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Abstract

Most practical problems can be modeled by ordinary or partial differential equations. Most

of the problems that describe real world situations are highly nonlinear and it is not always

possible to obtain exact solutions. Situations arising in fluid flow present theoretically chal-

lenging problems. However, not all equations from these problems can be solved analytically,

we therefore use numerical methods to solve them. Most research works in fluid flow use less

accurate methods such as finite differences, finite element and finite volume. Some common

numerical methods lack stability and accuracy, and for this reason improved numerical meth-

ods that are accurate, robust and computationally efficient are required. Most traditionally

used methods are rigorous and pose great challenges in implementing them.

In this study we explored the use of new and improved methods which were used to

solve mathematical models in fluid flow. These methods are the bvp4c algorithm, the Runge-

Kutta-Fehlberg integration scheme with the shooting method, the successive linearization

method, the spectral relaxation method, the quasi-linearization method and the bivariate

quasi-linearization method. The study was carried out in the form of published papers on

six new problems in fluid flow. The new and improved methods were used in all chapters

of this study. The thesis consists of an introduction that gives a review of the common

methods in use and provide evidence in the literature that show the accuracy of spectral

methods. In Chapter 2 a detailed review of methods used in the thesis was presented. We

also presented the general implementaion of these methods for application in other contexts.

In Chapter 3, we investigated radiation effects of magnetohydrodynamic Newtonian fluid

flow over an exponentially stretching sheet. In Chapter 4, we studied natural convection

from a downward pointing cone in a viscoelastic fluid embedded in porous medium. In

Chapter 5, we investigated the problem of diffusion of chemically reactive species in Casson

fluid from an unsteady stretching surface in a porous medium in the presence of a magnetic

field. In Chapter 6, we studied the effects of radiation on magnetohydrodynamic fluid flow

in Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous

medium with viscous dissipation. In Chapter 7, we studied the effect of radiation on free

convection from a spinning cone in Casson fluid with partial slip, cross diffusion and viscous
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dissipation. In Chapter 8, the double diffusion mixed convection Casson fluid flow over a

horizontal plate is studied and incorporates Soret effects and viscous dissipation with thermal

solutal dispersion.

In this study we concluded that the new spectral methods are highly accurate, robust

and computationally efficient in solving nonlinear differential equations. These methods are

recommended for use in highly nonlinear differential equations in fluid flow. The methods

can be used in similar situations in other contexts. The problems presented in this study

are new and developed from existing studies whose results have been improved.
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Introduction

Various types of equations arise when modelling physical situations and a substantial

body of mathematical research is devoted to their study (Suli and Mayers, 2003). In sci-

ence and engineering many problems can be described by differential equations but these

are not so easy to solve analytically, due to their nonlinearity and complexity. Even for

ordinary differential equations, exact solutions may be unobtainable. As a result numeri-

cal methods are used (Griffiths and Higham, 2010; Laburta et al., 2015) and this has been

greatly facilitated by the use of fast computers. In physics, geology, astrophysics, mechanics,

and geophysics, models for problems often include partial differential equations, presenting

even greater challenges (Langtangen, 2003). In this regard, the numerical approach is more

recent than analytic approaches, and was facilitated by the introduction of computational

mechanics, which influenced the development of techniques for numerical solutions (Evans

et al., 2000). A challenge in numerical methods is that computing equivalent expressions in

different ways may take different times to execute (Householder, 1953). We need to investi-

gate new and alternative numerical methods that can possibly solve these systems accurately

with less computation time.
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1.1. Numerical methods for differential equations in fluid flow

In transport processes, problems such as contaminant or tracer transport in porous media

have been frequently modelled by advection-dispersion equations (ADE). In such cases, ap-

plying analytical methods such as the inverse Laplace transform have brought little success

and so numerical methods have been used (Wang and Zhan, 2015). These numerical meth-

ods have proved effective in a wide range of problems where strong nonlinearity arises, such

as seepage with free surfaces (Zheng et al., 2015), and in diffusion problems in fuel cells (Fer-

reira et al., 2015). Numerical algorithms and computer simulations have simplified different

approaches in numerical methods for solving these fluid flow problems (Hysing, 2012). In

particular, discretization methods have been developed.

1.1.1 Discretization methods

Discretization methods are based on approximating derivatives of function expressions.

These approximations are forward, backward and central differences. Discretization methods

include the finite element method (FEM), finite volume (FV) and finite difference method

(FDM). Further developments include the finite cover method (FCM), the generalized finite

element method (GFEM), mixed finite element methods and the extended finite element

method (XFEM) (Chen and Li, 2015), as well as spectral and discontinuous Garlekin meth-

ods (Wang et al., 2014). As judged by the number of commercial computational fluid dy-

namics codes, the three most frequently used discretization methods are the finite difference

method (2%), finite element method (15%) and finite volume method (80%). The remain-

ing 3% consist mostly of spectral, boundary element, vorticity type and lattice-Boltzmann

methods (Veress and Rohacs, 2012).

The finite difference method approximates the given equation at a finite number of

points. If the points can be placed on a regular grid, the approximation is simple and yields

symmetric matrices (Seibold, 2008). Finite difference methods have been used for a variety

of problems; for example predator-prey models (Dimitrov and Kojouharov, 2007), singular

two-point boundary value problems (Kumar, 2003), simulations of stably stratified fluid
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flows (Bodmar et al., 2012), and fluid structure coupling problems (Sugiyama et al., 2011).

They have also been applied to simulations of the Navier-Stokes equations and constitutive

equations of viscoelastic fluids (Zou et al., 2014) and stochastic modelling of the Black-Scholes

model (Goncalves and Grossinho, 2014) and in time fractional nonlinear reaction-diffusion

equations (Sungu and Demir, 2014).

While the finite difference method (FDM) may be considered easy to understand (Gong

et al., 2014), conflict may arise between three desired properties. It is not possible to simul-

taneously optimize all three attributes of a numerical method namely: stability, accuracy

of the solutions and efficiency of the algorithm (Poochinapan et al., 2014). In this regard,

Kudryavtsev (2013) noted that an important advantage of the FDM is that it uses less mem-

ory and computation time than the Garlekin method of Liu and Sen (2009). However, Cash

and Singhal (1982) showed that the method requires considerable computer memory and are

not highly accurate, which they see as major disadvantages. With regard to accuracy for the

FDM method this depends strongly upon the mesh or grid size and its properties of stretch

ratio, aspect ratio and skewness (Veress and Rohacs, 2012). Specifically, numerical experi-

ments show that the compact finite difference method gives fifth order accuracy (Zhao and

Corless, 2006). Standard numerical techniques tend to be impractical, inaccurate or slow so

there is need to improve on traditional numerical methods (Cen et al., 2013). Such improve-

ments include, for example, the work in the finite difference method, using the Chebyshev

wavelet finite difference method (CWDFD) (Nasab et al., 2013; El-dabe and Ouaf, 2006),

and the staggered-grid finite difference method (SFD) (Gao and Zhang, 2013).

Another discretization approach is the finite element method (FEM), which historically

originated from structural mechanics (Veress and Rohacs, 2012). This method has been

used with remarkable success in many fields of engineering such as solid and fluid mechanics,

thermodynamics, and electromagnetism (Alves et al., 2013). Its classical formulation relies

on a mesh of elements over which the polynomial approximation functions are built. Further

developments include using finite element methods for the stationary Navier-Stokes problem

(Wen and He, 2014); the radiative transport equation in a medium with piece-wise constant

refractive index (Lehtikangas, 2015); the analysis of crack propagation in bituminous layered

structures (Gajewski and Sadowski, 2014) and for a class of convection-diffusion equations
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(Wu et al., 2013). Other improvements of the FEM are the extended finite element method

(XFEM)

The extended finite element method (XFEM) has been found to be excellent in ap-

proximating solutions of locally non-smooth features such as jumps, kinks, high gradient,

inclusions, shocks, boundary layers or cracks in solid or fluid mechanics (Toolabi et al., 2013).

It emerged as a powerful procedure for analysis of crack problems, such as in Wang et al.

(2014) where improvements of the finite element method made use of a combination of the

weak Garlekin (WG) and the discontinuous methods. There have been further improvements

of the FEM, which include the use of spectral finite element method by Zak and Krawczuk

(2011). The accuracy of the FEM may be further improved by the use of hybridization of the

method, as in Jeon et al. (2014). However this hybridized method then becomes too costly

because of its requirement of more computation time than the original methods, although

more accurate.

Classical finite differences can be expected to break down near discontinuities in a solu-

tion, in other words where the differential equations do not hold. To avert this difficulty, finite

volume methods can be used (LeVeque, 2002). The finite volume method (FVM), histori-

cally attributed to McDonald in 1971, is based on the observation that the conservation laws

have to be in integral form to preserve discontinuous solutions such as vortex sheets, contact

discontinuities or shock waves (Veress and Rahacs 2012; Botta 2004). In the finite volume

method the conservation properties of the original equation are passed along to their discrete

analogues (Stokie et al., 2003). In essence, the FVM consist of partitioning the domain on

which the PDE is formulated into small polygonal domains (control volumes) on which the

unknown is approximated by constant values (Ion and Ion, 2011). The method does not

require computation of large matrices as in the case of finite difference method (Boivin et

al., 2000). Consequently, the finite volume method (FVM) is a discretization method that

is well suited for numerical simulations of various types (elliptic, parabolic, or hyperbolic) of

conservation laws and so it has been used extensively in several engineering fields such as fluid

mechanics, heat and mass transfer or petroleum engineering (Eymad, 2000). The method

also provides an efficient way to model two-phase form of incompressible fluids in geologic

media, with complex geometrical structures and large variations and discontinuous changes
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in the fluid velocities (Geiger et al., 2004). In particular, Zhang et al. (2012) and Manzini

and Russo (2008) used the fourth order accurate finite volume method with structured adap-

tive mesh refinement for solving the advection-diffusion equation. Other applications of the

finite volume method include work by Diaz et al. (2014) who solved the two-mode shallow

water equation. Among the numerical methods suited to three-dimensional computations

or unstructured meshes, the finite volume method, as being well suited to mesh refinement

(Coudiere and Pierre, 2006).

Improvements in finite volume methods include their use together with finite difference

and finite elements. This finite volume element (FVEM) procedure is usually easier to im-

plement than finite element procedures and offers greater flexibility for handling complicated

domain geometries (Yang, 2008). Other uses of the (FVEM) are observed in Wang (2004)

where a mixed finite volume method based on rectangular mesh for a biharmonic equation

is used.

All of these studies used discretization methods because analytical solutions for these

problems could not be easily obtained. These methods present implementation challenges;

they are rigorous and less accurate than the new spectral methods. In this thesis we do

not use discretization methods; we use the new spectral methods and compare the results

obtained by these discretization methods. Furthermore, we compare the effects of physical

aspects on fluid flow properties obtained using discretization methods and those obtained

using spectral methods.

1.1.2 The Runge-Kutta methods

Euler’s method for solving differential equations was extended to a more elaborate scheme

published by Runge in 1985 which was capable of greater accuracy (Butcher, 1996). Later

developments were by Kutta, Heun and Nystrom (Milne, 1950), with Nystrom making cor-

rections to fifth order methods that had been introduced by Kutta (Butcher, 2009). The

Runge-Kutta method, as it is now known, has been used successfully to solve both single

and systems of differential equations. The Runge-Kutta method has an order of accuracy

of four (Spijker, 1996). The implicit-explicit Runge-Kutta method (IMEX RK) is a further
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improvement that preserves stability (Higueras, 2014). Other refinements have reduced er-

rors. In this regard, although error bounds for the Runge-Kutta methods are known from

several works, even better error bounds than these could exist (Rivertz, 2013). The intro-

duction of iterative schemes has brought about the reduction of computational complexity

of the Runge-Kutta process (Van der Houwen and Messina, 1997). Other improvements

of the Runge-Kutta method were noted in Papageorgiou and Tsitouras (1996), in which a

nine stage RKN (Runge-Kutta-Nystrom) pair of algebraic equations of order eight and six

were presented. Numerical techniques considered for efficient solutions of stiff initial value

ordinary differential equations include the implicit Runge-Kutta (IRK) schemes (Voss and

Muir, 1999). Despite these improvements, some challenges remain. For instance, such higher

order methods need some fundamental evaluation at each step (Nakashima, 1984), resulting

in additional computer time requirements (Chung, 2002).

In the Runge-Kutta method, one way to guarantee accuracy is to compute the solution

of the boundary value problem using a unit step size and half unit step size and compare

the results at data points corresponding to larger step sizes (Butcher, 2009). This requires a

considerable amount of computations and must be repeated if the agreement is not enough,

since this is too costly, a better procedure called Fehlberg’s method is used to compute

solutions using Runge-Kutta formula of higher order accuracy (Butt, 2007). This method

controls the step size and is known as the Runge-Kutta-Fehlberg method. The Runge-Kutta

method can have other numerical techniques embedded in them such as the shooting and

Newton-Raphson methods. These methods have been widely used, for instance in Zaimi,

(2012) in which the Runge-Kutta-Fehlberg with shooting technique was applied to the Bla-

sius equation.

The application of the Runge-Kutta method in most of the literature described in this

section only applied the simple fourth and fifth order Runge-Kutta methods which are less

accurate than the improved Runge-Kutta methods. In this thesis we use the Runge-Kutta-

Fehlberg method with shooting technique. Furthermore, we compare this method with the

analytical solution demonstrating the accuracy of this method. We use this method to solve

a new problem in fluid flow and compare the results obtained to those obtained by other

methods.
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1.1.3 The bvp4c algorithm

The Runge-Kutta computer code is the basic program for Matlab bvp4c solver. It is used

for solving two-point boundary value problems (Shampine and Muir, 2004). The Matlab

bvp4c solver computes the solution using a collocation method, and in so doing controls

the residual error. In order to use the Matlab bvp4c solver, the higher order equation has

to be transformed to a first order explicit form (Budd et al., 2006). Control of the size of

the defect is natural in the sense of backward error analysis, although it may be easier or

more natural to control the local error (Shampine, 2005). In particular the Matlab bvp4c

makes use of the default relative error tolerance of 10−3 and default absolute error tolerance

of 10−6 (Shampine, 2003). Besides its use in solving boundary value problems, the Matlab

bvp4c solver has been used to validate other numerical solutions as observed in (Shateyi et

al., 2010; Motsa and Shateyi, 2010; Narayana and Sibanda, 2012). The solver has also been

extended to include a sixth order solver (Hale and Moore, 2008).

In this thesis we use the Matlab bvp4c due to its ability to control the step size at each

time step, a characteristic which is not in earlier methods such as the finite difference. In

this thesis we demonstrate the accuracy of the improved Runge-Kutta method such as the

Runge-Kutta-Fehlberg method with the shooting technique. Although the method is widely

used, it is worth classifying it as robust and accurate.

1.1.4 The quasi-linearization method (QLM)

Initially proposed by Bellman and Kalaba (1965), the original idea of the QLM method was

to decompose the nonlinear operator as an infinite sum of Adomian polynomials (Alaidarous

et al., 2013). However, computation of the Adomian polynomials is not easy with a simple

equation. To offset this, other methods which eliminated the calculation of the Adomian

polynomials, have been proposed (Pei and Chang, 2008). A further disadvantage of the quasi-

linearization method is the instability of the method, whenever a poor initial guess is chosen

(Motsa and Sibanda, 2013). To avoid this instability, Motsa and Sibanda (2013) suggested

embedding the QLM algorithm within the spectral homotopy analysis method (SHAM) to

obtain a sequence of integration schemes with higher order convergence. The refinement
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in Yakar and Yakar (2010) of the method converged uniformly to a unique solution, semi

quadratically with less restrictive assumptions. There was further generalization of the

quasi-linearization method by Lakshmikantham and Shahzad (1994) and Melton and Vatsala

(2008) where both showed that monotone sequences also converge to a solution quadratically.

The QLM method is known to give excellent results when applied to different nonlinear

ordinary differential equations in physics such as Blasius, Duffing, Lane-Emden and Thomas-

Fermi equations (El-Gebeily and O’Regan, 2007). Other applications of the QLM are in the

differential equations with integral boundary conditions (Jankowski, 2003).

In this study we use the quasi-linearization method (QLM) because it is easy to im-

plement. Direct Taylor series expansions can be applied to nonlinear terms. The resulting

linearized systems are then solved by spectral methods. Furthermore, we demonstrate the

accuracy of the method by comparing to other method in the preceding chapters.

1.1.5 The successive linearization method (SLM)

The successive linearization method (SLM) transforms an ordinary nonlinear differential

equation into an iterative scheme made up of linear differential equations, which may then

be solved by analytical or numerical methods (Motsa and Shateyi, 2012). The advantage

of the SLM is that the linearized system can be solved by any method, such as the finite

differences, finite elements, Runge-Kutta based shooting method or collocation methods

(Motsa et al., 2013). Motsa and Sibanda (2013) used the Chebyshev spectral collocation

method to solve the linearized system of differential equations for the Van der Pol and Duffing

equations. The SLM was seen to give accurate results compared with others reported in the

literature (Motsa et al., 2012a; Makukula et al., 2010). Successive linearization method is

used in many contexts in order to improve the quality of approximations (Belkhouche and

Belkhouche, 2004). One drawback of this method is that it is not easy to implement in

partial differential equations.

In this study we use the successive linearization method as it is easy to implement and

does not involve rigorous mathematical manipulations as in the case of finite differences.

Each function in the governing equation is substituted by a power series function expression,
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which is then expanded and higher powers neglected. The linearized systems are obtained

after a small amount of work making it suitable for solving highly nonlinear differential

equations.

1.1.6 The Keller-box method

The Keller-box method was proposed by Keller, although it is often referred to as the Preiss-

man box scheme (Perot and Subramanian, 2007). The Keller-box method involves writing

the governing equations as a system of first order differential equations (Cebeci and Smith,

1974). Derivatives of some quantities, with respect to the boundary or ”normal” variable,

must be introduced as unknown functions (Keller and Cebeci, 1972). The classical Keller-

box method only applies to a special mesh that has line segments in one dimension, triangles

in two dimension and tetrahedral in three dimension (Haque, 2010). In this method only two

points are used in discretization, which can be used on a non-uniform grid without difficulty

(Esfahanian and Torabi, 2006). This makes it efficient and appropriate for the solution of

parabolic partial differential equations (Al-Shibani et al., 2012). The method works with

both unknown functions and their derivatives at each grid point simultaneously (Esfahanian

and Torabi, 2006). The Keller-box scheme is partially implicit in time and requires matrix

inversion to calculate the solution (Perot and Subramanian, 2007). It is an implicit method,

which is second order accurate in both space and time (Takhar et al., 1998). The method

may be combined with Newton’s method for linearization, as described by Cebeci and Brad-

shaw, (1988). The linearized system of equations can be solved by block elimination, since

the system obtained has the block tri-diagonal structure (Abbasbandy, 2012).

The disadvantage of the Keller-box method is that introducing derivatives of unknown

functions increases the size of the coefficient matrix, which then increases computation costs

(Esfahanian and Torabi, 2006). Another drawback is that the method is difficult to apply in

multi-layered flows and presents difficulties in guessing values of certain parameters (Shu and

Wilks, 1995). Nevertheless, the Keller-box method has become popular for solving problems

of non-similar boundary layer problems (Hamzah et al., 2008). Further applications include

the solution of flow and heat transfer over a stretching sheet with Newtonian heating (Sarif et

al., 2013) and radiation effects on natural convection laminar flow from a horizontal circular
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cylinder (Molla et al., 2011). Further developments include using the parallel algorithm,

based on the L-U decomposition (Fazio and Jannelli, 2013). The results from the Keller-

box method compared well with the Homotopy analysis method (HAM) and the Adomian

decomposition method (ADM).

In this thesis we do not use the Keller-box method due to the disadvantages mentioned in

the literature above, instead we use the quasi-linearization method (QLM) and the bivariate

quasi-linearization method (BQLM) which are more accurate and robust.

1.1.7 The shooting Method

The principle of the shooting method is converting the governing boundary value problem

into an initial value problem (Holsapple et al., 2003), which can then be solved by the Euler

or the Runge-Kutta methods (Islam, 2012). An appropriate initial guess is chosen to start

the recursive procedure; which can present challenges (Matinfar and Ghasemi, 2013). The

shooting method can be applied to two point boundary value problems with the following

characteristics; n first order differential equations to be solved over an interval [a, b], r bound-

ary conditions are specified at the initial value of the independent variable, (n−r) boundary

conditions are specified at the terminal value of the independent variable (Ha, 2001). The

shooting method is reliable and efficient without requiring any specific technique such as

overflow trap, modified Newton’s method or parameter mapping technique (Chang, 2010).

Despite all these advantages, the shooting method becomes unwieldy and is unsuitable for

higher order equations in higher dimensions unlike the cone method (Kwong, 2006). Nev-

ertheless Hieu, (2003) studied the convergence of the shooting method and generalized the

results. Oderinu and Aregbesola (2014) used the shooting method with Taylor series to allow

for quick convergence. Other developments of the shooting method are seen in use together

with the collocation and spline technique described in Al-Mdallal et al. (2010). Chang et al.

(2007) used the lie group shooting method for quasi-boundary regularization of backward

heat conduction problems.

In this study we do not implement the shooting method because the method is now well

known and has been widely used in many studies. Although the method is more accurate
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than the finite difference method, it is less accurate than the spectral methods.

1.1.8 Spectral methods

Spectral methods became famous in the 1970s. They have played an important role in recent

investigations into numerical solutions of differential equations in regular domains. They are

considered to be powerful due to their high accuracy (Tatari and Haghighi, 2014). According

to Vilhena et al. (1999) spectral methods involve representing the solution to the problem

as truncated series of known functions of independent variables. Spectral methods that are

based on collocation methods are usually called pseudo-spectral methods (Orel and Perne,

2014), and these are widely used (Fakhar-Izadi and Dehghan, 2011). The collocation points

are the zeros of the polynomial chosen for approximation (Moulla et al., 2012). For instance,

in the Chebyshev collocation method, the collocation points chosen are the Gauss-Lobatto

points (Makanda et al., 2013; Motsa and Shateyi, 2012; Motsa et al., 2014; Motsa and

Sibanda, 2012). The Chebyshev Gauss-Lobatto nodes have also been used for the solution

of the Burgers equation (Rashid et al., 2014). Recently, Legendre and Chebyshev spectral

approximations have been widely used in PDEs in bounded domains (Tatari and Haghighi,

2014).

Progress has been made in solving problems in unbounded domains. In particular,

Tatari and Haghighi (2014) considered Laguerre and Hermite spectral methods appropri-

ate choices for semi-infinite and infinite domains. Specifically, a robust Christov-Galerkin

spectral technique for computing interacting localized wave solutions of fourth and sixth

order generalized wave equations was developed by application of spectral methods on an

infinite domain (Christou and Papanicolaou, 2014). The widespread use of spectral methods

has been motivated by their accuracy and efficiency in solving incompressible Navier-Stokes

equations (Gottlieb and Hesthaven, 2001). A fundamental issue in this method is determin-

ing the expansion coefficient. Some approximations such as the Galerkin approximations or

collocation schemes have been described by (Gottlieb and Orszag, 1977). The main advan-

tage of the method may be considered to be that there is no need for numerical integration

(Jovanovic et al., 2014). Thus, spectral methods also provide more accurate approximations

with a relatively small number of unknowns, and so play increasingly important roles in
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optimizing engineering design and other scientific computations (Zhou, 2014).

Applications of spectral methods include analytical solutions for neutron transport (Ka-

dem, 2005), coupled Stokes and Darcy equations (Wang and Xu, 2014), modelling of bridges

under moving vehicles (Kozar and Malic, 2013). Pozrikidis (2006) used a spectral colloca-

tion method with triangular boundary elements, for solving integral equations arising from

boundary integral formulations over surfaces discretized into flat or curved triangular el-

ements. Dlamini et al. (2013) made a comparison between the compact finite difference

(CFD) method and pseudo-spectral approaches for solving similarity boundary layer prob-

lems and found that the spectral method outperformed the CFD in terms of computational

speed.

Other manifestations of spectral methods include the spectral relaxation method (SRM),

the spectral local linearization method (SLLM), the spectral quasi-linearization method

(SQLM), the spectral perturbation method (SPM), the bivariate quasi-linearization method

(BQLM) and the bivariate spectral quasi-linearization method (BSQLM). Most of these

methods have been developed from the linearization methods. The spectral relaxation

method (SRM) requires converting the equations into a system of first and second order

differential equations (Shateyi, 2014) or arranging the equations in a particular order, plac-

ing the equations with least number of unknowns at the top of the equation list (Motsa and

Makukula, 2013). The resulting system is then decoupled using ideas imported from the

Gauss-Seidel method, which is normally used to solve linear algebraic systems of equations

(Motsa, 2014). The decoupled system is numerically integrated using the Chebyshev pseudo

spectral method (Makanda et al., 2013). Unlike other iterative schemes for solving nonlinear

systems of equations, the SRM does not require any evaluation of derivatives, perturbation

or linearization (Motsa, 2014). Improvements of the SRM are noted in Dlamini et al. (2012)

where a multistage spectral relaxation method is proposed for solving problems of chaos

control and synchronization. Thus, the SRM is an efficient, reliable, convergent, numerically

stable and very easy method to implement that has a great potential as very useful tool

for solving boundary layer flow problems arising from fluid dynamics applications (Motsa,

2014). The spectral local linearization method (SLLM) is based on developing a decoupled

iterative scheme that is then solved chronologically using spectral methods (Motsa, 2013).
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A key feature of the SLLM is that it breaks down a large coupled system of equations into

a sequence of small subsystems which can be solved sequentially in a very computationally

efficient manner (Motsa, 2013). Local linearization is applied before generating the iterative

scheme in a manner similar to the Gauss-Seidel approach of decoupling linear algebraic equa-

tions (Motsa, 2013). The spectral quasi-linearization method (SQLM) is the QLM applied

together with the Chebyshev pseudospectral method (Motsa, 2013).

In this study we implement these methods due to their accuracy, efficiency and ro-

bustness. In particular we implement the successive linearization method (SLM), the quasi-

linearization method (QLM), the spectral relaxation method (SRM) and the bivariate quasi-

linearization method (BQLM). From the literature mentioned above, it is clear that these

methods are highly accurate as well as easy to implement.

1.1.9 The Adomian decomposition method (ADM)

The Adomian decomposition method (ADM), developed in 1984 (Adomian, 1988), is a sys-

tematic method for practical solution of linear, or nonlinear, deterministic, stochastic equa-

tions, including ordinary differential equations ODEs, partial differential equations (PDEs),

integral equations, integro-differential equations (Duan et al., 2012; Biazar et al., 2004). In

mathematical physics, many methods have been developed to solve differential equations,

among which the Adomian decomposition method (ADM) is an efficient approximation tech-

nique used to solve initial boundary value problems (Wu et al., 2011). The advantage of the

method is that it converges to exact solutions (Pue-On and Viriyapong, 2012) and needs

less computations than the traditional discretization methods (Ali and Al-Saif, 2008). The

method is based on decomposition of a nonlinear operator equation, as a power series ex-

pansion of a function, resulting in a polynomial. (Hendi et al., 2012). With no need for

linearization, perturbation, closure approximation or discretization, all of which can result

in massive numerical computations, the method can be used to solve a wide range of problems

(Adomian, 1988; Somali and Gokmen, 2007). The main difficulty arises in the calculation

of the values of polynomials using simple computer codes (Hendi et al, 2012). The ADM

has been used by Blanco-Cocom et al. (2013) to solve the Black-Scholes equation. While

Maleknejad et al. (2011) found the projection method involving the collocation method
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with Legendre polynomials to be more efficient and to use less computations than the ADM.

The ADM has compared favorably with other numerical methods. To elaborate, Ibijola and

Adegboyegun (2012) compared it with the Picard iteration method, found that the ADM was

more accurate, and so recommended that it should be used to solve differential equations.

The ADM was also used by Chiniguel and Ayadi (2011) for solving the heat equation with

nonlocal boundary and initial conditions, where it gave exact solutions.

In this study we do not implement ADM because it is well known and has been widely

used. The ADM presents two main challenges; difficulties in calculation of the Adomian

polynomials and successive application of the integral operator. These problems make it

unsuitable for differential equations involving large systems of equations as it requires more

computation time than spectral methods.

1.1.10 The variational iteration method (VIM)

The variational iteration method was developed by He to solve fifth order differential equa-

tions (Porshokouhi et al., 2010). The VIM changes differential equations to a recursive

sequence of functions, where the limit of that sequence is considered to be the solution of

partial differential equations (Hattim, 2013). The governing equation is written in terms

of a linear and nonlinear operators with an appropriate correction functional (Handlovicova

and Mikula, 2000; Kiymaz and Centinkaya, 2010; Matinfar et al., 2009). The correction

functional is written in terms of the Lagrange multipliers (Ganji et al., 2007), which should

be obtained optimally (Noor and Mohyud-Din, 2009). The successive approximation of the

solution is obtained upon using the Lagrange multipliers (Mishra, 2012).

The reliability of the method and the reduction in size of computational domain give

this method wide applicability (Kiymaz and Centinkaya, 2010). The variational iteration

method (VIM) is combined with semi-implicit discretization in scale, which gives favorable

stability and efficient computational properties (Handlovicova and Mikula, 2000). To elabo-

rate, the excellent, and highly accurate, approximations to the nonlinear WBK (Whitham-

Broer-Kaup) equations provided by the VIM have been noted by Matinfar et al. (2009).

Furthermore, this method has the advantage over the Adomian decomposition of avoiding
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the successive application of the integral operator (Mohyud-Din et al., 2009). The VIM’s

efficiency requires only four iterations to obtain highly accurate solutions for fifth order

differential equations (Porshokouhi et al., 2010). The VIM is thus preferable over other

numerical methods, as it is free from rounding off errors and furthermore does not require

large computer memory (Salehpoor and Jafari, 2011). A comparison of the VIM with the

Adomian decomposition method (ADM), homotopy analysis method (HAM) and the ho-

motopy perturbation method (HPM) showed excellent agreement, indicating the accuracy

of the VIM, as reported in Miansari et al. (2009) and Nawaz (2011). Nevertheless, the

efficiency of the VIM depends on not only the identification of the parameters but also on

the initial approximation of the solution, usually satisfying the boundary conditions (Geng,

2010).

The VIM has been applied to linear and nonlinear stiffness of springs (Fereidoom et al.,

2010). Other applications include the work of Wu and Baleanu (2013) in which the VIM

was applied to q-fractional difference equations. Yang et al. (2014) and Molliq et al. (2009)

used the VIM for diffusion and wave equations. A revised VIM presented by Salepoor (2010)

accelerates convergence of the system of sequences. Another improved version is reported in

Geng (2012), which overcomes the restrictions of the application area of variation iterative

method, and expands its scope of application.

In this study we do not use the VIM, although the method is accurate, it requires

identification of certain parameters and good initial approximation. This method is well

known and has been widely used.

1.1.11 The differential transform method (DTM)

The differential transform method (DTM) is one of the numerical methods for ordinary (par-

tial) differential equations which use polynomials as the approximation to the exact solution

(Hassan, 2007). The method was first proposed by Zhou (1986), who solved both linear and

nonlinear initial value problems in electric circuit analysis. The semi-analytic method uses

the Taylor series for the solution of the differential equation (Biazar and Mohammadi, 2010).

The DTM is different from the traditional high order Taylor series methods which requires
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symbolic computations of the necessary derivatives of the data function (Jafari et al., 2010).

Therefore the main benefit of the method is to offer the analytical approximation and in

many cases an exact solution, rapidly convergent series (Aasaraai, 2011). Thus, without

linearization, discretization, or perturbation, Al-Amr (2014) considers the converging series

components to be elegantly computed. Moreover, the DTM can also be used to solve higher

order differential equations (Hussin et al., 2010).

Results from the DTM method have been shown to compare favorably with those from

the traditional methods. Comparison of the method to the Laplace transform method is

observed in (Thong-moon and Pusjuso, 2010) and the methods gave results that were in

agreement. Another comparison is noted by Merdan et al. (2011) in which the method was

applied to Coullet system and a good agreement of the results was reported. Furthermore,

the accuracy of numerical solution obtained can be improved by taking more terms in the

series (Mirzaee, 2011).

The DTM has been used in numerous applications. It was applied to boundary layer

flow in nanofluid (Ebaid, 2013), nonlinear heat conduction problem (Chu and Chen, 2008),

a class of stiff systems (Idress et al., 2013), the Lane-Emden equation, the white-Dwarf

equation in astrophysics and Troesch’s problem (Aljoufi, 2013). The DTM has also been

applied to multidimensional partial differential equations (Jafari et al., 2012) and to fourth

order parabolic partial differential equations (Soltanalizadeh, 2012). In addition Mukherjee

and Roy (2012) applied the DTM to the Riccati equation with variable coefficients, in which

they compared exact analytical solution results to numerical results obtained, and there was

an excellent agreement.

1.1.12 Overview of numerical methods for fluid flow

Discretization methods have been used to solve ordinary and partial differential equations,

but require more computer memory and computation time than most of the later methods.

Discretization methods give rise to large matrices which need inversion, thereby increasing

computation time. The accuracy of discretization methods is improved by reducing the spac-

ing between discretization points leading to considerable computer run time. By contrast,
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if the Runge-Kutta method through the Matlab bvp4c is incorporated it appears that accu-

racy is improved with less computation time than discretization methods. In this method

the spacing between discretization points is automatically adjusted to achieve high accuracy

and small computation time, but the issues of solving higher order and highly nonlinear

equations remain unresolved.

The quasi-linearization method (QLM) is suitable for highly nonlinear ordinary and

partial differential equations, all nonlinear terms in the equation are approximated by the

Taylor series expansion. This reduces the rigorous processes done in discretization methods

but has the shortcomings of instability whenever a poor initial approximation is chosen.

This Taylor series approximation was found to be less accurate than earlier methods such

as the finite volume methods. By contrast if the Adomian decomposition method (ADM),

the shooting method, the variational iteration method (VIM), and the differential transform

method (DTM) are incorporated it appears that accuracy is improved but solving partial dif-

ferential equations by the SLM remains unresolved. The bivariate quasi-linearization method

(BQLM) is suitable for solving highly nonlinear ordinary and partial differential equations

in fluid flow but has shortcomings of instability whenever a poor initial guess is chosen. The

choice of the number of collocation points is arbitrary, this issue and improvements of the

method remains unresolved.

1.2. Background on physical properties in fluid flow

In this section we review literature on convective fluid flow in Newtonian and non-Newtonian

fluids in porous and non-porous media. We consider various physical aspects which include

effects of exponential stretching sheet on fluid flow, effects of radiation, magnetohydrody-

namic, viscous dissipation, free or natural convection, fluid flow past various geometries,

fluid flow in porous media, effects of chemical reaction on fluid flow, effects of partial slip,

cross diffusion effects and double dispersion effects. Each of these aspects will be further

reviewed in the preceding chapters.
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1.2.1 Fluid flow on exponential stretching/shrinking sheet

When sheets are being manufactured, molten material is pulled from the slit and stretched to

obtain required thickness (Pavithra and Gireesha, 2014). This situation is similar to contin-

uous pulling of plastic sheets in the manufacturing of plastic bags. It is important to study

the velocity of the stretching surface relative to the point of extrusion (Mukhopadhyay et al.,

2013). The rate at which the sheet is drawn from the extrusion slit is described in a number

of different ways namely; linear, continuous, unsteady and nonlinear such as exponential. In

most studies it is assumed that the velocity of the stretching sheet is linearly proportional to

the distance from the extrusion slit (Mandal and Mukhopadhyay, 2013). In practical appli-

cations it is argued that the velocity of stretching may not be linear (Mukhopadhyay, 2013).

