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Abstract 

Reed-Solomon (RS) codes are powerful error-correcting codes that can be found in a 

wide variety of digital communications and digital data-storage systems. Classical 

hard decoder of RS code can correct t = (dmin -1) /2 errors where dmin = (n - k+ 1) 

is the minimum distance of the codeword, n is the length of codeword and k is the 

dimension of codeword. Maximum likelihood decoding (MLD) performs better 

than the classical decoding and therefore how to approach the performance of 

the MLD with less complexity is a subject which has been researched extensively. 

Applying the bit reliability obtained from channel to the conventional decoding 

algorithm is always an efficient technique to approach the performance of MLD, 

although the exponential increase of complexity is always concomitant. It is def­

inite that more enhancement of performance can be achieved if we apply the bit 

reliability to enhanced algebraic decoding algorithm that is more powerful than 

conventional decoding algorithm. 

In 1997 Madhu Sudan, building on previous work of Welch-Berlekamp, and oth­

ers , discovered a polynomial-time algorithm for decoding low-rate Reed- Solomon 

codes beyond the classical error-correcting bound t = (dmin -1) /2 . Two years later 

Guruswami and Sudan published a significantly improved version of Sudan's algo­

rithm (GS), but these papers did not focus on devising practical implementation. 

The other authors , Kotter, Roth and Ruckenstein, were able to find realizations for 

the key steps in the GS algorithm, thus making the GS algorithm a practical instru­

ment in transmission systems. The Gross list algorithm, which is a simplified one 

with less decoding complexity realized by a reencoding scheme, is also taken into 

account in this dissertation. The fundamental idea of the GS algorithm is to take 



advantage of an interpolation step to get an interpolation polynomial produced by 

support symbols, received symbols and their corresponding multiplicities. After 

that the GS algorithm implements a factorization step to find the roots of the in­

terpolation polynomial. After comparing the reliability of these codewords which 

are from the output of factorization, the GS algorithm outputs the most likely 

one. The support set, received set and multiplicity set are created by Koetter­

Vardy (KV) front end algorithm. In the GS list decoding algorithm, the number 

of errors that can be corrected increases to tcs = n - 1 - lJ (k - 1) n J. It is easy 

to show that the GS list decoding algorithm is capable of correcting more errors 

than a conventional decoding algorithm. 

In this dissertation, we present two hybrid list decoding and Chase-like algo­

rithms. We apply the Chase algorithms to the KV soft-decision front end. Conse­

quently, we are able to provide a more reliable input to the KV list algorithm. In 

the application of Chase-like algorithm, we take two conditions into consideration, 

so that the floor cannot occur and more coding gains are possible. With an increase 

of the bits that are chosen by the Chase algorithm, the complexity of the hybrid 

algorithm increases exponentially. To solve this problem an adaptive algorithm 

is applied to the hybrid algorithm based on the fact that as signal-to-noise ratio 

(SNR) increases the received bits are more reliable, and not every received sequence 

needs to create the fixed number of test error patterns by the Chase algorithm. We 

set a threshold according to the given SNR and utilize it to finally decide which 

unreliable bits are picked up by Chase algorithm. However , the performance of the 

adaptive hybrid algorithm at high SNRs decreases as the complexity decreases. It 

means that the adaptive algorithm is not a sufficient mechanism for eliminating 

the redundant test error patterns. 

The performance of the adaptive hybrid algorithm at high SNRs motivates us 

to find out another way to reduce the complexity without loss of performance. 

We would consider the two following problems before dealing with the problem 

on hand. One problem is: can we find a terminative condition to decide which 
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generated candidate codeword is the most likely codeword for received sequence 

before all candidates of receiVf~d set are tested? Another one is: can we eliminate 

the test error patterns that cannot create more likely codewords than the generated 

codewords? In our final algorithm, an optimality lemma coming from the Kaneko 

algorithm is applied to solve the first problem and the second problem is solved by a 

ruling out scheme for the reduced list decoding algorithm. The Gross list algorithm 

is also applied in our final hybrid algorithm. After the two problems have been 

solved, the final hybrid algorithm has performance comparable with the hybrid 

algorithm combined the KV list decoding algorithm and the Chase algorithm but 

much less complexity at high SNRs. 
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Chapter 1 

Introduction 

In the twenty-first century, a technological society, digital communication is present 

in every aspect of our lives. Computer file transfers, network transmissions, radio 

communications, cellular communications and satellite data transmissions transfer 

information through a channel where noise exists. In each case information or data 

is transmitted using a finite source alphabet encoder. For the reliability of the 

received sequence coming from the channel which distorts the transmitted binary 

data, error-correcting codes are applied to a communication system to solve this 

problem. Error-correcting codes are obtained after adding redundancy to a binary 

sequence before transmitting it , so that even if a corrupted sequence is received, 

the original message can be recovered using the redundancy. 

This thesis studies soft-decision decoding algorithms for Reed-Solomon codes 

which are the most popular codes in practical use today with applications ranging 

from CD players to deep space communication. 

1.1 Digital communication systems 

In this section, a basic digital communication system model is introduced with the 

separate components. Due to the purpose of this dissertation, the channel coding 

techniques, which include channel encoding and decoding, are emphatically de­

scribed following the overview. Then, the description is focused on the protagonist 
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Figure 1.1: Block diagram of a communication system 

of this dissertation, Reed-Solomon Codes, which playa significant role in digital 

communication and digital storage. 

1.1.1 An overview 

The intention of a communication system is to reliably transmit data without delay 

from a source to a receiver through an interferential channel. The existence of noise 

in a channel begets the transmission of information , then how to achieve accurate 

and real-time transmission is the reason and objective of digital communication. 

Figure 1.1 shows a basic point-to-point communication model which comprises 

source coding, channel coding, modulation, demodulation and channel. 

The input of digital communication might be any source which contains infor­

mation such as the English or Chinese alphabet, a voice signal from a telephone 

or mobile phone, the output of a sensor , photographs, a video waveform or binary 

symbols from a computer , etc. Whatever the source signal is, it will be formatted 

as a sample function of a random process. 

A task for the source encoder is to convert the data from source to the digi­

tal sequence or bit prepared for the channel coding. The simplest source coding 

techniques involve simply applying blocks of bits to label the source signal that is 
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represented by a sequence of symbols from some finite alphabet. Morse code is an 

example that encodes the 26-symbol English letters and 10 decimal numbers to 30 

combinations of "." and "-" . So Morse code is an early version of variable length 

source encoding. An example of fixed-length source encoding is the Baudot code 

that was proposed by Emile Baudot in 1875. The Baudot code maps every English 

letter into a block of 5 binary bits. The word "communication" is expressed as 

follows by Baudot code, 

0111011000111001110000111 01100001100111000011 10000001101100001100. 

For transmission efficiency, the other objective for source encoding is to compress 

the data into as few bits as possible by reducing the redundancy. 

Due to the noise in a channel, channel encoding is an indispensable process for 

reliable transmission. The channel encoder has the function of one-to-one map­

ping the compressed binary sequence at the channel interface into channel outputs 

through adding redundancy. Reduction of the interference is obtained through 

enlarging the distance among the binary sequence produced by source encoding. 

For example, if several people living in one room are each put into a single room 

the possibility of their meeting each other is much lower than if they all live in 

one room. The particular description for channel coding is given in the following 

section. 

The modulation schemes such as Frequency Shift Keying (FSK), Phase Shift 

Keying (PSK), Amplitude Shift Keying (ASK) transform the bandwidth of the 

data into a desired pass band region for easy transmission. After modulation, the 

binary sequence is replaced by an analog signal, then the channel can be shared 

with other-signals. 

The channel is defined as the medium between the transmitted and received 

data such as, cable, optical fiber and magnetic disks, etc. Different types of dis­

tortions occur on the channel, such as lSI generally, additive white Gaussian noise 

(AWGN). The channel is that part of the communication component that is not 

under the control of the designer. To a source code designer, the channel might be 
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a digital channel with capacity restriction; to a telephone-line modem designer, it 

might be a 4 KHz voice channel with certain bandwidth restrictions . 

For the receiver, the demodulation is used to recover the digital data; the 

channel decoding is used to correct the errors caused by channel and to rebuild 

the information sequence; finally the source decoding produces the original analog 

signals. 

1.1 .2 Channel coding 

Since Shannon published his classical production in 1948, which is an important 

theory in error correction. The theory describes the maximum attainable efficiency 

of an error-correcting scheme versus the levels of noise interference expected. A 

research subject , information theorem, was instituted. Many researchers have con­

tributed their investigation in this field such as Kotelnikov, Wozencraft , Jacobs, 

Hamming, etc . Through their endeavors, many important codes have been discov­

ered such as the Hamming code by Hamming in 1950, BCH code by Hocquenghem 

in 1959 and Bose and Ray-Chaudhuri in 1960, Reed-Solomon code by Reed and 

Solomon in 1960, Groppa code by Groppa in 1970, etc. Due to the discovery of 

error-correcting codes, channel coding has been ensured to be an indispensable 

part of digital communication system. Many error-correcting methods through 

using error-correcting codes are presented as Automatic Repeat Request (ARQ), 

Forward Error Correction (FEC), and Hybrid Error Control (HEC). Which code 

will be adopted in a communication system depends on the available decoding 

method since the final purpose of communication is to recover the information 

transmitted. For instance, the syndrome decoding is used for Hamming codes, 

the Berlekamp-Massey decoding for BCH and RS codes. Also, some soft decoding 

algorithm through using the soft information in a channel are proposed to assist 

the algebraic decoder to enhance t he decoding performance, such as generalized 

minimum distance decoding (GMD) in [5], Chase algorithm in [25], etc. The opti­

mal decoding method is also detected as Maximum-Likelihood-Decoding, which is 
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infeasible in practice due to the acceptable decoding complexity. So how to achieve 

the performance with Maximum likelihood decoding (MLD), but lower complexity, 

is the dedicated objective for the decoding reacher. 

The leading player for this dissertation is Reed-Solomon codes which are the 

most basic and well-studied codes in the literature and also used in industry for 

magnetic storage, optical storage, data transmission channels, satellite and even 

deep-space communications. In 1960, Reed and Solomon published a paper in the 

Journal of the Society for Industrial and Applied Mathematics, which described 

a new class of error-correcting codes that are now called Reed-Solomon codes. 

The main advantage of these codes is their high capability of correcting both 

random and burst errors. Many soft-decision decoding algorithms were developed 

for decoding Reed-Solomon codes, notably [24], [28], [31]-[33]. 

1.2 Motivation of research 

A signal transmission with no errors is always the dream of communication com­

panies. The most important process for this aim is the decoding performance of 

a channel decoder. Although the performance is exchanged by using soft informa­

tion in the channel, the communication companies are always afraid to envisage 

the decoding complexity increased with the number of iterations. The main pur­

pose of this dissertation is to obtain high performance with the complexity as low 

as possible. Our research is based on Reed-Solomon codes and an efficient alge­

braic decoding algorithm, whose error-correcting capability is better than classical 

t = (tmin - 1)/2, is adopted . Due to the expectation of high performance, the 

Chase algorithm, which is a route to achieve the MLD, is applied to the algebraic 

decoder. The increase in complexity is expected and is the particular problem that 

we want to solve. An adaptive scheme that uses a threshold value to weed out 

the "unreal" unreliable bits attempts to reduce the decoding complexity. From 

the simulation results , although the effect of an adaptive scheme is obvious, per­

formance is reduced since the elimination of "real" unreliable bits. The severe 
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situation encourages us to find other ways to solve the problem. Two problems 

before we reducing the decoding complexity should be firstly considered . After 

the two problems are settled by the Kaneko algorithm and Ruling out algorithm 

respectively, the decoding performance is the same as using the Chase algorithm, 

but , fortunately, the complexity is largely reduced at high signal-to-noise ratios 

(SNR). 

1.3 Dissertation overVIew 

This section is given as a guide for the rest of this dissertation. The background 

of Reed-Solomon, which includes the two encoding methods and the convention 

algebraic decoding algorithm, is given in chapter 2. The list decoding algorithms, 

which contains the Guruswami-Sudan list algorithm, the Koetter-vardy list algo­

rithm, the Gross list algorithm, are also introduced with examples in chapter 2. 

Chapter 3 describes two hybrid list decoding and Chase-like algorithms with re­

spect to the application of different list algorithms. Chapter 4 proposes an adaptive 

list decoding and Chase-like algorithm, which apply an adaptive scheme to achieve 

the comparable performance with the hybrid algorithm in chapter 3 but lower de­

coding complexity. In chapter 5, the Kaneko algorithm and Ruling out algorithm 

cooperate with the Gross algo!."ithm to be the new hybrid algorithm with notable 

reduction of decoding complexity. The simulation results are distributed into re­

spective chapters corresponding to derivation for each proposed algorithm. The 

conclusion is drawn in chapter 6 with the prospect of future work. 

1.4 Original contributions in this dissertation 

The original contributions of this dissertation include: 

• In chapter 2, we present the binary weight distributions for (7,5) and (15,7) 

RS codes , which is the prerequisite for computing the upper bound of MLD. 
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• In chapter 3, we apply the Chase algorithm to two list algorithms to create 

two hybrid algorithms. In simulation results , the hybrid algorithm using 

the Gross list algorithm has a lower decoding complexity than the hybrid 

algorithm using the Koetter-Vardy list algorithm but with slight performance 

loss. A criterion for producing test error patterns for the list algorithm is 

also proposed. 

• In chapter 4, an adaptive algorithm is applied to our hybrid algorithm to 

reduce the complexity after using the Chase algorithm. The simulation re­

sults are also accomplished to explain the effectiveness of the adaptive hybrid 

algorithm. The complexity of the hybrid algorithm in chapter 3 is reduced 

with respect to the better orientation for unreliable bits. 

• In chapter 5, two problems that obstruct the road to achieving better per­

formance but lower complexity, are presented. The solutions for these two 

problems are also given. Therefore, a new advanced hybrid algorithm which 

contains t he Kaneko algorithm and Ruling out algorithm is created. Simu­

lation results show that the last hybrid algorithm has the best performance 

but lowest complexity among the algorithms proposed in this dissertation. 

Parts of the work in this dissertation have been presented and submitted for the 

following conferences and journals: 

• Wei Jin, HongJun Xu and Fambirai Takawira, "A Hybrid List Decoding and 

Chase-Like Algorithm of Reed-Solomon Codes", in Proceedings of the 4th 

International Symposium on Information and Communication Technologies, 

pp. 87-92, 03 - 06 January 2005. 

