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ABSTRACT 
 

Malaria is one of the wold’s most prevalent vector borne diseases with sub-Saharan Africa bearing the highest 

burden of reported cases. Climate is one of the major determinant factors of malaria transmission as it 

influences the spatial and temporal pattern of transmission. It is therefore important to be able to 

understand the relationship between climatic variables and malaria transmission because an understanding 

of the interactions between them at a local level is an important part in potential outbreaks, targeting vector 

control strategies, and developing malaria early warning systems. 

This study covered the Ehlanzeni district of Mpumalanga province in South Africa. It was aimed at 

determining the climatic variable importance of temperature, lag temperature, rainfall, lag rainfall, humidity, 

altitude and NDVI in relation to malaria transmission. The random forest algorithm was used to relate the 

climatic variables extracted from remote sensing imagery and malaria case data collected from health 

facilities in order to establish individual measures of variable importance and to develop a spatial and 

temporal prediction models.  

In this study altitude appeared to be the most responsible variable for malaria transmission because it was 

most frequently selected as one of the top variables with the highest variable importance followed by NDVI 

and temperature. The combination of climatic variables that produced the highest coefficient of 

determination values was altitude, NDVI, and temperature. This suggests that these 3 variables have high 

predictive capabilities and as a result they should be selected for spatial and temporal modelling of malaria.  

 Furthermore, it was expected that the predictive models generated by the random forest algorithm could 

be used as an operational malaria early warning system using forecast climatic variable identified in this study 

in order to assist in containing any potential reoccurrence of malaria after elimination,  
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CHAPTER 1 . INTRODUCTION 
 

1.1 Background 
 

The African continent bears the highest burden of malaria globally with 85% of cases being reported with 

sub-Saharan Africa accounting for 90% of malaria-related deaths (RBM, 2013). This is due to a combination 

of reasons including the climate of much of sub-Saharan Africa which  is suitable for malaria transmission, 

economic constrain to fund national treatment and control measures, and resistance to antimalarial drugs 

and insecticides (Blumberg and Frean, 2002). South Africa is situated in a low malaria transmission zone 

characterized by lower incidence of confirmed cases (Sharp et al., 2007). Malaria is endemic in three 

provinces of South Africa; transmission is seasonal and predominantly occurs when temperatures are 

favourable for vector survival (Gerritsen et al., 2008). However, transmission in the country has decreased 

over the years, and is now limited to the low-altitude, north-eastern parts of Limpopo, Mpumalanga and 

KwaZulu-Natal Provinces. Anopheles arabiensis is the only mosquito vector that transmits malaria. Anopheles 

merus is found in abundance in some areas but has not been implicated in malaria transmission despite the 

fact that it plays a significant role in other countries where it occurs. Anopheles funestus used to be a very 

important vector before it was eliminated through years of Indoor Residual Spray (IRS) with 

Dichlorodiphenyltrichloroethane (DDT) (Hargreaves et al., 2000). In South Africa, approximately 95 % of 

malaria infections are due to the parasite, Plasmodium falciparum (Grimwade et al., 2004). About 5 million 

people, (10% of overall population) are at risk of malaria infection.  

Mpumalanga province contributes 44% of the country’s notified malaria cases; malaria in the province is 

seasonal due to the alternate dry and rainy seasons. It follows the pattern of starting with the first rains in 

October, peaking in January and remaining high until May (Silal et al., 2013, Ngomane and De Jager, 2012). 

Mpumalanga has maintained a successful control program encompassing rapid detection and treatment of 

confirmed malaria cases at primary health care facilities and vector control through IRS with insecticides and 

focal larviciding (Govere et al., 2000). As a result malaria cases are greatly reduced in the province to a point, 

where the province achieved the minimum elimination incidence level according to the RBM frame work 

strategy. Maharaj et al. (2012) suggested that Mpumalanga intervention efforts must focus on control and 

pre-elimination phase that require targeting malaria hot spot areas.  

Climatic variables have a great impact on the life cycle of the mosquito vector and the malaria parasite (Craig 

et al., 1999) and studies have shown that malaria risk and transmission intensity exhibit significant spatial 

and temporal variability related to variations in climate, altitude, topography, and human settlement pattern 

(Gosoniu et al., 2006). It is important to be able to identify which climatic conditions are conducive to malaria 

transmission because this allows for the prediction of malaria transmission and the effective targeting of 
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malaria control  as well as the identification of high risk areas (Stresman, 2010). Furthermore being able to 

characterize spatial and temporal patterns of malaria would provide us with a better understanding of the 

climatic and anthropogenic drivers of the disease (Clements et al., 2009). An interpretation of the relationship 

and interactions between environmental variables and malaria at a more detailed level is also an important 

part in developing malaria early warning systems, identifying potential outbreaks, and targeting vector 

control strategies (Ngomane and De Jager, 2012).  

This study, therefore, aimed to rank explanatory climatic variables according to their individual scores of 

variable importance so as to allow for the elimination of variables with little importance as well as to establish 

what combinations of variables were highly related to malaria by evaluating their prediction performance. 

The analysis makes use of a recent advancement in statistical learning methods – the random forest 

approach. This study was conducted at small scale spatial level to allow for more accurate selection of 

important predictor variables and more detailed prediction of malaria because climatic conditions vary over 

small distances. Further, this study will use malaria case data that cover the entire study area without any 

missing data. In this case we identified malaria case data from period of 1 December 2005 to 31 December 

2006. 

1.2 Aim and Objectives of the study 

1.2.1 Aim 

Transmission of malaria is influenced by many factors, variability in climatic factors being amongst them. This 

study aimed to assess the relationship between climatic variables and malaria transmission by determining 

the variable importance of each climatic variable to quantify its influence on malaria as well as to evaluate 

what combination of climatic factors was most associated to malaria. The study site is the Ehlanzeni district 

of the Mpumalanga province in South Africa. 

1.2.2 Objectives  

In order to achieve the main aim of the study the following objectives are identified: 

1. Perform random forest algorithm to relate monthly extracted climatic data and monthly malaria case 

data to establish a measure of variable importance for each variable. 

2. To develop spatio-temporal malaria transmission models using the selected climatic variables 

1.3 Limitations of the study 

1. Malaria is a notifiable disease however, there is a possibility that not all malaria cases in the study 

area were diagnosed and subsequently recorded by the National Department of Health malaria 

control program. Also cases diagnosed and treated in private facilities could have gone unreported. 
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1.4 Structure of the thesis 

Chapter 1 consists of the introduction which outlines the background of the study as well as the aims and 

objectives to be achieved and the expected limitations. Chapter 2 provides an overview of the epidemiology 

of malaria as well as the current use of geographical information systems (GIS) and remote sensing (RS) 

techniques and statistics in malaria studies. Chapter 3 offers a description of the study area (physical and 

human geography) and malaria intervention measures currently in place. Chapter 4 is the methodology 

section. It outlines the methods employed to acquire and process remotely sensed climatic data and malaria 

case data and it describes the random forest algorithm that was used to make an association between 

climatic variables and malaria. The results of the study are presented in Chapter 5 along with a detailed 

discussion of the findings. Chapter 6 is the conclusion section and it provides concluding statements drawn 

from the results of the study. 
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CHAPTER 2 . LITERATURE REVIEW 
 

2.1 BIOLOGY OF MALARIA 

2.1.1 Vector Biology 

Malaria is transmitted by female mosquitoes of the genus Anopheles, about 70 species of Anopheles transmit 

malaria but only about 30 of these are of importance as vectors (Hsiang et al., 2009). In any given area, just 

a few Anopheles species are responsible for the transmission of malaria (Williams and Bloland, 2002). 

Individual species differ in their breeding and biting behaviour and the main characteristics that determine 

whether a mosquito is a major vector of malaria is its blood feeding preferences (predominantly animal or 

human) and longevity (Hemingwayd, 2009). In Sub-Saharan Africa the primary vectors of malaria are belong 

to Anopheles gambiae or Anopheles  funestus groups of species (Godfray, 2013).  

The Anopheles gambiae complex was initially regarded as one species with ecological salt-water variants; it 

has now been split into seven distinct species including two of the most efficient human vectors worldwide, 

Anopheles gambiae and Anopheles  arabiensis. These vectors coexist widely over much of their range 

however Anopheles  gambiae is mostly found in humid environments while Anopheles   arabiensis is mostly 

found in drier areas (Fontenille and Simard, 2004). They have also been found to be highly dependent on 

humans for their feeding, resting and to a certain extent breeding habits (Fontenille and Simard, 2004). 

The Anopheles funestus group comprises of nine species that are morphologically very similar in the adult 

stage (Spillings et al., 2009). Four of those species namely Anopheles funestus, Anopheles  vaneedeni, 

Anopheles parensis and Anopheles aruni have identical morphology at all life stages. Anopheles leesoni is the 

most distict at both egg and larval stage, Anopheles confuses is easily identifiable by larval characteristics. 

Anopheles rivulorum and Anopheles brucei also have distinctive larvae although it is almost impossible to 

differentiate between the two. The ninth species Anopheles fuscivenous is known only from the adult stage 

and by their unique chromosomal banding arrangements (Coetzee and Fontenille, 2004). The species 

Anopheles funestus and Anopheles Rivulorum are widely distributed throughout sub-Saharan Africa and 

Anopheles Parensis is the most common species in South Africa, Swaziland and eastern Africa  however the 

extent of the distribution of the other members in the group is largely unknown or is more localized 

(Mulamba et al., 2014, Choi et al., 2012). 

During its growth and metamorphosis, the mosquito passes through four distinct phases – egg, larva, pupa 

and adult (CDC, 2014). The immature stages (the first three) are aquatic meaning they depend on free 

standing water for their survival and development and lasts for between 5 – 14 days.  The adult stage of the 

mosquito is when the female adult is a malaria a vector and they can live up to a month (Williams and Bloland, 

2002). 
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Adult mosquitoes usually mate within 1-2 days after their emergence, they normally mate in the evenings 

and in many species this is preceded by the formation of swarms of males (Warrell and Gilles, 2002). During 

copulation, a male passes spermatozoa into the female which in turn passes them to her spermatheca. Most 

female anophelines are anautogenous (female must obtain a blood meal to provide the proteins and amino 

acids required for the maturation of the eggs. However females of a few species are autogenous [can mature 

and lay their first batch of eggs without a blood meal but blood is necessary for subsequent ovipositions] 

(Baton and Ranford-Cartwright, 2005). After feeding the swollen abdomen of the female mosquitoes appears 

bright red and as digestion occurs, the abdomen darkens and the ovaries enlarge and appear whitish through 

the abdomen. At the half-way stage when much of the blood has been digested and ovarian development is 

half completed, the mosquito is said to be semi-gravid (Beier, 1998). 

Beier (1998) further elaborated that once all the blood has been digested and the eggs have matured, much 

of the dilated abdomen appears whitish and the mosquito is said to be gravid. After the female lays her eggs, 

the abdomen appears empty and the female is classified as unfed. This cycle from unfed to blood-fed to half-

gravid to gravid to unfed again is called the gonotrophic cycle and is repeated several times (four or five) until 

the female dies. The importance of this cycle is that if its duration is known, the number of gonotrophic cycles 

can be used as a means to determine the physiological age of the mosquito which is considered an important 

determinant in malaria epidemiology(Mattingly, 1969). 

Females of some species including Anopheles gambiae, may require two blood meals before the first batch 

of eggs can develop, some species may require three to four blood meals but this is not common. The 

quantity of blood ingested at a single feed is dependent on the size of the mosquito. Plant sugars are a major 

source of energy for both male and female mosquitoes; they feed on sugary exudates from fruit, honey dew 

and even damaged or intact plant tissues (Mattingly, 1969). 

The females of most species of Anopheles feed on warm –blooded animals, usually mammals. They are 

attracted to their hosts by a range of factors, once it locates a host, the female mosquito makes a minute 

incision in the skin and penetrates a capillary vessel and blood feeding commences and is usually completed 

within 1 minute. In anophelines, feeding mostly takes place between dusk and dawn but some species feed 

during the day in densely shaded woods and forests. Some malaria vectors predominantly feed outside 

(exophagic) while others may feed inside houses (endophagic). Once the female mosquito has fed on blood, 

it seeks shelter to rest, digest and develop her eggs. Some anophelines rest inside houses (endophilic) and 

those that rest in various outdoor sites are termed exophilic (Warrell and Gilles, 2002). 

Several studies have shown that Anopheles Funestus has late-night feeding patterns, being  most active 

between  midnight and the early hours of the morning (Oyewole and Awolola, 2006, Robert et al., 2006), 

they are also the most endophilic (rest indoors) and anthropophilic (feed on humans) members of the group 

(Dabire et al., 2007, Awolola et al., 2005, Antonio-Nkondjio et al., 2006).   It is important to take the resting 
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behaviour of adult mosquitoes into account when planning control measures because vector control is 

determined largely by feeding and resting patterns of mosquitoes. For example endophilic mosquitoes can 

be controlled by indoor residual spraying whereas  exophilic vectors are best controlled by destroying 

breeding sites  (Warrell and Gilles, 2002). 

2.1.2 Parasite Biology 

There are four species of Plasmodium that infect humans; these are Plasmodium falciparum, Plasmodium 

vivax, Plasmodium ovale and Plasmodium malariae. Plasmodium falciparum is the most virulent and common 

of these human malaria parasites in Sub-Saharan Africa and it accounts for almost all the malaria mortality. 

According to reports, Sub-Saharan Africa bears over 90 percent of the global Plasmodium falciparum burden 

(Robert et al., 2003). Plasmodium falciparum is also distinguished by its ability to bind to endothelium (thin 

layer of cells that lines the interior surface of blood vessels and lymphatic vessels) during the blood stage of 

infection and to sequester in organs, including the brain (Greenwood et al., 2008). Plasmodium vivax is less 

deadly but highly disabling, also the ability of Plasmodium vivax and Plasmodium ovale to remain dormant 

for months as hypnozoites in the liver makes infection with these parasites difficult to eradicate. Plasmodium 

malariae does not form hypnozoites but it can persist for decades as an asymptomatic blood stage infection 

(Greenwood et al., 2008), it differs from the other species by its morphological characteristics and its slow 

development in both the human and insect host (Warrell and Gilles, 2002). 

Bannister and Mitchell (2003) discuss that malaria infection and illness start when a single–celled parasite of 

the genus Plasmodium invades the human blood stream. Infected female mosquitoes inject motile parasites 

known as sporozoites into the victims’ bloodstream while taking a blood meal, within minutes parasites 

invade liver cells and start to reproduce. In one to two weeks, infected liver cells rupture releasing thousands 

of new parasites known as merozoites which then invade red blood cells and undergo further cycles of 

asexual reproduction during the course of which many erythrocytes will be erupted. A few merozoites 

transform into male and female (sexual) stages capable of infecting new mosquitoes, these stages are called 

gametocytes. Once ingested by a new mosquito during a blood meal, male and female gametes are formed 

and fuse within the insect’s gut ultimately spawning forms that invade its salivary glands from which they 

enter the next human hosts (Hsiang et al., 2009). Gametocytes are the sexual stages of the malaria parasite 

and are primarily responsible for its transmission to the mosquito vector (Drakeley et al., 2006). 

Each of the developmental stages of the life cycle of the Plasmodium parasite that are discussed above 

represents a potential target at which the life cycle can be interrupted to prevent transmission of the parasite 

between the mosquito vector and humans (Greenwood et al., 2008). 
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2.1.3 Symptoms and effects of Malaria 

The malaria pathogen enters the human body through the bites of infectious mosquitoes and it immediately 

colonises the liver. In the liver, it divides multiple times, eventually rapturing the cell to produce a new form 

of pathogen that infects red blood cells (Godfray, 2013). 

Uncomplicated malaria presents with fever and nonspecific symptoms such as vomiting, diarrhoea, fatigue, 

abdominal discomfort, muscle and joint aches followed by fever, chills, perspiration, anorexia and worsening 

malaise (WHO, 2006a) . Severe malaria caused by Plasmodium falciparum  and is characterized by multi organ 

failure including renal failure in adults whereas in children it presents with prostration, respiratory distress, 

severe anaemia and/ or cerebral malaria also children with severe malaria rarely present with the classical 

features of circulatory shock.  Retinal changes occur in many patients with severe malaria and a specific 

pathology that may aid diagnosis was recently described (Greenwood et al., 2008). 

Severe malaria affects several tissues and organs although the most evident manifestations appear to involve 

a single organ such as the brain. Metabolic acidosis has proved to be the most significant pathophysiological 

feature that dominates classical clinical syndromes of cerebral malaria and severe malarial anaemia (Miller 

et al., 2002, Marsh et al., 1995). Taylor et al. (1993) found that metabolic acidosis leads directly to respiratory 

distress which in most cases is a lactic acidosis.  The causes of lactic acidosis in children with severe malaria 

range from increased production of lactic acid by parasites to decreased clearance by the liver (English et al., 

1996). Marsh et al. (1995) report that respiratory distress could potentially result from several underlying 

processes acting alone or in combination. In non-immune adults with severe malaria, respiratory distress 

often signals the development of pulmonary edema which may lead to adult respiratory distress syndrome. 

In addition, chronic malaria is known to be a causal factor in anaemia and is associated with hyper-reactive 

malarial splenomegaly (rare chronic complication of malaria), chronic renal damage, nephrotic syndrome (a 

non-specific kidney disorder) and Burkitts lymphoma (Sachs and Malaney, 2002) 

Slutsker and Marston (2007) explored the interactions between HIV and malaria and they reported that 

malaria transiently increases HIV viral load and consequently increases the likelihood of HIV transmission, 

acute and chronic malaria infections can alter the immune system and the body’s response to vaccines and 

increase vulnerability to other infections. 

The two population groups most at risk of being infected with malaria are children under the age of 5 and 

pregnant women. Under conditions of high transmission, the burden of disease rests disproportionately on 

very young children. However, under conditions of lower transmission, the burden of disease is distributed 

throughout childhood and this results in an increase in the proportion of children who develop cerebral 

malaria - which is characterized by impaired consciousness, seizures and comas (O'Meara et al., 2008). 
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Pregnant women are a high risk group due to pregnancy associated immune suppression and the affinity for 

Plasmodium falciparum for the placenta (O'Meara et al., 2008). Erythrocytes infected with Plasmodium 

falciparum  congregate in the maternal placental vascular space, where the parasites replicate (Guyatt and 

Snow, 2004) . The detrimental consequences of malaria in pregnant women include miscarriages, still-birth, 

severe anaemia in the mother and low birth weights in infants which results in a substantial increase in the 

risk of infant mortality (O'Meara et al., 2008). 

2.2 SOCIAL AND ECONOMIC IMPACT OF MALARIA 

Previous studies have suggested that malaria costs African countries $12 billion annually and impedes 

economic development considerably (Breman et al., 2004). A typical African family may spend up to 25%  of 

their income on malaria prevention and control (Breman et al., 2004). Spielman (2003) reported that malaria 

has slowed economic growth in African countries by 1.3% per year, the compounded effects of which are a 

gross domestic product level now up to 32% lower than it would have been had malaria been eradicated 

from Africa in 1960. Nur (1993) found that malaria affected economic productivity through its effect on work 

capacity (time off work due to illness and repeated malaria attacks cause disability), land use (extent of 

cultivated land and choice of crop) and labour quality (malaria can affect cognitive development). It is also 

reported that mortality in malaria endemic areas discourages economic investment in those areas 

(Teklehaimanot, 2005). 

According to a report by the Centres for Disease Control and Prevention (CDC, 2014), the cost of illness due 

to malaria  to individuals and their families include the purchase of drugs for treating malaria at home, the 

costs of travelling to and from health facilities for treatment, absence from work due to illness or to take care 

of sick family members, expenses for preventative measures and expenses for funerals in the case of deaths. 

Further, the CDC (2014) stated that the costs to government include maintenance of health facilities, 

purchase of drugs and supplies, public health interventions against malaria (insecticide spraying, distribution 

of insecticide-treated bed nets . 

A study by Castillo‐Riquelme et al. (2008) aim to evaluate the household burden of malaria in South Africa 

and Mozambique found that around 50% of people stopped work and school related activities  while sick 

with  malaria. Malaria episodes typically last between 4.4 and 7 days. The same study also found that a care 

giver was needed in most cases to look after people with malaria, on average the time caregivers sacrificed 

from their own activities ranged from 1.1 to 2.7 days. Russell (2004), noted that labour time is lost as a result 

of illness caused by malaria and this means that household capacity to earn income is reduced. Malaria also 

hampers children’s schooling and social development through absenteeism and permanent neurological and 

other illnesses associated with severe episodes of the disease (RBM, 2004). 

Mmbando et al. (2011) found that households of a lower to moderate socio-economic status were at a more 

than 60% higher risk of malaria when compared to households with a higher socio-economic status. This 
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result is supported by a study by Coleman et al. (2010) that showed houses built of mud walls were at a 6 

fold risk of malaria compared to houses that were built of brick walls. 

In rural African communities, the economy is reliant on agriculture and the malaria transmission season 

generally coincides with planting or harvesting seasons, resulting in reduced agricultural productivity and 

output. This is because illness resulting from malaria might result in a delay in planting crops or harvesting 

(Teklehaimanot, 2005). Some evidence suggests that  families living in malaria endemic areas tend to favour 

less labour-demanding crops over higher value crops that are more labour-intensive, possibly in anticipation 

of sickness due to malaria (Abdullateef and Oluwatoyin, 2011).  

2.3 MALARIA CONTROL AND TREATMENT 

The 5 key strategies identified by WHO (World Health Organisation) for malaria control are surveillance, 

vector control, health promotion, case management and cross border initiatives  (RBM, 2005). In keeping 

with these strategies, South Africa has been implementing evidence based malaria control interventions. 

These are listed by Moonasar et al. (2012) as being surveillance, vector control, health promotion, case 

management and cross border malaria initiatives. 

2.3.1 Vector Control 

The primary aim of malaria vector control is to reduce the vectorial capacity of local vector populations below 

the critical threshold needed to achieve a low malaria reproduction rate (malERA, 2011). As a result of the 

long extrinsic incubation time of  Plasmodium in its Anopheles vectors, the most effective vector control 

strategies currently in place rely on insecticide interventions like indoor residual insecticide sprays (IRS) and 

long-lasting insecticide-treated nets (LLINs) that reduce vector daily survival rates (Enayati and Hemingway, 

2010). The vector species within the Anopheles gambiae and Anopheles funestus groups of species (primary 

vectors of malaria in Sub-Saharan Africa) feed and rest indoors at night therefore ITNs and IRS are effective 

against them (Hemingwayd, 2009). 

2.3.1.1 Indoor Residual Spraying (IRS) 

IRS has been used as a method of vector control since the 1930s (Moonasar et al., 2012). It repels mosquitoes 

from entering houses and kills female mosquitoes that rest inside houses after taking a blood meal (Pluess 

et al., 2010). Mosquitoes typically have a blood meal every 2-3 days and IRS ensures that few survive the 

approximately 12 days that are required for malaria parasites to complete part of their life cycle in the vector 

mosquito (WHO, 2006b). Griffin et al. (2010), stated that the killing effect of IRS relies primarily on the indoor 

resting (endophilic) nature of the mosquito species as well as its human blood index (HBI). 