In light of this, it is therefore more realistic to consider an exponentially stretching sheet

(Kameswaran et al., 2012). There are many other studies that considered an exponentially

stretching sheets, these include the works of Das (2012), Magyari and Keller (1999), Ishak

(2011) , Sajid and Hayat (2008) and Pal and Mandal (2015).

In this study we consider the fluid flow of a unique problem in which fluid flow is

considered on a stretching surface. The consideration of this aspect poses a considerable

challenge to the governing equations. This aspect will be considered in Chapter 3. (See also

Appendix A).

1.2.2 Radiation effects in fluid flow

Radiation is the emission of energy as electromagnetic waves or as moving high energy

particles that cause ionization. Energy transmitted this way may be as heat, electricity or

light. When this emission is incident on fluid flow it affects certain fluid properties (Chamkha

et al., 2003). To model the movement of thermal radiation, the Rosseland approximation is

applied (Mustafa et al., 2015). This approximation assumes that the heat flux is proportional

to the temperature change and that heat flows from the solid surface to the fluid (El-Kabeir

and El-Sayed, 2012). Furthermore, it is assumed that temperature differences within the

flow are small (Chamkha et al., 2003). At high temperatures, radiation effects significantly

affect temperature distribution and heat transfer (Prakash and Muthtamilselvan, 2014; Das,
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2011; Pal and Mandal, 2015).

The consideration of radiation effects in fluid flow give rise to a theoretically challenging

problem in both ordinary and partial differential equations. The aspect of radiation effects

will be considered in Chapters 3, 6 and 7. (See also Appendices A, D and E )

1.2.3 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of fluid flow in electrically conducting fluids with

magnetic properties that affect fluid flow. Examples include plasmas, salt water, electrolytes

and liquid metals. When a magnetic field is incident in an electrically conducting fluid, a

current is induced. This effect polarizes the fluid and as a result the magnetic field is changed.

The application of a magnetic field results in controlling the momentum and heat transfer in

fluid flow (Mukhopadhyay, 2013). The inclusion of MHD terms in the momentum equation

makes them challenging to solve (Khalid et al., 2015). Furthermore, changing the magnetic

field parameter strongly affects the convergence of solutions (Shateyi and Marewo, 2013).

There are many studies that investigated magnetohydrodynamic fluid flow; these include

the work of Abbasbandy et al. (2014) considered MHD effects on the Falken-Skan fluid

flow of Maxwell fluid. Prakash and Muthtamilselvan (2014) investigated the effect MHD on

micropolar fluid flow.

The effect of magnetohydrodynamics will be considered in this study due to its impor-

tance in fluid flow as shown in the literature above. The MHD effect will be considered in

Chapters 3, 5 and 6. (See also Appendices A, C and D)

1.2.4 Viscous dissipation

Viscous dissipation is the heat energy that is produced as a result of friction between fluid

layers. In fluid flow it is sometimes important to consider the effect of viscous dissipation

(Jambal et al., 2005). Viscous dissipation affects heat transfer and temperature distribution

in the fluid regime (Pal and Mandal, 2015). The effect of viscous dissipation is mostly

considered in non-Newtonian fluids especially power-law fluids (Shokouhmand and Soleimani,
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2011). In modeling fluid flow, the dimensionless parameters that describe viscous dissipation

are the Eckert number (Ec) (Eldabe et al.,2012; Makanda et al., 2012; Pal and Mandal, 2015),

Gebhart number (Gb) (Kameswaran et al., 2012) and the Brinkman number (Br) (Hajipour

and Dehkordi, 2012; Shokouhmand and Soleimani, 2011; Jambal et al., 2005). Some studies

neglected the effects of viscous dissipation. However, many studies investigated effects of

viscous dissipation; these include the works of Pal and Mandal (2015) who studied mixed

convection of nanofluids with heat generation and viscous dissipation. Eldabe et al. (2012)

investigated effects of viscous dissipation on a non-Newtonian fluid.

The effects of viscous dissipation will be considered in this thesis. Some studies ne-

glected viscous dissipation which significantly affect fluid flow. The consideration of viscous

dissipation will be discussed in Chapters 3, 4, 6, 7 and 8. (See also Appendices A, B, D, E

and F).

1.2.5 Free or Natural convection

Natural or free convection is caused by density differences due to temperature gradient. This

creates buoyant forces and fluid flow is facilitated. In fluid flow, constant fluid properties

are considered except density differences (Boussinesq approximation) (Cheng, 2011). The

dimensionless parameter which describes natural or free convection is called the Grashof

number (Narayana et al., 2013; Rashad et al., 2014; Siddiqa et al., 2012). The Grashof

number is the ratio of the buoyancy forces to the viscous forces. Fluid flow caused by free

or natural convection depends on a number of factors such as the geometry, orientation,

variation of temperature on the surface and thermo-physical properties of the fluid. In

natural convection it is important to study the heat transfer coefficient sometimes referred

to as the Nusselt number. The heat transfer rate affects the temperature distribution in

the fluid regime. Many studies were conducted in free or natural convection; these include

the work of Cheng (2011) who studied natural convection of a micropolar fluid, Alam et al.

(2006) investigated free convection and mass transfer past a vertical plate and Hsiao (2011)

considered mixed convection past a porous wedge.

The effect of natural convection in fluid flow is considered in this thesis due to its
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application in a wide range of situations. The effect of natural convection will be considered

in Chapters 4, 6 and 7. (See also Appendices B, D and E)

1.2.6 Fluid flow geometry

One of the most important factors of the study of fluid flow is the geometry and orientation.

When modeling fluid flow the geometry over which the fluid flows affects how the fluid

flows and other properties. From the literature considered in this section, the most frequent

geometries are horizontal surfaces, vertical surfaces, parallel plates, inclined, circular, conical

and spherical surfaces. Other unusual geometries considered in studies are wavy surfaces

(Kabir, 2013), stretching surfaces (Kameswaran et al., 2012), irregular channel (Sivaraj

and Kumar, 2012), vertical stretching sheet (Das, 2012), cylinders in tubes (Mitsoulis and

Galazoulas, 2009) and inclined wavy surface (Cheng, 2010).

In modeling fluid flow each of the geometries presents a different mathematical expres-

sion. In this thesis we consider fluid flow on horizontal, vertical, conical and cylindrical

surfaces. Studies have been done on different geometries by among others Abbas et al.

(2008) who considered unsteady second grade fluid flow on an unsteady stretching sheet,

Anwar et al.(2008) studied mixed convection boundary layer flow of a viscoelastic fluid over

a horizontal circular cylinder, Damseh et al. (2008) studied the transient mixed convection

flow of a second grade viscoelastic fluid over a vertical surface. Hayat et al.(2008) studied

mixed convection in a stagnation point flow adjacent to a vertical surface in a viscoelastic

fluid.

In this thesis we consider more practical geometries on which fluids flow. We consider

fluid flow on a horizontal stretching surface, fluid flow past a cone, unsteady horizontal

stretching surface, fluid flow past a cylinder, fluid flow past a spinning cone and fluid flow

from a vertical plate. These various geometries pose a theoretical challenge on the governing

equations. In this thesis we present different problems arising from these geometries and use

numerical methods to solve each of them.
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1.2.7 Porous media

The flow of fluid through porous media is important due to its practical application. A porous

medium is a region which contains pores which offers resistance to fluid flow. The ability

of the fluid to flow across a porous medium is determined by the permeability or porosity

of the medium. The general mathematical model that describes a flow in porous medium is

known as Darcy’s law; it states that the flow rate is a function of fluid pressure, flow area and

elevation (Bar-Meir, 2009). Darcy’s law only applies under certain conditions, in situations

in which it does not hold inertial forces are dominant. Under these conditions the fluid flow

is described as non-Darcy (El-Amin et al., 2008). Examples of fluid flow in porous media

include the flow of water in aquifers, fluid flow in packed beds, irrigation problems, heat

storage in beds and biological systems (Khalid et al., 2015). Further applications include

chemical and reservoir engineering (Aldabe et al., 2012). Many studies were performed in

fluid flow in porous media, these include the works of Pal and Mandal (2015) who investigated

flow of nanofluids in porous medium, Hsiao et al. (2014) studied flow of a non-Newtonian

fluid in porous medium. Singh et al. (2012) studied heat transfer in a second grade fluid

over an exponentially stretching sheet through porous medium.

The flow of fluids in porous media has remained problems of interest due to their wide

application in industry. In this thesis we consider problems in fluid flow in porous media,

these will be considered in Chapters 4, 5, 6 and 7. (See also Appendices B, C, D and E).

1.2.8 Chemical reaction effects

The flow of fluid is affected by chemical reactions that take place in it. When chemical reac-

tions occur either energy is used or dissipated resulting in processes known as endothermic

and exothermic reactions. Consequently, fluid properties are affected. In some cases chem-

ical reactions are either destructive or constructive (Mukhopadhyay and Vajravelu, 2013).

There are several studies that considered chemical reactions, these include the work of El-

Kabeir and El-Sayed (2012) who studied chemical reaction in fluid flow past a cone, Das

(2011), Bakr (2011) and Rashad et al. (2014). Kameswaran et al. (2013a) investigated

homogeneous-heterogeneous reactions in a nanofluid flow due to a porous stretching sheet,
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Shaw et al.(2013) studied homogeneous-heterogeneous reactions in a nanofluid flow due to

a porous stretching sheet. In this thesis the chemical reaction effects will be considered in

Chapter 5. (See also Appendix C).

1.2.9 Partial slip effects

The flow of fluid on a surface is considered to stick to the surface commonly referred to as

the no-slip condition (Prabhakara and Deshpande, 2004). The solid surface is assumed to

be rough, which slows down the fluid flow at the surface. The slip condition is applicable

in situations where the velocity is small (Bar-Meir, 2009). Many studies in the literature

considered in this thesis show that most studies assume the no-slip condition. There are

some studies that considered partial slip conditions; these include among others Das (2012)

who considered slip effects on a micropolar fluid over a vertical shrinking sheet. Sahoo (2009)

investigated effects of partial slip in a non-Newtonian fluid. In this thesis the effects of partial

slip will be considered in Chapters 6 and 7.(See Appendices D and E).

1.2.10 Cross diffusion effects

Heat and mass diffusing at the same time give rise to cross diffusion effect (Awad et al., 2011).

If the difference in temperature in a molecular mass is large, then the coupled interaction

is large (El-Amin, 2008). The mass transfer caused by temperature gradient is referred

to as the Soret effect, while the heat transfer caused by concentration gradient is referred

to as the Dufour effect (Narayana and Sibanda, 2012). In many instances in fluid flow

the effects are large that they cannot be ignored (Alam et al., 2006). There are some

studies that considered cross diffusion effects, these include among others Cheng (2010)

who considered double diffusion fluid flow along an inclined wavy surface. Narayana et al.

(2013) investigated cross diffusion effects on a vertical spinning cone. In this thesis we will

consider cross diffusion effects together with partial slip and convective boundary conditions

in Chapter 8. (See Appendix F)
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1.2.11 Double dispersion effects

Dispersion is the distribution of material over a wide area. When heat and mass are me-

chanically transported from one region to the other in fluid flow, this is referred to as double

dispersion. The effects of double dispersion in fluid flow have been studied by among others

Loh and Vesudevan (2013) who investigated dispersion behavior in non-porous silica mono-

lith. Hu et al. (2012) considered enhanced dispersion in supercritical fluids. Ahmed et

al. (2010) investigated gas dispersion in a multi impeller bioreactor. The effect of double

dispersion will be considered in Chapter 8.(See Appendix F)

1.3. Objectives

For most fluid flow problems, numerical solutions are frequently a more practical alternative

to analytical solutions. However, numerical solutions may not describe all characteristics

of the fluid flow adequately. In particular, discretization methods may not be suitable for

solving certain nonlinear differential equations because they require more computer memory

and computation time than recently developed spectral methods. Thus methods for finding

numerical solutions need to be developed further, to show their accuracy, provide proof of

their convergence and show that the methods are sufficiently robust for general use. In this

study we will focus on using recent iterative methods, which are combined with spectral

methods. To this end we will:

(i) Review

a) the Matlab bvp4c as the basic numerical method for boundary value problems,

b) the successive linearization method (SLM),

c) the spectral relaxation method (SRM)

d) the spectral quasi-linearization method (SQLM),
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e) the local linearization method (LLM) applied with collocation to PDEs and

(SQLM) applied with collocation to ODEs.

(ii) Use and evaluate the above methods to solve problems in fluid flow specifically:

a) MHD flow in a Newtonian fluid due to an exponential stretching sheet (Kameswaran

et al., 2012),

b) Natural convection from a cone in a viscoelastic fluid in porous medium with

viscous dissipation (Makanda et al., 2013),

c) Diffusion of chemically reactive species in Casson fluid over an unsteady stretching

surface (Makanda et al. 2015a),

d) Effects of radiation on MHD free convection in a Casson fluid from a horizontal

cylinder with partial slip in a non-Darcy porous medium (Makanda et al., 2015b),

e) Effects of radiation on free convection from a spinning cone with partial slip in

non-Darcy porous medium with cross diffusion and viscous dissipation (Makanda

et al., 2015c),

f) Effects of double dispersion on Casson fluid flow with viscous dissipation and

convective boundary condition (Shaw et al., 2015)

1.4. Thesis outline

This thesis is divided into nine chapters.

In Chapter 1 we have reviewed the literature on numerical methods namely: the fi-

nite difference method (FDM), finite element method (FEM), finite volume method (FVM),

the Matlab bvp4c solver, the successive linearization method (SLM), the quasi-linearization

method (QLM), the Runge-Kutta methods, the shooting method, spectral methods, the

Adomian decomposition method (ADM), the variational iteration method (VIM) and the

differential transform method (DTM).
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In Chapter 2 we give a detailed description of the methods that will be used in the thesis,

these methods include the Matlab bvp4c solver, the successive linearization method (SLM),

the spectral relaxation method (SRM), the spectral quasi-linearization method (SQLM) and

the local linearization (LLM).

In Chapter 3 we use the Runge-Kutta method together with the shooting technique to

solve a problem on radiation effects in magnetohydrodynamic Newtonian liquid due to an

exponential stretching sheet.

In Chapter 4 we use successive linearization method (SLM) to solve a problem on nat-

ural convection of viscoelastic fluid from a cone embedded in porous medium with viscous

dissipation.

In Chapter 5 we use the Matlab bvp4c algorithm and the successive linearization method

(SLM) to solve a problem on diffusion of chemically reactive species in Casson fluid over an

unsteady stretching surface in porous medium with viscous dissipation.

In Chapter 6 we use local linearization method (LLM) and the Matlab bvp4c to solve

a problem on effects of radiation on MHD free convection of Casson fluid from a horizontal

circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation.

In Chapter 7 we use spectral relaxation method (SRM) and the Matlab bvp4c method

to solve a problem on effects of radiation on free convection from a spinning cone with partial

slip in Casson fluid in non-Darcy porous medium with cross diffusion and viscous dissipation.

This is one of the few problems in which the successive linearization method is applied to

four differential equations.

In Chapter 8 we use the local linearization method (LLM) to solve a problem on effects

of double dispersion on Casson fluid flow with viscous dissipation and convective boundary

conditions. This is one of the few problems in which the LLM is used to solve three partial
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differential equations in fluid flow.

In Chapter 9, the methods are evaluated and conclusions drawn regarding their accuracy,

convergence and robustness.

The next section includes appendices which consist of published papers.

References are included at the end, all the references shown were cited in the thesis.
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2

Numerical methods for boundary value

problems

In this chapter, we review numerical methods for solving systems of differential equations

of fluid flow. The methods discussed in this chapter have been recently developed and are

used to solve boundary value problems. The methods are mainly based on spectral methods

which are efficient in solving boundary value problems.

The numerical methods discussed in this chapter are the only ones that will be used

to solve the differential equations in the preceding chapters. We will particularly review

the following methods; the Matlab bvp4c which will be used in Chapters 3, 5 and 8, the

successive linearization method (SLM) which will be implemented in Chapters 4 and 5,

the quasi-linearization method (QLM) which will be implemented in Chapters 6 and 8,

spectral relaxation method (SRM) which will be used in Chapter 7 and the bivariate quasi-

linearization method (BQLM) that will be implemented in Chapters 6 and 8.
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2.1. Review of the Matlab bvp4c solver

Matlab provides the boundary value problem solver bvp4c that was developed for the solution

of ordinary differential equations (Kierzenka and Shampine, 2001). The general two-point

boundary value problem is

u′(x) = f(x, u(x), p), (2.1)

g(xL, xR, u(xL), u(xR), p) = 0. (2.2)

(2.3)

Where f is continuous Lipschitz function in u and p is a vector of unknown parame-

ters (Gokhan, 2011). The Matlab bvp4c solver is designed for a two-point boundary value

problem where the solution sought on an interval [a, b] must satisfy the boundary condition

g(u(a), u(b)) = 0 (Shateyi et al., 2010). The most common types of BVP are those for which

information is given at two points (Bogacki and Shampine, 1996). The MATLAB routine

bvp4c is based on an adaptive Lobatto quadrature scheme (Motsa et al., 2013). The Matlab

bvp4c solver is a residual control based adaptive mesh solver (Gokhan, 2011).

It might be necessary to give an initial guess for the solution. The quality of this guess

can be critical for the performance of the solver. The Matlab bvp4c algorithm is based on the

Runge-Kutta improved formulas that have interpolation capability (Shampine and Reichelt,

1997). A natural measure of the cost of the Runge-Kutta formula is the number of stages

involved- the number of times the function f(x, y) is evaluated (Bogacki and Shampine,

1996). This method will be implemented in Chapters 3, 5, 7 and 8.

2.2. Strengths and weaknesses of the bvp4c solver

The Matlab bvp4c solver is an adaptive solver which adjusts mesh points at each stage

(Gokhan, 2011). This leads to advantages in terms of computational and storage costs

(Shampine, 2003). The most challenging part of the solution of BVPs is to provide an initial
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estimation to the solution (Gokhan, 2011). The quality of the initial guess can be critical to

solver performance, which reduces or increase run time. The accuracy and convergence of

the Matlab bvp4c algorithm depends on a good initial guess and work better for equations

involving a few equations (Sibanda et al.,2012). One drawback is that the user must assist

the solver to get the desired solution (Kierzenka and Shampine, 2001).

2.3. Successive linearization method (SLM)

We describe the successive linearization method (SLM) in general. The successive lineariza-

tion (SLM) uses the Taylor series to linearize the nonlinear terms of the governing ordinary

differential equations (Motsa et al., 2012a). Following the work of Motsa et al. (2012a) we

consider the general nth order nonlinear ordinary differential equation, which is of the form

L
[
u(x), u′(x), u′′(x), . . . , un(x)

]
+N

[
u(x), u′(x), u′′(x), . . . , un(x)

]
= 0. (2.4)

Where u(x) is an unknown function, x is an independent variable, primes denote the

derivative with respect to x. The functions L and N represent the linear and nonlinear

components of the governing equation respectively. We considered x ∈ [a, b] subject to the

boundary conditions;

u(a) = ua, u(b) = ub. (2.5)

Where ua and ub are given constants. The initial guess for the solution of Eq. (2.4)

should satisfy the boundary conditions (2.5). For problems defined on a finite domain, it

is convenient to consider polynomial functions. A suitable initial approximation, denoted

by u0 satisfies Eq. (2.5) is a straight line. Exponential functions may be used in problems

defined on a semi-infinite or infinite domain. We assume that the functions u, u′, . . . , un,

may be expanded in series form as
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u(x) = ui(x) +
i−1∑
m=0

um(x), (2.6)

u′(x) = u′i(x) +
i−1∑
m=0

u′m(x), (2.7)

u′′(x) = u′′i (x) +
i−1∑
m=0

u′′m(x), (2.8)

...
...

... (2.9)

u(n)(x) = u
(n)
i (x) +

i−1∑
m=0

u(n)m (x). (2.10)

Substituting Eq. (2.6)-(2.10) into Eq. (2.4) gives

L
[
ui, u

′
i, u
′′
i , . . . , u

n
i

]
+N

 i−1∑
m=0

um + ui,
i−1∑
m=0

u′m + ui,
i−1∑
m=0

u′′m + ui, . . . ,
i−1∑
m=0

unm + ui


= −L

 i−1∑
m=0

ui−1,
i−1∑
m=0

u′i−1, . . . ,
i−1∑
m=0

uni−1

 , i = 1, 2, 3 . . . (2.11)

Where i number of successive iterations, if u0(x) is given, solving Eq. (2.11) will yield

an exact solution for U1(x). Because the equation is nonlinear, the exact solution might not

be easy to find. We seek an approximate solution by solving the linear part of the equation

under the assumptions that ui and its derivatives are small. This enables us to use the

Taylor series method to linearize the equation. If ui(x) is a solution to Eq. (2.11), we let

ui(x) denote the solution to the linearized version of Eq. (2.11). Expanding Eq. (2.11) by

using the Taylor series and neglecting higher order terms gives

L
[
ui, u

′
i, u
′′
i , . . . , u

n
i

]
+ a0,i−1u

n
i + a1,i−1u

n−1
i + . . .

+ an−1,i−1u
′
i + an,i−1ui = ri−1(x) i = 1, 2 . . . , (2.12)
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subject to boundary conditions

ui(a) = 0, ui(b) = 0. (2.13)

Where

a0,i−1(x) =
∂N
∂u

(n)
i

(
ui−1, u

′
i−1, u

′′
i−1, . . . , u

n
i−1
)
, (2.14)

a1,0(x) =
∂N

∂u
(n−1)
i

(
ui−1, u

′
i−1, u

′′
0, . . . , u

n
i−1
)
, (2.15)

... (2.16)

an−1,i−1(x) =
∂N
∂u′1

(
ui−1, u

′
i−1, u

′′
i−1, . . . , u

n
i−1
)
, (2.17)

an,i−1(x) =
∂N
∂ui

(
ui−1, u

′
i−1, u

′′
i−1, . . . , u

n
i−1
)
, (2.18)

ri−1(x) = L[ui−1, u
′
i−1, u

′′
i−1, . . . , u

n
i−1]−N [ui−1, u

′
i−1, u

′′
i−1, . . . , u

n
i−1]. (2.19)

The linearized system Eq. (2.12) can be solved by any numerical method. The successive

linearization method (SLM) will be implemented in Chapters 4, 5 and 7.

2.4. Strengths and weaknesses of the successive linearization method

(SLM)

The successive linearization method was compared to the analytical solution of the Lane-

Emden equation and was in agreement to twenty decimal places in Motsa and Shateyi (2012).

The method converges rapidly to the solution after three to four iterations (Motsa and

Shateyi, 2012; Motsa et al., 2012b). The ability of the SLM to generate multiple solutions

make it superior to most numerical methods which are only capable of generating one solution

of nonlinear equations (Motsa et al., 2012b). The method can easily be extended to nonlinear

oscillating systems and nonlinear problems with bifurcations (Motsa and Sibanda, 2012). Its

implementation does not depend on small parameters unlike other traditional methods such

as perturbation method (Motsa et al. 2012b). One drawback of the SLM is that when solving
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fluid flow problems one should have an idea of the size of the boundary layer thickness. The

determination of the number of collocation points is not straightforward.

2.5. Spectral relaxation method (SRM)

In this section we give a detailed description of the spectral relaxation method as described

in Motsa et al. (2014). We consider a system of n nonlinear ordinary differential equations

in n unknown functions fi(η), i = 1, 2, . . . n where η ∈ [a, b] is the dependent variable. We

define a vector F i to be a vector of derivatives of the variable fi with respect to η

F i(η) =
[
f
(0)
i , f

(1)
i , . . . , f

(m)
i

]
. (2.20)

Where f
(0)
i = fi, f

(p)
i , is the pth derivative of fi with respect to η and mi(i = 1, 2, 3 . . . , n)

is the highest derivative order of the variable fi which is in the system of equations. The

system can be written in terms of F i as the sum of linear (Li) and nonlinear components

(Ni) as

Li [F 1,F 2, . . . ,F n] +Ni [F 1,F 2, . . . ,F n] = Gi(η), i = 1, . . . n. (2.21)

Where G(η) is a known function of η.

Eq. (2.21) is solved subject to two point boundary conditions which are expressed as

m∑
j=1

mj−1∑
p=0

α
(p)
ν,jf

(p)
j (a) = Ka,ν , ν = 1, 2, . . . , na, (2.22)

m∑
j=1

mj−1∑
p=0

γ
(p)
ν,j f

(p)
j (b) = Kb,σ, σ = 1, 2, . . . , nb, (2.23)
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where α
(p)
ν,j , γ

(p)
σ,j are the constant coefficients of z

(p)
j in the boundary conditions, and ηa

and ηb are the total number of prescribed boundary conditions at η = a and η = b respec-

tively. Starting from the initial approximation F 1,0,F 2,0, . . . ,F n,0, the iterative method is

obtained as

L1

[
F 1,r+1,F 2,r, . . . ,F n,r

]
= G1 +N1

[
F 1,r,F 2,r, . . . ,F n,r

]
, (2.24)

L2

[
F 1,r+1,F 2,r, . . . ,F n,r

]
= G2 +N2

[
F 1,r,F 2,r, . . . ,F n,r

]
, (2.25)

...
...

...
...

...
...

...
...

...
...

Ln−1
[
F 1,r+1,F 2,r, . . . ,F n,r

]
= Gn−1 +Nn−1

[
F 1,r,F 2,r, . . . ,F n,r

]
, (2.26)

Ln
[
F 1,r+1,F 2,r, . . . ,F n,r

]
= Gn +Nn

[
F 1,r,F 2,r, . . . ,F n,r

]
. (2.27)

Where F i,r+1 and F i,r are the approximation of F i at the current and the previous

iterations respectively. We state that Eqs. (2.24)-(2.27) form a system of n linear decoupled

equations which can be solved iteratively for r = 1, 2 . . . . We start from a an appropriate ini-

tial approximation Fi,0 which satisfy boundary conditions. The iterations are repeated until

convergence is reached. The decoupling error can be used to assess the desired convergence.

The decoupling error Er at the (r + 1)th iteration is defined by

Er = Max
(∥∥f1,r+1 − f1,r

∥∥
∞ ,
∥∥f2,r+1 − f2,r

∥∥
∞ , . . . ,

∥∥fm,r+1 − fm,r
∥∥
∞

)
. (2.28)

The idea incorporated in this method is the Gauss-Seidel relaxation method which is

normally used for solving large systems of algebraic equations. To implement the spectral

collocation method, we define the differentiation matrix

dfi(ηl)

dη
=

N∑
k=0

Dl,kfi(τk) = DF i, l = 0, . . . , N. (2.29)
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Where N + 1 is the number collocation points, D = 2D/(b− a) and

F =
[
f(τ0), f(τ1), . . . , f(τN)

]T
is the vector function of the collocation points and higher

order derivatives are obtained in powers of D given by

f
(p)
j = DpF j. (2.30)

We then apply the Chebyshevpseudo spectral method to the iteration scheme shown in Eqs.

(2.24)-(2.27). This then gives

n∑
j=1

mj∑
p=0

β
[p]
i,jf

(p)
j +Ni [F 1,F 2, . . . ,F n] = Gi, (2.31)

where β
(p)
i,j are constants coefficients of f

(p)
j , the derivative of fj(j = 1, 2, . . . , n) that is

in the ith equation for i = 1, 2, . . . , n. The iteration scheme used in Eqs.(2.24-2.27) can e

expressed as

i∑
j=1

nj∑
p=0

β
[p]
i,jf

(p)
j,r+1 = Gi −

m∑
j=1+1

nj∑
p=0

β
[p]
i,jf

(p)
j,r+1

−Ni
[
F1,r+1, . . . , Fi−1,r+1, Fi,r, . . . , Fm,r

]
(2.32)

for i = 1, 2, . . . ,m. Using the Eq. (2.30) on Eq. (2.32) and the boundary conditions we

otain the spectral Gauss-Seidel relaxation method iteration scheme given by

i∑
j=1

nj∑
p=0

β
[p]
i,jD

(p)Fj,r+1 = Gi −
m∑

j=1+1

nj∑
p=0

β
[p]
i,j D(p)Fj,r

−Ni
[
F1,r+1, . . . ,Fi−1,r+1,Fi,r, . . . ,Fm,r

]
(2.33)

subject to
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m∑
j=1

nj−1∑
p=0

α
(p)
ν,j

N∑
k=0

Dp
N,kfj,r+1(τk) = Ka,ν , ν = 1,2, . . . ,ma, (2.34)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,j

N∑
k=0

Dp
N,kfj,r+1(τk) = Kb,σ, σ = 1,2, . . . ,mb, (2.35)

The substitution of previously known functions decouples the system of equations and an

efficient iteration scheme is created giving accurate results. The spectral relaxation method

(SRM) will be implemented in Chapter 7.

2.6. Review of the quasi-linearization method (QLM)

This quasi-linearization method was introduced by Bellman and Kalaba, (1965) as a gener-

alization of the Newton Raphson method for solving a system of nonlinear equations (Saeed

and Rehman, 2014). In the implementation of the quasi-linearization method the nonlinear

terms are expanded using the Taylor series expansion. The spectral based quasi-linearization

schemes have been successfully applied to a range of fluid based ODEs (Motsa et al., 2014).

The quasi-linearization method is a powerful tool for finding approximate solutions of non-

linear systems and converges quadratically to the solution (Wang and Kong, 2013).

Consider the general nth order nonlinear differential equation of the form

L
[
y(x), y(1)(x), y(2)(x), . . . , y(n)(x)

]
+F

[
y(x), y(1)(x), y(2)(x), . . . , y(n)(x)

]
= ψ(x). (2.36)

Where ψ is a known function of the independent variable x and y(x) is an unknown

function. The operators L and F represent linear and nonlinear components of the governing

equation, respectively. We assume that Eq. (2.36) is to be solved for x ∈ [a, b] subject to

the boundary conditions
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Ba(y(a), y(1)(a), y(2)(a), . . . , y(n−1)(a)) = 0, (2.37)

Bb(y(b), y(1)(b), y(2)(b), . . . , y(n−1)(b)) = 0, (2.38)

where Ba and Bb are linear operators. Following Motsa and Sibanda (2013) we assume

that the true solution of Eq. (2.36) is yα(x) and that yγ(x) is an initial approximation that is

sufficiently close to yα(x). After expanding F using Taylor series up to the first order about

yγ, y
′
γ, . . . , y

(n)
γ we obtain the following system

L
[
yr+1, y

(1)
r+1, . . . , y

(n)
r+1

]
+

n∑
s=0

(y
(s)
r+1 − y(s)r )

∂F
∂y(s)

(yr, y
(1)
r , . . . , y(n)r )

+F
(
yr, y

(1)
r , . . . , y

(n)
1

)
= 0. (2.39)

The iterative scheme Eq. (2.39) is the quasi-linearization method of Bellman and Kalaba

(1965). At this stage the iterative scheme can be used with any method such as finite

differences, finite elements and spline collocation method. In this thesis we demonstrate the

power of spectral method and use the Chebyshev spectral collocation method (Makanda et

al., 2013; Makanda et al., 2014b; Motsa and Sibanda, 2013). The quasi-linearization method

(QLM) will be implemented in Chapter 6.

2.7. Strengths and weaknesses of the quasi-linearization method

(QLM)

The QLM provides better and accurate results as compared to the variational iteration

method and the decomposition method (Saeed and Rehman, 2014). The construction of

iterative schemes is simple and straight forward. The method does not require any calculation

of polynomials like in the case of the ADM (Alaidarous et al., 2013). The QLM can handle

different types of nonlinearities (Saeed and Rehman, 2014). The QLM only requires one

inversion of the Jacobian (Alaidarous et al., 2013). The limitation of the method is that when
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solving problems in fluid flow one needs to have an idea of the boundary layer thickness.

The number of collocation points needed for convergence is sometimes not easy to obtain.

2.8. Bivariate quasi-linearization method (BQLM)

The bivariate spectral quasi-linearization was proposed by Motsa et al. (2014). In this

section we review the bivariate spectral quasi-linearization Method (BSQLM) for solutions

of nonlinear PDEs of the form.

∂v

∂τ
= H(v,

∂v

∂η
,
∂2v

∂η2
, . . . ,

∂nv

∂ηn
). (2.40)

With the physical region τ ∈ [0, T ], η ∈ [a, b] (Motsa et al.,2014). n is the order of differ-

entiation, v(η, τ) is the required solution and H is the nonlinear operator which contains all

spatial derivatives of v. The implementation of this method can be carried out in four stages

namely, transformation of domains, splitting of nonlinear operators, quasi-linearization and

collocation.

The physical region, τ ∈ [0, T ] is converted to the region t ∈ [−1, 1] using the linear

transformation τ = T (t + 1)/2 and η ∈ [a, b] is converted to the region x ∈ [−1, 1] using

the linear transformation for the bivariate spectral quasi-linearization method (BSQLM) for

solutions of nonlinear PDEs of the form

η =
1

2
(b− a)x+

1

2
(b+ a), (2.41)

Equation (2.40) can be written as

∂v

∂t
= H(v,

∂v

∂x
,
∂2v

∂x2
, . . . ,

∂nv

∂xn
), t ∈ [−1, 1], x ∈ [−1, 1] (2.42)

Further following Motsa et al. (2014) the solution procedure can be approximated by
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the bivariate interpolation polynomial of the form

v(x, t) ≈
Nx∑
i=0

Nt∑
j=0

v(xi, tj)Li(x)Lj(t), (2.43)

which interpolates v(x, t) at selected points both the x and t directions defined by

{xi} = {cos(
πi
Nx

)}Nxi=0, {tj} = {cos(
πj
Nt

)}Ntj=0, (2.44)

The Chebyshev-Gauss-Lobatto grid points ensure that there is simple conversion of

continuous derivatives, in both space and time, to discrete derivatives at the grid points.

The functions Li(x) are the characteristic Lagrange cardinal polynomials

Li(x) =
Nx∏

i=0,i6=k

x− xk
xi − xk

, (2.45)

where

Li(xk) = δik, (2.46)

The function Lj(t) is defined in a similar manner. Before linearizing Eq. (2.42), it is

convenient to split H into its linear and nonlinear components and rewrite the governing

equations in the form

F [v, v′, . . . , v(n)] + G[v, v′, . . . , v(n)]− v̇ = 0, (2.47)

where the dot and primes denote the time and space derivatives, respectively, F in the
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linear operator, and G is the nonlinear operator. Assuming that the difference vr+1− vr and

all its derivatives are small, we first approximate the nonlinear operator G using linear terms

of the Taylor series or linearizing by the QLM due to Bellman and Kalaba (1965),

G[v, v′, . . . , v(n)] ≈ G[vr, v
′
r, . . . , v

(n)
r ] +

n∑
k=0

∂G
∂v(k)

(v
(k)
r+1 − v(k)r ), (2.48)

where r and r + 1 denote previous and current iterations, respectively.

