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ABSTRACT 
 
Accurate and reliable information on forest stand volume, aboveground biomass (AGB) and carbon 

stocks is valuable in understanding and monitoring ecosystem response and its contribution to the 

global carbon cycle. This knowledge is also critical in climate change modelling and for appropriate 

planning and monitoring conservation efforts. So far, research has established that the current 

carbon balance estimates in African ecosystems are characterised by great uncertainties and a very 

unstable source, with a carbon sink of about 0.3 Pg Cyr-1. This is mainly due to the lack of accurate 

and robust methods, together with the reliable data sources necessary for quantifying and 

monitoring forest AGB and carbon stocks at regional scales. Based on this premise, there is a need 

to swiftly identify affordable, timely and readily-available data sets, together with robust data 

processing techniques, for the accurate retrieval of forest stand volume, AGB and carbon stocks in 

the African context. The advancement in remote sensing technologies provides one of the 

promising primary-data sources or methods urgently required for improving stand volume, AGB 

and carbon stock estimation accuracies at regional scales. Specifically, the advent of new 

generation sensors provides new outstanding prospects for improving AGB and carbon stock 

estimation accuracies in resource-constrained regions (i.e. sub-Saharan Africa), where the 

availability of airborne satellite data (i.e. hyperspectral, lidar and radar) remains a challenging task. 

The main purpose of this study was therefore to examine the utility and strength of cheap, and 

sometimes freely-available, new generation multispectral sensors. These included the Landsat-8 

Operational Land Imager (OLI), SPOT, RapidEye, Sentinel Multispectral Imager (MSI) and 

WordView-2 for quantifying and mapping AGB and carbon stocks of three plantation forest species 

(i.e. Eucalyptus dunii, Eucalyptus grandis and Pinus taeda), a previously challenging task with 

traditional broadband satellite sensors. To achieve this objective, an overview on AGB and carbon 

stock studies in African ecosystems was first provided. Secondly, various tree-structural attributes 

(stand volume, diameter at breast height, and tree height), using medium resolution SPOT-5 image 

in conjunction with ancillary data sets, were estimated. Finally, AGB estimates were derived, based 

on the RapidEye Spaceborne sensor and the newly-launched Landsat-8 OLI remote sensing data 

sets.  
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The results demonstrate that remote sensing AGB in sub-Saharan Africa accurately and reliably 

remains a challenge, due to the unavailability of high resolution data sets, as well as high saturation 

problems associated with the readily-available data sets. In that premise, our results underscored the 

immediate need to develop robust methods that are capable of enhancing AGB and carbon stock 

estimates, using cheap and freely-available new generation multispectral sensors. The results 

obtained using image spectral information and spectral vegetation indices derived from SPOT-5, 

combined with ancillary data, namely, rainfall metrics and stand age, showed improved predictive 

accuracies of tree structural attributes, such as tree diameter at breast height (DBH), height and 

stand volume. For example, SPOT-5 remotely sensed data, combined with ancillary data had better 

accuracies of mean diameter at breast height (DBH), mean height and stand volume for Eucalyptus 

trees in plantation forests, compared to the use of remote sensing data as an independent model 

input data set.  

 

Using vegetation indices and raw spectral bands derived from a fine spatial resolution RapidEye 

Spaceborne sensor, with strategically-positioned red-edge band, improved both inter- and intra-

plantation forest species AGB estimation accuracies. Furthermore, the use of random forest (RF) 

and stochastic gradient boosting (SGB) regression ensembles significantly enhanced the 

performance of the new generation multispectral sensors in estimating and mapping AGB. The 

utility of these regression ensembles underscore the relevance of stochastic models in predicting 

AGB drawn from different species and genera, using the new generation multispectral sensors, with 

strategically-positioned bands, as well as fine spatial resolutions.  

 

The results of the study further showed that the newly-launched Landsat-8 OLI multispectral push-

broom scanner with a large swath width (185-km) and a 16-day temporal resolution, as well as an 

improved radiometric resolution (8 to 12 bits), and the signal-to-noise ratio, has the invaluable 

potential and strength of estimating AGB and carbon stocks, especially in resource scarce regions, 

where the availability of high spatial resolution data remains a challenge. The strength of Landsat-8 

OLI derived texture parameters was further tested and results demonstrated that texture metrics can 

enhance AGB estimation accuracies, when compared to simple spectral reflectances, simple band 

ratios and the most popular spectral vegetation indices. The results of this study also demonstrated 
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that plantation forest aboveground carbon stocks vary significantly (α = 0.05) across different tree 

species, structural attributes (i.e. stems, barks, branches and leaves) and across different age groups. 

These results also underscored the importance of remote sensing technology as an important tool 

that supports and enhances the quantification of forest carbon stock variations across different tree 

species, structural components and age groups.  

 

Overall, the findings of this study have shown the unique potential of new generation remote 

sensing sensors in quantifying AGB and carbon stocks in resource-constrained regions, such as sub-

Saharan Africa. In addition, the results provide the necessary insight and motivation to the remote 

sensing community, particularly in resource-constrained regions, to shift towards embracing the 

readily-available and cheap new generation multispectral sensors for regional application. 
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1. GENERAL INTRODUCTION 

 

 

Figure 1.1 Plantation forest ecosystems in the sub-tropical coastal region of KwaZulu-Natal,  
  South Africa 
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1.1 African Forest Ecosystems and the Global Carbon Cycle 

Forest ecosystems play an important role in the global carbon cycle and are known to be the prime 

drivers of both regional and local climate systems through biosphere-atmospheric interactions 

(Baccini et al., 2008; Field et al., 1998; Martinic and Sporcic, 2005). Recent global carbon 

assessments, based on atmospheric carbon dioxide (CO2) observations, inverse modelling 

techniques and land observations by the Intergovernmental Panel on Climate Change (IPCC), show 

that terrestrial ecosystems sequester approximately 2.0-3.4 Pg C year–1 (Laurin et al., 2014; Wolf et 

al., 2011). The increased global recognition and importance of forest ecosystems in the global 

carbon cycle recently triggered international negotiations and agreements. It was concluded that an 

accurate and reliable understanding of the current and possible future role of forests as carbon 

sinks, in both managed and unmanaged ecosystems, was fundamental for worldwide climate 

modelling, due to their significance in the net carbon sink and emission calculations (IPCC, 2003b; 

Patenaude et al., 2004; UNFCCC, 2001; 2011). For instance, international agreements and regional 

markets have since started accrediting an economic value to forest stand volume, aboveground 

biomass (AGB) and carbon stocks, encouraging signatory countries to intensify and maintain 

forests for climate mitigation purposes (Patenaude et al., 2004; UNFCCC, 1998b). Moreover, 

countries that ratified the Kyoto Protocol to the United Nations Framework Convention on Climate 

Change (UNFCCC) are required to provide annual reports on their carbon sequestrations from Land 

Use, Land Use Change and Forestry (LULUCF) activities (Patenaude et al., 2004). Information on 

the spatial distribution of forests, forest stand volume and biomass storage, as well as carbon 

storage dynamics, is therefore crucial for the continuous and accurate quantification of CO2 

greenhouse gas fluxes, policy development and implementation. In addition, knowledge on forest 

stand volume, AGB and carbon storage is essential in evaluating forest productivity, ensuring well-

informed sustainable conservation practices, deriving future atmospheric carbon projections, as 

well as understanding the general functioning of the planet and the environment.  

 

While there is an increasing understanding of the role of forest ecosystems in global carbon cycle, 

research on forest stand volume, AGB and carbon stocks quantification and monitoring, particularly 

in managed plantation forests, across individual African countries and at continental scale, still 

remains scarce (Dube et al., 2015; Laurin et al., 2014). The reason for the scarcity of up-to-date and 

accurate forest carbon information in Africa is partly due to: (i) limited resources for national 

and/or continent level forest carbon monitoring, (ii) a lack of political will and prioritization, (iii) a 
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lack of continental cooperation, and (iv) to some extent, the lack of technical and scientific 

expertise (Boahene, 1998; Amuzu‐Sefordzi et al., 2015). Therefore, to meet the demands of the 

Kyoto Protocol, as well as to monitor and understand the contribution of both managed and 

unmanaged forest ecosystems across the African continent, there is need to develop robust 

techniques and identify suitable and optimal spatial data sets for the quantification and monitor of 

forest carbon stocks at a regional scale. This will also enhance a critical understanding of forest 

ecosystem responses to the global carbon cycle and climate change in forest ecosystems in the 

African context. 

 

The recent recognition of forests as a potential sink of atmospheric carbon has resulted in numerous 

studies being conducted in estimating AGB or carbon stocks across varying scales, with large 

efforts noted in the developed world (i.e. in Europe, North America and other parts of South 

America and Asia) (Baccini et al., 2008; Henry et al., 2011; Lu, 2006). However, other developing 

parts of the world, particularly Africa, are still lagging behind, despite the immediate need for 

knowledge on forest stand volume and the amount of AGB or carbon stored in their ecosystems. 

For example, the study by Woollen et al. (2012b) shows that the current knowledge of Africa’s 

carbon pools is limited, despite its importance in the global carbon budget. This knowledge gap is 

further highlighted by other studies that indicate relatively high forest carbon storage uncertainties 

across African ecosystems (Laurin et al., 2014; Wolf et al., 2011). For example, a study by Wolf et 

al. (2011) on the latest net long-term forest carbon balance showed a great uncertainty and an 

unstable carbon source. Moreover, most of these estimates are mainly based on forest stand 

volume, AGB and carbon predictions derived from indigenous forests only. It is therefore against 

this premise that many questions currently remain unanswered regarding the actual contribution of 

African ecosystems (both managed and unmanaged forest ecosystems) to the global carbon cycle 

(i.e. whether the continent’s forest ecosystems are net atmospheric carbon sources or sinks). In this 

regard, it is necessary to identify quick, efficient, robust techniques and timely data sets with a 

spatial coverage that would permit an accurate assessment of the African forest ecosystems’ 

contribution to the global and regional carbon cycle and its fluxes, a previously challenging task. So 

far, two broad approaches, namely, field-based traditional methods, which involve field 

measurements or harvesting and recent remote sensing techniques, have been developed to quantify 

forest stand volume (i.e. a proxy for aboveground forest biomass) and AGB. This facilitates the 

derivation of forest carbon stocks by converting the attained biomass by a factor of 0.5 (Dixon et 

al., 1994; Houghton, 2005). 
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1.2 Quantification of Aboveground Forest Biomass and Carbon Stocks 

As mentioned earlier, forest carbon is quantified and monitored, based on either traditional field-

based surveys or remote sensing (Gibbs et al., 2007; Henry et al., 2011; Lu, 2006). Field-based 

methods involve tree-harvesting and weighing or the use of available generalized or species-

specific allometric equations, as well as the use of biomass expansion factors and stand volume 

(Henry et al., 2011). Although the results from these methods are regarded as highly accurate for 

AGB quantification, their use remains restricted, as they are not practical over large areas. Besides, 

field-based AGB methods are exceptionally labour-intensive, time-consuming, and difficult to 

implement across regional and remote areas. Lu (2006) describes field-based methods as practically 

and spatially restricted to a small tree sample size and they require a sufficient number of samples, 

which in most cases is not feasible. Recently, scientists, ecologists, environmentalists and the 

remote sensing community have begun to discredit the use of field-based methods for AGB 

quantification, due to a number of associated inaccuracies since its inception in favour of the new 

and cutting-edge remotely sensed technologies (Koch, 2010; Lu, 2006).  

 

In contrast, a significant body of literature illustrates that remote sensing technologies are a reliable 

source of data (Dube et al., in press; Gonzalez et al., 2010; Koch, 2010; Zhang et al., 2014). 

Remote sensing provides valuable and relatively cheap primary data necessary for the timely and 

accurate quantification of forest structural attributes (i.e. stand volume, AGB and carbon stocks), 

when compared to the use of convectional field surveys (Anaya et al., 2009; Koch, 2010; 

Sivanpillai et al., 2006). Furthermore, remote sensing technologies allow robust landscape scale 

stand volume, AGB and carbon stocks retrieval, as well as minimizing costs associated with field 

data collection (Adam et al., 2014; Dube et al., 2014a; Güneralp et al., 2014). Consequently, the 

application of remote sensing technologies in quantifying stand volume, AGB and carbon stocks as 

the prime data-source, has gained increasing attention, especially for natural forest AGB across the 

African continent and the world over (Dube et al., in press; Gonzalez et al., 2010; Koch, 2010; 

Zhang et al., 2014). 

 

1.3 Remote Sensing of Aboveground Forest Biomass and Carbon Stocks 

The recent need for understanding the role of terrestrial ecosystems on the global carbon cycle has 

prompted the need for the accurate, timely and reliable mapping and monitoring of stand volume, 

AGB (proxies for forest carbon) and carbon stocks, using remote sensing data sets. The data sets 
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range from coarse-to-medium spatial resolution, known as broadband sensors (Baccini et al., 2004), 

high spatial resolution hyperspectral (Clark et al., 2011; Swatantran et al., 2011), radar and airborne 

light detection and ranging (lidar) instruments (Popescu et al., 2011; Sun et al., 2011). The use of 

these data sets, particularly airborne sensors (i.e. hyperspectral, lidar and radar), has proven useful 

in vegetation mapping and monitoring. Airborne sensors provide the primary spatial data necessary 

for the accurate estimation of important tree structural attributes, such as wood volume and AGB or 

carbon stocks, when compared to field-based methods (Koch, 2010).  

 

Literature, however, demonstrates that the use of broadband optical sensors, such as the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution 

Imaging Spectroradiometer (MODIS), with moderately coarse spatial resolution, results in poor 

stand volume, AGB and carbon stock estimates due to the occurrence of mixed pixel information 

(Basuki et al., 2011). Basuki et al. (2011) observed that sensor signal within a single pixel is 

actually a spectral aggregation of radiance or reflectance of all components e.g. mixture of forest 

canopy cover and bare soil, etc. This aggregation hinders the accurate quantification of important 

vegetation structural attributes e.g. biomass, especially when using spectral vegetation indices 

(Basuki et al., 2011). It has been established that optical sensing techniques have a track record of 

having saturation problems when used in biomass-related studies (le Maire et al., 2011; Mutanga 

and Skidmore, 2004b) and also suffer greatly from high signal-to-noise ratio. Adding to that, these 

sensors are generally characterized by a decreasing sensitivity whenever tree canopy structural 

heterogeneity and age increases (Lima et al., 2003; Patenaude et al., 2004). When applied to 100% 

vegetation canopy cover conditions, or when the leaf area index (LAI) is around 3–4 m2m−2, AGB 

estimates from multispectral data saturates, although under normal circumstances, forest LAI can 

be above 4m2m-2 (le Maire et al., 2011; Wang et al., 2005).  

 

In view of the above, it is clear that the applicability of broadband optical remote sensing alone on 

forest AGB estimation remains restricted to simpler forests with limited canopy closure, where LAI 

is less than 4m2m-2, such as coniferous forests (le Maire et al., 2011), hence the need to be 

integrated with high resolution images or ancillary data sets. On the contrary, findings from other 

remote sensing AGB studies demonstrate high accurate AGB and carbon estimates obtained, using 

high spatial resolution hyperspectral, radar and airborne lidar sensors (Montesano et al., 2014; 

Zhang et al., 2014). Using the Geoscience Laser Altimeter System (GLAS) sensor, Zhang et al. 

(2014) estimated AGB at a national scale with high accuracy, producing an R2 of 0.97 and the root 
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mean square error (RMSE) of 9.11 t ha-1. Although useful in providing the primary spatial data sets 

necessary for the accurate estimation of important tree structural attributes, the use of hyperspectral, 

radar and airborne lidar sensors in vegetation-related studies comes with its own challenges, 

particularly in data-scarce areas.  

 

1.4 Implications of Remote Sensing of Aboveground Forest Biomass and Carbon Stocks in 

Resource-Scarce Areas  

The challenges currently faced by the remote sensing community with regard to the application of 

hyperspectral, radar and airborne lidar sensors in vegetation-related studies (e.g. stand volume, 

AGB and carbon stocks) include limited spatial coverage, high image costs, availability, huge data-

volumes, the need for excessive number of field samples, as well as high data pre-processing costs, 

particularly in resource-constrained areas (Gara et al., 2014b; Mutanga et al., 2015; 2012). Despite 

the detailed spectral information, hyperspectral data processing is complex, with geometrical and 

statistical properties associated with high data dimensionality. The use of such data sets, 

particularly lidar for large-scale forest stand volume, or AGB across Africa, is still greatly under-

developed. It is against this background that the abovementioned remote sensing technologies are 

considered impractical for ‘‘wall-to-wall’’ AGB and carbon stocks quantification in resource-scarce 

areas, such as the sub-Saharan Africa (Carreiras et al., 2012; Colgan et al., 2012; Dube et al., 

2014a; Wulder et al., 2008b). Recent studies have demonstrated that the use of airborne sensors 

(hyperspectral, lidar) for field campaigns is constrained by operational restrictions on data-

acquisition flight campaigns, the variability of data accessibility on a country basis and 

multicollinearity problems (Mathieu et al. 2013). Consequently, these data sets are more 

appropriate for small-scale, or ‘‘project-based applications’’, or for use in sampling strategies, 

especially in resource-constrained areas (Carreiras et al., 2012). For instance, hyperspectral, radar 

and airborne lidar sensors are critical for the mapping and monitoring of plot-level stand volume, 

AGB and carbon stocks over small forest units. These limitations therefore prompt the need to shift 

towards the use of new generation multispectral sensors (i.e. Landsat-8 OLI and RapidEye), with 

more appealing and robust properties necessary for large-scale AGB estimation.  

 

New generation multispectral sensors are cheap and readily-available, with a large swath-width and 

are capable of providing large-scale stand volume and AGB mapping and monitoring (Gara et al., 

2014b; Mutanga et al., 2015; 2012). This advancement in imaging technologies in recent years 
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provides cost-effective, commendable and reliable opportunities for monitoring, inventorying and 

understanding changes in forest attributes i.e. AGB and carbon from plot to regional scales. The 

presence of improved radiometric, spatial and spectral properties associated with the new 

generation multispectral sensors are therefore hypothesised to be capable of permitting accurate and 

reliable regional scale or “wall-to-wall” AGB and carbon accounting (Gibbs et al., 2007; Hall et al., 

2011; Houghton et al., 1996; Laurin et al., 2014), as well as sustaining forest resources 

inventorying and conservation (Næsset, 2007). These new generation multispectral sensors have a 

significant number of lucrative improvements in terms of their radiometric, spatial and spectral 

resolutions that are deemed imperative for forest-related studies (Gara et al., 2014b; Kross et al., 

2015; Machwitz et al., 2014; Mutanga et al., 2015; Rana et al., 2013; Zandler et al., 2015). In 

addition, some of these sensors have a wide swath-width and a high revisit time (i.e. Landsat-8 

OLI, with 185 km swath width and a 16-day temporal resolution), which is of paramount 

importance for continuous and large-scale AGB and carbon stock estimates. New generation 

multispectral sensors also contain refined spectral bands with unique and strategically-positioned 

band-settings at high spatial resolution, such as the red-edge band of the RapidEye. This band is 

known to contribute noticeably to AGB estimation at high density canopies (Gara et al., 2014b; 

Mutanga et al., 2015; 2012).  

 

Similar to airborne hyperspectral sensors, new generation multispectral sensors (e.g. RapidEye) are 

associated with high spatial resolutions of 4-m, surpassing those of the old broadband multispectral 

sensors (Gara et al., 2014b; Mutanga et al., 2015; 2012). Studies using hyperspectral spectral bands 

and spectral vegetation indices computed from these bands (red-edge) have demonstrated their 

sensitivity to variations in plant biophysical properties (Gara et al., 2014b; Mutanga et al., 2015; et 

al., 2012). It is therefore hypothesized that comparable forest stand volume, AGB and carbon stock 

estimates can be similarly achieved using the new generation multispectral sensors, which also have 

improved radiometric, spatial and spectral properties (Gara et al., 2014b; Mutanga et al., 2015; 

2012). The presence of a limited key number of spectral bands is critical in reducing superfluous 

redundancy and minimising noise associated with airborne hyperspectral data sets.  

 

To address the general limitations facing Africa and to ensure accurate and reliable forest stand 

volume, AGB and carbon stocks in these areas, various techniques and new generation 

multispectral sensors have to be tested. This research endeavour will help to provide precise 

recommendations on cheap, robust and remote sensing sensors or optimal spectral information 
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suitable for forest: i) stand volume, and ii) aboveground biomass (important proxies of forest 

carbon stocks) mapping and monitoring in data-scarce areas. The emphasis of this thesis was 

therefore restricted to the integration of multispectral SPOT-5 and ancillary data, as well as the use 

of new generation multispectral sensors, such as the Landsat-8 OLI and RapidEye Spaceborne 

sensors, in mapping and monitoring important forest structural attributes in resource-constrained 

areas across different scales. The task was simply to identify, develop and test robust methods and 

techniques for effective forest stand volume, AGB and carbon stocks mapping and monitoring in 

resource-scarce areas at local, regional and global scales.  

 

1.3 Aim 

Informed by the aforementioned observations, the main aim of the study was to assess the 

performance and strength of using multisource data and the new generation medium-to-high spatial 

resolution multispectral sensors in mapping and monitoring plantation forest species stand volume, 

AGB and carbon stocks in the uMgeni Catchment, KwaZulu-Natal, South Africa.  

 

1.4 Objectives of the thesis 

The main objectives of the study were:  

1. to provide a detailed overview on the trade-offs between satellite data availability, cost and 

predictive accuracy in quantifying aboveground biomass in African environments,. 

2. to predict Eucalyptus spp. stand volume, using stochastic gradient boosting regression 

ensemble with multisource data sets, 

3. to test the utility of high spatial resolution spaceborne multispectral RapidEye sensor and 

advanced machine learning algorithms in estimating intra- and inter-species biomass 

prediction in plantation forests, 

4. to evaluate the utility of the medium-spatial resolution Landsat-8 OLI multispectral sensor 

in quantifying aboveground biomass,  

5. to investigate the robustness of the newly-launched Landsat-8 OLI push-broom sensor 

derived texture indices in estimating medium-density plantation forest species aboveground 

biomass, and 

6. to quantify the variability and allocation patterns of aboveground carbon stocks across 

plantation forest types and structural attributes in sub-tropical coastal region of KwaZulu-

Natal, South Africa, using remote sensing.  
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1.5. Scope of the study 

This thesis was aimed at examining the capability of new generation sensors in estimating the 

structural attributes (i.e. stand volume, AGB and carbon stocks) of important plantation forest 

species in the uMgeni catchment, KwaZulu-Natal, South Africa. The study mainly highlights the 

potential and strength of integrating ancillary data with medium spatial resolution SPOT-5 data in 

predicting stand volume. The study further demonstrates the utility of new generation multispectral 

sensors with unique band-settings and design (i.e. RapidEye and Landsat-8 OLI sensors) in 

accurately estimating inter- and intra-species AGB. The strength and performance of new 

generation multispectral sensors in estimating and mapping forest stand volume and AGB is 

examined, using two robust and effective non-parametric machine learning algorithms, such as the 

random forest (RF) and stochastic gradient boosting (SGB). These algorithms (RF and SGB) have 

the potential to integrate the strength of regression trees and to boost and involve a probabilistic 

component, which decreases the final model variance and improves the predictive accuracy 

(Breiman, 2001; De'ath, 2007; Elith et al., 2008).  

 

1.6. Description of Study Area  

The study was conducted on eucalyptus and pine plantation forests currently managed for 

pulpwood production by the Sappi Pulp and Paper Company within the uMgeni Catchment, South 

Africa (Figure 1.1). The most predominant species found within the catchment include the fast-

growing stocks of Eucalyptus dunii (E.dunii), Eucalyptus grandis (E. grandis) and Pinus taeda (P. 

taeda). These plantations are evenly scattered along the coast, stretching from the north of 

Pietermaritzburg (Latitude 29° 24'S, Longitude 30° 18'E) to the south around Richards Bay 

(Latitude 28˚ 48'S, Longitude 32˚ 02'E) and to the north, including the town of Mtubatuba (Latitude 

28° 25'S, Longitude 32° 10'E) (Figure 1.1). The uMgeni Catchment is characterised by moderately 

steep and undulating topography, ranging from ~50 to 1266 m above sea-level. The climate of the 

area is predominantly subtropical, with high humid temperatures (i.e. mean annual temperature is 

approximately 21.7ºC) and high summer rainfall during the summer months (i.e. October – 

February), varying between 730 to 1 500 mm. It also consists of deep-fertile lithic soils, such as the 

leptosols, cambisols, acrisols and lixisols, favourable for the rapid-growth of Eucalyptus and Pine 

stands are the most predominant (Sappi, 1993; Scott and Lesch, 1997).  
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Figure 1.2 The spatial distribution of plantation forests in the south-eastern regions of South  
  Africa (CSIR, 2000) 

 

1.7 Thesis Outline 

This thesis is comprised of six stand-alone articles, which have been submitted to internationally-

recognised peer-reviewed journals. Five of the manuscripts have already been published online, one 

is in press. In this thesis, each article has been presented as a stand-alone chapter that can be read 

and considered autonomously, from the entire dissertation, but it contributes to the overall 

introduction (Chapter One) and synthesis (Chapter Eight). It is also critical to note that the content 

of most of the manuscripts submitted to peer-reviewed journals has been retained. This means that 

each of the stand-alone chapters consist of its abstract and conclusion, which relate it to the 

subsequent chapter, hence the presence of duplications and overlaps, particularly in the 

‘introduction’ and ‘methods’ sections, of the various thesis chapters. This duplication is assumed to 

be of little consequence when considering that these are peer-reviewed scientific articles, which are 

stand-alone chapters that can be read separately, without losing the overall context. The entire 

thesis is made up of eight chapters. These chapters can be split into four major sections: (i) General 

overview and contextualisation, (ii) Local scale mapping, (iii) Regional scale mapping, and (iv) 

Forestry application and synthesis. 
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1.7.1 General Overview and Contextualisation 

1.7.1.1 Chapter One 

This chapter serves as an introduction and a contextualization of the study. It highlights the 

importance and environmental relevance of the mapping and monitoring of key forest structural 

attributes, such as tree volume, AGB and carbon stocks, which serve as a proxy for assessing forest 

contribution to the global carbon cycle. The chapter further elaborates on key methods and data 

sets, as well as the challenges faced by researchers in undertaking this type of study in areas with 

limited resources. In addititon, the detailed research problem, aim and objectives are provided. 

 

1.7.1.2 Chapter Two 
This chapter provides a detailed overview of remote sensing applications for AGB and carbon 

stocks mapping and monitoring in sub-Saharan Africa. It further presents the research strides and 

challenges (e.g. particularly the trade-offs between availability, cost and predictive accuracy) on 

AGB mapping and monitoring in Africa environments. The chapter also highlights the gap and 

need for identifying and developing cheap methods for accurate AGB mapping and monitoring in 

resource limited areas.  

 

1.7.2 Local Scale Mapping 

1.7.2.1 Chapter Three  

The chapter focuses on predicting stand volume and other related tree structural attributes in 

managed plantation forest, using remote sensing and ancillary data sets. Information on forest stand 

volume is fundamentally important in understanding the role of forests as carbon sinks and their 

contribution to the global carbon cycle. Besides, this information is a pre-requisite for a detailed 

evaluation of commercial forest resources and their sustainable management. In this chapter, the 

application of multisource data (SPOT-5, rainfall data and stand age) in predicting plantation forest 

stand volume is examined, using a stochastic gradient boosting (SGB) algorithm. 

 

1.7.2.2 Chapter Four  

While the integration of ancillary data with SPOT-5 spectral information produces high quality 

stand volume estimates, there is need to identify remote sensing data that can be independently 

applied in areas where ancillary data sets are unavailable, to derive accurate estimates at a local or 

regional scale. This chapter therefore focusses on inter-and-intra-species AGB estimation at a local 

scale, using the high spatial resolution RapidEye Spaceborne sensor. The potential of the new high 
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resolution RapidEye image with unique band-settings is evaluated in estimating intra-and-inter-

species AGB, using two advanced machine learning algorithms (SGB and RF).  

 

1.7.3 Regional Scale Mapping 

1.7.3.1 Chapter Five 

Although the use of the high resolution RapidEye sensor yields better AGB estimates, this data set 

has a narrow swath-width and is spatially restricted to a localized scale application. In order to 

ensure a regional scale mapping and monitoring of forest biomass, satellite data with a wide swath-

width is needed. This chapter focuses on identifying cheap, readily-available and appropriate 

remote sensing data sets for mapping and monitoring AGB over regional scales in resource-

constrained areas. The chapter examines the utility of the newly-launched 30-m Landsat-8 OLI 

sensor with improved signal-to-noise ratios, a wide swath width (185 km) and a 16-day revisit time, 

for timely and regional scale AGB estimation for three plantation forest species. The study further 

establishes if the Landsat-8 OLI’s “push-broom” design can enhance the detection of the most 

important forest structural properties, when compared to the whiskbroom Landsat 7 ETM+.  

 

1.7.3.2 Chapter Six 
As observed in Chapter Five, the use of Landsat-8 OLI-derived spectral bands and vegetation 

indices in AGB estimation results in slightly weak AGB estimates, due to saturation challenges at 

high density canopies. It is important to devise methods that can help to improve the estimates 

based on this sensor, particularly in resource-constrained areas, given the cost and the sensor’s 

spatial fidelity. This chapter therefore concentrates on improving plantation forest AGB estimation 

accuracy, using Landsat-8 OLI-derived texture metrics. The accurate quantification of forest AGB, 

using cheap and readily-available data sets, is fundamental for carbon accounting and ensuring 

sustainable forest management. The models in this chapter are informed by the findings obtained in 

Chapter Five. 

 

1.7.4 Forestry Application and Synthesis 

1.7.4.1 Chapter Seven 

Having successfully identified and developed robust methods for stand volume and AGB 

computations, particularly for applications in resource-scarce areas, it would be important to use 

these methods to further quantify forest aboveground carbon stocks in resource-scarce areas. This 

information is critical, because it indicates the clear and direct role of forest ecosystems in the 
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global carbon cycle. The objective of this chapter is therefore to quantify the variability of 

plantation forest aboveground carbon stocks across different tree species, structural attributes (i.e. 

stems, barks, branches and leaves), as well as across different age groups, using remotely sensed 

data. The chapter focuses on estimating the AGB of stems, barks, branches and leaves, derived 

from models that have been developed, based on remotely sensed data. Statistical analysis is 

applied in determining the variability across different structural attributes.  

 

1.7.4.2 Chapter Eight 

This chapter provides a synthesis of the findings and conclusions drawn, based on the preceding 

chapters. It makes further recommendations for future research, based on the highlighted limitations 

of this study. Finally, a single reference list is provided at the end of the thesis. 
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2. QUANTIFYING ABOVEGROUND BIOMASS IN AFRICAN 

ENVIRONMENTS: A REVIEW OF THE TRADE-OFFS BETWEEN 

SATELLITE DATA AVAILABILITY, COST AND PREDICTIVE 

ACCURACY  
 

 

 
This chapter is based on: 

Dube. T, Mutanga, O. Ismail, R. In press. Quantifying aboveground biomass in African 

environments: A review of the trade-offs between satellite data availability, cost and predictive 

accuracy, Journal of Tropical Ecology, 58, Issue 2. 



15 

 

Abstract 

Increased global recognition of the role of forests in regulating the biosphere-atmospheric carbon 

cycle through carbon sequestration, has resulted in a wide range of scientific studies on the 

estimation, mapping, monitoring and prediction of AGB at various scales in sub-Saharan Africa. In 

many parts of the developing world, specifically in sub-Saharan Africa, the accurate quantification 

of AGB, although still a challenge, is important for national carbon accounting, REDD+ project 

payments, sustainable forest management and strategic policy-making. In this review, an overview 

of remote sensing applications for AGB estimation in sub-Saharan Africa, including research 

challenges and basic information related to the trade-offs between satellite data availability, cost 

and predictive accuracy is provided. It is assumed that this review is timely, due to a relative 

increase in the number of remotely sensed forest carbon studies in the recent years (specifically the 

period between 1998 and 2013). Remotely sensed data is particularly appealing, due to its 

robustness, instantaneity and repeated spatio-temporal coverage and hence, its ability to 

successfully estimate and map AGB. However, estimation accuracy and image acquisition cost vary 

with sensor resolution and type and this has largely restricted AGB estimation in Africa. It is 

assumed that this study will provide guidance for future national carbon accounting studies, which 

is one of the main objectives of the Kyoto Protocol and the REDD+ (Reducing Emissions from 

Deforestation and forest Degradation) project, housed under the United Nations Framework 

Convention on Climate Change (UNFCCC), particularly for the developing world. 

 
Keywords: accessibility, biomass, carbon stocks, forest plantation, predictive error, remote 
sensing, trade-offs  
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2.1 Introduction 

Forest aboveground biomass is a measure of tree or shrub cumulative Net Primary Productivity, 

(NPP). The mapping of forest AGB, in terms of their status and development, is becoming 

increasingly important, due to the growing need to improve the conservation of forests in the face 

of a changing climate. Forest ecosystems have been recognized by the Inter-Governmental Panel on 

Climate Change through the Kyoto Protocol, as capable of mitigating climate change problems. 

Therefore, the measurement and monitoring of AGB has become an important topic in international 

climate change negotiations. For instance, the 11th Conference of Parties of the UNFCCC under the 

Kyoto Protocol initiated the REDD+ project in developing countries. The main aim of the REDD+ 

project was to highlight the need for possible climate change mitigation measures through sound 

forest conservation actions in developing countries (UNFCCC, 1998a; 2001; 2011). In sub-Saharan 

Africa thus far, few countries, have fully embraced the aims and objectives highlighted by the 

Kyoto Protocol, which advocates sustainable forest (i.e. both indigenous and emerging plantation 

forests, namely, the Pinus, Eucalyptus and Acacia spp.), management and assessing their 

contributions to biosphere-atmospheric carbon cycles, as potential carbon sinks. Studies conducted 

elsewhere in the world (e.g. South America) demonstrate that forest plantations occupy a significant 

spatial extent and are capable of storing meaningful amounts of atmospheric carbon content (le 

Maire et al., 2011). 

 

The recognition of forests as a potential sink of atmospheric carbon content has resulted in many 

AGB quantification methods (i.e. direct and indirect methods) being developed (Chinembiri et al., 

2013b; Henry et al., 2011). Direct AGB estimation methods are broadly classified into (i) Tier-1: 

basic methods, based on generalized equations, (ii) Tier-2: intermediate approaches, based on 

volume equations and wood gravity, and (iii) Tier-3: complexity methods, based on biomass 

equations (Henry et al., 2011). However, the lack of suitable parameters is one of the major issues 

and challenges associated with the direct methods of estimating and mapping AGB or carbon in 

places, such as sub-Saharan Africa and south-east Asia. In sub-Saharan Africa, numerous studies 

have utilised traditional methods (i.e. direct methods) to estimate AGB (Dovey, 2009; Henry et al., 

2011; Schönau and Boden, 1982a). Most parameters for estimating AGB (i.e. allometric equations, 

wood density values, yield tables and biomass expansion factors) have, however, been derived from 

studies performed outside Africa, in countries, such as Costa Rica, Brazil and Mexico (Henry et al., 

2011). Since most allometric equations were developed outside sub-Saharan Africa, the major 

challenge is finding ways to implement these parameters in Africa, with limited uncertainities. 
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Consequently, very few published sources exist for forest types in sub-Saharan Africa (Henry et al., 

2011). In addition, besides the scarcity of suitable and key parameters, traditional methods are 

environmentally destructive and impractical for large-scale implementation. Moreover, these 

methods require intensive field work and large volumes of ancillary data for analysis, which are 

labor-intensive, costly and time-consuming (Gara et al., 2014b; Gonzalez et al., 2010; Henry et al., 

2011). When using traditional methods, site access in protected areas is also poor, due to complex 

terrain and organizational restrictions. By using remotely sensed data, these limitations may be 

addressed in a range of scales and remote sensing technology offers suitable means for the 

independent verification of the forest carbon pool estimates (Muukkonen and Heiskanen, 2005). 

 

Remote sensing, unlike traditional approaches, provides spatial and temporal data that are useful in 

mapping AGB at different spatial scales in a more robust, quick and efficient manner (Boyd et al., 

1999; Carreiras et al., 2012a). It allows for repeated image acquisitions over the same locations, 

which are necessary for the detection of temporal changes in carbon stocks. In addition,  remotely 

sensed data are stored in digital format, so that they can be easily integrated with ancillary data in a 

Geographic Information System (GIS) for further analysis. In the light of these advantages, 

researchers have used optical sensors (Boyd et al., 1998; 1999; Foody and Boyd, 2002) and active 

sensors (Carreiras et al., 2012a; 2013; Colgan et al., 2013; Mitchard et al., 2012; 2011; 2009) to 

estimate AGB in sub-Saharan Africa, with varying degrees of accuracy. Therefore, the utility of 

remote sensing in estimating AGB necessitates a review of the extent to which the technology has 

been utilized within the African context. This information is important for sustainable forest 

management and the identification of readily-available data sets for the accurate estimation of AGB 

on a regional scale. The current prevailing economic situation in most countries in sub-Saharan 

Africa requires cost-effective and accurate methods for quick, accurate and efficient AGB 

estimation, particularly on a national or regional scale (Gara et al., 2014b). This article therefore 

seeks to: (i) provide a critical evaluation of the literature on AGB estimation, using different remote 

sensing platforms, and (ii) review the trade-offs between sensor estimation accuracy and costs. 

 

In order to achieve the above objectives, a variety of keywords were used to gather relevant 

literature related to AGB from selected peer-reviewed journals. All possible keywords or word 

combinations, were used and these were performed in the “abstract, title, keywords and topic” to 

enhance the chances of identifying all AGB studies that have been conducted in Africa. To the best 

of our knowledge, no study on AGB estimation, using remotely sensed data, was recorded prior to 
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1998, hence only the literature obtained between the period from 1998-2013 was considered for this 

study. The keywords used included: “aboveground biomass”, “aboveground carbon stocks”, “forest 

carbon”, “remote sensing biomass”, “remote sensing forest carbon stocks”, “lidar and biomass”, 

“tree structural attributes”, “SPOT and biomass”, “stand level biomass or carbon mapping” and 

“pixel-based carbon estimation”, “aboveground biomass in Africa”, “aboveground biomass sub-

Saharan Africa”, amongst others. The remote sensing journals searched included: Remote Sensing 

of Environment, ISPRS Journal of Photogrammetry and Remote Sensing, IEEE Transactions on 

Geoscience and Remote Sensing, Applied Earth Observation and Geoinformation, IEEE 

Geoscience and Remote Sensing Letters, Photogrammetric Engineering and Remote Sensing, IEEE 

Applied Earth Observations and Remote Sensing, International Journal of Remote Sensing, The 

Photogrammetric Record, Canadian Journal of Remote Sensing, GIScience and Remote Sensing, 

Remote Sensing Letters, Journal of Applied Remote Sensing, Sensors and Remote Sensing. Other 

selected journals searched included: International Journal of Geographical Information Science, 

Transactions in GIS, Computers and Geosciences, Journal of Spatial Science, International Journal 

of Digital Earth and Geocarto International, and Ecological Applications. Figure 2.1 shows a visual 

textual summary of the frequently appearing single terms in this document, with higher frequency 

results in a larger font size, and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 A textual summary of this review 

http://www.elsevier.com/wps/find/journaldescription.cws_home/505733/description#description
http://www.elsevier.com/wps/find/journaldescription.cws_home/505733/description#description
http://www.elsevier.com/wps/find/journaldescription.cws_home/503340/description#description
http://www.grss-ieee.org/publications/transactions/
http://www.grss-ieee.org/publications/transactions/
http://www.elsevier.com/wps/find/journaldescription.authors/622741/description
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
http://www.asprs.org/publications/pers/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
http://www.tandf.co.uk/journals/tf/01431161.html
http://www.blackwellpublishing.com/journal.asp?ref=0031-868x
http://www.blackwellpublishing.com/journal.asp?ref=0031-868x
http://www.casi.ca/pubcjrs.aspx
http://www.bellpub.com/msrs/
http://www.informaworld.com/smpp/title~db=all~content=g918809783
http://spie.org/x3636.xml
http://www.mdpi.com/journal/remotesensing
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2.2 Overview of Aboveground Biomass Studies in Sub-Saharan Africa 

To the best of our knowledge, no study has reviewed the literature on the estimation of different 

forest AGBs in an African environment, using remote sensing. For instance, literature shows that 

only two studies reviewed forest AGB, based on traditional methods (Gibbs et al., 2007; Henry et 

al., 2011). However, literature gathered from selected major peer-reviewed remote sensing journals 

demonstrates a relative increase in AGB studies across the continent (Figure 2.2). For this review, 

forty-nine (49) publications, with two-thirds of them published in the past decade (2003-2013), 

were gathered (Figure 2.2). Overall, it was observed that more AGB studies, using remote sensing 

data sets, were published between 2004 and 2005 and between 2011 and 2013, when compared to 

the other years. This increasing trend of publications is expected to grow in the near future, making 

this a critical time to provide a detailed overview of the already available literature on AGB. 

