115nm) and 

SWIR region (1971nm, 1982nm, 1990nm, 1966nm, 2003nm, 2013nm and 2005nm). For 
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management of IAP’s, these results imply that the selected subset of spectral bands have potential 

to effectively map P. hysterophorus in its early growth stage using satellite and/or airborne 

hyperspectral sensors.  

SVM classification was used to assess the performance of the hierarchical approach, against 

entire spectral dataset (n = 1633) and combination of 20 best spectral bands ranked by SVM-

RFE (see Table 8). The hierarchical approach yielded the highest overall classification accuracy 

of 83.33%, outperforming both entire spectral dataset (78.57%) and combination of 20 best 

spectral bands from SVM-RFE (76.19%). Although SVM classifier has been shown to be robust 

to Hughes effect in other studies (Pal and Mather, 2004, Melgani and Bruzzone, 2004), this was 

not the case in this study. The lower classification accuracy of the entire spectral dataset may be 

attributed to its sensitivity to dimensionality, a finding consistent with Pal and Foody (2010) and 

Zhang and Ma (2009). Furthermore, the higher training (cross-validation) accuracy of entire 

spectral dataset, and subsequent lower classification accuracy are signs of over-fitting and 

generalization errors due to high number of correlated spectral bands. The combination of 20 

best spectral bands from SVM-RFE were all within red-edge region (650nm – 749nm) and NIR 

(750nm – 1299nm) and were highly correlated, showing that SVM-RFE was not able to remove 

redundancy in the data. As a result, classification accuracy was compromised. The second stage 

of the hierarchical approach removed highly correlated bands and determined their individual 

discriminatory importance. This discriminatory importance of spectral bands for discrimination 

of P. hysterophorus is essential for land managers since it provide valuable information relating 

to biophysical properties of the species and may assist in choosing an appropriate sensor for 

mapping (Kuo et al., 2014). 

Previous studies (Zhang and Ma, 2009) observed that SVM-RFE performs better than Modified 

Recursive SVM (MR-SVM) when feature space is limited to 5 to 10 spectral bands. Similarly, 

Pal and Foody (2010) suggested that a small subset of spectral bands (i.e. <12) would achieve 

comparable accuracy with entire dataset when there is a small training data available (i.e. <25 

pixels per class). The higher classification accuracy obtained by the hierarchical approach in this 

study can be attributed to fewer (n = 14) statistically identified spectral bands with high 

discriminatory ability before SVM-RFE was applied, which then selected 10 optimal spectral 

bands. Prior statistical analysis ensured that kernel computation was optimized, hence reduced 

computation time of SVM-RFE (Zhang and Ma, 2009). Overall, the results suggest that using 

statistical filters and SVM-RFE feature selection conjunctively, may be beneficial for optimizing 
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the performance of SVM-RFE, improving classification accuracy of IAP’s and reducing 

computation costs (see Table 8).  

Table 8. Comparison of performance between the hierarchical approach, SVM-RFE and entire 

spectral dataset.  

 

Feature selection 

approach 

Subset sizes and performance  Tuning parameters  Training time 

(s) Number of spectral 

bands 

Accuracy %  C σ 

Entire spectral 

dataset 

1633 78.57   2 0.0008693828 282.45 

SVM-RFE 20 (Top best) 76.19  8 0.3173481438 15.73 

Hierarchical 

approach 

10 83.33 4 0.3547367 13.40 

Note: Training time was based on 64bit computer, with Intel Core i7 processor, CPU @ 2.2 GHz and 16GB RAM. 

2.5. Conclusions 

The objective of this chapter was to identify an optimal spectral subset of bands which maintains 

discriminative properties of the entire spectral dataset and yield better classification accuracy.  

To achieve this, we applied a novel approach that integrates Kruskall-Wallis ANOVA, inter-

band correlation and AUC-ROC analysis and SVM-RFE for selection of optimal subset of 

spectral bands from highly dimensional data, n = 1633. Results suggest that using the 

hierarchical approach, statistical analysis and wrapper-based technique, i.e. SVM-RFE  can be 

used conjunctively to select minimum but optimal subset of spectral bands for discrimination of 

juvenile P. hysterophorus and co-existing species. At each stage of analysis, the hierarchical 

approach identified useful spectral bands offering greatest capability for discriminating all 

species-pairs. Therefore, these spectral bands have potential to discriminate juvenile P. 

hysterophorus and its co-existing species using current and next generation satellite and airborne 

hyperspectral sensors, offering potential for early detection and effective control of P. 

hysterophorus. We therefore conclude that the use of statistical filters and SVM-RFE can 

effectively overcome the problems of multidimensionality, computation and to some extent 

collinearity when compared to using SVM-RFE on canopy hyperspectral data. In addition, 

improved SVM classification accuracy was realized when using spectral subset selected by the 

hierarchical approach, than entire spectral dataset and a combination of 20 best spectral bands 

ranked by SVM-RFE. Although, it was not the objective of this study, the lower classification 

accuracy observed when entire spectral data is classified provide evidence that SVM classifier 
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is sensitive to Hughes effect. Therefore, feature selection prior to classification when n<p can 

greatly improve classification accuracy, even when robust classifiers are used.  Results in this 

study are valuable for operational discrimination and mapping of P. hysterophorus in its early 

growth stage using airborne and satellite hyperspectral sensors, thus may aid effective control 

and eradication the species. 
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CHAPTER 3 

EVALUATING THE CAPABILITY OF LANDSAT 8 OLI AND SPOT 6 

FOR MAPPING INVASIVE ALIEN SPECIES IN THE SAVANNA 

LANDSCAPES OF KWAZULU-NATAL. 

 

3.1. Introduction 

Globally, invasive alien plants (IAP’s) species pose major threats to ecosystems, biodiversity, 

agricultural production systems and socioeconomic development imperatives such as sustainable 

human livelihoods. In particular, Parthenium hysterophorus (Parthenium weed) is one of the 

seven most aggressive and problematic weeds in the world (Patel, 2011). The allellopathic nature 

of the species, has seen it rapidly colonising disturbed areas such as abandoned croplands, 

building peripheries, roadsides, railway-tracks, fallow agricultural areas and overgrazed lands, 

waste lands and cultivated fields (McConnachie et al., 2011). As such, it has caused decline in 

pasture production (Dhileepan, 2007), dry grass biomass (Nigatu et al., 2010), and natural 

habitats and biodiversity (Patel, 2011). Under favourable conditions, P. hysterophorus may 

geminate, grow and flower in most seasons of the year (Dhileepan, 2007).  As a result, research 

into optimal control mechanisms has increased in effort to contain and eradicate the species 

(Dhileepan, 2007, Khan et al., 2012, Reddy et al., 2009).  

Effective management of P. hysterophorus and conservation planning depends on accurate and 

up-to-date information relating to its distribution patterns and patch sizes. Spatial distribution 

and patch sizes information is critical for understanding spatial and structural variability of IAP’s 

in the landscape (Turner, 2005). In addition, accurate information about the spatial distribution 

and patch sizes would be useful for management and control of P. hysterophorus, and may aid 

proper planning and allocation of resources, hence site specific weed management.  Thus, such 

(spatial distribution and patch sizes) information about P. hysterophorus would be invaluable to 

a wide range of specialists and non-specialists including environmental researchers, conservation 

and resource managers, and policy makers. However, such information has been limited or non-

existent in the past due to accessibility restrictions and cost of traditional methods (Franklin, 

2010). These methods involve point-based field surveys and manual digitising from aerial 

photographs are often laborious, time consuming, and costly, and have become less ideal for 

characterising structural properties of IAP’s. Consequently, landscape and patch metrics based 

on remote sensing data have become popular since they are easily interpretable and better depict 

the changes in environmental resources and habitats (Kent, 2009). Landscape and patch metrics 
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calculated from FRAGSTATS spatial analysis program (McGarigal et al., 2002) have recently 

been deemed useful for quantifying the structure of landscapes (Kupfer, 2012), hence can be 

used to characterize the distribution patterns and patch sizes of P. hysterophorus. Satellite remote 

sensing data overcomes the limitations of the traditional methods because of their capability to 

provide data at various spatial and spectral resolutions in frequent and consistent time intervals. 