Eq. (2.48) can be written as

G[v, v′, . . . , v(n)] ≈ G[vr, v
′
r, . . . , v

(n)
r ] +

n∑
k=0

ψk,r[vr, v
′
r, . . . , v

(n)
r ]v

(k)
r+1 −

n∑
k=0

ψk,r[vr, v
′
r, . . . , v

(n)
r ]v(k)r , (2.49)

where

ψk,r[vr, v
′
r, . . . , v

(n)
r ] =

∂G
∂v(k)

[vr, v
′
r, . . . , v

(n)
r ], (2.50)

Substituting Eq. (2.49) into Eq. (2.47) we have

F [vr+1, v
′
r+1, . . . , v

(n)
r+1] +

n∑
k=0

ψk,rv
(k)
r+1 − v̇r+1 = Rr[vr, v

′
r, . . . , v

(n)
r ], (2.51)

where

Rr[vr, v
′
r, . . . , v

(n)
r ] =

n∑
k=0

ψk,rv
(k)
r − v̇r+1 − G[r, v

′
r, . . . , v

(n)
r ]. (2.52)
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An important step in the implementation of the solution as in Motsa et al. (2014),

is the evaluation of the time derivatives at the grid points tj(j = 0, 1, . . . , Nt) and spatial

derivatives at the grid points xi(i = 0, 1, . . . , Nx). The values of the time derivatives at the

Chebyshev-Gauss-Lobatto points (xi, tj) are computed as

∂v

∂t

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Nt∑
k=0

v(xp, tk)Lp(xi)
dLk(tj)

dt

=
Nt∑
k=0

v(xi, tk)djk =
Nt∑
k=0

djkv(xi, tk), (2.53)

where djk = dLk(tj)/dt is the standard first derivative Chebyshev differentiation matrix

of size (Nt+1)×(Nt+1). The values of the space derivatives at the Chebyshev-Gauss-Lobatto

points (xi, tj)(i = 0, 1, 2, . . . , Nx) are computed as

∂v

∂x

∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Nt∑
k=0

u(xp, tk)Lp(xi)
dLp(xi)

dx
Lk(tj)

=
Nx∑
p=0

v(xp, tj)Djp =
Nx∑
p=0

Djpv(xp, tk), (2.54)

where Dip = dLp(xi)/dx is the standard first derivative Chebyshev differentiation matrix

of size (Nx + 1)× (Nx + 1). Similarly, for the nth order derivative, we have

∂v

∂x
|
∣∣∣∣
x=xi,t=tj

=
Nx∑
p=0

Dipv(xp, tj) = DnV j, (2.55)

i = 0, 1, 2, . . . , Nx, (2.56)

where the vector V j is defined as
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V j = [vj(x0), vj(x1), . . . , vj(xNx)]
T , (2.57)

the superscript T denotes the matrix transpose. Substituting Eq. (2.55) into Eq. (2.51)

we have

F [V r+1,j,V
′
r+1,j, . . . ,V

(n)
r+1,j] +

n∑
k=0

Φk,rV
(k)
r+1,j

−
Nt∑
k=0

djkV r+1,k = Rr[V r,j,V
′
r,j, . . . ,V

(n)
r,j ], (2.58)

for j = 0, 1, 2, . . . , Nt, where V
(n)
r+1,j = DnV r+1,j

Φk,r =


φk,r(x0, tj)

φk,r(x1, tj)
. . .

φk,r(xNx , tj)


(2.59)

The initial condition for Eq. (2.42) corresponds to τNt = −1 and we can express Eq.

(2.58) as

F [V r+1,j,V
′
r+1,j, . . . ,V

(n)
r+1,j] +

n∑
k=0

Φk,rV
(k)
r+1,j

−
Nt−1∑
k=0

djkV r+1,k = Rj (2.60)

where
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Rj = Rr[V r,j,V
′
r,j, . . . ,V

(n)
r,j ] + djNtV Nt , (2.61)

j = 0, 1, 2, . . . , Nt − 1 (2.62)

Motsa et al. (2014) expressed Eq. (2.60) as the Nt(Nx + 1)×Nt(Nx + 1) matrix system


A0,0 A0,1 . . . A0,Nt−1

A1,0 A1,1 . . . A1,Nt−1
...

...
. . .

...

ANt−1,0 ANt−1,1 . . . ANt−1,Nt−1




V0

V1
...

VNt−1


=


R0

R1

...

RNt−1


(2.63)

where

Ai,i = F [I,D, . . . ,D(n)] +
n∑
k=0

Φk,rD
(k) − di,iI, (2.64)

Ai,j = −di,jI,wheni 6= j, (2.65)

and I is the identity matrix of size (Nx+1)×(Nx+1). We use Eq. (2.43) to approximate

the solution u(x, t). The bivariate quasi-linearization method (BQLM) will be implemented

in Chapters 6 and 8

2.9. Strengths and weaknesses of the BSQLM

The accuracy of the BSQLM improves with the increase in the number of collocation points

Nx (Motsa et al., 2014). In the examples given by Motsa et al. (2014) it was shown that

the errors up to the order of 10−14 were obtained using few collocation points in both x and

t directions variables Nt ≤ 10, Nx ≤ 10. The computational time for the BSQLM is small

up to a fraction of a second. The iteration scheme takes about three to four iterations to

converge fully.
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3

Radiation effects on

magnetohydrodynamic Newtonian flow

due to an exponentially stretching sheet

3.1. Introduction

In this chapter we start by examining the literature concerning fluid flow on an exponentially

stretching sheet. In particular we will focus on radiation effects on magnetohydrodynamic

Newtonian flow due to an exponentially stretching sheet. We then investigate the effects of

the magnetic, radiation and viscous dissipation parameters on fluid flow and heat transfer

characteristics of an exponentially stretching sheet. In these cases, the momentum, energy

and mass transfer equations thus obtained are coupled and nonlinear. By using suitable

similarity variables these equations are then converted into coupled ordinary differential

equations. These are then solved both analytically and numerically, by applying the Runge-

Kutta-Fehlberg with shooting method (see sections 1.1.2 & 1.1.7) and Newton-Raphson

scheme to the problem. In this chapter we present the analytical zero order approximate

solution for the momentum equation and the energy equation solution is obtained in terms

of the confluent hyper geometric functions. The accuracy of the solution so obtained is

then estimated by comparing it with that obtained by the successive linearization method

(Kameswaran et al., 2012).
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3.2. Review of literature on fluid flow on exponentially stretching sheet

Laminar flow occurs when fluid flows in parallel layers without disruption. The study of

this type of fluid flow is important as it leads to understanding of flows with disruption

within its layers referred to as turbulent flow. A stretching surface is a region held at one

end and moves as a result of a pull at one end. Laminar boundary layer fluid flow occurs in

many industrial situations, such as glass fibre and paper production; polymer extrusion from

dyes; drawing, tinning and annealing of copper wires, and bath cooling of metallic plates.

Consequently, the study of laminar boundary layer flow over a stretching sheet was studied

as far back as the 1970s, and this interest still continues. Many authors have investigated

the flow of a linear stretching sheet for example Crane (1970), Gupta and Gupta (1977),

Grubka and Bobba (1985), Dutta and Gupta (1987), Siddappa and Abel (1985), Chen and

Char (1988), Laha et al. (1989), Chakrabarti and Gupta (1979), Andersson et al. (1992),

Siddheshwar and Mahabaleswar (2005), Abel and Mahesha (2008), Abel et al. (2009a), and

Abel et al. (2009b) In this chapter we focus on nonlinear systems, in particular exponential

stretching sheet.
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Many practical situations involve a nonlinear stretching sheet. With this in mind it is

often necessary to consider the velocity of the sheet to vary exponentially with the distance

from the extrusion slit. Early studies on exponentially stretching sheets by Magyari and

Keller (1999) showed that fluid flow and heat transfer characteristics derived this way could

be compared with those from well- known literature. The Elbashbeshy (2001) considered a

perforated sheet, and examined the effect of wall mass suction on the fluid flow and heat

transfer over an exponentially stretching surface. The influence of thermal radiation on

the boundary layer flow due to an exponentially stretching sheet was studied by Sajid and

Hayat (2008). Khan (2006) presented an elegant solution of the viscoelastic boundary layer

flow over an exponentially stretching sheet, giving it in terms of Whittaker’s function. The

characteristic of an industrial extrusion product will depend on the rates of stretching and

cooling the sheet. Consequently, to ensure the desired characteristic, external means of

controlling the flow are necessary, as could be done with a magnetic field. Early work in

external control by means of magnetic fields was directed at controlling plasmas (Tonks,

1939). Sanjayanand and Khan (2006) studied the heat and mass transfer in a viscoelastic

boundary layer flow over an exponentially stretching sheet.

In fluid flow, we can consider two types of fluids, Newtonian fluids and Non-Newtonian

fluids. In this chapter we investigate the flow of a Newtonian fluid. Newtonian fluids are

whose viscous stresses are linearly proportional to the local strain rate. Newtonian fluids

have the simplest mathematical models than non-Newtonian fluids. There are no real fluids

that conform to these mathematical models but, however water and air are assumed to be

Newtonian fluids (Bar-Meir, 2009). We describe non-Newtonian fluids in Chapter 4. Studies

on Newtonian fluids include the work of Alim et al. (2006) who studied pressure work effect

in Newtonian fluid, Awad et al. (2011) studied convection from a cone in Newtonian fluid,

Boivin et al. (2000) investigated Navier-Stokes equations on incompressible flows, Chen

(2004) investigated heat and mass transfer in a Newtonian fluid. Gebhart (1962) studied

viscous dissipation on natural convection in a Newtonian fluid.

Magnetohydrodynamics (MHD) is the study of magnetic properties of electrically con-

ducting fluids; these include electrolytes, liquid metals and plasmas. When conductive fluids

flow across a magnetic field, a current is induced polarizing the fluid and in turn change the
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magnetic field itself Radiation is the transmission of energy in the form of waves or particles

through space or through a material medium. As already mentioned, the temperature and

rate of cooling of extrusion product will affect its properties. Analysis has been directed at

thermal radiation magnetohydrodynamics. Until recently, radiation effects on exponentially

stretching sheets had received little attention. However, if polymer extrusion takes place in

a thermally controlled environment, thermal radiation and magnetic field effects will affect

fluid flow characteristics. Studies on thermal radiation and magnetohydrodynamics include

the work of Reddy et al. (2012) who investigated radiation effects on MHD flow past an ex-

ponentially accelerated isothermal vertical plate with uniform mass diffusion in the presence

of heat source. They observed that the velocity of fluid flow decreases with an increase in

the magnetic parameter. This is due to a resistive drag force that tends to resist the fluid

flow, thus reducing the fluid flow velocity. Ishak (2011) studied the MHD boundary layer

flow due to an exponentially stretching sheet with radiation effect. Pavlov (1974) considered

the magnetohydrodynamic flow of an incompressible viscous fluid over a linearly stretching

surface. Sarpakaya (1961) extended Pavlov’s work to non-Newtonian fluids. Most of the

earlier work neglected radiation effects making it necessary to conduct this study. If the

polymer extrusion process is placed in a thermally controlled environment, radiation be-

comes important. Many researchers have considered the effect of thermal radiation on flows

over stretching sheets (see, for instance, Raptis, 1988; Raptis and Perdikis, 1998). Bidin

and Nazar (2009) studied the boundary layer flow over an exponentially stretching sheet

with thermal radiation. Reddy and Reddy (2011) studied the effect of thermal radiation

on magnetohydrodynamic flow due to an exponentially stretching sheet. Elbashbeshy and

Dimian (2002) analyzed boundary layer flow in the presence of radiation and heat transfer

over the wedge with viscous dissipation. Raptis et al. (2004) studied the effect of thermal

radiation on the magnetohydrodynamic flow of a viscous fluid past semi-infinite stationary

plate and Hayat et al. (2007) extended the analysis to a second grade fluid.

Analysis has also been directed to viscous dissipation, which may affect the rate of

cooling. Viscous dissipation is the energy produced by work done between fluid layers.

This heat energy produced affect the fluid temperature and therefore important to consider.

In most studies in fluid flow, viscous mechanical dissipation is neglected. A number of

authors have considered viscous heating effects on Newtonian flows. Zueco (2007) studied
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the dissipation effects on unsteady free convection over vertical porous plate. The influence of

viscous dissipation on a grey absorbing-emitting fluid flowing past moving vertical plate has

been studied by Suneetha et al. (2009). Kameswaran et al. (2012) studied the effect of the

viscous dissipation on magnetohydrodynamic nanofluid flow due to a stretching or shrinking

sheet. With regard to viscous dissipation, we note the work done by Partha et al. (2005)

who studied the effect of viscous dissipation on the mixed convection heat transfer from an

exponentially stretching surface. They observed a rapid growth in the non-dimensional skin

friction coefficient with the mixed convection parameter. In addition to a magnetic field and

thermal radiation, one has to consider the viscous dissipation effects due to frictional heating

between fluid layers. Gebhart (1962) and Gebhart and Mollendorf (1969) investigated the

effect of viscous dissipation in natural convection processes, they observed that the effect of

viscous dissipation is predominant in both vigorous natural convection and mixed convection

processes. Vajravelu and Hadjinicalaou (1993) studied the heat transfer characteristics over

a stretching surface with viscous dissipation in the presence of internal heat generation or

absorption. Abel et al. (2009a) investigated viscous dissipation in a Newtonian fluid; in this

study it was revealed that viscous dissipation increase thermal energy in the fluid.

In brief, this section has shown that firstly, it is necessary to study radiation effects on

magnetohydrodynamic fluid flow over an exponentially stretching sheet, secondly, consid-

ering viscous dissipation on Newtonian fluid requires is required and finally, the use of an

appropriate numerical method to solve the governing differential equations. In this chapter

we investigate the effects of magnetic, radiation, and viscous dissipation parameters on the

fluid flow and heat transfer characteristics of an exponentially stretching sheet. These as-

pects will be considered in the formulation of the problem of fluid flow on an exponentially

stretching sheet.

3.3. Mathematical formulation of fluid flow on an exponentially

stretching sheet

Consider the two dimensional magnetohydrodynamic flow of a Newtonian fluid over a stretch-

ing sheet, as shown in Figure 3.1. The origin of the system is located at the extrusion slit,

from which the sheet is drawn. The x-axis is taken along the continuous stretching surface
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and points in the direction of motion. The y-axis is perpendicular to the sheet. A magnetic

field of strength B is applied perpendicular to the sheet.

0

T
w

  C
w

U
w

y

Extrusion slit

u

v

stretching sheet

x

T  C

fluid velocity profile

T
∞

 C
∞

B(x)

Figure 3.1: Schematic diagram showing the exponentially stretching sheet

The sheet velocity is assumed to vary as an exponential function of the distance from the

slit. The temperature of the fluid (T) and concentration (C) of the solute are also assumed

to be exponential functions of the distance x from the slit. Accordingly under the usual

boundary layer approximation, and subject to radiation and viscous dissipation effects, the

equations governing the momentum, heat and mass transport can be written as

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB(x)2

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρCp

∂qr
∂y

+
σB(x)2

ρCp
u2 +

ν

Cp

(
∂u

∂y

)2

, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (3.4)

where u and v are the velocity components of the velocity of fluid flow in the x and y

directions respectively, ν is the kinematic viscosity, ρ is the fluid density, σ is the electrical
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conductivity of the fluid, T is the temperature of the fluid, C is the solute concentration,

α = k/ρCp is the thermal diffusivity, k is the thermal conductivity, Cp is the specific heat at

constant pressure, qr is the radiative heat flux and D is the soulte diffusivity.

The boundary conditions for equations (3.1) - (3.4) take the form:

At y = 0 : u = Uw = U0e
x
L , v = 0, T = Tw = T∞ + T0e

2x
L , C = Cw = C∞ + C0e

2x
L

As y →∞ : u→ 0, T → T∞, C → C∞ (3.5)

Here the subscripts w, ∞ refer to the stretching surface and free stream conditions respec-

tively, T0 and C0 are positive constants, U0 is the characteristic fluid velocity and L is the

characteristic length of the stretching surface.

To facilitate a similarity solution, the magnetic field B(x) is assumed to be of the form

B(x) = B0e
x
2L , (3.6)

where B0 is a constant. It is also assumed that the fluid is weakly electrically conducting

so that the induced magnetic field is negligible. Following Rosseland’s approximation the

radiative heat flux qr is modeled as

qr = −4σ∗

3k∗
∂T 4

∂y
, (3.7)

where σ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption coefficient.

Assuming that the temperature differences within the fluid flow are sufficiently small such

that T 4 may be expressed as a linear function of temperature, T 4 ≡ 4T 3
∞T − 3T 4

∞, then we

have
∂qr
∂y

= −16σ∗T 3
∞

3k∗
∂T

∂y
. (3.8)

The continuity equation (3.1) is satisfied by introducing a stream function ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.9)
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In order for the governing equations to apply to all similar systems regardless of units,

the following similarity variables are introduced:

u = U0e
x
Lfη(η), v = −

(
νU0

2L

) 1
2

e
x
2L [f(η) + ηfη(η)],

T = T∞ + T0e
2x
L θ(η), C = C∞ + C0e

2x
L φ(η),

η =

(
U0

2νL

) 1
2

ye
x
2L ,


(3.10)

where η is the similarity variable, f(η) is the dimensionless stream function, θ(η) is the

dimensionless temperature and φ(η) is the dimensionless concentration.

On using Eqs. (3.6), (3.8) and (3.10), Eqs. (3.2) - (3.5) transform into the following

two-point boundary value problem:

fηηη + ffηη − 2f 2
η −Mfη = 0, (3.11)(

1 +
4

3
K

)
θηη + Pr

(
fθη − 4fηθ

)
+GbPr

(
Mf 2

η + f 2
ηη

)
= 0, (3.12)

φηη + Sc
(
fφη − 4fηφ

)
= 0, (3.13)

f (0) = 0, fη (0) = 1, fη (∞)→ 0, (3.14)

θ (0) = 1, θ (∞)→ 0, (3.15)

φ (0) = 1, φ (∞)→ 0. (3.16)

The non-dimensional constants appearing in Eqs. (3.11) - (3.13) are the magnetic parameter

M , radiation parameter K, Prandtl number Pr, Gebhart number Gb and Schmidt number

Sc; respectively defined as

M =
2σB2

0L

ρU0

, K =
4σ∗T 3

∞
k∗k

, Pr =
ρνCp
k

,

Gb =
U2
0

CpT0
, Sc =

ν

D
.

We have formulated the governing equations for a fluid flow on an exponentially stretch-

ing sheet and the assumptions under which they apply. We now derive expressions for im-

portant parameters which are the skin friction, heat transfer and mass transfer coefficients.
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3.4. Skin friction, heat and mass transfer coefficients

The parameters of engineering interest in heat and mass transport problems are the skin

friction coefficient Cf , the heat transfer coefficient (local Nusselt number) Nux and the mass

transfer coefficient (local Sherwood number) Shx. These parameters respectively characterize

the stretching surface drag, wall heat and mass transfer rates.

The shear stress at the stretching surface (sometimes referred to as the wall shear stress)

τw is then given by

τw = −µ
[
∂u

∂y

]
y=0

= −µU0

L

√
Re

2
e

3x
2Lf ′′ (0) , (3.17)

where µ is the coefficient of viscosity and Re =
LU0

ν
is the Reynolds number. The skin

friction coefficient is defined as

Cf =
2τw
ρU2

w

(3.18)

and using Eq. (3.17) in Eq. (3.18) we obtain

Cf
√
Rex/2√
x/L

= −f ′′(0). (3.19)

The heat flux at the stretching surface (sometimes referred to as the wall heat flux) is given

by

qw = −k
[
∂T

∂y

]
y=0

=
−k (Tw − T∞)

L

√
Re

2
e
x
2L θ′ (0) , (3.20)

where k is the thermal conductivity of the fluid. The heat transfer coefficient (Nusselt

number) is defined as

Nux =
x

k

qw
Tw − T∞

. (3.21)

Using Eq. (3.20) in Eq. (3.21) the dimensionless wall heat transfer rate is obtained as

Nux√
x/L

√
Rex/2

= −θ′ (0) . (3.22)

The mass flux at the stretching surface (sometimes referred to as the wall mass flux) is given
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by

Jw = −D
[
∂C

∂y

]
y=0

=
−D (Cw − C∞)

L

√
Re

2
e
x
2Lφ′ (0) (3.23)

The Sherwood number is defined as

Shx =
x

D

Jw
Cw − C∞

. (3.24)

Using Eq. (3.23) in Eq. (3.24) the dimensionless wall mass transfer rate is obtained as

Shx√
x/L

√
Rex/2

= −φ′ (0) . (3.25)

In Eqs. (3.19), (3.22) and (3.25) Rex represents the local Reynolds number which is defined

as Rex =
xUw
ν

.

We have calculated the important engineering parameters which are the skin friction,

heat transfer, and mass transfer coefficients. Thus, we are now ready to solve equations

analytically.

3.5. Analytical solutions for the momentum, heat and mass transfer

equations

The momentum boundary layer equation, which was established in Eq. (3.11) is partially

decoupled from the energy and species equations as follows. Integrating Eq. (3.11) once

with respect to η over the interval [0, η], we obtain

fηη + ffη = −s+

∫ η

0

[
3f 2

η +Mfη

]
dη, (3.26)

where s = −fηη(0). Letting η →∞ we obtain

s =

∫ ∞
0

[
3f 2

η +Mfη

]
dη. (3.27)
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Again, integrating Eq. (3.26) once, we obtain

fη +
1

2
f 2
η = 1− sη +

∫ η

0

[∫ η1

0

[
3f 2

η2
+Mfη2

]
dη2

]
dη1. (3.28)

The solution procedure for Eq. (3.28) can be reduced to the sequential solutions of the

Riccati-type equation, of the form

f (n)
η +

1

2
f (n)2 = RHS

[
f (n−1)
η

]
. (3.29)

This iteration procedure proceeds by substituting suitable zero-order approximations, of the

form f
(0)
η (η), in the right hand side of Eq. (3.28). We assume a zero-order approximation as

f (0)
η (η) = e−s0η, (3.30)

which satisfies the condition at infinity. Integrating Eq. (3.30) with respect to η and using

the condition f
(0)
η (0) = 0 we get

f (0)
η (η) =

1− e−s0η

s0
. (3.31)

Using the above solution in Eq. (3.27), the approximate value of s can be obtained as

s0 =

√
3

2
+M, f (0)

ηη (0) = −s0. (3.32)

Now substituting all the derivatives of the zero-order approximation f
(0)
η (η) into the right

hand side of Eq. (3.28), we obtain the first-order iteration f
(1)
η as follows:

f (1)
η +

1

2
f (1)2 = 1 +

3

4s20

[
e−2s0η − 1

]
+
M

s20

[
e−s0η − 1

]
. (3.33)

Further, we assume that the first-order iterate satisfies the boundary conditions on f

as given in Eq. (3.14). The above nonlinear Riccati type equation can be solved in terms of

a confluent hyper geometric Whittaker function, as discussed by Khan (2006). However we

restrict ourselves here to the zero-order solution. A similar restriction will apply to the heat
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and mass transport equations. We have obtained the analytical solution for the momentum

equation, thus we now find the analytical solution for the heat transfer equation.

To find the analytical solution for the heat transfer Eq. (3.12) we use the zero-order

approximations of f and fη given by equation Eq. (3.34). We further need to introduce a

new variable ξ, which represents temperature change across the boundary layer.

ξ = −Pr
s20
e−s0η. (3.34)

Accordingly, Eq. (3.12) and the thermal boundary conditions Eq. (3.15) take the form:

(
1 + 4

3
K
)
ξθξξ +

(
1 + 4

3
K − Pr∗ − ξ

)
θξ + 4θ = −Gb

Pr
s20
(
M + s20

)
ξ, (3.35)

θ(−Pr∗) = 1, θ(0−)→ 0. (3.36)

where Pr∗ = Pr/s20 is the modified Prandtl number. The solution of Eq. (3.35) is assumed

to have the form of

θ(ξ) = θc(ξ) + θp(ξ)

where θc(ξ) is the complementary solution and θp(ξ) is the particular solution. The comple-

mentary solution of Eq. (3.35) is obtained in terms of confluent hyper geometric function in

the following form

θc(ξ) = C0 ξ
α M

[
α− 4, α + 1,

−ξ
1 + 4

3
K

]
, (3.37)

where

M [a, b, z] =
∞∑
r=0

a(a+ 1) . . . (a+ r − 1)

b(b+ 1) . . . (b+ r − 1)

z

r!

is Kummer’s function ( Abramowitz and Stegun, 1972) and

α =
Pr∗

1 + 4
3
K
.

The particular solution is obtained as

θp(ξ) = a0ξ
2 + a1ξ

3 + a2ξ
4, (3.38)
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where

a0 = −
(
Gb

Pr∗

)
M + s20

4
(
1 + 4

3
K
)
− 2Pr∗

,

a1 =
−2a0

9
(
1 + 4

3
K
)
− 3Pr∗

,

a2 =
−a1

16
(
1 + 4

3
K
)
− 4Pr∗

.

Now, the complete solution can be written as

θ(ξ) = θc(ξ) + θp(ξ). (3.39)

Making use of the boundary conditions Eq. (3.36) and rewriting the solution in terms of the

variable η, we get

θ(η) = C1

e−s0ηα M
[
α− 4, α + 1, −αe−s0η

]
M [α− 4, α + 1, −α]

+ a0Pr
∗2e−2s0η − a1Pr∗3e−3s0η + a2Pr

∗4e−4s0η,

(3.40)

where

C1 = 1− a0Pr∗2 + a1Pr
∗3 − a2Pr∗4.

We have found the analytical solution for the heat transfer equation; we therefore pro-

ceed to find the analytical solution for the mass transfer equation.

We now find the analytical solution for the mass transfer Eq. (3.13) and again intro-

ducing a new variable ζ for convenience, which represents concentration change across the

boundary layer, given by

ζ = −Sc
s20
e−s0η, (3.41)

Eq. (3.13) and the thermal boundary conditions in Eq. (3.16) take the form:

ζφζζ + (1− Sc∗ − ζ)φζ + 4φ = 0, (3.42)

φ(−Sc∗) = 1, φ(0−)→ 0. (3.43)
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where Sc∗ = Sc/s20 is the modified Schmidt number. Following the solution procedure

discussed in the case of energy equation, the solution of Eq. (3.42) is obtained in terms of

confluent hyper geometric function as

φ(η) =
e−s0Sc

∗η M
[
Sc∗ − 4, Sc∗ + 1, −Sc∗e−s0η

]
M [Sc∗ − 4, Sc∗ + 1, −Sc∗]

(3.44)

3.6. Numerical solution procedure

The set of non-linear differential Eqs. (3.11) - (3.13) subject to the boundary conditions Eqs.

(3.14) - (3.16) were solved numerically using the efficient Runge-Kutta-Fehlberg method

with a shooting technique as described in Pal and Shivakumara (2006). The critical step

in this method is choosing an appropriate finite value of η → ∞. Consequently, in order

to determine η → ∞ for the boundary value problem described by Eqs. (3.11) - (3.13),

we start with initial estimated values for a particular set of physical parameters, so as to

obtain f ′′(0), θ′(0) and φ′(0). The solution procedure is repeated with another large value

of η → ∞ until for each f ′′(0), θ′(0) and φ′(0), pairs of successive values of skin friction,

heat transfer and mass transfer coefficients differ by a specified significant digit. The value

of η may change for a different set of physical parameters. Once the appropriate value of η

is determined, the coupled boundary value problem given by Eqs. (3.11) - (3.13) is solved

numerically, using the method of superposition. By this method the third-order nonlinear

equation Eq. (3.11), second order equations Eqs. (3.12) and (3.13) have been reduced to

seven ordinary differential equations as follows:

f ′1 = f2, f ′2 = f3

f ′3 = 2f 2
2 +Mf2 − f1f3

f ′4 = f5

f ′5 = − Pr(
1 + 4

3
K
) [f1f5 − 4f2f4 +Gb(Mf 2

2 + f 2
3 )
]

f ′6 = f7

f ′7 = Sc (4f2f6 − f1f7) (3.45)
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where

f1 = f, f2 = f ′, f3 = f ′′, f4 = θ, f5 = θ′, f6 = φ, f7 = φ′, (3.46)

and a prime denote differentiation with respect to η. The boundary conditions now become

f1 = 0, f2 = 1, f3 = s1, f4 = 1, f5 = s2, f6 = 1,

f7 = s3, at η → 0 (3.47)

f2 = 0, f4 = 0, f6 = 0, as η →∞, (3.48)

where s1, s2 and s3 are determined such that f2(∞) = 0, f4(∞) = 0 and f6(∞) = 0.

Thus, to solve this system of equations we require six initial conditions. However, we have

only three initial conditions for f and two initial conditions for θ and φ. Consequently the

conditions f ′′(0), θ′(0), φ′(0) are to be determined by the shooting method, using the initial

guess values s1, s2 and s3 until the conditions f2(∞) = 0, f3(∞) = 0 and f5(∞) = 0 are

satisfied. In this chapter, we employed the shooting technique with Runge-Kutta-Fehlberg

scheme to determine two more unknowns in order to convert the boundary value problem

to an initial value problem. Once all the six initial conditions were determined the resulting

differential equations were integrated, using an initial value solver. For this purpose, the

fifth-order Runge-Kutta-Fehlberg integration scheme was used.

3.7. Results and discussion

In the previous sections MHD fluid flow over an exponentially stretching sheet has been

modelled and analytical and numerical solutions were thus obtained for the effects of radia-

tion and viscous dissipation. Similarity transformations were applied to the governing partial

differential equations of fluid flow, heat and mass transfer thereby a system of nonlinear ordi-

nary differential equations. From this system, the zero-order approximate analytical solution

for the dimensionless stream function f has been obtained. Solutions of the heat transfer

and mass transfer equations were obtained in terms of confluent hyper geometric functions.

The numerical solution was then obtained by the Runge-Kutta-Fehlberg integration scheme

with the shooting method and the Newton-Raphson schemes. Finally, the accuracy of the

numerical method could be established by comparing the analytical solution with the numer-
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ical solution. To this end, this chapter shows the results for the two methods. In comparing

these methods we adopt well known fluid flow parameters for Newtonian fluids. In particular

we use the values of the Prandtl number, Pr = 1 − 7 for a variety of Newtonian fluids at

20oC, similarly we use a range of acceptable values of the magnetic parameter, M = 1, the

radiation parameter, K = 0.5 and the Gebhart number, GB = 0.2 as in Shateyi and Marewo

(2014).

The results are presented in two categories. Firstly, Tables 3.1 - 3.3 show the skin fric-

tion, and the heat and mass transfer coefficients obtained both analytically and numerically,

or compared with previously published results. The tables and their discussions are followed

by Figures 3.2 - 3.6 which show the effects of magnetic, radiation and viscous dissipation

parameters on the velocity f ′(η), temperature, θ(η) and concentration, φ(η) profiles. η is

the similarity space variable.

Table 3.1: A comparison of skin friction coefficient obtained by analytical method with the
one by Runge-Kutta method for different values of M

M
−f ′′(0)

Analytical Numerical
0 1.22474 1.281809
1 1.58114 1.629178
2 1.87083 1.912620
3 2.12132 2.158736
5 2.54951 2.581130
10 3.39116 3.41529

Table 3.1 provides values of the skin friction coefficient −f ′′(0) for different values of

the magnetic parameter M . From the data in Table 3.1 it can be seen that Increasing values

of M results in the increase in the values of the skin friction coefficient. This means that

increasing the strength of the magnetic field will result in considerable opposition to, or drag

on, the fluid flow. This occurs because the increased magnetic field results in a Lorenz drag,

which in turn increases the value of the skin friction coefficient. In practical terms this means

that one could reduce the fluid flow rate by increasing the strength of the magnetic field,

which could be useful solution to controlling the final properties of the extrusion properties.
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Table 3.2: Comparison of the heat transfer coefficient obtained by Runge-Kutta method
with one obtained by analytical method for different values of M, Gb and K for
a fixed values of Pr = 7

M K Gb
−θ′(0)

Analytical Numerical
0

0.5 0.2

3.82684 3.822508
1 3.48576 3.483155
2 3.19181 3.191131
3 2.92781 2.928577

1

0

0.2

4.56379 4.556219
0.5 3.48576 3.483155
1 2.90556 2.905805
2 2.25649 2.260503
3 1.88314 1.889815

1 0.5

0 3.94905 3.946604
0.1 3.71740 3.714879
0.2 3.48576 3.483155
0.5 2.79082 2.787982
1 1.63260 1.629360

Table 3.2 shows the effect of the magnetic field M , radiation K, and viscous dissipation

Gb, on the dimensionless heat transfer coefficient −θ′(0). It is evident from the data in the

table that increasing the values of all three parameters will reduce value of the heat transfer

coefficient. This means that increasing the strength of the magnetic field, exposing the fluid

flow regime to thermal radiation and considering the thermal energy produced by frictional

heating due to fluid flow, will result in the reduction of the heat transfer coefficient. This

occurs because the magnetic field reduce fluid flow rate causing a slow heat transfer from

the wall to the fluid. Increasing both thermal radiation and viscous dissipation increase the

temperature of the fluid, this also reduces heat transfer from the wall to the fluid. Practically

controlling the heat transfer on the stretching sheet on its fluid interface can be achieved by

increasing the magnetic field strength and increasing the temperature of the fluid.

In Table 3.3 data shows the effect of different values of the magnetic parameter M and

the Schmidt number Sc on the mass transfer coefficient −φ′(0). It can be seen that increasing

the magnetic parameter M , results in the decrease of the mass transfer coefficient whereas
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Table 3.3: Comparison of the mass transfer coefficient obtained by Runge-Kutta method
with one obtained by analytical method for different values of M, Sc

M Sc
−φ′(0)

Analytical Numerical
0

1
1.79791 1.805684

1 1.69115 1.699309
2 1.60312 1.611410
3 1.52781 1.535984

1

1 1.69115 1.699309
2 2.58672 2.589044
5 4.34813 4.344825
10 6.32456 6.318568

the opposite trend is observed for the Schmidt number. This occurs because increasing the

magnetic field reduces the fluid flow rate; this in turn does not facilitate species transfer,

thereby reducing the mass transfer coefficient. The significance of this result is that if

controlling of species transfer is required a magnetic field can be used. This result also

reveals that species transfer can be controlled by the change in the kinematic viscosity of the

fluid. The Schmidt number is the ratio of the kinematic viscosity and the solute diffusivity.

In all three tables (3.1 to 3.3), we note that the results confirm a good agreement

between the analytical and the numerical results. This validates using the Runge-Kutta-

Fehlberg integration scheme with shooting method.