 

Figure 2.2 Growth of remote sensing popularity in AGB mapping in sub-Saharan Africa  
  between 1998 and 2013 

 
Based on the reviewed literature (Table 2.1), most AGB studies utilised coarse multispectral 

(31.25%) and radar (22.92%) data sets. Only one study by Thenkabail et al. (2004a) utilised 

hyperspectral data sets. Table 2.1 shows that 70% of the total AGB studies were conducted in West 

Africa, particularly in Cameroon, Benin and Ghana. Two-thirds of these studies were conducted in 

Cameroon, due to the presence of expansive, continuous and highly heterogenous plantations and 

moist, semi-evergreen regenerating and mature tropical forests (above 50 000 km2), as well as the 

availability of direct foreign funding from the Terrestrial Iniative in Global Environmental 

Research (TIGER) programme of the Natural Environmental Research Council in the United 

Kingdom (UK) for mapping forest carbon within the country (Boyd et al., 1998, 1999).  
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The remaining 30% were conducted in the central and southern African countries, namely; Gabon, 

the Democratic Republic of Congo, Uganda, Mozambique, Madagascar, Namibia, South Africa and 

Zimbabwe (Carreiras et al., 2012a; 2013; Colgan et al., 2013; Cryus and Tanja, 2004; Eckert, 

2012b; Mitchard et al., 2012). Lidar was used to estimate AGB in countries like South Africa and 

Gabon (Colgan et al., 2013; Mitchard et al., 2011) and radar in Cameroon, Guinea-Bissau, 

Mozambique and Uganda (Carreiras et al., 2012a; et al., 2013; Mitchard et al., 2012). 

Mulitispectral data sets have been applied in countries, such as Zimbabwe (Cryus and Tanja, 2004) 

and Cameroon (Boyd et al., 1998, 1999). All these studies focussed on estimating AGB from 

indigenous forests. None of them attempted to estimate AGB in commercial forest plantations, 

despite the vast tracts of land occupied by commercial forests in most of the sub-Saharan countries. 

It can also be noted that countries like Malawi, Angola, Kenya, Swaziland, Tanzania, Zambia, as 

well as those in the East, still lag behind in terms of forest AGB estimation. Having provided an 

overview of AGB studies in Africa, Figure 2.3 provides a detailed spatial representation of AGB 

studies across sub-Saharan Africa. In general, it can be observed that these studies have been 

conducted in areas with high vegetation cover, as indicated by the high normalized difference 

vegetation index (NDVI) values, rather than in areas with low NDVI. However, there is need for 

future studies to also quantify AGB and carbon stocks in areas charecterised with low vegetation 

cover, using high spatial resolution sensors that are capable of detecting individual tree species. 

 

Table 2.1 A summary of remotely sensed aboveground biomass average accuracies derived  
  from studies done across sub-Saharan Africa 
Sensor type  No. AGB studies %age studies Avg. R2 Avg. predictive error 
Active:     
lidar (0.5cm-5m) 8 15.67 0.89 14 % 
radar (1cm-10m) 11 22.92 0.74 25 % 
Hyperspectral  1 2.08 0.83 - 
Multispectral: 
FSR (< 5m) 

 
5 

 
10.42 

 
0.75 

 
27 % 

MSR (10m-60m) 9 17.67 0.68 32 % 
CSR (>250-1000m) 15 31.25 0.58 42 % 
Total 49 100 - - 
**FSR = Fine spatial resolution; MSR = Medium spatial resolution and CSR = Coarse spatial 
resolution 
 

 



 

21 

 

 

Figure 2.3 Spatial distribution of AGB studies based on remotely sensed data in sub-Saharan  
  Africa derived from the information gathered from selected peer-reviewed journals  
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2.3 Active Sensors  

2.3.1 Aboveground Biomass Estimation Using Lidar and Radar Remote Sensing Sensors  

Lidar is an active remote sensing technology that utilizes a laser, which transmits a light pulse 

towards a target and a receiver, to measure the backscattered or reflected light. This remote sensing 

data set is regarded as one of the most robust and appropriate means of data collection and has the 

ability to characterize vertically-distributed forest attributes (Gumindoga et al., 2015). Literature 

shows that the most important tree-structural attributes necessary for AGB estimation (i.e. tree 

height or forest structural information) can be easily extracted from lidar with great accuracy (Dube 

and Mutanga, 2014). For instance, work conducted in the developed world demostrates successful 

AGB estimation from lidar for a single tree, producing high r-square and extremely low root mean 

square errors (Koch et al., 2010; Patenaude et al., 2005b).  

 

The unique ability provided by the lidar data set has seen few studies testing its strength in 

estimating AGB in sub-Saharan Africa (Mitchard et al.,  2012; 2011). Work by Mitchard et al. 

(2011) is one of the pioneering studies in sub-Saharan Africa. In this study, authors mapped AGB 

in Gabon with a 25% uncertainty error, using spaceborne lidar (ICESat GLAS footprints) and 

ground data. The use of generic tropical allometric equations and GLAS data to estimate tree 

height, however, increased the error term.  

 

In addition, using spaceborne lidar, Colgan et al. (2013) successfully (R2 = 0.91) investigated the 

influence of hill-slope topography and soil properties in estimating AGB in the Kruger National 

Park, South Africa. In a different study, Colgan et al. (2013) further assessed the accuracy of 

airborne lidar and field data in estimating AGB at a tree level in the savannas adjacent to the Kruger 

National Park. The results of their study showed that the use of the object-based model to identify 

and classify individual tree crowns, as well as to estimate AGB, significantly improved the 

estimation accuracy, compared to the use of existing airborne methods. Overall, lidar-based AGB 

studies demonstrate an enhanced capability of quantifying AGB at plot level (in sub-Saharan 

Africa), especially when compared to estimates derived using passive sensors, such as Landsat 

products.  

 

Similar to lidar, radar systems are active remote sensors (i.e. they independently generate their own 

source of energy during image acquisition process). These sensors are operational between 

approximately one cm and 10 m for VHF5 in the microwave portion of the electromagnetic 
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spectrum (Patenaude et al., 2005b). This unique characteristic permits radar systems to capture 

images without any obstruction, due to moderate precipitation to cloudy conditions (Koch, 2010; 

Patenaude et al., 2005b). In Africa, for instance, radar data is increasingly becoming popular in 

mapping AGB, specifically in tropical environments, with extreme weather conditions (Carreiras et 

al., 2012a; 2013). Thus far, a review of the literature shows that a limited number of AGB research 

studies have been conducted across sub-Saharan Africa using radar data sets (Carreiras et al., 

2012a; 2013; Mitchard et al., 2012). For example, based on Advanced Land Observing Satellite 

(ALOS), Phased Array L-band Synthetic Aperture Radar (PALSAR) and two regression algorithms 

(i.e. bagging stochastic gradient boosting (BagSGB) and semi-empirical models), Carreiras et al. 

(2012a) successfully estimated AGB in Guinea-Bissau. This study yielded a very high correlation 

coefficient (R2) value of 0.95 and a low root mean square error (RMSE) value of 26.62 Mg ha−1. In 

addition, Dube (2013), using ALOS PALSAR, detected AGB losses and gains in the Miombo 

woodland ecosystems in Mozambique. In a different study, Mitchard et al. (2009) examined the 

relationship between field-measured AGB and cross-polarized radar backscatter values, with high 

prediction accuracies. However, higher saturation levels from ALOS PALSAR were noted and this 

was attributed to the structural features of African savannas (Mitchard et al., 2009). Similar 

observations were noted by Mitchard et al. (2011), who investigated the relationship between the 

radar backscatter (i.e. ALOS PALSAR HV) and AGB plots, with a high R2-value of 0.86 and a 

RMSE varying between 25 - 40%.  

 

Although the above studies have successfully attempted to estimate AGB in different parts of sub-

Saharan Africa, using lidar and radar data sets, their main limitation is that all of them were 

implemented at a local or small scale. AGB estimates are currently required at regional or global 

scale, because “wall-to-wall” estimates are more effective in providing a comprehensive 

understanding of the global carbon pool than local-scale. Unlike other parts of the world (i.e. the 

developed world), the application of these data sets on a regional or global scale remains one of the 

major challenges in sub-Saharan Africa. The main reasons for this limitation is the cost, the scarcity 

of data for operational applications and limited image pre-processing technical expertise, amongst 

others. Although AGB estimates from lidar, hyperspectral and radar data sets are more accurate and 

reliable, when compared to those derived using traditional multispectral data sets, such data sets 

may be restricted spatially to smaller areas. For this reason, there is a need for future studies in sub-

Saharan Africa, to develop and identify appropriate sampling techniques that can help enhance the 

AGB estimation accuracy at a minimal cost within the regions. 
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2.3.2 Aboveground Biomass Estimation Using Hyperspectral Remote Sensing Data 

Recent advances in sensor technology (i.e. the presence of unique and strategically-positioned 

bands) have enhanced AGB monitoring in regions with high forest canopy closure or high biomass. 

This enables the sensor to accurately characterize different forest-structural properties at optimal 

temporal and spatial scales. This has consequently resulted in the great appreciation and use of the 

data sets for AGB estimates, particularly outside sub-Saharan Africa, given that traditional 

multispecral sensors suffer from saturation problems.  

 

Nonetheless, the utility of hyperspectral remote sensing platforms for estimating AGB in sub-

Saharan Africa is still developing and its usage has gained limited acceptance for operational use, 

due to costs and restricted accessibility (Dube et al., forthcoming; Gara et al., 2014b; Thenkabail et 

al., 2004a). Thus far, only one AGB study has been conducted, using the hyperspectral remote 

sensing sensor (Thenkabail et al., 2004a). The study found that Hyperion narrowband data yielded 

good models, which explained between 36–83% more of the variability in rainforest biomass, when 

compared to Landsat products and Ikonos, which explained between 13–60%. The study further 

concluded that the use of narrowband Hyperion data has a greater advantage and strength over 

broad-band Ikonos and ETM+ data sets in estimating AGB in the rainforest vegetation. 

 

2.4 Passive Sensors 

2.4.1 Aboveground Biomass Estimation Using Old Generational Multispectral Sensors 

Coarse, medium and fine spatial resolution multispectral images have since become more popular 

and attractive for estimating AGB in resource-constrained sub-Saharan Africa (Boyd et al., 1998, 

1999; Eckert, 2012a; Foody and Boyd, 2002; Wu et al., 2013) and in other parts of the world. 

Coarse-to-medium multispectral data (i.e. MODIS, Landsat, ASTER and SPOT) are currently 

provided freely or are available at a low cost (Table 2.1 and 2.2). Some of these sensors (i.e. 

Landsat products) provide images with a wide swath-width (above 185 km) and have a repeated 

global coverage, which is necessary for continuous AGB assessment. These unique characteristics 

have resulted in the sensors gaining more popularity for regional or global AGB mapping (Boyd et 

al., 1998; 1999; Foody and Boyd, 2002). Currently, there are huge volumes of archived data sets 

(i.e. NOAA AVHRR, Landsat products and MODIS) with large spatial coverage and, dating back 

to 1972, when the first Earth Resources Technology Satellite (ERTS-1) Landsat 1 was launched by 

the National Aeronautics and Space Administration.  
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In sub-Saharan Africa thus far, numerous AGB studies have been conducted, using the afore-

mentioned sensors, with fairly reasonable accuracy (Boyd et al., 1998; 1999; Foody and Boyd, 

2002). Using the middle infrared (MIR) wavelengths (3.0 - 5.0µm) of the National Oceanic and 

Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR), 

Boyd et al. (1998) successfully estimated tropical forests AGB in Cameroon. This study 

demonstrated the potential of exploiting under-utilised electromagnetic portions between near 

infrared (NIR) and thermal infrared (TIR) wavelengths, when estimating AGB. The findings from 

the above study are also confirmed by Boyd et al. (1999), whose work demonstrated a strong 

relationship between total AGB, MIR reflectance and vegetation indices in Cameroon. The two 

studies concluded that MIR spectral wavelengths are more sensitive to changes in forest properties 

than the visible and NIR reflectances. Carreiras et al. (2012), using canopy cover derived from the 

MODIS NDVI data (MOD13Q1) time-series, estimated AGB with a high coefficient of 

determination (R2-value = 0.91). AGB estimation accuracies obtained by Carreiras et al. (2012) are 

comparable to those of Carreiras et al. (2012a) and Mitchard et al. (2009), which were derived 

using lidar and radar data sets. Mitchard et al. (2009) concluded that the proposed approach was 

relevant for operational use in the tropical savannah woodlands and that it contributes to the low-

cost and large-scale assessment and monitoring of forest carbon fluxes in sub-Saharan Africa. 

 

Although the above AGB studies, utilising multispectral data, demonstrated reasonable estimation 

accuracies, their application at plot level or in densely-forested areas, imposes serious challenges. 

For instance, the application of medium-to-coarse spatial resolution multispectral sensors for AGB 

estimation in the tropics is neither feasible nor accurate, due to spectral saturation challenges 

associated with dense canopy closure (Thenkabail et al., 2004a). The reflectance signal in the 

visible and NIR is mostly correlated with the green leaf area index (LAI) and canopy cover of the 

vegetation. Furthermore, AGB generally becomes decoupled from LAI after a given stand age, as 

AGB continues to increase after canopy closure. The decoupling from LAI after a given stand age 

hinders accurate AGB estimation, when using multispectral sensors. The utility of all Landsat 

satellite products and MODIS for estimating AGB has thus, to a large extent, resulted in inaccurate 

results in the tropics, due to the presence of mixed pixels and the mismatch between pixel-size and 

field-plot area (Gibbs et al., 2007; Thenkabail et al., 2004a). Given the poor financial situations in 

sub-Saharan Africa and the immediate need for AGB estimates on a regional scale, the use of cheap 

or readily-available and suitable sensors with appropriate optimal spectral characteristics is 

necessary, if this objective is to be achieved. 
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For continuous and accurate large-scale AGB estimation, there is a need for the remote sensing 

research community and environmentalists to shift towards embracing the newly-launched, readily-

available and cheap multispectral sensors (i.e. 30-m Landsat-8 OLI sensor, 5-m RapidEye, 

Sentinel-2, SPOT-6 and 2-m Worldview-2). This emerging group of new generation sensors, with 

refined radiometric, spatial, spectral and temporal properties, presents new opportunities for the 

detection and segmentation of the structural attributes of forest. Literature shows that these sensors 

provide more granular measurements of plant productivity, which is ideal for accurately estimating 

AGB in resource-limited environments (Eckert, 2012a; Gara et al., 2014b; Mutanga et al., 2012).  

 

Currently, the utility of these sensors has not been fully explored. For instance, only a single study 

estimated forest AGB, using Worldview-2 image in sub-Saharan Africa (Eckert, 2012a), as shown 

in Table 2.1. The results of the study indicated a higher correlation between image texture 

parameters and AGB, when compared to spectral information. Mutanga et al. (2012), demonstrated 

the utility of three normalized difference vegetation indices (NDVIs) computed from the 

WorldView-2 red edge and NIR bands in the estimation and mapping of wetland vegetation AGB 

in South Africa. An average biomass of 3.44 kg m-2 and RMSE of prediction of 0.441 kg m-2 was 

obtained, which was much higher than the standard AGB saturation level reported in literature. This  

task was previously challenging, when using broad-band satellite imagery. The authors finally 

concluded that the indices calculated from the additional spectral bands of Worldview-2 performed 

better than the traditional multispectral indices, due to their enhanced sensitivity to vegetation 

properties, namely, canopy AGB and chlorophyll content. This observation is confirmed by Kokaly 

and Clark (1999), who showed that vegetation indices, calculated from the hyperspectral red-edge 

and NIR spectral bands, minimize atmospheric and water absorption influence, as well as soil 

background, thereby enhancing estimation accuracy, a characteristic of some new generation 

sensors. Despite the promising performance from the new generation sensors, thus far little is 

known on AGB estimation, using new generation sensors, such as RapidEye, Landsat-8 OLI, 

SPOT-6 and Sentinel-2. It is thus critical to explore the possibility of utilizing these sensors for 

AGB estimation, as well as investigating the potential of them being up-scaled to landscape level, 

to meet the objectives of the Kyoto Protocol and REDD+. Studies conducted outside sub-Saharan 

Africa have already shown improved forest AGB estimates from Worldview-2 imagery (Ozdemir 

and Karnieli, 2011; Shamsoddini et al., 2013). Ozdemir and Karnieli (2011), using WorldView-2 

texture metrics to derive different forest structural parameters in Israel, concluded that this data set 

offers new opportunities for AGB estimation. Shamsoddini et al. (2013) mapped pine tree structural 
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parameters from WorldView-2 data in New South Wales, with an estimation error of 30%. The 

results demonstrated variability in the sensitivity of the two separate NIR bands over numerous tree 

structural parameters and this shows the utility of new bands and provides the opportunity to 

develop new indices for the better estimation of AGB. 

 

Although the new generation sensors indicate a very promising opportunity for regional scale AGB 

estimation in resource-limited environments, they do have some limitations. The major limitations 

of the new generation sensors include: (i) their inability to penetrate forest canopies in order to 

provide information on critical reflected solar energy, and (ii) the ineffectiveness to map AGB in 

tropical regions, where cloud cover is often a challenge. Like their predecessors, new generation 

multispectral sensors provide two-dimensional views of forest canopy surfaces. This ability only 

allows spectral properties from these sensors to relate more appropriately to the percentage canopy 

cover and LAI, rather than directly to AGB. The lack of the most important shortwave infrared 

(SWIR) band (except for Landsat-8 OLI and Sentinel-2 sensors), which has proved important for 

AGB estimation, especially in boreal forests (Lu, 2006), also remains one of the major challenges. 

Many studies have demonstrated the relevance of SWIR in volume and AGB mapping. For 

example, work by Hyyppä et al. (2000) has demonstrated that the SWIR spectral range has the 

highest correlations of all the examined forest attributes. Muukkonen and Heiskanen (2005) also 

found the strongest correlation between forest AGB and the ASTER SWIR spectral band. It would 

therefore be important to ensure that the development of future generation sensors includes this 

band, since it is more critical in AGB estimation.  

 

2.5 Trade-offs Between Satellite Data Availability, Costs and the Predictive Accuracy 

Research shows that active sensors, such as lidar and radar, provide high accuracy for estimating 

AGB, with an average R2-value of ±0.74 and ±0.89, when compared to multispectral data sets. It 

can also be noted in Table 2.1 that only one study tested the utility of hyperspectral data in 

estimating AGB in sub-Saharan Africa. The limited number of studies using this sensor can be 

largely attributed to the cost, availability, as well as the Hughes phenomenon, or “the curse of 

dimensionality”, associated with this data set. Although, lidar and radar data provide accurate and 

reliable AGB estimates, due to their cost and limited availability (Table 2.1 and 2.2), the two data 

types have since gained more popularity for local scale-based applications (e.g. small-scale: 

<10 000 ha), rather than “wall-to-wall” mapping (± 56 000 km2) in sub-Saharan Africa (Carreiras et 

al., 2012; Colgan et al., 2013). The existing lidar and radar-based AGB studies in sub-Saharan 



 

28 

 

Africa targeted mainly small-scale areas, despite the REDD+ project requiring regional or global 

scale estimates. The full application of these expensive and complex sensors in sub-Saharan still 

remains a challenge.  

 

It is therefore important to establish sensors and methods that are cheap, fast and robust for 

application in developing countries, in order to be able to meet the requirements of the REDD+ 

project. However, not all African countries have the capacity to access funding and hence cannot 

use active sensors for estimating AGB. It is therefore essential that the systems for measuring and 

estimating AGB for REDD+ projects in sub-Saharan Africa are available at a low cost, with 

acceptable and reliable accuracy. As a result, the cheap, free and readily-available multispectral 

data sets remain crucial for AGB estimation in sub-Saharan Africa. The moderately high average 

R2- value (±0.68) and slightly lower average predictive errors (±32%) in AGB results, as shown in 

Table 2.1, indicate the potential strength and possible avenues for improving regional estimates, 

using medium resolution sensors. Currently, most of these multispectral sensors (i.e. MODIS and 

Landsat products) are readily accessed from the NASA and USGS Earth Resources Observation 

and Science (EROS) Center archive (http://earthexplorer.usgs.gov/), dating back to 1972. In the 

future, the European Space Agency (ESA) will also make their images freely-available, covering 

wide expanses of land area, which is important for regional or global AGB mapping. Further 

improvement is shown by fine spatial resolution multispectral sensors with higher predictive 

averages, almost comparable to those obtained using radar and lidar data sets (Table 2.1). The fine 

spatial resolution multispectral sensors are, for instance, available at a fairly reasonable cost, 

especially when compared to lidar, hyperspecral and radar data sets (Table 2.2).  

 

http://earthexplorer.usgs.gov/
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Table 2.2 Overview on trade-offs between aboveground biomass sensor predictive accuracy 
  and costs 
Sensor resolution Available satellite data Utility for mapping Acquisition Cost 
Very fine (between 
0.5cm-10cm) 

Lidar, radar 
Hyperspectral 

Pixel scale Highly expensive  

Fine (<5m) Ikonos, Quickbird, 
RapidEye, 
Worldview-2 

Validation at a localised 
scale 

High 

Medium (10-60 m) SPOT  
Landsat 

Small and large scale 
mapping of 
aboveground biomass 

Low or free 
 

Course (250-1000m) AVHRR 
MODIS 

Large scale estimation 
and mapping of 
aboveground biomass 

Free 
 

*Multispectral optical sensors despite accuracy problems have been considerably utilised 
operationally in estimating and mapping aboveground boimass in Africa. Active sensors, such as 
lidar and radar (i.e. ALOS PALSAR L-band cross-polarised (HV) radar data ALSOR PALSAR), 
are not yet used operationally for aboveground biomass estimation in an African environment, 
except for small-scale use only. 
 

Previous studies conducted outside sub-Saharan Africa demonstrate a greater potential of 

employing multi-source (e.g. multispectral data with ancillary data sets) or multi-date data sets on 

multispectral platforms, when estimating AGB (Baccini et al., 2004; Dube et al., in press). Multi-

date multispectral data perform well in discriminating AGB classes and allow the examination of 

the spatial and temporal contribution of forests to carbon sequestration (le Maire et al., 2011). In 

addition, the radiometric and temporal variations can contain new information about forest 

characteristics important for AGB estimation (le Maire et al., 2011; Powell et al., 2010). To the 

best of our knowledge, few investigations have been carried out using multi-date techniques for 

AGB estimation and most of these have been applied outside Africa. For instance, a recent study by 

le Maire et al. (2011) in Brazil showed that it is beneficial to use multi-temporal data sets in 

estimating AGB (R2-value of 0.82) at global or regional scales. The study accurately demonstrated 

the use of MODIS products (Vegetation Indices 16-Day L3 Global 250 m) and ancillary data in 

monitoring AGB over 15 000 ha of Eucalyptus plantations, using stepwise linear or nonlinear 

(Random Forest) regression models. The integration of ancillary data, such as tree age, with 

multispectral data, enhanced the AGB estimation and prediction accuracy. However, in Africa, 

multi-source data sets have not been fully embraced in AGB studies.  
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2.6 Future Investigation 

Although considerable progress has been made in sensor development and the application of 

remote sensing technology for AGB estimation, it still remains a challenge. Firstly, to the best of 

our knowledge, no work has been conducted, based on remote sensing data sets, to estimate and 

map forest plantations AGB in sub-Saharan Africa. Plantation forests, such as the Pinus, 

Eucalyptus and Acacia spp, occupy quite a significant portion of the land area and house a 

significant amount of unknown carbon, which plays a vital role on biosphere-atmospheric carbon 

fluxes. However, for accurate, unbiased and reliable national carbon accounting to meet the 

objectives of the Kyoto Protocol and the REDD+ project, the focus of future research must be 

directed towards estimating and mapping AGB across all terrestrial ecosystems in sub-Saharan 

Africa.  

 

Meanwhile, to achieve the above objective, the challenge still exists to develop or identify effective, 

cheap, accurate and operational techniques to estimate and map AGB on a large-scale, capitalizing 

on the improved sensor characteristics and processing techniques. A new crop of studies, focusing 

on the use of remote sensing in forest ecology or vegetation mapping, demonstrates the adoption of 

new tree-based statistical ensemble methods (i.e. machine learning algorithms), namely, stochastic 

gradient boosting and random forests, as suitable for successful and improved estimation 

accuracies, when using the readily-accessible multispectral sensors (Carreiras et al., 2012; Mutanga 

et al., 2012) and when combined with ancillary data (Baccini et al., 2004; Dube et al., in press; le 

Maire et al., 2011). Although active sensors provide optimal AGB estimates, possible variations 

and changes over time and space cannot be satisfied in the sub-Saharan Africa, due to available 

economic constraints and other related challenges, mentioned earlier. Challenges posed by active 

sensors for successful application in sub-Saharan Africa are a clear indication that optical sensors 

remain the main possible solution for AGB quantification across the continent (Dube et al., 2015; 

Powell et al., 2010). The major challenge that researchers have to resolve when dealing with 

multispectral sensors is improving their direct relationship with AGB, which is difficult to establish 

in areas characterized with wood volumes exceeding 100 m3 ha-1. There is, therefore, a need for 

future research, to move towards the integration of multispectral remotely sensed with ancillary 

data sets. 

 

Another promising future research challenge would be to test the utility of new generation 

moderately fine spatial-resolution multispectral sensors (i.e. Landsat-8 OLI, RapidEye, Sentinel-2 
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and Worldview-2), which are moderately cheap and readily available. The WorldView-2 optical 

satellite sensor, launched in October 2009, provides panchromatic data at a geometric resolution of 

0.5 m and multispectral data, divided into eight spectral bands, at a geometric resolution of 2 m. 

Furthermore, future research in sub-Saharan Africa should focus on testing the potential of new 

generation sensors as a substitute for active sensors, because of their enhanced spatial resolution 

and the increased number of bands. Moreover, some of these sensors are comprised of an increased 

number of spectral bands, together with key and strategically-positioned vegetation wavelengths 

(i.e. the red edge bands: 690–730 nm). These strategically-positioned bands are not currently 

available on multispectral satellite sensors, except for hyperspectral sensors that are expensive to 

acquire and also require complex pre-processing methods. In addition, more research is needed to 

find the best variables (ancillary data) and predictive models that can be integrated with cheap, and 

sometimes free, multispectral data sets. Overall, the AGB estimation, using coarse spatial-

resolution data, is still very limited because of the common occurrence of mixed pixels and the 

huge difference between the size of field measurements and image pixel size. This results in 

difficulties in the integration of ground-based sample data and remote sensing-derived variables. A 

synthetic analysis of multi-source data, with a combination of different modelling approaches, may 

be needed for accurate AGB estimations in a large area. 

 

2.7 Conclusion  
Literature demonstrates that there is a decline in the number of studies using conventional methods 

to estimate AGB, compared to remote sensing methods. Conventional methods, although accurate, 

are time-consuming, too costly and practically impossible to apply on a broader scale. Although 

active sensors, such as lidar and radar, provide higher and more reliable AGB estimates than coarse 

multispectral data, they are still not operational in the African environments, due to the cost of their 

acquisition. Given the poor economic situation of most sub-Saharan African countries, 

multispectral data still remain relevant for AGB quantification, regardless of saturation problems in 

densely-closed canopies, the occurrence of mixed pixels and a huge mismatch between the size of 

field measurements and the image pixel size. Previous work outside sub-Saharan Africa shows that 

AGB estimates can be greatly improved by the use of multi-date multispectral data sets, the 

integration of remotely sensed data with ancillary data and spectral decomposition. Therefore, there 

is a need for further investigations into the applicability of the above approaches in quantifying 

stand volume and AGB in sub-Saharan Africa, using new generation sensors, particularly in 
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managed plantation forests. In addition, there is a need to identify efficient and robust predictive 

models that can help improve stand volume, AGB and carbon stock estimates from these data sets.  
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CHAPTERS THREE AND FOUR 

LOCAL SCALE MAPPING  
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3. EUCALYPTUS STANDS VOLUME PREDICTION USING 

STATISTICAL METHODS AND WITH MULTISOURCE DATA  
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stand volume in Zululand, South Africa: An analysis using stochastic gradient boosting regression 

ensemble with multisource data sets. International Journal of Remote Sensing. 33, 4502-4526. 
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Abstract 
Accurate, reliable and up-to-date forest stand volume information is a pre-requisite for a detailed 

evaluation of commercial forest resources and their sustainable management. Commercial forest 

responses to global climate change is still uncertain, hence mapping stand volume as carbon sinks is 

fundamentally important in order to understand the role of these forests in stabilizing the effects of 

climate change. The aim of this study was to examine the utility of stochastic gradient boosting 

(SGB) and multisource data to predict the stand volume of a Eucalyptus plantation in South Africa. 

The SGB ensemble, random forest (RF) and stepwise multiple-linear regression (SMLR) were used 

to predict Eucalyptus stand volume and other related tree-structural attributes, such as mean tree 

height and mean diameter at breast height (DBH). Multisource data consisted of SPOT-5 raw 

spectral features (4 bands), 14 spectral vegetation indices, rainfall data and stand age. When all 

variables were used, the SGB algorithm showed that stand volume can be accurately estimated (R2 

= 0.78 and RMSE = 33.16 m3ha-1 (23.01% of the mean)). The competing RF ensemble produced an 

R2 value of 0.76 and a RMSE value of 37.28 m3ha-1 (38.28% of the mean). SMLR, on the other 

hand, produced an R2 value of 0.65 and an RMSE value of 42.50 m3ha-1 (42.50% of the mean). Our 

study further showed that Eucalyptus mean tree height (R2 = 0.83 and RMSE = 1.63 m (9.08% of 

the mean)) and mean diameter at breast height (R2 = 0.74 and RMSE = 1.06 (7.89% of the mean)) 

can also be reasonably predicted, using SGB and multisource data. Furthermore, when the most 

important SGB model selected variables were used for prediction, the predictive accuracies 

improved significantly for mean DBH (R2 = 0.81 and RMSE = 1.21 cm (6.12% of the mean)), mean 

tree height (R2 = 0.86 and RMSE = 1.39 m (7.02% of the mean)) and stand volume (R2 = 0.83 and 

RMSE = 29.58 m3ha-1 (17.63% of the mean)). These results underscore the importance of 

integrating multisource data with remotely sensed data for predicting Eucalyptus stand volume and 

related tree-structural attributes.  

Keywords: Eucalyptus plantation, multiple-linear regression, stand age, random forest ensemble, 

SPOT-5, stand volume, tree-structural attributes  

 



 

36 

 

3.1 Introduction 

Plantation forests (1.5 million ha) are more prevalent than indigenous forests (530 000 ha) in South 

Africa (Sagi, 2012). These intensively-managed forests consist mainly of Eucalyptus species 

(700,000 ha), contribute approximately 7.3% (ZAR 20.4 billion) to the gross domestic product 

(GDP) and employ around 437 400 people (Godsmark, 2010). Besides commercial utilization, 

plantation forests are environmentally important in regulating bio-geochemical (le Maire et al. 

2011) and bio-geophysical processes (Dube and Mutanga, 2014). Through biochemical processes 

and photosynthesis, forests also extract and house additional atmospheric carbon (Canadell et al. 

2007; Henry et al. 2011). This natural phenomenon is viewed as a clean mechanism for mitigating 

climate change (Canadell et al., 2007). To fully understand forest contributions in the carbon cycle, 

accurate, reliable and current information is essential (Geldenhuys, 2000). Information more 

specifically related to mean diameter at breast height, mean tree height and stand volume is central 

for deriving stand level, or total forest carbon stocks and associated fluxes (Santoro et al., 2006; 

Somogyi et al.,et al., 2008).  

 

Direct stand volume estimation methods are based on species-specific, or general allometric, 

equations derived from terrestrial enumerations of related tree structural variables, such as basal 

area (BA), height and diameter at breast height (DBH) (Chinembiri et al., 2013; Gara et al., 2014). 

Direct methods, however, are prone to error propagation (Gebreslasie et al., 2010) and are time-

consuming, tedious, limited in extent and expensive to implement (Tesfamichael et al., 2010). 

Remote sensing techniques have been well-documented as a promising alternative to field-based 

methods for stand or plot level tree volume estimation (Gebreslasie et al., 2010; Tesfamichael et 

al., 2010).  

 

A number of studies have thus far explored the utility of multispectral (Gebreslasie et al., 2010), 

hyperspectral (Canavesi et al., 2010) and active imaging sensors (Fransson et al., 2000; 

Tesfamichael et al., 2010) for determining stand volume or aboveground forest carbon stocks 

(Henry et al., 2011; le Maire et al., 2011). Using lidar data and the local maxima (LM) filtering 

approach, Tesfamichael et al. (2010) estimated Eucalyptus volume with R2 values, ranging from 

0.82 to 0.94, and with root mean square error (RMSE) values, ranging from 20% to 43%. Canavesi 

et al. (2010) used eight Hyperion EO-1 (total bands = 220) derived vegetation indices to estimate 

Eucalyptus stand volume, based on multiple-linear regression models. Using multiple-linear 

predictive models, the authors found that 71% of the variation in stand volume can be explained 
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with a RMSE value of 43.73 m3 ha-1. Fransson et al. (2000) estimated tree stem volume from 

airborne CARABAS-II VHF (20–90MHz) synthetic aperture radar (SAR) data, using linear 

predictive models, and obtained RMSE values between 4% and 22%. Although hyperspectral and 

lidar data provide accurate and reliable forest stand volume estimates, due to high acquisition costs 

and limited availability, these data types have gained more popularity for project-based applications 

(limited extent), rather than for “wall to wall” applications in sub-Saharan Africa and other 

developing countries (Carreiras et al., 2012). Medium-to-coarse resolution multispectral imagery 

thus remains crucial for estimating stand volume and related tree-structural attributes, such as mean 

tree height and mean diameter at breast height (DBH), measured at 1.3 m above the base of the tree, 

primarily because of data availability at limited or no cost. In additionally, these data types do not 

necessarily require complex pre-processing and analysis, when compared to hyperspectral and lidar 

data sets. Given such advantages related to the use of multispectral sensors, there is a need for a 

swift prediction of stand level tree-structural attributes i.e. mean tree height, mean DBH, stand 

volume and biomass, to facilitate a more accurate and precise assessment of sub-Saharan Africa’s 

carbon cycle (Laurin et al., 2014). 

 

It would be beneficial if the mapping of stand level tree-structural attributes, especially stand 

volume, were carried out for large areas, in order to understand the role of these forests in 

stabilizing climate change effects. Medium spatial resolution multispectral sensors thus represent a 

possible alternative, due to their large coverage (i.e. swath width), despite having limitations, such 

as the presence of mixed pixel information (Sarker et al., 2011). Researchers now advocate 

incorporating multispectral data with ancillary stand data sets, to obtain more accurate estimates 

(Baccini et al., 2004; le Maire et al., 2011; Main-Knorn et al., 2011). Moreover, machine-learning 

techniques, such as SGB, have also proven to be useful in estimating structural parameters, such as 

volume at plot level, biomass and carbon stocks (Carreiras et al., 2012a; 2013; Pierce et al., 2012; 

Shataee et al., 2011). For example, Carreiras et al. (2013) used a modified bagging SGB (BagSGB) 

approach in Mozambique and estimated aboveground forest carbon stocks with an R2 value of 0.95 

and a RMSE value of 5.03 Mg·ha−1 from Advanced Land Observing Satellite (ALOS) Phased 

Array L-band Synthetic Aperture Radar (PALSAR) data. Similarly, Carreiras et al. (2012) used a 

BagSGB approach to derive biomass with an R2 value of 0.95 and an RMSE value of 26.62 Mg ha−1 

from ALOS PALSAR data in Guinea-Bissau. Shataee et al. (2011) compared random forest (RF) 

and boosting regression trees (BRT) for plot-level forest volume estimation, using height and 

intensity metrics data generated from aerial laser scanner (ALS) and Landsat TM 5. The results of 
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their study demonstrated that BRT is the most effective model, producing plausible volume 

estimates (RMSE = 40.56%), when compared to RF (RMSE = 42.93%).  

 

However, although tree-based ensemble methods have found popularity in studies that use radar 

and high spatial resolution multispectral sensors (such as Quickbird-2 and Ikonos-2), their utility 

with medium spatial resolution multispectral data sets is rather limited. The study by Pierce et al. 

(2012) is an exception. Using RF regression with R2 values ranging from 0.55 to 0.68, Pierce et al. 

(2012) quantified spatial patterns of surface and canopy fuel loads across a large heterogeneous 

landscape in California, by integrating plot level data, topographic characteristics and Landsat 5 

TM data. Therefore, it would be interesting to test the utility of tree-based ensembles in predicting 

different tree-structural attributes i.e. Eucalyptus stand volume, mean tree height and mean diameter 

at breast height from medium spatial resolution multispectral data sets and for selecting the optimal 

set of variables that best explain variations in stand level volume, amongst others. If successful, the 

accurate prediction of mean DBH, mean tree height and stand volume, based on integrating 

medium spatial resolution multispectral sensors, such as SPOT-5 (10m pixel resolution), together 

with ancillary data sets, can thus provide further insight into, and an understanding of African 

ecosystem carbon balances and regional climatic systems. 

 

Therefore, this study aims to provide an effective and easily-applicable solution for the prediction 

of Eucalyptus volume and related tree-structural attributes (i.e. mean DBH and mean tree height) at 

a stand level. To achieve this goal, the strength of the SGB algorithm, which is a hybrid between 

boosting (Schapire, 2003) and bagging procedures (Friedman, 2002), was tested in predicting 

volume and related tree-structural attributes from multisource data (SPOT-5 raw spectral 

information, vegetation indices and ancillary variables derived from rainfall and stand age). Our 

study also compared the utility of the SGB ensemble with the RF ensemble and a classical 

parametric method i.e. the stepwise multiple-linear regression model. 

 

3.2 Materials and Methods 

3.2.1 Study Area 

The Eucalyptus plantations currently managed for pulpwood production by the Sappi Pulp and 

Paper Company in the Zululand region of South Africa (Figure 3.1) were investigated in this study. 

