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Abstract 

With an overwhelming demand of larger bandwidth required for high capacity data with 

content-rich services ranging from high-speed video streaming to multimedia content, there is a 

continuous need to migrate to higher microwave bands, particularly beyond the regular Ku and 

Ka bands (between 11 - 40 GHz). The presence of precipitation at these microwave and 

millimeter bands (3-300 GHz) generally induce rain fade, which is a constraint to network 

providers intending to achieve optimal service delivery, at acceptable signal to noise ratios 

(SNRs). In practice, fade countermeasures – static or dynamic – are necessary to combat the 

consequences of chronic fluctuations of rainfall resulting in signal deterioration and impairment 

over communication links. However, the implementation of dynamic fade countermeasures is 

systematically tied upon the available Channel State Information (CSI), which is often time-

variant relative to the occurrence of precipitation events. Time-variation of rainfall events are 

perceptible in measurable rainfall microstructural parameters which vary intensely in space and 

time. These spatio-temporal variations yield the generation of observable random patterns of 

signal attenuation during rain events, often in a stochastic manner. To this end, researchers have 

emphasized on understanding the underlying behaviour of generic rainfall microstructural 

parameters such as rainfall rate, rainfall Drop Size Distribution (DSD) and radar reflectivity. 

Therefore, the investigation of these stochastic properties of rainfall processes is primary in the 

determination of recognisable patterns of rainfall rate and other microstructures. This thesis 

introduces the queueing theory approach via the Markov Chain technique to investigate the 

time-varying characteristics of the rainfall process from distrometer data in subtropical and 

equatorial Africa. Rainfall data obtained from these two climatic locations, at one minute 

integration time, were processed from sites in Durban, South Africa and Butare, Rwanda, over a 

specified measurement period. Initial investigation and comparison of rainfall microstructures 

undertaken at both sites clearly show key differences in their probability distribution profiles at 

Stratiform-Convective (SC) bounds. The underlying queue discipline of rainfall spikes and their 

queue metrics are determined and appraised for system performance using rainfall time series 

database. The results show rain spike generation processes vividly exhibit a First-Come, First-

Served (FCFS) semi-Markovian distributed traffic of M/Ek/s discipline, with a varying degree 

of servers, for different rainfall regimes. Comparison of queue statistics results over different 

rainfall regimes at the two locations reveal significant differences in their queue metrics and 

performances. The knowledge obtained from the queue statistics and SC probability analysis are 

further employed in the determination and classification of rainfall cells, rainfall growth models 

and path attenuation prediction. The results are compared and validated with data collected 

from a 6.73km, 19.5 GHz terrestrial link in Durban. 
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CHAPTER ONE 

General Introduction 

 

All the mathematical sciences are founded on relations 

between physical laws and laws of numbers, so that the aim 

of exact science is to reduce the problems of nature to the 

determination of quantities by operations with numbers  

 – James Clark Maxwell (1831 – 1879) 

 

1.1 Introduction 

The subject of electronic communication is full of historical turns and incredible achievements, 

all within an unbelievable span of over 100 years. At the dawn of this form of communication, 

when wired system was inspired and birthed, the major concerns involved sending unmodulated 

signals intelligibly over long distances and expanding local accessibility. Today, 

communication systems have become more sophisticated and ingeniously complex in design, 

with major concerns for seamless connectivity at high throughput cum data integrity at the 

cheapest cost(s). Pragmatically, the objectives of achieving optimal cost-functions tend to be 

dependent on the multi-lateral delivery of optimal services to end-users of wireless 

communication technologies. Thus, attention has invariably shifted to the design of high 

capacity wireless networks with cutting-edge modulation schemes to achieve the near-infinite 

information transfer speed to low-end customers.  

 

These new developments have pushed the bounds of the traditional framework of 

communication protocols towards a scenario where satisfactory bandwidth requirements are 

progressively primary. The outcome of these contemporary developments has lead to 

reappraisal of microwave and millimeter bands applied in the deployment of radio links for 

terrestrial and satellite communication. However, the performance of wireless networks 

deployed at these frequencies become unsatisfactory as transmitted signals suffer from 

attenuation, scattering and noise coupling leading to varying degrees of signal impairments. 

These concomitant problems become worse when the propagation medium over the radio link 

becomes inundated with hydrometeors. Hydrometeors appear in diverse forms some of which 

include snow, pellets, fog, hail, and lastly, rainfall [Crane, 1996; Hall et al., 1996]. Among 

these listed forms, rainfall is the most ubiquitous phenomenon faced by most wireless networks 

globally, with the potential capability of disrupting transmissions unexpectedly.   
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In view of this, this thesis will further the investigation of rainfall attenuation in communication 

systems operating at microwave and millimeter bands. At these bands, the random and time-

scale interactions of independent microstructures such as rainfall rate, rainfall DSD and radar 

reflectivity cannot be neglected. Thus, the random mechanism behind these microstructures is 

the topical subject of discussion in this thesis especially from the perspective of time-varying 

rainfall rate. Each chapter is therefore geared towards a comparative understanding of time 

dependent rainfall processes in tropical Africa.   

 

1.2 Problem Formulation 

In previous research on rainfall in Durban, South Africa, rainfall campaigns spanning almost a 

decade have provided exciting results on the effects of rainfall attenuation. These research are 

available in the studies of Fashuyi et al. [2006], Odedina and Afullo [2008], Odedina and 

Afullo [2010], and more recently, Owolawi [2011], Akuon and Afullo [2011a], Afullo [2011] on 

rainfall rates mechanics and rainfall drop-size distributions (DSD). More recent studies of 

rainfall DSD undertaken by Alonge and Afullo [2012a] and Alonge and Afullo [2012b], have 

examined the seasonal and regimes effects of rainfall attenuation on microwave networks in 

Durban. The conclusions on the appropriate model(s) describing the microstructural variability 

of rainfall parameters have indicated the gamma distribution as most suitable for rainfall rate 

[Owolawi, 2011], and, lognormal distribution for rainfall DSD [Afullo, 2011; Alonge, 2011]. 

Invariably, these models particularly the rainfall DSD have been applied in the computations of 

rainfall specific attenuation. With this, k and α parameters of specific attenuation for the city of 

Durban have been estimated in Alonge [2011] is slightly different from the standards provided 

in ITU-R P.838-3 [ITU-R Rec P.838-3, 2005]. The availability of frequency dependent 

parameters, k and α, can in turn be applied to estimate the path attenuation due to rain necessary 

for microwave link design. For example, Alonge and Afullo [2012b] and Afullo [2011] used this 

approach to investigate the seasonal variations in Durban and concluded that intense levels of 

rainfall attenuation are experienced in summer and autumn seasons. Broadly speaking, past 

research on the subject of rainfall attenuation in Durban has mainly sought to answer one single 

question: what are the most sufficient rain fade margin levels required to compensate for signal 

degradation in wireless network operating at any microwave or millimeter-wave bands? 

Therefore, it is exemplary to know that rainfall attenuation studies in South Africa have 

therefore mainly converged towards the adoption of “static” decibels of transmission power as a 

measure of mitigating the effects of rain fade.  

 

Suppression (or cancellation) of rain fade effects, otherwise known as rain fade mitigation 

technique (FMT) should be accompanied by effective power control allocation which could be 
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static, dynamic, diversity-based or a combination of any of these [Castanet et al., 2003; 

Fukuchi and Saito, 2007; Sabapathy et al., 2011]. The static technique (the scenario undertaken 

in Durban), often employed in rain attenuation prediction in South Africa as well as in ITU-R 

publications, has been reported globally as a flawed method of maximizing and optimizing local 

transmission power in networks [Castanet, 2003; Sabapathy et al., 2011]. Besides, this 

technique may be an insufficient way of matching rainfall microstructural signatures with real-

time variation in rain attenuation at the receiver end, leading to under-utilization of spectrum 

(bandwidth), transmission power, and consequently resulting in network downtime. Therefore, 

researchers in microwave studies have urged for more unique approach where the real-time 

influences of rainfall are considered [Sweeney and Bostian, 1999; Shin et al., 2002; Castanet, 

2003; Sabapathy et al., 2011]. In this guise, dynamic and diversity-based techniques suffice as 

the best methodologies applicable in the suppression or cancellation the effects of rain fade. 

Thus, an underlying inquiry into the stochastic characteristics of rainfall during rainfall events is 

overtly important to the subject matter of dynamic fade cancellation. The rainfall probability 

theory, built on Markov chain properties, offer an interesting insight into the black-box 

properties of time-variant rainfall rate. While some efforts have been made in this area most 

especially for rainfall synthesis [Alasseur et. al, 2004; Héder and Bitòs, 2008; Maruddani et. al, 

2010; Das and Maitra, 2012], the exact nature of the underlying time-varying properties of 

rainfall events useful for adaptive cancellation of rain fade is yet to be explored. In addition, 

with the recent knowledge of rainfall cell growth studies in South Africa [Akuon and Afullo, 

2011a], the time-varying rainfall process can be utilized to optimise the long-distance prediction 

of rain fade for satellite and terrestrial links operating between 30 GHz - 95 GHz due to 

emerging bandwidth crises [Foty et al., 2011]. The justification for this proposed research, 

therefore, lies in not only in counteracting the notorious effects of rain fade at these spectra, but 

laying the framework for understanding rainfall characteristics required for the allocation of 

optimal power requirements and radio resources. It is on this basis that effective and power-

efficient rains fade suppression algorithms are expected to be developed for future applications 

in the wireless communication industry.  

 

In this proposed study, a combination of the knowledge of rainfall rates, rainfall DSD, rainfall 

growth and rainfall cell mechanics will be applied to understand the time-variation of rain rate 

and hence, rainfall attenuation. The research will investigate the queueing characteristics of 

rainfall in tropical Africa, with a narrow focus on equatorial and subtropical areas. Broadly 

speaking, this research seeks to answer the following questions: what are the variations in 

rainfall microstructural parameters (rainfall rate, rainfall drop-size distribution e.t.c.) in tropical 

Africa? Do rainfall event processes over a radio link qualify as a standard event-based queue 
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process? What is the nature of the expected queue discipline and performances thereof? What 

are the benefits of applying the queueing theory approach in rain cell estimation and attenuation 

prediction over radio links at microwave and millimeter bands? This research will assist in 

expanding the knowledge of time-domain characteristics of rainfall queues at locations around 

tropical Africa, as applied in contemporary terrestrial and satellite networks. 

 

1.3 Scope of Work 

1. To investigate the variations of rainfall microstructures of rain rate, rainfall DSD and 

radar reflectivity over subtropical and equatorial Africa. 

2. To establish the time-varying characteristics of rainfall events over radio links as a 

queueing process. 

3. To determine empirically the most appropriate queue discipline to describe rainfall 

process over radio links. 

4. To investigate and compare the queueing characteristics of rainfall processes over 

subtropical and equatorial Africa. 

5. To determine from queueing theory approach, the equivalent average rain cell sizes and 

hence, predict rainfall attenuation and fading effects over subtropical and equatorial 

Africa. 

 

1.4 Thesis Overview 

The overall number of chapters contained in this thesis is seven. Each chapter offers an insight 

into the contents, objective and the depth of work attained in the course of this research. 

Therefore, the structure of this thesis begins with the first chapter (Chapter one). This chapter 

discusses the general introduction into the subject matter of the thesis: the introduction, problem 

formulation, scope of work, original contribution and publications. Thereafter, the overview of 

the remaining chapters in this thesis is presented succinctly as follows: 

Chapter two is a brief review into propagation losses in wireless communication, the rainfall 

role in signal attenuation, discussion of rain microstructures and review of time series analysis 

of rainfall rate over radio links. 

Chapter three compares the variation of rainfall microstructural parameters in tropical African 

locations of Durban and Rwanda with emphasis on their behaviour over stratiform-convective 

bounds. The probability analysis tool is applied in the investigation of these parameters to 

understand their behaviours in subtropical and tropical locations. A global comparison of results 

at the investigated sites is undertaken at the end of this chapter. 
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Chapter four discusses the investigation and determination of rainfall queueing characteristics in 

Durban, South Africa. Queue disciplines which give the closest approximations of rainfall 

traffic conditions are obtained with their appropriate probability distribution models. 

Performance metrics and other relevant parameters are also obtained in this chapter. 

Chapter five examines the rainfall queueing characteristics in tropical African locations of 

Durban and Rwanda using basic queueing parameters. The information obtained from the 

queueing results at both sites are compared and evaluated using their performance metrics and 

steady state behaviour.   

Chapter six discusses the application of the rainfall queueing theory in the determination of 

rainfall cell specifics in Durban and Butare. This has lead to the determination of other 

parameters relevant to the prediction of rainfall attenuation over radio links at microwave and 

millimeter bands. The results obtained are validated using terrestrial link measurements at 19.5 

GHz. 

Chapter seven is the conclusion of the study undertaken in this research. A detailed appraisal of 

the research contributions (and information) of this thesis are highlighted accordingly with 

emphasis on possible future research areas.   

 

1.5 Contributions to Knowledge 

The contributions of this thesis to the body of exiting knowledge are listed below: 

• The comparison of rainfall microstructures in subtropical and equatorial regions of 

Africa has shown that Stratiform-Convective bounds play a role in the probability 

distributions profile of the investigated parameters. The characteristics of these 

parameters tend to vary according to the influence and interactions of the prevailing 

climatic conditions. It is demonstrated in this work that Stratiform-Convective threshold 

is a reasonable parameter that presents a larger perspective of differential attenuation 

conditions around the world. 

    

• Development of queueing theory technique for rainfall rate analysis from distrometer 

measurements was established in this work. This approach is novel in the understanding 

of the underlying process of rainfall rate traffic, as they move as rain cells over radio 

links, at microwave and millimeter bands during rain events. This has led to the 

determination of the most appropriate queue discipline required to explain the exact 

nature of time-varying rain rates over different regimes. The findings from this study 

show that the M/Ek/3/∞/FCFS queue discipline best describes the rain rate queues in 
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subtropical and equatorial Africa. The advantage of this technique is applicable in 

rainfall cell estimation, rainfall growth analysis and channel modelling. 

• The formulation of rain growth models and the estimation of rain cell diameters from 

distrometer measurements in tropical Africa. The queueing theory approach has enabled 

the analysis of rainfall on a ‘singular’ spike basis thereby expanding the knowledge of 

rain attenuation prediction. The quantum understanding of spike service time as a 

distribution is pivotal to the development of practical channel models for use in radio 

resource management.   

 

1.6 Publication in Journals and Conference Proceedings 

The listed publications below are materials forming part of this thesis with appearances in peer-

reviewed and accredited journals, as well as conference proceedings: 

1. Akintunde A. Alonge and Thomas J. Afullo (2014), “Rainfall Microstructural Analysis 

for Microwave Link Networks: Comparison at Equatorial and Subtropical Africa” 

Progress in Electromagnetic Research B, Vol. 59, pp. 45 – 58. 

Status: Published 

2. Akintunde A. Alonge and Thomas J. Afullo (2014), “Characteristics of Rainfall 

Queues over Radio Links at Subtropical and Equatorial Africa”, Radio Science, DO1 

10.1002/2014rs005424. 

Status: Published 

3. A. A. Alonge and T. J. Afullo (2014), Fractal Analysis of Rainfall Event Duration for 

Microwave and Millimetric Networks: Rain Queueing Theory (Submitted to IET 

Journals, United Kingdom)    

Status: In Press 

4. Akintunde A. Alonge and Thomas J. Afullo (2013), Temporal Characterization of 

Rainfall Time Series Analysis for Wireless Networks, presented at the GWS Wireless 

Vitae Conference 2013, Atlantic City, New Jersey, USA, June 24-27, 2013. 

5. Akintunde A. Alonge and Thomas J. Afullo (2013), Rainfall Microstructures for 

Microwave and Millimeter Wave Link Budget at Tropical and Subtropical Sites, 

presented at the 2013 IEEE AFRICON Conference, Le Meridien Hotel, Mauritius, 

September 9-12, 2013. 

6. Akintunde A. Alonge and Thomas J. Afullo (2014), Rainfall Cell Estimation and 

Attenuation Studies for Radio links at Subtropical Africa, Presented at the South 

African Telecommunication and Network Application Conference (SATNAC), August 

31st- September 3rd, 2014.  
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CHAPTER TWO 

Literature Review 

 

2.1 Introduction 

There are several attenuation factors that contribute to propagation losses, which generally leads 

to the impairment and degradation of transmitted signals, over a wireless radio link operating at 

microwave and millimeter bands. These contributions present diverse forms of interactions with 

propagated waves along Line-of-Sight (LOS) transmissions through dispersive, absorptive, 

refractive and diffractive mechanisms [Banjo et al., 1986; Crane, 2003]. As a result, the 

principal attenuation agents responsible for these mechanisms exist in various forms such as 

vegetation, obstacles like mountains, hills and tall buildings, varying terrain structures, solar 

flares, ionospheric disturbances and most importantly, precipitation [Seybold, 2005; Ajayi et al., 

1996]. The various components of precipitation that contribute to signal losses include snow 

pellets, hail, fog, clouds and rainfall. Rainfall is, perhaps, the most significant (and most 

meddlesome) of these precipitation forms as it is a global phenomenon affecting 

communication systems at microwave and millimeter bands. In many tropical areas around the 

world, the effect of rainfall attenuation is often predominant in communication networks at 

about 7 GHz and beyond [Islam et al., 1997; Crane, 2003]. In temperate regions, these effects 

may be noticeable from about 10 GHz and beyond [Green, 2004]. Therefore, the subject of 

rainfall is inherently location-specific, and hence, is perhaps one of the important considerations 

employed in the design of local radio link. Over the years, wireless communication deployed 

through terrestrial and satellite systems have become sophisticated with increasing need for 

bandwidth capacity. This has resulted in the deployment of new frequency bands, and thus, the 

technical migration to higher frequency bands of microwave and millimeter-wave spectrum. 

These bands are often very susceptible to the effects of rainfall attenuation and are a huge 

limitation to network performance. Therefore, this chapter will review the progress in the 

studies of rain attenuation in electromagnetic propagation.     

 

2.2 Frequency Bands in Communication Systems 

Practical frequency bands applied in numerous areas of scientific, industrial and commercial 

applications – often vary from 3 KHz to 3 THz. Between these range, lies the band of interest of 

this study, the microwave band which ranges from 3-30 GHz and the millimeter-wave band 

which ranges from 30-300 GHz. These bands support a large array of terrestrial and satellite 

services such as broadband internet services, Direct-to-Home (DTH), wireless mobile telephone 

services, marine communication systems, critical military logistics and support, and of recent,  
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Table 2-1: Frequency band designations according to ITU-R V.431-7 and IEEE 521-2002 

standards in communication industry [ITU-R V.431-7, 2000; IEEE 521-2002, 2002] 

GENERIC BAND 

RANGE 

 

ITU-R V.431-7 

IEEE 521-

2002 

OTHERS 

3 – 30 KHz VLF  (Very Low Frequency)   

30 – 300 KHz LF (Low Fequency)  

0.3 – 3 MHz MF (Medium Frequency) MF 

3 – 30 MHz HF (High Frequency) HF 

30 – 300 MHz VHF (Very High Frequency) VHF 

0.3 – 3 GHz UHF (Ultra High Frequency) UHF 

1 – 2 GHz  L band 

2 GHz  

S band 3 GHz  

 

 

 

SHF (Super High Frequency) 

 

 

 

 

 

 

 

 

EHF (Extremely High Frequency) 

 

 

 

Microwave band* 

(µm Wave) 

 

 

 

 

 

 

Millimeter wave 

band 

(mm Wave) 

4 GHz 

4 – 8 GHz C band 

8 – 12 GHz X band 

12 – 18 GHz Ku band 

18 – 27 GHz K band 

27  

Ka band 30 GHz 

40 GHz 

40 – 75 GHz V band 

75 – 111 GHz W band 

Above 111 GHz  

Millimeter 

band 
300 GHz 

0.3 – 3 THz  Terahertz Frequency    

  *Sometimes, microwave band designation may extend into the upper bound of the EHF segment. 

  

interplanetary communications. Different nomenclatures exist to classify and designate 

frequency bands, popular among them include the International Telecommunication Union 

(ITU) and Institution of Electrical and Electronics Engineer (IEEE) nomenclature [ITU-R 

V.431-7, 2000; IEEE 521-2002, 2002]. As listed on Table 2-1, these nomenclatures are 

presented with their respective frequency band in use. Popular bands currently utilized for 

commercial television broadcast and high speed data services among the microwave range 

include the C, Ku, K and Ka band. Currently, Next Generation Networks (NGN) technologies 
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are being deployed on some of these bands as they are easily marketable and scalable platforms 

for optimal spectrum utilization.     

 

2.3 Sources of Losses in Electromagnetic Propagation 

The objective of communication is to ensure – the delivery of intelligible information at the 

receiver end – as the transmitted signal travel through propagation media. However, the process 

of transmitting signals over a wireless link is not completely loss-free and error-free as certain 

attenuation agents impair the quality of transmitted information. Depending on the nature of the 

radiation pattern of transmitting antennas, the effect of these attenuation agents can be partially 

or wholly destructive. At microwave and millimeter-wave bands, the preferred mode of signal 

transmission is often by LOS propagation i.e. the transmitter and the receiver must ‘see’ each 

other. A narrow antenna beamwidth is usually required to achieve a stronger and directed 

energy level in a straight line, within the range of Fresnel design constraint [Crane, 2003]. In 

accordance to link budget designs, many frequent forms of losses are encountered along a 

typical LOS which ultimately results in signal impairment and noise injection. Among these 

losses include Free Space Loss (FSL), obstacle/diffraction losses, multipath losses, antenna 

pointing/misalignment error losses, rain fade loss. Figure 2-1 gives an illustration of typical 

sources of the mentioned losses for a typical LOS terrestrial link. More details are also given in 

Table 2-2 about the possible causes of some of the resultant losses accompanying LOS 

transmission over microwave and millimeter bands. 

 

 

Figure 2-1: Identification of the physical sources of signal loss in LOS terrestrial link 

 

MULTIPATH LOSS 

From reflection 

and vegetation 

FREE SPACE LOSS 

ANTENNA 

POINTING LOSS 
RAIN FADE LOSS 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

10 

 

 

Table 2-2: Frequent sources of signal losses and impairments over LOS radio links 

TYPE OF LOSSES LIKELY CAUSES 

 

 

FREE SPACE LOSS 

 

Spatial loss due to outward geometric 

spreading of waves in transmission media  

 

 

POINTING/MISALIGNMENT 

ERROR LOSS 

 

Non-precise orientation of transmitter and 

receiver for LOS communication 

 

 

RAIN FADE LOSS 

 

Spatial variability of rainfall rates over 

rainfall cells during signal transmission 

 

 

MULTIPATH LOSS 

 

Multiple reflections from hard surfaces 

during propagation 

 

 

ATMOSPHERIC LOSS 

 

Presence of gaseous constituents in the 

atmosphere 

 

 

DIFFRACTION LOSS 

The absorption and reflection of 

transmitted waves around obstacles and 

apertures 

 

In link budget design, a simple routine of estimation is often employed by engineering 

practitioners to ensure that signal losses across radio links are minimal. This routine is generic 

in network design as it ensures that proper and adequate power levels are matched with 

potential system losses accompanying signal transmission over a radio link. Thus, it is always 

necessary that any of such proposed links satisfy the link budget equation given by [Freeman, 

2007; Mämmela and Kolteba, 2011]: 

 ��� =  ��� +  ��� + ��� + �	 − �� − �� −  ��         �����                        (2.1) 

 

where, 

Ptx is the transmitted power level in dBm 

Prx is the received power level in dBm 

Gtx is the gain of the transmitting antenna in dBi 

Grx is the gain of the receiver antenna dBi 

FSL is the Free Space Loss in dB  
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Gi is the summation of gains from other sources in dB 

At is the summation of path attenuations/losses from other sources in dB  

Ap is the path attenuation due to rainfall in dB 

 

Each of parameters seen in (2.1) is an important input to link budget preparation and are further 

discussed. Firstly, the antenna gain, G, is a parameter related to the antenna aperture size and 

receiving area. It is often computed as follows: 

 

� = 10 log��  !"#$%#
&%# '    ���(�                                                (2.2) 

  

where η is the efficiency of the antenna system usually taken as values between 0.65 and 0.8, Da 

is the antenna physical size in metres and λa is the wavelength to which the antenna is tuned. 

 

The Free Space Loss (FSL) is a parameter attributed to the geometric spreading of waves as 

they travel through the propagation medium (free space). This loss increases as frequency and 

path length of the wireless communication system increases. The FSL of any wireless 

communication system is given by [Freeman, 2007]: 

  �� =  92.4 + 20 log�� +, +  20 log�� �-./  ����                               (2.3) 

 

While the rain fade loss, which is computed from the rainfall path attenuation, Ap, is computed 

from ITU-R P.530-15 [2013] given as: 

 �� =  �1 2+, ����                                                                 (2.4) 

 

As seen from above, (2.4) is dependent on the rainfall specific attenuation (�1), length factor 

(2) and transmission distance between microwave links, (+,). This expression is valid for 

terrestrial links i.e. links where elevation angle is less that 2°. Modification of (2.4) is often 

required if satellite links are under consideration. 

 

It is interesting to note that apart from rain attenuation and atmospheric attenuation components 

from (2.4), other parameters that induce signal losses over a LOS radio link are more or less 

fixed over path lengths and frequency, irrespective of time domain variations.    
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2.3.1 Contribution of Losses to Signal Impairment 

As clearly seen in (2.1), there are other significant losses suffered by electromagnetic wave 

travelling through a standard propagation medium. Apart from path attenuation due to rainfall, 

other important path attenuations are due to the presence of atmospheric gases, vegetation, 

buildings, clouds and fogs. Therefore, it is more pleasant to describe this parameter, At, as seen 

in (2.1) as an algebraic sum of all losses from different components. This is given by: 

 

�� =  3 �	     	 �dB�                          for ( = 1, 2, 3, …         (2.5) 

 

where Ai represents various elements of path attenuation from different sources to be summed 

accordingly. 

 

The members of Ai are the family of atmospheric gases which are often present in the lower 

atmospheric layer of the earth surface. Oxygen and water vapour belong to these set of gases 

which have adverse effect on both Earth-space and terrestrial communication especially at high 

frequencies. The behaviours of these two gases are not entirely regular as they have sudden 

peaks as transmission frequency bands increases. From the earliest significant contribution to 

studies on gaseous attenuation by Liebe [1981], Liebe [1983], Liebe and Hufford [1989], the 

effects of these gases are obvious with window periods. In these previous studies, the 

atmosphere is assumed as a non-turbulent propagation medium inundated with gaseous 

components having absorptive and dispersive properties. These series of studies experimented 

on the attenuation properties of these gases between microwave frequencies of 1 GHz to 

300GHz at ambient temperature close to 300 K. In their report, atmospheric windows were 

reportedly observed for oxygen gas attenuation profiles with attenuation peaks between 50/75 

GHz and 100/150 GHz. For water vapour, these peaks were observed between 20/30 GHz, 

150/200 GHz and 250/300 GHz. These results are also reported in latter parallel literature 

[Ippolito, 1981; Crane, 2003; Seybold, 2005;]. The path attenuation losses attributed to water 

vapour and oxygen up to 300 GHz are presented in Figure 2-2. 

 

Another source is the influence of vegetation such as trees, which often causes scattering of 

electromagnetic waves along LOS, and hence, path losses. At higher frequencies, the influence 

of dry and wet weather conditions, seasonal cycles, number and species of trees along the link 

do vary the effects of vegetation on propagation [Seybold, 2005]. The path loss due to this 

obstacle can be found empirically by using the physical parameters related to the transmission. 

For this, Meng et al. [2009] specified that vegetation losses can be represented by a 
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Figure 2-2: Effects of atmospheric attenuation over microwave and millimeter-wave bands       

[Crane, 2003] 

 

mathematical function relating the transmitting frequency and path length. This is given by: 

 %�, =  �;<+,=      ����                                                        (2.6) 

 

where constants A, B and C are empirical constants related to the undertaken measurements. 

The variable f is the frequency in GHz and Lkm is the path length of transmission in km. 

  

It should be noted that among all the sources of signal impairment so far mentioned in this 

section, losses attributed to FSL and rain attenuation appear to be the largest irrespective of the 

transmission frequency, path length and geographical influences. While FSL is inevitable in any 

radio link, it is universally accepted to be same everywhere in the world even as it is both 

frequency and distance dependent. The universality of rainfall attenuation pattern (or rainfall 

losses) is generally unacceptable as it varies according to geographical and climatic 

characteristics [Crane, 1996]. Besides, the mechanism of this particular attenuation is primarily 

due to scattering, absorption and depolarization of propagating waves which is often intense in 

tropical, equatorial and monsoon regions [Seybold, 2005]. Therefore, it is pertinent to discuss 

the subject of rainfall as it is the fulcrum upon which this thesis is based. Discussions related to 

rainfall and other related topics are hereby highlighted in coming sub-sections of this chapter. 
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2.4 Rainfall Attenuation over Communication Links 

Rainfall is a phenomenon where rainfall droplets produced from cloud formation process, are 

dispersed into the atmosphere, as a result of natural energy interactions over a large area. The 

meteorological process of rainfall is a little complicated with high variation in space, duration 

and frequency of occurrence [Ajayi et al., 1996]. When rainfall is incident over a 

communication link, part of the propagated energy of the transmitted wave is dissipated and lost 

due to scattering and absorption. The continuous process of scattering and absorption eventually 

leads to signal impairment resulting in rainfall attenuation, which gradually transforms into rain 

fade over specified event duration [Sinka and Bitó, 2003]. This process is mainly due to the 

presence of different sizes of rain droplets along the horizontal profile of the atmosphere, 

usually below cloud level. The rainfall intensity, otherwise measured as rainfall rate is a 

measurable microstructure related to the distribution of rain droplets over a typical link. Other 

measurable rain microstructures include rainfall Drop Size Distribution (DSD), radar 

reflectivity, rain drop-shape and liquid water content [Seybold, 2005] 

 

Rainfall characteristics are non-uniform and inhomogeneous over the horizontal region of the 

atmosphere [Crane, 1980]. It has also been shown in the ITU-R P.837-6 [2012] document that 

rainfall varies in latitudinal dimension from region to region. Therefore, it is often expected that 

different areas around the world experience different monthly, seasonal and yearly variations of 

rainfall patterns. Research has shown that propagation parameters of frequency and radio path 

length are the main factors affecting the level of rainfall attenuation experienced over a 

communication link [ITU-R P.530-15, 2013]. Generally, rainfall attenuation is known to worsen 

the signal quality as the frequency and path length of the wireless link increases. It is therefore 

valid to conclude that high-capacity networks, propagating beyond 10 GHz, evidently suffer 

more from the effects of rain. Another important parameter affecting signal propagation is the 

influence of rainfall types, which is often different around the world, as are climatic 

characteristics. Therefore, the next sub-section will discuss the subject of rainfall types. 

 

2.4.1 Classification of Rainfall Types 

There are two major classifications of rainfall types based on their physical characteristics: 

stratiform and convective rainfall [Moupfouma, 1987; Houze, 1997; Tokay et al., 1999; 

Mandeep and Allnut, 2007]. These two categories are based on the nature of cloud formation, 

condensation and strength of the rainfall [Moupfouma, 1987; Houze, 1997]. Stratiform rainfall 

is produced from weak nimbostratus clouds which results in light drizzle and widespread rain 

usually over a large area.  They extend up to 1 km across the vertical profile of the isotherm 

height with rain rates usually less than 10 mm/h [Ajayi et al., 1996]. Convective rainfalls, on the 
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other hand, are produced from strong cumulonimbus clouds which are often local and reaching 

up to 100 km/h [Houze, 1997]. They are mainly responsible for shower and thunderstorm 

rainfalls where rainfall rates exceed 10 mm/h [Houze, 1997]. Moupfouma [1987] and Ajayi et 

al. [1996] in their work indicated that these types of rainfall are typically frequent at equatorial 

and tropical climates.  

 

However, some researchers apply three rainfall regimes of drizzle, shower and thunderstorm to 

classify rainfall [Adimula and Ajayi, 1996]. In recent rainfall campaigns at Southern African 

areas, the four regime approach of drizzle (< 5 mm/h), widespread (between 5 and 10 mm/h), 

shower (between 10 and 40 mm/h) and thunderstorm (> 40 mm/h) have also been applied to 

classify rainfall [Afullo, 2011; Alonge and Afullo, 2012c]  

 

2.4.2 Measurement of Rainfall 

Rainfall is primarily measured in terms of different microstructural quantities. As a result, a 

number of microstructures can be successfully measured by ground-based or space–bourne 

equipments. A combination of ground-based equipments of rain gauge networks, disdrometers 

and radars are preferable in the measurements of microstructures such as rainfall rate, rainfall 

DSD and radar reflectivity. Rain gauges and distrometers provide useful information related to 

the time-varying properties of rainfall over the horizontal profile of rainfall in the troposphere. 

They are also cheaper, easier to maintain and readily available compared to radars. The 

distrometer, however, provides more information on the rain droplet distribution present in the 

atmosphere during rainfall events. Radars are deemed more expensive but provide useful 

analysis and aerial measurements of rainfall properties over longer distances with significant 

information on the vertical and horizontal variation [Ajayi et al., 1996; Green, 2004; Tenório et 

al., 2010]. Space-borne measuring equipments for rainfall have the advantage of vertical height 

position that allows for accurate measurements over large areas. Examples are satellites and 

weather balloons which are effectively used with onboard equipments such as radars and high-

resolution cameras to track and monitor rainfall characteristics. This equipment offer wider 

coverage areas and can be applied in the precise estimation of rainfall cells and other useful 

parameters. However, the high cost of installation and system maintenance are often 

disadvantages in the widespread use of such equipment for research purposes [Ajayi, 1996].  

 

2.4.3 Rainfall Rate Distribution 

Rainfall rate is a microstructural parameter used to describe the number of rain gauge tips 

occurring per hour of any rain event. In the real sense, this parameter actually quantifies the rate 
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(or intensity) at which rainfall water is collected over a conventional measuring system such as 

a rain gauge.  

 

Rainfall is a natural phenomenon, with systematic variation in space and time over different 

areas of the world [Ajayi et al., 1996]. This suggests that regional variability of rainfall rate 

exists on a seasonal and year-to-year basis. The rain rate distribution is an established statistical 

tool used to distinguish and compare rainfall rate at different areas around the world. The most 

important statistical parameter for evaluating the influence of rain rate on radio links is the R0.01. 

This parameter is derived from the 0.01% exceedence value of the Complementary Cumulative 

Distribution Function (CCDF). Mathematically, this parameter can be obtained from the 

knowledge of the Cumulative Distribution Function (CDF). Therefore, R0.01 is exactly the CDF 

component at 99.99% availability of rainfall rate, which is satisfactory for radio design 

purposes. Figure 2-3 shows the rain rate distribution profile over Durban over a span of about 

24 months between 2009 and 2010. It can be seen that the CCDF varies for each month of the 

year indicating monthly variability over the same location. This shows that rainfall rate is a 

highly variable parameter over the yearly span of collected data. On the issue of global 

variability of rain rate, rain maps have been authored in the studies of Crane [1996] and in the 

recommendations of ITU-R [ITU-R P.837-6, 2012]. These maps are used to partition different 

regions of the world according to their unique CCDFs. The ITU-R map is the most updated map 

and gives a better statistics on point rainfall rate at 0.01% exceedences around different areas of 

the world. This map can be found in Appendix A. 