Table 3.4: Comparison of the skin friction coefficient for different values of M for fixed
values of Pr = Sc = K = Gb = 0

M
−f ′′(0)

Reddy and Reddy (2011) Runge-Kutta
0 1.28213 1.28181
1 1.62918 1.62918
2 - 1.91262
3 - 2.15874
4 - 2.37937

The skin friction coefficients −f ′′(0) are shown in Table 3.4 for different values of mag-
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netic parameter (M) in the absence of the other physical parameters (i.e., Pr = Sc = K =

Gb = 0). We observe that the skin friction coefficient increases with an increase in magnetic

parameter. In particular, it is noteworthy that the value of the skin-friction coefficient, in

the non-magnetic (M = 0) and magnetic (M = 1) cases, are in good agreement with the

results by Reddy and Reddy (2011).

The five analyses of the effect of the magnetic parameter M on velocity and temperature

profiles, and the effect of the radiation parameter K and Gebhart number Gb on temperature

profiles is shown next in Figures 3.2-3.6.

Figure 3.2: Effect of magnetic parameter (M) on velocity profiles f ′(η) for Pr = 7, Gb =
0.2, K = 0.5, Sc = 1

The variation of the magnetic parameter M on velocity profiles is shown in Figure 3.2.

We notice that increasing the value of the magnetic parameter will reduce the velocity of

the fluid in the boundary layer region. This is due to an increase in the Lorentz force which

acts on the flow regime. The Lorenz force is against motion, so it is responsible for slowing

down the motion of the fluid in the boundary layer region. Once again, we note that these

results are similar to those obtained by Reddy and Reddy (2011).

The variation of the temperature distribution with the magnetic parameter is shown in

Figure 3.3. It can be seen that the thermal boundary layer thickness increases with increasing

values of the magnetic parameter M . This effect can be explained by the opposing force
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Figure 3.3: Effect of M on temperature profiles θ(η) for Pr = 7, Gb = 0.2, K = 0.5, Sc = 1

introduced in Eq. (3.12) in the form of the Lorentz drag, which contributes to increased

frictional heating between the fluid layers, and hence energy is released in the form of heat.

This results in thickening of the thermal boundary layer.

Figure 3.4: Effect ofM on concentration profiles φ(η) for Pr = 7, Gb = 0.2, K = 0.5, Sc = 1

The effect of magnetic parameter M on the concentration profile φ(η) is shown in Figure

3.4. It is observed that increasing the values of M results in the thickening of the species

boundary layer. It has been observed that in Figure 3.3 that increasing the magnetic param-
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eter results in the increase in the temperature profiles, this causes increased temperature in

the boundary layer. In turn, the effect causes motion across the boundary layer causing the

movement of species.

Figure 3.5: Effect of radiation parameter on temperature profiles θ(η) for Gb = 0.2,M =
1, P r = 7, Sc = 1

The influence of the thermal radiation parameter K on the temperature profile θ(η) is

shown in Fig. 3.5. It is clear that increased thermal radiation enhances the temperature in

the boundary layer region. Thus radiation parameter K defines the relative contribution of

conduction heat transfer to thermal radiation transfer. Thus radiation should be kept at its

minimum in order to facilitate better cooling environment.

The effect of the Gebhart number Gb on the temperature profile θ(η) is shown in Figure

3.6. It is clear that the temperature in the boundary layer region (in other words) increases

with an increase in the viscous dissipation parameter.

For all figures 3.2 - 3.6, we note that because the energy equation Eq. (3.12) is partially

decoupled from the momentum and species conservation equations, the parameters affecting

the energy equation, namely, the Prandtl number, radiation parameter and the Gebhart

number, do not alter the velocity and concentration profiles. In all five figures, we also observe

good agreement between the analytical and numerical solutions, particularly in Figures 3.2 -

3.6. Thus we can be confident that analytical and numerical results showed good agreement.
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Figure 3.6: Effect of viscous dissipation on temperature profile θ(η) for Pr = 7,M =
1, K = 0.5, Sc = 1

This means that the Runge-Kutta-Fehlberg integration scheme is accurate.

We also found that the effect of increasing the magnetic parameter is to reduce the

velocity of the fluid in the boundary layer, while the magnetic parameter increasing it results

in reducing heat transfer rates. These findings show a trend similar to that of Shateyi (2014)

but the results appear to be new findings, unreported until now. Under some limiting

conditions Pr, Sc,K;Gb are zero, the current results agree well with those available in the

literature.

3.8. Summary

In this chapter the problem of radiation effects on magnetohydrodynamic Newtonian fluid

flow due to an exponentially stretching sheet was considered. The results on the effect of

various physical parameters were as follows; increasing the magnetic parameter supressed

velocity profiles while it increased both temperature and concentration profiles. Increasing

the radiation parameter increased temperature profiles. Increasing the Gebhart number

increased temperature profiles.

The consideration of magnetohydrodynamic fluid flow due to an exponentially stretching

sheet was fairly new in this area. The calculation of the analytical solutions in this problem
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is a new contribution to the study of fluid flow under these conditions. These analytical

solutions can be used as basic solutions in the extensions of this problem.

In this chapter the Runge-Kutta-Fehlberg method together with the shooting technique

was used to find numerical solutions of the fluid flow equations arising in an exponentially

stretching sheet problem. The exact solutions were found in terms of hyper geometric func-

tions and a comparison of the analytical solution and numerical results show the accuracy of

the Runge-Kutta-Fehlberg method. More accurate numerical solutions were observed in the

energy equation of the problem than in the momentum equation. The numerical solution

of the problem was compared to those available in the literature and was found to be in

excellent agreement.
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4

Natural convection from a cone

embedded in viscoelastic fluid in porous

medium with viscous dissipation

4.1. Introduction

In this chapter we examine fluid flow from a heated cone embedded in viscoelastic fluid. We

focus on the effects of natural convection, viscoelasticity, and fluid flow and heat transfer

characteristics in porous medium. In this study the momentum and energy equations are

coupled and nonlinear. The equations are solved numerically using the successive lineariza-

tion method. The accuracy of the solution is determined by comparing it to previously

published results in the literature.

4.2. Review of literature on fluid flow from a cone in viscoelastic fluid

In this chapter we study the flow of a viscoelastic fluid, other studies include those of Cortell

(2006a) who investigated flow and heat transfer of a viscoelastic fluid over a stretching sheet

and Abbas et al. (2008) who considered unsteady viscoelastic fluid flow. In addition, fluid

flow has been studied for other geometrical shapes, such as cylinders, wedges, vertical walls,

and parallel plates. Among these we note the study on a horizontal cylinder Anwar et al.

(2008); wedge by Hsiao (2011); Hsiao (2012) studied vertical stretching walls; Damseh et al.

(2008) and Hayat et al. (2008) studied vertical surface; Jha and Ajibade (2012) studied fluid

flow between parallel plates.
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In this chapter we consider fluid flow around a heated cone embedded in a viscoelastic

fluid. Under these conditions a buoyant driven fluid flow is induced in the vicinity of the

cone. This situation arises in the design of automatic cooking machinery and in automotive

designs in which silicone is sometimes applied to different parts that are normally exposed

to heat. Other studies on cone geometry include those of Alim et al. (2006), who studied

pressure work effect from a cone in a Newtonian fluid, Awad et al. (2011) investigated

effects of cross diffusion from a downward pointing cone in a Newtonian fluid, Cheng (2011a)

studied Soret and Dufour effects of flow past a cone in a Newtonian fluid, Cheng (2011b)

studied a permeable cone in a micropolar fluid, Ece (2005) investigated natural convection

in a Newtonian fluid, and Kairi and Murthy (2011) considered flow past a cone in a non-

Newtonian fluid in porous medium.
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The study of Newtonian fluids has been discussed in Chapter 3. In this chapter we

discuss the study of non-Newtonian fluids. Non-Newtonian fluids differ from Newtonian

fluids in viscosity, which is defined in terms of shear or tensile stresses; it is the fluid’s

ability to resist gradual deformation. The relationship between shear rate and shear stress

can be time dependent (Bar-Meir, 2009). Some non-Newtonian fluids are exhibit plastic or

elastic behavior, examples include paint, ketchup, soup, blood and toothpaste. The studies

on non-Newtonian fluid were carried out by among others Abel et al. (2001) who studied

viscoelastic fluids, Chamkha and Rashad (2012) investigated flow of nanofluid, Ramachandra

et al. (2013) studied Casson fluid flow, Datta (1964) investigated flow of Reiner-Rivlin fluid

and Dinarvand et al. (2014) studied micropolar fluid flow.

Natural or free convection fluid flow occurs when there are density differences in differ-

ent regions created by temperature differences. Fluid molecules close to the heated surface

expand and become less dense and rise, colder molecules then move to the heated surface

thereby inducing motion. Natural convection fluid flow has practical application such as

thermal insulation, extraction of petroleum resources and the so called ”fracking”, metal

processing, performance of lubricants, application of paints and extrusion of plastic sheets.

The study of natural convection in non-Newtonian fluids has been studied by, among others

Hsiao (2011) who studied mixed convection (fluid flow driven by both natural and forced

convection) for viscoelastic fluid past a porous wedge, Kasim et al. (2011) investigated free

convection boundary layer fluid flow of a viscoelastic fluid in the presence of heat generation,

Massoudi et al. (2008) studied natural convection fluid flow of generalized non-Newtonian

fluid between two vertical walls. Olajuwon (2011) studied the free convection heat and

mass transfer in a magnetohydrodynamic fluid flow of a non-Newtonian fluid in the pres-

ence of thermal radiation and thermal diffusion, wherein it was shown that increasing the

non-Newtonian parameter causes reduction in the rate of the fluid flow and mass transfer,

although heat transfer increased. Sajid et al. (2010) investigated fully developed mixed

convection flow of a viscoelastic fluid between permeable parallel vertical plates.

Viscoelastic fluids may be classified as non-Newtonian fluids. These fluids have both

viscous and elastic properties. Properties of Newtonian and non-Newtonian fluids have been

described in the previous chapter (see section 3.1). Examples of viscoelastic fluids include
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toothpaste, custard, earth’s mantle and jelly. In some studies, the authors have assumed

that fluids are more viscous than elastic, so they neglect the fluid’s elastic properties in

the energy equation or in the viscous dissipation term (for example, Abel., 2008). In other

studies which considered the same assumption include the works of Cortell (2011) power-

law fluid; Kameswaran et al. (2012) micropolar fluid; Andersson (1992) viscoelastic fluid;

Lawrence and Rao (1995) viscoelastic fluid; Abel et al. (2001) viscoelastic fluid; Siddheshwar

and Mahabaleswar (2005) viscoelastic fluid. In this work we consider the elastic properties

of the viscoelastic fluid. This will be shown in the momentum and energy equations of the

governing equations.

Viscous dissipation effects are also considered in this chapter. As discussed earlier in

the previous chapter, viscous dissipation is the energy produced by work done between fluid

layers. Further to the studies mentioned in the previous chapter on viscous dissipation,

other studies include those of Jha and Ajibade (2012) who investigated the effects of viscous

dissipation on natural convection flow between parallel plates with time periodic boundary

conditions. Chen (2010) studied fluid flow in viscoelastic fluid with energy dissipation; Hsiao

(2012) investigated viscoelastic fluid flow with viscous dissipation.

A porous medium is a material containing pores; these pores are often filled with a

fluid or gas. A porous medium is characterized by its permeability. The ability of a fluid

to flow in a porous medium is enhanced by the medium’s permeability. The flow through a

porous medium is described by Darcy’s law, which states that the fluid flow rate is directly

proportional to the pressure gradient. If the flow is laminar with Reynolds number less than

unity or ten, then Darcy’s law applies. If the Reynolds number exceeds ten, Darcy’s law

still apply. When inertial effects start to be in effect when Reynolds number (Re > 100),

then the fluid flow in porous medium becomes non-Darcy. Studies have been done in porous

media by among others Awad et al. (2011), Butt (2012), Cheng (2011a), Kairi and Murthy

(2011) and Singh and Agarwal (2012) who studied heat transfer in a non-Newtonian fluid

over an exponentially stretching sheet through porous medium with thermal radiation and

elastic deformation under the effect of magnetic field.

As can be seen from the literature cited above, it appears that no analysis has yet

been published concerning natural convection from a cone embedded in viscoelastic fluid
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in porous medium with viscous dissipation, under the given boundary conditions. These

boundary conditions consider the linear surface temperature and no-slip conditions on the

surface of the cone. The free stream conditions are considered to be at a lower temperature

than at the surface of the cone. The model used in this chapter was based on the work put

forward by Ece (2005) in the study of heat and mass transfer in a Newtonian fluid. We

extend the model to take into account the fluid flow from a cone in a viscoelastic fluid in a

porous medium, and furthermore viscous dissipation.

In brief this section has shown that firstly, it is necessary to study natural convection

from a cone, secondly, considering viscous dissipation in non-Newtonian fluid is required

and finally the use of the successive linearization method to obtain a numerical solution of

the problem. In this chapter we investigate the effects of varying the Prandtl number, Eck-

ert number, permeability and viscoelastic parameters on velocity and temperature profiles.

These aspects will be considered in the formulation of the problem of fluid flow on natural

convection from a cone in viscoelastic fluid.

4.3. Mathematical formulation of fluid flow from a cone in viscoelastic

fluid

We consider the two dimensional downward pointing solid cone embedded in a viscoelastic

fluid filled in a porous medium as shown in Figure 4.1. The origin of the system is located

at the cone vertex. The vertex angle of the cone is 2θ∗. The x axis is taken along the surface

of the cone and y axis is perpendicular to the x axis from the origin.
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Figure 4.1: Schematic diagram of a cone in viscoelastic fluid

The temperature at the surface of the cone is Tw(> T∞) is assumed to vary linearly as

a function of the distance from the origin. The free stream conditions are maintained at T∞,

the fluid has a constant viscosity ν. . The velocity components u and v are in the directions

of x and y respectively. Accordingly under the usual boundary layer approximation, and

subject to viscous dissipation effects, the governing equations of the momentum and energy

equations are given by (see Ece, 2005)

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− ν

K
u− ko

(
u
∂3u

∂x∂y2
+ v

∂3u

∂y3
+
∂u

∂x

∂2u

∂y2
− ∂2u

∂x∂y

∂u

∂y

)
+gβT (T − T∞) cos θ∗, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+
k0
ρCp

(
u
∂2u

∂x∂y

∂u

∂y
+ v

∂2u

∂y2
∂u

∂y

)
, (4.3)

where r = x sin θ∗, g is the acceleration due to gravity, ν is the kinematic viscosity for

the fluid, ko is the non-Newtonian parameter of the viscoelastic fluid, βT is the coefficient of

thermal expansion, α is the thermal diffusivity, Cp is the specific heat capacity for the fluid,

ρ is the density of the fluid and K is the permeability coefficient of the porous medium. The
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boundary conditions are given as

at y = 0, u = v = 0, T = Tw(x) = T∞ + A0

(
x

L

)
(4.4)

as y →∞, ∂u
∂y
, u→ 0, T → T∞. (4.5)

where A0 > 0 is a constant and L > 0 is the characteristic length of the cone surface and

the subscripts w and ∞ refers to the cone surface and free stream conditions respectively.

We introduce the non-dimensional variables

X =
x

L
, Y =

Gr
1
4y

L
, R∗ =

r

L
, (4.6)

U =
u

U0

, V =
Gr

1
4v

U0

(4.7)

T =
T − T∞
Tw − T∞

, Gr =

(
U0L

ν

)2

. (4.8)

where U0 = [gβ cosφL(Tw − T∞)]
1
2 . Using Eqs. (5.7) - (4.8) in Eqs. (4.1)-(4.3) gives the

following equations

∂

∂X
(R∗U) +

∂

∂Y
(R∗V ) = 0, (4.9)

U
∂U

∂X
+ V

∂U

∂Y
=
∂2U

∂Y 2
− Λ

(
U

∂3U

∂X∂Y 2
+ V

∂3U

∂Y 3
+
∂U

∂X

∂2U

∂Y 2
− ∂2U

∂X∂Y

∂U

∂Y

)
+T − νU

K
, (4.10)

U
∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
+ Ec(

∂U

∂Y
)2 + ΛEc

(
U

∂2U

∂X∂Y

∂U

∂Y
+ V

∂2U

∂Y 2

∂U

∂Y

)
. (4.11)

where, R∗ = X sin θ∗, Λ = (k0U0/νL) is the viscoelastic parameter known as the Deborah

number, Gr is the Grashof number and Pr = ν/α is the Prandtl number, Ec = (U2
0/CpA)

is the Eckert number. The corresponding boundary conditions are given as

U = V = 0, T = X at Y = 0, (4.12)

∂U

∂Y
, U → 0, T → 0 as Y →∞. (4.13)
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We now introduce the stream function ψ = XR∗f(Y ) and T = Xθ(Y ) defined by

U =
1

R∗
∂ψ

∂Y
, V = − 1

R∗
∂ψ

∂X
. (4.14)

Substituting Eqs. (4.14) and the similarity variables in Eqs. (4.9)-(4.11) gives the following

ordinary differential equations

f ′′′ + 2ff ′′ − (f ′)2 + θ − γf ′ − Λ(2f ′f ′′′ − 2ff iv − (f ′′)2) = 0, (4.15)

θ′′ + Pr(2fθ′ − f ′θ) + PrEcf ′′2 + ΛPrEc(f ′f ′′2 − ff ′′f ′′′) = 0. (4.16)

With boundary conditions,

f(0) = f ′(0) = 0, θ(0) = 1, (4.17)

f ′(∞)→ 0, f ′′(∞)→ 0, θ(∞)→ 0. (4.18)

We have formulated the momentum and energy equations for the problem of natural

convection from a cone in viscoelastic fluid. We therefore now derive the important fluid

parameters which are the skin friction and the heat transfer coefficients.

4.4. Skin friction and heat transfer coefficients

It is of interest to discuss the skin friction and heat transfer coefficients in this context. The

shear stress at the surface of the cone is defined as (see Olajuwon, 2011)

τw = µ

[
∂u

∂y

]
y=0

+ k0

[
u
∂2u

∂x∂y
− 2

∂u

∂x

∂u

∂y

]
y=0

. (4.19)

where µ is the coefficient of viscosity. The skin friction defined as
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Cf =
τw

1
2
ρU2

0

, (4.20)

Cf =
2X

Gr
1
4

f ′′(0)(1 + 3Λf ′(0)). (4.21)

The skin friction coefficient can be expressed as

CfGr
1
4

2X
= f ′′(0). (4.22)

The heat transfer rate at the surface of the cone is given by

qw = − k

X

[
∂T

∂y

]
y=0

. (4.23)

The Nusselt number can be expressed as

Nu =
Lqw

k(Tw − T∞)
. (4.24)

Using the non-dimensional variables Eqs. (4.17) - (4.18), the dimensionless wall heat

transfer rate is given by

NuGr−
1
4 = −θ′(0). (4.25)

We have derived the important parameters, the skin friction and the heat transfer

coefficients, thus we now solve the governing equations numerically.

4.5. Numerical solution procedure

In this study, Eqs. (4.15) - (4.18) were solved using the successive linearization method.

The inclusion of the non-Newtonian term brings about the fourth order ordinary differential

equation for the momentum equation. The given boundary conditions are thus insufficient to
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obtain a unique solution. To overcome this problem the system is decomposed into the zeroth,

first and second order systems of the viscoelastic parameter. This type of decomposition only

applied in the perturbation method in which its theory leads to an expression for the required

solution in terms of a formal power series in some ”small” parameter Abel et al. (2008). In

this context the ”small” parameter is the viscoelastic parameter. The method restricts this

parameter to be small when in fact the actual values of the viscoelastic parameter do not

necessarily need to be small. Anwar et al. (2008) also confirmed the same observation in

which the system of differential equations was simultaneously solved and only required small

values of the viscoelastic parameter.

To this effect we apply the successive linearization method to the systems of the dif-

ferential equations formed, which does not require small parameters as discussed in section

1.1.5. The successive linearization method (SLM) has been found to be suitable for systems

of differential equations. To elaborate, to solve the equations we seek the series solution as

in Abel et al. (2008) in the form;

f(y) = f0(y) + Λf1(y) + Λ2f2(y) + . . . (4.26)

θ(y) = θ0(y) + Λθ1(y) + Λ2θ2(y) + . . . (4.27)

The skin friction coefficient can be computed using

f ′′(0) = f ′′0 (0) + Λf ′′1 (0) + Λ2f ′′2 (0) + . . . (4.28)

Then substituting Eqs. (4.26)-(4.27) into the system Eqs. (4.15)-(4.18). We then

take the zeroth, first and second order of the viscoelastic parameter Λ. We obtain the

following systems of differential equations. The zeroth order system is obtained by comparing

coefficients of Λ0;
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f ′′′0 + 2f0f
′′
0 − f ′20 + θ0 − γf ′0 = 0, (4.29)

θ′′ + 2Prf0θ
′
0 − Prf ′0θ0 + PrEcf ′′20 = 0, (4.30)

f0(0) = 0, f ′0(0) = 0, θ0(0) = 1, (4.31)

f ′0(∞) = 0, θ0(∞) = 0. (4.32)

The first order system is obtained by comparing coefficients of Λ

f ′′′1 + (2f0)f
′′
1 − (2f ′0 + γ)f ′1 + (2f ′′0 )f1 + θ1 = 2f ′0f

′′′
0 − 2f0f

iv
0 − f ′′20 , (4.33)

θ′′1 + (2Prf0)θ
′
1 − (Prf ′0)θ1 + (2PrEcf ′′0 )f ′′0 − (Prθ0)f

′
1 + (2Prθ′0)f1 = 0 (4.34)

f1(0) = 0, f ′1(0) = 0, f ′1(∞) = 0, (4.35)

θ1(0) = 0, θ1(∞) = 0. (4.36)

The second order system is obtained by comparing the coefficients of Λ2

f ′′′2 + (2f0)f
′′
2 − (2f0)f

′
2 + (2f ′′0 )f2 + θ2 = γf ′2 − 2f1f

′′
1 + f ′21 , (4.37)

θ′′2 + (2Prf0)θ
′
2 − (2Prf ′0)θ2 − (Prθ0)f2 − (2Prθ′0)f2 = Prf ′1θ1 − 2Prf1θ

′
1 (4.38)

f2(0) = 0, f ′2(0) = 0, f ′2(∞) = 0 (4.39)

θ2(0) = 0, θ2(∞) = 0. (4.40)

The functions in the system Eqs. (4.29) - (??) may be expanded in series form as

f0(y) = f0i(y) +
i−1∑
m=0

f0m(y), (4.41)

θ0(y) = θ0i(y) +
i−1∑
m=0

θ0m(y). (4.42)

where f0i and θ0i (i = 1, 2, 3...) are unknown functions and f0m and θ0m are approxima-
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tions that are found by successively solving the linear part of equations that are obtained

after substituting Eqs. (4.41) - (4.42) into system Eqs. (4.29) - (4.40). These linear equations

have the form

f ′′′0i + a01,i−1f
′′
0i + a02,i−1f

′
0i + a03,i−1f0i + a04,i−1θ0i = r01,i−1, (4.43)

θ′′0i + b01,i−1θ
′
0i + b02,i−1θ0i + b03,i−1f

′′
0i + b04,i−1f

′
0i + b05,i−1f0i = r02,i−1. (4.44)

f0i(0) = 0, f ′0i(0) = 0, θ0i(0) = 0, (4.45)

f ′0i(∞) = 0, θ0i(∞) = 0, f ′′0i(∞) = 0. (4.46)

The zeroth system was solved using the successive linearization method to obtain the

solutions for f0 and θ0. The first and second order systems (4.33)-(4.36) and (4.37)-(4.40)

respectively become linear. The solutions for f1, θ1 and f2, θ2 are easily obtained as follows;

f ′′′1 + a1f
′′
1 + a2f

′
1i + a3f1 + a4θ1 = r1, (4.47)

θ′′1 + b1θ
′
1 + b2θ1 + b3f

′′
1 + b4f

′
1 + b5f1 = r2. (4.48)

f1(0) = 0, f ′1(0) = 0, θ1(0) = 0, (4.49)

f ′1(∞) = 0, θ1(∞) = 0, f ′′1 (∞) = 0. (4.50)

f ′′′2 + a1f
′′
2 + a2f

′
2 + a3f2 + a4θ2 = r21, (4.51)

θ′′2 + b21θ
′
2 + b22θ2 + b23f

′′
2 + b24f

′
2 + b25f2 = r22. (4.52)

f2i(0) = 0, f ′2i(0) = 0, θ2i(0) = 0, (4.53)

f ′2i(∞) = 0, θ2i(∞) = 0, f ′′2i(∞) = 0. (4.54)
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The coefficients ak,i−1, bk,i−1, (k = 1, 2), r1,i−1andr2,i−1 are defined as

a01,i−1 = a11,i−1 = a21,i−1 = 2
i−1∑
m=0

f0m, a02,i−1 = a12,i−1 = a22,i−1 = −(2
i−1∑
m=0

f ′0m + γ),

a03,i−1 = a13,i−1 = a23,i−1 = 2
i−1∑
m=0

f ′′0m, a04,i−1 = a14,i−1 = a24,i−1 = I,

b01,i−1 = b11,i−1 = b21,i−1 = 2Pr
i−1∑
m=0

f0m, b02,i−1 = b12,i−1 = b22,i−1 = −Pr
i−1∑
m=0

f ′0m,

b03,i−1 = b13,i−1 = b23,i−1 = PrEc
i−1∑
m=0

f ′′0m, b04,i−1 = b14,i−1 = b24,i−1 = −Pr
i−1∑
m=0

θ0m,

b05,i−1 = b15,i−1 = b25,i−1 = 2Pr
i−1∑
m=0

θ′0m

r01,i−1 = −[
i−1∑
m=0

f ′′′0m + 2
i−1∑
m=0

f0m

i−1∑
m=0

f ′′0m − (
i−1∑
m=0

f ′0m)2 −
i−1∑
m=0

θ0m − γ
i−1∑
m=0

f ′0m],

r02,i−1 = −[
i−1∑
m=0

θ′′0m + 2Pr
i−1∑
m=0

f0m

i−1∑
m=0

θ′0m − Pr
i−1∑
m=0

f ′0m

i−1∑
m=0

θ0m + PrEc(
i−1∑
m=0

f ′′0m)2].

Eqs. (4.33) - (4.36) were solved subject to certain initial approximations f0 and θ0. We

choose these initial approximations so that they satisfy the given boundary conditions. In

this case suitable initial approximations are

f0(Y ) = 1− e−Y − Y e−Y and θ0(Y ) = e−Y .

We note that when fi and θi(i > 1) have been found, the approximate solutions f(Y )

and θ(Y ) are obtained as

f(Y ) ≈
M∑
n=0

fn(Y ) and θ(Y ) ≈
M∑
n=0

θn(Y ), (4.55)

81



Chapter 4 – Natural convection from a cone embedded in viscoelastic fluid in
porous medium with viscous dissipation

where M is the order of the SLM approximation. Eqs. (4.43) and (4.54) can be solved

by any numerical method. In this work the equations have been solved by the Chebyshev

spectral collocation method as in Awad et al. (2011).

4.6. Results and discussion

The problem investigated in this chapter is the steady laminar fluid flow and natural con-

vection from a cone in a viscoelastic fluid in the presence of viscous dissipation in a porous

medium. The coupled nonlinear differential equations Eqs. (4.15) - (4.18) were solved nu-

merically using the successive linearization method (SLM). In this section we discuss the

effects of the viscoelastic parameter (Λ), permeability parameter (γ), Prandtl number (Pr)

and Eckert number (Ec) on both the velocity and temperature profiles.

In this chapter we used the Prandtl number Pr = 2−10 for most non-Newtonian fluids.

The viscoelastic parameter Λ = −0.01to − 0.1. The values of the other parameters were

arbitrarily chosen being careful to avoid unrealistic values.

In Table 4.1 the comparison between our results for the local skin friction coefficient

f ′′(0) and heat transfer coefficient −θ′(0) are given together with those of Ece (2005) who

used the Thomas algorithm. The agreement between our values and those of Ece (2005)

shows that our method gives satisfactory results, thus confirming that our method is suffi-

ciently accurate.

Table 4.1: Comparison of the values of skin friction coefficient f ′′(0) and heat transfer

coefficient −θ′(0) obtained by Ece (2005) with those of SLM when Λ=0

Pr Ece (2005) SLM

f ′′(0) −θ′(0) f ′′(0) −θ′(0)

1 0.681483 0.638855 0.68148334 0.63885473

10 0.433268 1.275499 0.43327820 1.27552877

In order to further our understanding of the physical effects of natural convection of
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fluid flow from a cone in a viscoelastic fluid with viscous dissipation, we sought to investigate

the effect, according to our model, of varying the viscoelastic parameter (Λ), permeability

parameter (γ), the Eckert number (Ec) and the Prandtl number (Pr) on the coefficients of

skin friction f ′′(0) and heat transfer θ′(0).

Table 4.2: Effects of the viscoelastic Λ, permeability parameters γ and Eckert number Ec

for Pr = 1 on the local skin friction f ′′(0) and heat transfer −θ(0) coefficients.

Λ γ Ec Pr f ′′(0) −θ′(0)

-0.1 1 0.1 1 0.51437649 0.64214087

-0.05 1 0.1 1 0.53489736 0.59964040

-0.01 1 0.1 1 0.55491411 0.56204002

0 1 0.1 1 0.56041829 0.55213993

0.01 1 0.1 1 0.56612247 0.54203983

0.05 1 0.1 1 0.59093920 0.49963495

0.1 1 0.1 1 0.62646010 0.44213898

0.01 0 0.1 1 0.68990728 0.61800108

0.01 1 0.1 1 0.56612247 0.54203983

0.01 2 0.1 1 0.49213165 0.48868800

0.01 3 0.1 1 0.44155007 0.44852699

0.01 1 0.1 1 0.56612247 0.54203983

0.01 1 0.2 1 0.56678919 0.53544933

0.01 1 0.3 1 0.56745956 0.52882111

0.01 1 0.4 1 0.56813364 0.52215479

0.01 1 0.1 0.7 0.59466242 0.47714847

0.01 1 0.1 1 0.56612247 0.54203983

0.01 1 0.1 2 0.50981746 0.68640396

0.01 1 0.1 10 0.38403617 1.13367723

The results in Table 4.2 show that increasing the viscoelastic parameter increases the

skin friction coefficient, while the opposite effect is noted on the heat transfer coefficient.
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Cortell (2006) noted the same results. Furthermore, this increase is more rapid for zero

values of the permeability parameter and the Eckert number. We can interpret this trend

as increases in permeability of the medium reducing local skin friction and heat transfer

coefficients. Skin friction increases with increasing Eckert number, and the opposite trend

is noted on the heat transfer coefficient. The skin friction decreases with increasing Prandtl

number, and the opposite trend is noted on the Nusselt number. We also note that the

successive linearization method admitted a larger value of the viscoelastic parameter Λ = 0.1.

We then sought greater insight into the effect of some fluid properties on thermal be-

havior and velocity of the fluids. Figures 4.2 - 4.5 respectively show the influence on the

fluid velocity profile of different values for viscoelastic parameter Λ, Prandtl number Pr,

permeability parameter γ and Eckert number Ec. Similarly, Figures 4.6 - 4.9 show the effect

of the same parameters on temperature profiles. Finally, Figures 4.10 - 4.15 represent some

relationships among, viscoelastic and permeability parameter, the heat transfer coefficient,

Eckert and Prandtl numbers.

Figure 4.2: Velocity profiles for different values of the viscoelastic parameter Λ at Pr =

1, Ec = 0.1, γ = 1

The variation of the viscoelastic parameter Λ on velocity profiles f ′(η) is shown in

Figure 4.2. It can be seen from the graph that increasing the viscoelastic parameter results

in the increase the velocity across the boundary layer. Butt et al. (2012) noted the same

results. This means that if the non-Newtonian parameter is increased the fluid flow velocity
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is increased. Practically, this means that fluid flow properties in viscoelastic fluids can be

controlled by influencing the change in the non-Newtonian parameter. For example it is not

desirable for toothpaste to flow when placed on a toothbrush, but under certain temperatures

in the mouth, flow properties are expected to change.

Figure 4.3: Velocity profiles f ′(η) for different values of the Prandtl number Pr at Ec =

0.1, γ = 1,Λ = 0.1

The variation of the Prandtl number Pr with the velocity profiles f ′(η) is shown in

Figure 4.3. It is clear that increasing the Prandtl number Pr, decreases the velocity profile

in the boundary layer. We can interpret increases in the Prandtl number as increasing

conduction more than it does convection, suggesting a thicker fluid, which results in decrease

in fluid velocity.
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Figure 4.4: Velocity profiles f ′(η) for different values of the permeability parameter γ at

Pr = 1, Ec = 0.1,Λ = 0.1

Figure 4.4 shows the variation of the permeability parameter with velocity profile. In-

creasing permeability parameter reduces the velocity profile across the boundary layer. Sim-

ilarly we interpret that fluid particles move slower as the medium becomes less porous (see

Singh and Agarwal, 2012).

Figure 4.5: Velocity profiles f ′(η) for different values of the Eckert number Ec at Pr =

1, γ = 1,Λ = 0.1

Figure 4.5 shows that increasing the Eckert number increases the velocity profile. This

can be explained by the increase in the kinetic energy caused by viscous dissipation in the

boundary layer leading to a lower temperature gradient.
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Figure 4.6: Temperature profiles θ(η) for different values of the viscoelastic parameter Λ

at Pr = 1, γ = 1, Ec = 0.1.

Figure 4.6 shows the effect of increasing the viscoelastic parameter on the temperature

profiles. Increasing the viscoelastic parameter increases the temperature profile. We can

thus interpret an increase in the viscoelastic parameter as having the effect of thickening the

fluid thereby making increasing the conduction effect.

Figure 4.7: Temperature profiles θ(η) for different values of the Prandtl number Pr at

Ec = 0.1, γ = 0.1,Λ = 0.1

Figure 4.7 depicts the variation of the Prandtl number with temperature profiles. In-

creasing the Prandtl number decreases the temperature profile, conduction is more enhanced

and fluid is much thicker heat transfer is much slower across the boundary layer.
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Figure 4.8: Temperature profiles θ(η) for different values of the permeability parameter γ

at Pr = 1,Λ = 0.1, Ec = 0.1.

Figure 4.8 shows the variation of the permeability parameter with the temperature

profile. Increasing the permeability parameter increases the temperature profile, when the

fluid moves much slower due to the reduction in permeability heat transfer becomes more

rapid.

Figure 4.9: Temperature profiles θ(η) for different values of the Eckert number Ec at Pr =

1, γ = 1,Λ = 0.1

In Figure 4.9 increasing the Eckert number increases the temperature profile, the heat

produced due to viscous dissipation increases the temperature across the boundary layer.
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Figure 4.10: Skin friction coefficient f ′′(0) against viscoelastic parameter Λ for different

values of permeability parameter

Figure 4.10 shows the variation of the skin friction with the viscoelastic parameter

at different values of the permeability parameter. Skin friction increases with increasing

viscoelastic parameter and increasing the permeability parameter reduces skin friction.

Figure 4.11: Heat transfer coefficient −θ′(0) against viscoelastic parameter Λ for different

values of permeability parameter

Figure 4.11 shows the variation of the heat transfer coefficient with the viscoelastic pa-

rameter; increasing the viscoelastic parameter reduces heat transfer coefficient and increasing

the permeability parameter reduce the Nusselt number.
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Figure 4.12: Skin friction coefficient f ′′(0) against viscoelastic parameter Λ for different

values of Eckert numbers

Figure 4.12 shows the effect of increasing the Eckert number on the skin friction and vis-

coelastic parameter. Increasing viscoelastic parameter increases skin friction and increasing

the Eckert number increase the skin friction.