The effectiveness of house spraying for malaria control is dependent on adherence to the criteria specified 

for the insecticide and the application procedure, public acceptance of spraying, the availability of well-
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maintained equipment, adequately trained spraying personnel, efficient supervision and strong financial 

support (WHO, 2006b). 

A report by RBM (2005) states that IRS is a highly effective method for malaria control and is responsible for 

rapid reduction in malaria transmission during epidemics. Out of 63 countries providing information on their 

use of insecticides, in 2013, 53 reported using pyrethroids. Carbamates were used by 12 countries and 13 

countries reported using an organophosphate (WHO, 2014) . WHO recommends that countries should select 

an insecticide based on the local situational analysis, dichlorodiphenyltrichloroethane (DDT) is one of the 12 

insecticides that can be used for IRS (RBM, 2005).  

Table 2-1 provides a description of the 12 insecticides that are recommended by WHO for use in IRS 

(Sadasivaiah et al., 2007). 

Table 2- 1. Insecticides recommended by WHO for IRS 

Insecticide Class 

Recommended dosage of active 

ingredient (g/m2) 

Duration of effective 

action (months) 

DDT Organochlorine 1-2 >6 

Fenitrothion Organophosphate 2 3-6 

Malathion Organophosphate 2 2-3 

Pirimiphos-

methyl Organophosphate 1-2 2-3 

Propoxur Carbamate 1-2 3-6 

Bendiocarb Carbamate 0.1-0.4 2-6 

Alpha-

cypermethrin Pyrethroid 0.02-0.03 4-6 

Cyfluthrin Pyrethroid 0.02-0.05 3-6 

Deltamethrin Pyrethroid 0.02-0.025 3-6 

Etofenprox Pyrethroid 0.1-0.3 3-6 

Lambda-

cyhalothrin Pyrethroid 0.02-0.03 3-6 

Bifenthrin Pyrethroid 0.025-0.05 3-6 

 

DDT, deltamethrin and carbamates remain the preferred chemicals for use for IRS. The insecticidal properties 

of DDT were discovered in 1939, further tests confirmed the practical value of DDT in malaria vector control 

and large scale use of  DDT for vector control was introduced in 1946  (Russell, 1946, Hemingway and Ranson, 

2000). According to WHO (2006b), DDT has a duration of effective action of 6 months and its effectiveness 

against indoor resting mosquitoes led to the adoption of the Global Eradication Programme of Malaria in 
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1955, coordinated and supported by WHO. This campaign was based on the periodic use of IRS with DDT for 

3 – 5 years to interrupt malaria transmission, this should then be followed by active case detection and 

surveillance (Sadasivaiah et al., 2007). 

The first trial testing of indoor residual spraying of insecticides in South Africa was carried out in KwaZulu -

Natal province in 1931. In 1932, a wide spread residual house-spraying programme was undertaken using 

pyrethrum but it was replaced by DDT in 1946. Pyrethroid deltamethrin replaced DDT in 1996 in accordance 

with international trends (Maharaj et al., 2012). This was because the environmental protection agency (EPA) 

banned DDT in 1972 due to ecological concerns (Raghavendra et al., 2011).  

However pyrethroid resistant Anopheles funestus which was previously eradicated re-emerged in Northern 

KwaZulu Natal (Hargreaves et al., 2003) and scientists discovered that South Africa had a pyrethroid resistant 

strain of mosquito that had originated from Mozambique (Biscoe et al., 2004) . Consequently there was an 

increase in malaria cases from 1996 to 2000 culminating in epidemics. The national Department of Health 

then decided to revert to using DDT for malaria vector control (Mabaso et al., 2004). In September 2006, 

WHO lifted the ban on the use of DDT to combat malaria in Africa and other countries where the vectors 

were still susceptible to DDT (WHO, 2006a). In the past five years, all malaria endemic provinces have 

reported spray coverage rates greater than 80% which is the level that is recommended by the World Health 

Organization to achieve maximum impact (Maharaj et al., 2012).  

2.3.1.2 Insecticide Treated Bednets (ITNs) and Long Lasting Insecticide Treated Nets (LLIN) 

RBM (2005), reported that in areas of malaria transmission where sustained vector control is required, ITNs 

are the main strategy employed for malaria prevention. It further states that all countries south of the Sahara, 

the majority of Asian malaria endemic countries and some American countries have adopted ITNs as a key 

part of their malaria control strategies.  

Most of the 97 countries with on-going malaria transmission distribute ITNs free of charge and 83 countries 

distribute ITNs or LLINs to all age groups (WHO, 2014). Evidence shows that over the past 10 years, the 

proportion of people with access to an ITN has increased considerably in sub-Saharan Africa however not all 

households have enough nets to protect all members of the household (WHO, 2014). 

A paper by Griffin et al. (2010) provides four effects of ITNs, they kill mosquitoes that land on them, they 

have a repellency which results in a longer gonotrophic cycle and possible diversion to a human host, they 

provide a direct protective effective for individuals sleeping under them by forming a physical barrier 

between the infected mosquito and the individual and finally, they result in a reduction in transmission from 

infected individuals to susceptible mosquitoes. 



12 
 

WHO (2014) report that over the past 10 years, the proportion of people with access to an ITN has increased 

markedly in sub-Saharan Africa however not all households have enough nets to protect all members of the 

households. 

ITNs have been used as a method of vector control in many malaria endemic countries and where 

infrastructure restricts the use of IRS (Raghavendra et al., 2011). Traditional ITNs are treated with an 

insecticide that can last for a period of up to one year and are retreated at least every year after that to 

remain effective. (Sexton, 2011).  A study by D'alessandro et al. (1995) claims that insecticide treated nets 

are twice as effective as untreated nets and provide greater than 70% protection compared with having no 

net. They have also proved to be a cost effective prevention method against malaria. Also most African 

Anopheles bites occur at night and therefore the provision of bed nets reduces risk of being bitten and 

consequently results in a reduction in disease (Godfray, 2013). 

Table 2- 2. Insecticides used in ITN impregnation 

Insecticide Dosage (mg a.i/m2) 

Alpha-cypermethrin 20-40 

Bifenthrin 50 

Cyfluthrin 50 

Deltamethrin 15-25 

Etofenprox 200 

Lambdacyhalothrin 10-20 

Permethrin 500 

 

Long lasting insecticide treated nets (LLIN) are impregnated with insecticide that can last for a period of up 

to three to five years (Fullman et al., 2013). LLINs are becoming more widely available because they maintain 

high coverage levels for longer durations Pyrethroids on treated nets work in three ways, they act as a killing 

agent when the insect makes contact with the insecticide by landing on the net; they have an irritating effect 

and therefore insects can only rest briefly on the treated fabric and the formulation in which the pyrethroid 

is presented contains volatiles that deter mosquitoes (Imbahale et al., 2011). 

In some countries where resources are available, malaria control programs use both IRS and ITNs. The 

benefits of this combination are that it reduces transmission and therefore the malaria burden of disease 

more efficiently than one method would have, it increases the overall coverage of vector control protection 

and it delays the emergence of insecticide(Kleinschmidt et al., 2009) resistance by using different classes of 

insecticide for IRS and LLINs (Kleinschmidt et al., 2009).  
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In South Africa, IRS has been the backbone of the national malaria control program because it is more cost 

effective method of control in comparison to treated bed nets. An investigation by NDoH (2009) provided 

evidence that the use of insecticide treated bed nets (ITBNs) would cost the government an additional R111 

per additional case averted. The investigation also showed that time costs are higher with treated nets than 

IRS  because ITBNs requires people to participate in  a detailed sleeping patterns survey, initial distribution 

of nets as well as retreatment of nets also required substantial amount of time compared to IRS. 

2.3.2 Health Promotion 

Health promotion is the process of enabling people to increase control over and to improve their health. It 

comprises of 3 approaches , firstly advocacy for health, secondly enabling all people to achieve their full 

potential and thirdly, mediating between the different interests in society in the pursuit of health (WHO, 

1986).  

Health promotion in South Africa involves educating communities about malaria control to ensure that they 

comply with instructions from spray operators during IRS campaigns and that they take personal, protective 

measures against being bitten by malaria infected mosquitoes (Moonasar et al., 2012). 

The paper by Moonasar et al. (2012) further explains that the health promotion strategy employed by the 

South African Malaria Control Programme has two components such as preventative and curative. The 

preventative component comprises of ensuring that communities comply with instructions from spray 

operators during IRS campaigns and take personal, protective measures against being bitten by malaria 

infected mosquitoes. The curative component comprises of educating communities to recognize signs and 

symptoms of malaria so as to seek early treatment. Information, education and communication (IEC) about 

malaria is delivered through several channels, including health facilities, community events, radio, posters 

and pamphlets. 

A study by Hlongwana et al. (2011) to investigate the knowledge and practises (KAP) of residents of 

Bushbuckridge in the Mpumalanga Province of South Africa towards malaria found that  the main sources of 

malaria information were health facilities and radio. The study further concluded that residents had a good 

understanding of the reasons for spraying. However, knowledge of malaria signs and symptoms was found 

to be inadequate.  

A similar study conducted by Hlongwana et al. (2009) in Swaziland found that health facilities were again the 

most important source of malaria information. They also found that there was little information originating 

from traditional community district meetings, community health workers and rural health motivators. 

2.3.3 Surveillance 

Malaria surveillance allows for early detection and immediate treatment of malaria cases (RBM, 2005). It also 

ensures that outbreaks of malaria are tracked and interventions can be implemented to avoid epidemics. 
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Proper surveillance of malaria cases requires reliable notification of cases and efficient capturing and storage 

of case information. Malaria has been a notifiable disease in South Africa since 1956, therefore by law, health 

authorities in the country should be notified of all malaria cases. In addition, effective malaria information 

systems (MIS) exist in the three malaria endemic provinces of South Africa which are Limpopo, Mpumalanga 

and KwaZulu Natal.  

Malaria case data is routinely collected by malaria control staff in the 3 endemic provinces and entered into 

the MIS of each province. Also active case detection of index cases and screening of populations in close 

proximity to confirmed malaria cases are conducted in Mpumalanga and KwaZulu Natal provinces. However 

this activity is limited in the Limpopo Province. 

2.3.4 Cross boarder malaria initiatives 

Several cross border malaria initiatives such as the Trans-Limpopo Malaria Initiative (TLMI) and the Lubombo 

Spatial Development Initiative (LSDI) were undertaken to reduce the transmission of malaria in the border 

areas of South Africa (NDoH, 2009). 

The aim of the TLMI was to reduce malaria transmission between and within the Matebeleland South 

Province of Zimbabwe and the Limpopo Province of South Africa. Its main strategies were case management, 

vector control, surveillance and health promotion (Moonasar et al., 2012). 

The LSDI was a joint programme between the governments of Mozambique, Swaziland, southern 

Mozambique (Maputo province) and north eastern KwaZulu Natal into a globally competitive economic zone. 

However these areas are malaria endemic and therefore malaria control was a paramount precursor to 

economic development. Therefore a tri-national malaria program was launched between the 3 countries 

(Sharp et al., 2007).  

2.3.5 Case Management 

Malaria case management involves confirming malaria cases and treatment of individuals who test positive. 

Most malaria endemic countries (89 out of 99 countries with on-going malaria transmission) have adopted 

WHO’s policy to test all patients that are suspected of having malaria. Evidence of infection with malaria can 

be obtained using light microscopy or rapid diagnostic tests (RDT) (WHO, 2006a).  

For efficient case management South Africa uses definitive diagnosis for malaria case confirmation and 

treatment, malaria diagnosis and treatment are free of charge in public health care facilities (Moonasar et 

al., 2012). RDTs detect parasite-specific antigens or enzymes in a small amount of blood and some can detect 

more than one species. Microscopy is the microscopic examination of Giemsa stained blood smears 

(Coleman, 2009). The choice of using RDTs or microscopy to diagnose malaria depends on local circumstances 

such as the skills available, patient case load, epidemiology of malaria and the possible use of microscopy for 

the diagnosis of other diseases (WHO, 2006a). 



15 
 

RDTs are easy to use and interpret and they allow for immediate findings and treatments (Endeshaw et al., 

2008, Rolland et al., 2006). A study by Björkman and Mårtensson (2010) found that RDT sensitivity is 

dependent on parasite density and well performed lab studies showed that RDTs had a sensitivity greater 

than 95% for high parasite densities and mostly greater than 75% for low parasite densities. Studies under 

field conditions showed sensitivity greater than 90% again dependant on parasite density. Field trials showing 

that RDTs had a high degree of sensitivity and specificity and were user friendly led to the rapid acceptance 

of RDTs in malaria endemic regions (Munga et al., 2006). 

Although microscopy is the gold standard in malaria diagnosis, it is sometimes a less appealing option 

because it is labour intensive and requires trained staff and quality equipment which are a scarce attributes 

in countries that lack resources (Batwala et al., 2010). However microscopy is advantageous because it allows 

for differentiation between species, quantification of the parasite density and the ability to distinguish 

clinically important asexual parasite stages from gametocytes which may persist without causing problems 

(Bloland and Organization, 2001). 

The South African National Department of Health was the first health ministry in Africa to implement a 

definitive malaria diagnosis policy using RDTs at all public health facilities in 1996. This action was due to the 

delayed and substandard malaria microscopic results (Munga et al., 2006). 

Historically, chloroquine was the drug of choice for treatment of non-severe or uncomplicated malaria and 

for chemoprophylaxis however drug resistance has dramatically reduced its truthfulness (Bloland and 

Organization, 2001) 

WHO (2006a) state that resistance to Plasmodium falciparum has been observed in all currently used 

antimalarials (amodiaquine, choloroquine,mefloquine, quine and sulphadoxine-pyrimethamine [SP])and 

more recently in artemisinin derivatives. Plasmodium. vivax has developed resistance rapidly to SP in many 

areas while resistance to chloroquine is confined largely to Indonesia, Papua New Guinea and parts of 

Oceania. 

In view of the documented resistance to anti-malarial drugs, WHO (2006a) guidelines recommend that 

uncomplicated Plasmodium falciparum malaria should be treated with an artemisinin-based combination 

therapy (ACT). In areas where chloroquine is still effective, it should be used to treat Plasmodium vivax 

malaria however in areas where resistance to chloroquine is documented, it should be treated with an 

appropriate ACT. In order to prevent relapses, both chloroquine and ACT should be administered with a 14 

day course of primaquine (WHO, 2014). 

 South Africa treated uncomplicated malaria with chloroquine and quinine was used to treat complicated 

malaria, drug resistance to chloroquine was first reported in KwaZulu Natal in 1987, consequently from 1988 

SP was used to treat malaria in KwaZulu Natal. Chloroquine resistance was reported in Mpumalanga and 
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Limpopo provinces in 1997 prompting a change to SP for malaria treatment in these provinces as well 

(Moonasar et al., 2012). 

However SP resistance began to increase steadily in the mid-1990s and reached 80% by 2000 therefore drug 

policy in KwaZulu Natal changed to Coartem in 2001 followed by Limpopo in 2004. Mpumalanga province 

used SP-artesunate from 2001 to 2005 and changed to artemether-lumefantrine (AL) which trades as 

Coartem in January 2006 (Moonasar et al., 2012). 

Coartem is an ACT and treatment of malaria with ACT has the advantage of reducing malaria transmission by 

decreasing gametocyte carriage while curing the disease (Barnes et al., 2009).  Artemisinins cause a rapid 

and substantial reduction in the parasite biomass, irrespective of the parasites resistance to other 

antimalarials, the remaining parasites are then killed off by the high concentrations of the companion drug. 

There is a sound scientific reasoning for using ACTs, in general, combining different drugs with independent 

modes of action will increase the chances of killing parasites and greatly decrease the probability that an 

infected person will develop resistance to both drugs(Olliaro, 2005). 

Currently in all endemic and non-endemic provinces in South Africa, AL is the recommended first line 

antimalarial treatment of uncomplicated Plasmodium falciparum malaria. Primaquine is used to treat 

Plasmodium vivax and Plasmodium ovale infections (NDoH, 2010) 

Prompt and proper treatment of patients infected with malaria parasites as well as efficient malaria control 

interventions that are effectively executed contribute to a reduction in parasite prevalence through reduced 

transmission.  

2.4 MALARIA TRANSMISSION 

Malaria transmission refers to a vector mosquitoes actively transmitting malarial infections in human 

populations at particular locations (Carter et al., 2000) and is a function of the three-way interaction between 

humans, Plasmodium parasites and the mosquito vectors that transmit them between hosts (Lyimo and 

Ferguson, 2009, Dobson, 1999). Malaria transmission is dependent on  human-vector contact rate, vector 

and parasite survival, parasite-development rate inside vectors and human and vector population size (Lyimo 

and Ferguson, 2009). The intensity of transmission is associated with the frequency with which a person is 

exposed to the bite of an anopheline mosquito infected with malaria sporozoites and therefore to the 

possibility of becoming infected with malaria parasites (Carter et al., 2000). 

The intensity of malaria transmission is usually discussed in terms of the malaria sporozoite inoculation rate, 

which is also known as the entomological inoculation rate [EIR ](Carter et al., 2000). EIR is important because 

it provides an estimate of the passage of malaria parasites from infective anopheline species to human 

populations and is calculated as the product of the human biting rate (an estimation of the density of 

mosquitoes per person) and sporozoite index (an estimation of the proportion of vectors with sporozoites in 
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their salivary glands). EIR is expressed as the number of infective bites per person per year (Robert et al., 

2003). 

EIR is a useful indicator of malaria transmission and as such it is an important indicator of the impact of vector 

control measures. It can be used to quantify the impact of insecticide treated nets (ITNs), indoor residual 

spraying (IRS) and source reduction on malaria transmission(Shaukat et al., 2010, Kelly-Hope and McKenzie, 

2009). EIR is a more direct measure of transmission intensity however it has a few disadvantages such as it is 

difficult to measure, it is not standardized, it has no standard protocols and there is variability in 

methodologies to calculate it (Hay et al., 2005). Another notable disadvantage expressed by Robert et al 

(2003) is that it cannot be considered an exact measure of transmission because not all bites from infected 

anopheline species succeed in infecting humans. 

Another indicator of malaria transmission potential is the standard Ross-MacDonald mathematical model 

that predicts malaria transmission in terms of the reproductive rate R0, which is defined as the number of 

new cases generated by one infected person in a population of susceptible people(Lyimo and Ferguson, 

2009). 

A report by WHO (2006a) states that in locations where malaria transmission is stable (populations are 

continuously exposed to a fairly constant rate of malarial inoculations) and if the inoculation rate is high (EIR 

> 10/year), partial immunity to clinical malaria and its severe manifestations is acquired early in childhood. 

The above scenario is common in Sub-Saharan Africa and in such cases; acute clinical malaria is almost always 

confined to young children who suffer high parasite densities. In stable and high-transmission areas, 

adolescents and adults are partially immune and rarely suffer clinical disease. The report went on to state 

that in areas of unstable malaria transmission, rates of inoculation fluctuate greatly over seasons and years 

(EIRs are usually <5/year and often <1/year). This reduces the acquisition of immunity and results in people 

of all ages suffering acute clinical malaria, epidemics are also most likely to occur in areas of unstable malaria 

transmission when inoculation rates increase rapidly 

A study conducted by Mouchet et al. (1998) revealed that in stable malaria regions, transmission occurs at 

high levels every year and can either be perennial or seasonal and the human population acquires a strong 

immunity during the first few years of life. They also found that transmission is lower in regions of unstable 

malaria and the population acquires less immunity and epidemics occur in all age classes. 

Malaria transmission is influenced by intrinsic and extrinsic factors. Breman (2001), suggests that the most 

important intrinsic factors include host (human) immunity, parasite species and the species of anopheline 

mosquito and its longevity. He further lists the most significant extrinsic factors as climate, social and 

economic conditions, political commitment and effectiveness of control and prevention efforts. 
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It is important to understand the relationship between extrinsic and intrinsic drivers of malaria to be able to 

understand the causes and patterns of malaria transmission (Childs and Boots, 2010). 

2.4.1 Intrinsic factors of malaria transmission 

The first to be discussed is host immunity. When exposed to malaria infection, human populations have 

varying susceptibility to infection and severity of sickness (Breman, 2001). A study by Allison (1954) found 

that sickle cell and other traits that alter red blood cell (RBC) structure limit parasite multiplication within the 

RBCs. Additionally Miller et al. (1976) reported that Plasmodium vivax requires the presence of the Duffy 

blood factor on the surface of RBCs in order to enter them; since over 90% of sub-Saharan Africans lack the 

Duffy factor, Plasmodium  vivax is not found in countries in sub-Saharan Africa. The immunity status of the 

host is crucial in determining the clinical response to infection and transmission.  A study by Baird and Snow 

(2007) suggests that populations in malaria endemic areas acquire immunity over time because they are 

continually exposed to malaria parasites. Although these populations do not obtain full immunity and low 

level parasite infections may still occur, they are generally protected against severe malaria. 

The second important intrinsic factor in malaria transmission is the parasite, Plasmodium falciparum is the 

most virulent of the 4 species if plasmodia that affect humans and causes severe illness (Gupta et al., 1994). 

Plasmodium vivax and Plasmodium ovale cause relapses months after infection and Plasmodium malariae 

has the mildest clinical manifestations of the 4 and causes fevers that recur at 3 day intervals. The third factor 

is the anopheline mosquito and its longevity, there are about 400 species but only 60 transmit malaria and 

only 30 are of major importance (Bruce-Chwatt, 1980). Several studies have reached the conclusion that the  

Anopheles gambiae complex and Anopheles funestus are the most efficient vectors of malaria transmission 

in Africa (White, 1974, Coluzzi, 1992). Also Malaria transmission is only possible if the longevity of the vector 

is sufficient to complete sporogony (Coosemans et al., 1992). 

2.4.2 Extrinsic factors of malaria transmission 

The development of the mosquito larvae and survival and behaviour of adult mosquitos are dependent on 

various environmental factors. Temperature, rainfall and humidity have long been associated with the 

dynamics of malaria vector population and consequently the transmission of malaria (Yé et al., 2007). Warm 

temperatures, heavy rainfall and high humidity are conducive to mosquito breeding and longevity and 

parasite sporogony (Breman, 2001). Studies  by Kiang et al. (2006) and Tanser et al. (2003) provide additional 

evidence that sustained malaria transmission is dependent on suitable environmental  conditions for both 

vector and parasite; rainfall however appears to have the greatest influence of all environmental factors. 

Research by Small et al. (2003) concluded that temperature also has a considerable influence on mosquito 

vector feeding intervals, population density and longevity. 
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The effect of land use and land cover on malaria transmission is that they affect the availability and suitability 

of larval habitats and topography is important because a close relationship was observed between malaria 

risk and elevation (Tuno et al., 2005, Adimi et al., 2010). 

