
The Open Health Information Mediator:
an Architecture for Enabling

Interoperability in Low to Middle Income
Countries

by

Ryan Crichton

Submitted in fulfillment of the academic requirements for the degree of Master of
Science in the School of Mathematics, Statistics and Computer Science, University

of KwaZulu-Natal, Durban.

March 2015

As the candidate’s supervisors we have approved this dissertation for submission.

Signed: Name: Date:

Signed: Name: Date:



Abstract

Interoperability and system integration are central problems that limit the effective use of
health information systems to improve efficiency and effectiveness of health service delivery.
There is currently no proven technology that provides a general solution in low and middle
income countries where the challenges are especially acute. Engineering health information
systems in low resource environments have several challenges that include poor infrastruc-
ture, skills shortages, fragmented and piecemeal applications deployed and managed by
multiple organisations as well as low levels of resourcing. An important element of modern
solutions to these problems is a health information exchange that enable disparate systems
to share health information.

It is a challenging task to develop systems as complex as health information exchanges that
will have wide applicability in low and middle income countries. This work takes a case
study approach and uses the development of a health information exchange in Rwanda as
the case study. This research reports on the design, implementation and analysis of an
architecture, the Health Information Mediator, that is a central component of a health
information exchange. While such architectures have been used successfully in high income
countries their efficacy has not been demonstrated in low and middle income countries. The
Rwandan case study was used to understand and identify the challenges and requirements
for health information exchange in low and middle income countries. These requirements
were used to derive a set of key concerns for the architecture that were then used to drive
its design. Novel features of the architecture include: the ability to mediate messages at
both the service provider and service consumer interfaces; support for multiple internal
representations of messages to facilitate the adoption of new and evolving standards; and
the provision of a general method for mediating health information exchange transactions
agnostic of the type of transactions.

The architecture is shown to satisfy the key concerns and was validated by implementing
and deploying a reference application, the OpenHIM, within the Rwandan health informa-
tion exchange. The architecture is also analysed using the Architecture Trade-off Analysis
Method. It has also been successfully implemented in other low and middle income countries
with relatively minor configuration changes which demonstrates the architectures general-
izability.

ii



Preface

The research work described in this dissertation was carried out in the School of Mathe-
matics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, from July
2011 to March 2015, under the supervision of Mr.Anban Pillay, Dr.Deshendran Moodley
and Prof. Christopher Seebregts.

These studies represent original work by the author and have not otherwise been sub-
mitted in any form for any degree or diploma to any tertiary institution. Where use has
been made of the work of others it is duly acknowledged in the text.

iii



Declaration 1 - Plagiarism

I, Ryan Crichton, declare that:

1. The research reported in this thesis, except where otherwise indicated, is my original
research.

2. This dissertation has not been submitted for any degree or examination at any other
university.

3. This dissertation does not contain other person’s data, pictures, graphs or other in-
formation, unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other person’s writing, unless specifically acknowl-
edged as being sourced from other researchers. Where other written sources have been
quoted, then:

(a) Their words have been re-written but the general information attributed to them
has been referenced.

(b) Where their exact words have been used, then their writing has been placed in
italics and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted from
the Internet, unless specifically acknowledged, and the source being detailed in the
dissertation and in the References section.

Signed:

iv



Declaration 2 - Publications

1. Crichton, R., Moodley, D., Pillay, A., Gakuba, R., & Seebregts, C. J. (2013). An Ar-
chitecture and Reference Implementation of an Open Health Information Mediator:
Enabling Interoperability in the Rwandan Health Information Exchange. In Founda-
tions of Health Information Engineering and Systems (pp. 87–104). Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-39088-3_6

Signed:

v



Dedication.

I would like to dedicate this dissertation to my father, Graham Thomas

Crichton. He will always be with us in memory. He helped me strive to achieve

all that I could academically. I would also like to thank my family and especially

my fiancée, Sarah Murray, for giving me the strength and support I needed to

make it through this challenging process, as well as for her extensive editorial

work.

vi



Acknowledgements

I would like to thank my supervisors Anban Pillay, Deshendran Moodley and Christopher

Seebregts for their never ending support and dedication to this process. Without their

support I doubt I would have been able to produce this work.

I also wish to acknowledge the support of the Rwanda Ministry of Health (in particular,

Gilbert Uwayezo and Daniel Murenzi) who with the National eHealth Coordinator, Dr

Richard Gakuba, manage the national rollout of health IT as well as advisers, Elizabeth

Peloso and Randy Wilson. Significant inputs were received from the Rwanda Health En-

terprise Architecture (RHEA) and Rwanda Health Information Exchange (RHIE) project

teams, including Wayne Naidoo, Carl Fourie, Hannes Venter, Mead Walker, Beatriz de Faria

Leao, Paul Biondich, Shaun Grannis, Eduardo Jezierski, Dykki Settle, Odysseas Pentakalos

and Bob Joliffe. Additional support was obtained from Mohawk College in Canada (in

particular, Derek Ritz, Ted Scott, Justin Fyfe and Duane Bender) and eZ-Vida in Brazil

(in particular, Dr Lincoln Moura, Dr Beatriz de Faria Leao and Ricardo Quintano Neira).

I would also like to acknowledge the funders for their generous support. The RHEA project is

funded by grants from the IDRC (Open Architectures, Standards and Information Systems

(OASIS II) - Developing Capacity, Sharing Knowledge and Good Principles Across eHealth

in Africa. Grant Number: 105708), the Rockefeller Foundation (Open eHealth Enterprise

Architecture Framework and Strategy Development for the Global South; Grant Number:

2009 THS 328) and the Health Informatics Public Private Partnership Project funded by

the President’s Emergency Plan for AIDS Relief (PEPFAR). The practical component of

this research has been supported by funding from the President’s Emergency Plan for

AIDS Relief (PEPFAR) through a CDC cooperative agreement with Cardno Emerging

Markets, Cooperative Agreement #PS002068. The research component was supported by

the HEAL project, which is funded by grants from the Rockefeller Foundation (Establishing

a Health Enterprise Architecture Lab, a research laboratory focused on the application

of enterprise architecture and health informatics to low-resource settings, Grant Number:

2010 THS 347) and the IDRC (Health Enterprise Architecture Laboratory (HEAL), Grant

vii



Number: 106452-001). The REACH (Research in Enterprise Architecture for Coordinating

Healthcare) project was also funded by the IDRC through ecGroup (Derek Ritz).

viii



Contents
Abstract ii

Chapter 1 Introduction........................................................................................... 1

1.1 Architectures for health information exchange . . . . . . . . . . . . . . . . . 2

1.2 Problem statement, aim and objectives . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of the Research Design . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature review ................................................................................... 8

2.1 Information systems interoperability . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Interoperability between health information systems . . . . . . . . . . . . . 14

2.2.1 Technical interoperability . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Syntactic interoperability . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Semantic interoperability . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Achieving all levels of interoperability with HIS standards . . . . . . 19

2.3 Architectural paradigms for distributed systems . . . . . . . . . . . . . . . . 23

2.3.1 Service-oriented architecture . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Enterprise Service Bus . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Interoperability in health care systems . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Canada Health Infoway: Mohawk reference implementation . . . . . 29

2.4.2 Health Service Bus by Ryan et al. . . . . . . . . . . . . . . . . . . . 32

ix



2.4.3 Xu et al. Mediator Services . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 NEHTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Outstanding issues with ESB based Distributed Systems for HIS . . . . . . 36

Chapter 3 Research Design..................................................................................... 39

3.1 The Rwandan Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Deriving architectural concerns from the RHIE requirements . . . . . . . . 41

3.3 Architecture design and implementation . . . . . . . . . . . . . . . . . . . . 43

3.4 Analysis of suitability to LMIC environments . . . . . . . . . . . . . . . . . 43

3.5 Analysis of architectural quality . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Limitations and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4 Design of the HIM Architecture............................................................. 48

4.1 A national health information system for Rwanda . . . . . . . . . . . . . . . 48

4.2 The architectural concerns for HIS interoperability . . . . . . . . . . . . . . 50

4.2.1 Concern #1: Facilitate interoperability between disparate and het-

erogeneous systems, both existing and future . . . . . . . . . . . . . 51

4.2.2 Concern #2: Balance central governance with local autonomy . . . . 52

4.2.3 Concern #3: Adapt and scale within a changing environment . . . . 53

4.2.4 Concern #4: Prevent local changes from propagating through the

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.5 Concern #5: Provide a low barrier to entry to connect new and legacy

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.6 Concern #6: Be secure and auditable . . . . . . . . . . . . . . . . . 55

4.2.7 Concern #7: Be reusable across a multitude of environments . . . . 55

4.3 The Health Information Mediator . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Overall HIM architectural paradigm: The ESB . . . . . . . . . . . . 56

x



4.3.2 Architectural viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Architecture of the HIM . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Implementation of the HIM Architecture in Rwanda ............................. 69

5.1 The point of care interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Messaging format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Mule ESB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 System Architecture of the OpenHIM . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Implementation of the point of care interface and access control com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 Implementation of the persistence component . . . . . . . . . . . . . 73

5.4.3 Implementation of the mediation component . . . . . . . . . . . . . 74

5.5 Implementation of the Rwandan HIE . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 The RHIE workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 6 Analysis and discussion .......................................................................... 82

6.1 Analysis of the HIM architecture . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 Concern #1: Facilitate interoperability . . . . . . . . . . . . . . . . . 82

6.1.2 Concern #2: Balance central governance with local autonomy . . . . 87

6.1.3 Concern #3: Adapt and scale . . . . . . . . . . . . . . . . . . . . . . 87

6.1.4 Concern #4: Prevent propagation of local changes . . . . . . . . . . 94

6.1.5 Concern #5: Provide a low barrier to entry . . . . . . . . . . . . . . 95

6.1.6 Concern #6: Secure and auditable . . . . . . . . . . . . . . . . . . . 97

6.2 Re-usability of the HIM architecture in other LMICs . . . . . . . . . . . . . 97

6.2.1 MomConnect OpenHIM implementation . . . . . . . . . . . . . . . . 97

6.2.2 Other uses of the HIM architecture . . . . . . . . . . . . . . . . . . . 100

6.3 Architecture quality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Identification of business drivers . . . . . . . . . . . . . . . . . . . . 102

xi



6.3.2 Utility Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 Architectural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.4 Analysis of quality attributes . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Comparison with existing approaches . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 7 Conclusion ............................................................................................. 118

Bibliography .......................................................................................... 122

xii



List of Figures
2.1 Dimensions of Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An HL7 v2 ORU_R01 message in ER7 format . . . . . . . . . . . . . . . . 16

2.3 Distributed System Architectures . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The basic Service Oriented Architecture [54] . . . . . . . . . . . . . . . . . . 26

2.5 Canada Health Infoway: EHRS Conceptual View [9] . . . . . . . . . . . . . 30

2.6 The Health Service Bus by Ryan et al. [59] . . . . . . . . . . . . . . . . . . 32

2.7 Architecture of the mediator service component [70] . . . . . . . . . . . . . 34

2.8 NEHTA National eHealth Architecture. [50] . . . . . . . . . . . . . . . . . . 35

4.1 The architecture of the Rwandan Health Information Exchange . . . . . . . 50

4.2 Context of architecture description [39] . . . . . . . . . . . . . . . . . . . . . 57

4.3 Overview of components in the HIM architecture . . . . . . . . . . . . . . . 59

4.4 The workflow of a transaction channel within the transaction mediation com-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Scalability configurations of the HIM architecture . . . . . . . . . . . . . . . 65

4.6 Extensibility of the HIM architecture . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Systems architecture of the OpenHIM . . . . . . . . . . . . . . . . . . . . . 72

5.2 OpenHIM persistence component data model . . . . . . . . . . . . . . . . . 74

5.3 The structure of a sample mediation component . . . . . . . . . . . . . . . . 74

5.4 Query patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Register a patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Save an encounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Query an encounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Results of vertical scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Sample distributed HIM layout . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



6.3 Comparison of distributed vs. non-distributed configurations of the OpenHIM. 93

6.4 A simplified diagram of the MomConnect infrastructure (source: http://

www.jembi.org/project/national-pregnancy-registry/) . . . . . . . . 99

6.5 HIM architecture utility tree . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv

http://www.jembi.org/project/national-pregnancy-registry/
http://www.jembi.org/project/national-pregnancy-registry/


List of Tables
2.1 Interoperability Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Performance results of an m1.large instance using 5 concurrent threads . . . 90

6.3 Performance results of an m1.xlarge instance using 10 concurrent threads . 90

6.4 Performance results of a high specification machine using 20 concurrent threads 91

6.5 Performance results using two distributed m1.large instances . . . . . . . . 93

6.1 Estimated transactional load for the Rwandan HIE . . . . . . . . . . . . . . 117

xv



Chapter 1

Introduction

Health Information Systems (HISs) are one of the six building blocks of a health system

[66] and play a vital role in a country’s health system. They store patient demographic

and clinical information and provide health workers with views of this information. Often,

a single health information system’s scope extends only to the workflows associated with a

single health facility, be it a clinic, hospital or other facility type. As these systems grow

to accommodate new, more complex workflows, the data that they store becomes more

valuable to both patients and health workers. Thus, sharing this information between health

facilities becomes increasingly beneficial. Sharing of information in this context means that

systems either provide information that other systems can consume; can themselves consume

information shared by other systems; or both. Sharing of information gives health providers

at separate facilities a view of the past medical history for a patient, as well as minimising

the collection of duplicate information as the patient moves from site to site. This allows

health providers access to additional information at the right time so that they may make

decisions. This enables “continuity of care” for a patient no matter which health facility

they attend. In addition, the time health providers spend collecting information can be

reduced.

Health Information Systems in Low and Middle Income Countries (LMICs) have additional

challenges not present in other environments [46, 1, 4]. There is often poor computing and

network infrastructure due to limited funds or lack of technical expertise. There is also

limited technical expertise to deal with the problems associated with sharing of clinical

information. From a technological perspective one or more of the following are often true

in these low resource settings: electrical power may be inconsistent and unpredictable;

access to the Internet may be poor both in latency and speed, while also being inconsistent

and unpredictable; users of systems are not sufficiently computer literate; and hardware is

often older, poorly maintained and fails more frequently [42]. In addition, there are limited

1



2

numbers of health workers to perform data capture and information management. This

places a high burden on existing clinical staff to perform these administrative functions.

In addition, the current landscape of health information systems, in LMICs, is mostly

characterised by fragmented, piecemeal applications deployed by multiple organisations [1,

8]. Applications are usually custom built to satisfy very specific needs, using heterogeneous

architectures and technologies, with sharing of information low on the list of priorities.

Recently the Ugandan Ministry of Health has placed a moratorium on mobile health systems

because there were too many different projects run by too many different organisations for

them to effectively co-ordinate1. While HISs may be useful in specific domains of health

care they often contain information that is of high value if shared between systems external

to that domain. It is beneficial to share certain information, such as patient demographics,

between HISs to reduce replication among different HISs and thus reduce errors and improve

efficiency of data capture.

One way to address the problem of sharing of information is through the development of a

Health Information Exchange. A Health Information Exchange (HIE) is a system of software

components that enable the sharing of clinical and administrative health care data among

health care institutions, providers, and data repositories [17]. This is usually done for the

mutual benefit of the systems involved in the exchange and to increase the effectiveness with

which a patient can be treated. Types of information that could be shared include a patients

medical history, patient administrative or demographic information, and information about

health workers or health facilities. Allowing this information to be shared provides a fuller

view of a patient’s medical history and allows the clinician access to previously unavailable

information.

1.1 Architectures for health information exchange

A number of architectures and paradigms have emerged to handle the complexities of en-

abling systems to interoperate. Service-oriented architecture (SOA) is a common approach

that has been successfully applied in High Income Countries (HICs) to solve interoperability

problems within an HIE [59, 49, 72]. SOA is also currently used as an approach to reduce
1See http://www.ictworks.org/2012/02/22/ugandan-mhealth-moratorium-good-thing/

http://www.ictworks.org/2012/02/22/ugandan-mhealth-moratorium-good-thing/


3

complexity of large systems. HIEs are often large and complex due to the variety of systems

that they connect.

Service-oriented computing is a paradigm where services form the foundational element of

applications [54]. Services are self-contained, modular units that can execute a particular

business function and are invoked through a published interface that is usually based on open

standards [54, 33]. Service-Oriented Architecture (SOA) organises a set of services such that

they can provide a cohesive set of business functions, while retaining loose coupling between

the individual services [30, 54, 33]. Service-oriented architecture (SOA) has become the

dominant architecture for facilitating interoperability between distributed software systems.

The Enterprise Service Bus (ESB) [10, 60] is an architectural model that eases the commu-

nication challenges between different services within a SOA. It is used to enable a SOA to

be more easily developed by simplifying the connection of heterogeneous systems through a

middleware component that enables communication between disparate services. This mid-

dleware component’s common functions include message mediation, service orchestration

and security [10]. These functions simplify the way in which service consumers interact

with service providers and centralise much of the complexity associated with connecting to

services.

The ESB approach has been previously applied to the problem of facilitating interoperability

between heterogeneous information systems in the health domain in HICs [9, 59], but has

not yet been proven in LMICs where conditions are significantly different.

1.2 Problem statement, aim and objectives

There are currently no accepted generic frameworks or methodologies for addressing inter-

operability challenges between HISs in LMICs. ESB-based HIE approaches have been used

to address similar challenges in HICs. However, it is not presently known whether this

approach will be effective in LMICs. This research examines whether an Enterprise Ser-

vice Bus architecture will be an effective approach to addressing interoperability challenges

between disparate HISs in LMICs and will also reduce the cost and effort of engineering

interoperable HISs within LMICs.



4

This research explores the construction of a framework that would enable HIEs to be more

easily deployed in sub-Saharan African LMICs. The first step towards this goal was to de-

sign, develop, analyse and validate a software architecture based on the Enterprise Service

Bus architectural model that simplifies interoperability between HISs. This simplification

should be in terms of complexity as well as the level of effort required to enable interoper-

ability, specifically in LMIC contexts.

To achieve this aim, a case study approach was taken using the development of the Rwandan

Health Information Exchange. The case study is used to better understand and identify

the key challenges and concerns for health information exchange in LMICs and to serve as

an environment for analysing and validating the architecture. The generalizability of the

architecture is explored by studying its implementation in other LMIC environments.

The concrete objectives of this research are as follows:

1. Analyse existing approaches to addressing interoperability challenges and explore ex-

isting approaches used in HIEs for HICs.

2. Using the Rwandan HIE as a representative sub-Saharan African LMIC case study:

(a) Analyse this specific environment and its requirements to determine a generic

set of architectural concerns for an ESB-based architecture that might simplify

the development and implementation of an HIE in LMICs.

(b) Design a software architecture based on the established ESB architectural model

that meets the architectural concerns identified from an analysis of the case study.

(c) Validate the architecture by implementing and deploying a reference implemen-

tation in the representative country.

3. Analyse the effectiveness and suitability of the architecture against architectural con-

cerns, design objectives and quality attributes.

4. Analyse the suitability and re-usability of the architecture in other LMIC environ-

ments.



5

1.3 Overview of the Research Design

It is a challenging task to develop systems as complex as HIEs that will have wide appli-

cability in all LMICs. It was decided, instead, to initially focus on the development of the

HIE in Rwanda as a representative case study. The ministry of health of Rwanda is em-

barking on the creation of an integrated National Health Information System (NHIS). Part

of this plan involves the creation of a pilot HIE for a single district in Rwanda. This HIE

enables medical records to be transferred between health facilities so that a patient’s full

record may be viewed at any health facility that they attend. The Rwandan HIE (RHIE)

is used to explore the interoperability challenges experienced in LMICs and to provide an

environment where a reference implementation could be deployed and analysed.

A number of key, general architectural concerns were extracted from RHIE requirements to

drive the design of the architecture. Although the architecture was designed for the Rwan-

dan use case, attempts were made to ensure that the architecture had certain desirable

characteristics that would make it useful for solving similar problems in similar environ-

ments. To validate the architecture a reference implementation of the HIM architecture

(the OpenHIM) was developed and deployed in Rwanda.

The architecture was evaluated along three dimensions. Firstly, an analysis of how well the

architecture addresses the architectural concerns and solves the interoperability problems

for the Rwandan HIE is given. The Rwandan implementation of the architecture serves to

validate the architecture and demonstrates its applicability to a real world LMIC setting.

Secondly, an analysis of other LMIC projects that have begun to adopt the architecture

is given. Finally, a formal architecture analysis was performed. The architecture trade-off

analysis method (ATAM) was used to determine the quality of the architecture by looking

at the architecture’s modifiability; scalability and performance; and it’s security.

1.4 Contributions

The key contribution of this research is an ESB-based architecture (the Health Informa-

tion Mediator) that is an efficacious and generalizable solution to interoperability problems



6

within health information exchanges in sub-Saharan LMICs. This architecture’s wide ap-

plicability in LMICs is demonstrated by deploying the reference implementation in two

diverse low to middle income environments. The architecture is a step toward articulating

a framework for constructing HIEs within LMICs.

The reference implementation of the architecture, a novel mediation component called the

OpenHIM is also presented. The HIM architecture exhibits some novel features that con-

tribute additional design principles to the area of health information mediation when com-

pared to existing middleware architectures for constructing HIEs:

1. The HIM architecture is agnostic of health information standards used for messaging

such that legacy or new cutting-edge standards may be used.

2. The HIM architecture enables health information messages to be mediated at both

the inbound and outbound interface. This allows messages to be transformed such

that any service provider or service consumer can be more easily connected even if

they cannot produce standards conformant messages. This enables legacy HISs to be

more easily integrated into an HIE.

3. The HIM architecture is agnostic of the type of transaction that needs to be enabled

within an HIE. It provides generic mechanisms to enable the implementation of any

type of transaction.

1.5 Thesis layout

In Chapter 2 the challenges involved in facilitating interoperability between systems are in-

troduced and previous approaches to these problems are discussed. Chapter 3 explains and

describes the methods used to achieve the research objectives. In Chapter 4 architectural

concerns are extracted from the Rwandan HIE use case and those architectural concerns are

used to drive the design of the architecture of a software component to facilitate interoper-

ability: the HIM architecture. The architecture is validated with a reference implementation

within the Rwandan HIE. The reference application, the OpenHIM, is described in Chapter



7

5. A comprehensive analysis of the HIM architecture is presented in Chapter 6. Finally,

conclusions are drawn and we point to future work in Chapter 7.



Chapter 2

Literature review

In this chapter the challenges associated with interoperability between health information

systems are identified. These problems are described and the key dimensions of interop-

erability are identified and explained. The extent to which existing health information

standards solve the challenges of interoperability is also explored. In addition, a number of

key architectures that attempt to solve the problems associated with enabling health sys-

tems interoperability are examined. Finally, outstanding issues are identified and discussed

to frame the context for the remainder of the research.

2.1 Information systems interoperability

Heterogeneity of the component systems is the crucial characteristic that makes sharing of

resources between systems (i.e. interoperability) difficult. Heterogeneity can be categorised

as either information heterogeneity or system heterogeneity [52].

Information heterogeneity refers to the difference in both the structure and the content of the

information used within a system. There are three dimensions to information heterogeneity

[52]:

• Syntactic heterogeneity - describes the differences in how information is formatted

and encoded in different systems.

• Structural heterogeneity - describes the differences in how information is struc-

tured in different systems. This includes the data structures that store the information

and how that information is related.

• Semantic heterogeneity - describes the differences in the meaning of information

in different systems. This includes understanding the concepts being communicated

by the information and the context of the information.

8



9

System heterogeneity refers to the physical differences in component systems and includes

[52]:

• Information system heterogeneity - refers to the differences in the design of

systems. This includes differences in database management systems, data models and

system capabilities.

• Platform heterogeneity - describes the differences between the underlying plat-

forms on which the system runs. This includes differences in operating system, file

systems, technology stacks and hardware.

Information and system heterogeneity are the main reasons why sharing information is a

difficult task. In the following sections we explore how these differences have been addressed

previously.

Interoperability attempts to mitigate the effects of heterogeneity by defining how systems

can communicate in the presence of heterogeneity. Interoperability is a difficult problem to

solve in software engineering due to the many facets that require consideration in order to

make interoperability between different systems possible [62].

The IEEE glossary of 1990 [34] defines interoperability as:

“the ability of two or more systems or components to exchange information

and to use the information that has been exchanged.”

This definition implies that for systems to interoperate they must not only be able to

physically receive data from another system but also be able to make use of the received

data in its internal business processes.

There are a number of different dimensions of interoperability that describe the levels at

which systems can process and reason with data it receives. Sheth (1999) defines four

classical dimensions of interoperability: semantic, structural, syntactic and system interop-

erability [62]. These dimensions address the different aspects of heterogeneity discussed in

Section 2.1. Ouksel and Sheth later propose a newer framework for interoperability that in-

cludes two additional dimensions: pragmatics and social world [53]. In this framework they



10

suggest that interoperability should include four key dimensions: syntactic, semantic, prag-

matic and social world interoperability. Jinsoo Park [55] describes the classical dimensions

of interoperability which include definitions of both syntactic and semantic interoperability

that closely match those defined by Ouksel and Sheth.

A number of studies have been performed particularly for the health domain. The health

level 7 (HL7) interoperability working group performed a comprehensive review of defini-

tions of interoperability [28]. They identified many definitions from both the health domain

as well as other, more established, information system domains such as the financial do-

main. They identify three major dimensions that are described by a number of different

organisations, these are: technical interoperability, semantic interoperability and process

interoperability. They also note that the concepts of social and process interoperability are

currently emerging in interoperability definitions, especially in more established organisa-

tions.

These dimensions of interoperability are inter-related. They form a stack with each di-

mension depending on the one below it [28]. For example, semantic interoperability is not

possible without having both syntactic and technical interoperability and you cannot have

pragmatic interoperability without semantic interoperability and so on. The major dimen-

sions of interoperability that commonly appear in literature are listed and described below.