Figure 4.13: Heat transfer coefficient −θ′(0) against viscoelastic parameter Λ for different

values of Eckert numbers Ec

In Figure 4.13 the increase of viscoelastic parameter reduces the heat transfer coefficient

and increasing the Eckert number reduces the heat transfer coefficient.
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Figure 4.14: Skin friction coefficient f ′′(0) against viscoelastic parameter Λ for different

values of Prandtl numbers Pr

Figure 4.14 shows that generally increasing the viscoelastic parameter increase the skin

friction and increasing the Prandtl number reduces skin friction.

Figure 4.15: Heat transfer coefficient −θ′(0) against viscoelastic parameter Λ for different

values of Prandtl numbers Pr

In Figure 4.15 increasing the viscoelastic parameter reduce the heat transfer coefficient

and increasing the Prandtl number increase the heat transfer coefficient.

From Figures 4.10, 4.12 and 4.14 we note that the skin friction increases with increasing

viscoelastic parameter. The skin friction is however reduced with increasing values of the
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permeability parameter (Figure 4.10) and Prandtl number (Figure 4.14), whereas the Eckert

number (Figure 4.12) has little effect on it. The graphs in Figures 4.11, 4.13 and 4.15 all show

that increasing the viscoelastic parameter reduces the heat transfer coefficient. We further

note that the heat transfer coefficient is decreased with increased values of the permeability

parameter (Figure 4.11) and the Eckert number (Figure 4.13), but that increasing the Prandtl

number increases the heat transfer coefficient (Figure 4.15).

4.7. Summary

This study presented an analysis of fluid flow and heat transfer in natural convection of

a viscoelastic fluid from a cone embedded in a porous medium with viscous dissipation.

The velocity and temperature profiles, together with local skin friction and heat transfer

coefficient were presented and investigated. It was found that increasing the viscoelastic pa-

rameter increased the skin friction and reduced the heat transfer coefficient and increased the

velocity and temperature profiles, while it reduced the heat transfer coefficient. Increasing

the permeability parameter decreased the skin friction, heat transfer coefficient, decreased

the velocity profile but the opposite effect was noted for the temperature profile. Finally, in-

creasing the Eckert number increased both velocity and temperature profiles, but decreased

the heat transfer coefficient, while it had little effect on the skin friction coefficient.

The study presented in this chapter on natural convection from a cone embedded in a

viscoelastic fluid with viscous dissipation under linear surface temperature introduced new

source terms; the viscous dissipation and linear surface temperature terms. These terms had

not been considered in previous similar studies under the same conditions. The consideration

of three systems of equations and solving them numerically together is fairly new in the

implementation of the successive linearization method.

The nonlinear coupled governing equations were solved using the successive linearization

method (SLM). In most cases such problems require the use of small parameters and are

solved by the perturbation method. However, the perturbation method has limitations, such

as requiring the parameter to be small, and in our model, the viscoelastic parameter does not

necessarily need to be small, although small values can be considered. Consequently we used
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the successive linearization method to solve this problem. The system of equations were first

written as the zeroth, first and second order equations, as in the case of the perturbation

method, before solving them together using the successive linearization method. The SLM

was shown to be a very accurate method; the results obtained for the fluid parameters

were found to be in excellent agreement when compared to those in the literature. The

successive linearization method converged after four to five iterations. The method showed

great accuracy when compared to other methods used in the literature.
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5

Diffusion of chemically reactive species

in Casson fluid flow over an unsteady

stretching surface in porous medium in

the presence of a magnetic field

5.1. Introduction

In this chapter we study the problem of diffusion of chemically reactive species in in Casson

fluid flow over an unsteady stretching surface in the presence of a magnetic field. In this

study the momentum, energy and mass transfer equations are coupled and nonlinear. The

equations are solved by the successive linearization method and the Matlab bvp4c algorithm

(see sections 1.1.5 and 1.1.3). The choice of using the successive linearization method that

was used in the previous chapter is to test this method on time dependent variables included

in this problem. The accuracy of the solution is determined by comparing it to the bvp4c

results and previously published results in the literature.

5.2. Review of literature on Casson fluid flow over a stretching sheet

In this chapter we start by reviewing literature on flow of Casson fluid, its application in

blood flow and diffusion of chemically reactive species in fluid flow. We then briefly discuss

the literature on the stretching surface, magnetohydrodynamic effects, and porous medium

effects already discussed in Chapters 3 and 4. We then end by discussing the numerical

94



Chapter 5 – Diffusion of chemically reactive species in Casson fluid flow over
an unsteady stretching surface in porous medium in the presence of a magnetic
field

method used in this chapter.

”Casson fluid can be defined as a shear thinning liquid which is assumed to have an

infinite viscosity at zero rate of shear, a yield stress below which no flow occurs, and a

zero viscosity at an infinite rate of shear” (Dash et al., 1992). Casson fluid is classified as a

non-Newtonian fluid due to its unique rheological characteristics. These characteristics show

shear stress- strain relationships that are significantly different from Newtonian fluids and

other non-Newtonian fluids. The study of non-Newtonian fluids has not been thoroughly

covered due to the complex representation of their constitutive equations (Makinde, 2009).

The nonlinear Casson’s constitutive equation was derived by Casson (1959), It describes the

properties of many polymers over a wide range of shear rates (Vinogradov and Malkin, 1979).

At low shear rates when blood flows through small vessels, the blood flow is described by

the Casson fluid model (McDonald, 1974); Shaw et al.,2009). These constitutive equations

will be fully described by mathematical equations in section 5.3.
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Casson fluid is a non-Newtonian fluid as discussed in Chapter 4. The study of Casson

fluid has attracted attention to many researchers due to its application in the field of met-

allurgy, food processing, drilling operations and bio-engineering operations. Its application

extends to the manufacturing of pharmaceutical products, coal in water, china clay, paints,

synthetic lubricants, biological fluids such as synovial fluids, sewage sludge, jelly, tomato

sauce, honey, soup and blood due to its contents such as plasma, fibrinogen and protein,

making the study of Casson fluid important in fluid dynamics (Pramanik, 2013). Some

studies in Casson fluid flow include the work of Mukhopadhyay and Vajravelu (2013) who

studied chemical reaction in Casson fluid but did not study heat transfer, Mukhopadhyay et

al. (2013) investigated heat transfer on Casson fluid flow over a stretching sheet, Pramanik

(2013) also studied heat transfer on Casson fluid flow, but none of these studies investigated

momentum, heat and mass transfer of Casson fluid flow.

One of the most important applications of Casson fluid flow is the study of blood flow.

The flow of blood in humans needs to be thoroughly understood as it can be used to save

human lives. Recent studies include the work of Sibanda and Shaw (2014) in which a

magnetic field is used to direct nanoparticles to cancerous cells. Studies that involved blood

as Casson fluid include among others the work of Rohlf and Tenti (2001) who investigated the

role of Womerseley number in pulsatile blood flow a theoretical study of the Casson model.

Sankar and Lee (2008) and Sankar and Lee (2010) investigated two-fluid nonlinear model

for flow in catheterized blood vessels and two-fluid Casson model for pulsatile blood flow

through stenosed arteries respectively. Shaw et al. (2009) studied Pulsatile Casson fluid flow

through stenosed bifurcated artery. In relation to blood flow there are other research works

that were done in different geometries such as flows in micro-slit channels, slightly curved

channels and peristaltic transport (Mernone et al.,2002; Das and Batra, 1993; Ng,2013). The

theoretical representations in this chapter also apply to blood flow.

When some chemicals interact with certain fluids, a chemical reaction takes place and

affects the flow characteristics. These reactions can result in a constructive reaction in which

more solute species are added to the fluid or a destructive reaction in which the species are

removed from the fluid. The study of fluid flows with chemical reactions was investigated by

Mukhopadhyay and Vajravelu (2013) who studied diffusion of chemically reactive species in
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Casson fluid. Other studies that investigated fluid flow with chemical reactions include the

work of Kameswaran et al. (2013) who investigated homogeneous-heterogeneous reactions in

a nanofluid flow due to a porous stretching sheet. Shaw et al. (2013) studied homogeneous-

heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Chamkha

and Mansour (2010) investigated similarity solutions for unsteady heat and mass transfer

from a stretching surface embedded in a porous medium with suction/injection and chemical

reaction effects.

The study of fluid flow on a stretching surface has been studied in Chapter 3 in which

we considered an exponentially stretching sheet. In this chapter we consider an unsteady

stretching sheet; the velocity of the stretching sheet depends on time and position from the

extrusion slit. This model is considered to be a more practical representation of how an actual

flow takes place making it necessary to conduct this study. Studies on unsteady stretching

surfaces have been done by among others Mukhopadhyay et al. (2013) who investigated

Casson fluid flow over an unsteady stretching surface in which the mass transfer equations

was not considered. El-Aziz (2013) studied mixed convection flow of a micropolar fluid

from an unsteady stretching surface with viscous dissipation, in which a similar stretching

velocity was considered. In this chapter we extended the work of Grubka and Bobba (1985)

who investigated heat transfer characteristics of a continuous stretching surface with variable

temperature in which we introduced magnetohydrodynamics (MHD), porous medium and

chemical reaction effects. Further to the studies mentioned in section 3.1 we consider the

work of Sharidan et al. (2006) who studied similarity solutions for the unsteady boundary

layer flow and heat transfer due to a stretching sheet; Nadeem et al. (2012) exponentially

stretching sheet, Nadeem et al. (2014) Maxwell fluid flow past a stretching sheet, Ahmed

and Nazar (2011) also studied Casson fluid over a stretching sheet and in their work they

assumed that the velocity of the stretching surface is linearly proportional to the distance

from fixed origin.

Magnetohydrodynamics (MHD) affect the flow of a fluid as discussed in Chapter 4. A

porous medium also affects the momentum, heat and mass transfer as discussed in section

4.1. Consequently, to make sure that this is indeed true, we control the permeability of

the porous medium. Earlier work in the effect of varying permeability of a porous medium
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in Casson fluid include the work of Dash et al. (1996) who studied Casson fluid flow in a

pipe filled with homogeneous porous medium. Nadeem et al. (2013) who considered MHD

three dimensional Casson fluid flow past a porous linearly stretching sheet. Ramachandra

et al. (2013a) investigated flow and heat transfer of Casson fluid from a horizontal circular

cylinder with partial slip in a non-Darcy porous medium, In their work they considered

slip conditions at the wall. Tripathi (2013) investigated the transient peristaltic heat flow

through a finite porous channel. More recently a study by Pramanik (2014) studied Casson

fluid flow and heat transfer past an exponentially porous stretching surface in the presence

of thermal radiation.

As can be seen from the literature cited above, it appears that no analysis has yet been

published on diffusion of chemically reactive species in Casson fluid flow for the momentum,

heat and mass transfer, under the given boundary conditions. The velocity and temperature

on the stretching sheet depends on time. The free stream velocity is considered to be zero.

The model considered in this chapter is based on the work put forward by Mukhopadhyay

and Vajravelu (2013) and Pramanik (2013) in the study of heat and mass transfer in Casson

fluid flow. We extend the models to include heat and mass transfer, magnetohydrodynamic

effects and porous medium.

In conclusion, this section has shown that it is necessary to study the effects of magnetic

field, porous medium and chemical reaction on Casson fluid flow. In this chapter we inves-

tigate the effect of varying unsteadiness parameter, Casson, Schmidt and Prandtl numbers

and the reaction rate parameter on the velocity, temperature and concentration profiles with

the use of graphical illustrations. The numerical method used to solve the equations is the

successive linearization method (SLM) and the results are validated by comparing them to

those obtained by the Matlab bvp4c and to other previously published results in the liter-

ature. These aspects will be considered in the formulation of the problem of diffusion of

chemically reactive species in Casson fluid flow.
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5.3. Mathematical formulation of Casson fluid flow over a stretching

sheet

Consider two dimensional laminar boundary-layer flow, temperature and mass transfer of an

incompressible Casson fluid flow over an unsteady stretching sheet, as shown in Figure 5.1.

The origin of the system is located at the extrusion slit, from which the sheet is drawn. The

x-axis is taken along the unsteady stretching surface and points in the direction of motion.

The y-axis is perpendicular to the sheet. A magnetic strength B is applied perpendicular to

the sheet.

0
0

T
∞

C
∞

T
w

(x,t) C
w

(x,t)

x

y

Casson fluid

Extrusion slit

U
w

(x,t)

unsteady stretching sheet

Boundary layer profile

Figure 5.1: Physical model and coordinate system

The sheet velocity is assumed to vary as a linear function of the distance from the slit,

Uw(x, t) = ax/(1 − α0t), a > 0, α0 ≥ 0 are constants and a. The temperature of the

fluid (T) and concentration of the solute (C) are also assumed to be a linear function of the

distance x from the slit as, Tw(x, t) = T∞ + bx/(1 − α0t)
2, Cw(x, t) = C∞ + cx/(1 − α0t)

2.

where b and c are constants. It is assumed that radiation effects and viscous dissipation are

negligible. The expressions Uw(x, t), Tw(x, t) and Cw(x, t) are only valid for t < α−10 but

not when α0 = 0.

The rheological equation of state for an isotropic and incompressible flow of a Cas-

son fluid is given as in (Mukhopadhyay and Vajravelu, 2013; Mukhopadhyay et al. 2013;

Ramachandra et al. 2013a) by:
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τij =


2(µB +

Py√
2π

)eij, π > πc

2(µB +
Py√
2πc

)eij, π < πc

(5.1)

where π = eijeij and eij is the (i, j)th component of the deformation rate, π is the

product of the deformation rate with itself, πc is a critical value of this product based on the

non-Newtonian model, µB is the plastic dynamic viscosity of the non-Newtonian fluid, Py

is the yield stress of the fluid. Given that Tw and Cw are respectively the temperature and

concentration at the sheet and T∞ and C∞ are respectively the ambient conditions. Under

these assumptions the governing equations in this flow are given as

∂

∂x
(u) +

∂

∂y
(v) = 0, (5.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν(1 +

1

β
)
∂2u

∂y2
− ν

K
u− σB2

ρ
u (5.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(5.4)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k1(C − C∞) (5.5)

where ν is kinematic viscosity of Casson fluid, β is the non-Newtonian Casson parameter.

σ is the electrical conductivity, B is the strength of the magnetic field, ρ, is the density of

the Casson fluid. D is the diffusion coefficient of species in the fluid and α is the thermal

diffusivity. k1 is the time dependent reaction rate. k1 > 0 represents destructive reaction

and k1 < 0 represents constructive reaction. The boundary conditions are given as

u = U(x, t), v = 0, T = Tw(x, t) y = 0,

u→ 0, T → T∞, C → C∞, as y →∞. (5.6)

where the subscript ∞ refer to the free stream condition.
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We introduce the non-dimensional variables

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

η =

√
a

ν(1− α0t)
y, ψ =

√
νa

1− α0t
xf(η),

Tw(x, t) = T∞ +
bx

(1− α0t)2
θ(η), Cw(x, t) = C∞ +

cx

(1− α0t)2
φ(η).


(5.7)

where ψ(x, y, t) is the stream function which satisfies the continuity Eqs. (4.2). a, b, c

and α0 are positive constants. The velocity components are defined as:

u =
∂ψ

∂y
= Uwf

′(η), v = −∂ψ
∂x

= −
√

νa

1− α0t
f(η) (5.8)

The governing equations reduce to

A(
η

2
f ′′ + f ′)− ff ′′ + (f ′)2 =

(
1 +

1

β

)
f ′′′ − (γ +M2), (5.9)

A

2
(ηθ′ + 3θ) + 2f ′θ − fθ′ = 1

Pr
θ′′, (5.10)

A

2
(ηφ′ + 3φ) + 2f ′φ− fφ′ = 1

Sc
φ′′ −Rφ. (5.11)

with boundary conditions;

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (5.12)

where A = α0/a is the unsteadiness parameter, Pr = ν/α is the Prandtl number,

Sc = ν/D is the Schmidt number and R = k1/a is the reaction parameter. γ = ν(1 −

α0t)/aK̄ is the permeability parameter coefficient, M2 = σB2(1 − α0t)/ρa is the magnetic

parameter. The non-dimensional temperature and concentration are respectively given by

θ = (T − T∞)/(Tw − T∞) and φ = (C − C∞)/(Cw − C∞).
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5.4. Skin friction, heat transfer and mass transfer coefficients

The parameters of engineering interests are the local skin friction, heat transfer and mass

transfer coefficients are defined as (see Mukhopadhyay and Vajravelu, 2013)

Cfx = 2(1 +
1

β
)Re

− 1
2

x f ′′(0), (5.13)

The heat and mass fluxes can be written as

Nux =
x

α0

qw
(Tw − T∞)

, qw = −α0

[
∂T

∂y

]
y=0

, (5.14)

Shx =
x

D

Jw
(Cw − C∞)

, Jw = −D
[
∂C

∂y

]
y=0

(5.15)

Using Eqs. (5.14) and (5.7), the heat transfer coefficient (Nusselt number) and mass

transfer coefficient (Sherwood number) are defined as

Nux = −Re
1
2
x θ
′(0), Shx = −Re

1
2
xφ
′(0) (5.16)

where Rex is the Reynolds number defined as Rex = Uwx/ν. It is important at this

stage to mention that for the Newtonian fluid (1/β → 0) and that Λ = M = A = Sc = 0.

The present problem reduce to that of Grubka and Bobba (1985), A = 0 denote steady flow

and in their work they obtained an exact solution in terms of Kummer’s functions written

in terms of the confluent hyper geometric functions.

The boundary value problems in Eqs. (5.9) - (5.12) are solved using the successive

linearization method. In the method we choose finite values of η → ∞. This value is the

boundary layer thickness given by η∞. We begin by choosing an initial guess of η∞ to obtain

the values f ′′(0), −θ′(0) and −φ′(0). The solution is repeated with new values until two

consecutive values differ by 10−6.
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5.5. Results and discussion

The problem considered in this chapter is diffusion of chemically reactive species in Casson

fluid flow in porous medium in the presence of magnetic field. The nonlinear differential

equations were solved by the successive linearization method (SLM). In this section we discuss

the physics of the problem by studying the effects of the unsteadiness (A), permeability

(γ), magnetic (M), Prandtl (Pr), Schmidt (Sc) and reaction rate (R) numbers on velocity,

temperature and concentration profiles. We also study the variation of skin friction f ′′(0),

heat transfer −θ′(0) and mass transfer −φ′(0) coefficients with unsteadiness parameter.

The Casson fluid discussed in this section covers a wide range of this type of fluid which

normally has a Prandtl number between Pr = 5 at 20oC and Pr = 20 for blood. The

Grashof number is fixed at Gr = 10 and Darcy number Da = 0.1 giving a fixed value

kp = 1/DaGr
1
2 = 3. All other parameters are chosen arbitrarily being careful to stay within

the acceptable range of the Casson fluid.

For validation of the numerical method used in this study, results for the heat transfer

coefficient −θ′(0) for the Newtonian fluid were compared to those of El-Aziz (2013) and

Grubka and Bobba (1985) for the unsteadiness parameter A = γ = M = Sc = 0. The

comparison is shown in Table 6.1 and it is found to be in agreement to at least four decimal

places. To further verify the accuracy of the successive linearization method (SLM), the

Matlab bvp4c was used.

Table 5.1: Comparison of the values of −θ(0) for γ = M = Sc = 0 and various values of

A and Pr with those of Grubka and Bobba (1985), El-Aziz (2013), SLM and

bvp4c.

A Pr Grubka and Bobba (1985) El-Aziz (2013) SLM bvp4c

0 0.72 0.8086 0.80873135 0.80873007 0.80863761

- 1 1.0000 1.00000000 1.00000000 1.00000006

- 3 1.9237 1.92368255 1.92367361 1.92367736

- 10 3.7207 3.72067395 3.72066225 3.72066701
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We then sought to get a clear understanding of the behavior of velocity, temperature

and concentration profiles of Casson fluid flow, a detailed numerical calculation was done for

different parameter values that describe the fluid flow and the results are depicted as graphs

in Figures 5.2 - 5.25. The variation of the Casson parameter β, unsteadiness parameter A,

permeability parameter γ, magnetic parameter M and the Prandtl number Pr on velocity

profiles f ′(η) is shown in Figures 5.2 - 5.5. The variation of the same parameters on temper-

ature profiles θ(η) is shown in Figures 5.6 - 5.11. The variation of the Casson parameter β,

unsteadiness parameter A, permeability parameter γ, magnetic parameter M , reaction rate

parameter R and the Schmidt number Sc on concentration profiles are shown in Figures 5.12

- 5.19 . The plots of the skin friction, heat transfer, and mass transfer coefficients against the

unsteadiness parameter A are shown in Figures 5.20 - 5.21, Figures 5.22 - 5.23 and Figures

5.24 - 5.25 respectively.

Figure 5.2: Velocity profiles f ′(η) for different values of the Casson parameter β and un-

steadiness parameter A at γ = 0.5,M = 1, P r = 5, Sc = 1, R = 0.5.

104



Chapter 5 – Diffusion of chemically reactive species in Casson fluid flow over
an unsteady stretching surface in porous medium in the presence of a magnetic
field

Figure 5.3: Velocity profiles f ′(η) for different values of the permeability parameter γ and

unsteadiness parameter Aat β = 2,M = 1, P r = 5, Sc = 1, R = 0.5.

Figure 5.4: Velocity profiles f ′(η) for different values of the Casson parameter β and mag-

netic parameter M at A = 0.5, γ = 0.5, P r = 5, Sc = 1, R = 0.5.
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Figure 5.5: Velocity profiles f ′(η) for different values of the permeability parameter γ and

magnetic parameter Mat β = 2, A = 0.5, P r = 5, Sc = 1, R = 0.5

The variation of the Casson parameter β and permeability parameter γ on velocity

profiles f ′(η) for steady (A = 0) and unsteady conditions (A = 0.5) are shown in Figures 5.2

and 5.3 respectively. It can be seen from Figure 5.2 that increasing the Casson parameter

(fluid behaves as Newtonian as Casson parameter becomes large) results in the decrease

in the velocity profiles. This would be expected because increasing the Casson parameter

would have an effect of reducing yield stress thereby suppressing its motion. Increasing

the unsteadiness parameter A results in the decrease of velocity profiles. Increasing the

unsteadiness parameter A would naturally mean that the fluid motion is retarded by the

slight interaction of fluid layer. The same result was recorded by Mukhophadhyay et al.

(2013). It can be seen from Figure 5.3 that increasing the permeability parameter results in

the decrease in the velocity profiles in both steady A = 0 and unsteady conditions A = 0.5.

This would be expected because increasing the permeability parameter would have an effect

of reducing the size of media pores thereby reducing fluid motion as explained in the results

of the previous chapter.

The variation of the Casson parameter β and permeability parameter γ on velocity

profiles f ′(η) for different values of the magnetic parameter M are shown in Figures 5.4

and 5.5 respectively. It can be seen from the graph that increasing the magnetic parameter

reduces velocity profiles as explained in the results in Chapter 4.
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Figure 5.6: Temperature profiles θ(η) for different values of the Casson parameter β and

unsteadiness parameter A at γ = 0.5,M = 1, P r = 5, Sc = 1, R = 0.5

Figure 5.7: Temperature profiles θ(η) for different values of the permeability parameter γ

and unsteadiness parameter A at β = 2,M = 1, P r = 5, Sc = 1, R = 0.5
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Figure 5.8: Temperature profiles θ(η) for different values of the Prandtl numbers Pr and

unsteadiness parameter A at β = 2, γ = 0.5,M = 1, Sc = 1, R = 0.5

Figure 5.9: Temperature profiles θ(η) for different values of the Casson parameter β and

magnetic parameter M at A = 0.5, γ = 0.5, P r = 5, Sc = 1, R = 0.5
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Figure 5.10: Temperature profiles θ(η) for different values of the permeability parameter γ

and Magnetic parameter Mat β = 2, A = 0.5, P r = 5, Sc = 1, R = 0.5

Figure 5.11: Temperature profiles θ(η) for different values of the Prandtl number Pr and

magnetic parameter Mat β = 2, A = 0.5, γ = 0.5, Sc = 1, R = 0.5

The variation of Casson parameter β, permeability parameter γ, and Prandtl number

Pr on temperature profiles for steady (A = 0) and unsteady conditions (A = 0.5) are shown

in Figures 5.6 - 5.8. It can be seen from these figures that increasing both the Casson pa-

rameter β and the permeability parameter γ results in the increase in temperature profiles.

This is to be expected because increasing the Casson parameter would be interpreted as the

fluid being Newtonian, therefore temperature profiles are increased. Increasing the perme-

ability parameter γ, would be interpreted as reducing media pores reducing fluid motion and

increasing temperature profiles. The variation is more enhanced in steady motion than in
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unsteady motion. It can be seen from Figure 5.8 that increasing the Prandtl number Pr

results in the decrease in the temperature profiles. This effect is due to the definition of the

Prandtl number which is the ratio of the thermal diffusivity to the momentum diffusivity.

This relationship suggest that low Prandtl number numbers mean high thermal conductivity,

high Prandtl numbers mean low thermal conductivity.

The variation of Casson parameter β, permeability parameter γ, and Prandtl number

Pr on temperature profiles for different values of the magnetic parameter M are shown

in Figures 5.9 - 5.11. It can be seen from all these figures that increasing the magnetic

parameter increase temperature profiles and the same observation was noted in Pramanik

(2014). Increasing the permeability Casson parameter β result in the increase in temperature

profiles as shown in Figure 5.9. This is to be expected the fluid departs from plastic flow this

facilitates increase of temperature in the boundary layer. Heat transfer is more pronounced

in lower magnetic numbers M = 1 than in higher magnetic numbers M = 2. We can thus

interpret an increase in the magnetic parameter as having an effect of slowing down the fluid

flow as discussed in chapter 1. The same observation is noted in Figure 5.10. Increasing

the permeability parameter γ results in the increase in the temperature profiles. It can

be seen from Figure 5.11 that increasing the Prandtl number Pr, result in the decrease in

the temperature profiles. The wall temperature gradient or the heat transfer coefficient is

negative for all values of the Prandtl number which can be interpreted to mean that heat is

transferred from the surface to the fluid.
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Figure 5.12: Concentration profiles φ(η) for different values of the Casson parameter β and

unsteadiness parameter A at γ = 0.5,M = 1, P r = 5, Sc = 1, R = 0.5

Figure 5.13: Concentration profiles φ(η) for different values of the permeability parameter

γ and unsteadiness parameter A at β = 2,M = 1, P r = 5, Sc = 1, R = 0.5
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Figure 5.14: Concentration profiles φ(η) for different values of the Casson parameter β and

magnetic parameter M at A = 0.5, γ = 0.5, P r = 5, Sc = 1, R = 0.5

Figure 5.15: Concentration profiles φ(η) for different values of the permeability parameter

γ and magnetic parameter M at A = 0.5, β = 2, P r = 5, Sc = 1, R = 0.5
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Figure 5.16: Concentration profiles φ(η) for different values of the Schmidt number Sc and

unsteadiness parameter A at β = 2, γ = 0.5, P r = 5,M = 1, R = 0.5

Figure 5.17: Concentration profiles φ(η) for different values of the Schmidt number Sc and

magnetic parameter M at A = 0.5, β = 2, γ = 0.5, P r = 5, R = 0.5
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Figure 5.18: Concentration profiles φ(η) for different values of the Casson parameter β and

reaction rate R at A = 0.5,M = 1, γ = 0.5, P r = 5, Sc = 1.

Figure 5.19: Concentration profiles φ(η) for different values of the permeability parameter

γ and reaction rate R at A = 0.5, β = 2,M = 1, P r = 5, Sc = 1.

The variation of Casson parameter β, permeability parameter γ and Schmidt number

Sc on concentration profiles −φ′(η) for different values of the magnetic M , unsteadiness A

and reaction rate R parameters are shown in Figures 5.12 - 5.19.

The influence of Casson parameter β, permeability parameter γ and the Schmidt number

Sc on concentration profiles for both steady (A = 0) and unsteady conditions (A = 0.5) is

shown in Figures 5.12, 5.13 and 5.16. It can be seen from Figures 5.12 and 5.13 that

increasing both the Casson parameter β and permeability parameter γ result in increasing

114



Chapter 5 – Diffusion of chemically reactive species in Casson fluid flow over
an unsteady stretching surface in porous medium in the presence of a magnetic
field

the concentration profiles. This is to be expected because increasing the Casson parameter

β would have an effect of increasing fluid velocity thereby increasing the species transfer in

the boundary layer. Increasing the permeability parameter would have an effect decreasing

the fluid velocity and this increases the convection current and thereby facilitates solutal

movement. Figure 5.16 shows that increasing Schmidt number Sc result in the decrease in

the concentration profiles. The effect is due to the definition of the Schmidt number Sc, that

it is inversely proportional to the diffusion coefficient. The wall concentration gradient is

negative for all values of the Schmidt number which means that the mass is always transferred

from the surface of the sheet to the fluid. The same result was noted in Mukhopadhyay et

al. (2013).

The influence of Casson parameter β, permeability parameter γ and the Schmidt number

Sc on concentration profiles for both for different values of the magnetic parameter M is

shown in Figures 5.14, 5.15 and 5.17. Figures 5.14 and 5.15 show that increasing both the

Casson parameter β and permeability parameter γ result in increasing the concentration

profiles. Solutal transfer is more pronounced for lower values of the magnetic field.

The variation of Casson parameter β and permeability parameter γ on concentration

profiles for both for different values of the reaction rate parameter R is shown in Figures

5.18 and 5.19. It can be seen from Figure 5.18 that increasing the Casson parameter β

increase the concentration profile, this is more pronounced in the case of (R < 0) normally

referred to as constructive reaction. The opposite trend is noted in the case of destructive

reaction (R > 0). This is normally expected because, in constructive reaction more solute is

introduced in the fluid flow regime, and the opposite process removes some solute from the

fluid flow regime. The same results were noted by Mukhophadhyay and Vajravelu (2013).

115



Chapter 5 – Diffusion of chemically reactive species in Casson fluid flow over
an unsteady stretching surface in porous medium in the presence of a magnetic
field

Figure 5.20: Skin friction −(1 + 1/β)f ′′(0) against unsteadiness parameter A at different

values of the Casson parameter β at M = 1, γ = 0.5, P r = 5, Sc = 1, R = 0.5.

Figure 5.21: Skin friction −(1 + 1/β)f ′′(0) against unsteadiness parameter A at different

values of the permeability parameter γ at M = 1, β = 2, P r = 5, Sc = 1, R =

0.5.

The variation of skin friction coefficient related to −(1+1/β)f ′′(0) against the unsteadi-

ness parameter A for different values of the Casson parameter β and permeability parameter

γ is shown in Figures 5.20 and 5.21. It can be seen from Figure 5.20 that increasing the Cas-

son parameter decrease the skin friction coefficient. Increasing the Casson parameter would

naturally mean the decrease in yield stress and exerting less force on the surface. Practi-

cally, this means that less force may be needed to pull a moving sheet at a given withdrawal
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velocity. The skin friction coefficient increase with increasing unsteadiness parameter.

Figure 5.21 shows that increasing the permeability parameter γ result in the increase

in the skin friction coefficient. This is to be expected because fluid motion is decreased

exerting more force on the surface. This means that the force exerted on the surface may

be controlled by varying the permeability parameter; this may be done to achieve a desired

force.

Figure 5.22: Heat transfer coefficient −θ(0) against unsteadiness parameter A at different

values of the Casson parameter β at M = 1, γ = 0.5, P r = 5, Sc = 1, R = 0.5.

Figure 5.23: Heat transfer coefficient −θ′(0) against unsteadiness parameter A at different

values of the permeability parameter γ at M = 1, β = 0.5, P r = 5, Sc =

1, R = 0.5.
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The variation of heat transfer coefficient related to −θ′(0) against the unsteadiness

parameter A for different values of the Casson parameter β and permeability parameter

γ is shown in Figures 5.22 and 5.23. It can be seen from Figure 5.22 that increasing the

Casson parameter decrease the heat transfer coefficient. Increasing the Casson parameter

would naturally mean the decrease in yield stress and exerting less force on the surface. Heat

transfer is reduced

Figure 5.23 shows that increasing the permeability parameter γ result in the decrease

in the heat transfer coefficient. This is to be expected because fluid motion is decreased

exerting more force on the surface.

Figure 5.24: Mass transfer coefficient −φ′(0) against unsteadiness parameter A at different

values of the Casson parameter β at M = 1, γ = 0.5, P r = 5, Sc = 1, R = 0.5.
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Figure 5.25: Heat transfer coefficient −φ′(0) against unsteadiness parameter A at different

values of the permeability parameter γ at M = 1, β = 2, P r = 5, Sc = 1, R =

0.5.

The variation of mass transfer coefficient related to −φ′(0) against the unsteadiness

parameter A for different values of the Casson parameter β and permeability parameter γ is

shown in Figures 5.24 and 5.25. It can be seen from Figure 5.24 that increasing the Casson

parameter decrease the mass transfer coefficient. Increasing the Casson parameter would

naturally mean the decrease in yield stress and exerting less force on the surface.

Figure 5.25 shows that increasing the permeability parameter γ result in the decrease

in the mass transfer coefficient. This is to be expected because fluid motion is decreased

exerting more force on the surface.

5.6. Summary

The study of diffusion of chemically reactive species in Casson fluid flow over an unsteady

stretching surface in a porous medium in the presence of a magnetic field was considered.

The results in this study were as follows; increasing the unsteadiness parameter decreases

velocity profiles. Increasing the Casson parameter decreases the velocity profiles. Increasing

the permeability parameter result in the reduction in velocity profiles. Increasing the Prandtl

number result in the decrease in the temperature profiles. Increasing the positive values of

reaction rate increase the concentration profiles (constructive) and increasing the negative
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values of the reaction rate reduce concentration profiles (destructive)

The presentation of the momentum, energy and mass transfer equations had not been

considered in the study of heat and mass transfer in Casson fluid. In this chapter we presented

this unique problem which reported some new results.

In this chapter the successive linearization method (SLM) was used to find solutions

of the governing equations. The problem consisted of three coupled ordinary differential

equations. The accuracy of the method was tested on system of equations that contained

the unsteadiness parameter. The numerical solution was further was compared to those

available in the literature and was found to be in excellent agreement. The numerical method

was further compared to the results obtained by the Matlab bvp4c and there was excellent

agreement.
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6

Effects of radiation on MHD free

convection of Casson fluid from a

horizontal circular cylinder with partial

slip in non-Darcy porous medium with

viscous dissipation

6.1. Introduction

In this chapter we investigate the problem of free convection of Casson fluid flow from a

horizontal circular cylinder with partial slip in non-Darcy porous medium with radiation

and viscous dissipation effects. The momentum and energy equations are transformed into

non-similar coupled partial differential equations. Non-similarity arises when a fluid flow is

unsteady or sometimes caused by a flow in a different direction to the main flow. Effects

such as suction, injection and partial slip sometimes give rise to unsteadiness. The equations

are solved by the bivariate quasi-linearization method (BQLM). The accuracy of the method

is determined by comparison with other results in the literature.