 

 

Figure 2-3: Monthly Distribution of Rainfall Rate over Durban between 2009 and 2010 

[Alonge, 2011] 
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There have been considerable analytical studies on the subject of rainfall rate worthy of 

mention. Moupfouma and Dereffye [1982], in their work, found that the distribution of any local 

rainfall rate data exists between gamma and lognormal distributions. Thus, a simple probability 

function was proposed to simulate the rain rate distribution given by: 

 

� (? ≥ 2) =  A BCD(−E2)2F                                                            (2.7) 

 

The parameters a, b and u are constants valid for only when r > 2mm/h.  

 

In a follow-up study, Moupfouma (1985) extended the definition the constants in (2.7) to cater 

for global applications by considering data from 15 locations around the world. Thus, these new 

set of relationships were mainly dependent on the rainfall rate at R0.01. There have also been 

further modifications of these functions to improve the shape of the distribution profile of 

rainfall rate in tropical and temperate areas of the world by Moupfouma and Martin (1993). 

 

2.4.3.1 Rainfall Rate Mathematical Theory  

The mathematical theory of rainfall rate usually begins with the description of its relationship 

with other relevant rainfall parameters. The general assumption is usually with reference to the 

rain drop shape, which is practically assumed spherical for simplicity. Thus, a rain drop sphere 

with a known diameter, D, has a volume, V(D), defined by:  

 

H($) =  4"3 I$2JK     ���K�                                                 (2.8) 

 

The rain drop terminal velocity is an important parameter which tends to vary with the 

atmospheric pressure, temperature and relative humidity. Hence, there have been a number of 

popular models representing the terminal velocity of rain drops in air. Among the popular 

models are those proposed by Gunn and Kinzer [1949], Atlas and Ulbrich [1977] and Beard 

[1976] model which was modified by Van Mook [2002] as reported by Owolawi [2010]. Atlas 

et al. [1973] modified the experiments of Gunn and Kinzer [1949] to give a simplistic form of 

terminal velocity given by: 

 M�($) =  9.65 − 10.30 exp(−0.6$)    ��/R�                                 (2.9) 

 

while Atlas and Ulbrich [1977] gave their model as:  
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M�($) = 17.67 ×  (0.1$)�.T      ��/R�                                    (2.10) 

 

where D is the diameter of the rain drop in both cases of (2.9) and (2.10).  

 

The diameter integral of the product of the rain drop volume, terminal velocity and rainfall DSD 

from zero to infinity describes the rainfall rate function described in Sadiku [2000] as: 

 

?($) =  U M�($)V($)H($) �$W
�      ���/ℎ�                                  (2.11) 

 

Modifying (2.11) by substituting for V(D) from (2.8) yields a generic rain rate function which is 

related to the third moment of the rainfall DSD and is given by: 

 

?($) =  6" × 10YZ U M�($)V($)$K�$W
�       ���/ℎ�                              (2.12) 

 

Therefore, rainfall rate can be estimated given the knowledge of the terminal velocity and 

rainfall DSD provided the diameter range of rain drops are within satisfactory limits.  

 

2.4.4 Rainfall Drop Size Distribution (DSD) 

Rainfall drop size distribution refers to generic description of a scaled probability density 

function of rain drops of different sizes within a spatially defined area. The spatial variability of 

rain drop population, in terms of the logical extent and spread, is often used to identify rain 

cells. The determination of rainfall DSD is also location-specific largely because it is related to 

another microstructure, rainfall rate, which has also been proven to be location-specific. 

Research has shown that a wider spectrum of rain drops of different sizes exists as rain rate 

increases during a typical rain event. In practice, the shape of rain drops is inherently important 

to the drop size studies. The terminal velocity of a rain drop is often reliant on shape parameters 

such as diameter as seen in (2.9) and (2.10). On this, Li et al. [1995] and Li et al. [2000] 

suggested that rain drop shapes often range from spherical shapes to spheroidal and then, 

oblate-spheroidal depending on the magnitude of rain rate. 

 

The earliest established study of rain drop sizes is that of Laws and Parsons [1943], where the 

independent parameters of volume fraction percentage and terminal velocity of individual rain 

drops are used to estimate rain DSD. This study was adopted by the ITU and was largely found 

to give a good estimation of DSDs in temperate regions [Owolawi, 2010]. The description of 
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rain DSD mathematics has been shown to be strongly related to the Probability Density 

Function (PDF) of available drop sizes. Ulbrich [1983] describes the raindrop mathematical 

representation for rain drop size theory as: 

 

;($) =  V($)[ V($)�$W\        ���Y��       for $ > 0                      (2.13) 

 

where f(D) is the PDF of the rain drop sizes, N(D) is the rain DSD function and D is the mid-

value diameters of rain droplets usually ranging from 0.2 mm to about 5.5 mm.  

 

From (2.13), it follows that denominator is the rain rate-dependent scaling constant of f(D) 

known as the drop concentration variable, Nt. Thus, it follows that the drop concentration per 

unit volume is approximately the zeroth moment of the rain drop diameter defined as: 

 

V� =  U V($)�$W
\

=  3 V($	)∆$		     ��YK�                                    (2.14) 

 

The moment of rainfall DSD is an important relation with a number of applications in rainfall 

statistics [Kozu and Nakamura, 1991; Timothy et al., 2002]. Mathematically, the DSD moment 

is defined as: 

 

_(`) =  3 $	aV($	)∆$b
c

	d�    ��YK��a�                                       (2.15) 

 

where n is the moment number are often used in the determination of other rainfall 

microstructures given the knowledge of the rain DSD. For example, setting n = 0 (zeroth 

moment) yields the drop concentration as earlier seen in (2.14). The third, fourth and sixth 

moments are useful in estimating the rainfall rate or liquid water content, rainfall attenuation 

and radar reflectivity respectively [Kozu and Nakamura, 1991].  

 

The Method of Moment (MOM) parameter estimation technique is the most popular method of 

computing the unknown parameters of statistical distributions of rainfall DSD [Ajayi and Olsen, 

1985; Kozu and Nakamura, 1991; Timothy et al., 2002]. The description of rainfall DSD 

patterns can be enhanced by modelling the data using statistical distribution functions. There are 

four popular statistical model often employed by researchers in DSD modelling: lognormal, 

modified gamma, Weibull and negative exponential models. The first two models have been 
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extensively demonstrated to work favourably with data from tropical areas with high rainfall 

rates [Awang and Din, 2004; Das et al., 2010]. The last model, on the other hand, has been 

proven to be the most preferable for temperate climates [Law and Parson, 1943; Marshall and 

Palmer, 1974; Bhattacharyya et al., 2000]. The discussion will focus on lognormal and 

modified gamma models based on their importance in the evaluation of rainfall drop sizes in 

tropical areas.  

 

2.4.4.1 Lognormal Rainfall DSD 

The lognormal model rainfall DSD model is a three-parameter function defined from Ajayi and 

Olsen [1985] and Maitra [2004] as: 

 

V($	) =  Vef$	√2" exp h−0.5  ln($	) − jf '#k          ��YK��Y��                 (2.16)  
 

where NT is the total number of rain drops per unit volume, µ is the mean of the drop size data 

and σ is the standard deviation of the drop sizes. These parameters are dependent on the 

prevailing local rainfall rate, R, given as: 

 Ve =  A\?Fl                                                                        (2.17a)   j =  �n +  �n  In (?)                                                               (2.17p) 

f# =  �q + �q  In (?)                                                             (2.17r) 
 

where the coefficients, ao, bo, Aµ, Bµ, Aσ and Bσ can be obtained through regression analysis.  

 

It is usual that the MOM technique as given in (2.15) is equated to the lognormal moment 

generator given by [Kozu and Nakamura, 1991]: 

 

_a =  Ve exp s`j + 12 (`f)#t                                                      (2.19) 

 

where n is the moment index and other parameters are components of the lognormal 

distribution. The third, fourth and sixth moments of (2.19) are solved to obtain the input 

parameters as required. The lognormal DSD model is most preferred model in the descriptive 

statistics of rainfall DSD in tropical areas around the world because it works well at regions 

with high rainfall rate occurrence [Ong and Shan, 1997; Awang and Din, 2004; Das et al., 

2010]. Figure 2-4 gives the variation of rainfall DSDs at different tropical locations around the 

world at 75 mm/h. The locations compared are Singapore [Ong and Shan, 1997], Nigeria [Ajayi  
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Figure 2-4: Comparison of rainfall DSDs at different part of the world 

 

and Olsen, 1985], India [Maitra, 2004], Malaysia [Tharek and Din, 1992] and South Africa 

[Alonge, 2011]. At this particular rain rate, the probability of having maximum rain drops 

beyond 3 mm in Durban is almost zero, compared to results from other locations. 

 

2.4.4.2 Modified Gamma DSD 

The modified gamma model is a modification of the classical exponential DSD function 

proposed by Marshall and Palmer [1974], where $n represents the exponential modifier. This 

distribution is given by Atlas and Ulbrich [1974]: 

 V($	) =  V\$	n exp(−Λ$	)          ��YK��Y��                           (2.20)   
 

where No represents the constant related to number of rainfall drops, µ is the shape parameter 

and Λ is the slope parameter of the distribution. These parameters are also related to the rainfall 

rate given by: 

 V, = A,?Fv                                                                (2.21A) Λ = Aw?Fx                                                                     (2.21p) 

 

The coefficients in (2.21a) and (2.21b) can be obtained from regression analysis from results of 

the MOM technique. The modified gamma DSD moment generator is equated to raw moments 

of the data as given by Kozu and Nakamura [1991]: 
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_a =  V, Γ(j + ` + 1) Λnzaz�                                                            (2.22) 

 

The moment generator (2.20) is solved for the third, fourth and sixth moments as (2.19) and the 

estimators are obtained simultaneously. This model is suitable for rainfall DSDS at both 

temperate and tropical areas [Ulbrich, 1983; Bhattacharya et al., 2000; Awang and Din, 2004]. 

 

2.4.5 Rainfall Radar Reflectivity 

Radar reflectivity refers to the back-scattering characteristics of radar systems when 

electromagnetic waves are reflected from targeted sources. In radar systems deployed for 

rainfall studies, a standard measurement indicator called the Radar Reflectivity Factor (RRF) is 

used to investigate the nature of the back-scattering dynamics. RRF (denoted by Z) is described 

as the integral of the sixth moment of rainfall DSD over the entire diameter of rain drops 

available within the swept (or scanned) volume of a radar system. RRFs are useful for resolving 

the characteristics of the target or objects including number densities, scattering properties, 

attenuating properties and refractive properties. Mathematically, the sixth moment of rain DSD 

as a continuous function of (2.15) is given by: 

 

{ =  U $TV($)�$   ���T�YK�                                               (2.23)W
�  

   

where all parameters maintain their usual definitions. 

 

The dependence of Z on rainfall DSD makes it a useful parameter in remote sensing of 

precipitation at microwave bands over large areas [Kumar et al., 2011]. Reflectivity is related to 

the rainfall rate and this relationship is variable due to dynamics of rainfall microphysics 

[Battan, 1973; Anagnostou, 2004]. This relationship has established the understanding of 

stratiform and convective rainfall systems, and their role in the variations of rainfall attenuation.  

 

2.5 Rainfall Attenuation Prediction 

The ITU-R P.530-15 [2013] in their documents proposed a systematic technique of predicting 

rainfall path attenuation over terrestrial links at any location around the world. This classical 

method of computing path attenuation due to rain, Ap, over an effective distance, �|}} is given 

as: 

 �� =  ~��|}}                    ����                                       (2.24) 
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where γr is the specific attenuation dependent on two power-law parameters, k and α, as 

obtained in ITU-R P.838-3 [2005] such that: 

 ~� = �?�.���                      ���/���                               (2.25) 

 

,and, deff is the effective path length of the communication link given by: 

 �|}} = 2�           ����                                                         (2.26) 

 

where r is the length factor and d is the actual path length of the communication link. The 

length factor refers to the portion of the path length affected by rainfall which is estimated as 

thus [ITU-R P.530-15, 2013]: 

 

2 =  10.477��.TKK?�.���.��K�;�.�#K    − 10.579(1 − BCD(−0.024�))                   (2.27) 

 

where f is the frequency of transmission in GHz. 

 

2.5.1 The Distance-Loss Concept of Rain Attenuation 

The propagation of electromagnetic wave occurs when a energy transference from local antenna 

system is allowed to travel through free space. Once in free space, the forward travelling 

component of the electromagnetic wave interacts with different media often consisting of gases, 

microscopic granules and rainfall. The rainfall media is usually of great concern as it is highly 

sensitive to the frequency of the travelling wave energy, as well as its amplitude. Thus, in a 

rainy medium, the attenuated portion of this wave is approximately equal to the exponential 

factor of distance, l and propagation constant, γ given by Van de Hulst [1957]: 

 �� =  BY��                                                               (2.28) 

 

By further simplification in the decibel unit , this becomes: 

 �� = 4.343 ~�          ����                                                    (2.29) 

 

If the RHS of (2.29) is given as function of the unit length of km, then it can easily be seen that:  

 �1 = 4.343 × 10K ~              ���/���                                         (2.30) 
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The unit, �1, is defined as the specific attenuation due to rainfall. Sadiku [2000] gave the 

function, γ, as the product of the rain DSD, N(D) and extinction cross section, �|��, so that 

when integrated over an averaged path for an infinite number of rain drop sizes with different 

diameter, D, it becomes [Ajayi et al., 1996]:  

 

~ = U V($)�|��($) �$W
�                                                       (2.31) 

 

When (2.31) is substituted into (2.30), this gives a universally accepted formulation for 

estimating the specific attenuation of rainfall at any location given by: 

 

�1 = 4.343 ×  10K U V($)�|��($) �$      ���/���                    (2.32)W
�  

 

This shows that rainfall specific attenuation is mainly dependent on the diameter of the 

available distribution rain droplets and the Extinction Cross Section (ECS). The extinction cross 

section has been investigated using perturbation techniques by Li et al. [1995; 2000]. However, 

the complexities of their computation are not easily implemented in estimating specific 

attenuation. In the literature, the Mie scattering approach [Mie, 1908] is preferred for the 

estimation of ECS. This approach assumes that the real part of the forward scattering amplitude 

is evaluated to estimate the relative extinction such that: 

 

�|��($) =  4"�#  ?B � 12 3(2D + 1)�Aa(�, �) +  pa(�, �)�∞

�d� �  ���#�          (2.33) 

 

The coefficients, an(m,α) and bn(m,α), correspond to the Mie scattering coefficients which are 

dependent on m the complex refractive index of water, and, α which depends on the ambient 

temperature and droplet frequency. Sadiku [2000] and Mätzler [2002a, 2002b] gave the solution 

of these coefficients based on the account of the spherical nature of the raindrops using special 

spherical Bessel functions for spherical raindrops given by:  

  

Aa(�, �) =  �#�a(��)���a(�)��  −  �a(�)����a(��)��
�#�a(��)��ℎa(�)(�)��  − ℎa(�)(�)����a(��)��                         (2.34A) 

 

pa(�, �) =  �a(�)����a(��)��  − �a(��)���a(�)��
ℎa(�)(�)����a(��)��  − �a(��)�� ℎa(�)(�)��                             (2.34p) 
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where m represents the complex refractive index of water at a specified ambient temperature;  

jn(mα) and jn(α) is the spherical Bessel of the first kind with mα and α as their arguments 

repectively; hn
(1)

(α) is the spherical Hankel function of the first kind. 

 

The recent works of Odedina and Afullo [2010] and Alonge and Afullo [2011] on Mie scattering 

technique showed that a functional fit relating the ECS to the radius of a rain droplet. This 

expression is given as: 

 �|��(?) =  �|��A�����         ���#�                                                  (2.35) 

  

Where �|�� and �|�� are the power-law coefficients related to the ECS. The results of these 

coefficients are presented in Appendix C from the studies of Alonge and Afullo [2011].  

 

The procedure discussed from (2.32) to (2.35) can easily be implemented if there are readily 

available rainfall data to compute rain microstructures like rainfall DSD. In the absence of data, 

the ITU-R method proposed in the publication of ITU-R P.838-3 [2005] can be useful in 

estimating specific attenuation due to rainfall. The procedures for this method are given in 

Appendix B. However, there are concerns about this method as it appears that it leads to the 

under-estimation of specific attenuation in tropical locations [Das et al., 2010] and over-

estimation in subtropical locations [Alonge and Afullo, 2012b]. 

 

2.5.2 Rain Fade Mitigation Techniques 

The mitigation techniques used to suppress the effects of rainfall attenuation and fading are 

broadly divided into two categories: Static Rain Fade Mitigation (SRFM) and the Dynamic Rain 

Fade Mitigation (DRFM).  

 

The SRFM is the traditional method of assigning a constant power level, corresponding to the 

maximum rain attenuation experienced at 99.99% of rainfall occurrence over the year, to the 

link budget. This principle is derived from the ITU-R requirements in their global 

recommendations in ITU-R P.838-3 [2005], ITU-R P.837-6 [2012] and ITU-R P.530-15 [2013]. 

As rainfall rate availability at 99.99% (R0.01) varies globally, it is proper to assert that the 

assignment of power levels will vary globally likewise. The major advantage of this method is 

its simplicity and quick adaptability to any location around the world. However, this method is 

not totally economical and effective in the deployment of emerging radio technologies which 

emphasizes on stringent power management schemes for base station. This is because it fails to 

employ a power-level-on-demand approach to check the effects of rain fade during rain events. 
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This simply means that SRFM allocates power level to rainfall countermeasure throughout the 

year, irrespective of the period of dry spell, which dominates the calendar year. In the long run, 

this technique fails to consider the time domain effects of rain fade which is a great 

disadvantage. 

 

Other methods such adaptive power control, site diversity, adaptive coding and modulation, and 

antenna reconfiguration are categorized as DRFM techniques [Acosta, 1997; Castanet et. al, 

2003; Marayuma, 2008]. Such dynamic techniques are deemed robust because they approach 

attenuation mitigation by applying feedback-and-update procedures in the time domain, which 

require elaborate algorithm routines during rain events. The updated underlying parameters may 

include among others transmission power levels, frequency modulation schemes, antenna beam-

width alterations [Acosta, 1997; Umebayashi et. al, 2005; Nakazawa et. al, 2010]. Usually, the 

considerations for any of these parameters are dependent on the spatiotemporal and random 

behaviour of rain rate and rain attenuation. These factors, in turn, vary with rain cell sizes, rain 

rate, operating frequency of the designed base station and transmitting distance between the 

transmitter and receiver.   

 

2.6 Rainfall Attenuation and Rain Rate Characteristics in the Time Domain 

The time domain properties of rainfall attenuation have been shown to vary randomly as rainfall 

rates have time signatures that are also randomly varied. Since rainfall rate is related to rainfall 

attenuation as shown in ITU-R publications, it is considered as an independent variable in 

attenuation studies [ITU-R P.838-3, 2005; ITU-R P.530-15, 2013]. Therefore, understanding the 

time-varying characteristics and stochastic process of rain rate is advantageous to understanding 

rainfall attenuation. Perhaps, the greatest benefit of understanding the stochastic variation of 

rainfall in the time domain is in the future development of rainfall time-correlated channel 

models. There have been a number of attempts at demystifying time series characteristics of 

rainfall rate and rainfall attenuation. The most dominant approach is the utilization of Markov 

Chain (MC) probabilities applied in most recent studies [Van de Kamp, 2003; Alasseur et al., 

2004; Heder and Bitós, 2008; Maruddani et al., 2010].  

 

The MC probability theory is an approach for understanding chain-like probability events in 

which a step-wise jump from one state to another is linked by probabilities. The Markov chain, 

as it is called, first appeared in the works of Andrey Andreyevich Markov (1856-1922) in 1906, 

which was later extended by Andrey Nikolaevich Kolgomorov in 1936. MCs are initiated from 

the popular subject of stochastic Markov processes, which is applied to characterize time-

varying phenomena predicated upon the past probabilities of the system [Dymarski, 2011]. This 
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term is more agreeably used to describe statistically dependent and time domain systems, which 

are often mapped as discrete or finite state spaces, in short and long term predictions. It is 

applied in a number of real time systems for predictions, projections and evaluation of time-

varying systems mainly in life sciences, engineering, financial and business analysis, and, 

meteorological sciences.     

 

2.6.1 Markov Chain Modelling for Rain events and Rain Attenuation Time Series 

The application of MCs in rainfall attenuation studies employs the knowledge of probability 

theory to establish empirical state transition indices. Primarily, the technique involves the use of 

rainfall rate or rain attenuation thresholds to determine states within a specified time. 

Sometimes, other criteria may be added to make the technique robust and practicable; two of 

such studies are hereby considered. One of such cases is the application of two-level Markov 

model structure by Alasseur et al. [2004] over Spain. In their work, the Markov chain structure 

generates rain rate samples based on its previous time samples. The first level is usually semi-

Markovian and is important in the determination of ‘rain and ‘no rain’ states. The second level 

employs an N-state Markov chain that considers rain rate intensities from previous time 

samples. To this end, a 42-state Markov chains with Gaussian conditional probability is applied 

to determine the probability of current rain rates from previous samples. This study showed that 

a higher number of Markov states produced better resolution especially for higher thresholds of 

rain rates. The approach gave a good agreement between the experimental data and the 

simulations. 

 

The second study is that of Maruddani et al. [2010] which focused mainly on the application of 

a variant of the Markov model called the Hidden Markov Model (HMM). In this study of 

rainfall synthesis, HMM was applied to determine the channel characteristics through the 

determination of rainfall rate states over Indonesia. In this method, rainfall rate from rain gauge 

data were categorized into four states and applied to determine HMM parameters some of 

which include initial matrix, transition matrix and output symbol among others. Their approach 

was mainly applied in the synthesis of rain rates and the prediction of rain fade for channel 

modelling, The model assumes that the conditional matrix probability of an output symbol, p�, 

given the input symbol, A�, is given by: 

 

P�p	�|A	�� = P�p�, A�� P�p#, A#� … P�p�, A�� = � P�p	|A	��
	d�                     (2.36)  
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The overall system can be represented by embedded elements given by {S, A, B, π, P{a}} 

where S is the channel space state, A and B are the input and output alphabets respectively, π is 

the initial state probability and the conditional Markov probability is given by P{a}with 

elements Pr{a, j|i}. 

 

2.7 Climatic Characteristics of Study Areas  

Throughout this study, the rainfall attenuation studies will comparatively focus on two locations 

at the tropical sub-Saharan Africa: Durban, South Africa at 29
o
52’S, 30

o
58’E and Butare, 

Rwanda at 2
o
36’S, 29

o
44’E. From the location coordinates, both cities tend to lie along similar 

longiitudinal coordinates, hence, varied forms of tropical climate are experienced at both sub-

saharan African locations. Figure 2.5 gives the map of these two areas at their locations on the 

African continent. Durban being located at the Southern tip of the African continent experiences 

gentler form of tropical features which is often described as subtropical. On the other hand, 

Butare, being close to the great Equator, predominantly experiences a high-strung form of 

tropical characteristics classified as equatorial. In the proceeding subsections (2.7.1 and 2.7.2), 

the characteristics and features of these locations are further discussed. 

 

2.7.1 Features of Subtropical Africa: Durban 

Durban is a South-Eastern city located along the coastline of South Africa in the KwaZulu-

Natal Province. The city is bounded by the Indian Ocean with an average of 28 m above sea 

level. The annual weather is modulated by warm current of Agulhas throughout the year. It is 

classified as a subtropical zone, under category C (mild mid-latitude climate), sub-category f 

(‘feutch’ or moist) and hot temperature, a (between 23°C and 27.9°C) of the Köppen-Geiger 

climatic classification [Kotek et al., 2006]. Therefore, the complete sub-category profile of 

Durban is given as humid subtropical class (Cfa). This classification inherently describes a 

location with a hot summer and variable rainfall pattern annually. With an annual rainfall of 

over 1000 mm and annual temperature of about 20°C, the city is perhaps the warmest in the 

Southern African clime with four seasonal cycles: summer, autumn, winter and spring [Fashuyi 

et al., 2006; [1]].  

 

Over the years, the city has been a subject of persistent research in the understanding of rainfall 

attenuation problems in the South African region. Some of these campaigns are hereby 

highlighted as follows: Odedina and Afullo [2008] and Odedina and Afullo [2010] approached 

their studies by utilizing hourly rainfall data from the South African Weather Services (SAWS). 

Largely, their studies also focused on the influence of integration times in Durban and the 

derivation of a similar relationship at other South African cities. Rainfall attenuation modelling  
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(b) 

 

Figure 2-5: Maps showing the two locations of study in Sub-Saharan Africa [3] (a) Durban in 

South Africa (b) Butare in Rwanda 
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was undertaken using an experimental terrestrial link operating at 19.5 GHz between Howard 

College campus and Westville campus of the University. These earlier studies were 

simultaneously complemented by the research of Owolawi and Afullo [2007] and Owolawi 

[2011] for which rain attenuation contour maps were developed for South African cities based 

on the available five-minute rainfall data from SAWS. An initial investigation into the area of 

rainfall DSD modelling was considered using the method of Maximum Likelihood (ML) 

parameter estimation technique. Afullo [2011], in a similar guise, applied the Kernel parameter 

estimation approach to estimate the model parameters of rainfall DSD in Durban. A further 

research into the development of rainfall DSD models, seasonal variation of rainfall 

characteristics and estimation of rainfall attenuation in Durban was investigated in the studies of 

Alonge and Afullo [2012b] and Alonge and Afullo [2012c]. Furthermore, Akuon and Afullo 

[2011a] and Akuon and Afullo [2011b] worked on the development of rain cell models using 

SAWS rain gauge networks and microwave laboratory disdrometer. This research assisted in 

the prediction of rainfall path attenuation for terrestrial and satellite links over South Africa. In 

a much more recent work, Adetan and Afullo [2013] and Adetan and Afullo [2014] 

demonstrated using disdrometer data, the proportionate critical diameters essential for the 

severe influence of rainfall specific attenuation over Durban, South Africa and Butare, Rwanda. 

 

2.7.2 Features of Equatorial Africa: Butare 

Butare is a Rwandan city located in South-Western part of Rwanda, which is a central African 

country. The city is about 2° south of the Equator and hence, is a flourishing equatorial location. 

On the Köppen-Geiger climatic map, the city is assigned with A (tropical rain forest) and w 

(wet) characteristics, hence, it is grouped as tropical wet climate (Aw). The seasons at this 

location are mainly divided into four categories: dry and wet seasons occurring twice in a year. 

The dry seasons occur from June to September and January to March, while the wet seasons 

occur between mid-March to June, and then, mid-September to December [4]. This is in 

consonance with observations in tropical locations that dry seasons occur relatively for short 

periods or may not be present at all [Green, 2004].  

 

Like most parts of the country with domineering high altitude almost everywhere, the altitude at 

Butare reaches as high as 1700m making it a good location for Earth-space communication 

[Alonge and Afullo, 2013b]. Based on the unusual rainfall pattern around the Southwestern 

region of Rwanda, Butare experiences a high percentage of shower and thunderstorm rainfalls 

throughout the year. The heavy rainfall patterns are observed in the annual rainfall average of 

about 1150 mm with annual average temperature not exceeding about 20 °C [5].  
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This site is to be investigated based on the equatorial rainfall characteristics as compared to the 

subtropical rainfall pattern in Durban. Therefore, the next chapter focuses on the statistical 

variation of rainfall microstructures with measurements in Durban, South Africa and Butare, 

Rwanda. This detailed study will initially form the basis of understanding the spatial properties 

of these microstructures to be investigated. 
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CHAPTER THREE 

Analysis of Rainfall Microstructures in Tropical Africa 
 

3.1  Introduction 

Hybrid networks supported by satellite and terrestrial microwave links require high-speed 

connection, and hence, higher frequency spectrum operating within the microwave and 

millimeter band region to deliver sophisticated low-end services to customers. However as 

earlier discussed in literature review, wireless networks transmitting beyond 10 GHz are often 

limited by the attenuating characteristics of rainfall. Globally, rainfall attenuation is a subject of 

interest especially at locations of immense and intense rainfall events. More so, many of these 

locations at low and mid latitudes around the world, have been of interest to radio engineers as 

they have unstable levels of rain fade. Rainfall microstructural parameters are very important as 

they provide information on potential outages and network black-outs due to unstable rain fade 

levels. The knowledge of the exact nature of the variation of rainfall microstructures in tropical 

Africa is largely an unexplored area. Therefore, this chapter compares rain microstructures of 

rainfall rate, rainfall DSD and radar reflectivity at equatorial and subtropical Africa. Rainfall 

data is obtained from the RD-80 Joss-Waldvogel (JW) distrometer measurements at two sites, 

Durban, South Africa and Butare, Rwanda. The measurements are taken as a single data - and 

then processed accordingly to determine their Stratiform-Convective (S-C) thresholds at 38 

dBZ. These thresholds, as computed at the two sites, are then applied as theoretical boundaries 

to separate the rainfall measurements into stratiform and convective regimes. Furthermore, the 

specific attenuation due to rain at both sites are predicted via the Mie scattering technique and 

duly compared. Finally, the determination and comparison of S-C thresholds at other global 

sites are determined at 38 dBZ with other results in tropical Africa. 

 

3.2 Background of Stratiform-Convective Classification  

The mechanism of rainfall attenuation is a result of the scattering and absorption of transmitted 

signal energy by rainfall droplets. This mechanism is dependent on frequency, drop-shape and 

temperature [Aydin and Daisley, 2002; Das et al., 2010]. The amount of energy absorbed or 

scattered depends on the rain drop-size and rainfall rate, which are often inhomogeneous in 

space and time during rain events. Thus, for a rain event, it is very likely to experience different 

attenuation within a swept area, at the same rainfall rate due to the varying number of rain drops 

of different sizes [Chen et al., 2011]. 

 

The obstruction of the strongest signature of Fresnel ellipsoids by dense columns of rain 

droplets in a swept area can be estimated by quantifying reflectivity via the processing of 
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electronic data from radar systems or alternative ground measurements. Ground or space-borne 

radar measurements both estimate reflectivity parameters with background information on rain 

DSD and droplet densities [Tenório et al., 2010; Kumar et al., 2011]. In the absence of radars, 

the rainfall distrometer or rain gauge networks can be deployed to provide alternative 

measurements of rain rate and droplet density. Better still, it can provide information related to 

rainfall indices such as Liquid Water Content (LWC), rain rate and radar reflectivity 

[Bartholomew, 2009]. 

 

Generally, rainfall process during a rainfall event can be considered to have three-stage 

constituent regimes: stratiform, transitional and convective [Tokay et al., 1999; Wilson and Tan, 

2001]. Researchers have reported the existence of these regimes in relation to their prevailing 

cloud types leading to rain events. For instance, Houze [1997] reported that stratiform 

precipitations (~ < 20 mm/h) are usually associated with strong horizontal profile, with 

widespread and low rain rates over a large cell area. They are formed from nimbostratus clouds 

and appear as bright bands under radar [Houze, 1997]. Convective precipitations (~ > 20 mm/h), 

on the other hand, are induced from cumulus and cumulonimbus cloud formations. They are 

reputed to have stronger and columnar vertical profiles with characteristically small rain cells 

(less than 4 km in diameter) [Houze, 1997; Anagnostou, 2004]. The transition portion as 

observed in the studies of Kumar et. al [2011], mostly exists as a buffer regime during intense 

rainfall, between stratiform and convective regimes or vice versa. Generally, the stratiform 

portion of a rain event is mainly responsible for drizzle and widespread rainfalls, while, the 

convective portion generates rainfall of showers and thunderstorms. Classifying of precipitation 

datasets assists in the understanding of cloud physics and rainfall retrieval process from 

measurements [Houze, 1997]. It is also very useful in estimation of rain cell areas for the 

assignment of advection velocities in radio link designs [Begum et al., 2006]. In recent studies, 

classification (or discrimination) of S-C threshold can also be applied to determine the vertical 

extent and precipitation profile in temperate and equatorial climates [Capsoni et al., 2006; Lam 

et al., 2010]. There are different methods of classifying Stratiform and Convective (S-C) 

regimes from distrometer and radar measurements [Houze, 1973; Awaka, 1997]. Some of these 

methods include the Background-Exceeding Technique (BET) for ground measurements and 

Precipitation Radar (PR) algorithms for processing radar images. For simplicity, this study 

employs the reflectivity threshold of 38 dBZ for the S-C classification as proposed by Gamache 

and Houze [1982].  
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3.3 Measurement and Data Processing  

In the absence of conventional radar-derived data, the Joss-Waldvogel (JW) RD-80 distrometer 

was employed at the sites in Durban, South Africa (29
o
52′S, 30

o
58′E) and Butare, Rwanda 

(2
o
36′S, 29

o
44′E) for the measurement of rainfall microstructural parameters.  The JW RD-80 

impact disdrometer unit is a rainfall data archiving and retrieval system categorically employed 

in the measurement and monitoring of rainfall microstructural parameters namely rain rate, 

rainfall drop-size, rain accumulation and rain reflectivity. It is designed and manufactured by 

Disdromet Ltd, Switzerland [2]. 

 

The RD-80 distrometer unit is most recent series sequel to RD-69 unit that operates on the 

principle of accelerating rain drop impact on its topmost sensitive surface area. This principle is 

obtained from the studies of Gunn and Kinzer [1949] which estimated conveniently the rainfall 

diameter interval and drop terminal (or fall) velocity. The system consists of two independent 

units connected to the microcomputer via an RS-232 ethernet cable standard: the outdoor unit 

and the indoor unit. The circuit structural design of this distrometer is shown in Figure 3-1a, 

while the system architecture is shown in Figure 3-1b. The outdoor unit consists of a highly-

sensitive pressure transducer, which produces low power signal from rain drop impact collected 

over a sampling area of 0.005 m
2
 and at a variable sampling interval between 30 or 60 seconds. 

The indoor unit is an embedded signal processing system which acts as an interface to the 

computer archive. The outdoor unit speaks to the indoor unit via the RS-232 communication 

protocols after which inbuilt algorithms are used to convert the incoming information to rainfall 

parameters. Usually, the processed data is logged to the computer for future use. The unit has an 

inbuilt capability of characterizing detected rainfall drops into 20 specified diameter classes 

(from 0.359 mm to 5.373 mm) at ±5 % accuracy. The diameter range for each class is  

 

 

Figure 3-1a: The configuration of the outdoor and indoor units of the Joss-Waldvogel RD-80 

impact distrometer system (RD-80 product information: [2]) 
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Figure 3-1b: Block diagram for the circuit structure of JW RD-80 distrometer (RD-80 product 

information: [2]) 

 

equivalent to �$ ± ∆�# � mm, so that the minimum bound for any class is �$ −  ∆�# � mm, while 

the maximum bound is �$ + ∆�# � mm. Information available in Appendix D shows the 

designation of this distrometer for the available diameter channels for droplet sizes, their fall 

velocities and equivalent diameter intervals. In Durban, the equipment was installed at the 

University of KwaZulu-Natal (UKZN), Howard College Campus, Durban, from January 2009 to 

December 2010. At Butare, the equipment was installed at the National University of Rwanda 

(NUR), Butare, with a shorter period - between March 2012 and December 2012. The equipment 

at both locations were configured to generate rainfall data at one minute interval. Hence, the 

default rainfall integration time used in this thesis is one minute (or 60 seconds). For data 

processing, rainfall measurements with aggregate number of drops less than 10 were discarded; 

this is to minimize the underlying effects of dead time errors. Additionally, only rainfall samples 

exceeding 1 mm/h were considered, so that for Durban and Butare, a total of 8073 and 3659 

useful rainy samples were processed respectively. The maximum rainfall rate recorded in Durban 

and Butare is 117.15 mm/h and 78.52 mm/h respectively. A summary of all the distrometer 

measurements and other informative details are presented in Table 3-1. 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

36 

 

 

Table 3-1: Site Locations and Measurement Specifics 

 

Location 

Total Rainfall 

(mm) 

Lat 

O
S 

Long 

O
E 

No. of Rainy 

Events 

Samples (minutes) Climatic 

Features Collected Filtered 

DURBAN 703.34 29
o
52′ 30

o
58′ 242 86470 8073 Subtropical 

BUTARE 561.43 2
o
36′ 29

o
44′ 74 19973 3659 Equatorial 

 

At this point, understanding the unique geographic and climatic conditions at the two 

measurement locations is pertinent to this study. Butare, is located at a South-Western, low-

latitude coordinates (close to the Equator) of 2
o
36′S and 29

o
44′E of the country of South-Western 

Rwanda. The equatorial conditions at this location induce the prevalence of super-tropical 

climate resulting in severe thunderstorms and strongly convective rains. Highland features are 

prominent with terrain elevation of 1700 m above sea level, hence, mountainous [Alonge and 

Afullo, 2013b]. Unlike the super -tropical climatic features present at Butare, Durban is located at 

mid-latitude coordinates of 29
o
52′S and 30

o
58′E, with an underlying subtropical climate along 

the East coast of South Africa. The rainfall pattern appears as a combination of temperate and 

tropical patterns - characterized by a combination of stratiforms and few cases of strong 

thunderstorms. In addition, Durban possesses a natural coastline with 28 m height above sea 

level with the climate modulated annually by the easterly Indian and Atlantic Ocean currents. 

