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Abstract 

 

The Eastern Arc Mountains of Tanzania forms part of the Eastern Afromontane Biodiversity 

Hotspots, listed among the global World Wide Fund for Nature's (WWF) priority ecoregions. 

However, the region is threatened by fragmentation and habitat modification resulting from 

competing forms of land uses, which is in turn threatening biodiversity conservation, planning 

and management efforts. To determine vulnerability that can inform long-term conservation and 

management of the biodiversity hotspots, an in-depth understanding of the qualitative and 

quantitative nature of ecosystems is a pre-requisite. The overall goal of this study was to quantify 

fragmentation, investigate its impacts on tree species diversity, abundance and biomass and to 

identify management interventions in the Eastern Arc Mountains of Tanzania. Using ecological 

field based measurements and a series of LANDSAT and RapidEye satellite imagery, fragstats 

metrics showed dynamic fragmentation patterns at both spatial and temporal scales. Furthermore, 

species diversity was predicted better with customized environmental variables using the Generic 

Algorithm for Rule-Set Prediction (GARP) model, which recorded an Area under Curve (AUC) 

of 0.89. In addition, Poisson regression results showed different responses by individual tree 

species to patch area dynamics, habitat status and soil nitrogen. Partial Least Squares and 

Random Forest models were used to determine above ground biomass prediction based on a 

combination of edaphic variables and vegetation indices. Total biomass estimations decreased 

from 1162 ton ha-
1
 in 1980 to 285.38 ton ha-

1
 in 2012. As a reference point in formulation of 

policy insights based on strong scientific and empirical knowledge, socio-economic factors 

influencing vulnerability of ecosystems and management interventions were examined using 

remotely sensed and empirical data from 335 households. The multiple logistic regression model 

indicated habitat fragmentation and forest burning as key conservation threats while low income 
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level (54.62%) and limited knowledge on environmental conservation (18.51%) were identified 

as major catalysts to ecosystem vulnerability. The study identified livelihood diversification, 

effective institutional frameworks and afforestation programmes as major intervention measures. 

The overall study shows the effectiveness of remote sensing techniques in ecological studies and 

how results can be used to inform decisions for addressing complex ecological challenges in the 

tropics. 
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CHAPTER ONE 

General Introduction 

 

 

Human encroachment in Nguru Montane forest 
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1.1 General overview 

Tropical forests are widely recognized for their important role in the conservation of flora and 

fauna (Gentry, 1992). Their reputation lies with their rich predominant massive woody plants, 

and high diversity extending over large scales (Geist and Lambin, 2002; Gentry, 1992). They 

support large carbon stores worldwide (Jiménez et al., 2014; Shirima et al., 2011; Swetnam et 

al., 2011). Unfortunately, great potential vested in these forests is not well explored, with less 

focus embedded on biodiversity conservation and related challenges (Green et al., 2013a; Hall 

et al., 2009).  

Tropical forests experience climate similar to Mediterranean climate, stable and conducive for 

farming and other subsistence livelihood resources (Geist and Lambin, 2002; Tabarelli et al., 

2005). They are therefore characterized by an exponential increase in population, coupled 

with the intensification of economic activities resulting in huge volumes of forests destroyed 

through grazing, development of settlement, and agriculture (Holmberg, 2008). This leads to 

ramifying impacts such as habitat destruction, land and soil degradation, an increase in 

species losses and extinctions (Cushman, 2006; McGarigal and Cushman, 2002) and forest 

fragmentation (Ojoyi et al., 2015). 

Fragmentation in the tropics is an ongoing debate in conservation biology and ecological 

research (Lindenmayer and Fischer, 2006; Lung and Schaab, 2006; Pardini et al., 2005; Reid 

et al., 2004; Tabarelli et al., 1999; Wiens, 1995). It is the most important threat to biodiversity 

conservation (Laurance and Cochrane, 2001). Not only does it affect habitat structure, but 

also makes it a challenge for species survival (Platts et al., 2008). It increases risks associated 

with changes in demography and genetic events (Cushman, 2006). It has been linked to 

modification of landscapes with conservation competing invariably with other forms of land 

use such as farming, settlement and infrastructural development.  
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The fragmentation concept has been defined in various different contexts. In this study, 

ecological definitions have been adopted. Forman and Collinge, (1997) describe the 

fragmentation concept as a process by which the quality of a habitat declines through dis-

integration into smaller and isolated patches. Franklin et al., (2002) refers to the term 

fragmentation as a form of discontinuity which results from a set of mechanisms in the spatial 

distribution of resources and conditions present in an area, at a certain scale distorting the 

occupancy, reproduction and species existence. It refers to the spatial patchiness of a habitat 

or the process that leads to such patterns (Wiens, 1995; Wiens, 2000). Commonly, it is driven 

by dynamic relationships between increases in human-related needs on the scarce land 

resource, creating a mosaic of both fragmented and natural environment (Fahrig, 2003; 

McGarigal, 2002; Wiens, 1995), which occurs when intact continuous strands of ecosystems 

are divided due to underlying human factors (Wade et al., 2003). Generally, fragmentation is 

a universal form of habitat modification closely linked to growth in human population, urban 

sprawl, farming, and settlements, which interfere with biota composition and ecological 

procedures (Fahrig, 2003; Honnay et al., 2005; Tabarelli et al., 1999; Turner, 1996). It also 

alters the biophysical structure of ecosystems, including moisture balance, temperature 

regimes and net solar radiation reaching the ecosystem (Saunders et al., 1991). 

To date, the subject on landscape-human interactions,  species distribution and interactions is 

a subject not well understood in the tropics (Turner et al., 2003). This information is valuable 

for conservation experts in the tropics for optimal resource allocation (Gould, 2000; Kerr and 

Ostrovsky, 2003). Development of space-based systems presents unprecedented opportunities 

relevant for use in monitoring, planning and other biodiversity conservation activities (Shirk 

et al., 2014). Thereto, a research study was developed with a goal to address this quest. The 

study aimed at addressing the question on patterns of fragmentation, impacts on vegetation 

and harnessing of factors that strongly affect stability of ecosystems. This dissertation is 
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contextualized in the Eastern Arc Mountains, a global biodiversity hotspot subjected to 

different conservation challenges in East Africa. The thesis first introduces the global hotspot, 

focusing on exploring the effectiveness of remote sensing as a tool for determining the 

frequency and impacts of fragmentation on vegetation. The potential of remote sensing is 

outlined in each of the analytical chapters presented at the end of the chapter. The discussion 

is limited to the case studies used where more knowledge was obtained from research-

oriented experiences.  

1.2 The potential of remote sensing in conservation of the Eastern Arc 

Mountains 

The Eastern Arc Mountain blocks support important ecosystem functions, contribute to the 

global terrestrial carbon storage (Swetnam et al., 2011) and account for a high number of the 

world’s endemic species (Burgess et al., 2007a). They remain prone to a series of 

anthropogenic disturbances (Green et al., 2013b;Swetnam et al., 2011). Forest structures have 

been altered (Newmark, 1998) with more endemic species subjected to extinction (Lovett, 

1999). Previous studies associated occurrence of historical isolation processes to the 

instability of habitat conditions in the Eastern Arc Mountains (Jetz et al., 2004). For instance, 

over time, the scattered distribution of forest blocks exposes intact areas to fragmentation 

(Burgess et al., 2007b) while the capacity of endemic species is often unable to withstand 

growing external human pressure (Burgess et al., 2007a; Green et al., 2013b; Hall et al., 

2009; Newmark, 1998).  

The scarcity of knowledge on cost-effective methods in the management of ecological 

challenges necessitates an exploration of other reliable techniques. Space-based platforms 

serve as a key option in the development of viable options in tropical forest conservation 

(Horning et al., 2010). With advances in sensor resolutions, ecologists can easily extract 
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important details on the characteristics of natural resources of interest (Turner et al., 2003). 

Remotely sensed datasets offer a viable option for measurement and identification of 

important environmental information in large areas synoptically (Pelkey et al., 2000;Wiens et 

al., 2009). A combination of satellite imagery, aerial photographs and ground-based data is a 

good measure of depicting changes, estimating the quantity and quality of features, and their 

distribution at the landscape scale. Remotely sensed datasets are also valuable in maximizing 

multi-temporal monitoring efforts (Wiens et al., 2009). Aerial photographs, satellite imagery 

and ground truth data can be useful in resource inventory and recognition of vegetation 

patterns and is an effective and reliable source of information for risk and threat estimation 

(Cunningham, 2006; Cunningham et al., 2009; Millington et al., 2003). Generally, remotely 

sensed datasets, unlike field based techniques, are valuable in monitoring areas that would 

otherwise be expensive and time consuming (Wiens et al., 2009). 

Remotely sensed data at different spectral and spatial resolution provide detailed information 

at both small and large scales (Rindfuss and Stern, 1998). Due to complexity of vegetation 

and forest structure in the Eastern Arc Mountains, a relatively good resolution dataset is 

needed to effectively determine conservation priorities (Platts, 2012). It could be considered 

as a more reliable approach in understanding closely related subjects such as habitat 

modification, habitat fragmentation and loss, which have been placed under one umbrella for 

years (Lindenmayer and Fischer, 2006). Moreover, the utility of remote sensing technology 

has the capacity to demonstrate species responses to habitat interactions with changing 

environmental needs. Mounting evidence shows how species models have been used to map 

species distribution and possible frequency of occurrence (Donoghue et al., 2007; Gould, 

2000; Kerr and Ostrovsky, 2003; Thenkabail et al., 2012). Unfortunately, this is a subject not 

well explored in the Eastern Arc Mountains (Platts, 2012). The region still demands a quest 

for better technological approaches in managing complex conservation challenges. 
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1.3 Study goal and objectives 

The overall goal of this study was to investigate fragmentation as a conservation challenge in 

the tropics using space-based technology. The use of remote sensing was instrumental in the 

performance of heuristic roles of assessing the spatial and temporal vegetation patterns, 

impacts on species, and above ground biomass. A socio-ecological model was developed to 

establish driving forces and intervention measures. The following objectives were 

investigated: 

1.  To analyze vegetation fragmentation patterns using remote sensing and fragstats 

2.  To investigate impacts of fragmentation on species abundance, diversity and biomass  

3.  To assess application of remote sensing techniques in biomass prediction in 

fragmenting landscapes within the Eastern Arc Mountains  

4.  To establish potential social-ecological elements contributing to increased 

vulnerability of ecosystems and viable long term intervention measures 
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1.4 Research scope of the study 

A conceptual framework was built with a goal to establish relationships between 

fragmentation and impacts on vegetation in the Eastern Arc Mountains. The study aimed at 

addressing the question on the status of fragmentation trends, impacts and harnessing of 

factors that strongly affected stability of ecosystems (Figure 1.1).  The framework used was 

instrumental in problem identification, conservation linked complexities and potential 

solutions in the case studies applied.  

 

Figure 1.1: The main conceptual framework 
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1.5. Study area 

1.5.1 Location and climate 

The Eastern Arc  Mountains consist of a chain of thirteen forest blocks that stretch from Taita 

Hills in Southern Kenya to the Udzungwa Mountains in Southern Tanzania (Burgess et al., 

2007a; Newmark, 2002). They are located 3˚ 20’ to 8˚ 45’S latitude and 35˚ 37’ to 38˚ 48’E 

longitude (Newmark, 2002). The elevation ranges between 121 and 2636 meters above sea 

level (Platts, 2012). These mountain blocks include: Taita Hills, North and South Pare, West 

and East Usambara, North and South Nguru, Ukaguru, Uluguru, Rubeho, and Udzungwa 

(Figure 1.2).  

Climatic patterns are influenced by the Indian Ocean (Lovett and Ihlenfeldt, 1990). An 

average annual temperature of 18°C and rainfall ranging from 1700 to 2000 mm per year is 

experienced (Mumbi et al., 2008). The Ukaguru, Rubeho and Udzungwa mountain blocks 

experience lengthy dry spells with less precipitation (Platts, 2012).  

1.5.2 Biological significance 

As aforementioned, the Eastern Arc Mountains form part of the Eastern Afromontane 

Biodiversity Hotspot, and is among the leading World Wide Fund’s (WWF's) 200 priority 

ecoregions (Burgess et al., 2007a; Platts, 2012). The thirteen forest blocks cover 

approximately 5400 km
2
 (Mumbi et al., 2008). These forest blocks were categorized in 1988 

as leading regions of global conservation importance (Lovett and Ihlenfeldt, 1990). They host 

the world’s endemic flora and fauna based on the International Union for Conservation of 

Nature and Natural Resources (IUCN) red list criteria (Burgess et al., 2007a; Hall et al., 2009; 

Newmark, 1998). Approximately eight-hundred tree species found in the region are listed as 

endemic with others threatened to near extinction (Hall, 2009; Newmark, 1998). These blocks 
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remain vulnerable to dynamic habitat patterns (Shirk et al., 2014), growth in rural population 

and subsistence farmlands (Burgess et al., 2007b).  

1.5.3 Study site selection  

Selection of case studies was based on a detailed synthesis of literature review conducted in 

the region, which showed a dearth in knowledge on challenges of habitat modification and 

fragmentation (Green et al., 2013b; Newmark, 1998; Platts, 2012; Shirk et al., 2014). Case 

studies were conducted in the Nguru North forest block and the Uluguru forest block 

including outlying hills such as Mindu, Nguru ya Ndege, Mkungwe, Dindili and Kitulangalo. 

Uluguru forest was selected as an important block in Morogoro region.  

Previous studies showed a decline in forest cover in the Uluguru forest block ranging from 

300 km
2
 in 1955 to 220 km

2
 in the year 2000 (Burgess et al., 2002). This forest block is 

regarded as vulnerable to fragmentation, influencing biodiversity conservation in the region 

(Burgess et al., 2007a; Burgess et al., 2002). Nguru forest block was selected as a forest 

fragment subjected to intense human pressure and suffers from data scarcity due to its 

remoteness and difficulties in accessibility (Burgess et al., 2007a; Platts, 2012).  
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Figure 1.2: Location of select study sites in Tanzania based on LANDSAT ETM; the 

Eastern Arc Mountain blocks map modified from Platts et al., 2011) 

 

         

 

 Nguru south forest block                      Uluguru forest block 
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1.6 Thesis structure 

The dissertation is structured in form of scientific articles, which have been published or 

under review. Each of the chapters is presented independently in accordance with journal 

publications. There is however some overlap in introductory sections.  

Chapter 1 – General Introduction 

Growth in space-based technology is regarded as an important development trajectory in 

solving complex ecological challenges. The introductory chapter shows the need to integrate 

space-based technology in managing conservation challenges in the Eastern Arc Mountains. 

The chapter provides some important information that could guide scientists who wish to 

pursue space-based technology as an important source of information in understanding 

conservation challenges and informing decisions and decision making procedures. The 

chapter provides a justification of the study, and its importance. In addition, a detailed look at 

the study objectives; methods used and research questions is provided.  

Chapter 2 – Analyzing fragmentation in vulnerable biodiversity hotspots using 

remote sensing and frag stats in Tanzania 

Generally, vegetation fragmentation in the Eastern Arc Mountains in Tanzania has not kept 

pace with the on-going patterns at the spatial and temporal scales. Specifically, how 

individual habitats respond to spatial heterogeneity across diverse fragmenting ecosystems 

remains largely unexplored. Three sets of satellite data and fragstats metrics were used to 

investigate changes in the biophysical landscape characteristics. Spatial and temporal 

fragmentation patterns were modelled. Moreover, lessons on effective conservation and 

management of the forests in Tanzania were articulated.  

Chapter 3 – Impacts of fragmentation on the species abundance and diversity  
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Despite the many ecological studies conducted in the Eastern Arc Mountains, this chapter 

features one of the few studies that utilize remote sensing technology and other biophysical 

variables, including soil factors to model distribution of species diversity in threatened and 

less threatened areas. Species models generally provide important information that shows 

distribution of species frequency of occurrence. The chapter investigates responses of species 

abundance and diversity to fragmentation. Specifically, the chapter explores richness and 

species distribution in the study area using the Generic Algorithm for Rule-Set Prediction 

(GARP) algorithm. Further investigations are conducted on impacts of spatial attributes on 

individual species based on generalized linear models to determine sensitivity of individual 

species to fragmentation.  

Chapter 4 – Predicting biomass in fragmenting landscapes in the Eastern Arc 

Mountains using remote sensing data 

In order to minimize uncertainties in the degree of disturbance and to enhance planning and 

monitoring efforts, regular assessments of biomass is essential. Quantifying structural aspects 

of ecosystems is vital in describing the qualitative and quantitative nature and state of 

ecosystems. Above ground biomass can be useful in highlighting the state of these 

ecosystems. In this chapter, the potential of remotely sensed data and topo-edaphic factors are 

explored. High resolution RapidEye satellite data and field measurements are utilized. In 

addition, topo-edaphic factors are integrated as they influence the spatial distribution of 

biomass.  

Chapter 5 – Bridging science and policy: an assessment of ecosystem 

vulnerability and management scenarios in Tanzania 

In most case scenarios, scientific concepts are known to operate from knowledge creation 

angle while policy development has been associated with a civil obligation (Hoppe, 2005). 
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This chapter shows the need for researchers to engage proactively with policy experts. This 

chapter attempts to bridge the space based knowledge from the scientific perspective “science 

view” with socio-economic model and community responses with a strong basis on the “civic 

perspective”. Hence merging of the two fosters the relationship between the two diverse 

domains. Ecosystem vulnerability is assessed based on changes in cover, while potential 

drivers to habitat loss are analyzed using the logistic regression on data from 335 respondents 

from 11 villages from Nguru, Uluguru and surrounding hills. Socio-ecological factors driving 

ecosystem vulnerability and policy implications of the research are discussed.  

Chapter 6 – Vegetation fragmentation and impacts using multispectral data in 

the Eastern Arc Mountains of Tanzania: a synthesis 

The overall contribution of the thesis goal and objectives met is described in this chapter. An 

in-depth synthesis of the work and its contribution to conservation and management of the 

Eastern Arc Mountains is elucidated. This chapter shows the effectiveness of applying 

remotely-sensed techniques in ecological studies from diverse analytical chapters. In addition, 

the importance of integrating relatively good resolution data in conservation and management 

of the complex forest blocks in the Eastern Arc Mountains is discussed. Relevance to policy 

and management is highlighted. Research reflections and future recommendations in the 

management of the Eastern Arc Mountains are presented. 
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CHAPTER TWO 

Analysing fragmentation in vulnerable hotspots using remote sensing and 

frag stats 

 

Human-dominated landscape in the Uluguru montane forest 

This chapter is based on: 

Ojoyi M. M, Mutanga O., Odindi J., Abdel-Rahman E. (2014). Analyzing fragmentation in 

vulnerable biodiversity hotspots using remote sensing and frag stats in Tanzania. Landscape 

research (under revision). 