Remotely sensed data thus provides comprehensive areal coverage, contain quantitative 

information about the functional and structural characteristics of vegetation and present 

opportunities for accurate and timeous mapping of P. hysterophorus (Underwood et al., 2003). 

However, the accuracy of mapping IAP’s is a function of several factors including spatial 

heterogeneity across landscapes, habitat types and variability of patch sizes (Dieleman and 

Mortensen, 1999, Smith et al., 2002).  In addition, the inherent characteristics of the data such 

as its spatial and spectral configurations are fundamental in reliably determining IAP’s patches 

and distribution. These factors also affect the subsequent landscape and patch metrics calculated 

from the data.  

As noted by He et al. (2011), the spatial resolution determines the smallest object that can be 

mapped and the accuracy thereof. Jensen (1983) and Dorigo (2012) note that the smaller the 

spatial resolution, the greater the resolving power of the data. This explains higher mapping 

accuracies obtained with very high resolution data (i.e. <1m) from IKONOS, Rapid Eye, 

Worldview-2 and QuickBird sensors (Adelabu et al., 2013, Lantz and Wang, 2013). However, 

according to  Hsieh et al. (2001), this is not always the case since the higher spatial resolution 

may complicate the classification process by introducing intra-species spectral variability, 

causing reduction in mapping accuracy. In addition, such data are costly for operational 

applications over large areas and require additional processing capabilities (Jensen, 1983).  

Alternatively, medium (20 - 30m) and high (5 - 10m) spatial resolution data from heritage 

missions such as Landsat and Satellite Pour l’Observation de la Terre (SPOT) have visible and 

near Infrared (NIR) bands that are useful for mapping vegetation species. Additionally, they are 

available at low or no cost for civil applications (Table 1). Data from Landsat has been applied 

extensively for land cover mapping (Bradley and Mustard, 2005, Wessels et al., 2004), 

vegetation monitoring (Yang et al., 2013, Yang et al., 2012), species modelling and mapping 

(Zong et al., 2010, Viana and Aranha, 2010), among others.  Landsat has more than four decades 

of medium resolution data covering the globe, while SPOT has about 29 years of relatively high 

resolution data. Recently launched sensors from these missions; Landsat Operational Land 

Imager (2013); hereafter OLI, and SPOT 6 (2013) continue to capture data on phenological, 



36 

 

functional and structural characteristics of vegetation sustainably and cost efficiency. However, 

the usefulness of the spatial and spectral configurations (i.e. band positions and bandwidths) of 

these sensors for mapping the distribution and patch sizes of P. hysterophorus is to the best of 

our knowledge poorly understood.  

Various methods have been developed in the past few decades to improve classification accuracy 

in IAP’s mapping using multispectral data acquired by different sensors. These algorithms are 

designed to take advantage of all spectral information contained in multivariate data to 

distinguish different land cover classes. Traditional parametric algorithms such as Maximum 

Likelihood have been extensively used for extraction of land cover information since 1980s 

(Lillesand et al., 2014). However, such algorithms do not take into account the complexity of 

class distributions in multiple datasets, i.e. non-normality and multimodality and perform poorly 

with limited training data (Gavier-Pizarro et al., 2012, Cho et al., 2012). Since it is often difficult 

to acquire large training samples due to cost, time, and accessibility (Adam and Mutanga, 2009), 

non-parametric algorithms such as Artificial Neural Networks (Atkinson and Tatnall, 1997, 

Carpenter et al., 1997), Spectral Angle Mapper (SAM), Random Forests (Breiman, 2001), and 

Support Vector Machines (Vapnik, 1999, Hsu et al., 2003, Burges, 1998) have recently become 

attractive for mapping vegetation at species level (Yang et al., 2011, Adelabu et al., 2013, 

Adjorlolo et al., 2012a). 

The aim of this chapter was to determine the capability of multispectral data for providing useful 

information pertaining to the distribution and patch sizes of IAP species, Parthenium 

hysterophorus. Specific objectives were to evaluate the capabilities (spatial and spectral 

configurations) of OLI and SPOT 6 data for mapping P. hysterophorus and to compare landscape 

and patch metrics from these datasets, valuable for effective land management, conservation 

planning and site specific weed management. Support vector machines (SVMs) was used for 

classifying both datasets, because of its capability to handle complex, multi-collinear, and non-

linear class distributions, and works better with limited training samples as compared to 

traditional parametric algorithms (Foody and Mathur 2004; Yang et al. 2011; Adelabu et al. 

2013).  

3.2.  Data and materials 

3.2.1. Data description 

3.2.1.1.Remotely sensed data 
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The Landsat 8 Operational Land Imager OLI multispectral scene of path 167 and row 79 was 

acquired on February 12, 2014 at Processing Level 1T, i.e. Terrain Corrected and geo-rectified 

to World Geodetic System (WGS) 84 datum and Universal Transverse Mercator (UTM) zone 

36N coordinate system prior delivery. The image had minimal cloud cover (2.65%) and a root 

mean square (RMS) error of 4.701 pixels. In addition, an ortho-rectified SPOT 6 multispectral 

scene was acquired on April 28, 2013 and was delivered in WGS84/UTM zone 36S coordinate 

system. Both images differed in spatial, spectral and radiometric configurations as indicated in 

Table 9. 

Table 9. Landsat 8 OLI and SPOT 6 characteristics. 

Sensor Spatial 

Resolution 

Spectral regions Spectral 

width 

(FWHM) 

Swath 

width 

Quantization  

Landsat 8 OLI 30m Coastal/aerosol blue (430nm - 

450nm) 

15.98nm 185km 16 bits 

  Blue (450nm - 510nm) 60.04 nm   

  Green (530nm - 590nm) 57.33 nm   

  Red (640nm - 670nm) 37.47 nm   

  NIR* (850nm - 880nm) 28.25 nm   

  SWIR1* (1570nm - 1650nm) 84.72 nm   

  SWIR2* (2110nm - 2290nm) 186.66 nm   

SPOT 6 6m Blue (450 nm - 520 nm) 166.0 nm 60km 12 bits 

  Green (530nm - 590nm) 60.6 nm   

  Red (620nm - 690nm) 70.0 nm   

  NIR* (760nm - 890nm) 121.1 nm   

 

3.2.1.2. Training and validation data  

Training and validation data were obtained from the field using a standard handheld GPS with 

±3m accuracy (see Appendix 2), and true colour aerial imagery with a 0.5m spatial resolution. 

GPS points were collected from P. hysterophorus patches greater than 5m. The data were 

partitioned into 70% training and 30% validation following stratified random sampling (Table 

10).  
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Table 10.  Training and validation datasets for classifying P. hysterophorus. 

Classes Class code No. of training 

samples 

No. of testing 

samples 

P. hysterophorus PH 85 36 

Other Land cover OLC 87 36 

Total  172 72 

Note: OLC included bare land, built-up, grassland, dense vegetation, shrub-lands, wetlands and water areas. 

3.3. Methods 

3.3.1. Pre-processing 

Landsat 8 OLI image was re-projected to WGS84/UTM zone 36S, to match the SPOT 6 image. 

