
Classical Noise in Quantum Systems

by

Ismail Yunus Akhalwaya

Submitted in fulfillment of the academic requirements for the degree of Doctor of
Philosophy in the School of Chemistry and Physics,

University of KwaZulu-Natal, Durban

Supervisor: Prof Francesco Petruccione

December 2013

Abstract

Quantum mechanics contains a fresh and mysterious view of reality. Besides the philo-

sophical intrigue, it has also produced and continues to inspire tantalizing new techno-

logical innovations. In any technological system, the designers must contend with the

problem of noise. This thesis studies classical noise in two different quantum settings.

The first is the classical capacity of a quantum channel with memory. Adding forgetful-

memory, attempts to push the boundaries of our understanding of how best to transmit

information in the presence of correlated noise. We study the noise within two different

frameworks; Algebraic Measure theory and Monte Carlo simulations. Both tools are

used to calculate the capacity of the channel as correlations in the noise are increased.

The second classical-quantum system investigated is atomic clocks. Using power spectral

density methods we study aliasing noise induced by periodic-correction which includes

the Dick Effect. We propose a novel multi-window scheme that extends the standard

method of noise correction and exhibits better anti-aliasing properties.

A uniting thread that emerges is that correlations can be put to good use. In the classical

capacity setting, correlations occur between uses of the quantum channel. We show that

stronger correlations increase the classical capacity. The benefits of correlation are even

seen at a meta-level within the framework of Monte Carlo simulations. Correlations are

designed into the algorithm which have nothing to do with real-world correlations, but

are abstract correlations created by a Markov chain employed in the algorithm to help

efficiently sample from a distribution of exponential size. Finally, in the atomic clock

setting, correlations in the measured noise are used to help predict and cancel noise on

a short time-scale while trying to limit aliasing.

Channel capacity and precise time-keeping are distinct topics and require very different

approaches to study. However, common to both topics is their application to com-

munication and other tasks, the need to overcome noise and the benefits of exploiting

correlations in the noise.

i

Preface

The work described in this dissertation was carried out while the author was

• a research visitor at the University of Cambridge, November 2006 - November 2007

• a part time lecturer at the University of Kwazulu Natal, 2008

• a full time researcher at the Center for High Performance Computing, 2009

• a full time lecturer at the University of Johannesburg, 2010 - Present.

The author first registered as a full-time PhD candidate in 2007 at the School of Physics,

University of KwaZulu-Natal, Westville, Durban, under the supervision of Professor

Francesco Petruccione. He subsequently switched to part-time status in 2009.

The studies represent original work by the author and have not otherwise been sub-

mitted in any form for any degree or diploma to any tertiary institution. Where use has

been made of the work of others it is duly acknowledged in the text.

Declaration 1 – Plagiarism

I, Ismail Yunus Akhalwaya declare that

1. The research reported in this dissertation, except where otherwise indicated, is my

original research.

iii

2. This dissertation has not been submitted for any degree or examination at any

other university.

3. This dissertation does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other persons’ writing, unless specifically ac-

knowledged as being sourced from other researchers. Where other written sources

have been quoted, then:

a) Their words have been rewritten but the general information attributed to

them has been referenced.

b) Where their exact words have been used, then their writing has been placed

in italics and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted from

the Internet, unless specifically acknowledged, and the source being detailed in the

dissertation and in the Bibliography.

Signed:

Declarations 2 – Publications

Publication 1

The Classical Capacity of a Qubit Depolarizing Channel with Memory, J. Wouters,

I. Akhalwaya, M. Fannes, F. Petruccione (Phys. Rev. A 79, 042303, 2009)

Signed:

iv

Contents

Abstract i

List of figures viii

List of tables x

Acknowledgements xi

1 Introduction 1

1.1 Quantum Mechanics . 1

1.2 Randomness . 2

1.3 The Overarching Subject of the Thesis . 3

1.4 Structure . 4

2 Channel Capacity Background 7

2.1 Classical Information Theory . 7

2.1.1 Entropy . 7

2.1.2 Classical Capacity . 10

2.2 Quantum Information Theory . 13

2.2.1 Von Neumann Entropy . 13

2.2.2 Classical Capacity of a Quantum Channel 14

v

Contents

3 Classical Capacity of a Qubit Depolarizing Channel with Memory 19

3.1 Introduction . 20

3.2 Classical Capacity of Quantum Channels 21

3.3 The Depolarizing Memory Channel . 22

3.3.1 Construction of the Channel . 23

3.3.2 Classical Capacity . 23

3.4 Algebraic Measures . 26

3.4.1 Manifestly Positive Measures . 26

3.4.2 Mean Entropy . 27

3.5 Algebraic Measure of the Channel . 28

3.6 Results . 32

3.6.1 Non-Forgetful Limit . 36

3.7 Conclusion . 37

4 Monte Carlo Simulation Background 41

4.1 Monte Carlo Method . 41

4.1.1 Introduction . 41

4.1.2 Invariant Distribution . 42

4.1.3 Transition Matrix . 43

4.1.4 Ergodicity . 44

4.1.5 Estimator and its Variance . 45

4.2 Random Number Generator . 47

4.3 Correlations . 48

4.3.1 The Interplay of Noise Correlations Exhibit Fractal Behaviour . . 49

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory 53

5.1 Introduction . 53

5.2 Construction of the Channel . 55

5.3 Monte Carlo Method . 57

5.3.1 Entropy . 57

5.3.2 Algorithm . 58

vi

Contents

5.3.3 Parallel Programming . 60

5.4 Analysis and Results . 61

5.4.1 Capacity versus s . 61

5.4.2 Expected 1/m behaviour for the Estimate Variance vs Sample size 62

5.4.3 Correct Regularizing Behaviour . 65

5.4.4 Tuning Parameters . 65

5.5 Conclusion . 70

6 Atomic Clock Background 75

6.1 Introduction . 75

6.2 Sampling and Reconstruction . 76

6.2.1 Fourier Analysis . 76

6.2.2 Using the Fourier Transform . 76

6.3 Characterizing Precise Oscillators: Time Domain 79

6.4 Modelling and Randomness . 79

6.4.1 Statistics . 80

6.5 Characterizing Precise Oscillators: Frequency Domain 84

6.5.1 Autocorrelation . 84

6.5.2 Power Spectral Density . 85

6.5.3 I2 Power Spectral Density . 86

6.5.4 Allan Variance Power Spectral Density 90

6.5.5 Power Law Noise Models . 90

6.6 Atomic Clock Closed Loop Correction . 93

6.6.1 Quantum Physics of Atomic Clocks 93

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks 99

7.1 Introduction . 99

7.2 Noise Correction . 100

7.2.1 Sensitivity Function . 100

7.2.2 Phase Correction . 102

7.2.3 Frequency Correction . 103

vii

Contents

7.2.4 Aliasing and the Dick Effect . 110

7.3 Multiple Window Attack on Aliasing Noise 120

7.3.1 Implementation . 122

7.3.2 Window Design . 122

7.3.3 Window Performance . 125

7.3.4 Td, Tr and flow Dependence . 128

7.3.5 Given Td, Finding an Optimal Tr 129

7.4 Conclusion . 135

8 Conclusion 139

8.1 Different Mechanisms to Model and Tools to Measure Randomness 139

8.1.1 Channel Capacity Noise Correlations 139

8.1.2 Atomic Clock Noise Correlations 140

8.1.3 Monte Carlo Algorithmic Use of Correlations 141

8.2 Concluding Thoughts . 142

Appendix 143

Single Window Code . 144

Multiple Window Code . 163

C++ Monte Carlo and Capacity Code . 186

viii

List of Figures

3.1 Capacity for maximally different sub-channels increases with memory. 33

3.2 Capacity versus the average no-error probability a. 34

3.3 Capacity versus the memory parameter s using many iterations and including

full Markov calculation. 35

4.1 Π(k) vs Binary(k). 50

4.2 Sorted Π(k) vs k′. 50

5.1 Capacity versus the memory parameter s using many iterations and including

full Markov calculation. 62

5.2 Inter-run σS vs m. 63

5.3 Intra-run σS vs m. 63

5.4 Inter-run log σS vs logm. 64

5.5 Intra-run log σS vs logm. 64

5.6 Average Entropy vs Chain Length (intra-run σ error bars). 65

5.7 Average Entropy vs Burn-in Length (intra-run σ error bars). 66

5.8 σ vs Burn-in Length. 67

5.9 Acceptance Ratio vs Expected Flip. 68

5.10 Correlation time vs # Skip. 69

5.11 σ vs # Skip. 69

ix

List of Figures

7.1 A typical g(t) sensitivity function. Tp is the preparation time, Tr is the

length of time that the system is sensitive to noise (r for Ramsey), Tm is the

measurement and processing time and Tc is the total time (c for cycle). . . . 101

7.2 The transfer function squared of the single window sensitivity function, show-

ing the regions of sensitivity to noise in the Fourier domain (with no sensitivity

at n/Tr). 111

7.3 Aliasing due to Overlapping Translated Copies. 112

7.4 Aliasing (on the non-zero region). 112

7.5 The transfer function squared Aliased. 113

7.6 Total Aliasing Error (1/f noise). 115

7.7 Total Aliasing Error (1/f2 noise). 116

7.8 Summed and Averaged Aliasing Error (1/f noise). 117

7.9 Final Noise (1/f2). 118

7.10 Final Noise (1/f). 119

7.11 Example Three Window Sensitivity. 123

7.12 Comparison Run 1. 126

7.13 Selecting the Best Window over (Tr,Td). 130

7.14 Comparison Run 2. 131

7.15 Comparison Run 3. 132

7.16 Comparison Run 4. 133

7.17 Total Aliasing Comparison. 134

7.18 Overall performance (z axis rotated). 135

7.19 Overall performance with Dick Penalty (z axis rotated). 136

x

List of Tables

6.1 Power law Noise (hi are constants, fH are cut-offs, γ is the Euler-Mascheroni

constant) . 92

7.1 A Listing of Different Window Designs and their Modulations. 125

7.2 Legend for all the Performance Comparison Figures. 128

xi

Acknowledgements

Bismillahirahmaniraheem

“Whoever does not thank people, has not thanked God.” – pithy saying.

Many people have contributed to making this thesis possible∗. That contribution may

have come in the form of personal or academic support, and both cases were literally

crucial and highly appreciated.

I would like to start by acknowledging my family and their immense sacrifices: Ayesha

for giving of her herself and giving up so much, Maryam and Asma for freely giving

their innocent unreserved affection, Mum and Dad for giving their lives to their kids,

Yasmeen and my siblings for giving their respect and assistance and the Omars and

Meriam Matenche for giving their well-wishing and assistance. Thank you for your love,

patience and prayers.

∗This is, of course, a cliche and perhaps what seemingly makes cliches boring, is that many people

have experienced them and so there is no useful novel information in subsequent experiences and

reporting of the experience. But the view that cliches are boring, perhaps misses their most essential

aspect, which probably led to the sayings becoming cliches in the first place. What makes meaningful

cliches actually precious, is that they are experienced by a given person for the first time and in a

personal, subjective way. This is valuable to the person reporting it and to the people involved

in the experience. Furthermore, just by having this view above, even people not directly involved,

can reflect on their own experiences and make a special connection between the subjective and the

paradoxical common experience of the subjective. I say all of this because I really want to express

how moved I am by all the assistance.

xiii

List of Tables

Next, I would like to mention a list of people/institutions who have been involved in the

PhD either directly or indirectly, and leave the descriptive thanks to in-person discussion:

Hermann Uys (as well as his collaborators Michael Biercuk and Jarrah Sastrawan),

Timothy Winters, Ken Matthis, the Musallees at UKZN and UJ, Brian Vaddan, David

Robinson, the NLC (including Alpha Ebrahim and Yingwen Wein), the CHPC (including

computing time), Nilanjana Datta, Jeroen Wouters, Mark Fannes, Tony Dorlas, Artur

Ekert, Andreas Buchleitner and group, the Applied Math Department at UJ, Thomas

Konrad, Mervlyn Moodley, the Quantum group at UKZN (including Ilya Sinayskiy and

Mhlambululi Mafu) and Francesco Petruccione, my supervisor.

Finally, I would like to acknowledge funding from the NRF, Canon Collins-Mamphela

Ramphele-Chevening Scholarship, UKZN and UJ.

xiv

Chapter 1

Introduction

1.1 Quantum Mechanics

Quantum mechanics is a mathematical description of physical reality [1, 2]. As with

any mathematical model, certain assumptions about the fundamental structure of re-

ality are made when the model is mapped to the real world. The verification of these

assumptions comes indirectly in the ‘tasting’∗, that is, how well the theory predicts

the outcomes of experiments. Quantum theoretical predictions have been more accu-

rately confirmed than any other man-made physical theory to date. The strange thing

about these fundamental quantum axioms and assumptions [3], besides the strangeness

of complex superposition, the weirdness of wave-collapse and the plethora of unintuitive

behaviours it implies, is that, almost uniquely amongst scientific theories, we don’t know

what the axioms actually mean in terms of the underlying structure of reality. There’s no

shortage of possible interpretations including the canonical observer-based Copenhagen

interpretation [4], the pilot-wave Bohmian interpretation [5], the many-world’s Everett

interpretation [6] and the Consistent Histories interpretation [7], to name a few, but none

of them are testable (except, perhaps the quantum suicide-test [8] of the many worlds

interpretation, which can’t really count because the experimenter can’t share his/her

∗This refers to the saying, ‘The proof of the pudding is in the tasting’ and is used deliberately since
engagement with reality is ultimately a subjective experience, like tasting. The ontological question
of reality is made all the more curious within the framework of quantum mechanics.

1

1 Introduction

results and the experiment of course would probably be unethical†).

1.2 Randomness

One important issue that has fascinatingly different interpretations, is the question of

randomness. Is randomness intrinsic to reality or merely a reflection of the lack of deter-

ministic information? What is the proper understanding of the transition between the

quantum and classical regimes and what more must be added to decoherence in order to

arrive at a complete picture? Does wave collapse really collapse some real-world corre-

spondence to the wave-function and really introduce randomness or is it merely a change

in our knowledge of the real world? What does Heisenberg’s uncertainty principle say

about reality? Are complex amplitudes just a way of introducing ‘negative’ probabili-

ties?‡ Can negative probabilities make sense? Can probabilities make sense? This last

tongue-in-cheek question refers to the oft debated and perhaps still open problem in

classical statistics, of the interpretation of probabilities, along the lines of the Bayesian

versus Frequentist views. It is interesting that this debate, which is all about states of

knowledge and randomness, also hinges on issues of subjectivity.

Besides the above philosophical aspects of randomness, the practical aspects are very

important to real world applications of quantum systems. How can decoherence be best

managed in order to enable quantum computing? Can metrology benefit from quantum

systems in order to beat classical noise? Can quantum noise actually help improve

efficiency of the transport of energy in quantum networks? Can correlations in the noise

help to combat noise?

†For perhaps at least two separate reasons, the first being that it is an experiment that involves
suicide, even if one interpretation has it that consciousness will not be destroyed, and secondly even
if the many worlds interpretation is correct, parallel consciousnesses will be killed. Actually these
considerations, at a meta-level, open up a whole Pandora’s box of Schrodinger’s cats, by drawing
attention to the fact that especially in this case, ethics is relative to one’s model of the universe, and
specifically of consciousness itself.

‡A Quantum Turing Machine can be constructed without complex numbers but with negative numbers.

2

1.3 The Overarching Subject of the Thesis

1.3 The Overarching Subject of the Thesis

This thesis does not deal with any of the philosophical questions on randomness, but

it does take their importance as motivation to study random noise. The study of ran-

domness includes building mathematical tools that describe it and using these tools in

the service of answering some of the practical questions. Randomness has both classical

as well as essentially quantum aspects. Classical randomness refers to a lack of knowl-

edge about deterministic states, for example, the outcome of a coin toss. Quantum

randomness refers to measurement induced randomness (wave-collapse) or curiously, the

equivalent notion of indeterminate subsystems of a larger pure state (tracing). This

thesis chooses to focus on classical randomness but in relation to quantum systems.

One of the main practical applications of the ideas in this thesis is in the field of commu-

nication. Safe and secure communication is the bloodline of our information technology

world. Information theory, the study of information and communication resources, lays

the theoretical foundations upon which that technology operates. The most recent major

advancement in the field of information theory and technology has been the expansion

from a classical to a quantum worldview. There are new unrivalled possibilities such us

quantum computing, quantum channels and quantum metrology but also new challenges

such as degradation due to quantum decoherence of noisy environments.

The overall aim of this doctoral thesis is to better understand noise and to try and

manage it. We look at two different aspects of noise that, for example, affects commu-

nication. The first aspect is the study of the capacity of a noisy single-qubit quantum

channel. Our specific primary concern here is understanding the capacity’s dependence

on the correlations in the noise. We approach this part of the study using algebraic [9] as

well as numerical Monte Carlo methods [10]. The application of these methods attempts

to introduce novel ways of calculating the capacity of quantum channels. The second

aspect is the noise in quantum metrology, specifically in an atomic clock setup. This

noise places limitations on the precision with which time can be kept which ultimately

has a bearing on the speed of communication. Our primary concern here is studying

3

1 Introduction

aliasing and the Dick Effect [11] using Fourier Analysis methods.

It is hoped that this thesis could help, in a small way, to combat noise in real-world

applications. It also presents the overall idea that correlations should explicitly be

looked out for, perhaps in different guises, as a source of benefit when trying to achieve

certain information-related tasks. Finally, it is dreamed that this idea of the emphasis

on correlations, may perhaps indirectly, help answer some of the philosophical questions

outlined above, but no progress is made towards this goal.

1.4 Structure

This thesis consists of eight chapters and an appendix of code. The main topics come

in the form of a background chapter followed by a ‘paper’ chapter. Each paper chapter

has either already been accepted by a journal or is in the process of being submitted to

a journal. Only the first paper chapter (Ch. 3) has co-authors that were also involved

in the actual writing of the paper [12]. My estimated contribution to that paper is 50%.

For the remaining chapters, I am the sole writer, with the other participants providing

editing and guidance.

4

Bibliography

[1] Modern Quantum Mechanics, J.J. Sakurai, (Addison-Wesley; 1994)

[2] The Principles of Quantum Mechanics (fourth edition), P.A.M. Dirac, (The Inter-

national Series of Monographs on Physics 27; Oxford University Press; 1982)

[3] Quantum Computation and Quantum Information, M.A. Nielsen and I.L. Chuang,

(Cambridge University Press; 2000)

[4] Who invented the Copenhagen Interpretation? A study in mythology, D. Howard,

(Philosophy of Science; 2004)

[5] A Suggested Interpretation of the Quantum Theory in Terms of ”Hidden Vari-

ables”, D. Bohm, (Physical Review 85; 1952)

[6] Theory of the Universal Wavefunction, H. Everett, (Thesis; Princeton University;

1956)

[7] Properties of Consistent Histories, F. Dowker and A. Kent, (Phys. Rev. Lett. 75;

3038 - 3041; 1995)

[8] The Doomsday Device, H. Moravec, (Mind Children: The Future of Robot and

Human Intelligence; Harvard University Press; p. 188; 1988)

[9] Functions of Markov processes and algebraic measures, M. Fannes, B. Nachtergaele,

and L. Slegers, (Rev. Math. Phys. 4; 39; 1992)

5

Bibliography

[10] Monte Carlo Sampling Methods Using Markov Chains and Their Applications,

W.K. Hastings (Biometrika Vol. 57, No. 1 (Apr., 1970) pp. 97-109)

[11] Minimizing the Dick Effect in an Optical Lattice Clock, P.G. Westergaard,

J. Lodewyck, and P. Lemonde (IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, Vol. 57; No. 3; 2010)

[12] The Classical Capacity of a Qubit Depolarizing Channel with Memory, J. Wouters,

I. Akhalwaya, M. Fannes, F. Petruccione (Phys. Rev. A 79, 042303, 2009)

6

Chapter 2

Channel Capacity Background

2.1 Classical Information Theory

The notions of knowledge and wisdom are abstract concepts that have intrigued philoso-

phers throughout the ages. A particularly ingenius and less ambitious approach to par-

tially understanding the issue was made by Claude Shannon, the father of information

theory. Shannon separated out the notions of meaning and symbols. He left the meaning

of meaning to the philosophers and employed the tools of probability, to describe the

frequency of occurrence of the symbols. With a random variable treatment of symbols,

his work became one of the foundation stones in the digital computing and communi-

cations technological age. He even coined the now ubiquitous term ‘bit’ of information

[1].

2.1.1 Entropy

In his landmark 1949 paper [1], Shannon mathematically defined the concept of infor-

mation entropy of a discrete random variable X,

S(X) = −
∑
x

px log px.

The discrete variable x runs over the set of symbols/letters called the alphabet, x ∈ A.

The value px is the probability of occurrence of the letter x, for every independent∗ draw

from the random variable X, often called the source.

∗Shannon’s results may be extended to stationary random variables.

7

2 Channel Capacity Background

Entropy is a measure of uncertainty or unpredictability in the source. If the source is an

origin of ‘annoying’ noise, then entropy measures how noisy and variable that noise is.

If the source is related to some useful data source, for example from the weather report,

then entropy is a measure of how much can be learnt on average with every new piece

of information received from the source, that is, the number of random possibilities that

are eliminated in learning the actual outcome. Thus, entropy is a measure of the size of

the number of probable outcomes (as opposed to the number of possible outcomes). The

notions of the uncertainty before a random useful outcome is known, and the information

gained once a ‘reading’ has been taken, are two views of the same concept of entropy.

It is also useful to remember that entropy is an average concept, indeed it can be viewed

as the expected, 〈·〉, logarithm of the a-priori probability of the outcomes,

S(X) = 〈− log2 px〉 .

This notion, of taking random probabilistic events and averaging them to arrive at a

deterministic answer is a common theme that runs through this thesis, statistics and

even quantum theory in general.

These intuitive views and probably the reason for the definition, come from the first cod-

ing theorem that Shannon proved in the 1949 paper. The theorem gives an operational

meaning to the definition and makes explicit and literal what is meant by the notion

that entropy measures the amount of information.

The theorem states that entropy is the average number of bits needed to record the

outcome per draw of the random variable with vanishing error as more and more draws

are recorded as a single block of outcomes. Thus entropy is a measure of the space

of growing probable outcomes. By growing probable outcomes, we mean the number

of probable outcomes as more and more draws are made. By measure of the space,

we mean the ‘dimension’ of the space and hence the appearance of the logarithm in

the definition. As the number of possibilities grows exponentially, the logarithm of the

number of possibilities grows linearly, capturing the ‘dimensional’ size of the space.

The extremal case of equally probable outcomes makes the operational meaning clearer.

8

2.1 Classical Information Theory

Let us count the number of outcomes of a sequence of fair coin tosses. Each outcome is

equally likely, with probabilities,

pH = 1/2, pT = 1/2.

One divided by either of the probabilities is equal to the number of possible outcomes,

1/pH = 1/pT = 2 = N . Indeed, in general, for any number of equally likely outcomes,

N , each probability is pi = 1/N and 1/pi = 1/(1/N) = N . Now the logarithm of

the number of possibilities, is a measure of the ‘dimensional’ size of the space and the

probabilities can give us access to N

log2 1/p = − log2 p = log2N.

To be more precise about what we mean by ‘dimensional’ size, we ask what is the number

of binary variables forming a tuple so that all configurations of the tuple could uniquely

label all the possibilities? The number of variables is the dimension of the Cartesian

product of the spaces that the variables run over. For N equally likely outcomes, it is

easy to see that we need log2N number of variables, or so called bits, to describe the

outcome.

Returning to the coin example, for one flip, N = 2 and log2 2 = 1. For a larger number

of flips, F , there are N = 2F possible sequences of outcomes and there are logN = F

bits (two state descriptions, either H or T) needed to single out which outcome occurred.

Thus − log2 p is the number of bits needed to describe the outcome. The full definition

caters for general probability mass distributions. This generalization is achieved by

actually turning the arbitrary probability mass distribution into a scenario of equally

likely possibilities. To be more precise, the proof introduces equally likely sequences of

draws as an asymptotically growing block. The heart of the proof is that the blocks of

draws form a set of so called equally likely typical sequences, whose total probability of

occurrence asymptotically approaches unity. A rough proof below appeals to the law of

large numbers.

9

2 Channel Capacity Background

For a large number, F , of independent draws the number of times symbol x appears is

pxF . Now, the probability of a particular typical sequence to be drawn is the product

of the probability of each specific letter at each location in the sequence. Since letter

x appears pxF times, that letter’s contribution to the probability is p
(pxF)
x and the

probability, pt, of the full typical sequences is

pt =
∏
x

p(pxF)
x .

By the law of large numbers used for a second time, all the typical sequences will have

this probability. Therefore, the number of such equally probable typical sequences is

N = 1/pt =
1∏

x p
(pxF)
x

.

Now, as we saw above, the number of recording bits needed to specify each of these N

outcomes is,

log2N = log2

1∏
x p

(pxF)
x

= −F
∑
x

px log px = F S(X).

Finally, the number of bits per draw on average is then

(log2N)/F = S(X),

non-rigorously proving Shannon’s first coding theorem.

2.1.2 Classical Capacity

Shannon went on to extend the entropy definition to related quantities. For example,

he introduced a second random variable Y , which is potentially correlated to X. That

is, X and Y have a joint probability distribution px,y and it may be that px,y 6= pxpy.

With this joint distribution Shannon introduced the joint entropy,

H(X,Y) ≡ −
∑
x,y

px,y log(px,y),

and the conditional entropy of Y given X,

H(Y |X) ≡ −
∑
x,y

pxp(y|x) log p(y|x).

10

2.1 Classical Information Theory

The conditional probability is defined as p(y|x) ≡ px,y/px = px,y/
∑

y px,y.

These correlations do not, in general, imply a causal relationship between X and Y .

However, for the specific model of communication that Shannon introduced, X models

the sender, who sends letters x to the receiver (the causality part) which are received

with potential disturbances (the noise part) as letters y, according to the random variable

Y .

If we specify px and p(y|x) then we have completely specified the joint probability px,y =

pxp(y|x), and all the entropic quantities, H(X), H(Y), H(X,Y) and H(Y |X). The

sender is free to choose px but p(y|x) is a fixed property of the channel, specifying the

channel’s actions and introduced noise, completely.

H(Y |X) measures the average uncertainty left in random variable Y , conditioning on

an outcome x of X, occurring with probability px. Putting this together with the full

entropy of Y , Shannon defined the (symmetric) mutual information between X and Y

I(X : Y) ≡ H(Y)−H(Y |X) = H(X) +H(Y)−H(X,Y) = H(X)−H(X|Y).

This measures the common information between X and Y . An intuitive sense is gained

from the definition by seeing the first term as the total variability in Y and the second

term as the variability in Y that does not come from X, but, for example, from unrelated

noise sources. Hence the difference is the information common to both random variables.

The second identity, has a simple Venn diagram interpretation, where area represents

uncertainty and set overlap represents commonality.

The third identity has an intuitive reading that pre-empts the channel capacity theorem.

H(X) measures the dimension of the space of typical sequences (Shannon’s first coding

theorem). These typical, equally likely sequences, could potentially be used to encode

information. Now, H(X|Y) measures the average uncertainty in X remaining, even after

Y is received and known. Such remaining uncertainty implies that the exact X typical

sequence that was sent, cannot be perfectly inferred from the corresponding sequence

of Y ’s. Thus the dimension of the space of uncertain remaining sequences subtracts

from the dimension of the space of available typical sequences to give the dimension of

11

2 Channel Capacity Background

the space of code-words that can be reliably sent. To maximise the size of the space of

code-words, the whole expression needs to be maximized over the choice of X, yielding

the capacity.

This is made precise in Shannon’s second coding theorem,

C(X → Y) = max
X

I(X : Y).

The definition of the capacity, C(X → Y), is the maximum rate in bits of information

per communication symbol that can be transmitted from a sender using an optimized

multiple block encoding of X’s through a given channel, characterized by p(y|x), to a

receiver who decodes the sequence of received Y ’s. The theorem proves that this capacity

is equal to the maximization of the mutual information over X.

The maximization is present because the sender has the freedom to select which com-

munication letters to send and how often. The goal is to make the X typical space as

large as possible while keeping the post-reception uncertain space as small as possible.

The optimal X’s letters and probabilities are not what constitutes the message. X sets

up the typical sequences and an unknown, but special subset of these, called code-words,

could be used to encode the message. It is up to the sender and receiver to map messages

to code-words in a pre-agreed fashion so that the receiver can decode the message. The

decoding step is distinct from the encoding. A sequence of Y ’s that is received is not

immediately recognizable as code-words. The sequence received needs to be mapped to

the likely code-word sent and then the code-word can be inverted to give the message.

Shannon’s second coding theorem, shows that it is possible to take a noisy channel and

use it for asymptotically reliable lossless communication. The irony of his proof that

gives assurance of the communication possibilities of the channel, is that it does not

actually construct a set of code-words, it merely proves its existence.

Finally, an interesting property of the capacity is that it is additive. That is, if multiple

identical channels are available for parallel use, the capacity of the combined channel is

simply the sum of the capacities of the individual channels.

12

2.2 Quantum Information Theory

2.2 Quantum Information Theory

Information theory and computer science seem to ‘start out’ as abstract concepts in the

mathematical world which then get applied to the real world. For example, the Church-

Turing hypothesis [2] takes the abstract Turing machine and conjectures that no-real

world computing device can outperform it.

Quantum mechanics as a revolutionary physical theory, brings many unexpected twists

to our understanding of reality itself. Not only does it contest the strong version of

the Church-Turing hypothesis, it also places physics at the base of information theory.

From this view, information theory and computer science through their constructions,

are actually modelling the real world at a physical level and as such need to take into

account quantum physics to become complete.

Quantum information theory provides a further twist by questioning our notions of

physical locality through Bell inequality violations [3] and perhaps even suggesting that

the axioms of quantum mechanics somehow have information-theoretic motivations.