We use an example scenario to aid explanation. Figure 2.1 on page 11 shows the relation-

ships between these dimensions of interoperability in the form of a pyramid diagram with

each higher level dimension depending on lower level dimensions.

Example scenario

In this section an example scenario is described that illustrates the interoperability dimen-

sions described above in practical terms.

Consider a scenario where a patient arrives at a rural clinic. This clinic has an electronic

medical record (EMR) system that interoperates with a national server that stores patient

medical records. The health workers at the rural clinic want to download the patient’s

medical history from the national server to their local EMR system. This will give them a

more detailed history for that patient and save them from recapturing this information.



11

Figure 2.1: Dimensions of Interoperability

Below, examples are given to illustrate the meaning of each dimension of interoperability

using the example scenario that we have defined:

• System/technical interoperability - The focus of this dimension is the transfer

of data from one system to another. It is concerned with how the actual bytes get

transferred between systems on a network. In our example, this dimension concerns

the network packets and IT infrastructure that enable the electronic transfer of the

data from the central server to the clinic’s health information system. Currently a

common mechanism is to make use of the TCP/IP [69] network stack and connect

the communicating systems using specialised network equipment that supports this

network stack. Higher level protocols such as HTTP [23] that build on TCP/IP are

also prevalent and enable systems to transmit data in a standardised way.

• Structural/syntactic interoperability - Two systems are syntactically interoper-

able if they can effectively exchange data and internally process the exchanged data.

In order for the exchanged data to be processed by a system, it must conform to a

pre-defined structure or syntax that is known to both systems. Extensible Markup

Language (XML) [67] is an example of a standard that assists in enabling syntactic



12

interoperability. In our example, the EMR system at the rural clinic needs to know

the structure of the previous history data so that it can internally process this in-

formation. If the EMR system was syntactically interoperable with the central sever

then it is able to process, store and display the data to the user. However, this does

not mean that the system understands the meaning of clinical concepts contained in

the content of the message. In our example, if the message was of a particular XML

structure then the application has syntactic interoperability as long as it knows the

schema or structure that the XML message conforms to i.e. the structure of the XML

tags and what each tag represents. However, it does not necessarily understand the

meaning of the content between the tags. This XML message could be in the form of

an XHTML1 document. The system does not understand the content of the XHTML

document, however, it can process the message and display the XHTML content to

the user so that they can interpret the meaning of the message. This is much like how

Internet browsers can display and process web pages for a user but the browser does

not understand or interpret the meaning of the content of the web page. This is left

to the user. Syntactic interoperability is a prerequisite for semantic interoperability.

• Semantic interoperability - Semantic interoperability concerns the interpretation

of the meaning of data to enable the data to be used within the systems internal

structures. It implies that both the sending and receiving system have an identical

understanding of the information. Semantic interoperability can be accomplished by

the participating systems sharing a controlled vocabulary with predefined meanings.

In our example, this would allow the EMR system to understand the meaning of

concepts in the patient’s previous history. In our example, if the patient has an

allergy to sulphur then the EMR system could interpret this and include it in its

internal data model for additional processing and use within the application. This

information could, for example, be used to provide an alert to a health worker if a

sulphur containing drug was prescribed. To allow the receiving system to understand

the meaning of this message, the message would have to include a reference to a

controlled vocabulary to indicate the concept of an “allergy” and have a mechanism

1See the XHTML specification here: http://www.w3.org/TR/2010/REC-xhtml11-20101123/

http://www.w3.org/TR/2010/REC-xhtml11-20101123/


13

to relate this to another reference to a controlled vocabulary to indicate that the

allergy was to “sulphur”.

• Pragmatic interoperability - In order to process information that a system receives

from another system, the receiving system also needs to understand the intention of

the message it receives. Pragmatics has to do with understanding the intent of a

message. In our example, this means that the EMR system understands that the

information that it receives is a patient’s previous history and that it should be saved

to that patient’s local record. In our example, if the previous patient history was

transmitted using a HL7 version 2 [31] message format then the pragmatics of the

message can be inferred from themessage type and trigger event data elements that are

contained within an HL7 message structure. Standard message formats often include

a mechanism to identify the pragmatics of a message using a controlled vocabulary to

describe the message intention, thus, pragmatic interoperability is related to semantic

interoperability but sits at a higher level.

• Process interoperability - This form of interoperability has to do with integrating

information from various systems into actual workflows and business processes per-

formed by people. In our example, this would describe the workflow in which the

patient’s previous encounters are fetched from the national-level server. It describes

the expected interaction between the EMR system and the server as well as how the

interaction between the systems integrates with the actual business process of the

clinic staff treating the patient. Process interoperability describes how and when the

data is received from the central server in the overall business process of the clinic and

how that information is used by the health workers, within their workflow, to treat

the patient.

In this research we focus on a subset of these dimensions of interoperability. Firstly, we

consider semantic and pragmatic interoperability to be dealing with the same underlying

concern of understanding the meaning of a particular message; the former has to do with

the meaning of the content of the message and the latter has to do with the intention. These

are two separate but related concepts. Due to this these two concepts have been collapsed



14

into a single dimension that we will simply refer to as semantic interoperability. Secondly,

process interoperability has to do with how information is used in actual workflows. In

this research we restrict ourselves to consider only the flow of information rather than the

context in which it is used. Thus, we do not consider process interoperability any further.

Thirdly, Gibbons et al. [28], do not acknowledge syntactic interoperability as a dimension of

interoperability between technical interoperability and semantic interoperability. However,

we believe that this dimension is distinct and this view is supported in other research

[52, 55].

The most relevant dimensions of interoperability that concern information sharing between

heterogeneous systems that we chose to guide this research are thus: Technical interoper-

ability, Syntactic interoperability and Semantic interoperability.

In the following sections we explore the varying degrees to which each dimension has been

achieved in HISs.

2.2 Interoperability between health information systems

Health Information Systems (HISs) are information systems used in the health care domain.

There are many different types of HISs that support different aspects of health care. These

include Electronic Medical Records (EMR) systems, laboratory systems and pharmacy sys-

tems. These systems help health care workers manage the range of information needed to

support a patient’s health care.

Interoperability standards are a fundamental mechanism to address the problems faced with

heterogeneous systems interoperability [2]. In this section standards that enable interop-

erability between health information systems at the different levels of interoperability are

described along with studies that show how the use of interoperability standards produce in-

teroperable health care systems. First, standards that address each level of interoperability

are discussed.



15

2.2.1 Technical interoperability

Due to the global adoption of standards such as Transmission Control Protocol/Internet

Protocol (TCP/IP) [69] and User Datagram Protocol (UDP) [57] the problem of technical

interoperability, as we define it, has largely been solved. Higher level protocols such as

Hypertext Transfer Protocol (HTTP) [23] have become popular due to the success of the

Internet and this makes it even easier for disparate computer systems to share data. The

advent of web-service technologies such as Simple Object Access Protocol (SOAP) [6] and

Representational State Transfer (REST) [24] have made reliable data sharing between sys-

tems easier and more common. All major programming languages include HTTP support.

It is either built in or supported via third party libraries. SOAP and REST support is

also common. Even mobile devices support a variety of protocols, such as 3G, HSDPA and

LTE, that enable Internet access from remote locations. Thus, technical interoperability is

no longer a major concern. However, technical interoperability only allows the transmission

of data from one computer to another across a network. It does not imply that the systems

can process or understand received data [53, 28].

2.2.2 Syntactic interoperability

A message format describes the syntax and structure of a message and these are commonly

used to enable syntactic interoperability. Message formats describe how data can be struc-

tured such that it can be transmitted and interpreted by another system. Current common

messaging formats include XML (Extensible Markup Language), JSON (Javascript Object

Notation) or other custom plain text mark-ups. Most modern interoperable systems rely on

these formats. These message formats can be further constrained to represent data from a

specific domain. In the health care domain there are a number of existing message formats.

These include HL7 [31] (version 2 & 3) and OpenEHR Archetypes [11] among others [26, 20].

Each of these are message formats are used to describe different types of health data. HL7

and OpenEHR archetypes are designed to carry patient level clinical data, whereas others

are designed to carry aggregate health indicators or other types of health information. HL7

version 2 defines a large number of message types with each having specific use cases and

structures. OpenEHR archetypes define a method for describing the structure of clinical



16

data as well as the metadata that describes the structure of this data.

A sample HL7 v2.5 of message of type ORU_R01 (observation result) is shown in Figure

2.2 on page 16.

MSH|^~\&| RapidSMS | F316 |SHR|RwandaMOH| 2 0 1 1 1 1 0 8 0 6 5 7 1 8 | |ORU^R01^ORU_R01| 6 8 0 8 0 |D^C| 2 . 5 ^RWA| | | | | | | | | BIR
PID | | | 1 1 9 8 2 7 0 1 2 0 3 4 3 0 4 1 ^ ^ ^ ^ NID
PV1 | 1 | Community Health | 3 1 6 | | | | 1 1 9 7 3 7 0 0 5 6 2 3 3 0 8 3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 0 1 1 1 1 0 8 0 6 5 7 1 8
OBR| 1 | | | ^ Maternal Health Reporting
OBX| 1 |CE| ^ Risk Code | | NP | | | | | | F
OBX| 2 | TS | ^ Birth Date | | 2 0 1 1 1 1 0 8 | | | | | | F
OBX| 3 |NM| ^ Baby Weight | | 3 . 3 | k | | | | | F
OBX| 4 |CE| ^ Birth Code | | GI | | | | | | F
OBX| 5 |NM| ^ Child Number | | 0 1 | | | | | | F

Figure 2.2: An HL7 v2 ORU_R01 message in ER7 format

This message contains a number of observations for a specific patient. These can be seen in

the lines starting with OBX (OBX segments). A receiving system will know the structure

and allowed data types for this specific message as this is defined in the HL7 version 2

specifications. Thus HL7 version 2 enables syntactic interoperability. However, as we can

see some of the OBX segments contain specific codes such as “Risk Code” which is equal

to “NP” in this case. This is part of the content of the message and the HL7 version 2

specification does not specify what this should contain. With syntactic interoperability

the receiving system does not understand what “Risk Code = NP” means. To be able to

understand this observation the systems need a shared understanding of the semantics of

the message.

It is often difficult to enable syntactic interoperability with only the standards mentioned

above. They contain generic constructs and data types used to construct messages. How-

ever for specific implementations one would have to restrict these further to define exactly

what data can be placed in these messages and where it should be placed. These message

formats often contain significant options as to what data elements may be included in a

message. This allows them to be generally applicable to a number of use cases. However,

this results in systems often choosing to implement these standards differently leading to

varying support for optional data elements. The result is differences in the content of mes-

sages sent by different systems. This hinders interoperability. Some systems, both legacy

and new, also implement their own custom or propriety message formats. It is common

for modern day systems to implement RESTful web service interfaces. These interfaces are

often an incarnation of that system’s data model and thus will be different between systems.



17

The use of these non-standardised message formats can make syntactic interoperability a

challenge as each system will have its own format that needs to be supported.

Overall, a clearly specified message format that can be ubiquitously understood by het-

erogeneous systems can solve the syntactic interoperability problem. However, this is not

always achievable with the standard message formats that currently exist.

2.2.3 Semantic interoperability

Medical data is voluminous, heterogeneous and has no canonical form [13]. This makes it

challenging to codify and present in a uniformly understood way and also more challenging

to work with than in domains where data is more discrete and uniformly represented and

understood.

Degoulet et al [16] enumerates the following challenges with enabling semantic interoper-

ability between health information systems:

• HISs often evolve from legacy systems where semantic meaning is hidden within the

application.

• A greater variety of heterogeneous HISs than ever before are expected to interoperate,

even between various domains of health care.

• Medical vocabulary is constantly changing and evolving.

• There is a great variety in medical terms between different levels of health providers

and providers from different domains.

In order to enable a shared understanding of the concepts in the medical domain several

structured, systematic code systems have been created. Some of these code systems are

defined as ontologies containing medical concepts and others are lists or hierarchies of

medical concepts mapped to codes with clearly specified meaning. An ontology is an explicit

specification of a conceptualisation [29]. It is a formally represented body of knowledge

about a particular domain in the form of concepts and the relationships between them.

These code systems are complex to create and maintain especially in the health domain



18

where health concepts are voluminous and always changing. Concepts are often coded

in a standardised coding systems in order for systems to achieve some level of common

understanding of what certain terms mean. In the health domain this is often done by using

standard medical classifications such as ICD-10 (International Classification of Diseases) or

LOINC (Logical Observation Identifiers Names and Codes), or coded ontologies such as

SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) [12]. ICD-10

codifies diseases and health problems and LOINC codifies laboratory observations.

Code systems contain a large number of clinical terms in a structure where concepts can be

referenced uniquely by a specific code. For example, if a system receives a message in a form

that supports semantic interoperability the system will be able to interpret the meaning of

the message content by examining the codes used to describe the message content. If the

system has a mapping between the defined codes in a code system and its internal data

model then it will be able to process and store the message content in its native, internal

form as each code has a defined meaning. The fact that this clinical encounter was received

from a separate system would be transparent to the user.

In order to communicate data in an understandable fashion, it needs to be mapped to

concepts in these standard code systems. This mapping process is often difficult due to the

complexity of data within the health domain. Multiple code systems exist that attempt to

solve this, such as those mentioned above. There are often no exact mappings for concepts

represented in a system to concepts represented in the code system [55]. These code systems

may overlap and refer to concepts at a different layer of granularity. Code systems are also

made to be generally applicable, thus, requiring local customisation for a specific use case

for it to be useful. This is a key problem that makes interoperability in the health domain

difficult as customised standards are no longer interoperable. Furthermore, legacy systems

often do not support these standards and it is essential to integrate these systems into the

overall HIS. Legacy systems semantics are often hidden within the application and it can

be a tedious task to extract these [16]. It is also difficult for a country to choose between

the different standards available and to map these to the data being collected. It requires

experts in standards and standards development in order to perform such tasks. Code

systems would also need to be customised to ensure a country’s requirements can be met.



19

This can be a challenge for LMICs.

2.2.4 Achieving all levels of interoperability with HIS standards

A number of standards available to assist with solving the different dimensions of interop-

erability were described in the section above, such as HTTP [23], HL7 version 2 [31] and

LOINC [25]. However, to achieve higher levels of interoperability multiple standards are

needed [16, 58, 62, 18]. In this section a discussion on how subsets of these standards can

be used together to achieve multiple levels of interoperability is given.

We categorise data interoperability standards into two broad categories: single concern

standards that deal with a single aspect of interoperability and multi-concern standards

that deal with multiple aspects of interoperability (usually by using multiple existing stan-

dards). Table 2.1a on page 21 shows the major single concern standards for health care

interoperability separated by the dimensions of interoperability with which they are con-

cerned.

In the health domain multi-concern standards are often referred to as “profiles”. Profiles

are detailed technical specifications that show what standards can be used together to gain

full technical, syntactic and semantic interoperability for a particular use case [63]. They do

this by describing how the standards are to be used together and exactly what data values

are allowed, as well as describing unambiguously what each data value means. This has the

advantage of clearly specifying how the standard can be used to share specific information.

However, this forces the profile to be specific to a certain use case, such as resolving a

patient’s identity or storing and querying clinical documents. These specific use cases may

not fit the needs of all environments and profiles do not exist for all use cases. For example,

in the case of resolving a patient’s identity, a query may require parameters such as the

patient’s first and last name and their date of birth. In some LMICs, especially in rural

areas, a person’s date of birth is not always known.

Some standards are more appropriate in LMICs than others [2]. There are various facets

that affect a standard’s suitability. These include: conciseness, understandability, tool

availability, tool maturity and ease of implementation. Conciseness is important as LMICs

often do not have the same level of bandwidth and network infrastructure as high income



20

countries. LMICs also do not have the level of technical skill and in-depth knowledge to

effectively use more complex standards. Tool maturity and availability is a key consideration

in low resource settings as time and resources are spared if tools already exist and are freely

available. Finally, a standard should be easy to implement. It should be easy to integrate

into existing systems and not require large amounts of technical skill to implement, maintain

and use within a LMIC.

The HL7 version 2 standard [31] is a commonly used message format for the health domain.

This standard has a large number of freely available tools for developers. It consists of a

large number of message types for many different use cases each with their own structure

and defined syntax. HL7 version 2 alone cannot ensure semantic interoperability but it can

be used to achieve syntactic interoperability. Other code systems such as SNOMED-CT or

LOINC [12] are required to codify the data contained in a HL7 version 2 message so that

it can be semantically understood. For technical interoperability HL7 version 2 employs

the Minimal Lower Layer Protocol (MLLP) protocol. MLLP defines a protocol for sending

HL7 version 2 messages over TCP sockets. MLLP makes use of a persistent TCP socket

that uses particular bytes to delimit messages within the stream.

HL7 version 3 is a complete departure from HL7 version 2. HL7 version 3 is an XML-

based standard and emphasises greater uniformity in the way messages are constructed by

employing a generic reference information model (the RIM) that all HL7 version 3 messages

must conform to. This, however, led to very large message sizes and made HL7 version 3

difficult to understand and implement due to the generality of the data model. HL7 version

3 requires that one restrict the base standard to a usable subset. For LMICs this is difficult

due to the limited number of informatics experts available to do this and the amount of

time it requires.

Integrating the Healthcare Enterprise (IHE) is an initiative that attempts to improve in-

formation sharing between health information systems2. IHE produce profiles for health

information systems interoperability. These profiles describe what standards can be used

and specify how they are used and what data elements must be included in order to satisfy

an interoperability use case. Standardised IHE profiles such as Cross-Enterprise Document

2See http://www.ihe.net/About/

http://www.ihe.net/About/


21

Sharing (XDS) or Patient Identifier Cross-Referencing (PIX) describe and restrict the use

of the single concern standards in order to achieve full system, syntactic and semantic in-

teroperability [35]. Table 2.1b shows some of the more common combinations of standards

that are used to achieve full semantic interoperability between health information systems.

IHE profiles are pragmatic in that they attempt to make use of existing standards that

already have wide adoption so that integration of IHE profiles into existing systems can

be simplified. IHE profiles are also very use case specific. This has the benefit of allowing

them to clearly specify exactly how semantic interoperability can be achieved, however, it

also means that different IHE profiles are needed for each use case. IHE covers many of the

priority use cases but it is impossible for IHE to cover all conceivable use cases.

In Table 2.1b on page 21 we show four examples of how full semantic interoperability can be

achieved by using a number of different base standards. Below we describe these examples

and explore some of the strengths and weaknesses of each approach.

Technical Interoperability SOAP
REST

TCP Sockets

Syntactic Interoperability HL7 v2
HL7 v3

OpenEHR

Semantic Interoperability SNOMED-CT
ICD-10
LOINC

(a) Single concern standards

Full Interoperability System Structure Semantic
MLLP, HL7v2, SNOMED-CT MLLP HL7 v2 SNOMED-CT

IHE Profile: PIX v2 MLLP (TCP socket) HL7 v2 constrained value sets
IHE Profile: PIX v3 SOAP HL7 v3 constrained value sets

SOAP, HL7v3, SNOMED-CT SOAP HL7 v3 SNOMED-CT
IHE Profile: XDS SOAP ebXML constrained value sets

(b) Full interoperability

Table 2.1: Interoperability Standards

In the first row of Table 2.1b on page 21 the use of HL7 version 2 over MLLP is shown along

with supporting standards that enable semantic interoperability. The use of MLLP enables



22

technical interoperability. HL7 version 2 messages are placed between the delimiter bytes in

the ER7 format described by the HL7 version 2 standard. Each HL7 version 2 message has

a known structure that is described in the standard to enable syntactic interoperability. In

order to gain semantic interoperability, coded ontologies such as SNOMED-CT or standard

code systems such as LOINC or ICD-10 are used. These code systems allow the semantics

of certain clinical content within HL7 version 2 messages to be specified.

In the second row an example of the IHE PIX profile is shown [35, 36]. This profile specifies

that HL7 version 2 message over the MLLP protocol are to be used for technical and

syntactic interoperability. It also specifies some pre-defined values and content that should

go into the HL7 version 2 messages. These values are specified in such a way that they are

unambiguous to the receiving system thus enabling semantic interoperability.

The third row shows another version of the IHE PIX profile that uses HL7 version 3. In

this case SOAP web services are used for technical interoperability. SOAP makes use of

the HTTP protocol over a TCP/IP connection to transmit XML messages. In this case the

content of that XML message is a constrained HL7 version 3 message with specific contents

that represents a PIX message. Here semantic interoperability is provided by the PIX profile

which clearly and unambiguously describes the values that go into the PIX message.

In the fourth row is an example where a number of co-operating standards may be chosen

to achieve semantic interoperability as shown by Ryan et al. [58]. In this case SOAP

was chosen as the protocol for technical interoperability, HL7 version 3 is used to provide

syntactic interoperability and SNOMED-CT is used within the content of the HL7 version

3 messages to describe the meaning of the clinical content of that message.

The fifth row shows another IHE profile; the XDS.b profile [35, 37]. Again the SOAP

protocol is used to gain technical interoperability. In this case the profile specifies the use

of ebXML to enable syntactic interoperability. The profile lists all the possible options for

the ebXML data elements and describes what content should go into the message. Doing

so provides semantic interoperability between different systems.

As can be seen there are multiple methods available to achieve full semantic interoperability

between systems. There is no right or wrong solution as different standards have different

strengths and weaknesses. For example, IHE profiles provide an easy way to enable systems



23

to interoperate for specific use cases. However, if they do not support a specific use case

then a custom solution could be built from the existing standards such as HL7v3 combined

with SNOMED-CT. This may take more time and resources but it provides a more flexible

solution. This is an unresolved problem within health systems interoperability. Many differ-

ent standards may be employed to provide an interoperable solution, however, it is not clear

to the implementers what approach is best. Health information systems interoperability is

still too immature and de facto standards are yet to emerge.

2.2.4.1 Health information standards in low resource settings

Recent research has begun to determine the suitability of various types of interoperability

standards for LMICs. Abedesin et al. [2] surveyed the available standards and how they can

be applied in LMICs. A new approach to creating a national health information system,

called the middle-out approach, has also been proposed [14]. It has been found to be

highly applicable to low resource settings [14, 47]. This approach describes how a standards

framework can support both local autonomy and heterogeneity (of technology and process)

of systems in the field while still maintaining the ability for these systems to cooperate as

well as support national infrastructure and policy.

2.3 Architectural paradigms for distributed systems

This section explores the past and current architectural paradigms that describe how sys-

tems can be arranged as a collection of interoperating systems. In particular we focus on

the enterprise service bus architectural model that helps instantiate the service-oriented

architecture paradigm. Chappell describes the evolution of these architectural paradigms

[10].

A software architecture is the gross organisation of a collection of interacting components

of a software system that play an important role in: understanding, reuse, construction,

evolution, analysis and management during the software development process [27].



24

(a) Point to point architecture (b) Hub and spoke architecture (c) Bus architecture

Figure 2.3: Distributed System Architectures

The first generation of architectures employed point to point communication (see Figure

2.3a on page 24). Heterogeneous systems that needed to interoperate were identified and a

common way for the systems to communicate was developed. Each system would then be

extended with adapters to allow it to communicate with the other system. This method

worked well as it was easy to implement and well understood but it did not scale well. The

adapters became increasingly difficult to maintain as new systems were added. To solve

this, middleware systems were introduced. These are located between systems that want to

exchange information. The middleware manages and facilitates all communication between

these systems. This architecture is called the hub and spoke model. The middleware sys-

tem often provides some more advanced functionality to facilitate interoperability, such as

providing security, allowing messages to be transformed and validated, as well as exception

handling. An example of such an architecture is given in Figure 2.3b on page 24. This

solved the problem since only a single adapter is need for each new system. However, this

introduces another problem; a single point of failure. If the middleware fails, all commu-

nication between systems are lost. However, this approach also maintains a single point of

control.

This evolution of architectures shows the shift from the paradigm of system integration to

the paradigm of system interoperability. Integration attempts to allow two specific systems

to share information with each other as they exist at a specific point in time. Integration

often makes use of system specific assumptions and results in rapid information sharing be-

tween systems. However, this sharing is brittle as it is closely coupled to the participating

systems. Interoperability, on the other hand, enables systems to share information using a

defined and open mechanism such that as systems are extended, added or reimplemented



25

they are still able to interoperate [49]. Interoperability standards are often used to enable

this. Interoperability allows systems to continue to share information even if the environ-

ment of these systems changes. System integration is often a first step to enabling systems

interoperability. It is simpler and enables systems to start sharing information until more

robust and advanced mechanisms can be put in place.

2.3.1 Service-oriented architecture

Service-oriented computing is a paradigm where services form the foundational elements for

developing applications [54]. Services are self-contained, modular units that can execute a

particular business function and are invoked through a published interface that is usually

based on open standards [54, 33]. Service-Oriented Architecture (SOA) is a way of organ-

ising a set of services so that they can provide a cohesive set of business functions while

retaining loose coupling between the individual services [30, 54, 33]. Loose coupling refers

to the ability of services to be modular and independent so that they can be swapped out

as needed. The service interface enables this by protecting the user of a particular service

from the service’s actual implementation.

A software system that makes use of a service is termed a service consumer and one that

exposes a particular service is called a service provider. These concepts are abstract and

thus a software system is able to act as both a service provider and a service consumer.

A basic SOA enables interoperability between software systems through the exchange of

messages. SOA relies on the interaction between three major components: service providers,

service consumers and a service registry. Service providers expose service implementations

and publish service descriptions to the service registry. Service consumers may look up

these service descriptions and use them to bind to a particular service implementation to

enable them to make use of that service. This binding is dynamic and occurs at runtime

[54]. See Figure 2.4 on page 26.