• Wei Jin, HongJun Xu and Fambirai Takawira , "An Adaptive Hybrid List De­

coding and Chase-Like Algorithm of Reed-Solomon Codes", in Proceedings 

of the 12th International Conference on Telecommunications, 03 - 06 May 

2005 . 
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• Wei Jin, HongJun Xu and Fambirai Takawira, "A Hybrid Gross List Decod­

ing and Chase-Like Algorithm of Reed-Solomon Codes" , in Proceedings of 

the Southern African Telecommunication Networks and Applications Con­

ference, 11 - 14 September 2005. 

• Wei Jin, HongJun Xu and Fambirai Takawira, "An Adaptive Hybrid List 

Decoding and Chase-Like Algorithm of Reed-Solomon Codes" , submitted to 

the Journal of South African Institute of Electrical Engineers. 

• Wei Jin, HongJun Xu and Fambirai Takawira, "A Hybrid List Decoding and 

Kaneko Algorithm of Reed-Solomon Codes", accepted by the IEE proceed­

mgs. 

• Wei Jin, HongJun Xu and Fambirai Takawira, "An Adaptive Hybrid Gross 

List Decoding and Chase-Like Algorithm of Reed-Solomon Codes" , submit­

ted to the JCN. 
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Chapter 2 

Reed-Solomon Codes and the List 

Decoding Algorithm 

This chapter includes a comprehensive description of Reed-Solomon codes, which 

are powerful error-correcting codes in digital communication and digital data­

storage system. Two encoding methods for Reed-Solomon codes are introduced 

in this chapter and the corresponding binary weight distributions are also pre­

sented. The introduction of conventional decoding algorithm for Reed-Solomon 

codes is one part of the indispensable materials for the background. 

The list algorithm and its practical implementation version, which is Koetter­

Vardy (KV) list algorit hm, is given in this chapter. The Gross list algorithm 

(Gross) , which is a simplified version of the list algorithm, is also explained. The 

comparison of decoding performance and complexity between the KV algorithm 

and the Gross algorithm is a requisite for choosing the better algebraic decoding 

algorithm and some necessary figures are provided to serve as the illustration. 

2.1 The encoding for Reed Solomon codes 

The Reed-Solomon codes were discovered by Reed and Solomon in 1960. In [1 J, 

the authors defined the Reed-Solomon codes as the primary BCH codes in Galois 

Field (GF) (q). So it is obvious that the Reed-Solomon codes are the subset of the 
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BCH codes. Two encoding schemes are introduced in the following subsections. 

2.1.1 Systematic encoding 

The RS codes are the subset of the BCH codes. Consequently, the encoding of RS 

codes is introduced based on the encoding of BCH codes. Consider an (n, k) RS 

code and the minimum distance dm in is known as n - k + 1 since the RS codes are 

minimum-distance-separable. The generator polynomial is obtained as follows: 

(2.1.1) 

where ex is the primary element in GF(q). According to k independent codeword 

polynomials that are as follows: 

9 (x) = gn_kxn-k + gn_k_l xn- k- 1 + ... + glX + go 

.'[;g (x) = gn_kXn-k+1 + gn_k_lxn-k + ... + glX2 + gox 

we obtain the generator matrix as follows: 

gn-k gn-k-l go o 

G= 
o gn-k go 0 

o o o 9n-k 9n-k-l 

Then the parity check matrix is achieved as follows: 

H= 

o 0 

where is the check polynomial given by: 

h (x) = (xn - 1) 
9 (x) . 

11 
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(2.1.2) 
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It is easy to achieve the following equation: 

G· HT = O. (2.1.6) 

For the systematic encoding where T stands for transposition of H, we need to 

convert the generator matrix to the following formal: 

G=[hPj (2.1.7) 

where I is a k x k identity matrix. Based on the generator matrix in this formal , 

the corresponding codeword is as the following format : 

C (x) = f (x) xn- k + T (x) (2.1.8) 

where f (x) is an information polynomial that all coefficients come from the infor­

mation sequence and T( x) is a parity check polynomial that all coefficients come 

from the parity check sequence. The two polynomials are shown as: 

f () f k-I f k-2 j' + X = k-IX + k-2X + ... + IX + JO (2.1.9) 

and 

( ) n-k-I + n-k-2 T X =Tn-k-lX Tn-k-2X + · ··TIX+TO. (2.1.10) 

Using Equation(2.1.8) , we get the parity check polynomial as follows: 

T (x) = C (x) + f (x) .rcn- k == f (x) xn-k(mod g (x)). (2.1.11) 

We define 

Pi (:z; ) = xn-kXk- i (mod g (x)) = xn - i (mod g (x)) i = {I, 2, ···, k}. (2.1.12) 

So the generator matrix is converted to the following format: 

1 0 0 PI (x) 

0 1 0 0 P2(X) G= = [IkPj. (2.1.13) 

0 0 1 pdx) 

12 



It is obvious that we have the following equation: 

k-l 

r (x) = 2:. fi Pk-dx). (2.1.14) 
i=O 

The parity check matrix is also achieved as follows based on the Pi (x): 

(2.1.15) 

Then the codeword is obtained using following equation: 

1 0 0 PI (x) 

0 1 0 0 P2(X) 
(2.1.16) C = (i"k-l, fk-2 , ... ,iI, fo) 

0 0 1 Pk (x) 

For easy understanding, the codeword polynomial is also obtained in the following 

way: 

C (x) = f (x) xn
-
k + r (x) = f (x) xn

-
k + f (x) xn

-
k (mod 9 (x)) . (2.1.17) 

2.1.2 Evaluation map encoding 

The evaluation map encoding is to create the generator polynomial based on the 

information sequence. 

Suppose we want to transmit a message (fo, iI,·· . , fk-l) using an (n, k) RS 

code. Then the generator polynomial is produced in the following convenient way: 

k-l g(x)=gO+glX+· · ·+gk-IX . (2.1.18) 

The codeword is obtained as follows: 

(2. 1.19) 

We also can use the generator matrix to produce the codeword. The generator 
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matrix G of the evaluation map encoder is shown as follows: 

a(k-I )(n- I) a 2(n-l) a(n-l) 1 

G = a 2(n- l ) a 4 a 2 1 (2.1.20) 

a (n- l ) a 2 a 1 

1 1 1 1 

and the codeword is consequently achieved as the following equation: 

a(k- I )(n- I) a 2(n-l) a(n- I ) 1 

C = (fk- I, fk -2, ' .. ,h , fo) a 2(n- l ) a 4 a 2 1 (2.1.21 ) 

a(n- I ) a 2 a 1 

1 1 1 1 

The RS code obtained through the evaluation map encoding is not a systematic 

code. 

After making the comparison between these two encoding methods, the con­

clusion is evident that the evaluation map encoding has less complexity than the 

systematic encoding. The advantage of the systematic encoding is embodied in 

transferring the codeword to information sequence. As a result that all the k input 

symbols to the encoder explicitly appear in the k consecutive positions of encoded 

codeword, the information sequence is read off directly from the codeword. 

The two encoding methods produce the different codewords aiming at the same 

information sequence. An example is given to explain this conclusion. 

Example 1: We consider the (7,5) RS code, which the minimum distance 

dnl.in = 3 and the conventional error-correcting capability is 1. Based on the format 

(fo , h," ' , fk-2, fk-l) , the message that we want to t ransmit is (a, a2, a3, a\ ( 5). 

The generator polynomial of the systematic encoder is 9 (x) = (x - a) (x - ( 2) = 

a 3 + a 4x + x2 while the generator polynomial of the evaluation map encoder is 

9 (x) = a + a2x + a3x2 + a4x3 + a5x4. The systematic encoder generates code-

14 



Table 1- Binary weight distribution of (7,5) RS code 

Ao, AZI AI,A20 A2,A19 A3 , AIB A1, Al7 AG , A16 AG, Al5 A7, Al1 AB, Al3 A9 , Al2 AIO, All 

1 0 0 28 84 273 924 1956 2982 4340 5796 

Table II · Binary weight distribution of (15,7) RS code 

AI , A59 A2, AGB A 3 , AG7 A4, A 56 A5 , A55 AG, AM A7 , A G3 AB, A52 A9 , A51 AIO, A50 

0 0 0 0 0 0 0 0 0 0 

A Il , A 19 Al2 , A48 A 13, A17 A 11 , A4G A15, A I15 A16, A44 Al7, A13 A18,A42 A19, A41 A20, A40 

120 280 1260 4590 12796 33030 89160 226320 472080 913404 

A21 , A39 A22 , A3B A23, A37 A24, A3G A25J A35 A2G, A 34 A27, A33 A28 , An A29 , A31 A30 

1864640 3511560 5458080 7872220 12072048 17266800 20466880 22638345 26671800 29284628 

word (a6
, I, a, a 2

, a\ a 4
, a 5

) while the evaluation map encoder generates codeword 

( 2 3 3525) a ,a,a , a ,a,a ,a. 

Example 1 shows that the codewords obtained from different encoders are dis­

tinct. Although the codewords obtained from two encoders for the same informa­

tion sequence are different , the binary weight distributions, which are important 

for computing the performance of Maximum-Likelihood-Decoding, are the same. 

It means that the two encoding methods use the same qk combinations in total qn 

combinations to be the codewords. The alternate way for proving this conclusion is 

to consider whether the RS code generated by an evaluation map encoder is cyclic. 

If it is cyclic, then we can use the standard shift register encoder and generator 

strictly systematic code like the code produced by systematic encoding method. 

The consideration is proved in [19]. 

Because analytical methods for calculating the weight distribution of their bi­

nary images are not known, we only can obtain binary weight distribution for short 

RS codes through computation. We define Aw as the number of codewords with 

binary Hamming weight w. The binary weight distributions for (7,5) and (15,7) 

RS codes are shown in Table I and II, respectively. 

As the results of that the q for GF is the power of 2 usually, the derived binary 
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RS codes are easily obtained through transferring the GF (q) into the binary field. 

The (11" k) RS codes in GF(q) are transferred to (m11" mk) binary RS codes, where 

q = 2m. For example, the codeword (a5 , 1, a , a2
, a3 , a4

, (
5

) in GF(8) is transferred 

to the codeword (101,001 , 010, 100, Oll, 1l0, Ill) in the binary field . The derived 

binary RS codes not only have the capability to correct t = (dmin - 1) /2 random 

bit errors that is the same as symbol error-correcting capability of q-ary RS codes, 

but also can correct the B burst bit errors with any error patterns, where B is 

given as: 

B ~ (t - 1) m + 1. (2.1.22) 

If a codeword that has suffered error sequence with the length greater than B 

is received, then the conventional decoder probably has no ability to output the 

correct codeword because there is the probability that the span of error sequence 

exceeds the conventional symbol error-correcting capability of RS codes in GF( q). 

For example, if we consider the (7,3) RS code that can correct 2 symbol errors, 

the (21 ,9) derived binary RS code has the capability to correct 2 random bit errors 

and 4 burst bit errors. If the codeword has the error pattern with 5 burst bit 

errors, then the conventional decoder cannot produce the correct codeword if the 

following situation happens: 

codeword: 

codeword in GF(2) : 

error pattern: 

hard decision: 

hard decision in GF(8) : 

(101,001,010,100,011,110,111) 

(000,000, 001,111 , 100, 000, 000) 

(101,001,011,011 , 111,110,111) 

( 5 - 33545 a , 1, a , a , a , a ,a ). 

The conventional decoder cannot produce the correct codeword for the above ex­

ample because the hard decision has 3 symbol errors. 

The two encoding methods are introduced in this section and the comparison 

between two encoding methods is also accomplished. To calculate the performance 

of MLD, we give the binary weight distribution for (7 ,5) RS code and (15,7) RS 

code respectively in Table I and Table II. The derived binary RS codes, which are 
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powerful error-correcting codes especially for burst errors , are presented at the end 

of this section. 

2.2 The conventional decoding algorithm for Reed-Solomon 

codes 

Whether the code is widely applied in practice depends on whether the decoder is 

simple, swift , economic and has low error probability. Peterson gave the theoretic 

solution for binary BCH codes in 1960; afterwards the decoding was extended 

to the non-binary codes by Gore and Zierler. In 1966, Berlekamp proposed an 

iteration decoding algorithm [2] that was further simplified by Massey in 1969 [3]. 

Thereafter many researchers presented new decoding methods for the BCH codes, 

for instance the Euclid 's algorithm [4] . 

The Berlekamp-Massey (BM) algorithm, which is regarded as the classical de­

coding algorithm for BCH codes and RS codes and has the most extensive appli­

cation in the communication field, is introduced in this section. Founded on the 

decoding procedure of linear block codes, the decoding of RS codes also includes 

three steps. First step is to obtain the syndrome S from hard decision R (received 

word) that is obtained from received sequence. The second step is to find the error 

pattern E based on the S. The last step is to obtain the codeword C by adding of 

Rand E. Readers can refer to [2] for more details. 

2.3 The Guruswami-Sudan list algorithm 

The BCH decoder is an algebraic decoder , which exploits the potential algebraic 

structure of the code to generate codeword by the assistance of finite field arith­

metic. T he error-correcting capability of BCH decoder for (n , k) RS code is known 

as t = (dmin - 1) /2 where dmin = n - k + 1 is the minimum distance of the code. 

The origin of the conventional error-correcting capability is explained as below. 

The conventional decoder is thinking to search the Hamming sphere centered at 

17 



the received word for codeword. If the sphere contains a unique codeword, that 

is the output of decoder. Otherwise the decoder reports failure. It means that 

the sphere cannot contain more than one codeword. We consider the situation 

that the received word appears in the midpoint of two codewords that has the 

minimum distance dmin . The distances of the received word from two codewords 

are the same, which is dmin /2. So the radius of a sphere must be less than dmin /2 

according to the successful decoding's condition that the sphere contains only one 

codeword. Therefore the error-correcting capability of conventional decoder is 

t = (dmin - 1)/2. From this standpoint, it seems to be unfeasible to use an alge­

braic decoder to correct more errors than t . Nevertheless, we may reach a different 

conclusion if we examine the probability that the decoding sphere will contain 

multiple codewords. 

Consider the (32,8) RS code in GF(32), with d = 25 and t = 12. Now, we 

set the radius for decoding sphere to 13, which exceeds the errors that can be 

corrected by conventional algebraic decoder, and the transmitted codeword suffers 

13 errors. The decoding sphere has high probability of containing more than one 

codeword as discussed above. The decoding sphere may contain two codewords: 

the transmitted codeword and one other, a codeword at a distance of 12 or 13 from 

the received word. We assume that all error patterns of weight 13 are equally likely, 

the probability of this unfavorable happening is 2.08437 x 10-12 . It means that t he 

sphere usually contains only one codeword, and withal, the unique codeword is t he 

most probable to be the transmitted codeword. In short, the code is capable of 

correcting virtually all patterns of 13 errors , despite having a conventional error­

correcting capability of only 12. 