Presented at International Conservation for Conservation Biology 22-7-2014 Baltimore, USA. 
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Abstract   

Habitat fragmentation is a threat to conservation of biodiversity hotspots in Morogoro region, 

Tanzania. Despite this threat, research on fragmentation has not kept pace with the on-going 

fragmentation along spatial and temporal domains, particularly how individual habitats 

respond to the spatial heterogeneity. This study sought to model spatial and temporal 

fragmentation patterns. Satellite data were used to characterize the biophysical landscape 

characteristics and fragstats metrics were used to quantify the magnitude of fragmentation in 

the study area. Results show an increase in the frequency of patches by 391 and 412 in 

woodland and dense forest, respectively, between 1995 and 2012. Patch number in grasslands 

increased by 1039 between 1975 and 1995. In less dense forest, the number increased by 12 

between 1975 and 2012. Games-Howell results showed a high significance in the 

fragmentation trend (p≤0.05). The paper underscores the need to incorporate management 

plans in protecting fragile habitats. 

 

Key words: habitat, fragmentation, fragstats, remote sensing, Tanzania 
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2.1  Introduction 

Habitat fragmentation is a phenomenon of great concern globally (McGarigal and Cushman, 

2002; Nagendra et al., 2004). It refers to habitat breakages or the degree of patchiness of a 

habitat (Fahrig, 2001; Fahrig, 2003; McGarigal and Cushman, 2002; Wiens, 1995) mainly as 

a result of human activities (Neel et al., 2004). Habitat fragmentation interferes with the 

structural configuration of natural ecosystems and their ecological functioning (Abdullah and 

Nakagoshi, 2007; Echeverria et al., 2006; Echeverria et al., 2008; Iida and Nakashizuka, 

1995) such as metapopulations. Spatially isolated habitat fragments in a landscape could lead 

to a metapopulation structure (Hanski, 1998), leading to relatively smaller and isolated 

patches and consequent increase in extinction rate and less colonization (Opdam, 1991). 

Habitat fragmentation also affects biodiversity, particularly in areas where the largest 

fragmentation is prevalent (Cushman et al., 2012; Millington et al., 2003) through reduction 

of the total habitat size, threatening species survival (Murcia, 1995). It has long term impacts 

on species numbers (Aguilar et al., 2008; Cushman, 2006), species abundance (Debinski and 

Holt, 2000; Fahrig, 2003; Jha et al., 2005; Jorge and Garcia, 1997; Vogelmann, 1995) as well 

as exposing natural ecosystems to external risks, parasitism and dominance of invasive 

species (Wiens, 1995). 

Habitat fragmentation is an explicit challenge to conservation in the tropics (Pelkey et al., 

2000). It is considered a threat to species endemism (Adams et al., 2003; Bjorndalen, 1992; 

Burgess et al., 2002; Burgess et al., 2001; Erik Bjørndalen, 1992). In Africa, approximately 

310,000 hectares of forest is converted annually to agriculture, while 200,000 hectares is 

converted into woodlands annually, leading to conversion of intact areas into patchy habitats 

(Achard et al., 2002). Fragmentation acts synergistically with other factors such as solar 

radiation effects, leading to dominance of other invasive species.  
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Ecosystems in Morogoro region, Tanzania contribute to the world’s climate regulation 

through large carbon stores (Burgess et al., 2007; Swetnam et al., 2011). These ecosystems 

are listed among the most threatened biodiversity hotspots globally with a significant effect on 

species extinction (Brooks et al., 2006; Burgess et al., 2007; Myers et al., 2000; Swetnam et 

al., 2011). An increase in the anthropogenic disturbances pose significant threats to their long 

term conservation (Hall et al., 2009; Hall, 2009; Newmark, 1998). The region is estimated to 

have lost forest cover between 1955 and 2000, from 300 km
2
 to 220 km

2 
respectively, causing 

adverse impacts on species survival (Burgess et al., 2007). This finding was recently 

confirmed by Ojoyi et al. (2015) who established adverse impacts of fragmentation on species 

abundance and diversity in the Uluguru Mountains in Morogoro region.  

Despite global value of natural forest ecosystems in the Eastern Arc Mountains, very little 

research has been conducted with focus on the landscape’s spatial heterogeneity (Newmark, 

1998). In addition, there is limited knowledge on spatial effects on the magnitude and extent 

of fragmentation of these ecosystems (Burgess et al., 2002; Burgess et al., 2001; Luoga et al., 

2000; Yanda and Shishira, 1999). Furthermore, mechanisms by which natural habitats in the 

Eastern Arc Mountains respond to the spatial heterogeneity across diverse fragmenting 

ecosystems remain largely unexplored (Swetnam et al., 2011; Yanda and Shishira, 1999). 

Though single habitats may differ in their degree of response to fragmentation (McGarigal, 

2006; Neel et al., 2004), the robustness of fragmentation is expected to vary (Fahrig, 2003; 

Echeverría et al., 2007). For instance, what could be termed as fragmentation in homogeneous 

landscapes may be interpreted differently in a heterogeneous landscape (Fischer and 

Lindenmayer, 2007; Wiens, 2000). This could be due to differences in the habitat’s structural 

complexity and biological processes (Murcia, 1995).  

This study was therefore conducted with an overarching aim of assessing the spatial extent 

and magnitude of fragmentation across dominant heterogeneous landscapes within Morogoro 
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region. Remote sensing was applied due to its great ability to quantify spatio-temporal 

patterns in diverse landscapes (Nagendra et al., 2004). The present study sought to 

specifically; (1) determine the magnitude of change in each of the individual habitats; (2) 

assess the temporal and spatial extent of fragmentation in major habitats over years; and (3) 

identify management implications in the region. This study has a strong relevance to the 

region’s ecology. It is important to note that, an explicit assessment of spatial changes over 

varying time spans has the ability to provide an important platform for detailed landscape 

change assessments and identification of potential drivers (Lung and Schaab, 2006; 

Southworth et al., 2002). It is also considered a prerequisite for knowledge generation, 

essential in future monitoring and management of fragmenting landscapes in Tanzania 

(Fjeldså, 1999; Hall et al., 2009; Swetnam et al., 2011). The study provides an important 

basis for a holistic thinking on the need to protect the rapidly fragmenting landscapes. 

2.2    Study area 

Most rich biodiversity hotspots in Tanzania are located in the Eastern Arc Mountains 

(Burgess et al., 2007; Hall et al., 2009; Hall, 2009; Myers et al., 2000; Newmark, 1998; Olson 

and Dinerstein, 1998). The study area forms part of the Eastern Arc Mountains. Specifically, 

part of ecosystems dominated by four dominant habitat types along adjoining tracts of natural 

forest ecosystems were selected in Morogoro region (Figure 2.1). The study site selection was 

based on previous ecological studies that attributed species losses to fragmentation (Burgess 

et al., 2002; Burgess et al., 2001; Hall, 2009; Luoga et al., 2000; Yanda and Shishira, 1999). 

The four main habitats considered for the study were woodland, dense forest, less dense forest 

and grassland. Dense forest, grassland and less dense forest form part of the Uluguru 

Mountains which is underlain by pre-cambrian metamorphic rock types (Burgess et al., 2007; 

Hall, 2009; Shirima et al., 2011). Dominant tree species in the region include: Bersama 

abyssinica, Cassipourea malosana, Cornus volkensii, Cussonia lukwangulensis, C. spicata, 
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Dombeya torrida, Draceana afromontana, Garcinia volkensii, and Xymalos monospora. 

Bamboo thickets form dense stands of Sinarundinaria alpina 12-15 m tall and 15 cm 

diameter, (Bjørndalen, 1992; Lovett, 1993). The grassland habitat consists of Panicum 

lukwangulense and Andropogon thystinus, with scattered trees of Agauria saliciflora, 

Adenocarpus mannii, Myrica salicifolia and Berberis sp., which are thought to have replaced 

upper montane forest following the occurrence of fires (Bjorndalen, 1992). Kitulanghalo 

forest forms part of Miombo, which covers 90% of the total forested ecosystem in Tanzania 

(Mugasha et al., 2013). They are dominated by Brachystegia, Isoberlinia, and Julbernardia, 

Pterocarpus angolensis, Afzelia quanzesis and Albizia species (Munishi et al., 2010). It is a 

semi-natural Miombo woodland which receives less than 1000 mm of rainfall per annum. It is 

also important to note that proximity of these forests to Morogoro urban increases their 

susceptibility to anthropogenic influence interfering with their functioning and long term 

management (Mugasha et al., 2013).  

 

Figure 2.1: Study area (left) location based on a Landsat 1975 composite (right) in Morogoro, 

Tanzania. 
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2.3  Materials and methods 

2.3.1  Image pre-processing 

Satellite images with less than 15% cloud cover were used for the study. Landsat MSS 

(20/08/1975), Landsat TM (30/09/1995) and Landsat ETM (20/07/2012) from the Global 

Landcover Facility were selected. Datum was set to WGS 84 and referenced to Universal 

Transverse Mercator (UTM) Zone 37 South. All images were orthorectified using ground 

validation points, DEM, and aerial photos as a reference. Landsat images were resampled to a 

common resolution pixel by use of bilinear resampling to ensure consistency of the resolution 

with all image scenes. First order polynomial transformation was applied in image registration 

to correct for any shifts. Atmospheric correction involved the use of the radiative transfer 

model to remove atmospheric effects using the ATCOR (Atmospheric and topographic 

correction) module in Erdas Imagine 2013. This procedure was considered useful in 

simulating atmospheric interactions between the sun surface and sensor pathways. ATCOR 

masks haze, cloud, water and enhances pixel visibility. DN values were converted to 

reflectance values (Chander et al., 2009) using the metadata provided with the Landsat images 

(Richter and Schlaepfer, 2011; Richter and Schläpfer, 2004).  

2.3.2  Image classification 

Supervised classification using the maximum likelihood classifier was adopted as the most 

preferred parametric classification technique (Liu et al., 2002; Manandhar et al., 2009; Tseng 

et al., 2008; Xi, 2007). It is based on the Bayes theorem that utilizes a discriminant function 

which assigns pixel values to the category with the highest likelihood (Aldrich, 1997; Ince, 

1987). Spectral signatures were created and applied in categorizing similar pixels in the entire 

image using 8 polygons representing training data sets for each habitat class. A color 

composite consisting of 3, 4 and 5 bands facilitated visual interpretation process while the 

Gaussian distribution function was applied in the stretching process. The image was classified 
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into four class categories, namely: woodland, grassland, dense forest and less dense forest. 

These are the main dominant vegetation types in the study area. These land cover classes are 

defined and described by United States Geological Survey (USGS, 2006) as shown in Table 

(2.1).  

A total of 82 field ground data points were used to validate the classified 2012 image. A 

confusion matrix was then created to compare ground truth data with the maximum likelihood 

prediction and to determine the overall accuracy, producer’s accuracy and user’s accuracies 

e.g. (Stehman and Czaplewski, 1998). Overall accuracy is a percentage (%) between correctly 

classified classes and the total number of test ground truth samples, while PA is the 

probability of a specific class being correctly classified. The User Accuracy (UA) is the 

possibility that a sample of a specific class and maximum likelihood assigns that class.  

2.3.3  Modelling habitat fragmentation  

Fragstats metrics (Table 2.2) were extracted from processed Landsat images. All classified 

images were converted to ASCII format in ArcGIS 10.2. The raster version of the C program 

in Fragstats was applied using the 8 cell rule (McGarigal and Marks, 1995). All ASCII format 

scenes were imported into Fragstats, then ASCII built-in-algorithm selected for running 

analyses in the Fragstats model. Fragstats has a distinct nature and capacity to estimate 

landscape behavior characteristics (Saikia et al., 2013; Millington et al., 2003), and therefore 

relevant in forest fragmentation studies (Vogelmann, 1995). Metrics relevant in explaining the 

magnitude and extent of fragmentation were selected (Saikia et al., 2013; Millington et al. 

2003; Cushman, 2006; Cushman et al., 2012). All metrics were selected from the 1975, 1995 

and 2012 image scenes. A total of 155 samples were randomly selected and extracted. For the 

statistical analyses, two metrics i.e. perimeter area relationship and patch area were used for 

testing the magnitude of fragmentation. Patch area is a useful metric in landscape analysis, 

and very relevant in ecological research (McGarigal and Marks, 1995). The Kolmogorov-
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Smirnov test was used for evaluating data normality in both perimeter area ratio (PARA) and 

patch area. The perimeter area data and mean patch area data (n=155) were normally 

distributed. Mann-Whitney U-tests were selected and used to assess differences between 

patch areas across the years using STATA Software 12. However, it is important to note that, 

the fragmentation indicators used in this study should be interpreted as empirical (mechanic) 

and not ecological measures. For instance, a fragmented (patchy) landscape with the four 

dominant vegetation types could be one contiguous habitat for forest generalist like a Duiker 

species that could live in a matrix of all these vegetation types.  

 Table 2.1: Definition of land cover classes based on USGS (2006)  

Land cover Definition  

Dense 

Forest 

Dominantly native forest consisting of >60% ground surface covered by trees 

with a dense canopy cover. The trees are green throughout the year 

Less dense 

forest 

Vegetation in this cover class consists of natural vegetation >6m tall with a 

crown density of <30%. However, the canopy is not as dense as that of dense 

forest with scattered foliage cover. 

Woodland Refers to woody vegetation type with scattered foliage cover <30% with 

stunted growth. Mature vegetation consists of <5m woody savannas and in this 

region, they are located in drier parts of the case study region 

Grassland Consists of land cover dominated by more than 60% grass like vegetation with 

scattered shrubs and scrubs 
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Table 2.2:  Fragmentation indices used in the present study  

Fragstats matrix  Description 

Patch Density (PD) Number of patches of the corresponding patch type  

Largest Patch Index (LPI) It’s an index used to quantify the percentage of total 

landscape area characterized by the largest patch.  

Edge density (ED) Used to assess edge length per unit area 

Patch Number (NP) It’s a measure of the magnitude of fragmentation of patches  

Interspersion 

Juxtaposition Index (IJI) 

The index is used in isolating the interspersion of different 

patch types.  

Patch Area (MN) Refers to the sum, across all patches in the landscape, of the 

corresponding patch metric values, divided by the total 

number of patches in (ha). 

Perimeter Area Ratio-

PARA 

Refers to the ratio of the patch perimeter (m) to area (m
2
). 

Total Area (CA) Refers to the sum of areas (m
2
) of all patches for the patch 

type  

Percentage of Landscape 

(PLAND) 

Useful in computing the proportional abundance for each of 

the patch type across the landscape 
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2.3.4 Secondary data 

Secondary data were collected from government office within Morogoro region. This 

included population statistics and other conservation data on impacts from previous reports 

and publications in the case study region. 

2.4  Results 

2.4.1 Classification and accuracy assessment   

The overall accuracy for 1975, 1995 and 2012 image scenes was 78.26%, 84% and 76.54%, 

respectively (Table 2.3). Changes in total area coverage were observed in all years (Figures 

2.2A, B and C).  

Table 2.3: Individual accuracy measures of the four dominant land cover classes  

Habitat Class  

1975 1995 2012 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Dense Forest 100.00 75 100.00 100.00 80.77 95.45 

Less Dense Forest 066.67 100 100.00 100.00 100.00 60.00 

Woodland 066.67 100 066.67 066.67 075.00 58.54 

 Grassland 100.00 100 100.00 100.00 084.62 91.67 

Overall Accuracy  78.26 84 76.54% 

Kappa co-efficient 0.74 0.81 0.73 
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2.4.2 Change detection  

Findings showed that land modification and change occurred over the years. Most habitats 

declined significantly i.e. dense forest (38,675.70 hectares), woodland (78,884.46 hectares), 

grassland (3230.01 hectares). However, the study showed a significant increase in the less 

dense forest cover, by 43,267.38 hectares. The considerable increase in woodland area could 

be due to the mapping method. The maximum producer’s accuracy in 1975 and 1995 (about 

66%) was for woodland class, which is relatively smaller compared to the accuracy of other 

classes.  

2.4.3 Quantifying the magnitude of change 

Dense forest, woodland and grassland are undergoing a negative change at an annual rate of 

1.6%, 1.6% and 0.7%, respectively (Table 2.4).  

Table 2.4: Habitat annual rate of change  

Habitat 1975 (ha) 

Total 

% 1995 (ha) 

Total 

% 2012 (ha) 

Total 

% 

Annual rate of change 

in % 

1975-2012 

Dense Forest 64813.68 17.7 27742.68 07.6 26137.98 07.1 -1.6 

Less dense forest 74493.72 20.4 144648.4 39.5 117761.1 32.2 +1.6 

Woodland 137289.24 37.6 98242.83 26.8 58404.78 16.0 -1.6 

Grassland 13223.16 03.6 07163.91 02.0 09993.15 02.7 - 0.7 
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Figure 2.2: Land use/ land cover (LULC) maps in 1975, 1995 and 2012. 

 

1975 

                             Legend 

 

 

 

1995 

 

2012 
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2.4.4 Fragmentation patterns   

2.4.4.1 Temporal variation in fragmentation 

Analyses showed dynamic temporal trends (Table 2.4). Patch number was relatively higher in 

dense forest and woodland in 1975, 1995 and 2012 than in less dense forest and grassland. An 

analysis of the percentage of landscape (PLAND) and edge density parameters, showed that 

less dense forest had the highest number compared to the rest of the habitats. Woodland and 

less dense forest habitats had the highest edge density values (Figure 2.5). 

In addition, patch number was least in both dense forest between 1975 and 1995. A decrease 

in total core area, percentage of landscape and edge density was observed in both woodland 

and less dense forest classes between 1975 and 2012 (Figures 2.3-2.5). Woodland area 

increased in 1995 and then decreased in 2012. The largest patch index (LPI) was observed in 

less dense forest, while woodland, dense forest and grassland had the least values below five. 

Woodland and grassland had the highest PARA compared to less dense and dense forest 

(Table 2.4).  

 

 Figure 2.3: Temporal patterns of core area.   
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Figure 2.4: Temporal percentage of landscape patterns.  

 

 

 Figure 2.5: Temporal edge density patterns.  

2.4.4.2 Spatial variation in fragmentation 

Spatial analyses showed a greater probability of dispersion in the woodland and less dense 

forest habitats. The Interspersion Juxtaposition Index (IJI) ranged between 0 (for clumped 

patches) and 100 (for grassland). In 1975 and 1995, the grassland habitat had the highest IJI. 
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In 2012, less dense forest had the highest IJI. Furthermore, results indicated the largest patch 

number and mean patch area in dense forest in the year 1975 and woodland in 2012 (Figure 

2.6).  

 

DF- dense forest, LDF-less dense forest, WD-woodland, GR-grassland 

Figure 2.6: Spatial variability in the six fragmentation indices (A, B, C, D, E, and F) in 1975, 

1995, and 2012.  
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2.4.5 Mann-Whitney results  

Based on the Kolmogorov-Smirnov tests, data were not normally distributed (p≤0.05). The 

non-parametric statistics (Mann-Whitney tests) were then applied. Mann-Whitney test results 

showed distinct differences in patch area (p<0.01) between 1975 and 1995 for all habitats and 

1995-2012 for all habitats except dense forest (Table 2.5), indicating a rapidly fragmenting 

landscape.  