Climate change influences malaria transmission because it may directly influence the behaviour and 

geographical distribution of mosquitoes and the life cycle of the parasite resulting in changes in patterns and 

incidence of transmission (Martens et al., 1995, Tanser et al., 2003). 

Social and economic conditions of a community also have an influence on malaria transmission. Improved 

education and increased economic activity led to an increase in the ability to manufacture purchase and 

effectively use insecticides which has resulted in a great reduction in malaria transmission. Poverty alleviation 

has also been associated with a decrease in malaria endemicity due to improved access to health facilities 

and quality housing (Andrews et al., 1950, Bruce-Chwatt and De Zulueta, 1980). Human population 

movement influences malaria transmission because infected people move from areas where malaria is 

endemic to areas where the disease has been eradicated leading to a resurgence of malaria (Martens and 

Hall, 2000). 

2.5 CLIMATIC RISK FACTORS OF MALARIA 

Climate is an important determinant of malaria transmission dynamics because it determines the spatial and 

temporal pattern of malaria transmission dynamics (Brooker, 2007). It affects various facts of malaria 

epidemiology  such as mosquito reproduction, sporogony and mosquito biting behaviour (Karthe, 2010). 

2.5.1 Temperature 

A study by  Paaijmans et al. (2010) examined  the effects that daily temperature dynamics have on what they 

identified as three key mosquito life history parameters. They examined the effects of temperature 

fluctuations on immature mosquito development and survival; survival of adult mosquitoes and on the length 

of the gonotrophic cycle. The results provide empirical evidence that parasite infection, growth and 

development; immature mosquito development and survival; length of gonotrophic cycle and adult survival 

are all sensitive to daily variation in temperature. And since all the above mosquito-related traits combine to 

determine malaria transmission, this study highlights the direct influence of temperature on malaria 

transmission. 

According to (Lindsay and Martens, 1998), the minimum temperature for Plasmodium falciparum 

development is between 160C and 180C, therefore a drop in temperature results in a decline in the risk of 

infection because parasite development is restricted (Musa et al., 2012). The sporogenic cycle takes about 9 

to 10 days to complete at temperatures of 280C (Craig et al., 1999). Studies have shown that the optimum 

temperature range for parasite development in the female Anopheles is between 250C and 300C and 

development ceases below 160C (Snow and Omumbo, 2006). At temperatures above 400C, the daily vector 
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survival is zero because thermal death for mosquitoes occurs between 40 – 420C (Craig et al., 1999). Another 

effect of increased temperature on malaria transmission is that it causes mosquitoes to develop faster and 

feed at shorter intervals because blood meals are more rapidly digested and the whole genotrophic cycle 

(process of blood-feeding, egg maturation and oviposition) is accelerated  (Grover-Kopec et al., 2006, Hay et 

al., 2000, Musa et al., 2012). 

Alemu et al. (2011) discuss studies that suggest that minimum temperature is the most significant factor for 

malaria transmission in comparison to other meteorological factors, this means that  a rise in minimum 

temperature would encourage the survival of Plasmodium and Anopheles during different seasons, 

accelerating the transmission dynamics of malaria. One such study was conducted in  Shuchen County, China, 

by (Bi et al., 2003) and their results showed a strong correlation between monthly mean minimum 

temperature and monthly mean incidence of malaria. 

2.5.2 Rainfall 

Rainfall provides breeding sites for mosquitoes by providing surface water in which female Anopheles can lay 

eggs and it prolongs the vector life span by increasing water availability (Casman and Dowlatabadi, 2002). 

Anopheles gambiae s.l. breed more effectively in temporary and turbid water bodies such as those formed 

by rain, in contrast, Anopheles funestus breed more effectively in more permanent water bodies. However, 

both temporary and permanent water bodies are dependent on rain (Coleman, 2009). Rain is also related to 

humidity and saturation deficit, both of which influence mosquito survival, because rainfall increases relative 

humidity and thus the longevity of the adult mosquito (Kiang et al., 2006, Craig et al., 1999). Mosquitoes 

generally do not live long enough to complete their transmission cycle when relative humidity is below 60% 

(Grover-Kopec et al., 2006).  

Mabaso et al. (2006) conducted a study to illustrate the role of rainfall in malaria transmission in Zimbabwe. 

Their findings were that high annual malaria incidence coincide with high rainfall and relatively warm 

conditions while low incidence years coincide only with low rainfall (Mabaso et al., 2006). These findings 

were supported by a later study by Himeidan et al. (2007) to investigate the role of climatic variables on 

malaria transmission in eastern Sudan which found a significant positive association between high rainfall 

and malaria slide positive rate (SPR). 

However, an excess of rainfall destroys breeding sites and flushes mosquito larvae out of small ponds and 

therefore reduces transmission of malaria. The relationship between rainfall and the development of 

breeding sites is also dependant on the topography, run off and soil type of the region (Hay et al., 2000)  Also 

the lack of rainfall does not necessarily result in a reduction of larval populations. This is because the lack of 

rainfall may create new habitats such as pools and puddles and thus lead to an increase in larval populations 

(Kiang et al., 2006). A study by Danuor et al. (2010) corroborated the above findings by concluding that 
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excessive rainfall in an area in Ghana was followed by a decrease in malaria cases and low rainfall was 

followed by a rise in malaria cases. 

2.5.3 Land use and land cover 

A study by  (Munga et al., 2009) investigated the impact of land use and land cover on the availability and 

suitability of anopheline larval habitats found that Anoheles Gambiae and Anoheles.funestus larvae occurred 

frequently in open and unlit habitats in farmlands and pastures. Land cover type was also found to influence 

the suitability and availability of anopheline larval habitats through its effects on temperature and food 

conditions, Munga et al. (2006) found that land cover type affects water temperature and available nutrients 

in aquatic habitats.  

Furthermore Afrane et al. (2006) concluded that land use and land cover have a profound impact on vectorial 

capacity of anopheline mosquitoes by influencing survivorship and biting frequency of Anoheles Gambiae. 

This was proved by observed significant increases in the net reproductive rate of mosquitoes in deforested 

areas in Kenya which suggested that deforestation enhances mosquito reproductive fitness thus increasing 

mosquito growth potential (Munga et al., 2009). 

Changes in land use can influence malaria transmission in several ways, such as,  increased cattle grazing 

creates more open temporary habitats that can provide mosquito breeding habitats; it may change the 

physical and chemical properties of mosquito larval habitats and it may also change the microclimate of 

mosquito larval habitats (Minakawa et al., 2005). The clearance of forests to grow crops or create pastures 

leads to open landscapes which when puddled provide suitable breeding sites (Lindsay and Martens, 1998), 

it also shortens the sporogenic development time of Plasmodium falciparum in Anoheles Gambiae (Munga 

et al., 2009). 

In a study conducted by Lindblade et al. (2000) to investigate the effect of land use change on malaria 

transmission in a highland area in Uganda, it was established that mosquito density during the wet season 

was consistently higher in cultivated swamps than in natural swamps. The same study  also indicated that 

changes in vegetation due to change of land over altered evapotranspiration systems and modified local 

climates, this was proved by minimum and maximum temperatures being uniformly higher near cultivated 

swamps. These findings were echoed in a study in Kenya that concluded that cultivated swamps receive more 

exposure to sunlight than natural swamps therefore the ambient air temperature in cultivated swamps was 

significantly higher than in natural swamps. Also, mosquito larval predators may be more prevalent in natural 

swamps than in cultivated swamps  (Minakawa et al., 2005).  Another possible reason why clearing natural 

swamps increases malaria transmission is that the papyrus found in swamps produces oils which form a thin 

layer on the water surface and this could  prevent mosquito larvae from breathing thus the clearing of 

swamps provides surface water that is ideal for the breeding of mosquitoes (Lindsay and Martens, 1998). 
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Vegetation type and growth affect the abundance of the malaria vector because vegetation provides a resting 

place, protection from climatic conditions and sugar feeding supplies for adult mosquitoes. It also influences 

the presence of animal or human hosts and consequently affects the availability of blood meals (Ceccato et 

al., 2005). There is also evidence that habitats  covered by grass has  more anopheline mosquitoes that those 

with other types of vegetation and open land, this could be due to the grass protecting mosquito larvae from 

being flushed away by running water, protecting larvae from predation  and offering newly emerged adult 

mosquitoes a shaded resting place (Imbahale et al., 2011).  

Urban environments also have an effect on malaria transmission, replacing vegetation with asphalt and 

concrete may reduce the number of larval habitats. However, in urban areas, where vegetation remains, 

combined with urban farming provides sufficient aquatic habitats for mosquitoes (Robert et al., 2003). 

2.5.4 Normalized Difference Vegetation Index (NDVI) 

NDVI is unitless with a theoretical range of -1 to +1, however most values fall between 0 and 0.7 (Britch et 

al., 2008). it is an index that is calculated by dividing the difference between reflectance in the red and near 

infrared spectral regions by the sum of the reflectance in the same two bands. It correates to a number of 

biophysical  parameters including leaaf area index, biomass and fraction of absorbed photosynthetically 

active radiation (Wayant et al., 2010). It is dependant on both land cover and atmospheric conditions 

(Machault et al., 2011) 

Positive values near 0 are indicative of bare soil or little or no vegetation and values closer to 0.7 are indicative 

of dense vegetation (Britch et al., 2008).The higher the NDVI value, the denser or healthier the vegetation is 

regarded as being. The growth of vegetation cover results in a cool shaded environment that is conducive to 

the development of aquatic stages of the mosquitoe life cycle (Okogun et al., 2003). Additionally, an 

abundance of vegetation cover provides adult mosquitoes with shade for resting poitions and breeding sites 

(Gilliet, 1971). This is important because it has been proven that mosquitoes prefer cool, shaded areas for 

biting and breeding activities (Okogun et al., 2003). 

 2.5.5 Topography 
Many of the factors that are important to mosquito development and survival such as meteorological 

conditions, vegetation, water body characteristics and land use appear to be related to topography – mainly 

landform and elevation (Ndoen et al., 2010). It was shown that for a study conducted in Tanzania that the 

intensity of transmission is directly related to altitude and that parasite prevalence is a good indication of 

this (Drakeley et al., 2005). Further studies in the Kenyan Highlands support these findings, a linear 

relationship was found between Plasmodium falciparum prevalence in the study group and altitude (R2 = 

0.98) with a 15.9% reduction in prevalence for every 50 meter increase in altitude along the transect which 

originated from the bottom of Yala River valley and terminating at Sigalaga village, 4km uphill (Githeko et al., 

2006). 
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An investigation into the spatial distribution of Anopheline larval habitats in Western Kenya showed that 

topography affected the formation of aquatic habitats for mosquito larvae (Minakawa et al., 2005). Stagnant 

aquatic habitats are more prevalent in valley bottoms than on hills because it is more difficult for water to 

accumulate on hill slopes due to surface run off, these bottom stagnant aquatic habitats are formed as a 

result of run off from uphill, and seepage from springs and groundwater. Also, groundwater levels are 

lowered during the dry season and therefore the distribution of stagnant aquatic habitats becomes more 

confined towards valley bottoms (Minakawa et al., 2005). The spatial distribution of larval habitats is often 

constrained by topography and water drainage (Munga et al., 2009). 

2.5.6 Humidity 

Humidity is another important  climatic variable related to malaria transmission because adequate humidity 

is required to ensure mosquito survival (Jawara et al., 2008). A study by Huang et al. (2011) that performed 

a temporal correlation analysis to analyse the relationship between rainfall, temperature, humidity and 

malaria incidence found that monthly relative humidity was most closely correlated to monthly malaria 

incidence.  

Adult mosquitoes are dependent on specific moisture content in the air and will desiccate if the climate is 

too dry (Stresman, 2010). Vittor et al. (2009), Afrane et al. (2008) and Tuno et al. (2005) found that decreasing 

humidity had an impact on mosquito fitness and parasite development. For a mosquito to transmit the 

parasite, it must survive long enough to bite an infected person, surpass the extrinsic incubation period of 

the parasite and then bite an uninfected person (Yamana and Eltahir, 2013). Relative humidity below 60% 

shortens the lifespan of mosquitoes (Yé et al., 2007) and therefore humidity has a significant effect on malaria 

transmission (Yamana and Eltahir, 2013). 

Studies have further shown that relative humidity directly influences mosquito activities such as biting and 

breeding rates (Bi et al., 2003). De Casas and Carcavallo (1995) report that high relative humidity stimulates 

metabolic processes of mosquitoes and low relative humidity results in mosquitoes feeding on blood more 

frequently to compensate the dehydration. 

2.5.7 Climate change 

Climate change is expected to affect malaria indirectly by changing ecological relationships that are important 

to the organisms involved in malaria transmission (vector, parasite and host) and directly by causing changes 

in temperature, rainfall and relative humidity (Alemu et al., 2011). This will result in the modification of the 

behaviour and distribution of malaria vectors and a change in the length of the life cycle of the parasite 

(Alemu et al., 2011) and hence a change in the distribution and incidence of malaria.  

The second assessment report by the Intergovernmental Panel on Climate change (IPCC) published in 1996 

concluded that the earth’s mean temperature will increase by 1 – 30 C over the coming century (Danuor et 
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al., 2010). However, larger local increases could occur over a shorter time period due to  deforestation, this 

could result in increases of up to 3 – 40 C (Lindsay and Martens, 1998). These findings are significant because 

malaria  is considered one of the major vector – borne diseases most sensitive to changing environmental 

conditions resulting from climate change (Parham and Michael, 2010).  

Parham and Michael (2010) modelled the effects of climate change on malaria and discovered that changes 

in rainfall strongly govern malaria endemicity, invasion and extinction by influencing vector abundance. 

Furthermore, they revealed that temperature effects have a complex relationship with malaria transmission 

and a stronger influence on the rate of the disease by affecting multiple parts of the pathogen life cycle but 

only when sufficient rainfall is available to sustain vector development and survival.  

A model created by Martens et al. (1995) to  assess the potential impact of climate global change on malaria 

incidence showed that simulation experiments (using the climate changes predicted by the IPCC) indicate a 

wide spread increase in transmission potential of the malaria mosquito population and an expansion of the 

areas that are conducive to malaria. The model also showed that in the highly endemic malarial areas of 

tropical Africa, the incidence of malaria and consequently the number of years of life lost due to malarial 

disease may increase however in malarial areas of lower endemicity, the incidence of infection is far more 

sensitive to climate changes.  

2.6 APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEMS, REMOTE SENSING AND SPATIAL 

STATISTICS IN MALARIA STUDIES 

Geographical Information Systems (GIS) and Remote Sensing (RS) and spatial statistics play a pivotal role in 

malaria studies because they allow for the acquisition of detailed, accurate and continuous environmental 

data, they are a resource that enables the processing this data as well as the integration of environmental 

and epidemiologic data into models and they enable an understanding of the spatial and temporal 

relationships between malaria cases and environmental variables (Thomson et al., 1999). Therefore GIS, RS 

and spatial statistics are tools for enhancing planning and implementation of efficient and effective large 

scale malaria control programs (Himeidan et al., 2007). 

The interactions between GIS, RS and spatial statistics in malaria research are emphasized by project 

MALAREO which is a mixed European-African consortium focused on providing suitable remotely sensed data 

for two applications. The first application is in epidemiological modelling using mostly Bayesian statistics to 

predict malaria incidence, prevalence and risk. The second is for use in producing a range of thematic maps 

to assist in the daily work of national malaria control programs to support management of integrated vector 

control which includes planning of IRS and distribution of ITNs or larviciding (Bauwens et al., 2012). 

The application of GIS and RS in malaria control is primarily for the classification and mapping of the 

distribution of sources of malaria transmission and malaria risk down to the household level where possible 
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so that control efforts in endemic situations and intervention strategies in epidemic situations may be 

directed efficiently (Hay et al., 2000, Nájera et al., 1998, Carter et al., 2000). These systems provide a structure 

that is capable of collecting data linked to geographical location from different sources and storing it in a 

form which permits subsequent analysis and synthetic presentation in map form (Carter et al., 2000). GIS and 

RS make it possible to monitor and analyse environmental factors that influence malaria transmission, in this 

way associations between environmental variables and the distribution of the different species responsible 

for malaria transmission can be understood and this knowledge can be used to fight the disease (Ceccato et 

al., 2005). 

2.6.1 Geographical Information Systems (GIS) 

The Malaria Atlas Project (MAP) is a case study of the efficient use of GIS in malaria research. As has been 

discussed earlier, malaria is a vector borne disease and the anopheline mosquitoes responsible for its 

transmission are very sensitive to climate. Hay et al. (2009) elaborate that the MAP team collected climatic 

data and community based parasite prevalence data to develop global maps of malaria risk. This was done 

primarily to predict the endemicity of Plasmodium falciparum by developing global   maps of malaria risk. 

Booman et al. (2000) described how GIS can be used to plan a malarial control programme in Mpumalanga 

province, South Africa by producing risk maps at town and village level. A database containing malaria case 

data as well as the geographical area (exact position of villages and towns) was developed, this allowed for 

GIS to be used to display malaria cases and their specific location in Mpumalanga spatially. Malaria incidence 

was also calculated (total number of new cases occurring in each age cohort of females and males divided by 

the total person-years and then multiplied by 1000), this allowed for the creation of a thematic map 

displaying malaria risk. Spatially defining and depicting the incidence of malaria allows for proper planning 

to enable efficient use of available resources, focusing on districts with the highest risk of malaria. 

A similar study was later conducted by Kelly et al. (2013); it also used GIS for malaria control in Solomon 

Islands and Vanuatu. GIS tools were used to automatically locate and map the distribution of reported 

confirmed malaria cases at household level, and this could be done because positive cases were geo-

referenced using household location. This study allowed for the detection of priority geographic areas (where 

there is a high number of reported malaria cases) so that follow up activities could be conducted and it 

assisted with appropriate measures being implemented timeously. 

A paper by Booman et al. (2003) discussed how GIS can also be used for monitoring the progress of indoor 

spraying activities as was done in Mozambique as part of the multilateral Lubombo Spatial Development 

Initiative. The smallest administrative unit boundary at which data was captured (localities) were drawn onto 

maps and digitally captured into GIS, this then enabled the production of spraying progress maps because 

weekly spray activities (number of structures sprayed, volume and type of insecticide per structure) were 

captured into a database for each locality. Maps depicting spray coverage were also produced from this data 
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and these were useful for tracking the progress of spray teams, areas that showed a lower coverage 

percentage than expected were then investigated to determine the cause of this and the necessary measures 

to correct the problems instituted. Insecticide application rates can also be monitored from the information 

entered into the database, it is important to keep track of application rates because under application 

reduces the overall effectiveness of insecticides and over-application is wasteful as available resources 

should be used effectively. 

Shirayama et al. (2009) used GIS to assist in the monitoring of intervention coverage and health outcomes in 

Laos province in Asia by visually displaying the uneven distribution of ITNs and health outcomes. They were 

also able to highlight areas where malaria cases were concentrated as well as areas with low ITN coverage 

and poor adherence to interventions. This data and subsequent maps were greatly beneficial to decision 

makers and local health staff. 

2.6.2 Remote Sensing (RS) 

RS can be defined as the collection of data by instruments measuring physical and biological characteristics 

of some objects without direct contact, sensors on board satellites record electromagnetic radiation reflected 

or emitted by the earth’s surface. Earth observing satellites are equipped with instruments that provide high 

spatial resolution images that have a low temporal resolution (revisit time can be several days or weeks) or 

low resolution platforms that provide images once or several times a day (Machault et al., 2011). 

Climate, seasonality, rainfall patterns, temperature, humidity and the presence of vegetation and surface 

water are all directly related to malaria transmission. This data can be linked to many malariometric indices 

such as breeding sites, vector density (larvae densities and adult mosquitoes are closely related), 

entomological inoculation rate(EIR) and parasite prevalence, morbidity and mortality (environmental and 

climatic indicators have been used in models explain malaria morbidity and mortality), detection of changes 

(image processing allows for detection of environmental changes over time that can be associated with new, 

increased or decreased malaria risk) and urban malaria mapping [urbanization has been shown to have an 

effect on malaria transmission] (Ceccato et al., 2005). Furthermore, RS images that provide information about 

environmental factors can serve as predictors of vector distribution patterns and of average malaria 

transmission levels (Curran et al., 2000, Rogers et al., 2002). Therefore remote sensing in the form of satellites 

for earth observation is important because it allows for the monitoring of these environmental  factors which 

influence the reduction or re-emergence of malaria (Ceccato et al., 2005).  

This is shown in a study by Kiang et al. (2006) that was carried out to examine the environmental dependency 

of malaria transmission in Thailand. Environmental data (temperature, precipitation, relative humidity and 

Normalised Difference Vegetation Indices (NDVI)) was obtained through RS. Neural network methods 

(statistical learning algorithms) were then used to model malaria transmission based on these variables. Out 

of a total of 19 provinces, malaria transmission was correctly predicted in 11 provinces and over predicted in 
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only 8. Also an investigation by Gaudart et al., 2009 coupled environmental remotely sensed data with field 

study data in order to create a malaria transmission model for a locality in the Sudanese savannah area. The 

model showed that the seasonal pattern of Plasmodium falciparum incidence was significantly explained by 

NDVI. A later study by Midekisa et al. (2012) also developed time series models for malaria early warning in 

Ethiopia by quantifying the relationship between malaria cases and remotely sensed environmental 

variables. They were also able to display the temporal patterns of malaria risk. 

In addition to providing environmental data associated with malaria transmission, research by Mushinzimana 

et al. (2006) showed that  remote sensing can also be used to identify geographic features that are associated 

with larval habitats of malaria vectors and ultimately to predict the spatial distribution of aquatic habitats. 

The importance of this is that if larval habitats are identified then it is possible to control anopheline larva 

through environmental management or larvicides to assist in combating malaria transmission. 

RS has proved to be a useful source of environmental data that influences malaria transmission and GIS have 

emerged as a powerful tool to link and display information from many different sources such as 

environmental and disease data in a spatial context. However the mapping capabilities of GIS and RS are 

limited because they are unable to quantify the relation between environmental factors and malaria risk and 

to produce model based predictions, this is where the importance of spatio-temporal modelling lies (Gosoniu 

et al., 2006). 

2.6.3 Spatial statistics 

Spatial statistics are similar to traditional statistics except that they have the added advantage of integrating 

spatial relationships into the calculations. Data can be described as continuous or discrete and can be spatial 

aggregations or individual observations at points in space.  The spatial location of data can be regular or 

irregular and from a spatial continuum or a discrete set (Cressie, 1993). Data that is used in spatial statistics 

is categorized as geostatistical, lattice or point pattern data. Geostatistical data is data that has co-ordinates 

and values, lattice data is spatial data that is indexed over a lattice of points and point pattern data pertain 

to the location of ‘events’ of interest, the main interest is in the locations of all occurrences of some event 

(Cressie, 1993). 