SOA does not specify a particular technology to enable the communication between service

provider and service consumers. Any messaging technology could be applied to form a SOA

implementation, however, the most common SOA implementation utilises web services to

enable communication [54, 33, 30, 64]. Web services utilise web technologies that include



26

Figure 2.4: The basic Service Oriented Architecture [54]

higher level messaging protocols such as SOAP (simple object access protocol) [68] or the

REST (representational state transfer) [24] architectural model on top of the HTTP pro-

tocol. They enable data to be easily passed between systems by utilising the protocol that

powers the Internet. SOAP employs a particular XML envelope containing the message

to be sent. The envelope contains all metadata about the message such as the action the

message is intended to have and security details, among others. The envelope containing

the message is then sent over HTTP as an HTTP body using the HTTP post verb. The

HTTP protocol is just a mechanism to carry the message. All the message metadata and

data are contained within the SOAP envelope. REST differs from SOAP as it does away

with the need for an envelope. REST relies on using a particular constrained set of verbs

to act on particular resources. When this model is applied to HTTP this means that data

is sent and requested using the HTTP verbs (GET, POST, PUT, DELETE, etc.) and any

data is conveyed using the HTTP body or if it is a query, in the URL as URL or query

parameters. REST over HTTP differs from SOAP in that it does not specify an envelope in

which the message is to be sent but rather makes use of the protocols constructs to convey

message metadata. The functions of the underlying HTTP protocol are mapped to the

RESTful model. For example, an HTTP POST request is mapped to identify the creation

of a particular resource and the HTTP body of such a request is expected to contain the

information of the resource to be created. The URL of the request identifies the resource



27

to be acted upon.

SOA enables a number of key benefits including: loose coupling between services; location

transparency; and composability of services [64]. A core benefit of SOA is its open nature.

Each service is independent and provides an open interface to the other systems in the SOA.

This increases maintainability as each service only deals with a specific concern and it also

enables flexibility as new systems can easily consume the service provided by the SOA to

add functionality. SOA is also scalable as services may be spread out over a number of

different servers as required.

2.3.2 Enterprise Service Bus

The Enterprise Service Bus (ESB) is an architectural model used to instantiate the SOA

paradigm [60]. The ESB approach dictates that a central bus (a middleware component)

provides the communication mechanism and communication services between each of the

software components [10, 60]. An ESB provides various functions including message me-

diation, service orchestration and security, among others. An ESB’s internal components

should be loosely coupled to prevent them from becoming a central point of failure. The

ESB’s main function is to deliver messages placed onto its bus to the intended recipient

of the message and to deliver the message in a format that the recipient can process and

extract meaning from (syntactic and semantic interoperability). In order to do this it per-

forms mediation functions on messages. Figure 2.3c on page 24 shows an example of this

architecture.

Orchestration refers to the execution of a business process that can interact with both

internal and external services in order to complete that business process [56]. It can be made

up of a series of steps containing business logic. Orchestration assists with interoperability

by decomposing a transaction into manageable units that can be handed off to external

services. This enables a separation of concerns and allows multiple, simpler services to

exist. This orchestration is able to compose several external services together to provide

higher level functionality. This enables the client systems to be simpler as they do not have

to reimplement this composition logic or know how to contact the other services required

for this orchestration. An example of orchestration within the health domain is as follows:



28

A message containing a patient’s encounters is received by the ESB and it must be stored

in a clinical data store. In this case the message needs to be validated and enriched with

additional patient demographic information before it is sent to a service to be stored. An

external service can be called to fetch this additional information and enrich the message

before it is stored in the clinical data repository. Multiple services may be called depending

on the implementation needs.

Mediation refers to the processing of data so that it can be communicated from one inter-

face to another. “This term includes the processing needed to make the interfaces work,

the knowledge structures that drive the transformations needed to transform data to in-

formation, and any intermediate storage that is needed” [65]. This enables numerous het-

erogeneous systems to communicate with each other using different message formats and

protocols. For example, if a message arrives at the ESB in a standard form but the service

to which the message needs to be sent only supports a custom XML message then media-

tion is the process of mapping the message content and transforming the message into the

custom XML format.

The ESB approach provides a number of key benefits. An ESB can offer a central security

layer to ensure that the applications interoperating with each other are authorised to do so.

It also provides location transparency, central monitoring and administration functions. An

ESB also provides mechanisms to do message transformation, message routing and accept

messages using a number of different protocols. In addition it also provides intermediate

processing of messages such as orchestration and meditation. The key benefit that an ESB

adds to SOA is the ability to easily connect heterogeneous systems that may communi-

cate using different message formats. In addition, service orchestration allows services to

be composed together to provide higher level functionality and since this functionality is

implemented in the central bus, many service consumers can make use of these higher level

functions without having to reimplement the logic.

The challenge with the ESB approach is that it centralises a number of functions. While

this is good for simplicity and re-use it can also hinder development and expansion of the

system. This is because the ESB becomes a dependency knot that ties all services together.

In order to change the functionality of the overall systems, the ESB must be altered to suit



29

the new requirements. This can be difficult to manage especially if there are a number of

partners involved.

2.4 Interoperability in health care systems

In this section previous work on architectures that facilitates interoperability between dis-

parate health information systems is explored. Specific architectures and implementations

are examined to identify how syntactic and semantic interoperability problems have been

handled previously. Focus is placed on established ESB approaches as well as emerging

approaches.

2.4.1 Canada Health Infoway: Mohawk reference implementation

Canada Health Infoway (CHI) has developed an Electronic Health Record Solution (EHRS)

blueprint [9] for health information exchange (HIE) in Canada. This blueprint outlines the

architecture of a regional health information system, including the services and transactions

that are required as well as how they work together to provide a coherent HIE. Amongst

others they describe some basic services commonly used in an SOA-based HIE. A subset of

the most fundamental services are enumerated below:

• Client Registry - registers, stores and uniquely identifies patients.

• Provider Registry - registers, stores and uniquely identifies health providers.

• Facility Registry - registers, stores and uniquely identifies health facilities.

• Shared Health Record - stores and retrieves a patients clinical information.

• Terminology Service - stores common clinical and administrative terminology and

maps between different code systems.

The blueprint also introduces a central component called the HIAL (Health Information

Access Layer). This component manages the communication between the service providers

and service consumers. Figure 2.5 on page 30 shows a conceptual view of the EHRS archi-

tecture. A reference implementation of the HIAL has been built using Microsoft BizTalk, a



30

Figure 2.5: Canada Health Infoway: EHRS Conceptual View [9]

large proprietary application designed to provide integration and connectivity between ap-

plications. BizTalk consumes transactions received from client applications and transforms

and orchestrates these transactions as required. SOAP web services are used to transmit

messages. The messaging specification defined by the EHRS blueprint is HL7 version 3.

HL7 version 3 [32] is the third version of the standard for transmitting clinical information.

It makes use of structured XML that maps to a reference information model to format its

messages.

The Health Information Access Layer (HIAL) utilises an Enterprise Service Bus (ESB)

architectural model to facilitate interoperability. The architecture allows for disparate sys-

tems to provide services to clients though a well defined access layer. This layer is provided

by the ESB software, BizTalk.

Messages that enter the HIAL are transformed into a canonical form that is based on

the HL7 Reference Information Model (RIM) using on-ramp and off-ramp transformers.

This enables semantic interoperability between each of the disparate informations systems.

However, this has a restriction that all messages that needs to be exchanged must be

modelled using the HL7 RIM. The HL7 RIM is a generic data model and can therefore

express any information that needs to be stored. This common format enables the system

to have a consistent canonical form for all data that flows through the system.



31

Once a message has been converted into the canonical form the HIAL is able to orchestrate

that transaction by looking at flags set for that message. The HIAL handles communication

with external services and when the transaction is complete it returns the result to the

service consumer. This enables flexibility as the service providers are loosely coupled to

the HIAL architecture and as such can be interchanged without affecting the rest of the

architecture. The HIAL also handles authorisation, authentication, message logging and

auditing services.

This architecture provides a high level of separation of concerns as each system is respon-

sible for a particular function and this may be implemented in any appropriate technology.

It also provides loose coupling between the components as all communication between com-

ponents takes place using standardised messages communicated via the HIAL. This allows

components to be easily modified or replaced if needed. Location transparency is also pro-

vided as client systems use a single unified interface (the HIAL) to access the components

of the HIE. The HIAL also reduces the complexity of services by providing common services

such as security management. These benefits come at the cost of additional architectural

complexity and extensive centralisation of data.

A weakness of this architecture is that it only supports messages in the HL7 version 3 format

and these messages are mapped to a canonical form based on the HL7 RIM for internal

use. Due to this reliance, it is difficult to add support for additional message standards that

may become prevalent in the future. It is desirable to support multiple messaging formats

due to the ever changing nature of the health information systems environment, as well as

the fact that no de facto messaging standards have emerged in the health domain. This

architecture has been designed specifically for the Canadian use case. In our research, we

attempt to create a more general architecture that may apply to multiple environments,

particularly LMICs.

Overall, the architecture contains a number of foundational components that are highly

desirable and that have become the foundation of a number of other architectures. In

addition, a description of an ESB-based architecture for interoperability between health

information systems has been provided. This architecture describes the major functions

that a central component should perform within an HIE. These functions include routing,



32

transformation, logging and auditing of messages as well as access control.

2.4.2 Health Service Bus by Ryan et al.

Figure 2.6: The Health Service Bus by Ryan et al. [59]

Ryan et al. [58, 59] describe a service-oriented architecture for communication between

disparate health information systems. They describe a component called the Health Service

Bus (HSB) that implements an ESB to allow different systems to communicate with each

other within an HIE. Figure 2.6 on page 32 shows an overview of this architecture. The HSB

provides a link to three core services: a content-based router that is able to route messages

from sending client systems to receiving client systems; a translation service that is able to

translate messages between HL7 version 3, HL7 version 2 and OpenEHR archetypes; and an

Electronic Health Record (EHR) that is able to store clinical information using OpenEHR

archetypes in an XML Database. For data representation, HL7 version 3 is used to provide

syntactic interoperability and the Systemized Nomenclature of Medicine - Clinical Terms

(SNOMED-CT) ontology and code system provides semantic interoperability.

Ryan et al. show that the HSB can be extended to a number of different domains of

health care by connecting additional types of client systems. These systems can make use

of the HSB’s core services in order to communicate more simply. The architecture delivers

messages in a peer-to-peer approach between the different client systems. However, there

is no explicit orchestration mechanism described in the HSB or descriptions of what sort of

transactions are supported. The key contribution of this work is the concept of exposing

some common key services on the bus so that communication between systems could occur



33

more simply. Also, due to the use of HL7 version 3 combined with the SNOMED-CT code

system semantic interoperability has been enabled within the exchange.

The core difference between this architecture and the CHI architecture, discussed above,

is that the HSB clients interact in a peer-to-peer fashion via the HSB component whereas

in the CHI architecture (described above) the HIAL makes information available to clients

by storing information in central services. The CHI architecture requires that the clinical

data that is sent from clients is stored in a central Shared Health Record (SHR) and if

another client would like access to that information they would have to query the SHR.

These messages are routed by the ESB component (the HIAL) to the SHR so that it may

respond to the query.

The HSB architecture describes how interoperability can be achieved for a specific use case

by using an ESB and HL7 version 3. We believe this could be extended to provide a more

general approach, as well as provide support for multiple standard messaging formats. There

are currently no de facto health information standards, so support of multiple standards is

vital to support future needs and the ever changing nature of health information systems.

Ryan et al. have made some progress to solve this by implementing a translation service,

however the details of how this would allow multiple standards to be supported is missing.

A clear understanding of how the internal components of the ESB are architected and how

this architecture can be adapted for future needs is missing.

2.4.3 Xu et al. Mediator Services

Xu et al. define a multi-agent based coordinator and an architecture for service mediators

that together provide a base architecture and implementation that enables interoperabil-

ity between heterogeneous health information systems [70]. The coordinator called “Pilot”

breaks down a service request from a service consumer into elementary steps that are then

executed by a specialised agent that knows how to handle that specific task. Figure 2.7 on

page 34 shows an overview of the architecture of the system. Each of these agents then

utilizes a service mediator [71] that transforms the message into an intermediate (canonical)

form; understands its semantics; and can transform the message into a form that the service

provider can understand. The mediator also facilitates the communication between itself



34

Figure 2.7: Architecture of the mediator service component [70]

and the service provider using a method that the service provider supports. This architec-

ture does not specify a specific mechanism to achieve semantic interoperability. This is left

up to the implementer of this architecture to decide what suits the problem best. The study

identifies XML as a possible mechanism for syntactic interoperability, however, the use of

XML alone does not lead to syntactic interoperability as we identified in Section 2.2.2. The

nature of XML enables it to express any data in semi human readable and machine readable

forms. A schema needs to be generated to restrict XML before data can be exchanged and

be processed effectively by the receiving system.

The study also defines elementary requirements for service mediators: mediators should

translate messages between different syntaxes; encapsulate APIs for communication with

different service providers; and transform messages into a semantic equivalent between

various reference systems [70]. We found this classification useful while identifying the

practical problems faced when designing an architecture for health information mediation.

This implementation provides generic reusable components that allow the system to or-

chestrate services and communicate with service providers easily by providing mediators

to handle the complexity of different communication protocols, message syntaxes and se-

mantics. However, it fails to note that the same problems associated with interoperability

between the coordinator and service providers are also true for interoperability with service

consumers. Mediators are needed on both the client side as well as the service side. Clients



35

can also communicate using varying communication protocols, message syntaxes and se-

mantics as client systems could be legacy, propriety or have technical challenges that could

prevent the full implementation of the format expected by the coordinator.

Xu et al. provide a generic architecture that allows messages to be orchestrated and medi-

ated as needed for a specific transaction. The architecture is independent of the messaging

format used which allows it to be used with a number of messaging formats. The archi-

tecture is also independent of the types of orchestration that need to occur allowing the

architecture to be generally applicable for multiple use cases.

Xu et al. also note future work of logging, authentication and supplying audit trails for

service calls. These issues are further discussed in the following chapters.

2.4.4 NEHTA

Figure 2.8: NEHTA National eHealth Architecture. [50]

The National E-Health Transition Authority (NEHTA) is an organisation that leads the

development of Australia’s national eHealth strategy. NEHTA is funded by the Australian



36

government and all state and territory governments. Its role is to lead the uptake of eHealth

systems of national significance and to coordinate the progression and adoption of eHealth

by delivering urgently needed integration infrastructure and standards3.

NETHA maintains a document, the NEHTA blueprint, which describes the architecture of

the national eHealth system for Australia [50]. This architecture describes the foundational

services, infrastructure services and standards for information sharing needed to support

Australia’s vision of a national eHealth architecture. A diagram of this is shown in Figure

2.8 on page 35. This architecture takes a standard service-oriented architecture approach.

All of the required components of the architecture are exposed as services that the Aus-

tralian eHealth community can invoke via standards-based interfaces. NEHTA does not

describe any orchestration middleware to assist with adapting client systems to make use

of the standards based interfaces or to coordinate the interaction with the multiple services

available.

This approach would work well in an environment where eHealth applications are common

in most health facilities and resources are available to improve these systems to enable them

to participate in the national architecture. However, we question whether such an approach

would work effectively in a LMIC environment where resources to change eHealth systems

are scarce. In a low resource environment it is likely more efficient to reduce complexity at

the point of care and manage complexity at a central point where resources can be shared

among point of care systems. This however, in turn, requires additional coordination at the

national level.

The NEHTA approach identifies and specifies many of the key foundation components of

a national eHealth architecture similar to the work Canada Health Infoway has done with

the Canadian EHRS blueprint. Its main limitation, when considered within low resource

environments, is the complexity it places on the systems at the point of care.

2.5 Outstanding issues with ESB based Distributed Systems for HIS

We have identified that the key concerns for open distributed health information systems

are those of interoperability, adaptability, scalability and fault tolerance. In light of these
3See NEHTA homepage: http://www.nehta.gov.au/about-us

http://www.nehta.gov.au/about-us


37

various issues, a number of architectural paradigms have emerged. One of the most popular

in the enterprise space is the service-oriented architecture. This paradigm focusses heavily

on modularity and separation of concerns between services, as well as the use of a common

set of protocols which systems within the architecture use to communicate. An implemen-

tation of this paradigm is the Enterprise Service Bus (ESB). This is a specialisation of

the SOA where a central component is responsible for the routing of messages, as well as

the orchestration of complex workflows between services as required by health information

systems. These architectures can assist in creating distributed health information systems.

An ESB is particularly useful in the health domain as it performs functions such as message

orchestration and mediation. These functions are useful due to the fact that, as we have

previously state, there are no de facto standards available in the health domain and due

to the high complexity of health data that needs to be transmitted. This is particularly

true for LMICs where technical resources are scarce and complexity should be kept to a

minimum.

A fully interoperable system will exhibit technical interoperability, syntactic interoperability

and semantic interoperability. Technical interoperability has been largely solved by the

introduction of platform independent protocols such as TCP/IP, as well as higher level

protocols that build upon this such as HTTP and web services. This leaves the majority

of work to be done in the area of syntactic and semantic interoperability. Although many

approaches and standards exist, none have emerged as de facto. Some standards have

been implemented successfully such as HL7 version 2 for syntactic interoperability, and

ICD-10 and SNOMED-CT for semantic interoperability. However, legacy systems often

do not support these and there is much optionality and ambiguity in these standards that

makes interoperability difficult. Often standards need to be specified as profiles to gain full

semantic interoperability.

We have identified a number of architectures that enable the creation of an HIE using the

ESB paradigm or functions thereof. Most of the existing approaches are built to solve a

specific problem either by defining how specific dimensions of interoperability can be solved

or by describing an architecture to enable a health information exchange to be more easily

constructed for a particular environment and set of use cases. Also, these architectures



38

have not been applied to LMIC previously. In addition, many of the architectures presented

above rely on specific standards to achieve interoperability. Due to the variety of standards

available in the health domain and given the ever changing environments that HIEs are

deployed in, we believe that multiple standards should be supported.

The architectures that were studied provide a number of features that enable interoperabil-

ity, however, none address all of the challenges that have been identified above. Particu-

larly, the architectures were often designed for particular use cases and their applicability in

LMICs has not been considered. The health domain is missing a generic, use case indepen-

dent and standards independent architecture for enabling interoperability between health

information systems within an HIE, particularly for LMICs.



Chapter 3

Research Design

The central concern of this work was to enable interoperability between disparate health

information systems in sub-Saharan Low to Middle Income African countries (LMICs).

Current thinking in enabling interoperability for health information systems and exchanging

health information is the use of ESB based health information exchanges [59, 72]. This is

a technology stack that connects diverse information systems and enables the sharing of

patient level and aggregate data. However, this approach has been used only in HICs

and its efficacy in LMICs has not been demonstrated. It is known that the nature of the

health systems and the socio-political and economic environments of HICs and LMICs differ

considerably and thus it cannot be assumed that solutions that worked in one setting will

necessarily work in the other.

It is a challenging task to develop systems as complex as Health Information Exchanges

that will have wide applicability in LMICs. The approach taken in this work was to develop

an interoperability solution within a particular, representative LMIC namely Rwanda. The

Rwandan case study was used to understand the requirements of such environments; learn

from the experience of implementing interoperability solutions within low and middle in-

come environments and to determine the technologies that work within such environments.

Case study research is well suited to understanding innovation in information technology,

particularly within a specific environment [15]. A careful study of the Rwandan environ-

ment and its requirements was made. Existing approaches from HICs were studied and an

architecture was designed that addresses architectural concerns derived from the Rwandan

requirements. Attempts were made to ensure that the architecture had certain desirable

characteristics that would make it useful in solving similar problems in other low and middle

income environments.

A reference implementation of the architecture (the OpenHIM) was developed and deployed

in Rwanda to serve as a proof of concept. This experience was used to explore the limitations

39



40

and impact of the architecture. Subsequently, the applicability of the architecture to other

LMICs was demonstrated by studying its adoption in the MomConnect project in South

Africa.

In addition, the quality characteristics of the architecture were further analysed using a

standard architecture analysis method (ATAM). The main quality attributes that were

analysed are modifiability; scalability and performance; and security. These attributes were

identified as part of the ATAM process for their suitability to the concerns derived from the

Rwandan case study.

3.1 The Rwandan Case Study

Between 2011 and 2012, the Ministry of Health of Rwanda along with a consortium of

partner organisations developed a pilot HIE for the Rwamagana district of Rwanda. The

RHIE stakeholder group consisted of Rwandan ministry of health officials, domain experts,

research groups and software development and implementation organisations. This group

included experts from Mohawk College in Canada, the Regenstrief Institute in the United

States, Jembi Health Systems NPC in South Africa, IntraHealth International, Sysnet In-

ternational, InSTEDD and the HeAL Laboratory in South Africa. This group collectively

has extensive expertise in designing and implementing HIEs.

The Rwandan health care environment is made up of a number of small clinics and health

posts spread throughout the districts of Rwanda. Most of the population receives primary

care from these health posts and clinics. Each district has a larger district hospital to which

patients can be referred to for further care. Generally, there is no automatic mechanism

to share a patient’s information between all these health facilities. The patient is asked to

carry a referral note that gives a basic description of what they are being referred for. The

receiving facility does not get any of the patient’s past medical history and has to attempt

to recapture this from the patient. This wastes valuable resources in facilities where there

are already too few staff. Additionally, if patients move to different clinics they are often

lost to follow up at the original clinic and it becomes difficult to track that patient’s care

over time.



41

Currently, the ministry is focussing its interoperability and data integration efforts on a

single pilot district: the Rwamagana district. This district has fourteen health centres and

one district hospital. The initial pilot is restricted to a single health service - collecting and

sharing clinical information for Maternal and Child Health (MCH). The clinics within this

district had already deployed an open source electronic medical record (EMR) system called

OpenMRS [43]. Rwanda also utilises a short message service (SMS) based data collection

tool called RapidSMS1. This tools empowers community health workers to visit pregnant

women at their homes in their villages and allows them to submit information about these

women via their mobile phone using SMS technology. The ministry is aiming to allow

information to be shared between all of these point-of-care systems. The key outcomes are

the ability to feed clinical information that the community health workers capture in the

field into the clinic’s local EMR system and to allow clinics to share information with other

clinics and the district hospital.

The Rwandan Health Information Exchange (RHIE) enables the sharing of patient demo-

graphic information as well as their clinical information between different health facilities

within the pilot district. It utilises a number of hosted infrastructure services to accom-

plish this. These services include client (patient), provider and facility registries as well as

a shared health record and a terminology service. This research focusses on the architec-

ture to facilitate interoperability between the point-of-care systems and the infrastructure

services.

3.2 Deriving architectural concerns from the RHIE requirements

The RHIE stakeholder group took an iterative approach to eliciting the requirements for the

RHIE project. This became our primary source of knowledge from which interoperability

concerns and challenges were derived. The RHIE requirements were gathered through

a number of in-country stakeholder meetings where the country’s needs and challenges

were identified. A number of domain experts were present in the stakeholder group to

ensure industry best practise was being applied. Techniques such as user and stakeholder

interviews, workshops and brainstorming sessions were used to help elicit the requirements.
1See https://www.rapidsms.org/

https://www.rapidsms.org/


42

Due to the expertise of the groups that formed the stakeholder group, the requirements that

were produced are considered to be current best practice from the combined learning and

experience of the multiple groups involved. They are thus not only representative of the

RHIE use case but are also representative of the lessons learnt by a variety of organisations.

Additionally, a prototype HIE was developed and demonstrated at a stand at the 2010

MedInfo conference2 held in Cape Town, South Africa. This prototype was based on the

Canadian HIE blueprint [9] and utilised some components developed by MOHAWK college

in Canada. To facilitate interoperability within the HIE an ESB-based software component,

called the health information access layer (HIAL), was used. The prototype proved to be

a good mechanism to identify additional requirements and gave the project group a better

understanding of the problem. It highlighted the problem that the messages between the

point of care systems and the HIE should be kept as simple as possible to enable systems

to connect more easily. It also highlighted the fact that multiple message formats should be

supported as a country should be able to choose the format that fits their requirements and,

importantly, would be implementable with the resources available within their environment.

Once the RHIE requirements were better refined the stakeholder group began constructing

high level requirements documents and UML use case descriptions [51]. They were presented

and discussed at the in-country meetings with the country stakeholders and discussed as

part of the project team. Once the defined use cases were finalised, technical system use

cases and sequence diagrams were developed for each of the components of the architecture.

The practical experience, knowledge, requirements and challenges that arose from the RHIE

were studied and used as a departure point for this research. These inputs were generalised

into high level architectural concerns for an ESB-based architecture for enabling interoper-

ability within HIEs in LMICs. These extracted concerns are a subset of the most fundamen-

tal requirements gathered by the RHIE team and relate only to the ability of information

to be shared among the various health informations systems.

2See http://www.imia-medinfo.org/medinfo2010/

http://www.imia-medinfo.org/medinfo2010/


43

3.3 Architecture design and implementation

Multiple previous health information mediation architectures have employed the ESB ar-

chitectural model with success [59, 72]. In this research we explore the application of the

ESB architectural model to HIEs within LMICs. The ESB approach also fits with the

centralised, middle-out approach, that has been suggested for LMICs [14]. Thus, the ESB

architectural model is used as a base on which an our architecture for health information

mediation is designed.

The architectural concerns derived from the RHIE requirements were used to drive the

design of the architecture, however, we endeavoured to ensure that the design decisions

would apply to a wide variety of similar environments. The RHIE interoperability require-

ments were thought to be representative of the requirements encountered in other LIMCs

in sub-Saharan Africa. An iterative approach was used to develop an architecture (the

HIM architecture) that attempts to address these concerns. The design was captured using

elements of UML such as component diagrams and activity diagrams and is described as

an ISO/IEC FDIS 42010 architecture description [39, 21].

The Rwandan HIE was used to determine the suitability of the architecture in meeting

the interoperability needs of a real world HIE. Care was taken to ensure the architecture

was generic and modifiable such that it could be applied in a variety of different contexts.

The goal was to design an architecture that was suitable for a large number of LMIC

environments.

3.4 Analysis of suitability to LMIC environments

In order to determine the suitability of the architecture to LMIC environments, it was im-

plemented in the case study environment and its adoption within other LMIC environments

was studied.