In addition, Landsat 8 OLI bands were stacked in the following order: coastal/aerosol blue, blue, 

green, red, near-infrared (NIR), shortwave infrared 1 (SWIR1) and shortwave infrared 2 

(SWIR2). Atmospheric correction was performed on the both Landsat 8 OLI and SPOT 6 

datasets using Fast Line-of-Sight Atmospheric Analysis for Spectral Hypercubes (FLAASH) 

module in ENVI (Cooley et al., 2002).  

3.3.2. Support Vector Machines (SVM) Classification 

Support Vector Machine (Burges, 1998, Hsu et al., 2003, Vapnik, 1999) is a state-of-the-art 

algorithm for data classification and regression. Several studies have compared the capabilities 

of SVMs with other algorithms for land cover classification (Foody and Mathur, 2004); species 

mapping (Adelabu et al., 2013) and invasive species distribution modelling and mapping  

(Pouteau et al., 2011, Gavier-Pizarro et al., 2012) with both multispectral and hyperspectral data. 

In its original form, SVM delineates two binary classes by fitting an optimal separating 

hyperplane to the training data in a multidimensional feature space (Janz, 2007). In this way, 

training samples with labels +1 and -1 are located on either side of the hyperplane and the margin 

between the closest training sample or support vectors and the hyperplane is maximised.  

A search for optimal hyperplane with maximum margin ensures that the generalization error of 

the overall classifier is minimised (Vapnik, 1999). In a multi-class problem, decomposition 

techniques such as one-against-one and one-against-all have been developed (Hsu and Lin, 

2002). In addition, a kernel function is used to project the input data into a higher dimensional 

space where the classes are not linearly separable. Linear, polynomial, radial basis function 

(RBF) and sigmoid kernels have been applied in literature, with RBF being common (Foody and 

Mathur, 2004, Krahwinkler et al., 2011, Kuo et al., 2014). A comprehensive mathematical 

description of SVMs is given in Burges (1998) and various SVMs variants as applied remote 
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sensing are reviewed in (Mountrakis et al., 2011). In this study, parameterisation was performed 

from “Kernlab” and “caret” packages (Karatzoglou et al., 2004) in R statistical software and 

classification performed in ENVI (Exelis Visual Information Solutions, Boulder, Colorado).  

3.3.2.1. Parameterisation of SVM Classifier  

The pixel values of known locations of P. hysterophorus extracted from the OLI and SPOT 6 

datasets respectively, were used to find optimal parameters for SVM classification. The proper 

selection of these parameters is necessary, since they both significantly affect the classification 

results (Kaya, 2013). A Gaussian Radial Basis Function K(x_i, x_j  =

 exp (−σ||x_i  –  x_j ||2), σ > 0, xi and xj are feature vectors (Hsu et al., 2003) which requires the 

user to specify a regularization parameter (C) and a kernel parameter (σ), was adopted. The role 

of C parameter is to control the trade-off between the maximization of the margin between the 

training data vectors and decision boundaries and margin errors of the training data. This 

parameter allows SVM to deal effectively with potential noise in the data and class-confusions 

(Van der Linden et al., 2010). A σ parameter, on the other hand; controls the width of the kernel, 

allowing SVM to distinguish multi-modal classes in a high dimensional space (Van der Linden 

et al., 2010, Foody and Mathur, 2004). A Gaussian RBF kernel is regarded a universal kernel; 

therefore SVM model with Gaussian RBF can separate complex class distributions. The 

effectiveness of Gaussian RBF kernel has been reported in literature, with high accuracies and 

average processing times (Foody and Mathur, 2004, Krahwinkler et al., 2011, Kuo et al., 2014). 

The optimal tuning parameters were selected by evaluating a grid of candidate tuning parameters 

ranging from 0.01 and 1000 with a 10 fold cross-validation (CV). The optimal parameters were 

selected based on highest CV performance of different pairs of C and σ (Rabe et al., 2010, 

Atkinson et al., 2014). 

3.3.3. Distribution and patch sizes of P. hysterophorus 

The patch sizes of IAP’s are required on a yearly basis in order to aid effective site-specific weed 

management and appropriate allocation of resources (Heijting et al., 2007). This study defines 

two patch size classes, i.e. small (0.36 – 0.5 ha) and large (>0.51 ha), detectable with both OLI 

and SPOT 6 in order to make the maps comparable without bias towards higher resolution data. 

We used Mann-Whitney U test to determine the null hypothesis that there is no significant 

difference between patch sizes calculated from OLI and SPOT 6. 

The calculations of distribution and patch sizes were performed in FRAGSTATS 4.0 (McGarigal 

et al., 2002). FRAGSTATS is a spatial pattern analysis program for quantifying the structure 
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(i.e. composition and configuration) of landscapes. Landscape metrics such as Total class area 

(CA), Class percent of landscape (PLand) and Patch density (PD) were used in this study to 

characterise the distribution of P. hysterophorus. CA is a measures of the extent of the landscape 

that is comprised of P. hysterophorus, i.e. landscape composition. PLand measures the 

proportion of total area occupied by P. hysterophorus; while PD measures the number of P. 

hysterophorus patches per 100 ha. Furthermore, metrics such as Largest Patch Index (LPI), 

Number of patches (NumPatches) and Patch area (PArea) were used to characterise patch sizes. 

LPI measures proportion of total area occupied by the largest patch of P. hysterophorus, 

NumPatches measures the number of P. hysterophorus and PArea is the area of every patch 

classified as P. hysterophorus (Luck and Wu, 2002). Detailed descriptions and equations of these 

metrics are provided in (McGarigal et al., 2002). 

3.3.4. Accuracy assessment and map comparisons 

In most image classification, an accuracy assessment using a confusion matrix and kappa 

statistics is often expected (Congalton, 1991, Foody, 2002). However, Pontius Jr and Millones 

(2011) argue that Kappa is redundant and misleading for practical applications and propose that 

Kappa and its variants should not be used for accuracy assessment in remote sensing studies. 

Instead, Pontius Jr and Millones (2011) recommend two mutually exclusive measures, viz. 

quantity difference and allocation difference, which can be easily computed with a Pontius 

Matrix available online at http://www.clarku.edu/~rpontius. According to Pontius Jr and 

Millones (2011), quantity difference refers to the amount of disagreement between the two maps 

(i.e. reference and comparison maps) that result from imperfect match in the proportions of the 

classes. Allocation difference on the other hand refers to the amount of disagreement between 

the two maps (i.e. reference and comparison maps) that result from imperfect match in the 

allocation of the classes given their quantities (Pontius Jr and Millones, 2011, Pontius Jr and 

Santacruz, 2014). Pontius Jr and Millones (2011) and Pontius Jr and Santacruz (2014) point out 

that the allocation difference proposed is vague since it may be caused by both pairwise class 

confusions and non-pairwise confusions. Consequently, they partitioned allocation difference 

into two other components, i.e. shift and exchange differences that are caused by non-pairwise 

confusions and pairwise confusions, respectively. For the reasons provided in Pontius Jr and 

Millones (2011), this study adopted exchange (Formulae 3 & 5) and quantity differences 

(Formulae 4 & 6) for error assessment of SVM classification results from OLI and SPOT 6 

because for shift to occur, at least 3 classes are required (Pontius Jr and Santacruz, 2014). In 

http://www.clarku.edu/~rpontius
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addition, a confusion matrix was used to determine producer’s (PA), user’s (UA) and overall 

accuracies (OA).  

ej 
= ∑ (ℰij+ℰji)  = 

2 × {[∑ MINIMUM(Cij,Cji)
J
i=1

 ]}

∑  
J
i=1

∑ Cij
J
J=1

 
J
j=1

   [3] 

Where; ej is the exchange difference for class j, which is the sum of all exchanges that involve 

class j, i.e. all the exchange from i to J in some pixels and a transition from j to i in other identical 

number of pixels. Cij is the number of pixels that are classified as i in a comparison map and j in 

reference. 