Data that are close together in space and time are often more alike than those that are far apart, this 

phenomenon is referred to as spatial auto correlation. Spatial autocorrelation shows the association or 

relationship between the same variable in ‘near-by’ areas and it is important that spatial statistical models 

take it into account as failure to allow for spatial autocorrelation leads to the significance of covariates 

being overstated (Boyd et al., 2005{Thomson, 1999 #296)}. Also spatial correlation may arise because of 

omitted or unobserved covariates, and incorporating the spatial random effect in the model further allows 

these to be accounted for (Ver Hoef et al., 2001). 
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 2.6.3.1 Spatio-temporal modelling 

The advantage of spatially dependant models is that they have a more parsimonious description than classical 

trend-surface models, they have more stable spatial extrapolation properties and they yield more efficient 

estimators of explanatory-variable effects (Cressie, 1993). Statistical methods including linear and logistic 

regression are often used in disease mapping which is a term used to define the modelling of spatial variation 

of risk of disease over an area of interest (White, 2012). An understanding of the spatio-temporal variation 

in malaria provides a basis for effective disease control planning and monitoring. This is because 

characterizing spatial and temporal patterns of clinical malaria provides insights into the important drivers 

of the disease such as climatic variables (rainfall and temperature) that influence seasonal patterns and 

human factors that influence long term trends (Clements et al., 2009).         

Moreover spatio-temporal modelling of malaria in relation to various environmental factors requires precise 

disease and environmental data  both in space and time for the models to be able to describe patterns in 

detail for efficient targeting of disease prevention or treatment in space and time (Ostfeld et al

When Bayesian geostatistical models are applied to malaria risk data, they can be used to quantify 

environment-disease relations, identify significant environmental predictors of malaria transmission and 

they provide model based predictions of malaria risk (Gosoniu et al., 2006). The Bayesian approach is 

advantageous because it allows for the modelling of hierarchal datasets and it incorporates spatiotemporal 

autocorrelation (Clements et al., 2009). 

There are several studies that utilise the Bayesian approach in spatial modelling for malaria mapping, an 

example of such a study is one by Gosoniu et al. (2006) that used climatic and environmental data (NDVI, 

rainfall, temperature, season length and water bodies) and malaria prevalence data in Mali to develop 

stationary and non-stationary Bayesian models to assess the malaria-environmental relationship to predict 

malaria risk and  to develop malaria risk maps using predicted malaria risk data. 

A similar analysis was carried out  to predict and map malaria risk in Malawi to identify areas where the 

greatest malaria control and intervention strategies should be focused (Kazembe et al., 2006). However, for 

this analysis, only point referenced prevalence data for children aged 1 – 10 years was used and in addition 

to temperature and rainfall, elevation and potential evapotranspiration were also added in the Bayesian 

model for risk assessment and improved prediction. 

Bayesian geostatistical techniques can also be used to predict malaria risk at locations where malaria data is 

not available by using a kriging technique. Kriging techniques provide a framework for predicting 

(interpolating) values of a variable of interest at unobserved locations given a set of spatially distributed data, 

incorporating spatial autocorrelation and computing uncertainty measures around model predictions (Noor 

et al., 2008). The advantages of Bayesian geostatistical modelling are that they incorporate spatial correlation 
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in data and they allow for errors of estimation to be quantified making it possible to assess the precision of 

the map and significance of covariates.  

Some spatio-temporal models use the Poisson distribution which is a discrete probability distribution for the 

counts of events that occur randomly in a given interval of time or space. Kleinschmidt et al. (2000) sought 

to test the hypothesis that the spatial distribution of climatic conditions in winter is responsible for the 

variation in intensity of malaria transmission in a district in KwaZulu Natal. To achieve this, they performed a 

spatial statistical analysis of malaria incidence rates in a district in KwaZulu Natal. This was done using 

generalized linear mixed models (GLMM) with a Poisson distribution which took into account the effect of 

climatic variables on malaria cases. The results from the model were used to produce maps of predicted 

malaria incidence. 

 Mabaso et al. (2005)also used a Poisson model within a Bayesian framework to describe the relationship 

between seasonality in malaria and environmental covariates in Zimbabwe. The Poisson model was used to 

analyse the relationship between environmental factors and the number of malaria incident cases, all 

covariates (temperature, rainfall, NDVI, vapour pressure) showed significant associations with malaria cases 

and were therefore included in the spatio-temporal analysis.  

Negative binomial regression is another type of data analysis that is incorporated into spatio-temporal 

modelling; it can be used for over-dispersed count data, that is when the conditional variance exceeds the 

conditional mean. Negative binomial regression can be considered as a generalization of Poisson regression 

since it has the same mean structure as Poisson regression and it has an extra parameter to model the over-

dispersion (Hilbe, 2011). Mabaso et al (2006) used Bayesian negative binomial models to perform a spatio-

temporal analysis of the relationship between malaria incidence and climatic covariates in Zimbabwe. 

Preliminary negative binomial regression analysis was carried out to assess the relationship between annual 

malaria incidence and annual values of each climatic covariate. Bayesian negative binomial models were used 

to examine the association between inter-annual variation in malaria incidence and a combination of climatic 

covariates that were selected from the preliminary analysis. 

Kleinschmidt et al. (2001)  used linear models to determine the climatic and environmental variables such as 

temperature, rainfall and distance to water bodies that are associated with small scale malaria incidence 

rates, Alemu et al. (2011) also conducted linear regression to assess the relationship between observed 

malaria cases and meteorological variables  such as rainfall, temperature and relative humidity. Regression 

modelling was used in a study by Riedel et al. (2010) to determine the association between malaria 

parasitaemia risk and environmental variables including temperature, rainfall, NDVI, altitude and land use. 

Regression modelling was also the basis of a study by Gosoniu et al. (2009) to understand the influence of 

environmental predictors  on the number of observed malaria cases. 
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All the above spatio-temporal modelling studies focused on showing the temporal and spatial variations of 

malaria as influenced by various climatic factors. However studies have shown that clinical malaria case data 

are more closely related to seasonality (Thomson et al., 1999, Hay et al., 1998) and therefore to fully 

understand malaria transmission at a more detailed level, the relationship between malaria cases and 

environmental variables should be analysed on a monthly basis for any given year. It would also further 

improve efforts for malaria control if we are able to identify the climatic variables that play the most 

influential role in malaria transmission monthly throughout the year. 

Variable selection is a procedure that is important in the process of creating parsimonious and well 

identifiable models. It has received little attention within a geostatistical modelling framework and is usually 

performed as part of an explanatory analysis; it is carried out separately to the geostatistical model fit 

(Chammartin et al., 2013).  However, over the past few years, several approaches towards variable selection 

have emerged. Some examples are the stochastic search variable selection (SSVS) developed by George and 

McCulloch (1993), the variable selection sampler  used by Kuo and Mallick (1998), the Gibbs variable selection 

by Dellaportas et al. (2002) and the parameter expanded normal mixture of inverse-gama (peNMIG) 

geostatistical variable selection that was proposed by Ishwaran and Rao (2005). 

Taking the above into consideration, random forests can be proposed as a simple non-parametric modelling 

technique that can be employed to identify which variables are most related to malaria cases for each month 

of the year. This is because random forests have been proven to be capable of creating accurate predictive 

models and they can identify the most relevant and informative predictor variables from a set of candidates 

and provide a measure of variable importance within the predictive model. 

Random forests are an ensemble method that uses many decision tree models for classification and 

regression problems (Breiman, 2001). A subset of the training data, with replacement, is used to train each 

tree and the remaining data are used to estimate error and variable importance (Horning, 2013). 

Furlanello et al. (2003) used random forests to predict the presence of tick borne diseases using 

environmental variables as predictors. The result was risk maps showing probability of tick presence under 

various environmental conditions. They were also able to evaluate the importance of each explanatory 

variable (predictor) variable using the random forest variable importance algorithm. 

2.7 CONCLUSION 

Studies have shown that the distribution of malaria can be estimated successfully based only on climatic 

conditions (Craig, 2007). Climatic variables determine both the distribution of endemic malaria and the 

distribution and frequency of epidemic malaria in Africa (Cox et al., 1999, Mabaso et al., 2007). 

The relationships identified and applied in the preceding sections on climate and malaria transmission 

highlight the possibility of assertively relating malaria transmission both spatially and temporally to climatic 
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variables such as temperature, rainfall, humidity. However none of them are able to provide a measure of 

variable importance to quantify the individual importance of these variables in relation to malaria as well as 

provide an indication of what interactions between these climatic factors were most related to malaria.  

Furthermore, the described  methods have limitations such as the restricted functional form of the 

association pattern (linear models are the most common and most restrictive), measures of variable 

importance are only available for a small range of methods and ordinal scaled variables are often treated as 

if they were measured on an interval or ratio scale (Strobl et al., 2009).  Furthermore the use of linear and 

logistic regression modelling to predict infection risk is limited by the inability of these methods to consider 

spatial correlation of infection and environmental variables. This leads to underestimation of standard errors 

of the covariate coefficient resulting in erroneous inference and justifies the need for assessment of 

uncertainties inherent in data and modelling techniques (Brooker, 2007). Another  limitation of standard 

parametric models is that interaction effects of high order usually cannot be included (Strobl et al., 2009). 

Another shortcoming of predictive modelling is variable selection, this is due to  analytical problems caused 

by over-fitting, confounding and non-independence in data (Craig et al., 2007). Babyak (2004)suggested that 

both manual and automated stepwise selection procedures are not recommended because of frequent over-

fitting and the resulting phantom degrees of freedom. 

This study therefore will use the random forest algorithm developed by Leo Breiman at the University of 

California, Berkeley to identify relevant and informative climatic variables that are closely related to malaria 

cases for each month of the year of 2006 and to produce monthly predictive models.  

Random forest is a non-parametric modelling technique which is widely used  in prediction and classification 

problems (Garge et al., 2013). It is a statistical method that has been shown to be able to deal with a large 

number of predictor variables even in the presence of complex interactions and highly correlated variables  

(Shih, 2011). In addition, random forests allow predictor variables that would otherwise have been outplayed 

by a strong competitor, to enter the ensemble. Therefore interaction effects that would otherwise have been 

unnoticed are revealed (Strobl et al., 2009). Finally, random forest can identify relevant predictor variables 

by means of variable importance measures (Strobl et al., 2008).  It is a powerful new approach to data 

exploration, data analysis and predictive modelling which was developed by Leo Breiman at the University of 

California, Berkeley. Rossi et al. (2005) also found that random Forest variable importance ranking proved 

more stable than stepwise variable selection approaches that are available for logistic regression that are 

known to be affected by order effects. Also, a variable with a high variable importance in random Forest that 

is not included in stepwise regression may indicate that the variable works in interactions that are too 

complex to be captured by parametric regression models (Strobl et al., 2009). Further to this, testing and 

rejecting many variables increases the probability of finding a significant predictor purely by chance and 



32 
 

standard errors in predictive models are underestimated because this sifting process remains undeclared 

(Babyak, 2004, Harrell, 2001). 

Random Forests are basically an ensemble  method using many decision tree models that can be used for 

classification and/or regression (Breiman, 2001). A subset of the training data, with replacement, is used to 

train each tree and the remaining data are used to estimate error and variable importance(Horning, 2013). 

The environmental parameters that will be used as input data are NDVI (normalized difference vegetation 

index), land surface temperature, lag land surface temperature, rainfall, lag rainfall, altitude and humidity. 

These variables were chosen because they were shown to have the greatest impact on malaria transmission 

in numerous studies (Kiang et al., 2006, Tanser et al., 2003, Small et al., 2003, Parham and Michael, 2010, 

Alemu et al., 2011, Imbahale et al., 2011, Zhou et al., 2004, Yé et al., 2007, Amek et al., 2012a)These will be 

obtained using remote sensing and GIS techniques and analysis, most of which were covered in the review. 

Malaria case data is available at locality level for the entire Mpumalanga province. Because the intention is 

to establish which variable influences malaria cases the most for each month, these values will input 

simultaneously into the random forest. It is expected that important interactions or interrelationships will be 

detected between all the input variables and the outcome of predicted malaria cases and this will be used 

help explain the climatic factors driving malaria transmission and further explain the seasonality of malaria 

Mpumalanga province in South Africa.  

 

 

CHAPTER 3 . STUDY AREA 
 

3.1 Physical and Human Geography of Mpumalanga 

Mpumalanga Province is situated in the north-east of South Africa. It shares international borders with 

Mozambique and Swaziland in the east and local borders with KwaZulu Natal and Free State in the south, 

Gauteng in the west and Limpopo in the north. Mpumalanga has a population of 4 128 000 people which 

constitutes 7.8% of the national population (NAFCOC, 2014). It has the third highest unemployment rate 

among the country’s nine provinces and its poverty rate of 39.4% is higher than the national rate 

(Mpumalanga Province Department of Finance, 2013). The majority of Mpumalanga’s population, including 

the majority of the poor, is located in areas of low economic activity. The areas with the highest 

concentrations of poverty are Broader KwaMhlanga, Siyabuswa, Bamokgoko which are located in Nkangala 

District Municipality; Bushbuckridge, KaNyamazane; Nkomazi in Ehlanzeni District Municipality and 
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Elukwatini in Gert Sibande (Mpumalanga Provincial Government, 2009).  

 

Mining, manufacturing and services are the main economic activities in the province. Mpumalanga is rich in 

coal reserves and the South Africa’s major power stations are located in this province. In addition to coal, 

Mpumalanga also produces steel and vanadium (Mpumalanga Province Department of Finance, 2013). 

Extensive forestry plantations, timber processing and paper mills, chrome alloy and steel manufacturing all 

form part of the manufacturing sector (Mpumalanga Provincial Government, 2013). Agriculture in 

Mpumalanga comprises of sugar production and crops such as tropical and sub-tropical fruit, maize, wheat, 

sunflowers, potatoes, nuts as well as livestock farming (NAFCOC, 2014). Tourism also contributes significantly 

to the province’s GDP with Mpumalanga being the third most visited province by foreign visitors 

(Mpumalanga Province Department of Finance, 2013). 

 

The vegetation of Mpumalanga Province can be divided into three biomes, namely, grassland, savannah and 

forest. The grassland biome comprises 60 % of the province covering the Highveld and the escarpment hills. 

Grasslands are important because they play a vital role in water conservation and providing water. Savannas 

comprise 39% of the province and they cover the lower, warmer regions and are commonly referred to as 

“bushveld”. The vegetation varies from open to dense, thicket-like bushveld and is dominated by woody 

plants which are mostly deciduous and resistant to fire, drought and browsing. The forest biome accounts 

for 0.5% of Mpumalanga and occur in areas that receive more than 750mm of rainfall per year, the closed 

canopies that they form provide moist, shady growing conditions (SANBI, 2007, Schmidt et al., 2002). 

 

About 60% of Mpumalanga Province comprises of the grassland biome and 39% comprises of savanna. 

Wayant et al. (2010) suggest that grasslands and  savanna are more sensitive to climatic  fluctuations 

(especially precipitation) compared to forests and thus NDVI reacts more quickly. 

 

Located between latitudes 22o - 34o S, South Africa’s climate is strongly influenced by its position in relation 

to the major circulation features of the southern hemisphere (Tyson, 1986, Benhin, 2006) Therefore the 

country is often under the influence of high–pressure systems of the subtropical high-pressure belt. Climates 

of countries in subtropical regions are characterized by a high degree of intra-annual and inter-annual 

variability, South Africa being no exception with rainfall in particular being erratic in both time and spatial 

distribution  (Benhin, 2006, Hulme et al., 2001) 

 

 Other factors that influence the climate of South Africa are the topography and surrounding oceans. The 

western and eastern escarpments lead to a high plateau of about 1250m above sea level. The plateau 

experiences hot summers and cold winters, however, the climate of coastal plains is moderated by oceans 

and therefore they experience milder winters. The east coast is characterized by a warm and humid climate 
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due to the Algulhas current, while the west coast is influenced by the cold Benguela current and upwelling 

(oceanographic phenomenon of the wind-driven rise of deep, dense and cold water to the ocean surface) 

resulting in this region having an arid climate with lower temperatures (Lutjeharms et al., 2001, Archer et al. 

(2010)). 

 

There are several factors that affect the distribution of temperature over South Africa, namely latitude, 

altitude, continentality, temperature region, topographic index and longitude. All else being equal, 

temperatures decrease with increasing latitude southwards as well as with an increase in altitude. The 

importance of continentality (position of a site with respect to the source of moisture) is that oceans have a 

moderating influence on temperature. Temperature regions influence temperature because South Africa 

comprises of a series of regions in which different dominant factors determine temperature regimes in 

different seasons of the year. Topographic index is important because of night-time cold air drainage into 

valley bottoms; this is particularly significant in hilly inland areas. Longitude is mainly important in regions 

with an east-west alignment (Schulze et al., 1993). 

 

The distribution of rainfall is influenced by altitude, continentality, aspect and rainfall type. It has been proven 

that rainfall increases with rising altitude, even small terrain features have been shown to play an important 

role in enhancing rainfall. Continentality affects rainfall because the further inland a moisture laden air mass 

must travel; the more likely it is that the precipitable water will be reduced due to the orographic effect of 

previous upliftings and this reduces the chances of rainfall. Aspect is important because it affects the 

direction of rain-bearing wind. Lastly rainfall type in southern Africa is determined by predominantly frontal 

systems occurring in winter and convective storms in summer (Schulze and McGee, 1978). 

 

 Mpumalanga province has two major regions, the Highveld escarpment and the sub-tropical Lowveld plains, 

the Northern Drakensberg Mountains are the boundary between these two regions. The Lowveld is sub-

tropical because of its proximity to the warm Indian Ocean; in contrast, the Highveld is cooler because of its 

altitude of 1700m to 2300m above sea level. The Lowveld is very hot in summer and warm in winter and the 

Highveld is warm to hot in summer but cold at night in winter (Cadman, 2007).  Summer temperatures range 

between 20oC and 38oc with the highest summer maximum temperature (48oC) being recorded in the 

Mpumalanga and Northern Cape Provinces. Winter temperatures range between 6oC and 20oC (Benhin, 

2006). 

 

Southern Africa is described as a predominantly semi-arid region with high intra-seasonal and inter-annual 

variability with extreme events such as droughts and floods occurring frequently. The average annual rainfall 

for South Africa is 450mm and rainfall is highly variable in space and a west-east gradient in rainfall totals is 

evident (rainfall decreases from east to west). Only 10% of the country including the Mpumalanga lowveld, 
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receives an annual precipitation of more than 750mm (Benhin, 2006). The majority of rainfall occurs in the 

summer half of the year (October to March) and it peaks between December and February when most of 

southern Africa receives 80% of its rainfall (Davis, 2011). 

 

 In southern Africa, humidity reaches a minimum in winter and a maximum in summer. Mpumalanga province 

experiences relative humidity in the province ranging from 26% (dry) to 97% (very humid) throughout the 

course of the year (Davis, 2011). The Highveld often experiences severe frost while the Lowveld is mostly 

frost free. On occasion, a cold front intrudes into the interior of South Africa resulting in what is referred to 

as a cold snap. In extreme cases they can cause snowfall in Free State, the Highveld regions and Mpumalanga 

(Archer et al., 2010).  

 

Figure 3-1: Map showing location of Mpumalanga Province 

     

3.2 Malaria Epidemiology Intervention Strategies 
 

In South Africa, malaria is currently restricted to low altitude (below 1000m above sea level) border regions, 

namely, the provinces of Limpopo, Mpumalanga and KwaZulu Natal (Maharaj et al., 2012).  About 5 million 

people, (10% of overall population of South Africa) are at risk of malaria infection (RBM, 2013). Malaria is 
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seasonal and predominantly occurs when temperatures are favourable for vector survival, which is generally 

from September to May with a peak in the rainy months of December and January. Malaria risk areas are 

characterized by relatively low transmission so the population at risk does not necessarily develop immunity 

and consequently the population is at risk of severe malaria (RBM, 2013). 

 

Malaria transmission refers to anopheline mosquitoes actively transmitting malarial infections in human 

populations at particular locations (Carter et al., 2000) and is a function of the three-way interaction between 

humans, Plasmodium parasites and the anopheline mosquito vectors that transmit them between hosts 

(Lyimo and Ferguson, 2009). Malaria is transmitted by female mosquitoes of the genus Anopheles, about 70 

species of Anopheles transmit malaria but only about 30 of these are of importance as vectors (Feachem et 

al., 2009). The predominant malaria vectors in South Africa belong to Anopheles gambiae or Anopheles 

funestus complexes (Maharaj et al., 2013). 

 

There are four species of Plasmodium that infect humans; these are Plasmodium Falciparum, Plasmodium 

vivax, Plasmodium ovale and Plasmodium malariae. Plasmodium falciparum is the most virulent and common 

of these human malaria parasites in Sub-Saharan Africa and it accounts for almost all the malaria mortality. 

According to reports, Sub-Saharan Africa bears over 90% of the global Plasmodium falciparum burden 

(Robert et al., 2003). 

 

Malaria infection and illness start when a single–celled parasite of the genus Plasmodium invades the human 

blood stream. Infected female mosquitoes inject motile parasites known as sporozoites into the victims’ 

bloodstream while taking a blood meal. Parasites then invade liver cells and start to reproduce. In one to two 

weeks, infected liver cells rupture releasing thousands of new parasites known as merozoites which then 

invade red blood cells and undergo further cycles of asexual reproduction during the course of which many 

erythrocytes will be erupted. A few merozoites transform into male and female (sexual) stages capable of 

infecting new mosquitoes, these stages are called gametocytes. Once ingested by a new mosquito during a 

blood meal, male and female gametes are formed and fuse within the insect’s gut ultimately spawning forms 

that invade its salivary glands from which they enter the next human hosts                              (Feachem et al., 

2009). 

Each of the developmental stages of the life cycle of the Plasmodium parasite that are discussed above 

represents a potential target at which the life cycle can be interrupted to prevent transmission of the parasite 

between the mosquito vector and humans (Greenwood et al., 2008). 

In South Africa, sustained malaria control over many decades has succeeded in stopping transmission 

throughout most of the country (O'Meara et al., 2010). Policy development on all malaria-control 

interventions takes place at a national level, however the implementation of these policies remains the 
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responsibility of the provincial departments of health. The three malaria endemic provinces have provincial 

malaria control programmes which operate as a vertical programme consisting of IRS (indoor residual 

spraying), surveillance and health promotion (RBM, 2013).  

 

IRS is based on a mosaic approach in which pyrethroids are used for cement-brick structures and DDT is used 

for traditional mud-walled structures carbamates are also used in some instances (Brooke et al., 2013). IRS 

spray activities are carried out by malaria spray teams before the main transmission season, usually the end 

of December and follow up spraying continues until March in areas where it is needed. DDT and WHO 

Pesticide Evaluation Scheme accredited pyrethroids are used during these spray operations (Govere et al., 

2000) 

 

 Proper surveillance of malaria cases requires reliable notification of cases and efficient capturing and storage 

of case information. Malaria has been a notifiable disease in South Africa since 1956, therefore by law, health 

authorities in the country should be notified of all malaria cases. In addition effective malaria information 

systems exist in the three malaria endemic provinces (Moonasar et al., 2012).  