6.2. Review of literature on Casson fluid flow from a horizontal cylinder

In this section we review literature on the problem of free convection of Casson fluid flow

from a horizontal circular cylinder with partial slip, porous medium and viscous dissipation.
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We start by discussing flow around cylinders and the effect of partial slip in fluid flow.

Further to the discussions of radiation effects, Casson fluid flow, porous medium and viscous

dissipation in previous chapters, we present a brief review of these fluid flow phenomena in

this context.

The study of Casson fluid around cylinders is important in the understanding of fluid

flow around veins and arteries in humans, in the circulation of oil in automotive engines and

design of automatic cooking machines, in which cooking oil and soup are used. With this in

mind it is necessary to conduct a study of Casson fluid flow with partial slip, porous medium,

magnetic field and viscous dissipation effects. The flow of Casson fluid is applied in many

situations in industry such as petroleum production, multiphase mixtures, pharmaceutical

formulations, coal in water, paints, lubricants, jams, sewage, soup, blood, contaminated

lubricants, molten metal and synovial fluid. These fluids show different characteristics from

the Newtonian fluids which cannot be fully represented by the Navier-Stokes equations. To

represent these non-Newtonian fluids some modifications to the Navier-Stokes equations are

necessary (Ramachandra et al., 2013a; Mukhophadhyay and Vajravelu, 2013).
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The study of fluid flow over different geometries is important as it refers to many prac-

tical situations, some of which have been mentioned earlier in this section. The study of

fluid flow past a cylindrical geometry was studied by among others Anwar et al. (2008) who

investigated mixed convection boundary layer flow of a viscoelastic fluid over a horizontal

cylinder; Deka et al. (2014) investigated transient free convection flow past an accelerated

vertical cylinder in a rotating cylinder; Ribeiro et al. (2014) studied viscoelastic flow past a

confined cylinder with three dimensional effects and stability and Patel and Chhabra (2013)

studied steady flow of Bingham plastic fluids past an elliptical cylinder. In this chapter

we consider a cylinder embedded in Casson fluid with transpiration at its walls. We also

consider partial slip at the surface of the cylinder.

In 1823, Navier deduced that there is a partial slipping at a solid boundary, and that

this slip force is directly proportional to the slip velocity (Prabhakara and Deshpande, 2004).

Partial slip is a condition of a surface with little or no friction, it is characteristic of a

lubricated surface. In many practical situations it is often important to consider partial slip

conditions depending on the problem concerned. It is therefore important to study the fluid

flow in Casson fluid with partial slip conditions. Studies which included partial slip include

the work of Ramachandra et al. (2013a) which considered velocity and thermal slip factors.

In this chapter, the flow of fluid is affected by the presence of radiation and magnetic

field. Further to the studies referred to in Chapter 3, we highlight the studies that focused

on effects of radiation and magnetic field in a non-Newtonian fluid. Shateyi and Marewo

(2013) investigated numerical analysis of MHD stagnation point flow of Casson fluid; they

considered thermal radiation in their work. Chamkha et al. (2003) studied thermal radiation

effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence

of heat source or sink. Pramanik (2013) studied Casson fluid flow and heat transfer past

an exponentially porous stretching surface in the presence of thermal radiation. Narayana

et al. (2013) studied free magnetohydrodynamic fluid flow and convection from a vertical

spinning cone with cross diffusion effects. Nadeem et al. (2014) studied numerical study

of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of

nano-particles. Chen (2004) investigated combined heat and mass transfer in MHD free

convection from a vertical surface with Ohmic heating and viscous dissipation.
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The flow of fluid in porous medium was discussed in Chapter 4 and in this section we

investigate the effect of non-Newtonian fluid flow in porous medium. Studies in porous media

and viscous dissipation have been carried out by among others, Makanda et al. (2013) who

studied natural convection of viscoelastic fluid from a cone embedded in a porous medium

with viscous dissipation. Awad et al. (2011) investigated convection from an inverted cone

in a porous medium with cross diffusion effects. Hayat et al. (2010) studied heat and

mass transfer for Soret and Dufour effects on mixed convection boundary layer flow over a

stretching vertical surface in a porous medium filled with viscoelastic fluid. Cheng (2010)

studied Soret and Dufour effects on free convection boundary layer over a vertical cylinder in

a saturated porous medium. Chamkha and Rashad (2012) investigated natural convection

from a vertical permeable cone in nanofluid saturated porous media for uniform heat and

nanoparticles volume fraction fluxes.

From the literature cited above, it appears that no analysis has yet been published con-

cerning effects of radiation on MHD free convection of Casson fluid from a horizontal circular

cylinder with partial slip in non-Darcy porous medium with viscous dissipation, under the

given boundary conditions. The velocity and thermal slip conditions and transpiration effect

are considered at the surface of the cylinder. The free stream conditions are considered to

be at a lower temperature than the surface of the cylinder. The work considered in this

chapter was based on the work put forward by Ramachandra et al. (2013a) in the study of

momentum and heat transfer in Casson fluid. We extend the model to consider the radiation,

magnetohydrodynamics and viscous dissipation effects.

In summary, this section has shown that investigating fluid flow over circular geometry,

free convection, partial slip, radiation and magnetic effects is necessary to study. The system

of partial differential equations will be solved by the bivariate quasi-linearisation method

(BQLM). These aspects will be considered in the mathematical formulation of the problem

of free convection of fluid flow from a horizontal circular cylinder. Studies in Casson fluid

include among others Mukhopadhyay et al. (2013) and Nadeem et al. (2012).
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6.3. Mathematical formulation of Casson fluid from a horizontal

cylinder

The two dimensional cross-section of a horizontal circular cylinder in Casson fluid as shown

in Figure 6.1. x is the tangential coordinate of the circle and y is the radial coordinate of

the circle. A magnetic field is applied perpendicular to the y- axis.

Casson Fluid

g

T
∞

B

y

x
u=N

0
(1 + 1/β)(∂ u/∂ y)

T=T
w

 + K
0
 (∂ T/∂ y)

Transpiration

V
w

 Suction/injection

Figure 6.1: Schematic diagram of cross-section of cylinder in Casson fluid

The circle wall is maintained at a uniform temperature Tw (> T∞), the transpiration

velocity Vw, in the direction y, u and v are the velocity components in the x and y directions

respectively

The rheological equation of state for an isotropic and incompressible flow of a Casson

fluid is given as in Mukhophadhyay and Vajravelu (2013) by:

τij =


2(µB +

Py√
2π

)eij, π > πc

2(µB +
Py√
2πc

)eij, π < πc

(6.1)

π = eijeij and eij is the (i, j)th component of the deformation rate, π is the product

of the deformation rate with itself, πc is a critical value of this product based on the non-
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Newtonian model, µB is the plastic dynamic viscosity of the non-Newtonian fluid, Py is the

yield stress of the fluid.

The governing equations in this fluid flow are given as (see Ramachandra et al., 2013a);

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (6.2)

u
∂u

∂x
+ v

∂u

∂y
= ν(1 +

1

β
)
∂2u

∂y2
+ gβT (T − T∞) sin(

x

r
)− Γu2 − ν

K̄
u− σB2

ρ
u (6.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρCp

∂qr
∂y

+
ν

ρCp
(1 +

1

β
)

(
∂u

∂y

)2

+
σB2u2

ρCp
(6.4)

where u and v are the velocity components in the x and y directions respectively, a is

the radius of the cylinder, ν is kinematic viscosity of Casson fluid, β = µB
√

2πc/Py is the non-

Newtonian Casson parameter, α = k/ρCp is the thermal diffusivity, k is thermal conductivity

of the fluid, qr is the radiative heat flux, Cp is the specific heat, ḡ is the acceleration due to

gravity, βT is the coefficient of thermal expansions, and T is the temperature of the fluid,

Tinfty is the free stream temperature, ρ is the density of the fluid, K̄ is the permeability of

the porous medium, Γ is the inertia coefficient, σ is the electrical conductivity, and B is the

magnetic flux density. The Rosseland approximation for radiation may be written as follows;

qr = −4σ∗

3k∗
∂T 4

∂y
(6.5)

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If the

temperature difference within the flow is such that T 4 may be expanded in Taylor series

about T∞ and neglecting higher powers we obtain T 4 − 4T 3
∞ − 3T 4

∞ and therefore the Eq.

(6.4) can be written as

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

16σ∗T 3
∞

3ρCpk∗
∂2T

∂y2
+

ν

ρCp
(1 +

1

β
)

(
∂u

∂y

)2

+
σB2u2

ρCp
(6.6)
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The boundary conditions are given as

u = N0(1 +
1

β
)
∂u

∂y
, v = −Vw, T = Tw +K0

∂T

∂y
.

}
y = 0, (6.7)

u→ 0, T → T∞, as y →∞. (6.8)

where N0 is the velocity slip factor, K0 is the thermal slip factor. N0 = K0 = 0 corresponds

to no-slip conditions. The subscripts w and ∞ refer to surface and free stream conditions

respectively.

We introduce the non-dimensional variables

ξ =
x

r
, η =

y

r
Gr

1
4 , P r =

ν

α

Gr =
gβT (Tw − T∞)a3

ν2
, βcr = µB

√
2πcr
Py

Λ∗ = Γr, kp =
1

DaGr
1
2

, Da =
K̄

r2
, fw = − Vwa

νGr
1
4

, U0 =
νGr

1
2

r


(6.9)

Introducing the stream function ψ and similarity variables

u =
∂ψ

∂y
and v = −∂ψ

∂x
(6.10)

f(ξ, η) =
ψ

νξGr
1
4

, θ(ξ, η) =
T − T∞
Tw − T∞

. (6.11)

Using the stream function defined in Eqs. (6.10) and similarity variables in Eqs. (6.11),

Eqs. (6.2)- (6.6) together with boundary conditions Eqs. (6.7) and (6.8) reduces to the

following system of partial differential equations.

(
1 +

1

β

)
f ′′′ + ff ′′ − (1 + Λ∗ξ)f ′2 − (kp +M2)f ′ +

sin(ξ)

ξ
θ = ξ

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
,(6.12)

1

Pr
(1 +

4

3
K)θ′′ + fθ′ + ξ2Ec

[(
1 +

1

β

)
f ′′2 +M2(f ′)2

]
= ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(6.13)
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with boundary conditions;

η = 0, f = fw, f ′ =

(
1 +

1

β

)
Sff

′′, θ = 1 + ST θ
′ (6.14)

η →∞, f ′ → 0, θ → 0. (6.15)

where β is the Casson parameter, Λ∗ is the Forchheimer parameter, kp is the Darcian drag

coefficient, M is the magnetic field parameter, K is the radiation parameter, Pr is the

Prandtl number, Ec is the Eckert number, fw > 0 corresponds to suction and fw < 0

corresponds to blowing, Sf = N0Gr
1
4/L is the velocity slip factor and ST = kGr

1
4/L is the

thermal slip factor. In the above equations the primes refer to the derivative with respect

to η.

We have formulated the partial differential equations in terms of the non-dimensional

radial distance ξ. We then derive expressions for important engineering parameters which

are the skin friction and heat transfer coefficients.

6.4. Skin friction and heat transfer coefficients

In this section we derive the skin friction and the heat transfer coefficients as follows; The

shear stress at the surface of the cylinder is given can be expressed as (see Ramachandra et

al., 2013a)

τw = µ

[(
1 +

1

β

)
∂u

∂y

]
y=0

=
µ
(

1 + 1
β

)
νξGr

3
4

r2
f ′′(0), (6.16)

where µ is the coefficient of viscosity, the skin friction coefficient is given by

Cf =
τw

1
2
ρU2
∞
. (6.17)
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Using Eqs. (6.16) and (6.17) together with Eqs. (6.10) and (6.11) give

CfGr
− 3

4 = (1 +
1

β
)ξf ′′(0). (6.18)

The heat transfer from the surface of the circle into the fluid is given by

qw = −k
[
∂T

∂y

]
y=0

=
−k(Tw − T∞)

aGr−
1
4

Xθ′(0), (6.19)

where k is the thermal conductivity of the fluid. The heat transfer coefficient (Nusselt

number) is given by

Nu =
r

k

qw
Tw − T∞

, (6.20)

Using Eqs. (8.16) and (8.17) together with Eqs.(7.19) and (7.20) give

NuGr−
1
4 = −θ′(0). (6.21)

We have formulated the mathematical model describing the flow of Casson fluid from a

cylinder with partial slip, radiation, magnetic and viscous dissipation effects. The expressions

for the skin friction and heat transfer coefficients have been derived. We now solve the system

of partial differential equations obtained in this section using the bivariate quasi-linearization

method (BQLM).

6.5. Numerical solution procedure

The differential Eqs. (4.15)-(5.10) of this type are normally solved by the Keller-box method

described in section 1.1.6. This method involves rigorous procedures and result in a large
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system of block matrices which require a considerable amount of computer memory and com-

putation time. As already been discussed in Chapter 2 that spectral methods are accurate

and robust. In this section we describe the implementation of the local linearization variant

of the quasi-linearization. We apply the quasi-linearization method (QLM) first proposed by

Bellman and Kalaba (1965) to Eqs. (4.15)-(5.10) with the assumption that the differences

(fr+1 − fr),(θr+1 − θr) and all its derivatives are small. We obtain the following equations

(
1 +

1

β

)
f ′′′r+1 + a1,r(η, ξ)f

′′
r+1 + a2,r(η, ξ)f

′
r+1 + a3,r(η, ξ)fr+1

+a4,r(η, ξ)
∂f ′r+1

∂ξ
+ a5,r(η, ξ)

∂fr+1

∂ξ
= a6,r(η, ξ). (6.22)

1

Pr

(
1 +

4

3
K

)
θ′′r+1 + b1,r(η, ξ)θ

′
r+1 + b2,r(η, ξ)

∂θr+1

∂ξ
= b3,r(η, ξ). (6.23)

where

a1,r = fr + ξ
∂fr
∂ξ

(6.24)

a2,r = −
[
2(1 + Λ∗ξ)f ′r + kp +M2 + ξ

∂f ′r
∂ξ

]
(6.25)

a3,r = f ′′r (6.26)

a4,r = −ξf ′r (6.27)

a5,r = ξf ′′r (6.28)

a6,r = frf
′′
r − (1 + Λ∗ξ)(f ′r)

2 − sin ξ

ξ
θr − ξ

(
∂f ′r
∂ξ
− f ′′r

∂fr
∂ξ

)
(6.29)

b1,r = fr + ξ
∂fr
∂ξ

(6.30)

b2,r = −ξf ′ (6.31)

b3,r = −Ecξ2
[
(1 +

1

β
)(f ′′r )2 +M2(f ′r)

2

]
(6.32)

The solution for the now linear partial differential Eq. (6.22)-(6.23) is obtained by approxi-

mating the exact solutions of f(η, ξ) and θ(η, ξ) by the Lagrange form of polynomial F (η, ξ)

and Θ(η, ξ) at the selected collocation points
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0 = ξ0 < ξ1 < ξ2 < · · · < ξNξ = 1

The approximation for f(η, ξ) and θ(η, ξ) has the form

f(η, ξ) ≈
Nξ∑
j=0

F (η, ξj)Lj(ξ) =

Nξ∑
j=0

Fj(η)Lj(ξ), (6.33)

θ(η, ξ) ≈
Nξ∑
j=0

Θ(η, ξj)Lj(ξ) =

Nξ∑
j=0

Θj(η)Lj(ξ). (6.34)

where Fj(η) = F (η, ξj) and Θj(η) = Θ(η, ξj), Lj is the characteristic Lagrange cardinal

polynomial defined as

Lj(ξ) =
M∏

k=0,k 6=j

ξ − ξk
ξj − ξk

, (6.35)

that obey the Kronecker delta equation

Lj(ξk) = δjk =


0 if j 6= k

1 if j = k
(6.36)

The equations for the solution of Fj(η) and Θj(η) are obtained by substituting Eqs. (6.33)-

(6.34) into Eqs. (6.22)-(6.23) and letting the equations be satisfied at the points ξi, i =

0, 1, 2, . . . , Nξ. To compute the derivatives of the Lagrange polynomial analytically we trans-

form ξ ∈ [0, Lξ] to ζ ∈ [−1, 1] then choose Chebyshev-Gauss-Lobatto points ζi = cos iπ
Nξ

.

After using linear transformation ξ = Lξ(ζ + 1)/2, the derivatives of f ′ with respect to the

collocation points ζj is computed as

∂f ′

∂ξ
|ξ=ξi = 2

Nξ∑
j=0

F ′j(η)
dLj
dζ

(ζi) =

Nξ∑
j=0

di,jF
′
j(η), i = 0, 1, 2, . . . , Nξ, (6.37)

where di,j =
dLj
dζ

(ζi)(i = 0, 1, . . . , Nξ) are entries of the standard Chebyshev differentiation

matrix, d = 2
Lξ
d. We now apply the collocation (η, ξi) in Eqs. (6.22)-(6.23) we obtain
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(
1 +

1

β

)
F ′′′r+1,i(η) + a

(i)
1,rF

′′
r+1,i(η) + a

(i)
2,rF

′
r+1,i(η) + a

(i)
3,rFr+1,i(η)

+a
(i)
4,r

Nξ∑
j=0

di,jF
′
r+1,i(η) + a

(i)
5,r

Nξ∑
j=0

di,jFr+1,i(η) = a
(i)
6,r. (6.38)

1

Pr

(
1 +

4

3
K

)
Θ′′r+1,i(η) + b

(i)
1,rΘ

′
r+1,i(η) + b

(i)
2,r

Nξ∑
j=0

di,jΘr+1,i(η) = b
(i)
3,r. (6.39)

where a
(i)
k,r = ak,r(η, ξi) (k = 1, 2, 3, 4, 5, 6) and b

(i)
k,r = bk,r(η, ξi) (k = 1, 2, 3). The

equations (6.12)-6.14 are solved for ξ = 0(ζ = ζNξ) using the spectral quasi-linearization

method, this is then solved like a PDE with initial conditions. We evaluate Eqs. (6.38)-

(6.39) for i = 0, 1, . . . , Nξ − 1 the system becomes

(
1 +

1

β

)
F ′′′r+1,i + a

(i)
1,rF

′′
r+1,i + a

(i)
2,rF

′
r+1,i + a

(i)
3,rFr+1,i + a

(i)
4,r

Nξ−1∑
j=0

di,jF
′
r+1,i

+a
(i)
5,r

Nξ−1∑
j=0

di,jFr+1,i = a
(i)
6,r − a

(i)
4,rdi,NξF

′
r+1,Nξ

− a(i)5,rdi,NξFr+1,Nξ . (6.40)

1

Pr

(
1 +

4

3
K

)
Θ′′r+1,i + b

(i)
1,rΘ

′
r+1,i + b

(i)
2,r

Nξ−1∑
j=0

di,jΘr+1,i = b
(i)
3,r − b

(i)
2,rdi,NξΘr+1,Nξ .(6.41)

For each ξi, the Eqs. (6.40)-(6.41) forms a system of linear ordinary differential equa-

tions with variable coefficients. In this system we apply the Chebyshev spectral colloca-

tion independently in the η direction by choosing Nη + 1 Chebyshev-Gauss-Lobatto points

0 = η0 < η1 < η2 < · · · < ηNη = ηe, where ηe is a finite value that is chosen to be adequately

large to approximate the conditions at∞. We now implement the collocation in the interval

[0, ηe] on the η− axis which is then transformed into the interval [−1, 1] using a linear trans-

formation η = ηe(τ +1)/2. The collocation points are chosen as τj = cos jπ
Nη

. The derivatives

with respect to η are defined in terms of the Chebyshev differentiation matrix as
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dpF ′r+1,i

dηp

∣∣∣∣
η=ηj

=

(
2

ηe

)p Nη∑
k=0

Dp
j,kFr+1,i(τk) =

[
DpFr+1,i

]
. (6.42)

where p is the order of the derivative, D = 2
ηe
D, (j, k = 0, 1, 2, . . . , Nη) with D being an

(Nη + 1)× (Nη + 1) Chebyshev derivative matrix, and the vector Fr+1,i is defined as

Fr+1,i = [Fr+1,i(τ0), Fr+1,i(τ1), . . . , Fr+1,i(τNη)]
T , (6.43)

Θr+1,i = [Θr+1,i(τ0),Θr+1,i(τ1), . . . ,Θr+1,i(τNη)]
T (6.44)

substituting Eq. (6.42) into Eq. (6.40) we get

A(i)Fr+1,i + a
(i)
4,r

Nξ−1∑
j=0

di,jDFr+1,j + a
(i)
5,r

Nξ−1∑
j=0

di,jFr+1,j = R
(i)
1 . (6.45)

A(i) = (1 +
1

β
)D3 + a

(i)
1,rD

2 + a
(i)
2,rD + a

(i)
2,r, (6.46)

R
(i)
1 = a

(i)
6,r − a

(i)
4,rdi,NξDFr+1,Nξ − a

(i)
5,rdi,NξFr+1,Nξ (6.47)

B(i)Θr+1,i + b
(i)
2,r

Nξ−1∑
j=0

di,jΘr+1,j = R
(i)
2 , (6.48)

B(i) =
1

Pr
(1 +

4

3
K)D2 + b

(i)
1,rD, (6.49)

R
(i)
2 = b

(i)
3,r − b

(i)
2,rdi,NξΘr+1,Nξ . (6.50)

ak,r(k = 1, 2, 3, 4, 5, 6),bk,r(k = 1, 2, 3) is the diagonal matrix with vector

[ak,r(τ0), ak,r(τ1), . . . , ak,r(τNx)]
T and [bk,r(τ0), bk,r(τ1), . . . , bk,r(τNx)]

T . We then obtain a ma-

trix system formed as follows.


A0,0 A0,1 . . . A0,Nξ−1

A1,0 A1,1 . . . A1,Nξ−1
...

...
. . .

...

ANξ−1,0 ANξ−1,1 . . . ANξ−1,Nξ−1




Fr+1,0

Fr+1,1

...

Fr+1,Nξ−1


=


R

(0)
1

R
(1)
1

...

R
(Nξ−1)
1
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B0,0 B0,1 . . . B0,Nξ−1

B1,0 B1,1 . . . B1,Nξ−1
...

...
. . .

...

BNξ−1,0 BNξ−1,1 . . . BNξ−1,Nξ−1




Θr+1,0

Θr+1,1

...

Θr+1,Nξ−1


=


R

(0)
2

R
(1)
2

...

R
(Nξ−1)
2


The above matrix systems can be solved independently to reduce large matrix inversions.

Where

Ai,i = A(i) + a
(i)
4,rdi,iD + a

(i)
5,rdi,i,

Bi,i = B(i) + b
(i)
2,rdi,i i = 0,1, . . . ,Nξ − 1, (6.51)

The off-diagonal entries of AA are expressed as

Ai,j = a
(i)
4,rdi,jD + a

(i)
5,rdi,j, i 6= j

Bi,j = b
(i)
2,rdi,j i 6= j (6.52)

The solution procedure described in this section was used to solve the mathematical

model for free convection of Casson fluid flow from a circular cylinder in porous medium

with radiation, magnetic and viscous dissipation effects. We are therefore ready to report

the results in the next section.

6.6. Results and discussion

The problem that was investigated in this chapter as described in the previous section is

solved using the local linearization method (LLM). In this section we discuss the effects of

Casson parameter β, Forchheimer parameter Λ∗, Darcian drag force coefficient kp, magnetic

parameter M , Prandtl number Pr, radiation parameter K, the Eckert number Ec, suc-

tion/injection parameter fw, velocity slip Sf and thermal slip ST factors, and the transverse

coordinate ξ on the velocity f ′(η) and temperature θ(η) profiles. η is the distance describing
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the boundary layer thickness.

In this section we assume that the Casson fluid discussed covers a wide range of this

type of fluid which normally has a Prandtl number between Pr = 10 at 20oC and Pr = 20

for blood. The Grashof number is fixed at Gr = 10 and Darcy number Da = 0.1 giving a

fixed value kp = 1/DaGr
1
2 = 3. All other parameters are chosen arbitrarily being careful to

stay within the acceptable range of the Casson fluid.

The validation of the numerical method is performed by comparing the results obtained

by the local linearization method (LLM) by those obtained by the successive linearization

method (SLM) as shown in Table 6.1. These results could not be compared to any results

in the literature as Ramachandra et al. (2013a) did not report any numerical results.

Table 6.1: Comparison of the values of skin friction coefficient and heat transfer coefficients
obtained by LLM with SLM for 1/β = Λ∗ = kp = M = ξ = K = fw = Sf =
ST = 0

SLM LLM
Pr f ′′(0) − θ′(0) f ′′(0) − θ′(0)
1 0.87100777 0.42143140 0.81700776 0.42143144
10 0.54471433 0.88046306 0.54471422 0.88046307

To understand the behavior of the velocity and temperature profiles the illustrations for

the numerical solution obtained are depicted as graphs in Figures 6.2 - 6.8.
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Figure 6.2: Effects of Casson parameter on velocity profiles f ′(η, ξ) for different values of

the Forchheimer parameter Λ∗ and Sf , at kp = 3, K = 0.5, P r = 5, Ec =

1,M = 1, fw = 0.5, ST = 0.5

Figure 6.2 shows the influence of Casson parameter β on velocity and temperature

profiles f ′(η) at different values of the Forhheimer parameter Λ. The case Λ = 0 corresponds

to no inertia or no transpiration. It can be seen from the graph that increasing the Casson

parameter increase velocity profiles close to the surface as would be expected (see section

5.5). We note the reverse effect resulting in the thinning of the momentum boundary layer.

This reverse effect noticed is caused by the presence of the magnetic effect. Ramachandra

et al. (2013a) did not obtain at reverse effect because of the absence of the magnetic field.
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Figure 6.3: Effects of Casson parameter on temperature profiles θ(η, ξ) for different values

of the thermal slip parameter ST and Sf , at kp = 3, K = 0.5, P r = 5, Ec =

1,M = 1, fw = 0.5.

The variation of Casson parameter β on temperature profiles at different values of the

thermal slip factor ST is shown in Figure 6.3. It can be seen from the graph that increasing

the Casson parameter decrease temperature profiles as discussed in section 5.5. It is noted

that increasing the thermal slip factor result in the decrease of temperature profile. The

highest temperature associated with no-slip (ST = 0) and minimum temperature associated

with the strongest thermal slip (ST = 0.5). The temperature profiles are strongly depressed

with increasing thermal slip with the highest effect noticed at the wall of the circle. We can

thus interpret an increase in the thermal slip factor ST as having the effect of reducing the

heat transfer from the surface of the circle to the fluid.
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Figure 6.4: Effects of radiation parameter on velocity profiles f ′(η, ξ) for different values of

the velocity slip factor Sf , at kp = 3, K = 0.5, P r = 5, Ec = 1, fw = 0.5, ST =

0.5, β = 2

The variation of the radiation parameter K on velocity profiles for different values of

the velocity slip factor Sf as shown in Figure 6.4. The effect of the radiation parameter K

on velocity profiles is experienced indirectly via coupling of the momentum equation and

the energy equation. It can be seen from the Figure that increasing the radiation parameter

result in the increase in temperature profiles. This is interpreted as the motion caused

by higher temperatures induced in the fluid. It is also noted that this does not affect the

boundary layer thickness. It can be seen that increasing the velocity slip factor Sf result in

increasing the velocity profiles. This is to be expected because increasing the velocity slip

factor would have an effect of assisting the flow, in particular it decreases the shear stress at

the wall and a slip is facilitated. The case Sf = 0 corresponds to the no-slip condition.
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Figure 6.5: Effects of magnetic parameter on temperature profiles θ(η, ξ) for different values

of the thermal slip parameter ST and Sf , at kp = 3, K = 0.5, P r = 5, Ec =

1, fw = 0.5, β = 2

The variation of the magnetic parameter M on temperature profiles for different values

of the thermal slip factor is shown in Figure 6.5. Increasing the magnetic parameter increase

the temperature profiles. In this figure we note the smooth decays of the temperature profiles;

this shows an excellent convergence of the numerical solution. We also note that the effect

of the magnetic parameter is more pronounced in the case of the thermal slip condition

(ST = 0.5) than in no-slip condition (ST = 0).

139



Chapter 6 – Effects of radiation on MHD free convection of Casson fluid from
a horizontal circular cylinder with partial slip in non-Darcy porous medium
with viscous dissipation

Figure 6.6: Effects of Darcian drag force coefficient kp on velocity and profiles f ′(η, ξ) for

different Sf , at β = 2, kp = 3, K = 0.5, P r = 5, Ec = 1,M = 1, fw = 0.5, ST =

0.5

The variation of the Darcian drag force coefficient kp on velocity profiles f ′(η) for differ-

ent values of the suction/injection parameter fw is shown in Figure 6.6. It can be seen that

increasing the Darcian drag force coefficient result in the decrease of velocity profiles. In this

case the Darcian drag force coefficient kp is inversely proportional to the Darcy number Da.

This relationship suggests that increasing the Darcian drag force coefficient would have an

effect of reducing the Darcy number associated with the permeability of the porous medium.

This in turn affects the velocity of the fluid. We also note that velocity profiles are more

pronounced for the case of injection fw = −0.5 than in the case of suction fw = 0.5. The

same observation was noted by Chamkha (2003).

140



Chapter 6 – Effects of radiation on MHD free convection of Casson fluid from
a horizontal circular cylinder with partial slip in non-Darcy porous medium
with viscous dissipation

Figure 6.7: Effects of radiation parameter K on temperature profiles θ(η, ξ) for different

ST , at β = 2, kp = 3, K = 0.5, P r = 5, Ec = 1,M = 1, fw = 0.5, ST = 0.5

The variation of the radiation parameter K on temperature profiles for different values

of the thermal slip factor as shown in Figure 6.7. It can be seen from this figure that

increasing the radiation parameter K result in the increase temperature profiles. We can

thus interpret an increase in the radiation parameter as having an effect of increasing the

conduction effect, this in turn cause the temperature to increase at every point away from

the circular surface. It is also noted that there is a variation of the initial temperature at

the surface of the circle under slip conditions (ST = 0.5) and no variation under the no-slip

condition (ST = 0).
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Figure 6.8: Effects of magnetic parameter M on velocity profiles f ′(η, ξ) for different values

of Sf at β = 2, kp = 3,Λ∗ = 0.5, K = 0.5,M = 1, K = 0.5, P r = 5, ST = 0.5

The variation of the magnetic parameter M on velocity profiles for different values of the

velocity slip factor Sf as shown in Figure 6.8. It can be seen from the graph that increasing

the magnetic parameter result in suppressing velocity profiles as discussed in section 5.5. It

is noted that in this figure the maximum velocity is moved close to the boundary due to the

effect caused by the slip.
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Figure 6.9: Effects of Eckert number Ec on temperature profiles θ(η, ξ) for different values

of the suction/injection parameter fw at β = 2, kp = 3,Λ∗ = 0.5, K = 0.5,M =

1, K = 0.5, P r = 5, ST = 0.5

The variation of the Eckert number Ec on temperature profiles for different values of

suction/injection parameter fw as shown in Figure 6.9. It can be seen from the figure that

increasing the Eckert number result in the increase in temperature profiles. We can thus

interpret that increasing the Eckert number which represents viscous dissipation as having

an effect of increasing the temperature of the fluid. We note the transition from heat transfer

from the surface to the fluid to the heat transfer from the fluid to the surface. This can be

deduced from the change on the wall temperature gradient from negative (Ec = 1) to positive

Ec = 2. It is also noted that under suction (fw > 0) there is no transition in heat flow. The

wall temperature gradient is negative for all values of the Eckert number Ec meaning that

the heat is transferred from the surface to the fluid.
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Figure 6.10: Skin friction coefficient against transverse coordinate ξ for different Sf at

β = 2, kp = 3, K = 0.5,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

Figure 6.10 shows the plot of the skin friction coefficient related to −(1 + 1/β)f ′′(0)

against the non-dimensional transverse distance ξ for different values of the velocity slip

factor Sf . It can be seen that increasing the velocity slip factor result in the decrease in skin

friction coefficient. This is to be expected because increasing the velocity slip factor would

have an effect of lubricating the surface as also reported by Ramachandra et al. (2013),

thereby reducing the skin friction coefficient. Increasing ξ results in decreasing the skin

friction coefficient, this is because the contact of the fluid and the circle is maximum at the

origin and this contact reduces with the increase in the transverse coordinate.
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Figure 6.11: Skin friction coefficient against transverse coordinate ξ for different ST at

β = 2, kp = 3, K = 0.5,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

Figure 6.11 shows the plot of skin friction coefficient related to −(1 + 1/β)f ′′(0) against

the non-dimensional transverse distance ξ for different values of the thermal slip factor ST . It

can be seen from the figure that increasing the thermal slip factor ST results in the increase

in the skin friction coefficient. This is to be expected because increasing the thermal slip

factor ST would have an effect of reducing heat transfer to the fluid, this effect does not

affect the skin friction coefficient at the surface.
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Figure 6.12: Heat transfer coefficient against transverse coordinate ξ for different Sf at

β = 2, kp = 3, K = 0.5,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

The plot of heat transfer coefficient −θ′(0) against ξ for different values of the velocity

slip factor Sf is shown in Figure 6.11 It can be seen from the figure that increasing the

velocity slip factor Sf result in the increase in the heat transfer coefficient. This is to be

expected because increasing the velocity slip factor Sf would have an effect of reducing the

shear stress, this effect permits effective heat transfer of heat from the wall to the fluid.

Heat transfer coefficient decreases with increasing transverse distance ξ. This is caused by

the fact that as the fluid loses contact with the cylinder with increasing ξ, heat transfer is

not facilitated.
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Figure 6.13: Heat transfer coefficient against transverse coordinate ξ for different ST at

β = 2, kp = 3, K = 0.5,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

Figure 6.13 shows the plot of heat transfer coefficient related to −θ′(0) against the non-

dimensional transverse coordinate ξ for different values of the thermal slip factor ST . It can

be seen from the figure that increasing the thermal slip factor ST result in the decrease in the

heat transfer coefficient. This is to be expected because increasing the thermal slip factor

ST would have an effect of reducing heat transfer to the fluid, this effect does not affect the

heat transfer coefficient at the surface. Heat transfer is reduced as the distance ξ increases.
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Figure 6.14: Skin friction coefficient f ′′(0) against radiation parameter K for different Sf

at β = 2, kp = 3,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

The plot of skin friction coefficient −(1 + 1/β)f ′′(0) against radiation parameter K for

different values of the velocity slip factor Sf is shown in Figure 6.14 It can be seen from

the figure that increasing the velocity slip factor Sf result in the decrease in skin friction

coefficient. This is to be expected because increasing the velocity slip factor Sf would have an

effect of reducing the shear stress, this effect lubricates the surface thereby reducing the skin

friction coefficient. Skin friction coefficient increases with increasing radiation parameter K.
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Figure 6.15: Heat transfer coefficient −θ′(0) against radiation parameter K for different

Sf at β = 2, kp = 3,M = 1, P r = 5, Ec = 1, fw = 0.5,Λ∗ = 0.5

Figure 6.15 shows the plot of heat transfer coefficient related to −θ′(0) against the

radiation parameter K for different values of the velocity slip factor Sf . It can be seen from

the figure that increasing the thermal slip factor ST result in the increase in the heat transfer

coefficient. Increasing the radiation parameter K decrease the heat transfer coefficient; this is

to be expected because increasing the radiation parameter would have an effect of increasing

the temperature of the fluid. This would reduce heat transfer from the surface to the fluid.