Table 2.5: Patch area compared by Mann-Whitney Tests  

NS= not significant (p<0.01), *** = significant (p<0.001) 

  

Class Year z-value 

(1975-1995) 

Prob > |z| z-value 

(1995-2012) 

Prob> 

|z| 

Dense forest  1975 9.495*** 0.0000 -6.872 NS 0.1895 

1995 

2012 

Grassland 1975 13.680*** 0.0000 -7.441*** 0.0000 

 1995 

2012 

Less dense forest 1975 16.728*** 0.0000 -8.268*** 0.0000 

1995 

2012 

Woodland  1975 -16.63*** 0.0000 2.461*** 0.0000 

1995 

2012 
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2.4.6 Games Howell test results for perimeter area relationship  

Games Howell results indicated very significant patterns of fragmentation between 1975 and 

1995 within all habitats (p≤0.05). In 1975 and 2012, the trend was significant in less dense 

forest and woodland (p≤0.05), while in 1995 and 2012, the trend was significant in grassland, 

dense forest and less dense forest (p≤0.05) (Table 2.6). A highly significant trend was 

observed with perimeter area relationship in the less dense forest across the years.  

Table 2.6: Games-Howell results for mean parameter area ratio (PARA) in 1975, 1995, 2012  

 

  

 

Class Mean                 p value 

 1975 1995 2012 1975 vs 

1995 

1975 vs  

2012 

1995 vs  

2012 

Grassland 565.28 606.21 560.00 0.0001 0.5960 0.0001 

Dense forest 498.12 549.14 483.72 0.0001 0.3000 0.0001 

Less dense 

forest 

496.29 563.06 529.53 0.0001 0.0001 0.0001 

Woodland 498.58 535.43 534.26 0.0001 0.0001 0.8930 
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2.4.7 Population trends in the region 

Statistics in the area show an increasing population trend in the region (Table 2.7). 

Table 2.7: Dynamic population trends in Morogoro region  

 

District 

 

1967 

 

1988 

 

2002 

 

2013 

Morogoro Urban 24,999 117 601 227 921 315 866 

Morogoro rural 291 373 430 202 263 012 286 248 

Mvomero   259 347 312 109 

Kilosa 193 810 346 526 488 191 631 186 

Kilombero 74 222 187 593 321 611 407 880 

Ulanga 100 700 138 642 193 280 265 203 

Total in Morogoro   685 104 1 220 564 1 753 362 2 218 492 

Source: United Republic of Tanzania (1997; 2013) 

2.5  Discussion  

Fragmentation patterns are evident at both the spatial and temporal domains. Distinct 

differences in fragmentation indicated how each individual habitat responded to 

fragmentation in Morogoro region. The reason could be attributed to the topography of the 

area and resource accessibility essential for livelihood support initiatives such as agriculture, 

urbanization/settlement, and infrastructure development. These have been considered as key 

drivers of land modification and fragmentation for natural ecosystems in the region. 

Conservation implications provided form an important platform for future monitoring and 

management of the fragile landscape. 



33 
 

2.5.1 Spatial and temporal patterns in Morogoro region 

The negative trend in habitat area for habitats decreasing in total area size is prevalent in the 

region (Table 2.2). Negative trend patterns in the extent of total habitat coverage have close 

relations with deleterious fragmentation effects (Cushman, 2006). However, effects of 

fragmentation are dependent on habitat size (Fahrig, 2003). Perimeter-area results showed 

very distinct differences in the woodland and grassland habitat patterns. A high perimeter-area 

relationship characterizes the rapid rate of fragmentation underlying the two landforms (Jorge 

and Garcia, 1997; McGarigal, 2006). Woodland habitat displays a patchy type of 

deforestation, which is characterized by an increase in patch number between 1995 and 2012. 

The patchy type of fragmentation is driven by economic and demographic reasons (Green et 

al., 2013a).  

Changes in mean patch area patterns were recorded on woodland and less dense forest 

habitats. Furthermore, patch number increased by 412 and 391 in dense forest and woodland 

respectively. This is an indication of the fragmentation level in the area (Jorge and Garcia, 

1997). Furthermore, patch area has been ideal in characterizing distinct areas with analogous 

environmental scenarios whereby patch boundaries are distinguished by discontinuities in 

environmental character state relevant to organisms or the ecological phenomenon being 

considered (Wiens, 1985). A combination of patch density (PD), PARA (perimeter to area 

ratio) and mean nearest neighbor distance are considered profound in estimation of the extent 

of fragmentation in each of the habitats analyzed (Jorge and Garcia, 1997). Patch density and 

perimeter to area ratio (PARA) have been profound in fragmentation assessments as they have 

a strong influence on ecosystem functioning and ecological processes (McGarigal, 2006). 

Woodland and less dense forest had the highest patch number over the years, which are 

attributed to fragmentation emerging from resource accessibility in the two forest habitats. It 

could be also an aspect related to their vicinity to Morogoro town and management by local 
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authorities. Such challenges are potential drivers enhancing susceptibility to habitat 

fragmentation (Fahrig, 2001; Fahrig, 2003; McGarigal, 2006; Wiens, 1995). Undisturbed 

areas have larger patch sizes compared to disturbed areas (Fischer and Lindenmayer, 2007). 

Similar findings were explained by dynamics in mean patch area which was driven by 

pressure from anthropogenic disturbances (Stoms and Estes, 1993).  

The interspersion juxtaposition index (IJI), was profound in characterizing the degree of 

adjacency for each patch type. Less dense forest had the highest IJI in 2012 compared to the 

rest of the habitats. Woodland had a greater patch density, signifying higher spatial 

heterogeneity. In addition, the largest patch index was associated with less dense forest while 

least values were associated with grassland. This indicates the fragmented nature of less dense 

forest and grassland as it provides information on least and most fragmented landscapes 

(McGarigal, 2006). In addition, the largest patch index for less dense forest was significant 

compared to the rest of the habitats, an indicator of the minimum area requirements for 

species survival (Rutledge, 2003).  

Dense forest, grassland and woodland had the largest edge density, attributed to increasing 

exposure to farmlands and settlements. Edge effects characterize the biophysical state of 

ecosystems at the periphery or in the neighborhood and have deleterious effects in the long 

term (Hargis et al., 1998). This is because disintegration of habitats intensifies the response of 

abiotic edge effects on ecosystem functioning (Murcia, 1995) and reduces a habitat’s ability 

to sustain a population (Fahrig, 2003). It also affects occurrence of species populations 

(Murcia, 1995) and ensures that the interaction of species in disturbed environments remains 

restricted enhancing the mortality risk (Kupfer et al., 2006). Other similar studies established 

a great intensity of fragmentation associated with more edge effects through exposure of 

contiguous habitats to solar radiation and soil moisture to drier heat conditions (Rutledge, 

2003).  
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Games-Howell test results showed a significant level in the perimeter area relationship 

(p≤0.05). This could be explained by the fact that less dense forest adjoins dense forest, taking 

up the region dominated by woodland. Other possible causes are linked to expansion of 

Morogoro town and extensive farmlands in Fulwe, Mkuyuni and Mlali regions in Morogoro 

rural district. Similarly, other studies showed how adjoining activities altered intact habitat 

ecosystems (Echeverría et al., 2007). However, the significant differences found for almost all 

fragmentation indices should be interpreted with caution as there were no absolute agreements 

(100%) between the reference classes on the ground and the predicted ones in the images as 

indicated by the classification accuracy and maps quality.  

2.5.2 Potential driving forces and conservation impacts 

An increase in population density may be one of the factors for habitat modification in four 

individual habitats analyzed (URT, 2013 – see Table 2.7). This confirms other studies that 

relate massive losses of natural tropical ecosystems due to external human perturbations (de 

Chazal and Rounsevell, 2009; Foley et al., 2005; Haines-Young, 2009; Nagendra et al., 2013; 

Pérez-Vega et al., 2012; Reidsma et al., 2006; Wasige et al., 2013; Zebisch et al., 2004). In 

addition, extensive farming and urban regrowth are possible drivers to habitat modification 

and fragmentation in the region. Uluguru forest montane forests have a conducive montane 

climate that supports subsistence farming, an activity which most communities practice 

(Burgess et al., 2007b; Swetnam et al., 2011; Yanda and Shishira, 1999).  

Another possible cause is linked to expansion of agricultural fields and urban set-ups in 

Morogoro rural and urban districts. This confirms previous findings which established how a 

substantial amount of dense forest had been lost in Uluguru Mountains, due to expansion of 

urban settlements and agricultural farms (Burgess et al., 2002; Burgess et al., 2001). 

Furthermore, a decrease in the woodland could be attributed to wood harvesting for 

commercial purposes in Kitulanghalo forest (Theilade et al., 2007). In other parts of Tanzania, 
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related studies established effects of woodland loss to land modification (Munishi et al., 2010; 

Ntongani et al., 2010; Yanda and Shishira, 1999). 

Fragmentation studies are relevant in assessing ways in which species respond to varying 

levels of fragmentation (Wiens, 1995). This study provides an important foundation upon 

which conservation and management principles can be established particularly in dense and 

less dense forests with leading records of endangered and vulnerable species (Burgess et al.,; 

2007; Hall et al., 2009).  This is because impacts of fragmentation seem to be impacting 

heavily on natural ecosystems in Morogoro region. A previous study in Uluguru montane 

ecosystem also established a decrease in species abundance and diversity in fragmented areas 

(Ojoyi et al., 2015). Intensification of the human population growth may have extirpated 

important fauna and flora in the Ulugurus (Burgess et al., 2002; Burgess et al., 2001). This 

could be a result of expanding settlements and farming in the area (Burgess et al., 2007; Hall, 

2009; Swetnam et al., 2011; Yanda, 2010). This may lead to losses of genetic diversity and 

useful genes in areas originally covered by intact forest ecosystems (Burgess et al., 2007; 

Hall, 2009; Shirima et al., 2011; Swetnam et al., 2011; Theilade et al., 2007; Yanda and 

Shishira, 1999). Other studies linked species losses to habitat modification of natural 

landscapes into other forms due to changes in a habitat’s spatial configuration (Fischer and 

Lindenmayer, 2007). 

To forestall some of the problems earlier highlighted, forested areas identified as biodiversity 

hotspots such as the four habitats, with important functions for groundwater recharge, surface 

water runoff, biotopes for instance, need to be protected from the impacts of land 

modification and fragmentation (Byron and Arnold, 1999; Janzen, 1970; Montagnini and 

Jordan, 2005; Wright, 2005; Wunder, 2001). Implications of habitat modification and 

fragmentation in Morogoro region can be better deciphered through the impact on habitat 

structure and species losses. Impacts of fragmentation need to be understood by the local 
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population in order to curtail inappropriate destructive practices. It will be useful if policy 

measures and sustainable bottom-up approaches in management and conservation of forest 

resources are instituted in the region.  

2.6   Conclusions   

In conclusion, the study has provided spatial and temporal information regarding 

fragmentation trends in the region. Distinct differences in magnitude are evident for each of 

the individual habitats analyzed. The magnitude of fragmentation was significant in less dense 

forest. One important aspect which stands out from the study is that fragmentation seems to 

be driven by closeness to livelihood support resources such as access to agricultural land and 

roads. Agricultural farming, population pressure and urban growth are identified as major 

driving forces to habitat modification and fragmentation.  

Despite the diversity in the results obtained, this study provides an important knowledge on 

spatio-temporal vegetation patterns and ecological functions of forests in Morogoro region. 

Each of the results has a fundamental role to play on the ongoing conservation work 

implemented by the Critical Endangered Ecosystem Partnership Programme and Birdlife 

International aimed at protecting fragile ecosystems subjected to anthropogenic disturbances 

in different parts of East Africa. It is expected that findings from this study will offer an ideal 

platform for government authorities and other conservation organizations in the region. 
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CHAPTER THREE 

Impacts of forest fragmentation on species abundance and diversity in the 

Eastern Arc Mountains in Tanzania 

 

Habitat destruction in Nguru Montane forest ecosystem 

This chapter is based on: 

Ojoyi, M.M., Mutanga, O., Odindi, J., Ayenkulu, E., Abdel-Rahman, E.M. (2015). The effect of 

forest  fragmentation on tree species abundance and diversity in the Eastern Arc Mountains of 

Tanzania. Applied Ecology and Environmental Research, 13, 307-324. 

Presented at African Association for Remote Sensing of the Environment, Johannesburg 28-

10-2014. 
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Abstract 

Habitat fragmentation is considered a threat to biodiversity conservation. Uluguru forest block, a 

section of the Eastern Arc Mountains in Tanzania remains highly vulnerable to fragmentation. 

However, to date, fragmentation effects on species abundance and diversity have not been 

investigated. This study aimed at investigating effects of fragmentation on species abundance 

and diversity in Uluguru forest block, Morogoro region, Tanzania. A RapidEye satellite image 

was analysed using the maximum likelihood classifier (MLC) to map the fragmented forest. 

Remotely sensed variables with data on species diversity were modelled using the Generic 

Algorithm for Rule-Set Prediction (GARP) algorithm while fragmentation parameters were 

extracted using Fragstats software, which were then linked to species and edaphic factors. 

Results showed that species diversity was predicted better with customized environmental 

variables which recorded an Area Under Curve (AUC) of 0.89. The Poisson regression results 

showed that individual tree species responded differently to patch area dynamics, habitat status 

and soil nitrogen. Generally, the abundance of dominant species like Mytenus undata Thunb (p < 

0.001), Zenkerella capparidacea (Taub.) J. Leon (p < 0.001) and Oxyanthus specious DC. (p = 

0.023) decreased with a reduction in patch area. The present study suggests the need to integrate 

comprehensive plans and other intervention measures into long-term intervention initiatives. 

Keywords: RapidEye, habitat fragmentation, soil, species abundance  
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3.1 Introduction  

Species abundance and richness are important measures of biodiversity (Gould, 2000). They vary 

from one spatial range to another, which is a function of habitat heterogeneity (Kerr et al., 2001) 

fragmentation (Murcia, 1995; Benítez‐Malvido and Martínez‐Ramos, 2003; Echeverría et al., 

2007; Hobbs et al., 2008) and modification (Osborne et al., 2001). Habitat modification 

interferes with ecosystem configuration (Stoms and Estes, 1993), species distribution and 

numbers (Griffiths and Lee, 2000), structural complexity of ecosystems and their functioning 

(Debinski et al., 1999), patch and landscape ecosystem processes (Didham, 2001) and alters the 

biological trait of individual species (Helm et al., 2006). It also interacts synergistically with 

anthropogenic threats (Laurance, 2007), interferes with the occurrence of species, their 

composition and density (Stoms and Estes, 1993). Literature shows that habitat fragmentation 

also condenses habitat area coverage enhancing the species extinction debt (Bogich et al., 2012). 

By reducing the total habitat area requirements of species (Murcia, 1995; Fahrig, 2003; 

Echeverría et al., 2007), the rate of species extinction and endemism is enhanced (Burgess et al., 

2001; Burgess et al., 2002; Adams et al., 2003; Tøttrup et al., 2004). In low montane 

ecosystems, fragmentation is known to affect species loss due to deforestation (Hall et al., 2009). 

Various studies indicate significant variability in the abundance of alien invasive plant species, 

due to fragmentation. For instance, Mumbi et al., (2008) showed that fragmentation affects the 

abundance of coprophilous fungi and algal blooms as a result of reduction in the population of 

Podocarpus and Psychotria tree species.  

The intensity of fragmentation is dependent on different factors (Benítez‐Malvido and Martínez‐

Ramos, 2003; Fahrig, 2003; Echeverría et al., 2006). For instance, dynamics in land use and 

elevation has an effect on individual species (Murcia, 1995; Benítez‐Malvido and Martínez‐
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Ramos, 2003; Fahrig, 2003; Burgess et al., 2007b; Echeverría et al., 2008). It may also be a 

function of varying patch sizes (Echeverría et al., 2008) and structural complexity (Murcia, 

1995; Benítez‐Malvido and Martínez‐Ramos, 2003; Fahrig, 2003; Fischer and B. Lindenmayer, 

2006; Burgess et al., 2007b). However, the effect of fragmentation on tree species at local scales 

is not widely explored (Ylhäisi, 2004; Zotz and Bader, 2009). Whereas a series of studies have 

used bioclimatic variables to ecologically model species diversity (Pearson and Dawson, 2003; 

Martínez‐Meyer et al., 2004; Thuiller et al., 2006), the validity of this approach, particularly at 

local scales, remains unresolved (Araújo and Luoto, 2007).  

As aforementioned, habitat fragmentation is a threat to biodiversity and conservation (Achard et 

al., 2002; DeFries et al., 2002; Benítez‐Malvido and Martínez‐Ramos, 2003; Fahrig, 2003; 

Fischer and Lindenmayer, 2006; Burgess et al., 2007b; Echeverría et al., 2008; Hobbs et al., 

2008). This is the case for the Eastern Arc Mountains in Tanzania, a highly ranked global 

biodiversity hotspot (Olson and Dinerstein, 1998; Hall, 2009). They host approximately 100 

endemic vertebrates (10 mammals, 20 birds, 38 amphibians, 29 reptiles) and approximately 1500 

plant species including, 68 tree endemics (Burgess et al., 2007b). Despite their global 

importance, the region remains highly vulnerable to anthropogenic influence (Bjørndalen, 1992; 

Burgess et al., 2002). The extent of habitat loss and fragmentation has been deleterious 

(Newmark, 1998; Fjeldså, 1999; Hall et al., 2009; Swetnam et al., 2011). Key threats include 

settlements, logging, farming and urban sprawl (Burgess et al., 2007b), consequently, 

approximately 80% of forest cover has been lost in recent years (Hall et al., 2009). A substantial 

area and the highest number of extinct species were recorded in lowland montane forest  between 

1975 and 2000 (Hall, 2009).  
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A shift in an ecosystem’s stability transforms it to an undesired state, compromising its capacity 

to support normal functions and increasing the rate of endemism and extinction (Şekercioğlu et 

al., 2004). Although species vary in their geographic occurrence, distribution and response to 

dynamic environmental conditions (Fischer et al., 2004), modelling their diversity is a 

prerequisite in conservation monitoring, planning and management (Carlson et al., 2007). This 

forms a basis for knowledge generation, specifically on species-habitat relationships in space, 

time and future risk management (Olson et al., 2014). To date, this subject remains unexplored 

in natural fragmenting ecosystems in Morogoro region, Tanzania (Hall et al., 2009).  

Up to date, the subject on how landscape-modification and species interactions is not well 

explored  (Turner et al., 2003). The information is ideal in resource planning and management of 

natural resources in the tropics. Advancement in remotely sensed data presents an unprecedented 

opportunity in monitoring and planning efforts. The use of remote sensing technology has the 

capacity to show species responses to habitat interactions with changing environmental needs. 