These Eucalyptus plantations occupy approximately 25 840 ha of the area. The growing stock 

consists predominantly of four- to eleven- year old Eucalyptus grandis (E. grandis), Eucalyptus 
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grandis × Eucalyptus camaldulensis (E.gxc) and Eucalyptus grandis × Eucalyptus urophylla 

(E.gxu) hybrid clones. These plantations are evenly scattered along the coast, stretching from the 

south around Richards Bay (Latitude 28˚ 48'S, Longitude 32˚ 02'E) to the north, including the town 

of Mtubatuba (Latitude 28° 25'S, Longitude 32° 10'E), with an altitude averaging between 50 and 

100 m above sea level. The climate is subtropical, with high humidity and temperatures (the mean 

annual temperature is approximately 21.7ºC) and high summer rainfall, reaching ±1200 mm, 

favourably important for fast growing Eucalyptus stands (Scott and Lesch, 1997). Soils are mainly 

of Aeolian origin (i.e. grey and yellowish quaternary sands) and contain little organic carbon; 

hence, there is a suitable deep rooting medium for the growing stock (Dube et al., 2014b). These 

fast-growing Eucalyptus species are planted as clones or seedlings and harvested every six to seven 

years. Stands are managed on a pulpwood regime (i.e. established at 1667 trees ha-1) and intensive 

soil preparation and weed control measures are practiced, until crown closure occurs between 1 to 

1.5 years. Due to the species composition, intensive silviculture, flat terrain and relatively even soil 

composition, stands are fairly uniform with regard to crown cover and tree density (Little and Toit, 

2003; Viero, 2002). 

 

 
Figure 3.1 The spatial distribution of Eucalyptus plantation forest in the Zululand region of  
  KwaZulu-Natal, South Africa 
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3.3.2 Image Acquisition 

A SPOT-5 image (Scene ID 5 142-407 12/05/14 07:50:26 1 J) covering the study area was acquired 

on 14 May 2012. SPOT-5 consists of green (500-590 nm), red (610-680 nm) and near-infrared 

(NIR: 780-890 nm) bands, with a pixel resolution of 10 m, whereas the shortwave infrared (SWIR: 

1580-1750 nm) band is captured at a pixel resolution of 20 m, but is resampled to 10 m, using the 

nearest neighbour method. The image was geo-referenced, using 18 evenly distributed ground 

control points (GCPs) and a 10 m digital elevation model (DEM). The geographical error in terms 

of RMSE was less than one pixel. In addition the SPOT-5 image was atmospherically corrected and 

converted to reflectance values, using the ATCOR 3 module in ERDAS Imagine 2011, in order to 

reduce the effect of haze and other atmospheric influences.  

 

3.3.3 Multispectral SPOT-5 Spectral Bands and Derived Vegetation Indices  

Initially, the SPOT-5 spectral bands and selected spectral vegetation indices (VIs), as shown in 

Table 3.1, were used to predict Eucalyptus volume and related tree-structural attributes (i.e. mean 

diameter at breast and mean tree height) at a stand level. VIs were selected, based on previous 

studies that predicted tree volume and structural attributes, using remotely sensed data (Lee et al., 

2004; Swatantran et al., 2011; Zheng et al., 2004). 
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Table 3.1 SPOT-5 spectral parameters and vegetation indices used for this study 
Parameters Formula References 
 Spectral band reflectance    
Green, Red, NIR and SWIR - -  
Vegetation Indices   
1. Difference Vegetation Index (DVI) NIR – Red Tucker (1979)  
2. Global Environmental Monitoring Index   (GEMI) 

 

Pinty and Verstraete (1992) 

3. Green normalized difference vegetation index (GNDVI)  Gitelson et al. (1996) 

4. Moisture Stress Index (MSI) SWIR/NIR Rock et al. (1986) 
5. Normalized Difference Vegetation Index (NDVI) (NIR – Red)/(NIR + Red) Jordan (1969) 
6. Corrected NDVI (NDVIc) 

SWIRmin and SWIRmax are the minimum and maximum 
reflectances observed in the field plots , 

Nemani et al. (1993) 

7. Normalized difference infrared index (NDII)  Kimes et al. (1981) 

8. Optimized Soil-Adjusted Vegetation Index (OSAVI)  L = 0.16 Rondeaux et al. (1996) 

9. Renormalized Difference Vegetation Index (RDVI)  Roujean and Breon (1995) 

10. Reduced Simple Ratio (RSR) 

; SWIRmin 
and SWIRmax as defined in NDVIc 

Brown et al. (2000) 

11. Simple Ratio (SR) NIR/Red Jordan (1969) 
12. Soil adjusted vegetation index (SAVI) ; L = 0.5 Huete (1988a) 

13.  Soil adjusted vegetation index (SAVI2) b was set to 0.025 and a to 1.25 Major et al. (1990) 

14.  Modified Soil Adjusted Vegetation Index (MSAVI2)  Qi et al. (1994) 
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3.3.4 Mean Diameter at Breast Height, Mean Tree Height and Stand Volume  
Variables extracted from the Sappi forestry database consisted of species composition, age, mean 

stem density per hectare, mean DBH and mean tree height for 150 individual stands (i.e. the area of 

each stand is about 20 ha), representing approximately 12% of the total planted area (1 292 stands). 

These variables (i.e. tree height in meters, DBH in centimetres) were collected during the months of 

May and June 2012. Tree height and diameter at breast height (DBH) were measured, using the 

Haglof Digitech calliper and the Vertex IV laser instrument, respectively. Using a sampling method 

adopted by most South African forestry companies, these tree attributes were recorded, utilizing 

circular sample plots of about 400 m2 in size that were systematically distributed (usually every 100 

m) within the stand. Sample intensities may vary between 2% and 10%, depending on the species 

composition, stand size or local forest conditions (Wessels et al., 1985).  

 

Subsequently, stand level volume estimates were calculated based on the averaged sample plot 

measurements, following a generalised allometric model for all Eucalyptus species (i.e. E. grandis 

and the hybrids E.gxc and E.gxu etc.) grown in this area (Bredenkamp, 2000; Kassier, 2012). To 

quantify stand volume (m3ha-1), mean stand height (Ht), computed basal area and species form 

factor were used as follows: 

 

                                             Equation 3. 1 

 

Where  = stand volume (m3ha-1); =Basal Area (m2ha-1); = mean stand height (m); and 

= species form factor, which is the fraction of tree diameter at the point of measurement and the 

DBH (Bredenkamp, 2000; Kassier, 2012).  

 

Descriptive statistics for the three tree-structural attributes i.e. stand volume, mean tree height and 

mean DBH is shown in Table 3.2. The average stand volume in Zululand plantation forest was 164 

m3 ha-1, whereas the average DBH was 13.45 cm. The average mean tree height for the entire study 

area was 19.75 m.  

 

fHtBAVol 

Vol BA Ht

f
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Table 3.2 Descriptive statistics for the three measured tree-structural attributes (DBH, tree  
  height and stand volume) 

Species properties Min. Mean Max. Stdev 

Diameter at breast height (cm) 8.34 13.43 17.55 2.06 
Tree height (m) 10.35 19.75 24.46 3.37 
Eucalyptus stand volume (m/ha3) 23.43 163.60 326.40 72.63 
 
3.3.5 Ancillary Stand Data 

Monthly rainfall data (in millimetres) corresponding to the stand age was gathered from the South 

African Weather Service and Institute for Soil, Climate and Water weather stations, via the Agro-

Met data information system located at the Agricultural Research Council 

(http://www.arc.agric.za). The Agricultural Research Council computes the rainfall data set, by 

assigning a rainfall value to a specific location based on spatial interpolation. The method considers 

the measured rainfall values present at the five rainfall stations closest to a location and the satellite 

rainfall estimate at that specific location. The measured rainfall data is obtained from 550 automatic 

near-real time rainfall stations that are evenly distributed across the country, with a spatial 

resolution of 1 km x 1 km (de Coning, 2013; de Coning and Poolman, 2010). A map illustrating the 

rainfall distribution patterns within the study area is shown in Figure 3.2. As shown in the Figure, 

there are significant variations in the amount of rainfall received amongst the stands located in the 

south (i.e. wetter) and stands located in the north (i.e. drier). 

 

Based on the period of rainfall data corresponding to the stand age, the mean rainfall (meanR), 

maximum rainfall (maxR), minimum rainfall (minR) and the coefficient of variation of rainfall 

(covR) were then calculated. The derived rainfall metrics, together with the tree age (EnumAge), 

were then used as ancillary variables to predict Eucalyptus stand volume and the related tree-

structural attributes (i.e. mean DBH and mean tree height). 
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Figure 3.2 Rainfall distribution map of the study area  

 

3.4 Modelling Techniques 

3.4.1 Stochastic Gradient Boosting 

Stochastic gradient boosting (Friedman, 2001; 2002; Friedman and Meulman, 2003) is an advanced 

machine-learning algorithm related to bagging and boosting techniques. The SGB algorithm builds 

numerous regression trees by sequentially modelling “pseudo” residuals, using a stepwise model 

fitting approach (recommended for reducing bias) and model averaging, which decreases model 

variance (Elith et al., 2008; Freund and Schapire, 1997). At each iteration, a regression tree is 

grown from a random sub-sample of the data set selected, without replacement (Elith et al., 2008; 

Freund and Schapire, 1997). A residual deviance is then calculated on data not used in the model 

fitting process. Trees are added, until the total residual deviance calculated from the withheld data 

ceases to decrease. The number of trees giving the lowest total residual deviance represents the 

most appropriate model for predicting the response variable (De'ath, 2007; Leathwick et al., 2006). 

The main strengths of the SGB algorithm include: (i) the resistances to outliers, (ii) the use of 

predictor variables without transformation, (iii) the capability to fit complex nonlinear 

relationships, and (iv) the automatic handling of interaction effects among predictors. Finally, the 
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algorithm introduces an element of stochasticity, which improves the model accuracy and reduces 

over-fitting (Leathwick et al., 2006; De'ath, 2007; Elith et al., 2008). 

 

The SGB algorithm is normally governed by three important user-defined parameters which 

encompass (i) the learning rate (lr), (ii) tree complexity (tc), and (iii) the number of regression trees 

(ntree), which depends on lr and tc for an optimal prediction (Hastie et al., 2001; Leathwick et al., 

2006; Elith et al., 2008). The lr parameter determines the contribution of each tree to the growing 

model, whereas tc is the number of the samples which are used in each final node (De'ath, 2007; 

Elith et al., 2008). The SGB algorithm was implemented, using the gbm package within the R 

statistical package (R Development Core Team, 2008). A comprehensive guide on appropriate 

model settings is summarized in the literature (Friedman 2001; 2002; De'ath, 2007; Elith et al., 

2008). The guidelines presented in these studies resulted in the subsequent parameter settings. In 

the present study, lr was set between 0.0001 and 0.1, whereas tc was set between 1 and 5. In 

addition, the bagging fraction, which determines a fraction of the training data selected randomly 

for computing each tree, was set at 0.3 during the analysis process.  

 

3.4.2 Variable Importance and Selection 

The SGB algorithm estimates the relative influence of each variable in predicting a response, based 

on the formula developed by Friedman (2001). For regression, the algorithm determines the 

variable importance through quantifying the sum of squared improvements at all splits, determined 

by the predictor, and then averages the relative influence of each predictor variable over the 

collection of trees (Friedman and Meulman, 2003; Elith et al., 2008). The relative contribution of 

the individual variable is then scaled (i.e. so that the sum adds to 100), with higher numbers 

indicating a stronger influence on the response variable and vice versa.  

 

The SGB algorithm implements variable selection by successively removing predictor variables 

that do not improve model accuracies, as determined by the residual deviance. In the present study, 

variable selection was performed, using a backward feature elimination (BFE) approach. The BFE 

approach develops a model by first utilizing all the predictor variables (n = 23 in this study) and 

then progressively eliminating variables, based on their relative influence. This process creates 

multiple models and the model with the optimal subset of variables is then selected, based on the 

lowest residual deviance obtained (Elith et al., 2008). 
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3.4.3 Random Forest 

The results of the SGB ensemble were then compared with the random forest ensemble, a machine-

learning technique developed by Breiman (2001). RF improves the classification and regression 

trees (CART) method, by combining a large set of regression trees. The RF ensemble, which is also 

a modified version of adaboosting (bootstrap aggregation), has an additional modification of 

selecting only a random subset of candidate features (mtry), to determine the split at each node of a 

tree. This ensemble method uses recursive partitioning, to create multiple regression trees (ntree), 

and then averages the results of all trees (Breiman, 2001). Each tree is independently grown to 

maximum size without any pruning, based on a bootstrap sample from the training data set 

(approximately 2/3 of the original data). RF optimization was performed, based on two parameters, 

namely, ntree, the number of regression trees grown, based on a bootstrap sample of the 

observations and mtry, the number of different predictors tested at each node. To determine the 

optimal ntree and mtry values that can best predict stand volume, mean DBH and mean tree height, 

the two parameters (mtry and ntree) were optimized, based on the lowest ten-fold cross-validation 

prediction error. The ntree values were tested from 500 to 2500, with a 500 interval, whereas mtry 

was tested from 1 to 23, based on a single interval. For a detailed description of RF, see Breiman 

(2001). The RF ensemble was implemented, using the “randomForest” library (Liaw and Wiener, 

2002) within the R statistical package (R Development Core Team, 2008) 

 

3.4.4 Stepwise Multiple-linear Regression  

The results obtained from the above-mentioned algorithms were also compared with those derived 

using stepwise multiple-linear regression. Previous studies indicate that the SMLR model has been 

extensively used in modelling the relationship between remotely sensed data and different tree-

structural attributes, with reasonable accuracy rates (Jain et al., 2007; Jones and Ricciardi, 2005).  

 

3.4.5 Model Accuracy Assessment 

The coefficient of determination (R2) and the root mean square error (RMSE) were used in the 

study to assess the predictive accuracy of all the three predictive methods (i.e. SGB, RF and SMLR 

models).  

 
 
 



 

47 

 

3.5 Results 

3.5.1 Predicting Eucalyptus Stand Volume  

Table 3.3 demonstrates the prediction results, based on the R2 and RMSE values obtained from 

SGB, RF and SMLR models, respectively. The required parameters for RF and SGB, derived from 

optimization of the models, are shown in Table 3.3. Stand volume was estimated using: (i) SPOT 5 

bands, (ii) VIs, (ii) ancillary stand data (i.e. rainfall metrics, and stand age), and (iv) multisource 

data (i.e. all data sets combined). For all of the above modelling stages, the SGB algorithm 

performed better than the RF and SMLR models. Based on only the SPOT-5 bands, the SGB model 

produced an R2 value of 0.41 and an RMSE value of 54.40 m3ha-1, the competing RF model 

produced an R2 value of 0.39 and an RMSE value of 55.06 m3ha-1, while the SMLR model 

produced an R2 value of 0.24 and an RMSE value of 63.70 m3ha-1. It can also be noted that, for the 

three modelling stages (i, ii and iii), SPOT-5 produced less accurate stand volume (m3ha-1) 

prediction results (Table 3.3). Overall, the best results were obtained using the multisource data sets 

for all three modelling techniques considered in this study. The SGB model yielded an R2 value of 

0.78 and an RMSE value of 33.16 m3ha-1, the RF model produced an R2 value of 0.76 and an 

RMSE value of 37.26 m3ha-1 and the SMLR model produced an R2 value of 0.65 and an RMSE 

value of 42.50 m3ha-1. The SMLR model produced the least accurate results for all the modelling 

stages.  

 

Table 3.3 Comparisons of Eucalyptus stand volume prediction results, using three predictive 
  models (stochastic gradient boosting, random forest and stepwise multiple-linear  
  regression) 

Input data set Statistical methods tc lr mtry ntree R2 RMSE (m3 ha-1) 
SPOT-5 bands  SGB 3 0.005 - 1300 0.41 54.40 (37.75%) 
(n = 4) RF - - 3 500 0.39 55.06 (38.21%) 
 SMLR - - - - 0.24 63.70 (44.21%) 
Vegetation indices  SGB 5 0.003 - 1000 0.44 52.74 (36.60%) 
(n=14) RF - - 12 500 0.41 54.62 (37.90%) 
 SMLR -    0.42 52.97 (36.76%) 
Ancillary stand data  SGB 5 0.005 - 800 0.50 52.30 (36.29%) 
(n = 5) RF - - 3 1000 0.46 52.30 (36.29%) 
 SMLR - - - - 0.42 55.37 (38.42%) 
Multisource data SGB 5 0.005 - 1350 0.78 33.16 (23.01%) 
(n = 23) RF - - 6 500 0.76 37.28 (25.87%) 
 SMLR - - - - 0.65 42.50 (29.49%) 
*For stochastic gradient boosting (SGB), random forest (RF) and stepwise multiple regression (SMLR), the R2 and 
RMSE values were generated using the 30% holdout test data set (n = 45) and the optimization results are based on a 
10-fold cross validation method using the training data set (n = 105). RMSE values were also provided as a percentage 
(%) of the mean. The SLMR method selected nine variables in predicting stand volume. 
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3.5.2 Predicting Mean Diameter at Breast Height and Mean Tree Height 
Mean DBH and mean tree height prediction results, obtained from the SGB, RF and SMLR models, 

are presented in Table 3.4. Overall, the SGB model performed better than the other models in terms 

of the RMSE of prediction.  

Table 3.4 Comparisons of Eucalyptus mean DBH and mean tree height prediction results using 
  three predictive models (stochastic gradient boosting, random forest and stepwise  
  multiple-linear regression) 

  mean DBH mean tree height 
Input data set Statistical methods R2 RMSE (cm) R2 RMSE (m) 
SPOT-5 bands  SGB 0.46 1.38 (10.28%) 0.49 2.53 (14.09%) 
(n = 4) RF 0.40 1.47 (10.95%) 0.49 2.68 (14.92%) 
 MLR 0.32 1.49 (11.09%) 0.43 2.73 (15.20%) 
Vegetation indices  SGB 0.45 1.57 (11.69%) 0.42 2.69 (14.98%) 
(n=14) RF 0.43 1.62 (12.06%) 0.46 2.84 (15.81%) 
 MLR 0.31 1.73 (12.88%) 0.40 3.05 (16.98%) 
Ancillary  stand data  SGB 0.54 1.23 (9.16%) 0.56 2.56 (14.25%) 
(n = 5) RF 0.49 1.38 (10.28%) 0.48 2.69 (14.98%) 
 MLR 0.47 2.63 (19.58%) 0.42 2.73 (15.20%) 
Multisource data SGB 0.74 1.06 (7.89%) 0.83 1.63 (09.08%) 
(n = 23) RF 0.67 1.19 (8.86%) 0.78 1.67 (09.30%) 
 MLR 0.68 1.32 (9.83%) 0.72  1.83 (10.19%) 
*For stochastic gradient boosting (SGB), random forest (RF) and stepwise multiple regression (SMLR), the 
R2 and RMSE values were generated using the 30% holdout test data set (n = 45) and the optimization 
results are based on a 10-fold cross validation method using the training data set (n = 105). RMSE values 
were also provided as a percentage (%) of the mean. The SLMR method selected 10 variables in predicting 
mean DBH, and mean tree height. 
 
Predicting mean DBH and mean tree height, using SPOT-5 reflectance bands, resulted in low 

accuracies, with SGB producing the best results (mean DBH: R2 = 0.46 and RMSE = 1.38 cm; 

mean tree height: R2 = 0.49 and RMSE = 2.53 m). Mean DBH and mean tree height predictions, 

using the VIs and ancillary stand data sets, show a similar trend, that is, the SGB model produces 

the best accuracies, followed by RF and SMLR, although the RF model produced better accuracies 

(R2 = 0.46 and RMSE = 2.84 m) when predicting mean tree height, using the VIs data set. The 

multisource data set produced the best predictions of mean DBH and mean tree height for all 

models considered in this study. However, the best models for mean tree height (R2 = 0.83 and 

RMSE = 1.63 m) and mean DBH (R2 = 0.74 and RMSE = 1.06 cm) were obtained, using the SGB 

model. 

 

3.5.3 Variable Selection and Model Improvement  

Since the SGB models, using the multisource data sets, produced the best accuracies for predicting 

mean tree height, mean DBH and stand volume, this section only focuses on improving the SGB 
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model accuracies by implementing a backward variable selection process. In assessing the relative 

importance of variables, as determined by the SGB algorithm, Figure 3.3 shows that the SWIR, 

minR, EnumAge and covR variables are ranked highly, when predicting mean DBH (Figure 3.3a), 

mean tree height (Figure 3.3b) and stand volume (Figure 3.3c). In addition the relative importance 

of the SWIR variable is greater than 20%, when predicting mean DBH, mean tree height and stand 

volume. Following these variable importance rankings, the next challenge was to select the optimal 

number of variables: (i) that could produce the best accuracies, when predicting mean DBH, mean 

tree height and stand volume, and (ii) that would be helpful in the interpretation of the final models. 
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a.                                     b.            c. 

 
Figure 3.3 The relative importance of variables in the multisource data set (n = 23). The variables are ranked based on their contribution to 
  the stochastic gradient boosting model. a, b and c represent the relative importance of the variables, when predicting mean DBH, 
  mean tree height and stand volume 
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Table 3.5 Comparisons of Eucalyptus mean DBH, mean tree height and stand volume  
  prediction results, using stochastic gradient boosting and backward feature  
  elimination  

Attribute No. of variables R2 RMSE 
mean DBH 10 0.81 1.21 cm (6.12%) 
mean tree height 10 0.86 1.39 m (7.02%) 
Stand volume 9 0.83 29.58 m3ha-1 (17.63%) 
*For stochastic gradient boosting, the R2 and RMSE values were generated using the 30% holdout 
test data set (n = 45) and the optimization results are based on a 10-fold cross validation method, 
using the training data set (n = 105). RMSE values were also provided as a percentage (%) of the 
mean. 
 

Table 3.5 presents the predictions of mean DBH, mean tree height and stand volume and the model 

parameters for the SGB model and variable selection, using the backward feature elimination (BFE) 

method. In this regard, the BFE method selected ten predictor variables (i.e. SWIR, EnumAge, 

minR, covR, NDVIc, meanR, red, GNDVI, maxR and SAVI) from all the data sets (Figure 3.3a) 

that were optimal for predicting mean DBH. The selected variables produced an R2 of 0.81 and an 

RMSE of 1.21 cm, which are better than those achieved using all variables (Figure 3.4a and Table 

3.4). In comparison, the SGB model using all the variables produced an R2 value of 0.74 and 

RMSE value of 1.06 cm (Table 3.4). The BFE method selected SWIR, minR, EnumAge, CovR, 

meanR, NDVIc, maxR, Red, NDVI and DVI for predicting mean tree height (Figure 3.3b). Based 

on these variables, mean tree height prediction was improved (R2 = 0.86 and a RMSE = 1.39 m), 

compared to SGB using all the variables (see Table 3.4). In predicting stand volume, the BFE 

method selected SWIR, minR, EnumAge, covR, Red, meanR, NDVI, SAVI and NDII. Moreover, 

the selection of SWIR, minR, EnumAge, covR, Red, meanR, NDVI, SAVI and NDII resulted in an 

R2 of 0.83 and an RMSE of 29.58 m3 ha-1, which are better than those achieved from the use of all 

variables (see Table 3.3). Overall, SGB models that used variables selected by the BFE method 

showed improved prediction results for mean DBH, mean tree height and stand volume. 
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Figure 3.4 Prediction results for (a) mean DBH, (b) mean tree height and (c) stand volume, based on variables selected from the multisource 
  data set using the backward feature elimination approach and stochastic gradient boosting  
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3.6 Discussion 

One of the major challenges in predicting tree-structural attributes (i.e. stand volume, mean DBH 

and mean tree height), using medium spatial resolution multispectral data sets, is the inability to 

overcome the problem of saturation in areas with high canopy cover. Studies have explored the 

utility of high spectral and spatial resolution sensors with strategically-located bands to overcome 

saturation problems, as well as to enhance the estimation accuracies (Gara et al., 2014b). 

Nevertheless, the cost, volume and availability of high spatial and spectral resolution sensors, such 

as hyperspectral, Woldview-2, RapidEye, lidar and radar data sets, remain one of the major setbacks 

in resource-limited environments. The solution therefore lies in identifying possible ways of 

enhancing the prediction accuracy of the most important tree-structural attributes, based on the cost 

and availability of multispectral sensors. This research therefore provides important evidence on the 

potential of predicting of Eucalyptus stand volume and related tree-structural attributes (i.e. mean 

DBH and mean tree height) from multisource data sets, based on advanced predictive models (i.e. 

SMLR, RF and SGB) in the Zululand region of South Africa. The need for developing a cheap and 

quick operational approach is necessary for improving our understanding of the contribution of 

forests towards the regional carbon pool. 

 

3.6.1 Combining Remotely Sensed Data with Ancillary Stand Data 

The results of this study have indicated the potential and effectiveness of predicting mean DBH, 

mean tree height and stand volume with higher accuracy, using relatively cheap and readily-

available medium-spatial resolution SPOT-5 derived data (i.e. spectral bands and vegetation 

indices), combined with ancillary stand data sets (i.e. rainfall metrics and stand age). The 

combination of these data sets (i.e. multisource data set) yielded better results, when compared to 

using the individual data sets on their own. For instance, when all predicted variables (i.e. medium 

spatial resolution SPOT-5 spectral information, vegetation indices, rainfall metrics and stand age) 

were used, the overall accuracies increased significantly for all the predictive models (i.e. SMLR, 

RF and SGB), as opposed to when the variables were used separately. Furthermore, the results 

obtained after implementing variable selection further improved the final model prediction accuracy 

for all tree-structural attributes considered in this study, compared to those derived from all 

variables. 

 

These results are consistent with the results obtained in previous work that integrated remote 

sensing data with ancillary data sets, to estimate various tree-structural attributes (Baccini et al., 
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2004; Zheng et al., 2007; Gebreslasie et al., 2010; le Maire et al., 2011). For example, Zheng et al. 

(2007) estimated forest AGB in China, using field forest inventory data, leaf area index and 

vegetation indices derived from Landsat enhanced thematic mapper images. Results showed that the 

SMLR model, using LAI and simple ratio (SR) index, as predictors, explained 93% of the AGB 

variance for mixed forests, whereas the model based on LAI and stand age captured only 79% of 

AGB for broad-leaved forests. Recently, Zhang et al. (2014) estimated AGB in Canada, using a 

spatially explicit data set derived from a combination of forest inventory data from 1 968 plots and 

space borne lidar canopy height data, 10 climatic variables and elevation. Using four regression 

models, namely, spatial interpolation, non-spatial and spatial regression models, as well as the RF 

algorithm, their results showed that the integration of field-based inventory data, space borne lidar 

data, land cover classification, as well as climatic and environmental variables enhanced the 

quantification of forest AGB across large regions, explaining 62% of the variation in biomass. The 

work conducted by Baccini et al. (2004) observed that the use of coarse spatial resolution 

multispectral data, in combination with appropriate climatic and topographic factors, can effectively 

be used to map aboveground forest biomass for National Forest lands in California. Furthermore, le 

Maire et al. (2011) estimated different tree-structural attributes at stand scale with high accuracy, 

using MODIS NDVI time series and bioclimatic data. Stand-age alone explained more than 82% of 

stand wood volume variability and 87% of stand dominant height variability. The results from this 

study further confirm the importance of combining multispectral data, together with ancillary 

variables, as an important alternative for enhancing the prediction accuracy of stand volume and 

tree-structural attributes, such as the mean tree height and mean DBH. 

 

3.6.2 Comparison of Stochastic Gradient Boosting, Random Forest and Stepwise Multiple-

 linear Regression 

It is important to also note that one of the main objectives in this study was to compare the strength 

of three predictive models (i.e. SLMR, RF and SGB). The SGB, RF ensembles and SMLR model 

were compared on their ability to accurately predict mean DBH, mean tree height and stand, using 

multisource data. Results show that the SGB ensemble performed better than the competing RF 

ensemble and SMLR model. This has been confirmed by earlier studies, which suggest that in 

applications, where the number of field observations is small, SGB tends to outperform the RF 

regression ensemble (Dube and Mutanga, 2014). Previous studies indicate that the RF algorithm 

requires a larger number of field observations to strengthen the randomization process, especially 

when the sample data set varies significantly (Gara et al., 2014b; Özçift, 2011). In addition, a study 
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by Krahwinkler and Rossman (2011) has shown that the RF algorithm uses a combination of soft 

linear boundaries and that it may not function with few observations at the decision surface. 

Therefore, RF does not efficiently perform when the number of observations is small. 

 

Researchers have further noted that the SGB and RF algorithms are better than conventional 

regression methods, such as multiple-linear regressions and stepwise regression methods, because 

they have elements of stochasticity, responsible for improving model accuracy and reducing model 

overfitting (Leathwick et al., 2006; Elith et al., 2008). SGB can also handle voluminous and highly 

multicollinear data sets (De'ath, 2007). In addition, when used in conjunction with the BFE method, 

the SGB ensemble provided valuable information, by ranking and selecting the most important 

predictor variables (Leathwick et al., 2006; Elith et al., 2008). Overall, SGB models that used 

variables selected by the BFE method showed improved prediction results for mean DBH, mean 

tree height and stand volume (Table 3.5). These results can be explained by the fact that the 

inclusion of less important variables in analysis can cause the convergence and instability of 

models, or influence the random errors, due to noise in information predictor variables that have no 

relation to the response variable (Mutanga et al. 2012).  

 

A closer examination of the variables selected for predicting the mean DBH, mean tree height and 

stand volume (Figure 3.3 and Table 3.5) revealed that the SPOT-5 SWIR band is the most highly 

ranked variable for those predictions. The SWIR spectral band is reported to be more sensitive to 

vegetation properties, such as canopy biomass and water content, when compared to other 

electromagnetic spectrum regions (Dube, 2012; Dube et al., 2012; Main-Knorn et al., 2011; Main-

Knorn et al., 2013). Main-Knorn et al. (2013) demonstrated that the inclusion of the SWIR spectral 

band in modelling tree-structural attributes is critical in enhancing the predictive accuracies for 

coniferous forest species in the Western Carpathian Mountains. In addition, rainfall has been noted 

to have a significant influence on forests, as it accelerates structural growth, especially in water-

limited environments (Gebreslasie et al., 2010; Gracia et al., 2010). Water supply does not only 

affect plantation forest yield, but also determines the spatial distribution of plantation species across 

the landscape. For instance, water scarcity proves to be a critical constraint to successful and health 

primary productivity (Gracia et al., 2010). Literature shows that for effective carbon assimilation 

within the whole plant system, the presence of an optimal amount of water, to allow carbon 

diffusion, is a pre-requisite (Chaves et al., 2009). 
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In addition to the above three most important selected variables (i.e. SPOT-5 SWIR band and 

minimum rainfall), our study indicated that stand-age and vegetation indices, such as the NDII, 

NDVIc, NDVI, DVI, GNDVI and SAVI, play a critical role in enhancing the prediction of mean 

DBH and mean tree height. These results are also in accordance with the general knowledge 

regarding the relationship of spectral vegetation indices with various tree-structural attributes. 

Literature shows that the remotely sensed spectral properties are very sensitive to tree structural 

attributes (Tucker 1979; Thenkabail et al., 2004; Main-Knorn et al.  2013; Dube, and Mutanga, 

2014). However, the weak performance of vegetation indices computed from SPOT-5 multispectral 

image can be associated with saturation problems, especially where there is high canopy cover 

(Mutanga and Skidmore, 2004a). On the other hand, the results of this study show that the mean 

DBH predictions are better than those of mean tree height, which is not always the case in most 

studies available from literature. The improved mean DBH prediction results obtained in this study, 

when compared to those of mean tree height, can be attributed to the incorporation of ancillary data 

sets. Thus far, none of the studies available in literature has combined rainfall, age with spectral 

information in predicting mean DBH and mean tree height. Stand age is important for predicting 

volume, as shown by the relative importance graph in Figure 3.3. However, in this study it may not 

be selected as the most important variable because of the lack of variability in monoculture stands, 

as opposed to natural forests. 

 

Overall, the results of our study have shown that SGB is a useful approach in predicting mean 

DBH, mean tree height and stand volume, using SPOT-5 derived data, combined with multisource 

data. This is particularly helpful in the African context, where the availability of higher resolution 

imagery is rather limited. However, for the approach presented in this study to be operational, 

various available and newly-launched multispectral sensors, together with other environmental 

variables, such as topography and temperature, should be investigated and tested in heterogeneous 

forests. Although the results of this study seem to be promising, the terrain in Zululand is relatively 

flat and therefore this method should be tested in rugged terrain, where both the land cover and 

topography would affect the spectral values of remotely sensed imagery (Dorren et al., 2003). 
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3.7 Conclusion 

The results have shown that: 

1. predictions of mean DBH, mean height and stand volume for Eucalyptus trees are improved 

when SPOT-5 derived data (i.e. spectral bands and vegetation indices) are  combined with 

ancillary stand data (i.e. rainfall metrics and stand age), 

2. the SGB ensemble performed better than the competing RF ensemble and SMLR, when 

predicting mean DBH, mean height and stand volume, and 

3. the best results for predicting mean DBH (R2 = 0.81 and RMSE = 1.21 cm), mean height (R2 

= 0.86 and RMSE = 1.39 m) and stand volume (R2 = 0.83 and RMSE = 29.58 m3ha-1) were 

obtained by the SGB model, based on variables selected by the BFE method. 

 

While the integration of ancillary data with SPOT-5 spectral information produces high quality 

stand volume estimates, there is a need to identify remote sensing data that can be independently 

applied in areas where ancillary data sets are unavailable, in order to derive accurate estimates. 
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4. QUANTIFYING INTRA- AND INTER-SPECIES ABOVEGROUND 
BIOMASS  

 

 

 
 

 

This chapter is based on: 

 

Dube, T, Mutanga, O, Ismail, R. 2014. Intra-and-inter species biomass prediction in a plantation 

forest: testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and 

advanced machine learning algorithms. Sensors, 14, 15348-15370. 
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Abstract 

The quantification of aboveground biomass, using remote sensing, is critical for better 

understanding the role of forests in carbon sequestration and for informed sustainable management. 

Although remote sensing techniques have been proven to be useful in assessing forest biomass in 

general, more is required to investigate their capabilities in predicting intra- and inter-species 

biomass, which are mainly characterised by non-linear relationships. In this study, two machine-

learning algorithms, SGB and RF regression trees, were tested in predicting intra-and-inter-species 

biomass, using high resolution RapidEye reflectance bands, as well as the derived vegetation 

indices in a commercial plantation. The results showed that the SGB algorithm yielded the best 

performance for intra-and-inter-species biomass prediction, using all the predictor variables, and 

was based on the most important selected variables. For example, using the most important 

variables, the algorithm produced an R2 of 0.80 and RMSE of 16.93 t ha-1 for E.grandis, an R2 of 

0.79 and RMSE of 17.27 t ha-1 for P.taeda and an R2 of 0. 61 and RMSE of 43.39 t ha-1 for the 

combined species data sets. Comparatively, RF yielded plausible results only for E.dunii (R2 of 

0.79; RMSE of 7.18 t ha-1). The study demonstrated that although the two statistical methods were 

able to predict biomass accurately, RF produced weaker results, compared to SGB, when applied to 

the combined species data sets. The result underscores the relevance of stochastic models in 

predicting biomass drawn from different species and genera, using the new generation high 

resolution RapidEye sensor with strategically-positioned bands. 

Keywords: bag fraction; biosphere-atmospheric interactions; learning rate; high resolution 

RapidEye imagery; tree complexity; variable importance and variable selection 
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4.1 Introduction 

Forests serve as an important key driver of regional and local climate systems through biosphere-

atmospheric interactions (Muukkonen and Heiskanen, 2007; Poulain et al., 2011; Yang et al., 

2011). Information on forest spatial distribution, biomass levels and dynamics is therefore required, 

for the accurate estimation of greenhouse gases flux, policy development and implementation 

(Gibbs et al., 2007). In addition, knowledge on intra-and-inter commercial forest biomass is central 

in: (i) determining their productive capacity, (ii) ensuring informed sustainable management 

practices, and (iii) understanding the functioning of the planet, earth and the environment (de Jong 

et al., 2003; Heiskanen, 2006). Therefore, the continuous estimation, mapping and monitoring of 

aboveground forest biomass (tonnes ha-1), which is the amount of living plant matter (de Jong et al., 

2003), is central in climate modelling worldwide, due to its significance in net carbon emission 

computations (Chinembiri et al., 2013b; Kurz and Apps, 2006; St‐Onge et al., 2008).  

 

Currently, there are two approaches for forest biomass estimation, namely, field-based traditional 

methods (i.e. field measurements or harvesting) and remotely sensed methods (Lu, 2006). So far, 

traditional methods have been side-lined in favour of remotely sensed techniques, since its 

inception. Although regarded as highly accurate (Henry et al., 2011; Lu, 2006), the traditional 

methods are exceedingly time-consuming, labour-intensive and difficult to implement, especially in 

remote areas, and they are practically and spatially limited to a small tree sample size and require a 

sufficient number of samples (Adam et al., 2014; Lu, 2005b). Recent evidence suggests that remote 

sensing seems to be a valuable and low-cost tool for determining forest biophysical attributes, when 

compared to field surveys (Carreiras et al., 2012b; Gebreslasie et al., 2011; Mutanga et al., 2012). 

Remotely sensed data permits robust biomass retrieval, which is critical for assessing the ecosystem 

yield and carbon accounting. As a result, biomass estimation, using remotely sensed data, as the 

primary source, has gained increasing interest in the past decades, especially for natural forests, at 

both local and regional scales (Lu, 2005b).  

 

Although biomass cannot be directly quantified from space, satellite image reflectance permits the 

extraction of biomass estimates, especially when integrated with field-based measurements (Dong et 

al., 2003). Consequently, various remotely sensed studies concerning forest biomass estimation 

have been applied at different scales. It has been discovered that coarse spatial resolution optical 

sensors are useful for biomass mapping at continental and global scale, rather than at local scale 

(van der Werf et al., 2006b; Zhang and Kondragunta, 2006), due to the plausible trade-off between 

spatial resolution, image coverage and frequency in data acquisition (Baccini et al., 2004; 
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Heiskanen, 2006; Hyyppa and Hyyppa, 2001; Lu, 2006; Muukkonen and Heiskanen, 2007). The 

main limitation with the broadband multispectral sensors for biomass estimation is the fact that they 

are characterised by mixed pixels, which occur as a result of large sensor footprint (Basuki et al., 

2011). In that regard, the huge difference between the satellite data pixel size and the ground 

reference data makes these sensors inapplicable for intra-and-inter-species biomass prediction in 

commercial forest plantations.  

 

Recent efforts have been geared towards the use of high resolution sensors, such as narrow band 

hyperspectral, radar and lidar data, for estimating aboveground forest biomass (AGB) to reduce the 

limitations associated with the broadband multispectral data sets (Carreiras et al., 2012a; 2013; 

Colgan et al., 2013; Mitchard et al., 2012; 2011; 2009; Saatchi et al., 2011). Results have shown 

that hyperspectral, radar and lidar sensors have robust means of data collection and the subsequent 

characterization of the vertically-distributed forest attributes, hence they can be regarded as an 

appropriate primary data source for forest inventorying. The use of these data sets nonetheless 

comes with its own limitations in terms of cost, availability, spectral contiguity, processing and 

analysis complexity, especially in the African context, given its economic situation and lack of the 

required technical expertise. For example, processing hyperspectral data for vegetation applications 

is a major challenge, due to the Hughes phenomenon or “the curse of dimensionality”. This problem 

often introduces a high degree of multicollinearity as a result of the similarities in the biophysical 

spectral reflectance properties (Adjorlolo, 2013; Clevers et al., 2007; Ferwerda et al., 2005; Knox et 

al., 2011). 