 

Health promotion can be defined as enabling people to increase control over and to improve their health. 

The National Department of Health lists key components of health promotion as (i) to advocate at political, 

healthcare worker and community level, (ii) to develop and distribute material on environmental and vector 

control, chemoprophylaxis, personal protection, signs and symptoms of malaria and (iii) to ensure adherence 

to treatment and to collaborate with partners (Groepe et al., 2013). 

 

Historically, South Africa treated uncomplicated malaria with chloroquine and quinine was used to treat 

complicated malaria, drug resistance to chloroquine was first reported in KwaZulu Natal in 1987, 

consequently from 1988 sulphadoxine-pyrimethamine (SP) was used to treat malaria in KwaZulu Natal. 

Chloroquine resistance was reported in Mpumalanga and Limpopo provinces in 1997 prompting a change to 

SP for malaria treatment in these provinces as well (Moonasar et al., 2012). 

 

However SP resistance began to increase steadily in the mid-1990s and reached 80% by 2000 therefore drug 

policy in KwaZulu Natal changed to Coartem in 2001 followed by Limpopo in 2004. Mpumalanga province 

used SP-artesunate from 2001 to 2005 and changed to Coartem in January 2006 (Moonasar et al., 2012). 

 

Several cross border malaria initiatives were undertaken to reduce the transmission of malaria in the border 

areas of South Africa (Moonasar et al., 2012). These include the Trans-Limpopo Malaria Initiative (targeting 

Zimbabwe and Limpopo), the Lubombo Spatial Development Initiative (targeting northern KwaZulu Natal, 
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Mpumalanga, southern Mozambique and Swaziland) and the MOZIZA Initiative (targeting northern 

Mozambique and southern Zimbabwe), (RBM.2013). 

 

There are four phases within the malaria elimination continuum, namely, prevention, elimination, pre-

elimination and control. KwaZulu Natal is the only province in which all the districts have achieved the 

minimum elimination incidence level, therefore in KwaZulu Natal, all efforts can now focus on malaria 

elimination. However, both Limpopo and Mpumalanga have districts at each of the four categories on the 

elimination continuum therefore in these provinces intervention efforts must focus on control and pre-

elimination. (Maharaj et al., 2012). 

 

CHAPTER 4 . METHODOLGY 
 

This chapter outlines the methods used to acquire and process remotely sensed images for use in 

geographical information systems (GIS) software and the method used to extract climatic data from the 

images, the methods used to obtain malaria case data as well as the statistical method employed to analyse 

the relationship between the various climatic variables and malaria cases in the Ehlanzeni district of 

Mpumalanga Province in South Africa. Some of the methods discussed were derived from the research 

studies discussed in the literature review in Chapter Three. 

4.1  Malaria Case Data  

For this study, the individual malaria case data was aggregated to sub place level for a total of 396 sub places 

within the study area. Sub place boundaries are the smallest administrative boundaries that are assigned a 

community name and represent a local social boundary equivalent to a split suburb or merged suburb in 

urban formal areas, a locality in the informal areas and a village in the traditional areas.  

The malaria case data was provided by the Office of Malaria Research of the South African Medical Research 

Council (SAMRC). They obtained records of cases of malaria from the provincial integrated malaria 

information system (IMIS) which is regulated by the Mpumalanga Malaria Control Program of the 

Department of Health. This system was developed by the SAMRC, a national research organisation in South 

Africa, using Microsoft Access for data entry and validation. Malaria morbidity and mortality data consisting 

of both passive and active cases based on definitive diagnosis reported from December 2005 to December 

2006 were provided from the IMIS for the purposes of this study.  Only malaria cases that were reported in 

the Ehlanzeni district were selected for analysis as it is a malaria prone district in Mpumalanga. The district 

borders Swaziland and Mozambique and therefore there are many imported cases that are recorded, for this 

analysis, only local cases (people who contracted malaria in South Africa) were extracted from the database. 
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Data consisted of the following variables - date of diagnosis, gender, age, type of mosquito species that 

infected the individual and their residential locality, health facility name (where individual was screened), 

municipality, province and source country. 

The malaria case data used in this study was for the year 2006, this was because it was the most 

comprehensive dataset that was made available. 

4.2 Climatic data 

Climatic data for Mpumalanga Province was obtained from remotely sensed images. Data for all climatic 

variables was obtained for the period of 1 December 2005 to 31 December 2006. 

The main reason for using remotely sensed climatic information is that meteorological stations are often 

located far apart and have a poor network density. However satellite based data provide a high spatial data 

density and therefore provide more accurate climatic information because they provide continuous data over 

larger areas. Satellite sensor observations also have another advantage in that data can be gathered at the 

actual location of interest. Detailed and accurate climatic data is important because climate variability can 

affect the spatial and seasonal distribution of malaria transmission. 

4.2.1  Land surface temperature (LST) 

The MODIS/Aqua LST and Emissivity product was obtained from the moderate resolution imaging 

spectroradiometer (MODIS) sensor that is an instrument which records information from two satellites, one 

in the morning (Terra) and one in the afternoon (Aqua). Daily LST data was obtained from NASA’s EODIS 

Reverb tool website http://reverb.echo.nasa.gov/reverb/ at a resolution of 1km x 1km in HDF-EOS (hierarchal 

data format – earth observation system) format. The HDF images were then converted to GeoTIFF format 

using the Modis Reprojection Tool (MRT) version 4.1 and the projection selected was geographic. The images 

contained temperature values in Kelvin (K); the raster calculator tool in ArcGIS version 10 was used to apply 

a conversion factor as well as to convert temperature values into degrees Celsius (0C). 

4.2.2  Rainfall 

Rainfall estimate data (RFE) was retrieved from the http://www.esrl.noaa.gov/ site. RFE was obtained from 

RFE version 2.0 that was implemented by the National Oceanic and Atmospheric Administration’s (NOAA) 

Climate Prediction Centre. RFE v2.0 obtains the final daily rainfall estimation by combining all satellite data 

using the maximum likelihood estimation method, thereafter, Global Telecommunication System (GTS) 

station data are used to remove bias. The daily data are then summed up to produce decadal (10 day) totals 

in mm for each month at a resolution of 8km x 8km in BIL file format. The images were then projected into a 

geographic projection and converted into GeoTIFF format using ArcGIS v10. 

http://reverb.echo.nasa.gov/reverb/
http://www.esrl.noaa.gov/
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4.2.3  Humidity 

Remotely sensed data for monthly humidity was obtained from the NOAA’s site http://www.esrl.noaa.gov/ 

in netCDF file format at a resolution of 0.250 x 0.250 in percentages. A tool in ArcGIS v10 called Make NetCDF 

Raster Layer was used to convert the images into GeoTIFF format. 

4.2.4 Natural vegetation index (NDVI) 

Daily NDVI data was obtained from MODIS through NASA’s EODIS Reverb tool website 

http://reverb.echo.nasa.gov/reverb/  at a resolution of 1km x 1km in HDF-EOS format. The HDF images were 

then converted to GeoTIFF format using the Modis Reprojection Tool (MRT) v 4.1 and the projection selected 

was geographic. The raster calculator tool was used to apply a conversion factor to obtain the correct units 

of reporting NDVI. NDVI is a proxy measure of vegetation cover and moisture that ranges in value from 1 to 

-1. When the values are positive, it indicates the presence of vegetation and negative values or values close 

to zero represent barren soil or water surfaces. 

4.2.5 Altitude 

Altitude was obtained by creating a triangulated irregular network (TIN) in ArcGIS v10 using contour lines at 

5m intervals. Contours are a common source of digital elevation data, all the vertices of the contour lines are 

used as mass points for triangulation. TIN is a digital data structure used in geographic information systems 

for the representation of the physical land surface made up of irregularly distributed nodes with three-

dimensional coordinates that are arranged in a network of non-overlapping triangles. Contour data was 

obtained from http://www.planetgis.co.za.  

4.2.6 Lag rainfall and lag temperature 

A lag time is a period between two related events; lagged effects with a lag of 1 month for LST and rainfall 

were added to climatic variables to account for possible delay of the effect of these predictor environmental 

variables on the number of malaria cases. 

4.2.7 Extraction of climatic data 

The zonal statistics tool in ArcGIS v10 was used to extract averages of the climatic variables obtained through 

remote sensing. The output was a CSV file that could be imported into RStudio to use when performing the 

randomForest algorithm. Each CSV file contained monthly values for all the discussed climatic variables for 

each administrative boundary (sub place) in the Ehlanzeni district. 

4.3 Statistical method  

The relationship between climatic variables and the occurrence of malaria cases was analysed using the 

random forests (RF henceforth) algorithm. 

The RF algorithm is based on model aggregation ideas for regression and classification problems that was 

developed by Breiman (2001). For the statistical analysis in this study, the RF package (available at 

http://www.esrl.noaa.gov/
http://reverb.echo.nasa.gov/reverb/
http://www.planetgis.co.za/
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http://cran.r-project.org/web/packages/randomForest/index.html) was downloaded into RStudio which is 

an integrated development environment (IDE) for R. R is a programming language and software environment 

for statistical computing and graphics. 

There two common methods in ensemble learning, boosting (used bySchapire et al. (1998) and bagging used 

by Breiman (1996). Boosting uses successive trees to give extra weight to points that were incorrectly 

predicted by earlier predictors and in the end, a weighted vote is taken for prediction. In bagging, however, 

successive trees do not depend on earlier trees as each is independently constructed using a boot-strap 

sample of the data set. In the end, a simple majority vote is taken for prediction(Liaw and Wiener, 2002). 

Random forests is the latest addition to ensemble learning, it adds an additional layer of randomness to 

bagging. Each tree is constructed using a different bootstrap sample of the data, and each node is split using 

the best split among a subset of predictors randomly chosen at that node (Breiman, 2001). This seemingly 

counterintuitive strategy has proved to perform very well compared to many other classifiers such as 

discriminant analysis, support vector machines and neural networks and it is also robust against overfitting 

(Breiman, 2001). 

4.3.1 Random Forest for Regression 

The RF algorithm as explained by Liaw and Wiener (2002)  is as follows: 

1. Draw ntree bootstrap samples from the original data 

2. For each of the bootstrap samples, grow an unpruned classification or regression tree, with the 

following modification: at each node, instead of choosing the best split among all predictors, 

randomly sample mtry of the predictors and choose the best split from among those variables 

3. Predict new data by aggregating the predictions of the ntree trees (i.e. majority votes for classification, 

average for regression) 

 

An estimate of the error rate can be obtained based on the training data, by the following: 

1. At each bootstrap iteration, predict the data not in the bootstrap sample (what Breiman calls “out-

of-bag” or OOB data) using the tree grown with the bootstrap sample. The OOB sample is the set of 

observations which are not used for building the current tree, it is used to estimate the prediction 

error and then to evaluate variable importance. 

2. Aggregate the OOB predictions. On average each data point would be out-of-bag around 36% of the 

times, so aggregate these predictions. Calculate the error rate and call it the OOB estimate of error 

rate. 

As stated previously, the RF algorithm produces an important piece of additional information which is a 

measure of the importance of predictor variables that is referred to as variable importance. Variable 

http://cran.r-project.org/web/packages/randomForest/index.html
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importance is the increasing in mean of the error of a tree (mean square error (MSE)  for regression and 

misclassification rate for classification) in the forest  when the observed values of this variable are randomly 

permuted in the OOB (out-of-bag) samples (Genuer et al., 2010). There are two main reasons for quantifying 

variable importance, the first is to rank variables used in a model in order of importance so as to identify 

relevant predictor variables  (true predictors) and the  second is to  interpret  data and to understand the 

impact of predictor variables in prediction of outcomes or their causal effect (Strobl et al., 2008). 

RF variable importance can be defined as, for each tree t: 

• Consider the associated OOBt sample 

• Denote by errOOBt the error of a single tree t on this OOBt sample 

• Randomly permute the values of Xj in OOBt to get a perturbed sample denoted by OOBt
j and compute 

errOOBt
j, the error of predictor t on the perturbed sample. 

 VI(Xj) = 1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

∑ �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑗𝑗 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡�𝑡𝑡  

 

RF for regression was used to create a model to predict cases of malaria for each sub place for each month 

of the year 2006. The monthly x input variables (independent predictor variables) were rainfall, temperature, 

altitude, humidity, NDVI and lag temperature and rainfall extracted for each sub place. The monthly y input 

variable was the sum of malaria cases for each sub place in the study area. Variable importance index was 

used to select the top three predictor variables in each model.   

Averages  over 50 runs of the random forest algorithm were used  on each dataset because studies by Geurts 

et al. (2006), Genuer et al. (2010) and Abdulsalam et al. (2011) show that 50 runs provided accurate, reliable 

results. A total of 50 runs of RF with ntree = 2000, default mtry and n = 396 observations were performed for 

each month. The variable importance index of each run was recorded and the climatic variables were ranked 

in descending order of importance averaged from the 50 runs. These results are shown in the results section. 

A default value for mtry (number of input variables randomly chosen at each spilt) was used because choice 

of mtry makes little difference to the overall result because RF is not particularly sensitive to this value. 

The value of ntree (number of trees to grow) = 2000 was used because it resulted in a low error rate and it 

ensured that each every input gets predicted a number of times to produce reliable results. 

The call to function randomForest in the RF package is: 

randomForest (x=x, y=y, ntree=2000, importance =TRUE) 

Type of random forest : regression 
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Number of tress: 2000 

Number of variables tried at each split : 1 

4.3.2 Model validation  

When performing the RF algorithm, there is no need for cross-validation or a separate test set to get an 

unbiased estimate of the test set error. This is because it is estimated internally as described previously (error 

rate). However, assessing model fit is an important step in data analysis and the co-efficient of determination 

also referred to as R2 is a very simple tool to assess the quality of the fit of a linear regression model by 

proving an indication of the suitability of the chosen explanatory variables in predicting the response (Renaud 

and Victoria-Feser, 2010). Therefore model validation was performed by calculating the co-efficient of 

determination for each monthly predictive model generated by the RF algorithm. 

CHAPTER 5 . RESULTS AND DISCUSSION 
 

Figures 5-1 and 5-2 shows a time series of the weekly and monthly counts of malaria cases respectively for 

the study site from January 2006 to December 2006, there is a pronounced seasonal trend that is evident in 

the data. It is clear that malaria cases fluctuated throughout the course of the year and that transmission was 

seasonal peaking between October and May. There was a decline in malaria cases between June and 

September followed by an increase in transmission. The climatic factors responsible for this pattern of 

seasonality will be explored in the ensuing discussion. The seasons that South Africa experiences are defined 

by (Kruger and Shongwe, 2004) as being autumn (March to May), winter (June to August), spring (September 

to November) and summer (December to February). 
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Figure 5-1. The weekly number of reported malaria cases in Ehlanzeni District for 2006 

 

 

 

 

 

 

 

 

 

 

Appendix 1 shows graphs that represent the distribution of malaria cases in the Ehlanzeni District across all 

the sub places on a monthly basis for detailed scrutiny. As all the histograms show, there is a presence of a 

high number of zeroes in the data. These zeroes are true zeroes because they represent the absence of 

malaria cases in those sub places, for this reason, they cannot be excluded from the random forest algorithm. 

Cameron and Trivedi (2013) state that real life data frequently displays over dispersion through excess zeroes 

and a zero value has special appeal in many situations because it partitions the population into 

subpopulations in a meaningful way. If we apply this statement to this study, the importance of zeroes in the 

dataset of malaria cases is that the zero values separate sub places that have actual observed malaria cases 

and those that do not have any cases.   However the inclusion of this large number of zeroes in the predictive 

Figure 5-2. The monthly number of reported malaria cases in Ehlanzeni District for 2006 
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models resulted in them adding additional mass at the zero values resulting in a higher probability of this 

value. 

Average monthly mean temperature, rainfall, humidity, NDVI, lag temperature, lag rainfall and altitude were 

extracted for each sub place in the Ehlanzeni district. To observe the correlation between meteorological 

variables and malaria cases, monthly malaria cases were regarded as the dependant variable while 

meteorological variables were regarded as independent variables. The random forest (RF) algorithm was 

used to examine the strength of the relationship between meteorological variables and malaria cases by 

providing a measure of variable importance. 

A common question that needs to be addressed in modelling is what predictor variables are more important 

to a model and to what degree they are important. Figure 5-3 below shows the variable importance ranking 

of climatic variables averaged from 50 runs of the RF algorithm using all 7 predictor variables for each month 

of the year, the variables are sorted in decreasing order of RF scores of importance. 
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This step was performed as part of a variable selection procedure to select the top 3 statistically significant 

variables that are highly correlated to the response variable. The higher the percent increase in mean squared 

error (%IncMSE) value of a predictor is, the higher the importance of that predictor in predicting the outcome 

(malaria cases). A low importance value indicates a poor relationship between the predictor variable and the 

Figure 5-3. Variable importance index of predictor variables averaged from 50 runs of RF 
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outcome. The importance of preliminary elimination and ranking is to cancel the variables of small 

importance for further RF analysis.  

The RF algorithm was then performed on the data for each month using the top 3 important variables that 

were identified as being highly related to the response variable in the previous step. Figure 5-4 shows the 

ranking patterns of the climatic variables. There was no single variable that was consistently dominant 

throughout all the months.                                                                                                                                                                              
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All the climatic variables in Figure 5-4 are relevant predictor variables because they have significant values 

for %IncMSE whereas irrelevant variables have values that are negative or closer to zero. The significant 

variables identified above can then be used in more sophisticated modelling techniques and further analysis 

of the influence of climate on malaria transmission. 

Altitude, NDVI and temperature were much more likely to be selected as the most important variables for 

predicting malaria cases in each month; all 3 were selected 8 times. These appear to be the most reliable 

predictors because they are associated consistently with the response, variables that explain the most 

observations are selected most frequently.  Lag temperature and lag rainfall appeared 5 and 3 times 

respectively and humidity and rainfall both appeared 2 times. 

A study by Craig et al. (2007) to develop a malaria risk map using a systematic variable selection process 

found that out of 50 potential explanatory variables from 8 environmental data themes, 3 were identified as 

being independently and significantly associated to malaria prevalence, these were rainfall, temperature and 

altitude. The results in this study are similar to this finding because temperature and altitude were 2 out of 

3 climatic variables that were identified as being consistently associated with malaria throughout the year. 

When comparing the top predictor variables for each month, Figure 5-4g shows that rainfall had the highest 

measure of importance because it had the highest %IncMSE of about 34%, therefore it was the climatic 

variable that made the greatest contribution to the prediction of malaria in the monthly models. This is an 

important finding because rainfall and temperature have been proven to be two of the major environmental 

variables triggering malaria epidemics in warm semi-arid and high altitude areas because epidemics occur in 

these regions after excessive rain or increases in temperature (Ceccato et al., 2012). Rainfall was followed by 

NDVI (Figure 5-4h) and lag rainfall (Figure 5-4l) with %IncMSE values of 28 and 26 % respectively. 

Figure 5-4. Variable importance index of random forest algorithm using top 3 statistically significant 
variables 

k l 
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Table 5-1 shows that of all 7 variables, altitude was selected as the top predictor variable for 4 months of the 

year (February, March, April and May). Lag rainfall was the top predictor for the months of January and 

December, NDVI was the top predictor for August and September, temperature was the top predictor 

variable for June and November, rainfall was the top predictor for only one month (July) and lag temperature 

was also the top predictor for only one month of the year (October). 

Table 5-1. Variables selected as top predictor variables for each month 

  Altitude Humidity 
Lag 
rainfall Rainfall 

Lag 
temperature NDVI Temperature 

January              
February              
March              
April              
May              
June              
July              
August              
September              
October              
November              
December              
Count 4 0 2 1 1 2 2 

 

Altitude seems to be the most robust predictor variable because it was selected as a top predictor variable 

for more months than the other climatic variables. Ngomane et al. (2012) found that malaria incidence was 

more pronounced in the low altitude region of Ehlanzeni district in comparison to the high altitude regions 

of Nkangala and Gert Sibande districts. This result suggests that altitude has an effect on malaria transmission 

and it echoes an investigation by Kazembe et al. (2007) that documented a higher rate of malaria incidence 

at elevations below 1500m when compared to higher altitudes.  Further studies show that altitude is a key 

determinant of malaria risk because it restricts mosquito habitats. This is due to the findings that with every 

1000 m increase in elevation, temperature decreased by 60C. (Patz et al., 2008). Craig et al. (2007) also found 

a strong positive association  with malaria prevelance, they report an increase in logit(p) of 1 every 160m. A 

drop in temperature results in a decline in the risk of infection because parasite development is restricted; 

the minimum temperature for Plasmodium falciparum development is said to be between 160C and 180C 

(Lindsay and Martens, 1998). 
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Figure 5-5: Association between altitude and malaria cases  

Figure 5-5 depicts the relationship between altitude and malaria; it is evident that the occurrence of malaria 

cases decreases from east to west as altitude increases. The highest number of cases occurs at altitudes less 

that 600m and decreases towards the west at altitudes greater than 600m. 

Lag rainfall, NDVI and temperature were the second most common predictors, each having been selected as 

a top predictor for 2 months.  

Rainfall was lagged by one month because the Anopheles vector takes two weeks to complete their life cycle 

and a further two weeks to generate parasites in the new host (Kumar et al., 2014).  Davis (2011), states that 

rainfall in South Africa reaches a peak between December and February. Figure 5-6 shows that the rainfall in 

February had the greatest influence on the number of malaria cases in March of 2006. This finding 

corroborates the study by Ngomane et al. (2012) that analysed the relationship between rainfall and malaria 

and found that depending on the amount of rainfall, upsurges in malaria transmission were observed with a 
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time lag of 1-2 months. This is because epidemiologically, rainfall has a delayed impact on malaria incidence 

due to the incubation and latent phases of the parasite in the vector and the host(Silal et al., 2013). Similarly 

Loevinsohn (1994) also suggest that rainfall impacts on malaria through lag periods of 1 – 2 months not only 

through its influence on parasite development but also because there is a delay in runoff and in seepage 

collecting in low-lying breeding sites. The general trend observed in the data analysis of monthly totals of lag 

rainfall throughout the year and monthly malaria cases was an increase in lag rainfall corresponds to an 

increase in malaria cases. This finding is further supported by Alemu et al. (2011) who concluded that total 

monthly rainfall was associated with occurrence of malaria with a month lag effect in Jimma town in South 

West Ethiopia. 

 

 

 

 

 

 

 

 

NDVI can be defined  as a measure of vegetation conditions and values range between +1.00 to -1.00 (Haque 

et al., 2010), the higher the NDVI value, the denser or healthier the vegetation is regarded as being. NDVI 

values above 0.2 usually represent areas covered by vegetation, and negative values represent water or 

buildings and asphalt (Machault et al., 2011). Figure 5-7 shows that the monthly NDVI values in the study 

area were all well above 0.2 throughout the year, this shows that the area is well vegetated thus increasing 

the chances of survival for adult mosquitoes. it is also evident that NDVI values drop during the months with 

lower rainfall (May, June, July, August, September). This decline in NDVI coincides with a decline in malaria 

cases for those same months. These results are similar to those obtained by Gaudart et al. (2009) that show 

there was a high mortality rate of Anopheles at the lowest values of NDVI (dry seasons).Conversely, the 

months with higher rainfall and hence healthier vegetation have higher cases of malaria. 