To demonstrate that the architecture is able to function within the RHIE, a reference im-

plementation, the OpenHIM, was developed and deployed along with a number of other

infrastructure services developed by a number of the RHIE partners. The OpenHIM en-

abled point of care systems to more easily connect and exchange information with these



44

infrastructure services. This provided a good opportunity to ensure that the architecture

could be practically applied to a real world use case; that it addressed the identified inter-

operability concerns and that it was suitable for LMICs.

In order to determine if the architecture is not only applicable to the RHIE, where most

of the requirements originated, it was also applied to another HIE problem in a different

environment, i.e. South Africa. The MomConnect project was used to determine the

suitability of the architecture for other environments. The MomConnect project enables

pregnant mothers to be registered via their mobile phone. This registration data is sent to

an HIE where it is processed and saved. This project is studied to show the re-usability of

the architecture and to demonstrate how it could be applied to a different environment.

3.5 Analysis of architectural quality

A quantitative evaluation of the effectiveness of the architecture in the Rwandan HIE is

difficult to perform due to the subjective nature of assessing the impact of the HIM ar-

chitecture and the lack of concrete data to show the impact on health outcomes. Also,

a direct link between health outcomes and a particular architecture of a single software

component would be difficult to achieve. Instead a qualitative analysis of the architecture

was performed based on the experience gained deploying the reference implementation in

Rwanda.

Performing an effective software architecture analysis can be difficult due to the subjective

nature of determining an architecture’s quality. Qualitative methods such as the cost benefit

analysis3 perform well when the benefit can be easily quantified, for example an increase

in revenue. However, this analysis method says little about the quality of the architecture

itself. In addition, the benefit of an HIS is often improved health outcomes which can be

much more difficult to quantify and relate back to a specific HIS implementation.

Qualitative analysis methods attempt to enable analysis even when an architecture is com-

plex and when its quality is difficult to quantify. Such methods provide a formal method to

qualitatively analyse architectures. A number of scenario-based qualitative analysis meth-

ods exist for analysing architectures. These methods include the following:
3See http://www.sei.cmu.edu/architecture/tools/evaluate/cbam.cfm

http://www.sei.cmu.edu/architecture/tools/evaluate/cbam.cfm


45

• SAAM, Software Architecture Analysis Method [40].

• ATAM, Architecture Trade-off Analysis Method [41].

• ALMA, Architecture Level Modifiability Analysis [5].

• FAAM, Family – Architecture Analysis Method [19].

Ionita et al provide an comparison of these analysis methods [38]. SAAM is a classical

analysis method and many of these methods are extensions of SAAM. Most of the above

methods, such as SAAM and ALMA, use modifiability as the core quality attribute against

which an architecture is measured. ATAM is a successor to SAAM and extends it to provide

a framework whereby a number of stakeholder defined quality attributes can be elicited and

used to measure the quality of an architecture.

The ATAM was chosen as the method to use for architecture analysis as it provided the most

comprehensive approach to architecture analysis. Multiple quality attributes are considered

such as performance, security and modifiability. ATAM also helps to identify the trade-offs

between these quality attributes as well as risk and sensitivity points of the architectures.

This was found to provide a full and informative analysis of the architecture in question.

The ATAM is designed to give organisations embarking on a creating a new piece of software

a method to evaluate and strengthen their architecture. For this use case an architecture

evaluation group is formed to help take the project stakeholders through the process of

performing the ATAM. This evaluation group is often external to the project to ensure

objectivity. In this research the use of ATAM is different from this standard use. Here the

ATAM was used to perform a retrospective analysis of the HIM architecture. Knowledge

about the RHIE project was used to provide the stakeholder perspective and the knowledge

of the HIM architecture and the ATAM was used to map those perspectives on to the

architecture.

The ATAM outputs include: the tradeoffs between particular architectural decisions and

the effect on multiple quality attributes; the risks associated with the architecture; as well

as any sensitivity points where an architectural decision directly influences a particular

quality attribute. Armed with these outputs the strength and suitability of the architecture

to address the architectural concerns is determined.



46

The ATAM process helped to identify the following quality attributes that were used in

the analysis. These are shown here in order of importance to the suitability of the HIM

architecture:

1. Modifiability

2. Scalability and performance

3. Security

4. Re-usability

5. Availability

The architecture is analysed against each of these quality attributes by following the ATAM

process. The ATAM process specifies that architectural approaches for the architecture

in question, as well as a number of desired scenarios that the architecture enables, be

enumerated. Then, the scenarios are categorised under the identified quality attributes. To

illustrate this clearly a utility tree is drawn. This digram shows how particular scenarios

relate to the quality attributes identified for the architecture. The architectural approaches

are then mapped onto the scenarios that they enable. In doing so, trade-offs between the

quality attributes, attribute sensitivity points and architectural risks can be determined.

These outcomes are utilised to reason about the architecture’s suitability and helps identify

points of weakness.

3.6 Limitations and summary

The methodology described above is considered to be suitable to determine the extent to

which the research objectives were achieved, however, there are some limitations to the

above methodology that should be pointed out. Software architectures can be difficult to

analyse objectively and quantitatively. Thus, a qualitative analysis was performed on the

architecture. However, these views of the architectures may be subjective to the views and

context of the author. An attempt has been made to keep the analysis as objective as

possible, however, some subjectivity may still exist.



47

In this research the RHIE is used to extract and generalise architectural concerns for LMICs.

However, these generalised concerns may not fully capture the needs of all other environ-

ments or situations. The challenges faced in Rwanda may not map to those faced in another

environment. However, they are believed to be representative of common problems faced

with interoperability architectures. The literature reviewed in Chapter 2 help to show that

the challenges faced in Rwanda are not unique and will likely apply to other environments.



Chapter 4

Design of the HIM Architecture

The primary concern of this work was to address the interoperability challenges between

health information systems within an Health Information Exchange (HIE) in low and mid-

dle income countries. To this end, we designed an architecture to facilitate and simplify

interoperability within HIEs. We took, as a point of departure, the requirements of the

Rwandan Health Information Exchange (RHIE) as elicited by the stakeholder group of the

RHIE project. These requirements were then analysed and distilled into a set of architec-

tural concerns to inform the creation of an architecture to facilitate interoperability between

HISs within an HIE. These concerns address the foundational challenges associated with

interoperability as reported in the literature. This chapter first motivates these concerns

and then describes this architecture in detail.

4.1 A national health information system for Rwanda

The Rwanda Ministry of Health (MoH) has already made significant progress in develop-

ing a National Health Information System (NHIS), that includes, among others, commu-

nity health systems, health management information systems and the national roll-out of

an electronic medical record application [45]. The Rwanda Health Information Exchange

(RHIE) project, led by the Rwandan Ministry of Health and supported by a consortium

of partners and donors has developed an Health Information Exchange (HIE) to facilitate

interoperability between individual health information systems and applications.

Implementation of the Rwandan HIE was achieved in several phases. The first phase was

to implement the foundational components, including client, professional and facility reg-

istries, a terminology service and a shared health record. These services assist in enabling

interoperability between point of care information systems supporting maternal health in

the fifteen health facilities in the Rwamagana district. There are two types of point of

48



49

care systems in use in this district in Rwanda. These are implementations of OpenMRS

[43, 3, 61], an Electronic Medial Record (EMR) system and RapidSMS, an SMS based data

collection tool. RapidSMS allows community health workers (CHWs) in Rwanda to submit

maternal and child health information to a central server using SMS messages from mobile

phones. There are many CHWs within Rwanda and this information plays an important

role in monitoring the progress of pregnant women and the health of children where frequent

visits to clinics are not possible. In subsequent phases, the HIE will need to accommodate

other domains of care and have the ability to scale nationally.

The HIE’s main function is to enable the point of care systems currently implemented in

Rwanda to connect and interoperate more easily. Using the HIE, the MoH plans to promote

data re-use between the connected systems and to facilitate information sharing. It also

aims to provide patients with a continuity of care record [22] to enable access to a patient’s

clinical information from different health facilities, thus improving the tracking of patients

and reducing the number of patients lost-to-follow-up.

The first phase involves deploying a set of foundational infrastructure services that provide

services to the point of care applications. The HIE will allow the systems to share clinical

information and ensure that shared information uniquely identifies the patient, provider

and facility associated with that clinical information within the information exchange (See

Figure 4.1 on page 50).

The foundational infrastructure services are:

• Shared Health Record: this service responds to queries for an appropriate subset of

the patient’s longitudinal, patient-centric medical record.

• Client Registry: this service responds to queries for a patient’s demographic and

identifying information used to uniquely identify patients.

• Facility Registry: this service responds to queries for data on the facilities participating

in the information exchange. This is primarily used to maintain current and valid

facility codes required in transactions.

• Professional/Provider Registry: this service responds to queries for information about



50

health care professionals who work at participating health care facilities in the infor-

mation exchange. This is primarily used to uniquely identify health care professionals

within the HIE.

• Terminology Service: this service responds to queries about the validity of codes

within code systems used by the implementation. The system stores all the clinical

code systems (e.g. LOINC, ICD10 and country specific code systems) that will be

used within the HIE and facilitates verification and mapping between codes.

Figure 4.1: The architecture of the Rwandan Health Information Exchange

4.2 The architectural concerns for HIS interoperability

In this section, we explore each of the identified problems and challenges with interoperabil-

ity between health information systems in order to draw out a set of architectural concerns

that address the challenges associated with interoperability between disparate HISs in low

resource settings. The Rwandan HIE use case and its requirements are used to elicit and

identify these concerns.

The identified architectural concerns should not define how an HIE should be configured

for a particular implementation but rather analyse only those concerns that relate to the

common interoperability problems faced when constructing an HIE. The key architectural

concerns that we identified are enumerated below. These are explained and justified in the



51

following sections using the RHIE case study.

The architectural concerns are as follows: An architecture to enable interoperability between

disparate HIS for LMICs must...

1. Facilitate interoperability between disparate and heterogeneous systems, both existing

and future.

2. Balance central governance with local autonomy.

3. Adapt and scale within a changing environment.

4. Prevent local changes from propagating through the system.

5. Provide a low barrier to entry to connect new and legacy systems.

6. Be secure and auditable.

7. Be reusable across a multitude of environments.

Each of these concerns are described in detail and justified against the Rwandan HIE in the

following sections.

4.2.1 Concern #1: Facilitate interoperability between disparate and

heterogeneous systems, both existing and future

In the context of the Rwandan NHIS, the HIE initially allows the OpenMRS and RapidSMS

systems to interoperate with the infrastructure services (client registry, provider registry,

facility registry and the shared health record) in order to share information. Each system

embodies different technologies and designs and the architecture for health information

mediation should enable these systems to interact effectively and provide service providers

and service consumers a mechanism through which they can communicate.

The architecture must provide mechanisms to allow existing disparate and heterogeneous

systems to be incorporated into the HIE with minimal changes to the systems themselves

while still allowing for local autonomy. The systems need to be able to grow and develop



52

independently of the overall HIE and the other systems participating in the HIE. For ex-

ample, in the RHIE the facility registry infrastructure service may want to implement new

features to track new facilities. This may require updating or changing its API and data

model. In addition, the architecture must be technology agnostic, with minimal restric-

tions on the technologies used within participating systems in order to incorporate as many

system as possible. Challenges to be solved by the architecture include the full suite of

technical, syntactic and semantic heterogeneity between systems.

4.2.2 Concern #2: Balance central governance with local autonomy

Central governance is an important issue to be considered for the construction of regional or

national level HIEs. The ability to have central control reside with central authorities such

as ministries of health can be beneficial for the coordination of an HIE as a whole but this

central control should not be too prescriptive of policy and process at a facility level. This

is due to the fact that health facilities often have different systems, workflows or processes

in place for their particular environment and they resist central control of their workflows.

However, a balance between central control and local autonomy must be struck to ensure

coordination and interoperability between health facilities.

For example, in the RHIE, central governance is important for defining the transactions

required for sharing information between facilities; for defining how information can be

secured and securely accessed; and how information can be audited within an HIE. These

are issues that are best defined centrally in order to provide a unified approach to creating

an HIE [14].

A middle out approach to building a national health information system has been recom-

mended for LMICs [14, 47]. In such an approach it is the responsibility of the central

authority to specify the suite of standards to be used and the framework under which point

of care systems should operate.



53

4.2.3 Concern #3: Adapt and scale within a changing environment

The focus of the current RHIE project is to enable the sharing of maternal health in-

formation between point of service applications in a single district. However, the RHIE

architecture will also need to adapt to include new functionality as the project progresses.

The HIE must be able to expand in such a way that its services may be readily expanded

to other districts in Rwanda; to incorporate additional domains of health care (for exam-

ple HIV and TB programmes); and to allow other systems to be incorporated as part of

the growth of the HIE. Additional health information systems such as aggregate reporting

systems, pharmacy systems, decision support systems and others may need to be added in

time, and the HIE will be required to support these new use cases. Therefore, the HIE must

exist in an environment where requirements are always changing and a health information

mediation architecture should support this.

The architecture must support incremental development and evolution of a country’s HIE

as it expands over time. This is especially true in low-resource environments where many or-

ganisations implement disparate information systems for a variety of purposes and domains

of health care [7]. An essential feature of an HIE is its ability to cope with change. The

architecture must be flexible enough to deal with changing and evolving HIE requirements.

The system must also be able to scale, in terms of transaction volume, geographical locations

and increased functionality to handle the demand of widespread use and to cope with the

load that additional functionality places on the system. This is needed as a country’s use

of the HIE may increase over time. For example, the RHIE is expected to grow from

connecting a few clinics to connecting all clinics in a district. Potentially, this will expand

to a national roll-out. In addition, new workflows or infrastructure services may be added

and the HIE must cope with this increased transactional load.

4.2.4 Concern #4: Prevent local changes from propagating through the

system

In Rwanda, development teams in different organisations design and maintain participating

systems such as OpenMRS, RapidSMS and the infrastructure services. Currently, there



54

are fourteen partners working on the RHIE project with seven different development teams

working on the various participating systems that must be able to develop independently

without affecting other systems.

Participating systems will need to balance local requirements and NHIS requirements, but

from a practical perspective, development teams will often prioritise local needs and re-

quirements. Changes to participating systems should have minimal effect on other systems

within an HIE and systems must also be protected as much as possible from changes to

infrastructure services. All systems must still maintain a large degree of local autonomy,

especially since these systems are implemented and maintained by a variety of disparate

organisations. An architecture that facilitates interoperability between multiple disparate

systems must enable this to occur.

4.2.5 Concern #5: Provide a low barrier to entry to connect new and legacy

systems

Implementing partners have development teams distributed around the world with varying

degrees of expertise and technical skills. Interoperating with the infrastructure services

in order to share information must be simple and require minimal effort for both current

and future technical teams. A number of existing health information systems including

the OpenMRS implementations and the central RapidSMS server implementation existed

before the Rwandan HIE was conceived. These systems should not require major changes

to be incorporated into the HIE.

The architecture should reduce the burden of connecting new and legacy systems within the

HIE. The approach toward integration of legacy systems should be to ‘embrace and extend’

rather than to ‘rip and replace’. The architecture must provide a minimal barrier to entry to

incorporate a system into the HIE and reduce the overhead required to modify a particular

system to participate in the HIE. This feature will maximise the existing investment in

legacy applications and help prevent useful and functioning legacy applications from being

abandoned unnecessarily.



55

4.2.6 Concern #6: Be secure and auditable

An HIE should be able to protect a patient’s clinical and demographic information. Mea-

sures should be put in place to make sure that information cannot be intercepted dur-

ing transmission between systems. The architecture should ensure that only the health

providers that have the patient’s consent can view and/or add to a patient record and that

these providers are properly authenticated.

It is also vital that each transaction in a health information exchange be logged and stored

with audit information so that the source of any piece of data can be traced back to a

responsible party.

4.2.7 Concern #7: Be reusable across a multitude of environments

The architecture should be able to be reapplied in multiple other sub-Saharan African

LMICs. Rwanda is not alone in its need for interoperable HISs. Many other environments

experience similar problems, especially in other sub-Saharan African LMICs. These en-

vironments may benefit from such an architecture. This concern drives us to create an

architecture that does not make assumptions about the environment in which it will be de-

ployed. This allows the potential for lessons, skills, resources and cost to be shared among

multiple environments which is highly beneficial in resource constrained LMICs.

4.3 The Health Information Mediator

In the following sections the architecture of a new software component, the Health Infor-

mation Mediator (HIM), that enables HIEs to be more easily constructed is described.

This architecture addresses the key architectural concerns described above to produce an

architecture that is able to facilitate interoperability in LMICs. The design and implemen-

tation of the HIM is loosely based on the reference implementation of the HIAL that was

developed as part of the reference application for the Canada Health Infoway (CHI) EHR

Blueprint [9, 72]. In this work we attempt to expand and generalise the HIAL architecture

so that it will work in multiple environments and more closely address the concerns for

LMICs that have been distilled from the RHIE requirements.



56

4.3.1 Overall HIM architectural paradigm: The ESB

The ESB architectural model forms the basis of the HIM architecture. The ESB approach

was chosen due to the fact it is a current and widely used approach for implementing SOAs

that provides a central component that enables us to perform access control, prescribe

data exchange formats and perform message transformation and orchestration. The central

component allows us to implement the middle-out approach in HIEs. The ESB architec-

tural model has also been applied with success previously within other health information

exchanges [59, 72] and, importantly, it also addresses architectural concern #2.

An ESB provides a central bus that connects each of the infrastructure services while al-

lowing the services to remain loosely coupled and to retain local autonomy [10, 60]. An

ESB’s transformation functionality will enable service consumers to be connected to ser-

vice providers easily without requiring substantial re-engineering of legacy systems. The

orchestration function of an ESB would also provide the ability for the ESB to simplify the

interaction with service providers and therefore reduce the difficulty in connecting service

consumers to the HIE.

4.3.2 Architectural viewpoints

ISO/IEC FDIS 42010 [39, 21] was used to structure the architecture description and to

provide a formal language and metamodel for the architecture description. Using this

language an architecture is described by presenting a number of architectural views with

each viewpoint framing a number of concerns of different groups of stakeholders with an

interest in the system. A viewpoint is a way of looking at systems from a particular

perspective whereas a view is the result of applying a viewpoint to a particular system-of-

interest [39]. Together, these views make up an architecture description. Figure 4.2 on page

57 shows the relationships between the concepts that make up an architecture description.

Based on the concerns identified in Section 4.2, three major viewpoints of the HIM archi-

tecture are described below.



57

Figure 4.2: Context of architecture description [39]

Interoperability viewpoint

The interoperability viewpoint describes the overall functionality of the system in facilitating

interoperability between systems. It shows the interactions between health information

systems and describes the components of the system that allow interoperability to occur.

The flow of messages through the system is also expressed. The models include custom

diagrams showing transaction flow as well as component diagrams. This viewpoint frames

the following concerns:

• Concern #1: Facilitate interoperability between disparate and heterogeneous systems,

both existing and future.

• Concern #2: Balance central governance and with local autonomy.

• Concern #4: Prevent local changes from propagating through the system.



58

• Concern #5: Provide a low barrier to entry to connect new and legacy systems.

• Concern #6: Be secure and auditable.

• Concern #7: Be reusable across a multitude of environments.

Scalability viewpoint

The scalability viewpoint describes the scalability of the architecture. In this viewpoint,

models identify how the components of the systems can handle varying loads as well as

describe the deployment architectures. These describe how the components can be arranged

in order to sustain high transaction loads. This viewpoint frames the following concerns:

• Concern #3: Adapt and scale within a changing environment.

Modifiability viewpoint

This viewpoint shows the architecture’s ability to grow with a country’s NHIS and how new

services can be added or changed within the architecture. It shows how additional systems

or transactions can be added to the system over time and expresses the strategies that the

architecture employs to allow this to occur. This viewpoint frames the following concerns:

• Concern #3: Adapt and scale within a changing environment.

• Concern #7: Be reusable across a multitude of environments.

4.3.3 Architecture of the HIM

In this section the three viewpoints described in Section 4.3.2 are used to describe the

different aspects of the HIM architecture. An architectural view is described for each of the

viewpoints to show how the HIM architecture is able to address the concerns described in

Section 4.2.



59

4.3.3.1 Interoperability View

The HIM has been designed as a middleware system to enable interoperability between

participating systems and infrastructure services. It is based on the Enterprise Service Bus

(ESB) architectural model.

In the HIM architecture all participating systems in the HIE are represented as services.

Systems that provide services to other systems are termed service providers, while systems

that make requests of other systems are termed service consumers. All service requests are

made via the HIM. The HIM provides mediation and orchestration functions within the

HIE.

Our approach contains four major components described by the following 4-tuple:

HIM = {I, A, P, M}

where HIM is the Health Information Mediator architecture, I is the Interface

component, A is the Access Control component P is the Persistence component

and M is the Mediation component.

Figure 4.3 on page 59 shows the order in which transactions flow through each of the

components.

Figure 4.3: Overview of components in the HIM architecture

The details of each component are described below:

I - Interface Component All interactions with the service providers are carried out via

the HIM. The interface component exposes an application programming interface (API)

that allows systems or applications to make service requests through the HIE. It is respon-

sible for defining and handling all incoming service requests. Service requests are received



60

using a standard protocol (e.g. HTTP) and translated into a common internal format that

is accessible by the other components in the layer (e.g. Java Objects). The request is

then passed to the access control component for further processing. This component ad-

dresses concern #1 by providing a mechanism by which HISs at the point-of-care (service

consumers) can communicate with service providers.

The interface component not only provides a single and consistent entry point for all service

requests. A single point of access simplifies interactions with the HIE as the systems can

make service requests without needing to know the location of the service providers. A single

endpoint is exposed by the HIM and messages are routed to the correct service provider.

A client of the HIM implementation need only know of the single endpoint exposed by the

HIM in order to access services of the HIE.

The functions provided by the API are defined according to the requirements of the HIE

implementation, thus they are implementation specific. In the Rwandan use case this in-

cludes functions to save and query a patient’s clinical record within the shared health record

and to query and update records in the client, provider and facility registries.

A - Access Control Component The access control component prevent unauthorised

access to patient information. This component is responsible for dealing with two major

concerns: identifying if the client accessing information is who they say they are (Authen-

tication) and that they have the appropriate privileges and authority to retrieve or submit

patient information (Authorisation). This component aims to address concern #6 and #2

by providing a mechanism by which access to patient information can be secured in a central

place.

The concrete implementation of this component will depend on the transport protocol used

with the HIM implementation as well as the security policies defined by the implementing

jurisdiction. Thus, the details of the implementation of this component will depend on the

needs of the jurisdiction implementing it.

This component also provides a central place for defining and applying advanced security

policies. In this component, access to the API and access to specific functions within the

API must be strictly controlled. The component also allows data-level security policies to be



61

applied, if needed. In this research, we have not addressed the complexities of defining how

these security policies could be applied in order to focus on the architectural significance

of security and not the implementation details. The security requirements would differ

between implementations.

P - Persistence Component This component receives authorised service requests from

the access control component and starts and monitors a transaction required to fulfil the

request to completion. This component addresses concern #6 and #2 by enabling requests

and responses to be audited and stored in a central location for accountability purposes.

The persistence stores a copy of each transaction received by the HIM and maintains a

persistent data store for the request data, the response data and metadata for each trans-

action. This data is stored for logging and audit purposes and can also be used to identify,

handle and reprocess exceptions. This allows the administrators of the system to identify

and solve recurring problems or failures. The storing of transactions should be done as an

asynchronous process so that the the I/O penalty doesn’t affect the transactional perfor-

mance of the HIM implementation. In addition, the data store should only be accessible to

the HIM implementation itself and it should block external access. The data should also

be stored in an encrypted form. This ensures that any patient information contained in the

stored transaction is adequately protected.

Transaction metadata allows administrators of the system to monitor transactions and

gauge the health of the system. This is useful for discovering performance bottlenecks.

M - Mediation Component The mediation component executes transactions destined

for the service providers within the HIE. Its main functions are orchestration and message

translation. This component addresses a number of the architectural concerns. Firstly, it

addresses concern #4 and #5 by enabling messages to be transformed at both inbound and

outbound steps in a transaction channel. Secondly, it addresses concern #7 by allowing a

multitude of transactions to be implemented and by enabling multiple standard messaging

formats to be supported. Thirdly, it assists in addressing concern #2 by enabling a key set

of supported transactions to be managed centrally as transaction channels.



62

The mediation component is made up of a number of transaction channels. A channel is

provided for each transaction type. For example, a transaction type to save a patient’s en-

counter. Messages received from the persistence component are routed to the appropriate

transaction channel that can handle the transaction type of the current transaction. Each

channel contains the necessary logic to normalise, orchestrate and de-normalise that trans-

action. Each function exposed by the API in the interface component maps to a transaction

type and therefore to a transaction channel.

Below we describe the process that occurs within a single transaction channel contained

within the mediation component.

Figure 4.4: The workflow of a transaction channel within the transaction mediation com-
ponent

Figure 4.4 on page 62 shows the inner workings of the transaction mediation component

described earlier. Each transaction type has its own transaction channel. The diagram

represents the workflow within a single transaction channel.

A transaction channel always begins with a normalisation sub-component. This sub-

component transforms the request message contained within a transaction to a normalised

state. This normalised state is called the canonical form for that transaction. After this

process the transaction data must be in a consistent and predictable format to allow com-

ponents following this step to process it in a predictable fashion, no matter what format it



63

arrived in. This process consists of two operations. Firstly, an on-ramp transformation is

applied. This ensures that the message is transformed into a form that the HIM can process,

thus enabling syntactic interoperability for the transaction. For example, if the transaction

arrives from a legacy application that only supported exporting data in a custom XML

format, this process would ensure that the XML is transformed into the canonical form

that the HIM can understand, such as an HL7 version 2 message. Secondly, a translation

operation is invoked. This operation is responsible for ensuring the codes and code systems

used within the transaction are translated to a standard set of vocabulary or clinical terms,

called reference terms, that have a common interpretation by other components of the HIM.