 

The utility of new generation sensors, such as the RapidEye, with strategic bands, is therefore seen 

as a trade-off between the advantages of coarse multispectral data, hyperspectral, lidar and radar 

data in predicting intra-and-inter-species AGB (Eckert, 2012b; Ozdemir and Karnieli, 2011; 

Thenkabail et al., 2004b). Currently, RapidEye, together with WorldView-2 sensors, are the only 

commercial multispectral satellite sensors which provide a reasonable number of spectral bands that 

are configured in unique portions of the electromagnetic spectrum and provide global, high-

resolution access to the red- edge spectral band (Cheng and Chaapel, 2008). In remote sensing, the 

“red-edge” is the region of abrupt change in the leaf reflectance between 680 and 780 nm, due to 

the combined effects of strong chlorophyll absorption in red wavelengths and a high reflectance in 

the NIR wavelengths, due to leaf internal scattering (Horler et al., 1983). The new generation 

RapidEye image containing strategically-positioned bands, with a fine spatial resolution of 5 m, is 
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hypothesized to be critical for vegetation mapping, when compared to the traditional broadband 

satellite images, such as ASTER, SPOT and Landsat Thematic Mapper. Above all, the RapidEye 

reduces unnecessary redundancy, a problem associated with hyperspectral data (Mutanga et al., 

2012). Recently, the strategically-positioned bands of the RapidEye imagery have successfully been 

applied extensively in detecting different levels of insect defoliation in Mopane woodlands 

(Adelabu et al., 2013a; Adelabu et al., 2013b), whereas other studies have demonstrated that the 

strategically-positioned RapidEye bands allow for enhanced vegetation mapping (Schuster et al., 

2012; Tigges et al., 2013).  

 

However, the rich spectral information contained in this data set has not been exploited for 

estimating intra-and-inter-species biomass in managed commercial plantations. For instance, 

commercial forests with mixed species (interspecies) are characterised by significant biomass 

variations, making it difficult for national carbon accounting. Taxonomical and structural 

differences are a major problem for intra-species biomass estimation (Carreiras et al., 2012b). More 

importantly, different species and genera result in high biomass variations that are associated with 

non-linear relationships, making algorithm applications a significant challenge in estimating AGB 

in such environments. Due to the intra-and-inter-species variability, there is a high probability of 

outliers and unbalanced data sets in the collected training data. It is therefore critical for biomass 

studies to identify robust models that could overcome the failure to estimate biomass in forests 

characterised by intra-and-inter-species (Atta-Boateng and William, 1998; Carreiras et al., 2012b; 

Dube et al., 2015; Lu, 2005a).  

 

In this study, the potential of two machine-learning algorithms, SGB and RF, in predicting intra-

and-inter-species biomass in a commercial plantation forest in the midlands region of KwaZulu-

Natal, South Africa, using the strategically-positioned spectral information derived from 5m 

RapidEye imagery, is therefore assessed. Previous studies have shown that non-parametric 

statistical techniques, such as the SGB and RF, simplify the biomass estimation process, when 

compared to other statistical regression methods (Adam et al., 2014; Carreiras et al., 2012b; 

Mutanga et al., 2012). Both regression ensembles have received considerable attention, due to a 

number of statistical modeling properties. For instance, the SGB method produces results with 

plausible and highly robust estimates in regression studies, due to its ability to handle outliers, 

inaccurate training data, missing and unbalanced data sets (De'ath, 2007; Lawrence et al., 2004; 

Leathwick et al., 2006). Moreover, the model’s stochastic characteristic in modelling non-linear 
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relationships and the inherent ability to handle, identify and select critical variables from large 

amounts of data, is expected to provide the best model accuracies (Carreiras et al., 2012b; De'ath, 

2007; Elith et al., 2008; Lawrence et al., 2004). Most importantly, SGB uses a stage-wise additive 

model fitting procedure that enhances the predictive performance of weak learning algorithms.  

 

On the other hand, RF provides other appealing statistical properties, such as the useful internal 

estimates of error, strength, correlation and variable importance (Prasad et al., 2006; Strobl et al., 

2008). In addition, Strobl et al. (2008) describe random forest algorithm as an effective tool, which 

performs simple and complex regressions with the modest fine-tuning of parameters, resulting in 

accurate predictions. The highlighted characteristics of SGB and RF, as well as the probability of 

intra-and-inter-species biomass variability, have therefore prompted an investigation into their 

capabilities (SGB and RF) in predicting AGB from a commercial forest in the midlands of 

KwaZulu-Natal, South Africa. Although both machine-learning techniques have been found to be 

robust under certain conditions, in this mixed species environment of KwaZulu-Natal, it is expected 

that SGB would perform better, due to its capabilities in modelling possible outliers and unbalanced 

data sets, as well as non-linear relationships. To the best of our knowledge, so far no study has 

assessed the SGB and RF for intra-and-inter-species biomass prediction in a commercial forest and, 

in particular, using the strategically-positioned bands of the new generation sensors, such as 

RapidEye. Therefore, our main objective was to investigate the robustness of the two machine-

learning algorithms in predicting intra-and-inter-species biomass from plantation forests, using the 

recent high spatial resolution spaceborne RapidEye multispectral imagery. A secondary objective 

was to evaluate the relative importance of the high resolution RapidEye reflectance bands, as well 

as the derived vegetation indices, in the prediction of intra-and-inter species biomass.  

 

4.2 Materials and Methods 

4.2.1 Study Area 

The study was conducted at the Sappi Clan forest, located approximately 27 km away from 

Pietermaritzburg city, the provincial capital of KwaZulu-Natal Province, South Africa (Figure 4.1). 

The plantation is located between Latitude 29°24'46.74"S and 29°17'45.94"S and Longitude 

30°18'32.89"E and 30°28'28.21"E. South Africa is home to vast tracks of commercial plantation 

forests, both hardwood and softwood, covering approximately one percent of the total land area 

(DAFF, 2008). Specifically, the Clan forest used in this study covers about 6700 ha. The forest is 

characterized by extensive commercial forestry dominated by Pinus (P. taeda) and Eucalyptus spp. 
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(e.g. E. grandis and E. dunii). The climate in the study area is sub-tropical, with the mean annual 

rainfall varying between 700 mm and 1500 mm (Scott and Lesch, 1997). These fast-growing 

Eucalyptus species are planted with clones or seedlings and harvested every six to seven years. 

Stands are managed on a pulpwood regime (i.e. established at 1 667 trees/ha); and intensive soil 

preparation and weed control measures are practiced, until crown closure occurs between 1 to 1.5 

years.  

 

 
Figure 4.1 Pseudo colour composite map of the study area derived using Landsat-8 OLI bands 

  5, 6 and 1 
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4.2.2 Field Data Collection and Sampling Design 

The field campaign was carried out between the 30th of July and the 22nd of August 2013, in 

conjunction with the Sappi annual routine field surveys. Sampling was conducted on Eucalyptus 

grandis, Eucalyptus dunii and Pinus taeda forests aged between 8 and 20 years (Figure 4.2). 

Selected tree structural variables, namely, tree diameter-at-breast height (DBH) and tree height (H) 

were measured for each plot (181), using the Haglof Digitech Calliper and Vertex IV laser 

instrument, respectively. A total of 181 plots were selected for field surveys, using vector maps, by 

courtesy of Sappi. The selection criteria were based on species type, age and the spatial location of 

compartments. The measurements were collected using a grid-based systematic sampling technique, 

utilizing circular sample plots, approximately 400 m2 in size. These plots were systematically 

distributed (usually every 100 m) within the stand. Sample intensities varied between 2 and 10%, 

depending on the species composition, stand size or local forest conditions (Wessels and Kassier, 

1985).  

 

4.2.3 Field Aboveground Forest Biomass Computation 

For individual species biomass (t ha-1) calculation, two approaches were applied for the three 

selected species (E. grandis, E. dunii and P. taeda). The first method was only used for Eucalyptus 

spp. and it involved the use of volume and biomass expansion factors found in literature, 

specifically for South African species (Dovey, 2009). Volume was derived and reported at stand 

level, following the allometric method explained by Bredenkamp (2000). For P. taeda, a general 

allometric equation was used for biomass computation, as proposed by the Intergovernmental Panel 

on Climate Change (IPCC), (IPCC, 2007). The basis for the application of this allometric equation 

for this species (P. taeda) in particular, is the fact that the rainfall (800 - 1500 mm) and temperature 

range (21-34oC) are similar to the climatic conditions prevailing in the study area. The equation 

used for the species was also formulated using a diameter-at-breast height (DBH), ranging from 0.6 

cm-56 cm at a rainfall of 800 to 1500 mm and temperatures were similar to the study area. Species 

difference prompted the use of different approaches for computing biomass, because of the existing 

different structural and taxonomical characteristics (Atta-Boateng and William, 1998; Henry et al., 

2011; Lu, 2005a). Moreover, literature shows that different allometric equations exist for the 

biomass computation of the selected species (Henry et al., 2011; Schönau and Boden, 1982a). The 

biomass results from the two approaches were finally standardised to the same unit of measurement, 

which is tonnes per hectare (t ha-1). 
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Figure 4.2 Typical field site showing (a) Eucalyptus spp. and (b) P. taeda in early August 2013 

 

4.3 Image Acquisition and Data Pre-processing 

A recent high spatial resolution spaceborne multispectral sensor (i.e. RapidEye imagery), with zero 

percent cloud cover, covering the study area, was obtained on the 25th of August 2013 from 

Germany. The RapidEye image comprised of five multispectral bands with a spatial resolution of 5 

m. The spectral ranges of the five bands are 440 – 510 nm (B1-blue), 520 – 590 nm (B2- green), 

630 – 685 nm (B3-red), 690 – 730 nm (B4-red-edge) and 760 – 850 nm (B5-near infrared). All the 

RapidEye products are collected by a 12-bit imager. Radiometric corrections were applied to the 

RapidEye image, subsequently converting the image digital numbers (DN) into values directly 

related to absolute radiances, using a constant factor (originally determined during launch) 

(RapidEye, 2011). Earlier experimentation by Naughton et al. (2011) demonstrated that the image 

registration error was within a single pixel, hence further geometric processing was not 

implemented. Radiance image was atmospherically corrected and transformed to canopy 

reflectance, using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

algorithm built in ENVI 4.7 software. 

 

4.3.1 Spectral information and vegetation indices derived from strategically-positioned 

multispectral Spaceborne RapidEye image bands 

A point map of the biomass plots was developed, using the field data and GPS recordings. This map 

was then overlaid on the RapidEye images to generate a region-of-interest (ROI) map, using the 

central GPS point for each plot (n = 181). A 3×3 pixels window (i.e. 15 m × 15 m) was used to 

collect vegetation image spectra from each band (n = 5), using ArcGIS 10 software. The 3×3 pixels 

window size was used, in order to avoid the inclusion of pixels located outside the plot (Cho et al., 

2007; Mutanga et al., 2012). Hence, only pixels that fall entirely within the ROIs were included in 

a b 
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the spectral data set, while the pixels that partially fall inside the ROIs were discarded (Cho et al., 

2007; Mutanga et al., 2012; Wang et al., 2007). The spectra were collected and averaged for each 

plot. All derived parameters that were related to the field plot data are listed in Table 4.1. The 

indices were chosen, based on previous research dealing with forest biomass estimation from 

remote sensing data.  
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Table 4.1 Selected strategically-positioned RapidEye spectral parameters and vegetation indices used for this study 

Parameters Formula References 

Single band reflectance    

Blue, green, red, NIR and Red-edge -  

Vegetation Indices   

Simple  Ratio NIR/Red Jordan (1969a) 

RVI.RE (Ratio Vegetation Index) Red-edge/ NIR de Sousa et al. (2012) 

NDVI (Normalized Difference Vegetation Index) (NIR – Red)/(NIR + Red) Rouse et al. (1974); Jordan (1969) 

NDVI.RE (NIR – Red-edge)/( NIR + Red-edge) Mutanga et al. (2012) 

DVI (Difference Vegetation Index) NIR – Red Tucker (1979) 

MSR (Modified Simple Ratio) (NIR/Red)-1/ (NIR/Red)^0.5+1 Qi et al. (1994) 

MSR.RE (NIR /Red-edge)-1/ (NIR /Red-edge)^0.5+1  

TVI (Triangular Vegetation Index) 0.5*[120*(NIR−Green)−200*(Red-Green)] Broge and Leblanc (2001) 

TVI.RE 0.5*[120*(NIR−Green)−200*(Red-edge-Green)]  

IPVI (Perpendicular Vegetation Index) NIR/(NIR + Red) Crippen (1990) 

IPVI.RE NIR /( NIR+ Red-edge)  

GI (Greenness Index) Green/Red Zarco-Tejada et al. (2005) 

GI.RE Green/Red-edge  

PSSR (Pigment specific simple ratio)  NIR/Red-edge Blackburn (1998) 
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4.4 Intra- and Inter-species Biomass Training and Test Data sets 

To validate the performance of the SGB and RF algorithms (Adam et al., 2014; Lawrence et al., 

2006), the data sets (E.dunii: n = 63, E.grandis: n = 65, P.taeda: n = 53 and all species: n = 181) 

were randomly split into 70%, for a training data set and 30% for a test (independent) data set. 

Moreover, the training data sets were used in optimizing both regression algorithms (SGB and RF) 

and to train the prediction models, whereas the test data set was used to examine the performance 

and reliability of the prediction model. 

 

4.5 Statistical Analysis 

Two main data analysis techniques were implemented and these included stochastic gradient 

boosting (SGB) and random forest (RF) regression algorithms. The two algorithms are discussed 

in detail below. 

 

4.5.1 Stochastic Gradient Boosting Regression Model  

Stochastic gradient boosting is a powerful machine learning technique, producing competitive, 

highly robust and interpretable procedures for both regression and classification applications 

(Friedman, 2001). The tree ensemble has the ability to accommodate different types of 

explanatory variables and data with missing values (De'ath, 2007). The ensemble is immune to 

outlier effects; it can fit complex nonlinear relationships and automatically handles interaction 

effects among predictors. The algorithm also introduces an element of stochasticity, thus 

improving model accuracy and reducing over-fitting (Elith et al., 2008; Leathwick et al., 2006). 

 

SGB predicts the response variables by combining regression tree and boosting algorithms (De'ath, 

2007; Elith et al., 2008; Leathwick et al., 2006; Pinkerton et al., 2010; Ridgeway, 2006). The 

ensemble uses a backward stage-wise approach, by fitting regression tree models iteratively to a 

subset of the training data (50%) that is randomly selected, without replacement. A residual 

deviance is then calculated on data not used in the model fitting process. Trees are added until the 

total residual deviance calculated from the withheld data ceases to decrease. The number of trees 

giving the lowest total residual deviance represents the most appropriate model for prediction. 

 

During model fitting, SGB is governed by three important user-defined parameters (Elith et al., 

2008; Hastie et al., 2001; Leathwick et al., 2006), that is: (i) the learning rate (lr), which determines 

the contribution of each tree to the final model, (ii) the tree complexity (tc), which is the number of 
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independent variables interacting to determine each split, and (iii) the number of regression trees 

(nt) in the ensemble. The learning rate controls the increase in model complexity, with smaller 

values resulting in fitting a larger number of trees (De'ath, 2007). For each combination of nt, tc and 

lr, the combination producing the lowest cross-validated deviance is then identified, using the 

training data set. For this study, SGB models were fitted with varying values for nt (100–10 000), lr 

(0·1–0·0001), tc of 1 and 5, as well as a bag fraction of 0.2-0.75, and the results were evaluated 

across all categories of species biomass. The gbm library (Ridgeway, 2006) for the R statistical 

package for statistical analysis (R Development Core Team, 2008) was utilized to implement SGB.  

 

4.5.2 Stochastic Gradient Boosting and Relative Variable Importance  

For the accurate and simple prediction of inter- and intra-species biomass, the relative individual 

variable influence was determined, to identify the smallest number of input variables (p =19) that 

yielded the best predictive performance. This information is important, because not all model input 

variables are equally relevant in the modelling process. In this regard, it is often suitable to learn or 

determine the relative influence of each input variable in predicting inter- and intra-species 

biomass. Based on SGB, the relative influence of model terms was calculated by the contribution of 

each variable in reducing overall model deviance (De'ath, 2007; Elith et al., 2008). Subsequently, 

variable selection was achieved by implementing a backward feature elimination approach, to 

determine the most important spectral bands and vegetation indices required for accurate biomass 

prediction. More precisely, the approach develops a model which utilizes all the input predictor 

variables and then progressively eliminates input predictor variables with the least relative 

influence. In addition all SGB models are optimized in terms of their lr, tc and nt hyper-parameters. 

The SGB model for predicting inter-and-intra-species biomass was initially run, using nineteen 

variables.  

 

4.5.3 Random Forest Regression Algorithms 

Random forest (RF) is a machine-learning technique developed by Breiman (2001) that employs 

bootstrap aggregation, where a number of trees (ntree) are constructed, based on a random subset of 

samples derived from the training data. The RF regression algorithm utilizes bootstrap samples 

from the training data, without pruning, to grow a large number of decision trees (Dye et al., 2011; 

Ismail and Mutanga, 2010; Prasad et al., 2006). These trees assign each variable (RapidEye band 

reflectance or vegetation index) to a response value (biomass), using the averaged estimates that the 

value receives from the collection of all trees (Prasad et al., 2006). The algorithm has an additional 
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modification of selecting only a random subset of candidate features (mtry) to determine the split at 

each node of a tree. This ensemble method uses recursive partitioning, to create multiple regression 

trees (ntree), and then averages the results of all trees (Breiman, 2001). RF algorithm is easy to 

implement as only two parameters (ntree and mtry) need to be optimized, based on the lowest root 

mean square error (RMSE) of prediction (Breiman, 2001; Coulston et al., 2012; Özçift, 2011). The 

ntree parameter, the number of regression trees grown, based on a bootstrap sample of the 

observations (the default value is 500 trees), and mtry is the number of different predictors tested at 

each node (the default value is 1/3 of the total number of the variables). Thus, in this study the ntree 

parameter values were tested in increments of 500 to 2500, with a 500 interval, whereas the mtry 

was tested in increments of 1 to 19.  

 

Approximately one-third of the data, that is not included in the bootstrapped training sample, called 

the out-of-bag (OOB) samples, is then used to evaluate the RF model. A number of researchers 

have shown that the OOB samples offer unbiased estimates of the training error (Adam et al., 2014; 

Adelabu et al., 2013a; Breiman, 2001; Palmer et al., 2007; Powell et al., 2010; Prasad et al., 2006). 

The permutation based variable importance follows the rationale that the random permutation of a 

predictor variable represents the absence of the variable from the model. Hence, the difference in 

prediction accuracy, prior to and after permuting a variable, is used as a measure of importance. 

The number of observations predicted correctly, decreases substantially if the permuted variable is 

strongly associated with the response values. Grömping (2009) provides a more detailed account of 

the random forest’s variable importance measures, both from the theoretical understanding and 

from the perspective of computational advantages. The ensemble was implemented, using the 

random Forest package (Liaw and Wiener, 2002) within the R statistical package version R-3.0.2 

(R Development Core Team, 2008). 

 

4.5.4 Variables Selection using Random Forest 

Random forest measures the importance of each predictive variable, using the mean decrease in 

accuracy that is calculated from the OOB sample data. However, the challenge was to select the 

fewest number of predictors that offer the best predictive power and that help in the interpretation 

of the final model. In this regard, a backward feature elimination method (BFE), integrated with 

random forest regression as part of the evaluation process, was implemented (RF), based on 1000 

model runs. The BFE uses the ranking to identify the sequence in which to discard the least 

important predictors from the input data sets. The method starts with the entire variables (p = 19) 
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and then progressively eliminates the least promising variable from the list. For each iteration, the 

model is optimized by selecting the best mtry and ntree. The least promising variable is then 

eliminated and the root mean square error is calculated. The smallest subset of variables, with the 

lowest RMSE, is then selected to predict inter-species biomass. A comprehensive analysis of the 

predictive performance of the different subsets of extracted RapidEye reflectance and vegetation 

indices was implemented, to explore the role of the new generation sensor in predicting interspecies 

biomass, as well as to test if the variables selection method implemented in this study can enhance 

the predictive performance of random forest regression model.  

 

4.6 Effectiveness of SGB and RF in Predicting Intra- and inter-species Biomass  

To assess the effectiveness of SGB and RF algorithms in predicting either intra- or inter-species 

biomass in a commercial forest environment, the r-square (R2) and the root mean square error 

(RSME) were computed (Eq. 4.1). A one-to-one relationship between measured and predicted AGB 

values was fitted with coefficients of determination (R2) and root mean square error (RMSE) values 

were reported. 

 

            Equation. 4.1 

 

Where Xmeasured is measured biomass values, Xpredicted is predicted biomass values and i represent 

each of the predictor variables included in the summation process (p = 19). 

 

4.7 Results 

4.7.1 Intra- and Inter-species Aboveground Biomass (t ha-1) 

Table 4.2 shows descriptive statistics for each category of the target species (e.g. E. dunii (n = 63), 

E. grandis (n = 65), P. taeda (n = 53) and for the all species-data sets (n = 181)). High biomass was 

observed for P. taeda, followed by E. grandis, and E. dunii having the least biomass.  
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Table 4.2 Descriptive statistics of the measured above ground biomass (t ha-1) 
Species Type Total Min. Max. Mean Std dev. 
E. dunii 63 33.24 96.49 52.86 16.39 
E. grandis 65 106.03 225.07 170.30 29.94 
P. taeda 53 137.11 298.04 206.07 42.83 
All species 181 33.24 298.04 139.89 72.22 
 

4.7.2 Intra-species AGB: SGB and RF Regression Predictive Performance based on all 
 Variables  

One-to-one relationship between measured and predicted intra-species biomass, using the SGB and 

RF regression models, are shown in Figure 4.3. For each model, the R2 and RMSE were reported. A 

comparative analysis of the predictive performance of the two models shows that the SGB model 

yielded better predictions for the intra-species data set, producing R2 of 0.75 and RMSE of 18.40 t 

ha-1 (10.80%) for E. grandis; R2 of 0.77 and RMSE of 19.43 t ha-1 (19.18%) for P. taeda. 

Comparatively, the RF produced better results for E. dunii (R2 of 0.74 and RMSE of 8.14 t ha-1). 
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Figure 4.3 One-to-one relationship between measured and predicted intra-species biomass  

  based on: (i) SGB, and (ii) RF algorithms. a, b, and c represent E. grandis, E. dunii, 

  and P. taeda based on all the predictor variables (p = 19) 
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4.7.3 Inter-species AGB: SGB and RF Regression Predictive Performance based all on

 Variables 

In testing the potential of SGB and RF in predicting inter-species biomass it can be observed that 

SGB produced plausible results based on the R2 of 0.58 and RMSE of 46.51 t ha-1; 33.25% of the 

mean, compared to RF, which had an R2 of 0.33 and RMSE of 64.27 t ha-1; 45.94% of the mean 

(Figure 4.4). 

 

 
Figure 4.4 The one-to-one relationship between measured and predicted inter-species biomass 

  for all species data combined, based on: (i) SGB, and (ii) RF algorithms without  

  variable selection 

 

4.7.4 Variable Selection using SGB and RF Models 

The SGB and RF variable importance measures were used to explore the relevance of model input 

variables (strategically-positioned RapidEye spectral bands and derived vegetation indices). The 

backward variable selection provided by the two algorithms (SGB and RF) have successfully 

explored and defined the relative importance of the individual input variables (predictors). In 

addition the methods further managed to select the optimal number of the input variables for 

predicting intra-and-inter-species AGB. For SGB, better results were achieved after variable 

selection was implemented, see Table 4.4. The SGB backward variable selection method selected a 

few optimal numbers of important variables for: (a) E. grandis (p = 4), (b) E. dunii (p = 7), (c) P. 

taeda (p = 6), and (d) all species data combined (p = 19), using the optimal nt and lr, which resulted 

in deviance reduction (Table 4.3). For instance, E. grandis achieved the lowest predictive deviance 

(0.27), based on nt = 2350, lr = 0.001 and tc = 3. E. dunii, on the other hand, yielded better results 

(lowest deviance value), based on a value of lr = 0·001, nt = 3750 and tc= 3. Similarly, for P. taeda 
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and all species combined, a value of nt = 2850, lr = 0.001 and tc = 3 produced the best results, with 

the lowest deviance. 

 

For the RF ensemble, the optimal number of variables was determined, based on the lowest 

averaged RMSE obtained after running the backward feature elimination process 1000 times. The 

process selected four variables for predicting (a) E. grandis, based on averaged RMSE of 26.10 t 

ha-1; seven predictor variables for (b) E. dunii, based on an averaged RMSE value of 10.87 t ha-1; 

six variables for (c) P. taeda, with an averaged RMSE value of 31.65 t ha-1, and lastly, nineteen 

variables for (d) all species data sets, based on a RMSE value of 50.76 t ha-1 (Figure 4.5). The 

findings in Figure 4.5 further demonstrate that the RMSE error generally decreased as the least 

important variables were progressively removed from the model. The use of the most important RF 

selected variables produced the lowest RMSE across all species categories. To conclude, important 

variables selected by SGB and RF (Table 4.3) were used in the final model for predicting biomass 

across all species categories, using the test data set (Table 4.4). 

 

 

 

Figure 4.5 The optimal number of variables (spectral bands and VIs), based on the backward  
  feature elimination search function for estimating intra-and-inter species using 
  Random Forest (based on 1000 repetitions). (a), (b), (c) and (d) represent E. grandis, 
  E. dunii, P. taeda and inter-species data set. *The best number of variables with the 
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  lowest error rate is shown by the arrows and the RMSE is calculated from the  
  training data set. 
 

The results in Table 4.3 show the most important predictor variables that were selected for 

estimating intra- and inter-species biomass. Most interestingly, the results from both models show 

that a limited and similar number of input variables contribute to intra-and-inter-species biomass 

prediction. It can be observed that in predicting intra- and inter-species biomass, the NIR, red-edge, 

and Red bands are selected across all categories by both algorithms (Table 4. 3).  

 

Table 4.3 Illustrates the most important variables retained by SGB and RF after implementing 
  variable selection. 

 E. grandis E. dunii P. taeda All species 
Variables selected SGB RF SGB RF SGB RF SGB RF 
1 RE NIR NIR RE NIR NIR  

 
All variables 

selected 
 

2 PSSR RE RE PSSR Green Green 
3 GI.RE PSSR Red GI.RE RE RE 
4 NIR DVI GI.RE NIR Red Red 
5 Green - Green Green DVI DVI 
6 - - Blue DVI  Blue 
7 - - - Blue - - 
 

4.7.5 Intra-species AGB: SGB and RF regression predictive performance, using selected 

 variables 

Table 4.4 demonstrates the aboveground biomass prediction results obtained using the SGB and RF 

algorithms and the most important variables are shown in Table 4.3. It can be observed that inter-

and-intra species biomass predictions, based on the most important variables, provide better 

predictive accuracies, when compared to the SGB and RF models that use all the predictor variables 

(Figure 4.3 and 4.4) The SGB model produced good accuracies in predicting E. grandis (R2 = 0.80, 

RMSE = 16.93), P. taeda (R2 = 0.79, RMSE = 17.27 t ha-1) and the all species data (R2 = 0.61, 

RMSE = 43.39 t ha-1). The RF ensemble, however, demonstrated better results (R2 = 0.79; RMSE 

7.18 t ha-1) in predicting the biomass E. dunii (Table 4.4).  
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Table 4.4 Inter-and-intra species biomass prediction results using the most important variables 

  selected by the two regression models SGB and RF 

Species Statistical methods tc lr mtry nt/ntree R2 RMSE (t ha-1) 
E. grandis  SGB    (n = 5) 3 0.001 - 3750 0.80 16.93 
 RF       (n = 4) - - 4 500 0.76 18.61 
E.dunii  SGB    (n = 6) 5 0.001 - 2350 0.88 09.23 
 RF       (n = 7) - - 7 500 0.79 07.18 
P.taeda  SGB    (n = 5) 5 0.001 - 800 0.79 17.27 
 RF       (n = 6) - - 6 2800 0.80 22.43 
All species SGB   (n = 19) 5 0.001 - 2800 0.61 43.39 
 RF      (n = 19) - - 19 750 0.37 59.27 
 

4.8 Discussion 

The accurate, reliable and timely quantification of intra-and-inter-species AGB, using remote 

sensing technologies, is critical for better understanding the role of forests in local climate systems 

through biosphere-atmospheric interactions, for a detailed evaluation of commercial forest 

resources, as well as for informed sustainable management. In this study, two machine learning 

regression algorithms, namely, SGB and RF based on 1000 model runs, were assessed in predicting 

intra-and-inter-species biomass in a commercial plantation forest located in the midlands region of 

KwaZulu-Natal, South Africa, using the RapidEye Spaceborne sensor.  

 

4.8.1 RapidEye image potential in predicting intra- and inter-species aboveground biomass 

One of the most critical challenges in predicting biomass in plantation forests, using remote 

sensing, is the complexity of species structural and taxonomic composition, as well as the presence 

of dense vegetation canopies, resulting in significant inter-species biomass variations. It is therefore 

critical to identify remote sensing data sets with critical spectral information that can overcome the 

saturation problems and produce better intra-and-inter-species biomass prediction accuracies. In 

this study, it was shown that high spatial resolution RapidEye image data, with strategically-

positioned bands, can accurately predict intra-and-inter-species biomass in commercial forests, 

when compared to the existing broadband multispectral data, which have high spectral variation 

and saturation problems at high density biomass. Furthermore, this study demonstrated new 

generation multispectral sensors as having the capability to provide a better and cost-effective 

alternative for predicting inter-species biomass, when compared to existing broadband multispectral 

images (Adam et al., 2014; Eckert, 2012b; Mutanga et al., 2012). Most importantly, the presence of 

the red-edge band, which has been unavailable in existing multispectral sensors, provides very 

critical and sensitive measurements of vegetation properties, such as chlorophyll content, necessary 
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for predicting forest metrics, such as biomass etc. (Mutanga et al., 2012; Ozdemir and Karnieli, 

2011). The findings from this study therefore largely support the claim that strategically-positioned 

bands (e.g. red-edge) found in new generation RapidEye multispectral imagery, contains more 

spectral information critical for vegetation mapping, when compared to other broadband 

multispectral sensors.  

4.8.2 SGB and RF prediction performance using different RapidEye spectral parameters 
Stochastic gradient boosting has increasingly been used in ecological modelling, with limited 

application in remote sensing studies (e.g. Buston and Elith, 2011; De'ath, 2007; Elith et al., 2008; 

Froeschke and Froeschke, 2011; He et al., 2009; Kint et al., 2012; Leathwick et al., 2006; Lewin et 

al., 2014; Pinkerton et al., 2010; Soykan et al., 2014). On the other hand, random forest has been 

applied mainly in classification (e.g. Adam et al., 2011; Adelabu et al., 2013a; 2013b; Chan and 

Paelinckx, 2008; Gislason et al., 2006; Guo et al., 2011; Lawrence et al., 2006; Pal, 2003; Stumpf 

and Kerle, 2011), hence there are limited remote sensing studies that utilize SGB and RF for 

regression analysis (e.g. Baccini et al., 2004; Carreiras et al., 2012a; 2012b; Mutanga et al., 2012). 

The results of the present work have demonstrated the applicability and strength of the two 

algorithms (SGB and RF) for variable selection and intra-and-inter-species biomass prediction, 

using the spaceborne RapidEye imagery.  

 

Moreover, for the two different algorithms applied, the better results, based on the R2 and RMSE, 

were obtained from the SGB model across all species categories, except for the E. dunii data set. 

The results of the present study further demonstrated that SGB and RF models are useful and robust 

for intra-species biomass prediction, using remotely sensed data. For the prediction of all inter-

species biomass (species data combined), the RF model performed poorly, when using all the 

variables. This poor performance of RF is attributed to the high variability in biomass, as a result of 

the existing differences amongst the tree species considered in this study. The results of this study 

have shown that RF is less robust in an environment with mixed species, when compared to the 

SGB algorithm. Furthermore, literature shows that the RF regression algorithm results in AGB 

underestimates, when the data set is large and variable, as well as overestimates, when the data is 

small with less variability (Horning, 2010; Mutanga et al., 2012).  

 

For the SGB model algorithm, plausible inter-species biomass prediction results were observed, 

indicating the model’s robustness in handling non-linear inter-species biomass relationships. The 
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good performance of the SGB regression algorithm can be associated with the model’s internal 

regularization process and the element of stochasticity, which are well-known for enhancing its 

predictive performance (Elith et al., 2008; Ganjisaffar et al., 2011; Hastie et al., 2001; Suen et al., 

2005). These results are further supported by Carreiras et al. (2012a) whose work demonstrated that 

the simple base learner, in our case, decision trees, built by running the SGB model using a random 

sub-sample of the training data without replacement, substantially improved the prediction 

accuracy. However, the effectiveness and robustness of the SGB algorithm in variable selection, 

based on remotely sensed data sets, still needs to be tested in the mapping and understanding of 

other vegetation metrics, such as aboveground carbon stocks, in non-homogenous forested areas. 

This information would aid in assessing the contribution of forests to carbon sequestration, as well 

as for a comprehensive evaluation of commercial forest resources, which is a pre-requisite for 

informed sustainable management. 

 

4.9 Conclusion 

This paper investigated: (i) the robustness of two machine-learning algorithms, Stochastic Gradient 

Boosting and Random Forest regression trees, to predict intra- and-inter-species biomass in 

plantation forests, using RapidEye multispectral imagery in KwaZulu-Natal, South Africa, and (ii) 

the performance and the strength of the SGB and RF regression algorithms as variable selection and 

prediction methods.  

 

The results have demonstrated that:  

1.  stochastic Gradient Boosting regression tree is more robust in predicting both intra-and-

inter-species biomass in plantation forests, when integrated with the strategically-positioned 

bands of the multispectral spaceborne RapidEye imagery, compared to the Random Forest 

ensemble,  

2. the new generation Spaceborne multispectral sensors (e.g. RapidEye) with a high spatial 

resolution have the potential of predicting intra-and-inter-species biomass in areas of closed 

and dense vegetation, 

3. both machine-learning algorithms (SGB and RF regression trees) were able to provide a 

valuable screening tool for the identification of the most important spectral bands and 

derived vegetation indices required, to accurately predict inter-and-intra-species biomass. 
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Overall, results of the present study demonstrate the utility, great potential and robustness of the 

high spatial resolution RapidEye satellite data, with strategically-positioned spectral information 

and SGB regression algorithm, in modelling non-linear biomass relationships for mixed forests, 

which was a previously challenging task with broadband satellite sensors. Considering the 

relatively high inter- and intra-species AGB accuracies, derived from high cost and spatially 

restricted RapidEye satellite data, there is, however, the need to identify data sets that are relatively 

cheap and that provide a regional spatial coverage required for AGB estimation in resource-scarce 

areas. Such information is necessary, if regional understanding of the contribution of forest to the 

global carbon cycle is to be achieved.  
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CHAPTERS FIVE AND SIX 

REGIONAL SCALE MAPPING  
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5. THE UTILITY OF THE MEDIUM-SPATIAL RESOLUTION 
LANDSAT-8 OLI MULTISPECTRAL SENSOR IN QUANTIFYING 

ABOVEGROUND BIOMASS 

 

 

 
  

This chapter is based on: 

Dube, T, Mutanga, O. 2015. Evaluating the utility of the medium-spatial resolution Landsat-8 OLI 

multispectral sensor in quantifying aboveground biomass in the uMngeni Catchment, South Africa. 

ISPRS Journal of Photogrammetry and Remote Sensing. 101: 36–46. 

 

Presented at the 2nd National Conference on Global Change, Nelson Mandela Metropolitan 

University, Port Elizabeth, South Africa. 
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Abstract 

Aboveground biomass estimation is critical in understanding forest contribution to regional carbon 

cycles. Despite the successful application of high spatial and spectral resolution sensors in 

aboveground biomass estimation, there are challenges related to high acquisition costs, small area 

coverage, multi-collinearity and limited availability. These challenges hamper the successful 

regional scale aboveground biomass quantification. The aim of this study was to assess the utility of 

the newly-launched medium-resolution multispectral Landsat-8 OLI data set, with a large swath 

width, in quantifying aboveground biomass in a forest plantation. Different sets of spectral analysis 

(Test I: spectral bands; Test II: spectral vegetation indices and Test III: spectral bands + spectral 

vegetation indices) were applied in testing the utility of Landsat-8 OLI, using two non-parametric 

algorithms, stochastic gradient boosting and the random forest ensembles. The results of the study 

show that, when compared to Landsat ETM+, the medium-resolution multispectral Landsat 8-OLI 

data set provides better aboveground biomass estimates for Eucalyptus dunii, Eucalyptus grandis 

and Pinus taeda, especially when using the extracted spectral information together with the derived 

spectral vegetation indices. It was also noted that incorporating the optimal subset of the most 

important selected medium-resolution multispectral Landsat-8 OLI bands, improved aboveground 

biomass accuracies. Medium-resolution multispectral Landsat-8 OLI aboveground biomass 

estimates were compared with Landsat 7 ETM+ estimates and the latter yielded lower estimation 

accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the 

relatively-affordable and readily-available newly-launched medium-resolution, Landsat-8 OLI data 

set, with a large swath width (185 km) in precisely estimating aboveground biomass. This strength 

of the Landsat-8 OLI data set is crucial, especially in sub-Saharan Africa, where high-resolution 

remote sensing data availability remains a challenge. 

 

Keywords: biomass estimation; Landsat data continuity mission; Landsat 7 ETM+, medium 

spatial resolution; Operational land imager 



  
 

85 

 

5.1 Introduction  

The great improvement in understanding the nexus between AGB and climate change in recent 

years has prompted the need for timely and reliable AGB mapping, using numerous remote sensing 

techniques (Gara et al., 2014b; Gibbs et al., 2007; Houghton et al., 1996; IPCC, 2003a). Airborne 

hyperspectral instruments, new generation multispectral sensors and airborne light detection and 

ranging (lidar) instruments have proven useful in providing fine spatial and spectral resolution data 

sets that are primarily required to accurately estimate structural attributes, such as wood volume and 

AGB or carbon content of different tree species (Nelson et al., 2003; Patenaude et al., 2004; Zhao 

et al., 2009). However, they are associated with limited spatial coverage, due to high costs, 

availability, huge data-volumes, as well as high data pre-processing costs. In this regard, these 

remote sensing technologies are not practical for “wall-to-wall” AGB or carbon applications 

(Carreiras et al., 2012b; Colgan et al., 2012; Dube et al., 2014a; Wulder et al., 2008b).  

 

The limitations of using hyperspectral remote sensing technologies have also been cited by Mathieu 

et al. (2013), who described airborne-sensor data collection as constrained by operational 

restrictions on data-acquisition flight campaigns and the variability of data accessibility on a 

country basis. These data sets are therefore more suitable for “project-based applications”, or for 

use in sampling strategies (Carreiras et al., 2012b). The abovementioned limitations have therefore 

seen a shift towards the use of free and readily-available broadband multispectral sensors, with a 

large swath width, such as Landsat data sets. These data sets allow timely and regional scale AGB 

or carbon accounting (Gibbs et al., 2007; Hall et al., 2011; Houghton et al., 1996; Vaglio Laurin et 

al., 2014) and sustainable forest resources management and inventorying (Næsset, 2007).  

 

The newly-launched Landsat-8 OLI multispectral sensor is assumed to present a number of 

invaluable opportunities for understanding the regional contribution of forest ecosystems to the 

carbon cycle. Moreover, the opening and free distribution of its archive digital data set, with a wider 

swath width of 185 km and a 16-day temporal resolution, since its launch on the 11th of February 

2013, makes the Landsat-8 OLI sensor one of the key primary data sources, highly suitable and 

practical for regional AGB analysis, especially in resource-limited areas. Furthermore, the newly-

launched medium-resolution multispectral Landsat-8 OLI sensor provides: (i) a refined spectral 

range for certain bands, that is critical for improving the vegetation spectral responses across the 

near-infrared (NIR) and panchromatic bands, (ii) improved radiometric resolution from 8 bits to 12 

bits, which is critical in enabling the characterization of different forest conditions (El-Askary et al., 
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2014; Pahlevan and Schott, 2013), (iii) the changes in sensor design that have also resulted in 

substantial improvements in signal to noise ratios (SNR), almost twice as good as Landsat 7 

Enhanced Thematic Mapper plus: ETM+ (Irons et al., 2012), and (iv) the narrow NIR band, which 

prevents water vapour absorption effect at 0.825 μm, critical in allowing accurate surface 

reflectance acquisition. In addition increased Landsat-8 OLI sensor dwell-time in sampling radiation 

at each ground pixel is perceived to improve radiometric resolution, which, in turn, increases the 

spectral record precision and eliminates sensor spectral saturation problems, a common 

phenomenon to prior Landsat products (Irons et al., 2012; Jia et al., 2014; Verbyla, 1995). 