𝑞𝑗
=

|∑ (Cij− Cji)
J
i=1

| ×100%

∑  
J
i=1

∑ Cij
J
j=1

      [4] 

Where; q is the quantity difference for class j, in which ∑ (Cij −  Cji)
J
i=1  is the sum of the 

difference between column total and row total for class j. 

𝐸 =  
∑ ej

J
j=1

2
        [5] 

Where; E is the overall exchange difference and is divided by two since summation of the 

numerator double-counts the class-wise exchange difference.  

Q =  
∑ qj

J
j=1

2
       [6] 

Where; Q is the overall quantity difference, computed from the sum of class-wise quantity 

difference and divided by two since this process double-count the class-wise quantity difference.  

3.4. Results  

3.4.1. Parameterisation of SVM classifier 

The goal of parameterization was to identify the optimal regularisation C and kernel σ 

parameters, by systematically testing wide ranges of combinations using a 2-dimentional grid 

search with 10-fold cross validation accuracy (Janz, 2007, Rabe et al., 2010, Gavier-Pizarro et 

al., 2012). The optimal pairs of regularisation C and kernel σ parameters for both OLI and SPOT 

6 datasets; i.e. 100 and 0.1 respectively were selected by grid-search.  

3.4.2. SVM classification results 

Support vector Machine (SVM) classifier was used for mapping P. hysterophorus infestations. 

The results of the classification from OLI and SPOT 6 were overlaid on SPOT 6 image, with 
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other land cover represented by the background (Figure 7). A visual assessment of the maps in 

Figure 7 below showed that P. hysterophorus infestations estimated from SPOT 6 were lower 

than in OLI.     

 

Figure 7. P. hysterophorus infestations derived from Landsat 8 OLI (a) and SPOT 6 (b). 

 

3.4.3. Accuracy assessment and map comparisons 

The results of accuracy assessment using a confusion matrix (in Table 11) indicate that OLI had 

lower overall classification accuracy of 76.39% when compared to SPOT 6, 83.33%. OLI results 

for P. hysterophorus (PH) class had lower producer’s accuracy (PA) of 55.56% and higher user’s 

accuracy (UA) of 95.24%. On the other hand, SPOT 6 had higher PA, 72.22% and UA, 92.86% 

for the same class. By comparison, the PA for PH class was lower in OLI than in SPOT 6, while 

the UA was slightly higher in OLI and lower in SPOT 6, i.e. 2.38% difference. Table 3 shows 

confusion matrices of SVM classifications derived from OLI and SPOT 6. 

 

 

a b 
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Table 11. Confusion matrices for OLI and SPOT 6 datasets. 

 Landsat 8 

OLI 

Totals UA (%)  SPOT 6 Totals UA (%) 

PH OLC  PH OLC 

PH 20 1 21 95.24 26 2 28 92.86 

OLC 16 35 51 68.63 10 34 44 77.27 

Totals 36 36 72  36 36 72  

PA (%) 55.56 97.22   72.22 94.44   

OA (%) 76.39    83.33   

Note: OA, PA and UA denote Overall accuracy, Producer’s accuracy and User’s accuracy respectively.  

 

In addition to accuracy assessment by confusion matrix, two mutually exclusive components, 

i.e. quantity difference and exchange (allocation) difference as recommended by Pontius Jr et al. 

(2011) and Pontius Jr et al. (2014) were considered over kappa coefficient (Figure 8). P. 

hysterophorus classification from OLI had 10% quantity difference and 9% exchange difference. 

On the other hand, P. hysterophorus classification map from SPOT 6 had quantity and exchange 

differences of 13% and 5% respectively. In comparison, quantity difference in OLI was lower 

than in SPOT 6, whilst exchange differences were higher in OLI and lower in SPOT 6.    

 

Figure 8. Overall Quantity and Exchange difference for Landsat 8 (Left) and SPOT 6 
(Right). 

Receiver Operating Characteristic (ROC) curve variable importance (Kuhn, 2012) was 

computed to assess the relative contribution of each band to the classification accuracies of OLI 

and SPOT 6. The results (in Figure 9) indicate that band 5 (NIR band, 850nm - 880nm), band 3 

(green band, 530nm - 590nm) and band 2 (blue, 450nm - 510nm) of OLI had greatest importance 

of 0.69, 0.68 and 0.62 respectively. Other bands 1, 6, 4 and 7 had ROC importance of 0.59, 0.58, 
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0.57 and 0.55 respectively. On the other hand, the NIR (band 4, 760nm - 890nm), blue (band 1, 

450nm - 520nm) and red (band 3, 620nm - 690nm) bands of SPOT 6 showed the greatest 

importance, i.e. 0.56, 0.54 and 0.54 respectively mapping P. hysterophorus. The red band (band 

3, 620nm - 690nm) had the lowest importance of 0.53. 

 

Figure 9. Receiver Operating Characteristic (ROC) curve variable importance for OLI and 
SPOT 6. 

SVM classifications from OLI and SPOT 6 were compared using a contingency table (Table 12). 

The results indicate that both datasets correctly classified 70.83% of validation data, whilst only 

5.55% was correctly classified in OLI but misclassified in SPOT 6 and 12.5% was misclassified 

in OLI but not in SPOT 6. 

Table 12. Comparison of OLI and SPOT 6 data for mapping P. hysterophorus.  

  Landsat 8  

  Correct Incorrect ∑ 

SPOT 6 
Correct 51 (70.83%) 9 (12.5%) 60 (83.33%)) 

Incorrectly 4 (5.55%) 8 (11.11%) 12 (16.67%) 

∑ 55 (76.39%) 17 (23.61%) 72  

3.4.4. Distribution and patch sizes of P. hysterophorus 

P. hysterophorus maps from OLI and SPOT 6 were used to calculate the landscape and patch 

metrics using FRAGSTATS 4.0 program. The results calculated from OLI indicate that 16.22% 

(i.e. 26619.12 ha) of the total study area (i.e. 164096.46 ha) was invaded by P. hysterophorus; 
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the LPI was 0.26%, NumPatches was 29 607 and patch density was 18.04 patches per 100 ha. 

On the other hand, the metrics calculated from SPOT 6 indicate that 6.38% (i.e. 10440.30 ha) of 

the total study area (i.e. 163629.89 ha) was invaded by P. hysterophorus; the LPI was 0.15%, 

NumPatches was 37 959 and patch density was 23.19 patches per 100ha. In comparison, the 

metrics calculated from OLI were markedly higher than those from SPOT 6, with exception of 

patch density. The results of the patch sizes calculated from OLI and SPOT 6 are presented in 

Figures 10.  
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Figure 10. P. hysterophorus patch sizes calculated from OLI and SPOT 6. 

3.5. Discussions 

3.5.1. The capability of multispectral data for mapping P. hysterophorus 

Heritage missions such as Landsat and SPOT have a long record of remotely sensed data 

covering the globe. This study exploited the capabilities of the new data from these missions for 

mapping P. hysterophorus in an African savanna landscape. Despite their significant differences 

in spatial resolutions, the two have visible and infrared bands which are valuable for mapping 

vegetation species.  Hence, have potential to characterize P. hysterophorus infestations in the 

study area. The results indicated that SPOT 6 had better performance, 83.33% overall accuracy 

than OLI, 76.39% (Table 13).  
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Table 13. Summary of SVM classification results from OLI and SPOT 6.  