 

 

 

Figure 5-6. Trend of lag rainfall and malaria cases 
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A study by Eisele et al. (2003) found that the number of potential anopheline larval sites increased as NDVI  

increased. This finding is substaiated by  a  study by Amek et al. (2012b) in which a Bayesian model was fitted 

to predictict mosquito density using rainfall, temperature and NDVI as predictive variables. The results 

showed that NDVI was positively associated with mosquito density. These studies indicate that the higher 

the value of NDVI, the higher the malaria risk. An explanation for this is that high NDVI values represent 

healthy vegetation and since vegetation improves adult mosquito survival by providing resting sites, 

protection from climatic conditions and sugar feeding supplies for adult mosquitoes, there is a strong 

likelihood that high NDVI values represent an abundance of mosquitoes and therefore increased malaria 

transmission and consequently an increase in malaria risk. This study did not use land cover as a predictor 

variable because NDVI is a measure of the amount of photosynthetically active vegetation, and is thus a proxy 

for land cover (Hay et al., 2002). 

Snow and Gilles (2002) concluded that at 25oC,  Plasmodium falciparum requires only 12 days to undergo 

parasite development but at 200C, it requires over 30 days to undergo development and  render a mosquito 

infectious. The more time the parasite needs to mature, the probability that a mosquito will live long enough 

for the parasite to spread the infection decreases (Ikemoto, 2008). Figure 5-8 below supports the above 

findings because it illustrates that the highest malaria incidence was reported in March when the 

temperature was 25.560C, in line with the conclusion that the parasite develops faster at an optimum 

temperature of 25oC resulting in increased transmission of malaria and the lowest incidence was reported in 

June when the average temperature was 20.960C. It is also thought that temperature could affect the gender 

of mosquitoes because Yang et al. (2009) found that female mosquitoes survived more than males in the 

optimum temperature range of nearly 250C, this finding is important because malaria is transmitted by 

female mosquitoes of the genus Anopheles. 

 

Figure 5-7. Trend of NDVI and malaria cases 



55 
 

 

 

 

 

 

   

 

 

 

Rainfall and lag temperature were both variables that were least likely to be selected because they were the 

top predictors for only one month each. 

The general pattern observed in Figure 5-9 is that heavy rainfall coincides with a high number of malaria 

cases and in this study, the heaviest rainfall occurred in March. Rainfall plays a significant role in the mosquito 

life cycle because the immature stages of Anopheles mosquitoes  are aquatic meaning they depend on free 

standing water for their survival and development (Warrell and Gilles, 2002) and this is why rainfall is 

important in malaria transmission because water provides a habitat for mosquitoes to lay their eggs and for 

the development of Anopheles larvae and pupae (Stresman, 2010). Studies have shown that Anopheles can 

breed in sites where water has been present for 10-14 days, depending on the time required for the mosquito 

life cycle to take place (Stresman, 2010). 

   

Figure 5-9. Trend of rainfall and malaria cases 

Figure 5-8. Trend of temperature and malaria cases 
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The study conducted by Fournet et al. (2010) found that the parasitological values differed between the rainy 

and dry seasons and this showed that the malaria transmission dynamic increased during the rainy season 

where the density of vectors also increased. This dynamic is clearly shown in figure 5-9 above where it is 

evident that malaria transmission increased in the rainy months and decreased during the drier, winter 

months. Govere et al. (2001) state that the decline in mosquito populations and consequently transmission 

at the end of the rainy season is due to breeding sites drying up. 

Figure 5-10 illustrates that the lag of the lowest temperature (20.960C for July) resulted in the lowest number 

of malaria cases (21 cases) reported for the year.  

 

 

 

 

 

 

 

 

Correlation and regression analysis on monthly climatic variables and monthly malaria incidence in Shuchen 

County, China, suggest that temperature and rainfall act on malaria with a lag of one month (Bi et al., 2003). 

Therefore it was significant that both lag temperature and lag rainfall were selected as top predictor variables 

with the RF algorithm. Furthermore it has been shown that there is a 1 – 2 month lag between peak 

anomalous temperature and rainfall and malaria epidemics (Githeko et al., 2012). Reid et al. (2010) also 

report that a study conducted in the east African Highlands shows that a 10C increase in minimum 

temperature with a lag time of 1 – 2 months.  

Although humidity was not selected as a top predictor variable for any of the months, it was selected as the 

second and third important variable for the months of January and August respectively. Humidity plays an 

important role in malaria transmission because adult mosquitoes are dependent on specific moisture content 

in the air and they desiccate if the air is too dry.  The high surface area to volume ratio of mosquitoes makes 

them especially sensitive to desiccation at low humidity levels (Yamana and Eltahir, 2013).  

 

Figure 5-10. Trend of lag temperature and malaria cases 
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 Figure 5-11 shows that the most humid month in the Ehlanzeni district in 2006 was January with a value of 

90.97% which is relatively high.  A study by  Jawara et al. (2008) showed that numbers of both male and 

female  mosquitoes collected at 4 study sites in the Gambia increased towards the end of the dry season as 

humidity began to increase. The importance of the influence that humidity has on malaria transmission is 

augmented by an investigation by Yé et al. (2007) that concluded that the risk of clinical malaria in children 

increased exponentially when relative humidity exceeded 60%. Humidity in South Africa reaches a maximum 

in summer and a minimum and winter, as seen in the data analysis; malaria transmission reaches a peak in 

the summer months and declines in the winter months due to the lower survival rate of mosquitoes in the 

drier winter months. 

R2 is an important output of regression analysis; it is interpreted as the proportion of the variance in the 

dependant variable that is predictable from the independent variable (Draper and Smith, 2014). It is 

calculated as the square of the correlation between predicted y scores and actual y scores and ranges from 

0 to 1 (Hahn, 1973). The larger the R2 value is, the more variability is explained by the linear regression model. 

It was stated earlier that in addition to providing measures of variable importance, the RF algorithm also 

produces predictive models.  Figure 5-12 shows the prediction performance of the climatic variables. March, 

April and May had the highest R2 values of 0.9023, 0.8901 and 0.8875 respectively. This indicates that the 

combination of climatic variables for the models for each of these 3 months yielded the highest R2 compared 

with other combinations and they were able to explain a high percentage of the total variation in observed 

malaria cases resulting in high model accuracy.  
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Figure 5-11. Trend of relative humidity and malaria cases 



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression tree methods such as RF are relatively easy to understand and implement however the results 

are sensitive to small changes in the data, especially outliers (Faraway, 2005) furthermore the RF algorithm 

does not predict extreme values accurately (Horning, 2013) and it usually considers values greater than 10 

as outliers (Breiman, 2002). This is shown in Figure 5-12 because the predictive models identified observed 

cases of malaria above 10 as outliers and this resulted in decreased model accuracy because these values 

were poorly prediced. Although excluding these values wold have increased model accuracy, they could be 

excluded because they were actual recoded values of malaria cases in the sub places of the Ehlanzeni district.  

Figure 5-12. Observed malaria cases vs predicted malaria cases 
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Figure 5-13 depicts maps showing the monthly spatial distribution of predicted cases of malaria in the 

Ehlanzeni district obtained from the predictive models. These maps are considered a starting point in the 

process of understanding and describing the distribution of malaria cases as predicted for each month using 

the top 3 statistically significant climatic variables. 
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Figure 5-13. Maps showing predicted cases of malaria by sub-place 
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The use of maps to interpret the results of the random forest prediction makes it easy to display the spatial 

effect of climatic variables on malaria and it shows areas where there are a large number of cases. This plays 

an important role in monitoring the distribution of malaria and the predictive maps in Figure 5-13 could be 

used as a tool to guide resource allocation and identify areas for further investigation. 

Another useful by product of the RF algorithm is the error estimate. When performing the RF algorithm, after 

each tree of the random forest is built, the forest makes predictions on each individual raw training dataset 

observation relying on the previously described technique of bagging. After the first tree, there are many 

observations in which the forest does not predict because for these observations, a bootstrapped 

observation was used (Brence and Brown, 2004). Because there are only a few points used in prediction, the 

general trend observed in Figure 5-14 is that the error rate of the predictive models starts off relatively high 

then drops sharply ass the number of observations increases and later stabilizers. 
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Figure 5-14. Error estimates of monthly predictive models 
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CHAPTER 6 . CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS 

6.1 Conclusions 
Literature has shown that there are relationships between climate and malaria incidence globally, therefore 

in order to be able to control and prevent malaria cases, an understanding of the influence of climate on 

malaria is essential. This will allow for better mathematical modelling of transmission which might lead to 

improved allocation of limited resources for malaria vector control strategies and this will in turn have a 

greater impact on malaria control.  

 

This study used the random forest (RF) algorithm to determine which climatic variable as well as what 

combination of multiple variables had the greatest influence on malaria transmission on a monthly basis for 

the year of 2006 by providing a measure of variable importance for each predictor and producing predictive 

models. Climatic variables, namely, NDVI, temperature, lag temperature, rainfall, lag rainfall, altitude and 

humidity were obtained using remote sensing and GIS techniques and analysis. Malaria case data was 

obtained from the malaria information system database. 

 

Altitude was most frequently selected as the top predictor variable, it was selected as the dominant predictor 

for 4 months of the year and it was the most commonly selected predictor throughout the year compared to 

the other 6 variables.  It was therefore the most robust climatic predictor influencing malaria followed by lag 

rainfall, NDVI and temperature (each selected as the dominant variable for 2 months). Rainfall and lag 

temperature were each selected as dominant predictor variables for one month each. 

 

The RF algorithm is capable of handling highly correlated variables and because it can provide a measure of 

importance for each predictor variable, it can be used as a tool to filter out irrelevant predictor variables and 

focus on those that have the greatest impact on malaria. This can be viewed as a time saving exercise for 

data collection and experimental run time because for future studies, efforts can be concentrated towards 

only collecting data for significant climatic variables. 

 

The RF algorithm not only produces a measure of variable importance, it also generates predictive models. 

An important finding in this study was that the predictive models for the months of March, April and May 

had the highest model accuracy due to the fact that the combination of climatic factors produced the highest 

R2 values. All 3 months had the same top 3 statistically significant climatic variables that were ranked in the 

same order of importance, altitude was first followed by NDVI and temperature was last. The only difference 

was that the values for variable importance for each variable differed for each month. 
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There is also potential for the predictive models generated by the RF algorithm to be used as an operational 

malaria early warning system by determining areas that have the potential to have a high number of malaria 

cases. This is because forecasted climatic data can be used as input into the models to predict malaria cases. 

 

The RF algorithm was fast and easy to execute and the results of the study support  the findings of a study 

by Dasgupta et al. (2011) that  the algorithm has been proven to provide low bias, low variance predictions 

because of the low bias nature of the component trees and the averaging across independent bootstrap 

samples, respectively. 

 

6.2 Limitations and recommendations 
The RF algorithm is capable of processing thousands of records. Therefore, a follow up to this study would 

be to obtain malaria case data and climatic data over a longer period of time, such as the past decade, and 

obtain measures of variable importance for all the climatic variables for each month over each of the years 

to evaluate the pattern of statistically significant climatic variables most associated with cases of malaria. 

The influence of altitude on malaria has been presented in this study as well as others(Woyessa et al., 2013, 

Bødker et al., 2003) therefore for future malaria studies for the Ehlanzeni district, it would be more useful to 

classify malaria cases according to varying altitudes (low level, mid-level, high) to be able to evaluate and 

describe the effect of climatic variables on malaria at various altitudes. 

The predictive models in this study obtained from the RF algorithm did not take malaria intervention methods 

into account. However, in order to be able to create accurate early warning systems, climate, control 

methods and malaria data should all be incorporated into predictive models. This is because both climate 

and IRS (the primary intervention method in Mpumalanga) and larviciding will influence the transmission of 

malaria across the various seasons. Spray coverage and type of insecticide should also be factored into the 

model at a later stage because they both influence transmission as well. 

Performing the RF algorithm over a period of a decade would also be beneficial because RF cannot predict 

beyond the range of data in the training data therefore the more data is available, the greater and more 

reliable the prediction ability of predictive models will become. 

Studies by Strobl et al. (2008) and Nicodemus et al. (2010) suggest that randomForest variable importance 

measures tend to be biased towards correlated predictor variables however this can be overcome by 

considering different values for the RF package fine tuning parameter mtry and by selecting  a sufficient 

number of trees to ensure that  results produced with different runs of the algorithm do not vary 

systematically. 



71 
 

CHAPTER 7. REFERENCES 

ABDULLATEEF, U. & OLUWATOYIN, A. M. 2011. Socio-Economic Impact Of Malaria Epidemics On Households 
In Nigeria: Microevidence From Kwara State. International Journal of Asian Social Science, 1, 188-
196. 

ABDULSALAM, H., SKILLICORN, D. B. & MARTIN, P. 2011. Classification using streaming random forests. 
Knowledge and Data Engineering, IEEE Transactions on, 23, 22-36. 

ADIMI, F., SOEBIYANTO, R. P., SAFI, N. & KIANG, R. 2010. Research Towards malaria risk prediction in 
Afghanistan using remote sensing. Malaria Journal, 9, 125. 

AFRANE, Y. A., LITTLE, T. J., LAWSON, B. W., GITHEKO, A. K. & YAN, G. 2008. Deforestation and vectorial 
capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerging Infectious 
Diseases, 14, 1533. 

AFRANE, Y. A., ZHOU, G., LAWSON, B. W., GITHEKO, A. K. & YAN, G. 2006. Effects of microclimatic changes 
caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in 
western Kenya highlands. The American journal of tropical medicine and hygiene, 74, 772-778. 

ALEMU, A., ABEBE, G., TSEGAYE, W. & GOLASSA, L. 2011. Climatic variables and malaria transmission 
dynamics in Jimma town, South West Ethiopia. Parasit Vectors, 4, 30. 

ALLISON, A. C. 1954. Protection afforded by sickle-cell trait against subtertian malarial infection. British 
medical journal, 1, 290. 

AMEK, N., BAYOH, N., HAMEL, M., LINDBLADE, K. A., GIMNIG, J., ODHIAMBO, F., LASERSON, K. F., SLUTSKER, 
L., SMITH, T. & VOUNATSOU, P. 2012a. Spatial and temporal dynamics of malaria transmission in 
rural Western Kenya. Parasit Vectors, 5, 86. 

AMEK, N., BAYOH, N., HAMEL, M., LINDBLADE, K. A., GIMNIG, J. E., ODHIAMBO, F., LASERSON, K. F., 
SLUTSKER, L., SMITH, T. & VOUNATSOU, P. 2012b. Spatial and temporal dynamics of malaria 
transmission in rural Western Kenya. Parasit Vectors, 5, 86. 

ANDREWS, J. M., QUINBY, G. E. & LANGMUIR, A. D. 1950. Malaria Eradication in the United States*. American 
Journal of Public Health and the Nations Health, 40, 1405-1411. 

ANTONIO-NKONDJIO, C., KERAH, C. H., SIMARD, F., AWONO-AMBENE, P., CHOUAIBOU, M., TCHUINKAM, T. 
& FONTENILLE, D. 2006. Complexity of the malaria vectorial system in Cameroon: contribution of 
secondary vectors to malaria transmission. Journal of medical entomology, 43, 1215-1221. 

ARCHER, E., ENGELBRECHT, F., LANDMAN, W., LE ROUX, A., VAN HUYSSTEEN, E., FATTI, C., VOGEL, C., AKOON, 
I., MASERUMULE, R. & COLVIN, C. 2010. South African risk and vulnerability atlas, Department of 
Science and Technology. 

AWOLOLA, T., OYEWOLE, I., KOEKEMOER, L. & COETZEE, M. 2005. Identification of three members of the 
Anopheles funestus (Diptera: Culicidae) group and their role in malaria transmission in two ecological 
zones in Nigeria. Transactions of the Royal Society of tropical medicine and Hygiene, 99, 525-531. 

BABYAK, M. A. 2004. What you see may not be what you get: a brief, nontechnical introduction to overfitting 
in regression-type models. Psychosomatic medicine, 66, 411-421. 

BAIRD, J. K. & SNOW, R. W. 2007. Acquired immunity in a holoendemic setting of Plasmodium falciparum and 
P. vivax malaria. The American journal of tropical medicine and hygiene, 76, 995-996. 

BANNISTER, L. & MITCHELL, G. 2003. The ins, outs and roundabouts of malaria. Trends in parasitology, 19, 
209-213. 

BARNES, K., CHANDA, P. & AB BARNABAS, G. 2009. Impact of the large-scale deployment of 
artemether/lumefantrine on the malaria disease burden in Africa: case studies of South Africa, 
Zambia and Ethiopia. Malaria Journal, 8, S8. 

BATON, L. A. & RANFORD-CARTWRIGHT, L. C. 2005. Spreading the seeds of million-murdering death: 
metamorphoses of malaria in the mosquito. Trends in parasitology, 21, 573-580. 

BATWALA, V., MAGNUSSEN, P. & NUWAHA, F. 2010. Are rapid diagnostic tests more accurate in diagnosis of 
Plasmodium falciparum malaria compared to microscopy at rural health centres. Malar J, 9, 10.1186. 

BAUWENS, I., JONAS, F., GEBRESLASIE, M., DLAMINI, S., AHMED, F. & PENELOPE, V. 2012. MALAREO–Earth 
Observation in Malaria Vector Control and Management. 

BEIER, J. C. 1998. Malaria parasite development in mosquitoes. Annual review of entomology, 43, 519-543. 
BENHIN, J. K. 2006. Climate change and South African agriculture: Impacts and adaptation options. CEEPA 

Discussion paper. 



72 
 

BI, P., TONG, S., DONALD, K., PARTON, K. A. & NI, J. 2003. Climatic variables and transmission of malaria: a 
12-year data analysis in Shuchen County, China. Public health reports, 118, 65. 

BISCOE, M. L., MUTERO, C. M. & KRAMER, R. A. 2004. Current policy and status of DDT use for malaria control 
in Ethiopia, Uganda, Kenya and South Africa, IWMI. 

BJÖRKMAN, A. & MÅRTENSSON, A. 2010. Risks and benefits of targeted malaria treatment based on rapid 
diagnostic test results. Clinical infectious diseases, 51, 512-514. 

BLOLAND, P. B. & ORGANIZATION, W. H. 2001. Drug resistance in malaria, World Health Organization 
Geneva. 

BLUMBERG, L. & FREAN, J. 2002. Malaria control in South Africa-challenges and successes. South African 
Medical Journal, 92. 

BØDKER, R., AKIDA, J., SHAYO, D., KISINZA, W., MSANGENI, H., PEDERSEN, E. & LINDSAY, S. 2003. Relationship 
between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. 
Journal of Medical Entomology, 40, 706-717. 

BOOMAN, M., DURRHEIM, D. N., LA GRANGE, K., MARTIN, C., MABUZA, A. M., ZITHA, A., MBOKAZI, F. M., 
FRASER, C. & SHARP, B. L. 2000. Using a geographical information system to plan a malaria control 
programme in South Africa. Bulletin of the World Health Organization, 78, 1438-1444. 

BOOMAN, M., SHARP, B. L., MARTIN, C. L., MANJATE, B., LA GRANGE, J. J. & DURRHEIM, D. N. 2003. Enhancing 
malaria control using a computerised management system in southern Africa. Malaria Journal, 2, 13. 

BOYD, H. A., FLANDERS, W. D., ADDISS, D. G. & WALLER, L. A. 2005. Residual spatial correlation between 
geographically referenced observations: a Bayesian hierarchical modeling approach. Epidemiology, 
16, 532-541. 

BREIMAN, L. 1996. Bagging predictors. Machine learning, 24, 123-140. 
BREIMAN, L. 2001. Random forests. Machine learning, 45, 5-32. 
BREIMAN, L. 2002. Manual on setting up, using, and understanding random forests v3. 1. Statistics 

Department University of California Berkeley, CA, USA. 
BREMAN, J. G. 2001. The ears of the hippopotamus: manifestations, determinants, and estimates of the 

malaria burden. The American journal of tropical medicine and hygiene, 64, 1-11. 
BREMAN, J. G., ALILIO, M. S. & MILLS, A. 2004. Conquering the intolerable burden of malaria: what’s new, 

what’s needed: a summary. 
BRENCE, J. R. & BROWN, D. E. 2004. Analysis of Robust Measures for Random Forest Regression. University 

of Virginia. 
BRITCH, S. C., LINTHICUM, K. J., ANYAMBA, A., TUCKER, C. J., PAK, E. W., MALONEY JR, F. A., COBB, K., 

STANWIX, E., HUMPHRIES, J. & SPRING, A. 2008. Satellite vegetation index data as a tool to forecast 
population dynamics of medically important mosquitoes at military installations in the continental 
United States. Military medicine, 173, 677-683. 

BROOKE, B., KOEKEMOER, L., KRUGER, P., URBACH, J., MISIANI, E. & COETZEE, M. 2013. Malaria vector 
control in South Africa. SAMJ: South African Medical Journal, 103, 784-788. 

BROOKER, S. 2007. Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission 
dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 1-8. 

BRUCE-CHWATT, L. J. 1980. Essential malariology, William Heinemann Medical Books Ltd. 
BRUCE-CHWATT, L. J. & DE ZULUETA, J. 1980. The rise and fall of malaria in Europe: a historico-

epidemiological study, Published for the Regional Office for Europe of the World Health Organization 
by Oxford University Press, Walton Street, Oxford OX2 6DP. 

CADMAN, M. 2007. Exploring our Provinces: Mpumalanga, Jacana. 
CAMERON, A. C. & TRIVEDI, P. K. 2013. Regression analysis of count data, Cambridge university press. 
CARTER, R., MENDIS, K. N. & ROBERTS, D. 2000. Spatial targeting of interventions against malaria. Bulletin of 

the World Health Organization, 78, 1401-1411. 
CASMAN, E. A. & DOWLATABADI, H. 2002. The contextual determinants of malaria, Resources for the Future. 
CASTILLO‐RIQUELME, M., MCINTYRE, D. & BARNES, K. 2008. Household burden of malaria in South Africa 

and Mozambique: is there a catastrophic impact? Tropical Medicine & International Health, 13, 108-
122. 

CDC 2014. Impact of Malaria. http://www.cdc.gov/malaria/malaria_worldwide/impact.html. 

http://www.cdc.gov/malaria/malaria_worldwide/impact.html


73 
 

CECCATO, P., CONNOR, S., JEANNE, I. & THOMSON, M. 2005. Application of Geographical Information 
Systems and Remote Sensing technologies for assessing and monitoring malaria risk. Parassitologia, 
47, 81-96. 