This could involve a call to a terminology service to translate and verify that the codes used

within the transaction are represented in, or are translated to, known reference terms. In

this way semantic interoperability between service requesters and providers is achieved.

Following this, the transaction is sent to the orchestration sub-component. This sub-

component is responsible for performing implementation-specific orchestration for the cur-

rent transaction. The process of orchestration is described in Peltz et al. [56]. The aim of

the orchestration component is to execute the received transaction and perform any con-

sequent action(s) required for this transaction. This could include zero or more calls to

external services as well as the execution of business logic. This component compiles the

response for the executed transaction and returns this to the persistence component which

forwards the response to the service requester via the interface component. The calls to

external systems should be done in parallel where possible to ensure that the orchestration

is done quickly and efficiently as possible.

A de-normalisation sub-component is provided for each external service call. This sub-

component is responsible for transforming or constructing a service request in a format

that is understandable to the service provider. This operates in a similar way to the nor-

malisation component except the operations occur in the reverse order. This approach

serves to decouple service providers from the orchestration component, which allows for

service providers to be easily modified or replaced with minimal impact on the mediation

component.

The transaction channel for a specific transaction can be as complex or as simple as a



64

transaction requires. For example, consider a simple transaction: the message arrives in a

known form and no orchestration is required, the message just needs to be sent on to a service

provider system in the same format as it arrived. In this case the transaction channel would

be very simple; no normalisation would need to occur, no orchestration is required and no de-

normalisation needs to occur. Thus, the transaction channel for this transaction just passes

the message on to the service provider. Now, consider a more complex example: a message

arrives in a form that requires normalisation, we need to enrich the message with some

additional information before it can be sent to the service provider and the service provider

uses a custom JSON message that the original message must be denormalised into. In this

case, as the message arrives the normalisation sub-component executes. This converts the

message into a syntactic structure that the other HIM components can understand, as well

as translates any codes that are used in the message to reference terms that are understood

by the orchestration component. Now the message is in a standard form so it is passed onto

the orchestration sub-component. This sub-component reads the message and executes logic

in order to enrich the message. In this example, this logic requires the use of an external

service so a de-normalisation sub-component is executed to generate a message in a form

that the service provider can understand. When the response is received the orchestration

component is able to enrich the original message with the information required. Then,

the enriched message is passed to a de-normalisation sub-component so it can be sent to

the intended recipient. This de-normalisation component executes a translation function

to convert reference terms into codes that the service provider can understand and then

executes a function to transform the message into the JSON format. This message is then

sent to the service provider. As can be seen, these transaction channels can be as complex or

simple as is required for the transaction. This allows the HIM to contain complex processing

logic such that the service consumer and service provider systems may remain as simple as

possible.

The transaction channels provide a generic structure so that any needed transactions may

be implemented as required. Both the messaging format and the logic of each transaction

channel is left up to the implementing party. This allows the HIM to remain agnostic of

message format and transaction type so that it is applicable in a variety of settings and does



65

not impose specific message formats and transactions on implementers of the architecture.

These transaction channels are also designed to be modular so that the implementation

of these may be shared and re-used. Each transaction channel is independent and should

aim to perform a single task efficiently. This allows different transaction channels to be

added or removed as required for a specific implementation. The use of normalisation and

denormalisation components enable syntactic and semantic interoperability as syntactic and

semantic heterogeneity between systems can be mitigated.

4.3.3.2 Scalability view

Figure 4.5: Scalability configurations of the HIM architecture

Figure 4.5 on page 65 shows the scalability of the architecture. This view described how

architectural concerns #3 is addressed. There are four major components: the interface

API, the access control component, the persistence component and the mediation compo-

nent. Each of these components are loosely coupled so that they can be deployed across

different servers. This is shown in “Configuration 2” of Figure 4.5 on page 65. The four

components are responsible for separate, independent units of work. This loose coupling

allows the components to be spread over different hardware as long as they are able to



66

communicate over a network. The ESB architectural model used for this architecture en-

sures that the components are loosely coupled and can be deployed in a distributed fashion.

Each of the components of the HIM architecture must also be implemented in a stateless

manner. There is no need to share state or session between the components as they are

each responsible for an independent unit of work. This enables each of the components or

even the entire HIM server to be deployed redundantly if required. Thus, enabling greater

options for scalability.

It is also feasible to further separate the persistence component and the transaction media-

tion component through clustering. The persistence component performs the static function

of persisting any transaction that passes through it. As this function is not dynamic it could

easily be replicated over multiple servers in a cluster with the provision that the data stores

are synchronised. Many database implementations support clustering to improve perfor-

mance and this may be used in order to improve performance. This component could also

be invoked in an asynchronous fashion as the mediation component subsequent to it does

not require this process to be completed in order to continue its processing.

The transaction mediation component can be scaled horizontally. This component holds

a set of channels, one for each transaction type that is supported by the implementation.

Each of these channels encapsulates information about how each transaction should be

transformed and orchestrated and each of these channels are modular. This allows each

transaction channel to run independently which enables them to be deployed across multiple,

separate servers. This is shown in “Configuration 3” in Figure 4.5 on page 65.

These configurations show two important aspects of the architecture. Firstly, the HIM’s

performance in terms of the volume of transactions that it can handle, i.e. splitting the

load between different servers increases the capability of the system to handle and process a

higher volume of transactions timeously. Additional servers can be introduced as transaction

volumes grow to stabilise performance. Secondly, it demonstrates the HIM’s robustness.

Since each of the three components are responsible for separate units of work and individual

components can be replicated over different physical machines, this architecture is able to

provide redundancy. The number of instances of each component can vary depending on

the performance required of the defined transaction types and the reliability requirements



67

for a particular implementation.

4.3.3.3 Modifiability view

Figure 4.6: Extensibility of the HIM architecture

Modifiability is an important consideration for this architecture. Figure 4.6 on page 67

shows how additional services could be added to the architecture. This view described how

concerns #3 and #7 are addressed by enabling new transactions channels to be added over

time.

To add additional services the interface component’s API needs to be extended by adding

new API endpoints for each new transaction that needs to be supported. The persistence

component and the access control component are generic enough that they do not require

any change to process new types of service requests. The transaction’s mediation component

is where most of the changes are required. This component is designed to encapsulate

transaction mediation logic for each transaction type. A new transaction channel can easily

be added to support a new type of service request. The new channel will encapsulate all

the logic for normalising the transaction, executing the necessary orchestration steps and

de-normalising the transaction when an external service orchestration call is made. This

encapsulation simplifies the addition of new service request types as functionality increases

and the HIE expands. This enables the HIM architecture to adapt to the new requirements

of an HIE environment.

In this chapter, the key concerns of an architecture that facilitates interoperability have been

extracted for LMICs. A combination of previous research and a real world use case drove



68

the identification of these concerns. This architecture description describes three distinct

architectural views. Each of these views are described in detail to produce a concrete

description of the HIM architecture.



Chapter 5

Implementation of the HIM Architecture in Rwanda

The architecture was validated by a reference implementation, the OpenHIM, within the

Rwanda Health Information Exchange (RHIE). In this chapter we describe the design and

implementation of the OpenHIM for the RHIE. The larger design decisions are discussed

first, then the implementation technologies and details are described in the sections that

follow.

5.1 The point of care interface

The interface component of the HIM architecture is responsible for exposing an API for

the point of care systems to use in order to interact with the HIE. An important design

decision is thus how this API should be exposed. An appropriate technical interoperability

standard must be chosen. The API needs to be simple to interact with and be platform

independent. Web services are a suitable choice for this API as they are platform and

technology independent and are widely supported. Web services utilise the HTTP protocol

in order to transmit information. There are two competing paradigms for web services.

namely, Simple Object Access Protocol (SOAP) [6] and RESTful web services [24]. These

two paradigms are explained in more details in Section 2.3.1.

A RESTful web service approach was chosen as the technical interoperability standard for

this implementation as it is the simplest approach for point of care systems to implement.

REST does not require an XML envelope to transport the message, contrary to SOAP.

REST maps actions and message data directly to constructs of the protocol on which it is

being implemented (e.g. HTTP). Using HTTP these services become very easy to call as

most languages provide functionality to communicate using HTTP. Thus, we opted to make

use of REST over HTTP for technical interoperability. SOAP has a good array of extensions

to handle security and other messaging concerns. However, while these are comprehensive

69



70

solutions they make SOAP complex to process and thus additional software libraries are

required to work with SOAP messages.

5.2 Messaging format

As REST does not prescribe a format that the data should be in (it is merely an architec-

tural style) any data format can be used. Using REST over HTTP allows us to use the

HTTP concept of content types. HTTP content types allow us to specify the format of the

information that we are sending.

Not all information can be encoded in a single data format. Information should be expressed

in the data format that makes the most sense. For example, a patient’s medical record

information would most likely be represented differently from a health facility’s monthly

report of aggregate indicators.

By defining different content types, information can be supplied in a variety of different

formats. Multiple data formats for the representation of the same information could even

be offered. For example, allowing patient information to be returned in either XML or

JSON. This would allow the client to request information in a format that is easiest for

them to process. Internally, the HIM architecture could handle these varying formats using

its normalisation and de-normalisation functions.

This being said we still had to choose a canonical format to use within the RHIE. There are

three main contenders for messaging formats for clinical information. OpenEHR Archetypes,

HL7 version 2 and HL7 version 3. HL7 version 2 was chosen as it is an established message

format within the health domain, enabling us to make use of the large variety of tools that

support HL7 version 2. HL7 version 3 is much more complicated to handle and process

than HL7 version 2 and it does not have as much tool support. The size of HL7 version 3

messages have also grown significantly and this makes it unsuitable for low resource settings

where connectivity is poor and there are few developers who understand the complexities

of HL7 version 3. Thus, HL7 version 2 was deemed to be the appropriate choice for the

RHIE.

The use of HL7 version 2 gives us syntactic interoperability by defining the specific message



71

formats for different types of transactions, such as saving a patient’s record or communicat-

ing a patient’s encounter data. However, it does not enable semantic interoperability. For

semantic interoperability the project team elected to use a combination of LOINC codes,

ICD-10 codes and custom Rwanda specific codes for information for which mappings could

not be found.

IHE profiles could have also been used to provide semantic interoperability for some of the

RHIE transaction, however, the project team was not familiar with IHE profiles and the

benefits that they provide. Thus, other standards that the team was more familiar with

were chosen. In future work, the RHIE team is looking to migrate some of the supported

transactions to make use of IHE profiles.

5.3 Mule ESB

Mule ESB is a widely used platform for enabling application integration and interoperabil-

ity. Mule ESB is a lightweight Java-based enterprise service bus (ESB) and integration

platform1. It is an open source product with optional commercial offerings available. It is

designed to be highly scalable and lightweight. The main functions that Mule ESB provides

are the ability to host and create connections to services and to provide service mediation,

message routing and data transformation functions. Mule ESB as a platform runs as a server

and allows the user to host Mule applications that implement the desired functionality for

their implementation.

Mule ESB was chosen as the base platform on which to build the HIM implementation due

to the fact that it provides many of the functions that we require. It also has a large user

base and support community. Additionally, the open source edition of Mule ESB enables it

to be used freely in low resource settings with no licensing requirements.

Mule ESB is built around the notion of Mule flows. A Mule flow consists of a series of

message processors that are executed in order as the message passes through the flow. The

flow contains logic and flow control operators that are able to process a message, as well as

communicate that message to other external endpoints. Mule flows are the base structure
1See http://www.mulesoft.org/what-mule-esb

http://www.mulesoft.org/what-mule-esb


72

that Mule uses to enable users to implement an ESB. A flow typically has a single inbound

endpoint that receives messages and one or more message processors that process messages

and outbound endpoints that send messages to an external service.

5.4 System Architecture of the OpenHIM

Figure 5.1: Systems architecture of the OpenHIM

The Open Health Information Mediator (OpenHIM) was implemented as a reference appli-

cation of the HIM architecture. It was developed as an open source project in collaboration

with Jembi Health Systems NPC. The project code is hosted on Github2 and is currently

still maintained and used by Jembi Health Systems NPC. It also now forms part of the

reference applications for the OpenHIE project3.

The OpenHIM is implemented as a single Mule ESB application with a number of differ-

ent components that represent the components described in the HIM architecture. These

components are invoked in order as shown in Figure 5.1 on page 72 and as described in

Section 4.3.3.1. Figure 5.1 on page 72 also shows the technical architecture of the OpenHIM
2The source code can be found at https://github.com/jembi/openhim
3For more information about this project see http://ohie.org/

https://github.com/jembi/openhim
http://ohie.org/


73

application. In the sections that follow the implementation of each of these components is

described in more detail.

5.4.1 Implementation of the point of care interface and access control

components

The interface and the access control components are implemented as a single Mule flow that

exposes an HTTP endpoint. This endpoint is the entry point for any service calls into the

HIE’s RESTful API. This endpoint is secured using HTTPS with a server side certificate

and basic authentication. Within this flow the user accounts for the basic authentication are

handled by a separate LDAP (Lightweight Directory Access Protocol) server, specifically

OpenLDAP. The Mule flow is setup with an HTTPS endpoint that authenticates requests

using the OpenLDAP database. This can be seen in Figure 5.1 on page 72.

Each application that needs to interact with the HIE requires a separate username and

password in order to authenticate itself. These usernames and passwords are stored in the

LDAP database. This makes it easier to manage which applications are allowed to access

HIE services. This model allows applications to be authorised to call only certain services

in accordance with a specific role assigned to that application’s user account. The structure

for this role-based restriction functionality exists but has not yet been implemented.

Service calls enter the interface component, get authenticated and authorised and are then

passed to a queue in order to be processed by the persistence component.

5.4.2 Implementation of the persistence component

The persistence component is also implemented as a single Mule flow. This flow accepts

messages from an input queue and writes the raw message, as well as metadata (such as

when the message was received and which service consumer sent the message), to a MySQL

database. When a message response is returned to the service consumer this component

also stores the response messages, as well as metadata about the response including the

time the response was received and any errors that may have occurred. These are all stored

in the MySQL database to create an audit trail of messages that have been processed by



74

the HIE as well as to log errors that may occur within the HIE. The data model of the

OpenHIM persistence component can be see in Figure 5.2 on page 74.

Each message is assigned a status to track if that message was processed correctly. There

are three processing states: processing, completed and error. This allows transactions to

be tracked and monitored within the HIE.

Figure 5.2: OpenHIM persistence component data model

5.4.3 Implementation of the mediation component

Figure 5.3: The structure of a sample mediation component

In order for messages to be sent to the correct transaction channel they must be sent to

a transaction router. The transaction router is a Mule flow that fits between the persis-

tence component and the mediation component. It accepts all messages and determines

what transaction type is being invoked by the message and sends that message to the cor-

responding transaction channel to be processed. This is done by inspecting the URL path



75

and HTTP method of the message and looking up what transaction channel can handle the

request.

The mediation component consists of a number of Mule flows that each have different re-

sponsibilities. Flows are designed to either normalise, de-normalise or orchestrate a specific

transaction. For each transaction channel within the mediation component there is exactly

one Mule flow for each normalisation and orchestration. For de-normalisation there may be

zero to many Mule flows in order to handle communication with external services needed

by the orchestration flow. Each transaction channel maps to exactly one service that is

exposed by the interface component. Figure 5.3 on page 74 shows a sample of a mediation

component depicted as a component diagram. Each block is a separate Mule flow. The

different types of flows shown in this diagram are explained below.

Normalisation flow The normalisation flow for each mediation component contains logic

that can transform a transaction into a canonical form that is understood by the succeed-

ing components in the pipeline. It is always the first flow that a message is passed to in a

transaction channel. It contains two functions in order to perform transaction transforma-

tions. Firstly, an on-ramp transformation function that transforms the message structure

into a standardised canonical form and, secondly, a translation function that translates the

message semantics into a standardised form. The implementation of each of these functions

is implementation specific and dependent on the transaction type and the formats that a

specific transaction may be received in. These can be implemented as Java code or using

a Mule XSLT4 transformer depending on the needs of the implementation, as well as the

chosen canonical message format for that implementation.

Orchestration flow The orchestration flow for each mediation component contains the

orchestration logic to execute transactions. This logic is dependent on the transaction

type that is being executed and is implemented using a suitable construct depending on

the specific implementation. These flows expect that the messages that they receive are

already in a standardised canonical form. The logic in this flow is expected to be able
4XSTL (Extensible Stylesheet Language Transformations) is a language that allows an XML document

to be transformed into a new XML document with a different structure.



76

to make external service calls to other service providers within the HIE. For example, to

allow identifiers to be checked for validity or to save an encounter in the shared health

record. Many of these external calls can be made and de-normalisation flows are invoked

to perform the actual sending of a message to an external service provider. Mule ESB’s

provided enterprise integration pattern implementations are used to implement the required

orchestration logic.

De-normalisation flows Each of the de-normalisation flows map to an external service

call that is referenced from the orchestration component. Each of these flows contain the

logic in order to convert the message from the standardised canonical form into a form that

the infrastructure service can understand. This logic is dependent on the external service

that is being contacted. Mule outbound endpoints are used within these flows in order to

physically send the message to the infrastructure service’s endpoint.

5.5 Implementation of the Rwandan HIE

The OpenHIM was successfully deployed with the other HIE components in Rwanda during

September 2012. The current system connects fifteen health facilities in the Rwamagana

district to the HIE deployed in the national data centre in Kigali 5.

The infrastructure services that form the rest of the Rwandan HIE were implemented by

different parties utilising a wide variety of open source projects, which are listed below:

• Shared Health Record: OpenMRS (OpenMRS Foundation, Regenstrief Institute and

Partners in Health)6 [43] with modules developed by Jembi Health Systems NPC 7.

• Client Registry: OpenEMPI (SYSNET International)8.

• Provider Registry: a custom open source webapp built on OpenLDAP (Intrahealth)9.

• Facility Registry: ResourceMapper (InSTEDD)10.
5See the implementation blog at http://rwandahie.blogspot.com/2012/09/click.html
6http://openmrs.org/
7https://github.com/jembi/rhea-shr-adapter
8http://www.openempi.org/
9http://www.ihris.org/wiki/Provider_Registry

10http://resourcemap.instedd.org/

http://rwandahie.blogspot.com/2012/09/click.html
http://openmrs.org/
https://github.com/jembi/rhea-shr-adapter
http://www.openempi.org/
http://www.ihris.org/wiki/Provider_Registry
http://resourcemap.instedd.org/


77

• Terminology service: Apelon DTS (Apelon Inc.) and a custom webapp front end

(Jembi Health Systems NPC)11.

In the next section a description of the workflow that allows clinics in Rwanda to share

information using the OpenHIM is described in detail.

5.5.1 The RHIE workflow

The OpenHIM exposes the services required for sharing clinical information between the

clinics in Rwanda. It provides a variety of services that enable the sharing of clinical

information between clinics. These include services to:

• Register a patient’s demographic information.

• Query for a specific patient or for a list of patients.

• Update a patient’s demographic information.

• Save a patient’s encounters to a central clinical data repository.

• Query for a list of a patient’s previous encounters from the central clinical data repos-

itory.

When a patient arrives for maternal care at the clinic the registration clerk first looks them

up on the local OpenMRS system. If they cannot be found on the local system a query

can be made to the client registry if the clinic has connectivity. This workflow can be seen

in Figure 5.4 on page 78. The numbers in brackets in the following descriptions refer to

specific interaction in the sequence diagrams.

The OpenMRS system makes a web service call to the OpenHIM to query for a patient

matching the criteria that the registration clerk entered (1). The OpenHIM accepts this

message if the request is correctly authorised and authenticated. It then stores the message

and passes it on for mediation. In this case the message is de-normalised to a form that

the client registry can understand (2) and no normalisation or orchestration functions are
11http://www.apelondts.org/ and https://github.com/jembi/ts-browser

http://www.apelondts.org/
https://github.com/jembi/ts-browser


78

required. The OpenHIM makes the call to the Client Registry (3), normalises the response

into a form that it can understand (5) and returns a list of one or more patients to the

OpenMRS system (6). OpenMRS displays the choices to the user to verify which record

matches the patient. If the patient cannot be found in the Client Registry, the registration

clerk enters the patient demographic information and this is then sent as a message to the

Client Registry through the OpenHIM to register that patient. This workflow is shown in

Figure 5.5 on page 78.

Figure 5.4: Query patients

Figure 5.5: Register a patient

Once the patient is registered on the local system they are ready to be seen by a clinician.

Figure 5.6 on page 80 show this workflow. The clinician looks them up in OpenMRS and is



79

able to fill in forms capturing observations about the patient’s visit. Each form that is saved

triggers the OpenMRS system to invoke the save encounter transaction. This makes a call

to the OpenHIM with a message containing the clinical encounter and all the observations

that the clinician entered in HL7 v2 format (1). The OpenHIM receives this message and

stores it. It is then passed on to the mediation function. This save encounter transaction has

a number of orchestration steps that the OpenHIM must perform. The message is validated

against the client registry, provider registry and facility registry to ensure that the identifiers

used for the patient, provider and location are known in each of those registries (2 - 10). The

message is also enriched with the patient’s enterprise identifier that the client registry uses

to uniquely identify patients as well as the provider’s enterprise identifier that the provider

registry uses to uniquely identify a provider within the HIE. Once that is completed, each

of the codes (from code systems such as LOINC or ICD-10) used within the message are

checked against the terminology server to ensure that they are known and valid (11 - 13). If

this orchestration occurs successfully, only then is the message sent on to the shared health

record system where it is stored in the patient’s shared health record or in a new record if

one does not already exist (13). A response is sent to OpenMRS so that it can determine

if the transaction was successful or not (15).

When the patient arrives at another clinic their record can be retrieved and stored in the

OpenMRS system at that clinic. Figure 5.7 on page 81 shows this workflow. The patient

must already be registered in the system as described above. The OpenMRS system makes

a call to the OpenHIM to query for previous encounters for that patient (1). The OpenHIM

performs some orchestration steps to resolve the patient’s identifier within the HIE (2 - 4).

The OpenHIM fetches the patient’s health record from the Shared Health Record service

provider (5, 6). It then performs orchestration on the response to enrich the message with

the patient’s identifier and provider’s identifier that are known by the local OpenMRS

system (7 - 10). These are obtained from the Client Registry and the Provider Registry

respectively. The enriched message is returned to the OpenMRS system at the clinic where

it is stored locally in the system so that it may be viewed by that clinic’s clinicians (11).

Using these workflows, clinics within Rwandan are able to share patient information effec-

tively. The OpenHIM is used primarily to simplify these interactions by authenticating and



80

Figure 5.6: Save an encounter

authorising requests and by performing the various orchestration and message transforma-

tion tasks that are required.

The RHIE implementation has now been operational for more than two years and has

enabled clinical data to be shared between fourteen health facilities and the district hospital

in the Rwamagana district. This implementation has enabled us to analyse the correctness

of the architectural concerns and the extent to which they have been met. It also provides

the first significant validation that the HIM architecture, and by extension an ESB-based

architecture, can facilitate interoperability between HISs in LMICs.



81

Figure 5.7: Query an encounter



Chapter 6

Analysis and discussion

The analysis and evaluation of software architectures is a challenging task [41]. In this

chapter, an analysis of the extent to which the architecture satisfies the identified con-

cerns is given first. The Rwandan Health Information Exchange implementation is used

to provide concrete illustrations via the implementation of the OpenHIM. Secondly, the

re-usability of the architecture is demonstrated by describing its implementation in another

low resource setting, namely the the MomConnect implementation in South Africa. Finally,

the Architecture Trade-off Analysis Method (ATAM) [41] is performed on the architecture.

This analysis identifies the quality of the architecture in terms of quality attributes that are

derived from the architectural concerns. The chapter concludes with a comparison between

the HIM architecture and other architectures identified in the literature.

6.1 Analysis of the HIM architecture

In this section we analyse the extent to which the architectural concerns (identified in

Section 4.2) are satisfied by the HIM architecture. For each concern a concrete scenario

is described that shows how the architecture caters for a particular concern. Further, the

RHIE deployment, which has been operational for two years, is used to demonstrate and

validate that the HIM satisfies these concerns in a real world environment.

6.1.1 Concern #1: Facilitate interoperability

The architecture facilitates interoperability by providing a mechanism through which dis-

parate HISs communicate. There are two aspects to this communication:

• The architecture provides a physical communication channel through which the dis-

parate systems may communicate

82



83

• As the system are heterogeneous, syntactic message format and semantic message

content can be modified to enable the systems to interoperate.

Consider two point of care systems (X1 and X2) that wish to communicate patient de-

mographic information to a central server (Y). The physical part of the communication is

provided by supplying an endpoint for system X1 and X2 to send data to (the interface

component). The requests are authenticated and authorized by the access control compo-

nent and are then routed to a mediator that is able to send the message to system Y. The

architecture enables syntactic and semantic interoperability through mediator components.

These components perform message transformation or complex orchestration using the nor-

malisation and de-normalisation sub-components or the orchestration sub-components re-

spectively. This allows for the systems to exchange messages even if they do not use the

same message format.

In the RHIE OpenHIM reference implementation, HTTP endpoint are used to provide phys-

ical communication between HIS. The OpenHIM routes transactions between the point of

care systems and the infrastructure services. A number of normalisation and de-normalisation

components are implemented within mediators to enables heterogeneous systems to com-

municate more easily. The de-normalisation component transforms standard HL7v2 ADT

messages (that the point-of-care systems are required to submit) to a custom XML format

that is used by the client registries API. There are several transformations of this kind

within the RHIE implementation.

In practise the physical communication provided by the OpenHIM allows systems to commu-

nicate without them having to know the details or location of the servers they communicate

with. Syntactic and semantic interoperability is more tricky. The HIM architecture pro-

vides a framework to allow different syntactic and semantic message formats to be handled.

However, it is left to the implementer to develop these normalisation and de-normalisation

steps. It is currently not possible to do this automatically, however, this is an open problem

and there is work under way to attempt to solve this problem [55].