Furthermore, the freely-available medium-resolution multispectral Landsat-8 OLI sensor’s large 

swath width of 185-km and frequent repeat cycle provide critical spatial information that is 

compatible with the size of vegetation units and AGB field samples (Hall et al., 2006).  

 

In addition, the Landsat-8 OLI employs long detector arrays, with more than 7 000 detectors per 

spectral band, aligned across its focal plane to view across the swath width, unlike the earlier 

Landsat satellite instruments. For instance, the earlier Landsat satellite instrument utilized 

oscillating whiskbroom mirrors that scanned the field of view across-track and then transmitted 

light to a few detectors. This “push-broom” (along track) design is believed to enhance the 

sensitivity of the instrument, enabling improved detection of the most important forest structural 

properties. Based on the newly-launched Landsat-8 OLI sensor’s technical advancements, this 

study is therefore of the view that the sensor provides the primary data source required for spatially 

explicit and accurate assessment of AGB and its dynamics, mainly at regional scales. To the best of 

our knowledge, the newly-launched medium-resolution multispectral Landsat-8 OLI has not been 

tested for the remote estimation of AGB, despite its documented abilities. 

In this study, the utility of the medium-resolution multispectral Landsat-8 OLI was assessed in 

estimating plantation forests AGB, using different error measures, namely, root mean square error, 

percentage bias and the mean absolute error. Specifically, our first objective was to estimate AGB 

for Eucalyptus spp. and Pinus spp. in the Mgeni Catchment, KwaZulu-Natal Province, South 

Africa, using the medium-resolution multispectral Landsat-8 OLI sensor. Secondly, the 

effectiveness of Landsat-8 OLI for AGB estimates was assessed by comparing it with Landsat 7 

ETM+, to confirm if the improved changes have significantly improved the Landsat series data. 
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5.2 Materials and Methods 

5.2.1 Study Area 

The study was conducted at the Clan Sappi Forests (a paper and pulp company) area (between 

Latitudes 29°24'46.74"S, 29°17'45.94"S and Longitude 30°18'32.89"E, 30°28'28.21"E), part of the 

uMgeni Catchment, situated between Greytown and Pietermaritzburg in the province of KwaZulu-

Natal, South Africa (Figure 5.1). The Clan area is characterised by gentle undulating terrain, with 

apedal and plinthic soil classes of the ecca group (Sappi, 1993). Sub-tropical climatic conditions 

prevail, with the rainy season occurring from October to February and the mean annual rainfall 

variability ranging from 700 mm to 1500 mm. The mean annual temperature is approximately 

21.7ºC, which, together with high summer rainfall, provides favourable conditions for the 

production of various commercial forests (Scott and Lesch, 1997). For example, the area is currently 

home to various Eucalyptus and Pinus trees, occupying approximately 6 700 ha, that are mainly 

grown for pulpwood.  
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Figure 5.1 Location of the study area in uMgeni Catchment, South Africa. 

 

5.2.2 Field Measurements  

Tree diameter-at-breast height (DBH) and tree height (Ht) were measured on 181 plots. DBH and 

Ht were used to generate in-situ AGB estimates to train the remote AGB-retrieval models and assess 

estimation accuracy. The field data collection was primarily conducted from July 30th to August 

22nd 2013, in conjunction with the Sappi annual routine field surveys. The measurements were 

mainly done on three commercial forest species found in the Clan forest area: (a) Eucalyptus 

grandis (EG), (b) Eucalyptus dunii (ED), and (c) Pinus taeda (PT), aged between 8 and 20 years. 

DBH and Ht were measured, using the Haglof Digitech Calliper and Vertex IV laser instrument, 

respectively. The measurements were taken, using a grid-based systematic sampling technique, with 
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approximately 400 m2 circular sample plots, distributed systematically (~100 m) within the stand 

(Wessels and Kassier, 1985). The 181 plots were selected based on vector maps, by courtesy of 

Sappi forest. The selection criterion was a function of species type, age and spatial location of the 

compartments.  

 

5.2.3 Aboveground Forest Biomass Computation  

The Intergovernmental Panel on Climate Change (IPCC) recommends the use of standard 

techniques for the field measurements of different vegetation structural attributes. For this study, 

three different tree species (i.e. EG, ED and PT), with varying structural and taxonomical 

characteristics, were assessed for aboveground forest biomass, based on two different aboveground 

biomass (t ha-1) computational techniques; (i) volume (m3ha-1) and Biomass Expansion Factors 

(BEFs), and (ii) general allometric equations (Atta-Boateng and William, 1998; Henry et al., 2011; 

Lu, 2005a; Schönau and Boden, 1982). The volume (m3ha-1) and BEFs approach was only applied 

for the Eucalyptus species and it involved the use of the volume derived and reported at stand level, 

following the allometric method explained by Bredenkamp (2000), and BEFs available in literature, 

specifically for South African species (Dovey, 2009). For P. taeda, a general allometric equation 

was used for biomass computation, as proposed by the IPCC (2007). The basis for the application of 

this allometric equation, for this species (P. taeda) in particular, is the fact that the rainfall (800 - 

1500 mm) and temperature range (21o-34oC) are similar to the climatic conditions prevailing in the 

study area. Similarly, the equation used for the species was also formulated, using diameter-at-

breast height (DBH), ranging from 0.6 cm-56 cm, at rainfall and temperatures similar to the study 

area. Species differences prompted the use of different approaches for computing biomass because 

of the existing differences in species structural and taxonomical characteristics (Atta-Boateng and 

William, 1998; Henry et al., 2011; Lu, 2005a). Moreover, literature shows that different allometric 

equations exist for the biomass computation of the selected species (Chinembiri et al., 2013a; Gara 

et al., 2014b; Henry et al., 2011; Schönau and Boden, 1982a). The biomass results from the two 

approaches were finally standardised to the same unit of measurement, which are tonnes per hectare 

(t ha-1). 

 

5.2.4 Remote Sensing Data Acquisition and Pre-processing 

The study region is covered by one Landsat tile (path/row: 168/80). Cloud-free Landsat-7 ETM+ 

and Landsat Data Continuity Mission (LDCM)’s Landsat-8 OLI satellite images covering the region 

of interest (Clan Sappi plantation area) were acquired during the time that coincided with the field 
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measurement dates, that is the 3rd and 11th of August 2013. The Landsat images were acquired 

during sunny and clear sky day conditions, with cloud cover less than 10%, a sun azimuth angle of 

39.78 and a sun elevation angle of 33.14. The satellite images were obtained from the USGS Earth 

Resources Observation and Science (EROS) Center archive (http://earthexplorer.usgs.gov/). The 

Landsat-8 OLI sensor launched on the 11th of February 2013 has a 16-day temporal resolution. On 

board the Landsat-8 OLI sensor are two push-broom instruments: (i) the Operational Land Imager 

(OLI), consisting of nine spectral bands, (Table 5.1), and (ii) the Thermal Infrared Sensor (TIRS), 

which encompasses thermal bands 10 and 11 at a 100 m spatial resolution. On the other hand, 

ETM+ on Landsat 7 satellite has spectral bands similar to those of the prior TM 5, except for the 

inclusion of the high resolution (15m) panchromatic band eight.  

 

Table 5.1 OLI and ETM+ spectral and spatial characteristics 

OLI spectral bands ETM+ Spectral bands 
Band # Bandwidth ( ; µm) GSD (m) Band # Bandwidth ( ; µm) GSD (m) 
1 0.433-0.453 30    
2 0.450-0.515 30 1 0.450 - 0.515 30 
3 0.525-0.600 30 2 0.525 - 0.605 30 
4 0.630-0.680 30 3 0.630 - 0.690 30 
5 0.845-0.885 30 4 0.750 - 0.900 30 
6 1.560-1.660 30 5 1.550 - 1.750 30 
7 2.100-2.300 30 7 2.090 - 2.350 30 
8 0.500-0.680 15 8 0.520 - 0.900 30 
9 1.360-1.390 30    
Source: http://landsat.usgs.gov 

 

The two Landsat scenes were obtained in digital number (DN), hence the need to be converted to 

reflectance values. Firstly, Landsat ETM+ was converted to Top-Of-Atmosphere (TOA) spectral 

radiances and then to at-sensor reflectances, following procedures provided by Chander et al. (2009) 

using the reflectance rescaling coefficients provided in the image’s metadata files. Since all Landsat 

TM+ images, acquired from 2003 to the present, have scan-line errors (stripes), the image bands 

were corrected for errors, using the Landsat toolbox in ArcGIS 10.2 (Law and Collins, 2013), before 

being converted to reflectance (Walawender et al., 2012; Wulder et al., 2008a). For Landsat-8 OLI, 

conversion from DN to reflectance was implemented in ENVI environment, following the approach 

described on the USGS website (http://landsat.usgs.gov). Atmospheric correction of Landsat ETM+ 

and Landsat-8 OLI images to surface reflectance was performed, using the Fast Line-of-sight 

 

http://earthexplorer.usgs.gov/
http://landsat.usgs.gov/
http://landsat.usgs.gov/
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Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative transfer model (Perkins et al., 

2005). The two images were then geometrically corrected, using ground control points (GCPs).  

 

5.3 Regression Algorithms 

Commercial forest aboveground biomass estimation was determined using two powerful regression 

algorithms, stochastic gradient boosting (Elith et al., 2008) and random forest (Breiman, 2001). 

Stochastic gradient boosting algorithm integrates the strengths of regression trees and boosting, 

which constructs and integrates a group of different constructed models and involves a probabilistic 

component to decrease final model variance, at the same time improving, on the predictive 

accuracy (De'ath, 2007; Elith et al., 2008; Gara et al., 2014b). On the other hand, RF is an ensemble 

learning algorithm after Breiman (2001), designed to increase the classification and regression trees 

(CART) method by integrating a large set of decision trees based on a deterministic technique, by 

selecting a random set of variables and a random sample from the training data set. SGB is 

currently gaining popularity in remote sensing applications (Carreiras et al., 2012b; Güneralp et al., 

2014; Moisen et al., 2006) and comprises of numerous small regression trees sequentially 

constructed from “pseudo” residuals (i.e. gradient of the loss function of the previous tree). The 

main advantage of the SGB algorithm is that it does not require the transformation of predictor 

variables, besides being resistant to outliers, owing to the use of the steepest-gradient algorithm. 

Moreover, the sequential model-fitting builds on trees fitted previously and increasingly focuses on 

the most difficult prediction cases, simultaneously providing a stability advantage over regression 

trees (De'ath, 2007; Elith et al., 2008; Friedman, 2002; Leathwick et al., 2006; Moisen et al., 2006). 

The RF regression algorithm utilizes bootstrap samples from the training data without pruning, to 

grow a large number of decision trees (Dye et al., 2011; Ismail and Mutanga, 2010; Prasad et al., 

2006). The algorithm has an additional modification of selecting only a random subset of candidate 

features (mtry), to determine the split at each node of a tree. In addition this method employs 

recursive partitioning, to create multiple regression trees (ntree), and then averages the results of all 

trees (Breiman, 2001). The SGB and RF algorithms were implemented, using the R statistical 

package (R Development Core Team, 2008). 

 

5.3.1 Experiments 

The strength of Landsat-8 OLI and 7 ETM+ data sets in quantifying AGB was examined, based on 

four tests (Tests I–IV) implemented, using the SGB and RF regression algorithms (Table 5.2). For 

each test conducted, the set of predictor variables varied, with Test I involving only the extracted 
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image spectral information, Test II: involving image derived vegetation indices, Test III: involving 

extracted image spectral information and image derived vegetation indices, and Test IV: involving 

the most important variables chosen, using the variable selection method. The field measured 

biomass data set was split into training (2/3) and validation (1/3) for the two algorithms (Riggins et 

al., 2009). For the SGB algorithm, values for the three important user-defined parameters, that is: 

(i) the learning rate (lr), which determines the contribution of each tree to the final model, (ii) the 

tree complexity (tc), which is the number of independent variables interacting to determine each 

split, and (iii) the number of regression trees (nt) in the ensemble, were set to accommodate the 

relatively small data set (Elith et al. 2008; Hastie et al., 2001; Leathwick et al., 2006). In the 

present study, the shrinkage rate was set between 0.0001 and 0.1, whereas the tree complexity was 

set between 1 and 5. Furthermore, the bagging fraction, which determines a fraction of the training 

data selected randomly for computing each tree, was set at 0.3 and 0.5 during the data analysis. For 

the RF algorithm, the optimal ntree and mtry values that could best predict AGB were determined, 

based on the two parameters (viz. mtry and ntree). The mtry and ntree parameters were optimized, 

using the lowest ten-fold cross-validation prediction error. In this study, the ntree values were 

tested from 500 to 2 500, with a 500 interval, whereas mtry was tested from 1 to 14, based on a 

single interval. 

 

Table 5.2 OLI and ETM+ predictor variables used in forest plantation AGB estimation 

Data type Data source Details  Experimentation 

Image spectral 
information (ISI) 

OLI 
ETM+  

1-6 (blue, green, red, NIR, SWIR I & II) 
1-6 (blue, green, red, NIR, SWIR I & II) 

I 

Vegetation indices 
(VIs) 

OLI 
ETM+  

DVI, GEMI, GNDVI, MSAVI, MSI, NDII, 
NDVI, NDVIc, OSAVI, RDVI, RSR, SAVI, 
SAVI2, SR 

II 

ISI  + VIs OLI 
ETM+  

(1-6) + (DVI, GEMI, GNDVI, MSAVI, MSI, 
NDII, NDVI, NDVIc, OSAVI, RDVI, RSR, 
SAVI, SAVI2, SR) 

III 

More OLI and ETM using the most important selected variables IV 
aDVI: Difference Vegetation Index; GEMI: Renormalized Difference Vegetation Index; GNDVI: 
Green Normalized Difference Vegetation Index; MSAVI2: Modified Soil Adjusted Vegetation 
Index; MSI: Moisture Stress Index; NDII: Normalized Difference Infrared Index; NDVI: 
Normalized Difference Vegetation Index; NDVIc: Corrected NDVI; OSAVI: Optimized Soil-
Adjusted Vegetation Index; RDVI: Renormalized Difference Vegetation Index; RSR: Reduced 
Simple Ratio; SR: Simple Ratio; SAVI: Soil Adjusted Vegetation Index; SAVI2: Soil Adjusted 
Vegetation Index. 
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5.4 AGB Prediction Error Reporting  

For both the SGB and RF algorithms, the explained variance (R2), root mean square error (RMSE) 

and RMSE% (measured vs. predicted AGB measurements), for the test data set (see Eq.1), the 

mean of the absolute error (MAE), and percentage bias (BIAS%) were reported. The BIAS% 

measures the average tendency of the model simulated biomass estimates to be larger or smaller 

than the measured biomass values (Yapo et al., 1996). The optimal value of BIAS% is 0.0, with 

positive values (+ve) illustrating over-estimation and negative values (-ve) demonstrating model 

under-estimation. Overall, the low values indicate accurate model simulation, and vice-versa. On 

the other hand, the MAE measures the absolute magnitude of the error and the closer to zero the 

MAE, the more accurate the simulation (Heiskanen, 2006). 

 

5.5 Results 

5.5.1 Measured aboveground biomass descriptive statistics (t ha-1) 

Table 5.3 shows descriptive statistics of the individual species aboveground biomass measured in 

the Clan Forests. High aboveground biomass was observed for Pinus taeda (298.04 t ha-1) and the 

least for Eucalyptus dunii (96.49 t ha-1). From the statistic summary reported in Table 5.3, it can 

also be observed that the measured aboveground biomass varies greatly amongst the three species 

under study (i.e. Eucalyptus dunii, Eucalyptus grandis and Pinus taeda).  

 

Table 5.3 Measured aboveground biomass descriptive statistics (t ha-1) 

 Commercial species of monitored 
 Eucalyptus dunii Eucalyptus grandis Pinus taeda 
No. of samples 63.00 65.00 53.00 
Min. 33.24 106.03 137.11 
Max.  96.49 225.07 298.04 
Avg. 52.86 170.30 206.07 
Std dev. 16.39 29.94 42.83 

 

5.5.1 Comparison of AGB estimates from Landsat-8 OLI and ETM+ extracted Spectral 
 Information 
AGB estimation results for ED, EG and PT, in terms of the coefficient of determination (R2), root 

mean square error (RMSE), RMSE%, percent bias and mean of the absolute forecast error (MAE), 

are shown in Tables 5.4, 5.5 and 5.6. The results indicate that the Landsat-8 OLI spectral data set 

provides better biomass estimates, when compared to the Landsat ETM+ spectral data sets. For 

example, the results indicate that Landsat-8 OLI spectral information, utilizing the SGB algorithm, 
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produced an R2 value of 0.47, the lowest RMSE (16.35 t ha-1; 30.93% of the mean), the lowest 

percentage bias of -1.40 and the lowest MAE (14.23) for E. dunii species. For E. grandis, the 

extracted OLI spectral information again, based on the SGB, yielded the highest R2 value of 0.37, 

the lowest RMSE (28.94 t ha-1; 17.02% of the mean), the lowest percentage bias of -0.40 and the 

lowest MAE (23.03). Similar prediction performance, using the extracted OLI spectral information, 

was also observed for P.taeda, with an R2 value of 0.44, an RMSE of 28.93 t ha-1 (14.04% of the 

mean), the lowest percentage bias value of -0.40 and the least MAE value of 23.03. On the other 

hand, extracted Landsat ETM+ spectral information produced slightly weaker estimates in terms of 

RMSE, Bias% and MAE for all species (see Table 5.4). 

 
Table 5.4 Commercial forest species AGB estimation errors and biases obtained, using  
  Landsat-8 OLI and ETM+ extracted spectral information 

   R2 RMSE t ha-1 Bias% MAE 
E.dunii L8 SGB 0.47 16.35 (30.93%) -1.40 14.23 
  RF 0.40 18.13 (34.30%) -4.00 15.62 
              L7 SGB 0.43 18.13 (34.30%) -4.00 15.62 
  RF 0.21 23.15 (43.79%) -5.10 18.62 
E.grandis L8 SGB 0.37 28.94 (17.02%) -0.40 23.03 
  RF 0.32 29.13 (17.13%) -3.70 23.17 
 L7 SGB 0.36 28.62 (16.83%) -3.70 25.08 
  RF 0.29 30.15 (17.73%) -4.50 29.33 
P.taeda L8 SGB 0.37 28.93 (14.04%) -0.40 23.03 
  RF 0.30 32.83 (15.93%) 1.70 27.70 
                L7 SGB 0.34 37.06 (17.98%) -4.20 28.72 
  RF 0.29 35.25 (17.11%) 0.50 30.04 
*L8 and L7 denotes spectral information extracted, using Landsat-8 OLI and ETM+ data sets, respectively 
 

5.5.2 A Comparison of AGB Estimates from Landsat-8 OLI and ETM+ derived VIs 
The best AGB estimates for Test II were obtained for the three species (ED, EG and PT), using the 

newly-launched Landsat-8 OLI derived vegetation indices (see Table 5.5). The findings in Table 

5.5 show a good performance of the Landsat-8 OLI derived vegetation indices in estimating AGB 

for: (a) E.dunii (R2 = 0.58; RMSE = 14.03 t ha-1 (26.54% of the mean), Bias% = -0.20 and MAE = 

11.00), (b) E. grandis (R2 = 0.48; RMSE = 25.23 t ha-1 (14.83% of the mean), Bias% = -1.10 and 

MAE = 19.42), and (c) P. taeda (R2 = 0.43; RMSE = 26.54 t ha-1 (12.88% of the mean); Bias% = -

1.10 and MAE = 22.92) using the SGB algorithm. Similarly, the Landsat-8 OLI derived vegetation 

indices produced the best performance, using the RF algorithm, although the estimates were lower 

than those obtained using the SGB algorithm. Comparatively, results from Landsat ETM+ were 
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weaker for all species considered, when compared to estimates derived using the Landsat-8 OLI 

data sets. For instance, Landsat ETM+ derived vegetation indices applying the SGB algorithm 

produced the RMSE of 18.66 t ha-1 (35.30 % of the mean), a bias% of -4.30 and the MAE value of 

14.65 for E. dunii species, whereas for E. grandis, an RMSE of 26.54 t ha-1; 15.60 % of the mean), 

a percentage bias of -2.26 and the MAE of 22.92 were obtained. A similar trend was observed for 

P. taeda, where the Landsat ETM+ derived estimates were slightly lower than those obtained using 

Landsat-8 OLI derived vegetation indices.  

 

Table 5.5 Commercial forest species AGB estimation errors and biases generated, using  

  Landsat-8 OLI and ETM+ derived vegetation indices 

   R2 RMSE t ha-1 Bias% MAE 
E.dunii L8 SGB 0.58 14.03 (26.54%) -0.20 11.00 
  RF 0.53 18.66 (35.30%) -4.30 14.65 
              L7 SGB 0.47 15.56 (29.44%) -7.10 12.52 
  RF 0.33 19.12 (36.17%) -5.30 14.91 
E.grandis L8 SGB 0.48 25.23 (14.83%) -1.10 19.42 
  RF 0.36 26.54 (15.60%) -2.26 22.92 
 L7 SGB 0.44 36.23 (21.30%) -2.70 22.82 
  RF 0.38 27.67 (16.27%) -3.10 27.14 
P.taeda L8 SGB 0.43 26.54 (12.88%) -1.10 22.92 
  RF 0.37 29.48 (14.31%) -0.30 23.43 
                L7 SGB 0.37 36.23 (17.58%) -4.20 28.27 
  RF 0.41 31.92 (15.49%) 0.80 26.98 
*L8 and L7 denotes vegetation indices computed using Landsat-8 OLI and ETM+ data, respectively 

 

5.5.3 A Comparison of AGB Estimates from Landsat-8 OLI and ETM+ extracted Spectral 

 bands and derived VIs 

The results in Table 5.6 show AGB estimates for ED, EG and PT derived from Landsat-8 OLI and 

ETM+ extracted spectral information and vegetation indices. Firstly, it can be noted that high AGB 

estimates were obtained from the use of the combined extracted spectral information and vegetation 

indices, when compared to the use of these variables separately, as shown in Tables 5.4 and 5.5. It 

can be observed that Landsat-8 OLI also produced high AGB estimates, compared to those 

obtained using Landsat ETM+. For instance, high R2, RMSE, Bias% and MAE results can be noted 

for E. dunii, E. grandis and P. taeda AGB estimation, based on Landsat-8 OLI, than when Landsat 

ETM+ was used. 
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Table 5.6 Commercial forest species AGB estimation errors and biases derived, using  
  combined Landsat-8 OLI and 7 extracted spectral information and vegetation indices 

   R2 RMSE t ha-1 Bias% MAE 
E.dunii L8 SGB 0.66 12.63 (23.89%) -1.80 9.56 
  RF 0.65 15.35 (29.04%) -7.40 11.42 
              L7 SGB 0.56 13.18 (24.93%) -2.19 9.83 
  RF 0.51 18.76 (35.49%) -4.00 13.63 
E.grandis L8 SGB 0.49 22.13 (12.99%) -2.40 15.17 
  RF 0.52 23.29 (13.68%) -2.70 18.52 
 L7 SGB 0.48 24.38 (14.32%) -2.50 19.49 
  RF 0.43 25.36 (14.89%) -3.20 19.23 
P.taeda L8 SGB 0.72 25.64 (12.44%) -1.00 21.77 
  RF 0.55 24.51 (11.89%) -2.30 20.09 
                L7 SGB 0.52 28.67 (13.91%) -2.10 24.33 
  RF 0.46 28.41 (13.79%) -3.65 23.79 
*L8 and L7 denotes spectral information and vegetation indices extracted, using Landsat-8 OLI and 

ETM+ images, respectively 
 

5.5.4 Combined Plantation Forest AGB Estimates from Landsat-8 OLI and ETM+ extracted 

Spectral Bands and derived VIs 

The results in Table 5.7 indicate combined species AGB estimates obtained from Landsat-8 OLI 

and ETM+ extracted spectral information and vegetation indices. The results show that both 

Landsat-8 OLI and ETM+ sensors estimated combined plantation forest AGB with weaker 

accuracy. It can also be observed that although Landsat-8 OLI data set yielded a better performance 

in estimating forest plantation AGB, when compared to Landsat ETM+, some of its estimates were 

generally low. Overall, the combined Landsat-8 OLI sensor spectral information and vegetation 

indices produced better results in terms of R2, RMSE, Bias% and MAE, when compared to the 

Landsat ETM+ sensor.  
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Table 5.7 Combined plantation forest species AGB estimation errors and biases derived, using 
  Landsat-8 OLI and ETM+ extracted spectral information and vegetation indices 

   R2 RMSE t ha-1 Bias% MAE 
Spectral 
bands 
              

L8 SGB 0.31 66.41 (47.68%) -6.70 59.27 
 RF 0.27 67.15 (48.21%) -7.10 58.65 
L7 SGB 0.29 66.85 (47.99%) -6.80 57.38 

  RF 0.22 70.81 (50.83%) -4.40 61.44 
VIs L8 SGB 0.30 63.42(45.53%) -5.10 50.89 

 RF 0.23 68.28 (49.02%) -6.00 57.48 
L7 SGB 0.21 67.52 (48.47%) -5.20 57.89 
 RF 0.23 69.30 (49.75%) -7.50 60.21 

Spectral 
bands + VIs 

L8 SGB 0.35 62.17 (44.63%) -4.90 50.11 
 RF 0.33 63.61 (45.67%) -5.40 56.42 
L7 SGB 0.26 65.50 (47.02%) -5.70 55.76 
 RF 0.25 66.14 (47.48%) -5.80 56.92 

*L8 and L7 denotes spectral information and vegetation indices extracted, using Landsat-8 OLI and 

ETM+ images, respectively 

 

5.5.5 AGB Estimation using Important Landsat-8 OLI and ETM+ Selected Variables  

Variable selection was mainly implemented, using the stochastic gradient boosting method, as it 

produced better overall results, when compared to the random forest algorithm. The results in 

Figures 5.2a, 5.2b, 5.2c and 5.3a show AGB estimates for E. dunii, E grandis, P. taeda and for the 

combined species data set, using the most important Landsat-8 OLI and ETM+ variables, selected 

using the stochastic gradient boosting method. The most important selected variables included 

SWIR bands, NDVIc, NDVI, NDII, NIR, SAVI, red band, MSI and green band. The error of 

estimation reduced significantly for both remote sensing data sets, with Landsat-8 OLI sensor 

producing the least errors for all three species. For instance, for P. taeda, an R2 of 0.69, a RMSE of 

21.65 t ha-1 (10.50% of the mean), using Landsat-8 OLI and an R2 of 0.65, a RMSE of 22.33 t ha-

1(10.83% of the mean), using Landsat ETM+ selected variables, were observed. Similarly, for E. 

dunii, an R2 of 0.71, a RMSE of 10.66 t ha-1; (6.26% of the mean), based on Landsat-8 OLI, and R2 

of 0.68, RMSE of 11.81 t ha-1, (6.93% of the mean), based on Landsat ETM+, were obtained. High 

accuracies were also observed for E. grandis (R2 = 0.67; RMSE = 17.35 t ha-1; (10.19% of the 

mean)) using the most important selected variables of Landsat-8 OLI and Landsat ETM+ (R2 = 

0.69; RMSE = 19.83 t ha-1; (11.82% of the mean)). 
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Figure 5.2 One-to-one relationship between measured and estimated species AGB based on  
  Landsat-8 OLI and ETM+ important variables. (a), (b), and (c) represent P. taeda, E. 
  dunii and E. grandis, based on the most important (i) OLI and (ii) ETM+ predictor 
  variables. 

 

The results in Figure 5.3 show combined species AGB estimates based on the Landsat-8 OLI and 

Landsat ETM+ important selected variables. A comparative analysis of the AGB estimates for 

combined species from both sensors shows that the Landsat-8 OLI sensor yielded better, but 

weaker estimates, producing R2 of 0.42 and RMSE of 55.32 t ha-1 (41.13%), when compared to the 

Landsat ETM+ sensor, which yielded an R2 of 0.32 and a RMSE of 64.26 t ha-1 (43.86%). Overall, 
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the findings from the four experiments confirmed the strength of the newly-launched Landsat-8 

OLI multispectral sensor in estimating AGB, compared to Landsat ETM+ sensor. Although it was 

not the main aim of this study to compare the performance of the two regression algorithms (RF 

and SGB), overall it can be observed that the SGB algorithm outperformed the random forest 

ensemble across all four modelling stages. 

 

Figure 5.3 One-to-one relationship between measured and estimated combined species AGB  

  based on: (i). Landsat-8 OLI and (ii) Landsat ETM+ selected important variables  

 

5.5.6 Aboveground Biomass Mapping Landsat-8 OLI data 

The newly-launched Landsat-8 OLI data set was selected for mapping aboveground biomass within 

the Clan Sappi Forest, using the SGB algorithm (Figure 5.4). The choice of the Landsat-8 OLI 

sensor for aboveground biomass was based on the fact that it produced overall plausible 

aboveground biomass estimates, when compared to the long serving Landsat ETM+ 7, yielding, for 

instance, high R2 values, low root mean square errors and relative root mean square errors. The 

results in Figure 5.4 also show distinct aboveground biomass spatial distribution patterns available 

within the area under study.  
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Figure 5.4 Aboveground biomass map of the Clan Sappi Forest in uMgeni Catchment, South 

  Africa, produced using the newly-launched Landsat-8 OLI data set and stochastic  

  gradient boosting algorithm 

 

5.6 Discussion 

The main essence of the present study was to examine the potential of the newly-launched Landsat-

8 OLI sensor in estimating forest aboveground biomass in the uMgeni Catchment, South Africa. 

The accurate estimation of aboveground biomass provides a critical input data set required for 

ecological modelling and accurate carbon quantification. This study therefore aims to investigate 

whether the unique Landsat-8 OLI sensor design, or data acquisition approach as a push-broom 

scanner, has the capability of improving the quantification of aboveground biomass over that of the 

Landsat ETM+ sensor. 

 

Although multispectral sensors provide an attractive alternative for estimating aboveground 

biomass at regional scale, especially in environments with limited access to high resolution data 

and the necessary technical expertise, one of their primary challenges is the inability to reduce error 

of estimation. The present study has demonstrated that the newly–launched Landsat-8 OLI 

multispectral sensor has the potential to enhance aboveground biomass estimation accuracy. For 

instance, when the extracted Landsat-8 OLI spectral information was used to estimate aboveground 
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biomass for the three different plantation forest species (ED, EG and PT), high accuracies in terms 

of the root mean square error, (RMSE), percentage bias (Bias%) and mean absolute error (MAE) 

were observed, compared to when the Landsat ETM+ sensor spectral information was used. Similar 

results were also observed, when a combination of spectral vegetation indices and extracted spectral 

information were used. The Landsat-8 OLI sensor outperformed the Landsat ETM+ sensor in 

deriving aboveground biomass, producing a comparatively high R2, a low RMSE and the relative 

root mean square error of the mean. Moreover, it was observed that Landsat 8 outperformed 

Landsat 7 ETM+, when its performance was tested in estimating aboveground biomass for 

combined species data sets. However, when compared to individual species AGB estimates, both 

the Landsat-8 OLI and ETM+ sensors produced weaker results for combined species data sets. 

 

The higher accuracy of Landsat-8 in OLI estimating AGB can be attributed to the unique sensor 

design. For instance, the Landsat-8 OLI makes use of numerous elongated sets of detectors for each 

waveband that are capable of a detailed scan of the surface along track. The along track design 

augments the sensitivity of the sensor to most critical vegetation biophysical metrics. The presence 

of a refined spectral range for particular bands, such as the near-infrared, also plays a fundamental 

function in boosting forest spectral responses, whereas the enhanced image radiometric resolution 

(12 bits) permits a precise detection of various vegetation conditions (El-Askary et al., 2014; 

Pahlevan and Schott, 2013). Above all, the prolonged sensor radiation sampling residence-period 

for each field-of-view enhances precision during spectral detection and this subsequently minimizes 

saturation challenges (Irons et al., 2012; Jia et al., 2014; Verbyla, 1995). The observed strength of 

the newly-launched Landsat-8 OLI multispectral sensor therefore makes it a better alternative for 

biomass application than the previous Landsat ETM+ products.  

 

Previous studies have examined and documented the utility of the 30-m spatial resolution Landsat 

ETM+ in estimating aboveground biomass across various scales, with reasonable success (Cohen et 

al., 2003; Foody et al., 2003a; Hall et al., 2006; Hudak et al., 2002; Kraus and Samimi, 2002; Ren-

dong and Ji-yuan, 2002; Zheng et al., 2004). However, all of the Landsat ETM+ acquisitions after 

May 31, 2003, have since developed an anomaly caused by the failure of the Scan Line Corrector 

(SLC), which compensated for the forward motion of the spacecraft, so that all the scans were 

aligned parallel with each other. The malfunction of the SLC mirror assembly has since resulted in 

approximately 22% data loss of the normal scene area (Chander et al., 2009; Storey et al., 2005). 

Therefore, the use of SLC-off Landsat ETM+ images have since become a challenge, especially for 
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large-scale remote sensing applications, due to the cost associated with scan line errors. However, 

due to non-availability of a sensor with relatively similar characteristics, researchers and 

practitioners continued to use the data obtained from Landsat ETM+, irrespective of its defects. In 

addition, the whisky-broom design of Landsat ETM+ has its own challenges in terms of the weak 

signal-to-noise ratios and low radiometric resolution of 8-bits, making the sensor less sensitive to 

critical vegetation properties (El-Askary et al., 2014; Pahlevan and Schott, 2013), and the broad 

near-infrared spectral band permits the water vapour absorption effect (e.g. at 0.825 μm), inhibiting  

the accurate acquisition of surface reflectance and short-sensor dwelling-time in target radiation 

sampling at each ground-pixel, which is hypothesized to reduce the radiometric resolution of the 

sensor, thus reducing the spectral record precision and introducing sensor spectral saturation 

challenges (Irons et al., 2012; Jia et al., 2014; Verbyla, 1995). The newly-launched Landsat-8 OLI 

multispectral sensor was therefore developed as an alternative, to improve on terrestrial matter 

characterisation. 

 

Furthermore, it was observed that the Landsat-8 OLI derived aboveground biomass estimation 

accuracy was higher than Landsat ETM+ estimates before and after the failure of the Scan Line 

Corrector on the 13th of May 2003, as recorded in the literature (Fazakas et al., 1999; Hall et al., 

2006; Kajisa et al.,  2009; Luther et al., 2006; Zheng et al., 2004). For example, Kajisa et al. (2009) 

estimated forest biomass from Landsat ETM+ with an R2 value of 0.67 and an Akaike’s 

information criterion (AIC) value of 484.94, using the pixel-based approach in Kampong Thom 

Province, Cambodia. On the other hand, Hall et al. (2006), using Landsat ETM+ sensor, estimated 

aboveground biomass with a RMSE of 33.7 t ha-1 in west-central Alberta, whereas Luther et al. 

(2006) produced an RMSE value of 63.6 t ha-1 in the western Newfoundland ecoregion. Cortés et 

al. (2014) using Landsat ETM+ estimated Eucalyptus species aboveground biomass with a root 

mean square error of 25.81 t.ha-1. The estimation accuracy from the above results was much lower, 

when compared with the results of the present study, using Landsat-8 OLI sensor. This can be 

attributed to the push-broom design of Landsat-8 OLI sensor, which is characterized by improved 

signal-to-noise ratios and high radiometric resolution of 12 bits, which makes the sensor more 

sensitive to critical vegetation properties (El-Askary et al., 2014; Pahlevan and Schott, 2013). 

Moreover, the narrow or refined near-infrared spectral band inhibits water vapour absorption effect 

at 0.825 μm, as well as other sensor related properties, therefore allowing accurate surface spectral 

acquisition, which is critical in reducing sensor spectral saturation challenges.  
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Although Landsat ETM+ results of this study are weaker, when compared to those obtained using 

Landsat-8 OLI imagery, they are comparable to the results obtained in previous aboveground 

biomass estimation studies, using similar data sets (Cortés et al., 2014). What is therefore unique in 

this study is that the push-broom multispectral Landsat-8 OLI imagery produced overall plausible 

aboveground estimates, compared to the long serving Landsat ETM+. These results are also in line 

with the assumptions that the push-broom Landsat-8 OLI sensor, with improved 12-bit 

quantization, is bound to have an impact on vegetation studies, when compared to the long-serving 

Landsat ETM+ (Güneralp et al., 2014). In this study, based on four experimental levels, the push-

broom multispectral Landsat-8 OLI sensor was established as the most attractive multispectral 

sensor. It can produce plausible aboveground estimates, compared to the long-serving and 

malfunctioning Landsat ETM+ sensor. However, despite Landsat-8 OLI performing well, the 

results in the study seem to be moderately low, when compared to hyperspectral- or lidar-derived 

biomass estimates.  

 

For resource-scarce environments, Landsat-8 OLI seem to be posing a lucrative opportunity for 

regional scale AGB estimation, especially when compared to high resolution sensors, such as 

hyperspectral, lidar and sometimes radar sensors. This is despite these sensors having robust means 

of vegetation data collection and the subsequent characterization of the vertically distributed 

attributes. The application of the above-mentioned remote sensing sensors is associated with 

numerous limitations, such as availability, cost, contiguity, spectral processing and analysis 

complications, particularly in sub-Saharan Africa, given the financial challenges, among other 

factors (Gara et al., 2014b; Mutanga et al., 2012). For instance, the application of a hyperspectral 

data set for AGB estimation is a major challenge due to the huge data volume and the Hughes 

phenomenon. This challenge often introduces multicollinearity, as a result of similarities in the 

biophysical spectral reflectance properties. Similarly, the use of the radar data set in sub-Saharan 

Africa remains a challenge due to: (i) saturation problems, and (ii) the limited technical expertise 

required for image data handling and pre-processing, despite these images being provided at low or 

no cost. 

 

Although the objective of this study was not to compare algorithms, the study has shown that 

stochastic gradient boosting outperformed the random forest algorithm in all aboveground biomass 

estimation stages, namely, (i) spectral bands, (ii) vegetation indices, (iii) combined data sets (e.g. 

spectral information and vegetation indices), and (iv) with most important selected variables. The 
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robustness of the two algorithms (i.e. RF and SGB) in estimating AGB is also confirmed by 

previous studies (Carreiras et al., 2012b; Dube et al., 2015; Güneralp et al., 2014). For instance, the 

study by Güneralp et al. (2014) showed that the SGB significantly outperform other modelling 

techniques, such as Cubist, producing high R2 and low RMSE values. The authors concluded that 

the algorithm enabled more accurate AGB estimation in floodplains characterized by uneven-aged 

forests. Moreover, a study by Dube et al. (2015) showed that both the RF and SGB regression 

models provide a potential avenue for improving operational AGB estimates across different scales. 