Thus information theory and quantum theory are inextricably and so far mysteriously

linked. Therefore we can expect Shannon’s coding theorems to have quantum analogues,

and sometimes with interesting new features. As the quantum world comes with new

resources (but also with counter-intuitive restrictions), the generalization is not unique.

For example, there are product state or entanglement assisted encoding and decoding

possibilities. There is also the quantum capacity of a quantum channel or the classical

capacity of a quantum channel. For this thesis, we study the classical capacity of a

quantum channel featuring product-state-input encoding and joint-output-measurement

decoding.

2.2.1 Von Neumann Entropy

The quantum analogue of the Shannon entropy is the Von Neumann entropy of a density

state, ρ,

SV (ρ) = −Tr(ρ log ρ).

13

2 Channel Capacity Background

Since ρ is Hermitian and positive, it is diagonalizable with positive eigenvalues {λi} = Λ.

The Von Neumann entropy is thus related to the Shannon entropy,

SV (ρ) = S(Λ).

Using the definition of Von Neumann entropy, Josza and Schumacher [4] generalized

Shannon’s first coding theorem to a quantum information setting. They showed that

the average number of qubits per draw needed to hold a quantum source of potentially

overlapping pure states, {pi,Φi} (an extension of the letters of the alphabet), is the Von

Neumann entropy of the mixture of the pure states,

#qubits = SV

(∑
i

piΦi

)
.

2.2.2 Classical Capacity of a Quantum Channel

One generalization of Shannon’s second coding theorem is to consider sending classical

information through a quantum channel, Φ(ρ), as described by a completely positive,

trace preserving memoryless map.

Since it is classical information we are sending and receiving, the generalization actually

involves the original entropic concepts. That is, the concept of mutual information

between the initial and final random variables is exactly the same as in Shannon’s second

coding theorem, because the variables are classical and the overall transfer of classical

information is ‘oblivious’ to the fact that a quantum channel is being used in between.

Whilst the mutual information definition is the same, its calculation is very different.

Indeed, it involves a series of mappings from classical to quantum through the channel

and back to classical. Finally, to arrive at the capacity, the maximization over more

choices has to be taken because there are extra levels of mappings.

Another major difference for the quantum case, is that if we allow the receiver to conduct

a joint quantum measurement on multiply-received quantum states, that is, we allow the

receiver to entangle the output before measuring, then the capacity can be shown to be

greater than if this is not allowed. This means that the capacity is not additive in the

14

2.2 Quantum Information Theory

sense discussed above for the classical capacity. Since the capacity is an asymptotic

average quantity of increasing number of uses anyway, we naturally choose to allow joint

quantum measurements and over larger and larger block sizes. The full capacity per

use should be defined taking into account this extra strategy. Having said this, we treat

entanglement in input states as a separate case (entanglement assisted capacity) and

prefer to maintain that the sender is only allowed product state inputs.

So the definition of the capacity per use involves a regularization procedure,

CX→Φ→Y = lim
n→∞

C(n)/n, (2.1)

where C(n) is the classical capacity through a quantum channel where joint measurements

are allowed on blocks of size n.

Now that we have laid out the setting, we introduce a quantum information entropic

quantity called the Holevo χ quantity [5] based on the output states of the channel for

given input states, ρi, occurring with probability pi,

χ({pi, ρi}) = S(Φ(
∑
i

piρi))−
∑
i

pi S (Φ (ρi)) .

This is a quantum property because it involves quantum states and channels. However,

it refers to our goal of transmitting classical information through the mapping of the

classical state i to an assigned quantum state, i 7→ ρi.

This quantity captures the size of the carrier quantum state being sent through the

channel (in the first term) and the average amount of noise the channel disturbs those

carriers by (in the second term).

The difference is related to the amount of classical information that can be reliably sent

through the quantum channel. Indeed, Holevo [5] and Schumacher-Westmoreland [6]

(HSW) proved that the classical capacity is the maximization of the χ quantity over

input pure states and their probabilities,

CX→Φ→Y = max
{pi,ρi}

χ({pi, ρi}).

15

2 Channel Capacity Background

This is a remarkable ‘single-letter’ quantum entropic characterization of the complicated

limiting regularization process Eq. (2.1). This is not to say that the capacity can be

achieved by code-words of single letters, but that combining the letters and the mapped

quantum states with joint measurements and taking the asymptotic limit, leads to a

capacity that can be described in terms of the properties of the single letters and their

associated quantum states. Indeed, the capacity depends on taking larger and larger

blocks of letters, and for example capping the joint measurement size, leads to a lower

capacity.

The HSW theorem became a fundamental building block for many other entropic and

capacity related quantities. One extension [7] that we use in this thesis, is a weakening of

the restriction that the channel must be memoryless. One of the simplest extensions to

memoryless channels are called forgetful channels. The HSW theorem applies directly to

these forgetful channels. In this thesis, we calculate the χ quantity for a specific simple

forgetful channel and study the effects that the strength of the correlations have on the

capacity.

16

Bibliography

[1] The Mathematical Theory of Communication, C. Shannon and W. Weaver (Urbana

IL: University Illinois Press; 1949)

[2] Quantum theory, the Church-Turing principle and the universal quantum com-

puter, D. Deutsch (Proceedings of the Royal Society of London Ser. A; A400; pg.

97–117; 1985)

[3] On the Einstein Podolsky Rosen Paradox, J. Bell, (Physics 1 (3); 195200; 1964)

[4] A New Proof of the Quantum Noiseless Coding Theorem, R. Josza and B. Schu-

macher (J. Mod. Opt.; 41 23439; 1994)

[5] The Capacity of Quantum Communication Channel with General Signal States,

A.S. Holevo (IEEE Trans. Inform. Theory; 44 26972; arXiv:quant-ph/9611023;

1998)

[6] Sending Classical Information via Noisy Quantum Channels, B. Schumacher and

M.D. Westmoreland (Phys. Rev. A; 56 1318; 1997)

[7] Quantum Channels with Memory, D. Kretschmann and R.F. Werner, Phys. Rev.

A, 72(6):62323, 2005 (arXiv:quant-ph/0502106)

17

Chapter 3

Classical Capacity of a Qubit
Depolarizing Channel with
Memory

Published:

The Classical Capacity of a Qubit Depolarizing Channel with Memory,

J. Wouters, I. Akhalwaya, M. Fannes, F. Petruccione (Phys. Rev. A 79, 042303, 2009)

Abstract

The classical product state capacity of a noisy quantum channel with memory is inves-

tigated. A forgetful noise-memory channel is constructed by Markov switching between

two depolarizing channels which introduces non-Markovian noise correlations between

successive channel uses. The computation of the capacity is reduced to an entropy

computation for a function of a Markov process. A reformulation in terms of algebraic

measures then enables its calculation. The effects of the hidden-Markovian memory on

the capacity are explored. An increase in noise-correlations is found to increase the

capacity.

19

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

3.1 Introduction

Quantum mechanics brings strange and wonderful features to the field of information

theory. It introduces new information resources such as qubits with the power of super-

position but also teasing restrictions such as the no-cloning theorem. We are interested

in the possibility of the boosted transmission of classical information through a quantum

channel with memory and no prior entanglement.

Great strides have been made in understanding the capacity of quantum channels. For

example, the celebrated Holevo-Schumacher-Westmoreland (HSW) theorem [1, 2] gives

an expression for the classical capacity of a noisy memoryless quantum channel with

product state inputs. The memoryless channel restriction has since been extended to,

so called, forgetful memory channels [4]. The inclusion of memory is the next step in

the attempt of accurately modelling the complicated noise-correlated real world. Now

that these initial seeds of the theoretical framework are in place, it is enlightening to

use these tools, in specific cases, to analytically study the new effects that noise with

memory has on the capacity.

We construct a forgetful channel and incorporate memory effects by Markov switching

between two sub-channels. In order to investigate the classical product state capacity of

this channel we must look at the entropy of the classical output. The output sequence of

qubits and their associated errors are correlated. To manage this complicated conditional

dependence, we use the hidden Markov nature of the process to reformulate the problem

using the algebraic measure construction [5]. The algebraic measure approach allows us

to derive an expression for the asymptotic entropy rate. We then explore the effects that

our non-Markovian memory has on the classical product state capacity.

This paper is structured as follows. In Section 3.2, we take a closer look at the quantity

we are investigating, namely the product state classical capacity. In Section 3.3, we

construct the forgetful channel with Markovian noise correlations. In Section 3.4, alge-

braic measures are introduced, which are used in Section 3.5 to reformulate the problem.

Finally, in Section 3.6, we show how this allows us to easily calculate the capacity of the

20

3.2 Classical Capacity of Quantum Channels

channel numerically.

3.2 Classical Capacity of Quantum Channels

The information process we are studying is classical communication through a noisy

quantum channel. The layout of this section largely follows that in [1].

With the classical information we want to send encoded using an input alphabet A =

{1, . . . , a}, we choose for every element i ∈ A an encoding quantum state ρi on a Hilbert

space H. This input state is then transmitted using a quantum channel Λ : B(H)→ B(K).

For the channel to be a valid quantum channel it must be a completely positive trace

preserving map.

Transmitting the element i ∈ A results in a quantum state Ri = Λ(ρi) being received on

the output side. On this side, the received quantum state is measured using a resolution

of identity in K. This resolution of identity is a set of positive operators X = {Xi} on K

such that
∑

iXi = 1.

The conditional probability of the receiver measuring j, when the input i was sent, is

given by p(j|i) = TrRiXj . If at the input side the element i is sent with a probability πi,

the amount of information that will be received is quantified by the classical Shannon

information,

IΛ,1(π, ρ,X) =
∑
i,j∈A

πip(i|j) log

(
p(j|i)∑

k∈A πkp(j|k)

)
. (3.1)

If the sender is allowed to use the channel n times, the channel use can be described

by the product channel Λn = ⊗nΛ on ⊗nH = H ⊗ . . . ⊗ H. The input alphabet is now

An and the probability distribution of a word u = (i1, . . . , in) ∈ An being sent is again

denoted by πu. The codeword corresponding to the input u is given by

ρu = ρi1 ⊗ . . .⊗ ρin

and results in Ru = Ri1 ⊗ . . . ⊗ Rin being received. The conditional probability and

the Shannon information IΛ,n for the n-product of the channel can now be introduced

completely analogously to Eq. (3.1), with the summations over An instead of A.

21

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

The maximum amount of information that can be sent with n channel uses is now given

by

Cn(Λ) = sup
π,ρ,X

IΛ,n(π, ρ,X) .

Due to the fact that Cn + Cm ≤ Cm+n, the limit

Cclass(Λ) = lim
n→∞

Cn(Λ)

n

exists. Using Shannon’s coding theorem, we see that C is the least upper bound of the

rate of information that can be transmitted with asymptotically vanishing error.

The HSW theorem [1, 2] gives an expression for this classical product state capacity of

noisy memoryless quantum channels,

Cclass(Λ) = χ∗ = sup
π,ρ

χ(Λ),

where χ is the Holevo χ quantity

χ({(πi,Λ(ρi))})

= S(
∑
i

πiΛ(ρi))−
∑
i

πi S(Λ(ρi)) .

Due to the convexity of the von Neumann entropy, the supremum can in fact be taken

over pure states ρi.

The memoryless channel restriction has recently been weakened to include, so called,

forgetful memory channels. For such channels, the classical product state capacity has

been shown [4] to correspond to

C∗ = lim
n→∞

Cclass(Λn)

n
, (3.2)

where Λn is a channel representing the transmission of n states, with the noise on

subsequent transmissions is correlated. See [4] for details or Section 3.3 for an example.

3.3 The Depolarizing Memory Channel

Treating information or noise sources as independent random variables is a successful but

crude first approximation. To improve the modelling process and to achieve better per-

formance in real world applications, the independence assumption needs to be removed.

22

3.3 The Depolarizing Memory Channel

The first step in this direction is to introduce forgetful noise memory. A forgetful noise

process is one which after sufficiently long time, ‘forgets’ or is independent of previous

noise. Thus, here the independence is pushed further away, allowing a space to study

the effects of short-term memory. With the theoretical tools in place, it is instructive to

study even very simple models to see the effects of memory on the classical capacity.

3.3.1 Construction of the Channel

The forgetful channel is constructed by combining two memoryless single qubit depo-

larizing channels (E0 and E1), switching between them using a two-state Markov chain

(Q = (qij), i, j ∈ {0, 1}). Thus, Q is the 2 × 2 Markovian channel selection matrix

with qij being the probability of switching from channel i to channel j. Hence, qij ≥ 0

and qi0 + qi1 = 1 for i, j ∈ {0, 1}. It is forgetful, in the case when the Markov chain is

aperiodic and irreducible.

The depolarizing channels can be written as: Ei(ρ) = x0
i ρ + x1

i (1 − ρ). These single

qubit channels can be thought of as probabilistically mixing the identity channel (with

probability x0
i) and ‘flip’ channel (with probability x1

i = 1− x0
i) acting on a single qubit

density operator ρ. However this rewriting is only completely positive for 1/3 ≤ x0
i ≤ 1.

The built-up channel Λn, corresponding to n successive uses is

Λn = ρ1 ⊗ . . .⊗ ρn 7→∑
i1,...,in

γi1qi1i2 . . . qin−1inEi1(ρ1)⊗ . . .⊗ Ein(ρn) .

The sum is over all possible paths (i1, . . . , in) ∈ {0, 1}n and each term is a tensor product

of the selected sub-channels weighted by the probability of occurrence (γi is the initial

probability of selection set to the stationary distribution of the Markov process: QTγ =

γ).

3.3.2 Classical Capacity

We calculate the capacity with this n-use form of the channel and regularize by taking

the limit n→∞ as in Eq. (3.2). Since we are looking at the product state capacity, we

23

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

choose

ρi = Φ(n)(l) = Φ(n)(l1, . . . , ln)

:= |l1〉〈l1| ⊗ . . .⊗ |ln〉〈ln| ,

where the li are arbitrary pure qubit states.

Applying the channel Λn, we get

Λn(Φ(n)(l)) =
∑
i1,...,in

γi1qi1i2 . . . qin−1in

(x0
i1 |l1 ⊕ 0〉〈l1 ⊕ 0|+ x1

i1 |l1 ⊕ 1〉〈l1 ⊕ 1|)⊗ . . .

⊗ (x0
in |ln ⊕ 0〉〈ln ⊕ 0|+ x1

in |ln ⊕ 1〉〈ln ⊕ 1|) ,

where (li ⊕ 1) denotes the qubit state with a flipped Bloch vector with respect to li =

(li ⊕ 0)

|li ⊕ 1〉〈li ⊕ 1| = 1− |li ⊕ 0〉〈li ⊕ 0|

By expanding the product above we see that the eigenvalues of the output state are

given by

λn(k) =
∑
i1,...,in

γi1qi1i2 . . . qin−1inx
k1
i1
. . . xknin . (3.3)

Note that these eigenvalues are independent of the choice of the input state.

The channel output can now be written as

Λn

(
Φ(n)(l)

)
=
∑
k

λn(k)Φ(n)(l + k) .

Hence, if we calculate the first term in the Holevo χ quantity for π, the uniform distri-

bution (πi = 1/2n), and Φi going over all the ρ(n)(l), we see that

Φout :=
∑
l

1

2n
Λn

(
Φ(n)(l)

)
=

1

2n

∑
k

λn(k)
∑
l

Φ(n)(l + k) .

24

3.3 The Depolarizing Memory Channel

Since l goes over all possible combinations, so does l + k, so we can relabel them

Φout =
1

2n

∑
k

λn(k)
∑
l
′

Φ(n)(l′) .

Since the eigenvalues in Eq. (3.3) sum to one, we see that Φout is the maximally mixed

state

Φout =
1

2n

∑
l
′

Φ(n)(l′) .

Thus, S(Φout) is maximal and is equal to log2(2n) = n.

The second term in the Holevo χ quantity is

−
∑
i

πiS (Λn(ρi)) .

Since the eigenvalues λn(k) of Λn(ρi) do not depend on the choice of ρi, this term does

not influence the maximization. Hence our choice of π and ρ maximizes the Holevo χ

quantity.

Thus, the final expression for the regularized capacity Eq. (3.2) is

C∗ = lim
n→∞

1

n
Cclass(Λn)) = 1− lim

n→∞

1

n
S(Λn(ρ)) . (3.4)

If we were to calculate the output entropy using the eigenvalues in Eq. (3.3), the cal-

culation would be exponentially long in n. Therefore, other techniques are needed. The

way we approach the problem is by reformulating it as a hidden Markov process. The

eigenvalues of the output state correspond to the probabilities of such a process.

A hidden Markov process can be defined as follows. If we have a translation-invariant

measure ν with the Markov property on LZ, where L is a finite set, then a hidden Markov

measure can be constructed on KZ through a function Φ : L → K, with the following

local densities

µ((ωm, . . . , ωn)) =
∑

εm,...,εn
Φ(εm)=ωm...Φ(εn)=ωn

ν((εm, . . . , εn)) , (3.5)

where ωm, . . . , ωn ∈ K and εm, . . . , εn ∈ L . For obvious reasons, these processes are also

called functions of Markov processes.

25

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

3.4 Algebraic Measures

An algebraic measure, µ, is a translational-invariant measure on a set {0, . . . , q − 1}Z,

with probabilities determined by matrices Ea with positive entries, one for each of the q

states. The probability of a sequence is obtained by applying a positive linear functional

σ to a matrix product of the corresponding matrices of the states of the sequence:

µ(i1, . . . , in) = σ(Ei1 . . . Ein). This matrix algebraic construction is the reason for the

name Algebraic Measure, studied in detail in Ref. [5]. As we shall see, the hidden Markov

processes correspond to a set of algebraic measures with a specific positivity structure

and remarkably, the converse holds too.

3.4.1 Manifestly Positive Measures

In [5] it was shown that hidden Markov processes correspond to manifestly positive

algebraic measures. The local densities of such a manifestly positive algebraic measure

on an infinite chain KZ of classical state spaces K = {0, . . . , q − 1} are of the form

µ((ω1, . . . , ωn)) = 〈τ |Eω1 . . . Eωnσ〉 ,

where ωi ∈ K, τ and σ are vectors in R
d with non-negative elements (denoted (Rd)+)

and the Ei are d× d real matrices with non-negative elements (denoted M+
d).

As an example of these manifestly algebraic measures, let us look at a regular Markov

chain µ((ωm, . . . , ωn)) on {0, . . . , q − 1}Z. If we choose τ , σ and the Ei as

σ ∈ (Rd)+ : σa = 1 for a ∈ K ,

τ ∈ (Rd)+ : τa = µ((a)) for a ∈ K ,

Ea ∈M+
d : (Ea)b,c = δa,b

µ((b, c))

µ((b))
for a, b, c ∈ K ,

one can check that 〈τ |Eωm . . . Eωnσ〉 indeed gives the correct densities.

From this example it is easy to see that if we have a hidden Markov process on LZ defined

by a map Φ : K → L and a Markov measure µ on K with corresponding matrices Ea,

the manifestly positive algebraic measure corresponding to the hidden Markov measure

26

3.4 Algebraic Measures

is given by the same vectors σ and τ as before and the following matrices:

Fa ∈M+
d : Fa =

∑
ε,Φ(ε)=a

Eε for a ∈ K . (3.6)

For a proof of the converse, which is namely, that every manifestly positive algebraic

measure corresponds to a hidden Markov measure, we refer to [5].

3.4.2 Mean Entropy

We will now briefly summarize how the algebraic measure approach allows for a simpler

approach to finding the entropy density [5, 6].

The entropy of a state µ on KZ restricted to a region Λ is defined by

SΛ(µ) = −
∑

ωΛ∈KΛ

µ(ωΛ) logµ(ωΛ) .

SΛ can be shown to be bounded by #Λ log q, monotonically increasing in Λ and strongly

subadditive, that is

SΛ1∩Λ2(µ) + SΛ1∪Λ2(µ) ≤ SΛ1(µ) + SΛ2(µ) .

Using the strong subadditivity of the entropy and the translational invariance of the

measure, one can show that [3, 9]

S(µ) = lim
n→∞

S(µn)

n
= lim

n→∞
(S(µn)− S(µn−1)) .

We can then use this relation together with the expression for the local densities of

the manifestly positive measures to reformulate the convergence of the mean entropy

into a dynamical system of converging measures on the set of d-dimensional probability

measures Bσ as

S(µ) = lim
n→∞

∑
a∈K

∫
Bσ
φn(dν)ha(ν) ,

27

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

where

µ((ε0, . . . , εn)) = 〈τ |Eε0 . . . Eεnσ〉

with σ, τ ∈ (Rd)+

Bσ = {ν ∈ (Rd)+| 〈ν|σ〉 = 1}

ha(ν) = −〈ν|Eaσ〉 log〈ν|Eaσ〉

φn(dν) =
∑

ε0,...,εn∈K
µ((ε0, . . . , εn))δ E∗εn ...E

∗
ε0

µ((ε0,...,εn))

(dν) .

If we define the linear transformation Tµ on functions on

Bσ : (Tµf)(ν) =
∑

a∈K〈ν|Eaσ〉f
(

E∗aν
〈ν|Eaσ〉

)
, one can show that φn(f) = φ0(Tnµ f). Tµ is a

contraction map, so a fixed point argument can be used to show that φn converges to a

unique measure φ that is invariant under Tµ

φ(Tµf) = φ(f) .

This measure allows us then to calculate the mean entropy

S(µ) =
∑
a∈K

∫
B
φ(dν)ha(ν) . (3.7)

Our goal in the remaining part of the article is to translate the switching depolarizing

channel into the setting of algebraic measures and to try and find the invariant measure

that allows us to calculate the mean entropy.

3.5 Algebraic Measure of the Channel

The relationship between the hidden Markov measure, say µ′ on KZ, and the underlying

Markov measure ν with the Markov property on LZ is through a ‘tracing’ function

Φ : L→ K, as is shown in Eq. (3.5).

The underlying Markov process for the overall quantum channel has a four state config-

uration space corresponding to channel selection and error occurrence:

K = {(0, 0), (0, 1), (1, 0), (1, 1)}. The first index indicates which depolarizing channel

28

3.5 Algebraic Measure of the Channel

has been chosen and the second indicates whether a bit flip occurred. The elements of

the transition matrix, E, for this process are then given by

(E){(i,j)(i′,j′)} = qii′x
j′

i′ , (3.8)

the probability of going from (i, j) to (i′, j′) is given by the switching probability qii′

from channel i to i′, multiplied by the probability xj
′

i′ that channel i′ produces the error-

occurrence j′.

The function that produces the correct hidden Markov process is then given by

Φ((i, j)) = j .

This function reflects the fact that we are unaware of the choice of channel that has

been made. The only effect that is visible from the outside is whether or not an input

qubit has been flipped. Thus, Φ has to ‘trace out’ the choice of channel. Φ maps into

the two-state error configuration space containing ‘no flip’ and ‘flip’: L = {0, 1} .

Using the fact that the matrices E(i,j) defining the algebraic measure of a Markov process

((Sec. 3.4.1, Pg. 26), a = (i, j) ∈ K) have only one non-zero row and Eq. (3.6), we

get the matrices F0 and F1 that define the algebraic measure corresponding to µ′. The

matrix corresponding to 0, the first element of L is given by

F0 =
∑

(i,k),Φ′((i,k))=0

E(i,k) =
∑
i

E(i,0)

=

q00x

0
0 q00x

1
0 q01x

0
1 q01x

1
1

0 0 0 0
q10x

0
0 q10x

1
0 q11x

0
1 q11x

1
1

0 0 0 0

 ,

and similarly for 1, the second element of L.

The hidden Markov process then gives us almost the same probabilities as the eigenvalues

in Eq. (3.3)

p((k1, . . . , kn)) = 〈τ |Fk1 . . . Fkn1〉

=
∑
i1,...,in

τi1,k1qi1i2 . . . qin−1inx
k2
i2
. . . xknin .

29

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

Note that according to our discussion in Section 3.4, the vector τ is the stationary

distribution of the full matrix E. Using Eq. (3.8), one can see that the invariant

distribution τ is in fact τ(i,k) = γix
k
i , so the probabilities of the hidden Markov process

coincide with the eigenvalues in Eq. (3.3).

Having constructed the correct algebraic measure, we can determine Tµ explicitly and

use it to greatly simplify the corresponding invariant measure φ.

The expression for Tµ, as can be found in [5], is

(Tµf)(ν̂) =
∑
a∈L
〈ν̂|Fa1〉f

(
F ∗a ν̂

〈ν̂|Fa1〉

)
,

where ν̂ is any 4-dimensional vector such that 〈ν̂|1〉 = 1 and f is a continuous real-valued

function on the set of such vectors. For the case of our hidden Markov measure, the

form of this transformation can be greatly simplified. Due to the stochasticity of the

matrix E, we have the following:

F0|1〉 =

1
0
1
0

 and F1|1〉 =

0
1
0
1

 .

If we furthermore denote the four row vectors of E by µ̂0, µ̂1, µ̂2 and µ̂3, we can write

F ∗0 ν̂ = ν0µ̂0 + ν2µ̂2 and F ∗1 ν̂ = ν1µ̂1 + ν3µ̂3 .

On top of this, µ0 = µ1 and µ2 = µ3, so the total form of the transformation becomes

(Tµf)(ν̂) = (ν0 + ν2)f

(
ν0µ̂0 + ν2µ̂2

ν0 + ν2

)
+ (ν1 + ν3)f

(
ν1µ̂0 + ν3µ̂2

ν1 + ν3

)
.

From this form of the transformation, we can already greatly restrict the support of φ.

Our claim is that the support of φ is restricted to the set of convex combinations of µ̂1

and µ̂3

supp(φ) ⊂ {aµ̂1 + (1− a)µ̂3 | a ∈ [0, 1]} .

To show this, let’s suppose that ν̂ ∈ supp(φ) and ν̂ 6∈ S := {aµ̂1 + (1− a)µ̂3 | a ∈ [0, 1]}.

30

3.5 Algebraic Measure of the Channel

Take ζν̂ a function on Bσ such that ζν̂(ŝ) = 0 for all ŝ ∈ S and ζν̂(ν̂) 6= 0, then

0 6=φ(ζν̂) = φ(Tµζν̂) =

∫
φ(dν)Tµ(ζν̂(ν))

=

∫
φ(dν)

[
(ν1 + ν3)ζν̂

(ν1µ̂1 + ν3µ̂3

ν1 + ν3

)
+ (ν2 + ν4)ζν̂

(ν2µ̂1 + ν4µ̂3

ν2 + ν4

)]
.

However, this integral is equal to zero, since the arguments to ζν̂ run over the set S.

Therefore, we have for f ∈ C(B),

φ(f) =

∫ 1

0
dλ(a)f(aµ̂1 + (1− a)µ̂3) , (3.9)

with λ a measure on [0, 1].

Now let us look at φ acting on the transformed f :

φ(Tµf) =

∫
φ(dν)

[
(ν1 + ν3)f

(ν1µ̂1 + ν3µ̂3

ν1 + ν3

)
+ (ν2 + ν4)f

(ν2µ̂1 + ν4µ̂3

ν2 + ν4

)]
=

∫ 1

0
dλ(a)

[
(µ̂a,1 + µ̂a,3)f

(µ̂a,1µ̂1 + µ̂a,3µ̂3

µ̂a,1 + µ̂a,3

)
+ (µ̂a,2 + µ̂a,4)f

(µ̂a,2µ̂1 + µ̂a,4µ̂3

µ̂a,2 + µ̂a,4

)]
, (3.10)

where

µ̂a = aµ̂1 + (1− a)µ̂3 .

By invariance (Sec. 3.4.2, Pg. 27), we can equate Eq. (3.9) and the above Eq. (3.10) to

discover an invariance concerning λ. We thus arrive at the following symmetry of λ:

λ = T [λ] = a 7→ c1(a)λ[f1(a)] + c2(a)λ[f2(a)] .

The two functions f1 and f2 are relatively simple shrink functions about two separate

points in the domain [0, 1], that shrink the [0, 1] domain into two (possibly overlapping)

sub-intervals of [0, 1].

31

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

We can turn this analytic symmetry into a cyclic definition or iterative procedure to

generate λ up to some approximation λn.

λn+1 = T (λn) .

We still have not defined λ0, but taking a look at the iterative procedure, we see that

there exist fixed points of the two shrink functions, call them a1 and a2,

a1 = f1(a1) a2 = f2(a2) a1, a2 ∈ [0, 1] .

With this observation the idea is to begin the iteration procedure with two Dirac delta’s

at these fixed points,

λ0(a) =
1

2
δ(a− a1) +

1

2
δ(a− a2) .

Note that
∫
λ0(a)da = 1, as a measure should be. Since there is unique convergence

then the initial weightings should not matter [5].

To see that this is a good starting point and to get further insight into the support of λ,

it can be seen that the support will grow, but most importantly, once a point is within

the support of λm it remains there for all n ≥ m. So if the procedure is taken to infinity

the support is fixed and countably infinite. Thus, we arrive at the following expression

for the full support,

supp(λ) = {a ∈ [0, 1] : ∃n ∈ N,∃ki ∈ {0, 1}∀i ∈ [1, n]

fkn ◦ fkn−1 ◦ . . . ◦ fk1(a1 or a2) = a} .

We use this iterative procedure to generate λn and then use it in Eq. (3.9) to approximate

the measure. The entropy in Eq. (3.7) can then be calculated and finally we use the

entropy to calculate the capacity through Eq. (3.4). It is the capacity and its dependence

on memory that we are interested in.

3.6 Results

In constructing our channel we defined certain parameters. It is useful to introduce a

new set of suggestive parameters in terms of the old and also to reduce their number by

32

3.6 Results

s

a

C
∗

1

3

2

3

1

−1

0

1

0

0.5

1

Figure 3.1: Capacity for maximally different sub-channels increases with memory.

making some assumptions. Firstly, we assume that the sub-channels switch symmetri-

cally, that is, the probabilities of reuse are the same for both sub-channels. This makes

the Markov matrix doubly stochastic and allows us to use its non-one eigenvalue as a

useful characterizing parameter s. Thus, we set q00 → (1 + s)/2 and q10 → (1 − s)/2.