The example indicates that it might be possible to design a decoding algo­

rithm for RS codes, which is more formidable than the conventional decoder since 

a greater capability is anticipated. The Guruswami-Sudan (GS) list decoding al­

gorithm is proposed in [9] due to this fact and based on research done before such 

as [6] , [7] and [8]. The GS list algorithm is proved to have the greater capability 
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than conventional decoding algorithm for most of codes. The number of errors 

that can be corrected by the GS list algorithm has up to tas as below: 

tas = n - 1 -l J (k - 1) n J . (2.3.1) 

With the increase of multiplicity that is one of the determinants of the complexity 

of the GS algorithm, the error-correction capability of the GS algorithm is also 

increased, and we denote it as tm . The main idea of GS list algorithm is to recon­

struct the generator polynomial for received sequence through using a polynomial 

interpolation , which is associat8d with the reliability contributed by soft informa­

tion. Some basic concepts and background are indispensable for comprehending 

the GS algorithm and need to be introduced first. Consider a bivariate polynomial 

constructed in finite field as follows: 

00 00 

P (.x, y) = L LPi,jXiyj 
i=O .i=O 

(2.3.2) 

where Pi,j are the coefficients of the polynomial. We set Wx and Wy to be non­

negative real numbers. The (wx, wy) -weighted degree of P (x, y) , which we denote 

it as deg(w,",wy
) (P) , is defined as the maximum value over all the numbers iwx+jwy. 

To define the (1L, v)' th formal derivative of a polynomial P (x, y) over GF (2Q) , we 

use the Hasse derivative in [15] . The (1L, v)' th Hasse derivative of a bivariate 

polynomial P (x, y) is shown as: 

p lu,v] (x, y) = L (i) ( j ) Pi,jXi-uyi-v 

i2:uU.i 2:v 1L v 
(2.3 .3) 

where 1L, v ~ O. As a reason for using polynomial interpolation to build the polyno­

mial, we need to ensure that the bivariate polynomial passes through the definite 

points . We define that a bivariate polynomial P (x, y) passes through a point 

(xi,Yi) with multiplicity m if p [u,v] (,Xi,Yj) = 0 for all integers 1L,V, such that 

1L + v < m. Consider a codeword C for (n, k) RS code is transmitted and the 

hard decision is R, therefore R = C + E, where E is the error pattern. The 

codeword is created by the evaluation map encoding based on Equation(2 .1.9) as 
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Ci = .9 (.'ri) ,0 ::; i < n. After the R is obtained, a list of points is formed by the Xi 

and the received symbol Yi as follows: 

(2 .3.4) 

If E = 0, then we have Yi = c~, = .9 (Xi) , 0 ::; i < n. The polynomial interpolation 

is used to restructure the bivariate polynomial, P (x, y) = Y - .9 (x), which passes 

through all the points in L with their respective multiplicities m. Guruswami and 

Sudan imply that the utilization of soft information has the possibility to be mag­

nified in [9] by allowing each point on the polynomial interpolation to have its 

own multiplicity. The multiplicity is an adjustable integer parameter and reflects 

the reliability of received symbol. The multiplicity can decide the decoding radius 

tm , which influences the error-correcting capability of the GS algorithm. Given a 

received word, the GS algorithm returns a list which includes all codewords with 

distance tm or less from the received word. So the m is also regarded as a user­

selectable complexity parameter. The error-correcting capability of the GS list 

algorithm increases as the m increases , but unfortunately, the decoding complexity 

is also increased. The method for attaining multiplicities from a received sequence 

is diversiform and still being looked at by researchers. As a result of the employ­

ment of soft information in the decision of multiplicities, the GS list algorithm is 

not an unsophisticated algebraic decoding algorithm but an algebraic soft-decision 

decoding algorithm. After passing through all the points in L, an interpolation 

polynomial is acquired as the ultimate bivariate polynomial. The GS list algo­

rithm ensures that under certain conditions , the codeword generator polynomial 

lives inside the interpolation polynomial. So the interpolation-based list decoding 

algorithm can be the alias of the GS algorithm. The GS list algorithm, which is 

the version that admits the different multiplicities for each point , concludes two 

main steps as below: 

1. Interpolation Step: Build the list of points L , compute the interpolation 

polynomial P (x, y) = Y - .9 (x) of minimal (1, k - 1) - weighted degree that 
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passes through all the points in the list with their respective multiplicities 

m. 

2. Factorization Step: Given the interpolation polynomial P (x, y), identify all 

the factors of P (x, y) as the form y - f (x) with degf (x) < k. The algorithm 

produces a list of codewords according to these factors. 

It is fortunate that the complete factorization of P (x, y) is not necessary since the 

degree of generator polynomial is less than k. 

The GS list algorithm, which is capable of correcting more errors than conven­

tional algebraic decoding algorithm, is introduced in this section as an algebraic 

soft-decision decoding algorithm. Some notation and facts are given for prepara­

tory data structure for the algorithm. Finally, the GS list algorithm is concluded 

with two main steps: interpolation step and factorization step. 

2.4 The Koetter-Vardy list algorithm 

Since the GS list algorithm has the more powerful error-correcting capability than 

the conventional decoding algorithm, it has been actively researched. It is a pity 

that the main focus of [8] and [9] is to establish the existence of the interpolation­

based list decoding algorithm, and not to devising practical implementations. How­

ever , several later authors, particularly Ralf Kotter, Alexander Vardy, R. M. Roth 

and G. Ruckenstein find the realizations for the important steps in the GS list 

algorithm, thus promoting the GS algorithm to be a practical implementation for 

digital communication and data-storage system. 

The Koetter-Vardy list algorithm proposed by Kotter and Vardy in [13], which 

includes the method for the acquirement of unequal multiplicities related to their 

reliability, and the realization for interpolation step, is recommended in this section. 

The contribution of R. M. Roth and G. Ruckenstein for the actualization of the 

factorization step is indispensable and deservedly occupies a position in this section. 

We divide the applied Koetter-Vardy list algorithm into four steps since every 
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step accomplishes an unattached function: reliability matrix, multiplicity matrix, 

the Koetter-Vardy 's interpolation step and the Roth-Ruckenstein solution for the 

factorization step. 

2.4.1 Reliability matrix 

The reliability matrix created by all possible transmitted and received symbol pairs 

including the hard decision is the preparation of a multiplicity matrix. Consider a 

codeword of (n, k) RS code in GF(q) is transmitted through a memoryless channel. 

The reliability for a received symbol {3j according to the symbol ai was sent is the 

a posteriori probability (APP) as follows: 

7ri ,j = p,. (ai sent I (3j received) (2.4.1 ) 

where 0 ~ i < q and 0 ~ j < n. Related to the noise probability density function 

(PDF) is 'rJ ({3j I ad , the 7ri, i is calculated as follows by Bayes's Rule: 

(2.4.2) 

The reliability matrix II is constructed by 7ri,.i and has the size of (q x n) and 

columns sum are unity, which is judged by the property of 7ri,j. The hard decision 

vector r = (ro , rl , · .. ,Tn-I) also stay in the matrix with the following value: 

i = {O 1 ... n} . " , (2.4.3) 

2.4.2 Multiplicity matrix 

The multiplicity matrix is translated from the reliability matrix and the procedure 

is similar to the reliability matrix and is quantized to some positive real number. 

The different approaches of quantization process dissimilar multiplicity matrix. 

However, the diversified multiplicity matrixes corresponds to the discrepant reflec­

tion degree for the reliabilities of (q x n) symbols despite all of multiplicity ma­

trixes having the abili ty to mirror the soft information in received sequence. Two 

algorithms for constructing the multiplicity matrix are introduced in this section. 
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Algorithm 1 

Algorithm 1 proposed in [13] is a soft-decision front end for generating the multi­

plicity matrix M from II subject to the constraint s, which is the summation of 

the value for non-zero items in lVI. The adjustable parameter s, which is one of 

two factors that decide the complexity of the algorithm, and the other one is the 

length of the codeword, is calculated as below: 

q-1n-1 

s= LL mi,j. 
i=O j=O 

Algorithm 1 is shown as follows according to the constraint s. 

(2.4.4) 

Multiplicity Algorithm 1 for calculating Multiplicity Matrix from reliability 

matrix subject to complexity constraint s 

'1- 1 71.-1 
Choose a desired value for s = 2: 2: mi,j 

i=O j=O 

[1* ~ I1; M ~ 0 

while s > 0 do 

Find the position (i , j) of the largest entry 7r7,.i in I1* 

7r:1· ~ 7ri:+i 2; mi J' ~ mi j + 1; s ~ s - 1 
" I. 1111 ,.7 ' , 

end while 

The complexity of algorithm 1 is considerable since it has to search through a 

(q x 71,) reliability matrix s times. Consider the performance of the list decoder is 

the same as the hard-decision decoder we need s ~ n. Therefore the complexity of 

algorithm 1 is 0 ((71, + 1) (71,) (71,)) = 0 (71,3). 

Algorithm 2 

Algorithm 2 proposed in [14] is a simplified version of algorithm 1 and has the 

lower complexity 0 (71,2) . Algorithm 2 is derived based on the situation that the 

reliability matrix II has the entry that is equal to 1 for almost every column at 

high SNRs and it wastes the memory and computational resources to search and 
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store every zero entries in II . Algorithm 2 is constructed by a tunable parameter 

A with a signal pass through II. 

Algorithm 2 is shown as follows according to the parameter A. 

Multiplicity Algorithm 2 for calculating Multiplicity Matrix from reliability 

matrix II subject to parameter II 

for i = 1 to n do 

for j = 1 to q do 

m · . f- lAn · .J 2,.1 Z,) 

end for 

end for 

Although algorithm 2 has less complexity than algorithm I , algorithm 1 is still 

worthwhile because it has the optimal search method for performance. After the 

comparison between two algorithms, the multiplicity matrix constructed by algo­

rithm 1 has more accurate reflection for reliability matrix than algorithm 2 since 

algorithm 1 arranges the symbols in II to a queue in turn. So algorithm 1 has a 

better performance than algorithm 2 in the condition that the complexities of two 

algorithms are the same. Unless specifically indicated otherwise, algorithm 1 is 

applied in this dissertation. 

2.4.3 Interpolation step 

The interpolation step is the key step for the GS list algorithm and was firstly 

realized by Koetter. The Koetter 's solution for interpolation problem is introduced 

and applied in this thesis based on the consistency of the KV soft-decision front 

end although some new solutions are proposed by other authors, particularly the 

Feng-Tzeng algorithm in [16]. 

As mentioned in the GS list algorithm, the purpose of the interpolation step 

is to create a bivariate polynomial that passes through all symbol pairs given by 
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algorithm 1 with their respective multiplicity. Then the final polynomial must 

satisfy the following equation: 

p [u,v] (Xi , Yi) = 0 U + v < mi,.i (2.4.5) 

for all symbol pairs in L. The complexity of KV interpolation step is measured 

by the number of the equations or constraints that need to be satisfied for the 

interpolation polynomial. Based on the (q x 11,) multiplicity matrix, the complexity 

of the KV interpolation step, which is also called the cost of interpolation step, is 

derived as: 
1 q-l n-l 

C = 2 I: I: mi,j (mi,j + 1). 
i=O .i=O 

(2.4.6) 

Based on the GS list algorithm, the maximum number of generator polynomials 

that can be factorized from the interpolation polynomial is restricted as following 

value: 

l1 + VI + .8~ j 
d = kl_1 

y 2 . (2.4.7) 

This value is also the restriction of the maximum degree of Y in interpolation 

polynomial. Then the maximum degree of X in interpolation polynomial is limited 

according to the dy as follows: 

(2.4.8) 

At the end of every interpolation iteration, the KV interpolation step produces 

dy + 1 polynomials that all satisfy the constraints. As the reason for reducing the 

complexity, the polynomial has the smallest (1, k - 1) - weighted degree is chosen 

to be the final interpolation polynomial. Obviously, the complexity of this step 

is decided by the multiplicity m i,j and the length of the codeword. From the 

Equation(2.4.7) , we get the cOilclusion that mi,.i also has the ability to determine 

the maximum degree of y in interpolation polynomial, which can be explained to 

the number of factors in interpolation polynomial. It means that as the multiplicity 

increases the more candidate codewords are obtained. As mentioned in section 2.3, 

the decoding radius is assuredly extended and the error-correcting performance is 
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improved. So one hesitates to choose the multiplicity to balance the complexity 

and the performance. 

The algorithm of the KV interpolation step is shown as follows. 

Interpolation Algorithm 

G <-- {gO = 1, gl = y , g2 = y2 , .. . ,gd1/ = yd1/ } 

deg(go) = 0, deg(gl) = k - 1, deg(g2) = 2(k - 1), ... , deg(gd,J = dy(k - 1) 

for each point (x.i' Yi) with multiplicity mi,j > 0 do 

for a <-- 0 to mi,j - 1 do 

for [3 <-- 0 to mi,j - a-I do 

1 <-- min {g E G such that g[o,,8J (x.i' Yi) i= O} 
c1eg(1,k-1) 

for 9 E G such that 9 i= 1 do 

9 <-- 9 . 1 [a,,8J (X.i' Yi) - 1 . g [a,i3] (Xj , Yi) 

end for 

1 <-- (x - x.i) I , deg(f) + + 
end for 

end for 

end for 

P(X ,y) = min {G} 
c1eg(1 ,k-1) 

2.4.4 Factorization step 

The intention of the factorization step is to find all generator polynomials that 

exist in the interpolation polynomial P (x, y). The Roth-Ruckenstein (RR) algo­

rithm in [23], which is the most efficient algorithm currently known for solving 

the factorization problem, is introduced as one significant portion of the KV list 

algorithm. 
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The algorithm of RR factorization step is shown as follows. 

Factorization Algorithm 

begin (GivenP (x , y) , k) 

fa (0) = Null , deg (0) = -1 , Po (x , y) = P (x, y) , t = 1, u = 0 

DFS (u) 

end 

/ * D F S (u) : Depth - first - search beginning at u * / 
if Pu (x ,O) = ° 

output f~L (x) = Caeff (u) .xdeg(u) + Caeff (fa (u)) .xcieg(j,,(u)) + ... 

else if deg (u) < k 

R = Chien search (Pu (0, y)) 

for T E R do 

v = t , t = t + 1 

fa (v) = u, deg (v) = dp,g (u) -1- 1, Caef! (v) = T 

Pv (x,y) = ((Pu (x,xy + T))) 

DFS (v) 

end for 

end if 

end if 

The ((P (.x , y))) is defined as: 

((P(x, y)) ) = P~:Y) (2.4.9) 

and d is the maximum value that satisfies xcilP (x, y) . The depth-first-search 

algorithm adopted in factorization step is described in [17]. Figure 2.1 shows us 

the procedure of the KV list algorithm. 