6.7. Summary

The problem of the effects of radiation on magnetohydrodynamic free convection of Casson

fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium was

studied. Some physical aspects were considered; increasing the Casson parameter result in

the increase in the velocity profiles but reduce temperature profiles. Increasing the radiation

parameter result in the increase in the both velocity and temperature profiles. Increasing the

magnetic parameter increase temperature profiles but reduces velocity profiles. Increasing

the Eckert number increases the temperature profiles. Increasing the Forchheimer parameter
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increase the velocity profiles. Increasing the thermal slip factor reduce the temperature

profiles while increasing the velocity slip factor increase velocity profiles. Blowing tend to

assist the fluid flow while suction reduce velocity profiles.

The problem that was considered in this chapter is a unique non-similar differential

equation. Problems of this type pose a challenge in solving them. The method which is

normally used is the Keller-box method which is rigorous and less accurate than the spectral

methods. We solve this problem using the local linearization method (LLM). The use of this

method in such problems is fairly new.

In this chapter the local linearization method (LLM) is used to find solutions of the

governing equations. The problem consists of two coupled partial differential equations

differential equations, which are normally solved by the Keller-box method. The Keller-

box method involves rigorous finite differences and large block matrices which require both

considerable computation time and memory. Consequently, we applied the LLM. It was

deduced that the LLM converged faster than both the SLM. The LLM solution rapidly

converged to the solution. The numerical solutions obtained by LLM were compared to

those obtained by the successive linearization method; they were found to be in excellent

agreement.
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Effects of radiation on free convection

from a spinning cone with partial slip in

Casson fluid in non-Darcy porous

medium with cross diffusion and viscous

dissipation

7.1. Introduction

In this chapter we investigate the problem of free convection from a spinning cone in Casson

fluid with partial slip, radiation, porous medium, cross diffusion and viscous dissipation

effects. In this study the governing equations are transformed to a system of coupled and

nonlinear differential equations. These equations are solved by spectral relaxation method

(SRM) (see section 1.1.8). In this chapter we demonstrate the implementation of this method

and show the use of the successive over-relaxation (SOR) to accelerate convergence. The

accuracy of the method is determined by comparison with the Matlab bvp4c and related

results in the literature.

7.2. Review of literature on Casson fluid from a spinning cone

In this chapter we review literature concerning the problem of free convection from a spinning

cone in Casson fluid with partial slip, radiation, porous medium cross diffusion and viscous
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dissipation. We begin by discussing flow past spinning cones and cross diffusion effects.

Further to the studies on radiation and viscous dissipation effects (Chapter 3), free convection

and porous medium (Chapter 4), flow of Casson fluid (Chapter 5) and partial slip (Chapter

6) previously discussed, we briefly review each of these again.

The problem of heat and mass transfer in spinning objects is important. In particular, in

the design of cooking machinery and movement of automotive parts in engines. These designs

incorporate different solid shapes including spinning cones immersed in lubricants. It is

important how heat is generated at these surfaces, the partial slip due to these lubricants and

the presence of solid particles in the ambient fluid. Other examples arise in the formation of

microstructures, cooling of molten metals and fluid flowing close to shrouded fins (Narayana

et al. 2013).
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In free convection, a heated surface of a cone embedded in a fluid cause a fluid flow

around it. The movement of the cone in the form of a rotation or spin will affect the flow of

the fluid around it. In the study of fluid flow around spinning objects, it is often necessary

to consider the effect of spinning on fluid flow. Earlier work include the work of Agarwal

and Rakich (1982) who investigated hypersonic laminar viscous flow past spinning cones at

angle of attack, the study revealed that, the spinning effect affects fluid flow. Other studies

which corroborate these findings include the works of Datta (1964) Reiner-Rivlin fluid flow

over a spinning cone, Dinarvand et al. (2014) micropolar fluid flow over a spinning cone,

Kumar and Sivaraj (2012) viscoelastic fluid flow along a moving cone. In this chapter we

consider natural convection from a spinning cone with cross diffusion effects.

The mass flux caused by the temperature gradient result in the Soret effect sometimes

called thermal-diffusion or thermophoresis effect. The thermophoretic force due to tempera-

ture gradients causes the movement of solute in the fluid flow regime. The energy flux caused

by concentration gradient result in the Dufour effect sometimes called diffusion-thermo ef-

fect (Narayana et al. 2013). The combination of these phenomena is called cross-diffusion.

These effects are generally neglected in many studies; in light of this it is necessary to con-

sider these aspects in this study. Cross diffusion effects have been studied by among others

Awad et al. (2011) who studied convection from an inverted cone in a porous medium with

cross diffusion effects, Hayat et al. (2010) investigated heat and mass transfer for Soret and

Dufour effects on mixed convection boundary layer flow over a stretching vertical surface in a

porous medium filled with viscoelastic fluid. Cheng (2010) studied Soret and Dufour effects

on free convection boundary layer over a vertical cylinder in a saturated porous medium.

The cross diffusion effects considered in this chapter are studied together with natural or

free convection.

Natural or free convection in fluid flow is a flow caused by density differences between

the flow surface and a distance away from it caused by a temperature gradient. This process

creates a buoyant force causing fluid flow. Casson fluid flow can be buoyant driven and this

situation is found in many practical applications such as soup simmering in a pot, effect

of application of heat on blood and synovial fluid in humans, flow of sewage sludge on

heated surfaces. Further to the studies discussed in Chapter 4, natural or free convection
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has been studied by many authors among others Alim et al. (2006) natural convection from

a vertical cone, Anilkumar and Roy (2004) mixed convection flow on a rotating cone, Cheng

(2011a) natural convection over a vertical cone, Cheng (2011b) natural convection from a

permeable cone, Takhar et al.(1988), free convection from a slender cone, Saleh (2005) natural

convection from a cone and wedge and Chamkha and Rashad (2012) natural convection

from a vertical permeable cone. In this chapter we consider the effects of radiation, viscous

dissipation, porous medium and Casson fluid flow which have been discussed in Chapters 4,

5 and 6.

As can be seen from the literature cited above, it appears no analysis has been pub-

lished in the problem of free convection from a spinning cone in Casson fluid with cross

diffusion, partial slip, radiation, porous medium and viscous dissipation effects, under the

given boundary conditions. Velocity slip, rotational slip, thermal slip and solutal slip factors

are considered. Suction and injection is considered at the surface of the cone. The free

stream conditions are assumed to be at lower states that those at the surface. The work in

this chapter is extended from the work of Narayana et al. (2013) which considered a spinning

cone in a Newtonian fluid.

In brief, this section has shown that firstly considering a spinning cone is necessary,

secondly, cross diffusion effects is also required and finally the use of the spectral relaxation

method to solve the system of ordinary differential equations. In this chapter we also demon-

strate the use of the successive over-relaxation technique to accelerate convergence. In this

chapter we consider a spinning cone in Casson fluid and the effects of partial slip, porous

medium, cross diffusion and viscous dissipation on flow characteristics. These aspects will

be considered in the mathematical formulation of free convection flow of Casson fluid from

a spinning cone.

7.3. Mathematical formulation of Casson fluid flow from a spinning

cone

We consider a two dimensional downward pointing spinning cone in Casson fluid in porous

medium as shown in Figure 7.1. The origin of the system is located at the cone vertex. The
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angular velocity of rotation is given by Ω. The cone vertex angle is 2θ∗. The x axis is taken

along the surface of the cone and the y axis perpendicular to the x axis from the origin.

x

y

z

Ω

T
∞

C
∞

T=T
w

+K
0
(∂ T/∂ y)

C=C
w

+F
0
(∂ C/∂ y)

u= N
0
(1+1/β)(∂ u/∂ y)

g

w=rΩ + R
0
(1+1/β)(∂ w/∂ y)

Casson fluid

Figure 7.1: Schematic diagram of the spinning cone

The temperature at the surface of the cone is Tw (> T∞). The solute concentration is

considered to be Cw (> C∞) at the surface of the cone and C∞ the concentration in the

ambient fluid. Velocity, rotational, thermal and solutal slip factors are considered at the

surface of the cone.

The rheological equation of state for an isotropic and incompressible flow of a Casson

fluid is given as in Mukhopadhyay et al. (2013) and Mukhopadhyay and Vejrravelu (2013)

by:

τij =


2(µB +

Py√
2π

)eij, π > πc

2(µB +
Py√
2πc

)eij, π < πc

(7.1)

π = eijeij and eij is the (i, j)th component of the deformation rate, π is the product

of the deformation rate with itself, πc is a critical value of this product based on the non-

Newtonian model, µB is the plastic dynamic viscosity of the non-Newtonian fluid, Py is the

yield stress of the fluid. Accordingly, under the usual boundary layer approximations, and

subject to radiation, cross diffusion, viscous dissipation effects, the governing equations of
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the momentum, energy and mass transfer equations are given as (see Narayana et al., 2013);

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (7.2)

u
∂u

∂x
+ v

∂u

∂y
− w2

x
= ν(1 +

1

β
)
∂2u

∂y2
+ gβT (T − T∞) cos θ∗

+gβC(C − C∞) cos θ∗ − ν

K̄
u (7.3)

u
∂w

∂x
+ v

∂w

∂y
+
uw

x
= ν(1 +

1

β
)
∂2w

∂y2
− ν

K̄
w (7.4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ D̄

∂2C

∂y2
− 1

ρCp

∂qr
∂y

+
ν

ρCp
(1 +

1

β
)

(
∂u

∂y

)2

(7.5)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ S̄

∂2T

∂y2
(7.6)

where u, v and w are the velocity components in the x, y and z directions respectively,

the radius of the cone r = x sin θ∗, ν is kinematic viscosity of Casson fluid, β = µB
√

2πc/Py

is the non-Newtonian Casson parameter, α = k/ρCp is the thermal diffusivity, k is thermal

conductivity of the fluid, qr is the radiative heat flux. Cp is the specific heat. g is the acceler-

ation due to gravity, βT and βC are respectively the coefficients of thermal and concentration

expansions, T is the temperature of the fluid, C is the solute concentration in the boundary

layer, D is the mass diffusivity, S̄ and D̄ are Soret and Dufour coefficients respectively. The

Rosseland approximation for radiation may be written as follows;

qr = −4σ∗

3k∗
∂T 4

∂y
(7.7)

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If the

temperature difference within the flow is such that T 4 may be expanded in Taylor series about

T∞ and neglecting higher powers we obtain T 4−4T 3
∞−3T 4

∞ and therefore the equation (4.9)

can be written as

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ D̄

∂2C

∂y2
+

16σ∗T 3
∞

3ρCpk∗
∂2T

∂y2
(7.8)
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The boundary conditions are given as

u = N0(1 +
1

β
)
∂u

∂y
, v = −vw, w = rΩ +M0(1 +

1

β
)
∂w

∂y
,

T = Tw +K0
∂T

∂Y
, C = Cw + F0

∂C

∂Y

 y = 0, (7.9)

u→ 0, w → 0, T → T∞, C → C∞ as y →∞. (7.10)

where the subscripts w and ∞ refer to surface the free stream conditions respectively,

N0,M0, K0 and F0 are the velocity, rotational, thermal and solutal slip coefficients respec-

tively.

we introduce the non-dimensional variables

(X, Y,R) =

(
x, yGr

1
4 , r

L

)
, (U, V ) =

(
u, vGr

1
4

U0

)
,

W =
w

ΩL
T̄ =

T − T∞
Tw − T∞

, C̄ =
C − C∞
Cw − C∞

U0 = [gβT (Tw − T∞) cosψL]
1
2 ,

Da =
K

L2
, Gr = (

U0L

ν
)2


(7.11)

The governing Eqs. (7.12) -(7.16) reduce to

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (7.12)

U
∂U

∂X
+ V

∂U

∂Y
− Re2

Gr

W 2

X
= (1 +

1

β
)
∂2U

∂Y 2
+ T̄ +NC̄ − kpU (7.13)

U
∂W

∂X
+ V

∂W

∂Y
+
UW

X
= (1 +

1

β
)
∂2W

∂Y 2
− kpW (7.14)

U
∂T̄

∂X
+ V

∂T̄

∂Y
=

1

Pr
{∂

2T̄

∂Y 2
+Df

∂2C̄

∂Y 2
}+

4K

3Pr

∂2T

∂Y 2
+ Ec

(
1 +

1

β

)(
∂U

∂Y

)2

(7.15)

U
∂C̄

∂X
+ V

∂C̄

∂Y
=

1

Sc
{∂

2C̄

∂Y 2
+ Sr

∂2T̄

∂Y 2
} (7.16)

The non-dimensional parameters in Eqs. (7.12)- (7.16) are the rotational Reynolds

number Re, Grashof number Gr, the Prandtl number Pr, Dufour parameter Df , the Eckert

157



Chapter 7 – Effects of radiation on free convection from a spinning cone with
partial slip in Casson fluid in non-Darcy porous medium with cross diffusion
and viscous dissipation

number Ec, the Schmidt number Sc and Soret parameter Sr. These parameters are defined as

Re =
ΩL2

ν
, N =

βC
βT

(
Cr − C∞
Tr − T∞

)
, K =

4σ∗T 3
∞

k∗Gr
1
4

Pr =
ν

α
, Sc =

ν

D
,

Ec =
U2
0

Cp(Tw − T∞)
, Df =

D̄

α

(
Cr − C∞
Tr − T∞

)
, Sr =

S̄

D

(
Tr − T∞
Cr − C∞

)
.

The boundary conditions of Eqs. (7.12)- (7.16) are given by

U = Sf

(
1 +

1

β

)
∂U

∂Y
, V = Vw, W = R + Sg

(
1 +

1

β

)
∂W

∂Y
, T̄ = 1 + ST

∂T̄

∂Y
,

C̄ = 1 + Sco
∂C̄

∂Y
at Y = 0 (7.17)

U → 0, W → 0, T̄ → 0, C̄ → 0 as Y →∞. (7.18)

Introducing the stream function ψ(X, Y ) and similarity variables

U =
1

R

∂ψ

∂Y
and V = − 1

R

∂ψ

∂X
(7.19)

ψ(X, Y ) = XRf(Y ), W (X, Y ) = Rg(Y ),

T̄ (X, Y ) = Xθ(Y ), C̄(X, Y ) = Xφ(Y ). (7.20)

Using the stream function defined in Eq. (7.19) and similarity variables in Eq. (7.20),

Eqs. (7.12)- (7.16) together with boundary conditions Eqs. (7.17) and (7.18) reduces to the

following system of ordinary differential equations.

(
1 +

1

β

)
f ′′′ + 2ff ′′ − f ′2 + εg2 + θ +Nφ− kpf ′ = 0, (7.21)(

1 +
1

β

)
g′′ + 2fg′ − 2f ′g − kpg = 0, (7.22)

(1 +
4

3
K)θ′′ + Pr(2fθ′ − f ′θ) +Dfφ

′′ + EcPr

(
1 +

1

β

)
f ′′2 = 0, (7.23)

φ′′ + Sc(2fφ′ − f ′φ) + Srθ
′′ = 0 (7.24)
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with boundary conditions;

Y = 0, f = fw, f ′ =

(
1 +

1

β

)
Sff

′′, g = 1 +

(
1 +

1

β

)
Sgg

′

θ = 1 + ST θ
′, φ = 1 + Scoφ

′, (7.25)

Y →∞, f ′ → 0, g → 0, θ → 0. φ→ 0. (7.26)

where β is the Casson parameter, ε is the spin parameter, kp = 1/DaGr
1
2 is the Darcian

drag force coefficient, Da is the Darcy number, Pr is the Prandtl number, Df is the Dufour

number, Ec is the Eckert number, Sc is the Schmidt number and Sr is the Soret number. In

the above equations the primes refer to the derivative with respect to Y , Sf = N0Gr
1
4/L, Sg =

M0Gr
1
4/L, ST = kGr

1
4/L and Sco = F0Gr

1
4/L are the non-dimensional velocity, rotational,

thermal and solutal slip parameters respectively. The parameter fw is the blowing/suction

parameter. The case fw < 0 represents blowing and fw > 0 represents suction.

7.4. Skin friction, heat transfer and mass transfer coefficients

The engineering parameters of interest are the local skin friction, heat transfer and mass

transfer coefficients which are defined as follows. The shear stress at the surface of the cone

is given by (see Narayana et al., 2013)

τw = µ

[(
1 +

1

β

)
∂u

∂y

]
y=0

=
µ
(

1 + 1
β

)
U0

LGr−
1
4

Xf ′′(0), (7.27)

where µ is the coefficient of viscosity, The skin friction coefficient is given by,

Cf =
τw

1
2
ρU2

0

. (7.28)
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Using Eqs. (7.27) and (7.28) gives

CfGr
1
4 = 2(1 +

1

β
)Xf ′′(0). (7.29)

The heat transfer from the cone surface into the fluid is given by

qw = −k
[
∂T

∂y

]
y=0

=
−k(Tw − T∞)

LGr−
1
4

Xθ′(0), (7.30)

where k is the thermal conductivity of the fluid. The heat transfer coefficient (Nusselt

number) under linear surface temperature (LST) is given by

Nu =
L

k

qw
Tw − T∞

. (7.31)

Using Eqs. (7.30) and (7.31) gives

NuGr−
1
4 = −Xθ′(0). (7.32)

The mass flux at the cone surface into the fluid is given by

Jw = −D
[
∂C

∂y

]
y=0

=
−D(Cw − C∞)

LGr−
1
4

Xφ′(0), (7.33)

The mass transfer coefficient (Sherwood number) is given by

Sh =
L

D

Jw
Cw − C∞

. (7.34)
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Using Eqs. (7.33) and (7.34) gives

ShGr−
1
4 = −Xφ′(0). (7.35)

We have derived the skin friction, heat transfer and mass transfer coefficients. We are

now ready to describe the numerical solution procedure for the problem of numerical analysis

of free convection Casson fluid flow from a spinning cone in non-Darcy porous medium with

radiation, partial slip and cross diffusion and viscous dissipation effects.

7.5. Numerical solution procedure

In this section we present the implementation of the spectral relaxation method for the

problem of free convection from a spinning cone with partial slip in Casson fluid in non-

Darcy porous medium with cross diffusion and viscous dissipation. The method is described

in Motsa (2014) and implemented in the works of Shateyi (2013), Kameswaran et al. (2013b)

and Motsa and Makukula (2013). The method is based on the Gauss-Seidel method normally

used to solve a system of linear equations. The system of Eqs. (7.21)-(7.25) can be written

as a numerical scheme.

f ′r+1 = pr, (7.36)(
1 +

1

β

)
p′′r+1 + 2fr+1p

′
r+1 − kppr+1 = p2r − εg2r − θ −Nφr, (7.37)(

1 +
1

β

)
g′′r+1 + 2fr+1g

′
r+1 − 2pr+1gr+1 − kpgr+1 = 0, (7.38)

(1 +
4

3
K)θ′′r+1 + Pr(2fr+1θ

′ − pr+1θr+1) = −Dfφ
′′
r − EcPr

(
1 +

1

β

)
(p′r+1),

2 (7.39)

φ′′r+1 + 2Scfr+1φ
′
r+1 − ScPr+1φr+1 = −Srθ′′r , (7.40)
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with boundary conditions

f(0)r+1 = fw, p(0)r+1 =

(
1 +

1

β

)
Sfp(0)′r+1,

g(0)r+1 = 1 +

(
1 +

1

β

)
Sgg(0)′r+1,

θ(0)r+1 = 1 + ST θ(0)′r+1,

φ(0)r+1 = 1 + Scoφ(0)′r+1, (7.41)

pr+1(∞)→ 0, g(∞)r+1 → 0,

θ(∞)r+1 → 0, φ(∞)r+1 → 0. (7.42)

Applying the Chebyshev pseudo spectral method on Eqs. (7.36) - (4.18) we obtain

A1fr+1 = B1, f(0)r+1 = fw (7.43)

A2pr+1 = B2, p(0)r+1 =

(
1 +

1

β

)
Sfp(0)′r+1 (7.44)

A3gr+1 = B3, g(0)r+1 = 1 +

(
1 +

1

β

)
Sgg(0)′r+1 (7.45)

A4θr+1 = B4, θ(0)r+1 = 1 + ST θ(0)′r+1 (7.46)

A5φr+1 = B5, φ(0)r+1 = 1 + Scoφ(0)′r+1 (7.47)

where
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A1 = D, B1 = pr, (7.48)

A2 =

(
1 +

1

β

)
D2 + 2 diag[fr+1]D− kpI

B2 = p2
r − εg2

r − θr −Nφr, (7.49)

A3 =

(
1 +

1

β

)
D2 + 2 diag[fr+1]D

−
(
2 diag[pr+1]gr+1 − kp

)
I, B3 = 0, (7.50)

A4 = (1 +
4

3
K)D2 + 2Pr diag[fr+1]D− Pr diag[pr+1]I

B4 = −Dfφ
′′
r − EcPr

(
1 +

1

β

)
(p′r+1)

2, (7.51)

A5 = D2 + 2Sc diag[fr+1]D− Sc diag[pr+1]

B5 = −Srθ′′r (7.52)

7.6. Improving the convergence of the spectral relaxation method

(SRM)

In this section we use the concept of successive over-relaxation (SOR) to accelerate the

convergence rate of the spectral relaxation method (SRM). If the general SRM scheme is

given by Eqs. (7.43)-(7.47), then the modified SRM scheme is defined as

A1fr+1 = (1− ω)A1fr + ωB1 (7.53)

A2pr+1 = (1− ω)A2pr + ωB2 (7.54)

A3gr+1 = (1− ω)A3gr + ωB3 (7.55)

A4θr+1 = (1− ω)A4θr + ωB4 (7.56)

A5φr+1 = (1− ω)A5φr + ωB5 (7.57)

where Ai and Bi are matrices and ω is the convergence controlling parameter. By applying

this modified SRM in solving the Eqs. (7.36)-(7.42). Using the values of the controlling

parameter ω = 0.9 (accelerates convergence), ω = 1(usual SRM scheme) and ω = 1.1(slows

down convergence). Figure 7.2 shows the decoupling error Ed against iterations.
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Figure 7.2: Effects of the controlling parameter on decoupling error

In Figure 7.2, the spectral relaxation method (SRM) error reduces with the increasing

number of iterations, showing the accuracy of the spectral relaxation method (SRM). The

decrease in the error shows that the method is convergent and gives stable solutions. It is

also shown that convergence can be controlled obtaining the results in a fewer number of

iterations.

7.7. Results and discussion

The problem that was investigated in this chapter was solved by the spectral relaxation

method (SRM). In this section we will not study the effect of Casson parameter β, Darcian

drag force coefficient kp, radiation parameter K, Prandtl number Pr and suction/injection

parameter fw whose significance has been widely studied in the previous chapters. We focus

on the variation of the , spin parameter ε, buoyancy parameter N , Dufour number Df , Eck-

ert number Ec, Schmidt number Sc, Soret number Sr, velocity slip Sf , rotational slip Sg,

thermal slip ST and solutal slip Sco factors on velocity, temperature and concentration pro-

files. We also study the variation of skin friction, heat transfer and mass transfer coefficients

with other physical parameters.

In this chapter we assume that the Prandtl number is between Pr = 5 at 20oC and

Pr = 20 for blood. The appropriate Grashof number is fixed at Gr = 10 and Darcy number

Da = 0.1 giving a fixed value kp = 1/DaGr
1
2 = 3. All other parameters are chosen arbitrarily
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being careful to stay within the acceptable range of the Casson fluid.

For validation of the numerical method used in this study, results for the skin friction

coefficient f ′′(0) and heat transfer coefficient −θ′(0) for the Newtonian fluid were compared

to those of Narayana et al. (2013) and the SRM, for 1/β → 0, ε = N = K = Df = Sr =

Sc = Ec = 0 and the Darcian drag force terms kpf
′ = kpg = 0. The comparison is shown in

Tables 7.1 -7.2 and it is found to be in excellent agreement to five decimal places.

Table 7.1: Comparison of the values of skin friction f ′′(0) and heat transfer −θ′(0) coeffi-

cients of Narayana et al. (2013) with the SRM

Pr Narayana et al. (2013) Runge-Kutta SRM

f ′′(0)− θ′(0) f ′′(0)− θ′(0)

1 0.68150212 0.63886614 0.68148625 0.63885897

10 0.43327726 1.27552680 0.43327848 1.27552816

The results obtained by this method are discussed in Tables 7.2 and 7.3 and are com-

pared with the results obtained using the spectral relaxation method (SRM) and were found

to be in excellent agreement.

The problem of free convection Casson fluid from a spinning cone in non-Darcy porous

medium with radiation, partial slip, cross diffusion and viscous dissipation effects was solved

numerically using the spectral relaxation method (SRM). The results depicted in Table 7.3

are the results generated by the SRM and the Matlab bvp4c. A tolerance of 10−8 for both

methods was used. Comparison of the basic SRM (ω = 1) of the skin friction coefficient

against those of SRM with (SOR) (ω = 0.9). The advantage of accelerating convergence

is noted in all cases in which the results are obtained accurately in less iterations (see also

Shateyi and Marewo, 2013). The values are generated at selected values of the Darcian drag

force term kp, the Prandtl number Pr and the Casson parameter β. Increasing the kp and

Pr decreases the skin friction coefficient while increasing the Casson parameter increase skin

friction coefficient.
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Table 7.2: Comparison of SRM solutions for the skin friction coefficient f ′′(0) against those

of bvp4c.

kp Pr β SRM(basic) it SRM(SOR) bvp4c

(ω = 1) it (ω = 0.9)f”(0) f”(0)

0 5 2 100 47 0.68148334 0.68148334

1 5 2 66 40 0.55974072 0.55974072

2 5 2 46 35 0.48675875 0.48675875

3 5 2 40 33 0.43677770 0.43677770

1 7 2 50 35 0.40562674 0.40562673

1 8 2 48 33 0.39565072 0.39565073

1 9 2 48 33 0.38695722 0.38695722

1 1 2 61 38 0.35629327 0.35629327

1 1 5 62 37 0.43037422 0.43037422

1 1 9 63 39 0.49760348 0.49760348

In Table 7.3, the heat transfer coefficient decreases with decreasing Darcian drag force

term kp, but increases with increasing both Prandtl Pr and Casson parameter β.
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Table 7.3: Comparison of SRM solutions for the heat transfer coefficient−θ′(0) against

those of bvp4c.

kp Pr β SRM(basic) it SRM(SOR) bvp4c

(ω = 1) it (ω = 0.9)− θ′(0) f”(0)

0 5 2 91 36 0.59446782 0.59446782

1 5 2 62 37 0.52386360 0.52386360

2 5 2 48 36 0.47594764 0.47594764

3 5 2 42 33 0.44000560 0.44000560

1 7 2 50 33 0.96287011 0.96287011

1 8 2 50 33 1.00136750 1.00136750

1 9 2 49 32 1.03638459 1.03638459

1 1 2 61 37 0.52386360 0.52386360

1 1 5 62 39 0.54308263 0.54308263

1 1 9 63 40 0.54968947 0.54968947

We then sought greater insight into the effect of some fluid properties on velocity, heat

and mass transfer. Figures 7.3 - 7.5 show the variation of spin parameter ε, buoyancy

parameter N and rotational slip factor Sg on velocity profiles. Figure 7.6 shows the variation

of the Dufour number Df on the temperature profiles. Figures 7.7-7.9 shows the variation of

the Soret number Sr, concentration slip factor Sco and Casson parameter β on concentration

profiles. Figures 7.10 - 7.12 shows the variation velocity slip factor Sf of velocity profiles

and the variation of thermal slip factor ST and Eckert number Ec on temperature profiles.

These results have been discussed in the previous chapters; they are displayed in this section

to show the accuracy of the spectral relaxation method (SRM). Figures 7.13 - 7.14 shows

the plot of skin friction coefficient f ′′(0) against the Casson parameter β and the radiation

parameter K. Figures 7.15 - 7.16 shows the plot of heat transfer coefficient θ′(0) against

the Casson parameter β and the radiation parameter K. Figures 7.17 - 7.18 shows the

plot of mass transfer coefficient −φ′(0) against the Dufour parameter Df and the radiation

parameter K.
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Figure 7.3: Effect of spin parameter on velocity profiles f ′(η) for β = 2, N = 1, kp =

3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The variation of spin parameter ε on velocity profiles is shown in Figure 7.3. It can

be seen from the graph that increasing the spin parameter result in the increase in velocity

profiles. This is to be expected because increasing the spin parameter would have an effect

of increasing motion in the fluid regime thereby increasing the velocity of the fluid. The

same result was noted in Narayana et al. (2013).
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Figure 7.4: Effect of buoyancy parameter on velocity profiles f ′(η) for β = 2, ε = 2, kp =

3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The effect of the buoyancy parameter N on velocity profiles is shown in Figure 7.4. It
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can be seen from the figure that increasing the buoyancy parameter N result in the increase

in velocity profiles. We thus interpret an increase in the buoyancy parameter N as having

an effect of increasing the concentration gradient, thereby creating an energy flux which in

turn increase fluid motion in the fluid.
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Figure 7.5: Effect of rotational slip factor on velocity profiles f ′(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The effect of the rotational slip factor Sg on velocity profiles is shown in Figure 7.5. It

can be seen from the figure that increasing the rotational slip factor result in the decrease

in the velocity profiles. We can thus interpret an increase in the rotational slip factor as

having an effect of dragging fluid molecules perpendicular to the direction of motion thereby

reducing fluid motion. This result not been reported in the literature.
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Figure 7.6: Effect of Dufour parameter on temperature profiles θ(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, ST = 1, Sco =

1, P r = 5, Sc = 0.7.

The variation of the Dufour number Df on temperature profiles is shown in Figure 7.6.

Increasing the Dufour number results in the increase in temperature profiles. Narayana et

al. (2013) has interpreted a similar finding to show that increasing the Dufour number has

an effect of creating an energy flux caused by concentration gradient thereby causing an

increase in the fluid temperature.
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Figure 7.7: Effect of Soret parameter on concentration profiles φ(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, fw = 0.5, Sf = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The variation of the Soret number Sr on concentration profiles is shown in Figure 7.7.
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Increasing the Soret number results in the increase in concentration profiles. We can thus

interpret that increasing the Soret number has an effect of creating a mass flux caused by

temperature gradient thereby causing an increase in the solute movement in the fluid regime.
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Figure 7.8: Effect of solutal slip factor on concentration profiles φ(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg =

0.5, ST = 1, P r = 5, Sc = 0.7.

The variation of the solutal slip factor Sco on concentration profiles is shown in Figure

7.8. Increasing the solutal slip factor Sco result in the decrease in concentration profiles. We

can thus interpret that increasing the solutal slip factor has an effect of reducing the mass

transfer coefficient at the surface thereby causing a decrease in the solute movement in the

fluid regime.
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Figure 7.9: Effect of Casson parameter on concentration profiles φ(η) for ε = 2, N = 1, kp =

3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The variation of the Casson paramter β on concentration profiles is shown in Figure 7.9.

It can be seen from the figure that increasing the Casson parameter β result in the decrease

in concentration profiles. The effect of Casson parameter indirectly affects the concentration

profiles via coupling. We can thus interpret an increase in the Casson parameter as having

an effect of reducing fluid motion as discussed in the previous chapters, this in turn reduce

mass transfer in the fluid regime.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

η

f
′

 

 
S

f
=0

S
f
=0.2

S
f
=0.4

Figure 7.10: Effect of velocity slip factor on velocity profiles f ′(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.
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Figure 7.11: Effect of thermal slip factor on temperature profiles θ(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg =

0.5, Sco = 1, P r = 5, Sc = 0.7.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

η

θ

 

 

Ec=0

Ec=1

Ec=2

Figure 7.12: Effect of Eckert number on temperature profiles θ(η) for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Df = 0.5, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The variation of velocity slip factor Sf of velocity profiles, thermal slip factor ST on

temperature profiles and Eckert number Ec on temperature profiles are respectively shown

in Figures 7.10 - 7.12. These results have been reported in the previous chapter and show

an excellent agreement. This verifies that the spectral relaxation method is robust and

accurate. In particular Figures 7.10 and 7.11 have been reported in Ramachandra et al.

(2013), showing the same observation. Figure 7.12 has been widely reported in for instance

173



Chapter 7 – Effects of radiation on free convection from a spinning cone with
partial slip in Casson fluid in non-Darcy porous medium with cross diffusion
and viscous dissipation

the works of Makanda et al. (2013), Chen (2010) and Hsiao (2012).

Figure 7.13: Plot of skin friction coefficient −(1 + 1/β)f ′′(0) against Casson parameter

β for different values of the velocity Sf and rotational Sg slip factors for

ε = 2, N = 1, kp = 3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

Figure 7.13 shows the plot of (1 + 1/β)f ′′(0) related to skin friction coefficient against

the Casson parameter β at different values of the velocity slip factor Sf and the rotational

slip factor Sg. In the case of no-slip condition Sf = Sg = 0, it can be seen from the figure

that skin friction coefficient increases with increasing Casson parameter β. Skin friction

coefficient reduces with increasing velocity slip factor as expected on a lubricated surface. At

higher values of the velocity slip factor the skin friction coefficient decreases with increasing

Casson parameter β. Increasing the Casson parameter β would naturally mean that the

fluid becomes Newtonian exerting less force on the surface. The same effect is noted on the

rotational slip factor Sg. We also note that for no-slip condition Sf = Sg = 0, we observe

a decrease in the skin friction coefficient due to the fact that rotational slip factor acts

perpendicular to the flow.
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Figure 7.14: Plot of skin friction coefficient −(1 + 1/β)f ′′(0) against radiation parameter

K for different values of the velocity Sf and rotational Sg slip factors for

β = 2, ε = 2, N = 1, kp = 3, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, ST =

1, Sco = 1, P r = 5, Sc = 0.7.

The plot of skin friction coefficient −(1+1/β)f ′′(0) against the radiation parameter K is

shown in Figure 7.14. It can be seen from the figure that increasing the radiation parameter

K result in the increase in the skin friction coefficient. We can thus interpret an increase in

the radiation parameter as having an effect of having an energy transfer is increase in the

boundary layer, which in turn facilitates motion exerting more stress on the wall. Increasing

the velocity Sf and rotational Sg slip factors results in decreasing the skin friction coefficient.
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Figure 7.15: Plot of heat transfer coefficient−θ′(0) against Casson parameter β for different

values of the thermal ST and solutal Sco slip factors for ε = 2, N = 1, kp =

3, K = 0.5, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, P r =

5, Sc = 0.7.

Figure 7.15 shows a plot of the heat transfer coefficient −θ′(0) against the Casson

parameter β. It can be seen from the figure that increasing the Casson parameter does not

affect the heat transfer coefficient significantly. It is noted that increasing the thermal slip

factor ST significantly reduce the heat transfer coefficient and increasing the concentration

slip factor Sco increase the heat transfer coefficient.
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Figure 7.16: Plot of heat transfer coefficient −θ′(0) against radiation parameter K for

different values of the thermal ST and solutal Sco slip factors for β = 2, ε =

2, N = 1, kp = 3, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg =

0.5, P r = 5, Sc = 0.7.