For example, the findings by Dube et al. (2015), using the 5-m spatial resolution RapidEye sensor, 

showed the SGB algorithm as having the potential to outperform the most popular RF ensemble, 

producing an R2 value of 0.80 and a RMSE of 16.93 t·ha−1 for Eucalyptus grandis. The strength of 

stochastic gradient boosting over the random forest is explained by the model’s ability to handle 

outliers, inaccurate training data, as well as missing and unbalanced data sets (De'ath, 2007; 

Lawrence et al., 2004; Leathwick et al., 2006). In addition, the stochastic gradient boosting 

regression tree is proven to have the capability to handle, identify and select critical variables from 

large amounts of data, making it more robust in improving model accuracies (Carreiras et al., 

2012b; De'ath, 2007; Elith et al., 2008; Gara et al., 2014b; Lawrence et al., 2004). Moreover, the 

fact that the SGB algorithm uses a stage-wise additive model fitting procedure, enhances the 

predictive performance of weak learning algorithms. Literature shows that the random forest 

algorithm normally requires a larger number of observations, to improve on the randomization 

concept, especially when the sampled data set is varying (Adelabu et al., 2014; Özçift, 2011). In 

addition, Krahwinkler and Rossman (2011) have stated that the random forest algorithm uses a 

combination of soft linear boundaries at the decision surface thus, it may not work with small 

sample sizes. 

 

5.7 Conclusion 

This study examined the utility of the newly-launched push-broom Landsat-8 OLI multispectral 

sensor for estimating the AGB of forests in uMgeni Catchment, KwaZulu-Natal, South Africa, as 

part of large-scale monitoring, to understand forest contribution to the regional carbon cycle.  

The results have shown that:  

1. the newly-launched Landsat-8 OLI multispectral sensor with a wide swath width of 185 km, 

coupled with improved signal-to-noise ratios, offers an invaluable primary data-source 

required for accurate aboveground biomass estimation, especially in data-scarce 
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environments, when compared to the malfunctioning whisky-broom Landsat ETM+ sensor, 

and 

2. stochastic gradient boosting regression tree is a more powerful, robust and dependable 

technique that can estimate aboveground biomass, irrespective of the species, when 

compared to the competing random forest ensemble.  

 

Overall, the results of this work provide the necessary insight and motivation to the remote sensing 

community, ecologists and environmentalists for shifting towards identifying the most suitable, 

cheap and readily-available remote sensing sensors necessary for reliable and accurate aboveground 

forest biomass monitoring, especially in data-scarce environments. However, given the relatively 

poor performance of the Landsat-8 OLI spectral and vegetation indices, it would be more 

worthwhile to devise further methods that can help to improve the estimates based on this sensor, 

principally in resource-constrained areas, given the cost and the sensor’s spatial fidelity.  
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6. ENHANCING ABOVEGROUND BIOMASS ESTIMATION 
ACCURACY USING LANDSAT-8 OLI SENSOR TEXTURE 

METRICS 
 
 

 
 

 

This Chapter is based on: 

Dube, T, Mutanga, O. 2015. Investigating the robustness of the newly launched Landsat-8 

pushbroom sensor derived texture indices in estimating medium-density plantation forest species 

aboveground biomass in KwaZulu-Natal South Africa. ISPRS Journal of Photogrammetry and 

Remote Sensing, 108: 12–32.  

http://www.sciencedirect.com/science/journal/09242716/108/supp/C
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Abstract 

The successful launch of the 30-m Landsat-8 OLI push-broom sensor offers a new primary data 

source necessary for AGB estimation, especially in resource-limited environments. In this work, the 

strength and performance of Landsat-8 OLI image derived texture metrics (i.e. texture measures 

and texture ratios) in estimating plantation forest species AGB was investigated. It was 

hypothesized that the sensor’s push-broom design, coupled with the presence of refined spectral 

properties, enhanced radiometric resolution (i.e. from 8 bits to 12 bits) and improved signal-to-

noise ratio, have the potential to provide the detailed spectral information necessary for 

significantly strengthening AGB estimation in medium-density forest canopies. The relationship 

between image texture metrics and measurements of forest attributes can be used to help 

characterize complex forests and enhance fine vegetation biophysical properties, a difficult 

challenge when using spectral vegetation indices, especially in closed canopies. This study 

examines the prospects of using Landsat-8 OLI sensor-derived texture metrics for estimating AGB 

for three medium-density plantation forest species in KwaZulu-Natal, South Africa. In order to 

achieve this objective, three unique data pre-processing techniques were tested (Analysis I: 

Landsat-8 OLI raw spectral-bands vs. raw texture bands; Analysis II: Landsat-8 OLI raw spectral-

band ratios vs. texture band ratios; and Analysis III: Landsat-8 OLI derived vegetation indices vs. 

texture band ratios). The Landsat-8 OLI derived texture parameters were examined for robustness 

in estimating AGB, using linear regression, stepwise-multiple linear regression and stochastic 

gradient boosting regression models. The results of this study demonstrated that all texture 

parameters, particularly band texture ratios calculated using a 3 x 3 window size, could enhance 

AGB estimation, when compared to simple spectral reflectance, simple band ratios and the most 

popular spectral vegetation indices. For instance, the use of combined texture ratios yielded the 

highest R2 values of 0.76 (RMSE = 9.55 t ha-1 (18.07%) and CV-RMSE of 0.18); 0.74 (RMSE = 

12.81 t ha-1 (17.72%) and CV-RMSE of 0.08); 0.74 (RMSE = 12.67 t ha-1 (06.15%) and CV-RMSE 

of 0.06) and 0.53 (RMSE = 20.15 t ha-1 (14.40%) and CV-RMSE of 0.15) overall for Eucalyptus 

dunii, Eucalyptus grandis, Pinus taeda individually, and all species, respectively. Overall, the 

findings of this study provide the necessary insight and motivation to the remote sensing 

community, particularly in resource-constrained regions, to shift towards embracing various texture 

metrics obtained from the readily-available and cheap multispectral Landsat-8 OLI sensor. 

 

Keywords: estimation accuracy; Landsat-8 OLI texture metrics; push-broom sensor; signal-to-

noise ratio; regression ensemble; swath-width; band texture ratios. 
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 6.1 Introduction 

Aboveground biomass is an important indicator of bio-physical processes related to forest 

dynamics. Information on AGB is valuable in understanding and monitoring ecosystem response 

and its contribution to the global carbon cycle and climate change for accurate greenhouse gas 

inventorying, as well as terrestrial carbon accounting (Chinembiri et al., 2013b; Gara et al., 2014a; 

Güneralp et al., 2014; Lu, 2006). Accurate and regularly-repeated AGB estimation at regional or 

local scales is critical in reducing the uncertainty in estimating carbon sequestration and emissions 

(Güneralp et al., 2014; Lu, 2006). Information on AGB is important in greenhouse gas lifecycle 

assessments and global climate change mitigation strategies. Moreover, the accurate and repeated 

monitoring of the status of forest ecosystems can also help in introducing appropriate planning and 

monitoring conservation efforts. Therefore, identifying affordable, timely and readily‐available 

remote sensing data sets, together with robust image processing techniques, is essential to improve 

forest AGB estimates. 

 

Although the application of remote sensing in forest AGB estimation remains one of the most 

favourable and invaluable potential approaches, the issue of image resolution (i.e. spectral and 

spatial properties) plays a major role in the accurate retrieval of AGB estimates. Spectral vegetation 

indices normally rely on the relationship between the red and near infra-red bands of the 

electromagnetic spectrum, to augment the spectral influence from the green vegetation, 

concurrently reducing contribution from the soil background, sun zenith angle, sensor viewing 

angle, senesced vegetation and the atmosphere (Bannari et al., 1995; Carlson and Ripley, 1997; 

Choudhury, 1987; Elvidge and Chen, 1995; Foody et al., 2003b; Huete, 1988b; Lu, 2006; Tarpley 

et al., 1984; Teillet et al., 1997; Tucker, 1979; Wiegand et al., 1991). However, previous studies 

show that the use of spectral vegetation indices computed from medium-to-coarse spatial resolution 

multispectral sensors, in places with moderate or high canopy closure, produce poor results, 

primarily due to saturation challenges and the existing problem of multiple layering (Gara et al., 

2014b; Ingram et al., 2005; Lu, 2006; Mutanga et al., 2012; Mutanga and Skidmore, 2004b; Nichol 

and Sarker, 2011). Recent studies on AGB estimation advocate the use of texture parameters, 

instead of spectral vegetation indices. This is because texture parameters correlate much better with 

field data sets, since they allow for a finer distinction of vegetation structural details (Eckert, 2012a; 

Fuchs et al., 2009; Nichol and Sarker, 2011; Sarker and Nichol, 2011). 
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The image-texture analysis technique can be applied in identifying spectrally unique objects, based 

on a function of local variance in the image, and it is also related to the spatial resolution and the 

size of the dominant scene objects (Haralick et al., 1973). Image-texture is an important source of 

information, capable of identifying different aspects of forest stand structure, including density, age 

and leaf area index in medium-to-high spatial resolution images (Champion et al., 2008). Some of 

the major strengths of applying image-texture measures include: (i) the ability to simplify and 

define complex forest canopy structures, such as multiple layering and even closed canopies; and 

(ii) enhancing the detection of fine vegetation biophysical properties, a complex challenge when 

using spectral vegetation indices, especially in closed canopies (Champion et al., 2008). Moreover, 

earlier work (i.e. using high spatial resolution sensors) demonstrates that texture measures have the 

capability of enhancing vegetation discrimination (Dekker, 2003; Podest and Saatchi, 2002; 

Shimada et al., 2014). However, the relationship between medium spatial resolution sensors and 

forest AGB has not yet been fully examined, especially when compared to the use of other image 

properties, such as raw spectral band information and vegetation indices. This is perhaps due to the 

difficulty of identifying and selecting proper texture parameters, together with the optimal window-

size and offset.  

 

Thus far, the available studies have mostly demonstrated the application of texture measures 

derived from high resolution sensors, such as synthetic aperture radar, Worldview-2, Advanced 

Visible and Near Infrared Radiometer type-2 (AVNIR-2) and SPOT-5, in estimating various tree-

structural attributes, namely, stand age, leaf area index, stand density and AGB (Eckert, 2012a; 

Nichol and Sarker, 2011; Pandey et al., 2010; Pinto et al., 2012; Sarker and Nichol, 2011), and 

partly from medium resolution multispectral sensors, such as the Landsat products (Cutler et al., 

2012). The majority of these studies have shown that image-texture measures have the potential to 

accurately improve the detection of different forest stand characteristics. More importantly, image-

texture measures have the capability of enhancing the discrimination of spatial information and 

simultaneously enhancing AGB detection levels, by increasing the saturation levels that could not 

be measured with spectral vegetation indices (Eckert, 2012; Kuplich et al., 2005; Santos et al., 

2003; Sarker and Nichol, 2011; Vashum and Jayakumar, 2012; Xu et al., 2011). For instance, 

Sarker and Nichol (2011) estimated AGB with a plausible adjusted r-square value of 0.88, using 

texture measures derived from the Advanced Land Observation Satellite, AVNIR-2. On the other 

hand, Eckert (2012) obtained high carbon estimates (R2-value 0.84 and relative RMSE of 6.8%) for 

degraded forest, using WorldView-2 derived texture measures.  
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Thus, from the afore-mentioned studies, it is clear that image textural measures have the potential to 

provide an attractive opportunity for monitoring tree-structural attributes (i.e. AGB, leaf area index 

and chlorophyll content etc.) in areas with a moderate or high canopy closure. However, the 

problem with the use of high resolution images, in resource-constrained regions of sub-Saharan 

Africa, south-east Asia and South America, is the associated cost, limited availability and related 

technical challenges. Currently, the limited number of AGB studies in these regions, using high 

resolution images, for instance, is probably an indication of the limitations associated with these 

data sets (Dube et al., 2014; Dube et al., 2015; Gara et al., 2014b; Koch, 2010). Nevertheless, 

considering the inevitability of forest AGB estimation at regional to global scales, the prospects of 

investigating the performance of image texture parameters, obtained from the multispectral sensors 

with medium-spatial resolution, a large swath-width and a repeated coverage, is necessary in 

resource-constrained regions. 

 

The adoption of the free and readily-available remotely sensed data sets is critical in such resource-

constrained regions. The newly-launched push-broom Landsat-8 OLI sensor, with 30-m spatial 

resolution, is one such data set. Thus far, the rich information contained in this sensor has not yet 

been fully exploited in order to understand the distribution of AGB. This is mainly due to the fact 

that this sensor has just recently been launched, possibly due to the purported challenges of 

saturation and the presence of a few spectral bands, which can be used to compute simple spectral 

vegetation indices. Among the different types of the readily-available multispectral remote sensing 

sensors, a derivation of texture measures from this remotely sensed data set (i.e. push-broom 

Landsat-8 OLI sensor) can improve the estimation of regional to local scale forest AGB. The 

newly-launched Landsat-8 OLI sensor is hypothesized to display great potential in estimating AGB 

across different scales, especially in data-scarce areas. This is due to the enhanced sensor’s 

sensitivity to different vegetation properties (e.g. chlorophyll, leaf area index and AGB), the 

presence of a large swath-width (i.e. 185-km), coupled with improved signal-to-noise ratios. These 

sensor improvements enhance the radiometric sensitivity, which, in turn, improves spectral strength 

to detect the most important forest structural properties, thereby minimizing saturation problems. 

These saturation problems were normally common with the prior Landsat 7 ETM+ products. 

Although the new Landsat-8 OLI sensor presents a more attractive potential in vegetation studies 

than its counterparts (i.e. MODIS, earlier Landsat products etc.), previous work, using spectral 

vegetation indices computed from the Landsat-8 OLI, obtained relatively low AGB estimation 

accuracies (i.e. an R2 of 0.69 between predicted and observed biomass and a moderately high 
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average RMSE of 14.91 t ha-1). This shows that accurate forest AGB estimation is not only 

dependent on the Landsat-8 OLI data set, but also requires advanced and robust image processing 

techniques, such as texture metrics. Therefore, texture metrics are perceived to improve the 

estimation accuracy of AGB, when compared to the use of vegetation indices (Nichol and Sarker, 

2011; Sarker and Nichol, 2011). The main aim of this paper was therefore to investigate the 

performance of texture metrics derived from the Landsat-8 OLI in estimating AGB in the Clan 

Sappi Forests in the KwaZulu-Natal Province, South Africa.  

 

6.2 Materials and Methods  

6.2.1 Study Area 

The study was conducted at the Sappi Clan plantation forest (a paper and pulp company) in the 

midlands region of the KwaZulu-Natal Province, South Africa (Figure 6.1). The Clan Sappi Forests 

area is situated between Latitude 29°24'46.74"S, 29°17'45.94"S and Longitude 30°18'32.89"E, 

30°28'28.21"E. The area is characterised by moderately steep and undulating topography, ranging 

from ~644 to 1266 m above sea-level, with predominantly deep-fertile lithic soils, such as the 

leptosols, cambisols, acrisols and lixisols (Sappi, 1993; Scott and Lesch, 1997). The area 

experiences sub-tropical climatic conditions, with the rainy season occurring during the summer 

months (i.e. October – February), with an annual rainfall ranging from 730 to 1500 mm and an 

average annual temperature of 21.7 C. Different species of eucalyptus and pine are present within 

the area and these trees are mainly grown for pulpwood production.  
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Figure 6.1 Study area location with the distribution and position of sampled plots 

 

6.2.2 Field-data Inventorying 

Field data collection was conducted from the 30th of July to 22nd August, 2013, coinciding with the 

Sappi annual routine-field surveys. A grid-based systematic sampling technique, with a 10 m-radius 

circular sample plots, distributed systematically (100 m), within the stand, was applied during the 

field data collection period (Wessels and Kassier, 1985). Diameter-at-breast height (DBH) and tree 
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height (Ht) were measured from the three dominant Clan Sappi Forests, namely, Eucalyptus dunii 

(ED), Eucalyptus grandis (EG) and Pinus taeda (PT). During data collection, trees with DBH ≥ 5 

cm were considered. The vector maps of the study site, by courtesy of Sappi Forest, together with 

the aid of an expert forest specialist, were used to navigate and identify the selected plots of interest 

within the area. During the field campaign, plot centre GPS locations (n = 181 plots) were also 

recorded with sub-meter accuracy, using the Trimble GeoXH 6000 series handheld Global Position 

System (GPS). The measurement of DBH and Ht were taken, using the Haglof Digitech Calliper 

and Vertex IV laser instrument, respectively.  

 

To derive in situ AGB for individual 181 sampled plots, two unique methods were chosen. AGB 

was calculated, using volume with species specific BEF, as well as the general functional group 

equations for the three plantation species. The use of different techniques in computing AGB in this 

study was driven by the prevailing unique structural and taxonomical properties of Eucalyptus 

dunii, Eucalyptus grandis and Pinus taeda (Atta-Boateng and William, 1998; Henry et al., 2011; 

Lu, 2005a). Specifically, the general functional group equation was developed in an area with 

rainfall of approximately. 800 to 1500 mm and a temperature range between 21-34oC, which is 

comparable to climate conditions of the study area. Furthermore, this equation was developed, 

based on a DBH range of 0.6 to 56 cm, a characteristic almost identical to the midlands region of 

KwaZulu-Natal, South Africa. Specifically, AGB for Eucalyptus dunii and Eucalyptus grandis 

species were derived using volume (m3/ha), together with species-specific BEF available in 

literature (Dovey, 2009). Tree volume was computed based on mathematical function described in 

Bredenkamp (2000). For Pinus taeda, individual tree DBH measurements were converted to AGB 

via a general functional group equation and subsequently summed across the entire plot. Table 6.1 

indicates descriptive statistics for individual species AGB, with Pinus taeda having high biomass 

(298.04 t ha-1), when compared to the other species.  

 

Table 6. 1  Measured aboveground biomass descriptive statistics (t ha-1) 

Species type # of samples Min. Max. Avg. Std dev. 
E. dunii 63.00 33.24 96.49 52.86 16.39 
E. grandis 65.00 106.03 225.07 170.30 29.94 
P. taeda 53.00 137.11 298.04 206.07 42.83 
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6.2.3 Landsat-8 OLI Image Acquisition and Pre-processing 
The Landsat-8 OLI sensor was launched on the 11th of February 2013 by the National Aeronautics 

and Space Administration and the United States Geological Survey (NASA-USGS). Officially, the 

Landsat-8 OLI sensor began normal operations on the 30th of May 2013 and presents a number of 

key improvements in design and spectral configuration. The novel and attractive spectral properties 

associated with the medium-resolution multispectral Landsat-8 OLI sensor include a refined 

spectral range for certain bands (i.e. critical for improving the vegetation spectral responses across 

the near-infrared) and enhanced radiometric resolution (e.g. from 8 bits to 12 bits, which 

significantly allows the characterization of different vegetation structural characteristics) (El-

Askary et al., 2014; Pahlevan and Schott, 2013). Moreover, the changes in the Landsat-8 OLI 

sensor design have also seen great advances in SNR, almost twice as good as Landsat 7 Enhanced 

Thematic Mapper plus: ETM+ (Irons et al., 2012). It is because of these appealing unique sensor 

features that the utility of texture metrics, derived from the Landsat-8 OLI image, was tested in 

estimating plantation forest species AGB.  

 

The Landsat-8 OLI image used in the study was acquired on the 3rd of August 2013, using the push-

broom or “along track” Operational Land Imager sensor. The Clan Sappi Forests area is covered by 

one Landsat-8 OLI tile with path/row 168/80 and is obtained from the USGS Earth Resources 

Observation and Science (EROS) Centre archive (http://earthexplorer.usgs/). The image was 

acquired during a clear and sunny sky condition, with a sun azimuth angle of 39.78o and a sun 

elevation angle of 33.14o. The image spatial resolution was about 30-m with seven spectral bands 

ranging from 0.43 to 2.29 µm (VNIR-SWIR: Visible Near-Infrared and Short Wave Infrared) and 

bandwidths ranging between 0.3 to 18 µm. The seven image wavebands correspond to band one–

coastal/aerosol (0.43 – 0.45 μm), band two–blue (0.45 – 0.51 μm), band three – green (0.53 – 0.59 

μm), band four – red (0.64 – 0.67 μm), band five – near IR (0.85 – 0.88 μm), band six – SWIR 

(1.57 – 1.65 μm) and band seven – SWIR (2.11 – 2.29 μm). The Landsat-8 OLI sensor has a 

temporal resolution of 16 days.  

 

The Landsat-8 OLI image bands were converted from digital number format (DN) to reflectance, 

using ENVI 5.1 software, following the methodology summarized on the USGS website 

(http://landsat.usgs.gov). Subsequently, the acquired Landsat-8 OLI image was atmospherically 

corrected, using the MODTRAN, based on the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercube (FLAASH) radiative transfer algorithm (Matthew et al., 2000; Perkins et al., 2005) 

http://landsat.usgs.gov/
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which is embedded in the ENVI software. The Landsat-8 OLI image was then geometrically 

corrected (GCS Hartebeesthoek 1994), using 23 ground control points (GCPs) of major features 

(e.g. roads and rock outcrops). The first order polynomial function was used and a nearest-

neighbour resampling protocol was applied. The total transformation root mean square error 

(RMSE) of less than a pixel was attained. 

 

6.2.4 Landsat-8 OLI-derived Variables 

Four simple spectral reflectances (i.e. blue, green, red and NIR), as well as six simple spectral band 

ratios (i.e. blue/green, blue/red, blue/NIR, green/red green/NIR and red/NIR), that were mostly 

applied in literature (Nichol and Sarker, 2011), were derived from the Landsat-8 OLI imagery. Five 

vegetation indices were also computed (Table 6.2), based on the previous findings, which 

highlighted their successful application as predictors for AGB estimation (Güneralp et al., 2014). 

The texture parameters used here have been explored in Eckert (2012a) and Cutler et al. (2012). 

The spectral indices and texture information applied in this study were extracted at each location 

and the pixel containing a sample plot was identified from the Landsat-8 OLI imagery for analyses. 

 

Table 6. 2 Selected spectral vegetation indices and image texture measures derived from  
  Landsat-8 OLI applied in the estimation of aboveground biomass 

Parameters References or Equation 
Single band reflectance  
band 2-blue, band 3-green, band 4-red, band 5-near-infrared 
Computed vegetation indices  
1. Moisture Stress Index (MSI) 

SWIR/NIR 
Rock et al. (1986a) 

2. Normalized Difference Vegetation Index (NDVI) 
(NIR − Red)/(NIR + Red) 

Rouse et al. (1974); Jordan (1969b) 

3. Corrected Normalized Difference Vegetation Index 
(NDVIc)  

     

Nemani et al. (1993) 

4. Normalized difference infrared index (NDII) 
(NIR – SWIR 1)/(NIR + SWIR 1) 

(Hardisky et al. (1983); Kimes et al. 
(1981)) 

5. Soil adjusted vegetation index (SAVI) 

    ; L = 0.5 

Huete (1988b) 

Grey level co-occurrence matrix texture measures           
1. Angular Second moment (ASM)                        
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2. Contrast (CO)                                                       
 

3. Correlation (CR)                                                
 

4. Data Range (DR)                                                  
Where =  

5. Dissimilarity (DI)                                                  
 

6. Entropy (EN)                                                      
 

7. Homogeneity (HO)                                               
 

8. Mean (ME)                                                          
 

9. Standard deviation (Stdev)                              ;  

where VA=  

10 Variance ( )                                                      
 

*For equation 3 and 4 the SWIR represents the SWIR I band of Landsat 8 OLI. 

 

6.2.5  Landsat-8 OLI Sensor Texture Metrics derivation  

For this particular study, the Landsat-8 OLI image texture metrics were statistically derived, using 

popular Gray Level Co-occurrence Matrix (GLCM) texture algorithms calculated from a relative 

displacement vector (d, θ), which explains the spatial distribution of the level pairs separated by d 

in direction θ (Haralick et al., 1973). Although numerous image-texture metrics can be generated 

from the most popular Gray Level Co-occurrence Matrix, in this study, ten were selected including 

mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, correlation, standard 

deviation and data range (Baeza-Yates and Ribeiro-Neto, 1999; Blaschke et al., 2014; Haralick, 

1979; Haralick et al., 1973; Sarker and Nichol, 2011) (Table 6.2). The choice of these texture 

metrics was prompted by their strength and successful application displayed in previous AGB 

estimation studies conducted in dense tropical forests, using high resolution image data sets (Bastin 

et al., 2014; Cutler et al., 2012; Eckert, 2012a; Sarker and Nichol, 2011; Sarker et al., 2013). 

 

Although the selected texture metrics have demonstrated successful application in most AGB 

studies, literature indicates that the identification and selection of the most appropriate texture 
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measures require an additional selection of the most suitable moving window sizes (Bastin et al., 

2014; Cutler et al., 2012; Eckert, 2012a; Sarker and Nichol, 2011; Sarker et al., 2013). Thus, in 

order to define the optimal window size required for accurate AGB estimation, the selected texture 

measures were computed from four Landsat-8 OLI spectral bands (i.e. band two–blue, band three – 

green, band four  – red and band five – NIR), using four window sizes (i.e. 3 × 3, 5 × 5, 7 × 7 and 9 

× 9) based on four offsets ([1,0], [1,1], [0,1] and [1,-1]). Literature indicates that texture measures 

derived from a small window size are sensitive to fine scale variations in pixel brightness, when 

compared to those derived using large window sizes. Thus, to determine a suitable window size for 

accurate AGB retrieval, a window with a strong relationship between estimated and measured AGB 

was considered, as indicated in literature. Furthermore, to evaluate the strength of image texture 

measures (i.e. best performing texture measures from the texture metrics on four window sizes on 

four bands with a combination of different offsets) and band texture ratios, the results obtained 

were compared with those derived, using selected spectral vegetation indices (Table 6.2). 

 

6.2.6  Statistical Analysis 

For this study, AGB was estimated using linear regression, stepwise multiple regression and SGB 

predictive methods. The choice and application of the SGB method in this study was based mainly 

on the algorithm’s technical abilities over traditional parametric regression approaches, which 

include: (i) the non-parametric nature of the regressor, (ii) the potential to screen the most important 

predictors (i.e. capability to identify and select suitable predictor variables from the entire data set), 

(iii) the ability to handle non-linear and hierarchical relationships between predictor variables, (iv) 

acceptance of the missing values and the ability to improve final model accuracy through handling 

small perturbations in the training data set, and (v) the algorithm is resilient to overfitting (Carreiras 

et al., 2012b; Gara et al., 2014b; Güneralp et al., 2014; Moisen et al., 2006). In addition, the 

stochastic gradient boosting algorithm, unlike other approaches, utilises the combined strengths of 

bagging (a machine-learning algorithm, which has the capability to improve model stability and the 

final predictive accuracy) and boosting (an adaptive method for integrating multiple simple models, 

to provide improved predictive performance methods) (De'ath, 2007; Elith et al., 2008; Friedman, 

2002; Leathwick et al., 2006; Moisen et al., 2006). On the other hand, stepwise multiple linear 

regression was also applied in modelling AGB and the obtained results were compared to those 

obtained, using the SGB regression algorithm. In addition, statistical parameters, such as tolerance 

(Tol.) and variable inflator factor (VIF), were applied, to test for multicollinearity effects. To 
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demonstrate multicollinearity problems, a value less than 0.10 for tolerance (Belsley, 1991) and a 

value greater than 10 for VIF were considered as determinants (Sarker and Nichol, 2011).  

 

6.2.7 Landsat-8 OLI data Preparation for AGB Estimation 

Models of AGB were developed using the linear regression, stepwise multiple linear regression and 

stochastic gradient boosting regression models, with spectral/texture information as the predictor 

variables and AGB as the response variable. Specifically, the remotely sensed predictor variables 

were: (i) raw-spectral bands, (ii) raw-texture measures, (iii) spectral band ratios, (iv) vegetation 

indices, and (v) texture band ratios. Models of estimating aboveground biomass were conducted, 

following three analytic steps:  

 

1. raw spectral-bands and spectral-band ratios derived from the Landsat-8 OLI sensor were 

used to model AGB individually in linear regression. The raw spectral-bands and spectral-

band ratios were combined and collectively used in modelling AGB, using stepwise 

multiple linear regression, as well as using stochastic gradient boosting regression models. 

The strength of stepwise multiple linear regression and the stochastic gradient boosting 

algorithm (using R2, RMSE, CV-RMSE and RMSE%) were then compared in estimating 

AGB and the best performing algorithm was then applied on texture metrics, 

2. raw band texture measures (i.e. 10 texture metrics on four window sizes and four bands with 

some combination of offsets) from a single Landsat-8 OLI spectral band were individually 

tested in modelling AGB, using a SGB model. In addition, texture metrics were then 

combined and collectively used in modelling AGB, using stochastic gradient boosting 

regression model, and 

3. vegetation indices and band-texture ratios (b2/b3, b2/b4, b2/b5, b3/b4, b3/b5 and b4/b5) 

generated from the Landsat-8 OLI sensor were tested individually in modelling AGB, using 

a SGB model. Similarly, texture metrics were then combined and collectively used in 

modelling AGB, using the SGB regression model. 

 

In this study, field measured forest AGB values were used to train and validate the model. Thus, the 

field measured forest AGB data set was randomly split into 70% (two-thirds of field data) and 30% 

(one-third of field data) for model building and testing (Kohavi, 1995; Riggins et al., 2009). The 

SGB model was parameterized, using the three most important user-defined hyper-parameters, 

namely: (i) the learning rate (lr), critical for determining the contribution of each tree to the final 
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model; (ii) the tree complexity (tc), which represents the number of independent variables 

interacting, to determine each split; and (iii) the number of regression trees (nt): (models that relate 

a response to their predictors by recursive binary splits) (Elith et al., 2008; Hastie et al., 2001; 

Leathwick et al., 2006). For this work, the shrinkage rate (determines the contribution of each tree 

to the growing model) was set between 0.0001 and 0.1, whereas the tree complexity (which 

controls whether interactions are fitted) was set between 1 and 5. The bagging fraction, which 

determines a fraction of the training data set selected randomly for computing each tree, was set at 

0.3 and 0.5 during data analysis. To assess the tested regression model accuracies, the coefficient of 

determination (R2), root mean square error (RMSE), percentage root mean square error (RMSE%) 

and coefficient of variance of the root mean square error (RMSE-CV) were computed, using the 

test data set (Eq. 6.1-6.3).  

 

                      Equation 6.1 

Where; RMSE is the Root Mean Square Error;  is the number of observed values;  is the 

observed value,  is the estimated values,  mean of the observed values. 
 

               Equation 6.2 

Where; RMSE% is the Percentage Root Mean Square Error; is the number of observed values; 

 is the observed value,  is the estimated values,  mean of the observed values. 
 

                          Equation 6.3 

Where; RMSE-CV is the Coefficient of Variance of the Root Mean Square Error; RMSE is the 

Root Mean Square Error;  mean of the observed values. 
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6.3 Results  

6.3.1  Analysis I: Landsat-8 OLI raw spectral-bands vs. raw texture bands 

A few texture parameters derived, using a 3 x 3 window size and an offset of [0, 1], were identified 

as the best variables for the accurate estimation of AGB (Table 6.3). These include mean, entropy, 

correlation, dissimilarity, homogeneity and variance. It was observed that raw Landsat-8 OLI bands 

yielded weaker AGB estimates across all tree species (i.e. ED, EG, PT and all species data 

(combined data)), when compared to estimates obtained using raw Landsat-8 texture measures 

(Table 6.3 and Figure 6.2). Despite poor performance from the raw Landsat-8 bands, the near-

infrared and the green bands yielded slightly higher AGB estimates for ED, EG, PT and all species 

data combined. Using texture parameters derived from the NIR band, an R2 value of 0.29, RMSE of 

19.23 t ha-1 and CV-RMSE of 0.37 were obtained for ED. Similarly, using texture parameters 

derived from the green band, an R2 value of 0.24, RMSE of 32.26 t ha-1 and CV-RMSE of 0.62 

were obtained for ED species. A similar performance was observed for Eucalyptus grandis, Pinus 

taeda and all species. Comparatively, raw texture measures derived from Landsat-8 OLI yielded 

overall better AGB estimates than any individual spectral band. For instance, high average R2 and 

RMSE and CV-RSME were attained from the use of Landsat-8 OLI raw texture measures derived 

from the NIR, green and blue bands, respectively. On the contrary, the use of the step-wise multiple 

linear regression, together with a stochastic gradient boosting algorithm, shows that the latter 

performed better, yielding the highest R2 (0.51), the lowest RMSE (52.31 t ha-1) and RMSE% 

(37.53%) for all species data sets combined (Table 6.3). 

 

Moreover, it can be observed that, when all Landsat-8 OLI spectral bands (i.e. combined raw 

Landsat-8 OLI bands) were used, AGB estimates improved significantly, compared to the use of 

individual raw Landsat-8 OLI bands. Overall, the combined Landsat-8 OLI raw texture measures 

yielded plausible AGB estimates for ED, EG, PT and all species (Figure 6.2a – 6.2c and Table 6.3). 

Although, combined raw Landsat-8 OLI bands produced lower AGB estimates, their results were 

better, when compared with those obtained using individual bands (Figure 6.2d).  
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Figure 6.2 A comparison between the strength of Landsat-8 OLI sensor spectral bands and the 
  best performing texture parameters derived using a 3 x 3 window size and an offset 
  of [0, 1] in aboveground biomass estimation based on the three modelling techniques 
  (i.e. linear regression, multiple linear regression, SGB algorithm). (a) represents E 
  dunii,(b) stands for E grandis, (c) stands for P taeda and  (d) represents all species 
  data combined 
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Table 6. 3 Aboveground biomass estimates derived using Landsat-8 OLI spectral bands and the best performing texture parameters from a 3 
  x 3 window size and an offset [0, 1] using linear, stepwise-multiple linear and stochastic gradient boosting regression models 

Model Plant. species Image data Variable name and window size  R2 RMSE t ha-1 (RMSE%)     CV-RMSE Tol. VIF 
linear E. dunii Blue  —      0.01 39.64 (74.99%) 0.75 0.99 1.01 
linear  Green   —  0.18 36.79 (69.60%) 0.70 0.82 1.22 
linear  Red  — 0.09 40.31 (76.26%) 0.76 0.91 1.10 
linear  NIR   —  0.15 38.97 (73.72%) 0.74 0.85 1.18 
SMLR  All bands   —  0.19 35.12 (66.44%) 0.66 0.81 1.23 
SGB  All bands   —  0.25 29.68 (56.15%) 0.56 0.75 1.33 
linear E. grandis Blue   —  0.01 78.02 (45.81%) 0.46 1.00 1.00 
linear  Green   —  0.21 61.93 (36.37%) 0.36 0.79 1.27 
linear  Red   —  0.02 74.25 (43.60%) 0.44 0.98 1.02 
linear  NIR   —  0.22 37.40 (21.96%) 0.22 0.78 1.28 
SMLR  All bands   —  0.26 46.52 (27.32%) 0.27 0.74 1.35 
SGB  All bands   —  0.33 55.46 (32.57%) 0.33 0.67 1.49 
linear P. taeda Blue   —  0.01 78.53 (38.11%) 0.38 0.99 1.01 
linear  Green   —  0.19 63.11 (30.63%) 0.31 0.81 1.23 
linear  Red   —  0.01 74.89 (36.34%) 0.36 0.99 1.01 
linear  NIR   —  0.13 59.47 (28.86%) 0.29 0.87 1.15 
SMLR  All bands   —  0.20 46.52 (22.57%) 0.23 0.80 1.25 
SGB  All bands   —  0.34 38.29 (27.37%) 0.27 0.66 1.52 
linear All species Blue   —  0.01 80.73 (57.91%) 0.58 0.99 1.01 
linear  Green   —  0.12 71.34 (51.18%) 0.51 0.88 1.14 
linear  Red   —  0.02 84.13 (60.39%) 0.60 0.98 1.02 
linear  NIR   —  0.27 69.66 (49.79%) 0.50 0.73 1.37 
SMLR  All bands   —  0.24 61.73 (44.29%) 0.44 0.76 1.32 
SGB  All bands   —  0.51 52.31 (37.53%) 0.37 0.49 2.04 
SGB E. dunii b2 texture  1, 5, 6        (3 x 3)        0.20        36.34 (68.75%) 0.69 0.80 1.25 
SGB  b3 texture     6, 1, 8, 3        (3 x 3)        0.24        32.26 (61.03%) 0.62 0.76 1.32 
SGB  b4 texture  6, 1, 5        (3 x 3)       0.18        29.37 (55.56%) 0.56 0.82 1.22 
SGB  b5 texture    1, 8, 6,2        (3 x 3)     0.29        19.23 (36.38%) 0.37 0.71 1.41 
SGB  All data          1, 6,  8, 5, 3, 2    (3 x 3)     0.68 10.29 (19.47%) 0.20 0.32 3.13 
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SGB E. grandis b2 texture  1, 6, 5      (3 x 3)     0.35   37.35 (21.93%)    0.22 0.65 1.54 
SGB  b3 texture      6, 1, 8, 3      (3 x 3)     0.25      33.42 (19.62%)    0.20 0.75 1.33 
SGB  b4 texture  6, 1, 5      (3 x 3)     0.19      31.12 (18.27%)    0.18 0.81 1.23 
SGB  b5 texture       8, 1, 2,6               (3 x 3)    0.46      29.30 (17.20%)    0.17 0.54 1.85 
SGB  All data        2, 6,  8, 1, 3, 5      (3 x 3)    0.67      12.13 (07.12%)    0.07 0.33 3.03 
SGB P. taeda b2 texture    5, 6, 1      (3 x 3)  0.23    41.55 (20.16%) 0.21 0.77 1.30 
SGB  b3 texture    6, 1, 8, 3      (3 x 3)  0.33    35.23 (17.10%) 0.17 0.67 1.49 
SGB  b4 texture    6, 5, 1      (3 x 3)  0.27    40.58 (19.69%) 0.20 0.73 1.37 
SGB  b5 texture    8, 1, 6,2                (3 x 3)  0.43    21.19 (10.28%) 0.10 0.57 1.75 
SGB  All data        1, 2, 3, 5, 8, 6       (3 x 3) 0.65 15.77 (07.65%) 0.08 0.35 2.86 
SGB All species b2 texture             1, 6, 5                   (3 x 3)  0.23    59.94 (43.00%) 0.43 0.77 1.30 
SGB  b3 texture    6, 3, 8, 1               (3 x 3)  0.18    63.15 (45.30%) 0.46 0.82 1.22 
SGB  b4 texture    5, 1, 6                   (3 x 3)  0.07    71.03 (50.96%) 0.51 0.93 1.08 
SGB  b5 texture    1, 2, 6, 8               (3 x 3)  0.42    29.03 (20.83%) 0.21 0.58 1.72 
SGB  All data        1, 2, 8, 5, 3, 6       (3 x 3)       0.55 26.33 (18.89%) 0.19 0.45 2.22 
**SMLR = stepwise multiple-linear regression; SGB = stochastic gradient boosting. 1-mean, 2-variance, 3-homogeneity, 4-contrast, 5-
dissimilarity, 6-entropy, 7-second moment, 8-correlation, 9-standard deviation and 10-data range. 
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6.3.2 Analysis II: Landsat-8 OLI raw spectral – band ratios vs. texture band ratios 

This study finds that texture-based models, derived using a stochastic gradient boosting algorithm, 

display enhanced accuracy in AGB estimation, relative to the use of spectral bands and spectral 

vegetation indices (Figures 6.3 a –d). Although the results derived, using both raw spectral band 

ratios and texture ratios, appear to be promising, raw spectral band ratios based on AGB estimates 

generally yielded low accuracy. For instance, weaker R2 values were obtained from the use of raw 

spectral band ratios in estimating AGB for individual forest species and all species investigated. 

Figures 6.3a and 6.3b show that blue/ NIR, green/ NIR and red/ NIR raw spectral band ratios had 

slightly higher R2 values, especially when compared to the use of single raw spectral bands. 

However, a comparison of AGB estimates between raw-spectral band ratios and raw-texture ratios 

indicate improved performance from the latter (Figure 6.3a and 6.3b). Overall, Landsat-8 OLI 

sensor texture-ratios derived from the following band combinations: band two/band three, band 

three/ band five and band four/ band five had a stronger correlation between predicted and observed 

biomass than other methods investigated. 