This study features one of the few studies that utilize remote sensing technology and other 

biophysical variables, including soil factors to model distribution of species diversity in 

threatened and less threatened areas. Specifically, how forest fragmentation affects species 

abundance and diversity in a heterogeneous landscape in the Uluguru forest block. Edaphic 

factors such as NPK, pH and C were used as indicators to soil health (Solomon et al., 2000; 

Fageria, 2010). Species models generally provide important information that shows distribution 

of species frequency of occurrence. 
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3.2 Materials and methods 

3.2.1 Study area 

Uluguru tropical forest is located at (7
o
2´ - 7

o
 16´S) and (38

o
 0´ - 38

o
 12´E) in Tanzania and 

forms part of the Eastern Arc Mountains blocks, which is a series of crystalline mountains in 

Kenya and Tanzania (Burgess et al., 1998). These mountains range from lowland rain forests to 

elfin montane forests and are separated by lowlands whose origin is said to have been caused by 

faulting (Olson and Dinerstein, 1998). The area experiences bimodal rainfall in April and 

November, ranging from 2900-4000 mm on windward slopes and 1200-4000 mm on the leeward 

(Burgess et al., 1998). The Uluguru forest block (Figure 3.1) hosts approximately 135 plant 

species (Fjeldså, 1999; Lovett 1993; Burgess et al., 2007b), however, the forest cover has 

declined from 300 km
2
 in 1955 to 220 km

2
 in 2000. Consequently, Uluguru montane forest 

ecosystem is regarded to as highly vulnerable to fragmentation, negatively affecting species 

abundance and increasing risk of extinction of rare species like the Uluguru Bush Shrike 

(Bjorndalen, 1992; Bjørndalen, 1992; Burgess et al., 2001; Burgess et al., 2002; Fuchs et al., 

2005).  
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Figure 3.1: Location of Uluguru forest: delineation based on Landsat MSS captured in 1975. 

 

3.2.2 Field data collection 

Tree measurements were collected randomly within 10 m × 10 m plots in August 2012, in the 

same month of image acquisition. Data was collected from 80 plots located in the field  using a 

Global Positiong System (GPS) of submeter accuracy. Major tree species with  more than five 

centimeters diameter at breast height (dbh) were sampled. Data on species names, genera, 

families, density, basal height, and canopy cover were recorded. Additionally, elevation points 

for each plot was taken. Soil data (C, N, P, ph and K) was collected within the 0-15cm depth. 
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The status of the habitat in Uluguru forest blocks was categorised into two classes; fragmented 

and intact (82 data ground data points were used).  

3.2.3 Image acquisition and pre-processing  

RapidEye satellite imagery for the Uluguru forest block was acquired on 23/10/2012. RapidEye 

has a spatial resolution of 5 metre and 5 bands covering the spectral regions: Blue: 440-510 nm, 

Green: 520-590 nm, Red: 630-685 nm, Red Edge: 690-730 nm and NIR: 760-850 nm. The red 

edge band has the potential to detect chlorophyll concentration in the visible region of the 

spectrum; which allows use of different vegetation indices in above ground biomass prediction. 

It has great potential in discriminating varied and stressed vegetation types. The image was first 

geometrically corrected (Universal Transverse Mercator: UTM, zone 37 South projection) using 

30 identifiable ground control points (GCPs) distributed across the image. The GCPs were 

recorded on 1:50000 topographic maps of various years. A nearest-neighbour algorithm and first 

order polynomial transformation were applied to resample the image to its original pixel size. 

The nearest neighbor is a resampling method that assigns a value to each "corrected" pixel from 

the nearest "uncorrected" pixel. Its advantage is simplicity and the capability to preserve original 

values in the unaltered image scene. The advantage of using first-order transformations is that it 

can easily project raw imagery to a planar map projection, convert a planar map projection to 

another planar map projection, and very efficient when rectifying relatively small image areas. 

The root mean square error of less than half a pixel was obtained, indicating a reliabe geometric 

correction. The imagery was then atmospherically corrected using ATCOR module built in Earth 

Resources Data Analysis System software (Erdas Imagine 2013) and digital number values 

converted to surface reflectance. ATCOR is useful in computation of the ground reflectance 

image for the reflective spectral bands, and emissivity images for the thermal bands. 

http://www.blackbridge.com/rapideye/rededge.html
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3.2.4 Soil chemical analysis 

A total of 80 samples of soil taken at 0-15 cm depth were collected from 10m by 10m plots. 

Samples were air dried and sieved using a 2 mm sieve prior to analysis. Scanning of soil samples 

was conducted using atomic absorption spectrometer to get soil reflectance values. The 

spectrometer is designed to effectively determine the concentrations of trace and major elements 

in solution under observation. The spectrometer was then used to extract reflectance values for 

each of the elements (N, P, K, ph, C) which were then taken for wet chemistry analysis. The 

contents of nutrient elements were used to correlate bands with actual mineral values. These 

were then used to estimate for the rest of the samples. 

3.3 Data analysis  

3.3.1 Image classification 

Maximum Likelihood (ML) supervised classifier, one of the most commonly used methods for 

classifying remotely-sensed data as a statistical decision criterion that facilitates classification of 

overlapping signatures whereby pixels are assigned to the highest class of probability based on 

the Bayesian Probability Function which is computed from class inputs obtained from training 

sites (Strahler, 1980; Conese and Maselli, 1992; Foody et al., 1992; Wei and Mendel, 2000; 

Bruzzone and Prieto, 2001; Seto and Liu, 2003). It was used to delineate the fragmented and 

intact forest classes. Based on the developed class signatures, a thematic map was produced and 

smoothed using the majority filter rule.  A total of 82 ground truth points were used to generate a 

confusion matrix to determine the overall (OA), producer’s (PA) and user’s (UA) accuracies.  
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3.3.2 Modelling fragmentation 

Fragmentation in the Uluguru forest block was modelled using Fragstats metrics. Fragstats is a 

spatial statistics program useful in computing metrics at patch, class and landscape level 

(McGarigal and Marks, 1995). It is distinct in nature and has the capacity to estimate landscape 

behaviour characteristics (Millington et al., 2003; Saikia et al., 2013). In this study, the classified 

RapidEye image was converted to ASCII format and analyzed to get different patch parameters. 

According to Didham, (2001) patch metrics are valuable in characterizing fragmentation, 

consequently,  patch metrics were combined with species data for further analysis. 

3.3.3 Statistical analyses   

Poisson regression was used to investigate significant differences in species abundance between 

fragmented and intact habitats. Student t-tests were used to determine differences between intact 

and fragmented habitats in relation to elevation, patch area and soil nitrogen content. 

Relationships between patch area and soil nitrogen content and patch area and elevation were 

investigated. Elevation and patch area are considered important estimators of habitat 

heterogeneity and fragmenting landscape respectively (Kerr et al., 2001). 

3.3.3.1 Calculation of species diversity   

Species diversity was calculated from field measurements using the Shannon-Weaver diversity 

index. The analyses were performed using the R version 2.10.0 (R Development Core Team, 

2009) for field data collected from the Ulugurus. Shannon-Weaver diversity index is a measure 

of the diversity index of a species community and combines richness and evenness. It is a non-

parametric statistical parameter based on the proportion of species relative (qi) to the total 

number of species (Q) (Chao and Shen, 2003). Species diversity was calculated, taking into 



48 
 

account the number of species per family present in the forest ecosystem and was computed 

using the equation;  

 

Where: H' is the Shannon-Weaver diversity index, qi is the fraction of individuals belonging to 

the i species, Q is the total number of individual species in the sample, and S is the species 

richness (Shannon and Weaver, 1963).  Species diversity was then categorized in two groups: 

low and high values, which were converted to readable text file format with geographic co-

ordinates for processing in GARP. 

3.3.3.2 Species niche modelling using GARP  

GARP basically is an algorithm which helps in the identification of the best ecological niche for 

species occurrence or survival. The model describes ecological suitability within which species 

can sustain their population. The model utilizes point locations for species occurrence concurrent 

with environmental factors, represented as layers. In the study, tree species collected were input 

into the model. The best subset procedures using open modeller for the runs. Remote sensing 

variables were extracted based on the high resolution RapidEye satellite data and measurements 

linked to species habitat requirements. Kriging was applied to the rest of variables i.e. N, P, K, C 

then converted into ASCII format, a format accepted by GARP model. An ASTER digital 

Elevation Model (DEM) was also converted to the ASCII format. This was used to establish 

relationships between species diversity and other environmental variables including N, P, K, C, 

pH, DEM, and RapidEye satellite data. All variables used in the model were screened to test for 

highly correlated variables using the Pearson correlation tests. With values r<0.7 shows no 

H′ =  −    
qi

Q
 

S

i=1

 log  
qi

Q
                                              (Eq. 1) 
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correlation (Olson et al., 2014). A Pearson correlation test was employed to assess relationships 

between Shannon wiener index and each of the environmental parameters.  

3.3.3.3 Jack Knife tests  

Jack Knife tests were used to assess the importance of the variables used in running the model 

(Saatchi et al., 2008). This test is in-built in the GARP model which is important in testing the 

significance of each of the environmental variables used. It generates a model that estimates the 

accuracy for the entire layer set. Then for each layer, a new model is generated without that 

particular layer and the accuracy determined. All models were trained with similar points 

randomly selected from given occurrence points, and the accuracy calculated with the rest of the 

test points using 75% of the data. The area under curve (AUC) was used in assessing the level of 

significance of the curve whereby, values less than 0.5 are regarded as uninformative, between 

0.7 and 0.8 as acceptable and above 0.8 signify a good fit (Bell, 1999). 

3.3.3.4 Further model validation 

The model was further validated using the partial receiver operating curve (ROC). We integrated 

species presence data and area dependent suitability file generated as an ASCII file in GARP. 

This was then converted as a grid format and points extracted in ArcGIS 10.2. The two data sets 

were run in partial roc setup and run with a proportion of points set at 50. 

3.4 Results 

Figure 3.2 shows a thematic map obtained using ML classifier. An overall classification 

accuracy of 84% was obtained with individual accuracies for both classes being more than 80%, 
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except the producer’s accuracy for intact forest (Table 3.1). The classifications show that North 

Uluguru has relatively more intact forest than South Uluguru (Figure 3.2). 

Table 3.1: Classification accuracy measures for the thematic map 

Class name Correctly classified Misclassified Total PA (%) UA (%) 

Fragmented  

Forest 

54 2 56 96.43 83.08 

Intact forest 15 11 26 57.69 100.00 

OA (%) 84.15 

 

3.4.1 Estimating tree species abundance 

A total of 1,394 trees, comprising 55 different species categories were found in Uluguru forest 

block. The species discovery curve (Figure 3.3) shows relations between discovered and sampled 

species.  

The Syzygium cordatum Hochst.ex C.Krauss was the most dominant tree species, constituting 

18% of the total trees measured (Figure 3.4). On average, elevation for Uluguru forest was 

1,951.63 m. There was no significant difference (p ≥ 0.05) in elevation status between intact 

(1901 m) and fragmented (2056 m) habitats in Uluguru forest (t = -1.515, p = 0.134).  
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Figure 3.2: Fragmented and intact forests in the study area. 

3.4.2 Impacts of forest fragmentation on patch area and soil health 

The mean patch area was 41,108 m
2
, which varied significantly (t = 2.781, p = 0.007) between 

intact (52,665m
2
) and fragmented (17,106m

2
) habitats. There was no significant difference in 

nitrogen content between intact and fragmented forests (p=0.242). The average soil nitrogen 

level for Uluguru was 0.50 mg/g, which was relatively similar in intact (0.53) and fragmented 

(0.45) habitats.   
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3.4.3 Impacts of forest fragmentation on species abundance and soil health 

Individual species responded differently to changes in patch area, habitat status and soil nitrogen 

content (Table 3.2). The abundance of some species increased (a positive estimate value) with an 

increase in patch area while others decreased (a negative estimate value). For instance, the 

abundance of Syzygium cordatum Hochst.ex C.Krauss (p < 0.001), Allanblackia uluguruensis 

Engl (p < 0.001), and Maesa lanceolata Forssk (p < 0.001) increased significantly with an 

increase in patch area. While the abundance of Mytenus undata Thunb (p < 0.001), Zenkerella 

capparidacea (Taub.) J.Leon (p < 0.001) and Oxyanthus specious DC. (p = 0.023) decreased 

significantly. Some tree species were more abundant in intact areas than in fragmented areas, 

after adjusting for the effect of patch area and nitrogen level and vice versa. Syzygium cordatum 

Hochst.ex C.Krauss (p < 0.0001), Allanblackia uluguruensis Engl (p = 0.003), and Maesa 

lanceolata Forssk (p = 0.047) were more abundant in fragmented habitats, while Mytenus 

undata Thunb (p < 0.001), Zenkerella capparidacea (Taub.) J.Leon (p < 0.001), and Oxyanthus 

specious DC. (p = 0.008) were more abundant in intact areas (Table 3.2). Results also showed 

that soil nitrogen content varied with a change in habitat status which also influenced the 

abundance of species in both fragmented and non-fragmented areas. For instance, adjusting the 

effect of patch area and habitat status, the abundance of species intensified in some dominant tree 

species, while others decreased with higher levels of nitrogen (Table 3.2). Species populations 

also correlated inversely with changes in nitrogen. For instance, the abundance of Zenkerella 

capparidacea (Taub.) J.Leon (p<0.001) and Psychotria goetzei (K.Schum.) E.M.A was lowest 

under low nitrogen conditions (p = 0.049).   
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Figure 3.3: Species discovery curve (accumulation curve).  

3.4.4 GARP model AUC KAPPA results 

The model was run producing a high total area under curve (AUC) accuracy of 0.89, which 

signifies a good fit of the model. In further validation of the model in Partial Roc, a value of 1.27 

was generated. This is within the 1-1.5 range which is an indicator of a very good model 

prediction. The Jackknife test results generated an overall internal test accuracy of 72.31% and a 

Roc score of 0.8875 while the external test accuracy was 81.82% and a Roc score of 0.94. The 

total area under curve (AUC) was 0.89. 
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Figure 3.4. Rank-abundance curve for dominant tree species.  

3.4.5 Species diversity  

A total of 1,394 trees, comprising 55 species, were recorded. There was higher species diversity 

in Uluguru South than Uluguru North (p-value: 6.026e-05). No variables used in the model were 

highly correlated i.e. r< 0.7. Pearson correlations between the Shannon wiener index and each of 

the environmental variables showed a positive correlation between most of the variables (C: 

r=0.26, N: r=0.25, P: r=0.22, DEM: r=0.37) except K: r= -0.25. DEM, C, N, Ph, P had a 

significant influence on the model. However, the digital elevation model had the greatest effect 

on the model.   

High species diversity was dominant in intact areas located in the central region of the Uluguru 

forest (Figure 3.5A) while low species diversity was widespread in fragmented areas (Figure 
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3.5B). Areas characterized by zero values are not well placed to support high species diversity 

due to the extent of fragmentation beyond the threshold (see Figure 3.5). 

3.5 Discussion 

This study provides important findings on effects of fragmentation on species abundance in the 

Uluguru forest area based on field measurements and remotely sensed data. The relatively high 

overall accuracy (see Table 3.1) of mapping fragmented and intact forest in the study area 

provided an important basis for investigating the impact of habitat fragmentation on species 

abundance and diversity. Results show that fragmentation is intensive on the outskirts of the 

Uluguru forest (see Figure 3.3). The results are discussed in the context of how fragmentation 

affects species abundance and diversity and related conservation implications.  
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Table 3.2: Poisson regression model results for the relationship between abundance of tree species and mean patch area (ha), habitat status and 

soil nitrogen content for the dominant species in Uluguru forest area  

 

  Patch  area (ha)   Habitat Status 

 
Nitrogen level (g kg-1) 

Species Estimate±se P value   Estimate±se P value 

 

Estimate±se P value 

Syzygium cordatum Hochst.ex C.Krauss. 0.00001±0.000001 <0.001 

 

1.17±0.14 <0.001 

 

0.58±0.16 <0.001 

Mytenus undata Thunb. -0.00004±0.000007 <0.001 

 

-2.40±0.33 <0.001 

 

0.76±0.33 0.020 

Zenkerella capparidacea (Taub.) J.Leon. -0.00002±0.000006 <0.001 

 

-0.81±0.21 <0.001 

 

-1.91±0.53 <0.001 

Allanblackia uluguruensis Engl. 0.00001±0.000002 <0.001 

 

0.75±0.25 0.003 

 

0.71±0.27 0.008 

Oxyanthus specious DC. -0.00003±0.000015 0.023 

 

-2.74±1.03 0.008 

 

0.28±0.95 0.769 

Sorindeia madagascariensis Baill. -0.00004±0.000013 0.001 

 

-0.92±0.30 0.002 

 

0.74±0.43 0.086 

Maesa lanceolata Forssk. 0.00001±0.000003 <0.001 

 

0.61±0.31 0.047 

 

0.79±0.29 0.007 

Lasianthus pendicularis Jack. -0.00004±0.000013 <0.001 

 

-1.89±0.48 <0.001 

 

-0.39±0.69 0.578 

Olea eoropea (Wall ex G. Don) Cif. 0.00001±0.000003 0.008 

 

1.22±0.31 <0.001 

 

0.003±0.44 0.995 

Garcinia buchananii Bak 0.00001±0.000003 <0.001 

 

2.14±0.37 <0.001 

 

1.16±0.36 0.001 

Podocarpus uluguruensis 0.00004±0.000003 0.244 

 

1.84±0.37 <0.001 

 

0.38±0.43 0.382 

Aphloia theiformis (Vahl) Benn 0.00011±0.000003 0.002 

 

0.43±0.41 0.301 

 

-0.29±0.61 0.634 

Psychotria goetzei (K.Schum.) E.M.A. -0.00001±0.000007 0.17 

 

0.35±0.38 0.362 

 

-2.08±1.06 0.049 

Cussonia spicata Thunb 0.00003±0.000006 <0.001 

 

1.53±0.53 0.004 

 

2.08±0.36 <0.001 

Tabernaemontana pachysiphon Stapf. -0.00001±0.000011 0.235 

 

-1.91±0.74 0.010 

 

-4.48±1.91 0.019 

Macaranga kilimandscharica Pax. 0.000018±0.00001 0.066 

 

-2.32±0.76 0.002 

 

-19.21±3.94 <0.001 

Dracaena mannii Baker. 0.00002±0.000006 0.003 

 

-0.002±0.69 0.998 

 

-1.02±1.12 0.363 

Cussonia sp -0.00004±0.000033 0.217 

 

0.264±0.46 0.570 

 

-1.562±1.19 0.190 

Cyanthea manniana Hook 0.00002±0.000011 0.840 

 

-1.815±0.76 0.017 

 

-10.395±3.07 0.001 

Olea sp -0.000003±0.00002 0.170   -1.667±0.75 0.027   -2.724±1.77 0.123 
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             Figure 3.5: Probability for high (A) and low (B) species diversity. 

3.5.1 Fragmentation impacts on species abundance and soil health conditions 

Individual species responded differently to changes in patch area. Species abundance of some 

tree species declined with an increase in patch area, while others decreased. For instance, the 

abundance of Syzygium cordatum Hochst.ex C.Krauss, Allanblackia uluguruensis Engl, and 

Maesa lanceolata Forssk increased in disturbed areas compared to intact areas. These species 

prefer abundant light associated with forest fragmentation (Cunningham, 2001). Other species 

such as Mytenus undata Thunb, Zenkerella capparidacea (Taub.) J.Leon, and Oxyanthus 

specious DC were more abundant in intact habitats than fragmented areas. This suggested that 

such species are prone to forest disturbance and therefore need to be prioritized for conservation.  