Dataset Performance of OLI and SPOT 6 bands SVM tuning parameters  

Number of  bands OA (%)    C σ Number of SVs 

Landsat 8 OLI 7  76.39  100 0.1 48 

SPOT 6 4  83.33  100 0.1 68 

McNemar’s (X 2) test 1.92      

OA= Overall accuracy; OD=Overall Disagreement, SVs=Support Vectors.  

 

OLI and SPOT 6 data showed different discriminatory abilities.  The lower producer’s accuracy 

in the PH class, i.e. 55.56% for OLI, than in SPOT 6, i.e. 72.22%, indicate higher thematic errors 

and uncertainty in OLI than SPOT 6. The reflectance of smaller patches of P. hysterophorus 

(than the pixel size of OLI) were likely overwhelmed by background reflectance from soils, co-

existing vegetation and other land cover, hence were omitted from PH class. The sporadic growth 

and easily dispersible seeds characteristic of P. hysterophorus (Javaid et al., 2009, Dogra et al., 

2011), and the availability of among others open disturbed land due to development of 

settlements, croplands and roads result in isolated and insignificant patches which caused 

spectral mixing within OLI bands. The thematic errors of omission (i.e. 1 - PA) in SPOT 6 were 

likely due to intra-species spectral variability (Hsieh et al., 2001) as a result of differences in P. 

hysterophorus growth stages. Such differences arise from species phenological characteristics 

that it can germinate, grow and flower any time of the year (Dhileepan, 2007), thus resulting in 

inconsistent spectral signature of P. hysterophorus within SPOT 6 image.  

User’s accuracy was slightly higher, i.e. 95.24% in OLI than in SPOT 6, i.e. 92.86%, thus 

implying reliability of both datasets and lower thematic errors of commission (i.e. 100 - UA). 

OLI’s spectral capability to sample regions from 430nm to 2290nm provided additional 

information for separating P. hysterophorus from other land covers. ROC curve variable 

importance (in Figure 9) indicate that additional OLI's SWIR bands, i.e. band 6 (SWIR 1, 

1570nm - 1650nm) and 7 (SWIR 2, 2110nm - 2290nm) had greater than 0.55 ROC importance 

in discriminating P. hysterophorus and other land covers. As noted by (Adjorlolo et al., 2012a), 

the usefulness of SWIR for discriminating species is not apparent, however it is often selected 

for discriminating species. In classifying shrubs, meadow and low density vegetation from 

Landsat TM and SPOT, Basham May et al. (1997) found that the presence of SWIR band in TM 

resulted in greater accuracy. In addition, Adjorlolo et al. (2012a) observed that the SWIR bands 

around 1540nm, 2280nm, and 2300nm were important for discriminating grass species. The 

greatest importance observed in bands 5 (NIR band, 850nm - 880nm), 3 (Green band, 530nm - 

590nm) and 2 (blue band, 450nm - 510nm) can be attributed to their sensitivity to leaf and canopy 

biochemical and biophysical characteristics. Canopy structure and water content affect spectral 
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properties in the NIR region of the electromagnetic spectrum (Schmidt and Skidmore, 2003). On 

the other hand, the reflectance properties in the visible region are mainly due to pigment 

concentration, chlorophyll and nitrogen content (Blackburn, 1998). OLI’s relatively narrow 

bands (bandwidth less than 60nm in the visible and NIR) as compared to SPOT 6 bands (see 

Table 9) also contributed to its better discriminatory ability and relatively lower commission 

errors (i.e. 1 – UA). Overall the findings in this study are consistent with (Taylor et al., 2011) 

who note that Landsat’s comprehensive sampling of the electromagnetic spectrum, spectral 

resolution and band positioning were more important in mapping IAP’s.      

Similarly, red (band 3, 620nm - 690nm) and NIR (band 4, 760nm - 890nm) bands of SPOT 6 

show the greatest separability with maximum ROC importance, i.e. 0.56 and 0.53 respectively 

in mapping P. hysterophorus (see Figure 5). Previous studies (Adelabu et al., 2013) observed 

that red and NIR bands from Rapid-Eye data were more important than red-edge band for 

mapping Colophospermum mopane and its coexisting species in a semi-arid environment. The 

blue (band 1, 450 nm - 520 nm) band showed similar importance as the red band. Slightly higher 

commission errors in SPOT 6 than OLI, were likely due its relatively broad bandwidths (all 

greater than 60nm) which resulted into spectral overlaps between P. hysterophorus and co-

existing species. According to Taylor et al. (2011) these spectral similarities may have negative 

impact on mapping accuracy. Although it was not within the scope of this study to compare the 

effectiveness of classification algorithms, SVM algorithm adopted in this study showed 

effectiveness in discriminating such spectral overlaps between P. hysterophorus and co-existing 

species. This is evident from the observed higher number of support vectors (68) with SPOT 6 

model as opposed to 48 in OLI model (see Table 13) which occurs when the classes are not 

separable (Rabe et al., 2010). Results in this study are thus consistent with previous studies that 

found that SVM was effective in handling complex, and non-linear class distributions (Yang et 

al., 2011, Foody and Mathur, 2004). Augmented by SVM algorithm, the broader and limited 

(only four) spectral bands of SPOT 6 performed better than OLI and were effective for reliably 

mapping P. hysterophorus.  

Overall, the results indicate that SPOT 6 had better capabilities in mapping P. hysterophorus 

than OLI. The inferior overall accuracy was due to lower PA resulting from spectral mixing of 

insignificant P. hysterophorus patches and other land cover. In terms of UA, OLI performed 

better than SPOT 6 due to additional coastal blue and SWIR bands and narrower bandwidths as 

compared to SPOT 6. Therefore, OLI’s spectral configuration was more superior to SPOT 6, and 

can be used to identify the possible locations of P. hysterophorus. Related studies (Pu and 
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Landry, 2012, Fernandes et al., 2014) found that additional and strategically positioned bands of 

Worldview-2 improved classification accuracy. SVM classification algorithm showed high 

effectiveness in discriminating spectral overlaps of P. hysterophorus and other land covers that 

occurred due to relatively broader SPOT 6 spectral bandwidths. ROC curve variable importance 

from both datasets showed that visible and NIR bands were more important in mapping P. 

hysterophorus. These results are consistent with (Adelabu et al., 2013, Adjorlolo et al., 2013) 

who indicated that visible and NIR bands show greater discriminatory power in classifying and 

mapping vegetation species.  

3.5.2. Addressing information needs for optimising control mechanisms 

The adverse impacts of IAP’s such as P. hysterophorus on agriculture, biodiversity, human well-

being and economy have necessitated investigations into different control and eradication 

mechanisms and their effectiveness thereof (Strathie et al., 2011, Khan et al., 2012, Kumari and 

Kohli, 1987). The paucity of spatial information about the distribution and patch sizes of IAP’s 

hinders progress in achieving effective eradication. This study assessed the capability of OLI 

and SPOT 6 in estimating the distribution and patch sizes of P. hysterophorus, valuable for 

evaluating the effectiveness and optimizing control and eradication mechanisms. The 

information on distribution and patch sizes is important for environmental research and 

conservation planning, site specific weed management (SSWM) and for understanding 

ecosystem diversity and habitat changes as a result of fragmentation by P. hysterophorus 

(Franklin, 2010, Turner et al., 2003, Koller and Lanini, 2005). The distribution and patch sizes 

of P. hysterophorus were calculated from OLI and SPOT 6 classification maps using 

FRAGSTATS program.  