The domain of s is (−1, 1), with s = 0 corresponding to no noise correlations. Secondly,

we parametrize the error probabilities by their average and difference: x0
0 → a + d,

x0
1 → a− d.

The main result is that the capacity increases with stronger noise-correlations. This

manifests itself in two ways. Firstly, if we make the switching more correlated (s away

from 0) the capacity increases and secondly, if we increase the difference between the

two sub-channels the capacity also increases. Similar results have been found for the

quantum capacity of the dephasing channel with Markovian memory [13].

In Figure 3.1, d is set to the maximum possible value while keeping an average of a

(d = min[a− 1/3, 1− a]). Remember that both a− d and a+ d have to lie in the [1/3, 1]

33

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

a

C
∗

0

0.08

0.54

1

0.5 0.75 1

Low Noise Sub

Avg Capacity

With Memory

Avg Channel

Noisier Sub

Figure 3.2: Capacity versus the average no-error probability a.

interval for the two sub-channels to be completely positive. The capacity is plotted

against varying a and s. We can see that the capacity increases as the noise-correlation

(s) gets stronger. When a = 2/3, d attains its maximum (1/3) and the effect of increasing

s on the capacity is greatest. Another interesting observation is the case when the two

sub-channels average to the maximally mixing channel (a = 1/2, which ignoring memory,

has zero capacity), taking into account memory effects there is a non-zero capacity.

To better illustrate the last point and to further explore the relationship between the

capacity of the memory channel and its sub-channels, we plot in Figure 3.2, slices of

Figure 3.1 of fixed s together with plots of the underlying sub-channel capacities.

Thus, in the ‘Avg Capacity’ curve of Figure 3.2, we see the edge of Figure 3.1 (for fixed

s = 1, equivalently s = −1, not actually attained), which corresponds to the average of

the capacities of the sub-channels. The sub-channels’ separate capacities are plotted in

curves labelled ‘Low Noise Sub’ and ‘Noisier Sub’. They are chosen to have maximum

34

3.6 Results

s

C
∗

0.25

0.08

0.008

0.49

0.5 1

Iterations:

Markov Full

Horiz. Lines:

1

2

3

4

5

Low Noise Sub

Avg Capacity

Avg Channel

Noisier Sub

Figure 3.3: Capacity versus the memory parameter s using many iterations and including
full Markov calculation.

allowed separation for each point as a varies (and thus the artificial discontinuities).

In a real world example, this separation parameter is fixed by the channel and the

sub-channels and their capacities would not be accessible. The capacity of the average

channel, labelled ‘Avg Channel’, corresponds to a slice of fixed s = 0 (the center of

Figure 3.1), since a no-memory/non-biased Markov walk factors into a tensor product of

the average of the sub-channels, which is thus equivalent to just one depolarizing channel

with the average error probability. The curve, ‘With Memory’, is a smooth intermediary

between the ‘Avg Channel’ and ‘Avg Capacity’ and is an example slice of Figure 3.1 for

0 < s = 2
3 < 1, which illustrates how taking memory into account improves the capacity.

Of course, again, in a real world example this parameter is specified by the channel. The

smooth transformation is not straightforward nor linear, which can be seen in the way

Figure 3.1 curves for varying s.

35

3 Classical Capacity of a Qubit Depolarizing Channel with Memory

To see the last point more clearly and also to indicate the convergence of the iteration

procedure we next plot a slice of Figure 3.1 for fixed a. In Figure 3.3 we plot the

regularized capacity against s with the following fixed parameters: a = 2
3 , d = 1

3 .

We can see that the capacity increases as the noise-correlation gets stronger. The (blue)

dots are calculated using a simplified (s = 1) full Markov walk calculation (1000 steps)

which doesn’t suffer from the usual exponential blow-up. The horizontal solid (green)

line is the output entropy for s = 0, which is corresponds to no correlations and is

equivalent to having only one depolarizing channel.

3.6.1 Non-Forgetful Limit

To complete the discussion concerning correlations we need to look at the two extreme

cases: s = 1, corresponding to the case where a sub-channel is selected and used for

every channel use afterwards, and s = −1, corresponding to the case where the choice

of sub-channel is flipped with every channel use. Therefore, in constructing the overall

channel and taking into account the initial random channel selection, we just have the

mixing of two n-use channels. Specifically, in the s = 1 case, we have the mixing of

the two n-fold tensor products of the two sub-channels separately, and in the s = −1

case, we have the mixing of two n-use channels where each deterministically alternates

between the sub-channels but starting with a different sub-channel.

Both these extreme cases are non-forgetful since the initial sub-channel selection (the

initial noise) is ‘remembered’ and the forgetful Holevo capacity theorem no longer applies

(the Markov selection matrix is periodic in the s = −1 case and reducible in the s = 1

case). While our forgetful channel approach breaks down there are alternate theoretical

frameworks that do actually capture these extreme cases. For s = −1 the capacity can

be calculated using [10] and agrees with the limit of the forgetful approach, the capacity

is the average capacity of the two sub-channels separately. However, for s = 1 case

there is a discontinuity and the capacity suddenly drops to the minimum capacity of the

sub-channels [11].

The intuition is that in the s = −1 case, the deterministic flip can be used to determine

36

3.7 Conclusion

‘on-the-fly’ which sub-channel is being used and then it is the same as using the two

channels separately each half the time, so the capacity must be the average capacity.

For the s = 1 case once you have the poorer channel you are stuck with it forever and

so because of the mixture you can only guarantee the lower capacity.

3.7 Conclusion

We have constructed a simple forgetful noise-memory quantum channel. The noise-

correlation is a function of the underlying hidden Markov process. This setup allowed

us to construct a corresponding algebraic measure. We used the measure in an algebraic

asymptotic entropy expression. Without this, the entropy would be very difficult to

compute, involving exponentially many paths in configuration space.

We studied the effects that the noise correlations had on the classical capacity and

discovered that the capacity increases with stronger correlations. This is sensible because

the correlations can be used to combat the noise when coding information. We have

arrived at the understanding that stronger correlations increases the capacity from that

of the average channel to the average capacity of the sub-channels with very interesting

limiting behaviour.

Further work includes using other approximation techniques, arriving at a full analytic

expression of the capacity and looking at other similarly constructed channels. We

are also confident and hopeful that the hidden Markov technique could be successfully

employed in other contexts.

We would like to acknowledge N. Datta and T. Dorlas for the idea of the chan-

nel construction and valuable assistance. This work is based upon research

supported by the South African Research Chair Initiative of the Department

of Science and Technology and National Research Foundation.

37

Bibliography

[1] The Capacity of the Quantum Channel with General Signal States, A.S. Holevo

(IEEE Trans. Inform. Theory 44; 269; 1998)

[2] Sending classical information via noisy quantum channels, B. Schumacher and

M.D. Westmoreland, (Phys. Rev. A; 56; 131; 1997)

[3] Quantum Dynamical Systems, R. Alicki and M. Fannes, (Oxford University Press;

Oxford; 2001)

[4] Quantum Channels with Memory, D. Kretschmann and R.F. Werner, (Phys. Rev.

A; 72(6):062323; 2005)

[5] Functions of Markov processes and algebraic measures, M. Fannes, B. Nachtergaele,

and L. Slegers, (Rev. Math. Phys. 4; 39; 1992)

[6] The Entropy of Functions of Finite State Markov Chains, D. Blackwell, (Trans.

First Prague Conference on Information Theory, Decision Functions, and Random

Processes; Prague; 13-20; 1957)

[7] The Capacity of the Quantum Depolarizing Channel, C. King, (IEEE Transactions

on Information Theory; 49(1); 2003)

[8] Grundbegriffe der Warscheinlichkeitsrechnung, A.N. Kolmogorov, (Springer Ver-

lag; Berlin; 1933)

39

Bibliography

[9] Monotonicity with volume of entropy and of mean entropy for translationally in-

variant systems as consequences of strong subadditivity, A.R. Kay and B.S. Kay,

(J. Phys. A: Math. Gen. 34; pg. 365-382; 2001)

[10] Classical capacity of quantum channels with general Markovian correlated noise,

N. Datta and T.C. Dorlas, (arXiv:0712.0722v1 [quant-ph]; 2007)

[11] The Coding Theorem for a Class of Quantum Channels with Long-Term Memory,

N. Datta and T.C. Dorlas, (J. Phys. A: Math. Theor.; 40; 8147-8164; 2007)

[12] Entanglement Assisted Classical Capacity of a Class of Quantum Channels with

Long-Term Memory, N. Datta, Y. Suhov and T.C. Dorlas, (Quantum Information

Processing; 7(6); 2008)

[13] Quantum capacity of dephasing channels with memory, A. D’Arrigo, G. Benenti

and G. Falci, (New J. Phys. 9, 310, 2007)

40

Chapter 4

Monte Carlo Simulation
Background

4.1 Monte Carlo Method

4.1.1 Introduction

“Monte Carlo Algorithms” is a broad class of computational algorithms that employ

random sampling. The term derives from the Monte Carlo Casino in Monaco, where

activities involve randomness and probability theory. The Metropolis-Hastings Markov

Chain Monte Carlo (MCMC) algorithm is named after Nicholas Metropolis, who led the

team that first invented and used the method [1] and W.K. Hastings [2] who generalized

it.

The main idea is to sample from a difficult-to-compute probability distribution by setting

up a specially designed Markov chain random walk through the support of the probability

distribution. For a correctly set up Markov walk, the desired probability distribution

is the unique, invariant (also called stationary) and attractive distribution under the

random walk.∗ We then use these draws from the desired probability distribution to

perform an Importance Sampling Monte Carlo Integration to calculate our statistic.

∗This probability-distribution drawing Markov chain is unrelated to the Markov chain used to switch
between sub-channels in our application.

41

4 Monte Carlo Simulation Background

4.1.2 Invariant Distribution

In our use of the MCMC algorithm, a desired probability distribution is given, Π(x),

and we must construct a Markov chain whose stationary distribution is the desired

distribution.

We know the distribution that we want to draw from completely, but for reasons of

tractability, we can not practically draw from this distribution. The MCMC approach

designs a time-homogeneous Markov process to draw from the desired distribution. A

Markov process is characterized by a transition matrix T (k1,k2) that moves one state,

k1, to another, k2, with some probability T (k1,k2). The probability of transition de-

pends only on the current state. The state space in our case is the space of eigenvalues.

If we keep track of the probability of occupying a state after a transition we’ll require a

vector of probabilities of reaching all states. We may then apply the transition matrix

again and calculate the new probabilities. After repeated application of the transition

matrix we may expect that the probability vector converges. Indeed for a Markov pro-

cess that is irreducible, aperiodic and positive recurrent we do have convergence to a

unique eigenvector with eigenvalue one. This probability eigenvector is what we want to

specify and the task is to work backwards to create a transition matrix that has it as its

stationary distribution. Therefore we desire the following eigenvalue relationship,

Π(y) =

∫
T (x,y)Π(x)dx.

In our case we require Π(k) = λN (k). The remaining task is to design T to satisfy the

above eigenvalue equation. As suggested by Hastings [2], a sufficient condition is the so

called detailed balance or time reversibility condition,

Π(x)T (x,y) = Π(y)T (y,x).

This condition captures the idea that the transition matrix must balance any ‘asym-

metry’ in the desired distribution for that distribution to remain unchanged under one

transition. So that moving from a state of, say, high probability to a state of low

probability happens with just the right probability that the reverse move (picking the

42

4.1 Monte Carlo Method

low probability site and then transitioning to the high probability site) has the same

probability.

Once we construct a transition matrix that satisfies this condition, we don’t actually keep

track of a probability vector over all states, we just realise the probability distribution by

taking concrete steps to specific states chosen randomly. Then, because of ergodicity†,

the statistics we collect from a single run (or multiple averaged runs) are equivalent to

the expectation under the unique stationary distribution (which is often termed ensemble

statistic).

4.1.3 Transition Matrix

It is useful to decompose the transition step into two steps. Firstly, a candidate gener-

ating step, q(x,y), and thereafter the candidate accepting step, a(x,y).

T (x,y) = q(x,y)a(x,y).

In order for this separation to be especially useful we impose that the candidate accepting

step be symmetric:

q(x,y) = q(y,x).

This split allows the algorithm to be tuned more easily. The candidate generating step

is free to tune parameters such as step size away from the current position and the

candidate accepting step focuses on satisfying detailed balance. To see this, notice how

the detailed balance condition is now expressed only in terms of a(x,y),

Π(x)a(x,y) = Π(y)a(y,x)

a(x,y) =
Π(y)

Π(x)
a(y,x).

The last line shows how the forward and backwards probabilities must relate to each

other. To keep the algorithm moving along as fast as possible we would like a(x,y) and

a(y,x) to be as high as possible. But, if Π(y)
Π(x) > 1, then a(y,x), must be sufficiently small

†Here we mean the mathematical definition of an ergodic chain, which, in the form of a theorem, implies
the equivalence of ‘time’ and ‘ensemble’ statistics, see Section 4.1.4

43

4 Monte Carlo Simulation Background

to ensure that the product is less than unity, since a(x,y) is after all, a probability. Since

we want to make a(y,x) as large as possible, we choose the largest value that makes the

product unity, namely Π(x)
Π(y) . In order to keep both directions as valid probabilities and

as large as possible the following must be satisfied,

a(x, y) =

{
1 Π(y)

Π(x) >= 1
Π(x)
Π(y) otherwise

= min

(
1,

Π(x)

Π(y)

)
.

All that remains is to define q(x,y), the candidate generating function. We choose

to explore around the current location with a probability that falls off with increasing

Hamming distance (the number of sites that the error strings differ at),

q(k1,k2) =

(
2

N

)N−k1·k2
(
N − 2

N

)k1·k2

,

where the ‘dot product’, k1·k2, is the number of sites that agree and 2/N is the stipulated

probability that the candidate state is flipped at a particular site. Since there are N

sites the expected number of differences between the candidate and current error strings

has been set up to be 2. This number can actually be a parameter that can be varied. It

captures the average step size away from the current position that is explored. Further

on, we study the effects of varying this parameter on the performance of the algorithm.

Thus the final transition matrix is:

T (x,y) = q(x,y)a(x,y) =

(
2

N

)N−x·y (N − 2

N

)x·y
min

(
1,

Π(x)

Π(y)

)
.

It is easy to verify that the matrix is indeed a valid stochastic matrix,
∑

y T (x,y) = 1,∀x.

4.1.4 Ergodicity

There are two common uses of the term ergodic‡. In the mathematics community, ergodic

simply means a Markov chain that is irreducible (every state can be reached from every

other) and positive recurrent (every state is revisited). In the physics community ergodic

‡The discussion on ergodicity is common knowledge, but the following references may be consulted: [3]
and [4].

44

4.1 Monte Carlo Method

means any process (not only Markov), for which the ‘time’ averaged statistic is equal to

the equivalent ensemble statistic. Here by ensemble statistic we mean the expectation

with respect to the stationary distribution of the process.

We are working with Markov chains in the MCMC method where both senses of the

word are important. We start with the mathematical sense of ergodic by requiring that

our chain be ergodic. Then we use the theorem that an ergodic chain (one that is

irreducible and positive recurrent) is automatically ergodic in the physic’s sense (time

averaged statistics are equal to ensemble statistics). Here we have also used mathematical

ergodicity in proving that a unique stationary distribution even exists in order to define

what we mean by taking the ensemble expectation.

To have good convergence properties it is also desirable that the Markov chain be mixing,

that is after sufficient time two state’s occurrences become independent. In a Markov

chain this is guaranteed by ergodicity plus aperiodicity, that is the greatest common

divisor of the periods of return is one, or put differently, after a certain integer all

periods of return are possible.

In the case of a finite state space such as we have, mathematical ergodicity is easier to

demonstrate. Only irreducibility is required because positive recurrence follows from the

finiteness of the state space. We still however need aperiodicity for mixing.

So in our case, irreducibility follows from T (x,y) > 0 for all x and y. Aperiodicity also

follows from the same fact.

4.1.5 Estimator and its Variance

We are using the MCMC to calculate some statistic,

χ = 〈f(X)〉 =
∑
k

Π(k)f(k).

Since we cannot actually execute the sum, we need to design an estimator. As the

Markov walk proceeds, draws are used to calculate an estimate of the statistic, χ =∑m
i=0 f(ki)/m, which involves each draw, ki, and a final averaging over the draws.

χ is of course a random variable on its own, which by the law of large numbers is

45

4 Monte Carlo Simulation Background

approximately Gaussian (the underlying distribution has a finite variance since we are

considering finite sample spaces). Since the mean is unbiased, the expectation of the

estimator is equal to the quantity we are trying to estimate

〈χ〉 = χ.

If we define the underlying variance as σ2
f ≡

〈
(f(X)− χ)2

〉
, then the variance of the

estimator is

σ2
χ = σ2

f/m.

This shows a decrease in the variance of the mean as the sample size increases. The proof

follows simply from the theorem that the variance of a sum of independent random

variables is the sum of the variances and the variance of a constant times a random

variable is the constant squared times the variance.

We do not actually have access to σ2
f (due to intractability§) but it is some small constant

to start off with. The very reason for the importance sampling approach is to make this

specific number small. The crude Uniform Monte-Carlo method tackles the integral by

sampling uniformly with the unfortunate limitation of a larger underlying variance. Most

of the motivations for more advanced methods is precisely variance reduction. But once

a scheme is chosen, the underlying variance is fixed, and the variance of the estimator

typically has the same 1/m behaviour.

Since we don’t have σ2
f , we don’t have the true σ2

χ. However, we approximate σ2
f by the

variance estimator

σ2
χ =

1

m− 1

m∑
i=1

(f(ki)− χ)2.

The variance estimator is an unbiased estimator# of the underlying variance,

〈
σ2
χ

〉
= σ2

χ.

§A striking thought is that in our implementation there are more paths than back-of-the-envelope
estimates of particles in the observable universe!

#Note, though that square rooting the variance to arrive at the standard deviation is not unbiased. In
this thesis, we ignore this complication because of sufficiently small error bars.

46

4.2 Random Number Generator

Since the variance estimator is itself a random variable, technically we should also worry

about its variance‖. Fortunately, if we kept on going in this fashion there is a point

where we could stop by virtue of the emerging normal behaviour (the mean estimator

is approximately normal). This happens when we look at the standard deviation of the

variance estimator of the variance estimator [5]

σ
σ2

σ2
χ

≈
σ2
σ2
χ√

1
2m

.

Notice how the right-hand side now only contains sample statistics. Any higher-order

variances equate to zero because of the assumed normality (which emerges even for very

low sample numbers).

In the end, instead of worrying about the variance of the variance of the variance, we

content ourselves with repeating the entire Monte Carlo run and checking to see that

the inter-run variance agrees with the intra-run variance. This would signal that the

sample size is large enough and that we may trust the variance estimator.

4.2 Random Number Generator

All Monte Carlo algorithms make use of randomness in some way. It is, in general,

difficult to satisfactorily define randomness, but for our purposes we desire a sequence

of seemingly uncorrelated numbers, as judged by a bank of statistical tests. Most im-

portantly, the way in which the random sequence is used must be uncorrelated to the

way in which the sequence is generated. This allows the use of pseudo-random number

generators, where the generation is actually deterministic but where the sequence passes

the relevant statistical tests. These generators are fast and convenient, especially in the

sense that they are run on the same CPU’s that execute the Monte Carlo algorithm and

so no external source of randomness is required∗∗.

There are of course some minor pitfalls to be wary of, such as with the LCG generators

and higher-dimensional correlations. However, the field has matured over the years to

‖and so on, that is, “turtles all the way down”.
∗∗except the seed, which is based on the time of execution.

47

4 Monte Carlo Simulation Background

arrive at some guidelines that have proven their worth in use. For example, a good

generator should combine at least two unrelated methods which share no state [6]. A

requirement most relevant to the MCMC algorithm is that the generator should have a

period of at least 264.

For our implementation we use the recommended generator in Numerical Recipes [6],

which has a period of 3×1057. This period is more than enough for our purposes, where

our longest run is 230 < 1010.

4.3 Correlations

The concept of correlations features very strongly in the MCMC algorithm. Markov

chains are at the heart of the algorithm, which contains the most basic kind of correlation,

namely the current draw depends on the past only through the most recent previous

draw.

These correlations assist in sampling the probability distribution correctly by favouring

the more likely draws by the exact right amount. Built in, as well, is the correct low

probability of visiting unlikely regions. As we saw in the Transition Matrix section (Sec.

4.1.3), drawing from the full probability distribution, is guaranteed by detailed balance.

Detailed balance imposes some demands on the kind of correlations needed to realise the

required invariant distribution. However, it does not dictate how much correlation. The

amount of correlation has a bearing on the efficiency of the MCMC algorithm. In this

thesis, we confirm how varying the correlation strength, as captured by the step size,

affects the efficiency. Here we see that a balance is sought; not too little correlation,

lest we waste time generating useless possible candidates and not too much correlation,

otherwise we slow convergence by exploring the support too slowly.

In the way draws are generated, intermediate correlations are useful. But in the way

draws are used, if the application requires independent draws, the resulting residual

correlations are only a nuisance. Left uncorrected, convergence is slowed, but at least

not destroyed. To distil away these correlations costs processing time, either by thin-

48

4.3 Correlations

ning/skipping the use of draws or by some blocking technique.

Fortunately, the correlations between draws drop off exponentially fast. This is measured

by calculating the correlation of a sequence of draws against a shifted version of the same

sequence. For a general Markov process, the correlation drops exponentially fast with

greater shift. The factor in the exponential factor is called the correlation time and it

has the following meaning: it is the amount of time (or the number of steps) to wait after

which the shifted correlation has dropped by a factor 1/e of the variance (zero-shifted

autocorrelation). In this thesis we employ thinning and monitor the correlation time.

4.3.1 The Interplay of Noise Correlations Exhibit Fractal Behaviour

In closing this background chapter, we would like to comment on the effects of cor-

relations in the noise on the desired probability distribution. These correlations have

nothing to do with the artificial algorithmic correlations within the MCMC method.

These are real world correlations in the noise that we are modelling.

As is shown in the next chapter we use the MCMC algorithm to approximate some

statistic. This calculation involves the desired probability distribution Π(k), which is

derived from the correlations in the channel noise.

To see that this exponential in size probability distribution is indeed a complicated

function that requires approximation, we plot the discrete probability mass function,

Π(k), with N = 220, in Fig. 4.1.

We first plot it as indexed by k interpreted as a binary number (for convenience it is

converted to decimal). In this view we see some beautiful fractal-like patterns. This is

partially unnatural because of the arbitrariness of the indexing††. To see this we sort

the probability distribution by the probability value to arrive at Fig. 4.2.

However, this sorting could have been done for a legitimate fractal, hiding the fractal

nature in the x co-ordinate, so the argument could still be made that the probability

distribution is in some sense fractal. Regardless, the form of this sorted distribution is

unknown and actually doing the sorting, takes exponentially long. Therefore, since the

††Indeed the number of 1’s in a binary number have a fractal like relationship to the value of the number.

49

4 Monte Carlo Simulation Background

k

Π(k)

256 512 768 1024

1× 10−3

2× 10−3

Figure 4.1: Π(k) vs Binary(k).

k
′

Π(k)

256′ 512′ 768′ 1024′

1× 10−3

2× 10−3

Figure 4.2: Sorted Π(k) vs k′.

probability distribution is so complicated, intricate and unknown, we have to resort to

MCMC approximation techniques.

50

Bibliography

[1] Equation of State Calculations by Fast Computing Machines, N. Metropolis, et al.

(J. Chem. Phys. 21, 1087; 1953)

[2] Monte Carlo Sampling Methods Using Markov Chains and Their Applications,

W.K. Hastings (Biometrika Vol. 57; No. 1; pg. 97-109; 1970)

[3] Understanding the Metropolis-Hastings Algorithm, S. Chib and E. Greenberg, (The

American Statistician; Vol. 49; No. 4; pg. 327-335; 1995)

[4] Lecture Notes on Ergodic Theory, O. Sarig, (Penn State; 2008)

[5] Monte Carlo Methods, J.M. Hammersley and D.C. Handscomb (Metheun’s Mono-

graphs on Applied Probability and Statistics, London: Metheun & Co Ltd; 1975)

[6] Numerical Recipes: The Art of Scientific Computing, W. H. Press, S.A. Teukolsky,

W.T. Vetterling, B.P. Flannery (Cambridge University Press; 2007)

[7] Markov Chains and Stochastic Stability Second Edition, S. Meyn and R.L. Tweedie,

(Cambridge University Press; 2009)

51

Chapter 5

A Monte Carlo Simulation of a
Noisy Quantum Channel with
Memory

Abstract

The classical capacity of quantum channels is well understood for channels with uncorre-

lated noise. For the case of correlated noise, however, there are still open questions. We

calculate the classical capacity of a forgetful channel constructed by Markov switching

between two depolarizing channels. Techniques have previously been applied to approx-

imate the output entropy of this channel and thus its capacity. In this paper, we use

a Metropolis-Hastings Monte Carlo approach to numerically calculate the entropy. The

algorithm is implemented in parallel and its performance is studied and optimized. The

effects of memory on the capacity is explored and previous results are confirmed to higher

precision.

5.1 Introduction

Understanding noise-memory effects on capacity is an important step in modelling real

world quantum channels. The first major theorem concerning the classical capacity of

quantum channels was the celebrated Holevo-Schumacher-Westmoreland (HSW) the-

orem [1]. This theorem assumes the channel receives product state inputs and each

53

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

application of the channel is independent of subsequent applications. Progress has been

made in generalizing the results to entangled inputs and correlated uses. We are inter-

ested in the extension to, so called, forgetful memory channels [2], where the channel’s

application depends on previous applications.

A simple example of noise correlations between successive channel uses, is a forgetful

channel constructed by Markov switching between two depolarizing channels. Here the

properties of the channel for any given application depends on the properties of the

channel on the previous application in a Markovian way. The channel properties do not

depend on the states that are acted upon, which would be the subject of a different

generalization. Nevertheless, the output states become correlated in a non-Markovian

way via the Markovian correlated channel uses.

This complicated non-Markovian state correlation evades an easy closed form analytic

treatment. As we explore more complicated generalizations, it is helpful to build the

numerical tools to deal with the increasingly intractable probability distributions that

are involved. With previous partial analytic results [3], we are in a position to switch to

non-trivial numerical methods and confirm their correct functioning, before moving into

regimes where there are no analytic comparisons.

The numerical method that we employ is the Metropolis-Hastings Markov Chain Monte

Carlo Method (MCMC). Beginning with its formulation [4] and generalization [5], MCMC

has proven to be a powerful and versatile tool in tackling a variety of recent complicated

and analytically intractable problems.

“MCMC methods have revolutionized statistical computing ... [and has]

enabled the development and use of intricate models in an astonishing array

of disciplines. . . ” [6].

By virtue of the ability to compare to partial analytic results, this paper could be an

example of learning about the application of the Monte Carlo algorithm and monitoring

its effectiveness. In Sec. 5.2. we recount the construction of the forgetful channel and

derive an expression for the classical capacity in terms of the output entropy. In Sec. 5.3.

54

5.2 Construction of the Channel

we express the capacity in a form that makes the application of the MCMC algorithm

natural and we identify the parameters of the algorithm that need to be tuned. In Sec.

5.4. we analyse both the performance of the algorithm and the results of the simulation.

Finally in Sec. 5.5. we conclude and mention further work.

5.2 Construction of the Channel

We construct a forgetful memory channel and incorporate memory effects by switching

between two memoryless single qubit depolarizing channels (E0 and E1), using a two-state

Markov chain. The 2× 2 channel transition/selection matrix is Q = (qij), i, j ∈ {0, 1}

with qij being the probability of switching from channel i to channel j.

The usual depolarizing channel, is normally viewed as uniformly shrinking the Bloch

sphere. For its use in our noisy channel it is helpful to rewrite it as a mixture between

the identity channel and the ‘flip channel’,

Ei(ρ) = x0
i ρ+ x1

i (1− ρ),

where x0
i is the probability of returning the state unscathed (identity channel) and x1

i is

the probability of reflecting ρ about the centre of the Bloch sphere. Naturally, x1
i = 1−x0

i .

To see the action of the flip, write ρ as

ρ =
1

2
(1 + ~σ · ~r),

where ~σ is a vector consisting of the Pauli matrices (σx, σy, σz), 1 is the 2 × 2 identity

matrix and ~r is the Bloch vector. The flip action is now

1− ρ =
1

2
(1 + ~σ · −~r),

where the Bloch vector has been multiplied by −1. Surprisingly the channel is only

completely positive for 1/3 ≤ x0
i ≤ 1.

The built-up channel, ΛN , corresponding to N successive uses of the single qubit sub-

channels, is constructed as follows

ΛN = ρ1 ⊗ . . .⊗ ρN 7→
∑

i1,...,iN

γi1qi1i2 . . . qiN−1iNEi1(ρ1)⊗ . . .⊗ EiN (ρN).

55

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

The sum is over all possible Markov paths (i1, . . . , iN) ∈ {0, 1}N and each term is a

tensor product of the selected sub-channels weighted by the probability of occurrence

(γi is the initial probability of channel selection). We first need to calculate the capacity

of this N -use form of the channel and then take the limit as N −→∞, which is termed

regularizing the channel.

By expanding the above product and focusing on pure product state inputs, we see that

the output is a sum over all possible combinations of flipping (an error occurs) and

not flipping (no error occurs). Due to the symmetry of the depolarizing channel, these

output states remain diagonal in the bases of flipped and not flipped, no matter what

pure product states are used. Therefore, the eigenvalues of the output state as a matrix

are

λN (k) =
∑

i1,...,iN

γi1qi1i2 . . . qiN−1iNx
k1
i1
. . . xkNiN ,

where the eigenvalues are indexed by k = {k1, k2, . . . , kN} ∈ {0, 1}N , which is a string

recording the sequence of flips/errors and non-flips/non-errors.