More tree species were scattered with a low similarity along study plots with frequent occurrence 

of tree stumps where field assessments were conducted. A negative correlation was established 
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on the abundance of species like Oxyanthus specious which decreased with an increase in patch 

area while Mytenus undata Thunb, Zenkerella capparidacea (Taub.) J.Leon and Oxyanthus 

specious DC significantly decreased. A decrease in patch area provides an indication that a 

habitat undergoing fragmentation (McGarigal and Cushman, 2002; Wu et al., 2002; McGarigal, 

2006). It opens up other avenues for increasing edge effects caused by human settlements and 

tree logging which in turn interferes with the habitat configuration of species through increased 

exposure to soil erosion and drying up of soil moisture and erosion of nutrients (Gould, 2000; 

Burgess et al., 2007b). The findings are consistent with an ecological study by Echeverría et al., 

(2007) which established fragmentation effects on vegetation species in southern Chile. 

Fragmentation also escalates the degree of patchiness of a habitat which has an effect on an 

ecosystem’s configuration and biophysical processes  (Lovett et al., 2006; Maeda et al., 2010). 

Furthermore, species abundance varied significantly, which could be attributed to changes in soil 

in both intact and fragmented areas. The threat posed to soil is an aspect that suggests 

progressive fragmentation could intensify the susceptibility of important ecosystem soil elements 

to attrition. The level of soil nitrogen in fragmented areas was less compared to that in less 

fragmented areas. Typically, a fragmenting habitat is characterized by low nitrogen content 

(Billings and Gaydess, 2008). Changing land use play a role as they influence soil health 

properties (Davidson et al., 2004; Amazonas et al., 2011). Frequent habitat disturbances open up 

intact habitats to soil erosion, loss of organic matter and other necessary elements useful for 

vegetation growth (Guggenberger et al., 1994; Foley et al., 2005). 
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3.5.2 Impacts of fragmentation on species diversity 

Applying remote sensing variables such as the fragmentation index map, DEM and edaphic 

factors were useful in species diversity prediction. In this study, species diversity was better 

predicted using customized variables with an AUC of 0.86 when the model was tested using 

partial ROC value of 1.27. High species diversity was associated with less fragmented land use 

type, high terrain and good soil conditions not exposed to harsh environmental conditions and 

heat. This was reflected with Jackknife analysis that showed variables with the highest effect on 

the model. The soil variables and DEM influenced the model by 72%. The GARP model result 

produced an AUC of 0.89. GARP model has the advantage of predicting entire species diversity 

distribution as opposed to Maxent which only predicts the distribution of input occurrence data 

(Peterson et al., 2007). It has also been successfully used in other studies targeting regional or 

local scale predictions (Woodward and Beerling, 1997). 

High species diversity was evident in intact non-fragmented areas. Areas characterized by zero 

values were not well placed to support high species diversity due to the wide extent of 

fragmentation. Low species diversity was prevalent in fragmented areas associated with low 

values of nitrogen, carbon, potassium and phosphorus in the Uluguru North. This is attributed to 

increased anthropogenic activities in the area (Shirima et al., 2011). This further confirms a 

similar study finding which associated high species diversity with intact areas attributed to less 

human disturbances (Rashid et al., 2013). Other related studies established less species in sites 

exposed to predation (Olson et al., 2014).   

Based on the GARP algorithm, generally, Uluguru forest block has a high potential for high 

species diversity. It is possible to restore the entire region into a high species diversity site 

despite the increasing rate of external perturbations from anthropogenic activities. Ecologists 
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support the argument that disturbed ecosystems with a high diversity response have a better 

chance of restoration after disturbance, as opposed to ecosystems with low diversity (Folke et al., 

2004). If the habitat is conserved, most likely endemic and vulnerable species will be protected 

from more exposure to harsh environmental conditions (Armenteras et al., 2003; Burgess et al., 

2007b; Buermann et al., 2008; Burgess et al., 2013) and other ecological risks (Folke et al., 

2004). This could significantly contribute to low endemism and extinction rates (Şekercioğlu et 

al., 2004).  

3.5.3 Conservation implications 

Anthropogenic activity affects species occurrences and survival rates (Tilman and Lehman, 

2001; Pineda and Halffter, 2004; MacDougall et al., 2013). The site portrays a strong probability 

of high species diversity with a great ecological resilience capacity. Conservation organizations 

and decision makers need to encourage good conservation practices that will counteract loss of 

vegetation in the area. One of the challenges facing management of fragile ecosystems is 

development of socio-ecological resilience that can in principle contain dynamic landscapes 

(Daily, 2000; Fischer et al., 2004; Folke et al., 2003; Foley et al., 2005). The need for example, 

to support development of appropriate scenarios with the capacity to support sustainable 

livelihoods while conserving the habitat need to be strengthened. The other factor which may 

account for species losses is poor institutional frameworks. A previous finding indicated that 

institutions, which are lacking in Uluguru region, play a critical role in fostering community 

response to sustainable use of natural resources. Based on field observations, most communities 

are not motivated into sustainable forest conservation activities. Therefore, pursuing sustainable 

forest management while integrating local institutional frameworks can be a sound and a better 

step in strengthening governance frameworks in biodiversity conservation (Lopa et al., 2012).  
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Based on findings of this study, habitat fragmentation can be considered to be a major threat to 

conservation in the region. Findings showed that in areas of high terrain, the intensity of 

fragmentation was relatively high. This could be associated with rich biodiversity resources in 

high terrain areas in the Ulugurus (Swetnam et al., 2011). Though the abundance of species 

varied with changes in habitat status, it emerged that most dominant species were affected. It will 

be appropriate if decision makers and conservation biologists could support conservation efforts 

in the region as it still remains susceptible to increased endemism and extinction. This is due to 

the increasing population leading to clearing of the Uluguru slopes in search of greener pastures 

(Burgess et al., 2007b). Furthermore, expansion of the urban set-ups at Morogoro town and 

surrounding smaller towns facilitate easy accessibility to markets in Morogoro region which 

drive forest loss in Uluguru.  

Generally, the Eastern Arc mountains have a very conducive and reliable climate (Mumbi et al., 

2008). This is useful in establishment of agricultural systems and therefore attractive to 

subsistence farmers in Tanzania (Burgess et al., 2007a). Intensification of agricultural systems 

and settlements presents a key threat to species abundance and survival in the Ulugurus (Burgess 

et al., 2007b). Although population density is projected to intensify in the coming decades, the 

worst case scenario is expected (Fjeldså, 1999; Hall et al., 2009; Swetnam et al., 2011). Most 

likely species existence might become irreplaceable in the long-term if the trend persists 

(Rondinini et al., 2006).  

3.6 Conclusions 

The present study has yielded valuable insights regarding the ecological importance of forest 

fragmentation on the abundance and diversity of fundamental species in Tanzania. Overall, 

fragmentation presents a great challenge to species abundance and diversity in the Uluguru forest 
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block. We make important observations from the study: 1) Fragmentation is having an impact on 

species abundance under changing soil conditions, and 2) The use of Genetic Algorithm for 

Rule-Set Prediction (GARP model) and remote sensing variables are useful in discerning impacts 

of fragmentation on species diversity in the Uluguru forest block. Our study results suggest the 

need to accord priority to habitat restoration and conservation efforts in the long term plans for 

the fragmenting habitat.  
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CHAPTER FOUR 

Forest biomass prediction in fragmenting landscapes in Tanzania based on 

remote sensing data 

 

Field based measurements with forest guard and research assistants George (center), Munuo (right) 

This chapter is based on: 

Ojoyi M. M, Mutanga O., Odindi J., Abdel-Rahman E., (2014). Ecosystem disturbance: assessing 

impacts on above ground biomass and spatial structure using Rapid eye imagery. Geocarto 

international (under revision). 
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Abstract  

Estimating tropical biomass is critical for establishment of conservation inventories and 

landscape monitoring. However, monitoring biomass in a complex and dynamic environment 

using traditional methods is challenging. Recently, biomass estimates based on remotely sensed 

data and ecological variables have shown great potential. The present study explored the utility 

of remotely sensed data and topo-edaphic factors to improve biomass estimation in Tanzania. 

Twenty nine vegetation indices were calculated from RapidEye data, while topo-edaphic factors 

were taken from field measurements. Results showed that using either, topo-edaphic variables or 

vegetation indices, biomass could be predicted with an R
2
 of 0.4. A combination of topo-edaphic 

variables and vegetation indices improved the prediction accuracy to an R
2
 of 0.6. Results further 

showed a decrease in biomass estimates from 1162 ton ha
-1 

in 1980 to 285.38 ton ha
-1

 in 2012. 

The study demonstrates the value of combining remotely sensed data with topo-edaphic variables 

in biomass estimation.  

Keywords: biomass, topo-edaphic factors, heterogeneous, management, RapidEye  
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4.1 Introduction 

Tropical forests are the most extensive terrestrial global ecosystems (Lead et al., 2000). These 

ecosystems are valuable social and ecological assets as they contain large carbon storage 

capacity (Howell et al., 2006). Consequently, assessing tropical forest’s biomass quantity is vital 

in understanding their health and designing optimal sustainable management strategies (Aerts 

and Chapin III 2000; Clark and Clark 2000; Laurance et al. 1999; Mani and Parthasarathy 2007). 

Quantifying biomass is also an important requirement in effective execution of carbon credit 

markets (Con et al., 2013; Munishi and Shear 2004a; Swai et al., 2014). 

 To date, existing studies on tropical forest above ground biomass estimations have commonly 

used various environmental variables based on field measurements (Brown 2002; Brown et al. 

1991; Brown and Lugo 1992; Chave et al. 2008; Gough et al. 1994; Miguez et al. 2008; Shirima 

et al. 2011; White et al. 1991). However, such field based techniques are often time consuming, 

relatively expensive and inaccurate, especially over large spatial extents (Baskerville, 1972; 

Ketterings et al. 2001; Malimbwi et al. 1994; Nelson et al. 1999). However, the emergence of 

higher spatial and spectral resolution sensors such as Worldview, Pleades, RapidEye and 

GeoEye, offer great potential for cost effective and reliable large scale biomass estimation (Cho 

et al., 2007; Popescu, 2007; Popescu et al., 2003; Wulder et al., 2004). The RapidEye sensor for 

instance consists of strategically located bands such as the red edge which is valuable in 

vegetation mapping (Ayanu et al., 2012; Li et al., 2012; Ramoelo et al., 2012; Tapsall et al., 

2010; Vo et al. 2013). Such data could also have potential use in estimating above ground 

biomass in a heterogeneous tropical forest. 

Due to variability in topo-edaphic characteristics, studies have shown that biomass in tropical 

forests vary across landscapes (Schulp et al., 2008). Topographic factors such as elevation and 
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slope affect biomass productivity. Soil nutrients on the other hand play a vital role in regulating 

and maintaining the biophysical processes in vegetation (Aerts and Chapin III 2000; Chapin, 

1980; Fageria 2010; Marschner and Rimmington, 1988). Consequently, due to their direct roles 

in the photosynthetic process, organic carbon, nitrogen, potassium and phosphorous are 

particularly known to influence biomass production (Chapin, 1980). Furthermore, studies have 

shown that plant species have a complimentary role in edaphic resource exploitation, particularly 

in heterogeneous landscapes (Tilman, and Lehman, 2001). For instance, habitats with a relatively 

higher species diversity facilitate biomass accumulation in plants exposed to carbon dioxide and 

nitrogen (Reich et al., 2001).  

Whereas remotely sensed data have become valuable in mapping landscapes, their reliability in 

mapping tropical forest landscapes is often impeded by dynamic ecosystem characteristics and 

functioning, heterogeneous vegetation types, composition and structural complexity (Kerr and 

Ostrovsky, 2003). These factors result in complex remotely sensed variables which may not 

result in accurate tropical forest above ground biomass estimates. Integration of multiple 

vegetation indices derived from remotely sensed data; for instance, result in a huge data 

dimensionality, leading to over fitting and multi-colinearity. This may result in challenges as 

well as failure to select optimum uncorrelated variables that physically explain biomass 

variability. Researchers have advocated for statistical methods that do not encounter such kind of 

problems. Partial least squares regression (PLSR) is one of the effective statistical methods that 

can transform the spectral vegetation indices to a fewer orthogonal (perfectly uncorrelated) 

number of components (Wold, 1995) and relate those components to tropical forest biomass.  

Previous studies have demonstrated that vegetation indices generated from multispectral data are 

fairly related to forest above ground biomass e.g. (Box et al., 1989; Das and Singh, 2012; Lu, 
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2006; Van der Meer et al., 2001). However, to the best of our knowledge none of these studies 

have examined the integration of topo-edaphic and remotely sensed variables for forest above 

ground biomass prediction. In the current study, we hypothesized that complementing topo-

edaphic factors with remotely sensed variables could provide a better assessment in estimating 

above ground forest biomass in a heterogeneous tropical landscape. The present study therefore 

aimed at exploring the value of complementing topo-edaphic variables with remotely sensed 

vegetation indices in improving estimation of biomass in Morogoro region, Tanzania.  

4.2  Materials and methods  

4.2.1 Study area 

The study was conducted in Uluguru (7
o
 2' 7⁰ 16´ S and 38⁰ 0´ 38⁰ 12´ E) and Kitulanghalo (6° 

41'S and 37° 57' E) forest blocks located in Morogoro region, Tanzania (Figure 4.1). Uluguru 

forest block is located in the Eastern Arc Mountains, one of the biodiversity hotspot in the world 

(Burgess et al., 2007; Shirima et al., 2011; Swetnam et al. 2011). The area is characterized by a 

mountainous terrain and supports important ecosystem that includes the world’s endemic plant 

and animal species (Brooks et al., 2006; Burgess et al., 2007; Myers et al., 2000; Shirima et al., 

2011; Swetnam et al., 2011). The area receives approximately 1200 mm of rain per year on the 

eastern and 2900-4000 mm on the western slopes respectively. Forest cover has been lost from 

300 km
2
 in 1955 to 220 km

2 
in 2000 (Burgess, et al., 2007; Hall, 2009). This has enhanced 

endemism and extinction of rare species such as the Uluguru Bush Shrike (Burgess, et al., 2007).  

Miombo woodlands cover approximately 90% of the total forested terrestrial ecosystem in 

Tanzania and contribute to the largest carbon storage capacity (Mugasha, et al., 2013). 

Kitulangalo forest, a semi-natural Miombo woodland is located between Morogoro and Dar es 
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Salaam. The area receives approximately 1000 mm of rainfall per annum and is dominated by 

Brachystegia, Isoberlinia, and Julbernardia, Pterocarpus angolensis, Afzelia quanzesis and 

Albizia species. Miombo woodlands are well valued by communities which proliferates their 

commercialisation in adjacent urban areas (Theilade et al., 2007). Their proximity to the 

surrounding urban areas therefore enhances its susceptibility to anthropogenic influence.  
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  Figure 4.1: Location of the study area.  
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4.2.2 Biomass estimation based on field allometric equations 

Above ground biomass tree measurements were randomly collected from 115 plots each 

measuring 10 m by 10 m. Hawth’s analysis tool extension for ArcMap software was used to 

generate the random plots. Based on the  methods described by Chave et al., (2005), trees with 

more than five cm in diameter at breast height (dbh) were sampled. For this study, 2014 trees of 

different species were measured. The existing allometric model by Chave et al., 2005 was then 

used to estimate above ground biomass. The model was specifically developed for tropical 

forests in mountainous areas and therefore suits Uluguru forest and expressed as;  

                                                                              

Where:  wd is wood density, d is number of trees per unit area and ‘ht’ is height. 

In this study, an average wood density value of 0.57 was used which is a value for wood density 

in the Eastern Arc Mountains (Munishi and Shear, 2004a). With regard to biomass estimations in 

Kitulanghalo forest, an equation developed by Chamshama et al., (2004) was applied. This 

equation has been developed and used in a woodland forest ecosystem (e.g. the Kitulanghalo 

forest). The model states that above ground biomass equals 0.0625*dbh
2.553

. The total above 

ground biomass was estimated in each of the 115 plots sampled. Individual tree species numbers 

with more than five centimetres dbh were recorded in each plot.  

4.2.3  Soil analysis and topographic variables 

A total of 115 soil samples were collected from the center of the 10 m by 10 m plots. Samples 

were air dried and sieved using a 2 mm sieve, prior to analysis. Scanning of soil samples was 

conducted using the atomic absorption spectrometer to obtain soil reflectance values. The 

spectrometer was used to extract reflectance values for five elements (N, P, K, pH, and C). These 
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soil elements were further analyzed by wet chemistry analysis and the results later used to 

correlate bands with actual mineral values. Digital Elevation Model and slope were extracted 

from the freely available ASTER data.  

4.2.4  Image acquisition and pre-processing  

RapidEye satellite imagery covering the study area was acquired on 23/10/2012. The imagery 

has a five metre and five bands spatial and spectral resolutions, respectively. RapidEye bands are 

centered at blue: 440-510 nm, green: 520-590 nm, red: 630-685 nm, red edge: 690-730 nm and 

near infrared: 760-850 nm. The image was first geometrically corrected (Universal Transverse 

Mercator: UTM, zone 37 south projection) and resampled to its original pixel size using nearest-

neighbour algorithm and first-order polynomial transformation method. The nearest neighbor is a 

resampling method that assigns a value to each "corrected" pixel from the nearest "uncorrected" 

pixel. It has the capacity to preserve original values in the unaltered image scene. A root mean 

square error of less than a pixel was obtained, indicating a reliable geometric correction. 

Atmospheric correction was then applied using ATCOR module built into Earth Resources Data 

Analysis System software (ERDAS Imagine 2013) that converts the data to surface reflectance.  

4.3 Data analysis  

To co-relate forest above biomass and RapidEye data, a partial least squares regression (PLSR) 

was utilized. Generally, when a feature of interest like forest biomass is modelled using remotely 

sensed data, there are many possible correlated (co-linearity phenomenon) spectral bands or 

vegetation indices and relatively fewer field measurements (Hughes phenomenon). Therefore, 

PLSR creates a small number of orthogonal components (tolerate co-linearity problem) from the 

predictor variables (X) that are also related to the response (Y) variable and therefore reduces the 

http://www.blackbridge.com/rapideye/rededge.html
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dimensionality of the “X” variables (Wold, 1995). PLSR then extracts the components which 

serve as new predictors and relates them to the response variable (Huang et al., 2004; Abdi, 

2007). The PLS components creation process utilizes the principles of principal component 

anaysis and a multiple linear regression step and utilizes the components to predict “Y” (Wold, 

1995). However, PLSR model can poorly perform if a high number of components are included 

in the model (Mevik and Wehrens, 2007). Therefore, in the present study, the optimal number of 

components was selected using a leave-one-cross validation method. A number of components 

that resulted in the first minimum root mean square error (RMSE) were selected. Eight variables 

(NPK, C, pH, DEM, slope) were employed to estimate forest above ground biomass using PLSR. 