CECCATO, P., VANCUTSEM, C., KLAVER, R., ROWLAND, J. & CONNOR, S. J. 2012. A Vectorial Capacity Product 
to Monitor Changing Malaria Transmission Potential in Epidemic Regions of Africa. Journal of Tropical 
Medicine, 2012, 6. 

CHAMMARTIN, F., HÜRLIMANN, E., RASO, G., N’GORAN, E. K., UTZINGER, J. & VOUNATSOU, P. 2013. 
Statistical methodological issues in mapping historical schistosomiasis survey data. Acta Tropica, 128, 
345-352. 

CHILDS, D. Z. & BOOTS, M. 2010. The interaction of seasonal forcing and immunity and the resonance 
dynamics of malaria. Journal of The Royal Society Interface, 7, 309-319. 

CHOI, K. S., KOEKEMOER, L. L. & COETZEE, M. 2012. Population genetic structure of the major malaria vector 
Anopheles funestus ss and allied species in southern Africa. Parasit Vectors, 5, 283. 

CLEMENTS, A., BARNETT, A. G., CHENG, Z. W., SNOW, R. W. & ZHOU, H. N. 2009. Space-time variation of 
malaria incidence in Yunnan province, China. Malar J, 8, 180. 

COETZEE, M. & FONTENILLE, D. 2004. Advances in the study of Anopheles funestus, a major vector of malaria 
in Africa. Insect Biochemistry and Molecular Biology, 34, 599-605. 

COLEMAN, M., COLEMAN, M., MABASO, M. L., MABUZA, A. M., KOK, G., COETZEE, M. & DURRHEIM, D. N. 
2010. Household and microeconomic factors associated with malaria in Mpumalanga, South Africa. 
Transactions of the Royal Society of Tropical Medicine and Hygiene, 104, 143-147. 

COLEMAN, S. 2009. Studies of Entomological Parameters and Perception of Malaria Transmission on the 
Kwame Nkrumah University of Science and Technology campus, in the Ashanti Region of Ghana. 

COLUZZI, M. 1992. Malaria vector analysis and control. Parasitology Today, 8, 113-118. 
COOSEMANS, M., WERY, M., MOUCHET, J. & CARNEVALE, P. 1992. Transmission factors in malaria 

epidemiology and control in Africa. Memórias do Instituto Oswaldo Cruz, 87, 385-391. 
COX, J., CRAIG, M., LE SUEUR, D. & SHARP, B. 1999. Mapping malaria risk in the highlands of Africa. 

MARA/HIMAL Technical Report, 114. 
CRAIG, M. 2007. The Temporal and Spatial Distribution of Malaria in Africa, with Emphasis on Southern Africa. 

University of Basel. 
CRAIG, M. H., SHARP, B. L., MABASO, M. L. & KLEINSCHMIDT, I. 2007. Developing a spatial-statistical model 

and map of historical malaria prevalence in Botswana using a staged variable selection procedure. 
International Journal of Health Geographics, 6, 44. 

CRAIG, M. H., SNOW, R. W. & LE SUEUR, D. 1999. A Climate-based Distribution Model of Malaria Transmission 
in Sub-Saharan Africa. Parasitology Today, 15, 105-111. 

CRESSIE, N. A. C. 1993. Statistics for spatial data, J. Wiley. 
CURRAN, P. J., ATKINSON, P. M., FOODY, G. M. & MILTON, E. J. 2000. Linking remote sensing, land cover and 

disease. Advances in Parasitology, 47, 37-80. 
D'ALESSANDRO, U., OLALEYE, B., MCGUIRE, W., THOMSON, M., LANGEROCK, P., BENNETT, S. & 

GREENWOOD, B. 1995. A comparison of the efficacy of insecticide-treated and untreated bed nets 
in preventing malaria in Gambian children. Transactions of the Royal Society of Tropical Medicine and 
Hygiene, 89, 596-598. 

DABIRE, K., BALDET, T., DIABATE, A., DIA, I., COSTANTINI, C., COHUET, A., GUIGUEMDE, T. & FONTENILLE, D. 
2007. Anopheles funestus (Diptera: Culicidae) in a humid savannah area of western Burkina Faso: 
bionomics, insecticide resistance status, and role in malaria transmission. Journal of medical 
entomology, 44, 990-997. 

DANUOR, S., TAY, S., ANNOR, T., FORKUO, E., BOSOMPEM, K. & ANTWI, V. The impact of climate var-iability 
on malaria incidence and prevalence in the forest zone of Ghana-A case study at two (2) hospitals 
located within the Ku-masi Metropolitan area of the Ashanti Region of Ghana. 2010. 2nd 
International Conference: Climate, Sustainability and Develop ment in Semi-arid Regions, Fortaleza-
eara, Brazil. 

DASGUPTA, A., SUN, Y. V., KÖNIG, I. R., BAILEY-WILSON, J. E. & MALLEY, J. D. 2011. Brief Review of Regression-
Based and Machine Learning Methods in Genetic Epidemiology: The Genetic Analysis Workshop 17 
Experience. Genetic Epidemiology, 35, S5-11. 



74 
 

DAVIS, C. 2011. Climate risk and vulnerability: a handbook for Southern Africa. Council for Scientific and 
Industrial Research, Pretoria, South Africa, 25. 

DE CASAS, S. I. C. & CARCAVALLO, R. U. 1995. Climate change and vector-borne diseases distribution. Social 
Science & Medicine, 40, 1437-1440. 

DELLAPORTAS, P., FORSTER, J. J. & NTZOUFRAS, I. 2002. On Bayesian model and variable selection using 
MCMC. Statistics and Computing, 12, 27-36. 

DOBSON, M. 1999. The malariology centenary. Parassitologia, 41, 21-32. 
DRAKELEY, C., SUTHERLAND, C., BOUSEMA, J. T., SAUERWEIN, R. W. & TARGETT, G. A. 2006. The epidemiology 

of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends in parasitology, 22, 
424-430. 

DRAKELEY, C. J., CARNEIRO, I., REYBURN, H., MALIMA, R., LUSINGU, J. P. A., COX, J., THEANDER, T. G., NKYA, 
W. M. M. M., LEMNGE, M. M. & RILEY, E. M. 2005. Altitude-Dependent and -Independent Variations 
in Plasmodium falciparum Prevalence in Northeastern Tanzania. Journal of Infectious Diseases, 191, 
1589-1598. 

DRAPER, N. R. & SMITH, H. 2014. Applied regression analysis, John Wiley & Sons. 
EISELE, T. P., KEATING, J., SWALM, C., MBOGO, C. M., GITHEKO, A. K., REGENS, J. L., GITHURE, J. I., ANDREWS, 

L. & BEIER, J. C. 2003. Linking field-based ecological data with remotely sensed data using a 
geographic information system in two malaria endemic urban areas of Kenya. Malaria Journal, 2, 44. 

ENAYATI, A. & HEMINGWAY, J. 2010. Malaria management: past, present, and future. Annual review of 
entomology, 55, 569-591. 

ENDESHAW, T., GEBRE, T., NGONDI, J., GRAVES, P. M., SHARGIE, E. B., EJIGSEMAHU, Y., AYELE, B., YOHANNES, 
G., TEFERI, T. & MESSELE, A. 2008. Evaluation of light microscopy and rapid diagnostic test for the 
detection of malaria under operational field conditions: a household survey in Ethiopia. Malaria 
Journal, 7, 118. 

ENGLISH, M., WARUIRU, C., AMUKOYE, E., MURPHY, S., CRAWLEY, J., MWANGI, I., PESHU, N. & MARSH, K. 
1996. Deep breathing in children with severe malaria: indicator of metabolic acidosis and poor 
outcome. The American journal of tropical medicine and hygiene, 55, 521-524. 

FARAWAY, J. J. 2005. Extending the linear model with R: generalized linear, mixed effects and nonparametric 
regression models, CRC press. 

FEACHEM, R. G. A., PHILLIPS, A. A., HWANG, J., COTTER, C., WIELGOSZ, B., GREENWOOD, B. M., SABOT, O., 
RODRIGUEZ, M. H., ABEYASINGHE, R. R., GHEBREYESUS, T. A. & SNOW, R. W. 2009. Shrinking the 
malaria map: progress and prospects. The Lancet, 376, 1566-1578. 

FINANCE, M. D. O. 2013. Socio-economic review and outlook of Mpumalanga [Online]. Available: 
http://finance.mpu.gov.za/documents/ea.SERO.June.2013.pdf. 

FONTENILLE, D. & SIMARD, F. 2004. Unravelling complexities in human malaria transmission dynamics in 
Africa through a comprehensive knowledge of vector populations. Comparative Immunology, 
Microbiology and Infectious Diseases, 27, 357-375. 

FOURNET, F., CUSSAC, M., OUARI, A., MEYER, P.-E., TOÉ, H. K., GOUAGNA, L.-C. & DABIRÉ, R. K. 2010. Diversity 
in anopheline larval habitats and adult composition during the dry and wet seasons in Ouagadougou 
(Burkina Faso). Malar J, 9, 78. 

FULLMAN, N., BURSTEIN, R., LIM, S., MEDLIN, C. & GAKIDOU, E. 2013. Nets, spray or both? The effectiveness 
of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child 
mortality in sub-Saharan Africa. Malaria Journal, 12, 62. 

FURLANELLO, C., NETELER, M., MERLER, S., MENEGON, S., FONTANARI, S., DONINI, D., RIZZOLI, A. & CHEMINI, 
C. GIS and the random forest predictor: Integration in R for tick-borne disease risk assessment.  
Proceedings of DSC, 2003. Citeseer, 2. 

GARGE, N. R., BOBASHEV, G. & EGGLESTON, B. 2013. Random forest methodology for model-based recursive 
partitioning: the mobForest package for R. BMC bioinformatics, 14, 125. 

GAUDART, J., TOURÉ, O., DESSAY, N., DICKO, A. L., RANQUE, S., FOREST, L., DEMONGEOT, J. & DOUMBO, O. 
K. 2009. Modelling malaria incidence with environmental dependency in a locality of Sudanese 
savannah area, Mali. Malar J, 8, 61. 

GENUER, R., POGGI, J.-M. & TULEAU-MALOT, C. 2010. Variable selection using random forests. Pattern 
Recognition Letters, 31, 2225-2236. 

http://finance.mpu.gov.za/documents/ea.SERO.June.2013.pdf


75 
 

GEORGE, E. I. & MCCULLOCH, R. E. 1993. Variable selection via Gibbs sampling. Journal of the American 
Statistical Association, 88, 881-889. 

GERRITSEN, A., KRUGER, P., VAN DER LOEFF, M. & GROBUSCH, M. P. 2008. Malaria incidence in Limpopo 
Province, South Africa, 1998–2007. Malar J, 7, 162. 

GEURTS, P., ERNST, D. & WEHENKEL, L. 2006. Extremely randomized trees. Machine learning, 63, 3-42. 
GILLIET, J. 1971. Mosquitoes: The World Naturalist. Richardo Clay (The Chaucer Press) ltd. 
GITHEKO, A., OTOTO, E. & GUIYUN, Y. 2012. Progress towards understanding the ecology and epidemiology 

of malaria in the western Kenya highlands: opportunities and challenges for control under climate 
change risk. Acta Tropica, 121, 19-25. 

GITHEKO, A. K., AYISI, J. M., ODADA, P. K., ATIELI, F. K., NDENGA, B. A., GITHURE, J. I. & YAN, G. 2006. 
Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal 
vector control. Malaria Journal, 5, 107. 

GODFRAY, H. C. J. 2013. Mosquito ecology and control of malaria. Journal of Animal Ecology, 82, 15-25. 
GOSONIU, L., VOUNATSOU, P., SOGOBA, N., MAIRE, N. & SMITH, T. 2009. Mapping malaria risk in West Africa 

using a Bayesian nonparametric non-stationary model. Computational Statistics & Data Analysis, 53, 
3358-3371. 

GOSONIU, L., VOUNATSOU, P., SOGOBA, N. & SMITH, T. 2006. Bayesian modelling of geostatistical malaria 
risk data. Geospatial Health, 1, 127-139. 

GOVERE, J., DURRHEIM, D., COETZEE, M. & HUNT, R. 2001. Malaria in Mpumalanga Province, South Africa, 
with special reference to the period 1987-1999: research letter. South African Journal of Science, 97, 
p. 55-58. 

GOVERE, J., DURRHEIM, D., COETZEE, M., HUNT, R. & LA GRANGE, J. 2000. Captures of mosquitoes of the 
Anopheles gambiae complex (Diptera: Culicidae) in the Lowveld region of Mpumalanga Province, 
South Africa. African entomology, 8, 91-99. 

GREENWOOD, B. M., FIDOCK, D. A., KYLE, D. E., KAPPE, S. H., ALONSO, P. L., COLLINS, F. H. & DUFFY, P. E. 
2008. Malaria: progress, perils, and prospects for eradication. The Journal of clinical investigation, 
118, 1266. 

GRIFFIN, J. T., HOLLINGSWORTH, T. D., OKELL, L. C., CHURCHER, T. S., WHITE, M., HINSLEY, W., BOUSEMA, T., 
DRAKELEY, C. J., FERGUSON, N. M. & BASÁÑEZ, M.-G. 2010. Reducing Plasmodium falciparum malaria 
transmission in Africa: a model-based evaluation of intervention strategies. PLoS medicine, 7, 
e1000324. 

GRIMWADE, K., FRENCH, N., MBATHA, D. D., ZUNGU, D. D., DEDICOAT, M. & GILKS, C. F. 2004. HIV infection 
as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission 
in South Africa. Aids, 18, 547-554. 

GROEPE, M., URBACH, J., JOOSTE, H., HLONGWANA, K., BAKER, L., MISIANI, E. & MAYET, N. 2013. Health 
promotion: From malaria control to elimination. SAMJ: South African Medical Journal, 103, 799-800. 

GROVER-KOPEC, E., BLUMENTHAL, M. B., CECCATO, P., DINKU, T., OMUMBO, J. & CONNOR, S. 2006. Web-
based climate information resources for malaria control in Africa. Malaria Journal, 5, 38. 

GUPTA, S., HILL, A., KWIATKOWSKI, D., GREENWOOD, A. M., GREENWOOD, B. M. & DAY, K. P. 1994. Parasite 
virulence and disease patterns in Plasmodium falciparum malaria. Proceedings of the National 
Academy of Sciences, 91, 3715-3719. 

GUYATT, H. L. & SNOW, R. W. 2004. Impact of malaria during pregnancy on low birth weight in sub-Saharan 
Africa. Clinical Microbiology Reviews, 17, 760-769. 

HAHN, G. J. 1973. The coefficient of determination exposed! Chemtech, 3, 609-612. 
HAQUE, U., HASHIZUME, M., GLASS, G. E., DEWAN, A. M., OVERGAARD, H. J. & YAMAMOTO, T. 2010. The 

role of climate variability in the spread of malaria in Bangladeshi highlands. PLoS ONE, 5, e14341. 
HARGREAVES, K., HUNT, R. H., BROOKE, B. D., MTHEMBU, J., WEETO, M. M., AWOLOLA, T. S. & COETZEE, M. 

2003. Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Medical and 
Veterinary Entomology, 17, 417-422. 

HARGREAVES, K., KOEKEMOER, L., BROOKE, B., HUNT, R., MTHEMBU, J. & COETZEE, M. 2000. Anopheles 
funestus resistant to pyrethroid insecticides in South Africa. Medical and veterinary entomology, 14, 
181-189. 



76 
 

HARRELL, F. E. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, 
and Survival Analysis, Springer. 

HAY, S., SNOW, R. & ROGERS, D. 1998. From predicting mosquito habitat to malaria seasons using remotely 
sensed data: practice, problems and perspectives. Parasitology Today, 14, 306-313. 

HAY, S. I., GUERRA, C. A., GETHING, P. W., PATIL, A. P., TATEM, A. J., NOOR, A. M., KABARIA, C. W., MANH, B. 
H., ELYAZAR, I. R. & BROOKER, S. 2009. A world malaria map: Plasmodium falciparum endemicity in 
2007. PLoS medicine, 6, e1000048. 

HAY, S. I., GUERRA, C. A., TATEM, A. J., ATKINSON, P. M. & SNOW, R. W. 2005. Urbanization, malaria 
transmission and disease burden in Africa. Nature reviews. Microbiology, 3, 81-90. 

HAY, S. I., OMUMBO, J. A., CRAIG, M. H. & SNOW, R. W. 2000. Earth observation, geographic information 
systems and Plasmodium falciparum malaria in sub-Saharan Africa. In: S.I. HAY, S. E. R. D. J. R. (ed.) 
Advances in Parasitology. Academic Press. 

HAY, S. I., ROGERS, D. J., RANDOLPH, S. E., STERN, D. I., COX, J., SHANKS, G. D. & SNOW, R. W. 2002. Hot topic 
or hot air? Climate change and malaria resurgence in East African highlands. Trends in parasitology, 
18, 530-534. 

HEMINGWAY, J. & RANSON, H. 2000. Insecticide resistance in insect vectors of human disease. Annual review 
of entomology, 45, 371-391. 

HEMINGWAYD, J. 2009. 9| SuppreSSing the vector. Shrinking the Malaria Map, 140. 
HILBE, J. M. 2011. Negative Binomial Regression, Cambridge University Press. 
HIMEIDAN, Y. E., HAMID, E., THALIB, L., EL BASHIR, M. I. & ADAM, I. 2007. Climatic variables and transmission 

of falciparum malaria in New Halfa, eastern Sudan. 
HLONGWANA, K. W., MABASO, M., KUNENE, S., GOVENDER, D. & MAHARAJ, R. 2009. Community knowledge, 

attitudes and practices (KAP) on malaria in Swaziland: a country earmarked for malaria elimination. 
Malar J, 8, 1-8. 

HLONGWANA, K. W., ZITHA, A., MABUZA, A. M. & MAHARAJ, R. 2011. Knowledge and practices towards 
malaria amongst residents of Bushbuckridge, Mpumalanga, South Africa. African Journal of Primary 
Health Care & Family Medicine, 3, 9 pages. 

HORNING, N. 2013. Introduction to decision trees and random forests. American Museum of Natural 
History’s. 

HSIANG, M. S., PANOSIAN, C. & DORSEYC, G. 2009. 5| underStanding Malaria. Shrinking the Malaria Map, 
81. 

HUANG, F., ZHOU, S., ZHANG, S., WANG, H. & TANG, L. 2011. Temporal correlation analysis between malaria 
and meteorological factors in Motuo County, Tibet. Malar J, 10, 54. 

HULME, M., DOHERTY, R., NGARA, T., NEW, M. & LISTER, D. 2001. African climate change: 1900-2100. Climate 
research, 17, 145-168. 

IKEMOTO, T. 2008. Tropical malaria does not mean hot environments. Journal of medical entomology, 45, 
963-969. 

IMBAHALE, S., PAAIJMANS, K., MUKABANA, W., VAN LAMMEREN, R., GITHEKO, A. & TAKKEN, W. 2011. A 
longitudinal study on Anopheles mosquito larval abundance in distinct geographical and 
environmental settings in western Kenya. Malaria Journal, 10, 81. 

ISHWARAN, H. & RAO, J. S. 2005. Spike and slab variable selection: frequentist and Bayesian strategies. Annals 
of Statistics, 730-773. 

JAWARA, M., PINDER, M., DRAKELEY, C. J., NWAKANMA, D. C., JALLOW, E., BOGH, C., LINDSAY, S. W. & 
CONWAY, D. J. 2008. Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. 
Malar J, 7. 

KARTHE, D. 2010. Geographic Determinants of Malaria Transmission. 
KAZEMBE, L., KLEINSCHMIDT, I., HOLTZ, T. & SHARP, B. 2006. Spatial analysis and mapping of malaria risk in 

Malawi using point-referenced prevalence of infection data. International Journal of Health 
Geographics, 5, 41. 

KAZEMBE, L. N. 2007. Spatial modelling and risk factors of malaria incidence in northern Malawi. Acta Tropica, 
102, 126-137. 

KELLY-HOPE, L. A. & MCKENZIE, F. E. 2009. The multiplicity of malaria transmission: a review of entomological 
inoculation rate measurements and methods across sub-Saharan Africa. Malaria Journal, 8, 19. 



77 
 

KELLY, G. C., HALE, E., DONALD, W., BATARII, W., BUGORO, H., NAUSIEN, J., SMALE, J., PALMER, K., 
BOBOGARE, A. & TALEO, G. 2013. A high-resolution geospatial surveillance-response system for 
malaria elimination in Solomon Islands and Vanuatu. Malar J, 12, 108. 

KIANG, R., ADIMI, F., SOIKA, V., NIGRO, J., SINGHASIVANON, P., SIRICHAISINTHOP, J., LEEMINGSAWAT, S., 
APIWATHNASORN, C. & LOOAREESUWAN, S. 2006. Meteorological, environmental remote sensing 
and neural network analysis of the epidemiology of malaria transmission in Thailand. Geospat Health, 
1, 71-84. 

KLEINSCHMIDT, I., BAGAYOKO, M., CLARKE, G., CRAIG, M. & LE SUEUR, D. 2000. A spatial statistical approach 
to malaria mapping. International Journal of Epidemiology, 29, 355-361. 

KLEINSCHMIDT, I., SCHWABE, C., SHIVA, M., SEGURA, J. L., SIMA, V., MABUNDA, S. J. A. & COLEMAN, M. 2009. 
Combining indoor residual spraying and insecticide-treated net interventions. The American journal 
of tropical medicine and hygiene, 81, 519-524. 

KLEINSCHMIDT, I., SHARP, B. L., CLARKE, G. P. Y., CURTIS, B. & FRASER, C. 2001. Use of Generalized Linear 
Mixed Models in the Spatial Analysis of Small-Area Malaria Incidence Rates in KwaZulu Natal, South 
Africa. American Journal of Epidemiology, 153, 1213-1221. 

KRUGER, A. & SHONGWE, S. 2004. Temperature trends in South Africa: 1960–2003. International Journal of 
Climatology, 24, 1929-1945. 

KUMAR, V., MANGAL, A., PANESAR, S., YADAV, G., TALWAR, R., RAUT, D. & SINGH, S. 2014. Forecasting 
Malaria Cases Using Climatic Factors in Delhi, India: A Time Series Analysis. Malaria research and 
treatment, 2014. 

KUO, L. & MALLICK, B. 1998. Variable selection for regression models. Sankhyā: The Indian Journal of 
Statistics, Series B, 65-81. 

LIAW, A. & WIENER, M. 2002. Classification and Regression by randomForest. R news, 2, 18-22. 
LINDBLADE, K. A., WALKER, E. D., ONAPA, A. W., KATUNGU, J. & WILSON, M. L. 2000. Land use change alters 

malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical 
Medicine & International Health, 5, 263-274. 

LINDSAY, S. & MARTENS, W. 1998. Malaria in the African highlands: past, present and future. Bulletin of the 
World Health Organization, 76, 33. 

LOEVINSOHN, M. E. 1994. Climatic warming and increased malaria incidence in Rwanda. The Lancet, 343, 
714-718. 