An example in small field is necessary to demonstrate how the KV list algorithm 

works. 
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output 

Figure 2.1: The Koetter-Vardy list algorithm 

Example 2: Consider a (7,5) RS code, which has the minimum distance dmin = 

3 and the conventional decoder which has capability to correct single symbol error. 

The information sequence that we want transmitted is: 

j . (1 5 1 2 3) . = ,a, , a ,a . 

Then the generator polynomial it> f (x) = 1 +a5x+x2+a2x3+a3x4 if the evaluation 

map encoding is adopted. Consequently the codeword is: 

The codeword is transmitted bit-by-bit using BPSK modulation over an AWGN 

channel and the reliability matrix is built through the received sequence as follows: 

0.8244 0.0000 0.0116 0.6032 0.0000 0.0000 0.7021 

0.1752 0.0000 0.0000 0.0000 0.2481 0.0000 0.2955 

0.0002 0.0001 0.9813 0.3881 0.0000 0.0070 0.0004 

0.0002 0.0242 0.0001 0.0053 0.0000 0.0017 0.0013 
II= 

0.0000 0.0000 0.0002 0.0000 0.0007 0.0005 0.0002 

0.0000 0.9274 0.0068 0.0034 0.0000 0.9211 0.0000 

0.0000 0.0472 0.0000 0.0000 0.0020 0.0696 0.0000 

0.0000 0.0012 0.0000 0.0000 0.7493 0.0001 0.0005 

The hard decision r , which is composed by the maximum reliability values in every 

column, is obtained as: 

r = (O ,a\a, O,a6,a4, O). 

The conventional decoding algorithm is incapable of decoding this received se­

quence and this conclusion is testified by checking the hard decision that has two 
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errors from the transmitted codeword. However, the KV list decoding algorithm 

exhibit it 's strength in this example. The multiplicity matrix is achieved in the 

first instance by running multiplicity algorithm 1 with s = 12: 

2 0 0 1 0 0 1 

0 0 0 0 0 0 0 

0 0 2 1 0 0 0 

0 0 0 0 0 0 0 
M= 

0 0 0 0 0 0 0 

0 2 0 0 0 2 0 

0 0 0 0 0 0 0 

0 0 0 0 1 0 0 

Then the cost of interpolation step is calculated as : 

1 7 6 

C = - LLm· (m · + 1) = 16 2 t,.1 t,.1 
i=O .i=O 

deservedly, the dll = 2 and dx = 9. The soft information of multiplicity matrix is 

summarized as three sets: support set, received set and multiplicity set as: 

support set : 

received set: 

( 
2 3 3 4 5 6 1,a,a ,a ,a ,a , a , a ) 

( 4 6 4 ) O,a ,a,O,a,a ,a ,0 

multiplicity set: (2,2,2, 1,1,1,2,1). 

The interpolation polynomial , which has the minimum (1 , 4) - weighted degree of 

p (x, y) among the (dy + 1) = 3 bivariate polynomials , restricted by dy and dx is 

produced by using interpolation algorithm according to the three sets as: 

p (x, y) = a 5x5y + ax9 + ay2 + a2x3y + a4x2y + a3x6 + a6xy + ax5 

+a5x4 + a6x3 + a4x2 + a6x + a. 

Next, We use RR factorization to find the roots of interpolation polynomial P (x, y) 

with the form y - f (x) where deg (f (x)) < k. There are two candidates for f (x) 

in the list: 

A (x) = 1 + ax2 + a4x3 + a3x4 

J2 (x) = 1 + a5x + .1:
2 + a2x3 + a3x4. 
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Then the corresponding codewords are obtained as: 

, 4 3 5 4 2 3) C1 = (a ,a,a ,a ,a ,a ,a 
, 4 4 C2 = (0 , a , a, a , 1, a ,0). 

After checking the probability of each candidate codeword through reliability ma­

trix II , the KV decoder output the 62 that is more likely and then the information 

sequence 12 is locked. So the KV list decoding algorithm is visible in this example. 

The KV list decoding algorithm, which is a practical implementation for the 

GS list algorithm, is illustrated in this section. The interpolation and factorization 

step are realized in practice and the function of the GS algorithm is accomplished. 

2.5 The Gross list algorithm 

As the interpolation and the factorization step are the most time-consuming com­

ponent of the KV list algorithm and the complexity, which is indicated as 0 (dyC 2) 

for interpolation step, is unacceptable if the large multiplicity is used to a long RS 

code , Warren J.Gross et al have published a reduced-complexity KV list decoding 

algorithm in [19]-[21] . The systematic encoding and reencoding scheme are used 

to reduce the complexity of the interpolation step and the factorization step in 

the KV list algorithm through reducing the number of symbols prepared for the 

two above steps. The systematic encoding is adopted in the Gross algorithm. The 

introduction of the Gross list decoding algorithm is given below. 

2.5.1 Reencoding 

After transmitting the codeword c over an AWGN channel, the hard decision is 

obtained as T = C + e, where e is the error sequence. The idea of reencoding is to 

reduce the number of received symbols based on their reliability. The first step is to 

partition the hard decision T into two sets, an unreliable set ( U) that includes n - k 

unreliable symbols and the reliable set (R) that includes k reliable symbols. Then 

apply the arbitrary-position systematic encoding, which the information appears in 
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arbitrary positions and can be implemented by an erasures-only RS decoder which 

has been proposed in [22], to the R set to get a reencoded codeword 'ljJ . Taking the 

difference between rand 'ljJ we get : 

(2.5.1) 

which is a codeword that has the same error pattern with r. However, the new 

codeword r' only includes at most n - k non-zero symbols due to the application 

of systematic encoding, and the k reliable symbols in r' are zeros . These k reliable 

symbols with zero value contribute an interpolation polynomial v (x)m, where m 

is the multiplicities of these symbols and v (x) is a simple univariate interpolation 

polynomial as follows: 

v(x) = IT (x-ai
) (2.5.2) 

iER 

because these symbols correspond to k interpolation points with a zero y-component. 

In [19], Gross sets the multiplicities of these k reliable symbols with the maximum 

multiplicity. 

2 .5.2 The simplified interpolation step 

To implement the simplified interpolation, consider the original set of polynomials 

G = {1 , y , ... , yd,, } where dy is the maximum degree of y. Based on the univariate 

polynomial created by the symbols in the set R, the starting polynomial set for 

simplified interpolation is: 

G' {() 111 ()111-1 ()I11-d " } = V X ,v X y, ... ,v X 11 y"11 

_ , ( .)111 {I y (11) 2 ( 11 ) d" } - u x , v(x) , v(x) , . .. , v(x) . 
(2.5.3) 

After changing variables iJ = y / v (x), we get a new starting set G = {I ,iJ, . . . , iJdY } 

and the weighted degree of the new variable iJ is: 

deg(1,k-1) (iJ) = deg(1,k-1) (y) - deg(1,k-1) (v (x)) = (k - 1) - k = -1. (2.5.4) 

Correspondingly, the new y-coordinates of the interpolation points are acquired as: 

(2 .5.5) 
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where y; are the y- components in 1". It is concluded that the simplified interpo­

lation step starts from the set G and applies the KV interpolation step to the n - k 

unreliable symbols (x, i)) with respect to the (I, -1) - weighted degree. After the 

simplified interpolation step the reduced interpolation polynomial is: 

dy 

F(x,i)) = ~ Wj (x)iJj. 
.i=O 

2.5.3 The simplified factorization step 

(2.5.6) 

The simplified factorization step is realized by applying the Roth-Ruckenstein al­

gorithm directly to the reduced polynomial F (x, i)). After the factorization step, 

a sequence {80 ,81,"', 81-1} which are the coefficients of 

j' (x) 
8 (x) = - (- ) v x 

(2.5.7) 

is obtained, where j' (x) is the generator polynomial corresponding to c' = c - 'l/J . 

From 1" = c' + e and 1'; = 0 ('i E R) we get: 

(2.5.8) 

If no error in position i E R then e i = 0 and j' (ai
) = O. Therefore (x - ai

) is a 

root of j' (x) , and for all non-error positions in R we get: 

j' (x) = II (x - ai)O (x). (2.5.9) 
iERB .t .e; =O 

Therefore, 

'. TI (x-o/)O(x) 
8 (X) = f (X) = --'CiE,-R--'CB.,-t. e...:..-; =_0---:--___ _ 

v(X) TI (x-ai ) 

o (x) 
(2.5.10) 

i ER 

We denote the denominator as A (x), which is an error-locating polynomial that 

can be efficiently reconstructed by the BM algorithm. The roots of A (x) indicate 

the error positions in set R. Based on the fact that most errors are occurred in the 

n - k unreliable positions, we only need to correct a few errors in R. Consequently 

fewer coefficients than the requirement of the KV list algorithm are demanded. 
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Figure 2.2: The Gross list algorithm 

In the Gross algorithm, only l = 2 f(k/n) tl coefficients are given after simplified 

factorization step. 

To get error values we use rule to the following equation: 

J ( ) _ D(x)v(x) 
j x - A (x) (2.5.11) 

and we get : 

(2.5.12) 

where v(l) (x) and A (1) (x) are the formal derivatives of v (x) and A (x). To put error 

values in their respective positions , we can get the error pattern for set R. The error 

pattern for the whole n positions is easily obtained by using the arbitrary-position 

systematic encoding and we denote it as e. The finally estimated codeword can be 

found by adding e and 't/J . 

Figure 2.2 shows us the procedure of Gross list algorithm. 

In the following example, we use the same information sequence of (7,5) RS 

code in the KV list algorithm to illustrate the Gross list algorithm. 

Example 3: Consider the information sequence f = (1, 0:5 , 1,0:2 , 0:3 ) and the 

corresponding codeword is C = (0: , 0:4
, 1, 0:5 , 1, 0:2 , 0:3 ) if the systematic encoding is 

used. The codeword is transmitted through AWGN channel with BPSK modula-
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tion and the reliability matrix is constructed by received sequence as: 

0.0087 0.2714 0.0043 0.0000 0.0003 0.5370 0.0001 

0.0001 0.0027 0.9914 0.0027 0.9168 0.0037 0.0284 

0.8422 0.0604 0.0000 0.0016 0.0000 0.0030 0.0032 

0.0014 0.5386 0.0000 0.0001 0.0000 0.4154 0.0000 
I1 = 

0.0123 0.0006 0.0011 0.1752 0.0707 0.0000 0.9678 

0.1333 0.1198 0.0000 0.0072 0.0000 0.0022 0.0000 

0.0020 0.0012 0.0000 0.8009 0.0009 0.0000 0.0005 

0.0000 0.0053 0.0032 0.0124 0.0113 0.0027 0.0000 

The multiplicity algorithm 1 is applied with s = 12 and the multiplicity matrix is 

as: 

0 0 0 0 0 1 0 

0 0 2 0 2 0 0 

2 0 0 0 0 0 0 

0 1 0 0 0 1 0 
M= 

0 0 0 0 0 0 2 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

The multiplicity matrix is also expressed as following by ignoring the zero entries 

in matrix: 

support set: 

received set: 

( 2 3 4 5 5 6) 1,a ,a , a , a , a , a ,a 

( 2 1 5 1 0 2 3) a , a , ,a , , ,a , a 

multiplicity set: (2,1 , 2, 1, 2, 1, 1,2). 

The conventional decoding algorithm also report failure for this case because the 

hard decision is r = (a, a 2
, 1, a5

, 1, 0, ( 3 ) , which has symbol distance 2 from the 

transmitted codeword. Next, the reencoding scheme is applied to compress the list 

of interpolation points through choosing k received symbols with distinct support 

symbols in the received set as: 
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R set U set 

support set 1 a 2 a 3 a 4 a G a a 5 

received set a 1 a 5 1 a 3 a 2 0 a 2 

multiplicity set 2 2 1 2 2 1 1 1 

and the reencoded codeword 't/J is as (a, a4
, 1, a5

, 1, a2
, (

3
) , where the received 

symbols in reliable set appear in the related positions. In this example we use 

reencoding scheme to the received set not the hard decision since the one support 

symbol includes two received symbols. After subtracting with the related symbols 

from 't/J, the unreliable set becomes: 

unreliable support set: (a , a5 , ( 5 ) 

unreliable received set: (a, a2 , 0) . 

The v (x), which is the univariate initial interpolation polynomial for k reliable 

symbols in simplified interpolation step, is obtained as: 

The final received symbols that are sent to the Gross interpolation step are using 

final support set: (a, a5 , ( 5 ) 

final received set: (a, aG, 0) . 

The reencoding technique does not change the values in multiplicity set. Then the 

interpolation step is performed with final support and received set that includes 

only three symbols based on the (1, -1) - weighted degree. After C' = 3 iterations, 

the simplified interpolation polynomial is as follows: 

After calculating l = 2 f(k/n) tl = 2, we obtain the factors from P (x, f)), which is 

also the syndrome polynomials for BM algorithm, as: 

5dx) = 0 

52 (x) = a5 x + a2
. 
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The error patterns are achieved when the D (:r) and A (x) are unfolded as: 

el = (0,0,0,0,0,0,0) 

e2 = (0, a, 0, a3
, 0, a2

, 0) . 

Then the Gross list decoder outputs a list which includes the following two code­

word: 

2 2 3) C2 = (a,a ,1,a , 1,0,a . 

C1 is chosen after calculating its distance from received sequence using the reliabil­

ity matrix and the information sequence is easily discovered as j = (1 , a5
, 1, a2

, (
3

) 

due to the implementation of systematical encoding. 

This example shows us that the Gross list algorithm requires less computation 

in interpolation and factorization step than the KV list decoding algorithm. 

The idea of the Gross list algorithm is similar to the Ordered statistic algorithm 

that was proposed in [24]. Construct a codeword from the reliable received symbols 

and apply the soft information in the other received symbols to adjust the con­

structed codeword. This notion is actualized as the result that the probability of 

reliable symbol occurs the error is decreased as the signal-to-noise-ratios increase. 

In [19], Gross compared the complexities between the original interpolation step 

and the simplified one, he indicated that 0 ( (n~k) 2) speedup is achieved in the 

simplified interpolation step. Also, the speedup in the simplified factorization step 

is palpable as 0 C!l2r~k)~)tln) ~ 0 (n::-'/c)· The following simulation results show 

us the Gross list algorithm has the same performance compared to the KV list 

algorithm. 