Results from OLI indicated that approximately 16.22% of the study area is invaded by P. 

hysterophorus, while SPOT 6 indicated that only 6% of the study area is invaded. The 

discrepancies in the distributions can be attributed to significant differences in spatial resolutions 

between the OLI and SPOT 6 datasets, i.e. 30m and 6m respectively. Although, minimum 

mapping unit was the same for both datasets, the subsequent calculations of distribution and 

patch sizes is a function of the pixel size of each dataset (He et al., 2011). OLI has a lower spatial 

resolution when compared to SPOT 6, as a result it is expected that SPOT 6 will provide better 

estimates of the distribution and patch sizes of P. hysterophorus. The lower spatial resolution of 

OLI is inefficient of eliminating gaps inside larger P. hysterophorus patches, hence its 

distribution results may be misleading. In addition, the training data for both datasets were 

collected from 5m patches, hence greater generalisations can be expected in OLI than in SPOT 
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6. As a result, the overestimation of the distribution of P. hysterophorus was evident from OLI 

results. On the other hand, the higher spatial resolution of SPOT 6 minimised spectral mixing 

and detected isolated and insignificant patches. These discrete and insignificant P. hysterophorus 

patches detected by SPOT 6 were removed by post-classification processing (which was more 

effective in SPOT 6’s 6m pixels than 30m pixels of OLI), thus reducing subsequent calculations 

of distribution and patch metrics.  

The higher patch density, i.e. 23.19 per 100 ha in SPOT 6 and lower, i.e. 18.04 per 100 ha in 

OLI is a result of the observed higher number of patches (NumPatches). With respect to 

capabilities of the two datasets, the results demonstrated that SPOT 6’s spatial resolution was 

more important in mapping of small patches (<0.5ha) and better delineation of patch boundaries 

as compared to OLI. A similar study by (Fernandes et al., 2014) found that Worldview-2's spatial 

resolution was unable to capture the boundaries of Arundo donax L. (Giant reed) in detail when 

compared to airborne data. The capability to delineate boundaries and eliminate gaps inside 

larger patches is desired for accurate estimation of patch sizes, since existing patches will likely 

take advantage of available gaps in the landscape for their establishment and proliferation 

(Malahlela et al., 2014). For invasion ecology, the results imply landscape fragmentation and 

habitat loss as a result of P. hysterophorus invasion which possibly led to a replacement of native 

species.    

Patch size is the single most important information contained in the landscape (McGarigal et al., 

2002).  An understanding of patch sizes will assist land managers to monitor changes in the 

landscape and establish relationships between the invader and changes in the ecosystem and 

habitats (Turner et al., 2003). Detailed visual assessment of P. hysterophorus maps from OLI 

and SPOT 6 indicated that larger patches dominantly occur in communal croplands (Figure 11), 

while smaller patches occur along roadsides and building peripheries. In essence, the LPI found 

for both OLI, i.e. 0.26% and SPOT 6, i.e. 0.15% resulted from P. hysterophorus invasion in 

cropland and overgrazed rangelands. Invasion, colonization and establishment of P. 

hysterophorus in the study area can be attributed to landscape and habitat disturbance due to 

human travel corridors, development of settlements and farming practices. The largest patches 

in the landscape indicate successful colonization by P. hysterophorus, thus the results from OLI 

imply greater establishment and dominance of the species than those from SPOT 6. Such largest 

patches in the landscape, usually occurring in croplands and overgrazed grassland, imply a 

decrease in productivity and extent of communal agricultural lands and appropriates the 

opportunity of overgrazed lands to recover. On the other hand, patch sizes results (Figure 10) 
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indicated that most patches calculated from both OLI and SPOT 6 were less than 15 ha. Smaller 

patches demonstrate new introductions, thus it may be beneficial to target such patches for 

control and eradication purposes. On the other hand, larger patches can be targeted for 

containment to prevent further spread. In consistency with the marked differences, i.e. 10.22% 

observed in the distributions of the P. hysterophorus calculated from OLI and SPOT 6. Mann-

Whiney U test indicated that there is significant differences in patch sizes calculated from the 

two datasets at P < 0.05. The differences emanates from overestimations by OLI pixels.  

 

Figure 11. SPOT 6 patch sizes in communal croplands overlaid on aerial image acquired in 
2009/10 and picture on the right represents the respective infested areas as seen in the field in 

February 2014.  

Overall, the distribution and patch sizes from OLI were higher than those calculated from SPOT 

6. Both datasets demonstrate a potential in providing essential information for control and 

management of P. hysterophorus. OLI’s relatively larger pixels would be suitable for 

characterizing well-established, larger patches occurring in croplands and overgrazed rangelands 

useful for  large scale detection and monitoring. As a result, the distribution and patch sizes 

calculated from OLI for small patches may be misleading. On the other hand, SPOT 6 is suitable 

for delineating gaps and boundaries of smaller patches useful for site-specific weed management.    
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3.6. Conclusions  

This chapter evaluated the capability of medium resolution multispectral data from Landsat 8 

OLI and relatively high resolution SPOT 6 for reliably mapping the distribution and patch sizes 

of P. hysterophorus using SVM classifier. In conclusion, OLI’s comprehensive spectral 

sampling from 430nm to 2290nm, spectral resolution, and number of bands were important for 

reliably separating P. hysterophorus and other land cover types. However, spectral mixing due 

to larger pixel size limited its capability (i.e. inferior overall accuracy) to provide reliable 

distribution and patch sizes information. In addition, OLI’s larger pixels resulted in 

overestimations of the distributions and patch sizes, hence may be suitable for mapping well-

established patches for large scale monitoring. Although this study did not compare algorithms, 

SVM showed effectiveness in discriminating spectral overlaps of P. hysterophorus and other 

land covers within SPOT 6 bands. On the other hand, SPOT 6’s 6m resolution showed better 

estimations of distributions and delineating gaps and boundaries in P. hysterophorus patches. 

Ecologically, the distribution and patch sizes calculated from OLI and SPOT 6 showed higher 

fragmentation of the landscape, habitat loss and decrease in productive land due to P. 

hysterophorus invasion. As a result, small patches can be prioritised for eradication, while larger 

patches can be contained to prevent further spread.  

Overall, the study demonstrated the potential of medium resolution data from OLI and relatively 

high resolution SPOT 6 in providing useful information necessary for effective land 

management, site specific weed management, and site prioritisation in conservation plans. 

Therefore this study provide the basis towards an IAP species detection and monitoring system 

to identify and target both small and large patches for control and eradication. 
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CHAPTER 4 

SYNTHESIS AND CONCLUSION 

4.1. Introduction 

In the savanna landscapes of northern Kwa Zulu Natal, P. hysterophorus has reached epidemic 

proportions, thus posing a threat to biodiversity, agriculture, ecosystem functioning and services 

and human well-being. The physiological characteristics of P. hysterophorus, in its vegetative 

and mature growth stages are dominated by creamy-white flowers. These are produced in only 

four to six weeks after germination, followed by the production of approximately 25 000 easily 

dispersible seeds per plant (Dogra et al., 2011). The characteristics of P. hysterophorus during 

vegetative and mature growing stages support its prolific spread and sporadic growth, making it 

extremely difficult to contain and eradicate. As a result, the effectiveness of physical, chemical 

and biological control mechanisms is increased during the juvenile growing stage (Reddy et al., 

2009, Khan et al., 2012). Thus, for early detection and optimization of eradication mechanisms, 

it becomes essential to explore the potential of hyperspectral and multispectral remote sensing 

data for discriminating and mapping P. hysterophorus. Conventional methods such as field 

surveys and manual digitising are laborious, time consuming, costly, and inappropriate for large 

and inaccessible areas. 