The HSW theorem [1] built on by the forgetful channel extension [2] provides an expres-

sion for the capacity C1
Classical (classical product state)

C1
Classical(ΛN) = χ∗(ΛN),

where χ∗ is the maximisation over input ensembles of the Holevo χ quantity.

For this channel, the maximum is obtained using the uniformly distributed computa-

tional basis states. By taking the asymptotic average of the N -product classical capacity,

we arrive at the capacity of the memory channel in terms of the output entropy [2],

C∗ = lim
N→∞

1

N
C1

Classical(ΛN)) = 1− lim
N→∞

1

N
S(ΛN (ρ)) = 1− lim

N→∞

1

N
S({λN (k)}).

The difficulty in calculating the entropy, S({λN (k)}), is with the summation of exponentially-

in-N many terms, which quickly becomes intractable to perform computationally. There-

fore powerful approximation techniques, such as the Metropolis-Hastings Markov Chain

Monte Carlo (MCMC) algorithm, are required.

56

5.3 Monte Carlo Method

5.3 Monte Carlo Method

5.3.1 Entropy

Entropy features in our calculation of the capacity because it captures the average noise

injected into the input state.

〈− log(PX(k))〉 =

∫
− log(PX(k))dFX(k) =

∑
x

− log(PX(k))PX(k) =
∑
k

−λN (k) log(λN (k)).

It is this integral that we are approximating using Monte Carlo integration. In this way,

drawing from the space of the eigenvalues’ indexes, allows us to calculate the entropy

by simply averaging the log’s of the drawn eigenvalues. There are 2N configurations of

the index k corresponding to the different error strings of N uses of the channel. Simply

summing over all configurations is computationally intractable for large N and we resort

to the MCMC algorithm. Having identified the desired probability distribution we must

now construct a Markov Chain in order to use the MCMC algorithm.

A Markov chain is defined by its state space and the transition matrix that has our

desired probability distribution as its stationary distribution. Our state space is the

2N configurations of k. Our transition matrix as suggested by Hastings [5], satisfies

the so called Detailed Balance or Time Reversibility condition and contains a candidate

generating part (with a parameter controlling the step size) and a candidate accepting

part,

T (x,y) = q(x,y)a(x,y) =

(
2

N

)N−x·y (N − 2

N

)x·y
min

(
1,

Π(x)

Π(y)

)
.

It is easy to verify that the matrix is indeed a valid stochastic matrix,
∑

y T (x,y) = 1, ∀x.

Now that we have constructed the channel and a Monte Carlo Markov Chain to sam-

ple from the output eigenvalue distribution to calculate the entropy, we are ready to

implement it,

S({λN (k)}) ≡ 〈− log(PX(k))〉 ≈ 1

m

m∑
i=1

log λN (k) ≡ S,

where m is the number of samples and the k’s are drawn from the probability mass

function,

PX(k) = λN (k).

57

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

X is the random variable whose instances are the possible error strings k.

5.3.2 Algorithm

Bringing it all together the algorithm proceeds as follows,

• Initialize the error string k (with a uniformly random starting point).

• Perform burn-in, which is to take a few Markov Chain steps without collecting

statistics. This step tries to ensure that the Markov chain reaches its equilibrium

distribution. We experiment with different burn-in lengths. While this process is

non-rigorous, theoretically a poor burn-in length does not negate the validity of

the final answer. All that it does do, is slow down convergence and produces larger

error-variances in the final answer.

• The actual Markov step consists of generating a new candidate state based on the

current state. As detailed above, we flip each site (k′i = ki ⊕ 1) with some proba-

bility (expectedflip). The candidate state is accepted according to the detailed

balance condition outlined above. The acceptance probability involves the calcula-

tion of λN (k) for specific k’s. There are of course in total, exponentially many k’s

and we are avoiding the need to calculate λN for all these k’s by taking a repre-

sentative Markov walk through the space of k’s. However, one remaining potential

problem is that even for just one specific k, the calculation of λN (k) itself involves

exponentially-in-N many terms in its sum. Fortunately, a convenient and original

rewriting, turns the sum of exponentially many terms into a recursive algorithm

with polynomial-in-N number of steps. A further programming optimization em-

ployed was the partial reuse of previous calculations of λN (k) for different k’s by

virtue of the fact that only a few sites are flipped at a time and the sum has been

rewritten recursively. Therefore it is only necessary to rewind the calculation to

the first change in the flipped string.

• We experiment with different values for the above expectedflip probability while

58

5.3 Monte Carlo Method

monitoring the acceptance rate. The heuristic optimum is to maintain an accep-

tance rate of between 40%− 50%. If the acceptance rate is too large (for example

achieved by taking smaller steps), it results in the equilibrium distribution being

explored too slowly. If the acceptance rate is too low, it results in a slowing of the

convergence rate and an increase in the correlation between draws, because most

candidates are rejected implying a reselection of the current state.

• The running sum of the log(λN (k))’s is updated after passing over a few steps as

determined by the skips parameter. This process is called thinning. It is employed

to reduce the correlation between draws so that each draw is independent. This is

possible because correlations between Markov steps falls away exponentially fast.

The number of steps to skip is experimented with. While thinning is non-rigorous

(similar to burn-in), due to the Fundamental Theorem of Markov Chains this is not

crucial. The theorem shows that even with no thinning the collected statistics for

a mixing Markov chain is the same as for the equilibrium distribution. Thinning

is employed only as a tactic to avoid complicated variance calculations (such as

blocking) and to try and speed up convergence.

• Mean, variance and correlation statistics are collected.

• The algorithm loops from step 3 for as many sample points as desired.

Assuming that thinning sufficiently produces independent draws (which we monitor)

from PXi(k) = λN (k) we are calculating the unbiased empirical entropy estimate of a

known distribution, PX [7],

S =
1

m

m∑
i=1

log λN (Xi).

Defining the underlying variance as σ2
S ≡

〈
(log(PX(k))− S)2

〉
, the variance of the esti-

mator is,

σ2
S

= σ2
S/m.

59

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

Since we don’t have σ2
S , we don’t have the true σ2

S
. However we approximate σ2

S by the

variance estimator,

σ2
S =

1

m− 1

m∑
i=1

(log λN (Xi)− S)2.

The variance estimator is an unbiased estimator of the underlying variance,

〈
σ2

S

〉
= σ2

S.

We check that the algorithm agrees to within error bars with the full calculation on two

separate achievable occasions: low N and high N but with s = 1 (see later). Furthermore

we repeat the entire Monte Carlo run and check to see that the inter-run variance agrees

with the intra-run variance. This would signal that the sample size is large enough and

that we may trust the variance estimator.

5.3.3 Parallel Programming

A very useful feature of the Metropolis Algorithm is that it can easily be parallelized.

The different sample paths can be calculated on separate nodes and only at the end of

the Markov sampling is it necessary to collect all the data and calculate averages and

error estimates. This type of problem is often called embarrassingly parallel.

For this study, our own C++ code is written and run on the Centre for High Performance

Computing’s Sun Nehalem Cluster. The OpenMPI Message Passing Interface (MPI)

library is used to manage the communication between nodes.

We can report success on the programming, compiling and running of tasks, with a

marked speed-up from using the cluster. For example on one 128-node run that took 5

hours and 36 minutes, the total CPU time combined to 700 hours and 49 minutes, which

equates to a 125× speed up.

We employed the following optimizations:

• more efficient running sums calculation of mean and variance

• a tailored load balancing algorithm

60

5.4 Analysis and Results

• only one MPI Gather call at the end

• OpenMP for the full calculation

5.4 Analysis and Results

For easier analysis, let us introduce a relabelling of the parameters, {q00 → q, q10 →

1−q, x00 → a+d, x10 → a−d, q → (s+1)/2}, where we have made the Markov switching

matrix symmetric and parametrized it with its non-one eigenvalue, (−1 < s < 1). An

absence of correlations corresponds to s = 0. We have rewritten the channel error

probabilities in terms of their average(a) and difference(d).

The main idea behind the construction of this channel is to explore the classical capacity

as a function of the non-markovian memory. Thus plots of capacity versus the parameters

are of primary interest. Our goal in this paper is to investigate how the MCMC algorithm

performs in approximating the entropy and hence the capacity of the channel.

5.4.1 Capacity versus s

The main result is that the capacity increases as the noise correlations increase.

In Fig. 5.1, we see five iterations of the Algebraic Markov approach [3] and one run of the

MCMC approach. The MCMC approach is further along in convergence and comes with

error bars. As we can see, the capacity increases as the noise correlations increase from

0 to 1. The non-linear curve interpolates between the capacity of the average channel

(lower) and the average capacity of the separate channels (higher). Here and throughout

a = 2/3 and d = 2/9, with s, of course, varying. In subsequent sections where we explore

the workings of the MCMC algorithm, s is fixed to 0.7.

The dots correspond to a complete full entropy calculation with s = 1, where the entropy

can be calculated explicitly for very high values of the channel length without exponential

blow up. Ironically, it is this easier case that is hard for the MCMC method in that

the error increases with s. This behaviour is because the underlying λN (k) probability

distribution becomes more peaked and with larger jumps as s increases and so more

61

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

s

C
∗

0.08

0.008

0.49

0.25

0 0.5 1

Iterations:

Markov Full

Horiz. Lines:

1

2

3

4

5

MCMC (errorbars)

Low Noise Sub

Avg Capacity

Avg Channel

Noisier Sub

Figure 5.1: Capacity versus the memory parameter s using many iterations and including
full Markov calculation.

samples need to be drawn to explore this distribution to achieve the same accuracy.

This is an example of how the parameters of the problem affect the performance of the

MCMC algorithm. Of course for fixed problem parameters we still get the usual 1/m

reduction in the estimate variance as the number of samples increase.

5.4.2 Expected 1/m behaviour for the Estimate Variance vs Sample size

In order to verify that the MCMC algorithm is working as expected we should observe

a 1/m improvement in the variance of the estimate, σ2
S, as the sample size, m, increases.

Or equivalently a 1/
√
m improvement of the standard deviation, σ. If this is confirmed,

we know that we can calculate the entropy to higher precision, if so desired, by increasing

the sample size.

In collecting statistics we distinguish between inter-run and intra-run. Inter-run means

the statistics we collect during one instantiation of a Markov Chain: one random starting

point, one run of burn-in and one correlated sequence of Markov steps. For intra-run

statistics we look at the final end estimates of different Markov runs and compare their

62

5.4 Analysis and Results

218 220 222 224

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

m

σ
S

Figure 5.2: Inter-run σS vs m.

218 220 222 224

0.0005

0.0010

0.0015

m

σ
S

Figure 5.3: Intra-run σS vs m.

means and variances.

We plot both the average inter-run standard deviation of the estimates, Fig. 5.2 and

the intra-run standard deviation of the estimates from the mean of the estimates, Fig.

5.3. The inter-run σ and the intra-run σ should behave the same and operate to within

the same orders of magnitude. Indeed, we are using this as a test of whether enough

samples have been taken. If too few samples are taken, the inter-run, σ would in general

be lower than the intra-run, σ, because of the correlations between steps within the

Markov Chain and the deliberate lack of correlation between the random initial starting

63

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

12 14 16 18 20 22 24

-12

-11

-10

-9

-8

-7

-6

-5

logm

log σ
S

Figure 5.4: Inter-run log σS vs logm.

12 14 16 18 20 22 24

-12

-10

-9

-8

-7

-6

-5

logm

log σ
S

Figure 5.5: Intra-run log σS vs logm.

point between runs.

To more clearly see the m−1/2 behaviour, we plot, in Fig. 5.4 and Fig. 5.5, the log of

the inter-run and intra-run σS against logm and look for a slope of −1/2. The solid line

is the joined data. The dashed line is the best fit straight line through the origin and

for comparison we also plot the true m = −1/2 line (dot-dashed).

Overall we can see that the behaviour is the same and that the order of magnitude is

roughly the same.

64

5.4 Analysis and Results

0 20 40 60 80

0.893

0.894

0.895

0.896

0.897

0.898

N

S

Figure 5.6: Average Entropy vs Chain Length (intra-run σ error bars).

5.4.3 Correct Regularizing Behaviour

The next most important test of the MCMC algorithm is to take the algorithm into the

regime where it truly outshines other numerical techniques. In this regime we also hope

to confirm the theoretical idea that regularizing the channel does lead to a well defined

limit. Here we take the channel to a length of 100. If we were to cover all possible Markov

paths, we would need to enumerate 2100 paths, which is computationally intractable.

In Fig. 5.6 we plot the entropy versus the chain length and observe convergence. We

also chart with dots the full true entropy up to chain length 30, to demonstrate that the

true value lies closely within the error bars.

5.4.4 Tuning Parameters

In this section we discuss the tuning of the MCMC algorithm for improved performance.

In the quest for optimal efficiency, we are also indirectly verifying that the algorithm is

indeed working as expected.

Burn-in and reaching the invariant distribution

The burn-in runs differ from the normal MCMC algorithm in that after every burn-in

procedure we collect a few samples representative of the distribution reached at the end

65

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

100

200 400 600 800 1000 1200 1400 1600

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Burn-in

S

Figure 5.7: Average Entropy vs Burn-in Length (intra-run σ error bars).

that specific burn-in (while doing this we set the skip parameter to zero). We then repeat

this procedure many times to actually build up the statistics. In this way we are teasing

out the effect of the initial burn-in procedure from the naturally present “self-burn-in”

effect of a Markov walk. To further restrict other randomization effects and focus only

on burn-in, we also switch off the initial randomization and always start at the same

state vector, k0 = 0.

As we collect statistics at the tail of different burn-ins, the degree to which the statis-

tics reproduce the invariant distribution is the degree to which “enough” burn-in has

occurred. To see this, we plot in Fig. 5.7, the entropy versus the burn-in length. As

we can see, the burn-in entropy asymptotically approaches a limiting value. For illus-

tration purposes a line has been drawn at the expected limit, whose entropy value has

been calculated using a normal run with a large number of samples∗. Notice that the

error-bars are not large enough to accurately include the limiting value. For low burn-in

values this cannot even be remedied by doing more meta-runs, the reason is that for low

number of sample values, the pocket of the invariant distribution explored does indeed

have a different “true” value of the entropy.

This burn-in way of calculating entropy is highly inefficient because of the chain restart-

∗Note that the approach is from below because of the correlations between draws.

66

5.4 Analysis and Results

200 400 600 800 1000 1200 1400

0.0016

0.0017

0.0018

0.0019

0.0020

0.0021

Burn-in

σ

Figure 5.8: σ vs Burn-in Length.

ing and the repeated discarding of initial draws. We are just seeking a point where the

advantages of burn-in, namely the increase in convergence speed of the subsequent full

MCMC algorithm †, are outweighed by the inefficiency of throwing away close-enough

useful draws. A good indicator of where this happens is to look for an inflection or

threshold point in the intra-run standard error vs burn-in. This indicates that a kind of

minimum distance has been crossed‡ such that we are now drawing more closely from

the invariant distribution. Thus in Fig. 5.8 we plot σ versus the burn-in length. We

can clearly see a kind of levelling off of the improvement in error as burn-in is increased.

With this plot we have confidence to choose our general burn-in value to be 1000, which

is only a small fraction of the typical number of samples used (1025).

Expected Flip/Step-size and Acceptance Ratio

As we vary the number of expected flips in generating a candidate state, we are in

effect varying the step-size away from the current state. As discussed previously, this

parameter needs to be tuned. The measure to optimize is the acceptance ratio. The

†because less points need to be taken to average away the initial atypical draws.
‡It would be interesting to study this minimum distance’s dependence on the initial point (since in the

full MCMC algorithm we randomize this). It would also be more rigorous to study the burn-in’s
obvious dependence on chain-length. To obviate both concerns, we just set burn-in to the highest
required to conservatively reach the required distribution for the longest chain length under study.

67

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Flips

Acceptance

Figure 5.9: Acceptance Ratio vs Expected Flip.

heuristically preferred value of the acceptance ratio is between 40%− 50% [8].

In Fig. 5.9, we plot the acceptance ratio versus the expected number of flips. As

expected, the acceptance ratio drops as the step size away from the current state in-

creases.We chose an expected number of flips of 2 and independently monitored the

acceptance ratio throughout all other runs in the rest of the study. We noticed that the

acceptance ratios stayed satisfactorily steady and close to the preferred heuristic.

Skipping/Thinning and Correlations

One method of dealing with correlations is just to skip a few draws before using the

next draw, called thinning. Thinning is a quick-and-dirty method compared with more

complicated methods such as blocking. The number of correlated draws to skip is a

parameter of the MCMC algorithm that needs to be tuned [6].

We could plot the correlation as a function of shifted time and extract from the data

the correlation time. In this case we would then set the skip parameter to equal the

correlation time. However we prefer to vary the skipping parameter and take actual

data after skipping has been applied. We then observe when the correlation time drops

to one and use this value of the skipping parameter. This method has the advantage

of being sure that the correlation is satisfactorily low and the code to produce it is

68

5.4 Analysis and Results

10 20 30 40

5

10

15

Skip

Correlation

Figure 5.10: Correlation time vs # Skip.

10 20 30 40

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

Skip

σ

Figure 5.11: σ vs # Skip.

used throughout the study to monitor the correlation levels. The computational method

of calculating the correlation time that we use, is called the running sums integrated

correlation time method [9], which has the advantage that there is no curve fitting to

extract the exponential factor.

In Fig. 5.10, we plot the correlation time versus the skip parameter. We see an expo-

nential drop off, which is related to but not the same thing as the exponential drop in

the correlation as a function of shift. We see that the correlation reaches 1 at around a

skip value of 14, which justifies uses of skip values equal to or greater than this.

69

5 A Monte Carlo Simulation of a Noisy Quantum Channel with Memory

Finally, to see that indeed skipping improves the performance of the algorithm we plot,

in Fig. 5.11 the intra-run error in the entropy versus the skip parameter and observe a

general decrease in error.

5.5 Conclusion

We have constructed a simple forgetful noise-memory quantum channel and implemented

the MCMC algorithm in parallel, to manage the exponential intractability.

We studied the effects that the noise correlations had on the classical capacity and

discovered that the capacity increases with stronger correlations. This is sensible because

the correlations can be used to combat the noise when coding information.

The capacity varied smoothly as the correlation parameter was varied. When there was

no correlation, the uncorrelated switching is equivalent to a single depolarizing channel

with a flip error that is the average of the sub-channels’ flip errors. The capacity is thus

that of the equally mixed or averaged sub-channels. When the correlation parameter is

close to the maximum, the capacity of the deterministic switching channel is the average

of the capacity of the sub-channels treated separately.

We learnt that in order to implement the MCMC algorithm, entropy had to be rewritten

as an expectation over a probability distribution with an unavoidable, exponentially-

many terms. Furthermore, the probability of a single path, had to be carefully rewritten

into an expression with polynomially-in-N many terms to avoid the exponentially many

terms in the naive writing.

In the use of the algorithm we discovered that the inter-run variance is actually mis-

leading because of correlations, even after attempting to correct for the correlation time.

A much better metric of variance turned out to be the intra-run variance because of

the randomization of the starting point. We also found a problem-specific and effective

method of determining when sufficient burn-in had been undertaken, namely we looked

for convergence in the statistic under study as burn-in was varied.

Further work concerning the MCMC algorithm includes a comparison of the general

70

5.5 Conclusion

MCMC method used with the more specialised Gibbs Sampler Method. On a mathemat-

ical note, more exploration could be spent on understanding the complicated structure of

the fractal-like probability distribution. On the quantum information channel-capacity

front, the analysis and code can be applied to more complicated channels, including

studying the capacity on channels whose correlations are affected by the state as well as

previous noise.

71

Bibliography

[1] The Capacity of the Quantum Channel with General Signal States, A.S. Holevo

(IEEE Trans. Inform. Theory 44, 269; 1998); Sending classical information via

noisy quantum channels, B. Schumacher and M.D. Westmoreland (Phys. Rev. A

56, 131; 1997)

[2] Quantum Channels with Memory, D. Kretschmann and R.F. Werner, Phys. Rev.

A, 72(6):62323, 2005 (arXiv:quant-ph/0502106)

[3] The Classical Capacity of a Qubit Depolarizing Channel with Memory, J. Wouters,

I. Akhalwaya, M. Fannes, F. Petruccione (Phys. Rev. A 79, 1, 2009)

[4] Equation of State Calculations by Fast Computing Machines, N. Metropolis, et

al. (J. Chem. Phys. 21, 1087; 1953)

[5] Monte Carlo Sampling Methods Using Markov Chains and Their Applications,

W.K. Hastings (Biometrika Vol. 57, No. 1 (Apr., 1970) pp. 97-109)

[6] Handbook of Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. Jones, X. Meng

(Taylor & Francis US, 2011)

[7] Elements of Information Theory 2nd Edition T. Cover and J. Thomas, (Wiley-

Interscience, 2006)

73

Bibliography

[8] Understanding the Metropolis-Hastings Algorithm, S. Chib and E. Greenberg, (The

American Statistician, Vol. 49, No. 4 (Nov., 1995), pp. 327-335)

[9] Lecture Notes, R.J. Gonsalves (http://www.physics.buffalo.edu/phy410-

505/topic7/index.html retrieved: 30/10/2013)‘

74

Chapter 6

Atomic Clock Background

6.1 Introduction

The science of time-keeping has a fascinating history that weaves itself into the very story

of human civilization and progress. The latest chapter has seen dramatic improvement

in precision time-keeping using the marvels of quantum mechanics at the atomic scale.

Time is now kept with more precision than almost any other man-made measurement

and this precision is being used technologically to communicate faster and locate better

than ever before.

This part of the thesis hopes to study noise in the atomic clock setting. An attempt is

made to use correlations inherent in the noise to combat the noise.

Executing periodic corrections to a noise signal has the surprise effect of mis-correcting

noise that happens to be oscillating at the same periodicity. This is called the Dick

Effect and is a special case of the aliasing effect of sampling where high frequency noise

appears as low frequency noise.

In order to build up to suggesting other techniques, we begin, in this background chapter,

by trying to understand sampling and reconstruction via the Fourier transform. We then

study methods of quantifying noise. In these methods, we find a convenient mathematical

tool for describing the correction process. Finally, we introduce the basic concepts of an

atomic clock, including the underlying quantum physics and the protocol of correcting

a slaved quartz crystal clock.

75

6 Atomic Clock Background

6.2 Sampling and Reconstruction

6.2.1 Fourier Analysis

Fourier analysis is one the most powerful mathematical tools for analysing periodic

phenomenon. It involves the expansion of a continuous function, g(t), in the bases of

oscillating functions. The overlap of g(t) with a particular basis function is called the

Fourier transform,

G(f) = F(g)(f) ≡
∫ ∞
−∞

g(t)e2πitf dt.

For a given f0, G(f0) is the coefficient of e−2πitf0 in the expansion of g(t), which is called

the inverse Fourier transform,

g(t) =

∫ ∞
−∞
F(g)(f)e−2πitf df.

G(f) as a function, has f vary over a domain called the Fourier domain, which is the

space of frequencies of the basis functions. Hence, Fourier analysis sheds light on the

rate of variations, or the frequency content, of the time domain.

Not only does the Fourier transform rewrite continuous functions and in so doing make

explicit periodicity information, it also makes certain operations in the time domain very

convenient in the Fourier domain. One example, that we make extensive use of, is the

Fourier transform of the convolution.

The convolution is a sweeping overlap integral of one function, g1(t) by another, g2(t),

in the time domain and is defined as

(g1 ∗ g2)(t) ≡
∫ ∞
−∞

g1(t− t′)g2(t′) dt′.

In the Fourier domain, convolution is transformed into simple multiplication,

F(g1 ∗ g2)(f) = G1(f)G2(f).

6.2.2 Using the Fourier Transform

Our main use of the Fourier transform is to analyse the effects of sampling a continuous

function.

76

6.2 Sampling and Reconstruction

The following succinct formula summarizes the periodic sampling of a continuous func-

tion g(t) at period T (that is, sampling at a frequency of f = 1/T or angular frequency,

ω = 2π/T) and then attempting to reconstruct it, gr(t), by summing up weighted sincT

functions.

gr(t) = (g(t)×ΠΠT (t)) ∗ sincT (t). (6.1)

The Shah function/Dirac comb, ΠΠT , is a sum of Dirac delta’s shifted by multiples of T ,

ΠΠT (t) =
∞∑

n=−∞
δ(t− nT).

The sinc function, sincT (t), is an oscillating sin function (of period 2T) with diminishing

amplitude, defined as

sincT (t) =
sin(πt/T)

πt/T
.

The purpose of the sinc function is firstly to reproduce the sample points unchanged and

secondly to smoothly interpolate between them. This continuous function is symmetri-

cally centred on zero with a large central peak, sincT (0) = 1 and shortening side-lobes.

The zeroes of sincT occur at integer multiples of T .

One way to view the reconstruction convolution (written as ∗ above), is as a sum of

g(ts)-weighted sincT functions centred on the ts-coordinate of the sample points. For a

specific sample point, all the other nT -shifted sinc functions have one of their zeroes at

that sample point and only the centred sinc contributes the perfectly weighted sampled

amount. Thus guaranteeing that gr(nT) = g(nT), even before we look at whether or

not g(t) is successfully reconstructed between points.

Taking the Fourier transform of Eq. (6.1) yields,

F(gr)(f) = (G(f) ∗ 1
T ΠΠ

1/T
(f))× TΠ1/T (f). (6.2)

Multiplication has been transformed into convolution and convolution into multiplica-

tion. The Fourier transform of the Dirac comb, in the time domain, is a Dirac comb,

in the frequency domain. However, in the time domain, the deltas were placed T apart,

that is occur with frequency f = 1/T . Now, in the frequency domain, the deltas appear

77

6 Atomic Clock Background

1/T apart∗, which makes sense because the Fourier transform is an expression of the

frequencies present in the time domain.

The Fourier transform of the sincT function is a scaled rectangular function, TΠ1/T ,

centred on zero with total width 1/T ,

ΠP (x) =

{
1 |x| ≤ P/2
0 |x| > P/2

.

The Fourier transform, shows that convolution with sincT in the time domain is nothing

other than a rectangular low pass filter in the frequency domain (keeping low frequencies

and setting to zero high absolute frequencies above a cut-off).

We are now ready, not only to state the Sampling theorem, but to prove it.

Sampling Theorem. 1 gr(t) = g(t) if G(f) = 0 when |f | ≥ B ≡ 1/2T .

Proof: From Eq. (6.2),

F(gr)(f) = (G(f) ∗ΠΠ
1/T

(f))×Π1/T (f)

=
∞∑

n=−∞
G
(
f +

n

T

)
×Π1/T (f)

=
∞∑

n=−∞
G (f + n2B)×Π2B(f)

Since G(f) = 0 for |f | ≥ B, the shifted G(f)’s do not overlap in the (Poisson) summa-

tion and thus the first unshifted term (n = 0), is not added to, on the interval (−B,B),

by any other terms. Thus the rectangular function, Π2B, which is 1 on [−B,B] and 0

outside the interval truncates/filters this infinite sum to give only the n = 0 term.

F(gr)(f) = G(f)×Π2B(f) = G(f)

Since the Fourier transforms are identical, by inversion† we conclude that the functions

are identical Q.E.D.

∗The frequency of occurrence in the Fourier domain is T . Thus the Fourier transform has ‘swopped’
the roles of period and frequency.

†The uniqueness of the Inverse Fourier Transform, of course, comes with conditions.

78

6.3 Characterizing Precise Oscillators: Time Domain

6.3 Characterizing Precise Oscillators: Time Domain

To quantify the error in the frequency of a highly precise oscillator, we need to make

assumptions about the noise and introduce a measure of deviation from perfect oscilla-

tion. We follow Rutman [1] in introducing and using the Allan variance, a time domain

quantity, for this purpose.

6.4 Modelling and Randomness

A perfect simple oscillator would produce the following output:

g(t) = A sin(2πν0t).

Taking this as our starting point and only slightly modifying it by introducing random

phase noise, φ(t), our simple noise model is,

g(t) = A sin (2πν0t+ φ(t)) .

It is sufficient to only introduce a general phase noise term, because instantaneous fre-

quency noise can be written in terms of φ,

ν(t) =
1

2π

d

dt
(2πν0t+ φ(t)) = ν0 +

1

2π

d

dt
φ(t).

Focusing on frequency noise, we introduce a new variable ∆ν related by ∆ν = 1
2π

d
dtφ(t)

so that

ν = ν0 + ∆ν.

We are now able to model ∆ν as we wish, and only later if desired reconnect it to the

phase noise via integration. In fact, it is this relationship that brings us to another

important question of modelling randomness. One vital and simplifying assumption

when dealing with random processes is stationarity. So where should stationarity be, in

a sense, artificially introduced? Should it be introduced at the level of phase noise or

instantaneous frequency noise? It is their inter-relationship that forces us to remember

that sometimes we can’t have both and that the manner in which we set-up our models

79

6 Atomic Clock Background

has an influence on how we make sense of the world. Of course, the ultimate test is

success in predicting and manipulating the real world, but we must remember that there

is a degree of arbitrariness.

From empirical usage, we prefer to treat the frequency error, ∆ν, as a random stationary

process, such that for each t, ∆ν(t) is a random variable whose joint distribution across

different times depends only on the time difference, ∆t.

Lastly, to aid comparisons, it is useful to define the fractional/relative (or normalized)

frequency noise as,

y(t) ≡ ∆ν

ν0
.

It is this quantity that is treated as our fundamental random variable and becomes the

basis of the Allan variance [1].

6.4.1 Statistics

Now that we have decided to focus on y(t), let us discuss how to quantify the frequency

noise of our model oscillator and how to collect statistics from real oscillators.