We simulate both the KV and the Gross list algorithms in order to show the 

differences between their performances and complexities using (7,5) and (15,7) RS 

codes. s = 12, and s = 25 are used for (7,5) and (15 ,7) RS codes in our simula­

tion, respectively. Although list algorithm only can correct single error for (7,5) 

RS code due to tcs = 1, which is the error-correcting capability of conventional 

decoding algorithm, the performance of the KV and the Gross list algorithm is still 
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Figure 2.3: The simulation results of the KV and the Gross algorithm for (7,5) RS 

code 

better than the conventional algorithm. This is explained by dll that is decided by 

C. After checking the most received sequence, the KV list decoder produces two 

candidate codewords that is one more than the output of conventional decoder. 

It means that the search scope is enlarged since the tm is greater than tcs for 

s = 12. For (15 ,7) RS code, the list algorithm can correct one more error than 

conventional decoding algorithm, which corresponds to tcs = 5. Figure 2.3 and 

Figure 2.4 show that the performance of the Gross algorithm is exactly the same 

as the KV algorithm for both codes. 

The Gross list algorithm, which incorporates the BM decoding algorithm and 

the KV list algorithm with a reencoding scheme, is introduced in this section. 

The complexities and performances between the Gross and the KV algorithm are 

compared with numerical and simulation result . 

Summary 

This chapter introduces two decoding methods of RS codes. The BM decod­

ing algorithm, which is the conventional decoding algorithm for RS codes, is also 
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Figure 2.4: The simulation results of the KV and the Gross algorithm for (15,7) 

RS code 

illustrated using an example. The evolution process of the list algorithm beyond 

the classical bound t = (dmin - 1)/2 is represented by introducing the GS list algo­

rithm, the KV list algorithm and the Gross list algorithm. The GS list algorithm 

theoretically proves the existence of the list algorithm, while the KV list algorithm 

is the practical implementation including the KV soft decision front end, the KV 

interpolation step and the RR factorization step. The Gross list algorithm is a 

simplified version through imposing the BM decoding algorithm. 
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Part II 

The Hybrid Algorithm Based on 

the Chase Algorithm 
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Chapter 3 

The Hybrid List Decoding and 

Chase-Like Algorithm of 

Reed-Solomon Codes 

Although the list algorithm has better performance than the conventional decoding 

algorithm, there is still a considerable gap between the performance of the list al­

gorithm and MLD. In [33], the author proposed a soft-decision decoding algorithm 

which applied the Chase algorithm to list decoding algorithm. Better performance 

was achieved through iteration. In this chapter, we present a hybrid list decoding 

and Chase-like algorithm. A criterion for producing test error patterns for the KV 

list decoding algorithm is proposed to differentiate our hybrid algorithm from the 

hybrid algorithm proposed in [33] . We apply different Chase algorithms to the KV 

soft-decision front end. Consequently, we are able to provide a more reliable input 

to the GS list algorithm, and achieve better performance. 

3.1 The Chase algorithm 

The Chase algorithm [25] was proposed in 1972. Many authors have attempted to 

improve the Chase algorithm and part of their contributions have been proposed 
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m [26] and [27]. The main idea of the Chase algorithm is to create test error 

patterns for hard decision according to the reliability of the received sequence and 

then obtain the candidate codewords through adding the test error patterns to t he 

hard decision. Finally, after comparing the distance of all candidates of codeword 

from the received word, the Chase algorithm outputs the codeword with the min­

imum distance from hard decision. Due to the different methods that produce t he 

test error patterns, the Chase algorithms has three classes: Chase-I, Chase-2 and 

Chase-3. For binary case, the Chase algorithm finds several unreliable bits below a 

given number , and then inverses the different bits to create the corresponding can­

didate received word. For non-binary case, the Chase algorithm needs to change 

the chosen unreliable symbol to another symbol based on the bit reliability or sym­

bol reliability. In Chase algorithms, we need to consider the minimum distance of 

the codeword because the maximum errors that can be corrected are (dmin - 1)/2. 

The Chase algorithm is known as an efficient way to improve the decoding 

performance based on the reliability drawn from a received sequence. In [28]-[32], 

the authors utilize the reliability to create more candidates of received sequence, in 

an attempt to achieve better performance. In our algorithm, we attempt to bridge 

the Chase algorithm and the KV soft-decision front end. We apply the Chase 

algorithms to the received bit based on their reliabilities. In our algorithm, we do 

not need to take the minimum distance into account due to the list algorithm. We 

imagine that the application of the Chase algorithms is to alter the position of the 

center of the search circle if the list algorithm is considered to create a decoding 

sphere. 

3.2 The hybrid KV list decoding and Chase-like algorithm 

Applying Chase-like algorithms in linear block codes is an efficient approach to 

improve the decoding performance. First , let us look at an example of the KV list 

decoding algorithm over a small field. 

41 



Example 4: Consider a (7, 5) RS code over GF (8) . A classical hard­

decision decoder is able to correct one symbol error. Suppose the message is f = 

(0:,0:,0:3,0,0:), the generator polynomial is f(x) = 0: + o:x +0:3 X2 +o:x
4 and the cor­

responding codeword using the evaluation map encoding is (1,0:4,0:2,0:6,0,0:3,0:5). 

The codeword is transmitted bit-by-bit using BPSK modulation over an AWGN 

channel. After the KV soft-decision front end with s=12, we get a support set, 

received set and multiplicity set that are required by the KV list decoder as follows: 

support set: 

received set: 

(1 2 3 4 5 6 6) ,0:,0: ,0: ,0: ,0: , 0: ,0: 

3 4 6 3 3 5) (0: ,0: ,0,0: , 0,0: ,0: ,0: 

multiplicity set: (1 , 2, 1,2,2,2, 1,1). 

After the interpolation and the factorization, we obtain two candidates: 

fl(X) = 0:4 + 0:2X + 0:4 X 2 + X4 

h(x) = (16 + 0:4X + 0:6X2 + 0:3.1:3 + 0:5 X4. 

It is obvious that the KV list decoder cannot output the correct generator poly­

nomial because the number of symbol errors exceeds the error-correcting ability 

based on s = 12. In this case the correct codeword polynomial "lives outside" 

the interpolation polynomial. In terms of geometric meaning, the KV list decoder 

cannot factorize the right curve because too many incorrect or disturbing points 

exist . 

Now let us look at a test. We are able to obtain the reliability based on the 

absolute value of the received sequence. At first we search the most unreliable bit 

in the received set except for the received symbol whose support set is 0:6 . Then 

we find that the bit in the received symbol, whose support symbol is 1, is the most 

unreliable. We invert this bit to get a new received symbol. Now the new input of 

the KV list decoder is 

support set : 

received set: 

(1 2 3 4 5 6 6) ,0:,0: ,0: ,0: , 0: ,0: ,0: 

( 406 3 3 5 1,0:, , 0: , 0, 0: , 0: , 0:) 

multiplicity set : (1,2, 1,2, 2, 2, 1, 1). 
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We use "multi-points" to define the received symbols whose support symbol is 

the same, and use "low-multiplicity-points" to define the received symbols whose 

multiplicities are less than the maximum multiplicity except for multi-points, and 

use "high-multiplicity-points" to define the received symbols whose multiplicities 

are equal to the maximum multiplicity. We can also call the high-multiplicity­

points reliable points. Then we call the other received symbols, except for reliable 

points, unreliable points. 

In this example, the multi-points are a 3 and a5
, the low-multiplicity-points are 

1 and 0, the high-multiplicity-points or reliable points are a4
, a6

, 0 and a 3 . 

After that, we get another two candidate polynomials: 

JI(x) = a + ax + a3 x2 + ax4 

h(x) = a 4 + a2x + a4x2 + X4. 

After we change one unreliable bit in the received word, the KV list decoder will 

output the accurate generator polynomial. The number of error symbols is less 

than the error-correcting ability based on s = 12. 

Through this test, we conclude that we can change the received set based on 

their bit reliabilities using the Chase algorithm. We obtain the separate candidate 

codeword polynomials from these received sets, respectively. That is, the search 

scope of the KV list decoding algorithm is enlarged. 

In the previous example, we do not consider the multi-points because the KV 

list decoding algorithm has already taken them into account. In the other words, 

the list algorithm pays more attention to multi-points than the other points. If the 

KV list algorithm fails, the probability of errors coming from multi-points is very 

small. 

The hybrid KV list decoding and Chase-like algorithm contains the following 

steps: 

1. Implement the KV soft-decision front end to obtain support set, received set 

and multiplicity set. 
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2. Calculate the number of multi-points in the output of the KV soft-decision 

front end. As long as we find that several received symbols, whose support 

symbols are the same, the number of multi-points increases by one. We 

denote it as N m1Llti . 

3. Calculate the number of low-multiplicity-points in the output of the KV soft­

decision front end. We denote it as N low ' 

4. If Nm1Llti + N low :s; tas, use the Chase-like algorithm for high-multiplicity­

points. 

5. Else use the Chase-like algorithm for both low-multiplicity-points and high­

multiplicity-points . 

6. Output all the received set, the corresponding support set and multiplicity 

set to interpolation step. 

7. Interpolation step. 

8. Factorization step. 

9. Compare the probability of all candidate codewords created by different re­

ceived set and output the most likely one. 

In the above algorithm, the output of the KV soft-decision front end leads to two 

different scenarios , N multi + N low :S tas and N"11Ilti + N low > tas. We will discuss 

them separately. 

If Nm1Llti + N low :S tas, it means that the number of unreliable points does not 

exceed the error-correcting capability. In other words, these unreliable symbols are 

taken care of by the list decoding algorithm. Even if all the unreliable symbols 

are incorrect, the list decoding algorithm can still generate the right codeword 

polynomial. In this scenario, the errors coming from reliable symbols are the main 

reason for the decoding failure. So we apply the idea of the Chase algorithm to 
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reliable symbols in order to obtain more correct received sets corresponding to the 

same multiplicity. 

If Nmulti + N 10w > tcs , it means that the number of unreliable symbols exceeds 

the error-correcting capability. If all these symbols are incorrect, the list decod­

ing algorithm cannot output the correct codeword. For this scenario we have to 

concentrate on both low-multiplicity-points and high-multiplicity-points. Because 

of the reason we have mentioned before, we drop the multi-points. So we apply 

the Chase algorithm to both kinds of points. Before we invert the unreliable bits, 

we must make it clear which kind of symbols we should change in the first place, 

low-multiplicity-points or high-multiplicity-points. We can extend the search scope 

into high-multiplicity-points hy changing the unreliable bits. In order to improve 

the search scope, changing the unreliable bits in high-multiplicity-points is better 

than in low-multiplicity-points. This implies that we can obtain more candidates if 

we choose high-multiplicity-points. It seems that we should change unreliable bits 

in high-multiplicity-points. But at high SNRs, we draw different conclusions . As 

the SNR increases , the high-multiplicity-points (reliable points) become more and 

more "reliable". The probability that the reliable points are transmitted correctly 

is very large. The performance improvement is marginal even if we invert the bits 

in the reliable points. In this paper, we pay attention to low-multiplicity-points 

first at high SNRs. 

Another example that is parallel with the previous example is provided to give 

us a deeper insight into the above conclusion. 

Example 5: Consider a (7,5) RS code, suppose the information sequence is 

f = (cx , cx,O , cx , I) , the codeword is C = (CX3,CX4,CX ,O, CX2 , CX4,CX5). The codeword is 

transmitted bit-by-bit using BPSK over an AWGN channel. The received sequence 

IS: 

Re = (-1.0674 , -0.7512, 1.0186, 0.4176, 0.8236, -1.2177, -1.7698, 

1.3855, -0 .8407, -1.2332, -0.4071,0.0489, 0.2635, -1.0172, 

-1.7381 , 1.4990,1.3324, -1.3438, 0.6284,0.4993, 1.6153) 

through AWGN channel with the BPSK modulation. After applying the KV soft-
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decision front end, the three sets are shown as: 

(1 2 3 4 5 6) support set: ,a, a ,a ,a ,a ,a 

received set: (1 , a4
, a, 1, a2

, a4
, a5

) 

multiplicity set: (2,2,2,1,1 , 2, 2). 

Because two errors occurred in the received word and one of them has the maximum 

multiplicity, the KV list decoder cannot decode this received sequence. If we apply 

the Chase algorithm, we get the new received set which is given as: 

The new received set is also useless for successful decoding because the error with 

maximum multiplicity still exists. 

We examine the received set in example 5 again . If we create the test error 

pattern only focusing on the high-multiplicity-points, the Chase algorithm is also 

useless for decoding as all high-multiplicity-points are correct. Example 5 mostly 

happens at low SNRs. As the SNR increases, errors occurred in received set are 

similar to the example 4. Example 4 confirms Nmulti + N10w > tGS and example 5 

confirms Nmulti + N10w ::; tGs. So our method for choosing unreliable bit is optimal. 

Figure 3.1 shows the results of our hybrid algorithm. We simulated 4-bit hybrid 

algorithm and I-bit hybrid algorithm. For comparison, the simulation results of 

two different methods for choosing the unreliable bit are also shown in Figure 3.1. 

To apply the Chase algorithm, we denote the method which focuses on the high­

multiplicity-points as contrast 1, the method focuses on all points as contrast 2. 

Due to more codewords being generated if we only focus to the high-multiplicity­

points, the performance of contrast 1 is better than our hybrid algorithm at low 

SNRs. As the SNR increases, the high-multiplicity-points also become more re­

liable, the enhancement through using contrast 1 decreases. So the performance 

of contrast 1 approaches our hybrid algorithm at high SNRs, eventually the per­

formance of our hybrid algorit.hm exceeds the contrast 1. The performances of 

contrast 2 are always inferior to the hybrid algorithm since the larger decoding 
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Figure 3.1: The simulation results of the hybrid KV list decoding and Chase-like 

algorithm for (15 ,7) RS code 

sphere is reached in the hybrid algorithm by using different selective methods from 

contrast 2 if Nmulti + N10w :S tGs. 