Apart from these features, these locations also have different structures of seasonal cycles with 

Butare experiencing wet and dry seasons occurring twice in its annual cycle. On the other hand, 

Durban experiences a four-season annual cycle comprising of summer, autumn, winter and 

spring. 

 

3.4 Radar Reflectivity Data Classification for the Stratiform-Convective Bounds 

The data from the JW distrometer consists of rain drop number statistics and derived rainfall 

rate. To classify the measurements from the two sites into S-C samples, their radar reflectivity 

indices are computed using the appropriate algorithm. Therefore, the Radar Reflectivity Factor 

(RRF) algorithm related to the sixth moment of rainfall DSD is computed. This is given by: 

 

� =  3 V($	)$	T∆$	
#�

	d�           ���T�YK�                                     (3.1)  
 

,and, the reflectivity in dBZ given as: 

  { =  10 � ��(�)    ���{�                                                           (3.2) 
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where N(Di) is the rainfall DSD of the ith channel computed from the distrometer in (3.1) [Chen 

et al., 2011]: 

 

V($	) =  ¡	�1  × ¢ × M($	)  × $	    ���Y��YK�                                       (3.3) 

 

where Ci is the number of drop available at the ith channel, �1 is the sampling area of the 

distrometer cone set as 0.005 m
2
, T is the sampling interval given as 60 seconds, v(Di) is the 

terminal velocity of the ith channel and ∆Di is the diameter interval of the ith channel. 

 

The computed radar RF (Z) as explained by earlier authors can be written as a simple power- 

law function with rainfall rate (R) [Marshall and Palmer, 1948; Battan, 1973; Feingold and 

Levin, 1986]. This expression, also known as Z-R relationship, proposed by Marshall and 

Palmer [1948] is given as: 

  � = �?F       ���T�YK�                                                          (3.4) 

 

where A and b from numerous studies are coefficients dependent on geographical and climatic 

factors. The standard Z-R expression given in their study was computed as A = 200 and b = 1.6 

from the exponential DSD for European climate. Battan [1973], in addition, also produced Z-R 

results for 69 locations around the world. 

 

By combining (3.1) - (3.3), the coefficients A and b for continuous rainfall in Durban and 

Butare are obtained by regression technique. In Table 3-2, we present results of the monthly 

rainfall parameters in Durban and Butare. In Durban, peak reflectivities vary over the months 

annually with the highest value of 55.15 dBZ observed in the month of April. This coincides 

with the recorded peak rain rate of 117.15 mm/h. The b coefficients of the Z-R parameter are 

seen to be fairly constant (~ 1.55) from December to May which coincides with the period of 

summer and autumn. Elsewhere, the values are also seen to be close between September and 

November (~1.65). For the entire year, the averaged peak reflectivity is 48.63 dBZ. At Butare, 

the monthly peak reflectivity also varies over the year. The highest value is observed in March 

at 54.42 dBZ and fails to correspond to the peak rainfall rate. The peak reflectivity is also seen 

to decrease from March to June, with a dry spell in July. Thereafter, the reflectivity remains 

fairly constant. For the overall datasets in both cases, the overall Z-R coefficients are obtained 

for Durban (A = 157.76, b = 1.52) and Butare (A = 265.6, b = 1.45). The coefficients at Butare 

are slightly closer to those obtained in the studies of continental and equatorial Africa by 
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Table 3-2: An Overview of Monthly Rain Statistics in Durban and Butare 

 

Location 

 

Month 

Duration 

(min) 

Total Acc. 

(mm) 

Peak Rain 

Rate (mm/h) 

Peak 

Reflect.(dBZ) 

Z-R 

Function 

 

 

 

 

 

 

 

DURBAN 

JAN 1396 88.25 48.93 47.22 126R
1.55

 

FEB 974 56.76 49.38 46.46 170R
1.56

 

MAR 522 42.13 66.25 47.34 104R
1.55

 

APR 630 54.40 117.15 55.15 147R
1.58

 

MAY 651 44.47 76.43 51.54 602R
1.24

 

JUNE 231 3.59 38.61 54.99 197R
2.05

 

JULY 34 3.08 23.36 43.61 342R
1.60

 

AUG 621 23.04 12.59 50.17 333R
1.67

 

SEP 388 16.46 18.57 40.59 88R
1.66

 

OCT 216 15.61 20.37 41.57 86R
1.62

 

NOV 541 39.61 57.67 47.99 83R
1.65

 

DEC 1671 109.13 47.83 56.96 124R
1.54

 

 

 

 

 

BUTARE 

MAR 215 26.41 68.33 54.42 270R
1.59

 

APR 1119 90.03 78.52 52.24 267R
1.46

 

MAY 174 34.39 73.99 51.46 244R
1.42

 

JUNE 609 72.13 56.71 50.88 208R
1.50

 

JULY -NR- X X X X 

AUG 271 25.79 60.94 51.78 296R
1.37

 

SEP 279 23.60 35.96 47.39 276R
1.57

 

OCT 662 51.70 71.59 51.92 304R
1.39

 

NOV 330 36.2 46.84 50.71 245R
1.48

 

 

Sauvageot and Lacaux [1995] and Ochou et. al [2007]. In Durban, however, the coefficients 

appear closer to the earlier results of Marshall and Palmer [1948] with lower value of A. 

 

The determination of S-C thresholds for the datasets at the two sites is computed using the 38 

dBZ threshold proposed by Gamache and Houze [1982]. Equations (3.2) and (3.4) are modified  

so that the rainfall rate transition threshold, Rth, at 38 dBZ is given as: 

 

� �� (?£ℎ) =  3.8 − � �� (�)p                                                           (3.5) 

 

where Rth is the rainfall rate at the S-C threshold in mm/h. 
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By computation, these thresholds (Rth) in Durban and Butare are found to be 11.34 mm/h and 

8.84 mm/h respectively from their Z-R relationships. This shows that rainfall typically begins an 

‘early’ transition into convective rainfall at Butare, with about 2.5 mm/h lag behind Durban. On 

obtaining these thresholds, the filtered data at both locations are then reclassified into stratiform 

and convective rainfall regimes as seen in Figs. 3-2a-d. A summary of the classified data 

samples for each regime at the sites is presented in Table 3-3. As seen in this table, stratiform 

rainfalls account for about 95% and 85% of rainfall measurements in Durban and Butare 

respectively. 

 

Table 3-3: Data Samples of Stratiform and Convective Rains at Butare and Durban 

 

LOCATION 

STRATIFORM 

(R < ?�¤) 

CONVECTIVE 

(R > ?�¤) 

Samples Z-R Fit Samples Z-R Fit 

DURBAN 7667 162.31R
1.48

 406 149.67R
1.59

 

BUTARE 3093 277.88R
1.40

 566 149.04R
1.66

 

 

 

(a) 

(b) 

 

     (c)  

 

(d) 

Figure 3-2: The continuous plots of radar reflectivity versus rainfall rate observed at the sites: 

(a) Durban –Stratiform (R < 11.34 mm/h) (b) Durban – Convective (R > 11.34 mm/h) (c) 

Butare–Stratiform (R < 8.84 mm/h) (d) Butare–Convective (R > 8.84 mm/h) 
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Thus, about 5% and 15% of the overall classified data are convective samples at both sites. 

Again, the predominance of stratiform precipitation at the two measurement sites is consistent 

with observations at mid-latitude areas, especially in tropical regions [Houze et al., 1990; Nzekou 

et al., 2004; Tenório et al., 2010]. 

 

By fitting the reflectivity samples at both sites for stratiform and convective regimes, it is found 

that A coefficients of the Z-R function for former regime are higher than that of the latter regime 

(see Table 3-3). Conversely, b coefficients for convective regime are higher than those observed 

for stratiform regime. At Butare, A coefficients for stratiform are higher than those observed in 

Durban. On the other hand, b coefficients in Durban for convective regime are lower than seen at 

Butare. A close similarity in the reflectivity coefficients is also observed under the convective 

regime with Durban (A ~ 150, b ~ 1.59), and Butare (A ~ 149, b ~ 1.66). This discovery signifies 

approximate rainfall structures at both sites for convective precipitation. 

 

3.5 Statistical Comparison of Rain Microstructural Parameters at S-C Bound 

The variation of rainfall characteristics at equatorial and subtropical areas depend on the 

dynamics of the microphysics. Therefore, it is important to understand the differences in 

stratiform and convective regimes of rainfall microphysics at these sites. To achieve this, the 

already classified datasets are examined statistically under three microphysical parameters 

namely: rainfall rate, rainfall DSD and radar reflectivity. 

 

3.5.1 Comparison of Rainfall Rate Distributions at S-C Precipitation Bound 

The Complementary Cumulative Distribution Function (CCDF) of the rainfall rate datasets, for 

both stratiform and convective regimes from both sites are generated as shown in Figure 3-3a 

and 3-3b. The maximum bound of the stratiform regime at both locations equals to the threshold 

obtained from (3.5). For the convective regime, the maximum bounds are 120 mm/h and 80 

mm/h respectively in Durban and Butare respectively.  

 

From Fig. 3-3a, it is observed that the compared CCDF at Butare slightly exceeds that of Durban 

for stratiform regimes for the period of comparison. However, the CCDFs intercept at 6.3 mm/h 

and diverge due to the influence of the gradual breakaway as 38 dBZ thresholds are approached. 

From Fig. 3-3b, the CCDF in Durban is seen to exceed that of Butare – for rain rates up to about 

45 mm/h for the convective regime. However, beyond this rain rate, Butare is seen to 

increasingly have higher exceedence values of CCDF than Durban until they intercept at around 

74 mm/h; and thereafter diverges. Based on the observations from the CCDF comparisons under 
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convective conditions, it is intuitive to note that Butare experiences higher exceedences than 

Durban beyond 20 mm/h, until both sites approach the breakpoint at R0.01 similar under 

convective regime. Between the first breakpoint at 45 mm/h and the second at 72 mm/h, the plot 

indicates higher frequencies of heavy thunderstorms in Butare compared to Durban. However, 

due to the higher maximum rainfall rate recorded in Durban, rain rates beyond 0.1% of the 

exceeded time are higher under stratiform regime.  Table 3-4 summarizes the rain distribution 

statistics at both sites exceeded at 0.1%, 0.01%, and 0.001% of the time. Evidently, these 

percentages are higher in Durban for both regimes as seen from the results. 

 

(a) 

 

(b) 

Figure 3-3: Rainfall Rate Distribution observed in Durban and Butare: (a) Stratiform (b) 
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Table 3-4: Comparison of rain rate exceedences for measurements in Durban and Butare 

Time Percent  

(%) 

STRATIFORM CONVECTIVE 

DBN BTR DBN BTR 

0.1 11.01 8.55 79.2 72.2 

0.01 11.07 8.6 82.3 74.5 

0.001 11.28 8.62 85.8 79 

 

3.5.2 Comparison of Rainfall DSDs at S-C Precipitation Bound 

The rainfall DSDs at the two sites based on stratiform-convective classes are compared by 

applying a known statistical distribution model. The preferred model selected for this study is the 

three-parameter lognormal distribution with three unknown variables. The lognormal model has 

been proposed in several studies as the foremost model useful for rainfall DSD estimation in 

tropical and subtropical locations from measurements [Ajayi et al., 1996; Das et al., 2010].  The 

lognormal distribution for rain droplets is given as: 

 

V($	) =  V�$	f√2"  BCD h−0.5  ln($	) −  jf '#k                                                        
  for V�  >  0; −∞ <  j <  +∞;  f >  0     (3.6)  

 

where Nt, µ and σ are the unknown variables with the diameter Di as the only input obtained from 

measurement.  

  

Using the Method of Moments (MOM) for parameter estimation, the variables corresponding to 

each rainfall regime at these locations are computed [Kozu and Nakamura, 1991]. The 3rd, 4th 

and 6th moments of the measured rain dropsize data are used to obtain the three unknown 

lognormal parameters, based on their rainfall relationships [Kozu and Nakamura, 1991]. The 

derived results obtained are given as regression functions dependent on the rainfall rate, R. Table 

3-5 gives a summary of the functions representing the solutions obtained for the parameters of 

each regime based on the lognormal DSD. The plots for the lognormal DSD model computed at 

different rainfall rates across the two investigated regimes are shown in Figure 3-4 (a)-(d). The 

rainfall rates investigated are at 5 mm/h, 15 mm/h, 40 mm/h and 80 mm/h.  

 

Firstly, it is observed that the distribution of small droplets in Butare decreases rapidly as the 

rainfall rates increases, while transiting from stratiform to convective regimes. Infact, this 

anomaly is much more severe for the rain droplets under convective regimes with small rain drop 
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Table 3-5: Parameters of the Lognormal DSD for Stratiform and Convective Rains  

BOUNDS PARAMETERS DURBAN BUTARE 

 

STRATIFORM BOUND 

NT 300R
0.0614

 101.72R
0.2463

 

µ -0.3441 + 0.2462 Ln (R) -0.0776 + 0.2133 Ln(R) 

σ
2
 0.075 + 0.0005 Ln(R) 0.0818 – 0.005 Ln(R) 

 

 

CONVECTIVE BOUND 

 

PARAMETERS DURBAN BUTARE 

NT 170.39R
0.2011

 161.3R
0.0805

 

µ -0.1295 + 0.1903 Ln (R) -0.1587 + 0.2498 Ln(R) 

σ
2
 0.0275 + 0.018 Ln(R) 0.0439 + 0.0053 Ln(R) 

 

 

 

(a) 

 (b) 

 

(c) 

 

(d) 

Figure 3-4: Rainfall DSD variation in Durban and Butare using the S-C Bounds at Different 

Rain Rates: (a) 5 mm/h (b) 15 mm/h (c) 40 mm/h (d) 80 mm/h 
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sizes (with diameter less than 0.913 mm) having DSDs less than one and tending to zero. In 

contrast, Durban is seen to experience higher scales of DSDs for both stratiform and convective 

regimes. Interestingly, it is also observed that larger rain drop sizes have higher statistical 

representation at Butare for stratiform regime, than seen in Durban (see Figs. 3-4a and 3-4b). 

However, for convective regime, the DSDs of large droplets are similar at both Durban and 

Butare (~ > 2.5 mm). This suggests that the structural distribution profile of large rain droplets at 

Butare and Durban are slightly similar under convective conditions. However, the near-absence 

of smaller droplets (~ < 2.5 mm) at the Rwandan site (please see Figs. 3-4c and 3-4d) under   

convective conditions, may be linked to its equatorial characteristics and its unique height above 

the sea level (~1.7 km).  

 

From research, it has been documented that areas around tropical regions have reduced 

population (and smaller probability occurrence) of smaller rain droplets especially at high 

rainfall rates i.e. convective conditions [Ulbrich, 1983; Sauvageot and Lacaux, 1995]. 

Additionally, the intense and ‘super-tropical’ structure of rainfall at Butare – as with most 

locations around the equator – validates these observations. It might suffice to add that the 

integrity of large droplets produced from rain clouds will be much higher at this location. This is 

partly due to the near-passive nature of droplet disintegration mechanisms like rain height and 

wind effects during rainfall. The implication of this phenomenon will ultimately affect the 

contributions of rain droplets in wave scattering and absorption mechanism responsible for rain 

attenuation as will be later seen. 

 

3.5.3 Comparison of Radar Reflectivity Distribution at S-C Rain Precipitation 

Bound 

The radar reflectivity distributions for stratiform and convective regimes obtained in Durban and 

Butare are shown in Figures 3-5a and 3-5b. It should be noted that applying the S-C rain rate 

threshold to the two-regime datasets result in ‘smearing’ of reflectivity values below and above 

the 38 dBZ threshold for stratiform and convective regimes as seen in Fig 4a and b. The 

‘smearing’ is attributed to the randomness of the rainfall DSD generation process during rain 

events. Therefore, it is possible to have rainfall rate samples with values above 38 dBZ under 

stratiform conditions, and then below 38 dBZ under convective conditions.  

 

In Fig. 3-5a, the stratiform distributions at the two locations are seen as having the same shape 

profiles with different statistical mean (µz) and standard deviation (σz). The radar reflectivity 

distribution in Durban is seen as having higher probabilities of reflectivities less than 28 dBZ, 

while the converse is obtained at Butare. This variation, we know is also related to the rainfall  
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(a) 

 

(b) 

Figure 3-5: The radar reflectivity distributions for stratiform and convective rainfall bound: (a) 

Durban (b) Butare 

 

DSD – this translates to variation in the appearance of rain drop sizes. Firstly, it should be noted 

that under stratiform DSDs, the visible presence of small rain droplets is responsible for the 

lower values of radar reflectivities less than 18 dBZ, in Durban. In the case of Butare, reflectivity 

samples greater than 28 dBZ have higher occurrence probability than seen in Durban. This again 

is due to the obvious presence of large droplets for the stratiform DSD profile as earlier 

explained (see subsection 3.5.2). For the convective reflectivity distribution profile in Fig. 3-5b, 

we notice a striking similarity in the shape profile of reflectivity values for samples at both 

locations. The shape profiles of the radar reflectivity probabilities at both locations are evidently 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 15 20 25 30 35 40 45 50

P
ro

b
a

b
il

it
y

 D
e

n
si

ty
 F

u
n

ct
io

n
 (

d
B

Z
)-1

Radar Reflectivity (dBZ)

DURBAN (Stratiform)

BUTARE (Stratiform)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

30 35 40 45 50 55 60

P
ro

b
a

b
il

it
y

 D
e

n
si

ty
 F

u
n

ct
io

n
 (

d
B

Z
)-1

Radar Reflectivity (dBZ)

DURBAN (Convective)

BUTARE (Convective)



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

46 

 

 

normally distributed and can be statistically described by a Gaussian distribution function given 

by: 

 

D({) =   1f/√ 2" BCD ¨− 12 I{ −  j/f/ J#©                  ���{�Y�                 (3.7) 

 

The parameters, µz and σz, from (3.7) are obtained for the two sites by applying the method of 

maximum likelihood parameter estimation technique.  

The radar reflectivity data are further analysed based on the stratiform and convective regimes. 

For stratiform class, the set of parameters estimated in Durban (µz = 27.42, σz = 5.42) and Butare  

 (µz = 30.24, σz = 4.5) are with Root-Mean Square (RMS) errors of 0.31% and 0.62% 

respectively.  Likewise, the parameters for the convective classes are found accordingly with 

Durban (µz = 41.94, σz = 4.41) and Butare (µz = 42.54, σz = 4.6) having corresponding RMS 

values of 1.76% and 1.06% respectively. Again, the close values of computed parameters under 

convective conditions at both locations, indicates a similarity in the rainfall structures for 

showers and thunderstorms. To confirm this from the earlier results in Table 3-2, the A 

coefficients for convective Z-R relationship at Butare (~149.04) and Durban (~149.67) are also 

close. Even at that, their b coefficients are closer with Butare (~1.66) and Durban (~1.59) – with 

the former having a higher value. This pattern suggests a sort of similarity in the convective 

patterns at both locations, with the only noticeable difference being the scale of their Z-R 

functions. However, these characteristics may not translate into similar specific attenuation index 

as will be seen later. This is true because the scattering of transmitted signals (forward scattering) 

required for attenuation is much more related to the transmission frequency and particle size. 

 

3.5.4 Implications of Microphysical Variations on Rain Attenuation 

Network engineers are mainly concerned with the performance of radio links as telemetry is 

varied.  Of particular interest is the extent of rainfall effects on link performances, during periods 

of fluctuating Received Signal Level (RSL). The specific attenuation is an indication of the 

amount of the projected power losses due to rainfall (or rain fade) per kilometer. For 

simplification of computing results from rainfall DSD functions, the Mie scattering approach is 

used to compute these results. The specific attenuation can be computed using the equation given 

in Ajayi et al. [1996] as: 

�ª(;, ?) =   4.343 × 10YK 3 V($b)�|��($	)∆$	                ���/���                  (3.8)#�
	d�  

 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

47 

 

 

where N(Di) is the rain DSD, Qext(Di) is the extinction cross section in mm
2
 and ∆Di is the 

diameter interval.  

 

The extinction cross section is simplified by the Mie scattering expression given as: 

 

�|��(?) =  4"�# ?B��(0)� ≈  �|��(A�)ϛ���     ���#�                                (3.9) 

where A� is the radius of the rain droplets in mm, while, kext and ςext are the Mie coefficients 

obtained from elaborate computations of spherical Bessel functions. These coefficients can be 

seen in Appendix C. 

 

The computations for Durban at 20
O
C have been computed from the studies of [Alonge, 2011]. 

At Butare, the same Mie computation procedure for Durban is applied with an assumed 

temperature of 20
O
C. At high rainfall rates, rain droplet spectra are mainly oblate-spheroid and 

spheroidal in shape. Concerning this, Malinga et al. [2014] in their recent study showed that ECS 

computations at high rain rates using Mie technique compared with Morrison and Cross [1974] 

and Pruppacher and Pitter [1971] models gave percentage differences up to 30% at 100 GHz. 

Therefore, specific attenuation values predicted from Mie coefficients is limited in accuracy, 

especially for rain droplets at high rain rates operating over high microwave frequencies. 

 

By applying the results from Table 3-2, the specific attenuation for stratiform and convective rain 

regimes at both Durban and Rwanda are computed. The lognormal DSDs from both sites, 

generated from (3.6), are applied to generate their specific attenuations. As seen from the plots in 

Figs. 3-6(a) and (b), the specific attenuation at Butare starts diverging from the Durban results at 

about 40 GHz. The target rainfall rates at 10 mm/h, 25 mm/h and 75 mm/h are also investigated 

from 4 GHz to 100 GHz as seen in Table 3-6. From Table 3-6, the predicted specific attenuation 

at Butare starts to decline at 40 GHz for a rain rate of 10 mm/h. At 25 mm/h, the decline is 

noticeable from 20 GHz; at 80 mm/h, the decline is noticed from 8 GHz. Broadly speaking, there 

is a rapid decline in the predicted specific attenuation as rainfall transits from stratiform to 

convective regimes at Butare. For obvious reasons, it seems the decline of specific attenuation 

over high frequencies and high rain rates, is related to the relatively large population of larger 

rain droplets. We have earlier noted that the dearth of smaller droplets plays an important role in 

the DSD and reflectivity profile. Recently, Adetan and Afullo [2014] suggested a maximum  

diameter bound of ≤ 3.5 mm in the percentage of critical diameters of rain drops responsible for 

specific attenuation at Butare. Furthermore, they reported a decline in the role(s) of these range 

critical diameters in Butare compared to their observation in Durban. Their findings are observed  
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(a) 

 

(b) 

Figure 3-6: Specific attenuation in Durban and Butare computed with Mie technique at 20
O
C 

compared with ITU-R P.838-3 at (a) R = 10 mm/h (b) R = 80 mm/h  

 

to be consistent with the findings of this comparative study. Therefore, the predicted specific 

attenuation is observed to be generally higher in South Africa than Rwanda, from about 30 GHz. 

However, both sites do have lower specific attenuation than the predicted specific attenuation 

values from ITU-R P.838-3 [ITU-R Rec. P.838-3, 2005]. 
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Table 3-6: Predicted specific attenuation from the lognormal distribution at Butare and Durban 

FREQUENCY 

(GHz) 

DURBAN BUTARE 

RAIN RATE (mm/h) RAIN RATE (mm/h) 

10 25 80 10 25 80 

4 0.01 0.02 0.07 0.01 0.02 0.07 

8 0.08 0.29 1.18 0.09 0.29 1.09 

10 0.15 0.51 2.05 0.16 0.51 1.88 

15 0.38 1.21 4.68 0.41 1.21 4.26 

20 0.69 2.10 7.76 0.73 2.09 7.02 

25 1.03 2.98 10.46 1.07 2.93 9.37 

30 1.35 3.69 12.33 1.37 3.61 10.91 

40 1.98 4.94 15.05 1.94 4.72 13.04 

45 2.29 5.46 15.99 2.20 5.17 13.71 

50 2.58 5.92 16.76 2.44 5.57 14.23 

60 3.11 6.69 17.81 2.85 6.18 14.83 

90 4.32 8.09 18.94 3.70 7.17 15.06 

100 4.62 8.40 19.07 3.90 7.36 14.98 

200 5.83 9.22 18.47 4.56 7.69 13.70 

300 5.75 8.95 17.65 4.46 7.41 12.99 

400 5.55 8.66 17.10 4.31 7.18 12.60 

 

 

3.6 Comparison of S-C Rain Rate Thresholds at other Locations 

To examine the consistency of the computed results of S-C rain rate thresholds in Durban and 

Butare, a global comparison is considered. Therefore, Z-R results from other locations with 

different climato-meteorological scenarios are adequately compared. Some of the African 

locations are Ile-Ife, Nigeria [Ajayi and Olsen, 1985], Benin Republic [Moumouni et al., 2008], 

Niger Republic [Ochou, 2007], Senegal [Nzekou, 2004] and Congo [Sauvageot and Lacaux, 

1995]. The compared locations around the Asian region include Calcutta, India [Maitra, 2004], 

Hassan and Ahmedabad at India [Das et al., 2002] and Singapore [Kumar et al., 2011]. The 

Oceania areas include Kapingamarangi, Micronesia [Tokay and Short, 1996] and Darwin, 

Australia [Short et al., 1990]. Finally, some locations in the Americas include Canada [Marshall 

and Palmer, 1948], and lastly, Florida and Marshall Islands and Oregon, USA [Stout and 

Mueller, 1968].  

 

Parameters of proposed Z-R relationships from studies at some of these locations were applied to 

initially estimate Rth. Locations without available Z-R information were substituted with their 

equivalent rainfall DSD parameters, either from lognormal distribution or modified gamma 

distribution. Locations at which DSD functions are applied to obtain Z-R results include Ile-Ife,  
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Table 3-7: Comparison of S-C Thresholds at other Global locations 

 

ZONES 

SITES 

 

LOCATION 

Z-R 

Function THRESHOLD 

(mm/h) 

R0.01 

(mm/h) 

Z0.01 

(dBZ) 

LAT LONG A b 

 

 

 

 

AFRICA 

S. AFRICA (Durban) 29.88oS 31.05oE 157.76 1.52 11.34 60 48.99 

RWANDA (Butare) 2.6oS 29.75oE 265.6 1.45 8.84 71 51.06 

NIGERIA (Ile-Ife) 7.47°N 4.567°E 396.24 1.32 8.18 68 50.12 

EQUITORIAL Congo 2.88°S 23.66°E 364 1.36 8.15 71 50.79 

NIGER (Niamey) 13.52°N 2.11°E 508 1.28 7.16 42 47.84 

SENEGAL (Dakar) 14.69°N 17.45°W 368 1.24 9.89 62 47.89 

BENIN 8.83°N 2.18°E 433 1.33 7.5 55 49.51 

 

 

ASIA 

INDIA (Calcutta) 22.57°N 88.37°E 106.68 1.67 11.56 100 53.62 

INDIA (Ahmedabad) 23.03°N 72.58°E 195.29 1.42 11.50 54 47.55 

INDIA (Hassan) 13.06°N 76.10°E 169.15 1.44 12.38 85 50.04 

SINGAPORE 1.30°N 103.80°E 285.83 1.33 10.24 102 51.28 

 

 

AMERICAS 

USA (Oregon) 44.00°N 120.50°W 295 1.59 6.86 22 46.04 

USA (Marshall Is.) 7.07°N 171.27°E 226 1.46 9.78 85 51.71 

USA (Florida) 28.10°N 81.60°W 322 1.33 9.37 80 50.39 

CANADA  (Ottawa) 45.42°N 75.7°W 220 1.60 8.15 38 48.71 

 

OCEANIA 

MICRONESIA 

(Kapingamarangi) 

 

1.07°N 

 

154.78°E 315 1.20 12.15 

 

102 

 

49.09 

AUSTRALIA 

(Darwin) 

 

12.45°S 

 

130.83°E 170 1.47 11.69 

 

82 

 

50.44 

 

Calcutta, Hassan and Ahmedabad because of the aforementioned reason. The results containing 

Z-R parameters, Rth and Z0.01 from the computations are presented in Table 3-7. The values of 

R0.01 for regions are obtained directly from the ITU-R estimates from the global designation for 

different climatic in ITU-R P.837-6 [ITU-R Rec. P.837-6, 2012]. The S-C rain rate transition 

threshold, Rth, tend to converge at 10 mm/h (or closer to 38 dBZ) as confirmed by previous 

studies [Gamache and Houze, 1982; Tokay and Short, 1996; Nzekou et al., 2004]. However, we 

find that the transition rain rates at other locations have a deviation of ±3 mm/h from this 

convergent value, as influenced by their geographical and climatic factors. As seen in Table 3-7, 

the mean radar reflectivities at 0.01% of the exceeded rain rate, Z0.01, computed for all the global 

locations also seem converge closer to 50 dBZ with a deviation of ±4 dBZ. From these 

comparisons, it is obvious that a positive correlation exists between the Rth and their 

corresponding R0.01 as seen in Figure 3-7. A power-law relationship is seen to exist between these 

two parameters based on Figure 3-7. This relationship is given as: 

 

?�¤ =  2.31?�.���.KZ     ���/ℎ�                                                 (3.10) 
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Figure 3-7: Comparison of R0.01 and S-C thresholds at different locations around the world  

 

It is obvious from (3.10) that these two parameters are positively correlated across the examined 

locations. This implies that areas with higher R0.01 have a corresponding higher Rth, and vice-

versa. 

 

3.7    Chapter Summary  

The microphysical analysis of rainfall undertaken in this study has revealed the variation in 

subtropical and equatorial locations. The structures of the compared microphysical parameters 

i.e. rain rate, rain DSD and reflectivity in Durban and Butare, are much different under 

stratiform regimes. However, these set of parameters are similar at both locations under 

convective conditions. This implies that showers and thunderstorm rainfalls have the same 

characteristics at the compared locations. This characteristic does not suffice for predicted 

specific attenuation as there are substantial disparities in the DSD structures for rain droplets 

with sizes less than 2.5 mm. These disparities noticed at Butare result in a progressive decline 

of specific attenuation as carrier frequency is scaled, irrespective of the rain rate. Indeed, this is 

purely based on geographic and climatic differences resulting in dearth of small rain droplets (≤ 

3 mm). Based on this study, it is predicted that Butare is an ideal location for earth-space 

communication, especially for design frequencies above 40 GHz.  This study has also found a 

correlation between the S-C transition rain rate (Rth) and R0.01, where the former varies over a 
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range of 6 mm/h ≤ Rth ≤ 13 mm/h over the compared locations. However, the shorter 

measurement period at Butare is a limitation that could influence the overall cyclical rainfall 

patterns. Therefore, it is suggested that longer measurement period of rainfall statistics at both 

sites, will greatly improve the knowledge of rainfall microphysics for radio link design. In 

conclusion, the results derived from this study will be beneficial to the knowledge of rain 

microphysics in radio and microwave engineering around the world.
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CHAPTER FOUR 

Queueing Theory of Rain Spikes over Radio Links 

4.1 Introduction 

In the previous chapter, the variation of rainfall microstructures at two African locations with 

subtropical and equatorial climatic characteristics was investigated. The S-C threshold divide 

employed revealed that spatial variation of rain microstructures is indeed more similar as 

rainfall rate exceeds at least 10 mm/h (convective conditions). Judging from the results of the 

probability characteristics, it is obvious that rainfall attenuation at both sites is more dependent 

on the DSDs at high microwave bands. In this chapter, the temporal effects of precipitation over 

radio links is investigated by employing the queueing theory approach. The approach is an 

extension of the Markov chain technique, which deals with traffic-like random instances of 

events, with stochastic probabilities of progression in the time domain. Rainfall rate is a unique 

case of progressive random generation with an apparent traffic-like behaviour, which can aptly 

be described with a tool such as queueing theory. Therefore, the contents of this chapter are 

mainly concerned with the theoretical and empirical investigations of the rainfall queue 

characteristics in Durban, South Africa. The determination of queue parameters and the 

appropriate queue disciplines, alongside the development of other related indices are discussed 

in this chapter.    

 

4.2 Background and Inspiration of the Queueing Theory Approach 

Apart from the contemporary multiple power problems arising from algorithmic routines at base 

stations due to radio resource allocation, the static provisions for power demands in link budget, 

are mainly attributed to radio propagation and rain fade losses. The inclusion of static fade 

margin for rain fade loss in link budgets is accommodated throughout the annual life-cycle of a 

base station, to cater indiscriminately for non-periodic cycles of wet and dry spell periods [ITU-

R Rec. P.530-15, 2013]. In practice, dry spells are known to have a higher probability of 

occurrence than wet spells; hence, this questions the rationale behind the static countermeasure 

proposed by the ITU-R. This current ITU approach questions the need to continually adopt 

dynamic countermeasure techniques for optimization of radio resources. Broadly speaking, the 

definition of rain fades is valid when rainfall rates exceed a particular level, corresponding to 

the designed threshold of the link performance [Mӓmmela and Kolteba, 2011]. This threshold 

could be transformed to performance parameters like Bit Error Rate (BER) and Signal-to-Noise 

Ratio (SNR) via knowledge of fade depth. Since all rain-fade events during rainfall are 

embedded within an underlying rainfall event, they are assumed as instances within specified 

rainfall duration. Typical rain fade duration have been found to be distributed in a log-normal 
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manner, with deep fades lasting no more than 30 minutes and shallow fades not less than 24 

hours [Acosta, 1997]. The study of rainfall duration life-cycles, it seems, play an important role 

in understanding the effects of rain fades and their occurrences. A way of achieving this is by 

studying the underlying dynamics of the rainfall process such as rainfall event duration, 

duration cycles (or arrival cycle) and waiting periods. 

 

The dynamics of the rainfall process is mainly reliant on the mechanics of its occurrence. 

Rainfall occurrences are random events which are strongly dependent on the geographical and 

climatic variability of a location [Ajayi et al., 1996]. Usually, rainfall is dynamic within its 

defined time frame, also known as rainfall duration.  Analysis of rainfall duration is important 

as it reveals the information of the service time, coinciding with outage period of 

communication networks. By observation, a rainfall event consists of a visible train of rain rate 

spikes which appear in a random manner – they are identifiable by the maximum rainfall rate 

attained by spike with successive overlapping patterns. In some special cases of longer rainfall 

events, there exist a large number of such rainfall spikes; continually overlapping each other in 

succession with each attaining a maximum rain rate. By inspection, the rise and fall of rainfall 

spikes during a rain event, is strongly related to the motional physics of clouds during rainfall. 