LUTJEHARMS, J., MONTEIRO, P., TYSON, P. & OBURA, D. 2001. The oceans around southern Africa and 
regional effects of global change: START Regional Syntheses. South African Journal of Science, 97, p. 
119-130. 

LYIMO, I. N. & FERGUSON, H. M. 2009. Ecological and evolutionary determinants of host species choice in 
mosquito vectors. Trends in Parasitology, 25, 189-196. 

MABASO, M., CRAIG, M., VOUNATSOU, P. & SMITH, T. 2005. Towards empirical description of malaria 
seasonality in southern Africa: the example of Zimbabwe. Tropical Medicine & International Health, 
10, 909-918. 

MABASO, M., VOUNATSOU, P., MIDZI, S., DA SILVA, J. & SMITH, T. 2006. Spatio-temporal analysis of the role 
of climate in inter-annual variation of malaria incidence in Zimbabwe. International Journal of Health 
Geographics, 5, 20. 

MABASO, M. L., CRAIG, M., ROSS, A. & SMITH, T. 2007. Environmental predictors of the seasonality of malaria 
transmission in Africa: the challenge. The American journal of tropical medicine and hygiene, 76, 33-
38. 

MABASO, M. L. H., SHARP, B. & LENGELER, C. 2004. Historical review of malarial control in southern African 
with emphasis on the use of indoor residual house-spraying. Tropical Medicine & International 
Health, 9, 846-856. 

MACHAULT, V., VIGNOLLES, C., BORCHI, F., VOUNATSOU, P., BRIOLANT, S., LACAUX, J.-P. & ROGIER, C. 2011. 
The use of remotely sensed environmental data in the study of malaria. Geospatial Health, 5, 151-
168. 

MAHARAJ, R., MORRIS, N., SEOCHARAN, I., KRUGER, P., MOONASAR, D., MABUZA, A., RASWISWI, E. & 
RAMAN, J. 2012. The feasibility of malaria elimination in South Africa. Malaria Journal, 11, 423. 



78 
 

MAHARAJ, R., RAMAN, J., MORRIS, N., MOONASAR, D., DURRHEIM, D., SEOCHARAN, I., KRUGER, P., 
SHANDUKANI, B. & KLEINSCHMIDT, I. 2013. Epidemiology of malaria in South Africa: From control to 
elimination. SAMJ: South African Medical Journal, 103, 779-783. 

MALERA 2011. A research agenda for malaria eradication: vector control. PLoS medicine, 8, e1000401. 
MARSH, K., FORSTER, D., WARUIRU, C., MWANGI, I., WINSTANLEY, M., MARSH, V., NEWTON, C., 

WINSTANLEY, P., WARN, P., PESHU, N., PASVOL, G. & SNOW, R. 1995. Indicators of Life-Threatening 
Malaria in African Children. New England Journal of Medicine, 332, 1399-1404. 

MARTENS, P. & HALL, L. 2000. Malaria on the move: human population movement and malaria transmission. 
Emerging infectious diseases, 6, 103. 

MARTENS, W., NIESSEN, L. W., ROTMANS, J., JETTEN, T. H. & MCMICHAEL, A. J. 1995. Potential impact of 
global climate change on malaria risk. Environmental health perspectives, 103, 458. 

MATTINGLY, P. 1969. The Biology of Mosquito-Borne. The science of biology series No1. 
MIDEKISA, A., SENAY, G., HENEBRY, G. M., SEMUNIGUSE, P. & WIMBERLY, M. C. 2012. Remote sensing-based 

time series models for malaria early warning in the highlands of Ethiopia. Malar J, 11, 165. 
MILLER, L. H., BARUCH, D. I., MARSH, K. & DOUMBO, O. K. 2002. The pathogenic basis of malaria. Nature, 

415, 673-679. 
MILLER, L. H., MASON, S. J., CLYDE, D. F. & MCGINNISS, M. H. 1976. The resistance factor to Plasmodium vivax 

in blacks: the Duffy-blood-group genotype, FyFy. New England Journal of Medicine, 295, 302-304. 
MINAKAWA, N., MUNGA, S., ATIELI, F., MUSHINZIMANA, E., ZHOU, G., GITHEKO, A. K. & YAN, G. 2005. Spatial 

distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types 
and topography. The American journal of tropical medicine and hygiene, 73, 157-165. 

MMBANDO, B. P., KAMUGISHA, M. L., LUSINGU, J. P., FRANCIS, F., ISHENGOMA, D. S., THEANDER, T. G., 
LEMNGE, M. M. & SCHEIKE, T. H. 2011. Spatial variation and socio-economic determinants of 
Plasmodium falciparum infection in northeastern Tanzania. Malar J, 10, 10.1186. 

MOONASAR, D., NUTHULAGANTI, T., KRUGER, P., MABUZA, A., RASISWI, E., BENSON, F. & MAHARAJ, R. 2012. 
Malaria control in South Africa 2000-2010: beyond MDG6. Malaria Journal, 11, 294. 

MOUCHET, J., MANGUIN, S., SIRCOULON, J., LAVENTURE, S., FAYE, O., ONAPA, A. W., CARNEVALE, P., JULVEZ, 
J. & FONTENILLE, D. 1998. Evolution of malaria in Africa for the past 40 years: impact of climatic and 
human factors. Journal of the American Mosquito Control Association, 14, 121-130. 

MPUMALANGA PROVICIAL GOVERNMENT 2009. Mpumalanga Economic Profile  
MPUMALANGA PROVICIAL GOVERNMENT 2013. About Mpumalanga Province. 
MPUMALANGA PROVINCE DEPARTMENT OF FINANCE 2013. Socio-economic review and outlook of 

Mpumalanga. 
MULAMBA, C., IRVING, H., RIVERON, J. M., MUKWAYA, L. G., BIRUNGI, J. & WONDJI, C. S. 2014. Contrasting 

Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling 
species Anopheles parensis and Anopheles funestus ss: a potential challenge for malaria vector 
control in Uganda. Parasit Vectors, 7, 71. 

MUNGA, S., MINAKAWA, N., ZHOU, G., MUSHINZIMANA, E., BARRACK, O.-O. J., GITHEKO, A. K. & YAN, G. 
2006. Association between land cover and habitat productivity of malaria vectors in western Kenyan 
highlands. The American journal of tropical medicine and hygiene, 74, 69-75. 

MUNGA, S., YAKOB, L., MUSHINZIMANA, E., ZHOU, G., OUNA, T., MINAKAWA, N., GITHEKO, A. & YAN, G. 
2009. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats 
during a four-year period in a highland community of Africa. The American journal of tropical 
medicine and hygiene, 81, 1079-1084. 

MUSA, M. I., SHOHAIMI, S., HASHIM, N. R. & KRISHNARAJAH, I. 2012. A climate distribution model of malaria 
transmission in Sudan. Geospatial Health, 7, 27-36. 

MUSHINZIMANA, E., MUNGA, S., MINAKAWA, N., LI, L., FENG, C.-C., BIAN, L., KITRON, U., SCHMIDT, C., BECK, 
L. & ZHOU, G. 2006. Landscape determinants and remote sensing of anopheline mosquito larval 
habitats in the western Kenya highlands. Malar J, 5, 13. 

NAFCOC. 2014. Provinces:Mpumalaga [Online]. Available: http://www.nafcoc.org.za/en/mpumalanga.html. 
NÁJERA, J. A., KOUZNETSOV, R. & DELACOLLETTE, C. 1998. Malaria epidemics: detection and control, 

forecasting and prevention, World Health Organization Division of Control of Tropical Diseases. 

http://www.nafcoc.org.za/en/mpumalanga.html


79 
 

NDOEN, E., WILD, C., DALE, P., SIPE, N. & DALE, M. 2010. Relationships between anopheline mosquitoes and 
topography in West Timor and Java, Indonesia. Malaria Journal, 9, 242. 

NDOH 2009. National Malaria Programme Review 2009. South African National Department of Health. 
NDOH 2010. Guidelines for the Treatment of Malaria in South Africa. South African National Department of 

Health. 
NGOMANE, L. & DE JAGER, C. 2012. Changes in malaria morbidity and mortality in Mpumalanga Province, 

South Africa (2001–2009): a retrospective study. Malar J, 11, 19. 
NICODEMUS, K. K., MALLEY, J. D., STROBL, C. & ZIEGLER, A. 2010. The behaviour of random forest 

permutation-based variable importance measures under predictor correlation. BMC bioinformatics, 
11, 110. 

NOOR, A., CLEMENTS, A., GETHING, P., MOLONEY, G., BORLE, M., SHEWCHUK, T., HAY, S. & SNOW, R. 2008. 
Spatial prediction of Plasmodium falciparum prevalence in Somalia. Malaria Journal, 7, 159. 

NUR, E. T. M. 1993. The impact of malaria on labour use and efficiency in the Sudan. Social Science & 
Medicine, 37, 1115-1119. 

O'MEARA, W. P., BEJON, P., MWANGI, T. W., OKIRO, E. A., PESHU, N., SNOW, R. W., NEWTON, C. R. J. C. & 
MARSH, K. 2008. Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. 
The Lancet, 372, 1555-1562. 

O'MEARA, W. P., MANGENI, J. N., STEKETEE, R. & GREENWOOD, B. 2010. Changes in the burden of malaria 
in sub-Saharan Africa. The Lancet Infectious Diseases, 10, 545-555. 

OKOGUN, G. R., NWOKE, B. E., OKERE, A. N., ANOSIKE, J. C. & ESEKHEGBE, A. C. 2003. Epidemiological 
implications of preferences of breeding sites of mosquito species in Midwestern Nigeria. Annals of 
Agricultural and Environmental Medicine, 10, 217-222. 

OLLIARO, P. 2005. Drug resistance hampers our capacity to roll back malaria. Clinical infectious diseases, 41, 
S247-S257. 

OSTFELD, R. S., GLASS, G. E. & KEESING, F. 2005. Spatial epidemiology: an emerging (or re-emerging) 
discipline. Trends in ecology & evolution, 20, 328-336. 

OYEWOLE, I. & AWOLOLA, T. 2006. Impact of urbanisation on bionomics and distribution of malaria vectors 
in Lagos, southwestern Nigeria. Journal of vector borne diseases, 43, 173. 

PAAIJMANS, K. P., BLANFORD, S., BELL, A. S., BLANFORD, J. I., READ, A. F. & THOMAS, M. B. 2010. Influence 
of climate on malaria transmission depends on daily temperature variation. Proceedings of the 
National Academy of Sciences, 107, 15135-15139. 

PARHAM, P. E. & MICHAEL, E. 2010. Modeling the effects of weather and climate change on malaria 
transmission. Environmental health perspectives, 118, 620. 

PATZ, J. A., OLSON, S. H., UEJIO, C. K. & GIBBS, H. K. 2008. Disease emergence from global climate and land 
use change. Medical Clinics of North America, 92, 1473-1491. 

PLUESS, B., TANSER, F. C., LENGELER, C. & SHARP, B. L. 2010. Indoor residual spraying for preventing malaria. 
Cochrane Database Syst Rev, 4. 

RAGHAVENDRA, K., BARIK, T. K., REDDY, B. N., SHARMA, P. & DASH, A. P. 2011. Malaria vector control: from 
past to future. Parasitology research, 108, 757-779. 

RBM 2004. Malaria in Africa. visto en Internet en www. rbm. who. int el, 24. 
RBM 2005. World malaria report 2005. World Health Organization and UNICEF. 
RBM 2013. Progress and Impact Series - Focus on South Afria. 
REID, H., HAQUE, U., CLEMENTS, A. C., TATEM, A. J., VALLELY, A., AHMED, S. M., ISLAM, A. & HAQUE, R. 2010. 

Mapping malaria risk in Bangladesh using Bayesian geostatistical models. Am J Trop Med Hyg, 83, 
861-7. 

RENAUD, O. & VICTORIA-FESER, M.-P. 2010. A robust coefficient of determination for regression. Journal of 
Statistical Planning and Inference, 140, 1852-1862. 

RIEDEL, N., VOUNATSOU, P., MILLER, J. M., GOSONIU, L., CHIZEMA-KAWESHA, E., MUKONKA, V. & STEKETEE, 
R. W. 2010. Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical 
modelling of the 2006 Zambia national malaria indicator survey (ZMIS). Malar J, 9, 37. 

ROBERT, V., LE GOFF, G., ANDRIANAIVOLAMBO, L., RANDIMBY, F. M., DOMARLE, O., 
RANDRIANARIVELOJOSIA, M., RAHARIMANGA, V., RAVELOSON, A., RAVAONJANAHARY, C. & ARIEY, 



80 
 

F. 2006. Moderate transmission but high prevalence of malaria in Madagascar. International journal 
for parasitology, 36, 1273-1281. 

ROBERT, V., MACINTYRE, K., KEATING, J., TRAPE, J.-F., DUCHEMIN, J.-B., WARREN, M. & BEIER, J. C. 2003. 
MALARIA TRANSMISSION IN URBAN SUB-SAHARAN AFRICA. The American Journal of Tropical 
Medicine and Hygiene, 68, 169-176. 

ROGERS, D. J., RANDOLPH, S. E., SNOW, R. W. & HAY, S. I. 2002. Satellite imagery in the study and forecast of 
malaria. Nature, 415, 710-715. 

ROLLAND, E., CHECCHI, F., PINOGES, L., BALKAN, S., GUTHMANN, J.-P. & GUERIN, P. J. 2006. Operational 
response to malaria epidemics: are rapid diagnostic tests cost-effective? 

Réponse opérationnelle aux épidémies de malaria: les tests de diagnostic rapides ont-ils un bon rapport 
coûts-efficacité? 

Respuesta operativa a epidemias de malaria: ¿‘son costo-efectivos los test de diagnóstico rápido? Tropical 
Medicine & International Health, 11, 398-408. 

ROSSI, A., AMADDEO, F., SANDRI, M. & TANSELLA, M. 2005. Determinants of once-only contact in a 
community-based psychiatric service. Social psychiatry and psychiatric epidemiology, 40, 50-56. 

RUSSELL, P. F. 1946. Lessons in Malariology from World War II The Charles Franklin Craig Lecture, 1945. The 
American journal of tropical medicine and hygiene, 1, 5-13. 

RUSSELL, S. 2004. The economic burden of illness for households in developing countries: a review of studies 
focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency 
syndrome. The American journal of tropical medicine and hygiene, 71, 147-155. 

SACHS, J. & MALANEY, P. 2002. The economic and social burden of malaria. Nature, 415, 680-685. 
SADASIVAIAH, S., TOZAN, Y. I. & BREMAN, J. G. 2007. Dichlorodiphenyltrichloroethane (DDT) for indoor 

residual spraying in Africa: how can it be used for malaria control? American Journal of Tropical 
Medicine and Hygiene, 77, 249-263. 

SANBI. 2007. MBCP: Vegetation [Online]. Available: http://bgis.sanbi.org/MBCP/vegetation.asp [Accessed 12 
March 2014 2014]. 

SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. & LEE, W. S. 1998. Boosting the margin: A new explanation for the 
effectiveness of voting methods. Annals of statistics, 1651-1686. 

SCHMIDT, E., LOTTER, M. & MCCLELAND, W. 2002. Trees and shrubs of Mpumalanga and Kruger National 
Park, Jacana Media. 

SCHULZE, R. & MCGEE, O. 1978. Climatic indices and classifications in relation to the biogeography of 
southern Africa. Biogeography and ecology of southern Africa. Springer. 

SCHULZE, R. E., KIKER, G. A. & KUNZ, R. P. 1993. Global climate change and agricultural productivity in 
southern Africa. Global Environmental Change, 3, 330-349. 

SEXTON, A. 2011. Best practices for an insecticide-treated bed net distribution programme in sub-Saharan 
eastern Africa. Malaria Journal, 10, 157. 

SHARP, B. L., KLEINSCHMIDT, I., STREAT, E., MAHARAJ, R., BARNES, K. I., DURRHEIM, D. N., RIDL, F. C., MORRIS, 
N., SEOCHARAN, I. & KUNENE, S. 2007. Seven years of regional malaria control collaboration—
Mozambique, South Africa, and Swaziland. The American journal of tropical medicine and hygiene, 
76, 42-47. 

SHAUKAT, A. M., BREMAN, J. G. & MCKENZIE, F. E. 2010. Research Using the entomological inoculation rate 
to assess the impact of vector control on malaria parasite transmission and elimination. 

SHIH, S. 2011. Random forests for classification trees and categorical dependent variables: an informal quick 
start R guide. Random forests for categorical dependent variables: an informal quick start R 
guide.[Online] Available from http://www. stanford. edu/~ stephsus/R-randomforest-guide. pdf 
[Accessed 25th July 2012]. 

SHIRAYAMA, Y., PHOMPIDA, S. & SHIBUYA, K. 2009. Geographic information system (GIS) maps and malaria 
control monitoring: intervention coverage and health outcome in distal villages of Khammouane 
province, Laos. Malaria journal, 8, 217. 

SILAL, S. P., BARNES, K. I., KOK, G., MABUZA, A. & LITTLE, F. 2013. Exploring the Seasonality of Reported 
Treated Malaria Cases in Mpumalanga, South Africa. PLoS ONE, 8, e76640. 



81 
 

SLUTSKER, L. & MARSTON, B. J. 2007. HIV and malaria: interactions and implications. Current Opinion in 
Infectious Diseases, 20, 3-10 10.1097/QCO.0b013e328012c5cd. 

SMALL, J., GOETZ, S. J. & HAY, S. I. 2003. Climatic suitability for malaria transmission in Africa, 1911–1995. 
Proceedings of the National Academy of Sciences, 100, 15341-15345. 

SNOW, R. W. & GILLES, H. M. 2002. The epidemiology of malaria. Essential malariology, 4, 85-106. 
SNOW, R. W. & OMUMBO, J. A. 2006. Disease and Mortality in Sub-Saharan Africa. 
SPIELMAN, A. 2003. The behavioural and social aspects of malaria and its control. 
SPILLINGS, B. L., BROOKE, B. D., KOEKEMOER, L. L., CHIPHWANYA, J., COETZEE, M. & HUNT, R. H. 2009. A new 

species concealed by Anopheles funestus Giles, a major malaria vector in Africa. The American journal 
of tropical medicine and hygiene, 81, 510-515. 

STRESMAN, G. H. 2010. Beyond temperature and precipitation: Ecological risk factors that modify malaria 
transmission. Acta Tropica, 116, 167-172. 

STROBL, C., BOULESTEIX, A.-L., KNEIB, T., AUGUSTIN, T. & ZEILEIS, A. 2008. Conditional variable importance 
for random forests. BMC bioinformatics, 9, 307. 

STROBL, C., MALLEY, J. & TUTZ, G. 2009. An introduction to recursive partitioning: rationale, application, and 
characteristics of classification and regression trees, bagging, and random forests. Psychological 
methods, 14, 323. 

TANSER, F. C., SHARP, B. & LE SUEUR, D. 2003. Potential effect of climate change on malaria transmission in 
Africa. Lancet, 362, 1792-8. 

TAYLOR, T., BORGSTEIN, A. & MOLYNEUX, M. 1993. Acid-base status in paediatric Plasmodium falciparum 
malaria. Qjm, 86, 99-109. 

TEKLEHAIMANOT, A. 2005. Coming to grips with malaria in the new millennium, Earthscan. 
THOMSON, M. C., CONNOR, S. J., D'ALESSANDRO, U., ROWLINGSON, B., DIGGLE, P., CRESSWELL, M. & 

GREENWOOD, B. 1999. Predicting malaria infection in Gambian children from satellite data and bed 
net use surveys: the importance of spatial correlation in the interpretation of results. The American 
journal of tropical medicine and hygiene, 61, 2-8. 

TUNO, N., OKEKA, W., MINAKAWA, N., TAKAGI, M. & YAN, G. 2005. Survivorship of Anopheles gambiae sensu 
stricto (Diptera: Culicidae) larvae in western Kenya highland forest. Journal of medical entomology, 
42, 270-277. 

TYSON, P. D. 1986. Climatic change and variability in Southern Africa, Oxford University Press. 
VER HOEF, J. M., CRESSIE, N., FISHER, R. N. & CASE, T. J. 2001. Uncertainty and spatial linear models for 

ecological data. Spatial Uncertainty in Ecology. Springer. 
VITTOR, A. Y., PAN, W., GILMAN, R. H., TIELSCH, J., GLASS, G., SHIELDS, T., SÁNCHEZ-LOZANO, W., PINEDO, V. 

V., SALAS-COBOS, E. & FLORES, S. 2009. Linking deforestation to malaria in the Amazon: 
characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. The 
American journal of tropical medicine and hygiene, 81, 5-12. 

WARRELL, D. A. & GILLES, H. M. 2002. Essential malariology, Arnold. 
WAYANT, N. M., MALDONADO, D., ROJAS DE ARIAS, A., COUSIÑO, B. & GOODIN, D. G. 2010. Correlation 

between normalized difference vegetation index and malaria in a subtropical rain forest undergoing 
rapid anthropogenic alteration. Geospatial Health, 4, 179-190. 

WHITE, G. 1974. Anopheles gambiae complex and disease transmission in Africa. Transactions of the Royal 
Society of Tropical Medicine and Hygiene, 68, 278-298. 

WHITE, N. 2012. Review of statistical methods for disease mapping. 
WHO 1986. Ottawa charter for health promotion. 
WHO 2006a. Guidelines for the treatment of malaria, World Health Organization. 
WHO 2006b. Pesticides and their application: for the control of vectors and pests of public health importance. 
WHO 2014. World Malaria Report 2014. 
WILLIAMS, H. A. & BLOLAND, P. B. 2002. Malaria control during mass population movements and natural 

disasters, National Academies Press. 
WOYESSA, A., DERESSA, W., ALI, A. & LINDTJØRN, B. 2013. Malaria risk factors in Butajira area, south-central 

Ethiopia: a multilevel analysis. Malar J, 12, 273. 



82 
 

YAMANA, T. K. & ELTAHIR, E. A. 2013. Incorporating the effects of humidity in a mechanistic model of 
Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasites & vectors, 
6, 235. 

YANG, H., MACORIS, M., GALVANI, K., ANDRIGHETTI, M. & WANDERLEY, D. 2009. Assessing the effects of 
temperature on dengue transmission. Epidemiology and infection, 137, 1179-1187. 

YÉ, Y., LOUIS, V. R., SIMBORO, S. & SAUERBORN, R. 2007. Effect of meteorological factors on clinical malaria 
risk among children: an assessment using village-based meteorological stations and community-
based parasitological survey. BMC Public Health, 7, 101. 

ZHOU, G., MINAKAWA, N., GITHEKO, A. K. & YAN, G. 2004. Association between climate variability and 
malaria epidemics in the East African highlands. Proceedings of the National Academy of Sciences of 
the United States of America, 101, 2375-2380. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

CHAPTER 8. APPENDICES 

Appendix 1: Graphs of total malaria cases for all sub places by month 
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