The use of twenty nine spectral vegetation indices (Table 4.1) in estimating of above ground 

biomass in the study area was also tested. The indices are sensitive to chlorophyll and moisture 

content. Additionally, edaphic and topographic factors were integrated with the rest of the twenty 

nine spectral vegetation indices to estimate above ground forest biomass. The ASTER DEM is a 

highly accurate DEM covering all the land on earth. It is available to users in different locations 

and displays a bird’s-eye-view map which enables users perform advanced analysis of choice 

across diverse fields.  
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Table 4.1: Spectral vegetation indices used in the study 

INDEX NAME FORMULA REFERENCE 

NDVI 

Normalized difference vegetation 

Index 

     −    
         ⁄  

(Tucker, 1979) 

SR Simple ratio         ⁄  (Birth and McVey, 1968) 

EVI Enhanced vegetation Index 

         −               −   
         

                            
 (Huete et al., 1997) 

NDVIred edge NDVI red edge index 

     −           
                ⁄  

 SR red edge 

 

             ⁄  

 Red/ Green Red to green ratio (               (Gamon and Surfus, 1999) 

Red edge / Green Red edge to green ratio (                    

 

CI Red edge chlorophyll index 

    

    −     
−   

(Gitelson et al., 2005) 

SAVI Soil Adjusted vegetation index (1+L)(     −                   (Huete, 1988) 

Sqrt SR Square root of simple ratio 
 
    

    
   

(Tucker, 1979) 

SgRSRred edge 

 

 
    

         
   

 

MSR Modified simple ratio 

 
    
    

−   

 
    
    

    
 

(Chen and Cihlar, 1996)
 

NDVIgreen Green NDVI index (     −                       (Gitelson et al., 1996) 

GDI Green difference index                 (Vescovo and Gianelle, 2008) 

GRDI Green red difference index (       −                     (Vescovo and Gianelle, 2008) 

VI Vegetation Index     −       (Tucker, 1979) 

NLI Non-linear vegetation index (      −                (Goel and Qin, 1994) 

RDVI 

Re-normalized difference 

vegetation index 
    −                    

(Roujean and Breon, 1995) 
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      ,     , and      are surface reflectance values at green (Band 2), red (band 3), NIR (band 4), and red edge (band 5) of RapidEye. 

For SAVI, the slope of the soil line (L) = 0.05, while for GDVI,       
 

 

MNLI 

Modified non-linear vegetation 

index 

      −            

               
 

(Gong et al., 2003; Viña et al., 

2011) 

SR*NDVI SR*NDVI 
(      −                     (Gong, et al., 2003; Viña et al., 

2011) 

SRred edge * NDVIred 

edge  

 

 

SAV*SR SAVI*SR 

(       −                     
        

(Gong et al., 2003; Viña et al., 

2011) 

WDRI 

wide-dynamic range vegetation 

index 

       −    
           ⁄  

(Gitelson, 2004) 

CIGreen Green chlorophyll index 

    

      
−   

(Gitelson, 2004) 

MTCI 

MERIS Terrestrial chlorophyll 

Index 

    −     −           

         −     
 

(Dash and Curran, 2004) 

NIR/G Near infrared to green ratio index (              (Almeida and Filho, 2004) 

GDVI^n Generalized Difference VI                  

 

( n
nir -  n

r)/ ( n
nir +  n

r) 

 (Wu, 2014) 

GDVIred edge^n 
Generalized Difference VI red 

edge 

( n
nir -  n

red edge)/ ( n
nir +  n

red edge) 

 

 

EVI2 Enhanced vegetation index 2 

        −    
              ⁄  

 (Jiang et al., 2008) 
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4.4     Results 

4.4.1 Species and trends in above ground forest biomass contribution 

The overall mean and standard deviation of the above ground biomass data used in the present 

study were 3.30 and 5.78 ton ha-1, respectively. Dominant species recorded in each plot were 

recorded. Table (4.2) shows the means and standard deviations of the dominant tree species in 

the study area. Tree species which contributed the highest biomass estimates in Uluguru forest 

were Zenkerella capparidacea (Taub.) J.Leon, Syzygium cordatum Hochst.ex C.Krauss, and 

Allanblackia uluguruensis Engl. While, Sterculia quinqueloba (Garcke) K. Schum, Lannea 

schimperi (Hochst. Ex A. Rich) Egl. Tamarindus indica L., Turraea robusta Gürke, Acacia 

mellifera (Vahl.) Benth, Brachystegia boehmii Taub and Brachystegia microphylla Harms 

contributed the most in Kitulanghalo forest block.  
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Table 4.2: Mean and standard deviation of biomass (ton ha
-1

) for the dominant tree species 

Species Mean Standard deviation 

Zenkerella capparidacea (Taub.) J.Leon. 0.42 0.96 

 

Syzygium cordatum Hochst.ex C.Krauss. 0.27 0.616 

 

Allanblackia uluguruensis Engl. 

 

1.37 

 

4.07 

 

Combretum sp 0.06 

 

0.07 

Julbernardia globiflora (Benth.) Troupin  

 

0.19 

 

0.23 

 

Lannea schimperi (Hochst. Ex A. Rich) Egl. 

 

0.55 

 

0.77 

 

Pterocarpus tinctorius Welw. 

 

0.15 

 

0.71 

 

Sterculia quinqueloba (Garcke) K. Schum 

 

2.88 

 

2.73 

 

Tamarindus indica L. 1.33 

 

0.68 

 

Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Sousa 

 

0.56 

 

0.10 
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4.4.2  PLS predictive models 

Table (4.3) shows results of PLSR analysis. All models resulted in selection of two components. 

When only eight topo-edaphic variables were used, that is (DEM, slope, Shannon, N, P, K, ph, 

C), the PLSR model showed only 44% of the variability in the above ground forest biomass. 

Approximately similar amount of variation (43%) was explained using 29 vegetation indices. On 

the other hand, a PLSR model with a total of 29 vegetation indices and the 8 topo-edaphic factors 

explained 60% of the above ground forest biomass variability. Figure (4.3) highlights the 

influence of each vegetation index or topo-edaphic factor on PLSR models. Generally, N, P and 

C contributed the most on the model components while SAVI, MSR, and GDI were the most 

influential indices in both models. After integrating topo-edaphic factors together with vegetation 

indices in the estimation of above ground biomass, their influence on the components of the 

model was relatively higher than most of the vegetation indices (Figure 4.3c).  

Relatively high RMSE values were obtained for all models. The performance of PLSR models is 

presented in Figure (4.4). Results demonstrated that when remotely sensed data were utilized, 

biomass values of less than 2 ton ha
-1

 were accurately estimated as the slope of the relationship 

between the measured and predicted biomass values of more than 2 ton ha
-1

 was deviated from 

the expected one-to-one line. The inclusion of topo-edaphic factors in remote sensing-based 

model improved the predictability of above ground forest biomass by reducing the RMSE by 

approximately 20% (Figure 4.4c).  
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Table 4.3: Coefficient of determination intercepts and number of components of the PLSR 

models for estimating forest above ground biomass. See Figure 4.3 for the PLSR regression 

coefficients.  

Variables  Number of components Intercept R
2
 

8 topo-edaphic factors 2 0.384 0.44 

29 vegetation indices 2 -0.504 0.43 

29 vegetation indices + 8 

topo-edaphic factors 

2 6.721 0.6 
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Figure 4.3: PLSR coefficients (loadings) for the variables used in the present study. (A): topo-

edaphic factors, (B): vegetation indices, and (C): vegetation indices and topo-edaphic factors.  
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Figure 4.4: One-to-one relationship between measured and predicted above ground biomass for 

the sample data set using leave-one-out cross validation model. (A): Using eight topo-edaphic 

factors, (B) using 29 vegetation indices, and (C) using 29 vegetation indices plus the eight topo-

edaphic factors based on 115 samples. 
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4.5 Discussions 

The study presents an important finding on the vital role played by topo-edaphic factors in 

biomass estimation. Overall, the results revealed that a combination of edaphic factors and 29 

vegetation indices relatively reduced biomass prediction error by approximately 20%, with an 

underestimation of biomass above 4 ton ha
-1

.  

4.5.1 Use of vegetation indices on above ground biomass estimation 

The present study indicated that SAVI, MSR, and GDI were the most influential variables in 

biomass estimation (highest PLS loadings in Figure 4.3). The effect of MSR and GDI can be 

attributed to their sensitivity to chlorophyll content which is directly related to biomass 

productivity (Loris and Damiano, 2006;Xue and Yang, 2009). The value of SAVI on biomass 

estimation, on the other hand, confirms a previous finding that shows Uluguru forest is subjected 

to fragmentation (Hall et al., 2009; Kacholi, 2014). Therefore, the effect of soil background on 

the remotely sensed variables was reduced by the advent of SAVI (Huete, 1988). All topo-

edaphic factors had relatively higher PLSR loadings (Figure 4.3b). This confirms the importance 

of these factors in above ground biomass estimation.  

Possible reasons for the high error values when biomass was modelled using only vegetation 

indices could be due to the relatively coarser spatial resolution (5 m x 5 m) of the RapidEye 

sensor. Since the study area is a heterogeneous landscape, within (5 m x 5 m), a mixture of tree 

species may exist. In combination with ground truth data, higher resolution remotely sensed data 

could help resolve effects of structural variability at finer and complex vegetation structures 

(Houghton et al., 2001). The low biomass prediction accuracy could also be due to the saturation 

problem that results when data from broader spectral resolution sensors like RapidEye are used 
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to estimate biomass of densely vegetated sites (Adam et al., 2014; Avitabile et al., 2012; Lu and 

Batistella, 2005; Powell et al., 2010). This is supported by the deviation of the regression model 

slope from one-to-one relation at higher biomass values in Figure (4.4B). We suggest that future 

biomass estimation studies should adopt finer resolution satellite imagery such as WorldView-2, 

WorldView-3 and Sentinel-2 sensors. Such sensors contain the red edge band which has been 

proven to be less sensitive to high biomass saturation problem (Mutanga and Skidmore, 2004). 

Another possible reason of high error in biomass estimates using vegetation indices is that only 

trees of more than five centimeter in diameter were measured while remotely sensed data 

integrated spectral features of all the trees in the study site. Moreover, our study used a snapshot 

of specific variables in the study area. Since above ground forest biomass is a result of a 

cumulative effect of biotic and abiotic variables on tree growth and development (Chuine and 

Beaubien, 2001; Duchesneau et al., 2001; Thomas et al., 2002; Utkhede and Smith, 1993; 

Vollenweider and Günthardt-Goerg, 2005), the use of multi-temporal data sets would capture the 

variation in above ground biomass more accurately.     

Results of the present study showed that variance in above ground biomass data were relatively 

high. This may have affected RMSE values since they were calculated from mean deviations. 

Furthermore, other studies note that vegetation indices calculated from broadband spectral data 

tend to saturate at high biomass level (Gao et al., 2000). To overcome this problem, Mutanga and 

Skidmore (2004) recommended the use of narrow-band vegetation indices for estimating above 

ground biomass in densely vegetated areas. Narrow-band vegetation indices are commonly 

calculated from hyperspectral data which are costly and not readily available. Improved spatial 

resolution in concert with edaphic and topographic factors could therefore significantly improve 
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the accuracy of biomass estimation in heterogeneous landscapes like the Uluguru and 

Kitulanghalo forests in Tanzania.   

4.5.2 Effects of edaphic factors on above ground biomass estimation 

This study contributes to an important element that integrates both remotely sensed data and 

topo-edaphic factors in forest above ground biomass estimation. As aforementioned, to the best 

of our knowledge, previous studies that employed remote sensing techniques did not incorporate 

topo-edaphic factors in biomass estimation. In Uluguru region, previous studies have only 

applied field allometric equations in estimating above ground biomass (Mugasha et al., 2013; 

Munishi et al., 2010; Munishi and Shear, 2004b; Swai et al., 2014).  

Results in the present study indicate the value of topo-edaphic variables in above ground forest 

biomass estimation in a heterogeneous forest landscape. This is shown by an improved R
2
 value 

from 0.43 to 0.6. Edaphic factors (NP and C) and topographic factors account for a significant 

contribution in the PLS loadings and hence in estimating above ground biomass estimation 

(Figure 4.3a and 4.3c). This finding is congruent with other study findings which show the effect 

of topo-edaphic factors on above ground biomass productivity (Colgan et al., 2012). However, K 

either contributed the least or negatively influenced biomass estimation; consequently, the role of 

K in Morogoro forests requires further investigation. 

Elevation also influenced biomass prediction accuracy (Figure 4.3c). This finding is consistent 

with other study findings which note that variation in topography and slope in heterogeneous 

landscapes influences vegetation productivity (Brown et al., 1991; Brown et al., 1999). 

Furthermore, related studies in the region indicate how variation in topography affected the 
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complexity and composition of vegetation in the region (Burgess et al., 2007, Shirima et al., 

2011).  

4.5.3  Comparing biomass estimates with previous studies  

Total above ground biomass obtained in the Uluguru forest was relatively lower than biomass 

obtained from previous studies. For instance, in the present study a total of 285.38 ton ha
-1 

biomass was obtained for Uluguru forest. This differed considerably from the total biomass 

estimated in previous studies. Munishi and Shear (2004b), recorded a total of 648 ton ha
-1

, while 

Hall (1980) estimated a value of 1162 ton ha
-1

. This can be explained by a recent finding in the 

region (Ojoyi et al. 2014, under revision) which showed an increasing fragmentation trend 

pattern in the Uluguru montane ecosystem. In Kitulanghalo, the current study obtained a total of 

94.3 ton ha
-1

, while Shirima, et al., (2011) recorded 76.6 ton ha
-1 

in total. Above ground biomass 

in Kitulanghalo was also estimated in 2010 at a total value of 38.24 ton ha
-1

 (Munishi et al. 

2010), in 2004 at 29 ton ha
-1

 (Chamshama et al., 2004) and in 1994 at a value of 12.90 ton ha
-1 

(Malimbwi et al., 1994). Tropical montane forests like Uluguru are often more fertile and hence 

increased biomass productivity than woodland (Kitulanghalo) ecosystems. Furthermore, 

chemical properties of soil in disturbed habitats would be less productive, hence, low biomass 

than soil found in intact forest environments (Laurance et al., 1999).  

The average above ground biomass for Kitulanghalo forest was 14.57 ton ha
-1

, which was 

relatively higher than the estimated 12.90 ton ha
-1

 attained by Malimbwi et al. (1994). This could 

be attributed to regenerating trees and an increase in the productivity rate particularly in high 

productive sites in Kitulanghalo forest (Chamshama et al., 2004). However, former studies 

attained 38.4 ton ha
-1

 average above ground biomass in Miombo forest ecosystem in Longisonte 
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forest reserve and Zelezeta village forest reserve, in Southern highlands of Tanzania (Munishi et 

al., 2010).  

The approach used in estimating above ground biomass may have contributed to variation in the 

results obtained. For instance, Shirima et al., (2011) targeted woodlands with a closed canopy 

and less disturbance. Other studies considered dbh only, while others considered both dbh and 

height (Mugasha et al., 2013). Malimbwi et al., (1994), applied tree measurements of more than 

ten cm in diameter; while Chamshama et al., (2004) included all tree stems and branches. In this 

study, the model developed by Chamshama et al., (2004) was utilized. Measurements were taken 

from trees of more than five centimeters in diameter.  

4.5.4  Management implications  

Uluguru montane forest is a global carbon storage block (Burgess et al., 2007; Shirima et al., 

2011; Swetnam et al., 2011). Despite the global significance, decline in productivity is expected 

to continue in the next decades due to expansion of farmlands and urban sprawl (Burgess et al., 

2007; Lopa et al., 2012; Yanda and Shishira 1999). In addition, deforestation is considered a 

serious threat in the region. Deforestation contributes to habitat loss in the tropics with more than 

50% global rates in Africa; at an annual rate of more than 10 million hectares (Lead et al., 2000).  

Reinforcement of conservation efforts in Tanzania is a pre-requisite in counteracting future 

anthropogenic threats (Meehl et al., 2007; Mertz et al., 2009; Paavola, 2008; Sokona and Denton 

2001). The paper recommends the need for conservation and management programmes to 

formulate strategies that would safeguard forest remnants from further human destruction. It will 

be useful if policy agenda took into consideration the need for regular monitoring and 

management efforts of biomass production since biomass accumulation is expected to vary 

regularly due to ecosystem changes attributed to anthropogenic influence and climate change 
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(Swai et al., 2014). Regular biomass estimation studies are considered as a pre-requisite in 

effective quantification of carbon stocks and fluxes (Ketterings et al., 2001). It is envisaged that 

the current results provide information on the current biomass status but also inform decision 

makers on the need to conduct regular conservation monitoring frameworks in Morogoro region.  

4.6    Conclusions 

The use of remote sensing data in concert with field based measurements significantly improved the 

accuracy of biomass estimation in the heterogeneous landscapes. The study has shown the vital role 

played by topo-edaphic factors in complementing remotely sensed variables towards above 

ground estimation in a heterogeneous landscape. A combination of edaphic factors and 29 

vegetation indices relatively increased biomass predictions by 20%. However, the error of 

estimates was relatively high and this could be attributed to saturation problems.  

Biomass prediction using remotely sensed variables and topo-edaphic factors is a technique 

which has not been applied in heterogeneous landscapes in Africa. Though the results are limited 

by the saturation challenge, the overall result obtained is reliable and sound. Therefore, 

improving the resolution of the input data can greatly improve results and enhance reliability of 

the estimates. 

The paper further augments recommendations by previous studies that emphasize the need for 

reliable advanced technology such as remote sensing to predict biomass. Such studies contribute 

to monitoring programmes critical for supporting climate change mitigation and biodiversity 

conservation. 
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CHAPTER FIVE 

Bridging science and policy: an assessment of ecosystem vulnerability and 

management scenarios in Tanzania 

 

 Small scale farming in Uluguru montane ecosystem 

This chapter is based: 

Ojoyi M. M, Mutanga O., Odindi J., Antwi-Agyei P., Abdel-Rahman E., (2014). Managing 

fragile landscapes: empirical insights from Tanzania. Journal of Nature Conservation (under 

review). 

Presented at Humboldt Foundation conference in Pietermaritzburg on the 30-9-2014 
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Abstract 

Ecosystems in sub-Saharan Africa remain highly vulnerable to external perturbations. An in-

depth understanding of the socio-ecological mechanisms provides an important platform for 

effective management of vulnerable ecosystems. Using remotely sensed data and empirical data 

from 335 households, a model was developed to understand how different ecological and socio-

economic factors influenced ecosystem vulnerability in the region. Remotely sensed data 

indicated negative patterns of change in ecosystem health. The multiple logistic regression 

analysis showed habitat fragmentation and forest burning as key threats (p≤0.05). From a social 

point of view, low income level (54.62%) and limited knowledge on environmental conservation 

(18.51%) are considered as major catalysts enhancing ecosystem vulnerability. Statistical results 

showed livelihood diversification (45.1%), effective institutional frameworks (30.7%) and 

afforestation programmes (24.2%) as key intervention measures. The methodology and policy 

reflections emerging from this research have a wider applicability in managing vulnerable 

landscapes. 