Interval Averaging

We begin by looking at the average frequency over some interval (tk, tk + τ). The

averaging process begins at time tk and lasts τ long. Experimentally this is implemented

by counting the number of oscillations within the interval and dividing by the length of

the interval. Hence in terms of the model,

ν(t)tk,τ = ν0 +
1

τ

∫ tk+τ

tk

∆ν(t) dt.

We can write the average frequency in terms of the fractional frequency noise.

ν(t)tk,τ = ν0

(
1 +

1

τ

∫ tk+τ

tk

∆ν(t)

ν0
dt

)
(6.3)

= ν0

(
1 +

1

τ

∫ tk+τ

tk

y(t) dt

)
(6.4)

= ν0

(
1 + ytk,τ

)
, (6.5)

80

6.4 Modelling and Randomness

where we have introduced ytk,τ = 1
τ

∫ tk+τ
tk

y(t) dt, the average fractional frequency noise

over the interval.

Ensemble Averaging and Variance

With y(t) as our random variable we may impose assumptions, our first being a zero

mean‡, for each t,

〈y(t)〉 = 0.

Here the average is an ensemble average, over infinitely many runs of the experiment.

The τ averaging of the random variable y(t) still leaves ytk,τ a random variable. But the

zero mean carries through, regardless of the interval length τ , because of the ensemble

average, 〈
ytk,τ

〉
= 0.

With the mean of the noise eliminated, we next introduce the variance of the noise. It

is the variance that turns out to be our main window into the workings of noise. Indeed

from signal processing theory, the variance of a signal is very important and is called by

analogy to many physical situations, the expected power of the signal.

Thus, the variance of ytk,τ is

σ2[ytk,τ] =
〈
y2
tk,τ

〉
,

where we have used the zero mean to simplify the standard definition of the variance.

For a given tk and τ and having taken the ensemble average, the variance is a single

number. It is the true mean of the square of the average of the fractional frequency noise

over (tk, tk + τ).

For a stationary process, as we are assuming, σ2[ytk,τ] is actually independent of the

starting time tk. Hence the convention to define a new function as follows,

I2(τ) ≡ σ2[yt0,τ].

‡In general, if there is some simple systematic drift, it could still be handled by first removing the drift
before analysis.

81

6 Atomic Clock Background

Taking the square-root yields

I(τ) =
√
σ2[yt0,τ],

which, in words, is the true root mean square of the τ -averaged fractional noise.

If we take the limit τ → 0, we get I(τ)→
√
〈y〉, the instantaneous root mean square of

y(t). If we take the other extreme τ → ∞, we get I(τ) → 0, which is just another way

of saying (assuming ergodicity) that the y(t) has zero mean. That is the τ -averaging is

over a long enough interval that the noise fluctuations wash away to zero before being

squared and ensemble averaged.

Allan Variance

In trying to measure I(τ) for real world oscillators we have to contend with finite sample

sizes. Since variance estimators can be biased or unbiased§ and the variance of the

variance can behave differently for different sample sizes; and since it is important to be

able to compare different frequency sources, a convention needs to be established.

We have already assumed stationarity and if we add the ergodicity assumption, then we

are able to take τ -long averages, one after another, without “restarting” the experiment

to t0
#. During one τ -long run we are feverishly counting the number of oscillations after

which we produce only one sample of ytk,τ , so we need to specify how many τ runs, the

gap between runs and the manner of combining them to arrive at a variance estimate.

The IEEE [6] has recommended the following variance estimator:

σ̂2
y(τ) ≡ 1

2
(yt1,τ − yt0,τ)2, t1 = t0 + τ.

Notice that the second interval starts immediately after the first interval with zero, so

called, dead time. This estimator is itself a random variable, and its expectation is what

completes our quest for a time-domain measure of frequency stability, called the Allan

§Sometimes, whether an estimator is biased even depends on the underlying noise distribution.
#Restarting is in some sense not even theoretically possible because it would be restarting the universe

to the same conditions. Then again, the scientific method presupposes the ability to prepare an
identical closed system afresh. However, when we are dealing with noise we are in general assuming
that we are working with an open system where we have no control over the environment. The
environment cannot be reset, so we rather assume ergodicity and see how far it takes us.

82

6.4 Modelling and Randomness

variance,

σ2
y(τ) ≡

〈
σ̂2
y(τ)

〉
.

Notice that in terms of notation‖, the expectation of the estimator “removes” the hat

and tells us something about the underlying variance. Indeed, this estimator was chosen

so that its expectation is unbiased, with respect to white noise,

σ2
y(τ)white = I2(τ).

For other types of noise the Allan variance is in general biased,

σ2
y(τ) = 2(I2(τ)− I2(2τ)) 6= I2(τ).

Ironically, this bias is actually helpful for some noise models. For example, it is useful

when the true variance I2 is unbounded and yet the Allan variance (with the infinities

‘cancelling’) is finite! In this way the Allan variance can still be used to help identify

and characterize these cases.

Ultimately, because we can’t take an infinite expectation in practice, we are forced to

approximate, as best as possible, the ensemble average in the Allan variance. So even

though one estimate calls for only two τ -averaged runs, we still require many estimates

in order that we may build up enough statistics to accurately approximate the ensemble

average,

σ̂2
y(τ)(m) = ̂〈σ̂2

y(τ)
〉
(m) =

1

2(m− 1)

m−2∑
i=0

(yti+1,τ − yti,τ)2, ti+1 = ti + τ.

The m−2 term is there, because we are counting from zero, and the m−1 term appears

because we can only get m − 1 estimates of the Allan variance from m τ -long runs∗∗.

This mean is also its own separate estimator (and a random variable) whose (empirical)

variance may be used to plot the error bars in our estimate of the Allan variance. Thus

‖The bar over the y is absent from this widely used notation. We use it to remind us of the τ -averaging
of y. The bar is left out, since, with τ being specified, the averaging process is implied anyway and
our bar notation is redundant (though still a useful visual aid).

∗∗It has nothing to do with making the mean unbiased as in the variance case. The natural definition
of the mean is automatically unbiased.

83

6 Atomic Clock Background

at this level, we are calculating a realization of an estimator of the Allan variance (which

is the true/full expectation of a two-sample estimator of the variance of the τ -averaged

fractional frequency noise).

6.5 Characterizing Precise Oscillators: Frequency Domain

Stationary random processes are widely used in modelling a diverse set of phenomena.

The theory is well-developed and the tools are powerful. One such tool is the spectral

density of a random process. The spectral density is an abstract concept that involves

the Fourier transform and hence occupies the frequency domain.

We are using a stationary random process to model the noise fluctuations of atomic

clocks. Thus the question of frequencies are already paramount and the tools of the

Fourier domain are particularly appropriate and bring much to our understanding of

noise. Ultimately, of course, we must connect the time domain measures introduced

above to the frequency domain concepts introduced below.

6.5.1 Autocorrelation

First we introduce the autocorrelation of a stationary random process, y(t),

Ry(τ) ≡ 〈y(t0)y(t0 − τ)〉 .

This function’s domain is still time, but now it has the interpretation of a time de-

lay/lag/shift. The autocorrelation is measuring the ensemble averaged correlation of the

same process at different times. The autocorrelation at zero lag is the instantaneous

variance of the random variable at t0, which is the first crucial part of the connection to

the time domain measure of noise. This indeed is one of the main reasons we are able

to use the autocorrelation,

Ry(0) =
〈
y2
〉
.

If we normalize by this variance, which is sometimes part of the definition, we get a

normalized measure of correlation such that the self-correlation at zero lag is 100%, in

other words complete correlation.

84

6.5 Characterizing Precise Oscillators: Frequency Domain

If the random process is stationary, as we are assuming, then there is no dependence of

the autocorrelation on t0. If the process is ergodic, as we also assume, then the ensemble

average may be replaced by the time average.

Finally, there are two very important properties of the autocorrelation that are relevant

to our study,

Ry(0) ≥ |Ry(τ)|.

This is a general property of the autocorrelation and it applies for random or deter-

ministic processes. For random processes this property is a key aspect of exploring how

long, if at all, it takes for correlations to disappear. The second property that concerns

us, is the fact that the autocorrelation of a periodic function is itself a periodic function

with the same period. This property enables the exploration of the periodicities in the

original function via the autocorrelation. This becomes important when the Fourier

transform of the original function cannot be taken because the original function is not

for example square integrable.

6.5.2 Power Spectral Density

We have seen in the time domain section how the square of y(t) plays a crucial role in

studying noise. Indeed from signal processing theory, the square of a signal y(t), is called

the instantaneous power P (t),

P (t) = y2(t).

Signals that continue indefinitely but have finite variance are called power signals††. This

name comes from the analogy with the definition of power in electric circuits (P = I2/R)

or irradiance of the electric field (P ∝ |E|2).

The expectation of the instantaneous power is the ensemble averaged power, which for

stationary processes, is independent of time,

P =
〈
y2
〉
.

††The total energy of power signals, which is the integral of the power with respect to all time, is infinite.
Signals with finite total energy are transient and are called energy signals.

85

6 Atomic Clock Background

We saw above how the power is equal to the autocorrelation at lag 0, by definition,

P =
〈
y2
〉

= Ry(0).

The next step in extracting information from the autocorrelation function is to use the

Wiener-Khinchin theorem to write the autocorrelation as a inverse Fourier-like trans-

form,

Ry(τ) =

∫ ∞
−∞

Sy(f)ei2πfτ df,

where Sy(f) is called the Power Spectral Density. We say Fourier-like because the

Wiener-Khinchin theorem carries through even when the Fourier transform of the auto-

correlation function does not exist.

It is called the Power Spectral Density because for τ = 0,

P =
〈
y2
〉

= Ry(0) =

∫ ∞
−∞

Sy(f) df.

This writes the average power, P , as an integral over frequencies, such that Sy(f)df is

the infinitesimal power‡‡ in the frequency interval (f, f+df). That is, Sy(f) is the power

density with respect to frequency§§.

If it would be possible to take the Fourier transform of the autocorrelation function (for

example with extra convergence constraints, such as Ry(τ)→ 0 exponentially fast) then,

Sy(f) = F(Ry)(f) =

∫ ∞
−∞

Ry(τ)e−2πifτ dτ.

Finally, the connection to the time domain statistics can now be stated as

lim
τ→0

I2(τ) =
〈
y2
〉

=

∫ ∞
−∞

Sy(f) df.

6.5.3 I2 Power Spectral Density

When making the connection between the time domain measure of noise I2 and the

frequency domain, power spectral density, we had to take the limit as τ → 0 of I2(τ). In

‡‡This is made possible by Sy(f) ≥ 0 ∀f . Another useful property is that Sy(f) = Sy(−f), so that, as
is often done, we may focus on positive f only, by defining the one-sided density.

§§With spectrum meaning range of frequencies, as used by Newton when referring to the ‘ghostly ap-
parition’ (spectre) of colours splitting from white light through a prism [2].

86

6.5 Characterizing Precise Oscillators: Frequency Domain

practice this is not possible since there is a minimum non-zero τ that can not practically

be made smaller. It would be helpful if the power spectral density would take the τ

averaging into account. Indeed, it can as we now describe.

We start with the variance, or power in the τa-averaged noise signal,

I2(τa) =
〈
y2
tk,τa

〉
.

Here we have replaced the original τ with τa (a for ‘average’ over) to distinguish it from

autocorrelation τ , which we now label τs (s for ‘shift’).

We follow the same power spectral density construction for
〈
y2
tk,τa

〉
as we did for the

ensemble averaged instantaneous power,
〈
y2
〉
.

We first define the autocorrelation function,

Ryτa (τs) ≡
〈
yt0,τayt0−τs,τa

〉
.

We then define the power spectral density (in terms of the Fourier transform, but if

necessary by the Wiener-Khinchin theorem we do not need the Fourier transform),

Syτa (f) ≡ F(Ryτa)(f).

We write the autocorrelation as the inverse Fourier(-like) transform,

Ryτa (τs) =

∫ ∞
−∞

Syτa (f)ei2πfτs df.

We make the connection to I2 by evaluating the autocorrelation at τs = 0; giving us the

power spectral density of the ensemble average of the τa-averaged noise,

I2(τa) =
〈
y2
t0,τa

〉
= Ryτa (0) =

∫ ∞
−∞

Syτa (f) df.

Now, since y(t) is our fundamental building block, about which we make basic assump-

tions and build our noise model around, we should connect Syτa (f) to Sy(f).

This is done by explicitly writing out yτa in terms of y and a moving## averaging window,

hτa , and then following the detailed calculations of taking the Fourier transform of the

autocorrelation function.
##The window is a ‘continuously moving’ rectangular function. This may seem incompatible with adja-

cent window averaging. It is however not a problem. We could, if we wished to model the process

87

6 Atomic Clock Background

To take advantage of some of the properties of the Fourier transform, we rewrite the

process of averaging as a convolution. In our case, the τa-averaging process is convolution

with a 1/τa-weighted and shifted‖‖ rectangular window, hτa(t), of length τa,

hτa(t) = 1
τa

Πτa(t+ τa
2).

The Fourier transform of the window is proportional to the sinc
1/τa

function,

|Hτa(f)| = |F(hτa)(f)| = |sinc
1/τa

(f)|.

The window, hτa , is called the impulse response∗ ∗ ∗ and its Fourier transform, Hτa is

called the transfer function† † †.

Using hτa we have,

yt0,τ =
1

τ

∫ t0+τ

t0

y(t) dt

=

∫ ∞
−∞

hτa(t0 − t)y(t) dt

= (hτa ∗ y)(t0).

of using only adjacent windows, still first take the continuous moving average convolution, and then
sample the result by multiplying with a Dirac Comb. Here it is not necessary, because we are only
using the autocorrelation of the moving average at zero lag and then ensemble averaging by collect-
ing statistics. That is, for now we are not interested in how neighbouring windows correlate, we are
rather interested in how one ensemble averaged window’s noise is distributed. We do use the valid,
but practically inaccessible, theory of true continuous moving averages and its autocorrelation to
introduce the idea of the power spectral density. Later on in the thesis we actually do make use of
sampling the moving average to gain insight into aliasing.

‖‖The flip and shift to the beginning (t = t0) of the noise integration is taken care of by the convolution.
The τa

2
shift to the left concerns which t-value is assigned the value of the integration. Normally the

convolution with the rectangular function assigns the integral’s value to the center (t0 + τa/2) of the
rectangular function. In the Allan variance, it has been arbitrarily chosen to be the beginning, t0,
which is not a problem, a mere exponential factor, e2πifτa/2, does the translation in the frequency
domain. The convolution is ‘a-causal’ in either case because future y(t) values are used in their pasts.
Later in the thesis we insist on causal windows.

∗ ∗ ∗The reason for the name is that, if the input were an impulse (the Dirac Delta), the output, after
convolution with the window, is the window itself.

† † †The reason for this name is that, in the frequency domain, the Fourier transform of the window
called the transfer function, ‘takes’ or ‘transfers’ the input to the output by simple multiplication
(convolution has been transformed into multiplication).

88

6.5 Characterizing Precise Oscillators: Frequency Domain

Now we can write out the previously defined autocorrelation of the noise in full,

Ryτa (τs) ≡
〈
yt0,τayt0−τs,τa

〉
=

〈∫ ∞
−∞

hτa(t0 − t1)y(t1) dt1

∫ ∞
−∞

hτa(t0 − τs − t2)y(t2) dt2

〉
=

〈∫ ∞
−∞

∫ ∞
−∞

hτa(w)hτa(z)y(t0 − w)y(t0 − τs − z) dw dz
〉

=

∫ ∞
−∞

∫ ∞
−∞

hτa(w)hτa(z)
〈
y(t0 − w)y(t0 − τs − z)

〉
dw dz

=

∫ ∞
−∞

∫ ∞
−∞

hτa(w)hτa(z)Ry(τs + z − w) dw dz ,

where we have introduced new variables (w = t0 − t1 and z = t0 − τs − t2) and changed

the variables of integration. By linearity of the integration we took the expectation in.

Furthermore by stationarity of the random process we rewrote the product of the y’s as

an autocorrelation at the corresponding lag.

We are now ready to take the Fourier transform of the autocorrelation with respect

to τs, as in the definition. We also introduce another new variable, to record the lag

(x = τs + z − w = t1 − t2), and change the relevant variable of integration,

Syτa (f) ≡ F(Ryτa)(f)

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

hτa(w)hτa(z)Ry(τs + z − w)e−2πifτs dw dz dτs

=

∫∫∫
hτa(w)hτa(z)Ry(x)e−2πif(x−z+w) dw dz dx

=

∫
hτa(w)e−2πifw dw

∫
hτa(z)e2πifz dz

∫
Ry(x)e−2πifx dx

= |Hτa(f)|2Sy(f)

= sinc2
1/τa

(f)Sy(f)

= sin2(πτaf)
(πτaf)2 Sy(f).

Thus we have related the averaged noise’s power spectral density directly to the noise’s

power spectral density. The effect of the averaging window is to attenuate the true

noise’s high frequency components, acting as an oscillating low pass filter.

89

6 Atomic Clock Background

6.5.4 Allan Variance Power Spectral Density

Since we concluded the time domain section by stating that the Allan variance is the rec-

ommended measure of noise, this power spectral density section would not be complete

without deriving the Allan variance’s power spectral density. The derivation is exactly

the same as above except with a different window, hAτa ,

hAτa (t) = − 1√
2
hτ (t) + 1√

2
hτ (t− τa).

The window is simply the sum of two scaled adjacent windows (the dead time being

zero) with the first window being multiplied by negative one to capture the difference of

the two τa-averages in the two-sample variance estimator.

The absolute value of the Fourier transform of this window is

|HAτa (f)| =
√

2 sin2(πτaf)

πτaf
.

Therefore the Allan variance’s power spectral density is

σ2
y(τa) =

∫ ∞
−∞
|HAτa (f)|2Sy(f) df

=

∫ ∞
−∞

2 sin4(πτaf)

(πτaf)2
Sy(f) df

6.5.5 Power Law Noise Models

In the process of covering the Allan variance and the power spectral density we intro-

duced constraints and assumptions on our model of noise‡ ‡ ‡. We are now ready to

introduce a description of the noise that governs its character. Assumptions such as

stationarity were mainly introduced for convenience (and so limit the generality of the

models in favour of manageability). However the following stipulations of the noise are

informed by real world, largely universal, phenomenological behaviour.

The tool we use to specify the noise model that we work with is the power spectral

density. Of course, this tool can also be used for analysing real world data. But for

‡ ‡ ‡In a sense, imposing limits of what can be modelled with these set of tools.

90

6.5 Characterizing Precise Oscillators: Frequency Domain

the rest of this study, we assume a certain power spectral density and work towards our

results.

In many different systems it empirically seems that natural systems including noise have

a power law power spectral density. There have been many attempts made at explaining

this and for many settings there is no consensus on the final explanation. For us instead

of providing a mechanism for the noise we simply impose the power law behaviour as an

assumption.

The specification of the spectral density achieves two things with regard to the ran-

dom character of our fundamental random process y(t). Firstly, it obviously specifies

the frequency components of the noise§§§. In this regard it is important to note that

sometimes cut-offs are needed to remain physically realistic. Curiously, the analysis

sometimes carries through even without cut-offs. For example for white noise, no high

frequency cut-off is needed for the Allan variance to converge because the windowing

process, effectively averages away very high frequency contributions.

Secondly, specifying the spectral density specifies the kinds of correlations in the noise

we are considering. Power law spectral densities can model from the case of completely

independent noise, called white noise (constant spectral density), through Markovian

noise, called Brown Noise (1/f2) towards increasingly correlated noise. The faster the

power at higher frequencies drop, the more correlated the noise becomes.

In Table 6.1 we draw up a list of commonly used power law spectral densities. To see the

connection between the Allan variance column and the one-sided∗ S
(1)
y , power spectral

density column, we demonstrate the derivation of the Allan variance from the chosen

§§§More precisely, the frequency components of the autocorrelation of the noise, which is of course related
directly to the noise. Indeed for deterministic energy signals, the Fourier transforms are defined and
we have: F(Ry) = |Y (f)|2, where Y (f) = F(y).

∗It is just a convenience to work with the one-sided density instead of worrying about identical power
levels at frequencies, f and −f .

91

6 Atomic Clock Background

Power-law Noise S
(1)
y (S

(1)
y (f) ≡ 2Sy(f)) Sφ slope Allan variance σ2

y(τ)

White phase (f < fH) h2f
2 f0

(
3fHh2

4π2

)
τ−2

Flicker/Pink phase (f < fH) h1f
1 f−1

(
(3(γ+ln(2πfHτ))−ln 2)h1

4π2

)
τ−2

White frequency (Brown phase) h0f
0 f−2

(
h0
2

)
τ−1

Flicker/Pink frequency h−1f
−1 f−3 (2 ln 2h−1) τ0

Random walk/Brown frequency h−2f
−2 f−4

(
2π2h−2

3

)
τ1

Table 6.1: Power law Noise (hi are constants, fH are cut-offs, γ is the Euler-Mascheroni
constant) .

power law noise for the case of White frequency noise,

σ2
y(τ)white = I2(τ) =

∫ ∞
−∞

sin2(πτf)

(πτf)2

h0

2
df

=
h0

2πτ

∫ ∞
−∞

sin2 θ

θ2
dθ

=
h0

2τ
.

Finally, it should be noted that in order to generate the power spectral density we took

the expectation of the autocorrelation. So that the actual erratic behaviour of a specific

realization of y(t) is ensemble-averaged away to arrive at deterministic properties of the

random process, such as the autocorrelation and the power spectral density. Thus just

because two processes have the same power spectral density does not mean that they

themselves are correlated. This information would be in the conditional power spectral

density. However, we do not make use of this advanced tool directly and in the case

of a process that is written as a deterministic function of another random process, we

content ourselves with a comparison of the two processes power spectral densities as a

measure of actual correlation because the one is a deterministic function of the other.

92

6.6 Atomic Clock Closed Loop Correction

6.6 Atomic Clock Closed Loop Correction

6.6.1 Quantum Physics of Atomic Clocks

In the first half of the Twentieth century, physics underwent a major and surprising

upheaval. Atomic beam experiments played a substantial role in bringing to the fore

some of the new strange quantum effects, such as the quantization of energy levels and

magnetic moments. These same experiments also paved the way for one of the first

technological applications of quantum mechanics: the atomic clock.

Three highlights stand out both for their theoretical and practical contributions: the

1921 Stern-Gerlach quantized magnetic moment experiment [3], the 1938 Rabi resonance

experiment [4] and the 1950 Ramsey double pulse experiment [5]. By the 1950’s a few

laboratories around the world, based on these experiments, had built the first working

atomic clocks. This background section draws from Blair et al’s introduction [6].

Cesium Atoms and the Hyperfine transition

One atomic clock scheme involves Cesium atoms as the source of precise oscillations.

Cesium is chosen because it fulfils a list of criteria including, by virtue of having one

valence electron, its ground state is well separated from its first excited state making

state selection easier. The specific transition that is used is the hyperfine transition from

(F = 3,mF = 0) to (F = 4, mF = 0).

Hyperfine refers to the tiny energy differences between configuration states that are

due only to the differing alignments of the electron’s magnetic moment in relation to

the nucleus’s moment in the presence of an external magnetic field. Since the valence

electron and the nucleus are relatively far apart the coupling is very weak and the energy

difference is very small.

F is the quantum number that labels the eigenvalues of the total angular momentum

operator acting on the combined valence-electron-nucleus wave-function. Therefore F =

I + J , where J = L + S, the total electron angular momentum quantum number and

I is the nucleus’ intrinsic spin angular momentum quantum number. The intrinsic

93

6 Atomic Clock Background

nuclear spin is fixed depending on the isotype of Cesium. For Cs133, I = 7/2, thus

F = 3 = 7/2 + (0 − 1/2) and F = 4 = 7/2 + (0 + 1/2), both correspond to the

ground state L = 0 of the valence electron, the only difference being the alignment or

anti-alignment of the electron spin, relative to the nuclear spin.

mF refers to the quantized projection (−F ≤ mF ≤ F) of the total angular momentum

along the direction of the external magnetic field. mF = 0 is selected for the atomic

clock protocol because it is the least susceptible to magnetic field variations.

The energy difference between (F = 3,mF = 0) and (F = 4, mF = 0) corresponds to

a transition frequency of about 9192 MHz†, which is in the microwave range and thus

easily manageable by electronic circuits.

Atomic Clock Ramsey Protocol

The original scheme used a beam of atoms, with more recent techniques using a ‘foun-

tain’. However there is little difference in the actual protocol and we describe the original

beam approach.

A beam of heated collimated Cesium atoms is first passed through a magnet that selects

those atoms in the desired initial state. The ‘prepared’ atoms are then passed through

a region of a uniform magnetic field. At the beginning of the region, the atoms are

subjected to a pulse of microwaves close to the transition frequency for a duration t =

π
2ΩR

, where ΩR is the coupling strength of the interaction between the two energy levels.

This, so called π
2 -pulse, places the atoms in a superposition of the two states. Towards

the end of the uniform magnetic field another π
2 -pulse is shone on the atoms moving

some of the population to the final state. The atoms leave the magnetic region and

after passing through a second selecting magnet, impinge on an ionizing detector, to

determine the final populations.

The two microwave pulses are produced by circuits that use the frequency of a ‘classical’

quartz crystal clock. The circuit up-converts the ideal expected quartz crystal frequency

†In fact, the 1964 declaration of the International Committee of Weights and Measures defined this
transition to be 9192.631770 MHz in order to define the second.

94

6.6 Atomic Clock Closed Loop Correction

to a predetermined microwave frequency close to the transition frequency (sometimes

intentionally not exactly equal). The two microwave pulses lead to an expected final

population (sometimes intentionally not a complete population inversion, in order to

improve sensitivity). The actual population is measured and compared to the expected

population and the difference is in most part, due to the error of the actual quartz crystal

frequency away from the expected ideal frequency. This error is then compensated for

in a closed-loop frequency adjustment and the process continues.

In the preparation and measurement phases of the protocol, the feedback loop is ob-

viously not correcting any errors. This so called dead time occurs periodically as the

protocol repeats itself. Here-in lies a problem called aliasing and in particular, the Dick

Effect. The periodic lack of sensitivity allows noise at that correcting frequency and its

higher harmonics to, not only go uncorrected, but to also resurface as low frequency

noise.

To gain a deeper understanding, a detailed mathematical description of the correction

process is required. The aliasing effect should be explicitly derived using the tools

that have been introduced above before we can attempt to develop new anti-aliasing

techniques.

The Necessity of Correction

As we saw for some noise models with Allan variance, if we average for longer, τa →∞,

the average fractional frequency error goes to zero, yt0,τa → 0. So it seems that ‘if we

wait long enough’, no correction needs to be made at all! This is ultimately because we

assumed a driftless (zero mean) error. Even if this were realistic, the problem is that we

couldn’t reliably use our clock before the ‘end of time’. But we require that our clock is

as accurate as possible at all times.

With other noise models the variance was infinite, that is I2 unbounded, the departure

of a single realization from the correct frequency can grow indefinitely, even though the

average error is zero and even though we have assumed ergodicity‡.

‡The result that limTr→∞ I
2(Tr) = 0 is for models where I2(Tr) <∞. For unbounded models it would

95

6 Atomic Clock Background

But even for finite fractional frequency variance models, the accumulated error in time

is proportional to the integral of the instantaneous frequency error or using the average

frequency error: Tr×yt0,Tr . So it is also possible that the frequency noise is bounded but

the error in time is unbounded. Thus, the ‘wait long enough’ argument above is even

less of a consolation because agreement may come and go and in between, departures of

time error may be unbounded.

For all the above reasons, we need to perform ongoing corrections to the noisy quartz

clock.

be interesting to take the ensemble average ‘at the same time’ as increasing Tr to see if we can recover
a finite result.

96

Bibliography

[1] Characterization of Phase and Frequency instabilities in Precision Frequency

Sources: Fifteen Years of Progress, J Rutman (Proc IEEE Vol 66 pg 1048-1075;

1978)

[2] Opticks or, a treatise of the reflexions, refractions, inflexions and colours of light:

also two treatises of the species and magnitude of curvilinear figures, I. Newton,

(Royal Society; 1704)

[3] On the quantization of direction in a magnetic field, W. Gerlach and O. Stern

(Ann. Physik; Vol 74; pg. 673-699; 1924)

[4] A new method of measuring nuclear magnetic moment, I.I. Rabi, J.R. Zacharias,

S. Millman and P. Kusch; (Phys. Rev.; Vol 53, pg. 318; 1938)

[5] A molecular beam resonance method with separated oscillating fields, N.F. Ramsey

(Phys.Rev.; Vol 78; pg. 695-699; 1950)

[6] Time and Frequency: Theory and Fundamentals, B.E. Blair Editor (Nat. Bur.

Stand. (U.S.); Monogr. 140; 1974)

97

Chapter 7

Ameliorating Aliasing (and the
Dick Effect) in Atomic Clocks

Abstract

Atomic clocks employ the periodic calibration of a ‘classical’ quartz crystal against an

atomic quantum reference in the form of a well-defined, precise hyperfine transition

frequency. This periodic calibration has a surprising noise-inducing effect called aliasing.

In fact, this sampling effect is mathematically identical to visual digital aliasing. Visual

anti-aliasing techniques such as blurring trade accuracy for smoothness, which would be

unacceptable for atomic clocks. A new technique is proposed where previous samples

are incorporated to boost correction on certain portions of the noise spectral density and

dampen sensitivity on the aliased portion. Incorporating previous samples relies heavily

on there being correlations in the noise.

7.1 Introduction

The Dick Effect [1, 2, 3] is the down-conversion and persistence of time-keeping noise

at frequencies that are an integer multiple of the sampling frequency of atomic clocks.

It is actually a very similar effect to visual aliasing. Visual aliasing, an artefact of the

digitization of images containing high frequency components, is jarring to the human eye

but can be combated by relaxing precision, for example by blurring pixels. This looks

acceptable because the goal is aesthetic and accuracy. Any anti-aliasing like technique

99

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

that reduces accuracy or even introduces noise, exactly defeats the purpose of atomic

clock correction and so the Dick Effect cannot be beaten by these anti-aliasing techniques.