84

6.1.1.1 Supporting syntactic interoperability

Syntactic interoperability standards allow information to be exchanged in a format and

structure that both systems can interpret. There are many messaging standards avail-

able in the health domain for syntactic interoperability, each with different structures for

representing data and servicing various messaging needs; for example, exchanging clini-

cal information (HL7 v2, HL7 v3, OpenEHR Archetypes [11, 26, 20]) or aggregate health

information for reporting (SDMX-HD [7]).

The HIM architecture allows the implementer to specify the use of different syntactic stan-

dards per transaction channel. The chosen syntactic standard will be used as the internal

canonical form for processing messages within that transaction channel. Each transaction

channel will have a canonical form that is specified for that particular implementation. The

canonical form ensures that there is a single well defined format that is used within a trans-

action channel. In the future, this canonical form may be changed as new standards are

adopted.

Support is provided for incorporating legacy systems that may already use standards that

are different to the canonical format. It may not be easy or desirable to modify these sys-

tems. Thus, the HIM architecture prescribes normalisation and de-normalisation functions

that enable messages to be converted into and out of the canonical message format and

that may be as simple or complex as an implementation requires. They may just enhance a

message to be more standardised or they may completely change the format and structure

of the message to convert it to a different syntactic standard.

For example, the OpenHIM for the RHIE implementation was built to support HL7 version

2.6 for syntactic interoperability. All messages are converted into, and all orchestration

occurs, using this canonical form. In certain cases, de-normalisation components transform

these messages into a syntactic message format that other service providers can understand if

they do not support HL7 version 2.6 messages. For example, the client registry (OpenEMPI)

has its own custom RESTful API and a de-normalisation component of the OpenHIM

converts the HL7 version 2.6 message into the format of this custom API whenever messages

are exchanged with the client registry.



85

The use of a canonical form allows the internal orchestration steps to be simpler as they

only have to support the canonical message format. The service consumers and service

providers do not even have to support that particular format. This minimises the repetition

of orchestration logic. However, the transformations from unsupported formats into the

canonical form and vice versa has to be developed when implementing the HIM architecture.

These transformations can be complex to develop and this can be a time consuming task

[55]. Hosting these transformations centrally in the HIM implementation makes it easier to

reuse this logic for point of care systems that require syntactic transformation of message

formats.

6.1.1.2 Supporting semantic interoperability

Semantic interoperability standards allow information exchanged between heterogeneous

systems to be interpreted and processed internally within a system’s data structures. Se-

mantic interoperability can be supported through the use of terminology services and par-

ticular mediation steps that allow code systems used in a message to be mapped to other

code systems. A terminology service holds mappings between different code systems and

is able to rapidly lookup these mappings in real time. Use of a terminology service allows

messages to be modified so that they retain their original message semantics but the codes

and code systems that are used to convey those semantics can be changed to those expected

by other systems.

In the HIM architecture a terminology service can be called as a part of the mediation of

a message. The HIM architecture specifies particular steps in the normalisation and de-

normalisation components that specify where message translation should take place. In this

way semantic differences can be mitigated. However, it is up to the implementer of the HIM

architecture to decide how this translation takes place. The terminology service could be

as simple as a lookup table or it may be an external application dedicated to mapping and

responding to queries about code systems. The HIM normalisation and de-normalisation

components are responsible for resolving the message semantics and modifying the message

so that it can be understood by intended recipients. In the case of the normalisation

component, the message semantics must be resolved to the code systems expected in the



86

canonical form so that orchestration can take place using well understood semantics. In

the case of the de-normalisation components the message semantics must be resolved to the

code systems that the service provider expects.

The OpenHIM reference implementation uses a terminology service to do basic validation

of the terminology used in messages to ensure that semantic interoperability is achieved.

The HIM architecture’s normalisation components are used to perform validation of codes

within the message to ensure that the messages contain terminology that is understood by

the rest of the system.

New point of care systems that want to connect to the HIE have two options involving

different levels of effort. If a legacy point of care system is difficult to extend but is al-

ready able to produce information in a legacy format it could simply be adapted to send

this information to the HIM implementation and logic could be developed in the HIM to

normalise this information into its canonical format so that it may be further processed.

Alternatively, if the point of care system can be easily modified it may take less effort to

extend the existing system to produce messages in the canonical format supported by the

HIM implementation. Different data models can be mitigated through the use of the HIM

architecture’s orchestration functions. Information can be retrieved from other sources to

fill in the gaps between what was expected and what the legacy systems were able to send.

The ability to embrace existing systems rather than ripping them out and replacing them

is beneficial [14] especially in low resource settings [47]. The middle out approach to pro-

ducing a national health information system involves defining interoperability frameworks

nationally. Legacy systems are encouraged to extend their functionality to make use of the

national infrastructure [14]. The HIM architecture supports this middle out approach by

enabling legacy point of care systems to connect to national infrastructure even if these

systems are unable to adapt to use the prescribed standard.

The support for multiple standards that embrace legacy systems and nuances in existing

systems is of particular importance for LMICs, it ensures that existing investment in HIS is

not abandoned. The architecture is standards agnostic and does not restrict an implementer

to specific standards.



87

6.1.2 Concern #2: Balance central governance with local autonomy

The centralised nature of an interoperability layer allows access, configuration and moni-

toring of an HIE to be simplified by providing a single central facility where management

occurs. This is ideal in a low resource setting as regional or facility level management of

the HIE infrastructure can be challenging due to a lack of technical sophistication and in-

frastructure. Thus, it is better handled in a central location where dedicated resources are

available to manage the HIE. The competing approach is a peer-to-peer model where HISs

communicate directly with each other. This model works well in an environment where

HISs at each health facility are sophisticated and can themselves organise health data from

multiple sources, apply security policies and execute workflows to fetch and validate data

from multiple other HISs. Thus, this approach is more applicable to HICs. Our goal is

to simplify the interaction between HISs within the HIE. Thus, a centralised, middle-out

approach as suggested in previous work is deemed appropriate.

In the RHIE, this approach was beneficial for a number of reasons. Firstly, access to

health information could be controlled and managed centrally. This enabled the project

co-ordinators and the Rwandan ministry of health to easily manage access and ensure that

only designated systems, that are safe and secure, could have access to patient health

information. Secondly, the transactions that the HIE supports could be managed centrally

so that each point-of-care system could access a unified and appropriate set of transactions.

Thirdly, this central approach enabled transactions to be audited for accountability and for

transactions to be logged such that success and failure rates could be determined.

6.1.3 Concern #3: Adapt and scale

The HIM architecture was designed to adapt to new environments and modified for new

functionality to be added over time. During the implementation of the OpenHIM trans-

actions needed to be updated and new transactions needed to be created to support new

interactions. For example, a new transaction was added to allow the client registry to notify

the shared health record (SHR) that a patient record had either been linked or unlinked

from another patient record. This would allow the SHR to link or split its own records in



88

order to keep them synchronised with the client registry. The HIM architecture allowed

these transactions to be added by enabling additional mediators to be deployed within the

OpenHIM reference application. These were added dynamically with no effect on the ex-

isting transactions due to the separation and encapsulation of the mediator components

within the architecture.

A limitation discovered was that a modification to a transaction within the HIE necessi-

tated an update to the OpenHIM reference application and its mediators. This is because

all communication between the point of care systems and the HIE takes place through the

OpenHIM. These modifications require domain knowledge and experience with the Open-

HIM software and requires that skilled developer resources are available to make these

modifications. This could potentially cause delays in making additional functionality avail-

able.

The OpenHIM reference application deployed within Rwanda was able to scale within a

single district of Rwanda. The deployment began by connecting two health facilities and

scaled, over the course of two years, to cover fourteen health facilities as well as the district

hospital. The transactional load over that time increased from a few hundred transactions

per month to around 20,000 transactions per month. The OpenHIM was able to handle

this load with ease.

To further test the scalability features, a preliminary empirical analysis of performance and

scalability has been performed using the OpenHIM. There are two aspects of scalability that

were considered in this analysis. Namely, vertical scalability (scaling up) and horizontal

scalability (scaling out) [44]. Vertical scalability is the ability of the system to scale when

additional system resources are allocated to the machine running the system. This is the

simplest form of scalability. Horizontal scalability, on the other hand, is the ability of

a system to scale across multiple computers in order to gain additional performance and

reliability. Thus, the application must be able to be distributed across multiple servers to

benefit from this scalability technique.

The following performance bounds were identified to evaluate scalability:

• Response times through the OpenHIM (ignoring other infrastructure services response

time) should be < 500ms on average for each transaction type.



89

• Maximum response times should not exceed two seconds for any request.

To identify the load we expect from a national HIE in a low resource setting, we obtained

visit statistics from the health facilities in the Rwamagana district of Rwanda. From this

information we were able to extrapolate the load that would be placed on a nationally

deployed OpenHIM implementation. Table 6.1 on page 117 shows these estimates.

The load estimates have been split into the relevant transactions that are executed through

the OpenHIM. Each of the transactions has an estimate of the number of times it will

be invoked per visit. Combining this with the total number of visits per month we get an

average number of transactions per second (TPS) for each transaction type for an eight hour

work day. This figure gives us a baseline to evaluate the performance of the HIM for different

hardware specifications and gives us a baseline on which to generate test transactions using

a realistic distribution of transaction types. The results of the performance analysis are

described below.

6.1.3.1 HIM vertical scalability

To evaluate vertical scalability, three different hardware specifications were chosen and a

performance analysis was performed on each of these systems. The first two hardware spec-

ifications were virtual machines running on Amazon’s elastic cloud compute infrastructure.

We made use of a m1.large and a m1.xlarge instance for these tests1. The third specification

was a high powered laptop.

For each test case the number of concurrent users was increased until the results exceeded

the performance indicators that are set out in Section 6.1.3. The points where maximum

performance was achieved while staying within the performance bounds were recorded. The

recorded results are shown in the following sections.

EC2 m1.large instance The m1.large EC2 instance could handle a maximum of five

concurrent threads issuing continuous requests.

1See Amazon web services EC2 instance types: http://aws.amazon.com/ec2/instance-types/

http://aws.amazon.com/ec2/instance-types/


90

Transaction # Samples Ave. Min. Max. Std. Dev. TPS
Save patient 63 137ms 100ms 297ms 43.22 0.73
Get patients 59 155ms 115ms 262ms 41.49 0.65
Update patient 48 164ms 122ms 315ms 50.18 0.56
Save encounters 137 560ms 391ms 1234ms 150.86 1.5
Get encounters 50 284ms 215ms 463ms 68.11 0.55
TOTAL 357 326ms 100ms 1234ms 214.95 3.8

Table 6.2: Performance results of an m1.large instance using 5 concurrent threads

EC2 m1.xlarge instance The m1.xlarge EC2 instance could handle a maximum of 10

concurrent threads issuing continuous requests.

Transaction # Samples Ave. Min. Max. Std. Dev. TPS
Save patient 82 102ms 74ms 250ms 28.95 0.88
Get patients 76 117ms 84ms 517ms 57.11 0.85
Update patient 68 138ms 92ms 384ms 59.43 0.72
Save encounters 259 464ms 340ms 1114ms 134.55 2.7
Get encounters 93 218ms 172ms 630ms 55.76 1
TOTAL 578 289ms 74ms 1114ms 188.97 5.9

Table 6.3: Performance results of an m1.xlarge instance using 10 concurrent threads

High specification machine

CPU: Intel Core i7-2760QM @ 2.40GHz

Memory: 8GB

Hard-Drive: 250GB Solid State Drive

Platform: Ubuntu Desktop 12.10 x86_64

The high specification machine could handle a maximum of 20 concurrent threads issuing

continuous requests.



91

Transaction # Samples Ave. Min. Max. Std. Dev. TPS
Save patient 276 195ms 60ms 1209ms 156.19 2.9
Get patients 242 201ms 64ms 1236ms 151.41 2.5
Update patient 254 240ms 63ms 1311ms 198.94 2.7
Save encounters 764 564ms 178ms 1549ms 248.06 7.9
Get encounters 266 317ms 106ms 1352ms 185.17 2.8
TOTAL 1802 377ms 60ms 1549ms 266.15 18.3

Table 6.4: Performance results of a high specification machine using 20 concurrent threads

Figure 6.1: Results of vertical scalability

As can be seen, the HIM responded favourably to the increase in processor speed. On the

two virtual environments we were able to almost double the number of concurrent threads

by moving to a machine with double the processing power. On the high power physical

machine we noticed that performance was drastically better. This is likely due to the

powerful processor and the addition of a solid state drive for disk write performance.



92

The OpenHIM easily handles the estimated load for a single district on all of the tested

hardware specifications. However, it falls short of the estimated peak national load of 36.61

TPS. The highest TPS achieved was 18.3 TPS. More powerful hardware could likely reach

the target, however the cost to performance ratio increases greatly as our performance needs

increase. A better approach is to spread the OpenHIM out over a number of smaller servers.

This is discussed in the next section.

6.1.3.2 HIM horizontal scalability

The components of the HIM architecture are designed to be loosely coupled so that they

can be spread over a number of servers. To demonstrate this, the reference application

was distributed by running the most expensive/time consuming transaction mediation on

a separate server. This layout can be seen in Figure 6.2 on page 92. In this case, when

a save encounter transaction is encountered it is routed to a mediation component that is

hosted on an independent server. All other mediation components are still run locally on

the original server. The save encounter transaction is responsible for 47% of the estimated

transaction load. The performance test suite was executed against the reference application

to show how it reacts to being deployed in a distributed fashion. The results are shown in

the next section.

Figure 6.2: Sample distributed HIM layout



93

Transaction # Samples Ave. Min. Max. Std. Dev. TPS
Save patient 81 223ms 117ms 686ms 102.89 0.99
Get patients 68 243ms 130ms 852ms 115.24 0.85
Update patient 91 237ms 139ms 735ms 114.79 0.98
Save encounters 213 574ms 383ms 1304ms 169.63 2.2
Get encounters 61 364ms 233ms 650ms 112.52 0.74
TOTAL 514 390ms 117ms 1304ms 211.67 5.3

Table 6.5: Performance results using two distributed m1.large instances

Figure 6.3: Comparison of distributed vs. non-distributed configurations of the OpenHIM.

2x m1.large instance As can be seen in Table 6.5 on page 93 distributing the application

had a major impact on performance. The HIM was able to handle the same load as a single

m1.xlarge instance from our previous tests. The distributed application was able to handle

a load of ten concurrent users satisfactorily. It achieved a throughput of 5.3 TPS using two

m1.large instances compared to the 5.9 TPS of the much more powerful m1.xlarge instance.

This throughput is a 39.47% increase over the throughput of a single (non-distributed)



94

m1.large instance from distributing the save encounter mediation.

The loose coupling of major components of the HIM allows us to identify bottlenecks in

individual components and distribute them as needed. This is not restricted to just the

mediation components but can apply to the interface and persistence components, as well as

the sub-components of each transaction channel. Many different combination of components

could be deployed in a distributed fashion depending on an implementation’s needs. This is

the ideal case for horizontal scalability. Many more servers can be added in order to reach

the performance goals. This is possible due to the independence and encapsulation of each

of the components. The only requirement being that the HIM implementation would need

to make use of a suitable platform independent messaging standard for inter-component

communication between components.

6.1.4 Concern #4: Prevent propagation of local changes

The configuration of an HIE will always require modifications as a country’s needs change

over time. This concern ensures that such changes are isolated and manageable. HISs that

participate in the HIE should be able to adapt and evolve to suit their changing requirements

and their connection to an HIE should not hinder them in this regard.

The HIM architecture allows for this by providing an abstraction layer through which all

communication between the systems within an HIE takes place. Consider an infrastructure

service that stores shared patient records in a central repository. This central data store

exposes a standards based interface using the XDS.b profile specified by Integrating the

Healthcare Enterprise (IHE). A number of point of care systems in hospitals and clinics

use the XDS.b standard to feed data to the central repository via an implementation of

the HIM architecture. After some time, some clinic systems want to upgrade their point

of care systems to newer version that uses a profile of the newer FHIR based standard

to transmit clinical information. Previously they would have to wait until the upgrade to

using FHIR was coordinated between all the systems participating in the HIE as well as

the central data store. However, the HIM architecture enables both standards to be used

concurrently. A normalisation component can be added to the mediator that can still accept

the older XDS.b standard and also transform the incoming FHIR based messages to the



95

canonical form used by the mediator. The mediator will then still be able to communicate

these messages to the central data store as per normal via its XDS.b interface. This allows

the different systems operating within the HIE to localise their changes and thus be more

responsive to user needs.

In the Rwandan OpenHIM implementation, infrastructure services within the RHIE were

swapped out and updated over time. In particular a newer version of the client registry

application, OpenEMPI, was deployed that changed aspects of its API. The OpenHIM

mediator that performed transformation of messages for the client registry was all that

needed to change to handle these API changes. The point of care systems that submitted

patient demographic data could continue to submit data as before. The HIM architecture

provided a mechanism to protect these system from this change.

However, there are some issues with this approach. It is not always easy to map one

standards based messaging format to another unless they share an information model. This

will not always be the case. The HIM architecture only provides the abstractions to make

this flexibility possible but this flexibility depends on the particular standard being used.

If any changes need to be made to the transactions that the HIE supports, the central

component also needs to be changed. This mean that all other systems are not able to

make use of these new transactions until the changes have been implemented within the

HIM implementation. The HIM would likely be controlled by a government entity and the

client systems are often controlled by a wide variety of organisations that can move faster

than a government entity. Thus, problems could be encountered if the government entity

is not responsive enough to change requests and innovation could be hampered.

6.1.5 Concern #5: Provide a low barrier to entry

A key requirement for an HIE is to enable many different types of HISs to be able to connect

and share information with each other. For LMICs this is further complicated as the HISs

systems can be much simpler and often do not have the budget of larger established HISs

found in many developed countries. Thus, connection to the HIE must be as simple as

possible.

The HIM architecture enables this by providing two mechanisms:



96

1. The HIM architecture is able to adapt legacy messages formats that older systems may

use to those that the HIE expects. This is done using the normalisation component

of mediators.

2. The HIM architecture centralises complex orchestration so that point off care systems

do not have to reimplement these business processes. They may leverage the existing

logic provided in a central location.

For example, consider a set of existing legacy point of care systems that need to connect to an

existing HIE that utilised the HIM architecture. These systems are already able to exchange

information using a custom legacy data exchange format. The HIM implementation could

be used to connect these systems more easily by constructing a normalisation component

within a mediator to transform the legacy exchange format into the current format that the

HIM expects. In this case only one system, the HIM implementation, needs to be altered.

For new point of care systems that are being developed, the expected data exchange format

can be utilised and those systems can make use of the existing orchestration logic within

the HIM implementation. Thus, their connection to the HIE is simplified.

Due to the orchestration logic for saving and querying encounters being encapsulated within

an HIM mediator, the point of care systems are able to communicate with the HIE in a

simple way. This allows multiple point of service applications to be integrated with the

HIE easily using simpler service calls. In addition, if the point of care application couldn’t

capture the required scope of information to send in their messages to the HIE, the messages

can be enriched within the encounter mediator. This allowed even the most basic point of

care systems to connect to the HIE. An example of this is the RapidSMS system which

was connected to the RHIE. RapidSMS allows community health workers to send coded

SMS messages indicating the status of, or risks to a woman’s pregnancy. These message

carry little information due to the restriction on the size of an SMS message. The save

encounter mediator within the RHIE is able to enrich the message with additional patient

demographic information from the client registry before it gets saved in the clinical data

store. In this way the interaction and the infrastructure services are significantly simplified.



97

6.1.6 Concern #6: Secure and auditable

The HIM architecture ensures that transaction are audited and that communications are

secured. Audit logs are stored via the persistence components and the access control com-

ponents controls authentication and authorisation within the HIE.

Within the RHIE, the security aspect was handled with HTTPS communication using “ba-

sic authentication” as the mechanism by which clients were authenticated and authorised.

The OpenHIM reference application’s implementation of the access control component reads

client credentials from an LDAP database to ensure that only authorised clients may com-

municate with the HIE infrastructure.

6.2 Re-usability of the HIM architecture in other LMICs

The re-usability of the HIM architecture (concern #7) was tested by implementing it as

part of a maternal mHealth initiative within South Africa2. The HIM architecture has also

seen adoption in a few other HIE projects in South Africa.

6.2.1 MomConnect OpenHIM implementation

The South Africa National Department of Health along with a number of partner organisa-

tions (independent of this research) has recently implemented a program for mobile maternal

health, called MomConnect. This program includes an HIE and national pregnancy reg-

istry (NPR) that forms part of a system that enables pregnant mothers to be registered and

tracked throughout their pregnancy. The system is based on the Health Normative Stan-

dards Framework for Interoperability in eHealth in South Africa (HNSF), version 2.0 [48].

In addition, pregnant mothers are sent health promotion information about their pregnancy

via SMS. The goal of the MomConnect program, including the NPR and HIE is to better

inform mothers-to-be and to track their pregnancies, even in rural areas. The OpenHIM

reference application was deployed in the implementation of this HIE. Figure 6.4 on page

99 shows the high level logical architecture of MomConnect which includes the following

layers:
2See http://www.jembi.org/project/national-pregnancy-registry/

http://www.jembi.org/project/national-pregnancy-registry/


98

• Edge devices that include mobile phones and other computing devices that are re-

sponsible for collecting, collating and transmitting data to the consumer applications.

• Consumer applications that include mHealth applications and services providing value-

added services to end-users. These could include electronic medical record (EMR)

services.

• An HIE as a centralized platform and technical implementation of the Health Nor-

mative Standards Framework for Interoperability in eHealth in South Africa (HNSF)

that is responsible for providing a single interoperability layer to receive and send

messages in a well-specified, standard format between consumer applications and de-

mographic and clinical repositories. The HIM architecture fits into this layer as it

provides the platform on which interoperability can be achieved.

• Demographic and clinical repositories are centralized repositories of information and

functionality, including the national pregnancy registry (NPR) that stores demo-

graphic details of pregnant women as well as client, provider and facility registries.

• Security/audit services include basic certificates and encryption to ensure the security

of the messages being passed through the system.

The mobile health application, Vumi, is used in the Service Layer to capture the registration

data from mobile phone handsets using USSD technology. Vumi then sends the registra-

tion data to the HIM architecture reference application, the OpenHIM, in a standardised

format. This format consists of a CDA document, specifically defined for this use case and

is transmitted using the Mobile Health Documents (MHD) profile from IHE. Once received

by the OpenHIM, the data is orchestrated and sent to a number of infrastructure services

for storage. The required orchestration was implemented using the mediator components as

described in the HIM architecture. The orchestration includes validation and registration

of client demographics in a client registry (OpenEMPI) and storage of clinical information

in a shared health record (DHIS2 Tracker and OpenMRS), which acts as the NPR. Storage

and reporting of registration data is done by an aggregate data collection tool, DHIS2. The

HIE is also expected to allow multiple other mobile application vendors to connect. The

HIM architecture allows this to be done simply as it enforces a single standardised interface



99

Figure 6.4: A simplified diagram of the MomConnect infrastructure (source: http://www.
jembi.org/project/national-pregnancy-registry/)

for each point of care system to connect to and has configurable access control mechanisms

to allow other point of care application access to the infrastructure as they come online.

The changes required of the OpenHIM reference application from the Rwandan HIE use

case were minimal. The OpenHIM interface, access control and persistence components

were used unchanged except for a small amount of re-configuration for the new environ-

ment. The only components that needed to be modified for this implementation were the

implementation-specific mediation channels in the mediation component. These channels

are designed to be easily swapped in and out as per the HIM architecture. It took a team

of two software developers three months to design and develop the required mediators.

These plugged directly into the OpenHIM’s core component that housed the interface, ac-

cess control and persistence components. In comparison, the original RHIE development

and implementation (including the development of the OpenHIM tool) took numerous de-

velopers over a year to develop. Re-purposing the existing tool was much more efficient.

http://www.jembi.org/project/national-pregnancy-registry/
http://www.jembi.org/project/national-pregnancy-registry/


100

The requirements and challenges of interoperability between the disparate health informa-

tion systems within this HIE were found to be very similar to those experienced in the

Rwandan HIE. The robustness of the HIM architecture was clearly demonstrated by the

fact that it could be readily applied to another environments with minimal effort. The

major effort required is in developing the new mediation components and these are imple-

mentation specific so this will be required of any new implementation. This implementation

serves as a validation of the HIM architecture and demonstrates the generalizability of this

approach.

6.2.2 Other uses of the HIM architecture

In addition to MomConnect, several additional implementations are further demonstrating

the usefulness of this architecture. The HIM architecture has been incorporated within the

OpenHIE initiative to provide an architecture on which the components of an HIE and point

of care systems can interoperate3. As part of this work a new, more modern, application is

being developed based on the HIM architecture. This project is open source and is being

developed by Jembi Health Systems NPC. The source code of this new tool can be found

at: https://github.com/jembi/openhim-core-js. OpenHIE is expected to be applied

in multiple LMICs in the future and thus far the HIM architecture has been found to be

suitable as an architecture to facilitate interoperability for these environments.

In addition, the OpenHIM has been implemented by independent parties for a few smaller

projects within South Africa and in other LMICs. Examples of this include the exchange

of aggregate data between district health informations systems in the Western Cape, South

Africa as well as a deployment in Liberia to enable health provider data to be integrated

to enable better communications with health providers. The Liberia project, mHero4, was

deployed as a part of the current Ebola response effort.

The experience thus far in term of the level of effort required for re-purposing and the fit

for purpose of the HIM architecture has been similar to that of the MomConnect project.

This demonstrates the potential for the HIM architecture to be applicable in a wide variety
3See http://ohie.org/architecture/
4See http://mhero.org/mHero/

https://github.com/jembi/openhim-core-js
http://ohie.org/architecture/
http://mhero.org/mHero/


101

of LMIC environments.