The results in this study showed the potential of remote sensing for discriminating and mapping 

a problematic IAP’s, P. hysterophorus. Specifically, the study demonstrated the capabilities of 

canopy hyperspectral data in discriminating P. hysterophorus against its co-existing species. A 

novel approach for overcoming Hughes effect and to select relevant combination of spectral 

bands that improve accuracy has been proposed. The results were significant for understanding 

the underlying inter-species spectral differences, and identifying optimal bands valuable for 

operational mapping using airborne and satellite sensors, choosing suitable sensor for mapping 

and early IAP species detection (Chapter 2). Based on the identified bands, accessible 

multispectral data were chosen, i.e. OLI and SPOT 6 and the capability for providing the spatial 

distribution and patch sizes of P. hysterophorus was pursued. The results demonstrated the 

potential of the spectral and spatial configurations of OLI and SPOT 6 for reliably mapping the 

distribution and patch sizes of P. hysterophorus (Chapter 3). The information about the spatial 

distribution and patch sizes of P. hysterophorus is critical for identifying new infestations, 

optimizing control mechanisms, and effective land management and conservation planning.  
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4.2. Improving classification accuracy through feature subset selection and 

dimensionality reduction 

The inherent high dimensionality characteristic of hyperspectral data has been identified as the 

major limitation in literature (Adam and Mutanga, 2009, Adjorlolo et al., 2013). Large training 

samples (n > 100 per class) are required in order to obtain better accuracies. However, in reality, 

it is costly, tedious and time consuming to collect large samples (Adam and Mutanga, 2009). As 

a result, reliable discrimination of species with hyperspectral data is compromised due to the 

effect of n < p (Hughes, 1968). Therefore, selection of a smaller subset of bands that capture the 

properties of the entire dataset has become a prerequisite for computational efficiency and 

reliable classification accuracy (Zhang and Ma, 2009, Pal and Foody, 2010, Löw et al., 2013). 

An innovative hierarchical approach integrating statistical significant tests, inter-band 

correlation and variable importance, and SVM-RFE was proposed in Chapter 2. In comparison 

with entire spectral dataset (n = 1633) and a combination of 20 best spectral bands selected by 

SVM-RFEE, the proposed approach showed that a small subset of spectral bands, n = 10 was 

significant for reliable discrimination of P. hysterophorus and co-existing species. In addition, 

the hierarchical approach systematically reduced dimensionality and collinearity, hence the 

selected subset can be used with usually preferred conventional classifiers such as Maximum 

Likelihood. This is because the selected spectral bands retained important discriminative 

properties of the entire dataset.  

Important findings regarding the significance of feature selection and dimensionality reduction 

in improving classification accuracy (as highlighted in Chapter 2) are: 

1. SVM classification training time and accuracy improved when using 10 spectral bands 

selected by the proposed hierarchical approach, than when using entire spectral 

dataset and SVM-RFE.  

2. The lower SVM classification accuracy with entire spectral data demonstrate the 

effect of “curse of dimensionality” on SVM performance, hence higher classification 

accuracy obtained with the hierarchical approach demonstrate the need for feature 

selection and dimensionality reduction even when using powerful algorithms.  

These findings are valuable for operational discrimination and mapping of P. hysterophorus in 

its early growth stage using airborne and satellite hyperspectral sensors, thus may aid effective 

control and eradication the species. 
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4.3. Optimal spectral bands for discrimination of P. hysterophorus 

Canopy hyperspectral data provide an important starting point for in-depth understanding of 

species spectral properties prior mapping.  The differences in reflectance properties between 

species are a representation of their differences in canopy and leaf biochemical and biophysical 

properties (see Figure 12).  

 

Figure 12. Canopy and leaf structures and spectral signatures of P. hysterophorus (PH), 
Acacia Trees (AT), Grass species (GS) and Other plant species (OPS). 

Inter-species differences in reflectance properties facilitate species discrimination (Adam and 

Mutanga, 2009, Chun et al., 2011), however,  only few and specific spectral bands with high 

discriminative ability between all species-pairs are desired. An innovative hierarchical approach 

that integrates statistical filters (Kruskal Wallis ANOVA, Inter-band correlation and AUC-ROC 

variable importance) and wrapper-based technique (SVM-RFE) was proposed to select a 

minimum but optimal subset of spectral bands that capture relevant properties of the entire 

dataset. At each stage of analysis, the useful spectral bands offering greatest capability for 

discriminating all species-pairs were determined.  

Specifically, Kruskall-Wallis ANOVA identified 599 spectral bands in all regions of the 

electromagnetic spectrum that are statistically significant and have greater separability for P. 

hysterophorus and its co-species. Subsequently, inter-band correlation and variable importance 

identified 14 spectral bands that are less redundant and have high individual discriminative 

ability in distinguishing P. hysterophorus from its co-species. Up to this stage, the identified 

spectral bands are essential for operational applications with conventional classifiers such as 
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Maximum Likelihood. SVM-RFE selected the final and optimal subset of spectral bands (n = 

10) that consisted of two red-edge bands located at 685nm and 707nm, one NIR band located at 

1115nm and seven SWIR bands at 1971nm, 1982nm, 1966nm, 2003nm, 2013nm and 2005nm. 

The usefulness of red-edge, NIR and SWIR regions for discriminating species has been reported 

in literature (Schmidt and Skidmore, 2003, Mutanga and Skidmore, 2007, Adam and Mutanga, 

2009). In addition, all selected spectral bands (in this study) were different from those selected 

in other recent studies (see Table 14), reinforcing the assertion that there is no single technique 

useful for all species types. 
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Table 14. Previously selected bands for species discrimination separated by broad spectral 

regions suggested by (Fernandes et al., 2013).   

Spectral 

regions 

Reference Selected band (s) Species 

350 – 449nm 

(Blue) 

This study 0 P. hysterophorus 

(Jia et al., 2011) 405nm, 424nm, 438 nm Opium poppy 

(Adam and Mutanga, 2009) 0 Cyperus papyrus 

450 – 549nm 

(Green)  

This study 0 P. hysterophorus 

(Jia et al., 2011) 468nm, 524nm, 528nm Opium poppy 

(Adam and Mutanga, 2009) 0 Cyperus papyrus 

550 – 649nm 

(Red) 

This study 0 P. hysterophorus 

(Jia et al., 2011) 0 Opium poppy 

(Adam and Mutanga, 2009) 0 Cyperus papyrus 

650 – 749nm 

(Red-edge) 

This study 685nm, 707nm P. hysterophorus 

(Jia et al., 2011) 726nm, 736nm, 746nm,  Opium poppy 

(Adam and Mutanga, 2009) 745nm, 746nm Cyperus papyrus 

750 – 

1299nm 

(NIR) 

This study 1115nm P. hysterophorus 

(Jia et al., 2011) 754nm, 760nm, 982nm,1207nm, 

1220nm 

Opium poppy 

(Adam and Mutanga, 2009) 892nm, 932nm, 934nm, 958nm, 

961nm, 989nm  

Cyperus papyrus 

1300 – 

2500nm 

(SWIR) 

This study 1971nm, 1982nm, 1990nm, 

1966nm, 2003nm, 2013nm, 

2005nm 

P. hysterophorus 

(Jia et al., 2011) 1974nm, 1689nm Opium poppy 

(Adam and Mutanga, 2009) 0 Cyperus papyrus 

 

An important finding in Chapter 2 regarding optimal spectral bands for discrimination of P. 

hysterophorus and co-existing species was that: 

1. The identified fewer spectral bands by the hierarchical approach, n = 10 have greatest 

potential for discriminating P. hysterophorus using current and next generation airborne 

and satellite hyperspectral sensors. Considering the harmful impacts of P. 

hysterophorus, the selected spectral bands can be used as a guidance for choosing 
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appropriate bands for detection and mapping of the distribution and patches of the 

species. 