Figure 7.16 show the plot of heat transfer coefficient −θ′(0) against radiation parameter

K. It is seen in the graph that increasing the thermal slip factor results in the decreases

of the heat transfer coefficient. Increasing the concentration slip factor Sco results in the

increase of the heat transfer coefficient. Increasing the thermal radiation K result in the

reduction of the heat transfer coefficient. We can thus interpret an increase in the thermal

radiation as increasing the fluid temperature thereby resulting in the heat being transferred

from the fluid to the solid surface.

177



Chapter 7 – Effects of radiation on free convection from a spinning cone with
partial slip in Casson fluid in non-Darcy porous medium with cross diffusion
and viscous dissipation

Figure 7.17: Plot of mass transfer coefficient −φ′(0) against radiation parameter K for

different values of the thermal ST and solutal Sco slip factors for β = 2, ε =

2, N = 1, kp = 3, Df = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg =

0.5, P r = 5, Sc = 0.7.

Figure 7.17 shows a plot of the mass transfer coefficient −φ′(0) against the radiation

parameter K. It can be seen from the graph that increasing the concentration slip factor Sco

result in the reduction of the mass transfer coefficient, while increasing the thermal slip factor

ST result in the increase of the mass transfer coefficient. Increasing the thermal radiation

parameter K increase the mass transfer coefficient.
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Figure 7.18: Plot of mass transfer coefficient−φ′(0) against Dufour parameterDf for differ-

ent values of the thermal ST and solutal Sco slip factors for β = 2, ε = 2, N =

1, kp = 3, K = 0.5, Ec = 1, Sr = 0.5, fw = 0.5, Sf = 0.5, Sg = 0.5, P r =

5, Sc = 0.7.

Figure 7.18 shows the plot of the mass transfer coefficient −φ′(0) against the Dufour

number Df . It can be seen from the figure that increasing the Dufour number results in the

decrease of the mass transfer coefficient. We thus interpret an increase in the Dufour number

as having the effect of increasing the energy flux which increases the solute concentration in

the fluid regime, thereby reducing mass transfer into the fluid. Increasing both thermal ST

and concentration Sco slip factors decrease the mass transfer coefficient.

7.8. Summary

The problem of free convection from a spinning cone in Casson fluid with partial slip, ra-

diation effects, cross diffusion and viscous dissipation in non-Darcy porous medium was

considered. Increasing the Casson parameter reduces the concentration profiles. Increasing

the spin parameter increases velocity profiles. Increasing the buoyancy parameter tend to

assist the fluid flow. Increasing the Dufour number increases the temperature profiles. In-

creasing the Soret number results in the increase in the concentration profiles. Increasing

the velocity slip factor result in the increase in velocity profiles. Increasing the thermal slip

factor results in the decrease in the temperature profiles.
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In this chapter we point out the new results on the effects of increasing rotational and

solutal slip factors which have not been previously reported in the literature. Increasing the

solutal slip factor result in the decrease of concentration profiles. Increasing the rotational

slip factor reduce velocity profiles.

In this chapter the spectral relaxation method (SRM) was used to find solutions of the

governing differential equations. The problem consisted of four coupled ordinary differential

equations. The boundary conditions contain the velocity slip and thermal slip factors and

the newly introduced rotational and solutal slip factors. The numerical solution for the

skin friction coefficient f ′′(0) and the heat transfer coefficient −θ′(0) was compared to the

spectral relaxation method (SRM) and to previously published results in the literature and

was found to be in agreement to five decimal places. Furthermore, we demonstrated how to

improve the convergence of the spectral relaxation method. This was done by considering

the concept of the successive over-relaxation. This technique is used to obtain solutions in

less iterations than the ordinary SRM. This shows the robustness of this method which is a

powerful advantage over methods such as finite differences.
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8

Effects of double dispersion on Casson

fluid flow with viscous dissipation and

convective boundary conditions

8.1. Introduction

In this chapter we study the effects of double dispersion in Casson fluid flow with viscous

dissipation and convective boundary conditions. The system of governing equations is trans-

formed to a system of partial differential equations. The equations are solved by the bivariate

quasi-linearization method (BQLM) (see section 1.1.8). The implementation of this method

is also shown in this chapter. The accuracy of the method is determined by comparison with

the Matlab bvp4c and previously published results in the literature.

8.2. Review of literature on double dispersion on Casson fluid flow

In this chapter we review literature about the problem of effects of double dispersion in

Casson fluid flow with viscous dissipation and convective boundary conditions. We start by

discussing the concept of double dispersion, convective boundary conditions and flow from a

vertical plate. Further to the studies encountered in the previous chapters, we briefly discuss

Casson fluid flow and viscous dissipation.

The study of the double dispersion has become popular due to its interesting and impor-

tant engineering and environmental applications. Engineering applications such as under-
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ground spreading of chemical waste and other pollutants, grain storage, evaporation, cooling

and solidification, thermal energy storage system such as solar ponds; heat transfer from

thermal sources such as condensers of power plants and environmental related application

such as heat rejection into lakes, rivers and seas (El-Amin et al., 2008). The fluid flow in

this study is driven by the action of buoyancy forces as a result of combined effect of both

heat and concentration on the density of the fluid.

Dispersion in fluid flow is the mechanical movement of heat and solute in the flow

regime. ’Dispersion’ is often confused with ’diffusion’, diffusion is the movement caused

by the Brownian motion which is the random movement of fluid molecules. The study of

double dispersion has been studied by among others, Narayana and Murthy (2006) who

studied the heat and mass transfer in a double stratified non-Darcy porous medium. Kairi

and Murthy (2009) investigated free convection in a thermally stratified non-Darcy porous

medium. The effect of the double dispersion in a micropolar fluid has been studied by

Srinivasacharya and RamReddy (2011). Murthy et al. (2013) investigated the effect of

thermal stratification on nanofluid saturated non-Darcy porous medium. Kameswaran and

Sibanda (2013) studied the thermal dispersion effects on convective heat and mass transfer

of Ostwald de Waele nanofluid flow in a porous media. The study in this chapter takes into

consideration convective boundary conditions.
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Convective boundary conditions define heat transfer at the solid-fluid interface. It de-

scribes how fluid is transferred from the vertical plate to the fluid and vice-versa. The

mathematical description links heat transfer in a vertical plate in terms of plate’s thermal

conductivity to the heat transfer in the fluid in terms of the fluid’s thermal conductivity.

The mathematical representation is consistent with Newton’s law of cooling. The study of

fluid flow which considered convective boundary conditions include the work of Narayana

et al. (2013) who studied natural convection from a spinning, Murthy et al. (2013) who

studied magnetic effect in nanofluid under convective boundary conditions and Narayana

and Murthy (2006) who investigated convective heat and mass transfer in non-Darcy porous

medium.

A heated impermeable vertical plate with both temperature and concentration kept

constant is immersed in Casson fluid. Heat and species disperse across the fluid, causing

the density to change in space. This then result in the fluid flowing upwards close to the

wall surface (El-Amin et al. 2008). The study of fluid flow on vertical plates or vertical

geometries have been studied by among others Abel et al. (2008) who studied MHD heat

transfer past a vertical stretching sheet; Chen (2004) investigated combined heat and mass

transfer from a vertical surface, Hayat et al. (2998) studied mixed convection in a stagnation

point flow adjacent to a vertical surface in a viscoelastic fluid and the work of Massoudi et

al. (2008) who studied natural convection between two vertical walls. In this chapter we

consider the effects of viscous dissipation which have been discussed in Chapter 3.

It can be seen from the literature cited above that no analysis has been published in

the problem of double dispersion on Casson fluid with viscous dissipation and convective

boundary conditions. Fluid flow from a vertical wall induced by convection is considered.

This work is extended from the work of El-Amin et al. (2008) in which double dispersion is

considered in a Newtonian fluid in non-Darcy medium.

In summary, this section has firstly considered literature on double dispersion and con-

vective boundary conditions, secondly, fluid flow from a vertical surface, thirdly, flow of

Casson fluid and finally, viscous dissipation effects. In this chapter we make use of the bivari-

ate quasi-linearization method (BQLM) to solve the system of partial differential equations.

These aspects will be considered in the mathematical formulation of the effects of double
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dispersion in Casson fluid flow with viscous dissipation and convective boundary conditions.

8.3. Mathematical formulation of double dispersion in Casson fluid flow

Consider steady, incompressible two dimensional flow of a Casson fluid adjacent to a vertical

surface as shown in Figure 8.1. The Cartesian coordinates x and y are along the vertical

surface and normal to it respectively, u and v are the respective velocity components in the

x and y directions.

0
0
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y

Casson fluid

T
∞

C
∞

U
∞u=v=0

C
w

T
w

g

vertical plate

Momentum boundary layer

Thermal boundary layer

Concentration boundary layer

Figure 8.1: Physical model and coordinate system

The vertical wall is maintained at constant temperature Tw(> T∞) and solute concen-

tration Cw(> C∞). The free stream velocity is maintained at U . At the wall-fluid interface

we consider no-slip conditions and there is heat transfer from the solid wall to the fluid.

An equation of an isotropic and incompressible flow of Casson fluid is written as (Naka-

mura and Sawada (1988));

τij =


(
µ+ τy/

√
2π
)

2eij π > πc,(
µ+ τy/

√
2πc
)

2eij π < πc,

(8.1)
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where µ is plastic dynamics viscosity of the Casson fluid, τy is the yield stress of fluid,

π is the product of the component of deformation rate with itself, namely, π = eijeij, eij is

the (i, j)-th component of the deformation rate, and πc is the critical value π.

Taking into account the effect of the thermal and solute dispersion, the double diffusion

convection equation of the Casson fluid is written as

∂u

∂x
+
∂v

∂y
= 0, (8.2)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
+ gβT (T − T∞) + gβc(C − C∞), (8.3)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αy
∂T

∂y

)
+

ν

Cp

(
1 +

1

β

)(
∂u

∂y

)2

, (8.4)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
Dy

∂C

∂y

)
+

α

Tm

∂2T

∂y2
. (8.5)

and the corresponding boundary conditions are written as

u = 0, v = 0, k
∂T

∂y
= h(Tw − T ), C = Cw, at y = 0,

u→ U, T → T∞, C → C∞, as y →∞, (8.6)

where ν is the viscosity of the fluid, β = µ
√

2πc/τy is the Casson parameter, g is the

acceleration due to gravity, βT and βC are the coefficients of thermal and solutal expan-

sions, T is the solute temperature, T∞ is uniform ambient temperature, C is the solute

concentration, C∞ is uniform free stream concentration, αy and Dy are variables defined

by αy = α + γ0d(∂ψ/∂y) and Dy = Dsm + ζ0d(∂ψ/∂y). α and D represent the molecular

thermal and solutal diffusivities respectively. γ0d(∂ψ/∂y) and ζ0d(∂ψ/∂y) the dispersion

thermal and solutal diffusivities, γ0 is the mechanical thermal-dispersion coefficient, ζ0 is the

mechanical solutal-dispersion coefficient, Cp is the specific heat capacity, Tm is the mean fluid

temperature. Introducing the convective boundary condition at the bottom of the surface

which is heated by the convection from a hot fluid of temperature T and provide a heat

transfer coefficient h and thermal conductivity k where T > Tw > T∞.

Using the following similarity transformations
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ξ =
x

l
, η =

√
U

νx
y, ψ =

√
νUxf(ξ, η), θ =

T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

, (8.7)

Using the similarity transformation, the governing equations are written as

(
1 +

1

β

)
f ′′′ +

1

2
ff ′′ ± λξ(θ +Nφ) = ξ

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
, (8.8)(

1

Pr
+K

)
θ′′ +

1

2
fθ′ +

(
1 +

1

β

)
Ecf ′′2 + γ0Rad

(
f ′′θ′ + f ′θ′′

)
= ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (8.9)

1

Sc
φ′′ +

1

2
fφ′ + Srθ′′ + ζ0Rad

(
f ′′φ′ + f ′φ′′

)
= ξ

(
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

)
, (8.10)

and the boundary conditions are written as

f ′ = 0, f + 2ξ
∂f

∂ξ
= 0, θ′ = −Bi

(
1− θ(0)

)
, φ = 1, at η = 0,

f ′ → 1, θ → 0, φ→ 0, as η →∞ (8.11)

where ’prime’ denoted the differentiation with respect to η. Thermal Grashof number

Gr, Reynolds number Re, Solute Grashof number Gr∗, thermal convection parameter λ,

solutal convection parameter λ∗, double diffusion parameter N , stratification parameter

Rad, radiation parameter R, Eckert number Ec, Schmidt number Sc, Soret number Sr and

Biot number Bi defined as

Gr =
gβT∆TL3

ν2
, Re =

UL

ν
, Gr∗ =

gβc∆CL

U2
, λ =

Gr

Re2
, λ∗ =

Gr∗

Re2
, N =

λ∗

λ
,Rad =

dU

ν

K =
16T 2

∞σ
∗

3νk∗
, Ec =

νU2

Cp∆T
, Sc =

ν

D
, Sr =

DKT∆T

νTm∆C
, Bi =

a

kf

√
ν

U
, (8.12)

We have formulated a system of partial differential equations describing the effects of
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double dispersion on Casson fluid flow with viscous dissipation and convective boundary

conditions. We now derive the expressions for the skin friction, heat and mass transfer

coefficients.

8.4. skin friction, heat and mass transfer coefficients

In this section we derive the important engineering parameters for the problem for this

chapter which are the skin friction, heat and mass transfer coefficients. The skin friction

coefficient is derived as follows;

τw = µ

[(
1 +

1

β

)
∂u

∂y

]
y=0

=
µ
(

1 + 1
β

)
U0

lRa
− 1

2
x

xf ′′(0), (8.13)

where µ is the coefficient of viscosity, The skin friction coefficient is given by,

Cf =
τw

1
2
ρU2

0

. (8.14)

Using Eqs. (8.13) and (8.14) together with Eqs. (8.7) and (8.11) gives

Ra1/2x Cf =

(
1 +

1

β

)
f ′′(0). (8.15)

The heat transfer from the cone surface into the fluid is given by

qw = k

[
∂T

∂y

]
y=0

=
h(Tw − T∞)

lRa
− 1

2
x

xθ′(0), (8.16)

where h is the thermal conductivity of the fluid. The heat transfer coefficient (Nusselt

number) under convective boundary conditions is given by
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Nux =
l

k

qw
Tw − T∞

. (8.17)

Using Eqs. (8.16) and (8.17) together with Eqs. (8.7) and (8.11) gives

Ra−1/2x Nux = −[1 + γRadf
′(0)]θ′(0). (8.18)

The mass flux at the cone surface into the fluid is given by

Jw = −D
[
∂C

∂y

]
y=0

=
−D(Cw − C∞)

lRa
− 1

2
x

xφ′(0), (8.19)

The mass transfer coefficient (Sherwood number) is given by

Shx =
l

D

Jw
Cw − C∞

. (8.20)

Using Eqs. (8.19) and (8.20) together with Eqs. (8.7) and (8.11) gives

Ra−1/2x Shx = −[1 + ζRadf
′(0)]φ′(0). (8.21)

We have derived the skin friction, heat transfer and mass transfer coefficients. We are

now ready to discuss the results for the system derived in the previous section.

8.5. Results and discussion

The problem of the effect of double dispersion in Casson fluid flow with viscous dissipation

and convective boundary conditions was solved by the local linearization (LLM). The system

of equations were validated by the Matlab bvp4c for the case ξ = 0 which gives a well known

Blassius equation and compared to the results of Yih (1999). These comparisons of results

were in excellent agreement. In this section we focus on the variation of the Casson parameter
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β, thermal convection parameter λ, double diffusion parameter N , radiation parameter K,

Eckert number Ec, stratification parameter Rad, Soret number Sr, the mechanical thermal-

dispersion γ0, the mechanical solutal-dispersion ζ0 and the Biot number Bi on velocity,

temperature and concentration profiles. We also study variation of some selected physical

parameters with the skin friction, heat transfer and mass transfer coefficients.

In this section we assume that the Prandtl number is between Pr = 10 at 20oC and

Pr = 20 for blood. The appropriate Grashof number is fixed at Gr = 10 and Darcy number

Da = 0.1 giving a fixed value kp = 1/DaGr
1
2 = 3. All other parameters are chosen arbitrarily

being careful to stay within the acceptable range of the Casson fluid.

The numerical results were validated for the skin friction f ′′(0) and heat transfer −θ′(0)

coefficients for the Newtonian fluid. The results obtained by the LLM and the Matlab bvp4c

were compared to the results obtained by Yih (1999) and were found to be in excellent

agreement as shown in Table 8.1.

Table 8.1: Comparison of the values of f ′′(0) and −θ′(0) obtained by LLM with those of

bvp4c for Pr = 5, 1/β → 0, N = ξ = K = Ec = Rad = γ0 = ζ0 = 0

Yih (1999) bvp4c BQLM

Pr f ′′(0) − θ′(0) f ′′(0) − θ′(0) f ′′(0) − θ′(0)

1 0.332057 0.332057 0.33205935 0.33205935 0.33205935 0.33205935

10 - - 0.3305935 0.72814593 0.3305935 0.72814593

The problem of the effects of double dispersion in Casson fluid flow with viscous dissipa-

tion and convective boundary conditions was solved numerically using the local linearization

method (LLM). The results are shown in Figures 8.2 - 8.13. Figures 8.2 and 8.3 respec-

tively shows the variation of the Casson parameter β and buoyancy parameter N on ve-

locity profiles. Figures 8.4 - 8.8 show the variation of the Casson parameter β, mechanical

thermal-dispersion parameter γ0, Biot number Bi and the stratification parameter Rad on

temperature profiles. Figures 8.9 and 8.10 respectively show the variation of Casson pa-

rameter β and the stratification parameter Rad on concentration profiles. The plots of skin
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friction and mass transfer coefficients against some selected physical parameters are shown

in Figures 8.11 - 8.13
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Figure 8.2: Effect of Casson parameter β on velocity profiles f ′(η) for both aiding (λ =

0.05) and opposing (λ = −0.05) solutal convection for Pr = 5, N = 0.5, K =

0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1

The variation of Casson parameter β on velocity profiles for different values of the

solutal convection parameter λ is shown in Figure 8.2. It can be seen from the graph that

increasing the Casson parameter result in the increase in velocity profiles. This result has

been discussed in the previous chapters. The interesting result is that, the increase in the

solutal convection parameter λ result in the increase in velocity profiles. We thus interpret

the increase in the solutal convection parameter as having an effect of increasing solutal

motion thereby causing an increase in fluid motion.
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Figure 8.3: Effect of buoyancy parameter N on velocity profiles f ′(η) for both aiding (λ =

0.05) and opposing (λ = −0.05) solutal convection for Pr = 5, β = 2, K =

0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1

In Figure 8.3, it can be seen that increasing the buoyancy parameter N result in the

increase in velocity profiles as discussed in the previous chapters. It is noted that the increase

in the buoyancy parameter is more pronounced in the case of opposing flow λ = −0.05 than

in the aiding flow case λ = 0.05. We thus interpret the increase in the buoyancy as having

an effect of assisting the fluid flow, this means that if the fluid is flowing slowly in the case

of λ = −0.05, then increasing the buoyancy parameter would cause a larger variation. A

smaller variation is noted in the case of λ = 0.05, the velocity profiles are already close to

the maximum velocity and aiding fluid flow would have not have much effect.
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Figure 8.4: Effect of Casson parameter β on temperature profiles θ(η)

for both aiding (λ = 0.05) and opposing (λ = −0.05) solutal convection for

Pr = 5, N = 0.5, K = 0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1

The variation of Casson parameter β at different values of the solutal convection pa-

rameter λ is shown in Figure 8.4. It can be seen from the graph that increasing the Casson

parameter β result in the decrease in temperature profiles has been reported in the previous

chapters. It is noted that in the case of λ = 0.05 lower temperature profiles are noted than

the case of λ = −0.05.
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Figure 8.5: Effect of mechanical thermal-dispersion parameter γ0 on temperature profiles

θ(η) for both aiding (λ = 0.05) and opposing (λ = −0.05) solutal convection for

Pr = 5, β = 2, N = 0.5, K = 0.5, Ec = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 =

1, Bi = 0.1.

The variation of the mechanical thermal-dispersion γ0 for different values of the solutal

convection parameter λ on temperature profiles is shown in Figure 8.5. It can be seen

from the graph that increasing the mechanical thermal-dispersion parameter γ0 result in

the increase in temperature profiles in both aiding and opposing situations. Increasing the

mechanical thermal-dispersion parameter would naturally mean that the temperature in the

fluid regime is increased. Increased temperature profiles are noted in the case of opposing

situation, the same result was reported in Narayana et al. (2013).
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Figure 8.6: Effect of mechanical solutal-dispersion parameter ζ0 on concentration profiles

θ(η) for both aiding (λ = 0.05) and opposing (λ = −0.05) solutal convection for

Pr = 5, β = 2, N = 0.5, K = 0.5, Ec = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, γ0 =

1, Bi = 0.1.

The variation of the mechanical solutal-dispersion ζ0 for different values of the solutal

convection parameter λ on temperature profiles is shown in Figure 8.6. It can be seen

from the graph that increasing the mechanical solutal-dispersion parameter ζ0 result in the

increase in concentration profiles in both aiding and opposing situations. Increasing the

mechanical solutal-dispersion parameter would naturally mean that the concentration in the

fluid regime is increased.
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Figure 8.7: Effect of Biot number Bi on temperature profiles θ(η) for both aiding (λ = 0.05)

and opposing (λ = −0.05) solutal convection for Pr = 5, β = 2, N = 0.5, K =

0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1.

The variation of the Biot number Bi on temperature profiles in both aiding and opposing

situations is reflected in Figure 8.7. It can be seen from the graph that increasing the Biot

number result in the decrease in the temperature profiles. We thus interpret the increase

in the Biot number as having an effect of increasing the convective heat transfer thereby

reducing temperature in the boundary layer.
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Figure 8.8: Effect of stratification parameter Rad on temperature profiles θ(η) for both

aiding (λ = 0.05) and opposing (λ = −0.05) solutal convection for Pr = 5, β =

2, N = 0.5, K = 0.5, Ec = 1, γ0 = 1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1.
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The variation of the stratification parameter Rad on temperature profiles in both aiding

and opposing situations is shown in Figure 8.8. It can be seen from the figure that increasing

the stratification parameter result in the increase in the temperature profiles. We thus

interpret the increase in the stratification parameter as having an effect of reducing the

temperature difference between the vertical wall and the fluid in the boundary layer. The

same result was noted by El-Amin et al. (2008).
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Figure 8.9: Effects of Casson parameter β on concentration profiles for both aiding N = 0.5

and opposing N = −0.5 buoyancy cases for Pr = 5, λ = 0.05, K = 0.5, Ec =

1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1

The variation of Casson parameter β on concentration profiles for both aiding and op-

posing buoyancy cases is shown in Figure 8.9. It can be seen from the figure that increasing

the Casson parameter result in reducing the concentration profiles in both aiding and op-

posing buoyant cases. The Casson parameter causes for the retardation in the fluid motion

which decrease the concentration boundary layer thickness. Lower temperatures are noted

for the case of aiding buoyancy.
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Figure 8.10: Effects of stratification parameter Rad on concentration profiles φ(η) for Pr =

5, β = 2, λ = 0.05, N = 0.5, K = 0.5, Ec = 1, γ0 = 1, Sc = 0.7, Sr = 0.3, ζ0 =

1, Bi = 0.1.

The effect of stratification parameter on the concentration profiles is shown in Figure

8.10. It can be seen from the graph that increasing the Stratification parameter Rad result

in the decrease the solute concentration near the surface and increase further away from the

surface.
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Figure 8.11: Plot of the skin friction coefficient f ′′(0) against transverse coordinate ξ for

different values of the Casson parameter β for Pr = 5, λ = 0.05, N = 0.5, K =

0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1
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The plot of the skin friction coefficient f ′′(0) against the transverse coordinate ξ for

different values of the Casson parameter β is shown in Figure 8.11. It can be seen from the

graph that increasing the Casson parameter results in the decrease in skin friction coefficient.

We can thus interpret the increase in the Casson parameter as having an effect of reducing

the shear stress on the vertical surface thereby reducing the skin friction coefficient. It is

also noted that the skin friction increases with increasing ξ for the aiding case (λ = 0.05)

and decrease with increasing ξ for the opposing case (λ = −0.05).
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Figure 8.12: Plot of the mass transfer coefficient −φ′(0) against transverse coordinate ξ

for different values of the stratification parameter Rad for Pr = 5, β = 2, λ =

0.05, N = 0.5, K = 0.5, Ec = 1, γ0 = 1, Sc = 0.7, Sr = 0.3, ζ0 = 1, Bi = 0.1.

The plot of the mass transfer coefficient −φ′(0) against the transverse coordinate ξ for

different values of the stratification parameter Rad is shown in Figure 8.12. It can be seen

from the graph that increasing the stratification parameter results in the decrease in the

mass transfer coefficient. We thus interpret the increase in the stratification parameter as

having an effect of reducing the temperature gradient thereby reducing the solute transport

from the surface of the vertical wall. It is noted that the mass transfer coefficient decreases

with increasing ξ.
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Figure 8.13: Plot of the mass transfer coefficient −φ′(0) against transverse coordinate ξ

for different values of the Biot number Bi for Pr = 5, β = 2, λ = 0.05, N =

0.5, K = 0.5, Ec = 1, γ0 = 1, Rad = 0.1, Sc = 0.7, Sr = 0.3, ζ0 = 1.

The plot of the mass transfer coefficient −φ′(0) against the transverse coordinate ξ

for different values of the Biot number Bi is shown in Figure 8.13. It can be seen from the

graph that increasing the Biot number results in the decrease in the mass transfer coefficient.

Increasing the Biot number would e interpreted as increasing the heat transfer resistance in

the solid boundary; this in turn slows down the solute movement. It is observed in general

that the mass transfer coefficient increase with increasing transverse coordinate ξ.

8.6. Summary

The influence of double dispersion convection Casson fluid flow over a vertical plate has

been studied. Double dispersion plays a vital role on the system. The increase in Casson

parameter increases the skin friction coefficient and velocity profiles, but decreases both

temperature and concentration profiles. Thermal stratification decreases the heat transfer

coefficient at the surface, increase thermal and solute boundary layer thicknesses. Increasing

the mechanical thermal-dispersion rate γ0 and mechanical solutal-dispersion rate ζ0 result

in the decrease in both temperature and concentration profiles respectively. This decrease is

noticed closer to the boundary due to the no-slip condition, the reverse effect is noted further

away from the boundary, this is due to the high velocity close to the free stream region.
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In this chapter we point out that new results have been obtained from this problem

with new physical aspects in fluid flow considered. The application of the local linearization

method (LLM) in similar studies is fairly new.

In this chapter the local linearization method (LLM) was used to find solutions of the

effects of double dispersion on Casson fluid with convective boundary condition problem.

The problem consists of three coupled partial differential equations. The numerical solution

was compared to the Matlab bvp4c for the case ξ = 0 and to previously published results

in the literature and was found to be in excellent agreement. The drawback of this method

is that a good initial approximation is still required and that the one has to have an idea

of the size of the boundary layer thickness. This thickness is sometimes referred to as the

value at infinity or η∞. Improvements of this method need to address these issues.
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Conclusion

In this thesis we have used various recent numerical methods to solve nonlinear dif-

ferential equations in fluid flow. The methods have been used to solve different fluid flow

problems. The problems considered the effects of various physical aspects such as radiation,

magnetohydrodynamics, viscous dissipation, cross diffusion effects and fluid flow in porous

media. The findings for each problem are summarized below.

In Chapter 2, we gave a detailed description of all the numerical methods that were

used in the thesis namely; the Matlab bvp4c, the successive linearization method (SLM),

the spectral quasi-linearization method (QLM), the spectral relaxation method (SRM) and

the local linearization method (LLM). These methods were generalized so that they can be

adopted in other contexts. In Chapter 2 we adopted shorter versions of how to implement

these methods. It was clearly shown in Chapter 2 that these methods are much easier

to implement than traditionally used finite differences and other methods discussed in the

introduction (Chapter 1).
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In Chapter 3, we solved the problem of flow of a Newtonian fluid on an exponentially

stretching surface. In Sections 3.1.4 to 3.1.6 we obtained analytical solutions of the momen-

tum, energy and mass transfer equations respectively. The momentum equation was reduced

to the Riccati-type equation which, together with the energy and mass transfer equations can

be solved in terms of the confluent hyper geometric Whittaker function. The Runge-Kutta-

Fehlberg method with the shooting technique was used to solve the system of equations. A

comparison with the exact solutions showed an excellent agreement. The study showed the

accuracy of the Runge-Kutta-Fehlberg method for the flow of the Newtonian fluid over an

exponentially stretching sheet.

In Chapter 4, we investigated the problem of free convection flow of viscoelastic fluid

from a cone in porous medium with viscous dissipation. The problem contained a parameter

which sometimes would be considered small. In most cases such problems are solved by the

perturbation method. Due to the limitations of the perturbation method such as requiring

the parameter to be small, we proposed the successive linearization method to solve this

problem. The system of equations was written as the zeroth, first and second order equations

as in the case of the perturbation method. The system of equations was solved together using

the successive linearization method. The successive linearization (SLM) was shown to be a

very accurate method; the obtained results of the problem were compared to those available

in the literature and were found to be in excellent agreement.

In Chapter 4, we gave a detailed description of the successive linearization method.

The method is preferred because of its robustness; does not involve rigorous mathematical

manipulations as in the case of the finite difference, finite element and finite volume methods.

This method does not involve large block matrices as in the case with the Keller box method

which take considerable computation time and memory space. In the solution of this problem

the linearized system is solved by the Chebyshev spectral collocation method. The successive

linearization method converges rapidly to the solution. This method converges after three to

four iterations making it one of the most efficient methods in solving nonlinear differential

equations. The disadvantage of the method is that an initial guess that satisfies the boundary

condition needs to be provided. A poor initial guess results in divergence of the result. The

number of collocation points is also difficult to determine, usually trial and error is used in
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this process. So far there is no theory of the uniqueness and existence of solutions using

this method. The method’s accuracy was only tested experimentally in the works of (Motsa

and Sibanda, 2013; Motsa and Shateyi, 2012; Motsa et al., 2014, Motsa and Sibanda, 2012,

Motsa et al. 2012).However, this method has shown great accuracy when compared to other

traditional methods such as; the Matlab bvp4c, finite difference, finite element etc. Another

drawback of this method is that there is no check of the residual errors at each time step.

The collocation points do not change in size. In solving fluid flow problems the user has to

have an idea of the size of the boundary layer thickness.

In Chapter 5, we solve the problem of the flow of Casson fluid over an unsteady stretching

surface with chemical reactions. The problem consists of three coupled ordinary differential

equations. The problem was solved using the Matlab bvp4c algorithm and the successive

linearization method (SLM). The numerical solutions were compared and were shown to be in

excellent agreement. The numerical solution was further was compared to those available in

the literature and was found to be in excellent agreement. The Matlab bvp4c algorithm has

recently become the basic method for which researchers use for validation of other methods.

The advantage of this algorithm is that it is an adaptive solver; it changes the step size at

each time step. The main disadvantage of the method is that the governing equations need

to be changed to a system of first order differential equations. This is sometimes not easy

for highly nonlinear coupled differential equations. However, special boundary conditions

are easy to implement in this method than any other method.

In Chapter 6, we solve the problem of the flow of Casson fluid from a horizontal circular

cylinder with partial slip problem and transpiration. The problem consists of two coupled

partial differential equations differential equations. The local linearization method (LLM)

was used to solve this problem. This type of equations is normally solved using the Keller-

box method which requires rigorous mathematical computations and results in large block

matrices which requires considerable computer memory and computation time. The numeri-

cal solution of the LLM was compared to the solutions of the successive linearization method

(SLM). The SLM is known to be better that the Keller-box method in terms of accuracy,

computation time and memory space. The numerical solution was further was compared to

the successive linearization method and bvp4c and was found to be in excellent agreement.
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The local linearization method has become one of the most efficient pseudo spectral methods

due to its fast convergence. The disadvantage of the method is that the number of collo-

cation points need to be determined by trial and error. It is a challenge to handle special

boundary conditions such as convective boundary conditions in fluid flow. An initial guess

that satisfies boundary conditions has to be determined and this is usually not easy. A good

initial guess results in good and rapid convergence.

In Chapter 7, we solved the problem of the flow of Casson fluid from a spinning cone with

partial slip in non-Darcy porous medium with viscous dissipation. The problem consisted

of four coupled ordinary differential equations which were solved by the spectral relaxation

method (SRM), the numerical solution was compared to the previously published results

and there was excellent agreement. The numerical solution was further compared to the

available results in the literature and was found to be in excellent agreement. The spectral

relaxation method (SRM) is an iterative scheme that is based on the Gauss-Seidel method

for solving linear equations. The method is very accurate. This method is also equipped

with the successive over-relaxation technique (SOR) which accelerates convergence.

In Chapter 8, we solve the problem of the effects of double dispersion on Casson fluid

with convective boundary condition problem. The problem consisted of three coupled partial

differential equations, which were solved using the local linearization method (LLM) and the

spectral quasi-linearization method (SQLM). The numerical solution was compared to the

successive linearization method (SLM) and there was a good agreement. The numerical

solution was further compared to the available results in the literature and was found to

be in excellent agreement. The only shortcoming encountered was the difficulty in handling

convective boundary conditions. A small change in the parameter contained in the boundary

conditions such affects convergence.

From this study we conclude that in comparison to some existing methods, spectral

quasi-linearization method (QLM), the successive linearization method (SLM), spectral re-

laxation method (SRM), the Matlab bvp4c algorithm, and the local linearization method

(LLM) are efficient, robust and accurate. The methods were used to solve a wide range of

highly nonlinear differential equations. The methods gave accurate results with the Matlab

bvp4c able to almost solve all numerical solutions in this study.
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These methods can be extended to other types of differential equations such as difference

equations and discrete time equations. These methods are highly accurate, converge faster

and computationally efficient when compared to finite differences. In Chapter 6, the local

linearization method was shown to converge faster showing the accuracy of the method.

However, the thesis was only limited to fluid flow problems which were solved by spectral

methods. The thesis discussed the implementation of numerical methods in general so they

can be applied to other contexts.
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The original copies of published and sumitted papers are listed in the following Appen-

dices;

Appendix A: On radiation effects on hydromagnetic Newtonian liquid flow due to an ex-

ponential stretching sheet.

Appendix B: Natural convection of viscoelastic fluid from a cone embedded in porous

medium with viscous dissipation.

Appendix C: Diffusion of chemically reactive species in Casson fluid flow over an unsteady

stretching surface in a porous medium in the presence of a magnetic field.

Appendix D: Effects of radiation on MHD free convection of a Casson fluid from a horizon-

tal circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation.

Appendix E: Numerical analysis of free convection Casson fluid flow from a spinning cone

in non-Darcy porous medium with radiation, partial slip, cross diffusion and viscous dissi-

pation.

Appendix F: Effects of doule dispersion on Casson fluid flow with viscous dissipation and

convective boundary conditions.
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