6.3 Architecture quality analysis

The ATAM is used to analyse the HIM architecture to determine its quality with regard

to certain quality attributes. These quality attributes are derived from the architectural

concerns that we have identified. ATAM is a scenario-based method for evaluating soft-

ware architectures [41] and is an evolution of the Software Architecture Analysis Method

(SAAM). ATAM describes a process whereby a stakeholder group is convened to evaluate

the suitability of a software architecture to the architectural concerns. ATAM follows a rig-

orous process where aspects that affect certain architectural qualities (such as performance,

security, modifiability and availability) are identified, prioritised and the architectural de-

cisions that affect these qualities are then determined. Special focus is placed on finding

trade-off points where more than one quality is affected by particular architectural decisions.

The ATAM analysis does not cover all functional aspect of the architecture but provides

some useful insight into the extent to which certain concerns are solved.

ATAM consists of a number of steps that the analysis team leads various stakeholder through

in order to elicit information about the architecture and to determine which scenarios and

quality attributes are most important for the architecture to succeed. This is done by

studying architectural concerns of the architecture. The ATAM steps are listed below:

1. Present the ATAM

2. Present the business drivers

3. Present the architecture

4. Identify architectural approaches

5. Generate quality attribute utility tree

6. Analyse architectural approaches

7. Brainstorm and Prioritize Scenarios



102

8. Analyse Architecture Approaches (second round)

9. Present Results

In this research the ATAM was performed solely by the author utilising knowledge gained

from the Rwandan case study. Thus, certain information sharing steps were not required.

Steps 1-3 are left out as they are related to information sharing and step 5 and 7 are

combined as both steps involve the identification of scenarios. Due to this step 8 (a repetition

of step 6) is no longer needed.

In the sections that follow the outcomes from each of the remaining steps of the ATAM

analysis of the HIM architecture are presented.

6.3.1 Identification of business drivers

As part of the ATAM process, business drivers were identified from the requirements from

Rwandan health information exchange (RHIE) use case and the role of the HIM architecture

in realising that use case.

The core business drivers are listed below and are mapped to the architectural concerns (see

Section 4.2 for the enumeration of architectural concerns) from which they were derived.

• Modifiability is important as messaging standards may change over time and new

transactions, orchestrations and HISs may be added over time. (Concern #1 and #4)

• Scalability and performance are important as such a system may be deployed at a

national level and it should remain functional at scale. (Concern #2)

• Security is important as a patient’s health information is highly confidential and should

not be tampered with or viewed by unauthorised parties. (Concern #5)

• Availability is important as the HIEs interoperability infrastructure needs to always

be available so that vital health data can be captured and retrieved around the clock.

(Concern #2)

• Re-usability is important as the architecture should be applicable to a wide variety of

LMIC environments. (Concern #6)



103

Thus, five major quality attributes were chosen for the HIM architecture based on the

business drivers:

1. Modifiability

2. Scalability and performance

3. Security

4. Availability

5. Re-usability

Scalability and performance were combined into a single attribute as the HIM architecture

handles both of these distinct attributes in a similar way. Scenarios that were identified for

either of these attributes were found to affect the other as well.

6.3.2 Utility Tree

Following steps 4 and 5 of the ATAM process a utility tree was drawn up. The utility tree

maps scenarios derived from the architectural concerns of the architecture to the quality

attributes that the scenarios fall under. To construct the utility tree a number of scenarios

that the architecture needs to address must be elicited. The high level requirements that

were derived from the Rwandan HIE use case were used to formulate these scenarios along

with known scenarios gathered from the Rwandan case study. The utility tree (see 6.5)

contains a list of these scenarios that have been prioritised and mapped to the particular

quality attribute that it addresses.

Following the ATAM process, the evaluation scenarios that appeared in the utility tree were

prioritised along two dimensions. The first dimension is the importance of the scenarios

to the success of the architecture and the second dimension is the anticipated difficulty in

achieving this scenario. These rating can be seen in brackets on the utility tree scenarios,

rated on a scale of high (H), medium (M) and low (L).

Using these priorities the highest rated quality attributes were identified. These attributes

are the most important to the success of the architecture and, thus, define its quality. The



104

Figure 6.5: HIM architecture utility tree

attributes that had scenarios of high importance to the project were chosen as the attributes

that will be evaluated to determine the overall quality of the architecture. Availability was

left out of this analysis as the other qualities were determined to be of greater importance.

Thus, the overall HIM architecture quality can be defined as:

QAch = f(QMod, QSca, Qper, QSec, Qreuse)

The total architecture quality is a function of modifiability, scalability and per-

formance, and security.

6.3.3 Architectural analysis

Subsequent to the generation of the utility tree, each of the evaluation scenarios identi-

fied in the utility tree were analysed to identify their mapping to architectural approaches

present in the HIM architecture. Risks, sensitivity points and trade-offs associated with the

scenarios were also identified by following the ATAM process. Trade-offs are architectural



105

decisions that effect multiple quality attributes, risks describe any architectural risks asso-

ciated with the architecture and sensitivity points describe an architectural decision that

directly influences a particular quality attribute [41].

Below, tables linking each scenario identified in the utility tree to architectural approaches

are shown. In addition, any trade-offs, risks or sensitivity points are linked to each archi-

tectural decision where applicable. The risks, sensitivity points and trade-offs are shown

as symbols (R#, S#, T#) and these are enumerated and described in detail below the

scenario tables. Each mapping is grouped under the quality attribute to which it relates.

6.3.3.1 Modifiability scenarios

Scenario 1.1

Scenario: Add new mediation steps for a transaction in < 30d
Attribute: Modifiability
Environment: HIE use case growth/expansion
Stimulus: A new mediator is needed to adapt and/or orchestrate a new transaction
Response: The new mediator is incorporated into the system

Architectural decisions mapping:

Architecture Decisions Risk Sensitivity Trade-off

Mediators are encapsulated and self contained
components that can be easily added to the system.

R1

A router component allows the dynamic configuration
of new routes to different mediators.

T1

Scenario 1.2

Scenario: Adopt a new messaging format for saving clinical data in < 30d

Attribute: Modifiability

Environment: HIE update/modernisation

Stimulus: A new messaging format is adopted for an HIE

Response: The new messaging format is implemented in the HIE



106

Architecture Decisions Risk Sensitivity Trade-off

The normalisation and denormalisation functions are
encapsulated so that they may easily be replaced to
allow for new messaging formats.

A canonical model is prescribed for use in mediators
such that the orchestration steps are reusable.

S1

Scenario 1.3

Scenario: Support a different messaging transport in < 30d

Attribute: Modifiability

Environment: HIE update/modernisation

Stimulus: A new transport needs to be supported to support a new message exchange

format

Response: Support for a new transport mechanism

Architecture Decisions Risk Sensitivity Trade-off

The encapsulation of the interface component enables
a new protocol to be supported through the
implementation of a new interface component.

T4

6.3.3.2 Scalability and performance scenarios

Scenario 2.1

Scenario: Support a linear increase in the TPS when more resources/server are added

Attribute: Scalability and performance

Environment: HIE growth

Stimulus: The HIE needs to expand to support more transactions (either increase in

number of sending systems or increase in number of transaction types - added mediators)

Response: The system retains acceptable performance even increased throughput



107

Architecture Decisions Risk Sensitivity Trade-off

A stateless design allows for horizontal scaling of
components.

T2

Scenario 2.2

Scenario: Resource expensive mediators should not affect the performance of the rest of

the system

Attribute: Scalability and performance

Environment: General HIE operation

Stimulus: A processing expensive mediator is discovered that is affecting the performance

of the system

Response: The system deployment is adjusted to solve the performance issue

Architecture Decisions Risk Sensitivity Trade-off

Mediators are encapsulated and separated so that
they may be deployed on separate servers if needed.

Mediators are stateless so they can be deployed
redundantly.

Similar to T2

Scenario 2.3

Scenario: Max processing time through the system < 500ms

Attribute: Scalability and performance

Environment: General HIE operation

Stimulus: Incoming transaction

Response: Transactions processing time through the system (excluding the response time

of external systems) is < 500ms



108

Architecture Decisions Risk Sensitivity Trade-off

Data persistence, in the persistence component,
occurs asynchronously.

Mediators should perform external system
interactions in parallel where possible.

6.3.3.3 Security scenarios

Scenario 3.1

Scenario: Only authorised clients may submit transactions 99.999% of time

Attribute: Security

Environment: General HIE operation

Stimulus: Incoming transaction

Response: An authorised clients systems transactions are processed others are rejected

Architecture Decisions Risk Sensitivity Trade-off

A dedicated access control component authenticates
and authorises transactions.

Scenario 3.2

Scenario: Data must be secured 99.999% of time at rest and in flight

Attribute: Security

Environment: General HIE operation

Stimulus: Incoming transaction

Response: Data is protected when being transmitted and when stored

Architecture Decisions Risk Sensitivity Trade-off

Best practise encryption mechanism are enforced by
the a dedicated access control component.

T3

The persistence component’s data store is only
accessible by the core system and public access is
blocked.

R2



109

6.3.3.4 Availability scenarios

Scenario 4.1

Scenario: If a server were to fail the system should still function with no noticeable

downtime

Attribute: Availability

Environment: General HIE operation

Stimulus: A server fails due to hardware or software failure

Response: The system still operates

Architecture Decisions Risk Sensitivity Trade-off

A stateless design allows redundant servers to be
deployed, such that if one were to go down the
system can remain operational.

Similar to T2

6.3.3.5 Re-usability scenarios

Scenario 5.1

Scenario: The architecture must be able to be re-applied to another environment with

minimal effort

Attribute: Re-usability

Environment: New implementation in a new environment

Stimulus: The architecture needs to be adapted to be applied to a new environment

Response: The architecture is flexible enough to be applied to the new environment

Architecture Decisions Risk Sensitivity Trade-off

Mediators are generic and new mediators can be
implemented for any new or different use cases

Architecture is agnostic of messaging standards or
protocol



110

6.3.3.6 Risks, sensitivity points and trade-offs

The various risks, sensitivity points and trade-offs identified in the architectural mappings

above are described below. Each of these are referenced by one of more of the architectural

mappings presented above.

Risks:

• R1 - Encapsulating mediators allows the new mediators or modification of existing

mediators to be made easily, however, it implies that the mediators be independent

and self contained, this affects reusability among the mediator components. There

is no defined mechanism by which mediators can reuse code and there will likely

be situations where the mediators perform related or identical functions, such as,

contacting a particular external service.

• R2 - Storing transactions in the persistence component open up the possibility of the

persistence component being compromised and PI being exposed. Care should be

taken to protect this data store as much as possible.

Sensitivity:

• S1 - Canonical models often are a reflection of the syntactic and semantic messaging

standard used to transmit data, it can be difficult to define a purely abstract indepen-

dent canonical model that is standards independent. The more generic and abstract

the canonical model the greater the potential for modifiability.

Trade-offs:

• T1 - All transaction travel through a the message router. The router component

enables easy modifiability as it allows new or updated mediators to be introduced.

However, it also implies that every transaction has to pass through the router com-

ponent. This can affect the performance of the system under load. Care should be

taken to ensure this component does not become a bottleneck.



111

• T2 - The system should be stateless so that the system can be scaled out horizontally.

However, working in a stateless mode implied that data (such as client account or

transaction logs) be shared among all server in a cluster. This is more expensive than

just accessing a systems primary memory. Thus, there is a trade-off of performance

to gain scalability.

• T3 - Every transaction received by the system needs to be decrypted. The more

expensive the decryption process is often related to how difficult the encryption is to

break. Thus, there is a trade-off between security and performance.

• T4 - Down the line processing of a transaction could depend on the transport on which

the transaction is received. Fully abstracting away the transport can be challenging

and affects the implementability of the design.

6.3.4 Analysis of quality attributes

In the following sections the finding for each of the quality attributes of the HIM architecture

are summarised and discussed.

6.3.4.1 Modifiability (QMod)

From our analysis and prioritization of the various scenarios it was determined that mod-

ifiability is the most desired quality attribute for the architecture. This is due to the fact

that a country’s HIE will always have to respond to change as the need for the exchange of

health information grows. New standards will emerge over time and new transactions will

be identified and will need to be incorporated into the HIE. Also, new messaging protocols

may be developed or existing protocols extended.

The major mechanisms employed by the HIM architecture to deal with this need for change

are separation of concerns and encapsulation of components. In particular mediators are

designed to be independent and encapsulated such that new mediators, or changes to exist-

ing mediators, are simple and do not affect other parts of the system. The architecture also

specifies a configurable router component that allows new mediators to be ‘plugged’ into

the system with ease. This allows additional functionality to be added over time and allows



112

new standards to be supported via the development of new mediators or the refactoring of

existing mediators. In addition, the interface component is also encapsulated. This allows

multiple interface components to exist or a new interface to be developed if need be.

A risk discovered during the evaluation is that due to the mediators being highly indepen-

dent and encapsulated there is no defined mechanism for the mediators to share or reuse

code. This could be a hindrance to both modifiability and to implementability. An imple-

mentation of this architecture should take this into consideration and extract common code

into libraries for use within the mediators. A trade-off point was also discovered during this

evaluation and during the authors experience implementing this architecture. This is that

subsequent processing can often depend on the protocol used to receive the message that

can make it difficult to separate out the interface details from the processing logic. Building

more advanced abstractions improves the modifiability of the interface component but it

makes the design more difficult to implement. A good example of this is implementing a

simple RESTful web service. RESTful web services use constructs within the HTTP pro-

tocol (the HTTP method) to convey semantic meaning for the action of the request. This

makes separating the protocol logic from the message processing logic difficult. Another

identified risk is the fact that the router component may become of a bottleneck that could

affect the performance of the HIM. This is because all messages that flow through an HIM

implementation must pass through the router. This is an integral part of the HIM architec-

ture and care should be taken to ensure that an implementation of the router component

can support the desired transaction load for an particular implementation.

6.3.4.2 Scalability and Performance (QSca and Qper)

Scalability and performance also feature highly as a desired quality attributes in our evalu-

ation. This is because a country’s HIE infrastructure could expand from a pilot at district

level to a national deployment. Performance is also key as every message that is sent to the

HIE infrastructure must pass through the HIM. The performance overhead must be kept

to a minimum so that requests may be responsive. In specific terms we specified that the

total processing time through a HIM implementation should not exceed 500ms per request.

Many requests must also be handled simultaneously as any point of care system (at clinics,



113

hospitals, laboratories etc.) will be sending in requests sporadically. An HIM implemen-

tation should support a linear increase in transactions per second (TPS) as more servers

are added. Mediators will also be of differing complexity and some will be more expensive

(in terms of processing requirements) than others. The architecture must enable additional

resources to be dedicated to those expensive mediators while still allowing other mediators

and other parts of the system to respond quickly.

The architecture employs two major approaches to allow for these scenarios. The inter-

face component, the access control component, the persistence component and each of the

mediators are stateless. This allows an entire HIM implementation to be deployed redun-

dantly over a number of servers. This allows for scalable performance and handling of a

high transaction load. It enables a relatively linear reaction to an increase in TPS as more

servers can be added dynamically to handle increased transaction load. However, additional

overhead may be incurred as distribution of the system increases. The stateless design along

with the fact that mediators are independent and encapsulated allow mediators to be split

onto servers that are separate from the rest of the HIM implementation. This also al-

lows mediators to be scaled horizontally if they need additional processing power. Simple

load balancers can be placed in front of the HIM architecture or individual mediators to

enable this horizontal scalability. To improve performance HIM implementations are also

encouraged to perform any I/O operations in an asynchronous manner and in parallel where

possible. This mainly includes mediators that are communicating with external systems and

the persistence component.

During this evaluation we discovered a trade-off relating to the stateless design. While

the stateless design allows us to easily expand to multiple servers and service a variety of

different transaction loads it also affects the outright system performance. A stateless design

implies that information cannot be cached or stored in a server’s primary memory because

other servers need to access to this information. All data and metadata must be persisted to

a shared data store which can be more expensive than the in-memory alternative. Caching

software could be used to partly alleviate this problem, however, it is unlikely that the raw

speed of in-memory data access could be achieved.



114

6.3.4.3 Security (QSec)

Security also featured highly during the prioritisation of scenarios. The security of patient

information is of vital importance for an HIE. Data should be protected both when it

is transmitted between systems as well as when it is at rest in a permanent data store.

Additionally only those who are allowed to view and update a patient’s information should

be allowed access to it.

The HIM architecture does not specify how endpoints may be secured as this will depend on

the communication protocol chosen by the HIM implementation. For most protocols there

are best practise methods to achieving adequate security. However, the HIM architecture

does define an access control component that enables the HIM to ensure that only autho-

rized persons may access a particular patient’s information. The access control component

determines both identity (authentication) and the authority (authorisation) of the person

or system making a request and is able to allow or deny the request at a central location.

The HIM architecture also specifies that the data store used for storing transactions only

be accessible by the core HIM application and access be blocked from any other sources.

As with most secure systems there is a trade-off between performance of the system and

the level of security achieved. This trade-off is left to the implementing party to determine

based on their requirements.

6.3.4.4 Re-usability (QReuse)

The HIM architecture was designed to be generic so that it may be reapplied in other

environments. This is accomplished firstly with mediators that provide a framework for

implementing message transformation or orchestration logic. Secondly, the HIM archi-

tecture is agnostic of messaging standards that are used (through the normalisation and

de-normalisation feature of mediators) as well as the communication protocol that is used

(through the encapsulation of the interface component). This allows for greater flexibility

and reuse.



115

6.4 Comparison with existing approaches

The HIM architecture provides a set of components that enable interoperability between

disparate health information systems. It describes a central component that is able to per-

form many of the common tasks that are required for interoperability to safely occur; such

as security, message logging, transaction auditing and message mediation. The Enterprise

Service Bus (ESB) architectural model provides a set of features that allows simplified enter-

prise application integration. These features include message orchestration, transformation

and routing. The HIM architecture provides a component-based architecture that further

specialises the ESB architecture.

The HIM architecture is influenced by previous approaches such as Mohawk’s HIAL [9, 72]

reference implementation and HSB by Ryan et al. [59] to help define the functions and

structure of the HIM components. While previous approaches were implemented in high

income countries, this research investigates its applicability in LMICs.

The HIAL architecture and the HSB make use of an ESB for communication between the

various components of the HIE. Similarly, the HIM uses an ESB to simplify the commu-

nication between different components. Also, many of the functions that are described by

the HIAL and the HSB are also provided by the more general HIM architecture. These

functions include logging, access control, message transformation and message orchestra-

tion. The HIAL provides some on-ramp and off-ramp functions to normalise messages into

a canonical form. The HIM architecture extends this idea in its normalisation and de-

normalisation components to not only consider message structure but to also include an

explicit step for message translation to allow for semantic differences.

Furthermore, this work makes use of the ideas presented in Xu et al. [70, 71] to provide some

formalism for the way in which messages are mediated. This mechanism allows us to make

the architecture agnostic of message format, allowing implementers to implement whatever

standards stack they wish in order to achieve semantic interoperability. This separation

allows the architecture to be applicable even as different health information standards gain

or lose adoption. Xu et al. describes an architecture that enables message mediation but

we believe there are additional considerations. Their architecture has mediators between



116

the central component and the service providers. We, however, extend this concept to the

client side as well. Both incoming and outgoing messages should be mediated into a format

that the central component can process. This allows clients to send messages that are not in

the canonical form and allows them to be transformed into the canonical form by the HIM

implementation. This addition also simplifies client message generation which, as stated

above, is a desirable feature for low resource settings.

The HIM architecture differs from previous approaches in that it is not designed for specific

environments and use cases. Both the HIAL and the HSB are designed around specific

messaging standards which make them use case specific. We believe that while many of

the challenges faced are similar, there are nuances to working in low resource settings that

are unique to our study. In this research we have created a generalised architecture and

abstracted away the actual transaction implementations to allow it to apply to a variety of

use cases and environments. All implementation specific logic and choice of standards are

encapsulated into transaction mediation channels. We have defined a structure for these

mediation channels that an implementation may follow to gain semantic interoperability.



117

D
is
tr
ic
t

N
at
io
na

l
T
x/

vi
si
t

D
is
tr
ic
t
T
P
S

N
at
io
na

l
T
P
S

T
ot
al

vi
si
ts

pe
r
m
on

th
36

07
2.
22

1
21

7
66

6.
67

SH
R
:
Sa

ve
en

co
un

te
r

10
8
21

6.
67

3
65

3
00

0
3

0.
17

5.
77

SH
R
:
G
et

en
co
un

te
r

36
07

2.
22

1
21

7
66

6.
67

1
0.
06

1.
92

SH
R
:
T
ot
al

14
4
28

8.
89

4
87

0
66

6.
67

4
0.
23

7.
69

SH
R
:
P
ea
k
lo
ad

(t
ot
al

x3
)

0.
68

23
.0
6

C
R
:
Sa

ve
pa

ti
en
t

36
07

2.
22

1
21

7
66

6.
67

1
0.
06

1.
92

C
R
:
E
di
t
pa

ti
en
t

3
60

7.
22

12
1
76

6.
67

0.
1

0.
01

0.
19

C
R
:
Q
ue

ry
pa

ti
en
t

45
09

0.
28

1
52

2
08

3.
33

1.
25

0.
07

2.
40

C
R
:
T
ot
al

84
76

9.
72

2
86

1
51

6.
67

2.
35

0.
13

4.
52

C
R
:
P
ea
k
lo
ad

(t
ot
al

x3
)

0.
40

13
.5
5

O
ve
ra
ll
T
O
T
A
L

22
9
05

8.
61

7
73

2
18

3.
33

6.
35

0.
36

12
.2
0

O
ve
ra
ll
P
ea
k
Lo

ad
1.
08

36
.6
1

Table 6.1: Estimated transactional load for the Rwandan HIE



Chapter 7

Conclusion

This research has demonstrated that an ESB-based architecture can successfully enhance

interoperability between disparate HISs connected through a health information exchange in

LMICs. A set of concerns for an architecture that facilitates interoperability were derived

from the the Rwandan HIE case study. These concerns were used to drive the design

of the Health Information Mediator architecture (HIM), an ESB-based architecture of a

software component for use within health information exchanges that aims to facilitate and

simplify interoperability. A reference implementation of the architecture, the OpenHIM,

was implemented within the Rwandan HIE. The architecture was analysed against the

architectural concerns and the OpenHIM implementation in Rwanda was used to validate

the architecture. In addition, the Architecture Trade-off Analysis Method (ATAM) analysis

was used to formally analyse the quality of the architecture. The architecture was also

compared and contrasted to existing architectures described in the literature.

Seven architectural concerns were derived and enumerated. These concerns specify that an

architecture that enables interoperability between HISs in LMICs must: facilitate interop-

erability between disparate and heterogeneous systems, both existing and future; balance

central governance with local autonomy; adapt and scale within a changing environment;

prevent local changes from propagating through the system; provide a low barrier to en-

try to connect new and legacy systems; be secure and auditable; and be reusable across a

multitude of environments.

The HIM architecture was introduced to address the concerns and was described using ISO

42010 [39, 21] architecture descriptions. Three different views of the architecture were de-

scribed, each framing a different set of concerns. The three viewpoints used were scalability,

modifiability and interoperability. The HIM architecture description presents a proposed

solution for simplifying interoperability in low resource countries like Rwanda and formalises

the description of such an architecture so that it can be reused in other settings.

118



119

A reference application, the Open Health Information Mediator (OpenHIM) was created

and implemented in Rwanda as part of the RHIE project. It allowed a number of point-of-

care systems to connect to infrastructure services to form an HIE for the pilot district of

Rwamagana. The implementation of the HIM architecture in the RHIE has been successful

and has provided the first validation of the HIM architecture in LMICs.

The architecture was analysed against each of the architectural concerns and the extent to

which each of these is addressed is discussed. Experience with the OpenHIM implementation

in Rwanda is used to support this discussion. The successful implementation of the HIM

architecture within the RHIE demonstrates that an ESB-based architecture may be suitable

for use within LMICs.

The HIM architecture simplifies the interfaces between the point-of-care systems and the

infrastructure services. It also enables complex orchestration logic to be encapsulated cen-

trally and provides a framework for supporting syntactic and semantic interoperability

challenges. While, these challenges were not solved entirely, the framework that the HIM

provided was demonstrated to enable syntactic and semantics challenges to be addressed at

implementation time.

A key concern of the HIM architecture was re-usability to enable it to be easily re-applied

in multiple environments. Importantly, it has seen adoption within multiple environments

within sub-Saharan African LMICs. Besides the Rwandan HIE, the HIM architecture has

proved to be useful within the MomConnect project in South Africa. This finding is im-

portant as it shows that the HIM could form the basis of a generic framework for inter-

operability between HISs in LMICs. This preliminary framework enables the cost, both in

time and resources, to be reduced as it provides patterns that are repeatable within mul-

tiple environments. It is also able to reduce the complexity of instantiating an HIE. This

is particularly important within LMICs as cost and complexity are the two main barriers

preventing interoperability between HISs.

The quality of the architecture was analysed formally using the Architecture Trade-off

Analysis Method. Four vital qualities for a architecture suitable of health information

mediation for the RHIE were identified. These are modifiability, performance and scalability,

security and re-usability. The analysis identified the architectural approaches that enables



120

the HIM architecture to achieve each of its vital quality attributes.

Modifiability is handled by prescribing a high level of encapsulation of the mediation com-

ponents, by allowing messages to be dynamically routed to mediator components and by

prescribing a clear separation of concerns for each mediator such that they only deal with

a single particular problem. This separation of concerns allows the mediators to be simple

and allows them to be easily re-used or replaced as needed.

Performance and scalability are enabled by employing a stateless design of the different

components of the architecture as well as encapsulating components such that they may

be spread over separate servers. An initial empirical analysis of the performance and scal-

ability for a national HIE deployment for RHIE is performed and the OpenHIM reference

application proves to be able to handle national level load using modest hardware.

To enable the security attribute, the HIM architecture employs an access control component

to ensure that patient information is kept secure. It also specifies that data at rest should

be encrypted to ensure it is protected from intruders. Re-usability is enabled through an

extensible mediator design and through encapsulation of the interface component of the

architecture.