Keywords: ecosystems, vulnerability, planning, management, Tanzania  
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5.1 Introduction 

Many factors play a vital role towards increased ecosystem vulnerability. Human related aspects 

such as population growth are critical socio-economic factors altering planning and management 

of ecosystems (Giliba et al., 2011). Furthermore, ecological threats such as habitat fragmentation 

and fires are considered major threats to conservation planning and management of most 

ecosystems (Achard et al., 2002; Benítez‐Malvido and Martínez‐Ramos, 2003; Burgess et al., 

2007b; DeFries et al., 2002; Echeverría et al., 2007; Fahrig, 2003; Fischer and Lindenmayer, 

2006; Hobbs et al., 2008; Murcia, 1995). The process of habitat fragmentation is known to be a 

significant threat to ecological functioning, biodiversity conservation and proximate threats to 

ecosystems respectively (MacDougall et al., 2013).  

A comprehensive assessment of ecosystem vulnerability is a pre-requisite in determining the 

relative effectiveness of conservation and management efforts (Wilson et al., 2005). Mapping 

ecosystem vulnerability is particularly useful in monitoring trends and predicting likely future 

impacts (Antwi-Agyei et al., 2012). To date, very few studies have taken into account the 

vulnerability status of fragile ecosystems and potential threats (Chapin III et al., 2004, Folke et 

al., 2003). A review by Giliba et al., (2011) highlights challenges associated with incorporating 

vulnerability into conservation planning and management due to the lack of effective 

vulnerability frameworks. Ecosystem vulnerability is a highly contested term. Commonly, it is 

used to describe a state of susceptibility to stress or harm and revolves around aspects of change 

or disaster occurrences (Adger, 2006). It is often an indication of a lack of adaptive capacity of 

any given ecosystem to recover from shock or stress imposed by humans or the external 

environment (Füssel and Klein, 2006). An ecosystem is considered vulnerable when it displays a 

high level of sensitivity to change in structure and functioning. The vulnerability concept 
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consists of the socio-economic, physical, infrastructural, political and environmental dimensions 

(Fraser et al., 2003; Adrianto and Matsuda, 2002) and denotes changes in the socio-ecological 

systems (Holling and Gunderson, 2002). Vulnerability has been linked directly to sensitivity to 

change, exposure level and coping capacity (Kasperson et al., 2005; Gallopín 2006). Differences 

in vulnerability may be driven by the geographic position, economic structure, access to human, 

social, natural and financial capitals (Antwi-Agyei et al., 2013). Vulnerability is broadly used in 

different fields including climate studies (Antwi-Agyei et al., 2012) and the social system 

(Adger, 2006). 

Diverse system variables portray a system’s capacity to develop resilience, thresholds, feedback 

loops and disturbance regimes (Walker and Salt, 2006). This has an important bearing on the 

maintenance of ecosystems along a desirable development trajectory (Gunderson, 2000, Walker 

and Salt, 2006). While any single element of the global sphere could be supported by mutually 

reinforcing feedbacks, the verge can change its course into other spheres with diverse reactions 

and impacts (Folke et al., 2004). If a set threshold is reached, it is expected that alterations in 

feedbacks make it almost impossible to return to its original state (Carpenter et al., 2001). The 

dynamic nature of most ecosystems (Tabarelli and Gascon, 2005) coupled with other biophysical 

and socio-economic factors, enhances the degree of vulnerability (Adger, 2006; Simelton et al., 

2009). Therefore, appropriate conservation measures targeting reinstatement of affected areas 

need to first develop vulnerability frameworks necessary in monitoring and restoration efforts 

(Walker and Salt, 2006). In addition, incorporating regional and local stakeholders in the 

development of policies that advocate for collective social responsibility can support long term 

management of fragile and vulnerable landscapes (Daily, 2000). For instance, putting into place 

effective governance frameworks and institutional settings can foster long term biodiversity 
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conservation and management efforts (Paavola et al., 2009). The demand for up to date 

knowledge on ecological and social factors is vital for policy makers and resource managers in 

formulating appropriate management interventions (Dolisca et al., 2006).  

Natural ecosystems in sub-Saharan African face undesirable and rapid stresses due to the 

increasing external perturbations (Dixon et al., 2003; Fa et al., 2005; Lavorel et al., 2007; 

Rouget et al., 2003). In particular, ecosystems in Morogoro region, Tanzania are characterized 

by past threats and high dependency level increasing their sensitivity and exposure level to 

human encroachment that compromises their capacity to perform important functions (Burgess et 

al., 2007a; Hall et al., 2009; Newmark, 2002; Tabor et al., 2010). It is expected that if impacts 

associated with increased ecosystem vulnerability are not addressed, then most likely, adverse 

impacts will translate into loss of habitats and negative effects on important ecosystem functions. 

Although the decentralization policy in Tanzania has led to an increase in the local communities’ 

knowledge by shifting planning to local governmental authorities, the system still suffers from 

limited accessibility to important information on appropriate landscape management (Sanga et 

al., 2013). A knowledge gap, and best ways of bridging science and policy can hinder effective 

management interventions (Giliba et al., 2011). Therefore, we argue that governance structures 

need to promote interventions that contribute towards an increase in the vulnerability of 

ecosystems. This however requires widespread vulnerability assessments, potential threats and 

feedback mechanisms (Adger, 2006; Holling and Gunderson, 2002). Such information can be 

acquired from up to date geographic and region specific data (Adger, 2006), such as that 

provided in this paper.  

Consequently, the overarching goal of this paper is to apply a combination of social and 

ecological indicators to assess vulnerability of ecosystems and management interventions in 



92 
 

biodiversity hotspots in Morogoro region, Tanzania. In doing that, this paper contributes to the 

on-going debate on development of successful vulnerability frameworks needed for effective 

conservation and management interventions particularly in complex and dynamic environments 

with inadequate geographic data (Walker and Salt, 2006). We apply a combination of time series 

satellite imagery and empirical data from 335 households as a reference point in formulation of 

policy recommendations for habitat management of fragile landscapes. A model was developed 

to understand how different factors influenced ecosystem vulnerability in the region. A lack of 

region specific policy and management guidelines is one of the leading factors constraining 

conservation and management efforts, particularly in sub-Saharan Africa, where there are 

multiple drivers of change (Dolisca et al., 2006; Giliba et al., 2011). This paper attempts to 

contribute to unresolved management issues and knowledge generation aspects by providing 

guidance as leverage points for resource planners and managers in enactment of policy 

guidelines towards long term management of vulnerable landscapes.  

5.2 Materials and methods 

5.2.1 Study area 

The Morogoro region is one of the twenty main regions in Tanzania. It lies between 558’ and 

1000’ South and 3525’ and 3830’ East (Figure 5.1). The oceanic climate of the region 

translates into a bimodal rainfall distribution characterized by two rainfall peaks per year with a 

dry spell separating the short rains (October–December) from the long rains (March–May) 

(Kacholi, 2014). Rainfall exceeds 1000 mm per annum in high altitudes of the Eastern slopes of 

the Uluguru Mountains and decreases in a gradient to 600 mm per annum in the low altitude 

plains. The area receives an average rainfall between 800-1000 mm per year. Moderate 



93 
 

temperatures of around 25
o
C are experienced throughout the year. August is the coldest month 

(average of 18 ºC) while the hottest is February (32 ºC). 

Natural ecosystems in Morogoro region have been subjected to forest fragmentation over the 

years (Burgess et al., 2002; Burgess et al., 2001; Hall, 2009; Luoga et al., 2000b; Yanda and 

Shishira, 1999). Between 1955 and 2000 for instance, Burgess et al. (2007b) note that natural 

forest cover decreased from 300 km
2
 to 220 km

2
 and the rate of endemism and extinctions 

increased. This is attributed to an increase in the settlements and farming activities in the region. 

Morogoro region is made up of five districts, namely; Morogoro rural, Morogoro urban, Ulanga, 

Kilombero and Kilosa districts (Figure 5.1). The Morogoro region has an estimated total 

population of 2,218,492 and 157 villages (United Republic of Tanzania, 2013). The study was 

implemented across 11 villages randomly selected in Nguru, Kitulangalo and Uluguru forest 

ecosystems (sampled across four districts namely: Kilosa, Mvomero, Morogoro urban and 

Morogoro rural).  
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Figure 5.1: Location of the five districts within Morogoro region, Tanzania. 
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5.2.2 Field data collection  

5.2.2.1 Assessing indicators of vulnerability based on spatial mapping  

Regions considered ecologically vulnerable to changes in total habitat coverage were assessed 

using satellite imagery. Landsat TM (30/09/1995) and Landsat ETM+ (20/07/2012) were 

utilized. Supervised image classification using the maximum likelihood classifier, the most 

popular parametric classification technique was adopted (Liu et al., 2002; Manandhar et al., 

2009; Tseng et al., 2008). It is based on the Bayes theorem that utilizes a discriminant function 

which assigns pixel values to the category with the highest likelihood (Aldrich, 1997; Dean and 

Smith, 2003; Ince, 1987). The images were classified into natural intact forest cover and 

developed areas. A total of 82 field ground data points were used to validate the classified 2012 

image. Change difference in forest cover between the 2012 and 1995 were conducted using the 

land change modeler.  

5.2.2.2  Social data sampling strategy 

Household data was collected between July and October 2012 from 335 households randomly 

sampled from 11 villages. The villages included Kitulangalo (8.3%), Mikese (9.9%), Ruvuma 

(8.2%), Mbete (9.8%), Tangeni (8.8%), Mafuta (9.9%), Ubiri (9.3%), Tulo (8.8%), Chanzema 

(9.3%), Kwelikwiji (9.7%), and Choma (8%). To facilitate relevance of responses to the research 

questions, only villages adjacent to the natural cover sites were sampled. Interviews were 

administered by the primary investigator and three trained research assistants. All interviews 

were administered in Swahili, the widely spoken national language in Tanzania. Interviews 

investigated information on household socioeconomic characteristics, on-going development 
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activities in the region, perceptions on changes to forest cover in the past 20 years, and 

appropriate strategies for managing fragile landscapes.  

5.2.2.3 Secondary data 

Secondary data was collected from local government extension officers and leaders across 

districts within Morogoro region.  

5.3 Data analysis 

A multiple logistic regression model was used to investigate factors associated with ecosystem 

vulnerability. These were classified into three groups: (i) Household socioeconomic 

characteristics (such as age, gender, education); (ii) Economic development activities (farming, 

charcoal production, timber sawing, firewood collection, settlement, infrastructure development); 

and (iii) Perception regarding change in forest cover (i.e. whether there is a decrease in size of 

forest cover). The following model was developed to understand how different factors influenced 

ecosystem vulnerability in the Morogoro region. 

             

                                             

                                                

Variables with a strong relationship (p<0.1) on univariate (used here to mean a single covariate) 

analyses were included in a backwards, stepwise regression model and rejected at the p ≥ 0.05 

level based on likelihood ratio tests. Selection of variables was based on literature and expert 

knowledge. One-Way ANOVA analysis was used for testing significant differences associated 
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with driving forces and management interventions. Duncan post-hoc tests were used to assess 

significant differences (p≤ 0.05) within and between group means.  

 5.4 Results 

5.4.1 Forest cover change - an indicator of ecosystem vulnerability  

Based on the logistic regression results, a decrease in forest size and burning were considered as 

key driving forces towards an increase in ecosystem vulnerability (p-values < 0.0001 and 0.021, 

respectively, Table 5.2). An expansion in development is a major contributing factor to 

ecosystem dynamics across the region (Figure 5.2a and 5.2b).  

 

 

               Figure 5.2a: Patterns of change in natural cover.  
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Figure 5.2b: Change analysis (1995-2012) with forest patches (green) and developed areas 

(grey).  

5.4.2 Ecosystem vulnerability as perceived by respondents 

The proportion of respondents was similar among females (32.6%) and males (33.0%; with no 

significant difference (p ≥ 0.05). Approximately 32.8% (95% CI: 27.8-38.1%) of respondents 

indicated the high extent of ecosystem vulnerability. Vulnerability of ecosystems in Morogoro 

region significantly varied across villages (p ≤ 0.05). The greatest vulnerability was significant 
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among respondents in Mbete, Mafuta, Ubiri and Kwelikwiji villages compared to the rest of the 

other villages (Table 5.2). 

Table 5.2: A logistic regression model showing ecosystem vulnerability  

Variable Odds ratio 95% CI P-value 

Villages  

    

 

Kitulangalo        1             _            _ 

 

Mikese 0.514 0.19-1.37 0.183 

 

Ruvuma 0.852 0.15-4.97 0.859 

 

Mbete 0.238 0.06-1.00 0.049 

 

Tangeni 0.700 0.12-3.99 0.688 

 

Mafuta 0.191 0.06-0.60 0.005 

 

Ubiri 0.129 0.03-0.57 0.007 

 

Tulo 0.402 0.09-1.78 0.230 

 

Chanzema 1.411 0.44-4.53 0.563 

 

Kwelikwiji 0.289 0.10-0.84 0.023 

 

Choma 0.302 0.03-3.41 0.333 

Forest size decrease  8.117 3.89-16.92 0.001 

Forest burning  0.330 0.13-0.85 0.021 

 

5.4.3 Socio-economic factors influencing ecosystem vulnerability  

In total, 335 respondents were interviewed across 11 villages with approximately 39.4% females 

and 60.6% males; aged above 18 years. Majority (48.96%) of the respondents were in the middle 
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age group between 35-55 years. Approximately 16.7% of the participants did not have any form 

of formal education, 76.7% had primary education and 6.57% had secondary education. All 

respondents reported farming as the most highly practiced economic activity. Main activities 

associated with forest loss included charcoal production (35.4%), farming (26.8%), timber 

sawing (17.0%), forest burning (13.4%) and settlement (5.5%). Driving forces leading to habitat 

loss and fragmentation included poor income (54.62%) and lack of capacity building on 

conservation (18.51%). Duncan post-hoc test showed statistical significance within and between 

group differences across the different villages (Figure 5.3). Tangeni and Ubiri village 

respondents seem to be more knowledgeable on major drivers of change compared to the rest of 

the villages. 
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Figure 5.3: Mean percent respondents in each village who perceived poor income and lack of 

capacity building on conservation as driving forces to habitat loss. Bars with similar letters are 

not significantly different (p≤0.05) based on Duncan post hoc tests.  

5.4.4 Management interventions 

Respondents prioritized livelihood diversification (45.1%) as essential in effective management 

of vulnerable ecosystems in Morogoro region. Effective institutional frameworks (30.7%) and 

afforestation programmes (24.2%) emerged as useful intervention measures. Furthermore, one 

way ANOVA test indicated a high level of significance (p<0.005; F=5.7) at a 5% level of 

significance for the mean between villages, and management intervention measures. Duncan 

post-hoc test results showed statistical significance within and between group differences across 

different villages (Figure 5.4). Mikese and Ubiri villages had the highest appreciation concerning 
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the need to integrate livelihood diversification and effective institutional frameworks as key 

intervention strategies. 

 

 

 

Figure 5.4: Mean percent respondents in each village who appreciate livelihood diversification, 

institutional frameworks and afforestation programmes as useful intervention measures. Bars 

with similar letters are not significantly different (p≤0.05) based on Duncan post hoc tests  

 

5.4.5 Population trend statistics in the region 

Statistics obtained from secondary data show an increasing population trend in the region (Table 

5.3). 
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Table 5.3: Population trends in Morogoro region  

 

District 

 

1967 

 

1988 

 

2002 

 

2013 

Morogoro Urban 24,999 117 601 227 921 315 866 

Morogoro rural 291 373 430 202 263 012 286 248 

Mvomero * * 259 347 312 109 

Kilosa 193 810 346 526 488 191 631 186 

Kilombero 74 222 187 593 321 611 407 880 

Ulanga 100 700 138 642 193 280 265 203 

Total in Morogoro   685 104 1 220 564 1 753 362 2 218 492 

* Represents missing data 

Source: United Republic of Tanzania (1997; 2013) 

5.5 Discussion 

Important results emerge from the study. First, changing patterns in natural forest cover is a good 

indicator of the high level of vulnerability. We also investigated important issues to be 

considered in the conservation agenda of fragile landscapes. Two socio-economic factors 

namely: low economic capacity and poor knowledge on environmental conservation stand out as 

major drivers of the high level of ecosystem vulnerability in the study area. However, this varied 

considerably across the study villages with highest significance evident with Tangeni and Ubiri 

villages. It is important to note that appropriate management of landscapes is heavily driven by 

socio-economic factors. Results showed Ubiri and Mikese villages to be leading in prioritization 

of livelihood diversification and institutional frameworks. To account for significant differences 
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across the different villages, we present our discussion and policy implications based on the 

results obtained. 

5.5.1  Natural ecosystem vulnerability in Morogoro region 

Generally, a negative modification in natural forest cover change is evident in the area which 

characterizes the high vulnerability extent of exposure and threats for most ecosystems in the 

region. Demand for this resource has led to its decrease over the past years as a result of 

population growth and changes in land uses. Hence, the magnitude of relationships between 

categories of the significant variables confirms the importance of three drivers of change (i.e. 

population growth, climate change and habitat encroachment) with regard to their effect on 

changing patterns as established in a previous study in the area (Ojoyi and Kahinda, 2015). 

Wilson et al., (2005), characterizes areas exposed to past threats based on quantitative spatial 

models to predict the extent of future vulnerability. Potential explanations leading to the 

increased extent in exposure could be attributed to habitat transformation into human activities 

such as agriculture and built-up areas (Burgess et al., 2007a; Hall et al., 2009; Newmark, 2002). 

An increase in settlements and farmlands may have led to a decline in natural land cover 

(Abdallah and Monela, 2007; Luoga et al., 2000a). In addition, most people in Morogoro region 

are subsistence farmers who rely heavily on rain-fed agriculture which could be a principal factor 

to natural forest cover loss (Yanda, 2010). The extent of deforestation in most woodlands in 

Tanzania makes conservation very challenging (Kideghesho et al., 2013). Other studies relate to 

farming and urban sprawl among leading causes to natural forest loss (Qasim et al., 2011). It is 

also possible that dynamic spatial patterns may have heightened as a result of high growth in 
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population in the region contributing to detrimental forest cover losses (as shown by results in 

Table 5.3). 

5.5.2 Emerging factors  

5.5.2.1 Impacts of poor economic capacity and conservation knowledge 

Income and improved conservation capacity are critical in shaping the behavior of communities 

in supporting conservation efforts. Results presented in this paper showed poor income (54.62%) 

and lack of conservation capacity (18.51%) as leading factors to the increase in the extent of 

ecosystem vulnerability in Morogoro region. Respondents from Tangeni and Ubiri villages were 

more knowledgeable on driving forces to ecosystem vulnerability as opposed to the rest of the 

villages. Differences in perceptions regarding the extent of vulnerability could partly be 

attributed to better knowledge on the significance of conservation in Tangeni and Ubiri than the 

rest of the villages. The possible reason could be attributed to better access to conservation 

programmes in Morogoro urban and rural districts. The presence of conservation support 

programmes initiated by Sokoine University and the Eastern Arc Mountains Critical Ecosystem 

Partnership Fund (CEPF) programmes in Morogoro urban districts for instance may offer better 

access to knowledge on environmental conservation. In addition, accessibility to such institutions 

harnesses introduction of development programmes to low income households. As such, these 

programmes present unique growth and development opportunities. These findings are in 

agreement with Dolisca et al., (2006) who established that participatory management of 

ecosystems could be enhanced by socio-economic factors such as increase in the annual income 

and increased awareness. Similarly, other studies also established how communities with better 
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income levels and environmental capacity had more concern for environmental conservation 

activities (Solecki, 1998). 