The standard atomic clock scheme is based on a single averaging window and correction

that repeats. We suggest an extension to the single window correcting process involving

multiple but overlapping windows.

7.2 Noise Correction

7.2.1 Sensitivity Function

We start by defining the single cycle sensitivity function, g(t), as the time profile of

sensitivity to the fractional frequency noise y(t) during one run. We define, g(t) in a

form ready for convolution, that is, it is flipped with respect to time. We require g(t)

to be a causal filter and hence must only be non-zero before t = 0∗. Since it models a

finite measurement it must only be non-zero on a finite interval. Putting the last two

conditions together, g(t) is thus only allowed to be non-zero on the interval (−Tc, 0),

where Tc is the period of one full cycle. Of course, for some times within this interval

g(t) may also be zero within a cycle. Initially, we leave the exact form of g(t) open and

general. Further along we do assume a certain structure. For a single idealised Ramsey

protocol run, g(t), has the form of a shifted rectangular function, that reflects 100%

sensitivity for some time (Tr), with zero sensitivity on either side, Tp for preparation

and Tm for measurement. Tp and Tm sum to give us what we referred to before as dead

time: Td = Tp + Tm. Therefore Tc = Tr + Td. See Fig. 7.1, for a pictorial representation

of the various intervals.

Averaging in the time domain measure of noise is integration of the frequency noise over

some interval and divided by the length of the interval to arrive at the average frequency

error. Integration over the interval can be viewed as multiplication by a rectangular

window on that interval followed by integration over the whole real line. This window

view of integration is very useful when it comes to rewriting a sequence of measurements

∗The time axis is flipped so that when the convolution translates and flips g(t) it becomes the window
positioned where the integration takes place (before t0 + nTc).

100

7.2 Noise Correction

Tp Tr Tm

Tc

Figure 7.1: A typical g(t) sensitivity function. Tp is the preparation time, Tr is the length of
time that the system is sensitive to noise (r for Ramsey), Tm is the measurement
and processing time and Tc is the total time (c for cycle).

as a sampled convolution. Experimentally this integration is achieved by counting the

number of oscillations and dividing by the length of elapsed time.

In the atomic clock case, the sensitivity function plays the same role as an integration

window. The difference is that the form of the window is capturing experimental limi-

tations with, for example, compulsory dead time and its experimental implementation

does not involve the direct counting of oscillations. In the Ramsey protocol, the final

population of Cesium atoms is a single number that is the result of integrating the

product of the sensitivity function by the frequency noise [4],

P (t0) ∝ yg(t0) ≡
∫ ∞
∞

g(t− t0)y(t) dt.

In the Allan variance measure, the window consists of two pieces and the single number

after integration was used towards a measure of the noise as a function of the length

of the windows. In the atomic clock correction scheme, that single number is used to

actually make a correction. The method of correction is open and we consider two ways.

101

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

7.2.2 Phase Correction

Since the integral of the frequency error is proportional to the phase error, the single

number produced after one Ramsey cycle actually contains time error information. Thus

one method of correction is to carry out the Ramsey protocol for as long as possible

(Tr >> 1) and use the final measured error for a phase correction of the slaved quartz

clock. Phase correction could be implemented by temporarily and as quickly as possible

speeding up or slowing down the quartz frequency via voltage control of the frequency

until the phase is re-matched. This way the quartz crystal should have very good long

term stability.

Constraints on Large Tr

A large Tr would render the effects of hard minimum dead-time limits, less problematic.

However, Tr can only be lengthened by a finite amount. The first constraint is called

phase wrap. If the error in phase, accumulates beyond |π|, the protocol cannot distinguish

it from a phase error which is less by an integer multiple of 2π bringing it into the (−π, π)

interval.

Secondly, even if the time to phase wrap is large, some application may want to inter-

rogate the quartz clock at a high frequency. If we keep corrections far apart, the short

time stability is not being improved on†.

Finally, with a finite Tr, the inevitable dead time still occurs. If the frequency is allowed

to wander uncorrected, that uncorrected dead-time may start to cause long term degra-

dation. Therefore we suggest a combination of phase and frequency correction. The

same Ramsey protocol measurement contains both phase and frequency information.

Once the phase has been corrected, it would be a good strategy to reset the frequency

taking into account the frequency information. If this is employed then the following

section on frequency correction has a direct bearing. Especially the way, in general,

aliasing is made worse by longer averaging and leaving the frequency uncorrected for

†Though quartz clocks are known to have very good short time stability.

102

7.2 Noise Correction

longer leads to higher frequency variation. But we have discussed above how longer

averaging is better for phase correction. Thus these two goals of frequency and phase

correction are in a surprising antagonism.

Further research would therefore include studying this trade-off between phase and fre-

quency correction. In the next section however, we consider frequency correction inde-

pendently from phase correction.

7.2.3 Frequency Correction

With the goal of correcting the frequency only, the ideal would be an instantaneous

measurement of the noise and a same-time correction to the clock. By the constraints

of the physical set-up we end up integrating the instantaneous fractional frequency to

arrive at the average fractional frequency, yg. This average must then be used to predict

the instantaneous fractional frequency y(t) at the time of correction. It seems we should

thus integrate for as short as possible but long enough to get a meaningful result, that is

at least longer than the error associated with the actual preparation and measurement

processes and its finite resolution. This integration length is called Tr. The measurement

result should be used for correction as soon as possible. However, there is a minimum

time it takes to measure and adjust the system Tm. There is also minimum time of

preparation before integration, Tp. These times [4] all add up to the total cycle time,

Tc ≡ Tp + Tr + Tm.

We can wonder if it would help to lengthen the cycle or introduce a delay before the next

cycle to see its effect on aliasing. As we show below, a longer Tc means a lower sampling

cut-off frequency 1/2Tc, which means aliasing of a larger band of frequencies. Therefore

for frequency-only correction it seems it is always better to have as high a sampling cut-

off as possible, which means as low a cycle period as possible. However, if Td = Tp + Tm

is large and cannot be made smaller, so that aliasing is pronounced, perhaps a better

strategy is to increase Tr to reduce aliasing. All these questions and more are explored

below for the case of a single window and then again later with multiple windows.

103

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

In the standard scheme, the average is used directly as the corrective amount to make,

C(Tr). In essence the assumption is that the average over a small interval is close enough

to the instantaneous fractional frequency noise at the later moment of correction, in order

to cancel it. While running, the atomic clock is directly sensitive to y(t). This sensitivity

is captured by the single cycle g(t), which is then periodically repeated with period Tc.

A finite difference treatment of a closed-loop model of the sensitivity followed by correc-

tion is possible in the time domain as was explored in [5]. We attempt a Fourier domain

treatment.

Extending [6], the atomic clock corrected fractional frequency noise, for single window

correction, can be written as

yC(t) = y(t)− yg(t0 + nTc).

The C superscript stands for ‘corrected’; n is the largest integer such that t0 + nTc < t,

that is, n = b t−t0Tc
c. Notice that yC(t) depends on the uncorrected noise and only the

last implemented correction. Thus the required corrections to a free running clock are

C(n) = yg(t0 + nTc).

Each correction amount is the sensitivity modulated moving-average of y(t) sampled at

multiples of period Tc after the starting time t0.

C(n) is a discrete sequence of corrections to the uncorrected noise. The corrections for

a running corrected/locked clock is the difference between two weighted neighbouring

corrections for the free-running clock,

CL(n) ≡ C(n)− 1
Tr

∫
g(t) dtC(n− 1). (7.1)

This is proved in [6] but has the following intuitive/alternative ‘proof’. Say at some

t = t0 + (n1 − 1)Tc, the unlocked correction, C(n1 − 1) is subtracted from the noise. If

it had not been made, the next step’s unlocked correction C(n1) would have been the

required correction. What is the new required correction, which is built on the same

104

7.2 Noise Correction

sensitivity modulated average process of the assumed same noise? Since each step’s

sensitivity integration process is linear, the last implemented instantaneous constant

correction passes through the integration as a constant contribution, yielding CL(n1) as

the adjusted required correction. Now, if we solve for C(n1),

C(n1) = CL(n1) + 1
Tr

∫
g(t) dtC(n1 − 1),

we see that it ‘contains’ a C(n1 − 1) correction on top of a locked correction. Thus

implementing CL(n1) on the C(n1 − 1)-corrected noise is equivalent to implementing

C(n1) on the uncorrected noise.

Now, the analysis can continue exactly the same for n1 + 1 on the uncorrected noise,

showing that the locked corrections can be written in terms of only two unlocked cor-

rection terms‡.

Turning our attention to the power spectral density of the unlocked corrections, we would

like it to be as close as possible to the power spectral density of the noise, because then

at least the correction is modelling the noise correctly. This is obviously not necessarily

enough to cancel the noise, because one could imagine subtracting a highly delayed

version of the noise from the current noise. The corrections would have the same power

density but would be poorly correlated to the current noise and therefore unfortunately

be unable to cancel the noise. The power spectral density discards phase information,

which in the time domain is translation information. Naturally, when the noise occurs

is as important as what kind of noise occurs. Therefore a better metric would be the

cross-correlation between the correction and the noise and not just the comparison of

the separate auto-correlations. Nevertheless arranging for the auto-correlations to be

similar in shape is a necessary first step to getting the cross-correlation high.

‡This dependence, though, shows how the locked clock’s correction is in general not a stationary process.
It therefore wouldn’t be rigorous to define its power spectrum. Therefore we content ourselves with
looking at the corrections to be applied to an unlocked clock, knowing that it can easily be translated
into corrections for a locked clocked.

105

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

Averaging as a Predictor

In the above formulation, it is seen that the causal moving average yg(t0 +nTc) is being

used as a predictor of the noise at y(t0 + nTc). The reason we have to average the noise

and not simply measure the noise is because we do not have access to the instantaneous

noise. Naturally, the shorter the integral, the better the prediction. But in practice there

is a minimum length that cannot be shortened. In subsequent sections we experiment

with the length of Td and Tr subject to realistic constraints. We also propose the idea

of using previous weighted corrections to help better predict y(t0 + nTc).

Power Spectral Density of the Correction

Perfect correction would be SC(f) = Sy(f)§. However the sensitivity function and

periodic correction introduce distortions. To calculate this effect we need to calculate

the power spectral density of the corrections. Since the corrections are discrete, in

order to calculate the power spectral density we need to take the Discrete-time Fourier

Transform (DTFT). However, there is an equivalent Fourier transform that takes into

account the sampling.

We begin with the discrete autocorrelation of the correction,

RC(n) ≡ 〈C(n0)C(n0 + n)〉 .

But instead of working with RC(n) directly we rather work with the continuous auto-

correlation and later sample at nTc,

Ryg(τ) ≡
〈
yg(t0)yg(t0 − τ)

〉
=

〈∫ ∞
−∞

g(t0 − t1)y(t1) dt1

∫ ∞
−∞

g(t0 − τ − t2)y(t2) dt2

〉
.

Therefore, following the usual derivation of the power spectral density, but now with

§As a caveat, see previous comments about comparing power spectral densities.

106

7.2 Noise Correction

sampling, yields,

SC(f) = FDTFT,n (RC) , |f | < 1
2Tc

= Fτ
(
TcRyg ·ΠΠnTc

)
= TcF

(
Ryg

)
∗ F

(
ΠΠTc

)
=
(
Tc|G(f)|2Sy(f)

)
∗
(

1
Tc

ΠΠ
1/Tc

)
=
∑
n

|G(f + n
Tc

)|2Sy(f + n
Tc

)

=
∑
n

Sg(f + n
Tc

)Sy(f + n
Tc

).

Sg(f) ≡ |G(f)|2, is the Fourier transform, absolute value squared, of the sensitivity func-

tion. Since g(t) is deterministic and of finite support, we do not need to go through the

Fourier transform of the autocorrelation to define it, we may take the Fourier transform

directly.

In the case of the box sensitivity function of Fig. 7.1, this reduces to

SC(f) =

{∑
n sinc2

1/Tr
(f + n

Tc
)Sy(f + n

Tc
) , for |f | < 1/2Tc

0 , otherwise
. (7.2)

As we can see, the power spectral density of the corrections does not look like the

power spectral density of the noise. We have to contend with the modulation of the

transfer function (the Fourier transform of the finite averaging window) and the aliasing

of sampling. However, at least, the averaging based predictor, does very well in capturing

noise with low frequencies that don’t cancel out in the averaging window.

Sampling and Reconstruction

The sampling of the moving average is identical to the sampling phenomenon we in-

troduced in the background chapter. All that is missing is the reconstruction with

convolution of the sincTc . We could very well introduce the sincTc , which reproduces an

approximation to the continuous moving average, which we could then sample at nTc

to reproduce the discrete points. Convolution with sincTc is multiplication of the power

107

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

spectral density by a convenient rectangular function giving us a noise spectrum that is

only non-zero for |f | < B = 1/2Tc.

Since we are performing the DTFT, we get the same restriction on f by virtue of the

fact that the highest frequency present in the discrete points is one whose period is twice

the gap between points.

Yet another way to see this restriction, is to think of the discrete points as the Fourier

series of the periodically 1/Tc-repeating, power spectral density#. We may choose any

periodic interval for the Fourier Series and for convenience we select the zero centred 1/Tc

interval (splitting it into two equal pieces), showing that all the frequency information

for |f | < 1/2Tc is enough to produce a discrete set of numbers which has the same

information as the repeated function.

Uncorrected Noise

Now we are ready to identify the noise that is not corrected. There are two ways that

the noise is left unrepresented. Firstly there is the obvious sampling induced cut-off,

|f | ≥ 1

2Tc
.

This means that the continuous moving average no longer has frequency content faster

than half the sampling frequency. The fastest that finite samples separated by Tc can

change sign and back is over a period of 2Tc which is at a frequency of 1/2Tc which is

half the sample frequency. Faster underlying variations are there, but resurface as lower

frequencies, and no longer appear as fast variations.

Secondly, the sinc2
1/Tr

in the transfer function has a diminishing envelope. The sinc2
1/Tr

function does ‘bounce’ with diminishing amplitude on the zero line, but the first zero

does not occur before the cut-off. 1/Tr is the location of the first zero, however for that

#Note, we are taking the Fourier series from the Fourier domain, bringing us back into the time domain.
A kind of inverse procedure, except that we are specifically using the Fourier Series to take us from
a continuous repeating domain to a discrete domain.

108

7.2 Noise Correction

zero to appear below the sample-induced cut-off frequency

1/Tr < 1/2Tc

Tr > 2Tc,

which is not possible because Tr ≤ Tc, by definition. Even though the sinc envelope

does not go to zero in the sampled frequency range, it does diminish so that the spectral

density of the correction is always less than the spectral density of the raw noise‖. This

diminishing effect is reduced for shorter Tr, because then the sinc’s first zero is pushed

to infinity and higher frequencies are brought under the main flattening lobe.

Over-corrected/Mis-corrected Noise

Besides not correcting parts of the noise power spectral density, the atomic clock set-

up also introduces its own noise due to out-of-sync correction, loss of correlation and

sampling down-conversion. Out-of-sync correction is due to the delay inherent in using

a past average to predict the future. This error is not reflected in the power spectral

representation because of the absolute values. This leads to frequencies that are picked

up by the averaging, e.g. f = 1/(4Tc), but whose contribution to the average does

not match their contribution to the point value at the end of the cycle (nTc). The

most extreme example of this effect is for frequencies just slower than half the sample

frequency f ≈ 1/(2Tc). Here the fluctuation typically does contribute to the average but

which then becomes a completely unnecessary correction by the time that fluctuation

reaches the point of correction. That is, the zeroes of the noise at this frequency occur

at the end of the cycle, at the moment when their average contribution is being made

to count.

It is proposed that this error could perhaps be partially corrected for by using a model

of the noise and predicting future noise. This would entail not only estimating the

‖As long as the window’s spectral density is normalized to one at its maximum, which we always do.
In fact, as a future possible technique we could experiment with scaling the window to accentuate
sensitivity for certain parts of the spectrum in exchange for over-correcting and thus introducing
noise at other parts.

109

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

amplitude of the noise but also the phase. The phase of the noise at a particular

frequency is only meaningful within the correlation time of the noise for that specific

frequency. To try and compensate for this effect in the Fourier domain a single window

needs to be phase shifted by e2πif(Tc/2) to move the center of the casual window to

the moment of correction. If the single window is viewed as a sum of dividing smaller

windows (each centred on −Tc < tc < 0) then each window’s transfer function needs

to be translated by e2πiftc . Unfortunately all of this does not help because we do not

have the Fourier transform of the noise, which is not even defined. Thus rather than

explicitly calculating forward predictions perhaps a feedback scheme on a parameter that

captures this delay could be implemented. This idea is very similar to ideas already well

developed in the field of active 1-D audio noise cancellation techniques [7]. It may work

well for noise spectral densities where there is one dominant noise frequency. Closely

related to the above error is the problem of accurately correlating with the noise. Even

if we compensate for delay synchronization, since the noise is random we have to be

concerned about correlation. In using past information to predict future random error,

even information about low frequency noise may be less valuable due to the loss of

correlation after some time. Noise operating at low frequency with a random phase kick

for example would scupper our attempts to correct for that low frequency noise once the

correlation time has elapsed.

7.2.4 Aliasing and the Dick Effect

The most important case of the introduction of errors associated with periodic frequency

correction is aliasing. By setting f = 0 in Eq. (7.2) we arrive at the famous Dick Effect

[1], namely, frequencies of the noise power spectral density corresponding to n
Tc

are down-

converted into SC(0). That is the correction’s power spectral density’s DC term, which

corresponds to a permanent offset, is

SC(0) =
∑
n

Sg(
n
Tc

)Sy(
n
Tc

).

110

7.2 Noise Correction

|G(f)|2

f
0 1

2Tr

1

Tr

3

2Tr

2

Tr

0

1

2

1

Figure 7.2: The transfer function squared of the single window sensitivity function, showing
the regions of sensitivity to noise in the Fourier domain (with no sensitivity at
n/Tr).

This demonstrates that noise at multiples of the sampling frequency (the sampling fre-

quency’s faster harmonics) look like constant fixed shifts to the averaging and sampling

process.

We now try to better understand aliasing in general and the Dick Effect specifically for

the box sensitivity function in Fig. 7.1. The transfer function squared of the single

window box function which appears in Eq. (7.2) is

|G(f)|2 = sinc2
1/Tr

(f).

A plot of this sinc function with zeros at n/Tr appears as Fig. 7.2. In the Fourier do-

main, this filter, multiplies the noise, to give the power spectral density of the continuous

moving average of the noise. Of course, in practice we can not measure the continuous

moving average. The effects of taking snapshots of the continuous moving average at nTc

in the time domain, is to translate by n/Tc and sum multiple copies of the continuous

moving average’s Fourier transform in the Fourier domain. Fig. 7.3 shows these trans-

lated copies before summation. Of course, SC(f) is zero for |f | > 1/2Tc, however the

full translated versions are shown to aid understanding. Fig. 7.4 is a zoomed in version

of the same plot, on the region where the DTFT is non-zero, with the translated copies’

111

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

u v w

SC(f)

f
0 1

2Tc

1

2Tr

1

r

0

1

2

3

4

5

Figure 7.3: Aliasing due to Overlapping Translated Copies.

SC(f)

f
0 1

2Tc

0

1

2

3

4

5

Figure 7.4: Aliasing (on the non-zero region).

contribution coloured red. In Eq. (7.2) the aliasing parts of the window are multiplied

only by the corresponding high frequency parts of the noise. That is, while we show the

sinc window aliasing, it actually first needs to be multiplied by the noise at the higher

frequencies of the translated copies, before aliasing, to calculate the impact of aliasing.

We do as such in Fig. 7.12 – Fig. 7.16. In Fig. 7.2 – Fig. 7.5, Td = 0.7, Tr = 0.2.

In Fig. 7.5 we show the aliasing again, but with a suggestive dotted curve, which makes

the translated copies’ contribution look like reflections of the main untranslated transfer

112

7.2 Noise Correction

|G(f + n/Tc)|
2

f
0 1

2Tc

1

2Tr

1

Tr

2

Tr

0

1

2

1

Figure 7.5: The transfer function squared Aliased.

function. That is, notice how the transfer function ‘folds’ back on itself as it reaches

1/2Tc, and then ‘bounces’ back again at zero. The accumulation of these contributions

at f = 0 is the Dick Effect.

To make precise and to actually see that ‘folding’ and ‘bouncing’∗∗ are good descriptions

of what is occurring mathematically, we prove the following simple, original mathemat-

ical lemma.

Reflection Lemma. 1 The translation, by A, of a symmetric function, is equivalent
to reflection about A/2.

Proof: Given f(x) = f(−x). Translation by A: f(x − A). Reflection about A/2, can

be thought of as a translation of the point A/2 to zero, followed by reflection about the

y-axis, followed by a translation back,

f(x)→ f(x+A/2)→ f(−x+A/2)→ f(−(x−A/2) +A/2).

Finally the two formulae are equivalent after simplification and the use of symmetry,

f(−(x−A/2) +A/2) = f(−x+A) = f(−(−x+A)) = f(x−A). Q.E.D.

Since Sy(f) is symmetric about the y-axis, i.e. Sy(f) = Sy(−f). The first fold corre-

sponds to the translated term Sy(f − 1/Tc) = Sy(−(−f + 1/Tc)) = Sy(−f + 1/Tc) =

∗∗On the interval (0, 1/2Tc). Of course, the analysis occurs symmetrically about the y-axis.

113

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

Sy(−(f − 1/2Tc) + 1/2Tc), which is reflection about 1/2Tc. When f = 1/2Tc, this term

is equal to Sy(−1/2Tc + Tc) = Sy(1/2Tc), which is the main non-aliased term evaluated

at the same point. So the translated power spectral density (centred on Tc) meets the

original term at 1/2Tc and looking at the first-fold term with f running backwards from

1/2Tc to 0, we see that the folding term is a copy of Sy(f) running forwards from 1/2Tc

to Tc. That is the fold term is a reflection of the main term about 1/2Tc exactly as an

application of the above lemma would arrive at.

The ‘bounce back’ contribution comes from the term that has been translated by −1/Tc,

Sy(f+1/Tc). When f = 0, it meets the first fold-over term: Sy(+1/Tc) = Sy(−1/Tc), by

symmetry. For this term, as f goes from 0 to 1/2Tc, the contribution is the same as the

main term from 1/Tc to 3/2Tc. This procedure continues indefinitely folding at 1/2Tc

and bouncing back at zero, involving further and further translated copies of the main

Sy(f). The net effect looks like the main Sy(f) is bouncing back and forth between

the two ‘walls’. This makes the calculation of the total aliased error (A1/f (Td, Tr))

particularly easy, it is simply the integral of the main Sy(f) from 1/2Tc to infinity.

Doing the calculation analytically for Sy(f) = 1/f †† noise yields,

A1/f (Td, Tr) =

∫ ∞
1/(Td+Tr)

sinc2
1/Tr

(f)

f
df

=
πTr

(
(Td + Tr) sin

(
πTr
Td+Tr

)
− πTrCi

(
πTr
Td+Tr

))
− (Td + Tr)

2
(

cos
(

πTr
Td+Tr

)
− 1
)

π2T 2
r

,

with Ci(z) = −
∫∞
z

cos(t)
t dt. To visualise the total aliasing error, we make a 3D plot

of A1/f (Td, Tr) in Fig. 7.6. We firstly confirm the obvious, that a shorter Td is always

preferable (pushing the bouncing-back wall further away). However we see that, even

though a shorter Tr would also push the bouncing-back wall further away, a shorter

Tr also pushes the zero of the sinc further away and thus increasing the aliasing effect.

The final behaviour is thus, that for a fixed Td, a longer Tr produces lower aliasing by

††It may seem that we have set h−1 = 1. However, since we are operating theoretically and in general,
perhaps a better way to interpret this is that we are defining the time scale. Our 1/f = 1/(f ′/h−1),
where the units of our f , corresponds to 1/h(− 1) times the units of the experiment’s frequency, f ′

(e.g. Hz). Since our fractional noise is dimensionless the dimensions of Sy(f) is simply ‘time’ or ‘per
frequency’.

114

7.2 Noise Correction

0

1

2

3

4

5

1

2

3

4

5

1

2

3

4

A1/f (Td, Tr)

Td

Tr

Figure 7.6: Total Aliasing Error (1/f noise).

suppressing higher frequency sensitivity. This property is not useful when in comes to

error correction. Indeed we see later that a smaller Tr is still preferred for overall noise

reduction. Incidently, we also observe and can calculate analytically that for Td > 0, as

Tr → 0 the total aliasing error diverges for 1/f noise. Perhaps this is a strong theoretical

justification for why there has to be a high frequency cut-off for 1/f noise. In the field,

sometimes a 1/f cut-off is ignored because the sinc goes to zero, here by taking Tr → 0

we are effectively removing the sinc and running into the usual problem that the area

under the 1/f curve is infinite.

A surprising non-physical but mathematical result is that Td = 0, Tr → 0, does seem to

produce a finite non-zero net total aliasing effect,

lim
Tr→0

A1/f (0, Tr) =
2

π2
− Ci(π).

This is surprising because a zero dead-time, infinitesimal window cycle would be expected

to reproduce the noise exactly, indeed at Tr = 0, the aliasing integral is undefined (the

interval of integration is (∞,∞), which we can then define to be zero). On further

investigation, we realise that the limit depends on the direction of approach and so the

2D limit is also undefined and might as well be defined to be zero.

115

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0

1

2
3

4
5

0

1

2

3

4

5

0

2

4

6

8

10

A1/f2(Td, Tr)

Td

Tr

Figure 7.7: Total Aliasing Error (1/f2 noise).

We repeat the calculation for 1/f2 noise and arrive at,

A1/f2(Td, Tr) =

∫ ∞
1/(Td+Tr)

sinc2
1/Tr

(f)

f2
df

=

(
2

(
π3T 3

r Si

(
πTr

Td + Tr

)
+ (Td + Tr)

(
(Td + Tr)

(
2 (Td + Tr) + πTr sin

(
πTr

Td + Tr

))
+
(
−4TdTr − 2T 2

d +
(
π2 − 2

)
T 2
r

)
cos

(
πTr

Td + Tr

)))
− π4T 3

r

)
/(3π2T 2

r),

with Si(z) =
∫ z

0
sin t
t dt. We plot the total aliasing error for 1/f2 noise in Fig. 7.7 and

observe similar behaviour to the 1/f plot, except that there is no divergence for Tr = 0.

We are now ready to replot Fig. 7.4, with the aliasing terms summed up, but keeping

their f dependence, as well as with A1/f represented as a line at height A1/f/(1/2Tc).

Thus the area under the line is the total aliasing error and the height is the average total

aliasing error over the region aliased to. In Fig. 7.8, we see two dashed (red) curves

replacing the zig-zag separate aliasing terms. The flat dashed line is the average total

aliasing, and the curved dashed line is the sum of all the aliasing terms. We can see how

the f dependent sum is very close to the average, leading to the common notion that

aliasing resurfaces as flat white noise. The solid lines correspond to the 1/f noise and

the slightly lower non-translated sinc modulated 1/f noise. With the specific choices of

parameters (Tc = 0.9, Tr = 0.2), we see that up to 1/2Tc the averaging process captures

the noise quite well. It is just unfortunate that the aliasing noise supersedes the natural

116

7.2 Noise Correction

Power Density

f
0 1

4Tc

1

2Tc

Average Alias

Summed Alias

Corrections
Noise

Noise+Alias

0

5

10

Figure 7.8: Summed and Averaged Aliasing Error (1/f noise).

noise even before 1/2Tc. The dot-dashed (purple) line is the 1/f noise plus the summed

aliasing. This gives a good visual cue as to the noise that is not corrected plus introduced,

that is the space between the dot-dashed line and the solid sinc line is noise left after

the correction.

Bringing together all these noise contributions, the overall performance of the scheme to

detect and capture the noise can be measured by the final total noise, N(Td, Tr), which

includes the noise left uncorrected and the noise introduced due to aliasing. This total

noise is thus the total noise minus the corrected amount on the interval (0, 1/2Tc) plus

the aliased noise. The corrected noise on the interval actually does manage to handle the

infinite area for both 1/f and 1/f2 because the sinc goes to one as f → 0. We do have

to carefully handle the limits since 1/f (1,2) and
sinc

1/Tr
(f)2

f1,2 both diverge as f → 0, yet

the difference is finite. The difficulty comes in for the uncorrected noise on the interval

(1/2Tc,∞) for 1/f noise, because this uncorrected noise diverges. As for 1/f2 noise, the

uncorrected noise on the infinite interval does indeed converge and to a straightforward

value of 2Tc. Therefore for 1/f2 we can arrive at a complete analytic result without

117

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0
1

2
3

4
5

1

2

3

4

5

10

20

30

N1/f2(Td, Tr)

Td

Tr

Figure 7.9: Final Noise (1/f2).

introducing any cut-offs,

N1/f2(Td, Tr) =

(
4π3T 3

r Si

(
πTr
Tc

)
+ 24T 2

dTr + 24TdT
2
r + 4Tc

(
πTrTc sin

(
πTr
Tc

)
+
(
−4TdTr − 2T 2

d +
(
π2 − 2

)
T 2
r

)
cos

(
πTr
Tc

))
+ 8T 3

d −
(
π4 − 8

)
T 3
r

)(
3π2T 2

r

)
.

We plot N1/f2 in Fig. 7.9 and witness that for 1/f2 noise, smaller Td and Tr is always

preferred. For 1/f noise we have to introduce a high frequency cut-off, fhi, to measure

the overall performance in the final noise. We also assume that the alias wall occurs

before the high frequency cut-off, 1/2Tc < fhi, otherwise there would be no aliasing.