The architecture was also compared against other existing approaches. The HIM architec-

ture was found to incorporate three novel features that are not found in previous architec-

tures: it is agnostic of messaging formats used to communicate health data; it is agnostic

of the health information transactions that it supports; and it allows transaction to be me-

diated at both the inbound and outbound interface. This makes it suitable in a number of

environments where health information mediation is required and enables flexibility such

that existing legacy systems can be connected more easily.

The HIM architecture provides a useful platform for solving health information mediation

problems and enables an HIE to be more easily constructed as a result. However, it does

not solve all interoperability challenges. Core parts of the problem are left to the imple-

menting party to solve. This includes syntactic and semantic interoperability problems

between disparate systems. The implementing party must still implement the details of

the normalisation and de-normalisation components to enable messages to be exchanged

between systems that accept different message formats or represent data in a semantically



121

different way. The HIM architecture provides the platform on which these solutions can

be built, however, it is currently not possible to automatically convert message syntax or

semantics between heterogeneous systems. This remains an open problem worthy of further

investigation.

Additional future work includes extensions and formalisation of the generic framework to

better enable interoperability between HISs in LMIC. Particularly, the infrastructure ser-

vices that are most commonly required could be explored along with a study of the standard

data exchange formats and standards that could be prescribed to enable syntactic and se-

mantic interoperability.

The HIM architecture was able to overcome many of the key concerns when facilitating

interoperability between disparate health information systems in low resource settings. It

provides mechanisms to scale in terms of performance both horizontally and vertically, it

simplifies the complexity needed to enable both existing and new client systems to connect

to an HIE infrastructure, it is adaptable and extensible to future requirements, it protects

systems participating in the HIE from changes made to other systems and it facilitates

interoperability between the components of an HIE. It has also been applied and validated

in real world settings. The HIM architecture was able to usefully simplify the mediation of

health information which in turn can enable HIEs to be more easily constructed, particularly

for LMICs where resources are constrained. In addition, it has seen adoption in multiple

projects within sub-Saharan Africa. These projects are ongoing and will likely drive the

evolution of this architecture. Further, the architecture and its concerns show promise in

forming the foundation of a general framework for the construction of HIEs within LMICs.



Bibliography

[1] AbouZahr, C., and Boerma, T. Health information systems: the foundations of
public health. Bulletin of the World Health Organization 83, 8 (Aug. 2005), 578–583.
Available from: http://dx.doi.org//S0042-96862005000800010.

[2] Adebesin, F., Foster, R., Kotzé, P., and Van Greunen, D. A review of inter-
operability standards in e-Health and imperatives for their adoption in Africa. South
African Computer Journal, 50 (2013), 55–72.

[3] Allen, C., Jazayeri, D., Miranda, J., Biondich, P. G., Mamlin, B. W.,
Wolfe, B. A., Seebregts, C., Lesh, N., Tierney, W. M., and Fraser, H. S.
Experience in implementing the OpenMRS medical record system to support HIV
treatment in Rwanda. Studies in health technology and informatics 129, Pt 1 (2007),
382–386. Available from: http://view.ncbi.nlm.nih.gov/pubmed/17911744.

[4] Azubuike, M., and Ehiri, J. Health information systems in developing countries:
benefits, problems, and prospects. The Journal of the Royal Society for the Promotion
of Health 119, 3 (Sept. 1999), 180–184. Available from: http://rsh.sagepub.com/
cgi/doi/10.1177/146642409911900309.

[5] Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H. Architecture-
level modifiability analysis (ALMA). Journal of Systems and Software 69, 1-2 (Jan.
2004), 129–147. Available from: http://linkinghub.elsevier.com/retrieve/pii/
S0164121203000803.

[6] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,
Nielsen, H. F., Thatte, S., and Winer, D. Simple object access protocol (SOAP)
1.1. Tech. Rep. May, World Wide Web Consortium (W3C), 2000. Available from:
http://www.immagic.com/eLibrary/ARCHIVES/SUPRSDED/W3C/W000520N.pdf.

[7] Braa, J. r., Kanter, A. S., Lesh, N., Crichton, R., Jolliffe, B., Sæ bø, J.,
Kossi, E., and Seebregts, C. J. Comprehensive yet scalable health information
systems for low resource settings: a collaborative effort in Sierra Leone. AMIA Annual
Symposium proceedings 2010 (Jan. 2010), 372–376.

[8] Braa, J. r., and Muquinge, H. Building collaborative networks in Africa on health
information systems and open source software development - Experience from the HIS-
P/BEANISH network. IST Africa (2007).

[9] Canada Health Infoway. EHRS Blueprint: An Interoperable EHR Frame-
work - Executive overview. Tech. Rep. April, 2006. Available from: http://www.
infoway-inforoute.ca/working-with-ehr/solution-providers.

[10] Chappell, D. Enterprise Service Bus: Theory in Practice. O’Reilly Media, July 2004.

[11] Chen, R. Towards interoperable and knowledge-based electronic health records using
archetype methodology. PhD thesis, Department of Biomedical Engineering, Linköpings
universitet, 2009. Available from: http://www.worldcat.org/isbn/9789173935043.

122

http://dx.doi.org//S0042-96862005000800010
http://view.ncbi.nlm.nih.gov/pubmed/17911744
http://rsh.sagepub.com/cgi/doi/10.1177/146642409911900309
http://rsh.sagepub.com/cgi/doi/10.1177/146642409911900309
http://linkinghub.elsevier.com/retrieve/pii/S0164121203000803
http://linkinghub.elsevier.com/retrieve/pii/S0164121203000803
http://www.immagic.com/eLibrary/ARCHIVES/SUPRSDED/W3C/W000520N.pdf
http://www.infoway-inforoute.ca/working-with-ehr/solution-providers
http://www.infoway-inforoute.ca/working-with-ehr/solution-providers
http://www.worldcat.org/isbn/9789173935043


123

[12] Cimino, J. Review paper: coding systems in health care. Methods of information
in medicine (1996). Available from: http://people.dbmi.columbia.edu/cimino/
Publications/1996-MethInfMed-CodingSystemsinHealthCare.pdf.

[13] Cios, K. J., and Moore, G. W. Uniqueness of medical data mining. Artificial
intelligence in medicine 26, 1-2 (2002), 1–24. Available from: http://www.ncbi.nlm.
nih.gov/pubmed/12234714.

[14] Coiera, E. Building a National Health IT System from the middle out. Journal of
the American Medical Informatics Association : JAMIA 16, 3 (2009), 271–3. Available
from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2732241&
tool=pmcentrez&rendertype=abstract.

[15] Darke, P., Shanks, G., and Broadbent, M. Successfully completing case study
research: combining rigour, relevance and pragmatism. Information Systems Jour-
nal 8, 4 (Oct. 1998), 273–289. Available from: http://doi.wiley.com/10.1046/j.
1365-2575.1998.00040.x.

[16] Degoulet, P., Sauquet, D., and Jaulent, M.-c. Semantic interoperability in
health information systems. Proc of the IMIA WG 6 Conf on Natural Language and
Med Concept Represenation (1997). Available from: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.42.2932&rep=rep1&type=pdf.

[17] Dixon, B. E., Zafar, A., and Overhage, J. M. A Framework for evaluating the
costs, effort, and value of nationwide health information exchange. Journal of the
American Medical Informatics Association : JAMIA 17, 3 (2010), 295–301. Available
from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995720&
tool=pmcentrez&rendertype=abstracthttp://dblp.uni-trier.de/db/journals/
jamia/jamia17.html#DixonZO10.

[18] Dogac, A., Namli, T., Okcan, A., Laleci, G., Kabak, Y., and Eichelberg,
M. Key issues of technical interoperability solutions in eHealth. In Proceedings of
eHealth 2006 High Level Conference Exhibition (2006), pp. 1–11. Available from: http:
//www.ehealthconference2006.org/pdf/Dogac_proc.pdf.

[19] Dolan, T. J. Architecture assessment of information-system families: a practical
perspective. PhD thesis, Technische Universiteit Eindhoven, 2002.

[20] Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G. B., and
Riesmejer, J. A survey and analysis of Electronic Healthcare Record standards.
ACM Computing Surveys 37, 4 (Dec. 2005), 277–315.

[21] Emery, D., and Hilliard, R. Updating IEEE 1471: Architecture Frameworks and
Other Topics. In Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008) (Washington, DC, USA, Feb. 2008), IEEE, pp. 303–306.

[22] Ferranti, J. M., Musser, R. C., Kawamoto, K., and Hammond, W. E. The
Clinical Document Architecture and the Continuity of Care Record: A Critical Anal-
ysis. Journal of the American Medical Informatics Association 13, 3 (May 2006),
245–252. Available from: http://dx.doi.org/10.1197/jamia.M1963.

http://people.dbmi.columbia.edu/cimino/Publications/1996 - Meth Inf Med - Coding Systems in Health Care.pdf
http://people.dbmi.columbia.edu/cimino/Publications/1996 - Meth Inf Med - Coding Systems in Health Care.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12234714
http://www.ncbi.nlm.nih.gov/pubmed/12234714
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2732241&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2732241&tool=pmcentrez&rendertype=abstract
http://doi.wiley.com/10.1046/j.1365-2575.1998.00040.x
http://doi.wiley.com/10.1046/j.1365-2575.1998.00040.x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.2932&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.2932&rep=rep1&type=pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995720&tool=pmcentrez&rendertype=abstract http://dblp.uni-trier.de/db/journals/jamia/jamia17.html#DixonZO10
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995720&tool=pmcentrez&rendertype=abstract http://dblp.uni-trier.de/db/journals/jamia/jamia17.html#DixonZO10
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2995720&tool=pmcentrez&rendertype=abstract http://dblp.uni-trier.de/db/journals/jamia/jamia17.html#DixonZO10
http://www.ehealthconference2006.org/pdf/Dogac_proc.pdf
http://www.ehealthconference2006.org/pdf/Dogac_proc.pdf
http://dx.doi.org/10.1197/jamia.M1963


124

[23] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
and Berners-Lee, T. Hypertext transfer protocol–HTTP/1.1, RFC 2616, June,
RFC 2616, June, 1999.

[24] Fielding, R. T. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine - Irvine, CA 92697, USA, 2000.

[25] Forrey, A., and McDonald, C. Logical observation identifier names and codes
(LOINC) database: a public use set of codes and names for electronic reporting of
clinical laboratory test results. Clinical Chemistry 42, 1 (1996), 81–90. Available from:
http://www.clinchem.org/content/42/1/81.short.

[26] Garde, S., Chen, R., Leslie, H., Beale, T., McNicoll, I., and Heard, S.
Archetype-Based Knowledge Management for Semantic Interoperability of Electronic
Health Records. IOS Press, 2009, pp. 1007–1011.

[27] Garlan, D. Software architecture: a roadmap. Proceedings of the Conference on the
Future of Software Engineering (2000), 91–101. Available from: http://dl.acm.org/
citation.cfm?id=336537.

[28] Gibbons, P., Arzt, N., Burke-Beebe, S., Chute, C., Dickinson, G.,
Flewelling, T., Jepsen, T., Kamens, D., Larson, J., Ritter, J., Rozen,
M., Selover, S., and Stanford, J. Coming to Terms: Scoping Interoperability for
Health Care. Tech. rep., Health Level Seven EHR Interoperability Work Group, Feb.
2007.

[29] Gruber, T. A translation approach to portable ontology specifications. Knowledge
acquisition, April (1993).

[30] He, H. What is service-oriented architecture. Tech. rep., O’Reilly Press, 2003.

[31] Health Level Seven International. HL7 version 2, Health Level Seven In-
ternational. Available from: http://www.hl7.org/implement/standards/product_
brief.cfm?product_id=185.

[32] Health Level Seven International. HL7 version 3, Health Level Seven In-
ternational. Available from: http://www.hl7.org/implement/standards/product_
brief.cfm?product_id=186.

[33] Huhns, M., and Singh, M. Service-oriented computing: Key concepts and principles.
Internet Computing, IEEE, February (2005), 2–8.

[34] IEEE Standards Board. IEEE Standard Glossary of Software Engineering Termi-
nology. Tech. rep., 1990. Available from: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=159342.

[35] IHE International Inc. IHE IT Infrastructure (ITI) Technical Framework: Volume
1 (ITI TF-1) Integration Profiles. Tech. rep., 2012.

[36] IHE International Inc. IT Infrastructure Technical Framework: Volume 2a (ITI
TF-2a) Transactions Part A - Sections 3.1 - 3.28. Tech. rep., 2012.

http://www.clinchem.org/content/42/1/81.short
http://dl.acm.org/citation.cfm?id=336537
http://dl.acm.org/citation.cfm?id=336537
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342


125

[37] IHE International Inc. IT Infrastructure Technical Framework: Volume 2b (ITI
TF-2b) Transactions Part B - Sections 3.29 - 3.51. Tech. rep., 2012.

[38] Ionita, M., Hammer, D., and Obbink, H. Scenario-based software architecture
evaluation methods: An overview. ICSE/SARA (2002). Available from: http://
ceit.aut.ac.ir/islab/courses/lss/files/92/Arch_Eval.rar.

[39] ISO. ISO/IEC FDIS 42010 IEEE P42010/D9. Systems and software engineering -
Architecture description. Tech. rep., ISO, Mar. 2011.

[40] Kazman, R., Bass, L., Abowd, G., and Webb, M. SAAM: a method for analyzing
the properties of software architectures. Proceedings of 16th International Conference
on Software Engineering (1994), 81–90. Available from: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=296768.

[41] Kazman, R., Klein, M., and Clements, P. ATAM: Method for architecture eval-
uation. Tech. Rep. August, 2000. Available from: http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA382629.

[42] Lucas, H. Information and communications technology for future health systems in
developing countries. Social science and medicine (1982) 66, 10 (May 2008), 2122–32.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/18343005.

[43] Mamlin, B. W., Biondich, P. G., Wolfe, B. A., Fraser, H., Jazayeri, D.,
Allen, C., Miranda, J., and Tierney, W. M. Cooking up an open source EMR
for developing countries: OpenMRS - a recipe for successful collaboration. AMIA
Symposium (2006), 529–533. Available from: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1839638/.

[44] Michael, M., and Moreira, J. Scale-up x scale-out: A case study using
nutch/lucene. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International (2007). Available from: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=4228359.

[45] Ministry of Health Rwanda. Health Sector Strategic Plan. July 2009 - June
2012, Government of Rwanda Ministry of Health, July 2009. Available from: http:
//www.unicef.org/rwanda/events_9491.html.

[46] Moodley, D., Pillay, A. W., and Seebregts, C. J. Position Paper: Research-
ing and Developing Open Architectures for National Health Information Systems in
Developing African Countries. In International Symposium on Foundations of Health
Information Engineering and Systems (Aug. 2011), vol. 7151 of Lecture Notes in Com-
puter Science, Springer.

[47] Mudaly, T., and Moodley, D. Architectural frameworks for developing national
health information systems in low and middle income countries. Enterprise Systems
Conference (ES), 2013 (2013), 1–9. Available from: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=6690083.

[48] National Department of Health - South Africa, and Council for Scien-
tific and Industrial Research - South Africa. Health Normative Standards

http://ceit.aut.ac.ir/islab/courses/lss/files/92/Arch_Eval.rar
http://ceit.aut.ac.ir/islab/courses/lss/files/92/Arch_Eval.rar
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=296768
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=296768
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA382629
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA382629
http://www.ncbi.nlm.nih.gov/pubmed/18343005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839638/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839638/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4228359
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4228359
http://www.unicef.org/rwanda/events_9491.html
http://www.unicef.org/rwanda/events_9491.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6690083
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6690083


126

Framework for Interoperability in eHealth in South Africa. Version 2.0. Tech. rep.,
2014.

[49] National E-Health Transition Authority. NEHTA Interoperability Frame-
work v2.0, National E-health Transition Authority, Australia, 2007. Available from:
http://www.nehta.gov.au/implementation-resources/ehealth-foundations/
ehealth-interoperability-framework.

[50] National E-health Transition Authority. NEHTA Blueprint - Blueprint
v2.0, National E-health Transition Authority, Australia, 2012. Available from:
http://www.nehta.gov.au/implementation-resources/ehealth-foundations/
nehta-blueprint.

[51] Object Management Group (OMG). OMG Unified Modeling Language, Object
Management Group, 2011. Available from: http://www.omg.org/spec/UML/2.4.1/.

[52] Ouksel, A. M., and Sheth, A. Semantic Interoperability in Global Information
Systems: A brief introduction to the research area and the special section. SIGMOD
record 28, 1 (Mar. 1999), 5–12.

[53] Ouksel, A. M., and Sheth, A. Semantic Interoperability in Global Information
Systems: A brief introduction to the research area and the special section. SIGMOD
record 28, 1 (1999), 5–12.

[54] Papazoglou, M. Service-oriented computing: Concepts, characteristics and direc-
tions. Proceedings of the Fourth International Conference on Web Information Systems
Engineering (WISE ’03) (2003).

[55] Park, J. Information systems interoperability: What lies beneath? ACM Transactions
on Information Systems (TOIS) 22, 4 (2004), 595–632.

[56] Peltz, C. Web services orchestration and choreography. Computer 36, 10 (Oct. 2003),
46 – 52.

[57] Postel, J. User datagram protocol. RFC 768, USC/Information Sciences Institute
(1980). Available from: http://tools.ietf.org/html/rfc768?ref=driverlayer.
com.

[58] Ryan, A., and Eklund, P. A framework for semantic interoperability in healthcare:
a service oriented architecture based on health informatics standards. Studies in health
technology and informatics 136 (Jan. 2008), 759–64.

[59] Ryan, A., and Eklund, P. The Health Service Bus: an architecture and case study
in achieving interoperability in healthcare. Studies in health technology and informatics
160, Pt 2 (2010), 922–926. Available from: http://view.ncbi.nlm.nih.gov/pubmed/
20841819.

[60] Schmidt, M. T., Hutchison, B., Lambros, P., and Phippen, R. The Enterprise
Service Bus: Making service-oriented architecture real. IBM Systems Journal 44, 4
(2005), 781–797. Available from: http://dx.doi.org/10.1147/sj.444.0781.

http://www.nehta.gov.au/implementation-resources/ehealth-foundations/ehealth-interoperability-framework
http://www.nehta.gov.au/implementation-resources/ehealth-foundations/ehealth-interoperability-framework
http://www.nehta.gov.au/implementation-resources/ehealth-foundations/nehta-blueprint
http://www.nehta.gov.au/implementation-resources/ehealth-foundations/nehta-blueprint
http://www.omg.org/spec/UML/2.4.1/
http://tools.ietf.org/html/rfc768?ref=driverlayer.com
http://tools.ietf.org/html/rfc768?ref=driverlayer.com
http://view.ncbi.nlm.nih.gov/pubmed/20841819
http://view.ncbi.nlm.nih.gov/pubmed/20841819
http://dx.doi.org/10.1147/sj.444.0781


127

[61] Seebregts, C. J., Mamlin, B. W., Biondich, P. G., Fraser, H. S. F., Wolfe,
B. A., Jazayeri, D., Allen, C., Miranda, J., Baker, E., Musinguzi, N.,
Kayiwa, D., Fourie, C., Lesh, N., Kanter, A., Yiannoutsos, C. T., and
Bailey, C. The OpenMRS Implementers Network. International Journal of Medical
Informatics 78, 11 (Nov. 2009), 711–720. Available from: http://dx.doi.org/10.
1016/j.ijmedinf.2008.09.005.

[62] Sheth, A. Changing focus on interoperability in information systems: From system,
syntax, structure to semantics. Interoperating geographic information systems (1999),
5–29.

[63] Siegel, E., and Channin, D. Integrating the Healthcare Enterprise: A Primer.
Radiographics 21, 5 (2001), 1339–1341. Available from: http://inderscience.
metapress.com/index/B08062038T4L70Q6.pdf.

[64] Valipour, M. H., Amirzafari, B., Maleki, K. N., and Daneshpour, N. A brief
survey of software architecture concepts and service oriented architecture. Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on (2009).

[65] Wiederhold, G. Mediators in the architecture of future information systems. Com-
puter (1992).

[66] World Health Organization. Everybody’s business–strengthening health sys-
tems to improve health outcomes: WHO’s framework for action. Tech. rep., World
Health Organization (WHO), 2007. Available from: https://extranet.who.int/
iris/restricted/handle/10665/43918.

[67] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1,
World Wide Web Consortium (W3C), 2006. Available from: http://travesia.mcu.
es/portalnb/jspui/handle/10421/2507.

[68] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messag-
ing Framework (Second Edition), 2007. Available from: http://www.w3.org/TR/
soap12-part1/.

[69] Wright, G., and Stevens, W. TcP/IP Illustrated, vol. 1. 1995. Available from:
http://books.google.com/books?hl=en&lr=&id=6H9AxyFd0v0C&oi=fnd&pg=PT4&
dq=TCP/IP+Illustrated&ots=b6gJ3z5QmG&sig=7wJPPantrBUf_DCKuN7ZblyMdso.

[70] Xu, Y., Sauquet, D., Degoulet, P., and Jaulent, M.-C. Component-based
mediation services for the integration of medical applications. Artificial Intelligence in
Medicine 27, 3 (Mar. 2003), 283–304.

[71] Xu, Y., Sauquet, D., Zapletal, E., Lemaitre, D., and Degoulet, P. Integra-
tion of medical applications: the "mediator service" of the SynEx platform. Interna-
tional journal of medical informatics 58-59 (Oct. 2000), 157–166.

[72] Yendt, M., Bender, D., and Minaji, B. Developing an Open Source Reference
Implementation of the Canadian Electronic Health Records Solution. Open Source
Business Resource November 2 (Nov. 2008).

http://dx.doi.org/10.1016/j.ijmedinf.2008.09.005
http://dx.doi.org/10.1016/j.ijmedinf.2008.09.005
http://inderscience.metapress.com/index/B08062038T4L70Q6.pdf
http://inderscience.metapress.com/index/B08062038T4L70Q6.pdf
https://extranet.who.int/iris/restricted/handle/10665/43918
https://extranet.who.int/iris/restricted/handle/10665/43918
http://travesia.mcu.es/portalnb/jspui/handle/10421/2507
http://travesia.mcu.es/portalnb/jspui/handle/10421/2507
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://books.google.com/books?hl=en&lr=&id=6H9AxyFd0v0C&oi=fnd&pg=PT4&dq=TCP/IP+Illustrated&ots=b6gJ3z5QmG&sig=7wJPPantrBUf_DCKuN7ZblyMdso
http://books.google.com/books?hl=en&lr=&id=6H9AxyFd0v0C&oi=fnd&pg=PT4&dq=TCP/IP+Illustrated&ots=b6gJ3z5QmG&sig=7wJPPantrBUf_DCKuN7ZblyMdso

	Abstract
	Chapter 1 Introduction
	1.1 Architectures for health information exchange
	1.2 Problem statement, aim and objectives
	1.3 Overview of the Research Design
	1.4 Contributions
	1.5 Thesis layout

	Chapter 2 Literature review
	2.1 Information systems interoperability
	2.2 Interoperability between health information systems
	2.2.1 Technical interoperability
	2.2.2 Syntactic interoperability
	2.2.3 Semantic interoperability
	2.2.4 Achieving all levels of interoperability with HIS standards

	2.3 Architectural paradigms for distributed systems
	2.3.1 Service-oriented architecture
	2.3.2 Enterprise Service Bus

	2.4 Interoperability in health care systems
	2.4.1 Canada Health Infoway: Mohawk reference implementation
	2.4.2 Health Service Bus by Ryan et al.
	2.4.3 Xu et al. Mediator Services
	2.4.4 NEHTA

	2.5 Outstanding issues with ESB based Distributed Systems for HIS

	Chapter 3 Research Design
	3.1 The Rwandan Case Study
	3.2 Deriving architectural concerns from the RHIE requirements
	3.3 Architecture design and implementation
	3.4 Analysis of suitability to LMIC environments
	3.5 Analysis of architectural quality
	3.6 Limitations and summary

	Chapter 4 Design of the HIM Architecture
	4.1 A national health information system for Rwanda
	4.2 The architectural concerns for HIS interoperability 
	4.2.1 Concern #1: Facilitate interoperability between disparate and heterogeneous systems, both existing and future
	4.2.2 Concern #2: Balance central governance with local autonomy
	4.2.3 Concern #3: Adapt and scale within a changing environment
	4.2.4 Concern #4: Prevent local changes from propagating through the system
	4.2.5 Concern #5: Provide a low barrier to entry to connect new and legacy systems
	4.2.6 Concern #6: Be secure and auditable
	4.2.7 Concern #7: Be reusable across a multitude of environments

	4.3 The Health Information Mediator
	4.3.1 Overall HIM architectural paradigm: The ESB
	4.3.2 Architectural viewpoints
	4.3.3 Architecture of the HIM


	Chapter 5 Implementation of the HIM Architecture in Rwanda
	5.1 The point of care interface
	5.2 Messaging format
	5.3 Mule ESB
	5.4 System Architecture of the OpenHIM
	5.4.1 Implementation of the point of care interface and access control components
	5.4.2 Implementation of the persistence component
	5.4.3 Implementation of the mediation component

	5.5 Implementation of the Rwandan HIE
	5.5.1 The RHIE workflow


	Chapter 6 Analysis and discussion
	6.1 Analysis of the HIM architecture
	6.1.1 Concern #1: Facilitate interoperability
	6.1.2 Concern #2: Balance central governance with local autonomy
	6.1.3 Concern #3: Adapt and scale
	6.1.4 Concern #4: Prevent propagation of local changes
	6.1.5 Concern #5: Provide a low barrier to entry
	6.1.6 Concern #6: Secure and auditable

	6.2 Re-usability of the HIM architecture in other LMICs
	6.2.1 MomConnect OpenHIM implementation
	6.2.2 Other uses of the HIM architecture

	6.3 Architecture quality analysis
	6.3.1 Identification of business drivers
	6.3.2 Utility Tree
	6.3.3 Architectural analysis
	6.3.4 Analysis of quality attributes

	6.4 Comparison with existing approaches

	Chapter 7 Conclusion
	Bibliography