Therefore, the random generation of rain spikes in succession, may imply the arrival and 

departure of rain-clouds when viewed from a reference point. As a simple rule, these sequences 

of rainfall patterns evidently qualify as a birth-death (BD) process. This is similar to traffic 

analysis of dynamic objects from a static point of reference as applied in telecommunication 

traffic analysis, factory line processes, processor design optimization e.t.c. [Kleinrock, 1975; 

Bolch et al., 1998; Gross and Harris, 1998; Hillier and Lieberman, 2001; Gautam and 

Ravindra, 2006; Fiandrino and Piavanelli, 2010]. The BD process is not an entirely new 

concept applied in the understanding of queueing problems, since a wide array of diverse black-

box problems related to random queue behaviours can be explained by this process. The 

systematic and consecutive birth (arrival) and death (departure) of objects in a system can be 

processed in a First Come, First Served (FCFS) traffic-like behaviour, if served by one or more 

clearance points, known as servers usually designated as s.  

 

In this chapter, rainfall traffic is explored with queueing characteristics such as rainfall service 

time and rainfall inter-arrival time. Therefore, we examine rainfall spike generation cycle as an 

infinite queue, multiple server FCFS traffic (M/Ek/s/FCFS/∞), described by exponential arrival 

time and Erlang-k service time distributions with multiple servers. This approach itself is novel 

and two important reasons suffice for undertaking this approach. Firstly, the rainfall spike 

traffic statistics can provide us with a better understanding of the bounds of spike service time 
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(or outage times), and hence, describing rain cell sizes and their life-cycles. Also, this 

knowledge is a good foundation for the development of a new paradigm for rainfall time series 

prediction and rain rate tracking, and hence, more robust understanding of rain fades.  

 

4.3 The Mathematics of Queueing Theory of Rainfall Process 

The application of queueing theory to the understanding of the rainfall process requires basic 

definition of certain parameters and quantities to ease the knowledge been discussed. In lieu of 

this, a number of propositions related to the work to be undertaken are hereby discussed as 

follows: 

 

Proposition 1: The rainfall event process is a stochastic process where the instances of rainfall 

rates are generated randomly over a time parameter. Rainfall rate is a typical random variable 

that can be designated as ?� with a time parameter (£ ∈ ¢). Then, the mathematical process of 

the rainfall is completely described by �?�: £ ∈ ¢� for ¢ ⊆  ℝz = �0±, ±∞). The time-varying 

characteristics of ?� is the point of focus. Thus, if the time parameter is conceptualized as a 

countable finite process, then the overall process can be defined as a single “chain” with 

discretised state spaces [Bolch et al., 1998]. 

 

Proposition 2: If proposition (1) holds true, then it follows that a rainfall process is a unique 

process of the order of the Markov chain process. Evidently, the present state of such a system 

is independent of the past state. Thus, a Discrete-Time Markov Chain (DTMC) is sufficient to 

describe the entire process. 

 

Proposition 3: Following propositions (1) and (2), the countable states in a rainfall process is 

assigned a variable, Q, with a ‘discrete’ time parameter of T. If the total number of countable 

states is given as Ko, then the number of observation points is so characterized as � ∈ ²\. 

 

Proposition 4: The Probability Distribution Function (PDF) of the random variable, ?�, contains 

the complete information of its characteristics. Thus, the future states of a rainfall process can 

be described as thus [Bolch et al., 1998]: 

 P(?az� =  ³az�|?a = ³a, ?aY� = ³aY�, … , ?\ = ³\ ) = P�?az� =  ³az�|?a = ³a)     �4.1) 

 

The RHS of (4.1) is equivalent to the probability dependency of the future state of the rainfall 

process (?az�) on the current state (?a). Markov chains can transit from one state to another 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

56 

 

 

and as a result, can attain any state probability influenced by time steps of n. If we assume for a 

given time, n, a state transits from state j to k. This is given from [Bolch et al., 1998] as: 

 D��)´+�`) =  �?az� =  ³az� = � | ?a = ³a = � )              ∀` ∈ ¢                   �4.2) 

 

This represents a one-step transition which can otherwise be re-written as: 

 D��)´+ =  �?az� = � |  ?a =  � )                                          �4.2p) 

 

Bolch et al. [1998] suggested that a one-step process can be represented as singular transition 

matrix given by: 

 

¶�·) = ¶ =  �D´+� = ¸D�� D�� ⋯ D�+D��⋮D´�
D��⋮⋯

⋯⋱⋯ ⋮⋮D++
¼                                                 �4.3) 

 

For an n-step process, the resulting state probability is dependent on the initial state probability 

so that: 

 ¶�a) = ¶¶�aY�) =  ¶a                                                         �4.4) 

 

This forms the basis for further estimation of probabilities until n→∞, where steady state is 

attained by the system if the transition probability, P, is a regular matrix. 

 

4.3.1 The Markovian Framework of Queues in Rainfall 

In the context of describing rainfall as a queueing process, the following assumptions are 

applied throughout the development of the queue theory in this chapter: 

• Rainfall rate is a stochastic and countable phenomenon described by  ?�  where £ ∈¢ for ∀£ ⊂ ℝ. The rainfall event, which by definition is the generation process for 

rainfall rate samples is governed and self-regulated, by natural climatic and 

geographical laws. 

 

• The queueing process of a rainfall event can be completely described by three queue 

parameters namely: service time (ts), inter-arrival time (ta) and overlap time (to). 
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• The rainfall spike generation process can be represented as a self-regulated infinite 

queue, whose probability of occurrence is determined by Markov parameters, at time 

instances so that:  £1 ∈ �0, ∞), £% ∈ �0, ∞) and £\ ∈ �0, ∞). 
• The rainfall spike queue mechanism can be completely specified by non-negative 

service, inter-arrival and overlap times so that £ 1 ⊂ ¢ , £% ⊂ ¢ and £\ ⊂ ¢. Where T is 

the total duration of the event. It follows that, ¢ =  ∑ �£1,+a+d� , where n is the total 

number of visible spikes. 

 

• The queueing sequence described by cyclical and stochastic arrays of independent 

appearances of spikes/clouds, is a combination of service and inter-arrival times viewed 

as a DTMC process, with n-available states related to the BD process. 

 

• Each of n-states corresponds to singular instances of time entities related to the points 

along a known Markovian or non-Markovian processes (service or inter-arrival times). 

Their outputs are equivalent to states probabilities, {Qo,…< Qn-1}, defined by arrival 

and departure of spikes/clouds in a possible BD process  

 

Based on the assumptions above, it would suffice that the arrival and departure times of two 

spikes are such that no overlap time exists between the two spikes. However, there are very few 

cases where succeeding spike trains have zero overlap from theory. Thus, when there is no 

separation between two consecutive spikes, then an overlap, or perhaps, a form of congested 

queue is said to exist.  Therefore, the overlap time statistics being added to the Markov 

parameters is an indication of the congested ‘queue’ encountered by spikes within a rain event. 

 

4.3.2 The Birth-Death Scenario of Rain Spikes 

Many random systems are known to exhibit exponential behaviours in the generation of their 

instances in the time domain. Usually, when random systems with Markovian queueing 

properties invoke instances that are exponentially generated, the Markovian queue system can 

be easily adopted [Bolch et al., 1998]. The Kendall-notated M/M/s/∞/FCFS queues simply 

implies a system where the inter-arrival and service times have probabilities which are 

exponentially distributed, with a fixed number of servers and infinite queues, scheduled in a 

FCFS manner [Bolch, 1998; Hillier and Lieberman, 2001]. For the inter-arrival and service 

times, the probability density function can be approximated as a Poisson and/or exponential 

distribution. The Poisson distribution and exponential distribution are classic cases of 

memoryless processes i.e. the current state is independent of the past states. For a typical 

Markov process with aperiodic and positive recurrence, the time averaged property of a 
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sampled population would the same as that of the total population. This property termed 

ergodicity is applied throughout this work.  

 

It is imperative to understand the mathematics behind its underlying BD process. Firstly, we 

assume that the system is a Markov process; this is mathematically given in [Bolch et al., 1998] 

and written as: 

 �	´��)�`) = ��£az�|£a) =  ��£a|£aY�) =  ��£aY�|£aY#),      ∀a∈ V, ` ⊂ ℝ             �4.5)  
    

This can be conveniently simplified for n-state Markov process, given by: 

 �	´�a) = ��£az� = �|£a = (),                       ∀a∈ V, ` ⊂ ℝ                  �4.6) 

 

for,  

 

3 �	´ = 1∀´                                                                  �4.7) 

 

For a BD process as seen from Figure 4-1, we can see that this process can be described by 

[Bolch et al., 1998] and is given as: 

��V�z� = �|V� = �) =   � &+    � = � + 1j+     � = � − 10    |� − �| > 1±      � > 0, � > 0, ` ⊂ ℝ            �4.8) 

 

 

Figure 4-1: The Birth-Death Markovian Queue with Several Transitions State [Hillier and 

Lieberman, 2001]. 
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In a heterogeneous M/M/s/∞/FCFS queue system, the service rates (µ) and arrival rate (λ) in the 

presence of a fixed number of servers, s, can be described as: 

 &a =   &,                                                                         �4.9A) 

 

ja =  ¿  `j         0 ≤ ` ≤ R                   Rj                ` ≥ R                                              ± �4.9p) 

 

where n is an initialized counting parameter related to the number of server, s. 

 

4.3.3 Queueing Modelling and Analysis of Rain Spike Traffic 

A queueing system is described as arrival of instances or events into a designated queue for 

onward processing by one or more clearance points known as servers [Hillier and Lieberman, 

2001]. As seen in Figure 4.2, a typical queueing system is made of four basic blocks: the input 

source, queue, server and served instances. The source of the arriving instances, though random, 

is governed by a definite probability distribution corresponding to known Markovian or non-

Markovian process. The arrival pattern of the instances may follow two major designations: 

First (Last) Come, First (Last) Served (FCFS)/(LCLS) or First (Last) Come, Last (First) Served 

(FCLS)/(LCFS) [Bolch et al., 1998]. The period spent by each arriving instances, also random, 

corresponds to a known probability process. 

 

Figure 4-2: The basic framework of a queueing process [Hillier and Lieberman, 2001] 

 

4.3.4 The Physical Manifestation of Spike Generation in Rain Traffic 

The rainfall formation cycle involves the generation of rain clouds from the residues of the 

natural hydrological processes [Rodriguez et al., 2012]. Over time within a rain event, this 

traffic process naturally results in a spontaneous and random variation of rainfall rates. Thus, 

the process itself is an infinite process which exists as a reaction of nature and environment to 

natural climatic-related variables.  
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This rain cloud generation process and consequent precipitation, when observed from a 

stationary point of view (or a reference time) can be seen as a natural and self-regulated traffic 

as seen in Fig. 4-3. Also, the arrival of rain clouds can be seen as FCFS traffic process with 

different rainfall ‘services’ being offered. These offered services being the remote cause of the 

variation in rain rates, can be seen as a train of rain spikes parallel to cloud motion. The cloud 

motion is sustained by a certain quantity called the advection velocity, which varies with 

different types of rainfall structure and cell sizes [Pawlina, 2002; Begum et al., 2006]. It should 

be noted that rainfall clouds are dissipative as they travel along the direction of the prevailing 

advection velocity. This indicates that their area of influence and density diminishes as they 

travel due to the production of rain droplets; this is essentially a process of mobile energy 

transfer. It could therefore be assumed that the peak of a spike roughly coincides with the cloud 

portion of a rain cell at its highest density. On rain cell (or cloud) mobility, several authors have 

proposed different values of advection velocities for stratiform and convective rains [Pawlina, 

2002; Begum et al., 2006]. For example, Pawlina [2002] proposed that advection velocity 

values be lower for stratiform rains and, higher values for convective rains.  

 

Usually, the appearance of an individual spike determines the temporal service being offered by 

the passing cloud. The period of service (or service time) in this case, roughly multiplied by the 

number of spike appearances determines the length of the rainfall duration. From Figs. 4-3 and 

4-4, we can observe three major concepts describing the appearance of a spike (or the arrival of 

a cloud) - they are the inter-arrival, service and overlap times. The inter-arrival time, ta, is 

defined as the time difference between the arrivals of two consecutive rain clouds/spikes at the 

reference point. The service time, ts, may be defined as the actual duration of the spike. A third  

 

Figure 4-3: The concept of Rainfall Traffic Generation as a Queueing Model 
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Figure 4-4: Identification of some queue parameters from rain spike profiles for a rainfall event 

on the 24
th
 of January 2009 between 15:15 and 15:56 hrs. 

 

parameter, to, known as the overlap time represents the intercept time between a ‘dying’ spike 

and arriving spike. Overlapping spikes can be seen as a major factor accommodating the 

regeneration of detectable rainfall rates between two clouds, with one arriving and the other 

departing. Also, regular overlaps in the successive arrival of spikes are evidences of queues in 

the system. 

 

The approximate parameter estimates serving as probability density predictors to a Markovian 

queue distribution can be used to infer the behaviour(s) of such an array. For this study, the set 

of expressions for both the mean service time, £1Á , mean inter-arrival time, £%Á , and mean overlap 

time, £\Á , for successive instances of spikes in rainfall events of N sampled population may be 

given as [Hillier and Lieberman, 2001]: 

 

£1Á =  1V1 3 ∆£1,	
cÂ

	d� = 1jÃ          [�(`E£BR]                    ∀£1 ∈ ℝ               �4.10) 

 

£%Á =  1V% 3 £%,	
cÄ
	d� = 1&Ã           [�(`E£BR]                    ∀£% ∈ ℝ                �4.11) 

 

£\Á =  1V\ 3 £\,	
cÄ
	d� = 1f�         [�(`E£BR]                   ∀£\ ∈ ℝ                 �4.12) 
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where Ns, Na and No are the maximum number of samples for the service time, inter-arrival time 

and overlap time respectively. Other notations representing the mean (or average) service, mean 

inter-arrival and mean overlap times are given as their reciprocals. They are: the mean service 

rate, jÃ , mean arrival rate, &Ã, and mean overlap rate, f�, respectively. Again, by inspection, if the 

service time has a maximum number of N sampled population, then the number of arrival 

samples will be lesser than N.  

 

Broadly speaking, the overall number of arrived clouds represents the total sampled population 

of the rainfall queueing system under investigation. For easy understanding, this elaborate 

process of cloud/spike arrivals, as well as departures, is assumed to bear a similitude to the 

Birth-Death (BD) process. Firstly, for discrete systems, the inter-arrival process signifies the 

commencement (or birth) of a spike/cloud within a rainfall event. Then, the service time 

determines the generation, decomposition and the consequent death of the arriving 

spikes/clouds. Hence, rainfall spike queueing process can be regarded as a special case of the 

Discrete Markov Chain Process (DMCP). In this study, we will neglect the complicated 

derivations related to generic BD processes as they can be seen in related literature by Kleinrock 

[1975], Bolch et. al.[1998] and Hillier and Lieberman [2001]. We shall mainly apply the 

knowledge from the literature to acquire an understanding of rainfall queueing problems and its 

consequent application. 

 

4.4 Determination of Service and Inter-Arrival Times of Queues 

In this study, the queues of the collected data will be described by three queue parameters 

namely: the service rate, arrival rate and overlap rate. For this purpose, the service time, inter-

arrival time and overlap time can be assumed as any known distribution ranging from 

exponential distribution to Erlang-k distribution.  

 

The possible distributions describing any of the queue parameters earlier mentioned are hereby 

discussed. The Erlang-k distribution is a phase-like distribution useful in describing Markov 

queues, undergoing an exponential process, with k number of stages. It exists as a special case 

of the Generalized Gamma Distribution (GGD) [Wingo, 1987], where k exponential stages are 

encountered to generate different phases of the assumed queue. It was named after Agner 

Krarup Erlang (1878 – 1929), who first proposed its unique use in classical telephone networks 

as a distribution where each stage offers different services, so to say, depending on the value of 

k. This distribution is peculiar because it has the advantage of easily adjusting its shape profile 

based on the available number of k stages. It is most suitable for datasets with Coefficient of 

Variation (CV) less than 1. The Erlang distribution is given as [Fiandrino, 2010]:    
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;�£1) =  �j ��j£1)+Y� BCD �−�j£1)Г��)       for £1 ≥ 0, ∀£1 ∈ ℝ               �4.13) 
 

where k is an integer value representing the shape parameter (and number of stages), ts is the 

service time variable in minutes and µ is the service rate parameter.  

 

The exponential distribution is the second proposed model as an appropriate fit for the collected 

random data with CV approximately equal to 1. An exponential system is a simplistic 

representation of a memoryless system i.e. random processes in which the present stage is 

generally independent of the previous stage. The exponential function is given as: 

 ;�£%) =  &  BCD �– &£%)    for £% ≥ 0, ∀£% ∈ ℝ                            �4.14) 

 

where ta is the inter-arrival time variable in minutes and λ is the arrival rate. 

 

To determine appropriate value of parameter, µ and λ in both cases of (4.13) and (4.14), the 

Maximum Likelihood (ML) parameter estimation technique is applied to obtain rate parameter 

of both the Erlang-k and exponential distributions. The ML method specifies that the mean of, 

ti, and its reciprocal, the rate parameter, µ, is given from [Kreyszig, 2006] as: 

 

£Ã =  1̀ 3 £	
a

	d �  ;       jÁ =  1£Ã                                                          �4.15)  
 

The determination of rate parameters in (4.13) and (4.14) is entirely dependent on the 

randomness of the collected data, as we shall see in section 4.5. The computed value of CV will 

often give us a rough prognosis of the suitable distribution for the data. 

 

4.5 Measurement and Data Processing  

The measurements for this study were undertaken at the city of Durban, KwaZulu-Natal 

province, South Africa from electronic logs generated by the Joss Waldvogel (JW) distrometer 

RD-80 series, between January 2009 and December 2010. Details of this installed equipment in 

Durban have been discussed in subsection 3.3 of chapter 3. 

 

The instrument has a rain rate sampling time of one minute (or 60 seconds) with a sampling 

error of ±5%. During the period of measurement, a few outages occurred but this is assumed to 

have little significance on the overall collected data for this work. As a precaution, only rainfall 
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events with a maximum rainfall rate greater than 3 mm/h were considered in this work. This is 

because the overall contributions of rain droplets to rain attenuation at this 3 mm/hr threshold 

are often minimal below 300 GHz operating frequency. Also, the effects of dead-time errors 

were assumed to be minimal in the data processing, as other rainfall microstructures such as 

rainfall drop and radar reflectivity, were of little concern.  

 

For processing the measurements, a regime demarcation based on maximum rainfall rates 

observed per rain event is proposed for this study. This is based on the four rainfall regime 

classification already undertaken in a number of studies on Durban [Afullo, 2011; Alonge and 

Afullo, 2012c], and also other areas [Adimula and Ajayi, 1996; Mandeep and Allnut, 2007]. The 

bounds considered for each designated rainfall regime are drizzle (? < 5 mm/h), widespread 

(5 mm/h ≤ ? <  10 mm/h), shower (10 mm/h ≤ ? <  40 mm/h) and thunderstorm 

(? > 40 mm/h) [Alonge and Afullo, 2012c]. Firstly, it is important to examine the variation of 

the service times and inter-arrival times, based on the maximum rainfall rate observed in an 

event. This also provides statistics on the typical Markov metrics, as well as the frequencies of 

single event occurrences, for the examined events. We expect that these properties differ with 

different regimes, as are their rainfall microstructural properties.     

 

Figures 4-5(a) – (d) depict the procedural steps taken to process the collected data. A three-

stage method is applied on the data namely: isolation, segmentation and identification. Firstly, 

rain data series in a distinct and singular rain event A is isolated from its composite data of two 

independent rain events A and B as seen in Fig 4-5(a) and 4-5(b). Thereafter, event A is 

segmented into service time bounds distinguishable by rain spike peaks as seen in Fig 4-5(c). 

As observed, event A consists of a finite number of rain spikes with a total of five distinct 

segments from 1-5. Thus, at segmentation, the theory of the BD Markovian theory is applied to 

locate the possible points of a dying spike, which also coincides with re-emergence of another 

spike. In most cases, these points occur far above 1 mm/h as seen for segments 4 and 5 in Fig. 

4-5d, which obviously indicates the existence of an overlap between the two spikes. Since two 

spikes are overlapping (see Fig 4-5d), there is need to determine the ‘ground-zero’ threshold for 

the commencement and end tails. An extrapolation technique is undertaken to determine these 

thresholds (corresponding to 0.003 mm/h), for which the Newton’s Divided Difference (NDD) 

interpolation function is adopted. The NDD function with rain rate, r in mm/h, and time, t, in 

minutes, is given from [Abramowitz and Stegun, 1972] as: 

 

∅a�2) =  ��2 −  2+)a
+d� ,                                                              �4.16A) 
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Figure 4-5: The three-stage procedure for processing rainfall time series data from RD

Distrometer 

(a) Composite Rain Events

(b) Isolation of Single Events

(c) Segmentation of Segment A into Fractal Spikes

(d) Identifying some points of Event Overlaps (in red dott
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(a) 

(b) 

 

(c) 

 

(d) 

stage procedure for processing rainfall time series data from RD

) Composite Rain Events 

) Isolation of Single Events 

) Segmentation of Segment A into Fractal Spikes 

) Identifying some points of Event Overlaps (in red dotted line) 
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£�2) =  £\ + 3 ∅+Y��2)[2\, 2�, … , 2+] +  Êa                                  �4.16p)a
+d�  

 

for which the remainder Hn of (7b) is given as, 

 

Êa�2) =  ∅a�2) £�az�)�Ë)�` + 1)!                                                               �4.17) 

 

where 2+ is the rainfall rate index from data and £ refers to the indices of time along the time 

series axis. A MATLAB
©
 code was written to separately calculate these thresholds from our 

data samples with an assumption of 0.003 mm/h as near-zero rain rate threshold. A depiction of 

the identified predicted terminal points for each spike as shown in Fig 4.5(d), with the trails for 

each spike, in red dotted line. 

 

Table 4-1: Summary of BD parameters obtained from measurement for different rainfall 

regimes in Durban 

 

REGIME/CLASS 

 

TIME 

BOUNDS 

(minutes) 

OCCURRENCE NUMBER  

 

SERVICE 

TIME 

INTER-

ARRIVAL 

TIME 

OVERLAPPING 

TIME 

 

 

DRIZZLE 

0 < t ≤ 10 61 108 124 

10 < t ≤ 20 66 17 3 

20 < t ≤ 30 15 2 0 

30 < t ≤ 40 5 0 0 

TOTAL 147 127 127 

 

 

 

WIDESPREAD 

0 < t ≤ 10 56 125 145 

10 < t ≤ 20 91 31 11 

20 < t ≤ 30 26 2 1 

30 < t ≤ 40 2 0 0 

40 < t ≤ 50 1 0 0 

TOTAL 176 158 157 

 

 

 

SHOWER 

0 < t ≤ 10 35 101 108 

10 < t ≤ 20 61 20 13 

20 < t ≤ 30 22 2 3 

30 < t ≤ 40 4 0 1 

40 < t ≤ 50 5 2 0 

TOTAL 127 125 125 

 

 

 

THUNDERSTORM 

0 < t ≤ 10 21 58 79 

10 < t ≤ 20 40 19 8 

20 < t ≤ 30 20 7 3 

30 < t ≤ 40 11 2 0 

40 < t ≤ 50 10 4 0 

TOTAL 102 90 90 
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The summary of the data processed from the distrometer measurements are provided in Table 4- 

1. For the service time, over 90% of the available data for all regimes have spike service times  

less than 30 minutes. However, thunderstorm spikes have less than 22% of its service times 

longer than 30 minutes. For the inter-arrival time and overlap time, we observe that over 90% of 

the data is within the 30 minutes domain. Although, we can see that thunderstorm spikes have 

some samples with inter-arrival times greater than 30 minutes. Generally, it is seen that all the 

queueing parameters appear to have uniform periods of 30 minutes, with about 90% data 

conformity. Also, it is observed that the queueing parameters for all regimes tend to decrease as           

the time bounds increases. For the service time data, we observe that the data peaks at time 

bounds between 10 minutes ≤ t ≤ 20 minutes for each regime. 

 

4.6 Results and Discussions 

The results obtained from the modeling and simulation of measured data are categorized into 

modelling of queue parameters, error analysis of proposed models, server composition, steady 

state performances and the investigation of other related parameters. These are discussed in the 

following sub-sections as follows. 

 

4.6.1 Modelling of Queueing Parameters for Different Rain Regimes in Durban 

The results obtained from comparison of the proposed model and actual measurements for 

service time and inter-arrival time distributions are shown in Figures 4-6(a) – (d), Figures 4-7(a) 

– (d) and Figures 4-8(a) – (d). The most suitable fitting function for each of the categories of 

data was mainly determined by the values of their respective CVs. The service time and overlap 

time distributions were fitted with exponential and Erlang-k distributions. Conversely, the inter-

arrival time distribution was fitted with the exponential function for all regimes since their CVs 

were closer to one by observation. It should be noted that an attempt to fit the inter-arrival data 

with Erlang distribution will result in the first case of an Erlang stage for which k is 

approximately unity. This is ultimately the same as the exponential distribution from theory. 

Generally from the results, we note that the mean values of the service time, inter-arrival and 

overlap times all seem to increase as the bounds of rain regime increase. Based on this 

observation, it is found that the average service rate reduces with increasing rain regime bounds 

(from drizzle to thunderstorm), and so also is the average overlap rate. The number of Erlang 

stages, k, adopted is determined by the minimum error statistics, relative to the measurements 

and are also seen to vary with rain regimes. The value of k, representing the number of Erlang 

stages, is obtained from statistical calculus and regression analysis with minimal error as 

derived rigorously in Appendix E. In this study, this parameter, kopt, can be obtained given that a 
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prior knowledge of measured PDF, ;�£	; �, Í), is known. Firstly, the first derivative of the 

Erlang distribution is undertaken such that: �;�£	; �, Í)�£ = 0                                                                  �4.18) 

 

Results for the solution of (4.18) can be further simplified, as seen in the full derivation in 

Appendix E, to obtain the eventual function representing the number of stages. Thus, the best fit  

for kopt comparative to the measured PDF, from this method is given as thus: 

 �\�� =  2�E`��5.417ÍY#.����AC[;�£	; �, Í) ]� #.��)  for � = �\��              �4.19) 

 

 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 4-6: Proposed Erlang-k Service Time Distributions for different rainfall regimes in 

Durban, KwaZulu-Natal Province:  

(a) Drizzle (jÃ = 0.0808)  

(b) Widespread (jÃ = 0.0729)  

(c) Shower (jÃ = 0.0615)  

(d) Thunderstorm (jÃ = 0.0489)
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(a) 

 

(b)  

 

(c) 

 

(d)

Figure 4-7:  Proposed exponential inter-arrival time distribution for different rainfall 

regimes in Durban, KwaZulu-Natal Province: 

(a) Drizzle (&Ã = 0.1921)  

(b) Widespread (& Á= 0.1533)  

(c) Shower (&Ã = 0.1486)  

(d) Thunderstorm (&Ã = 0.0922) 

 

where τ is the computed mean (or expectation) of the data from measurement. 

From (4.19), different values of k are obtained for the different rain regimes according to the 

queue parameters. For the service time, the value of k is seen to vary between 3 and 5, with 

thunderstorm spikes having the lowest value and both drizzle and widespread having the 

highest. For the overlap time, all spike distributions except those observed during thunderstorm 

events have a value of k = 3. Similarly, the lowest observed value of k is that from thunderstorm 

spikes with a minimal value of 2. 

 

The overall results from Table 4-2a, 4-2b and 4-2c for the trio parameters of service time, inter- 

arrival time and overlap time respectively tend to show an increase from drizzle to thunderstorm 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-8: Proposed Erlang-k Overlap Time Distribution for different Rainfall Regimes in 

Durban, KwaZulu-Natal Province:  

(a) Drizzle (jÃ = 0.2506)  

(b) Widespread (jÃ = 0.2331)  

(c) Shower (jÃ = 0.1705)  

(d) Thunderstorm (jÃ = 0.1739) 
 

 

events. The results from Tables 4-2a and 4-2c are typically applicable to the parameters of the 

Erlang and exponential distributions, while Table 4-2b is only applicable to the exponential 

distribution of the inter-arrival data. Concerning the generated queue parameters, some 

observations regarding spike generations during rain events are very glaring. Firstly, rainfall 

service time tend to increase as the maximum rain rate attained by a spike increases. This means 

that spikes/clouds attaining high rainfall rates are likely to have longer service time, and thus

longer rain duration. Secondly, there is far a greater chance of overlap (or interrupt) as the 

maximum rain rate attained by spikes/clouds increases. These first two theories support the fact  
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Table 4-2a: Fitted parameters of Erlang-k and exponential probability distributions for spike 

service time in Durban 

 

RAIN REGIME 

 

CV 

 ÎÁÏ �ÐÑÒ) 

ÓÁ = ·/ÔÃÏ 

(spikes/min) 

 

k 

Drizzle 0.6052 12.3755 0.0809 5 

Widespread 0.4868 13.7095 0.0729 5 

Shower 0.5866 16.2556 0.0615 4 

Thunderstorm 0.6737 20.4409 0.0489 3 

 

Table 4-2b: Fitted parameters of exponential probability distribution for spike inter-arrival time 

in Durban 

 

RAIN REGIME 

 

CV 

 ÎÁÕ �ÐÑÒ) 

Ö� = ·/ÔÃÕ 

(spikes/min) 

Drizzle 0.9636 5.2065 0.1921 

Widespread 0.8208 6.5242 0.1533 

Shower 1.0260 6.7312 0.1486 

Thunderstorm 1.0731 10.8475 0.0922 

 

Table 4-2c: Fitted parameters of Erlang-k and Exponential probability distributions for Spike 

overlapping Time in Durban 

 

RAIN REGIME 

 

CV 

 ÎÁ× �ÐÑÒ) 

ØÁ = ·/ÔÃ× 

(overlaps/min) 

 

k 

Drizzle 0.6986 3.9906 0.2506 3 

Widespread 0.9212 4.2899 0.2331 3 

Shower 0.8903 5.8667 0.1705 3 

Thunderstorm 0.9142 5.7509 0.1739 2 

 

that the inter-arrival time between two spikes (one arriving and another departing) also 

increases with the spike’s maximum rainfall rate. To understand this observation, it will be 

important to note that rainfall spikes/clouds in the thunderstorm regime class must usually first 

pass through the drizzle, widespread and shower stages. This stage progression may be 

responsible for the longer service time and larger inter-arrival time, as seen in most 

thunderstorm events. From the results, we see that the average lifespan of a spike in Durban, 

irrespective of the rain regime bounds, is between 12 to 20 minutes. We expect the appearance 

of another spike, at most between 5 to 10 minute duration, prior to the end of an existing spike 

with an overlap time. 
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4.6.1.1 Error Analysis of Proposed Distributions 

The error statistic tests used to examine the suitability of our proposed models are the Root 

Mean Square Error (RMSE) and Chi-square statistic (χ
2
). The equations representing each of 

these statistic tools are given as: 

 

RMSE =  h1̀ 3�C	 − C�	)#a
	d� k�#                                                          �4.20) 

 

Ý# =  3 �C	 − C�	)#C	
a

	d�                                                                 �4.21) 
  

where xi is the actual dataset of measurement and x'i  is the proposed model dataset. The 

equations in (4.20) and (4.21) are valid for n sampled population. 

 

The results from the error statistic analysis, using (4.20) and (4.21) are given in Table 4-3. For 

the χ
2 

statistics, 5% threshold of significance level (SL) corresponding to the Degree-of-

Freedom (DF) was chosen to determine the satisfaction of the model criteria. If null hypotheses 

are not rejected at this chosen significance level, then 95% of the predicted model values satisfy 

the actual measurements. The standard χ
2
 table of values can be accessed in [6]. From these 

results, it is seen that the exponential model for the arrival process fits the actual data for all 

regimes, with RMS errors (in percent) ranging between 1.18% and 1.51%. The χ
2
 estimates are 

also significant (less than the 0.05 threshold) relative to the data. For the service time and 

overlap time, the Erlang-k distribution gives a better performance, with lower RMSE and better 

χ
2
 estimates, over exponential distribution as seen in Table 4-3 (see values with *). It is obvious 

that the rain spike queue behaviour of the measured data in Durban obvious mimics a phase-like 

distribution which is best most described by Erlang distribution. This is not surprising since 

from the data as the number of arriving rain spikes tend to have service time between 10 and 15 

minutes. Since it is earlier assumed that the overlap time is a subset of the service time, it 

follows that a phase-like queue process sufficiently describes it. 

 

From the service time modelling, it is observed that percentage RMS error for the best fitted 

model ranges between 0.8% and 1.04% irrespective of the rainfall regime. Also, the model 

results are significant to the actual distribution since their χ
2
 are less than the 5% significance 

threshold. For the Erlang-k overlap rate, it is observed that the percent RMS ranges between 

0.84% and 3.45%, which gives a good fit to the actual distribution for the different regimes r 
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Table 4-3: Error analysis of the Fitted Queue Distributions for Different Rain Regimes in 

Durban  

QUEUE 

PARAMETER 

 

REGIME 

PROPOSED 

MODEL 

 

RMSE 

 

χ
2
 

 

DF 

 

SL 

 

 

 

 

SERVICE 

TIME 

 

DRIZZLE 

M 0.0246 0.3004  

145 

 

174.10 Ek
*
 0.0094 0.7226 

 

WIDESPREAD 

M 0.0268 0.3413  

174 

 

205.78 Ek
*
 0.0077 0.1224 

 

SHOWER 

M 0.0216 0.3188  

125 

 

152.09 Ek
*
 0.0084 0.2648 

 

T/STORM 

M 0.0159 0.2983  

100 

 

124.34 Ek
*
 0.0104 0.3470 

 

INTER-

ARRIVAL 

TIME 

DRIZZLE M 0.0151 0.0860 125 152.09 

WIDESPREAD M 0.0118 0.0594 156 186.15 

SHOWER M 0.0129 0.0919 123 149.89 

T/STORM M 0.0128 0.2118 88 110.89 

 

 

 

 

OVERLAP 

TIME 

 

DRIZZLE 

M 0.0357 0.1368  

125 

 

152.09 Ek
*
 0.0292 0.2913 

 

WIDESPREAD 

M 0.1739 0.9053  

155 

 

185.05 Ek
*
 0.0099 0.0441 

 

SHOWER 

M 0.0197 0.0648  

123 

 

149.89 Ek
*
 0.0084 0.0204 

 

T/STORM 

M 0.0135 0.0768  

88 

 

110.89 Ek
*
 0.0087 0.0215 

*
selected model with lowest error statistics for the queue parameter

 

 

considered. The χ
2
 statistic for all regimes are also very significant to the model as seen in 

theivalues, since they have lower values than their 5% threshold level. Generally, it is seen that 

the percentage RMS error is less than 4% for all cases of queueing parameters which in turn, 

suggests that the models are good fits of the measurements. 