 

The improved and higher R2 values of 0.49 (RMSE = 20.45 t ha-1 and CV-RMSE of 0.39), 0.39 

(RMSE = 35.60 t ha-1 and CV-RMSE of 0.21), 0.52 (RMSE = 21.85 t ha-1 and CV-RMSE of 0.11) 

were obtained for ED, EG and PT species ABG estimates, respectively, from red/NIR texture ratio. 

A similar performance from the red/NIR texture ratio was observed in estimating all species AGB, 

where an R2 value 0.27 (RMSE = 35.50 t ha-1 and CV-RMSE of 0.26) was attained (Figures 6.3a – 

6.3b and Table 6.4). Texture-based AGB estimates demonstrate a substantial enhancement, when 

compared with the best findings obtained, using Landsat-8 OLI raw spectral and band ratios. A 

further demonstration of good performance in AGB estimation was also observed from the results 

obtained, using the combined Landsat-8 OLI texture ratios (Figures 6.3a – 6.3b). The use of 

combined texture ratios yielded even higher R2 values of 0.76 (RMSE = 9.55 t ha-1 and CV-RMSE 

of 0.18); 0.74 (RMSE = 12.81 t ha-1 and CV-RMSE of 0.08); 0.74 (RMSE = 12.67 t ha-1 and CV-

RMSE of 0.06) and 0.53 (RMSE = 20.15 t ha-1 and CV-RMSE of 0.15) overall for ED, EG, PT and 

all species data sets, respectively. It is also important to note that the 3 x 3 window size and offset 

of [0,1], yielded the best overall results, when compared to the results obtained using other window 

sizes (i.e. 5 x 5, 7 x 7 and 9 x 9) and the other offsets, which include [1,1], [0,1] and [1,-1]. 
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Figure 6.3 A comparison between the strength of Landsat-8 OLI sensor spectral band ratios and texture measure band ratios in aboveground 
  biomass estimation using a stochastic gradient boosting algorithm. (a) represents E dunii, (b) stands for E grandis, (c) stands for P 
  taeda and (d) represents all species data combined. The exact texture metrics used in each ratio calculation are presented in Table 
  6.3 
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Table 6. 4 Aboveground biomass estimates derived using Landsat-8 OLI band texture ratios from a 3 x 3 window size and an offset [0, 1], 
  using stochastic gradient boosting regression models 
Model Plant. species Image data Selected texture ratios   R2 RMSE t ha-1(RMSE%) CV-RMSE Tol. VIF 
 E. dunii b2/b3      1, 6, 2       0.24 32.28 (61.07%) 0.62 0.76 1.32 
  b2/b4      6, 5, 8       0.42 30.11 (56.96%) 0.58 0.58 1.72 
  b2/b5      6, 1         0.37 36.57 (69.18%) 0.70 0.63 1.59 
SGB  b3/b4      8, 6, 2  0.39 35.63 (67.40%) 0.68 0.61 1.64 
  b3/b5      1, 6, 8   0.27 27.92 (52.82%) 0.53  0.73 1.37 
  b4/b5      6, 7, 5   0.49 20.45 (38.69%) 0.39 0.51 1.96 
  All data      4, 1, 6, 5, 8, 7, 2       0.76 09.55 (18.07%) 0.18 0.24 4.17 
 E. grandis b2/b3 1, 2, 6   0.25 38.40 (24.27%) 0.23 0.75 1.33 
  b2/b4 6, 8, 5    0.15 41.34 (19.55%) 0.24 0.85 1.18 
  b2/b5 6, 1    0.33 33.29 (21.60%) 0.20 0.67 1.49 
SGB  b3/b4 1, 8, 6   0.37 36.78 (22.45%) 0.22 0.63 1.59 
  b3/b5 1, 6, 8   0.26 38.23 (20.90%) 0.22 0.74 1.35 
  b4/b5 6, 5, 7   0.39 35.60 (07.52%) 0.21 0.61 1.64 
  All data 6, 4, 1, 8, 5, 2, 7       0.74 12.81 (17.72%) 0.08 0.26 3.85 
 P. taeda b2/b3 1, 6, 2   0.30 36.52 (33.93%) 0.19 0.70 1.43 
  b2/b4 6, 5, 8  0.05 69.92 (33.93%) 0.36 0.95 1.05 
  b2/b5 6, 1    0.36 34.57 (16.78%) 0.18 0.64 1.56 
SGB  b3/b4 8, 6, 2  0.24 37.69 (18.29%) 0.19 0.76 1.32 
  b3/b5 1, 6, 8   0.25 39.74 (19.28%) 0.20 0.75 1.33 
  b4/b5 6, 7, 5   0.52 21.85 (10.60%) 0.11 0.48 2.08 
  All data 6, 4, 1, 8, 5, 2, 7        0.74 12.67 (06.15%) 0.06 0.26 3.85 
 All species b2/b3 1, 6, 2, 4   0.16 43.24 (30.91%) 0.31 0.84 1.19 
  b2/b4 6, 5, 8  0.21 47.23 (33.76%) 0.34  0.79 1.27 
  b2/b5 6, 1    0.12 67.96 (48.58%) 0.49 0.88 1.14 
SGB  b3/b4 8, 6, 2 0.11 68.43 (48.92%) 0.50 0.89 1.12 
  b3/b5 1, 6, 8  0.24 51.29 (36.66%) 0.37 0.76 1.32 
  b4/b5  6, 7, 5  0.27 35.50 (25.38%) 0.26 0.73 1.37 
  All data 1, 6, 8, 5, 2, 7, 4       0.53 20.15 (14.40%) 0.15 0.47 2.13 
**SMLR = stepwise multiple-linear regression; SGB = stochastic gradient boosting. 1-mean, 2-variance, 3-homogeneity, 4-contrast, 5-dissimilarity, 6-
entropy, 7-second moment, 8-correlation, 9-standard deviation and 10-data range. 



  
 

127 

 

 

Figure 6.4 Scatterplots of the predicted vs. observed AGB of the best models. (a), (b), (c) and 
  (d) represent E. dunii, E. grandis, P. taeda and all species data sets combined,  
  respectively based Landsat-8 OLI texture ratios derived using a 3 x 3 window size, 
  an offset of [0, 1] and stochastic gradient boosting algorithm 
 

6.3.3 Analysis III: Landsat-8 OLI derived vegetation indices vs. texture band ratios 

This work finds that Landsat-8 OLI derived texture ratios performed better than the selected 

vegetation indices, in terms of R2; RMSE and CV-RMSE (Figure 6.5a). For instance, the use of 

combined texture ratios resulted in high R2 values of 0.76 (RMSE = 9.55 t ha-1 and CV-RMSE of 

0.18) for eucalyptus dunii, whereas, based on the five selected vegetation indices, weaker results 

were obtained, producing an R2 of 0.71 and a RMSE of 10.66 t ha-1. A similar performance was 

also observed for the other two species i.e. Eucalyptus grandis and Pinus taeda, as well as for all 

species data sets combined. Figure 6.5b shows the AGB map obtained using the best performing 

stochastic gradient boosting model, determined from Landsat-8 OLI texture band ratios (mean, 

entropy, dissimilarity, correlation, homogeneity, and variance), computed using the optimal 

window size of 3 x 3 and an offset of [0, 1].  
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Figure 6.5 (a) A comparison between the strength of Landsat-8 OLI sensor spectral vegetation 
  indices and band texture ratios in AGB estimation and (b) best performing Landsat-8 
  OLI image texture- derived aboveground biomass map 

 
6.4 Discussion 

The present study aimed to investigate the performance of texture metrics derived from the newly-

launched Landsat-8 OLI sensor in estimating plantation forest species AGB in the midlands region 

of KwaZulu-Natal, South Africa. Specifically, this research investigated whether the various texture 

metrics obtained from the 30-m Landsat-8 OLI sensor with refined-spectral properties, as well as 

the improved signal-to-noise ratio, have the potential to enhance AGB estimation, when compared 

to other methods investigated i.e. spectral bands, bands ratios and vegetation indices. 

 

This research shows that texture metrics (i.e. mean, entropy, dissimilarity, correlation, homogeneity 

and variance), derived from the 30-m Landsat-8 OLI multispectral sensor, using a 3 x 3 window 

size and an offset of [0, 1] overall, enhanced AGB estimation accuracy, when compared to the use 

of: (i) raw-spectral bands, (ii) raw-spectral band ratios, and (iii) spectral vegetation indices. The 

findings of this study are similar to those available in literature, which demonstrate these above-

mentioned texture parameters as critical for AGB estimation (Nichol and Sarker, 2011; Sarker and 

Nichol, 2011). For example, these studies have shown that mean, entropy, dissimilarity, correlation, 

homogeneity and variance texture parameters are capable of enhancing AGB estimation accuracies. 

In addition, the study has demonstrated that by using Landsat data, a 3 x 3 window size and an 

offset of [0, 1] results in improved AGB estimates, when compared to other offsets and larger 

window sizes. High AGB estimation accuracies in terms of R2 and RMSE and CV-RMSE were 

obtained for the three different plantation forest species (ED, EG and PT) under study. Similar 

a

. 
b

. 
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performances from texture band ratios were also observed in estimating all species AGB from all 

three analysis stages (i.e. Analysis I, II and III). Improved performance and estimation accuracy 

from the 30-m multispectral Landsat-8 OLI sensor can be associated with the advanced image 

processing methodologies adopted (e.g. texture retrieval) and the advanced machine-learning 

algorithms applied in data analysis (Güneralp et al., 2014). These results are in line with the 

findings from literature, which reported good AGB predictive accuracies obtained from the use of 

texture metrics, such as entropy, mean and correlation based on a 3 x 3 window size and an offset 

of [0, 1]. Literature further shows that machine-learning algorithms, such as stochastic gradient, 

have the potential to significantly improve AGB estimates. (De'ath, 2007; Moisen et al., 2006). 

This is mainly because these algorithms utilise the combined strengths of bagging and boosting, 

which have the capability to improve model stability and the final predictive accuracy. 

 

Furthermore, the results from this work have shown that texture metrics derived from medium 

multispectral sensors (10-100m pixel size) offers invaluable opportunities for the improvement and 

better understanding of forest AGB in: (i) areas with tall forest and complex canopies structure, (ii) 

areas associated with limited resources and (iii) limited access to high resolution satellite, such as 

hyperspectral, LiDAR and radar etc. The plausible performance and strength of texture metrics in 

improving AGB estimates is in line with the findings from studies done elsewhere, using other 

optical sensors, such as synthetic aperture radar (SAR) and Worldview-2, among others (Bastin et 

al., 2014; Champion et al., 2013; Cutler et al., 2012; Eckert, 2012a; Ploton et al., 2013; Sarker and 

Nichol, 2011; Singh et al.,  2014). The credible performance displayed by the use of Landsat-8 OLI 

derived texture metrics may be attributed to the presence of crucial and sensitive vegetation 

information, as well as related biophysical properties, such as tree age, leaf area index and, most 

importantly, biomass (Champion et al.,  2008; Fuchs et al., 2009), a complex challenge when using 

spectral vegetation indices. Eckert, (2012) states that texture analysis is efficient in addressing 

saturation problems associated with vegetation indices, when mapping biomass, especially in dense 

canopies, as it correlates more with AGB and carbon, than spectral parameters. The other reason for 

the unique performance of texture measures in estimating AGB can be explained by their capability 

to detect varying forest canopy structural characteristics, as well as the more inherent sensitivity to 

the spatial aspects of the canopy, than spectral reflectance or band ratios (Eckert, 2012). 

 

In addition, improvements in AGB estimation were obtained from the use of simple texture ratios 

derived from a 30-m Landsat-8 OLI sensor. Thus far, no study, to the best of our knowledge, has 
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used texture ratios derived from medium spatial resolution satellite data (e.g. pixel size greater than 

10-m) to estimate AGB. The greater performance from optical Landsat-8 OLI image texture 

metrics, when compared to spectral vegetation indices, can be attributed to a number of factors and 

these include: (i) the simplification of complex forest canopy structures and the stronger correlation 

between texture measures and biophysical properties, such as leaf area index and AGB (Barbosa et 

al., 2014; Eckert, 2012a; Fuchs et al., 2009; Nichol and Sarker, 2011; Sarker and Nichol, 2011); 

and (ii) the capability to minimize atmospheric effects and canopy geometry, sensor view angle and 

sun angle by this sensor (Fan et al., 2014; Franklin et al., 1996; Laurent et al., 2014; Mousivand et 

al., 2014; Wulder et al., 1998). In addition, the great performance from texture ratios in modelling 

AGB can be attributed to the fact that these ratios combine the strengths of both texture and ratios, 

which is critical in improving AGB estimation accuracies (Nichol and Sarker, 2011; Sarker and 

Nichol, 2011). In addition, the good performance of texture metrics derived from Landsat-8 OLI 

sensor can be attributed to its push-broom design, which is associated with an improved signal-to-

noise ratio, high radiometric resolution of 12-bits, making it (i) more sensitive and robust in 

detecting crucial vegetation structural attributes (El-Askary et al., 2014; Pahlevan and Schott, 

2013); and (ii) the narrow or refined near-infrared spectral band that prevents the absorption effect 

of water vapour (e.g. at 0.825 μm), thereby permitting accurate surface spectral detection, while 

minimizing satellite spectral saturation problems (Lu, 2006).  

One of the observations from this study is that, when forests have complex canopies (e.g. high 

biomass levels) (Basuki et al., 2011), vegetation indices derived from medium spatial resolution 

sensors become less useful in estimating AGB, when compared to the use of texture metrics 

(Mutanga and Skidmore, 2004b; Thenkabail et al., 2000). Despite the poor performance of 

vegetation indices in this study, other studies indicate their successful application in estimating 

AGB in simple structured forests, with less complex canopies, where AGB and LAI are low (e.g. 

less than 100% vegetation cover) (Darvishzadeh et al., 2011; Englhart et al., 2012; Gallardo-Cruz 

et al., 2012; Goh et al., 2014; Vashum and Jayakumar, 2012). The other possible explanation for 

the poor performance from the spectral vegetation indices computed in this study may be as a result 

of the presence of tall forests. Hence, shadow effects might have contributed immensely to the 

spectral reflectance captured by the sensors, resulting in their poor performance. Most of these 

vegetation indices have been designed, based on simple and less complex forest canopies, hence 

their inability to estimate AGB in medium-to-dense forests. Moderately weaker performance by 

raw spectral bands and vegetation indices derived from Landsat-8 OLI sensor observed in this 
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study. This may also be attributed to saturation problems associated with medium-to-coarse 

resolution multispectral sensors when estimating AGB in medium-to-high density vegetation 

canopies. Literature shows that vegetation indices e.g. normalised difference vegetation indices 

derived mainly using the red and near infrared bands of the electromagnetic spectrum, suffer 

immensely from saturation problems, as they asymptotically reach a saturation level beyond a 

certain density of AGB and/or leaf area index (Adam et al., 2014; Gao et al., 2000; Mutanga and 

Skidmore, 2004b; Sarker and Nichol, 2011; Thenkabail et al., 2000; Thenkabail et al., 2004b). 

These studies have clearly demonstrated that the use of spectral vegetation indices, such as the 

normalised difference vegetation index, have limited significance in estimating AGB in areas with 

high vegetation cover during the peak of periods.  

 

Finally, improvement in AGB estimation, using the 30-m Landsat-8 OLI multispectral sensor 

derived texture metrics, can be linked with the strength of advanced machine learning algorithms, 

when compared to the use of stepwise multiple linear regression methods. Previous research has 

precisely demonstrated the strength and capabilities of advanced machine learning techniques (i.e. 

SGB and the most popular RF regression ensembles) in simplifying and enhancing AGB estimation 

accuracy, when compared to the use of simple multiple linear methods (Adam et al., 2014; 

Carreiras et al., 2012b; Gara et al., 2014b; Güneralp et al., 2014). One of the most important 

strengths of the SGB regression ensemble is its robustness in handling inaccurate training data, 

outliers, missing and unbalanced data sets (Elith et al., 2008), as well as the capacity to handle, 

ascertain and choose the most crucial predictor variables from a huge amount of predictors 

(Carreiras et al., 2012b; Dube et al., 2015). 

 

6.5 Conclusion 

This research investigated the performance and strength of texture metrics calculated from the 

newly-launched push-broom designed Landsat-8 OLI sensor in estimating medium-density AGB 

for plantation forest species in the midlands region of KwaZulu-Natal, South Africa.  

The findings of this work have demonstrated that:  

1. texture metrics yielded more accurate AGB estimates, when compared to the use of Landsat-

8 OLI sensor derived spectral vegetation indices, 

2. AGB for medium-density Eucalyptus dunii, Eucalyptus grandis, Pinus taeda and all species 

data combined can be accurately estimated by using the newly-launched 30-m Landsat-8 



  
 

132 

 

OLI multispectral sensor derived texture ratios. Thus far, no study, to the best of our 

knowledge, has examined the strength of texture ratios derived from optical remote sensing 

sensors with a pixel size greater than 10-m for AGB estimation, 

3. texture parameters derived from the newly-launched Landsat-8 OLI data set provide an 

important tool for the creation, mapping and continuous updating AGB maps, which is 

critical for well-informed land management purposes, and 

4.  the SGB regression ensemble has proven useful and more dependable in enhancing AGB for 

medium-density plantation forest species, based on medium spatial resolution multispectral 

Landsat-8 OLI sensor derived texture metrics. 

 

Overall, this study presents an operational, successful and effective application of texture metrics 

derived from the newly-launched push-broom Landsat-8 OLI multispectral data and stochastic 

gradient boosting algorithm, in estimating AGB in resource constrained regions. The results of this 

study can possibly aid in understanding the contribution of forest ecosystems in regulating 

atmospheric carbon. Despite plausible AGB estimation accuracies obtained, using remotely sensed 

Landsat-8 OLI texture metrics, the utility of remotely sensed data is yet to be assessed in 

quantifying the variations of AGB across vital tree structural attributes, which remain difficult to 

obtain, in data-scarce sub-Saharan Africa. Therefore, future research has to evaluate the utility of 

models developed, using remotely sensed data, in quantifying and mapping the variability and 

allocation patterns of aboveground carbon stocks across different forest structural attributes. 
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CHAPTERS SEVEN AND EIGHT 

FORESTRY APPLICATION AND SYNTHESIS 
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7. QUANTIFYING THE VARIABILITY AND ALLOCATION PATTERNS 
OF ABOVEGROUND CARBON STOCKS ACROSS PLANTATION FOREST 

STRUCTURAL ATTRIBUTES AND AGE 
 

 

 

 

This Chapter is based on: 
 
Dube, T, Mutanga, O. 2015. Quantifying the variability and allocation patterns of aboveground 

carbon stocks across plantation forest types, structural attributes and age in sub-tropical coastal 

region of KwaZulu Natal, South Africa using remote sensing. Journal of Applied Geography, 

64, 55-65.  
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Abstract 

Quantifying the variability and allocation patterns of aboveground carbon stocks across plantation 

forests is central in deriving accurate and reliable knowledge and understanding of the extent to 

which these species contribute to the global carbon cycle and towards minimizing climate change 

effects. The principal objective of this study was to quantify the variability and allocation patterns 

of aboveground carbon stocks across Pinus and Eucalyptus plantation forests, tree-structural 

attributes (i.e. stems, barks, branches and leaves) and age groups, using models that have been 

developed based on remotely sensed data. The results of this study demonstrate that aboveground 

carbon stocks significantly (α = 0.05) vary across different plantation forest species types, structural 

attributes and age. The Pinus taeda and Eucalyptus grandis species contained aboveground carbon 

stocks above 110 t C ha-1, and Eucalyptus dunii had 20 t C ha-1. Across plantation forest tree 

structural attributes, stems contained the highest aboveground carbon stocks, compared to barks, 

branches and leaves. Aboveground carbon stock estimates also varied significantly (α = 0.05) with 

stand age. Mature plantation forest species (i.e. between 7 and 20 years) contained the highest 

aboveground carbon stock estimates of approximately 120 t C ha-1, when compared to younger 

species (i.e. between 3and 6 years), which had approximately 20 t C ha-1. The map of aboveground 

carbon stocks showed distinct spatial patterns across the entire study area. The findings of this 

study are important for understanding the contribution of different plantation forest species, 

structural attributes and age in the global carbon cycle and possible climate change moderation 

measures. In addition, this study demonstrates that data on vital tree structural attributes, previously 

difficult to obtain, can now be easily derived from cheap and readily-available satellite data for 

inventorying carbon stock variability. 

 

Keywords: carbon quantification, carbon allocation, structural components, tree age, carbon 

variability. 
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7.1 Introduction 

Plantation forest ecosystems account for a dominant share of terrestrial carbon (UNFCCC, 1998). 

The sequestered carbon is stored both in the form of biomass (stems, barks, branches and leaves, 

foliage, roots, etc.) and in the form of organic carbon in the soil (Chen et al., 2015; Dalu et al., 

2015; Raich et al., 2014). Information on forest carbon storage and allocation patterns is therefore 

central for effective bioenergy production, the detection of land-use change and the assessment of 

carbon stocks for initiatives, such as REDD management practices, planning and understanding 

their contribution on the global carbon cycle (Carreiras et al., 2012b; Chen et al., 2015; Chinembiri 

et al., 2013a; Gara et al., 2014b; IPCC, 2003b; Laurin et al., 2014; UNFCCC, 1998). Moreover, 

understanding the spatial patterns of these carbon reserves is also important, as they significantly 

contribute to the Gross Domestic Product (GDP) of some countries. In South Africa, for instance, 

the economic value of these commercial forests is equivalent to approximately 7.3% (ZAR 20.4 

billion) of national annual revenues. In addition, over 1.4 million people, directly or indirectly, 

depend on this industry for a living (Dube et al., 2015).  

 

So far, commercial forest resources cover approximately 3.1% (1.3 million ha) of the country’s land 

surface (121.9m per ha) and form an essential base for timber, medicinal, pulp and paper products. 

Nearly 80% of these forest ecosystems are located in the south-eastern regions of the country, 

specifically in the Eastern Cape (11%), KwaZulu-Natal (38.9%) and Mpumalanga (40%) provinces 

(FSA, 2010). When these plantation forests are equated to other forests within South Africa, the 

dominant hardwoods are Eucalyptus species, covering 39% and Acacia mearnsii, with 17% of the 

total land area, whereas softwoods, mainly the Pinus forest species occupy the remaining 54% of 

the total land area (FSA, 2010). In addition, the majority of these plantation forests are managed on 

a rotational basis (the rotation length can range from six- to twety-five years, depending on the 

nature of the end product). For instance, when trees growth rate starts to diminish, they are 

clearfelled and another crop of trees is planted (Christie and Scholes, 1995; Schönau and Boden, 

1982a). Despite the fact that these plantation forests eventually get felled, they account for the 

dominant share of terrestrial carbon stocks and the country’s GDP.  

 

Despite an increase in the areal extent of plantation forest species in sub-Saharan Africa and South 

Africa, in particular, their actual contribution to the global carbon cycle has not been fully 

quantified. This gap in knowledge can be attributed to the fact that most of these plantation forests 

are meant for commercial timber, pulp and paper production, and as a result most studies conducted 
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in these forests focus mainly on volume or yield estimation (Christie and Scholes, 1995; Schönau 

and Boden, 1982). In addition, most of these plantation forests are privately owned and are not 

easily accessible for biomass related studies by environmentalists, ecologists and the remote 

sensing communities. However, for a transition towards less global emissions and the reduction of 

atmospheric carbon, there is need for the timely-assessment of the role of these forests and the 

associated structural components, as well as age, in the global carbon cycle, especially in areas 

where their contribution as atmospheric carbon sinks is often ignored. A number of studies show 

that terrestrial ecosystems sequester large amounts of the atmospheric carbon, approximately 3 GtC 

per year (Patenaude et al., 2004; UNFCCC, 1998b; 2001; 2011; Wei et al., 2013), and normally 

account for approximately 80% of the earth’s aboveground biomass (Giardina and Ryan, 2002; Pan 

et al., 2011; Raich et al., 2014; UNFCCC, 1998b).  

 

Information more specifically related to plantation forests biomass or carbon sequestration is 

therefore central for deriving forest carbon stocks and associated carbon fluxes. Given the 

importance of terrestrial ecosystems in the carbon cycle, there is a need for carbon quantification at 

local or regional scales, to facilitate a more accurate, timely and precise assessment of the regional 

carbon cycle, carbon and bioenergy policies towards sustainable forest management. In African 

ecosystems, for instance, literature shows that there is great uncertainty in the current carbon 

balance and an unstable source, with a carbon sink of about 0.3 Pg Cyr-1, when compared to other 

parts of the world (Laurin, et al., 2014; Wolf, et al., 2011). To some extent, this assertion holds 

because in sub-Saharan Africa, especially South Africa, studies concerning the carbon storage and 

allocation pattern among most forest ecosystems, particularly, plantation forest species, are still 

scarce (Dube et al. 2015). In addition, despite the vivid interest for carbon accounting in the region, 

no study has yet quantified the variability and allocation patterns of aboveground carbon stocks 

across different plantation forest species and different tree structural attributes. 

 

The accurate and timely quantification of the variability of aboveground carbon stocks, across 

different plantation forest species, various tree structural attributes and age groups, is thus a critical 

step towards reducing the great uncertainity in the current forest carbon balance. Thus far, literature 

demonstrates that plant carbon allocation significantly varies between above- and below-ground 

components (Giardina and Ryan, 2002). For instance, the study by Giardina and Ryan (2002) 

shows that the total belowground carbon allocation of a Eucalyptus saligna plantation decreases 
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with stand age and this was facilitated by the nitrogen supply via regulating cytokinins and sucrose 

production (van der Werf et al., 2006a). Chen et al. (2015) further showed the unequal carbon 

allocation in plants, by demonstrating that the root carbon storage was only between 16 and 20% of 

the total plant carbon storage and the proportion of different compartments to total plant carbon 

storage was largely influenced by tree traits. Now the main question that remains unanswered is 

which plantation forest species and structural components (i.e. stems, bark, branches and leaves) 

constitute the highest proportion of carbon storage. This gap in knowledge is further pointed out by 

Wei et al. (2013) who highlighted that AGB is bound to be linearly controlled by forest stand age 

and forest types, amongst other characteristics. The validity of this assertion is further supported by 

Pregitzer and Euskirchen (2004), who stated that forest carbon pools are largely affected by forest 

type, stand age and environmental factors. In that regard, for accurate and reliable quantification of 

plantation forest aboveground carbon stocks, all these variables have to be considered. The 

integration of numerous variables, particularly stand age characteristics, is critical, as it provides 

information about the growing stages at which these species substantially contribute to the global 

carbon cycle as sinks. Thus far, the relationship between aboveground carbon storage and tree-age 

has not yet been fully established. For instance, some studies have reported a decrease in tree 

carbon storage with age and vice-versa (Chen, et al., 2015; Wei, et al., 2013). It is, therefore, 

hypothsesized in this study that plant carbon allocation varies significantly across tree species, 

structural attributes and age groups. 

 

It is also clear that accurate carbon accounting requires a strong understanding of the variability and 

allocation patterns in aboveground carbon stocks within and between different forest species, 

structural attributes and age groups. Ecologists, environmentalists and the remote sensing 

community usually attempt to quantify forest AGB and carbon stocks, using growth patterns, which 

minimizes bias and improves the estimation accuracy. Although great strides have been conducted 

on aboveground carbon stock estimation, studies that have quantified variations and allocation 

patterns specifically across various tree species and tree structural attributes (i.e. roots, stem, bark, 

branches and leaves) and stand age, especially in managed plantation forests, are scarce (Chen, et 

al., 2015; Wei, et al., 2013). Local measurements or field surveys are costly and there is a great 

interest in obtaining reliable estimates over large areas from remote sensing data. In addition, model 

accuracies and the spatial heterogeneity greatly increase the error of estimation obtained, using field 

data, and model simulation approaches generally lead to the substantial underestimation and 
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misunderstanding of the actual carbon sequestered by terrestial ecosystems (Baishya, et al., 2009; 

Chen, et al., 2015; Giardina and Ryan, 2002; Guo, Fang, et al., 2010; Raich, et al., 2014; Yang and 

Guan, 2008; Zhang, et al., 2012).  

 

This study seeks to evaluate plantation forests aboveground carbon stocks variability across 

different tree species, structural attributes (i.e. stems, barks, branches and leaves) and age groups, 

using remotely sensed data. Literature demonstrates that remote sensing data provides a better 

alternative or data-source critical for quantifying and providing the timely and spatial explicit 

variations of forest AGB, particularly over large extents and in areas where field surveys remain a 

challenge (Houghton, et al., 2007; Yang, et al., 2011; G. Zhang, et al., 2014; Zhang and 

Kondragunta, 2006; Zhao, et al., 2009). For instance, the large-scale forest biomass estimation by 

ground-based measurements requires a dense network of inventory plots, to reach good accuracies. 

In most areas, this is not practical, due to high costs and the required man power. Using remote 

sensing data is therefore the only practical option for the accurate and timely estimation of AGB or 

carbon stocks on these scales with affordable effort. The objectives of this study were therefore to 

quantify the variability and allocation patterns of aboveground carbon stocks across plantation 

forest types, structural attributes and age in KwaZulu-Natal, South Africa, using remote sensing 

data. 

 

7.2 Materials and Methods 

7.2.1 Location and Description of Study Area 

Field surveys were carried out in the Sappi Clan forests located along the Albert Falls dam in the 

north-eastern part of Pietermaritzburg, KwaZulu-Natal, South Africa, at 29°.413 - 29°.296 S and 

30°309 - 30°475 E. The altitude of the area varies between 644 and 1266 m a.s.l. The area is 

characterised by a mean annual rainfall, varying between 644 and 1266 mm, mainly from October 

to February, with a mean annual temperature around 21.7°C. The field samples were primarily 

dominated by 3- to 20-year old Eucalyptus and Pine species, namely, Eucalyptus dunii, Eucalyptus 

grandis and Pinus taeda. This work therefore focused on quantifying the structural variability and 

allocation patterns of aboveground carbon stocks of the above-mentioned plantation tree species, 

predominantly grown for pulp and paper production. 
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Figure 7.1 Location of the Clan Sappi Forests in the uMgeni Catchment, South Africa 

 

7.2.2 Field Surveys and Remotely Sensed Aboveground Carbon Stocks 

Field data sets were collected between the 30th of July and 22nd of August, 2013, concurrently with 

Sappi annual routine field data collection, using vector maps of the area, by courtesy of Sappi 

Forest), as well as a forest specialist to navigate to selected forest compartments and plots of 

interest. A grid-based systematic sampling method, with 10-m radius circular sample plots, 

systematically distributed (~100 m) within the stand, as detailed by Wessels and Kassier (1985), 

was used during field surveys. Data were collected mainly from plantation tree species (Eucalyptus 

dunii, Eucalyptus grandis and Pinus taeda), with diameter-at-breast height (DBH: at 1.3 m above 
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the ground) greater than, or equal to, five centimeters and 3 m in height, as recommended in 

literature (Gara et al., 2014b; Gschwantner et al., 2009). Diameter-at-breast height and tree heights 

were respectively measured, using the Haglof Digitech Calliper and Vertex IV laser instruments. 

All plot centre GPS locations for Eucalyptus dunii (n = 49), Eucalyptus grandis (n = 65) and Pinus 

taeda (n = 71) were captured at sub-meter accuracy, using the Tremble GeoXH 6000 series 

handheld Global Position System (GPS). Based on the field data, AGB for different tree structural 

attributes (i.e. stem, bark, branches and leaves) across different tree species were derived from the 

calculated volume (ha/m3), using expansion factors (Dovey, 2009). In deriving total AGB for 

individual tree species (i.e. Eucalyptus dunii, Eucalyptus grandis and Pinus taeda), two methods 

were applied. For example, volume (m3/ha), based on Bredenkamp (2000), together with species 

specific biomass expansion factors (BEFs) available in literature (Dovey, 2009), were used to 

derive total AGB for Eucalyptus dunii and Eucalyptus grandis. For Pinus taeda, DBH 

measurements were converted to AGB, using a general functional group equation (i.e. allometric 

equation), and subsequently summed across the entire plot (Penman, et al., 2003). The allometric 

equation was developed in an area with rainfall of approximately 800 to 1500 mm and a 

temperature range of 21-34°C, comparable to those in the midlands region of KwaZulu-Natal, 

South Africa. It is also important to note that this equation was developed, based on DBH stretching 

from 0.6 to 56 cm, a characteristic almost identical to the area under study (Penman, et al., 2003). 

The use of different methods in computing AGB in this study was driven by the prevalance of 

unique tree species with varying structural and taxonomical properties. Moreover, previous work 

indicates that for accurate AGB estimation, the use of species-specific mathematical functions is a 

necessity (Henry, et al., 2011). 

 

The derived AGB of the three species under study was then used to compute the biomass of each of 

the three tree structural components (i.e. stem, bark, branches and leaves), based on the already 

established multipliers (Dovey, 2009). The obtained biomass was then converted to aboveground 

carbon stocks, based on the factor 0.5. The Intergovernmental Panel on Climate Change proposes 

the application of standardized approaches, when evaluating the contribution of various terrestrial 

ecosystems in the global carbon cycle (Denman, 2007; Gil et al., 2011; IPCC, 1996; MacDicken, 

1997). Specifically, field measured AGB was converted to carbon, using the carbon fraction of dry 

biomass (i.e. equivalent to 0.5) (Dixon et al., 1994; Houghton, 2005). In the literature, this value is 

demonstrated to vary slightly with species, or the AGB component under study i.e. understory 

vegetation, roots, branches, and trunk etc. (Dixon et al., 1994; Houghton, 2005). Similarly, for this 
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study, 50% of the net field measured AGB was considered to be equivalent to the amount of carbon 

sequestered or stored in these forests (Dixon et al., 1994; Houghton, 2005).  

 

The field measured AGB data set was integrated with transformed Landsat-8 OLI image, using the 

SGB algorithm to map the spatial distribution of aboveground carbon stocks for stems, bark, 

branches and leaves within the Sappi Clan Forest area. The 30-m multispectral Landsat-8 OLI was 

used, because it has a reasonably improved spatial resolution and is cheap and available for 

vegetation mapping and biomass related applications, particularly in resource-limited 

environments, such as the sub-Saharan region, where costs of acquiring high spatial resolution 

remotely sensed data sets (i.e. with improved spectral and radiometric properties) remain a major 

challenge. Literature shows that the Landsat-8 OLI’s improved radiometric resolution from 8 bits to 

12 bits and signal-to-noise ratios made this sensor to be the most appropriate source of otherwise 

scarce data in understanding AGB variability across tree species, structural components and age 

groups in a mixed plantation forest (Dube and Mutanga, 2015). The technical details of the image 

processing approach used to map AGB, using Landsat-8 OLI, are provided in Dube and Mutanga 

(2015). The integration of field measured data and remotely sensed data was based on the best 

texture metrics derived in Dube and Mutanga (2015). The best texture metrics were derived from 

the Landsat-8 OLI spectral bands (i.e. band two–blue, band three – green, band four – red, and band 

five – near IR), using a 3 x 3 window size and an offset [0, 1] (Dube and Mutanga, 2015). These 

include: 1-mean, 2-variance, 3-homogeneity, 4-contrast, 5-dissimilarity, 6-entropy, 7-second 

moment, 8-correlation, 9-standard deviation and 10-data range. s (i.e. band two–blue, band three– 

green, band four – red, and band five – near IR). The best Landsat-8 OLI texture metrics selected, 

based on the SGB algorithm and used to derive aboveground carbon stocks of stems, bark, branches 

and leaves in this study, were the mean, entropy, dissimilarity, correlation, homogeneity and 

variance derived from the Landsat-8 OLI spectral band ratios.  

 

7.2.3 Statistical Analysis 

To evaluate the variability of aboveground carbon stocks across different plantation forest species, 

structural attributes and different age groups, statistical anaylisis was performed, using remotely 

sensed carbon estimates. The Analysis of Variance (ANOVA) procedure was performed to test for 

significant difference (α = 0.05) in aboveground carbon stocks across different tree components 

(stem, bark, branches and leaves) and different age groups. The hypothesis that aboveground 

carbon stocks vary significantly amongst different tree species, structural components and age 
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groups was tested. One-way ANOVA was used with a post-hoc dunnet test for significant 

differences within the groups (i.e. three tree structural components, three age groups (i.e. 3-6, 7-11 

and 12-20 years) and three groups of species). Statistical analysis was implemented, using SPSS 

version 13.0 software.  

 
7.3 Results 

7.3.1 Spatial distribution of aboveground carbon stocks in the study plantation across 

 species, structural traits and age groups 

The results in Figure 7.2 a-c show the spatial distribution of aboveground carbon stock estimates of 

the three plantation forest species (i.e. Eucalyptus dunii, Eucalyptus grandis and Pinus taeda) under 

study, derived from the Landsat-8 OLI remotely sensed data. It can be observed from Figures 7.2 

and 7.3 that plantation forests aboveground carbon stocks vary significantly (α = 0.05) across the 

area under study, with Eucalyptus grandis and Pinus taeda containing higher aboveground carbon 

stocks than Eucalyptus dunii. Furthermore, in Figure 7.3 and Table 7.1, it can be observed that 

plantation forest stems contain the highest carbon stocks, when compared to the bark and branches 

and leaves. These results clearly show that, of all three tree structural components, stems contain 

the highest carbon allocations followed by branches and leaves. The maps of aboveground carbon 

stocks for the three species also show distinct spatial patterns across the entire study area. 

 

 

Figure 7.2 Aboveground carbon stocks distribution maps for (a) E dunii, (b) E grandis and (c) 
  P taeda derived using models developed from remotely sensed data. 
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7.3.2 Spatial distribution of tree structural attributes carbon stocks 

 

Figure 7.3 Aboveground carbon stock maps for the stem, bark, branches and leaves for the  
  three species derived, using models developed from remotely sensed data 

 

7.3.3 Principal Characteristics of Aboveground Carbon Stock derived using Remotely 

 Sensed Data 

Table 7.1 summarises aboveground carbon stock estimates of the three different plantation forest 

structural components, namely, stem, leaves and branches, as well as the bark of Eucalyptus and 

Pinus species, derived using remotely sensed data. It can be observed from the results that different 

tree structural components have varying aboveground carbon stocks (t C ha-1) allocation patterns, 

with the stem containing a greater allocation than the bark, branches and leaves. For example, it can 

be observed from Table 7.1 that Eucalyptus grandis and Pinus taeda contain the highest carbon 

stock allocation patterns, when compared to Eucalyptus dunii, which had minimum and maximum 

carbon stocks of 12.55 and 27.36 t C ha-1. It is also important to note that the bark, branches and 
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leaves of all three tree species had the least aboveground carbon stock allocation patterns, when 

compared to those of the stems.  

 
Table 7. 1 Remotely sensed principal characteristics of aboveground carbon stock estimates  

  across different plantation forest species 

Species  Structral attributes Min. Max. Mean SD SE 
E. dunii stem  12.55 27.36 19.16 4.20 0.60 
 branch + leaves 2.01 4.38 3.07 0.67 0.10 
 Bark 1.51 3.28 2.30 0.50 0.07 
 Total 14.75 36.82 23.49 4.61 0.66 
E. grandis stem  50.92 113.81 80.77 16.95 2.10 
 branch + leaves 8.15 18.21 12.92 2.71 0.34 
 Bark 6.11 13.66 9.69 2.03 0.25 
 Total 65.18 145.67 103.39 21.69 2.69 
P. taeda stem  19.05 147.55 111.87 25.52 3.03 
 branch + leaves 3.05 23.61 17.90 4.08 0.48 
 Bark 2.29 17.71 13.42 3.06 0.36 
 Total 24.38 188.87 143.19 32.66 3.88 
 
7.3.4 Remote Sensing of total tree structural Aboveground Carbon Stocks 

The estimated plantation forest species aboveground carbon stocks for the three studied tree species 

and across different tree structural components (i.e. stem, bark, branches and leaves) are depicted 

on Figures 7.2a and 7.2b, respectively. The results show that Pinus taeda (138 t C ha-1) and 

Eucalyptus grandis (110 t C ha-1), contain the highest carbon stock estimates, when compared to 

Eucalyptus dunii (about 20 t C ha-1). ANOVA results also portrayed significant differences (α = 

0.05) between aboveground carbon stock estimates amongst Pinus and Eucalyptus tree species 

structural components. Overall, it can be observed that stems for all the three species under study 

contain the highest aboveground carbon stocks allocation patterns, when compared to those 

contained in the barks, branches and leaves (Figure 7.2b). The results further illustrate that there are 

significant differences (α = 0.05) in aboveground carbon stock allocation patterns across different 

structural attributes (i.e. stems, barks, branches and leaves). 