4.4. Reliable information for effective management of P. hysterophorus 

The spectral discrimination analysis in Chapter 2 identified 10 spectral bands for reliably 

discriminating P. hysterophorus and its co-existing species using canopy hyperspectral data. The 

optimal bands were located in the red edge (685nm, 707nm), NIR (1115nm) and SWIR (1971nm, 

1982nm, 1990nm, 1966nm, 2003nm, 2013nm, 2005nm) regions of the electromagnetic 

spectrum. As part of the analysis (in Chapter 2), inter-band correlation and variable importance 

identified other important bands located in blue (427nm), green (537nm) and red (562nm) 

regions. However, the identified bands do not fully coincide with the bands in most accessible 

multispectral data. In addition, there was no hyperspectral image available that covers the study 

area. In that regard, in order to address the challenges of the lack of information on the 

distribution and patch sizes, we assessed the capability of multispectral data from heritage 

missions, i.e. Landsat and SPOT. The advantage of the data from these missions is that they have 

long record of data useful for understanding historical spread of IAP species, are sustainable, the 

datasets are compatible and contain necessary spectral bands for mapping plant species (Adelabu 

et al., 2013, Adjorlolo et al., 2013). The usefulness of the spatial and spectral configurations of 

these datasets have never, to the best of our knowledge, been explored. As such, we compared 

the capability of OLI and SPOT 6 for mapping the distribution and patch sizes of P. 

hysterophorus.  

Important findings in the study (Chapter 3) were:  

1. The higher spatial resolution in SPOT 6 was useful for better characterization of the 

distribution and patch sizes, while the spectral configuration in OLI was more important 

in identifying possible locations infested by P. hysterophorus. 

2. The landscape and patch metrics calculated from OLI were markedly different from 

those calculated from SPOT 6 due to differences in resolution. This was due to the 

inefficiency of OLI’s larger pixels in eliminating gaps inside larger P. hysterophorus 

patches, while SPOT 6’s relatively smaller pixels minimised spectral mixing, and 

detected isolated and insignificant patches.  

Results from this study (Chapter 3) provide a basis for understanding the ecological relationships 

between invasion of P. hysterophorus and changes in ecosystems and habitats (Turner et al., 

2003). The capability to eliminate gaps by SPOT 6 is desirable since the existing P. 
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hysterophorus patches will likely target such gaps in the landscape for their establishment and 

proliferation (Malahlela et al., 2014). In addition, landscape and patch metrics from both datasets 

suggests intense fragmentation and habitat loss as a result of P. hysterophorus invasion. 

Therefore, these findings are critical for allocation of resources for controlling and eradicating 

P. hysterophorus and effective land management and conservation planning (see Appendix B)  

4.5. Conclusions and Recommendations 

The aim of this study was to evaluate the capability of hyperspectral and multispectral data for 

mapping problematic IAP’s, P. hysterophorus in the northern Kwa Zulu Natal province, South 

Africa.  It is clear from the findings in this dissertation that canopy hyperspectral data was useful 

in identifying optimal spectral bands from highly dimensional data for discriminating P. 

hysterophorus and co-existing species. In addition, the findings determined the potential of 

widely accessible multispectral data from heritage missions (i.e. Landsat and SPOT) for 

addressing the lack of information about the spatial distributions and patch sizes of P. 

hysterophorus. Up-to-date and accurate information about the distribution and patch sizes of P. 

hysterophorus is critical for understanding its spatial and structural variability in the landscape. 

Also, the distribution and patch sizes maps may aid proper planning and allocation of resources, 

hence useful for site-specific weed management.  

The overall conclusions based on the objectives of this study as addressed in Chapter 2 and 3 are 

as follows:  

1. There is no single technique that has been proven superior in reducing dimensionality in 

hyperspectral data (Yang et al., 2005) and identifying smaller subset of bands that 

capture properties of the entire dataset (Adam and Mutanga, 2009, Pal and Foody, 2010, 

Jia et al., 2011). The potential of an innovative hierarchical approach that integrates 

statistical analysis and wrapper-based approach has been demonstrated. Ten 

hierarchically selected spectral bands had better performance in classifying P. 

hysterophorus and co-existing species when compared to entire spectral dataset and a 

combination of 20 spectral bands selected by SVM-RFE. 

2. In consistency with previous studies (Zhang and Ma, 2009, Pal and Foody, 2010), this 

study found that SVM classifier was affected by Hughes effect when applied to entire 

spectral dataset.  

3. Previous studies observed that SVM-RFE performs better when feature space is limited 

<12 bands (Zhang and Ma, 2009, Pal and Foody, 2010). Statistical filters prior to SVM-
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RFE were useful for identifying bands with high statistical separability and importance 

(n = 14), hence optimized its performance when applied within the Hierarchical 

approach.  

4. The higher spatial resolution of SPOT 6 offer the potential to provide up-to-date and 

accurate information on spatial distributions and patch sizes of P. hysterophorus, 

valuable for eradication resource allocation, effective land management and 

conservation planning.  

5. On the other hand, OLI’s comprehensive spectral sampling from 430nm – 2291nm, 

relatively higher spectral resolution and band positioning can be used for locating larger 

patches of P. hysterophorus, valuable for areas where the species is widely spread.       

The major limitations of the study emanated from the lower quality of training data, hence 

resulted in lower classification accuracy for OLI. As such, future studies should focus on 

improving the quality of training and validation data, and explore the utility of vegetation indices 

in addition to bands in mapping P. hysterophorus. Since OLI offered better spectral configuration 

and SPOT 6 better spatial configuration, the two datasets can be combined in multiresolution or 

multiscale classification model to produce higher classification accuracy and better elimination 

of gaps and well-defined patch boundaries. Also, up-scaling to space-borne hyperspectral data 

based on the future sensors such as EnMap, should be explored. 
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APPENDICES 

 

Appendix 1.  Spectral data collection - Field Notes sheet 

General Info. 

Plot No:    Lat:   

Date:   Long:   

Time:     Photo:   

Operator:  Voice:    

Others:    

Environmental Info. 

LU Type:  Slope:   

Soil Type:  Aspect:   

Soil Moisture:  Geology:   

Vegetation Info. (> 30% cover) 

Spp 1: P. hysterophorus  % Cover:            Phenology:    

Spp 2:   % Cover:            Phenology:    

Spp 3:   % Cover:            Phenology:    

Spectrometer Readings 

Lens: 250 Date:     Solar Azimuth:   

# of Scans averaged per scan: 10 

Sensor Height above Target/FOV: 0.5m 

Scan # Target Time Sky Solar 

Z 

Sensor 

A 

Sensor 

Z 

FOV Comments 

         

         

         

         

         

Comments      
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Appendix 2. GPS Data Collection - Field Notes Sheet 

General Info. 

Project Name:   Date/Time:    

Operator:  Photo:   

Others:   Land Use:    

Environmental Info. 

Vegetation Type:  Slope:   

Soil Type:  Aspect:   

Other comments:      

Vegetation Information 

Spp 1: Parthenium  Patch size:            Phenology:    

Spp 1: Not Parthenium  Patch size:            Phenology:    

GPS Readings 

Waypoint 

No. 

Lat. Long. Time Sky Patch 

size 

No. 

satellites 

Comments 
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Appendix 3. Personal communications 

 

 

 

 

 

 

 

 

 

 

 

 

Panel 1: Information need.  

 

Panel 2: The impact of distribution maps.  
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