 

A closer look at the error statistics show that two major queue disciplines are valid for the spike 

queue pattern in subtropical Durban, they are: M/M/s/∞/FCFS (or a single stage 

Ek/M/s/∞/FCFS i.e. at k = 1) and M/Ek/s/∞/FCFS/. Following the evidences from the error 

statistics, it is observed that the Erlang-k distribution is more suited for the service time model 

and exponential model is most suited for the inter-arrival time model. Since the service time 

process of rain spikes queues (and clouds) for rain events for different regimes is Erlang-k 

distributed and the inter-arrival time is inherently exponentially distributed, it therefore follows 
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that the overall queueing behavior of rain spikes in Durban is semi-Markovian. As understood 

from the Kendall designation, it is therefore conclusive that a M/Ek/s/∞/FCFS discipline is valid 

to describe the rainfall queueing process in Durban, irrespective of the rain regime encountered. 

 

4.6.2 Determination of Server Number in Queue System 

As seen from earlier results, the spikes generated during rainfall events in Durban follows a 

distinct queue pattern which is described by either M/M/s/∞/FCFS (Markovian) or 

M/Ek/s/∞/FCFS (semi-Markovian) queue discipline. Investigations from this current study have 

shown that latter discipline is the most acceptable since it has minimum fitting error statistics. 

In both cases of queue pattern, the actual number of servers operating in the system, irrespective 

of the rain regime, is unknown. To assess the performance indices of the proposed queue 

disciplines, the knowledge of the server activity in the system is required. Thus, it is necessary 

to verify that steady state stability criterion of the entire queue systems obeys the rule 

[Kleinrock, 1975; Bolch et al., 1998; Hillier and Lieberman, 2001]: 

 

Þ =  &j  <  1                                                                            �4.22) 

 

By applying (4.22), the estimated utilization factor (ρ) for drizzle, widespread, shower and 

thunderstorm rainfall regimes are found to be 2.37, 2.10, 2.41 and 1.89 respectively. Therefore, 

the designed queue system for all regimes cannot attain system stability. To attain steady state 

stability, the minimum number of servers, smin, in the system must satisfy the given condition:  

 

R,	a ≥  rB(� I&%j1 J                                                                  �4.23) 

 

From (4.23), values of smin of 3 are computed for the first three regimes with the exception of 

thunderstorm regime where it is given as 2. The results suggest that the queueing mechanism 

for rain spikes in rain events is inevitably unstable; hence, the earlier assumed source of the 

constant overlaps between spikes in this work is actually the queue instability. While this 

interpretation of server is naturally embedded within the framework of the rainfall process 

itself, it is suspected that the cloud velocity profile and other peripheral physics might be 

involved.   

 

4.6.3 Performance of the Proposed Queue Disciplines 

The performance of a queue system is governed by the steady state behaviour of its traffic 

which includes the assessment of queue characteristics and variations. The steady state 
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conditions are derived from the preliminary solution of global balance rate equations for a 

typical queue system. From literature, there are four major performance indices required to be 

investigated for any queue discipline. They are provided in literature and given as [Kleinrock, 

1975; Bolch et al., 1998; Hillier and Lieberman, 2001]: 

 

(i) The steady state number of instances in the queue designated as Lq 

(ii) The steady state waiting time in the queue designated as Wq 

(iii) The steady state number of instances in the system designated as L 

(iv) The steady state waiting time in the system designated as W 

 

These indices are different as the queue disciplines changes and multiple servers exist in the 

system [Kleinrock, 1975]. Therefore, the performance metrics of any queue discipline changes 

with increment in number of servers and the changes in queue parameters. Because of this, the 

set of descriptors for computing these metrics are different for both M/M/s/∞/FCFS and 

M/Ek/s/∞/FCFS queue disciplines. In this investigation, the behaviour of both disciplines will 

be examined. It follows that for a typical M/M/s/∞/FCFS discipline, the set of performance 

descriptors are given by [Hillier and Lieberman, 2001]: 

 

ß =  �\ �&j�1 ÞR! �1 −  Þ)#                                                                     �4.24A) 

 

where,                   �á =  ¸3 �&j�a
`!  +  �&j�1

R! �1 −  Þ)1Y�
ad� ¼

Y�
                                               �4.24p) 

 

âß =  ß&    [�(`E£BR]                                                           �4.25) 

 =  ß +  &j                                                                           �4.26) 

 

â =  &                                                                            �4.27) 

 

And the descriptors of the M/Ek/s/∞/FCFS discipline are given as: 

 

ß =  1 + �2� &#Rj�Rj − &)                                                           �4.28) 
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   âß =  ß&   [�(`E£BR]                                                                 �4.29) 

        =  &â                                                                               �4.30) 

â =  âß +  1Rj  [�(`E£BR]                                                       �4.31) 

 

where Lq is the number of spikes in the queue, Wq is the waiting time of a spike in the queue in 

minutes, W is the overall waiting time of a spike in the queue system and L is the overall 

number of spikes in the system.  

 

By applying equations (4.24a) - (4.31), the performance indices of the system (Lq, Wq, W and L) 

are computed via simulation using MATLAB
®
 for servers between 3 and 20. The results 

generated show that the M/Ek/3/∞/FCFS queue discipline gives a better and convergent solution 

corresponding to increment in server number. Table 4-4 shows a summary of the performance 

metrics at s = 3 for the compared queue systems for different rain regimes. Observations from 

this table indicate that the computed metrics (in bolded) are generally lower for the semi-

Markovian queue discipline than seen for the Markovian discipline. This is mainly due to the 

effects of the Erlang-k stages which are totally absent in the Markovian model. For instance, the 

values for the number of spikes and their corresponding waiting time in queue (Lq and Wq) in 

any rain regime are higher for a typical M/M/s. Since the default number of natural servers in the 

rain process is about 3, spike numbers (L) of 2.6, 1.68, 2.88 and 1.34 are obtained in M/Ek/s for 

drizzle, widespread, shower and thunderstorm regimes respectively. This is compared to 4.78, 

3.26, 5.13 3.51 respectively for M/M/s. Similarly, for the same number of servers, the system 

waiting times (W) of 13.57, 11, 19.44 and 14 minutes are obtained respectively in M/Ek/s. 

Again, the respective figures of 24.87, 21.27, 34.53 and 24.65 minutes are obtained in M/M/s. 

This reveals that lower values of performance indices are indeed obtained for M/M/s disciplines 

across all rain regimes. To further understand their performances, the disciplines are examined 

as the servers in their systems are increased.  

 

As seen from the compared results in Figures 4-9 and 4-10, there is an obvious difference in the 

performance ‘curve’ of the M/M/s discipline. In addition to the earlier observation, the step-wise 

zero-convergence of the Markovian discipline is rather slow for the L and W indices. It is also 

observed that constant values are attained for these performance pair when a minimum of 10 

servers are active in the system. Beyond this, the addition of more servers to the system has zero 

effect on the convergence rate; this is atypical of proper queue system. The performance of the 

M/Ek/s queue discipline however shows that the zero-convergence of L and W is continuous as  
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Table 4-4: System performance of M/Ek/3/∞/FCFS and M/M/3//∞FCFS for different rainfall 

regimes in Durban 

 

REGIME 

 

DISCIPLINE 

SERVICE 

TIME 

INTERARRIVAL 

TIME 

PERFORMANCE 

METRICS j k & Lq Wq L W 

 

DRIZZLE 

M/Ek/3 0.0809 5 0.1921 9.45 1.82 13.58 2.61 

M/M/3 0.0809 X 0.1921 12.52 2.41 24.88 4.78 

 

WIDESPREAD 

M/Ek/3 0.0729 5 0.1533 6.43 0.99 11.00 1.69 

M/M/3 0.0729 X 0.1533 7.55 1.16 21.27 3.26 

 

SHOWER 

M/Ek/3 0.0615 4 0.1486 14.02 2.08 19.44 2.89 

M/M/3 0.0615 X 0.1486 18.27 2.72 34.53 5.13 

 

T/STORM 

M/Ek/3 0.0489 3 0.0922 7.16 0.71 14.51 1.34 

M/M/3 0.0489 X 0.0922 7.19 0.66 27.65 2.55 

X means that this parameter has no equivalent value for exponential distribution 
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(b) 

Figure 4-9: The effect of increasing the number of servers on the overall system waiting time 

(a) M/M/s/FCFS/∞ (b) M/Ek/s/FCFS/∞ 
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(b) 

Figure 4-10: The effect of increasing the number of servers on the expected number of spikes 

for different rain regime (a) M/M/s/FCFS/∞ (b) M/Ek/s/FCFS/∞ 

 

more servers are added to the system. The effect of the stages for different rain regime also 

ensures that lower values of these performance indices are attained irrespective of the server 

numbers. An extensive summary of the simulated performance results for both queue 

disciplines are presented in the tables in Appendix F. As seen from the investigations and of the 

performance indices, it is conclusive that the M/Ek/s discipline is the most appropriate to 

describe the spike traffic in Durban. This is because it offers the advantages of lower system 

waiting times, shorter queue times and better zero-convergence of performance metrics. In 

addition, it can be seen from the L and W metrics for all regimes that the M/Ek/s queue applied 

in this study is twice as efficient as M/M/s queue. 

 

4.6.4 Jump State Probabilities of Rainfall Spikes  

The investigation of rain spike stochastic generation during rain events as undertaken in this 

study has confirmed the existence of queues in rainfall process. This knowledge has shown that 

the arrival (and departure) process of spike and clouds instances within a rain event are plainly 

governed according to a semi-Markovian discipline.  

 

While the rain traffic analysis can evaluate the pattern of spike generation within an event 

context, it cannot identify and distinguish between the types and categories of spikes. The 
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identification of generated spike by their peak rain rates can be best distinguished by a known 

probability process. If the prevailing rain regime classification is applied (i.e. drizzle, 

widespread, shower and thunderstorm) to group the peak rain rates, it would be paramount to 

know, for example, the probability of a drizzle spike being succeeded by a thunderstorm spike 

and so on. This poses a genuine question as thus: what is the probability that the regime state of 

a rain spike jumps (or changes) to another regime state on arrival of another spike in the 

queue? Based on this question, it is expedient to develop state transition matrices to estimate the 

spike jump from one regime state to another. Since the rainfall process itself is of Markovian 

scheduling, it is logical to depict the probability of jumping from one current transition state, Mo 

to any state, Mn. This is described as: 

 ��_a|_\) =  D	´               for  (, � ∈ ℝ ∀`                                    �4.32) 

 

where n is the number of possible states of system transitions as spikes are generated in the 

queue process. Invariably, (4.32) can be represented as a simple matrix as below: 

 

��_a|_\) =  ãD	� … D	a⋮Da� ⋱… ⋮Daaä                                                           �4.33) 

 

 

By examining the processed rainfall queue data, it is observed that spikes from different rain 

regimes have a defined number of states for probability transition. Rain spikes generated in 

drizzle regime for instance have only one state because drizzle events are peak spike threshold 

of rain rates below 5 mm/h. For widespread events, generated spikes can only transit between 

two states, i.e. drizzle and widespread, with threshold below 10 mm/h. For shower events, 

generated spikes have a three-state transition probability of jumping randomly through drizzle, 

widespread and shower with threshold of 40 mm/h. Finally, thunderstorm storm events have 

four complete transition states where the spikes can transit randomly through drizzle, 

widespread, shower and thunderstorm.  

 

By physically examining the processed data from rainfall measurements in Durban, it is 

possible to identify the transitions of a generated spike in one regime state to another. By 

following the state diagrams, it can be deduced that a two-state system for example has four 

possible or 2
2
 transition states. A special case of steady state occurs in the system when the 

transition probability matrix, P, jumps continuously until it attains an infinite number of 

transitions [Bolch et al., 1998]. This condition leads to a steady state problem which must 

satisfy the condition that follows: 
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 å¶ = å                   for   å ≠ 0                                                �4.34)  
 

where q is the system vector at steady state such that its elements represent constant values of 

row elements of P under this condition.  The solution of q can be solved by applying the 

eigenvalue approach so that: �¶e −  &ç)åe = 0                                                           �4.35) 

 

where I is an n x n identity matrix dependent on the number of states.  

Following this arrangement, q
T
 becomes the eigenvector of P and can be easily resolved. The 

results that follow hereafter present the state transitions matrices of transiting spikes in Durban 

for the rainfall regimes of widespread, shower and thunderstorm. 

 

4.6.4.1 Jump State Transition Matrices for Rain Regimes 

There jumping state transition matrices obtained in this subsection are so classified according to 

their rainfall event bound. Therefore, it is expected that the number of states increase from 

drizzle to thunderstorm events. A drizzle event can only generate drizzle spikes and hence, will 

continually maintain one state which is drizzle. Widespread events can generate drizzle and 

widespread spikes, hence, only two states are possible. Following this trend, it is obvious that 

shower and thunderstorm events can only transit spikes in three and four states respectively. 

Transition state diagrams are presented in Figures 4-11 to show the transition possibilities of 

between distinct spikes in similar events. Figures 4-11a, 4-11b and 4-11c show the state 

transition states available for widespread events, shower and thunderstorm events. Since the 

drizzle events are perpetually stuck in one state, the state diagram is excluded. The elements 

pertaining to each of these transitions are presented as transition matrices. For any widespread 

event, the state transition matrix is given as: 

 

¶è	é|1��|%é =   êD�� D�ëDë� Dëëì                                                                  �4.36) 

 

where PDD, PDW, PWD and PWW are the transition probabilities of drizzle (D) and widespread (W) 

spikes. 

 

The state transition matrix available for shower events is thus given: 

¶1¤\è|� = ¨D��Dë�Dª�
D�ëDëëDªë

D�ªDëªDªª ©                                                       �4.37) 
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(a) 

 

(b) 

 

(c) 

Figure 4-11: The state transition diagrams for spikes generated in different rainfall regimes (a) 

Widespread (b) Shower (c) Thunderstorm . 

 

where PDD, PDW, PDS, PWD, PWW, PWS, PSD, PSW, PSS are the transition probabilities of drizzle (D), 

widespread (W) and shower (S) spikes. 

 

Finally, thunderstorm events have transitional matrix as follows: 
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¶�¤íaé|�1�\�, =  î D�� D�ë D�ª D�eDë�Dª�De�
DëëDªëDeë

DëªDªªDeª
DëeDªeDee

ï                                                   �4.38) 

 

where PDD, PDW, PDS, PDT, PWD, PWW, PWS, PWT, PSD, PSW, PSS, PST, PTD, PTW, PTS, PTT are the 

transition probabilities of drizzle (D), widespread (W), shower (S) and thunderstorm (T) spikes. 

 

Table 4-5 presents the populated transition matrices for each of the rainfall events as given in 

(4.36), (4.37) and (4.38). The number of product operation or stages required to attain steady- 

state conditions, n, is also presented. The results from the steady state vector are hereby 

discussed in the context of probability, the vector itself being a stochastic vector. It is important 

to note that the sum of all the elements contained in this is approximately equal to one. 

Therefore, it follows at steady state that in a widespread event, there is 73.7% chance of drizzle 

spikes compared to 26.3% chance of widespread spikes. In shower events at steady state, the 

probabilities of drizzle, widespread and shower spikes are 51.5%, 19.5% and 29% respectively. 

Finally, for spikes under thunderstorm events, the occurrence probabilities of 42.7%, 9.9%, 

21.4% and 25.8% are observed for drizzle, widespread, shower and thunderstorm spikes 

respectively. In all these regimes, drizzle spikes are all obviously dominant as seen from the 

discussion in comparison to other spike types. 

 

Table 4-5: State Transition Matrix and Steady State Vectors for Spike Generation in Durban 

REGIME TRANSITION MATRIX n  STEADY STATE VECTOR 

DRIZZLE [1]  [1] 

WIDESPREAD ê0.7528 0.24720.6935 0.3065ì 4 [0.7372 0.2628] 
 

SHOWER 
¨0.68390.36210.3165

0.17820.20690.2152
0.13790.43100.4684© 

 

12 

 [0.5146 0.1947 0.2913] 
 

T/STORM î0.6071 0.0714 0.0714 0.25000.37500.33330.2308
0.25000.11110.0769

0.1250.33330.3846
0.25000.22220.3077ï 

 

10 

 [0.4276 0.0989 0.2136 0.2587] 
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4.6.5 Relationship between Spike Peak Rainfall Rate and Service Time  

In this study, it is seen that the arrival of a cloud may be synonymous with the generation of 

rainfall spike in the time domain. Following this assumption, it might be beneficial to establish 

the relationship between the maximum rainfall rate of a spike and its contemporary service 

time. It follows that for a given maximum rain rate attained by a spike, ?,, the arrived cloud 

has a lifespan equivalent to the spike service time. Thus, the probability of overlap, Pr(Overlap) 

occurring in a spike for a given maximum rain rate in its lifespan, is given as: 

 

Pr��MB2�AD) =  £\£1                                                                             �4.39A) 

∴     Pr�V� �MB2�AD) = 1 − Pr��MB2�AD) = 1 −  £\£1                           �4.29p) 

 

From the queueing studies undertaken in this paper, the Erlangian service times and overlap 

times for a single spike are both non-mutually exclusive event instances. From earlier results, 

the service time is observed to be always greater than the overlap time, since the latter is a 

subset of the former. This is true because the overlap period for a single spike occurs as a fractal 

of its service time. Therefore, the concept of an adjusted service time is conceived because of 

the occurrence of overlaps. The adjusted service time, £1�, which is the actual service time, is 

given as: 

 £1� = Pr�V� �MB2�AD) ×  £1      [�(`E£BR]                                               �4.40) 

 

From our data and initial results on spike queues, it is seen that the service times (both ts and t
’
s) 

of any rain spike increases with increasing peak rain rate recorded. By using the complete 

dataset of 548 spike samples from Durban, without distinguishing between the regimes and 

considering only averaged rain rates, we find this relationship by regression technique as seen in 

Figure 4-12. Thus, we have:  

 £1� =  !�?,ñ ò                       [�(`E£BR]                                 �4.41) 

 

and, for service time occurrences with assumed overlaps, 

 £1 =  !#?,ñ ó                       [�(`E£BR]                                �4.42) 
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(a) 

 

 
(b)

 

Figure 4-12: Scatter plots of spike service time versus maximum rainfall rate for the city of 

Durban (a) Adjusted service time versus maximum rainfall rate (b) Actual service time versus 

maximum rainfall rate 

 

The paired coefficients of η1 = 8.8846 and ν1 = 0.2064 and η2 = 13.246 and ν2 = 0.174 were 

obtained respectively for (4.41) and (4.42) for the city of Durban located in KwaZulu-Natal 

province. The scatter-plots for these derived relationships are given in Fig. 4-12(a) and (b). The 

implication of the results in Fig. 4-12 affirms that the maximum rain rate of a single spike (or  

single rain cell) increases as the service time (or lifespan) increases at our location. This 

invariably means that cases such as thunderstorm events with higher rainfall rate components 

y = 8.8846x0.2064

R² = 0.5393

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

A
d

ju
st

e
d

 S
p

ik
e

 S
e

rv
ic

e
 T

im
e

 (
m

in
u

te
s)

Maximum Rainfall Rate (mm/h)

y = 13.246x0.174

R² = 0.6277

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

A
ct

u
a

l S
p

ik
e

 S
e

rv
ic

e
 T

im
e

 (
M

in
u

te
s)

Maximum Rainfall Rate (mm/h)



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

86 

 

 

tend to have spikes with higher lifespan. Although, it seems the accuracy of this method reduces 

time. In the same vein, about 28 minutes of rainfall duration is proportionate to a maximum 

rainfall rate of 60 mm/h based on the actual service time. 

 

4.7 Chapter Summary 

The interesting concept of rainfall spike queues as an M/Ek/s/∞/FCFS Semi-Markovian queue 

was investigated in this work. From our results, we have confirmed that the queue arrival 

pattern of rainfall spikes in a typical rainfall event in Durban is essentially exponentially 

distributed. The service time (or lifespan) of any arriving spike is found to follow, with minimal 

fitting errors, an Erlang-k distribution. Therefore, the overall rainfall processes over different 

rainfall regimes in Durban all seem to exhibit a default queue discipline of M/Ek/3. It is worthy 

to also note that the maximum peaks attained by each generated spikes are random and possess 

jumping state transitional probabilities which varies across different rainfall regimes. These 

maximum peaks are found to have a positive power-law relationship with its corresponding 

service times. These statistics are instrumental to the future (and alternative) development of 

dynamic techniques for implementing rain fade mitigation. At a latter stage of this thesis, these 

concepts are further developed to determine rain cell sizes, and hence, predict rain path 

attenuation. This is necessary since the analysis of single (and multiple) rain cells provide an 

avenue for the understanding of rain fade effects in communication networks. This gives us 

wider research options required to establish a sound relationship between rainfall attenuation, 

rain cells and queueing theory. In the next chapter, the queueing theory concept is also applied 

to the distrometer measurements at the equatorial location of Butare, Rwanda. A comparison of 

the queueing characteristics and performance metrics in Durban and Butare is further 

undertaken. 
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CHAPTER FIVE 

Comparison of Rainfall Queue Characteristics in Tropical Africa 

 

5.1 Introduction 

Attenuation due to precipitation remains an important design factor in the future deployment of 

terrestrial and earth-space communication radio links at high frequency bands. Largely, there 

are concerted efforts to understand the dynamics of precipitation forms in attenuation 

occurrence in subtropical, tropical and equatorial region of Africa. The role of time-varying 

rainfall in the process of rain attenuation though overtly stochastic, is very important. Thus, the 

knowledge of queueing theory in rainfall offers new interpretations to the generation and 

transition process of rain attenuation. In the preceding chapter, it was established that the 

appearance of rain rates over radio links in Durban (29
o
52′S, 30

o
58′E) invariably follows a First 

Come, First Served (FCFS), multi-server (s), infinite queue and semi-Markovian process, 

designated as a M/Ek/s/∞/FCFS discipline. In this chapter, the queueing theory approach is 

applied to distinct rain spike traffic over radio links in Butare (2
o
36′S, 29

o
44′E) to firstly 

determine the locations’ queueing characteristics. The queueing characteristics in Durban and 

Butare so obtained are comparatively analysed over four categorized rainfall event regimes of 

drizzle, widespread, shower and thunderstorm. Therefore, the contents of this chapter involve 

investigating the attributes and significant variations of rainfall queues at these African 

locations, over different regimes. In addition, other queue relationships and mathematical 

formulations describing other queue-related parameters are discussed.  

 

5.2 Brief Review of the Queueing Theory Concept 

Rainfall precipitation is a major source of attenuation to radio links, particularly at designated 

carrier bands transmitting at X-band frequencies and beyond [Green, 2004; Ajayi et. al, 1996]. 

Static and dynamic rain fade mitigation techniques have been suggested by researchers as stop-

gap measures required to correct this phenomenon [Acosta, 1997; Castanet et. al, 2003; ITU-R 

P.530-15, 2013]. For instance, the International Telecommunication Union (ITU) radio group 

recommendations in [ITU-R P.530-15, 2013; ITU-R P.837-6, 2012; ITU-R P.838-3, 2005)] 

employ static technique to address rain fade mitigation.  

 

Rain attenuation over a radio link, as research has shown from previous studies varies randomly 

and inhomogeneously over the entire life span of a rain event, in space and time [Ajayi, 1990; 
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Ajayi et. al, 1996]. This is possible because the measurable quantity of rainfall rate varies 

randomly during a rain event. During a rain event, distinct peaks are attained by rainfall rates 

corresponding to their allocated time series. Thus, a stationary observer positioned at a 

reference point over a radio link may detect this variation of rainfall rate, as the arrival and 

departure of objects at a position parallel to the reference. Simply, the collection of rainfall rate 

measurements at a point during a rainfall event over time is actually a time-series record of 

moving clouds (objects) – delivering bulk rain rates over the radio link. This scenario is akin to 

a production line process where empty bottles are queued and aligned to pass through a nozzle 

filling point. Evidently, it can be proven that the rainfall rate delivery process over radio links is 

a queue in which the arrival (and departure) of rainfall spikes follow a basic queueing pattern. If 

this process is properly understood, then this queue could be described as a Birth-Death (BD) 

process which is a special case of general Discrete-Time Markov Chain (DTMC) process 

[Bolch, 1998]. There have been a number of attempts to model the rainfall process using general 

Markov chain procedure and its derivatives [Alasseur et. al, 2004; Héder and Bitòs, 2008; 

Maruddani et. al, 2010]. The drawback of these Markov models are often linked to their unique 

transition state matrices, as they are dependent on the geography and climate of the region of 

study. In this current work, the BD process firstly assumes that the departure of a rain cloud 

over a radio link, is succeeded by the arrival of another rain cloud, until the rain event duration 

is completed. To understand this process, a distinct rainfall spike with a peak rainfall rate is 

assumed as a single object (or cloud) in rain event queue. Using this technique, it can be 

demonstrated by queueing theory that a queue discipline is most appropriate to describe the 

queue pattern pertaining to any rain spikes traffic. Basic queue parameters such as the service 

time and arrival time are intrinsic to describing this queue system [Kleinrock, 1975; Hillier and 

Lieberman, 2001]. Another parameter defined as the overlap time is needed to ascertain the 

period for which two spikes (one at birth and the other dying) intercept one another during 

rainfall.  

 

Therefore, this chapter firstly seeks to extend and compare the queueing characteristics as 

earlier proposed in chapter three from RD-80 distrometer measurements obtained at two 

African locations with distinct climates: Durban (subtropical) and Butare (Equatorial). These 

two locations are areas of intense rainfall and are particularly prone to the effects of rainfall 

attenuation for terrestrial and Earth-space communication at microwave frequencies [Ajayi et. 

al, 1996]. A survey into the annual climatic influences in Durban reveals a larger frequency of 

drizzle and widespread rainfalls, with few cases of thunderstorm events [Afullo, 2011; Alonge 

and Afullo, 2012]. Whereas, Butare is characterized by larger spectrum of shower and 
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thunderstorm rainfalls; infact, it exhibits a super-tropical climatic pattern. Therefore, these 

locations are climatically modulated by two extreme cases of tropical rainfall - where Durban is 

subtropical and Butare, equatorial. Thus, the objectives of this paper entail investigating the 

comparison of the underlying queue pattern of rain spike traffic, queue characteristics and its 

variations at the two proposed sites.. 

 

5.3 The M/Ek/s/∞/FCFS Queue for Rainfall Queueing Theory Analysis 

The M/Ek/s/∞/FCFS represents a semi-Markovian queue discipline in which queued instances 

(or objects) undergo a queue pattern where its service times is Erlang-k distributed (Ek) and their 

inter-arrival times is exponentially distributed (M) [Hillier and Lieberman, 2001]. In this 

discipline, the maximum length of the approaching instances (L) are assumed infinite (∞) and 

processed by servers (s) according to a First Come, First Served (FCFS) schedule [Kleinrock, 

1975]. This overall discipline depicts queues, where the instances are scheduled in an orderly 

manner, based on the probabilities of their intrinsic distributions. In the context of this study, 

the major components of any queue system are: the service time, inter-arrival time and servers.  

 

The rainfall spike service time shall be defined as the total lifespan of a spike in a rain event. 

The service time distribution is represented as an Erlang-k distribution with a service rate of µs. 

Therefore, the queue service distribution is defined from Hillier and Lieberman [2001]: 

 

R�£; �, j1) =  ��jª)+£+Y�BCD �−�jª£)Г��)     [�(`Y�]   for �, £ > 0;  £ ∀ ℝ      �5.1) 

 

where k is an integer related to the number of stages and µ s is the service rate of the spike 

distribution with the unit of spike/min. 

 

The inter-arrival time distribution describes a Markovian process related to the exponential 

distribution with an arrival rate, λa. The queue arrival distribution is defined from Walck [2007] 

as: 

 A�£; &%) =  &% BCD�−&%£)    [�(`Y�]       for £ > 0;  £ ∀ ℝ             �5.2) 

 

where λa is the arrival rate of the inter-arrival distribution with the unit of spike/min. 
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The service and arrival rates are the reciprocal of the mean service time and mean inter-arrival 

time respectively. The equivalent expressions related to their respective mean queue 

characteristics are given as: 

j1��� =  ô 1V1 3 £+
cÂ

+d� õY�    [�(`Y�]                                                  �5.3)  
 

&%��� =  ô 1V% 3 £	
cÄ
	d� õY�    [�(`Y�]                                                   �5.4) 

 

where tk and ti are arrays representing the service time and inter-arrival time of the queue 

discipline, with queue lengths (or sampled data) of Ns and Na respectively. 

 

For the purpose of the system modeling, we shall assume that our instances are distinct rainfall 

spikes generated during rain events – each with its distinct queue parameters. During a rainfall 

event, the subsequent arrivals of rainfall spikes over a radio link generate a well-defined offered 

traffic. For a stable queue, the server is expected to process any spike arriving within its 

designated service time. To achieve system stability, the overall multi-server queue system is 

required to satisfy the steady-state criterion [Bolch et. al, 1998; Hillier and Lieberman, 2001]: 

 

Þ =  &% Rj%ö ≤ 1                                                                  �5.5) 

where, ρ, is a dimensionless unit called the utilization factor which determines the reliability 

and stability by the system. In many natural and real-life systems like rainfall processes, it is 

most likely to find defined values of s for which ρ > 1. This condition may result in the 

occurrence of excess queues and rain spike delays. Usually, this queue problem is more 

complicated when the system is served by a single server.  

 

It follows from the previous chapter that the queue paradigms and assumptions applied in 

Durban is also applicable in Butare. They are thus reviewed and summarised as follows: 

i. A rain event is defined as the entire length of a physical process, specifying the 

commencement and end of rainfall, defined by a bounded period, T. 

ii. Network outages during rainfall are directly related to rainfall attenuation, as specified 

by ITU-R P.530-15. All outage durations are assumed to occur within the bounded 
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period of a rain event: where the outage duration, a subset of the rain event, is 

lognormally distributed (ITU-R P.530-15, 2013). 

 

iii. All rain events comprises of sub-events with a period, ti, which are individual subsets, 

the total sum of which equals the rain event T. Therefore,  ¢ =  ∑ £		 . 

 

iv. A sub-event is identified by a distinct rain spike within a rain event and is 

independently specified by its lifespan known as the service time, ts, which is inversely 

related to the queue service rate, µs. Mathematically, ts ⊂ T. 

 

v. Within a rain event, the inter-arrival and inter-departure of sub-events occurs in a 

random pattern related to the queueing parameters of arrival time and departure time. 

The inter-arrival time, ta, is inversely related to the queue arrival rate, λa.  

 
vi. The existence of two conjoined sub-events may result in truncated inter-departure 

process resulting in spike overlap with period, to, where £\ ⊂  £1. The overlap rate, 

defined as σo, is a probabilistic property – inversely related to the overlap time. 

 

vii. All specified properties of a distinct rainfall sub-event (or rainfall spike) are governed 

by a Markovian (or semi-Markovian) process. This process can be completely 

understood by a suitable queue discipline aptly embedded in a Kendall notation 

[Kendall, 1953; Bolch et. al, 1998]. 

 

Following the description from assumption (vi), it therefore follows that the Erlang-k 

distribution is also sufficient to describe its distribution. For this reason, the overlap rate is 

described as: 

 

f\��� =  ô 1V\ 3 £́cl
´d� õY�    [�(`Y�]                                             �5.6) 

 

where No is the number of overlap samples in the overlap time array, tj 

 

 

 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

92 

 

 

5.4 Measurement and Data Processing 

Datasets which form the basis for the queue modelling in this work are obtained from raw 

rainfall measurements via the Joss-Waldvogel RD-80 distrometer. These measurements are 

obtained from locations in Butare, Rwanda (2
o
36′S, 29

o
44′E) and Durban, South Africa 

(29
o
52′S, 30

o
58′E). The installed RD-80 distrometer undertakes the sampling and archiving of 

rainfall measurements from the outdoor unit at one minute interval, with accuracy of ±5% 

[Bartholomew, 2009]. The installation in Durban operated for total of two years (January 2009-

December 2010), albeit with few cases of outages. In Butare, a total of one year measurement 

was undertaken between March 2012 and February 2013.  

 

Retrieved rainfall data are classified into event classes as thus: drizzle (1 mm/h ≤ R < 5 mm/h), 

widespread (5 mm/h ≤ R < 10 mm/h), shower (10 mm/h ≤ R < 40 mm/h) and thunderstorm (R ≥ 

40 mm/h) as initially undertaken in Chapter Four. This categorization is followed by the 

isolation of rain events, by identifying points at the edges of their times series, where the events 

are seen to completely diminish. Thereafter, the identification of spikes within rain events is 

realized by observing distinct spikes and isolating them. The recovery of a distinct spike from 

conjoined spikes is pertinent as the BD process may occur prematurely between spikes. To 

resolve this, the Newton divided-difference extrapolation algorithm [Kreyzig, 2006] is applied 

to recover the truncated portions of such conjoined rain spikes. To eliminate errors associated 

with dead times and false events, rainfall events with maximum rain rates less than 3 mm/h are 

excluded from the processed data. By applying the ergodic properties of queues, it can be 

deduced that only fractional queue samples from the rainfall data are required to establish and 

generalize the behaviour of the entire dataset. A summary of the processed samples of the 

rainfall data at both locations is shown in Table 5-1 with drizzle (DR), widespread (WS), 

shower (SH) and thunderstorm (TS) regimes. 

 

From Table 5-1, it is observed that over 75% of spike samples at both sites have service times 

less than 40 minutes. For thunderstorm events, the percentages of samples less than 40 minutes 

are 60.3% and 86% respectively in Durban and Butare. For the inter-arrival time, however, 

more than 90% of the spikes arrive within 40 minutes of the initial spike, at both sites. More 

than 95% of the samples undergo overlaps within a maximum period of 20 minutes. From these 

results, we find similarity in the time domain structures of rain spikes at both sites. 
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Table 5-1: Distribution of the sampled measurements of queue parameters over time bounds for 

different regimes in Durban and Butare 

SERVICE TIME (minutes) 

TIME BOUNDS  

(minutes) 

Durban Butare 

DR WS SH TS DR WS SH TS 

0 ≤ t < 20 126 146 95 61 53 92 117 91 

20 ≤ t < 40 20 28 26 30 10 17 43 12 

40 ≤ t < 60 0 1 5 9 1 2 6 1 

t ≥ 60 0 0 0 1 0 0 0 1 

∑ 146 175 126 101 64 111 166 105 

INTER-ARRIVAL TIME (minutes) 

TIME BOUNDS  

(minutes) 

Durban Butare 

DR WS SH TS DR WS SH TS 

0 ≤ t < 20 124 155 120 76 50 102 126 90 

20 ≤ t < 40 2 2 2 9 3 0 9 6 

40 ≤ t < 60 0 1 2 4 0 0 0 0 

∑ 126 158 124 89 53 102 135 96 

OVERLAP TIME (minutes) 

TIME BOUNDS  

(minutes) 

Durban Butare 

DR WS SH TS DR WS SH TS 

0 ≤ t < 20 126 155 120 86 54 102 133 96 

20 ≤ t < 40 0 1 4 3 0 0 0 0 

∑ 126 156 124 89 54 102 133 96 

 

 

5.5 Rain Spike Queue Modelling Comparison in Durban and Butare 

The modelling of queue parameters for the service time, inter-arrival time and overlap time 

distributions are computed by applying the Method of Maximum Likelihood (ML) parameter 

estimation technique. To determine the error deviation and model suitability, the Root-Mean-

Square Error (RMSE) and Chi-Square (χ
2
) error statistics are applied. These two expressions are 

given by: 

 

?_�÷ = h1V 3�ø	 −  �	)#c
	d � k� #ö                                                     �5.7) 

 

Ý# =  3 �ø	 −  �	)#ø	                                                                    �5.8)c
	d�  
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where Oi and Pi are the observed data and modelled data related to the applied distribution 

respectively. 