5.5.2.2 The role of livelihood diversification and institutional frameworks 

The concept of livelihood diversification emerged as a critical management intervention avenue 

(45.1%). The role of the intervention measures was most appreciated in Ubiri and Mikese than 

the rest of the study villages. Livelihood diversification combines three linked concepts of 

capability, equity and sustainability (Chambers and Conway, 1992). This is supported by the 

prevailing scenario in Morogoro region where, most communities live under poor economic 

conditions (Ellis and Mdoe, 2003; Paavola, 2008). This constrains conservation efforts in the 

region (Burgess et al., 2007b). Many individuals living adjacent to natural forest ecosystems are 

subsistence farmers who practice small-scale farming (Burgess et al., 2007a; Hall et al., 2009). 

Increased incidences of poverty and high population growth rates in Morogoro region (Table 5.3) 

play a vital role towards habitat loss and fragmentation in Tanzania (Kashaigili and Majaliwa, 

2010; Kideghesho et al., 2013; Njana et al., 2013). It is important therefore that resource 

managers and policy makers first plan to integrate policy measures on sustainable livelihood 

options. Raising levels of human and social capital are critical to establishing the appropriate 

governance structures as a key intervention strategy (Mertz et al., 2009; Vincent, 2007). 

Appropriate legislative measures need to be formulated consonant with natural forest resources 

available and socio-economic patterns of the local people living adjacent to the region.  

In addition, it will useful if communities had access to incentives as a way to encourage their full 

participation in the conservation agenda. Supporting alternative community projects can assist 

resolve the social-ecological crisis facing environmental conservation (Daily, 2000; Ferraro, 
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2009). For instance, sustainable livelihood options holds greater promise with regard to better 

livelihood options (Lopa et al., 2012). The social and capital elements need to be considered if 

such an approach is to be effected in the long term (Brown et al., 2000). A long term plan of 

action should be put in place to facilitate conservation planning and management in the long 

term. Our present study results support previous studies which showed the need to strengthen 

institutional frameworks and livelihood diversification programmes as an important asset in 

sustainable conservation and management efforts (Serageldin et al., 1994). Furthermore, this 

study adds to arguments made by Neufeldt et al., (2011) who asserts that development 

programmes need to prioritize effective institutional frameworks which support economic 

capacity of communities while supporting livelihood diversification. 

The study showed that approximately 30.7% of the respondents in Morogoro region prioritize 

effective institutional frameworks as an important management approach. Though the United 

Republic of Tanzanian government is the main provider of extension services, several non-

governmental organizations (NGOs) have, over time, supplemented these services (Rutatora and 

Mattee, 2001). To an extent, local communities in the region lack confidence in their national 

governments with regard to policy planning and management (Sanga et al., 2013). Hence, 

pursuing bottom up planning procedures with local communities would be an effective way to 

boost their confidence in existing governance structures. Results on the role of effective 

institutional frameworks presented show a great opportunity for positive change if programmes 

and policies are developed and implemented along with local institutional arrangements to 

ensure effective decision making procedures. Policy makers and regional planners must realize 

that an effective institutional framework is an effective mechanism that can help in the long term 

resilience development against external perturbations. Knack and Keefer, (1997) explain the 
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importance of effective institutional frameworks towards increased economic performance at the 

local scale.  

Encouraging community participatory initiatives was considered as key in shaping future 

conservation planning and management efforts. A relatively good proportion of respondents in 

the region (24.2%) showed the need for long term re-afforestation programmes. The move 

towards participatory forest management is an approach that has seen designation of forest 

management by local communities (Abdallah and Monela, 2007). Indeed, it has been argued that 

involving local people who directly or indirectly benefit from conservation projects may increase 

their participation in such projects (Studsrød and Wegge, 1995). 

5.6 Conclusions and recommendations 

A better understanding of the socio-ecological mechanisms responsible for ecosystem 

vulnerability is critical for the effective management of such ecosystems. This is particularly 

important for dryland dynamic environments that characterize sub-Saharan Africa where there 

are multiple drivers of change. Using socioeconomic and remotely sensed data, this paper has 

provided a great understanding of the key factors driving ecosystem vulnerability. Importantly, 

the results highlight the influence of forest fragmentation and fires on vulnerability of natural 

ecosystems in Morogoro region, Tanzania. Results presented show that the major socio-

economic factors driving ecosystem vulnerability include low income levels of the communities 

and poor knowledge pertaining environmental conservation in the study villages. One key result 

emerging from this study is that different villages within the same geographical locations may 

perceive different factors driving ecosystems vulnerability. This is significant as it demonstrates 

the need for policy makers to design region-specific policies and programmes aimed at reducing 



109 
 
 

ecosystem vulnerability. Despite the challenges associated with management of vulnerable 

ecosystems, our results present a window for positive change by pointing out the need to 

strengthen livelihood diversification needs and effective institutional frameworks. It is expected 

that results in this study will be well translated by resource and conservation planners in the long 

term conservation and management agenda against external perturbations. It is of utmost 

significance that management of vulnerable landscapes integrates policy guidelines aligned to 

effective institutional and livelihood diversification frameworks. It should be pointed out that the 

methodological approach and findings from this paper may have wider applications for the 

management of vulnerable ecosystems in Tanzania and across ecosystems in sub-Saharan Africa 

more widely. 
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CHAPTER SIX 

Determining vegetation fragmentation and impacts using multispectral 

remotely sensed data in the Eastern Arc Mountains, Tanzania: a synthesis 

 

A human-dominated landscape with farmlands at the foot of Uluguru mountain forest   
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6.1 Introduction 

Ecological research on vegetation fragmentation is critical for detailed assessment of structural 

aspects of ecosystems and species responses to  anthropogenic and non-anthropogenic pressure 

(Wiens, 1995). Such research also provide an ideal basis for establishment of conservation and 

management principles (Burgess et al., 2007; Hall et al., 2009).  

In the tropics, overwhelming evidence indicates mounting pressure on forest ecosystems. It has 

therefore become necessary to know how and where these resources are threatened. Previous 

ecological research conducted in the Eastern Arc Mountain blocks acknowledged their 

exceptional conservation relevance (Burgess et al., 2007; Shirk et al., 2014). However, 

encroachment caused by increasing rates of fragmentation remain unexplored (Hall, 2009). 

Specifically, there is a dearth of spatial knowledge on changing patterns and effects caused on 

these ecosystems (Burgess et al., 2002; Green et al., 2013b; Hall, 2009). Fragmentation 

interferes with flora and fauna and ecological functioning of ecosystems (Fahrig, 2003; Tabarelli 

et al., 1999; Turner, 1996). The worst case scenario is inevitably expected in the coming decades 

(Green et al., 2013a). While there is an increasing need for such knowledge, the use of reliable 

techniques to generate the required information is inadequate (Platts, 2012). 

Growth in space-based techniques, with reliable data,  presents a better alternative to the often 

labor intensive, time-consuming and costly traditional techniques (Vuolo et al., 2010). In the 

recent past, there has been a growing interest in the use of remotely-sensed imagery in a range of 

applications that include vegetation mapping, vegetation quality assessments and other 

conservation needs (Schmidt and Skidmore, 2003). Recently launched sensors like RapidEye, 

with improved spatial and spectral characteristic allow for detailed mapping of vegetation 

attributes at species level (Ramoelo et al., 2012; Schuster et al., 2012). The red edge section of 
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the spectrum (690-730 nm) that characterize some of the recent new generation sensors offer 

great potential in discriminating varied and stressed vegetation types (see Figure 6.1) (Eitel et al., 

2011).  

 

Figure 6.1: Detection of diverse vegetation types based on RapidEye bands (2013) 

combinations; colors represent red (grassland), green (forest), yellow/orange (2 crops), soil 

(grey), (RapidEye, 2013) 

To date, the use of remotely-sensed data in ecological applications in Tanzania remain limited 

(Platts, 2012). This includes lack of information on, the rate and impact of fragmentation in the 

forest blocks of Eastern Arc Mountains (Green et al., 2013b; Shirk et al., 2014). Despite their 

global significance, these blocks have been subjected to a wide array of biophysical 

modifications. Scarcity of information could be a result of their complex nature, making it 

difficult for adoption of traditional field based techniques to monitor and estimate spatial 
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variation and potential drivers respectively. Hence, this research justified the need to integrate 

remotely-sensed data in ecological applications. This is explained in the discussion section with 

reference to conservation of the Eastern Arc blocks. Important aspects of each of the case studies 

are highlighted as models for future research. In all cases, procedures applied are universal and 

replicable and/or transferable to tropical forest landscapes. 

6.2  Effectiveness of remotely-sensed data in the study 

6.2.1  Analysis of vegetation fragmentation 

In a retrospective application, Landsat satellite imagery and fragstats metrics were found to be 

useful in modelling the magnitude of change and trend patterns. Fragstats program was able to 

account for fragmentation patterns due to its capacity to estimate landscape behavior 

characteristics (Saikia et al., 2013; Millington et al., 2003). Findings based on Games-Howell 

showed high significance in fragmentation trends (p≤0.05). There was an increase in patch 

frequency by 391 and 412 in woodland and dense forest respectively between 1995 and 2012. In 

accounting for temporal and spatial patterns, patch metrics were effective indicators of 

vegetation fragmentation. Mann-Whitney test showed distinct differences in patch area (p<0.01) 

between 1975 and 1995 for all habitats except for dense forest between 1995-2012 (Table 6.1). 

Overall, the patchy nature of forest fragments was a clear indicator of a fragmenting ecosystem.  
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Table 6.1: Patch area results based on Mann-Whitney tests 

NS= not significant (p<0.01), *** = significant (p<0.001) 

6.2.2 An analysis of impacts on vegetation species 

Few researches in the Eastern Arc mountains have  made use of remotely-sensed data and other 

biophysical variables in understanding species diversity patterns and threats in each of the forest 

blocks (Platts et al., 2008). The current project forms an important basis in demonstrating the 

vital role of high resolution satellite data in modelling the impacts of fragmentation on individual 

tree species. 

Class Year z-value 

(1975-1995) 

Prob > |z| z-value 

(1995-2012) 

Prob> 

|z| 

Dense forest  1975 9.495*** 0.0000 -6.872 NS 0.1895 

1995 

2012 

Grassland 1975 13.680*** 0.0000 -7.441*** 0.0000 

 1995 

2012 

Less dense forest 1975 16.728*** 0.0000 -8.268*** 0.0000 

1995 

2012 

Woodland  1975 -16.63*** 0.0000 2.461*** 0.0000 

1995 

2012 
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Remotely-sensed variables with data on species diversity were modelled by applying the Generic 

Algorithm for Rule-Set Prediction (GARP) algorithm while patch area metrics were extracted 

using Fragstats software, which were then linked to species and edaphic factors. The model 

allowed for detection of tree species diversity and variables accounting for differences in species 

occurrences. Research findings indicated how species diversity was better predicted with 

customized environmental variables with an Area under Curve (AUC) of 0.89, while the Poisson 

regression showed that individual tree species responded differently to patch area dynamics, 

habitat status and soil nitrogen. Generally, application of the GARP model which is compatible 

with remote sensed data showed how ecologists could use different data sets to establish the best 

ecological niche for species survival. Uluguru montane forest ecosystem outskirts were found to 

be more vulnerable to fragmentation. Elevation was a factor with most effects on the model. This 

could be due to the fact that elevation determines the abundance of species in the Uluguru 

montane ecosystem. Species found in low elevations mostly experienced interference from 

fragmentation. Underlying factors such as rapid increase in population growth and agriculture 

have a strong presence in the former intact areas, significantly affecting vegetation species 

(Figure 6.2).  
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 Figure 6.2: High (A) and low (B) species diversity. 

 

6.2.3 The potential utility of remote sensing in biomass estimation  

Constant and precise biomass estimation initiatives in forestry are considered a pre-requisite in 

the successful development of plausible forest inventories and landscape monitoring procedures 

(Berndes et al., 2003; Mumby et al., 2004). It supports vegetation productivity assessments, 

determination of vegetation quality and the general structure of ecosystems.  

Mapping biomass has been a challenging task using traditional methods in complex 

heterogeneous forest landscapes. The red edge band has the potential to detect chlorophyll 

concentration in the visible region of the spectrum; which allows use of different vegetation 

indices in above ground biomass prediction. The study applied a combination of different 
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vegetation indices derived from RapidEye imagery and topo-edaphic factors to determine the 

ability of utilizing high resolution satellite imagery to predict above ground forest biomass. A 

partial least squares regression (PLSR) was used for establishment of the relationship between 

biomass and RapidEye data. A PLSR model with a total of twenty-nine spectral vegetation 

indices and eight topo-edaphic factors explained 60% of the above ground forest biomass 

variability (see Figure 6.3). While, PLSR models consisted of either topo-edaphic or spectral 

vegetation indices yielded R
2
 values of 0.44 and 0.43, respectively. Fragmentation was found to 

be a contributing factor to low biomass.  
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Figure 6.3: One-to-one relationship between measured and predicted above ground biomass for 

the sample data set using leave-one-out cross validation model. (A): Using eight topo-edaphic 

factors, (B) using 29 vegetation indices, and (C) using 29 vegetation indices plus the eight topo-

edaphic factors based on 115 samples. 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

P
re

d
ic

te
d

 b
io

m
a
ss

 (
to

n
 h

a
-1

)

Measured biomass (ton ha-1)

1:1RMSE = 1.53 ton ha -1

(C)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

P
re

d
ic

te
d

 b
io

m
a
ss

 (
to

n
 h

a
-1

)

Measured biomass (ton ha-1)

1:1RMSE = 1.81 ton ha -1

(B)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

P
re

d
ic

te
d

 b
io

m
a
ss

 (
to

n
 h

a
-1

)

Measured biomass (ton ha-1)

1:1RMSE = 3.48 ton ha -1

(A)



119 
 
 

6.2.4 Analyzing potential threats and opportunities  

Universally, no policy has been conceived that can facilitate control of human-ecosystem 

transformation in the tropics (Geist and Lambin, 2002). However, an in-depth understanding on 

potential threats to conservation is a pre-requisite in establishing case specific policy 

interventions (Chowdhury, 2006; Geist and Lambin, 2001).  

This study also tested how science-based interpretation could guide policy makers into 

ameliorative decision making processes. Combining remotely-sensed data and socio-ecological 

factors were profound in meeting this noble goal. Findings showed low income (52.62%) and 

low education (18.51%) among main contributors of ecosystem vulnerability. The study suggests 

the need for ongoing research to investigate appropriate and innovative mechanisms including 

livelihood diversification (45.1%), effective institutional frameworks (30.7%) and afforestation 

measures (24.2%). It could be useful if conservation experts engaged programmes that supported 

alternative livelihood initiatives, effective institutional frameworks and restoration of disturbed 

habitats.  

6.3 Discussions  

Application of remotely-sensed data was effective in determining the general state of dominant 

forest ecosystems. Primarily, human encroachment activities leading to fragmentation and 

habitat modification had significant effects on species and overall biological conservation. 

Empirical findings project that in the long term, species and ecological functions of ecosystems 

will diminish.  

GARP model was a better predictor of species diversity in both fragmented and intact areas. 

While the results established the links between main biophysical variables contributing to the 
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model, the use of bioclim data would have been worth exploring to determine the effect of other 

bioclim variables. However, this study was limited to Uluguru forest, which might not have had 

much effect. This is however an important research aspect that could be investigated.  

Furthermore, the research work on biomass estimation also confirms the need to integrate remote 

sensing techniques in supporting biodiversity conservation initiatives. 

Conservation of the Eastern Arc Mountains demands an in-depth knowledge on driving forces 

and plausible solutions for management of un-desirable shifts. A significant proportion of 

respondents interviewed were primarily immigrants from other parts of Tanzania. Despite 

government decentralization policies, there is an apparent scarcity of knowledge and resource 

accessibility (Sanga et al., 2013). Emphasis should be placed on capacity building, an aspect still 

lacking in Morogoro region. Conservation and education awareness needs to be enhanced as a 

long term strategy to contain human encroachment activities. It will be valuable if government 

authorities in Tanzania learnt to capitalize on the social system as a useful platform in reaching 

out to as many communities as possible.  

The need to appraise conservation and management policies that are/have not been executed is 

one aspect that strongly emerged from the management perspective of this study. It will be useful 

if priority is accorded to policies that promote habitat restoration and conservation measures in 

the fragile status of these ecosystems. Many local people residing in Morogoro region practice 

small scale farming with others engaging in ecologically destructive activities such as charcoal 

production for their livelihoods. Therefore, conservationists and other natural resource experts 

need to establish other options for local communities living adjacent to natural sites. This should 

include development of tangible benefits and incentives in a manner that could attract their full 
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engagement in conservation of remnant forests. Such information could also be integrated in 

long term development of conservation programmes and other agenda. 

6.4 Conclusions and future research opportunities 

The core of this study was to investigate the utility of remotely-sensed data in modelling 

fragmentation and impacts in the Eastern Arc Mountains. It also gave an insight on the 

significance of incorporating scientific concepts in decision making. The following conclusions 

can be drawn:  

1. The use of remotely-sensed imagery indicated its spatial significance in computing the 

patterns and magnitude of fragmentation. Consistent monitoring procedures based on 

advanced remote sensing techniques could guide development of better conservation and 

management plans of the forest remnants. 

2. Fragmentation is a great threat to biodiversity conservation in the Eastern Arc Mountains. 

This is exhibited by increases in the patchy nature of the forest fragments.  

3. Fragmentation analytical results showed a negative impact on species abundance and 

diversity. The abundance of tree species in intact areas was found to be more than areas 

disturbed. This means that if fragmentation persists, less species are expected in the rest 

of the forest fragments. 

4. Inclusion of edaphic factors strongly improved biomass prediction in heterogeneous 

landscape using Partial Least Squares. It also revealed adverse impacts of fragmentation 

to above ground forest biomass.  
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5. From a conservation perspective, establishing habitat restoration for areas prone to 

fragmentation requires quick conservation effort. Conservation managers may need to 

incorporate livelihood diversification, effective institutional frameworks and afforestation 

in their programmes as long term strategies to conserve the forest blocks in the Eastern 

Arc Mountains. 

The current study attests to the urgent need for quick action to be accorded to conservation of the 

Eastern Arc Mountain blocks. Fragmentation is expected to lead to more disastrous impacts. If 

the current patterns persist, it could inevitably lead to increase of forest fragments and a further 

decline in species abundance and diversity. It is critical that sustainable and viable options be 

sourced, and strengthened in a way that could help minimize people’s dependence on these 

resources.  

The rate of species endemism has frequently been mentioned in literature. The use of high 

resolution remotely-sensed data and Maxent or GARP might be useful in the spatial analysis of 

endemic and vulnerable species. In addition, fauna is an important component of biodiversity in 

the Eastern Arc Mountains. The increasing rate of endemic species is also associated with the 

animal kingdom. Although the scope of this study did not cover this important research 

component, future researches might find it valuable to establish the interaction between animals 

and habitat disturbances. 
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