In this section, a hybrid KV list decoding and Chase-like algorithm are pre­

sented. The basic idea of this algorithm is to invert the unreliable bits in the 

received set. In the proposed algorithm, we discuss two situations: the number of 

unreliable symbols exceeds and does not exceed the error-correcting capability of 

the list decoding algorithm and those kinds of points with priorities for changing 

unreliable bits corresponding to every situation. After using the Chase algorithm 

to the KV soft-decision front elJcl , we obtain more received sets and accordingly ob­

tain more candidates. As the search scope is extended, the transmitted codeword 

is easily recovered. 
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3.3 The hybrid Gross list decoding and Chase-like algo­

rithm 

Although the application of the Chase algorithm brings a large decoding gain, the 

complexity also exponentially increases because the KV algorithm has to produce 

interpolation polynomials after C iterations which are calculated by Equation 2.4.6 

for each candidate of received set. In [33], the author also attempted to combine the 

Chase algorithm and the Gross list decoding algorithm for reduction of complexity. 

Assume the received set has the single multiplicity ms , if b bits in different symbols 

are chosen, then the number of constraints for the interpolation step is given as: 

1 q-l n-l 

CI<V = "2. 2b L L mi,j (mi..i + 1). 
i=O .i=O 

(3.3 .1) 

In this section we discuss how to combine the Gross list decoding algorithm with 

the Chase algorithm. The reencoding scheme in the Gross algorithm may reduce 

the total iterations. 

The hybrid Gross list decoding and Chase-like algorithm includes the following 

steps: 

1. Implement the KV soft-decision front end to obtain support set, received set 

and multiplicity set . 

2. Apply the reencoding scheme to divide the received set into two sets: reliable 

set (U) that we also denote it as set 1, and unreliable set (U). 

3. Apply the Chase algorithm to the unreliable set. Then the unreliable set 

can be further subdivided into two sets: the set that includes all bits that 

are chosen by the Chase algorithm, which we denote as set 2; and the set 

includes the remaining entries in unreliable set, which we denote as set 3. 

4. Start the simplified interpolation step to obtain the polynomials for set 3 and 

store them. Accomplish the remaining iterations through a Tree scheme that 

will be proposed later. 
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5. Simplified Factorization step. 

6. Compare the probability of all candidate codewords created by different re­

ceived set and output the most likely one. 

In the proposed algorithm, the hard decision is substituted by the received set 

since the situation that a single support symbol matches multi received symbols, 

which we denote as multi-points , exists in practices. 

In the proposed hybrid algorithm, we apply the Chase algorithm after the 

reencoding step. It means that the Chase algorithm is applied to only n - k 

symbols, and not all n received symbols. Actually, the test error patterns created 

in this method are less reliable than firstly using the Chase algorithm to find the 

unreliable bits among the overall received bits. If we chose the latter method 

to produce the test error patterns, then we have to build v(x) and 7f; for every 

candidate received set. Simulation results in section 3.4 show that the performance 

gap between two methods is very small. So we give the reencoding step priority to 

tradeoff performance with decoding complexity. 

The tree scheme applied in the proposed algorithm is a technique by using 

the memory to minimize the number of iterations. Consider Chase-2 algorithm is 

employed and set the number of bits that are chosen by Chase-2 algorithm to b, 

thus, the subsets for set 2 are created. We denote an ideal situation that assumes 

these bits are distributed in diverse received symbols and the multiplicities for the 

symbols in unreliable set are all equal to the minimum value mmin. If we simply 

combine Chase-2 algorithm and the Gross algorithm under the condition that the 

received set does not contain the multi-points, the total cost of decoding is as 

follows: 

G - .)b-l ( - k) . ( . ) Cross - - ~ n m 1l11l1 mmll1 + 1 . (3.3.2) 

Although GCTOSS is much smaller than GJ(v since the k reliable symbols do not get 

involved in the iteration creating the interpolation polynomial for each candidate 

received set, the cost still needs to be reduced if the rate of code is small or b is 

large. The proposed hybrid algorithm reduces the iterations in the interpolation 

49 



The tirst degree 

The second 
degree 

The tl,ird 
degree 

The b th degree 

Figure 3.2: The tree scheme 

step through the intrinsic relations among 2b candidates of the received set. The 

polynomials produced by symbols in set 3 to accommodate all the 2b candidates 

of received set because set 3 is the same among all of 2b sets. 80 the hybrid 

algorithm firstly processes set 3 and stores the polynomials created by interpolation 

iteration. The remaining iterations are compressed by the tree scheme, which is 

shown in Figure 3.2. In Figure 3.2 , 0 means the original symbol in the received 

set . Consequently the more reliable symbol obtained through changing one bit is 

expressed by 1. After the iterations for one symbol in set 2, we store dy polynomials 

to prepare for the remaining candidates of the received set. Then the cost of 

interpolation step is reduced to: 

CCross+T = ~ ((n - k - b) + (2b
+1 - 2)) mmin (mmin + 1). (3.3.3) 

An example is shown below to explain the success of the proposed hybrid algorithm. 

Consider that a (255,127) RS code is adopted and lO-bit Chase 2 algorithm is real­

ized by the Gross list decoder. Under the ideal circumstance, 65536mmin (mmin + 1) 

iterations are required for simply jointly using Chase-2 algorithm and the Gross 

algorithm but only 1082mmin (mmin + 1) iterations are needed in the proposed hy­

brid algorithm. The iterations for the proposed hybrid algorithm take only 1.651% 

proportion for CC1"O.5S in this case. It is obvious that the proposed hybrid algo­

rithm largely reduces the iterations for the interpolation step , especially for low 

rate codes. 

In fact, the multiplicities of symbols in set 2 are usually not identical, and 
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Table y. The comparison of costs c 

Algorithm Cost 
q 1 n 1 

The hybrid 1 CJ(v = ~ . 2b L L mi,j (mi,j + 1) 
i-O .i-O 

Gross+Chase Cc,·o~s = 2b
-

1 (n - k) mmin (mmin + 1) 

The algorithm in [33] C X ia = ~ (( n - k - b) + 2b . b) mmin (mmin + 1) 

The hybrid 2 CCmss+T = ~ ( (n - k - b) + (2b+l - 2)) mmin (mmin + 1) 

thus how to decide the order of symbols in the tree scheme also needs to be taken 

into account. After checking the frequency of symbols for various degrees, the 

conclusion is drawn that the reduction for iterations is reduced as the degree of 

the tree scheme increases. The reduction of iterations is given as : 

Sa = 2(b-1) _ 2(deg -1). (3.3.4) 

Then it means that the iterations brought by the symbols in the first degree get 

the maximum reduction and no reduction is achieved for the symbols in the final 

degree. This opinion is tested through checking the iterations for every symbol 

in each degree. For each symbol in the first degree, it contributes single iteration 

for interpolation step for all of 2b candidates of received set, but 2(b-1) iterations 

for each symbol in the last degree. In order to fur ther reduce the iterations, the 

symbols in set 2 are placed into the tree scheme in conformity with the regulation 

that the symbol with the larger multiplicity is arranged into more anterior degree. 

We denote the hybrid KY list decoding and Chase-like algorithm as hybrid algo­

rithm 1, and the hybrid algorithm using the Gross decoder as hybrid algorithm 2. 

The costs for different hybrid algorithms including the list decoding algorithm and 

b-bit Chase 2 algorithm are shown in Table Y under the ideal situation. The hy­

brid algorithm proposed in [33], which contains the Gross algorithm and the Chase 

algorithm, is similar to the proposed algorithm but without the tree scheme. In 

fact , the cost for the proposed hybrid algorithm is greater than the value in Ta­

ble Y because the multiplicities of symbols in set 2 do not entirely equal to mmin . 

The hybrid algorithm spares more iterations as the multiplicities of symbols in set 
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2 increase from mmin since the tree scheme arranges the symbols based on the 

multiplicity order that from maximum to minimum. 

The hybrid Gross list decoding and Chase-like algorithm is presented in this 

section for the simplification of the Gross algorithm. The priority between the 

Chase algorithm and reencoding step is discussed. A tree scheme is applied to 

further reduce the number of iterations through utilizing the mutual relationship 

among 2b candidates of the received set . 

3.4 The simulation results 

This section mainly explains the frame error rate (FER) performances and com­

plexity of the two hybrid algorithms using (7,5) and (15 ,7) RS codes. 

For (7,5) RS code, the conventional decoder can correct one error and the max­

imum likelihood decoder can correct two errors. So we apply Chase-1 to improve 

the performance of the KV list decoding algorithm. We implement 4-bit Chase-

1 algorithm to received set. We choose 4-bit Chase-1 (4 times KV interpolation 

and RR factorization step) algorithm because the complexity of the generation of 

the interpolation polynomial does not increase very much. Simulation results are 

shown in Figure 3.3. From Figure 3.3, we see that the performance of the hybrid 

algorithm 1 approaches the performance of MLD. In this short code, the hybrid 

algorithm 2 is not applied because the complexity is acceptable by using the KV 

decoding algorithm. The tunable parameter s is chosen to be 12 for the hybrid 

algorithm l. 

For (15,7) RS code, we choose Chase-2 algorithm to enhance the performance. 

We select 4 unreliable bits and then correspondingly, we attain 24 candidate re­

ceived sets. Simulation results are shown in Figure 3.4. Simulation results in 

Figure 3.4 show that the hybrid algorithm 1 is able to correct more than 6 errors 

at 6 dB. Because of the complexity (it has 16 times interpolation and factorization 

steps), we have to increase the maximum multiplicity of the list decoder if we want 

to achieve better performance. The performance of the hybrid algorithm 2 is also 
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Figure 3.3: The simulation results of the hybrid KV list decoding and Chase-like 

algorithm for (7,5) RS code 
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Figure 3.4: The simulation results of the hybrid Gross list decoding and Chase-like 

algorithm for (15,7) RS code 
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T ble VI The costs of simulation a 

Algorithm 4-bit 3-bit 2-bit I-bit 

The hybrid 1 
(3 x 10 + 5) X 24 

280 140 70 
= 560 

Gross+Chase 
(3 x 3 + 5) X 24 

112 56 28 
= 224 

The algorithm in [33] 
(3 x 3 + 1) + 4 X 24 

35 20 15 
= 74 

The hybrid 2 
(3 x 3 + 1) + 25 

- 2 
25 18 15 

= 40 

shown in Figure 3.4. As discussed in section 3.3 and proved by simulation results, 

the performance gap between the hybrid algorithm 2 that firstly uses Chase algo­

rithm, which is denoted as hybrid 2(Chase) in Figure 3.4, and the hybrid algorithm 

2 that firstly uses the reencoding step , which is denoted as hybrid 2(reencoding), is 

very small. The decoding costs of (15,7) RS code under the situation that no multi­

points in received set and s = 25 are calculated in Table VI. Although the perfor­

mance of the 4-bit hybrid algorithm 2 is the same as the 3-bit hybrid algorithm 1, 

40 iterations are required for the former algorithm but 280 iterations for the latter. 

Figure 3.4 also shows that the performance of the hybrid algorithm 2 is worse than 

the hybrid algorithm 1 despite that the Gross algorithm has a completely uniform 

performance with KV algorithm. Then why are the performances different after 

applying the same Chase algorithm to two algebraic decoders that have the same 

performance? Actually, the difference of the performances between the hybrid al­

gorithm 1 and 2 is caused by the simplified factorization step. As discussed in 

section 2.5 , only l = 2 f(k / n) tl coefficients produced by simplified factorization 

step, it is a hint that the number of errors that occur in reliable set must be equal 

to f(k / n) tl or less, otherwise the Gross list algorithm cannot successfully decode 

the received sequence even though the amount of errors that occur in the whole 
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received set does not exceed the classical decoding bound t = (dmin - 1)/2. Since 

the probability that more than i(kln) tl errors occur in k reliable symbols is very 

low and decreases as the SNR increases, then it is acceptable that the performance 

of the Gross algorithm is same as KV algorithm. However if we apply the Chase 

algorithm to Gross algorithm with large erasures, the decoding fails because more 

than ,(kin) tl errors occur in the k reliable symbols take a large of proportion for 

the reduction of performance. As the SNR increases, the symbols in set 2 with in­

creasing reliabilities , cause the performance of hybrid algorithm 2 to approach the 

hybrid algorithm 1. This situation is proved by the simulation results. To change 

this situation, the simplified factorization step needs to unceasingly produce more 

coefficients, but the complexity also undoubtedly increases. 

The costs of decoding for different hybrid algorithms are analyzed in this sec­

tion. From the comparisons of simulation results and the costs of decoding, the 

hybrid algorithm 2 has the less complexity than the hybrid algorithm 1 and the 

hybrid algorithm proposed in [33] but with a slight performance loss corresponding 

to the hybrid algorithm 1. 

Summary 

This chapter discusses two hybrid algorithms based on the KV list algorithm 

and the Gross list algorithm. The particular steps for the two hybrid algorithms 

are given in this section. The costs of decoding for each hybrid algorithm are also 

discussed. The kernel of this chapter is how to achieve the maximum reduction 

of complexity by using the Gross algorithm. The hybrid algorithm 2 has a lower 

complexity because of the tree scheme and the concept of [33] . The discussion in 

section 3.4 confirms the effectiveness of the hybrid algorithm 2. 
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Chapter 4 

The Adaptive Hybrid List 

Decoding and Chase-Like 

Algorithm of Reed-Solomon 

Codes 

Although the complexity of the hybrid algorithm 2 is lower than the hybrid algo­

rithm I, its complexity increases exponentially with the number of bits used in the 

Chase-like algorithm. So the complexity after applying the Chase-like algorithm 

needs to be still further reduced. Actually, as the SNR increases, the received bits 

become more and more reliable. So it is not necessary to apply the Chase algorithm 

to every received sequence in the KV list decoding algorithm. To further reduce 

complexity at high SNRs, we propose an adaptive hybrid algorithm based on us­

ing the KV list decoding with an adaptive Chase-like algorithm in this chapter. 

The basic idea of the adaptive hybrid algorithm is to use a reliability threshold to 

exclude more reliable bits from being processed by the KV list decoding algorithm. 
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4.1 The adaptive algorithm 

Mahran and Benaissa proposed an adaptive Chase algorithm for linear block codes 

in [34]. In the adaptive Chase Algorithm, a l-bit quantizer is used to classify the 

received bits by their reliability. A brief overview of the adaptive Chase algorithm 

is given below. 

As errors are more likely to occur in the 'rJ least reliable positions of the received 

tiequence R, the Chase algorithm is applied in those positions. A reliability thresh­

old function or confidence level, r , is used in the adaptive Chase algorithm. The 

higher the confidence level the more Chase-like erasures. The threshold function 

is shown as: 

(~:) . Rc 
T=Sxrx 

0.5 
(4.1.1) 

where Rc is the code rate. Eb/ No is the bit SNR. S is a scalar constant that 

depends on the number of quantization levels which is given as: 

0.45 S 0.7 - < < -21- 3 - - 21- 3 ' ( 4.1.2) 

The threshold is used to decide which bits should be processed by the Chase 

algorithm. Let the reliability of received sequence be C'tj , .i = 1, 2, ... , [dmin /2] . 