 

5.5.1 Service Time Queue Distribution  

Since the service time distribution is assumed as an Erlang-k distribution, the values of the 

integer k are selected by varying the function until minimum RMSE and χ
2 

are obtained. The 

Probability Density Functions (PDFs) from the service time distribution modeling for both 

Durban and Butare are shown in Figure 5-1. The PDF shapes are observed to be similar for 

drizzle regime and as observed as on Table 5-2, the average service time in Durban is higher 

than seen in Butare. For the widespread regime, a similarity in the queue distribution is seen in 

Fig. 5-1b with the mean service times observed in Durban (13.71 minutes) and Butare (15.3 

minutes). For the shower regime, the mean service time (ts) are also observed as close to one 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5-1: PDF plots of Service Time Distribution of Rainfall Spikes for Different Regimes in 

Durban and Butare: (a) Drizzle (b) Widespread (c) Shower (d) Thunderstorm 
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Table 5-2: Comparison of Service Time Parameters in Durban and Butare 

Location Regime Óù Ôù k RMSE χ
2
 DF SL 

 

 

DURBAN 

Drizzle 0.0808 12.3755 5 0.0094 0.7226 145 174.10 

Widespread 0.0729 13.7095 5 0.0077 0.1224 174 205.78 

Shower 0.0615 16.2556 4 0.0083 0.2648 125 152.09 

Thunderstorm 0.0489 20.4409 3 0.0104 0.3469 100 124.34 

 

 

BUTARE 

Drizzle 0.0691 14.4786 6 0.0156 0.5925 63 82.53 

Widespread 0.0654 15.2942 8 0.0133 0.5567 111 136.59 

Shower 0.0598 16.7265 6 0.0092 0.0929 165 195.97 

Thunderstorm 0.0734 13.6167 7 0.0103 0.0103 104 128.80 

 

another at both sites (please, see Fig. 5-1c). This is confirmed in Table 5-2 where the 16.26 

minutes and 16.72 minutes are recorded as the average service times. Finally, the thunderstorm 

queue results as observed in Fig. 5-1d reveal divergence in the queue patterns, at both sites. The

average ts in Durban is about 20.44 minutes, whereas, this value is about 13.62 minutes in 

Butare. Broadly speaking, a gradual increase in the mean spike service time is observed in 

Durban from drizzle regime to thunderstorm regime. On the other hand, the service time seem 

to gradually decline for the same set of regimes in Butare. 

 

For the purpose of radio planning especially at high carrier frequencies, it may be noted that 

rain spikes generated during thunderstorm regimes have a higher probability of causing network 

outages. For this, it is observed from Table 5-2 that spikes in Durban tend to have longer service 

times than Butare for thunderstorm spikes. The disparity of the spike service at both sites might 

be a result of geographical effects governing the rainfall process. The implication of this is that - 

longer outage times may be experienced in Durban - than observed in Butare during severe 

thunderstorm rains. Also interesting, is the observation of the k-stages for the modeled 

distribution, for which the variations at both sites are observed. Values of k in Durban tend to 

decrease from drizzle regime to thunderstorm regimes. However, in Butare these values tend to 

increase for the same set of regimes. This implies that the spike generation process in Butare 

tend to pass through more k-stages during rainfall.  

 

The RMSE and χ
2
 for the Erlang-k models for each of the regimes are well within acceptable 

limits (see Table 5-2). The Degree-of-Freedom (DF) and Significant Level (SL) for each of the 

fitted models are also included. As a general remark, the RMSE at both sites do not exceed a 

percentage RMSE of 2%. Also, χ
2
 values for all regimes at both sites are satisfied since the 
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computed values do not exceed their significant levels at 5% according to their specified 

Degrees-of-Freedom. 

 

5.5.2 Inter-arrival Time Queue Distribution 

The spike inter-arrival distribution modelled in Durban and Butare are presented in Figure 5-2. 

The mean inter-arrival times, ta, in Durban for drizzle, widespread, shower and thunderstorm 

regimes are 5.21, 6.52, 6.73 and 10.85 minutes (please, see Table 5-3). In Durban, we see a 

progressive increase in the average ta in an ascending order from drizzle to thunderstorm 

regimes. In Butare, the set of mean inter-arrival time for the same regimes are 7.41, 5.33, 7.81 

and 6.50 minutes. It appears there is no trend indicating an increase or decrease of arrival time 

at this site. For drizzle and shower regimes, the mean inter-arrival times are found to be higher 

in Durban. This is not the case for spikes arrivals in Durban for widespread and shower 

regimes, as observations tend to favour the conditions in Butare. For the purpose of radio 

planning, it is. observed that the arrival rate of spikes in Butare is higher for thunderstorm  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-2: PDF plots of Inter-Arrival Time Distribution of Rainfall Spikes for Different 

Regimes in Durban and Butare (a) Drizzle (b) Widespread (c) Shower, and (d) Thunderstorm 
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Table 5-3: Comparison of Inter-Arrival Time Parameters in Durban and Butare 

LOCATION REGIME ÖÕ ÔÕ RMSE χ
2
 DF SL 

 

 

DURBAN 

Drizzle 0.1921 5.2065 0.0151 0.0860 125 152.09 

Widespread 0.1533 6.5242 0.0118 0.0594 156 186.15 

Shower 0.1486 6.7312 0.0129 0.0919 123 149.89 

Thunderstorm 0.0922 10.8475 0.0128 0.2118 88 110.89 

 

 

BUTARE 

Drizzle 0.1350 7.4077 0.0165 0.1363 52 69.83 

Widespread 0.1876 5.3317 0.0232 0.0854 101 125.46 

Shower 0.1280 7.8122 0.0115 0.0713 134 162.02 

Thunderstorm 0.1538 6.5024 0.0190 0.0505 101 125.46 

 

regime i.e. > 40 mm/h. This implies that in a typical spike queue in Durban, a spike arrives later 

than observed in Butare. This observation may imply that the service rebound time for a 

wireless network may be longer in Durban during thunderstorm events. For the exponential 

(Markovian) model at both sites, the RMSE and χ
2
 inter-arrival process in Durban are within 

acceptable limits. In Durban, the percentage RMSEs for all regimes are well below 1.5% with 

χ
2 

satisfying 5% significance level. In Butare, the computed percentage RMSE for all regimes 

does not exceed 2.5% with satisfactory χ
2
.  

 

5.5.3 Overlap Time Queue Distribution 

The overlap time is seen as a subset of the spike service time, and therefore exhibits the same 

probability characteristics as the service time. Therefore, Erlang-k distribution is also sufficient 

for the modelling of overlap distribution. The results from the two sites are presented in Table 

5-4 and Figure 5-3. We observe from the results that the overlap time patterns for drizzle regime 

are similar at both locations i.e. 4 minutes. However, the mean overlap times are seen to be  

 

Table 5-4: Comparison of Overlap Time Parameters in Durban and Butare 

LOCATION REGIME Ø× Ô× k RMSE χ
2
 DF SL 

 

 

DURBAN 

Drizzle 0.2506 3.9906 3 0.0292 0.2913 125 152.09 

Widespread 0.2331 4.2899 3 0.0099 0.0441 155 185.05 

Shower 0.1705 5.8667 3 0.0084 0.0204 123 149.89 

Thunderstorm 0.1739 5.7509 2 0.0164 0.0488 88 110.89 

 

 

BUTARE 

Drizzle 0.2431 4.1112 4 0.0459 0.2309 53 70.99 

Widespread 0.1888 5.2962 4 0.0391 0.1444 101 125.46 

Shower 0.2323 4.3047 4 0.0335 0.1673 132 159.81 

Thunderstorm 0.2647 3.7781 7 0.0373 0.0084 95 118.75 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-3: PDF plots of Overlap Time Distribution of Rainfall Spikes for Different Regimes 

in Durban and Butare (a) Drizzle (b) Widespread (c) Shower, and (d) Thunderstorm 

 

higher in Durban for shower and thunderstorm regimes. The value of k for Durban and Butare 

appear to remain constant at 3 and 4 respectively for the first three regimes i.e. drizzle, 

widespread and shower regimes. However, k values estimated for thunderstorm regimes (see 

Table 5-4) are different in Durban and Butare with their respective values being 2 and 7. For 

theerror statistics, the maximum RMSE at maximal error for all regimes is pegged at 4.6%, 

while the maximum χ
2
 at 0.2913 satisfy the significance level criteria. In general, we expect 

higher overlaps in Butare for drizzle and widespread spikes compared to Durban with the 

reverse scenario for shower and thunderstorm spikes. 

 

5.5.4 Variation of Queue Servers in Durban and Butare 

The generation of rainfall spike queues is regulated by multiple servers, which determine the 

service time and inter-arrival times. Thus, the understanding of the M/Ek/s/∞/FCFS queue 

discipline is incomplete without computing the actual number of multiple servers in the system. 
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By applying (5.5), it can be found that the steady-state criterion (ρ < 1) is unsatisfied across all 

regimes at both locations. Therefore, it is important to compute the minimum number of 

servers, R,	a, at both locations. It follows that the minimum number of servers required to 

sustain the spike traffic is unique to each rainfall regime in this study. To estimate this number, 

(5.5) is modified so that the minimum number of servers to satisfy the queue stability criterion. 

This is given as: 

 R,	a ≥  rB(� I&%j1 J                                                                  �5.9) 

 

where ceil denotes the upper bound of the computed minimum number of servers, smin. λa and µs 

are the arrival rate and service rate respectively. 

 

By applying (5.9), smin was computed from the queue parameters obtained for the different 

regimes in Durban and Butare. The results computed for both locations are presented in Table 

5-5. As seen from this table, smin computed in Durban has a constant value of 3 for all regimes 

except for the lower value for thunderstorm where, smin = 2. With the exception of drizzle 

regime in Butare, where smin = 2, the minimum servers observed for other regimes are constant 

with a value of 3. It is important to note that smin is reliant on the microphysics of the rainfall 

processes at both locations. At both locations, regime with lower value of smin is suspected to be 

influenced by varied service and inter-arrival times. There is a huge possibility that number of 

servers could be related to the air motion and advection velocities of the rain clouds. However, 

further investigations from ground and space-borne data are required to understand this 

relationship.   

 

Table 5-5: Minimum Number of Queue Servers in Durban and Butare for Different Regimes  

MINIMUM NUMBER OF QUEUE SERVERS 

LOCATION Drizzle Widespread Shower Thunderstorm 

DURBAN 3 3 3 2 

BUTARE 2 3 3 3 

 

5.6 Overall Queueing Results in Durban and Butare 

The overall results obtained from the two sites, irrespective of the rain regime, show that the 

general queueing parameters are very similar. These can be seen in Table 5-6 and Table 5-7. 

For instance, the service times in Durban and Butare are both seen to be 15.2 minutes and 15.3 

minutes respectively. For the inter-arrival time, Durban and Butare are seen to have average 
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values of 7.02 minutes and 6.78 minutes respectively. Lastly, overlap times of 4.87 minutes and 

4.41 minutes are observed in Durban and Butare respectively. Generally, the only 

distinguishable difference at the two locations can be seen in the values of k for the service time 

and overlap time distributions. This suggests that the number of stages vary at the two locations. 

From the result, Butare is always seen to possess k stages of one unit higher than those in  

 

Table 5-6: General Comparison of Queueing Parameters in Durban and Butare 

SERVICE TIME 

LOCATION µs ts k RMSE χ
2
 DF SL 

Durban 0.0659 15.1801 5 0.0033 1.218 547 605.52 

Butare 0.0653 15.3152 6 0.0053 0.3578 445 495.17 

INTER-ARRIVAL TIME 

LOCATION λa ta RMSE χ
2
 DF SL 

Durban 0.1425 7.0169 0.0076 0.0095 495 547.86 

Butare 0.1476 6.7754 0.0788 0.0521 385 431.73 

OVERLAP TIME 

LOCATION σo to k RMSE χ
2
 DF SL 

Durban 0.2053 4.8714 3 0.0065 0.0168 494 546.81 

Butare 0.2267 4.4097 4 0.2278 0.1209 383 429.61 

 

 

 

Table 5-7: Comparison of Time Exceedences for the Queueing Parameters in Durban and 

Butare 

Percentage of Time for which Service Time is Exceeded (%)    

LOCATION 10 5 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 

Durban 26.5 32.1 52 55 57.8 58.2 58.9 59.2 59.8 60.1 60.8 61.6 

Butare 26 31.2 44.6 51.9 62 62.3 62.5 62.8 63 63.2 63.4 63.6 

Percentage of Time for which Inter-Arrival Time is Exceeded (%) 

LOCATION 10 5 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 

Durban 16.2 19.1 41 41.7 50 50.1 50.2 50.22 50.3 50.35 50.46 50.5 

Butare 14.5 19 33 37.8 38.13 38.2 38.4 38.5 38.6 38.65 38.8 38.9 

Percentage of Time for which Overlap Time is Exceeded (%) 

LOCATION 10 5 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 

Durban 9.6 13.1 24 27.5 29.8 30 30.11 30.21 30.5 30.62 30.77 30.8 

Butare 8 9.3 10.2 10.3 10.5 10.65 10.9 11 11.2 11.23 11.3 11.5 
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Durban. In Table 5-6, the time exceedences for each of these queueing parameters are presented 

for each location. From the available results, the profile in Durban is roughly seen as a scaled 

version of the Butare distribution. For design purposes, exceedence values at 0.01% may be 

critical to the viability of radio links during rainfall. From observations at 0.01% availability, 

the service times in Durban and Butare are 56.3 and 62.3 minutes respectively (see Table 5-7).  

Also, the observed inter-arrival times at these same locations are found to be 50.1 and 38.2 

minutes respectively. The overlap times are also respectively found to be 30.5 and 10.3 minutes  

at these locations. It is suspected that the spike generation mechanisms during thunderstorm 

rainfalls, as well as other climatic differences, may be responsible for this variation. As earlier 

seen in the regime analysis, thunderstorms tend to have higher average values for both service 

time and overlap times. This trend, as seen in the regime analysis, is also observed under the 

behaviour of the overall data. 

 

5.7 Significant Relationships from the Queue Analysis 

5.7.1 Overall Peak Rain Rate Distribution 

The peak rainfall rate observed for each spike in a queue is an important parameter, as it 

contributes to the definition of the queue behavior. The modelling of these peak rainfall rates 

clearly show that their generation mechanism is exponentially distributed. This is true most 

especially for processes occurring during drizzle, widespread and shower regimes. For these 

regimes, it is observed that the slope parameter, Λp, is sufficient to parameterize their 

exponential models. In Butare, we find the slope parameter for drizzle, widespread and shower 

as 0.57, 0.48 and 0.33 respectively. in Durban, the slope parameters for this set of regimes are 

0.61, 0.35 and 0.14 respectively. These regimes are generally found to satisfy the criteria for 

which the Coefficient of Variation (CV) is equal to unity. However, the thunderstorm regions at 

both locations are found to possess CV greater than unity, hence, exponential models are not 

sufficient to model the queue distributions. For this reason, we propose the two-phase hyper-

exponential distribution as an appropriate model to describe the peak rain rate queues. This 

distribution is given by Walck (2007) as: 

 ;ú2�+û =  Λ��D� expú−Λ��2û +  Λ�#D# expú−Λ�#2û                              �5.10) 

 

where r is the rain rate in mm/h, Λp1 and Λp2 are the slope parameters for the first and second 

stages of the hyper-exponential distribution respectively. Similarly, p1 and p2 are the 

probabilities attributed to each phase such that p1 + p2 = 1.  
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(a) 

 

(b)

Figure 5-4: Generation of rain spike peaks for Different rain regimes (a) Durban (b) Butare 

 

 

In Durban, the following parameters of the two-phase model model are: Λp1 = 0.11, Λp2 = 0.03, 

p1 = 0.79 and p2 = 0.21. While in Butare, the parameters are given accordingly as: Λp1 = 0.091,  

Λp2 = 0.032, p1 = 0.74 and p2 = 0.26. In Figure 5-4, the peak appearances of spikes under 

drizzle, widespread, shower and thunderstorm are generated over hypothetical event durations  

of 20 minutes. These appearances are randomly generated by applying the equivalent random 

exponential distribution for spike peaks at both sites. 

 

5.7.2 Relationship between Mean Peak Rainfall Rate and Mean Service Time 

The mean power-law relationship between the peak rainfall rate (Rm) and their corresponding 

mean service time (sm) for any rain spike without overlap is given by: 

 �, =  �?,ü                     [�(`E£BR]                              �5.11) 

 

where α and β are the coefficients of the power-law relationship. 

 

By applying regression analysis, the relationships at both locations were observed have different 

trend as seen in Fig. 5-5. In Durban, the regression coefficients obtained are α = 12.17 and β = 

0.21; while in Butare, α = 19.01 and β = -0.21. From Fig. 5-5, it is found that a positive 

exponent exists for Durban, while, a negative exponent exists for Butare. This confirms the 

earlier observation that shower and thunderstorm rain events in Butare occur for a relatively 

shorter time, compared to observations in Durban.  The models show that the spike service 

times at both sites, are close for peak rainfall rates at 3.5 mm/h, while a huge disparity occurs 
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for peak rainfall rates other than this value. For instance, at 15 mm/h, an averaged spike service 

of roughly 21.5 minutes and 11.6 minutes are observed in Durban and Butare respectively. 

Whereas, at say 70 mm/h, spikes generated in Durban could have a life span as much as 30 

minutes, while, those in Butare last for roughly 8 minutes. Since the length in spike service time 

is evidently related to sub-event outage duration in radio links, it is predicted that Durban may  

 

 

(a) 

 

             (b) 

Figure 5-5: Comparison of spike service time versus peak rainfall rate observed at (a) Durban, 

South Africa (b) Butare, Rwanda.  
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witness longer outage periods than Butare. In addition, the rebound time for network recovery 

(as earlier stated) from rain attenuation effects is predicted to be shorter in Butare than Durban. 

 

5.7.3 Spike Jump Transition Probabilities 

The comparison of the spike transition in this subsection follows the earlier discussion in sub-

section 4.6.4. Table 5-8 presents a summary of results of transition matrices and steady state 

vector, q, obtained from Durban and Butare over three rainfall regimes: widespread (WDS), 

shower (SHW) and thunderstorm (TST). The transition state matrices are seen at both locations 

tend to be slightly similar in elemental make-up for each regime. Our interest, however, lies in 

the steady state vector at each location under different regime. It is observed that the values of n 

are higher in Butare than Durban; this might be an implication of geographical characteristics. 

This suggests that it takes longer probability jumps to attain steady state in Butare. At steady  

 

Table 5-8: Transition Matrices and Steady State vectors in Durban and Butare for rain regimes 

REGIME PLACE TRANSITION MATRIX n q 

 

 

WDS 

 

DURBAN 

 

ê0.7528 0.24720.6935 0.3065ì 
 

 

4 

 [0.7372 0.2628] 
 

 

BUTARE 

 

ê0.8286 0.17140.4808 0.5192ì 
 

 

10 

 [0.7372 0.2628] 
 

 

 

 

SHW 

 

DURBAN 
¨0.68390.36210.3165

0.17820.20690.2152
0.13790.43100.4684© 

 

 

12 

 [0.5146 0.1947 0.2913] 
 

 

BUTARE 
¨0.68750.33870.2747

0.1250.38710.2087
0.18750.27420.5165©  

12 

[0.4899 0.2040 0.3057] 
 

 

 

 

TST 

 

DURBAN î0.6071 0.0714 0.0714 0.25000.37500.33330.2308
0.25000.11110.0769

0.1250.33330.3846
0.25000.22220.3077ï 

 

 

10 

 [0.4276 0.0989 0.2136 0.2587] 

 

BUTARE î0.7273 0.0455 0.1136 0.11360.10000.22500.1290
0.20000.10000.1290

0.40000.4750.4516
0.30000.20000.2903ï 

 

 

14 

 [0.3912 0.0936 0.3219 0.1929] 
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Table 5-9: Overall Transition Matrices and Steady State vectors in Durban and Butare from 

overall Data 

LOCATION TRANSITION MATRIX n q 

 

DURBAN î0.7105 0.2026 0.0684 0.01840.52340.31820.2308
0.25780.20450.0769

0.20310.45160.3846
0.01560.02270.3077ï 

 

 

10 

 [0.5907 0.2111 0.1711 0.0261] 
 

BUTARE î0.7473 0.1299 0.1047 0.01810.37900.25950.1290
0.42740.17560.1290

0.16940.50380.4516
0.02420.06110.3077ï 

 

 

13 

 [0.5430 0.1991 0.2184 0.0394] 
 

state, occurrence probabilities of drizzle and widespread spikes are found to be 73.7% and 

26.3% respectively at both locations under widespread events. For shower events, the 

occurrence probabilities in Durban are 51.5%, 19.5% and 29% are observed for drizzle, 

widespread and shower spikes compared to 49%, 20.4% and 30.6% respectively in Butare. 

Thunderstorm events in Durban have occurrence probabilities of 42.8%, 9.9%, 21.4% and 

25.9% for drizzle, widespread, shower and thunderstorm spikes respectively. In Butare, the 

steady state probabilities are 39.1%, 9.4%, 32.2% and 19.3% respectively for the same regimes. 

The steady state results at both sites comparably appear similar although it is clear that the 

number of stages required to attain this state varies. From the overall data, the transition 

matrices and steady state vectors are presented in Table 5-9.  

 

The jumping state transition matrix at both sites under this condition shows that not much 

difference exists between their characteristics. As for the number of stages required to attain 

steady state, Butare is observed to have a higher values. During steady, the occurrence 

probabilities of having drizzle, widespread, shower and thunderstorm spikes are 59.1%, 21.1%, 

17.1% and 2.6% respectively. This is compared to 54.3%, 19.9%, 21.8% and 3.94% 

respectively in Butare. This shows that similarities do exist in the appearance patterns at both 

locations. 

 

5.8  Rainfall Synthesis from Queueing Approach

The shape of a spike around its peak, generally appears as asymmetrically normal (or Gaussian 

distribution), with the power spectrum gradually decreasing along its left and right lobes 

[Alonge and Afullo, 2013]. The right and left lobes are side lobes, which can be ignored within 

the time domain, as they are embedded with noisy components. Rainfall growth patterns are 
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often probabilistic and each growth point is reliant on the state information of the previous 

point. Rain growth modelling for rain queues is not a subject within the scope of this study. 

However, an approximate function to this generate each of this spikes is undertaken using 

discretized step values representing each spike. This results in an overall queue system of 

rectangular spikes, with flat peaks. For each of these step values, the rainfall rate is assigned as:  

 ?�£) = ýa     [��/ℎ]  for  £1 ∈ ¢                                         �5.12) 

 

where T is event period during which n step levels with rainfall rates with values, Un, are 

assigned to rain spikes generated within a queue discipline. 

 

The queue disciplines representing each regime are simulated for both locations using 

MATLAB
®
. The rain rate peaks from simulations are normalized from their FCFS generation 

process, according to the bounds of their regime. The simulated plots for each of the regimes 

are presented in Figure 5-6. Each of the plots consists of 100 spike arrivals, with different queue 

parameters describing the queue patterns for different regimes at both locations. The rain peak 

probability process is used to generate the service times, for which arrival times are designated, 

according to the time domain.  

 

One of the important parameters in this study is the relationship between the number of spikes  

and their corresponding event duration. The number of spike arrival, γ, whose aggregate sum 

equals the averaged event duration, Tave, in minutes tends to be highly correlated. This is found 

to be simply described by a power-law relationship given by: 

. ¢%þ| =  !�~�ó        [�(`E£BR]          1 ≤  ~ ≤ 100             �5.13) 

 

where the coefficients η1 and η2 are values corresponding to spikes generated during a rain 

event. 

 

The simulated values of the power-law coefficients in (5.13) are obtained by averaging the 

event duration over 100 iterations, while increasing the number of spike arrivals per simulated 

event. The coefficients (η1, η2) obtained under drizzle regimes in Durban and Butare are (12.37, 

0.78) and (13.22, 0.86) respectively. For widespread rains, (14.59, 0.79) and (10.91, 0.83) are 

also obtained respectively. Under shower conditions, these coefficients are given as (18.43, 

0.78) and (8.57, 0.89) at each location, accordingly. Finally, the set of coefficients computed for 
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(a) 

 

(b) 

 

(c) 

 

(d)

Figure 5-6: Simulated rain events from queue parameters for different rain regimes in Durban 

and Butare (a) Drizzle (b) Widespread (c) Shower (d) Thunderstorm 

 

thunderstorm rains are (23.37, 0.8) and (7.55, 0.78) respectively. The results from the 

simulation confirm that event durations at both locations, under different rain regimes, are 

obviously different. Invariably, we find that for an equivalent number of spikes, drizzle events 

in Butare tend to last longer compared to the scenario in Durban (see Figure 5-6a). Conversely, 

thunderstorm events in Durban last longer than seen in Butare, for the same number of spikes 

(see Figure 5-6d). 

 

5.9 Chapter Summary 

In this chapter, it was earlier demonstrated that the rainfall event process over a radio link at 

equatorial Butare also follow a well-defined queuing pattern which is essentially a semi-

Markovian queue discipline. Therefore, rain spike traffic as a single queue entity of rainfall 

process is found to be generated aperiodically, according to the nature of the rain regime at both 

investigated sites. More importantly, the distribution of the queue parameters for different 

proposed regimes in subtropical and equatorial climates tends to vary significantly. While 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

R
a

in
fa

ll
 R

a
te

 (
m

m
/h

)

Event Duration (minutes)

Durban

Butare

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800

R
a

in
fa

ll
 R

a
te

 (
m

m
/h

)

Event Duration (minutes)

Durban

Butare

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

R
a

in
fa

ll
 R

a
te

 (
m

m
/h

)

Event Duration (minutes)

Durban

Butare

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

R
a

in
fa

ll
 R

a
te

 (
m

m
/h

)

Event duration (minutes)

Durban

Butare



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

108 

 

 

climatic and geographical factors cannot be completely ruled out in these variations, the overall 

data tend to exhibit similar queue characteristics. Broadly speaking, it is conclusive to note that 

the service time for a single spike in Durban increases with attained maximum rain rate. This is 

in contrast to the observations at Butare, where the spikes at high rain rates tend to have shorter 

service times. The implication is that rainfall attenuation growth processes in Durban is slower 

with a high possibility of larger network outage window, especially at severe rainfall conditions 

with high rain rate. However, the periodic extent to which radio links are affected within a 

generated spike is dependent on further study of the rain spike growth process. The transition 

matrices and steady state vectors comparison also indicate that the jump transitions from one 

state to another are quite similar at the two locations. However, the time required to attain 

steady state varies irrespective of the regime being considered at both sites. The knowledge of 

rainfall queue theory over radio links is a prerequisite for the future development of 

countermeasure paradigm for dynamic rain fade mitigation as this will complement the current 

ITU-R approach. In the chapter that follows, the queueing theory technique in rainfall is applied 

to provide knowledge and understanding of rainfall growth processes and rain cell statistics at 

these two tropical African sites.  



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

109 

 

 

CHAPTER SIX 

Queueing Theory Application in Rain Cell Estimation 

6.1 Introduction 

The previous chapter focused on the investigation of rainfall queueing characteristics at 

equatorial Butare and further comparison with results obtained from subtropical Durban. So far, 

this thesis has developed and established a queue discipline for rainfall processes which 

essentially describes rain traffic generated from single unit of rain spikes. However, the 

proposed queueing approach only provides a template for the natural scheduling of these queue-

generated spikes. The queueing theory is however silent on the physical characteristics, 

representation and appearance of queue-generated rain spikes. Therefore, this chapter will foray 

into the probability theory and descriptive mathematics of each rain spike as they undergo 

queueing processes in Durban and Butare. The relationship between rain spikes and rain cell 

metrics will also be investigated as they both play an important role in the estimation of path 

attenuation over radio links. The frequency bands under consideration are the microwave and 

millimeter bands deployed under LOS radio systems. Therefore, the chapter will conclude by 

comparing the proposed results with link measurements from Durban.  

 

6.2 Sinc Function Descriptions of Rain Spikes 

The proposed description of a rain spike in this thesis is essentially an entity governed by a BD 

process as explained in the queue approach introduction in Chapter four. Thus, standard rain 

spikes are expected to have an initial time with rainfall rate usually closer to zero. This time 

gradually peaks up until a maximum rainfall is reached and then gradually slopes down to its 

initial zero position. As seen in Fig. 6-1, a typical rain spike (also an event) is seen as an 

initially progressing phenomenon and then later regresses once it attains its peak. The shape of 

rainfall service time around its peak generally appears asymmetrically normal (or Gaussian 

distribution) with the power spectrum gradually decreasing along its left and right lobes. 

Broadly speaking, the representation assumed for generic rainfall duration requires an envelope-

like function to understand the shape of time-varying rainfall spike. To this end, Alonge and 

Afullo [2013a] initially proposed a sinc mathematical function, modified as an envelope, in 

early studies of rain spike. The function is an nth-powered sinc model mimicking the shape 

profile of a typical rain spike and is given by: 

 ?�£) =  � [R(`r ��£)]a         for � ≈ 1,� >  0 A`�  ` >  0; ∀£ ∈ ℤ         �6.1)  
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Figure 6-1: Rainfall event at University of KwaZulu-Natal campus on 25
th
 of April, 2009 

between 16:34 hrs and 17:19 hrs 

 

Figure 6-2: Plots of different values of n for the nth-powered sinc function for β = 0.9. 

 

where t is a random independent variable corresponding to the time progression in minutes. 

Here, we assume that the random variable varies as the time progresses in the time domain.  The 

constant, φ, is the maximum rainfall rate in the dataset but set to unity for relative rainfall rate. 

The value, n, is the power of the overall sinc function.  

 

The power, n, is a very important parameter in determining appropriately, the sinc envelope 

function. Fig. 6-2 shows the different plots of integer values, n, with the sinc function. The idea 

is to develop the simplest shape profile with a main lobe and side-lobes to approximate the 
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rainfall process. As seen in the figure, the values of n = 1 and 2 both have main lobe and side-

lobes. However, the values for which n ≥ 3 produces flattened out side lobes. These values will 

increase the side-lobe errors in the model when applied. Therefore, the values of 1 and 2 appear 

to be the appropriate choices. However, the nth-powered sinc function for the value of n = 1 

generates some negative values of side lobe components. On the other hand, n = 2 generates only 

positive values of the side-lobes. Therefore, the most ideal value of n for nth-powered sinc 

function from our observation is 2. It should be noted that the inner product of (6-1) is actually 

applied in the case of n = 2. 

 

6.2.1 Classification of Rain Spike by Sinc Templates  

A close observation of rain events in Durban show several sub-events, which are observable 

spikes, all which follow the typical birth and death processes. Therefore, when rainfall durations 

are examined, the spike’s main lobe which is of primary interest to rainfall attenuation peaks 

becomes significant. However, the position of the main lobe can be centrally-skewed (with or 

without side lobes), right-skewed or left-skewed. The main lobes when skewed have side-lobes 

at adjacent positions. Therefore, four possible templates are assumed for any spike according to 

(6.1). These templates are described in Table 6-1 by time-bounds imposed on the proposed 

function. The frequency domain obtained from Fast Fourier Transform (FFT) routine and Welch 

PSD for these templates are also depicted on Table 6-1. They are described accordingly: 

 

(a) Template A 

This template describes a rainfall spike completely specified by a main lobe with left and right 

side lobes. This template imitates the rainfall for a normal duration with proper rain cell 

formation. The bounds of the time, t, are defined as –π ≤ t ≤ π. 

 

(b) Template B 

This template describes a rainfall spike characterized by a right-skewed main lobe with left side 

lobes. This template represents a spike with a sudden peak towards the end of its life time. The 

duration bounds are specified by –π ≤ t ≤ a2π 

 

(c) Template C 

This template represents a rainfall spike for which the spike begins with a sudden peak and 

some few rainfall rate samples at the end. In this case, the interval for which t exists is given by 

– a1π ≤ t ≤ π. 
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Table 6-1: Normalized nth-powered Sinc function templates for rainfall rate 

 

TEMPLATE 

TIME 

BOUNDS 

 

TIME DOMAIN 

FREQUENCY 

DOMAIN 

SPECTRAL 

DENSITY (PSD)  

1. Rainfall 

duration with a 

Main lobe 

accompanied by 

right and left side-

lobes. 

 

 −" ≤ £ ≤ " 

   

 

2. Left-Skewed 

rainfall duration 

with right side-

lobes. 

 

 −" ≤ £ ≤ A#" 

  

 

3. Right-Skewed 

rainfall duration 

with left side-

lobes. 

 

 −A�" ≤ £ ≤ " 

  

 

3. Rainfall 

duration with main 

lobe and no side-

lobes. 

 

 −A�" ≤ £ ≤ A#" 

  

 

(d) Template D 

Sometimes, a rainfall spike can be characterized by a progressive increase (and eventual 

decrease) in the rainfall rate during its service time. This template can work as an appropriate 

envelope with bounds of t defined by – a1π ≤ t ≤ a2π. In most case, the assumption a1 ≈ a2 may 

hold for equal side lobes. 

 

The sinc classification is useful for profiling the characteristics shape of rain spikes. The 

function, however, fails to explain the probability properties involved in its birth and death. 

This approach therefore fails to highlight the importance of probability theory hypothesis in 

rainfall queueing process. The next section will discuss the subject of probability analysis of 

rain spikes. 
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6.3 Probability Analysis of Rain Spike Characteristics in Queues 

As seen in the previous chapters, the queue service time distribution from the datasets obtained 

in Durban and Butare have been demonstrated to be Erlang-k distributed irrespective of the 

spike traffic during rainfall. From earlier investigations, the service time defines the lifespan of 

rain spike generated in the queue process, according to a known queue discipline. It is 

imperative to understand the probability characteristics of rain spikes as they are the closest 

representation of the random manifestation of time-varying rain fades. Since rainfall fade is 

potentially deleterious to satisfactory network performance at microwave and millimeter bands, 

it is rewarding to investigate its closest representation. By definition, the basic unit of a rainfall 

event is a single rainfall spike which is generated as an ‘unstable’ traffic according to certain 

queue patterns. The manifestation of this queue results in the presence of finite number of 

spikes in any prevailing rain event with random rainfall rate appearances.  

 

The mathematical approach employed in the understanding of rain spikes in this study, is partly 

semi-empirical. as it applies knowledge from the empirical results seen in the previous chapter 

to relevant probability theories. Firstly, a rainfall spike which is an independent entity of a 

rainfall event follows a BD process is represented as shown in Figure 6-3. Discrete points along 

the spike ?a, ?az�, ?+ , ?+z� are identified according to the birth and death phases. This spike is 

assumed to follow a symmetrical geometry such that the period required to attain ?, from birth  

 

Figure 6-3: Rain spike characteristics in the time domain as obtained in a queue 
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(growth) is approximately equal to the period required to attain death from ?,. Therefore, the 

concept of growth rate and death rate is embedded within the characteristics of a rain spike. 

Mathematically, it follows that the growth rate from Fig. 6-3 is defined as: 

 

2�  =  1Í� =  60 ×  ?az� − ?a£az� − £a =  60 ∆?�∆£�      [��/�(`#]            �6.2)  
 

,and the death rate, is also given as: 

 

2é =  1Íé  = 60 ×  ?+z� −  ?+£+z� −  £+ =  60 ∆?é∆£é       [��/�(`#]          �6.3)  
 

where 60 is time constant required to convert the time base of rainfall rate units in (6.2) and 

(6.3). So, it turns out that the growth and death rate of any spike attaining a maximum rain rate, ?,, may be related to the second derivative of rainfall accumulation within the same time 

differential as the unit suggests. 