 

It can also be observed that, for Eucalyptus grandis and Pinus taeda, branches and leaves yielded 

almost similar estimates of aboveground carbon stocks (α = 0.05). Comparable results were also 

observed for aboveground carbon stocks contained in the bark, as shown in Figure 7.2b. Moreover, 

ANOVA results in Figure 7.2b show that there are significant differences (α = 0.05) in 
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aboveground carbon stock estimates for barks, branches and leaves across the Eucalyptus grandis 

and Pinus taeda species. However, the aboveground carbon stocks estimates derived from the 

Eucalyptus dunii species for the bark, branches and leaves, were approximately 5 t C ha-1. Overall, 

the estimated aboveground carbon stocks derived across all tree structcural compartments, namely, 

stems, barks, branches and leaves, were significantly lower, ranging between 5 and 20 t C ha-1.  
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Figure 7.4 Mean total carbon stock estimates for the three studied plantation species. (a) Pooled aboveground carbon stock estimates for E 
  grandis, E dunii and P taeda (b) mean aboveground carbon stock estimates derived from different tree structural compartments 
  (i.e. stems, barks, branches and leaves). Bars represent the mean carbon stock estimates for E dunii, E grandis and P taeda. 
  Whiskers represent the 95 % confidence interval . The red line separates lowest and highest aboveground forest carbon stocks. 
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7.3.5 Evaluating the Structural Variability and Allocation Patterns of estimated total 

 Aboveground Carbon Stocks across Different Species Age groups 

Figure 7.5a illustrates the total carbon stock estimates of Eucalyptus and Pinus plantation forest 

species across different age groups, derived using remotely sensed data. It can be observed that 

plantation forest species between 7 and 20 years contained high aboveground carbon stock 

estimates, relative to those, of 6 years and less. For example, plantation forest species between 7 

and 20 years old contain aboveground carbon stocks of between 80 and 100 t C ha-1, whereas for 

those species from 3 and 6 years old had aboveground carbon stocks ranging around 20 to 25 t C 

ha-1. It can also be noted that there is less variability in carbon stock allocation estimates for all the 

three plantation forest species at the age group of 3 to 6 years, when compared to those of between 

7 to 20 years old. For example, significant differences (α = 0.05) were observed amongst the 7-, 9-, 

11-, 18- and 20-year old trees. Overall, the results indicate that the oldest, or more mature 

plantation forest species (20 years) contain higher carbon stocks than the younger tree species.  

 

Figure 7.5b illustrates the structural variability and allocation patterns of aboveground carbon stock 

estimates of plantation forest species across different age groups. It can be noted that stem carbon 

stock estimates vary significantly (α = 0.05) across different species age groups, especially between 

the age groups of 7 and 20 years old. For example, for 7- and 20-year old tree species, the carbon 

stocks range between 80 and 150 t C ha-1, and between 18 and 25 t C ha-1, for 3- to 6-year old tree 

species. On the contrary, there is less variability in aboveground carbon stock estimates in branches 

and leaves for the 3 to 6 age groups. Carbon stock estimates derived from tree branches and leaves 

for the 3 to 6 tree age groups was almost similar (Figure 3b). Furthermore, for mature plantation 

forest species (i.e. at 7 and 20 years old), a slight variability in carbon stock estimates can be 

observed for the barks, branches and leaves. However, aboveground carbon stock estimate results 

for different tree stems portray high variability. Overall, all plantation forest stems contain the 

highest aboveground carbon stocks than the other tree structural attributes or components (i.e. 

barks, branches and leaves) under study.  
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      a                                                                                                                           b 

 
Figure 7.5 Mean total carbon stock estimates derived across different planting ages. (a) total aboveground carbon stock estimates across 

different plantation forest species age groups (b) is the mean carbon stock estimatess derived from different tree structural attributes 
or compartments for different plantation forest age groups. Bars represents the mean carbon stock estimates across different 
plantation forest ages. Whiskers represent the 95 % confidence interval. The red line separates lowest and highest aboveground forest 
carbon stocks 
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7.3.6 The Combined Effect of Species Type and Age on Aboveground Carbon Stock 

 Estimates 

The three dimensional (3-D) surface model results in Figures 7.6(a) – 7.6(d) show the combined 

effect of species type and age on aboveground carbon stock estimates. It is interesting to note that 

all the graphs clearly illustrate that the aboveground carbon stock estimates increase, with an 

increase in the age of plantation forest species (Figures 7.6a – 7.6d). It can also be observed that 

stems contain the highest carbon stock allocations of approximately 120 t C ha-1 for older species, 

at the age of eighteen to twenty years, when compared to the other tree structural components. 

Moreover, Pinus taeda, followed by Eucalyptus grandis, contain the highest stems carbon stock 

estimates, relative to the Eucalyptus dunii species. A similar pattern can be observed for total 

aboveground carbon stock estimates for barks, branches and leaves (Figures 7.6a-7.6d). As 

observed in Sections 3.2 and 3.3, the 3-D surface models further illustrate that stems contain the 

highest carbon stock estimates (above 120 t C ha-1) than the other structural attributes (i.e. barks, 

branches and leaves) (Figures 7.6a – 7.6d). 
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Figure 7.6 The 3-D relationship amongst species type, age and aboveground carbon stock 

 estimates from remotely sensed data for the different tree structural 

compartments. (a) stems, (b) barks, (c) branches and leaves (d) tree species total 

aboveground carbon stocks. 1, 2 and 3 from Figure 4 a-d represent E dunii, E 

grandis and P taeda species, respectively 

 

7.4 Discussion 
The essence of this study was to quantify the variability of plantation forest aboveground carbon 

stocks across different tree species, structural attributes (i.e. stems, barks, branches and leaves) and 

age groups, using remotely sensed data in the sub-tropical coastal lowland region of KwaZulu-

Natal, South Africa. Reliable and accurate carbon accounting and inventorying of the global climate 

change stocks requires a strong understanding of the variability and allocation patterns in 

aboveground carbon stocks across different plantation forest species, various structural 

compartments and age groups. The aim of this study was to map and quantify the variability in 

aboveground carbon stocks across the fast-growing exotic plantation forests, using the cheap and 

readily-available remotely sensed data. In addition, the study tested whether there were significant 

differences (α = 0.05) in aboveground carbon stock estimates derived from species types, structural 

components and age, based on models developed, using Landsat 8 OLI remotely sensed data. The 

variability in plantation forest aboveground carbon stocks allocation patterns is one of the key 

quantitative characteristics in forest ecosystems. 
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The findings of this study show that remotely sensed data is capable of providing spatially explicit 

aboveground carbon stock estimates for different plantation forest species over a large area. For 

instance, the results showed that the spatial distribution of aboveground carbon stocks vary 

significantly over large areas and this variability can be detected, using remotely sensed data. The 

findings are in line with findings from literature that have shown or depicted remote sensing data as 

the only practical option, to accurately and timely estimate aboveground biomass or carbon stocks 

across various scales, with affordable effort (Chen, et al., 2015; Kelsey & Neff, 2014; Laurin, et al., 

2014; Palace, et al., 2015; Patenaude, et al., 2004; Yang and Guan, 2008). Unlike ground-based 

aboveground biomass measurements, which require a dense network of inventory plots to reach 

good accuracies of aboveground carbon stocks over a wide area, which are, in some instances, 

unfeasible, due to high costs and being laborious, remotely sensed data offers an effective and 

robust primary data-source necessary for large-scale estimation, with limited, or no cost. For 

example, Kelsey and Neff (2014) state that the use of remote sensing in estimating AGB has two 

main advantages and these include: (i) the production of AGB maps, which can accurately illustrate 

the variations at landscape scale; and (ii) remote sensing allows changes to mapped forest AGB to 

be easily updated. 

 

The results of this study have shown further that aboveground carbon stocks vary significantly (α = 

0.05) across different and fast-growing exotic plantation forest species. For instance, results showed 

that Eucalyptus grandis and Pinus taeda contain comparatively higher amount of aboveground 

carbon stocks, than the Eucalyptus dunii. Similarly, findings of previous studies demonstrated that 

these fast-growing plantation forest species contain varying amounts of aboveground carbon stocks 

(Chen et al., 2015; Gara et al., 2014; Schönau and Boden, 1982). For instance, Chen et al., (2015) 

found that Eucalyptus urophylla accumulated more carbon in plant biomass (about 1.9 and 2.2 

times) greater than a Castanopsis hystrix plantation. Schönau and Boden (1982a) also indicated that 

considerable proportional differences in AGB existed across seven Eucalyptus species (i.e. E. 

deanei, E. globulus ssp. globulus, E. nitens, E smithii and E. viminalis) in the Transvaal Highveld, 

South Africa, which is consistent with the findings of this work.  

 

The observed variations in aboveground carbon stocks across the fast-growing plantation forest 

species can be attributed or explained by plant traits that exist among various plantation forest tree 

species, such as higher maximum net photosynthetic rate (Pmax) per unit forest land area (Pmax 

multiplied by leaf area index). This is supported by Chen et al., (2015), whose study demonstrated 
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that the Pmax per unit forest land area of Eucalyptus urophylla and Acacia crassicarpa was 31.8 and 

36.9 μmol·m−2 s−1, hence the Eucalyptus urophylla species contains higher AGB accumulation 

characteristics and a higher carbon storage capacity, than the latter. 

 

In addition, the findings of this study have shown that the variability in aboverground carbon stock 

estimates across different plantation forest species, structural attributes (i.e. stems, barks, branches 

and leaves) and age groups can easily be derived accurately, based on the cheap and readily-

available remotely sensed data sets, such as the Landsa-8 OLI. In this study, results indicated that 

all plantation forest tree stems contained the highest aboveground carbon stocks than the other plant 

attributes, namely, the barks, branches and leaves. The results are in line with findings from 

literature which demonstrate that stem biomass comprises the largest fraction of aboveground 

carbon stocks in mature forests, and it is related to the product of basal area and height (Chen et al., 

2015).  

 

Furthermore, the highest amount of aboveground carbon stock estimates contained in plantation 

forest stems can simply be attributed to the structural size and length of these stems, relative to the 

other components with tiny structural characteristics (Chen et al., 2015). For instance, the 

plantation forest species in this study are characterized by tall and bulky stems, with slightly thin 

layers of the barks, as well as tiny branches and leaves. These structural differences are therefore 

assumed to explain the observed variability and differences in the allocation patterns of 

aboveground carbon stock across different plantation forest structral components (i.e. stem, bark, 

branches and leaves). This finding is reinforced by Souza et al. (2012), whose work indicated that 

tree species composition and stem size distribution influence AGB hence, affecting regional and 

local carbon stocks variability. Similarly, the study by Keller et al. (2001) indicated that large trees 

contain high biomass content, due to the size of their diameter and height. These studies therefore 

clearly demonstrate that the structure and size of a tree /or plant component plays a crucial role in 

governing the allocation patterns of aboveground carbon stocks. 

 

7.4.1 Aboveground Carbon Stocks Variability as a Function of Age 

The results of this study have also demonstrated significant differences (α = 0.05) in aboveground 

carbon stocks across different species age groups. It was noted that older plantation forests species 

(between the seven to twenty age groups) yielded the highest carbon stock estimates, when 

compared to those that were six years old and less. This observation can be attributed to the fact 
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that mature plantation forest species between seven and twenty years would have accumulated high 

biomass and have large structural components (i.e. stems, barks, branches and leaves), which store 

more carbon stocks, when compared to those that are six years old and less. These results are 

consistent with those of Muvengwi et al. (2015) who demonstrated that branch biomass increased 

with the increase in branch diameter. Muvengwi et al. (2015) underscored the fact that branches 

with a diameter of 55 to 60 mm had a biomass of about 18 kg, whereas those with a diameter of 

between 5 and 15 mm had a biomass of less than 2 kg. Therefore, this is a clear indication that 

young trees with small branches contain low carbon stocks, when compared to older species with 

large branches. Similarly, older plantation forest species have bulky stems, when compared to 

young stems that are not fully developed. Therefore, results of the present study underscore the fact 

that older plantation forest species, that are about to be harvested for pulp and paper production, 

play a critical role in the carbon cycle, when compared to young species with low carbon stocks. In 

addition, the findings from this study suggest that afforestation with fast-growing tree species, such 

as Eucalyptus and Pinus species, can increase the amount of carbon sinks, which are critical for 

minimizing atmospheric carbon, as well as the related climate variability and its effects.  

 

7.4.2 The Influence of Environmental Factors on the Variability of Aboveground Carbon 

 Stocks 

The Pearson’s Correlation Analysis results in Table 7.2 show the relationships between 

aboveground carbon stock estimates of the fast-growing plantation forest tree species and a few 

selected environmental variables (i.e. aspect, slope, total wetness index (TWI), elevation and 

insolation). A negative correlation can be observed between the environmental variables and 

aboveground carbon stocks for the three plantation forest species (Eucalyptus dunii, Eucalyptus 

grandis and Pinus taeda), with a few exceptions. In most instances, TWI, aspect and slope had 

relatively weak correlations with aboveground carbon stocks, particularly for Eucalytpus dunii.  
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Table 7.2 Correlation coefficients (r) between aboveground carbon stocks for plantation forest 

  species and selected environmental variables 

 Eucalyptus dunii Eucalyptus grandis Pinus taeda 
Aspect 0.04 0.14 0.11 
Slope 0.14 0.28* 0.31* 
TWI -0.04 -0.35* -0.14 
Elevation (m) -0.38* -0.40* -0.39* 
Insolation -0.46* -0.46* -0.25* 
Significant level: α = 0.05, TWI stands for Total wetness index. 

 

The variability in aboveground carbon stock estimates was found to be greatly influenced by certain 

environmental factors. For instance, the Pearson’s Correlation Analysis results indicated that there 

is a strong negative association between species carbon stock estimates and total wetness index, 

elevation, insolation and slope. These results imply that, besides the plantation forest stand age, 

environmental variables also govern plant AGB allocation patterns. The findings of this study show 

clear patterns in aboveground carbon stocks variations within the study area. For instance, the 

results of this study have illustrated that environmental factors, such as aspect, slope, insolation and 

total wetness index, which is a proxy for soil moisture, affect the distribution of aboveground 

carbon stocks. Elevation and insolation were found to have the highest correlation with 

aboveground carbon stocks, with aspect to having the least correlation. These results are in line 

with the findings from literature which show the importance, or the relationship, between elevation 

and the distribution of biomass across the landscape (de Castilho et al., 2006; Luizão et al., 2004; 

Sharma et al., 2011; Singh et al., 1994). Furthermore, Singh et al. (1994) demonstrated that live 

tree biomass across different forest types decreased, with an increase in altitude, in the Kumaun 

region in Uttarakh and Himalaya. This observation is also in agreement with the study by de 

Castilho et al. (2006) who demonstrated that a two-fold variation in the total AGB estimates could 

be explained by topography. A study by Asner et al. (2009) also confirms that an increase in 

elevation corresponded to a 53–84% decline in AGB. Environmental variables, such as insolation, 

regulate almost all plant biochemical processes, including atmospheric carbon fixation through 

photosynthesis (Luo, 2007) hence, this explains the observed variations in aboveground carbon 

stocks across different plantation forest species, structural attributes and age groups. Overall, the 

results of this study have demonstrated that, in addition to plant structural traits, and age, 

environmental variables play a critical role in controlling the spatial distribution of aboveground 

carbon stocks. 
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7.5 Conclusion  

The essence of this study was to quantify the variability of plantation forest aboveground carbon 

stocks across different tree species, structural attributes (i.e. stems, barks, branches and leaves), as 

well as age groups, using remotely sensed data in the sub-tropical coastal lowland region of 

KwaZulu-Natal, South Africa. 

The results of this study have shown that: 

1. allocations of aboveground carbon stock estimates derived, using remotely sensed data, vary 

significantly (α = 0.05) across different tree age groups, species and structural attributes (i.e. 

stem, bark, branches and leaves), 

2. tree stems contained the highest carbon stocks (approx. 120 t C ha-1), relative to, other tree 
structural attributes such as bark, branches and leaves, which had less than 25 t C ha-1, 

3. the variability in aboveground carbon stocks across plantation forest stems, bark, branches 
and leaves can be successfully quantified and mapped, using remotely sensed data, 

4. important forest species information (i.e. aboveground for different tree structural attributes 

namely stem, bark, branches and leaves) that used to be difficult to obtain, using field data 

sets, can now be easily obtained from the cheap and readily-available satellite data. 

 

Overall, the findings of this study demonstrate the importance of the remote sensing technology as 

an important tool that supports and enhances the quantification of forest carbon stock variations 

across different tree species, structural components and age groups. This study underscores the 

utility of remotely sensed data in deriving data that is invaluable for carbon stock accounting. 
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8. OPTICAL REMOTE SENSING OF ABOVEGROUND FOREST 
BIOMASS AND CARBON STOCKS IN RESOURCE-CONSTRAINED 

AFRICAN ENVIRONMENTS: A SYNTHESIS 

 



  
 

158 

 

8.1 Introduction  

Forest plantations serve as an important key driver of regional and local climate systems through 

biosphere-atmospheric interactions. Information on the relative amount of forest AGB and its 

spatial distribution across the landscape is central in determining their role in the global or 

regional carbon cycle and climate change (Patenaude et al., 2004; Patenaude et al., 2005a; van der 

Werf et al., 2009; Woollen et al., 2012a). Thus far, the amount of AGB and carbon stocks stored 

and sequestered by forest plantations, epitomizes one of the extreme uncertainties in 

comprehending their contribution to the global carbon pool (Mackey et al., 2013). Therefore, the 

accurate and precise quantification of this uncertainty requires approaches that have the capability 

to measure forest carbon dynamics, and to map their spatial and temporal coverage at landscape 

scale. Recent studies show that earlier carbon accounting efforts repeatedly relied on the 

estimation of gross emissions, which involved the quantification of forest loss, with limited 

attention on potential biomass replacement from the regeneration of natural forests, as well as 

plantation forestry practices. While the AGB of most parts of the world have been systematically 

inventoried over the years (Houghton et al., 2009), African regions suffer from operational 

limitations and consequent inadequate data, due to the associated costs. Quantifying and mapping 

forest AGB and carbon stocks in African environments is therefore essential for understanding 

forest contribution to the global or regional carbon cycle. However, the use of conventional 

methods in estimating and mapping AGB and carbon content is challenging, as it is very costly 

and time consuming and, besides, it lacks the spatial aspect. It is thus imperative to come up with 

timely techniques that would allow AGB estimation, even in resource-constrained areas. In this 

regard, remote sensing technologies provide quick and reliable primary data that are required for 

the extraction and quantification of AGB and carbon stock estimates, at local, regional and global 

scales, with acceptable accuracies.  

Nonetheless, the major limitations associated with the use of remote sensing data sets in 

estimating AGB and carbon mapping include saturation problems, the occurrence of mixed pixels 

and the cost of high spatial resolution sensors, especially in resource-constrained areas. 

Furthemore, alternative sensors, such as the broadband multispectral sensors, are prone to 

saturation challenges, especially in dense canopy areas, resulting in poor AGB estimates. To 

overcome this challenge, therefore, there is need to consider the new generation of multispectral 

sonsors, with a large swath-width, which can be used to develop effective techniques that can 
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estimate and map forest plantation AGB and carbon stocks, especially in resource-constrained 

areas across local, regional and global scales. Hence, the objectives of this study were:  

1. to predict Eucalyptus spp. stand volume, using the stochastic gradient boosting regression 

ensemble, with multisource data sets at a local scale. 

2. to test the utility of high spatial resolution spaceborne multispectral RapidEye Spaceborne 

sensor and advanced machine-learning algorithms in estimating intra- and inter-species 

AGB prediction in plantation forests, 

3. to evaluate the utility of the medium-spatial resolution Landsat-8 OLI multispectral sensor 

in quantifying AGB at a regional scale,  

4. to investigate the robustness of the newly-launched Landsat-8 OLI push-broom sensor 

derived texture indices in estimating medium-density plantation forest species AGB, and  

5. to quantify the variability in aboveground carbon stocks across plantation forest different 

structural attributes and age groups, using remotely sensed models. 

 

8.2 Predicting Eucalyptus Species Stand Volume using Multisource data sets 

The application of broadband multispectral sensors in estimating tree structural attributes, such as 

tree volume and AGB, has faced great challenges due to a failure to improve the error of 

estimation, especially in high density canopies, mainly due to saturation problems and the 

prevalence of mixed pixels. Although the use of high spatial resolution airborne sensors, such as 

hyperspectral and lidar can help solve these challenges (Koch, 2010; Patenaude et al., 2004; 

Patenaude et al., 2005b), the cost and availability of such data sets in resource-constrained areas 

remains the major challenge. The availability of cheap, readily-available and quick operational 

remote sensing techniques therefore remains the most possible solution necessary for improving 

the prediction of critical tree structural attributes in these areas. In this thesis, substantial evidence 

on the potential and strength of integrating broadband multispectral sensors with ancillary data 

sets, to accurately predict Eucalyptus stand volume, is demonstrated (Chapter Three). To 

accomplish the above goal, a large number of predictor variables, comprising SPOT-5 bands, 

vegetation indices, rainfall derived variables and stand age, and multisource data sets (all variables 

investigated) were tested independently, using three predictive models, namely, stochastic 

gradient boosting, random forest and stepwise multiple regression.  
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The results demonstrated that the integration of broadband multispectral sensors with ancillary 

data sets improves the predictive accuracy of tree-structral attributes, such as Eucalyptus stand 

volume, diameter-at-breast height and tree height, when compared to the use of the multispectral 

or ancillary data sets in isolation. For instance, when the SPOT-5 bands were used as an 

independent data set in predicting stand volume, the three predictive models yielded weaker 

results (i.e. SGB model produced an R2 value of 0.41 and an RMSE value of 54.40 m3ha-1) (Table 

3.3). A similar performance was also observed when predicting other tree structural attributes like 

tree height and diameter-at-breast height. The study, however, illustrated that the use of 

multisource data sets, based on all three modelling techniques considered in this study, yielded the 

best results. For example, an R2 value of 0.78 and an RMSE value of 33.16 m3ha-1 was obtained 

using the SGB, an R2 value of 0.76 and an RMSE value of 37.26 m3ha-1 for the RF, while the 

SMLR produced an R2 value of 0.65 and an RMSE value of 42.50 m3ha-1 (Table 3.3). The results 

also showed that the SGB model outperformed the other two predictive models. The study further 

tested the potential of identifying most important variables and whether the use of the model 

selected variables could improve the prediction accuracies. In assessing the relative importance of 

variables, the SWIR, minR, EnumAge and covR variables were found to be the most optimal 

variables for predicting mean DBH, mean tree height and stand volume. The use of optimal 

selected variables produced an R2 value of 0.81 and an RMSE value of 1.21 cm for mean DBH, an 

R2 of 0.86 and RMSE of 1.39 m for tree height and an R2 value of 0.83 and an RMSE value of 

29.58 m3ha-1 for stand volume (Table 3.5). 
 

8.3 Intra- and inter-species biomass prediction using high resolution data sets 

In order to better understand the contribution of plantation forest species in the global carbon 

cycle, the possibility of applying the high resolution RapidEye imagery and stochastic gradient 

boosting and random forest models was investigated in estimating biomass (Chapter Five). More 

precisely, the study examined the performance of two machine learning algorithms (i.e. SGB and 

RF) and whether algorithm variable selection could enhance the AGB estimates, using spectral 

information and vegetation indices derived from the RapidEye image. The use of these spectral 

information and vegetation indices was based on their successful application in AGB, particularly 

in natural ecosystems and tree species mapping and discrimination (Adam et al., 2014; Adelabu et 

al., 2013a; 2013b; Eckert, 2012a; Mutanga et al., 2012).  
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The results have shown that both the SGB and RF regression models performed well in estimating 

AGB, although the SGB model outperformed the RF model. Specifically, a comparative 

assessment of the two predictive models demonstrated that the SGB model produced better 

predictive results for the intra-species data set, with an R2 of 0.75 and an RMSE of 18.40 t ha-1 

(10.80%) for EG R2 of 0.77 and an RMSE of 19.43 t ha-1 (19.18%) for PT (Figure 4.3). 

Furthermore, the SGB algorithm yielded good results in predicting interspecies biomass, 

producing an R2 of 0.58 and an RMSE of 46.51 t ha-1, 33.25% of the mean compared to RF, 

which had an R2 of 0.33 and an RMSE of 64.27 t ha-1, 45.94% of the mean (Figure 4.4). The SGB 

and RF variable importance approaches in determining the relevance of all RapidEye derived 

input variables was further explored. Both models successfully managed to select the most 

suitable set of variables (EG: n = 4, ED: n = 7, PT: n = 6 and all species data combined: n = 19) 

for predicting both intra- and inter-species AGB (Figure 4.5). 

 

8.4 Plantation Forest Aboveground Biomass Quantification using Landsat-8 OLI Sensor 

The potential of using newly-launched broadband multispectral sensor with unique radiometric, 

spatial and spectral characteristics in estimating and mapping AGB for three plantation forest 

species, namely, Eucalyptus dunii (ED), Eucalyptus grandis (EG) and Pinus taeda (PT), was 

examined. The newly-launched Landsat-8 OLI, with changes in the sensor design enhances the 

signal to noise ratios, which is almost twice, as good as Landsat 7 Enhanced Thematic Mapper 

plus (ETM+). Landsat 8 also constitute a refined near-infrared spectral range, improved 

radiometric resolution (8 to 12 bits), wide swath width and improved sensor dwell-time in 

sampling radiation, at each ground pixel (El-Askary et al., 2014; Pahlevan and Schott, 2013). 

These sensor properties are perceived to provide the most needed solution for AGB mapping and 

monitoring at regional scales in data-scarce areas. Moreover, these improvements prevent water 

vapour absorption effect at 0.825 μm and improve radiometric resolution, which is known to 

enhance the spectral precision, as well as eliminating sensor spectral saturation problems, a 

common phenomenon to prior Landsat products (Irons et al., 2012). In that regard, the 

improvements are perceived to be critical in enabling the characterization of vegetation 

biochemical and biophysical properties. Despite these promising capabilities associated with the 

newly-launched Landsat-8 OLI, no study, to the best of our knowledge, has tested its utility in 

estimating and mapping AGB at both local and regional scale. Therefore, to test the utility of this 

sensor, stochastic gradient boosting and random forest were applied, based on three different 
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variable sets which are: (i) spectral bands, (ii) vegetation indices, and (iii) all data sets combined. 

The results obtained were then compared to those derived from Landsat 7 ETM+ (Chapter Four).  

Aboveground biomass results for ED, EG and PT were evaluated in terms of the coefficient of 

determination (R2), RMSE, RMSE%, percent bias and mean of the absolute forecast error (MAE). 

The results showed that Landsat 8 OLI spectral data set provides better biomass estimates, when 

compared to Landsat 7 ETM+ spectral data sets. For example, the results indicated that Landsat 8 

OLI spectral information, utilizing the SGB algorithm, produced an R2 value of 0.47, the lowest 

RMSE (16.35 t ha-1; 30.93% of the mean), the lowest percentage bias of -1.40 and the lowest 

MAE (14.23) for the E. dunii species. A similar performance was observed for EG and PT, using 

Landsat-8 OLI derived spectral information. Similarly, the use of Landsat-8 OLI derived 

vegetation indices exhibited the best estimation accuracies, when compared to the estimates 

derived using Landsat 7 ETM+. For instance, Landsat ETM+ derived vegetation indices applying 

the SGB algorithm produced the RMSE of 18.66 t ha-1 (35.30% of the mean), a bias % of -4.30 

and the MAE value of 14.65 for E. dunii species, whereas for E. grandis, an RMSE of 26.54 t ha-

1, 15.60% of the mean), a percentage bias of -2.26 and the MAE of 22.92 were obtained. The use 

of Landsat 8 OLI and 7 ETM+ extracted spectral information and vegetation indices further 

improved AGB estimates for all three species, with the former producing optimal accuracies. 

Moreover, when the same variable groupings were used to estimate AGB for all three species data 

set combined, the results demonstrated that both Landsat-8 OLI and ETM+ sensors estimated 

combined plantation forest AGB with weaker accuracies. Overall, the combined Landsat-8 OLI 

sensor spectral information and vegetation indices produced better results, when compared to 

Landsat 7 ETM+. Furthermore, when variable selection was implemented, based on the best 

performing algorithm in estimating AGB for individual species and combined data set, the SWIR 

bands, NDVIc, NDVI, NDII, NIR, SAVI, red band, MSI, and green band were selected. The use 

of these variables significantly reduced the error of estimation for both remote sensing data sets, 

with Landsat-8 OLI sensor producing the least errors for all three species. For instance, for PT, an 

R2 of 0.69, RMSE of 21.65 t ha-1 (10.50% of the mean), using Landsat-8 OLI, and an R2 of 0.65, 

an RMSE of 22.33 t ha-1, (10.83% of the mean), using Landsat ETM+ selected variables, were 

observed (Figure 5.2). In addition, a comparative analysis of the AGB estimates for combined 

species from both sensors showed that Landsat-8 OLI sensor yielded better, but weaker estimates, 

producing an R2 of 0.42 and an RMSE of 55.32 t ha-1 (41.13%), when compared to the Landsat 7 

ETM+ sensor, which yielded an R2 of 0.32 and an RMSE of 64.26 t ha-1 (43.86%) (Figure 5.3 and 

Table 5.7).  
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8.5 Enhancing aboveground biomass estimation using Landsat-8 OLI texture metrics 

The use of vegetation indices computed from multispectral sensor tends to suffer from saturation 

challenges in areas associated with high canopy cover and the presence of mixed pixels (Gara et 

al., 2014b; Ingram et al., 2005; Lu, 2006; Mutanga et al., 2012; Mutanga and Skidmore, 2004; 

Nichol and Sarker, 2011). Although high resolution airborne data sets can be used to address the 

aforementioned problems, their cost remains one of the limiting factors, especially in resource-

constrained areas (Eckert, 2012a; Koch, 2010). Hence, there is a need for techniques that could 

help improve AGB and carbon stock estimates from the readily-available and cheap multispectral 

sensors, such as the Landsat products. In this study, the utility of the newly-launched Landsat-8 

derived texture metrics and texture ratios is tested, using two machine learning algorithms (i.e. 

SGB and RF) in improving AGB and carbon stock estimation in high density canopies (Chapter 

Four).  

 

The results demonstrated that the mean, entropy, correlation, dissimilarity, homogeneity and 

variance texture parameters obtained, using a 3 x 3 window size and an offset of [0,1], are the best 

parameters for the accurate estimation of AGB. The results further revealed that raw Landsat-8 

OLI spectral information produced weaker AGB estimates across all tree species (i.e. ED, EG, PT 

and all species data), when compared to those derived using raw texture measures derived from 

Landsat-8 OLI (Table 6.3), based on the stochastic gradient boosting algorithm. Furthermore, it 

was shown that texture-based models, derived, using the stochastic gradient boosting algorithm, 

enhanced accuracy in AGB estimation, relative to the use of spectral bands and spectral vegetation 

indices (Tables 6.3 and 6.4). While the results derived using both raw spectral band ratios and 

texture ratios appear to be promising, raw spectral band ratios, based on AGB estimates, generally 

yielded low accuracies. On the other hand, the use of Landsat-8 OLI sensor texture ratios derived 

from different band combinations: band two/band three, band three/band five, and band four/ band 

five produced stronger correlations between predicted and observed biomass, compared to other 

methods investigated, such as the use of raw band ratios etc. (Tables 6.3, 6.4 and Figure 6.4). 

Above all, the use of combined Landsat-8 OLI texture ratios in estimating AGB yielded the best 

performance, with higher R2 values of 0.76 (RMSE = 9.55 t ha-1 and CV-RMSE of 0.18), 0.74 

(RMSE = 12.81 t ha-1 and CV-RMSE of 0.08), 0.74 (RMSE = 12.67 t ha-1 and CV-RMSE of 0.06) 

and 0.53 (RMSE = 20.15 t ha-1 and CV-RMSE of 0.15) overall for ED, EG, PT and all species 

data investigated, respectively (Table 6.4). 
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8.6 Quantifying the Variability and Allocation Patterns of Aboveground Carbon Stocks 

across Plantation Forest types, Structural Attributes and Age 

Information on the variability of forest carbon stocks across different tree structural attributes and 

groups is critical for the accurate understanding of the contribution of forest ecosystems to the 

global carbon cycle. Thus far, spatial knowledge on forest structural carbon allocation patterns 

and aboveground carbon stocks remains scarce, particularly in both managed and unmanaged 

plantation forest ecosystems. Notwithstanding the vivid attention on global terrestrial carbon 

accounting, literature shows that the bulk of AGB quantification and carbon-related studies, using 

both remotely sensed and traditional approaches have focussed on total aboveground component, 

specifically in sub-Saharan Africa (Christie and Scholes, 1995; Eckert, 2012b; le Maire et al., 

2011; Schönau and Boden, 1982a). However, to reduce the great uncertainty in the current carbon 

balance in Africa (Laurin et al., 2014; Wolf et al., 2011), the accurate and timely quantification of 

the spatial variability in aboveground carbon stocks across different plantation forest species, 

various tree structural attributes and age groups are fundamental. Based on these premises, the 

challenge was therefore to test the potential of quantifying plantation forest aboveground carbon 

stocks across different tree species, structural attributes (i.e. stems, barks, branches and leaves) 

and age groups, using Landsat-8 OLI remotely sensed data.  

 

The results demonstrated that plantation forest aboveground carbon stocks vary significantly (α = 

0.05) across different tree species. A comparison of carbon stocks amongst the three plantation 

species (i.e. Eucalyptus dunii, Eucalyptus grandis and Pinus taeda) shows that Pinus taeda 

contained the highest amount of aboveground carbon stocks (Figures 7.2 and 7.4). In addition, 

Eucalyptus grandis and Pinus taeda branches and leaves yielded almost similar estimates of 

aboveground carbon stocks (Figures 7.2 and 7.4). The results further illustrated that plantation 

forest stems contain the highest carbon stocks, when compared to other forest structural attributes, 

such as barks, branches and leaves. The observed findings were further confirmed by ANOVA 

results, which showed significant differences (α = 0.05) between aboveground carbon stock 

estimates amongst Pinus and Eucalyptus tree species structural components (i.e. stems, barks, 

branches and leaves). Overall, estimated aboveground carbon stocks derived across all tree 

structural compartments, namely, stems, barks, branches and leaves, were significantly lower, 

ranging between 5 and 20 t C ha-1 (Figures 7.3 and 7.4). 
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It was further established from the results that mature plantation forest species (normally between 

the ages of seven and twenty years) contain the highest aboveground carbon stock estimates 

relative to younger species (i.e. six years and less). Seven- and twenty- year old plantation forest 

species contained between 80 and 100 t C ha-1 of aboveground carbon stocks, whilst younger 

species had between 20 and 25 t C ha-1 (Figure 7.5). However, amongst younger species, there 

was less variability in carbon stock estimates across all three plantation forest species, when 

compared to mature species (Figure 7.5). 

 

8.7 Conclusion  

The main essence of this work was to assess the performance and strength of the new generation 

multispectral sensors in estimating and mapping plantation forest species AGB and carbon stocks. 

The results of this study have demonstrated that the use of emerging new generation multispectral 

sensors and image processing techniques, integrated with non-parametric algorithms, can 

accurately improve AGB and carbon stock estimations in high density canopies, particularly in 

resource-scarce areas, a previously challenging task with old traditional multispectral sensors.  

 

Based on the findings from different objectives in this study, the following were concluded: 

1. The integration of SPOT-5 derived data (i.e. spectral bands and vegetation indices) with 

ancillary stand data (i.e. rainfall metrics and stand age) can be used to improve the 

prediction of Eucalyptus tree mean DBH, mean height and stand volume, based on machine 

learning algorithms, such as SGB and RF. The findings demonstrate that the new generation 

multispectral sensors remain a potential primary data source for estimating important tree 

structural attributes, especially when integrated with ancillary data sets. Moreover, the 

results have demostrated the strength associated with machine learning algorithms in 

predicting different tree-structural attributes, 

2. Intra- and inter-species AGB could be predicted accurately, using spectral information and 

spectral vegetation indices derived from the high spatial resolution multispectral RapidEye 

sensor, 

3. Spectral information and vegetation indices derived from the newly-launched medium 

spectral resolution Landsat-8 OLI multispectral sensor, with a wide swath width of 185 km 

coupled with improved signal-to-noise ratios, offers an invaluable primary data source 

required for accurate AGB estimation, especially in data-scarce environments, when 

compared to the whisky-broom Landsat ETM+ sensor, 
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4. Similarly, the results of the study further demonstrated the importance of combining spectral 

information and vegetation indices in estimating AGB in high canopy areas. These findings 

have prompted further tests on the utility of free and readily-available Landsat-8 OLI 

derived texture metrics in enhancing plantation forest AGB quantification, 

5. The use of newly-launched Landsat-8 OLI derived texture metrics have the potential for 

enhancing AGB estimates, particularly in resource-constrained areas. The sensor can 

therefore be viewed as the primary data source for estimating AGB in data-scarce regions, 

as it produces results almost comparable to those obtained using high resolution sensors like 

the RapidEye Spaceborne sensor, and 

6. Overall, the findings of the study demonstrated the importance of remotely sensed data as an 

important tool that supports and enhances the quantification of forest carbon stockvariations 

across different tree species, structural components and age groups. This study underscores 

the utility of remotely sensed data providing invaluable data set for regional scale AGB and 

carbon stocks accounting. 

 

8.8 The Future  

Multisource and new generation mulitspectral sensors present an effective and robust primary data 

source required for AGB and carbon stocks mapping in resource-constrained areas. The findings 

of this study provide the necessary insight and motivation to the remote sensing community, 

ecologists and environmentalists, to shift towards embracing cheap and readily-available remote 

sensing sensors necessary for reliable and accurate forest AGB and carbon stocks monitoring in 

data-scarce environments, where the use of high resolution airborne sensors still remains a 

challenge, due to the associated costs. Furthermore, the results of this study have demonstrated the 

contribution of plantation forest species in the global carbon cycle and hence could lay the 

necessary basis for potential conservation strategies that will facilitate the effective and 

sustainable utilization of forest resources. This study therefore suggests the following 

recommendations for future research:  

 

1. the present study demonstrated the strength and performance of integrating multispectral 

data with ancillary data sets, as well as the use of new generation multisctral sensors in 

estimating volume, AGB and carbon stocks in plantation forests. Therefore, future 

experiments on the utility of these data sets need to be tested in naturally forested areas, 
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particularly in sub-Saharan Africa, where severe harvesting (for firewood and farmlands) 

is experienced,  

2. emerging new generation multispectral sensors are associated with a limited number of 

unique-band settings that do not require complex processing approaches and are 

reasonably available at no, or low, cost. It is therefore against this background that the 

utility of other emerging multispectral sensors, such as Sentinel 2, with improved spatial 

resolution and swath width, need to be tested for large-scale AGB and carbon stock 

estimation across African environments, 

3. although the present study demonstrated accurate AGB and carbon stocks estimation from 

the use of new generation remote sensing sensors, it will be ideal for future research to 

further examine and compare the performance of these sensors against those of high 

resolution airborne hyperspectral and lidar data sets in estimating and mapping AGB, 

especially in high density canopy areas.  
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