N1/f (Td, Tr, fhi) =

(
2πfhiTr

(
2πfhiTr

(
−2Ci

(
πTr
Tc

)
+ Ci (2πfhiTr) + log (2πfhiTr)

)
+4fhiTc sin

(
πTr
Tc

)
− sin (2πfhiTr)

)
+ 2f2

hi

(
8TdTr + 4T 2

d +
(
π2(2γ − 3) + 4

)
T 2
r

)
−8f2

hiT
2
c cos

(
πTr
Tc

)
+ cos (2πfhiTr)− 1

)
/(4π2f2

hiT
2
r).

Ci is the same as above and γ is the Euler-Mascheroni constant. We plot this final noise

in Fig. 7.10 for fhi = 10. If we replotted this graph for higher fhi we would notice that

the shape does not change much, the main difference is that the whole graph is shifted

higher due to the increased uncaptured noise brought on by the higher noise frequency

cut-off.

118

7.2 Noise Correction

0

1

2

3

4
5

1

2

3

4

5

2

4

6

8

N1/f (Td, Tr, 10)

Td

Tr

Figure 7.10: Final Noise (1/f).

The most interesting feature of the 1/f final noise plot is that there is a lip in the graph

for low Tr. For Tr greater than values near the lip, the graph behaves the same as the

1/f2 graph, that is, lower Td and Tr leads to lower final noise. However the lip comes

into effect for very low Tr. This is the contribution towards the noise from aliasing. We

saw in Fig. 7.6 that aliasing increased with lower Tr eventually diverging. Here we see

the increase dominating for small Tr and moderate Td. There is however no divergence

because of the cut-off.

If Td is not sufficiently small to miss the lip, then smaller Tr does not help and in

fact makes the noise worse. Therefore for practical atomic clock implementations the

priority is to make the dead time as small possible and at least below the lip region,

before making Tr smaller.

Trying to Alleviate the Dick Effect

Eq. (7.2) suggests a way to eliminate the constant shift aliasing SC(0). Namely aliasing

of the zero frequency, is eliminated if Sg(0) = 1 and Sg(
n
Tc

) = 0, n > 0. But g(t) is by

definition of finite duration and so must have frequency components for f > 0. How

do we construct a g(t) = 0, t < 0 and t > Tc such that G(f) > 0 for some f > 0 but

G(nTc) = 0 ?

Let g(t) = 1
Tc

ΠTc(t − Tc
2), that is ‘always on’ over the allowed interval, (0, Tc = Tr).

119

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

That is, there is no dead time. Now |F(gTr=Tc)(f)| = |sinc
1/Tc

(f)|. The sinc function is

exactly what we were looking for, namely,

sinc
1/Tc

(0) = 1 and

sinc
1/Tc

(nTc) = 0, n > 0.

Thus in terms of correcting errors, at least we get SC(0) = Sf (0) = 0. The other cases

of error, aliasing for f > 0, diminished amplitude, high frequency non-correction and

delayed correction still apply but at least the errors in correction oscillate around the

desired frequency and do not come in the form of an incorrect permanent offset.

Eliminating the Dick Effect by choosing Tr = Tc (‘always on’) does not eliminate all

aliasing it just positions the zeros of the folded back aliases at f = 0, so that DC

aliasing is zero.

Of course, the assumption about ‘always on’ is not practically realisable, because of

minimum preparation and measurement times. So we next look at ways of tackling

aliasing, given the practical limitations in a trade-off fashion.

7.3 Multiple Window Attack on Aliasing Noise

In the single window case we found that aliasing was unavoidable. The best we could

do was to try and make Td as small as possible. The Dick Effect, DC aliasing, would

disappear for Tc = Tr, that is Td = 0, but nevertheless aliasing at other frequencies still

occurred, due to the discrete sampling.

The ideal transfer function to make aliasing completely disappear would be a box func-

tion of total width 1/Tc. The inverse Fourier transform of a box is related to a sincTc

function in the time domain. If we could sample the frequency noise weighted by a sinc

function, we could then perfectly average out high frequency noise. There are two major

problems with this idea, firstly the sinc function is not causal and requires noise values

from the future. Secondly, we still need to sample the hypothetical continuous moving

sinc average. If we wait to sample multiple Tc’s to gather a representative weighting

120

7.3 Multiple Window Attack on Aliasing Noise

under the sinc, we end up sampling at a longer period, thereby changing the aliasing

fold-over point to an early position, making matters automatically worse. We need to

somehow store noise data so that every Tc we could reuse some of the previous data

under a new shifted sinc.

Another way to motivate this usage of previous noise measurements is to consider a longer

multiple window sensitivity function. Again the problem with this is that, if we sample

at this larger period, for example say for three practicable windows each with the same Td

and Tr, then the longer period is now 3×(Td+Tr), all the negative properties of sampling

are made worse. That is aliasing comes into force even sooner, from f = 1/6(Td + Tr)

and more noise is left uncorrected f > |1/6(Td + Tr)|. Multiple windows would seem a

completely bad idea compared to a single window, simply because of a lower sampling

cut-off, even if there would be some desirable properties of the transfer function of the

multiple windows g(t).

The solution is related to a visual anti-aliasing technique that is ordinarily not available

to us. It is called super-sampling. Super-sampling is merely sampling at a higher fre-

quency. We already know that a smaller Tc is better for frequency correction and we

know that we are constrained by a minimum dead time which can not be made smaller.

Thus it seems the idea of super-sampling is not applicable. However, if we use multiple

windows with a larger period, perhaps it is possible to sample at a period less than the

period of the full cycle. The trick is to let the g(t)’s overlap. That is, each of the multiple

windows must be of the same form, so that when we sample at say, a period of a third of

the total period, we reuse previous measured window results in a new shifted position.

This third of the total period is not shorter than the previous minimum period and may

be the same but it is shorter relative to the total period.

The constraint that the total g(t) cycle must now be split into identical sub-regions, does

not mean we cannot scale previous window results. Thus, there is still some flexibility

in designing the new multiple window, g3(t).

One extra point that must be remembered when implementing the scheme, is that these

121

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

corrections are for an unlocked clock. To correct a locked clock, the corrections need

to take into account previous corrections. This is not too difficult and proceeds along

the lines of Eq. (7.1), but for multiple windows, we need to take into account previous

corrections passing through subsequent sub-windows.

Experimenting with different numbers of windows and different multiple window configu-

rations are all combined in Fig. 7.12. Three of the tested multiple window configurations

are inspired by the above discussion of the sinc in the time domain. One of the sinc

windows corresponds to three windows scaled to fit exactly under a sincTc time domain

function. Indeed the transfer functions of these windows comes closest to a repeated box

pattern with a flattish top compared to the other windows.

7.3.1 Implementation

The idea of using overlapping multiple window sensitivity functions does not require

any changes to the experimental set up. The actual sensitivity during the smallest

cycle possible (now called the sub-window) is still the same. The only difference occurs

after the usual measurement but before correcting the quartz clock. The stored data

from previous short cycles are combined (computationally) according to the selected

multiple window profile. For example, in the case of three sub-windows, the output of

two sub-cycles ago would be scaled to become the middle window in the multiple window

calculation. Corrections still take place at the end of every sub-cycle in order to keep

aliasing down.

This data crunching step before affecting correction does raise the point that the cal-

culation must be executed fast enough to keep up with the sub-cycles. To speed up

performance, perhaps FPGA or analogue implementations would have to be considered.

7.3.2 Window Design

A general three window, g3(t), layout that is ready for overlap, consists simply of three

of the single windows, g(t), that we have been dealing with previously, lined up before

122

7.3 Multiple Window Attack on Aliasing Noise

1
0.25
0.1

-4 -3 -2 -1
t

Tp:
Tr:
Tm:

g3(t)

Figure 7.11: Example Three Window Sensitivity.

t = 0,

g3(t) = a2Π

(
t+ 2Tm + Tp + 3Tr

2

Tr

)
+a3Π

(
t+ 3Tm + 2Tp + 5Tr

2

Tr

)
+a1Π

(
t+ Tm + Tr

2

Tr

)
.

Here the scaling and shifting has been done in the arguments of the unit box Π1(t). Fig.

7.11 gives one example of a configuration. The Fourier transform squared of g3(t), has

a particularly amenable and recognizable form,

|G3(f)|2 = M(f) 1
T 2
r

sinc2
1/Tr

(f), (7.3)

with

M(f) = (2a3a1 cos (4πfTc) + 2a2 (a1 + a3) cos (2πfTc) + a2
1 + a2

2 + a2
3).

We immediately recognise the sinc function, which is exactly the transfer function of a

single window of width Tr. The co-efficient in front, M(f), is a result of the ‘interference’

of the three windows’ phase factors that implement the time domain translation, in

the Fourier domain. Conveniently, this modulation of the single window sinc function

depends only on the total cycle time. So henceforth we need only consider Tr and Td

(the total dead time Td = Tp + Tm).

Next the choice of the amplitudes of the windows are completely open. An actual

measurement in practice corresponds to ai = 1, but because we have access to the

123

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

stored separate measurements we are free to scale the integral by simple computation

(namely multiplication).

In what follows we show that indeed non-trivial windows are helpful in combating alias-

ing. In practice the actual ai’s could be optimized relative to real life power spectral

densities or even experimentally optimized. Many real life power spectral densities have

spikes that protrude out of the normal 1/f or 1/f2 noise profiles. By varying the a′is

through a numerical optimization procedure it may very well be possible to do better

than the windows we study next.

We choose three of the configurations based on the previous sinc discussion and the rest

are chosen according to symmetry considerations to try and cover the typical behaviours.

Firstly, we choose a single window case and two representative double windows. For the

three non-trivial windows scenario, we start by considering the signs of the amplitudes.

There are 2× 3× 2 possibilities (allowing for the middle window to be zero, which is a

valid separate three window configuration, different from the two window cases). Since

the modulation expression, Eq. (7.3), is invariant under multiplication of −1 and/or

swopping the first and the last amplitudes, we first remove the ‘multiply-by-minus-1’

duplications (which halves the number of possibilities). Thereafter, we remove the one

remaining swop and multiply-by-minus-1 invariance duplication, which leaves us with

five unique sign allocations. Using these sign allocations, we then symmetrically assign

amplitudes which conveniently also leads to the simplest trigonometric expressions. It

turns out, by virtue of the symmetry imposition that the produced expressions are

extreme cases of the modulation patterns, perfect for testing a finite number of cases.

For one of the sign allocations where horizontal symmetry is difficult to achieve (−++),

we permit two representatives. All in all we have chosen eleven non-trivial window

configurations, to see if at least one of them can beat the single window case.

In Table 7.1 we list twelve window configurations. The second column is the modulation

expression, M(f) and the third column is the assignment of amplitudes to achieve that

configuration.

124

7.3 Multiple Window Attack on Aliasing Noise

M(f)Modulation {a1, a2, a3}
1 1 {0, 0, 1}
2 4 cos2(πcf) {0, 1, 1}
3 4 sin2(πcf) {0,−1, 1}
4 4 sin2(2πcf) {−1, 0, 1}
5 4 sin4(πcf)

{
1
2 ,−1, 1

2

}
6 4 cos2(2πcf) {1, 0, 1}
7 4 cos4(πcf)

{
1
2 , 1,

1
2

}
8 2− cos(4πcf)

{
− 1√

2
, 1, 1√

2

}
9 3− 2 cos(4πcf) {−1, 1, 1}

10 −1.56 cos(2πcf)− 0.44 cos(4πcf) + 2.0484 {−0.22,−1, 1}
11 1.56 cos(2πcf)− 0.44 cos(4πcf) + 2.0484 {−0.22, 1, 1}
12 0.377 cos(2πcf)− 0.1168 cos(4πcf) + 0.6234 {−0.08, 0.29, 0.73}

Table 7.1: A Listing of Different Window Designs and their Modulations.

7.3.3 Window Performance

In the first column of Fig. 7.12 we plot a pictorial representation of the time profile

of the window configuration. In the second column we plot the green sinc function

superimposed by the blue modulation curve. The third column contains plots of the

modulated sinc (the blue modulation curve times the green sinc) in a bluish-green colour.

This plot also shows the aliasing that kicks in at 1/2Tc. Beyond that interval, the

multiplied modulated sinc is depicted in a dashed red curve, which is also folded in to

the (0, 1/2Tc) interval, in solid red, representing aliasing. These window aliasing terms

still need to be multiplied by the aliased noise before representing the final alias noise

contribution.

In the fourth column we plot the 1/f noise in orange and the multiplication of the

modulated sinc and the noise in a light pea-green (the colour coming from mixing blue,

green and orange). This multiplication represents the noise correction on the interval

(0, 1/2Tc). In red we depict the sum of all the noise alias terms. When the red curve

reaches a non-zero value on the y-axis it constitutes DC aliasing, which is called the Dick

Effect.

125

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0 2 0.1
0 2 0
0 2 0.1

1
1.150 1

2
1.647 4

3
3.660 11

4
3.400 10

5
4.083 12

6
2.144 6

7
1.895 5

8
2.421 7

9
2.809 8

10
3.387 9

11
1.363 3

12
1.304 2

N(0, 0.1, 0.1) RankWindows
Tr :

Td:

flow:

Figure 7.12: Comparison Run 1.

In the fifth column the integral of the correction is presented in a pea-green slice of the

pie chart, while the full orange pie is the total noise. The exposed orange sector is the

uncorrected noise. Superimposed, at the center of the pie, the aliased noise is depicted

as a filled in red circle that is added to the total noise. All the areas of the respective

parts are true to the ratio of represented quantities. In the fifth column we list the

126

7.3 Multiple Window Attack on Aliasing Noise

value of the remaining noise N(Td, Tr, flow), which was introduced earlier except that

we are now more interested in the low frequency cut-off flow than the high frequency

cut-off (which was fixed to fhi = 10 since the relative behaviour does not change much

for higher fhi, in fact there is just a common increase in uncorrected noise because the

sinc quickly modulates all windows to zero). Finally, in the last column we list the rank

of the different windows according to their performance as measured by the remaining

noise where naturally, lower is better.

To re-iterate, the performance is measured by N(Td, Tr, flow) which is the final noise

after correction. This includes the noise left uncorrected and the noise introduced due

to aliasing calculated as the total noise minus the corrected amount, plus the aliased

noise.

The low frequency cut-off is introduced so that transfer functions that do not go to one

as f → 0, can still compete with those windows that do. This is not too unrealistic, as

at worst we are not too interested in fluctuations with periods longer than the age of

the universe. In fact, it can also be argued that extremely low frequency fluctuations

at extremely high amplitudes are ultimately unphysical. Besides giving certain windows

a fair comparison, there can be cases of noise models where there are spikes at inter-

mediate frequencies. For these cases, transfer functions that peak at later intermediate

frequencies may perform better than the usual windows. Finally, on this point, from

a cynical point of view, since the industry measure of the atomic clock performance is

the Allan variance, certain window configurations that resemble the Allan variance win-

dow (specifically, for example, 3 and 4), focus their efforts of correction in the regions

where the Allan variance is most sensitive. These window configurations may actually

outperform the other window configurations as measured by the Allan variance with or

without the low frequency cut-off. Since, this is an ‘unfair’ advantage, we do not choose

the Allan variance as our measure of performance, but rather the total final noise power,

N(Td, Tr, flow)‡‡.

‡‡An ‘industry’, where artificial optimization is tolerated, is the super-computing world and the Linpack
test. Here, while such optimizations favour certain architectures unfairly, its simplicity, wide adoption

127

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

Modulation

Sinc of Single Window

Modulated Sinc

Alias of Window from-f

Alias of Window to-f

Correction

Alias of Noise to-f

Noise

Table 7.2: Legend for all the Performance Comparison Figures.

Note, in column three that the transfer function is normalized. This gives windows of

initially low amplitude a better chance of capturing the noise. This normalization in the

Fourier domain corresponds to a simple global scaling of the measurement results in the

time domain by linearity of the Fourier transform.

To summarize the items in the plot, we refer to the legend in Table 7.2.

7.3.4 Td, Tr and flow Dependence

Now that we have set up the different configurations, we are ready to see which windows

fair the best in the (Td, Tr) plane and also as flow is changed.

In Fig. 7.13, we calculate N(Td, Tr, flow) for each window and select the best window.

We then colour that (Td, Tr) point with the colour of the winning window. The colour

and numbering of the winning window aligns with Fig. 7.12. We also repeat the 2D plot

for different flow.

and ‘arm’s race’-inducing reference point has perhaps been ‘good’ for the industry.

128

7.3 Multiple Window Attack on Aliasing Noise

The first observation is that indeed different windows are better suited for different

settings of Td and Tr, this essentially means that the multiple window construction and

effort has been worth it. Of course, as mentioned previously questions of correlation

time and synchronicity need to be experimentally checked in the laboratory to confirm

that past measurements do have a bearing on future measurements.

We also observe that there is a strong dependence on flow. This is because for higher

flow, the intermediate Td’s and Tr’s in the range of the plots, start to cause the sampling

cut-off to approach the low frequency cut-off. As this happens, the different profiles, that

happen to have the largest overlap with the non-zero region, win the competition for best

correction. This does not seem to show any merit in superior performance. However,

the result can be viewed as showing that different profiles better target different portions

of the noise spectrum, while suppressing aliasing better. Therefore the prospect is still

there in a practical setting, that by searching through the different windows for a certain

given noise profile and minimum dead and Ramsey times, improvements could be had

over the regular simple single window.

Notice for flow = 0.01 most of the area is still won by the single window. This does

indeed make sense since the single window has a modulation of constant one. Therefore

for cases where overall sensitivity is desirable, the single window should win. Using Fig.

7.13 we can select specific Td’s and Tr’s to replot versions of Fig. 7.12 to try and better

understand how certain windows beat the single window. In Fig. 7.14 - Fig. 7.16 we

choose points where different windows beat the standard. In all the cases it seems that

the other windows do better by aliasing less. Indeed the effect is quite marked, especially

in Fig. 7.14 and Fig. 7.16, where the alias suppression is so successful that the Dick

Effect is almost perfectly eliminated.

7.3.5 Given Td, Finding an Optimal Tr

While the above analysis tells us which window is best for each (Td, Tr) pair, it does

not compare the performance between pairs. We need to make plots similar to Fig. 7.6

and Fig. 7.9. In Fig. 7.17, we plot the total aliasing for all the windows in one plot.

129

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

1

11

0.01

0.00.51.01.5
0.0

0.5

1.0

1.5

1

7

11

12

0.05

0.00.51.01.5
0.0

0.5

1.0

1.5

1

4

8

10

11

12

0.1

0.00.51.01.5
0.0

0.5

1.0

1.5

1

3

4

5

6

7

10

0.5

0.00.51.01.5
0.0

0.5

1.0

1.5

Legend Best Window

Tr

Tr

Tr

Tr

Td

Td

Td

Td

flow =

flow =

flow =

flow =

Figure 7.13: Selecting the Best Window over (Tr,Td).

130

7.3 Multiple Window Attack on Aliasing Noise

0 2 0.5
0 2 1
0 2 0.1

1
4.362 5

2
4.547 10

3
4.403 6

4
4.230 1

5
4.503 9

6
4.729 12

7
4.639 11

8
4.273 3

9
4.256 2

10
4.301 4

11
4.443 8

12
4.422 7

N(1, 0.5, 0.1) RankWindows
Tr :

Td:

flow:

Figure 7.14: Comparison Run 2.

The height, A1/f , of each point is the total aliasing power, calculated by integrating the

aliased mis-correction from 1/2Tc to infinity. We colour the different surfaces according

to the same window labelling scheme used throughout this section. Not surprisingly,

we see that the single window (light green) has the worst aliasing because it has no

modulation. It is reassuring to see that this plot is very similar to Fig. 7.6. In Fig.

131

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0 2 0.8
0 2 0.8
0 2 0.1

1
4.123 5

2
4.429 10

3
4.235 6

4
4.106 3

5
4.376 9

6
4.598 12

7
4.548 11

8
4.104 1

9
4.105 2

10
4.108 4

11
4.293 8

12
4.257 7

N(.8, .8, .1) RankWindows
Tr :

Td:

flow:

Figure 7.15: Comparison Run 3.

7.18 we plot the performance N(Tr, Td) at each point and for each window, allowing the

surfaces to overlap. To reiterate, the performance is measured by the final noise which is

calculated by subtracting the correction from the total noise and adding aliasing. Since

smaller final noise is better, we flipped over the graph such that z-axis runs from high

to low in the upward direction. The best performing window now colours the upward

132

7.3 Multiple Window Attack on Aliasing Noise

0 2 1
0 2 1
0 2 0.1

1
4.341 6

2
4.584 10

3
4.310 5

4
4.292 2

5
4.398 7

6
4.639 11

7
4.659 12

8
4.304 4

9
4.299 3

10
4.237 1

11
4.498 9

12
4.469 8

N(1, 1, 0.1) RankWindows
Tr :

Td:

flow:

Figure 7.16: Comparison Run 4.

facing surface. Fig. 7.18 is very similar to Fig. 7.10. We see the same lip behaviour as

for the 1/f noise. We see that for a certain low range of Td, smaller Tr is better. But

beyond a minimum Td it turns out that a higher Tr is actually better. In a practical

setup, the region of acceptable parameters must first be identified on the graph. The

direction of the gradient can thus be followed to find an optimum for the parameters.

133

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

1

2

A1/f (Td, Tr)

Tr

Td

w

Figure 7.17: Total Aliasing Comparison.

Once a local maximum is found, the colour of that spot is noted and where possible the

corresponding window can be used to correct for the error. Fig. 7.18 does, of course,

take aliasing into. However, the Dick Effect is very different from general aliasing in that

it surfaces as a constant DC shift of the ideal frequency. SC(f) is the power spectral

density of the corrections and SC(0) is the Dick Effect. However, the final noise measure

integrates the power spectral density, which implies that any single point ‘makes no

contribution’ or if we count a small region around zero as part of the Dick Effect then

SC(0) does not make any special contribution to the final noise measure. As a result of

its extra undesirability it is perhaps helpful to multiply SC(0) by some constant and add

this as an extra penalty to the measure of performance. This can be viewed as counting

the power around the zero frequency ‘twice’ to emphasize our dislike for it. In Fig. 7.19,

we plot the best performers as measured by the total noise left in the clock plus an extra

penalty for the Dick Effect. By the substantial change of the colouring, compared to

Fig. 7.13, we see that the best performer heavily relies upon the criteria of the best,

that is how it is defined. The actual practical determination of the criteria is likely to

be made on a case-by-case basis.

134

7.4 Conclusion

0.0

0.5

1.0

1.50.0

0.5

1.0

1.5

2

4

6

N(Tr, Td)

Tr

Td

Figure 7.18: Overall performance (z axis rotated).

7.4 Conclusion

We have explored in detail the noise processes of an atomic clock slaved to a quartz

crystal. We have equipped ourselves with powerful mathematical tools to model the

noise as well as quantify errors in the noise correction protocol.

To combat some of the errors, we have proposed an extension to the standard single

window protocol. We successfully demonstrated that the multiple window extension can

be advantageous over the standard window in certain cases.

Further work would include extending the number of windows to more than three, to

perhaps more closely follow a sinc function in the time domain. Numerical simulations

should also be undertaken to confirm that the many window protocol does indeed im-

prove the instantaneous correction. Finally a more general scheme of combined frequency

135

7 Ameliorating Aliasing (and the Dick Effect) in Atomic Clocks

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2

4
N(Tr, Td) + SC(0)

Tr

Td

Figure 7.19: Overall performance with Dick Penalty (z axis rotated).

and phase correction needs to be devised, tested and shown to be superior to current

methods.

136

Bibliography

[1] Local oscillator induced instabilities in trapped ion frequency standards, G. Dick

(Proc. Precise Time and Time Interval, pg. 133-147; 1987)

[2] Frequency stability degradation of an oscillator slaved to a periodically interrogated

atomic resonator, G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick

and A. Clairon (IEEE Trans. Ultra-son. Ferroelectr. Freq. Contro; Vol. 45; pg.

887-894; 1998)

[3] The Dick effect for an optical frequency standard, A. Quessada, R.P. Kovacich,

I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde (J. Opt. B; Vol. 5; pg.

S150-S154; 2003)

[4] Minimizing the Dick Effect in an Optical Lattice Clock, P.G. Westergaard,

J. Lodewyck, and P. Lemonde (IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, Vol. 57; No. 3; 2010)

[5] A Derivation of the Long-Term Degradation of a Pulsed Atomic Frequency Stan-

dard from a Control-Loop Model, C.A. Greenhall (IEEE Transactions on Ultrason-

ics, Ferroelectrics, and Frequency Control; Vol 45; No 4; 1998)

[6] Predictive Feedforward Protocols for Passive Frequency Standards, J Sastrawan

(The University of Sydney)

137

Bibliography

[7] Active Control of Sound and Vibration, C.R. Fuller and A.H. von Flotow (IEEE

Control Systems; 1995)

138

Chapter 8

Conclusion

8.1 Different Mechanisms to Model and Tools to Measure
Randomness

8.1.1 Channel Capacity Noise Correlations

In the chapters concerning channel capacity (Ch. 3, Ch. 5), we used the mechanism of

functions of Markov processes to model our non-trivial noise with memory. The random

channel selection was Markovian, but in combination with the indistinguishability of the

actual sub-channel used, made the memory or correlations in the noise, non-Markovian.

Thus not only did we introduce correlations in the noise, but the correlations were

distinctly more complicated than the usual Markovian or random walk noise. However,

the noise was not intractably complicated and indeed the channel was still forgetful.

Forgetfulness is related to the property of stationarity, an assumption we made for the

atomic clock noise which allowed us to use the extended HSW theorem.

The tool to measure the adverse effects of correlations in the random noise was the ca-

pacity (Ch. 2). This ‘measure’ of noise obviously has in mind only a specific use, namely

communication, but it does suggest the future possibility of bringing capacity measures

to other noise scenarios. In calculating the capacity we made use of the powerful tool

of algebraic measure theory. This framework specifically concerns functions of hidden

Markov processes and so cannot be used for more general noise modelling without some

form of generalization. As it stands though, the process of calculating the entropy was

139

8 Conclusion

already quite involved, which indicates that capturing the effects of correlations is a

complicated task. Indeed, in the Monte Carlo chapter (Ch. 4), when we plotted the raw

eigenvalues before calculating the entropy, we saw fractal like patterns brought about

by the correlations.

Overall, we showed that the channel capacity increases with stronger correlations.

8.1.2 Atomic Clock Noise Correlations

In the atomic clock background chapter (Ch. 6) we used the mechanism of a continuous

random process, its autocorrelation and the Fourier transform squared of the autocor-

relation to arrive at the power spectral density. In this framework, specifying the power

spectral density in the Fourier domain is related to specifying the correlations of the

noise at different times. This tool is very general and it may prove profitable in future

work to introduce channels whose noise is given by a power spectral density.

We can already make a connection between the noise introduced in the channel capacity

setting and the power spectral density framework. We would easily be able to calculate

the autocorrelation of the channel switching depolarizing noise and then take the Fourier

transform squared. We know what not to expect. Markovian or Brownian noise corre-

sponds to a 1/f2 noise power spectral density, while a constant power spectral density

corresponds to uncorrelated noise. Thus 1/f noise is an example of correlated noise

that is distinct from Markovian noise and for the switching depolarizing noise, we would

expect a profile similarly non-Markovian.

In the atomic clock setting (Ch. 7), we went on to measure the effects of the noise, by

considering sampling aliasing while correcting the frequency of a slaved quartz crystal

clock. The measure of total noise was then taken to be the area under the integral of

the original noise profile minus the correction’s profile plus the aliasing profile. Thus the

tool of measurement was integration and subtraction of the relevant noise power spectral

densities, yielding the total power of the noise after correction.

We used this tool to characterize the performance of novel correcting strategies based

on overlapping windows. We found parameter regions where the performance of our

140

8.1 Different Mechanisms to Model and Tools to Measure Randomness

non-standard windows improved on the standard single pulse performance, essentially

by taking into account correlations between windows in order to dampen high frequency

fluctuation sensitivity and their associated aliasing contributions.

This ability to assess strategies could potentially be used in the channel capacity setting

to help design the book of code-words. The HSW theorem and Shannon’s original coding

theorem’s are infamous for their teasingly non-constructive proof of the existence of good

codes, without providing a clue on how to go about finding them.

8.1.3 Monte Carlo Algorithmic Use of Correlations

Finally, in the Monte Carlo Simulation chapter (Ch. 5), which has the main purpose

of confirming the findings of the algebraic measure approach and once done, indirectly

confirming the validity of the use of the MCMC algorithm. We were fortunately able

to achieve both goals and are now in a position to apply Monte Carlo methods to more

complicated correlation scenarios. Besides studying correlations in client systems, the

MCMC algorithm is itself a fascinating example of the algorithmic use of manufactured

correlation. We constructed a Markov chain to have a stationary distribution matching

the probability distribution for which we wanted to calculate the entropy. Hence the

mechanism of generating correlations was the simple Markov process. We then drew

samples from this distribution by taking a random walk, thereby efficiently calculating

the relevant statistic we were after. We studied the effects of correlations between the

steps of the random walk. Our measure of performance was the variance of the statistic

and we found that too low a correlation or too high a correlation degraded the efficiency

of sampling. Hence, here too, in this abstract algorithmic space, correlation became a

very important parameter that affected the workings of the desired task. Even though

the entire algorithm hinged on the use of intermediate strength correlations, when using

draws, we had to remove traces of the correlations. Thus, here final correlations were

undesirable.

141

8 Conclusion

8.2 Concluding Thoughts

This thesis explored different theoretical frameworks of modelling and managing random-

ness and correlations in randomness. It has become clear that correlations in randomness

plays a very important role in how that randomness effects different systems.

Considering the sophistication of the mathematical tools used, as a microscopic on corre-

lations, we can reflect on how it seems that correlations are involved in very complicated

ways. Future analysis could well benefit from the invention of new mathematical tools.

Nevertheless, we have learnt that correlations are important practically and we wonder

if it can shed light on deeper fundamental questions as well.