 

It can be seen that the time instances along a rain spike, £a, £az�, £+, £+z�  ⊂  £1 are such that £1 = `£a. This assumption remains valid if the sampling interval is uniform throughout the 

rainfall period as obtainable in any measurement process. For any queue process, each rainfall 

spike is generated according to a M/Ek/s/∞/FCFS discipline as seen in previous chapters. Thus, 

for the service time of any rain spike, the distribution tends to follow a well-defined Erlang-k 

distribution. From this, it is established that: 

 £1 ~ ÷2�A` ��, j1)                                                                  �6.4) 

 

where k and j1 are the Erlang distribution parameters as already defined in this thesis. 

 

Let the individual rain rate points along a rain spike follow a probability process based on a 

unknown PDF represented by � �£). Along the rain spike, the points tend to follow a growth 

process, which is strictly a BD process as earlier proposed. During the birth process, a rain 

probabilistic growth process is initiated leading to the successive generation of rain rates in an 

increasing manner. The growth process reaches its equilibrium at the maximum rainfall rate, ?,, as seen in Fig. 6-3. Thereafter, the generated rain rates start to decline in a probabilistic 

manner at a certain rate as it approaches its death. This is the summary of the lifespan of a 
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typical spike generated during a queue process. In all, two typical questions suffice: what is the 

most suitable probability process responsible to describe the BD process of rain rates within a 

rain spike? What is the relationship of the probability process to the maximum rain rate attained 

by the spike? According to (6.4), it can be deduced that the probability process of individual 

rain rates within a rain spike is an extension of the service time distribution. Therefore, it is 

assumed that for n number of rain rate points within a rain spike at birth phase (likewise the 

death phase): 

 

£a ~ ÷2�A`  ���, j1
�

�                                                               �6.5) 

 

where w is a fractal constant related to the service rate. It is expected that mean of the 

distribution given in (6.4) may be approximately equal to the fractal mean of n-points linked to 

the proposed Erlang probability process in (6.5). Therefore, it is proper to conclude that: 

 j1
�

≈ 	       and    � → ��                                                       �6.6) 

 

So that, the proposed process will follow the service time distribution with parameters 

advertently related to Erlang distribution such that: 

 ��£; �, 	) ≅ ÷2�A` ���, 	)                                                      �6.7) 

 

Therefore, it follows that the entire array of rain rates within a rain spike follows an Erlang-k 

probability process. This assumption simply implies that the birth and death of an arriving rain 

spike is masked by a probabilistic function with each generated rain rate points essentially being 

equal to the product of this function and a constant. Thus, the time-varying rain rate function 

describing a rain spike characteristics is mathematically given as: 

 ?�£) =  ��£; ��, 	) ×  ϒ          [��/ℎ]                                               �6.8) 

 

where ϒ is a dimensionless constant related to rainfall rate as will be later explained. 

 

6.3.1 First Approximations of Rain Spike Parameters from Probability Analysis 

It has been shown that the Erlang-k PDF is a function that offers the descriptive shape of data 

generated from a random process.  In other words, the PDF describing the shape appearance of 
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a single and queue-generated spike during a rain event can be described by the following 

statistical relationship: 

 

��£; ��, 	) =   ���	)+£+Y�exp �−��	£)Г���)  [�(`Y�]      for £ > 0                      �6.9) 

 

where the mean of the PDF in (6.9) is given by: 

 

	 =  Ë �?,)
� �?,)                                                                     �6.10A) 

 

The parameter, ξ�?,), is related to the product of the time index and the corresponding rainfall 

rates, all within the spike service time. This function is directly fitted to the maximum rain rate 

of the spike so that: 

 

Ë�?,) =  3 `?a
�Â

ad� ≈  C�?,�ò                                                    �6.10p) 

 

where ?a is the rainfall rate at the nth time of the spike growth process. 

 

The parameter, ψ�?,), is the sum of the rain rates within a single spike instance within the 

spike service time. Again, this function is fitted to the data by regression so that: 

 

� �?,) =  3 ?a
�Â

ad� ≈  C#?,�ó                                                     �6.10r) 

 

The integer value of �� is modified from the optimized result for the Erlang-k number of stages 

as already derived in Appendix E. Therefore, the number of stages is given by: 

 

�� = 2�E`� I ?,0.4488 Ë 	J#.��                                                      �6.10�) 

 

where all the parameters as seen in (6.10d) have been earlier described. 
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The approximation of the constants and regression relationships for rainfall spikes as proposed 

in (6.10a) – (6.10d) are done according to the following procedure: 

 

• The available spike datasets as processed in Durban and Butare as seen in Chapter five 

is utilized here. As noticed, the datasets for each location are classified according to the 

four rainfall regimes: drizzle, widespread, shower and thunderstorm. 

• The processed data are categorised according to their time series ranges with a time slot 

header. This is to ensure that time slots allocated to emerging rainfall rates within a 

spike are matched to their time variations. With this arrangement, the time series, n, 

becomes the random variable and the rainfall rate, ?a, represents the number of 

appearances. 

• The parameter, Ë�?,), for each data series is computed by applying the formulation in 

6.10b and later fitted by regression to the maximum rainfall rate within the spike. 

• The parameter, ψ�?,), is computed by applying the formulation in 6.10c and also fitted 

by regression analysis. 

• The ratio of  Ë�?,) and ψ�?,) from data are applied to compute the mean time of each 

of the spikes according to their time series in different regimes. 

  

Regression analysis is employed in obtaining the required functions and their relationships. The 

power-law constants, x1 and y1, for ξ (Rm), as well as, x2 and y2 for ψ(Rm) estimated for different 

regimes in Durban and Butare are given in Table 6-2. The computed approximate constants are 

not seen to follow any particular trend for any rain regime as seen on the table. It is however  

 

Table 6-2: Power-law constants for Ë �?,) and  � �?,) for the prediction of rain growth 

 

REGIME 

 

LOCATION 

� ��Ð) � ��Ð) 

�· �· �� �� 

 

DRIZZLE 

DURBAN 4.84 0.88 25.53 1.21 

BUTARE 4.76 1.03 25.78 0.80 

 

WIDESPREAD 

DURBAN 6.41 0.77 36.31 0.87 

BUTARE 5.93 0.92 26.53 1.09 

 

SHOWER 

DURBAN 6.11 0.86 32.56 0.92 

BUTARE 5.94 0.88 34.31 0.94 

 

THUNDERSTORM 

DURBAN 5.83 0.89 40.46 0.97 

BUTARE 5.09 0.92 18.01 1.09 
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observed that the ξ(Rm) parameters obtained for widespread and shower rainfalls at both sites 

are similar. These results seem to suggest that the delineation between these two regimes might 

be unimportant when comparing their spike characteristics at two locations. For the parameters 

of ψ(Rm), the x2 constants tend to be higher in Durban than Butare. This is however not true for 

the corresponding constants of y2. 

 

6.3.1.1 Error Statistics of the Proposed Approximation 

The error statistics computed to support these approximations are derived from the computed 

and expected means of the data. The RMSE and χ
2
 are the basic error tools applied to describe 

the deviations of the proposed model from the actual estimation. They are given by:  

 

RMSE =  h1̀ 3�		 −  	�	)#a
	d� k�#                                                      �4.20) 

 

Ý# =  3 �		 −  	�	)#
		

a
	d�                                                                 �4.21) 

 

where υ and υ' represent the mean from actual data and proposed approximation respectively.  

 

The summary of the error statistics for each rainfall regime at both locations of tropical Africa 

are presented in Table 6-3. As seen from the statistics, the worst case scenarios of percent 

RMSE (under thunderstorm regime) is about 14% and 16% in Durban and Butare respectively.  

 

Table 6-3: Error statistics of estimated mean for different rain regimes in Durban and Butare 

REGIME LOCATION RMSE �� DF SL* 

DRIZZLE DURBAN 0.1389 14.5536 203 237.34 

BUTARE 0.1035 2.8444 34 48.60 

WIDESPREAD DURBAN 0.1120 8.6057 180 212.30 

BUTARE 0.1031 5.7070 131 158.71 

SHOWER DURBAN 0.1319 11.3097 195 228.58 

BUTARE 0.1234 9.9795 180 212.30 

THUNDERSTORM DURBAN 0.1422 7.4856 101 125.46 

BUTARE 0.1604 6.9768 77 98.49 

                   *Estimations at 5% significant level of Ý# statistic 
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The RMSE in Durban for different regimes are higher compared to the results obtained at 

Butare except for the case of thunderstorm regime. Each of the compared regimes has different 

Degree-of-Freedom (DF), hence, different  Ý# statistics are observed at both locations. The 

approximations are also found to satisfy the data at 5% significant levels (SL) of Ý# statistic at 

both locations over different regimes. 

 

6.3.1.2 Variation of Rain Spike PDFs in Durban and Butare over Rain Regimes 

Following the proposed distribution to describe the probability of rain rate within a spike as 

given in (6.9), the variation of these spikes over different regimes is expected to also vary 

accordingly. Figures 6-4 and 6.5 show the expected PDFs for queue-generated spikes each with 

different maximum rain rate of different regimes. It is expected that the mean and shape of rain 

spikes with similar maximum rainfall rates will be different across the regimes at both sites. 

This is so because the climatic conditions responsible for the queueing characteristics in each 

regimes is slightly different, even in the presence of similar cloud advection velocities.   

 

 

(a) 

 

(b) 

 

(c) 

 

(d)

Figure 6-4: The PDF of rain spike growth for four regimes in a queue-generated process in 

Durban: (a) drizzle (b) widespread (c) shower (d) thunderstorm 
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(a) 

 

(b)  

 

(c)  

 

(d) 

Figure 6-5: The PDF of rain spike growth for four regimes in a queue-generated process in 

Butare (a) drizzle (b) widespread (c) shower (d) thunderstorm 

 

For the PDFs of generated spikes in Durban as seen in Fig. 6-4(a)-(d), the mean of the spikes 

are observed to shift rightwards from drizzle to thunderstorm regime for the same rain rate. The 

skewness of the PDFs is therefore increasingly rightward for the same rainfall in different 

regimes. For example, for a rainfall rate of 5 mm/h, the PDF mean are given as 5.6, 5.9, 6.3, 7.8 

minutes for drizzle, widespread, shower and thunderstorm regimes respectively. As expected, 

the peaks of each PDF increases for each regime as the rain rate increases. This is valid as peaks 

attained by each spike increases with rainfall rate. Finally, it is seen that the spike mean could 

be as high as 10 minutes for PDFs of 120 mm/h indicating longer service time as earlier 

proposed. 

 

At Butare, the PDF of the generated spikes plots are seen in Figure 6-5. At Butare, the PDFs for 

similar rain rates do not follow any trend as observed for the results in Durban. However, the 

PDFs are right-skewed as observed in Durban with their mean time mainly shifting rightwards 

also. At 120 mm/h, the mean of the PDF at Butare may not be 8 minutes in comparison to 10 
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minutes in Durban. The PDF peaks are seen to increase with rainfall rate for all regimes except 

in the case of drizzle rainfall where the peaks are similar for rainrates < 5 mm/h.  Broadly 

speaking, the rightward shift of the mean of the service time at both sites simply confirms that 

the mean service time increases with rainfall rate. 

 

6.3.2 Rain Growth Function in Durban and Butare 

The actual rainfall time series for each spike can be generated from (6.9) once the Erlang-k PDFs 

are normalized so that the maximum value within the PDF at any time is always exactly unity. 

This is equivalent to scaling the PDF function by a particular constant to obtain the required 

shape function. Therefore, the expression in (6.9) when scaled is modified, yielding: 

 

?�£) =  ��£; ��, 	)�AC���£; ��, 	)� ?,   [��/ℎ]                                         �6.11) 

 

From (6.11), the constant, ϒ, is given as the ratio of the maximum rain rate, ?,, and the 

maximum value of the PDF, �AC���£; �, 	)�. Thus, we have: 

 

ϒ =  ?,�AC���£; ��, 	)�                                                               �6.12) 

 

Therefore, the functional relationship describing the rainfall rate time series of any constituent 

rain spike in a rain event is a modified Erlang-k distribution, given by: 

 

?�£) =   ϒ���	)+£+Y�exp �−��	£)Г���)     [��/ℎ]                            �6.13) 

 

 where all parameters and variables in (6.13) have been previously defined.  

 

6.3.3 The M/Ek/s Queue Scheduling and Rainfall Synthesis Revisited  

In Chapter five, rainfall synthesis is simulated using rectangular spikes since the knowledge of 

the spike shape characteristics was unknown. In this sub-section, however, the synthesis is 

undertaken by applying the proposed function in (6.13) to replace the rectangular spikes. The 

constants for each of the parameters are already provided in the relationships in Table 6-2. The 

block diagram in Figure 6-6 highlights the procedure required to successfully generate M/Ek/s 

queues for rainfall synthesis. To schedule the queues according to their queue discipline at both 
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locations, the queueing results from Chapter four are also applied for the four rainfall regimes 

considered. Figure 6-7 shows the graphs for the simulated queue scheduling of 10 spikes in 

Durban and Butare. This scheduling leads to different event durations for the same number of 

spikes as seen in Chapter five. Again, rainfall duration for the same number of spikes is 

seemingly longer in Durban for thunderstorm events and shorter for drizzle events (Figs. 6-7a  

 

Figure 6-6: Queue scheduling procedure for rainfall synthesis of M/Ek/s queue discipline 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-7: Rainfall synthesis with Erlang-k generated rain spike parameters in Durban and 

Butare (a) Drizzle (b) Widespread (c) Shower (d) Thunderstorm 
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and 6-7d), compared to observations at Butare. 

 

The knowledge of rainfall synthesis through the queueing approach will be particularly useful in 

heuristic channel modelling of wireless networks, a subject beyond the scope of this thesis. 

However, it can also be utilized in the solving of multiple rain cell scenarios in radio links.  

 

6.4 Estimation of Rain Cell Sizes from Queueing Theory 

6.4.1 Introduction to Circular Rain Cell Theory 

An important aspect of rainfall attenuation studies is the presence of rain cells over radio links. 

Rain cell is a generic term describing the horizontal and vertical planar area occupied by rain 

droplets, within the transmission path of a radio link. The determination of rain cells have been 

researched in a number of studies [Bryant et al., 2001; Melsheimer et al., 2001; Feral et al., 

2003; Akuon and Afullo, 2011a; Akuon and Afullo, 2011b]. In this current approach, a simplistic 

approach involving Birth-Death (BD) technique of rainfall spikes is applied. For simplicity, the 

arrival and departure of rain spikes are associated with rain cell motion over a radio link.  

 

In a typical rain event, rain cells are propelled by advection velocities which allow them to 

move from one point to another within a communication link. When seen from space borne 

radar images, rain cells usually appear as shadowed circular patterns defining radar signatures. 

As explained by [Melsheimer et al., 2001] different signatures and resolutions of rain cells 

symmetry can be obtained by using different target frequency bands. The general consensus of 

rain cell shape approximation as being circular is noticeable when viewed from the radar, and is 

accepted by a number of researchers [Feral et al., 2003; Karlinsky and Morin, 2006; Pontes et 

al., 2007]. Equally, researchers have proposed other complex shape approximations with 

improved rain cell geometries, such as EXCELL and HYCELL [Capsoni et al., 1987; Feral et 

al., 2003]. Interestingly, the HYCELL method has proposed Gaussian approximations for 

convective rain cells and exponential approximations for stratiform rain cells [Feral et al., 

2003]. It is a common knowledge that horizontal rain cells are formed as passing rain clouds 

produce rainfall which often intercept radio links [Bryant et al., 2001; Melsheimer et al., 2001; 

Feral et al., 2003; Akuon and Afullo, 2011a; Akuon and Afullo, 2011b]. When a communication 

link is intercepted, especially at microwave and millimeter wave, there is always an outage 

probability due to rainfall attenuation [Bryant et al., 2001]. Hence, rain cells play a significant 

role in the determination and understanding of rain attenuation.  
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The circular approximation for rain cell shapes, unlike the elliptical shape proposed in 

HYCELL is the simplest and most easily implemented shape. This shape assumes equal axial 

dimensions everywhere in the rain cell such that the diameter is equivalent to the Rain Cell 

Diameter (RCD). Investigation on RCDs have found that they inversely related to the rainfall 

rate [Bryant et al., 2001; Akuon and Afullo, 2011a]  Mathematically, the circular RCD, Dc, at 

any given location is represented by a negative power-law function given by: 

$= = �?Yü   [��]    for    �, � > 0                                     �6.14) 

where value � and β are power-law coefficients related to the (6.14) with rainfall rate of R. 

From (6.14), it follows that the Rain Cell Area (RCA) is defined as the coverage area of the rain 

cell and mathematically follows a circular geometry given by: 

 $% =  0.25"�#?Y#ü       [��#]                                              �6.15) 

 

On measurement, space-bourne radar often provides good image correlation, while the use of 

ground rainfall data may be useful in ascertaining time constraints and progression associated 

with moving rainfall cells [Ajayi et al., 1996]. In this case, a rain gauge, distrometer or ground 

radar may be required [Karlinsky and Morin, 2006; Begum et al., 2006]. Radars can also be 

space borne as an embedded part of a satellite framework; this scenario allows for better 

correlation of the underlying shapes from space.  

 

6.5 Determination of Horizontal Rain Cell Sizes in Durban and Butare 

The use of rainfall time series data to estimate rain cell distances was first proposed in the work 

of Drufuca [1974] in the conceptualization of the Synthetic Storm Technique (SST). The SST is 

a method of converting rainfall rate time series data into rain attenuation data over terrestrial 

links at any transmission frequency. This technique was later developed for rain attenuation 

estimation over Earth-space link in a series of published works by Matricciani [1996], 

Matricciani and Riva [2005] and Matricciani [2008]. Of particular interest to rain cell 

estimation is the concept of transforming the time elements, corresponding to values of rainfall 

in the time domain, into Rain Cell Diameter (RCD). To achieve this, the concept of translation 

velocity, also known as advection velocity is employed in the generation of RCDs. The 

implementation of SST requires ground measuring equipments capable of measuring rainfall 
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rate at a practical sampling interval. In this current study, the ground instrument applied is the 

JW RD-80 impact distrometer in Durban and Butare.  

 

The distance gained by arriving rain rates, within the travelling rain clouds, towards the 

observation point is equivalent to the RCD. This diameter, Dc, is estimated from the advection 

velocity, Va, assigned to the moving cell (or cloud) by translation as applied in the studies of  

Drufuca [1974], Matricciani [1996], Begum et al. [2006] and Akuon and Afullo [2011a]. This 

gives the mathematical relationship given by: 

  

$= = 3 0.06H%£cY	  cY�
	d� [��]     for £ ∈ ¢                                �6.16) 

 

where £cY	 is the reverse successive point along each spike as they appear in the time series and 

N is the total number of discrete rain rates within the spike. 

 

The eventual RCDs corresponding to the rainfall rate in the time domain is estimated as a 

reverse cumulative sum i.e. based on a last come, first sum approach (see (6.16)). This is 

undertaken by adding the translated distances (or RCDs) of a cell (spike) starting from the 

moment a maximum rainfall rate, ?,, is attained to the point of its birth (or conception) . The 

advection velocity, H%, is assigned in (6.16) based on the Stratiform-Convective (S-C) rain rate 

bound, Rth, identified in Durban and Butare: 

 

H% =  ¿ 6 �/R       for  ? ≤ ?�¤10 �/R    for  ? >   ?�¤                                                  �6.17)± 
 

The typical values of Rth can be found using radar reflectivity algorithm of Gamache and Houze 

[1982]. This algorithm ensures that the S-C bound at any region, from rainfall measurements, is 

exactly at 38 dBZ. This algorithm was applied earlier in Chapter three where Rth in Durban is 

found to correspond to 11.34 mm/h and that at Butare, 8.84 mm/h, over the entire rainfall 

measurement period.  

 

6.5.1 Influence of Rain Cell Arrival Angles over Horizontal Planes 

The arrival angle of the circular rain cell is also very important in estimating the optimal length 

factor of the link required for rain attenuation prediction. The queue-generated circular cell 
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propelled by the advection velocity can approach the terrestrial link in different ways, each 

presenting a unique problem. Let the transmitter (A) and receiver (B) be bounded by a logical 

circle whose diameter is equivalent to their path length. Then, an approaching queue-generated 

rain cell can appear anywhere within the wireless network from any direction as seen in Figure 

6-8. In this figure, the red circular line signifies the transmission area and the black dotted 

circular lines indicate the arriving rain cells. These possible scenarios are categorized into three 

scenarios will be briefly discussed: 

 

(a) CASE I: Rain cell queues approaching the radio link as a parallel traffic 

This case presents the propelling of circular cell queues in direction parallel to the circular 

transmission area. In this scenario, it is envisaged that the rain cells moves along the entire path 

length of the transmission area, hereby leaving trails of rainfall droplets along the link. The 

reference angle of arrival is zero in this case.  

 

Figure 6-8: Scenarios of queue-generated rain cells moving over wireless radio link 

CASE I 

CASE II 

CASE III 

A 

A B 

B 

A B 
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(b) CASE II: Rain cell queues approaching the radio link as a perpendicular traffic 

When the rain cells approach the transmission area in a direction perpendicular to the actual 

diameter of the transmission area, the reference angle of arrival is approximately 0.5π rad or 

90° to the horizontal. In this scenario, a fractional part of the transmission area is affected.  

 

However, this is dependent on the radio link path length (transmission diameter) and the rainfall 

type. If the rain type tends to be increasingly convective (shower or thunderstorm) and the path 

length is long enough, only part of the link may be affected. If the rain type is however 

stratiform in formation, the influence of the path length range may be neglected as the entire 

radio link may eventually be affected over time. 

 

(c) CASE III: Rain cell queues approaching the radio link at an angle  

This scenario is similar to the perpendicular case except that the angle of arrival of rain cell 

queues may be < 90° or > 90°. The same conditions are present as seen in Case II with 

fractional affected transmission area dependent on the path length and rain types.  

 

Evidently, Case I appear to be the worst case scenario as the cell queues or moves along the 

radio link in a parallel manner. This simply means that the entire path length may mostly be 

covered by rainfall. Path attenuation due to rainfall is expected to be higher in this scenario as 

all the generated rainfall cells are actively mobile along the radio link. This parallel case is 

therefore assumed throughout the study of rain cell estimation in this study. 

 

6.5.2 Empirical Determination of Single Rain Cell Sizes 

The measurements from the distrometer rainfall database are used to generate the RCDs 

corresponding to each rain spike. By applying the equations given in (6.16) and (6.17), the RCD 

in Durban for shower and thunderstorm regimes are estimated. On computing the RCDs, data 

sorting is undertaken in a descending order according to their rainfall rates. The grouped data is 

averaged over similar rain rates, and the mean RCD is obtained from the data. In this way, 

similar mean rain rates and related RCDs are retrieved from the data. This procedure is repeated 

for samples according to the proposed rainfall rate classes. A relationship between rainfall rate 

and the RCD is established for data categories by applying regression technique at both sites as 

shown in Figures 6-9 and 6-10. From the plots in these figures, it is deduced that slightly 

different relationships exist for the RCD relationships under these two scenarios. These 

relationships for different regimes are further discussed. 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

128 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6-9: Regression fitting technique of collected samples for RCD dependence on rainfall 

rate in Durban: (a) Drizzle (b) Widespread (c) Shower (b) Thunderstorm 

 

(a) DRIZZLE 

The regression fitting results from Figure 6-9 show that drizzle rains in Durban tend to have 

smaller RCDs compared to those at Butare. The RCDs estimated from data are given as: 

 

   Durban:        $= = 16.81?Y�.�#T  [��]         for ? < 5 ��/ℎ                 �6.18A) 

   Butare:           $= = 22.87?Y�.��  [��]         for ? < 5 ��/ℎ                  �6.18p) 

 

From the previous queue results, the mean service times for drizzle spikes in Durban and Butare 

may not exceed 12.38 and 13.71 minutes respectively. These values suggest similarities in their 

lifecycles which is also reflected in their estimated RCDs at Butare which is seen to be larger by 

about 4 km compared to Durban. Using (6.18a) and (6.18b), it is estimated that spikes with peak 

rain rates at 5 mm/h have diameters of about 5.23 and 9 km in Durban and Butare respectively. 

Drizzle cells generated within drizzle events are particularly noted to have shorter diameters 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-10: Regression fitting technique of collected samples for RCD dependence on rainfall 

rate at Butare: (a) Drizzle (b) Widespread (c) Shower (b) Thunderstorm 

 

partly because they have shorter durations. A drizzle event has quite a number of such spikes – 

larger in population in comparison with thunderstorm events. A large population of these small 

drizzle cells, succeeding one another according to a queue discipline, tends to make drizzle 

events to generally last for a longer period.    

    

(b)  WIDESPREAD 

For widespread rain regimes, the regression (6.9b) and (6.10b) from measurements gives RCDs 

as follows: 

 

   Durban:     $= = 20.42?Y�.��  [��]        for 5 ≤ ? < 10 mm/h              �6.19a) 

                           Butare:    $= = 14.12?Y�.��  [��]            for 5 ≤ ? < 10  mm/h           �6.19b) 

 

These results show that the RCDs at both sites have about 1 km difference with Butare having 

larger values with respect to the rainfall rate. In Durban, not much difference is observed in the 

y = 28.366x-0.735

R² = 0.8969

1

10

100

1

R
a

in
 C

e
ll

 D
ia

m
e

te
r 

(k
m

)

Rainfall Rate (mm/h)

y = 14.116x-0.58

R² = 0.8205

1

10

100

1 10

R
a

in
 C

e
ll

 D
ia

m
e

tr
e

r 
(k

m
)

Rainfall Rate (mm/h)

y = 29.74x-0.53

R² = 0.6681

1

10

100

1 10 100

R
a

in
 C

e
ll

 D
ia

m
e

te
r 

(k
m

)

Rainfall Rate (mm/h)

y = 88.927x-0.721

R² = 0.7394

1

10

100

1000

1 10 100

R
a

in
 C

e
ll

 D
ia

m
e

te
r 

(k
m

)

Rainfall Rate (mm/h)



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

130 

 

 

RCDs computed for drizzle and widespread rainfalls less than 5 mm/h. At 10 mm/h, RCD in 

Durban is about 3 km, compared to almost 4 km, at Butare. Queue results show that the mean 

service time of spikes (cells) at both locations are very close at roughly 16 minutes. This could 

explain the minute difference in their computed RCDs at all rain rates.   

 

(c) SHOWER 

For rain events where the maximum rain rate is 40 mm/h, rain cells are expected to possess 

characteristics between stratiform and highly-convective rainfalls. Results from regression 

analysis in (6.9c) and (6.10c) are given as: 

 

           Durban:   $= = 52.31?Y�.�   [��]         for  10 ≤ ? < 40 mm/h               �6.20A) 

           Butare:    $= = 29.74?Y�.�K   [��]        for   10 ≤ ? < 40  mm/h              �6.20b) 

 

Therefore, RCDs at Butare are shown to be about 2 km larger at low rain rates (< 5 km) and 2 

km smaller at high rain rates (> 25 km). 

 

(d) THUNDERSTORM 

Cells generated within thunderstorm regimes have the widest range of rainfall rates and 

represents the typical scenario of a complete cell. From the processed data, the RCDs obtained 

are thus given: 

 

    Durban:       $= = 36.33?Y�.Z#  [��]             for ? ≥  40            �6.21a) 

    Butare:        $= = 88.93?Y�.�#   [��]            for ? ≥  40            �6.21b) 

From the functions at (6.21a) and (6.21b), it is observed that at about 2 mm/h, the RCD in 

Durban is about 27 km compared to 54 km at Butare. However, at 100 mm/h, the RCD in 

Durban is roughly 5.25 km compared to 3.23 km at Butare. This suggests that rain cells with 

smaller peak rainfall rates under thunderstorm regime tend to have a larger diameter and hence, 

cell areas. As rainfall rate increases, the rain cells at Butare tend to become smaller compared to 

observations in Durban. An intersection of the functions at both sites is seen to occur at 20 mm/h. 

It is conclusive to note that rain cells in thunderstorm events tend to give the best representation 

of RCDs at both sites, and hence, is more suitable to be applied as the general model.    
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6.5.2.1 Consistency of Proposed Rain Cell Models  

To verify the consistency of the proposed thunderstorm RCD models in Durban and Butare are 

compared with the Bryant et. al [2001] model for tropical regions. The Bryant et al. model was  

developed with measurements from Lae, Papua New Guinea (6°44'S, 147°E), a highly tropical 

location. The precipitation rate at this location is very significant such that the annual R0.01 often 

exceeds 100 mm/h. From the rainfall research carried out on this location, it is observed that 

shower and thunderstorm rainfall will be much more intense. The proposed thunderstorm models 

for the two African sites are compared with this location as seen in Table 6-4. In addition, the 

initial results of circular RCDs obtained from Durban by Akuon and Afullo [2011a] are also 

compared. The comparison undertaken shows that current results obtained in Durban using the 

single cell approach compare well with the initial results of Akuon and Afullo [2011a]. In 

comparison with the results of rapid decaying RCD results from Lae, current results show a 

slowly decaying rain cell in Durban and Butare instead. In addition, it can be seen that more 

tropical locations at Butare and Lae have larger RCDs at lower rain rate, higher rain rates have 

smaller RCDs compared to two Durban estimations on Table 6-4. 

 

It is conclusive to deduce from these results that tropical and equatorial locations, when 

compared to subtropical locations, have larger RCDs at low rain rates and smaller RCDs at high 

rate. The overall climatic characteristics at these locations, coupled with proximity to the equator 

are advantages at these locations. In addition, geographical features cannot be ruled as a factor.  

 

Table 6-4: Comparison of proposed thunderstorm RCD with existing models 

RAINFALL 

RATE (mm/h) 

PROPOSED RCD 

ESTIMATES [km] 
OTHER RCD  

MODELS [km] 

DURBAN BUTARE 

Akuon & Afullo 

[2011a] 
Bryant et al. 

[2001] 

5 18.48 27.91 24.33 49.29 

10 13.81 16.95 17.68 21.45 

20 10.32 10.29 12.86 9.34 

30 8.71 7.68 10.67 5.74 

40 7.72 6.25 9.35 4.06 

50 7.03 5.32 8.43 3.11 

60 6.51 4.66 7.76 2.49 

70 6.09 4.17 7.23 2.08 

80 5.77 3.79 6.79 1.77 

90 5.49 3.48 6.44 1.54 

100 5.25 3.23 6.13 1.35 

110 5.05 3.02 5.87 1.21 

120 4.86 2.83 5.64 1.09 
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6.6 Computation of Length Factor For Single Spikes over Radio Links 

The reduction factor, now known as the length factor, in the ITU recommendation is an 

important parameter utilized for estimating path attenuation due to rain [ITU-R P.530-15, 2013]. 

In this recent recommendation of ITU, the length factor is dependent on four parameters namely: 

frequency, rainfall rate, radio link distance and specific attenuation coefficient. This function is 

given by: 

 2 = �0.477��.TKK?�.���.��K�;�.�#K   − 10.579�1 − BCD�−0.024�))�Y�           �6.22) 

where d is the radio link distance, R0.01 is the rain rate exceeded at 0.01% of the time, f is the 

transmission frequency of the link and α is the exponent of the specific attenuation function. 

In link budget planning, distance limitations are often encountered in the microwave link 

systems for line-of-sight designs. Thus, it is usual to put into cognizance, the degrading Fresnel 

conditions, in the estimation of the length factor. It follows from the derivation of rain cell sizes 

that the length factor can be implemented. Based on this study, the empirical length factor is 

dependent on the rain cell size and link distance. This is given by:   

 

2 =  !$= + $=                                                                         �6.23A) 

where, 

 ! =  Ë�Y�ó      for        < 50 ��                                          �6.23p) Ë� =  A�?YFó        and         Ë# =  A#?Y�ó                                    �6.23r) 

 

where L and R are the link path length and rainfall rate respectively. 

 

Unlike the current ITU-R length factor function in (6.22), the proposed length factor from our 

study is independent of transmission frequency. These results were fitted for link distances up 

to 50 km (for an assumed height of 150m above sea level), since this is the upper bound 

distance required for optimal microwave link performance, in the Fresnel region. The obtained 

results for each classified regimes in Durban fitted for rain rates above 2 mm/h and link 

distances greater than 5 km are presented in Table 6-5. 
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Table 6-5: Parameters of length factor from rain cell sizes in Durban and Butare 

RAIN REGIMES � =  �·�Y��      ��  ! "# ≤ � ≤ !$ "# 

DURBAN Ë� =  10.89?Y�.Z% Ë# =  0.59?Y�.KK 

BUTARE Ë� =  14.89?Y�.K�Z Ë# =  0.80?Y�.##% 

 

6.7  Prediction of Path Attenuation due to Rain in Durban 

For this study, the specific attenuation is computed using the modified gamma DSD model 

already given cited in (2.17) with annual parameters from the data from Durban and Butare. The 

µ in this expression is set to 3 and the other parameters of this model (V, and Λ) obtained for 

the two sites are provided in Table 6-6. 

  

The specific attenuation due to precipitation, over the entire diametric spectrum of rain drops is 

provided in given in [Ajayi et al., 1996] as: 

 

~ =  4.343 ×  10YK 3 V�$b)�|���$	)∆$	   [��/��]                      [6.24]#�
	d�  

 

where N(Di) is the rain DSD, Qext(Di) is the extinction cross section in mm
2
 and ∆Di is the 

diameter interval in mm. The Mie technique is dependent on the ambient temperature in Durban 

which is assumed as 20
o
C in this study as discussed in sub-section 2.5.1. The parameters for Mie 

coefficients from regression analysis in Durban are given in Appendix C at 20°C in Durban. This 

same temperature is assumed at Butare since the annual temperature is roughly about 20°C.  

 

The path attenuation over a radio link is computed by referring to ITU-R P.530-15 [2009] 

conditions where: 

 �� = 2~      ����                                                              (6.25) 

 

where the parameter γ is the specific attenuation due to rain in dB/km and r is the length factor 

already provided in (6.23a). 

 

The predictions are compared with the closest terrestrial link measurements undertaken in 

Durban in 2004. The link transmits over a path length of 6.73 km, while operating at a 

transmission frequency of 19.5 GHz. The link details and other related information pertaining to  
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Table 6-6: Parameters of the modified gamma DSD model in Durban and Butare 

LOCATION Ó &Ð ' 

DURBAN 3 3.08 ×  10�?Y�.%�Z 7.6154 ×  ?Y�.#�T 

BUTARE 3 3.606 ×  10Z?Y�.�T� 5.8035 ×  ?Y�.#�� 

 

equipment set-up can be found in Naicker and Mneney [2004]. Table 6-7a and 6-7b gives a 

summary of the path attenuation prediction in Durban and Butare over 19.5 GHz.

The plots for the results on this table are also available on Figure 6-11a and 6.11b. Predictions 

from the proposed model are found to majorly approximate rainfall path attenuation over the 

average value of the link measurements. In addition, it is observed from the predictions in 

Durban that path attenuations are slightly higher than figures from the ITU model by almost 2 

dB when rainfall rate > 10 mm/h. At Butare, it is observed that the figures are only higher than 

the ITU model as long as rain rate < 30 mm/h. At 79 mm/h, the margin between ITU model and 

the proposed prediction at Butare is almost 7 dB. This is also noticed in the length factor values 

where the Butare experiences diminishing length factor at rain rates > 20 mm/h, compared to 

Durban. The geographical terrain at Butare has been earlier identified in Chapter three as a 

major factor influencing the attenuation characteristics. From the comparison, it is shown that 

the rain attenuation predictions in Durban using the proposed model compares well with the 

terrestrial measurements. The predictions at Butare, are however not expected to compare well, 

since the site is not within the climatic region of the terrestrial measurements.    