The bits will be used in the adaptive Chase algorithm only if their reliabilities 

satisfy the following condition: 

-T ::; C'tj ::; +T .i = 1, 2, .. . , [dmin / 2]. (4.1.3) 

If a bit that does not satisfy the above condition it can be ignored by the Chase 

algorithm even if it is the most unreliable bit in the received bits. If no bits satisfy 

the condition , the Chase algorithm is not used. 

4.2 The adaptive hybrid KV list decoding and Chase-like 

algorithm of Reed-Solomon codes 

The application of the Chase algorithm to the KV soft-decision front end can 

improve the performance of the KV list decoding algorithm. The complexity can 
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be further reduced by using an adaptive scheme. 

Since the adaptive hybrid KV list decoding and Chase-like algorithm is pro­

posed based on the hybrid algorithm 1, we only give the steps that are different 

from the hybrid algorithm 1: 

• If Nmulti + N10w ~ tGS 

use the Chase-like algorithm for high-multiplicity-points. The threshold ob-

tained from Equation (4.1.1) with appropriate scale constant and confidence 

level is used to finally decide if the unreliable bits are picked up by the Chase 

algorithm or not 

• else 

use the Chase-like algorithm for both of low-multiplicity-points and high­

multiplicity-points. The unreliable bits selected by the Chase algorithm must 

also satisfy Equation 4.1.3. 

Figures 4.1- 4.4 show different threshold values for different confidences. Figure 4.1 

and Figure 4.2 show the threshold values for code rate with Rc = 0.467 while the 

code rate for Figure 4.3 and Figure 4.4 is Rc = 0.677. The scalar constant in 

Figure 4.1 and Figure 4.2 is 0.225 , which is the minimum of a 4-bit quantizer. The 

scalar constant in Figure 4.3 and Figure 4.2 is 0.35 , which is the maximum of the 

same 4-bit quantizer. 

It is obvious t hat we can change the confidence level to get different thresholds. 

As the confidence level increases, the number of bits that can be ignored by the 

Chase algorithm decreases. The confidence level is adjusted to fit the KV list de­

coding algorithm. It is ideal that the performance of the adaptive hybrid algorithm 

is comparable with the performance of the hybrid algorithm 1 that is proposed in 

section 3.2, but with lower complexity. 

58 



0.9 ~---'-----'----'-----'-----"---;=-+::;=r==-1::;] 

-+- r=2 

0.8 

0.7 

0.5 

0.3 

o. - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.\ 4 

SNR (dB) 

...... r=3 
-'f1- r=4 

Figure 4.1: The threshold values with minimum scalar constant in 4-bit quantizer 

for codes with Rc = 0.467 

1.4 ,----,-----.,-----.,-----.,-----.,---===_ 

1.2 -----

02 -------------------- - ----- ________ _ 

-+ r=1 
-+- r=2 
...... r=3 
-'f1- r=4 

° 1L----L----L3----L4----L---~---~ 

SNR (dB) 

Figure 4.2: The threshold values with maximum scalar constant in 4-bit quantizer 

for codes with Rc = 0.467 
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Figure 4.5: The FER performance of the adaptive hybrid KV list decoding and 

Chase-like algorithm for (15,7) RS code 

4.3 The simulation results 

All simulations are performed in an AWGN channel and assume BPSK transmis­

sion. For comparison, we simulate the conventional hard decoding, the KV list 

decoding, the hybrid algorithm 1 proposed in section 3.2 and the adaptive hybrid 

algorithm. For (15,7) RS code, we use Chase-2 algorithm to improve the perfor­

mance. We select 4 unreliable bits based on the hybrid algorithm and input them 

to the 4-bit quantizer with the confidence level 1 to 8. In the simulation of (15,7) 

RS code we choose S = 0.26 and r = 3, which are suitable for the KV list decoding 

algorithm with maximum multiplicity 2. The FER performance is shown in Fig­

ure 4.5 , and the corresponding complexity is shown in Figure 4.6 . The simulation 

results of 2-bit hybrid algorithm, 3-bit hybrid algorithm and4-bit hybrid algorithm 

are also shown in Figure 4.5 for comparison. Based on the fact that the interpola­

tion step and factorization step take almost 95% of total decoding time, we use the 

time taken by the interpolation step and factorization step to be the measure of 
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the complexity. Simulation results in Figure 4.6 show that the complexity of the 

adaptive hybrid algorithm decreases as the SNR increases. The complexity of the 

adaptive hybrid algorithm at 7dB is 2.3912, which is almost the same complexity 

as the 1 bit Chase-2 algorithm applied to the KV list decoding algorithm. The gap 

between the FER performance of the adaptive hybrid algorithm and the hybrid 

algorithm 1 is imperceptible. 

For (31,21) RS code, we still use Chase-2 algorithm to improve the performance. 

A 4-bit quantizer is also used with S = 0.225 and r = 3. The FER performance 

is shown in Figure 4.7, and the corresponding complexity is shown in Figure 4.8. 

The simulation results of the I-bit hybrid algorithm and 2-bit hybrid algorithm 

are also shown for comparison. The simulation results in Figure 4.5 and Figure 4.6 

show us that the adaptive algorithm can reduce the complexity with a small or 

marginal performance penalty. The complexity of the adaptive hybrid algorithm in 

Figure 4.8 approaches the KV list decoding algorithm without the Chase algorithm 
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at high SNRs. 

Summary 

In this chapter, an adaptive hybrid KV list decoding and Chase-like algorithm 

is presented. The basic idea of the adaptive hybrid algorithm is based on using a 

reliability threshold to exclude the more reliable bits from being processed by the 

KV list decoding algorithm. After using the adaptive Chase algorithm to the KV 

soft-decision front end, some bits that are not really "unreliable" are filtered out 

by the adaptive scheme therefore we obtain more accurate but less received sets 

than hybrid algorithm 1 and accordingly obtain more accurate but less candidates 

of codeword polynomial. Simulation results show that the FER performance of 

the proposed adaptive hybrid algorithm for both (15,7) and (31,21) RS codes is 

comparable with the performance of the hybrid algorithm 1, but the complexity is 

much lower, specially at high SNRs. 
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Part III 

The Hybrid Algorithm Based on 

the Kaneko Algorithm 
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Chapter 5 

The Hybrid Gross List Decoding 

and Kaneko Algorithm of 

Reed-Solomon Codes 

In chapter 4, the adaptive algorithm is applied in order to reduce the decoding 

complexity through estimating whether the bit selected by the Chase algorithm 

is "really" unreliable or not. Although the complexity of the proposed adaptive 

hybrid algorithm is less than the hybrid algorithm that we proposed in chapter 3, 

a loss of performance is also detected. It means that some bits determined by the 

adaptive algorithm as reliable bits contain errors. The adaptive algorithm is not a 

sufficient condition for reducing the number of iterations of the Chase algorithm. 

So we have to find another approach to cut down the complexity without loss of 

performance through decreasing the number of candidates of a received set. 

We will consider the two following problems before dealing with the approach 

on hand. One problem is to find a terminative condition to decide which generated 

candidate codeword is the most likely codeword for the received sequence before 

all candidates of a received set are tested. The other one is to eliminate the test 

error patterns that cannot create the more likely codeword than the generated 

codewords. After the two problems are solved, the number of iterations is reduced 
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when the Chase algorithm is applied. Consequently, the complexity of the decoding 

algorithm is reduced without the loss of performance. 

The first problem is settled by an efficient MLD algorithm [35] with algebraic 

decoder that was proposed by Toshimitsu Kaneko et al in 1994. The Kaneko 

algorithm generates a large set of candidates when a noisy sequence is received, 

and a smaller set of candidates when a clear sequence is received, and thus reduces 

the average decoding complexity without loss of performance for MLD. The main 

process of the Kaneko algorithm is to apply an optimality lemma to decide which 

generated candidate codeword is the most likely codeword for the received sequence 

before all candidates of the received set are tested. Obviously, the complexity of 

the Kaneko algorithm depends on the property of the received sequence. 

The tool that can solve the second problem is a ruling out scheme for the 

simplified KV list algorithm that is also proposed in this paper. The ruling out 

scheme can further reduce the complexity of our hybrid algorithm by eliminating 

some useless test error patterns after forecasting their minimum distance for the 

received sequence. 

5.1 The Kaneko algorithm 

The Kaneko algorithm that was proposed in [35] is an MLD algorithm with lower 

complexity than Chase-2 algorithm. The main components in the algorithm are 

two lemmas. One lemma is used to find the most likely codeword for the received 

sequence and terminate the decoding. The other one is used to generate test error 

patterns. 

Consider a RS codeword whose symbols are transmitted across a memoryless 

channel. The reliability matrix of the received sequence is calculated as: 

7r"=p.(et.14.)= 77((3jl etd 
1" .1 1 " fJ.1 '" (4 I ) . 

~o:.EGF(q) 77 fJj etk 
(5 .l.1) 

A hard decision vector r = (ro, 1'1,' .. ,r n-1) can be extracted from II where 

(5.l.2) 
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Let A be the all positions of a codeword, i.e, A = {I, 2, ... , n}. We divide the 

set A into S x and S~ according to a codeword x. If Xi = Ti then the position i 

belongs to S x, otherwise the position i belongs to S~, i.e, S x = {i IXi = Ti, i E A} 

and S~ = {i IXi -=I Ti, i E A} . Obviously, A = S x + S~ . 

The maximum-likelihood metric L (1', x) for q-ary codes is calculated as: 

L ( . ) - ~ - ~ 1st ~ ( 1st ) r, x - ~ 7ri ,Xi - ~ 7ri - ~ 7ri - 7ri ,Xi (5.1.3) 
iEA iEA iESi 

where 7r;st is the maximum symbol reliability for ith received symbol. So L (1' , x) 

depends only on 

(5.1.4) 

So our purpose is to find the codeword x from l' which minimizes the value of 

L (1', x) . If there exists x such that 

l (1', x) < n;inl (r,x') 
x f=x 

(5.1.5) 

then we can determine that x is the most likely codeword for 1'. 

We denote the number of S as II S II. To find the minx' f=x l (r , x'), we need to find 

the minimum II S~, II and the smallest values for 7rl
st 

- 7ri,xi· From ds (x', xo) ~ dmin 
where Xo is the output of the algebraic decoder when the hard decision l' is the 

input, we have 

(5.1.6) 

After we denote the IIS~o ll as mo, we can get one of the lower bounds on IIS~' II, 

(5.1.7) 

Based on the following equation, 

(5 .1.8) 

and m = I IS~ I I we reorder the elements S~i) in S x as: 

7r1st _ 7r2nd < 1st 2nd < 1st 2nd 
A(l) A (l) - 7r A (2) - 7r A(2 ) _ . •• :S 7r A(n-w.) - 7r A(n-.",). (5.1.9) 
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Then one of the lower bounds is derived as: 

d-mo 

. I ( ') > '" (1 st 2nd) Itl111 1', X _ 0 7f AU) - 7f A(i) . 

x #x i=l 

(5. 1.10) 

x' #xo 

Consequently we have the following lemma 1. 

Lemma 1: If the r.odc11Jord x satisfics thc follo11Jinq r.ondition 

d-mo 

I (1', x) < L (7f~(~) - 7f~(~) (5.1.11) 
i=l 

then there is no codeword which is more likely than x. 

For the derivation of lemma 2 that can give us the smallest scope with which 

the transmitted codeword is likely to be incorporated, we select all sequences as 

the test error patterns e, which are located in the i positions with the lowest value 

of 7f~(~) - 7f~(~ . We define a set L j as the set of codewords that are outputs of the 

algebraic decoder when l' + e are inputs. Lemma 2 is stated as. 

Lemma 2: If j E A satisfies 

d"d,,-mo-t-1 t+1 

l () '" (1st 2nd) + '" ( 1st 2nd ) , 1', X < 0 7f AU) - 7f A(i) 0 7f A(j+i) - 7f A(j+;·) (5.1.12) 
i=l i=l 

then Cx ~ Li where Cx is the set of codewords which are more likely than x. 

If j is set to a fixed value then all sequences in L j are test error patterns. If 

j = 0, the Kaneko algorithm has the same performance with hard decision decoder 

and if j ;::: 1 the performance is the same as Chase 2 algorithm. The simulation 

results in [35] show that the performances of the Kaneko algorithm for BCH codes 

and Golay codes are always the same as Chase 2 algorithm, but the complexities 

are decreased. 

5.2 The hybrid Gross list decoding and Kaneko algorithm 

of Reed-Solomon codes 

Although lemma 1 of the Kaneko algorithm can largely reduce the complexity of 

decoding through using a minimum value of codeword to terminate the decoding 
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process, the complexity of the Kaneko algorithm is still high if we set j to a large 

value. A ruling out scheme for Gross list decoding algorithm is applied to further 

reduce the complexity. 

The idea of a ruling out scheme is presented in [37]. The description of the 

ruling out scheme is given below. 

Lemma 1 of the Kaneko algorithm can find the most likely codeword for the 

received sequence, but before the most likely one is found we have to create the 

codeword for every test error pattern. However , some test error patterns cannot 

create a more likely codeword than the generated codewords. The ruling out 

scheme is used to eliminate the useless test error pattern, thus we do not need to 

process every test error pattern. Then the complexity can be further reduced. 

Consider that we have a received sequence and the corresponding hard decision 

is T. A test error pattern is created as e = (e1' e2,' .. ,en) and a candidate of 

hard decision is obtained as Z = T + e, correspondingly, the codeword created by 

the Gross list algorithm is c when z is input. We denote E = {i lei =1= O} and 

IIEII ::; dmin /2 . We partition the hard decision T into two sets as mentioned in 

the reencoding scheme, unreliable set (U) and reliable set (R). After we apply the 

systematic encoding to the set R of the z, we can get a codeword CT. Let A be all 

positions of a codeword and we divide A into four sets as follows: 

Du = {i liE U and ei = O} 

D~ = {i liE U and ei =1= O} 

DR = {i liE Rand ei = O} 

D'k = {i liE Rand ei =1= O}. 

We reorder the elements in U and R as: 

1st 2nd < 1st 2nd 1st 2nd 
7T U(l) - 7T U(I) _ 7T U(2) - 7T U(2) ::; ... ::; 7T u(n-k) - 7T U(H-") 

1st 2nd < 1st 2nd < 1st 2nd 
7T R(I) - 7T R(I) _ 7T R(2) - 7T R(2) _ ... ::; 7T R(k) - 7T R(k) . 
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Lemma 3, which has been proved in [37], is given to define a new candidate code­

word. 