142

Appendix

143

1 #ifndef RAN_H
2 #define RAN_H
3 #include <time.h>
4 #include <climits>
5
6 /**
7 * Press, Teukolsky, Vetterling, Flannery
8 * NUMERICAL RECIPES - The Art of Scientific Computing - Third Edition (2007)
9 * p. 342 / 343

10 */
11 typedef int Int; // 32 bit integer
12 typedef unsigned int Uint;
13

14 typedef long long int Llong; // 64 bit integer
15 typedef unsigned long long int Ullong;
16

17 typedef double Doub; // default floating type
18 typedef long double Ldoub;
19

20 struct Ran {
21 Ullong u,v,w;
22 Ran(Ullong j) : v(4101842887655102017LL), w(1) {
23 u = j ^ v; int64();
24 v = u; int64();
25 w = v; int64();
26 }
27 inline Ullong int64() {
28 u = u * 2862933555777941757LL + 7046029254386353087LL;
29 v ^= v >> 17; v ^= v << 31; v ^= v >> 8;
30 w = 4294957665U*(w & 0xffffffff) + (w >> 32);
31 Ullong x = u ^ (u << 21); x ^= x >> 35; x ^= x << 4;
32 return (x + v) ^ w;
33 }
34 inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
35 inline Uint int32() { return (Uint)int64(); }
36 };
37
38 //include <climits>
39 //define UCHAR_MAX 255
40

41 unsigned time_seed()
42 {
43 time_t now = time (0);
44 unsigned char *p = (unsigned char *)&now;
45 unsigned seed = 0;
46 size_t i;
47

48 for (i = 0; i < sizeof now; i++)
49 seed = seed * (UCHAR_MAX + 2U) + p[i];
50

51 return seed;
52 }//2U means unsigned 2 (which is not really needed)
53
54
55 #endif
56 #ifndef CHAIN
57 #define CHAIN
58 #define LOGAUTOCORR 6
59
60 #include "ran.h"
61

62 class chain {
63

64 private:
65

66 double q;
67 double Q[2][2];

68 double x[2][2];
69 unsigned int N;
70 char *k, *oldk; //error vector
71 double (*pathEnd)[2];
72 double (*oldPathEnd)[2];
73 double prob, oldProb;
74
75

76 unsigned int numCorrelations, keepIndex;
77 static const unsigned int autocorr = 1<<LOGAUTOCORR;
78 double keepLast[autocorr];
79 double correlation[autocorr];
80 double mean;
81

82 unsigned int i;
83

84 public:
85 /*Constructor*/
86

87 chain(const double s, const double a, const double d, const unsigned int Num) : q((s
+1)/2), N(Num)

88 {
89 Q[0][0] = q;
90 Q[0][1] = 1-q;
91 Q[1][0] = 1-q;
92 Q[1][1] = q;
93
94 x[0][0] = a-d;
95 x[0][1] = 1-(a-d);
96 x[1][0] = a+d;
97 x[1][1] = 1-(a+d);
98 k = new char[N](); /*the empty initializer () sets all values to zero*/
99 pathEnd = new double[N][2];

100 oldPathEnd = new double[N][2];
101 oldk = new char[N]();
102 resetCorrelationData();
103 resetChain();
104 };
105
106 /*Destructor*/
107
108 ~chain()
109 {
110
111 /* free(k);
112 free(pathEnd);
113 free(oldPathEnd);*/
114 delete [] k;
115 delete [] pathEnd;
116 delete [] oldPathEnd;
117
118 }
119

120 void resetChain()
121 {
122 for (i=0;i<N;i++)
123 {
124 k[i]=0;
125
126 }
127 calcProb(0);
128 //oldProb=prob; should never be necessary
129 //resetCorrelationData(); leave it to the user to decide
130 }
131
132 /*This function calculates the probability of occurence of a given markov chain (as given by k

representing error vector)

133 */
134 double calcProb(unsigned int start)
135 {
136 if (start == 0)
137 {
138 pathEnd[0][0] = x[0][(int)k[0]]/2;
139 pathEnd[0][1] = x[1][(int)k[0]]/2;
140 start++;
141 }
142

143 for(i=start;i<N;i++)
144 {
145 pathEnd[i][0] = (pathEnd[i - 1][0]*Q[0][0] + pathEnd[i - 1][1]*Q[1][0]) *

x[0][(int)k[i]];
146 pathEnd[i][1] = (pathEnd[i - 1][0]*Q[0][1] + pathEnd[i - 1][1]*Q[1][1])* x

[1][(int)k[i]];
147
148 };
149
150 prob = (pathEnd[N-1][0] + pathEnd[N-1][1]);
151

152 return prob;
153 }
154

155 void randomizeChain(Ran &randomgen)
156 {
157 for(i=0;i<N;i++)
158 {
159 k[i] = floor(2*randomgen.doub());
160 }
161
162 calcProb(0);
163 }
164

165 inline double getProb()
166 {
167 return prob;
168 }
169

170 inline void setChainZero(const unsigned int location)
171 {
172 k[location]=0; /*0 < location < N perhaps introduce a private start=location

variable */
173 }
174

175 inline void setChainOne(const unsigned int location)
176 {
177 k[location]=1; /*0 < location < N*/
178 }
179

180 inline bool checkChainOne(const unsigned int location)
181 {
182 return (k[location] == 1);
183 }
184

185 inline void flipChain(const unsigned int location)
186 {
187 k[location] ^= 1;
188 }
189

190 unsigned int flipChain(const double probFlip, Ran &randomgen) //overloaded returns first
location flipped or N for none

191 {
192 unsigned int location=N;
193

194 for(i=0;i<N;i++)
195 {

196

197 if (randomgen.doub()<probFlip)
198 {
199 k[i] ^= 1;
200 if (location == N) location = i;
201 }
202 }
203

204 return location;
205 }
206

207 void backupProb(const unsigned int from)
208 {
209 unsigned int j;
210 for(i=0;i<2;i++)
211 {
212 for (j=from;j<N;j++)
213 {oldPathEnd[j][i] = pathEnd[j][i];}
214 };
215 oldProb = prob;
216 }
217

218 void restoreProb(const unsigned int from)
219 {
220 unsigned int j;
221 for(i=0;i<2;i++)
222 {
223 for (j=from;j<N;j++)
224 {pathEnd[j][i] = oldPathEnd[j][i];}
225 };
226 prob = oldProb;
227 }
228

229 void backupK(const unsigned int from)
230 {
231 for (i=from;i<N;i++)
232 {oldk[i] = k[i];}
233 }
234

235 void restoreK(const unsigned int from)
236 {
237 for (i=from;i<N;i++)
238 {k[i] = oldk[i];}
239 }
240

241 bool candidateAccept(Ran &randomgen,unsigned int expectedflip)
242 {
243 backupK(0);
244 unsigned int firstLocation = flipChain(expectedflip/(double)N,randomgen); //All

sites are potentially flipped
245

246 bool accepted = true;
247

248 if (firstLocation < N) //if firstLocation = N it means no change was made and
self-same candidate was accepted

249 {
250 backupProb(firstLocation);
251 calcProb(firstLocation);
252

253 if(randomgen.doub() > prob/oldProb)
254 {
255 restoreK(firstLocation);
256 restoreProb(firstLocation);
257 accepted = false;
258 }
259 }
260

261 return accepted;
262 }
263

264 void resetCorrelationData()
265 {
266 numCorrelations = 0;
267 keepIndex =0;
268 mean =0;
269 for(i=0;i<autocorr;i++)
270 {
271 correlation[i] = 0;
272 keepLast[i]=0;
273 }
274 }
275

276 void gatherCorrelationData()
277 {
278 numCorrelations++;
279 mean += prob;
280 correlation[0] += prob*prob;
281

282 for (i=1;i<=keepIndex;i++)
283 correlation[i] += prob*keepLast[keepIndex-i];
284

285 for (i=keepIndex+1;i<autocorr;i++)
286 correlation[i] += prob*keepLast[autocorr+keepIndex-i];//(autocorr-1)-(i-(keepIndex

+1))
287
288 keepLast[keepIndex++]=prob;
289 if (keepIndex == autocorr) keepIndex = 0;
290 }
291
292 //A few simpliying assumptions have been made in correlationTime: 1: numCorrelations is large, 2:

Population Variance ~ Sample Variance (~satisfied when 1 is true)
293 double correlationTime()
294 {
295 double integrate=0;
296 unsigned int numOccur;
297

298 if (numCorrelations >= autocorr)
299 {
300 for (i=1;i<autocorr;i++)
301 {
302 numOccur = numCorrelations - i;
303 if (numOccur>0) integrate += correlation[i]/(double)numOccur;
304 }
305

306 double avg = mean/(double)numCorrelations;
307 double var = correlation[0]/(double)numCorrelations - avg*avg;
308 integrate = (integrate - autocorr*avg*avg)/var;
309

310 return integrate;
311

312 } else return NAN;
313 }
314 };
315
316 #endif
317 #ifndef MONTE
318 #define MONTE
319 #include <stdio.h>
320 #include <cmath> //c++ library
321 #include <stdlib.h>
322 #include "ran.h"
323 #include "chain.h"
324
325 #define EPS 2.2250738585072014e-308

326

327 struct onerun {
328 double mean,error,acceptance,correlationTime;};
329

330 const unsigned int onerunSize = sizeof(onerun)/sizeof(double);
331
332 /*This function calculates the output entropy (unrelativised (not divided by N)) using a Monte

Carlo algorithm to sample from the possible markov chains*/
333

334 onerun run_MCMC_Entropy(chain &channelChain, const unsigned int flips, Ullong burnin, Ullong
skips, const unsigned int logSamples, Ran &randomgen)

335 {
336
337 //Entropy Var
338 double prob, logProb = 0;
339 double m2 = 0, mean = 0, delta = 0;
340
341 //Monte Carlo Var
342 Ullong i, j, numAccepts = 0, numSamples = 1 << logSamples;//pow(2,logSamples);
343

344 for(i=0;i<burnin;i++) channelChain.candidateAccept(randomgen,flips);
345

346 for(i=0;i<numSamples;i++)
347 {
348

349 for(j=0;j<skips+1;j++) {if (channelChain.candidateAccept(randomgen,flips))
numAccepts++;}

350
351 prob = channelChain.getProb();
352 channelChain.gatherCorrelationData();
353

354 if (prob > EPS) logProb = -log2(prob); else printf("Extremely rare event
happenned that shouldn't have happened");

355
356 delta = logProb - mean; //using old mean
357 mean += delta/(i+1); //making new mean
358 m2 += delta*(logProb-mean); //using new mean towards variance
359
360 }
361
362 onerun finalAnswer;
363 finalAnswer.mean = mean;
364 finalAnswer.error = sqrt((m2/(numSamples-1))/numSamples); //m2/(numSamples-1) is the

sample variance.... /numSamples is the variance of the estimator sqrt() is the standard
deviation (biased) of the estimator, often called standard error

365 finalAnswer.acceptance = numAccepts/(double)(numSamples*(skips+1));
366 finalAnswer.correlationTime = channelChain.correlationTime();
367

368 return finalAnswer;
369
370 }
371 #endif
372 /*
373
374 Program Name: MCMC_Entropy_Vary_One_Parameter.cpp
375
376 Author: Ismail Akhalwaya
377
378 Title: Monte Carlo Simulation of Quantum Channel with Noise Memory
379
380 Description: The capacity of quantum channels with noise memory is a valuable and fascinating

subject within Quantum Information Theory. The purpose of this program is to numerically
calculate the output entropy of a toy channel with noisy memory. The channel is constructed from
two depolarizing channels (providing the noise) selected by a markov chain (providing the
'memory').

381
382 Programming Detail: The output entropy is calculated by summing the log(probability) over

exponentially many markov walks. A Markov Chain Metropolis-Hastings Monte Carlo Importance
Sampling approach is used in order to make the calculation feasible while sacrificing accuracy.
The code is parallelized using MPI to enable execution on a supercomputer. This program explores
how a statistic of the sampling (the entropy itself) varies as one parameter is varied. Thereby
trying to understand what effect that one parameter has on the algorithm.

383
384 There are eight parameters in total: four relating to the channel and four to the Monte Carlo

algorithm:
385
386 Channel:
387
388 1) s is a real number that specifies the Markov chain probability: -1 <= s <= 1. s=-1 equates to

a deterministic markov walk which flips at every step, s=0 equates to no memory walk, s=1 means a
no flip walk.

389
390 2) a is a real number which specifies the average noise of the two depolarizing channels:

0<=a<=1, a=0 means no noise, a=1 means complete noise.
391
392 3) d is a real number which specifies the difference from the average of the two channels: 0 <= d

<= Min[a,1-a]
393
394 4) chain is the length of the message/channel chain
395
396 Monte Carlo:
397
398 5) flips is the starting expected number of flips (average number of changed sites between

candidate and current error vector index)
399
400 6) burnin is the number of steps to discard at the beginning of a Monte Carlo run.
401
402 7) skips is the number of steps to discard during a run between draws that are used towards the

entropy.
403
404 8) logSamples is the log_2 of the number of Monte Carlo samples to be drawn by each task. (Can't

be more than 57/2 ~ 30 (base 10) = 100 (base2) because of Ran period of 10^57 and can't be more
that 19 (base 10) = 64 (base 2) because of unsigned long long int counter)

405
406 Required Command line input:
407
408 This program varies one of the parameters while keeping the other seven constant. Therefore the

program needs those seven constants to be provided. For the parameter that is to be varied, the
start, end and step size values are required.

409
410 This is specified by providing all the parameters in the order listed above. The one to be varied

is to set to its start value. After the eight entries the next three entries are the index, end
and step values for the to-be-varied parameter. The index is the zero-started count of the
parameter to vary in the list of variables above.

411
412 The last command line argument is the number of times to repeat everything. (SADNFBSSIESR)
413
414 Typical Call:
415 e.g. to vary the chain length:
416
417 mpirun -np 10 MCMC_Entropy_Vary_One_Paramter 0.8 0.7 0.2 10 1 100 20 25 4 100 10 30
418
419 Copyright 2012,2013
420
421 GPL 2.0
422
423 */
424
425 #include <stdio.h>
426 #include <cmath> //c++ math library
427 #include "mpi.h"
428 #include "monte.h"
429 #include "chain.h"
430
431 /*The main section of the program contains the MPI code.

432 The code splits into multiple tasks with one special task (rank 0) that gathers the data and
writes the output to file.*/

433

434 int main(int argc, char **argv)
435 {
436 if (argc != 13) {printf("Incorrect number of arguments: %i.\n",argc-1);exit(1);};
437
438 //MPI Var
439 int numtasks, rank; //can't be unsigned because of the requirements of the MPI functions
440 MPI_Init(&argc,&argv);
441 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
442 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
443 Ullong seed = time_seed() + (1<<(rank+30));//pow(2,rank+30);
444 printf("I am alive, my name is %i. I am one out of %i threads. My seed is %llu.

\n",rank,numtasks,seed);
445

446 const char *var_names[8] = {"S","A","D","Chain-Length","Flips","Burn-in","Skips","Log-
samples"};

447
448 //Chain Var
449

450 float s = atof(argv[1]); //should use strtof(argv[1],NULL,0) and if (errno != 0) {}
451 float a = atof(argv[2]);
452 float d = atof(argv[3]);
453 unsigned int chainLength = atoi(argv[4]);
454
455 //Monte Var
456

457 unsigned int flips = atoi(argv[5]);
458 unsigned int burnin = atoi(argv[6]);
459 unsigned int skips = atoi(argv[7]);
460 unsigned int logSamples = atoi(argv[8]); //Log_2 of the number of samples
461

462 const unsigned int vary_index = atoi(argv[9]);
463

464 const float runEnd = atof(argv[10]);
465 const float runStep = atof(argv[11]);
466 unsigned int repeat = atoi(argv[12]);
467 unsigned int repeat_count;
468

469 float runStart;
470

471 switch (vary_index) {
472 case 0: runStart = s; break;
473 case 1: runStart = a; break;
474 case 2: runStart = d; break;
475 case 3: runStart = chainLength; break;
476 case 4: runStart = flips; break;
477 case 5: runStart = burnin; break;
478 case 6: runStart = skips; break;
479 case 7: runStart = logSamples; break;
480 default: printf("Error: incorrect index.\n"); exit(1);
481 }
482

483 const unsigned int numRuns = floor((runEnd-runStart)/runStep + 1 + EPS);
484 if (numRuns <= 0) {printf("Incorrect Run Values.\n");exit(2);};
485 const unsigned int runs_each = numRuns/numtasks;
486 const unsigned int runs_extra = numRuns%numtasks;
487 const unsigned int max_runs = runs_each + 1;
488 printf("runs_each %i, runs_extra %i\n",runs_each,runs_extra);
489 unsigned int myRuns;
490
491 onerun results[repeat][max_runs], tempResult;
492

493 float currentRun;
494

495 int i;

496 Ran randomgen(seed);
497 chain *channelChain;
498
499
500
501 /* //For debugger
502 if (rank==2)
503 {
504 i=0;
505 while (0 == i)
506 sleep(5);}
507
508 //For debugger
509 */
510

511 if (vary_index > 3)
512 channelChain = new chain(s,a,d,chainLength);
513

514 unsigned int my_would_be_step_extra;
515

516 for (repeat_count=0; repeat_count < repeat; repeat_count++)
517 {
518 my_would_be_step_extra = (runs_extra - (rank + 1) + repeat_count*runs_extra

+numtasks)%numtasks;
519 myRuns = runs_each + (my_would_be_step_extra < runs_extra);
520
521 //this assigns the overuns in such a way that the more computationally intensive jobs (assuming

intensivity increases) get assigned to the lower ranked threads (because they had either equal or
lower load due to the cycles of reflection assignment below, but because of repeating the whole
cycle we then shift the assignment away from those assigned last round. old: ((runs_each%2)? rank
+ repeat_count*runs_extra : numtasks - (rank+1) - repeat_count*runs_extra)%numtasks;

522 //+numtasks is to turn the remainder operator % into the mathematical mod "wrap around" function
523
524 //printf("repeatcount: %i, mytask: %i,mywouldbestepextra: %i, myruns: %i

\n",repeat_count, rank,my_would_be_step_extra,myRuns);
525
526

527 for(i=0; i < myRuns; i++)
528 {
529 if (i<runs_each) currentRun = runStart + runStep*(i%2? (i+1)*numtasks -

(rank+1) : rank + i*numtasks);
530 //share tasks by flipping order every round
531 else currentRun = runStart + runStep*(my_would_be_step_extra +

i*numtasks);
532 //got an extra run
533

534 switch (vary_index) {
535 case 0: s = currentRun; channelChain = new chain

(s,a,d,chainLength); break;
536 case 1: a = currentRun; channelChain = new chain

(s,a,d,chainLength); break;
537 case 2: d = currentRun; channelChain = new chain

(s,a,d,chainLength); break;
538 case 3: chainLength = (unsigned int)floor(currentRun + EPS);

channelChain = new chain(s,a,d,chainLength); break;
539 case 4: flips = (unsigned int)floor(currentRun + EPS); break;
540 case 5: burnin = (unsigned int)floor(currentRun + EPS); break;
541 case 6: skips = (unsigned int)floor(currentRun + EPS); break;
542 case 7: logSamples = (unsigned int)floor(currentRun + EPS); break;
543 default: printf("Error: incorrect index.\n"); exit(1);
544 }
545

546 if (vary_index == 5) channelChain->resetChain(); else channelChain-
>randomizeChain(randomgen);

547
548 channelChain->resetCorrelationData();
549

550 tempResult = run_MCMC_Entropy
(*channelChain,flips,burnin,skips,logSamples,randomgen);

551
552 tempResult.mean = tempResult.mean/chainLength; //Relativize Entropy
553 tempResult.error = tempResult.error/chainLength;
554
555 results[repeat_count][i] = tempResult;
556

557 if (vary_index < 4) delete channelChain;
558 };
559 };
560 if (vary_index > 3) delete channelChain; //clean-up
561

562 if(rank==0)
563 {
564

565 double collectResults[numtasks*repeat*max_runs*onerunSize];
566
567 MPI_Gather

(results,repeat*max_runs*onerunSize,MPI_DOUBLE,collectResults,repeat*max_runs*onerunSize,MPI_DOUBLE,0,MPI_COMM_WORLD);
568

569 char filename[400];
570 char printfString[400]="\0";
571 unsigned int sim_myRuns, sim_rank, sim_my_would_be_step_extra,

sim_count_Runs_Done, k;
572

573 for (k=0;k<8;k++)
574 {
575 strcat(printfString,var_names[k]);
576 if (k == vary_index) strcat(printfString,"-Start");
577 if (k < 3) strcat(printfString,"_%3.2f_"); else strcat(printfString,"_%

i_");
578 }
579

580 switch (vary_index) {
581 case 0: s = runStart; break;
582 case 1: a = runStart; break;
583 case 2: d = runStart; break;
584 case 3: chainLength = (unsigned int)floor(runStart + EPS); break;
585 case 4: flips = (unsigned int)floor(runStart + EPS); break;
586 case 5: burnin = (unsigned int)floor(runStart + EPS); break;
587 case 6: skips = (unsigned int)floor(runStart + EPS); break;
588 case 7: logSamples = (unsigned int)floor(runStart + EPS); break;
589 default: printf("Error: incorrect index.\n"); exit(1);
590 }
591

592 if (vary_index < 3)
593 {
594 strcat(printfString,"End_%3.2f_Step_%3.2f_repeats_%i_numtasks_%i.txt");
595 sprintf

(filename,printfString,s,a,d,chainLength,flips,burnin,skips,logSamples,runEnd,runStep,repeat,numtasks);
596 } else
597 {
598 strcat(printfString,"End_%i_Step_%i_repeats_%i_numtasks_%i.txt");
599 sprintf

(filename,printfString,s,a,d,chainLength,flips,burnin,skips,logSamples,(int)floor(runEnd + EPS),
(int)floor(runStep + EPS),repeat,numtasks);

600 }
601
602 FILE *out = fopen(filename, "w");
603 if(out == NULL) {printf("Creating a new file error.\n"); exit(3);}
604
605 // strcat(filename,"\n");
606 // fprintf(out,"%s",filename);
607
608
609 strcpy(printfString,"initializeLabels = {\0");

610 for (k=0;k<8;k++)
611 {
612 strcat(printfString,"\"");
613 strcat(printfString,var_names[k]);
614 strcat(printfString,"\"");
615 strcat(printfString,", ");
616 }
617 strcat(printfString,"\"vary_index\", \"runEnd\",\"runStep\",\"repeats\",\"numtasks

\"}\n");
618
619 fprintf(out,printfString);
620
621 strcpy(printfString,"initializeValues = {\0");
622

623 for (k=0;k<8;k++)
624 {
625 if (k < 3) strcat(printfString,"%3.2f, "); else strcat(printfString,"%i,

");
626 }
627

628 if (vary_index < 3)
629 {
630 strcat(printfString,"%i, %3.2f, %3.2f, %i, %i}\n");
631 sprintf(filename, printfString, s, a, d, chainLength, flips, burnin,

skips, logSamples, vary_index, runEnd, runStep, repeat, numtasks);
632 } else
633 {
634 strcat(printfString,"%i, %i, %i, %i, %i}\n");
635 sprintf(filename, printfString, s, a, d, chainLength, flips, burnin,

skips, logSamples, vary_index, (int)floor(runEnd + EPS),(int)floor(runStep + EPS), repeat,
numtasks);

636 }
637
638 fprintf(out,"%s",filename);
639
640
641 fprintf(out,"dataLabels = {\"TaskNo\",\"%s\", \"Entropy\", \"Std Error\",

\"Acceptance\",\"Correlation\"}\ndata = {",var_names[vary_index]);
642

643 for (repeat_count=0; repeat_count < repeat; repeat_count++)
644 {
645
646 fprintf(out,"{\n");
647 sim_count_Runs_Done=0;
648

649 for (sim_rank=0; sim_rank < numtasks; sim_rank++)
650 {
651 sim_my_would_be_step_extra = (runs_extra - (sim_rank + 1) +

repeat_count*runs_extra + numtasks)%numtasks;
652 sim_myRuns = runs_each + (sim_my_would_be_step_extra < runs_extra); //MAY

BE ZERO!!!! so it messes up naive bracket printing
653

654 for (i=0; i < sim_myRuns; i++)
655 {
656 if (i<runs_each) currentRun = runStart + runStep*(i%2? (i

+1)*numtasks - (sim_rank+1) : sim_rank + i*numtasks);
657 //share tasks by flipping order every round
658 else currentRun = runStart + runStep*(sim_my_would_be_step_extra

+ i*numtasks);
659 //got an extra run
660
661 fprintf(out, "{%i,", sim_rank);
662 if (vary_index < 3) fprintf(out, " %f",currentRun); else fprintf

(out, " %i",(int)floor(currentRun + EPS));
663 for (k=0;k<onerunSize;k++) fprintf(out,", %15.13f", collectResults

[(sim_rank*repeat*max_runs+ repeat_count*max_runs + i)*onerunSize + k]);
664

665 if (sim_count_Runs_Done < (numRuns - 1)) fprintf(out, "},\n");
666 else fprintf(out, "}\n");
667
668 sim_count_Runs_Done++;
669
670 // if (sim_rank<(numtasks-1)) fprintf(out, "},\n");
671 // else {if (i<(sim_myRuns-1)) fprintf(out, "},\n"); else fprintf

(out, "}\n");};
672 };
673 };
674

675 if (repeat_count<(repeat-1)) fprintf(out, "},\n\n"); else fprintf(out, "}}\n");
676 };
677
678 fclose(out);
679
680 }
681 else
682 {
683 MPI_Gather

(results,onerunSize*max_runs*repeat,MPI_DOUBLE,NULL,0,MPI_DOUBLE,0,MPI_COMM_WORLD);
684 }
685
686 MPI_Finalize();
687 return 0;
688 }
689
690 /*
691
692 Program Name: channel_entropy_full.cpp
693
694 Author: Ismail Akhalwaya
695
696 Title: Full Entropy Calculation of Quantum Channel with Noise Memory
697
698 Description: The capacity of quantum channels with noise memory is a valuable and fascinating

subject within Quantum Information Theory. The purpose of this program is to numerically
calculate the output entropy of a toy channel with noisy memory. The channel is constructed from
two depolarizing channels (providing the noise) selected by a markov chain (providing the
'memory').

699
700 Programming Detail: The output entropy is calculated by summing over exponentially many markov

walks.
701
702 Required Command line input:
703 There are 4 required input parameters which specify the properties of the quantum channel.
704
705 1) The first parameter (internally called s) is a real number that specifies the Markov chain

probability: -1 <= s <= 1. s=-1 equates to a deterministic markov walk which flips at every step,
s=0 equates to no memory walk, s=1 means a no flip walk.

706
707 2) The second parameter (internally called a) is a real number which specifies the average noise

of the two depolarizing channels: 0<=a<=1, a=0 means no noise, a=1 means complete noise.
708
709 3) The third parameter (internally called d) is a real number which specifies the difference from

the average of the two channels: 0 <= d <= Min[a,1-a]
710
711 4) The fourth parameter is the starting length of the markov chain to simulate.
712
713 5) The fifth parameter is the ending length of the markov chain to simulate.
714
715 Output: The average output entropy is written to the screen.
716
717 Typical Call:
718 ./entropy_full 0.5 0.7 0.1 10 30 5
719
720 Copyright 2012
721

722 */
723
724
725 #include <stdio.h>
726 #include <math.h>
727 #include <stdlib.h>
728 #include "chain.h"
729 #include <omp.h>
730
731
732 #define NaN nan
733 //#define UCHAR_MAX 255
734 #define EPS 2.2250738585072014e-308
735
736 //typedef unsigned long long int Ullong;
737
738 /*This function calculates the output entropy in full, that is without using the Monte Carlo

Algorithm. It is exponential in running time as a function of the chain length.
739 */
740

741 double SPhirhoFull(double s, double a, double d, unsigned int N)
742 {
743 double YNP;
744 double sumS=0;
745 Ullong i;
746 int j;
747 chain channelChain(s,a,d,N);
748
749 YNP = channelChain.calcProb(0);
750 sumS = YNP*log(YNP);
751

752 for(i=1;i < pow(2,N);i++) //"i=0" has been done above. i=2^N -1 is the last one.
753 {
754 for(j=N-1;j>=0;j--) //we're adding one in binary
755 {
756 if(channelChain.checkChainOne(j)) {channelChain.setChainZero(j);}//carry
757 else {channelChain.setChainOne(j);break;};//set channel to 1
758 }
759 // printf("after loop, j=%d\n",j); should never be -1 because break is always used

to exit loop
760 YNP = channelChain.calcProb(j);
761 sumS += YNP*log(YNP);
762 };
763
764 sumS = -sumS/log(2);
765

766 return sumS;
767 }
768

769 int main(int argc, char* argv[])
770 {
771 if (argc != 7) {printf("Incorrect number of arguments: %i. Expecting six arguments.

\n",argc);exit(10);};
772

773 const float getS = atof(argv[1]);
774 const float getA = atof(argv[2]);
775 const float getD = atof(argv[3]);
776 const unsigned int getN_start = atoi(argv[4]);
777 const unsigned int getN_end = atoi(argv[5])+1;
778 const unsigned int getN_step = atoi(argv[6]);
779 double entropy;
780 int threads,thisthread;
781 int procs = omp_get_num_procs();
782
783 printf("Num processors:%d\n",procs);
784
785

786 #pragma omp parallel for schedule(dynamic)
787 for (int count=getN_start; count<getN_end;count=count+getN_step)
788 {
789 entropy = SPhirhoFull(getS, getA, getD, count);
790 threads = omp_get_num_threads();
791 thisthread= omp_get_thread_num();
792 printf("Thread#: %d/%d, # messages: %d, Entropy: %.10e

\n",thisthread,threads,count,entropy/count);
793 }
794 return 0;
795
796 }