 

Table 6-7a: Comparison of Predicted Attenuation with 6.73 km terrestrial Link Measurements in 

Durban at 19.5 GHz. 

RAINFALL 

RATE 

(mm/h) 

LENGTH 

FACTOR 

(proposed) 

LENGTH 

FACTOR 

(ITU-R) 

PREDICTED 

ATTENUATION 

(dB) 

ITU-R  

VALUE

S(dB) 

DURBAN LINK 

MEASUREMENT (dB) 

Min Ave Max 

1.00 2.04 1.39 0.87 0.81 0.38 1.20 3.40 

2.60 1.80 1.11 2.17 1.79 0.80 2.50 5.40 

3.00 1.76 1.08 2.48 2.02 0.90 2.80 5.60 

4.20 1.67 1.01 3.38 2.69 1.40 4.00 6.10 

5.80 1.58 0.95 4.53 3.56 2.50 5.10 6.30 

10.00 1.42 0.86 7.34 5.74 4.90 8.60 16.30 

15.00 1.29 0.80 10.39 8.21 5.90 13.00 23.00 

21.00 1.19 0.75 13.75 11.08 6.80 16.20 27.20 

30.00 1.09 0.71 18.37 15.26 7.00 16.40 28.50 

51.00 0.93 0.65 27.79 24.63 7.10 19.20 32.00 

79.00 0.81 0.61 38.46 36.65 12.00 20.00 34.00 
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Table 6-7b: Comparison of Predicted Attenuation at Butare over 6.73 km terrestrial Link 

Measurements at 19.5 GHz. 

RAINFAL

L RATE 

(mm/h) 

LENGTH 

FACTOR 

(proposed) 

LENGTH 

FACTOR 

(ITU-R) 

PREDICTED 

ATTENUATION 

(dB) 

ITU-R 

VALUES 

(dB) 

DURBAN LINK 

MEASUREMENT (dB) 

Min Ave Max 

1.00 2.19 1.39 0.83 0.81 0.38 1.20 3.40 

2.60 2.08 1.11 2.31 1.79 0.80 2.50 5.40 

3.00 2.05 1.08 2.67 2.02 0.90 2.80 5.60 

4.20 1.95 1.01 3.70 2.69 1.40 4.00 6.10 

5.80 1.84 0.95 4.99 3.56 2.50 5.10 6.30 

10.00 1.60 0.86 7.97 5.74 4.90 8.60 16.30 

15.00 1.40 0.80 10.97 8.21 5.90 13.00 23.00 

21.00 1.23 0.75 13.99 11.08 6.80 16.20 27.20 

30.00 1.05 0.71 17.72 15.26 7.00 16.40 28.50 

51.00 0.80 0.65 23.99 24.63 7.10 19.20 32.00 

79.00 0.62 0.61 29.41 36.65 12.00 20.00 34.00 

 

 

 

Figure 6-11a: Comparison of predicted attenuation in Durban with measurements at 19.5 GHz 

over a 6.73 km horizontally-polarised terrestrial microwave link. 
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Figure 6-11b: Comparison of predicted attenuation in Butare with measurements at 19.5 GHz 

over a 6.73 km horizontally-polarised terrestrial microwave link.  

 

 

Broadly speaking, the proposed length factors are projected to increase as the parameters of the 

radio link are increased i.e. higher microwave frequencies and larger path length. The 

assumption of single horizontal rain cell is only strictly valid for the data at both sites at all 

frequencies, as long as the path length does not exceed 10 km threshold. For path lengths 

exceeding 10 km, the proposed model shows a rapid decline in the actual rain attenuation 

experienced along the path. An increase in the path length of radio links without consideration 

for the existence of multiple cells result in the under-estimation of path attenuation due to rain. 

The presence of intense rainfall rates in tropical African locations, as seen from the computed 

RCDs, results in smaller rain cell sizes at high rain rates along any hypothetical microwave link. 

The multiple cell problems for different path lengths can be resolved by applying the queueing 

theory approach since the cell appearances are probabilistic. This way, the maximum factor 

required to compensate for the actual number of multiple rain cells existing within a typical link 

can be determined.  

 

Chapter Summary 

In this chapter, the shape of rain spikes in the time domain is investigated at the two sites and an 

Erlang-k distribution was developed for the modelling. This follows the theory that individual 
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time slots allotted to rain rates within a spike are subsets of the overall service time. From 

results, the parameters of this proposed distribution describing rain spike shape are found to 

vary across different regimes at both locations. The PDF of spike shape function essentially 

leads to development of a rain rate function for different rainfall regimes, applicable in rainfall 

synthesis and rain cell estimation. This implies that each arriving rain spike in a queue-

generated rain event has an underlying approximate PDF describing its dynamics. Investigation 

of horizontal rain cells from ground data at both sites is considered using the SST approach to 

compute rain cell distances. Results from this investigation in Durban and Butare have shown 

that circular RCDs vary over different regimes. However, rain cells from thunderstorm regimes 

have been shown to give the best representation of the prevailing RCDs at the equatorial and 

subtropical sites as it gives a realistic spectrum of rain rate. Computed RCDs at both locations 

are used to determine approximate length factors for single rain cells occurring in thunderstorm 

regimes. It is shown that the predicted rainfall attenuation from length factors gives a good 

estimation of link measurements over a terrestrial link of 19.5 GHz at 6.73 km. Although, there 

are potential limitations due to the presence of multiple cells, it is obvious that the proposed 

circular approximation is encouraging. This study will assist in the planning of radio links, more 

so, as the demand for higher frequency bands continues due to prevailing proliferation of 

wireless services requiring high data-rate efficiencies.  

 

 

 

 

 

 

 

 

 

 

 

 



 

         Queueing Theory Approach to Rain Fade Analysis at Microwave and Millimeter Bands in Tropical Africa     

  

138 

 

 

CHAPTER SEVEN 

Conclusions and Recommendations 

7.1 Introduction 

Among the requirements to be satisfied by any future wireless link is the intelligent 

implementation and management of scarce base station radio resources throughout the year. 

Usually, the topmost parameters of channel bandwidth, power level and modulation scheme are 

necessary trade-offs considered by network providers in system design [Foty et al., 2011]. With 

constraints from the Shannon capacity theorem for emerging digital wireless networks, 

allocating permanent rain fade margin to counter time-varying rain attenuation, is a possible 

liability in Radio Resource Management (RRM). The application of this fade margin is actually 

the traditional SRFM proposed by ITU-R in their series of recommendations [ITU-R P.838-3, 

2005; ITU-R P.837-6, 2012; ITU-R P.530-15, 2013]. As rightly said in the review, the SRFM is 

disadvantagaeous to modern wireless networks in the deployment of higher microwave and 

millimeter bands because of precipitation effects. Thus, it is envisaged that the method of 

SRFM as a countermeasure to rainfall attenuation may not be around for a very long time. 

However, the need to make FMTs more adaptive to time-domain variation has encouraged the 

development of DRFM from different researchers. DRFM can be made more robust and 

effective if the knowledge of the characteristics of rainfall processes are understood 

mathematically. Thus, the objective of this thesis has been geared towards demystifying the 

underlying characteristics of rainfall. This has initiated the development  of a novel concept for 

the understanding rainfall process through the Queueing Theory Technique (QTT). This is an 

indirect approach of understanding the time-variation of rainfall attenuation over the time 

domain – where time series data bank may be largely insufficient. The QTT approach has 

shown that rain spikes all act as a single unit of queue instances vis-à-vis their natural traffic 

scheduling. The results from this study has majorly demonstrated and proven that the theory of 

rain queues is valid – and has likewise shown that – a semi-Markovian queue discipline is the 

most appropriate to describe such rainfall rate queues at the subtropical and equatorial Africa. 

From the novel studies in this thesis, a number of notable conclusions and future suggestions 

can therefore be drawn from the queueing theory approach.  

 

7.2 Conclusions 

This section hereby discusses the conclusions drawn from chapters three, four, five and six of 

this thesis. 
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7.2.1 Chapter Three – Comparison and Analysis of Rainfall Microstructures in 

Tropical Africa 

The variation of rainfall microstructures over Stratiform-Convective (SC) bounds is an 

important indices to investigate rainfall at different climatic regions. Over tropical Africa, the 

location of Durban (subtropical) and Butare (equatorial) have shown that the delineation of SC 

bounds is separated by at least 2.5 mm/h. Considering that ?�.�� at both locations varies, then 

this is very much expected. From the results, Butare will experience early transition into 

convective rainfall types as an equatorial location quickly than Durban, a subtropical location. 

equatorial locations are noted to have significant occurrence of showers and thunderstorm 

rainfalls compared to subtropical locations. For stratiform rainfalls, there is an obvious 

difference in the probability distribution profiles of rainfall microstructres at both climatic 

locations. The rainfall rate, rainfall DSD and radar reflectivity distributions all seem to have 

different profiles at both locations over stratiform rain regime. This is mainly due to the 

significantly higher percentage of drizzle rainfalls in Durban, resulting in the preponderance of 

smaller rain droplets in this category. Thus, rainfall rates below 10 mm/h, during rain events, 

have been reported to follow temperate characteristics [Fashuyi et al., 2006]. However, 

convective rainfalls at both location have the closer probability profiles for the same category of 

rain microstructures. This is further proven by the close model parameters of both rainfall DSD 

and radar distributions as seen in the results. Also, the proponderance of small droplets at both 

locations is clearly opposite to what is obtained under convective. This suggests that shower 

and thunderstorm characteristics of rainfall are a little similar under convective conditions. One 

deviation to this, is however in the monthly variation of radar reflectivities, which is clearly 

dependent on seasonal cycles. An investigation of SC thresholds at other global locations also 

shows that a rainfall rate of roughly about 10 mm/h, as suggested by literatures, is the valid 

transition parameter.  

 

7.2.2 Chapter Four - Queueing Theory of Rain Spikes over Radio Links 

The Markov theory of rainfall queues was developed empirically from the rainfall time series 

data in Durban. The appearances of rainfall spikes, which are linked to rain cell movement over 

a radio link, tend to appear randomly during rain events. Their service and inter-arrival times 

follow a Birth-Death scenario which qualifies them as instances of rainfall traffic. The service 

time distribution clearly exhibited exponential or Erlang-k characteristics, while inter-arrival 

time distribution is strictly an exponential process. Therefore, results from the data showed that 

the typical distribution may either follow a Markovian (M/M/s/∞/ FCFS) or semi-Markovian 
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(M/Ek/s/∞/ FCFS) queue discipline. However, the semi-Markovian discipline showed better 

error fitting results and realistic convergence under steady state conditions. The natural server 

number present in rainfall processes was found to be closer to three (3) for most rain regimes. 

Therefore, it is concluded that the rainfall process in Durban is naturally derived from a 

M/Ek/3/∞/ FCFS queue discipline. Further results also show that the ‘jump’ probability from 

one spike to another within a rainfall time series can be represented by a �` × `) matrix with 

different steady state vectors for each regime. The service times of rainfall spike within the 

queue are also found to be positively correlated and dependent on the maximum rainfall rates 

attained by the spike. This shows that spikes in Durban with high rainfall rates tend to spend 

more time in any typical rain event suggesting higher outage periods.     

 

7.2.3 Chapter Five - Comparison of Rainfall Queue Characteristics in Tropical 

Africa 

The semi-Markovian queue description is extended to Butare, an equatorial location in this 

chapter. Rainfall queues in subtropical and equatorial Africa tend to exhibit similar queue 

characteristics when examined over annual cycles. However, this is not the case when both 

locations are compared on the basis of rainfall regimes. Compared to Durban, Butare is found to 

have increasing service times (with increasing k) as the maximum rain rate of spike increases. 

However, there is no distinct trend observed for the inter-arrival times in relation to any spike’s 

maximum rain rate. Clearly, the queue dynamics of spikes generated at shower and 

thunderstorm events at Butare are obviously different from observations in Durban. These 

results have clear implications for rain attenuation analysis as this could lead to significant 

differences in outage frequencies due to rainfall. The geography and climatic characteristics are 

factors that might influence this. The jump probabilities at both locations are similar for 

different regimes and even for the overall data at steady state conditions. This suggests that 

dynamics of Markov jump probability at both locations, have similar meteorological 

characteristics, as present at both locations. Queue generated spikes can be applied in the 

simulation of rainfall conditions, provided the queue parameters are known. From this, it is 

conclusive to know that rainfall event durations tend to be different given an equivalent random 

number of spikes generated as a queue at any regime. Thus, it is possible to simulate different 

rainfall conditions at both locations and apply this to radio propagation studies in the future. 

 

7.2.4 Chapter Six - Queueing Theory Application in Rain Cell Estimation 

An extension of the queueing theory approach is employed in the development of standard 

probability functions representing rain spikes. The spike instances of the semi-Markovian queue 
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are investigated by considering them as a time-varying PDF entity with distribution parameters 

strongly dependent on the maximum rain rate attained by the spike. The Erlang-k distribution 

was found useful in the description of rainfall PDFs for different rainfall regimes in subtropical 

and equatorial Africa. It was observed that individual spikes generated during rain events are 

unique and have varying mean service times over different regimes. An approximate rain rate 

function, obtained from the underlying characteristics of spikes, is found to exist as a scaled 

version of the PDF. The rain rate function is representative of circular rain cells, under queue-

generated conditions. These queued cells are assumed to move over radio links, propelled by an 

advection velocity, required to translate its time series to distance. The results of RCDs for 

different rain regimes in Durban and Butare show spatial variation of cell areas at the two sites. 

Butare, being closer to the equator, is expected to experience more convective rainfalls resulting 

in smaller rain cells. This is confirmed in the results obtained under thunderstorm regimes for 

scenarios where rainfall rates are greater than 40 mm/h. While computations of length factors 

from single units of circular rain cells may be valid for terrestrial links with path lengths less 

than 10 km. Further computations beyond 10 km, show rapid decline of length factors as a 

result of absent multiple rain cells. Finally, it is seen that the the path attenuation due to rain at 

19.5 GHz at Butare tend to give higher figures for rain rates < 30 mm/h compared to Durban. 

The DSD formation process and geographical factors as mentioned in Chapter three is a major 

influence on the predicted rain attenuation at Butare.  

   

7.3 Suggestions for Future Research 

Based on the pilot studes of rainfall queueing theory investigated in this thesis, a number of 

future research areas have been suggested as below: 

 

• The underlying rainfall characteristics undertaken in this study has only been 

investigated at two tropical African locations. This concept can be applied to rainfall 

data from different climatic regions of the world to determine their respective queueing 

characteristics. This may be necessary to determine the global uniformity of queueing 

parameters, and hence, establish their queueing characteristics. 

 

• The existence of natural multiple servers in the scheduling of rainfall queues as implied 

by the proposed semi-Markovian queue discipline requires further investigations. The 

actual role of advection velocities and rain cell statistics in rain queues should be 
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investigated to obtain an interpretation for the presence of servers. This knowledge can 

enhance the understanding rain queues and rain cells.    

 

• The estimation of rainfall attenuation over radio links with longer path lengths, by the 

utilization of multiple cells in rain queues, requires further research. Radio links with 

longer path lengths have a higher occurrence probability of multiple cells, especially 

under severe thunderstorm conditions. A rigorous study of this scenario using rainfall 

queueing theory is required to be undertaken to optimize radio link performance in real 

time.      

 

• The development of a queueing discipline for a given location suggests that rainfall 

time series can be ‘recreated’ even on a long term basis. Therefore, the determination of 

network outage statistics at satisfactory rain attenuation thresholds can be resolved. In 

this case, the research questions are as thus: what are the effects and statistics of 

network outages at the investigated tropical locations ? What type of distributions are 

required to describe these queue-generated outages?   

 

• Channel modelling is a topical area of research in rainfall attenuation studies. The 

concept of queueing theory of rainfall can be harnessed to develop sound and logical 

channels over different attenuation bounds. This research can be achieved by 

considering different digital modulation schemes such as Rayleigh, Rician and 

Nakagami faded-channels in tandem with rainfall queues. 
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APPENDICES 

Appendix A: ITU-R Global Climatic Values for R0.01 [ITU-R P.837-6, 2012] 
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Appendix B: ITU-R Parameters for the Estimation of Specific Attenuation 

[ITU-R P.838-3, 2005] 

The ITU-R recommendation P. 838-3 document gives the procedure for estimating the specific 

attenuation at different frequencies by applying two power-law coefficients, k and α. The 

independent parameter is given as the rainfall rate at 0.01% of the time, R0.01, which is 

regional dependent. Thus, The specific attenuation is given by:  

 

�1 =  �?�.���                                                                  (�. 1) 

 

The published values of k and α for horizontal and vertical polarization systems are thus 

presented: 

Frequency 

(GHz) 
kH ααααH kV ααααV 

1 0.0000259 0.9691 0.0000308 0.8592 

1.5 0.0000443 1.0185 0.0000574 0.8957 

2 0.0000847 1.0664 0.0000998 0.9490 

2.5 0.0001321 1.1209 0.0001464 1.0085 

3 0.0001390 1.2322 0.0001942 1.0688 

3.5 0.0001155 1.4189 0.0002346 1.1387 

4 0.0001071 1.6009 0.0002461 1.2476 

4.5 0.0001340 1.6948 0.0002347 1.3987 

5 0.0002162 1.6969 0.0002428 1.5317 

5.5 0.0003909 1.6499 0.0003115 1.5882 

6 0.0007056 1.5900 0.0004878 1.5728 

7 0.001915 1.4810 0.001425 1.4745 

8 0.004115 1.3905 0.003450 1.3797 

9 0.007535 1.3155 0.006691 1.2895 

10 0.01217 1.2571 0.01129 1.2156 

11 0.01772 1.2140 0.01731 1.1617 

12 0.02386 1.1825 0.02455 1.1216 

13 0.03041 1.1586 0.03266 1.0901 

14 0.03738 1.1396 0.04126 1.0646 

15 0.04481 1.1233 0.05008 1.0440 

16 0.05282 1.1086 0.05899 1.0273 

17 0.06146 1.0949 0.06797 1.0137 

18 0.07078 1.0818 0.07708 1.0025 

19 0.08084 1.0691 0.08642 0.9930 
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Frequency 

(GHz) 
kH ααααH kV ααααV 

20 0.09164 1.0568 0.09611 0.9847 

21 0.1032 1.0447 0.1063 0.9771 

22 0.1155 1.0329 0.1170 0.9700 

23 0.1286 1.0214 0.1284 0.9630 

24 0.1425 1.0101 0.1404 0.9561 

25 0.1571 0.9991 0.1533 0.9491 

26 0.1724 0.9884 0.1669 0.9421 

27 0.1884 0.9780 0.1813 0.9349 

28 0.2051 0.9679 0.1964 0.9277 

29 0.2224 0.9580 0.2124 0.9203 

30 0.2403 0.9485 0.2291 0.9129 

31 0.2588 0.9392 0.2465 0.9055 

32 0.2778 0.9302 0.2646 0.8981 

33 0.2972 0.9214 0.2833 0.8907 

34 0.3171 0.9129 0.3026 0.8834 

35 0.3374 0.9047 0.3224 0.8761 

36 0.3580 0.8967 0.3427 0.8690 

37 0.3789 0.8890 0.3633 0.8621 

38 0.4001 0.8816 0.3844 0.8552 

39 0.4215 0.8743 0.4058 0.8486 

40 0.4431 0.8673 0.4274 0.8421 

41 0.4647 0.8605 0.4492 0.8357 

42 0.4865 0.8539 0.4712 0.8296 

43 0.5084 0.8476 0.4932 0.8236 

44 0.5302 0.8414 0.5153 0.8179 

45 0.5521 0.8355 0.5375 0.8123 

46 0.5738 0.8297 0.5596 0.8069 

47 0.5956 0.8241 0.5817 0.8017 

48 0.6172 0.8187 0.6037 0.7967 

49 0.6386 0.8134 0.6255 0.7918 

50 0.6600 0.8084 0.6472 0.7871 

51 0.6811 0.8034 0.6687 0.7826 

52 0.7020 0.7987 0.6901 0.7783 

53 0.7228 0.7941 0.7112 0.7741 

54 0.7433 0.7896 0.7321 0.7700 

55 0.7635 0.7853 0.7527 0.7661 

56 0.7835 0.7811 0.7730 0.7623 
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Frequency 

(GHz) 
kH ααααH kV ααααV 

57 0.8032 0.7771 0.7931 0.7587 

58 0.8226 0.7731 0.8129 0.7552 

59 0.8418 0.7693 0.8324 0.7518 

60 0.8606 0.7656 0.8515 0.7486 

61 0.8791 0.7621 0.8704 0.7454 

62 0.8974 0.7586 0.8889 0.7424 

63 0.9153 0.7552 0.9071 0.7395 

64 0.9328 0.7520 0.9250 0.7366 

65 0.9501 0.7488 0.9425 0.7339 

66 0.9670 0.7458 0.9598 0.7313 

67 0.9836 0.7428 0.9767 0.7287 

68 0.9999 0.7400 0.9932 0.7262 

69 1.0159 0.7372 1.0094 0.7238 

70 1.0315 0.7345 1.0253 0.7215 

71 1.0468 0.7318 1.0409 0.7193 

72 1.0618 0.7293 1.0561 0.7171 

73 1.0764 0.7268 1.0711 0.7150 

74 1.0908 0.7244 1.0857 0.7130 

75 1.1048 0.7221 1.1000 0.7110 

76 1.1185 0.7199 1.1139 0.7091 

77 1.1320 0.7177 1.1276 0.7073 

78 1.1451 0.7156 1.1410 0.7055 

79 1.1579 0.7135 1.1541 0.7038 

80 1.1704 0.7115 1.1668 0.7021 

81 1.1827 0.7096 1.1793 0.7004 

82 1.1946 0.7077 1.1915 0.6988 

83 1.2063 0.7058 1.2034 0.6973 

84 1.2177 0.7040 1.2151 0.6958 

85 1.2289 0.7023 1.2265 0.6943 

86 1.2398 0.7006 1.2376 0.6929 

87 1.2504 0.6990 1.2484 0.6915 

88 1.2607 0.6974 1.2590 0.6902 

89 1.2708 0.6959 1.2694 0.6889 

90 1.2807 0.6944 1.2795 0.6876 

91 1.2903 0.6929 1.2893 0.6864 

92 1.2997 0.6915 1.2989 0.6852 

93 1.3089 0.6901 1.3083 0.6840 
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Frequency 

(GHz) 
kH ααααH kV ααααV 

94 1.3179 0.6888 1.3175 0.6828 

95 1.3266 0.6875 1.3265 0.6817 

96 1.3351 0.6862 1.3352 0.6806 

97 1.3434 0.6850 1.3437 0.6796 

98 1.3515 0.6838 1.3520 0.6785 

99 1.3594 0.6826 1.3601 0.6775 

100 1.3671 0.6815 1.3680 0.6765 

120 1.4866 0.6640 1.4911 0.6609 

150 1.5823 0.6494 1.5896 0.6466 

200 1.6378 0.6382 1.6443 0.6343 

300 1.6286 0.6296 1.6286 0.6262 

400 1.5860 0.6262 1.5820 0.6256 

500 1.5418 0.6253 1.5366 0.6272 

600 1.5013 0.6262 1.4967 0.6293 

700 1.4654 0.6284 1.4622 0.6315 

800 1.4335 0.6315 1.4321 0.6334 

900 1.4050 0.6353 1.4056 0.6351 

1 000 1.3795 0.6396 1.3822 0.6365 
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Appendix C: Power-law coefficients for Durban at 20
o
C for a frequency 

range of 2 GHz to 1000 GHz using Mie technique [Alonge, 2011] 

The Mie scattering technique has been simplified such that the ECS is defined as: 

 �|���?) =  �|��A�����     [��#]                                          �¡. 1) 

 

where A� is the radius of the rain drops. The power-law coefficients in Durban at 20°C are 

hereby presented in the following table.  

FREQUENCY 

(GHz) 

COMPLEX 

REFRACTIVE INDEX 
kext ςext 

2 8.9014 + 0.4843i 0.0027 3.2737 

4 8.7763 + 0.9442i 0.0191 3.7875 

6 8.5830 + 1.3599i 0.0851 4.3988 

8 8.3396 + 1.7196i 0.217 4.5805 

10 8.0649 + 2.0188i 0.3857 4.5272 

12 7.7755 + 2.2594i 0.5866 4.4443 

15 7.3405 + 2.5234i 0.955 4.3453 

16 7.1994 + 2.5892i 1.0939 4.3164 

18 6.9272 + 2.6934i 1.3883 4.2576 

19.5 6.7332 + 2.7509i 1.6169 4.2104 

20 6.6705 + 2.7667i 1.6936 4.194 

23 6.3171 + 2.8321i 2.1474 4.0885 

25 6.1026 + 2.8532i 2.4567 4.0186 

28 5.8107 + 2.8603i 2.8544 3.9035 

30 5.6345 + 2.8530i 3.1204 3.8323 

35 5.2500 + 2.8072i 3.7452 3.6639 

40 4.9322 + 2.7383i 4.3106 3.5077 

45 4.6668 + 2.6586i 4.8223 3.3646 

50 4.4428 + 2.5752i 5.2855 3.2353 

60 4.0869 + 2.4099i 6.0493 3.0094 

70 3.8182 + 2.2560i 6.625 2.8209 

90 3.4421 + 1.9907i 7.4097 2.5284 

100 3.3061 + 1.8778i 7.6874 2.4156 

150 2.9154 + 1.5083i 8.3061 2.0691 

200 2.7103 + 1.2655i 8.3464 1.9293 

250 2.5871 + 1.1051i 8.2291 1.8785 

300 2.5029 + 0.9932i 8.0777 1.8672 

350 2.4395 + 0.9115i 7.935 1.87 

400 2.3882 + 0.8493i 7.8144 1.875 

500 2.3067 + 0.7597i 7.6315 1.8812 

600 2.2418 + 0.6958i 7.488 1.8919 

700 2.1880 + 0.6455i 7.3793 1.899 

750 2.1644 + 0.6235i 7.3338 1.9021 

800 2.1426 + 0.6032i 7.2899 1.9055 

850 2.1226 + 0.5841i 7.2585 1.9088 

900 2.1042 + 0.5662i 7.2183 1.9104 

1000 2.0715 + 0.5332i 7.1602 1.915 
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Appendix D: Distrometer Output Specification [Bartholomew, 2009] 

The Joss-Waldvogel RD-80 impact distrometer is completely described by twenty independent 

diameter bins with different diameter classes, drop fall velocity and diameter interval. The 

Table below shows the corresponding values related to each bin and classes according to 

[Bartholomew, 2009; [2]].   

 

 

Dropsize class 

in 

DISDRODATA 

program 

Lower 

threshold 

of drop 

diameter 

(mm) 

Average 

diameter of 

drops in 

class i 

Di (mm) 

 

Fall velocity 

of a drop 

with diameter 

v(Di) (m/s) 

Diameter 

interval of 

drop size 

class i 

∆Di (mm) 

1 0.313 0.359 1.435 0.092 

2 0.405 0.455 1.862 0.1 

3 0.505 0.551 2.267 0.091 

4 0.596 0.656 2.692 0.119 

5 0.715 0.771 3.154 0.112 

6 0.827 0.913 3.717 0.172 

7 0.999 1.116 4.382 0.233 

8 1.232 1.331 4.986 0.197 

9 1.429 1.506 5.423 0.153 

10 1.582 1.665 5.793 0.166 

11 1.748 1.912 6.315 0.329 

12 2.077 2.259 7.009 0.364 

13 2.442 2.584 7.546 0.286 

14 2.727 2.869 7.903 0.284 

15 3.011 3.198 8.258 0.374 

16 3.385 3.544 8.556 0.319 

17 3.704 3.916 8.784 0.423 

18 4.127 4.35 8.965 0.446 

19 4.573 4.859 9.076 0.572 

20 5.145 5.373 9.137 0.455 
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Appendix E: Derivation of Optimal Number of Stages, k, for Erlang-k 

Distribution 

 

The proposed function for Erlang-k distribution, described by three parameters t, k and τ, is 

given as: 

 

;�£	; �, Í) =  ��Í)+£	+Y�exp �−�Í£	)Г��)               for    �, £ ∀ ℤ > 0    �E. 1) 
    

where k is the number of stages and τ is the rate parameter (or mean of the data) 

. 

To optimize the value of k, the following steps are undertaken: 

 

The first derivative of (E.1) is derived via the product rule as thus: 

 �;�£	; �, Í)�£ =  A£+Y� exp�−�£) −  A�� − 1)£+Y# exp�−�Í£)�Í                        �E. 2) 

 

Where, 

    A =  ��Í)+Г��)                                                                   �E. 3) 

 

To satisfy the conditions of locating the minimum and maximum bounds of the Erlang-k 

distribution, (E.2) needs to be equated to zero at the Right-Hand Side (RHS). This ultimately 

yields the function of the independent variable, t, given as:  

 

£ =  � − 1�Í                                                                   �E. 4) 

 

By substituting t into (E.2), the maximum value of ;�£	) which is at unity is obtained given by: 

 

�AC[;�£	 , �, Í)] =  �Í�� − 1)+Y�exp �1 −  �)Г��)                                                �E. 5) 

 

This can be reduced to a simplified function with LHS dependent on k only. This results in: 
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�AC[;�£	; �, Í)]Í =  ��� − 1)+Y�exp �1 −  �)Г��)                                          �E. 6) 

 

It is found by regression technique that the RHS expression fitted over the range of 2 ≤ k ≤ 142 

is a power-law function, dependent on k only, with a RMS error of 3.26%. Therefore, the 

equivalent approximate expression for RHS is given by:  

 ��� − 1)+Y�exp �1 −  �)Г��)  ≈ 0.4488��.Z�Z#                       �E. 7) 

 

Invariably, the optimized integer value of Erlang-k stages for any Erlang distribution, kopt, can 

be computed using the simple power-law function given as: 

 �\�� =  2�E`��5.417ÍY#.����AC[;�£	; �, Í) ]� #.��)                                      �E. 8) 
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Appendix F: Results of Simulated System Performance of M/Ek/∞ in 

Durban, South Africa 

 

Table F-1: Computation of M/Ek/s Queue Performance Metrics for Drizzle Rain Regime 

s Utilization Wq Lq W L 

3 0.7915 9.4532 1.816 13.5786 2.6084 

4 0.5936 2.7202 0.5226 5.8143 1.1169 

5 0.4749 1.3464 0.2586 3.8216 0.7341 

6 0.3958 0.8123 0.156 2.875 0.5523 

7 0.3392 0.5456 0.1048 2.3136 0.4445 

8 0.2968 0.3925 0.0754 1.9395 0.3726 

9 0.2638 0.2962 0.0569 1.6713 0.3211 

10 0.2375 0.2316 0.0445 1.4692 0.2822 

11 0.2159 0.1861 0.0358 1.3112 0.2519 

12 0.1979 0.1529 0.0294 1.1842 0.2275 

13 0.1827 0.1278 0.0246 1.0799 0.2074 

14 0.1696 0.1085 0.0208 0.9925 0.1907 

15 0.1583 0.0932 0.0179 0.9183 0.1764 

16 0.1484 0.081 0.0156 0.8545 0.1642 

17 0.1397 0.071 0.0136 0.799 0.1535 

18 0.1319 0.0628 0.0121 0.7504 0.1441 

19 0.125 0.0559 0.0107 0.7073 0.1359 

20 0.1187 0.0501 0.0096 0.6689 0.1285 

 

 

 

Table F-2: Computation of M/Ek/s Queue Performance Metrics for Widespread Rain Regime 

s Utilization Wq Lq W L 

3 0.701 6.4308 0.9858 11.0033 1.6868 

4 0.5257 2.2808 0.3496 5.7101 0.8754 

5 0.4206 1.1948 0.1832 3.9383 0.6037 

6 0.3505 0.7402 0.1135 3.0264 0.464 

7 0.3004 0.5049 0.0774 2.4645 0.3778 

8 0.2629 0.3669 0.0562 2.0815 0.3191 

9 0.2337 0.2788 0.0427 1.803 0.2764 

10 0.2103 0.2192 0.0336 1.5909 0.2439 

11 0.1912 0.1768 0.0271 1.4239 0.2183 

12 0.1752 0.1457 0.0223 1.2888 0.1976 

13 0.1618 0.1222 0.0187 1.1774 0.1805 

14 0.1502 0.1039 0.0159 1.0837 0.1661 

15 0.1402 0.0895 0.0137 1.004 0.1539 

16 0.1314 0.0778 0.0119 0.9352 0.1434 

17 0.1237 0.0683 0.0105 0.8752 0.1342 

18 0.1168 0.0605 0.0093 0.8226 0.1261 

19 0.1107 0.0539 0.0083 0.7759 0.1189 

20 0.1051 0.0484 0.0074 0.7342 0.1126 
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Table F-3: Computation of M/Ek/s Queue Performance Metrics for Shower Rain Regime 

s Utilization Wq Lq W L 

3 0.8054 14.0219 2.0837 19.442 2.8891 

4 0.6041 3.8762 0.576 7.9412 1.1801 

5 0.4833 1.9008 0.2825 5.1528 0.7657 

6 0.4027 1.142 0.1697 3.852 0.5724 

7 0.3452 0.7653 0.1137 3.0882 0.4589 

8 0.302 0.5497 0.0817 2.5822 0.3837 

9 0.2685 0.4144 0.0616 2.2211 0.3301 

10 0.2416 0.3238 0.0481 1.9498 0.2897 

11 0.2197 0.2601 0.0386 1.7383 0.2583 

12 0.2014 0.2135 0.0317 1.5685 0.2331 

13 0.1859 0.1785 0.0265 1.4293 0.2124 

14 0.1726 0.1514 0.0225 1.3129 0.1951 

15 0.1611 0.1301 0.0193 1.2141 0.1804 

16 0.151 0.113 0.0168 1.1292 0.1678 

17 0.1421 0.099 0.0147 1.0555 0.1569 

18 0.1342 0.0875 0.013 0.9909 0.1472 

19 0.1272 0.0779 0.0116 0.9337 0.1388 

20 0.1208 0.0698 0.0104 0.8828 0.1312 

 

 

 

Table F-4: Computation of M/Ek/s Queue Performance Metrics for Thunderstorm Rain Regime 

s Utilization Wq Lq W L 

3 0.6285 7.688 0.7088 14.5046 1.3373 

4 0.4714 3.0391 0.2802 8.1516 0.7516 

5 0.3771 1.6507 0.1522 5.7407 0.5293 

6 0.3142 1.0412 0.096 4.4496 0.4102 

7 0.2694 0.718 0.0662 3.6394 0.3356 

8 0.2357 0.5255 0.0485 3.0817 0.2841 

9 0.2095 0.4015 0.037 2.6737 0.2465 

10 0.1885 0.3168 0.0292 2.3618 0.2178 

11 0.1714 0.2564 0.0236 2.1155 0.195 

12 0.1571 0.2118 0.0195 1.9159 0.1766 

13 0.145 0.1779 0.0164 1.751 0.1614 

14 0.1347 0.1516 0.014 1.6123 0.1487 

15 0.1257 0.1307 0.012 1.494 0.1377 

16 0.1178 0.1138 0.0105 1.3919 0.1283 

17 0.1109 0.1 0.0092 1.303 0.1201 

18 0.1047 0.0886 0.0082 1.2247 0.1129 

19 0.0992 0.0791 0.0073 1.1554 0.1065 

20 0.0943 0.071 0.0065 1.0934 0.1008 

 