Lemma 3: For a nonzero test error pattern e, c is a new and prospective candi-

date codewO'fd which 'is d-iffc:rent from all gencmted codewo'rd, only c satisfies the 

following conditions: 

(5.2.7) 

(5,2,8) 

Based on the dmin and the reencoding scheme, a new and prospective candidate 

codeword c for the Gross list algorithm is required to satisfy one more condition 

which is shown in the following lemma. 

Lemma 4: If the following situation is occurred 

(5.2.9) 

then the new and prospective candidate codeword c created by e must satisfy the 

followi:ng condition: 

(5 .2.10) 

Based on the lemma 3 and lemma 4, we can get the following condition for e 
that can create a new and prospective codeword c: 

IIDul1 :::; 11U11 + 2 f(k/n) tl - t m · (5,2.11) 

We denote the minimum maximum-likelihood metric for c created by e as Lmin (r, c), 
The following theorem can be deduced. 

Theorem 1: Suppose Cb is the most likely codeword for received sequence among 

those generated codewords a.nd e is the ne.r:t test error pa.ttern. Then e is useless 

and can be 'ruled o'ut if the following condition holds: 

(5.2. 12) 
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Now, our purpose is to find the Lmin (r, c) and compare it with L (r, Cb) . 

Based on the lemma 3, lemma 4 and the condition for e, we can get the Lmin (r, c) 

as follows. We denote 

IIEII 
l (r, e) = L (7fM~) - 7fEU), e; ). (5 .2.13) 

i=l 

If Ilzi =1= crll = ° (i E U), then 

min(IIUII-IIDull,tm ) ( ) 

L min (r, c) = l (r, e) + .Z 7f~{i) - 7f~(~) 
t=l U U 

tw-(IIUIl-IIDull) ( ) 
+ '\' 1st 2nd 

.~ 7f D(i.) - 7f D(-i.) 
1=1 n n 

(5.2 .14) 

else 
min(IIUII-IIDil ll , tnt-I) ( . ) 

Lmin (r, c) = l (r, e) +Z 7f~(~ ) - 7f~W) 
,.=1 U U 

max(t,,,.-l-(IIUII-IIDull), 0)+1 ( ) 
+ '\' 1st 2nd 

~ 7f U) - 7f (I.) • 
i=l Dn Dn 

(5.2 .15) 

Our ruling out scheme can give a sufficient condition to rule out some useless test 

error patterns without the loss of performance. This conclusion is proved by the 

simulation results shown in the next section. 

The hybrid decoding algorithm for an (n, k) RS code whose elements are drawn 

from GF (q) contains the following steps: 

1. Implement the KV soft-decision front end to obtain the support set, received 

set and multiplicity set. 

2. Use the Gross list decoding algorithm to produce the first candidate codeword 

Co and get the L (r , co) . Set Cb = Co and L (r, Cb) = L (r, co) . Compute the 

value of rno and store it . 

3. Use the lemma 1 to check if Cb is optimal. If yes , go to step 10, otherwise go 

to step 4. 

4. Use the lemma 2 to get T which is the smallest value of j satisfying Equa­

tion 5.1.12 or give a fixed value to T . 
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5. Check if all the (qT - 1) test error patterns have been generated. If not, go 

to step 6, otherwise go to step 10. 

6. Use the criterion proposed in section 3.2 to generate a new test error pattern 

e with IIEII ~ T . 

7. Calculate the Lmin (r, c) and use theorem 1 to decide if the test error pattern 

is useless or not. If it is useless, go to step 5, else go to step 8. 

8. Use the Gross list algorithm to produce the codeword c and compute its 

maximum-likelihood metric L (r, c) . 

9. Check whether L (r, c) < L (r, Cb). If yes, set Cb = c and L (r, Cb) = L (r, c), 

then go to step 3, otherwise, go to step 4. 

10. Terminate the decoding and output the Cb. 

In the above proposed algorithm, we use tm , which is the error-correcting capability 

of the Gross list algorithm, to substitute the classical t . The criterion used in step 

5 is an efficient way to generate the test error pattern based on reliability and 

multiplicity. 

A flow chart is given to illustrate the procedure of the proposed hybrid algo­

rithm. We also can adjust T to a fixed value, in which the same performance as 

Chase 2 algorithm is achieved. 
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Figure 5.1: The hybrid Gross list decoding and Kaneko algorithm 

5.3 The simulation results 

In this section, we compare the performance and complexity among three decoding 

algorithms: the proposed decoding algorithm in this chapter, which we denote as 

hybrid algorithm 3, the hybrid algorithm 1, and the adaptive hybrid algorithm 

proposed in chapter 4. In the simulation, we create the test error patterns in the 

way as 3T for hybrid algorithm 3. It means that we only create 2 different symbols 

for a chosen unreliable symbol. For (15 ,7) RS code, we set the total multiplicity 

s of the Gross algorithm to 25 then we get tm = 5. We choose the simulation of 

hybrid algorithm 1 with 4-bit Chase-2 algorithm and the simulation of the adaptive 

hybrid algorithm composed by the KV algorithm and the adaptive algorithm with 
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S = 0.26 and r = 3 to compare with the hybrid algorithm 3. We also perform the 

simulation with setting T = 4 of the hybrid algorithm 3. So the hybrid algorithm 3 

with T = 4 should have the same performance as the decoding process that creates 

81 test error patterns. It is shown in Figure 5.2 that the performance of the hybrid 

algorithm 3 with T = 4 is the same as the 4-bit hybrid algorithm 1 that produces 

16 test error patterns. It means that some loss of performance occurred in hybrid 

algorithm 3. It is proved, by the comparison between the simulation results of the ' 

Gross-Chase algorithm that applied the Chase algorithm to the Gross algorithm 

with symbol reliability and the 4-bit hybrid algorithm 1, that the application of 

the Gross algorithm and symbol reliability in the Kaneko algorithm are the main 

reason for the loss of performance. The performance difference between the hybrid 

algorithm 3 and the Gross-Chase algorithm is made by the symbol maximum­

likelihood metric in the Kaneko algorithm. Despite of the loss of the performance 

in Figure 5.2 and Figure 5.3, it is shown that our algorithm with T = 4 has the 

best performance among the t.hree algorithms and requires less complexity than 

the others at high SNRs. 

For (31,21) RS code, we set total multiplicity to 56. 2-bit hybrid algorithm 1 

and the adaptive hybrid algorithm with S = 0.225 and l' = 3 are also compared in 

the simulation results. Figure 5.4 and Figure 5.5 show that the hybrid algorithm 

3 has the best performance and the least complexity at high SNRs. 

We also simulate the hybrid algorithm 3 without the ruling out scheme. It is 

obvious that the ruling out scheme further reduces the complexity of the hybrid 

algorithm 3 without the loss of the performance. 

Summary 

In this chapter, a hybrid Gross list decoding and Kaneko algorithm has been 

presented. A ruling out scheme for the Gross list decoding algorithm is also pro­

posed. The idea of this hybrid algorithm is to reduce the complexity of a decoding 

algorithm through an optimality lemma and a ruling out scheme. The optimality 

lemma is thought to reduce the average complexity and the ruling out scheme is 
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thought to reduce the complexity in every single decoding process. The simulation 

results show that the complexity of hybrid algorithm 3 are much less than the 

others at high SNRs, though the performance of the hybrid algorithm 3 is always 

superior to the others. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion for dissertation 

Three hybrid decoding algorithms and one adaptive hybrid algorithm for RS codes 

were investigated in this dissertation. The KV and the Gross list decoding al­

gorithms, which have the error-correcting capability beyond the classical t = 

(dmin - 1) /2, were used to substitute the conventional algebraic decoding algo­

rithm. The Chase, Adaptive, Kaneko and Ruling out algorithms have been taken 

into account to achieve the optimal decoding performance and low complexity. 

The first hybrid algorithm comprises the KV list decoding and Chase algo­

rithm. Due to the characteristics of list decoding, we divided the received symbols 

into multi-points, low-multiplicity-points and high-multiplicity-points with respect 

to their multiplicities. A criterion giving which points the priority to contribute 

the unreliable bits was proposed based on two situations. The simulation results 

attested to this deduction as the hybrid algorithm using this criterion has better 

performance than the hybrid algorithm using Chase-2 algorithm to focus on the 

whole symbols . From the simulation results, though the hybrid algorithm that 

forces the Chase algorithm to only focus on the high-multiplicity-points which we 

denote it as contrast 1 has the better performance than our hybrid algorithm at low 

SNRs, the enhancement through using contrast 1 decreases as the SNR increases. 

79 



So the criterion proposed in our hybrid algorithm is the optimal method to create 

error test patterns. 

The Gross list decoding algorithm replaced the KV algorithm to build the sec­

ond hybrid algorithm. The Chase algorithm was still applied to improve system 

performance. The second hybrid algorithm is provided with lower complexity than 

the first hybrid algorithm since normally, only n - k symbols need to be processed 

by the interpolation step and l = 2 f(k/n) tl symbols need to be exported by the 

factorization step. A tree scheme is used to further reduce the number of symbols 

entangled into iterations in the interpolation step, which takes the largest portion 

of decoding time. The tree scheme utilizes the correlation among candidates of 

the received set to store the fractional interpolation polynomial that is created by 

the symbols in previous candidate of the received set but also exists in the cur­

rent candidate of the received Sl':! t. Due to the communal interpolation polynomial, 

the total cost of the interpolation step was reduced, which is shown in Table V, 

accordingly, the complexity of the second hybrid algorithm is less than the first 

hybrid algorithm. The loss of performance is detected in simulation results, and 

it was caused by the Gross list algorithm. Even the performance of second hybrid 

algorithm with 4 erasures is the equivalent of 3-bit first hybrid algorithm. Com­

pared to the first hybrid algorithm, only 1/7 of the cost is required for the second 

hybrid algorithm. 

Although the second hybrid algorithm largely reduced the decoding complex­

ity, the number of iterations was still large if more unreliable bits were chosen by 

the Chase algorithm. Most of decoding time was wasted dealing with the received 

sequence where no error occurred during transmission. At high SNRs, the proba­

bility that the unreliable bits Selected by the Chase algorithm are correct cannot be 

overlooked. Thus it indicated that we can find a solution to reduce the complexity 

in this idea. An adaptive algorithm is considered to reduce the total complexity 

through throwing off the bits that were estimated to be unreliable bits by the 

Chase algorithm. Therefore, there are not the changeless 2b test error patterns for 
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every received sequence if the b-bit Chase-2 algorithm was applied. The algebraic 

decoder used in this adaptive hybrid algorithm is the KV decoder, but the perfor­

mance of the adaptive hybrid algorithm is not as good as the first hybrid algorithm 

using the same algebraic decoder, though the complexity was reduced. It means 

that a part of the bits released by the adaptive scheme was "really" unreliable. 

The loss of performance occurred in the situation that received a sequence that 

contains the errors but can be accurately restituted if we use the Chase algorithm. 

To solve this problem, we have to place a threshold with a larger value, however 

the complexity of decoding also increased since the participation of more bits in 

one decoding process. 

The reduction of the decoding performance through using adaptive scheme mo­

tivated us to find other means to achieve the purpose of reducing the complexity 

but keeping the performance. The two problems were considered before we pro­

posed the third hybrid algorithm. One problem is to find a terminative condition to 

decide which generated candidate codeword is the most likely codeword for received 

sequence before all candidates of a received set are tested, another is to eliminate 

the test error patterns that cannot create the more likely codeword than the gener­

ated codewords. After the two problems were solved, the number of iterations was 

reduced when the Chase algorithm is applied. Consequently, the complexity of the 

decoding algorithm is reduced without the loss of performance. In our third hybrid 

algorithm, the first problem was solved by the Kaneko algorithm, and the second 

task was taken over by the Ruling out algorithm. The Kaneko algorithm used an 

optimality lemma to decide whether the current generated candidate codeword is 

the most likely codeword for the received sequence or not before all candidates of 

received set are tested. The ruling out scheme eliminated some useless test er­

ror patterns after forecasting their minimum distance for the received sequence to 

reduce the complexity. From the simulation results, after the two problems were 

solved, the third hybrid algorithm has a better performance than the first hybrid 

algorithm and the adaptive hybrid algorithm, but the lowest complexity for both 
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(15,7) and (31,21) RS codes. 

The loss of performance of the third hybrid algorithm was also detected and 

the peace breakers were not only the Gross algorithm but also the application of 

symbol reliability in the Kaneko algorithm. The symbols which have the minimum 

values with 7r Ist - 7r
2nd (7r is the symbol reliability) were taken into account by the 

Kaneko algorithm in the first place, nevertheless, the Chase algorithm confirmed 

the erasures in the whole received sequence corresponding to the bit reliability. 

The symbol reliability is created by bit reliability, so the soft information is lost in 

the second manipulation for bit reliability. This is the reason that the bit reliability 

was more reliable than the symbol reliability, and was also the cause for reduction 

of performance in third hybrid algorithm. 

6.2 Further work 

Future work will cover the two aspects of enhancing the performance and reducing 

the complexity. 

Performance 

Enhancement of the performance can be achieved through increasing the value 

of constraint s to enlarge the search scope in order to obtain more candidates of 

codeword, though the cost increases exponentially with the length of code and the 

value of constraint s. 

Based on the simulation results of the third hybrid algorithm, the orientation 

is doable that achieving the performance of MLD but a much lower complexity 

through solving the two problems. The amelioration should be focused on apply­

ing the bit reliability to supersede the symbol reliability. It means that another 

optimal lemma to decide whether the current generated candidate codeword is the 

most likely codeword for the received sequence, should to be produced with a view 

to bit reliability. The algorithm proposed in [31] is the embodiment of this idea. 

In their algorithm, the Ordered statistic algorithm replaced the Chase algorithm 

to create the candidates of received sequence. Nevertheless, it is a pity that the 
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necessary algebraic decoder used in their algorithm is still the conventional alge­

braic decoder. Thus, how to combine the list decoding algorithm with the optimal 

lemma respected to bit reliability, for the elevation of performance, is part of fur­

ther work. 

Complexity 

In our third hybrid algorithm, we create the test error patterns in turn through 

the Chase algorithm even the candidate codeword produced by previous candidate 

of received set is less likely than the current optimal codeword. Kaneko proposed 

an improved version in 1997 [36] to amend this situation. In their improvement, 

they select the next test error pattern depending on the comparison between the 

L (T, c) and L (T, Cb), instead of creating it in turn. This technique can also be 

future work for reducing the decoding complexity. 
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